Ueveloper
Lems

Edited by

CRC Press 11:
Taylor & Francis Group Wllllam R_ ShEFman

AN A K PETERS BOOK



VR Developer Gems



Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com


http://www.taylorandfrancis.com

VR Developer Gems

Edited by
William R. Sherman

CRC Press
Taylor &Francis Group
Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

AN A K PETERS BOOK




CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway N'W, Suite 300
Boca Raton, FL 33487-2742

© 2019 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed on acid-free paper
International Standard Book Number-13: 978-1-138-03012-1 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize
to copyright holders if permission to publish in this form has not been obtained. If any copyright material
has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter
invented, including photocopying, microfilming, and recording, or in any information storage or retrieval
system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Names: Sherman, William R., author.

Title: VR programing gems / William R. Sherman.

Otbher titles: Virtual reality programming gems

Description: Boca Raton : Taylor & Francis, a CRC title, part of the Taylor & Francis
imprint, a member of the Taylor & Francis Group, the academic division of T&F
Informa, plc, 2019. | Includes bibliographical references.

Identifiers: LCCN 2018056231 | ISBN 9781138030121 (hardback : acid-free paper)

Subjects: LCSH: Virtual reality—Computer programs.

Classification: LCC QA76.9.C65 S48 2019 | DDC 006.8—dc23

LC record available at https://lccn.loc.gov/2018056231

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com


http://www.copyright.com
http://www.copyright.com
http://www.copyright.com
https://lccn.loc.gov
http://www.taylorandfrancis.com
http://www.crcpress.com

Contents

Preface
Editor

List of Contributors

Section| The Medium of VR

1 VR as a Medium
William R. Sherman

2 VR and Media of Aftraction: Design Lessons from History
Rebecca Rouse

Section Il VR with Game Engines

3 Getting Started with SteamVR and Unity
Lee Wasilenko

4 UniCAVE: A Distributed Rendering System for Unity3D
Ross Tredinnick and Kevin Ponto

5 Using the Kinect for Head-Tracked Perspective and Pointfing in
Stationary VR Displays

Jason W. Woodworth and Christoph W. Borst

XV

XVii

21

43

59

71



6 The Vehicle Pattern for Simplifying Cross-Platform Virtual Reality

7

10

11

12

13

14

15

Development

Anthony Steed

WebXR: Virtual Reality... in the Browser

Luis Diego Gonzdlez-Zufiiga and Peter O’Shaughnessy

Greyhouse: Building the Neighborhood Coffee Shop in Unreal

Engine for VR
Booker Smith and David Whittinghill
Bridging Scientific Visualization and Unreal VR

Kees Van Kooten

Section Il Inferaction

Brownboxing: The Secret to Rapid VR Prototyping
Shawn Patton

Bi-Manual Interaction for Manipulation, Volume Selection,
and Travel: Using the Leap Motion, Game Controllers and
Mobile Devices

Elliot Hunt, Rajiv Khadka, and Amy C. Bani¢

Effortless 3D Selection through Progressive Refinement
Doug A. Bowman, Regis Kopper, and Felipe Bacim

Travel in Virtual Reality

Jason Leigh

From Painting fo Widgets, 6-DOF and Bimanual Input Beyond

Pointing
Bret Jackson and Daniel F. Keefe

Section IV Agents & Avatars

Making Virtual Reality Social: Getting Virtual Humans into Your

Virtual Environment

Andrew Cordar, Yao Heng, Fatemeh Tavassoli, Jeffrey Wood, and
Benjamin Lok

87

101

117

133

151

161

211

229

243

271

Contents



16 Building a Social VR App 289
Bernie Roehl

17 Avatar Embodiment, Behavior Replication, and Kinematics in
Virtual Reality 321

Daniel Roth, Jan-Philipp Stauffert, and Marc Erich Latoschik

Section V Third Person POV Cameras

18 Recording and Replaying Virtual Environments for
Development and Diagnosis 349

Anthony Steed, Minggian Wang, and Jason Drummond

19 Capturing Cinematic Shots of Virtual Reality Scenes in Unity 363
Andrew Cunningham and Maxime Cordeil

20 A Stereoscopic 3D View for Virtual Reality Spectators 371
Andrew Guagliardo, Jason Leigh, and Ming-Der Yang

Section VI Virtual Worlds

21 The Utility of Virtual Reality for Science and Engineering 383
Kenny Gruchalla and Nicholas Brunhart-Lupo

22 Immersion and Visualizing Arfistic Spaces in Virtual Reality 403
Margaret Dolinsky

23 Embodied Montage: Constructing Meaning in Virtual Reality 415
Deniz Tortum and Ainsley Sutherland

Section VII  Advanced Rendering for VR

24 Omnidirectional Stereoscopic Projections for VR 423
John E. Stone
25 Volume Lenses for VR 437

Jason W. Woodworth and Christoph W. Borst

Contents vii



Section VIll  Perception for Immersion

26 Check Your Work: Evaluating VE Effectiveness Using Presence 453
Richard Skarbez and Mary C. Whitton

27 Misperception of Self-motion and Its Compensation in Virtual
Reality 465

Frank Steinicke

28 Exploring Large Environments with Redirected Walking 485
Mahdi Azmandian, Rhys Yahata, and Evan Suma Rosenberg

Section IX DIY VR Hardware

29 Building and Interfacing Input and Output Devices 515
Kyle Johnsen

30 A Tinkerer’s Perspective on VR Displays 529
J. Adam Jones

31 Environmental Feedback for VR Systems 551

Chauncey E. Frend

Section X Building the Infrastructure of VR

32 Virtual Reality System Concepts lllustrated Using OSVR 571
Russell M. Taylor 11
33 Perspective Projection for VR 617

Robert Kooima

34 Fast and Easy Collision Detection for Rigid and Deformable
Objects 629

Rene Weller and Gabriel Zachmann
Index 661

viii Contents



Preface

Wow! As my co-author Alan Craig and I state in our book Understanding Virtual Reality,
second edition, virtual reality (VR), a technology-driven medium that has been making
steady progress for literally halfa century, has, all of a sudden, become an overnight success.

Surely however, over the entire course of those 50 years, a lot of good work has been
done and shared throughout the (then) relatively small VR community. I (and I'm sure
others) have felt for some time that we need a Gems-style book to help not just that com-
munity but also help all the new enthusiasts joining in. Because of other book projects
hanging over me, it took some time before I felt comfortable pulling the trigger on a
“Gems” book—though as it happens, the rapid growth of the VR community sufficiently
compelled me to disregard sanity and initiate this book even before that other project was
complete. And so, with the help of Rick Adams at Taylor and Francis, I embarked on this
effort to collect useful contributions in bite-sized morsels of wisdom to share with that
growing community.

As with other “Gems” series, the goal with this volume is to provide concepts and code
that can help old and new practitioners to do something new or bring a new approach
to current and future projects. VR Developer Gems probably has a more even balance
between concepts and code than many of the other series of this type. For readers look-
ing primarily for code, there is plenty of that, but we hope that all readers will find the
value in knowing more about the audience of VR experiences, both from the approach of
human perception along with their expectations of the medium and how those expecta-
tions change as the medium and the audience matures.

Chapter Roundup

The most important consideration for a gems collection book is who the contributors
should be and what topics they can address. My goal was to find authors who were experts
in many different areas as well as from different eras of VR development. Furthermore,
I had hoped to get contributions from all seven continents (including work done in
Antarctica). Not all my recruiting efforts were successful, often the timing of competing



deadlines was a factor—and while I didn’t quite get all the continents this time, there is a
pretty good mix of authors and topics.

I also worked to have a broad composition of software tool representations, but the
book has somewhat of a Unity bias. This was not intentional but more of a consequence
that there is an imbalance in Unity usage within the VR research community, which is
thus reflected here.

On the people side, a good portion of the contributors have been working in the field of
VR for half of the medium’s 50 years of evolution. Many other contributors have perhaps
been working for only a decade or so, and a few are up and coming toolsmiths, applica-
tions developers, and theorists.

For this volume, contributions were solicited from existing VR-related email lists (includ-
ing my own personal list of VR colleagues), plus I reached out to individuals recommended
to me by those who learned of the project through one channel or another. And finally, I
invited contributions based on interesting VR projects that I encountered while doing my
own VR research—did I mention I happened to be writing another book at the time.

Once all the contributions were confirmed, I divided and ordered them into ten catego-
ries to help our readers quickly find chapters of immediate interest. Obviously for a “gems”
book, readers are not expected to engage with each chapter in the order presented, but
given a list of topics, they (you) might be able to quickly find related topics that might be
immediately beneficial and then by considering the other chapter section groupings will
find themselves (yourself) intrigued by what else might be hidden in the mix.

Time Value of Knowledge

Progress in the medium of VR continues to accelerate, which means, we now enjoy improve-
ments to hardware, software development tools, and most importantly, highly polished
experiences faster than can be absorbed. While this keeps us all on our toes, it also has the
unfortunate consequence of dating and moving onto other fashions of what’s presently
hot in the VR developer community. This consequence can affect different topics/chapters
of this book at different rates. Of course overall the principles of good development don’t
change and neither do basic graphical transformations, but sometimes the programming
interface used evolves in such a way that our code no longer matches the new interface.

In some chapters, the choice was made to provide algorithms in pseudo-code that the
reader can then transpose into their own preferred development environment. In other cases,
code examples are for a specific development environment. In these cases, however, the code
has been commented to a point where a developer using another system (or an evolved ver-
sion of the same system) can still apply the principles presented to their own work.

I’ll mention some of the editorial oversight later, but code comments was one place
where I tried to ensure consistency among the chapters. Indeed, one of my longstanding
personal programming principles has been the insistence of highly (and well) commented
code. (As an undergraduate student, I was taught in one of my first classes on artificial
intelligence that the primary reader of any code you write will be a human.) And I found
that often the particular human reading those comments would be me. Undoubtedly,
more often than not, comments I wrote years before would help me know what I was
thinking at the time I was developing whatever code I was now reevaluating. So I know
firsthand the value of good commenting habits.

Preface



Quirks of Editorship

In the prefaces of my other book-scale publishing efforts, I (and my co-author) speak of
our “quirks of authorship.” Well in this effort I have a different role. Certainly not all the
authors are going to write in the same style, and I had no intent to coax style uniformity.
However, I did attempt to have this book present a fairly consistent usage of terminol-
ogy, while not wanting to be overly heavy-handed in forcing my particular quirks on the
authors (perhaps with one exception).

And that exception is my one “forbidden” term: immersive virtual reality. (A phrase
you will not see again here and should exclude from your thoughts!) Why do I eschew
that term? Well, I contend that the use of that term implies that there would also be non-
immersive VR—but “physical immersion” is a key element of VR, perhaps the primary
element. Thus, there cannot be, and therefore, I don’t want to imply the existence of, a
non-immersive form of VR. So to avoid that implication, I avoid-like-the-plaque the use
of that term.

There are other terminology expressions which I encourage, though don’t 100% man-
date, such as preferring the use of the word “travel” when talking about moving around a
space and saving “navigation” for when movement is combined with wayfinding.

Another terminology issue I have is with the term “position,” which I find to be ambig-
uous in that it can mean anything from a 1-D point on a number line to a point in 3-D
coordinate space, to the rotational setting of a knob, to telling someone not to move any
of their body parts—“hold that position.” Therefore, my tendency is to use “location” for a
point in N-space (1-D, 2-D, 3-D) and “orientation” for a sequence of rotations about given
axes. When using “position,” I prefer to then qualify what usage is being indicated, such
as 6-degree-of-freedom (DOF) position (which means both location and orientation and
is the type of value returned by a “6-DOF position tracker”). (And I contend that most
people also subconsciously believe that to be the case even if in their writings they treat
“position” to only mean “location.” In fact, I believe I can demonstrate that they subcon-
sciously believe that but only in person and only when they don’t know that I'm demon-
strating that.) But alas, my influence is limited and most game engines use “position” to
specifically refer to “location in 3D coordinates.”

One last terminology consideration is, as with my other books, I prefer the use of sin-
gular them/their as genderless pronouns, and I point to Shakespeare and Austin as trend-
setters in that regard.

In Unity C# the “this” operator refers to the object to which a script has been attached.
However in most Unity C# code you will not notice many uses of “this” because for many
of the common uses of “this” such as referring to the object’s “transform” value Unity
assumes the intent is “this.transform”. As this book is designed as a pedagogical resource,
I prefer to avoid the “implicit this” and make it explicit. Thus you may notice a greater
preponderance of “this” operators in the Unity code herein.

One final quirk (not counting extensive comments mentioned in the previous section), or
perhaps this is more of a pet-peeve of mine, is the use of numeric citations. Many academic
papers use numeric superscripts to call out reference citations, but as I read those papers, I
find it annoying to have hold my place and interrupt my reading to search at the back of the
paper/chapter/book to see who is being cited. Thus, for the chapters herein, I have imposed
my preference for citations that indicate author(s) and year directly within the prose.
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A Look to the Future

As noted at the outset of the preface, I had hoped to include many more authors and many
more topics in this volume. In particular, I'd like to see more inclusion of the Unreal
Engine for VR development, along with more Unity implementations. Ideally, if there is a
favorable outcome for this book, there will be a favorable outlook for additional volumes
in this series.

Possible future volumes would not necessarily have the same chapter section group-
ings, but neither will sections from this volume be excluded. And perhaps we’ll get that
contribution from Antarctica among other new domains.
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VR as a Medium

William R. Sherman
Indiana University

1.1 What Makes VR 1.3 To What End?
Interesting? 1.4  Design Choices
1.2 What Makes VR VR? 1.5 In Closing

1.1 What Makes VR Interesting?

As with any distinct medium, virtual reality has characteristics that make it unique and
of interest to creators and audiences alike. The primary unique characteristic of VR is
physical immersion—the interactive response of how the world is continually rendered to
be in perspective for the participants. For perspective vision and sound, the full 6-DOF
position (location and orientation) of the head is “tracked,” and in most cases one or both
hands are also tracked to provide an intuitive 3D interface. Because the VR system follows
the body of the participants, interactions with the virtual world occur at the proportion
of the user. Thus, these three characteristics—physical immersion, intuitive 3D interface,
and human scaled interactions—make VR a singular medium that enables participants to
have more control over and often be more connected with a virtual world beyond what is
achieved in other media.

1.2 What Makes VR VR?

The definition that I've adhered to for virtual reality for many years is: “A medium com-
posed of interactive computer simulations that sense the participant’s position and actions,
vand replace or augment the feedback to one or more senses, giving the feeling of being
mentally immersed or being “present” in the simulation” [Sherman and Craig, 2018].



Which is a long sentence, but has four bite-sized phrases:

First, as alluded to above, virtual reality is a medium, which means it is a means of
conveying ideas from person to person, or people to people: from creators to recipients.
The ideas conveyed are expressed as an imaginary, or “virtual,” world. Moreover, the ideas
experienced may or may not be exactly the message that is received by the recipient; for
there are many factors arising from the circumstances of a participant that influence their
take on the experience. Furthermore, the medium itself is a filter on concepts as they are
conveyed, and thus has a higher, over-arching influence on consumers of the medium—
“the medium is the message” as McLuhan has proclaimed [McLuhan, 1964].

The second phrase of our definition is that computer simulations sense the position
and actions of the participant—participants are “tracked.” Their heads are tracked, as well
as one or two hands, perhaps more. We might technically describe this data as 6-degree-
of-freedom (6-DOF) position tracking inputs. There can also be other inputs such as but-
ton presses, joystick movements, trigger pulls, and 3-DOF tracking (just orientation).

A VR system needs the position tracking data for the third component of the definition—
replacing or augmenting feedback to the human participant. For the human senses to
accept the stimuli as being a replacement or augmentation of the real world, that stimuli
must respond naturally. And for the stimuli to respond naturally, it should be presented
in a way that changes as the participant moves—rendered to their *perspective*. It is this
perspective rendering that makes VR different from standard computer graphics on a dis-
play monitor.

Finally, the fourth aspect of our definition is that this is all done with the goal of putting
the participant inside the simulation (aka inside the virtual world). In other words, the
user should feel as though they are in the same space as the subject matter. We often refer
to this as being immersed, or feeling present in the simulation. The word “immerse” is
ambiguous, however, about whether one is physically or mentally engaged with the world,
which will be addressed shortly.

1.2.1 Key Elements of a Virtual Reality Experience

From the definition of virtual reality, there are some key elements that are a natural con-
sequence of creating a VR experience:

e The Participant(s) of the Experience;
e The Creator(s) of the Experience;

e The Virtual World;

e Physical Immersion; and

e Interactivity.

Asalready indicated, VR is a medium, and as such it is about conveying ideas and informa-
tion from people (the creators) to other people (the participants)—or perhaps sometimes
the participants are the creators. Thus the involved people on both sides of the experience
are essential to a VR experience—there wouldn’t be an experience without them.

The virtual world is also key in that for a medium to operate, there must be something
to convey from one side to the other. There must be some content. A virtual world is
the content of what is conveyed by virtual reality (as well as other media such as novels,
motion pictures, etc.). As with other media, the virtual world may be fiction or non-fiction.

1. VR as a Medium



The content may be everyday or fantastical. It may be to learn how to accomplish a task, or
become more familiar with the workings of a molecule.

We indicated at the outset that physical immersion is one of the things that makes
VR interesting—it is also a key ingredient that distinguishes VR from other media. Our
definition of VR also integrates the notion of immersion, but in that case focuses on a dif-
ferent aspect of immersion—mental immersion. Immersion can thus be partitioned into
two concepts: physical immersion and mental immersion.

Mental immersion is imagining oneself in another place or situation. Physical immer-
sion is having the ability to (bodily) interact in a place or situation. For virtual reality we
might say:

e Mental Immersion: when the mind engages a world as though it were real.
e Physical Immersion: when the body engages a world as though it were real.

Physical and mental immersion are thus not the same thing, though the two can certainly
go hand-in-hand. Importantly, while mental immersion is often important to a VR expe-
rience, we can also attain mental immersion from many other media. Therefore, mental
immersion is not a unique aspect of virtual reality.

One way in which the two forms of immersion are intertwined (and indeed this might
also be possible for other media) is through physiological responses—responses such as
increases in heart rate, perspiration, and perhaps rate of breathing. If one’s heart starts
beating rapidly from an experience through a medium, does that not also imply that their
body is engaged in the world? Okay, yes, it is the brain (the mind) that is controlling those
bodily functions, but then the brain is part of the body! So perhaps the demarcation of
what is and is not physical immersion is a little blurry.

In any event, the medium of VR does require that the virtual world be presented from a
physical perspective that matches their body movement, in particular their head.

1.2.2 What's in a Name?

We have a pretty solid definition of what it is, but this medium we now call virtual reality
has not always gone by that name. It wasn’t until 1989 when the expression virtual reality
was coined and popularized by the founder of VPL, one of the first companies to market
this technology: Jaron Lanier. Funded through contracts with NASA, Lanier’s company,
VPL, developed a head-mounted display and a glove-input device for NASA, which were
also made available for purchase by research labs around the world. These products, the
VPL Eye-phones and the VPL Data-glove, were perhaps the first time research teams could
explore virtual reality without having to also develop the technology itself.

Prior to the coining of virtual reality, the medium was often referred to as “Virtual
Environments” or “Immersive Environments.” Going back to the original VR system from
Ivan Sutherland’s lab (in Harvard and then moved to the University of Utah), the system
was simply known simply as the “Head Mounted Display.” The more interesting name
was assigned to one of the tracking technologies: “The Sword of Damocles.” The Sword of
Damocles referred specifically to the mechanical tracking system that was mounted to and
extended from the ceiling—hanging over the participant reminiscent of the fabled sword.

Before Sutherland’s system, there were flight simulators to train pilots on various
aspects of flight, but to that point (and not for another few years), these simulators did
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not use digital computers to simulate the virtual world, and thus they fall outside our
particular definition of virtual reality. However, modern flight (and ship and railroading)
simulators do fall within our definition, and in general can be considered a specific form
of virtual reality.

1.3 To What End?

Knowing what VR is, and having a name to refer to it, while important, do not get to the
heart of why we should pursue this medium. We need to address the question: what can we
do with it? Or more importantly, why should we make use of this medium over another,
perhaps easier to wield, medium?

Observing the current VR landscape, one could be forgiven for mistaking it as being all
about games and gaming. And perhaps for some (or most) users it is! Certainly the gam-
ing market plays a major role in the medium, particularly by serving as a catalyst that has
made VR affordable. However, that’s not how the medium was first envisioned, and indeed
there are many other established “genres” of VR experiences.

Yet, being a catalyst for affordability isn’t necessarily the only contribution of enter-
tainment VR experiences—people who learn how to interact within such virtual worlds
become accustomed to the interface, and can jump right in when it comes to some other
(e.g. scientific, business, etc.) uses of VR.

So, if not just for fun, how else might VR be employed?

e If we can put researchers, designers, etc. into a world where some object exists
(future automobile, future building, future wing design), then what can they learn
by visiting that world? If they learn that there is a mistake in that future car or
wing design, they can come back to present reality and make corrections.

e Ifanew worker needs to become familiar with machines they are not accustomed
to operating, can we send them to a world where mistakes are not catastrophic
(or even mildly detrimental), and have them return to our reality now familiar
with those machines?

e If a museum-goer has not personally suffered a brain injury, can we send them
to a world where they can get a small taste of the inner, unseen, impairment of a
person who does suffer ailments from injury or disease, and then return a little
wiser?

o If a patient visits a world where something playful and snowy is occurring, can
we keep their mind away from the reality of painful treatments as they undergo
them?

e If another patient wants to inure themself (under the guidance of a therapist) of
some psychological handicap or traumatic memory, can we help them do so in a
safe place, and at a measured pace.

e If someone has to learn how to make quick decisions in particular scenarios that
may arise as they execute a mission, can we put them in representative situations
where decisions are made, and where that experience can be relived and reevalu-
ated afterward? (Of course, in this case, the first widespread use of what we can
consider VR—{light simulation—has done this for decades. Now though this has
been extended to friend/foe room evacuation missions and even sports.)
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o Ifabiologist wants to shrink themself and fly around molecular structures to gain
insights on how water moves through a membrane pore, or how chlorophyll con-
verts sunlight into energy, we can make it so. And they can share that world with
collaborators and students (Figure 1.1).

e Ifastudent wants to explore ancient Rome (Figure 1.2), or Harlem in the Roaring
20s, by “walking” the streets themself, or perhaps led by a guide with information
about the sights and sounds of the era, they can do so without leaving their home,
or dorm.

e If a documentarian wants to capture events in a visually and sonically all-
encompassing way, such that it can be presented back in as realistic a form as
possible, then they can provide the means for others to have a partial first-person
experience of that event.

Figure 1.1

The VMD molecular visualization tool has both desktop and VR interfaces. Here VMD is run
in a CAVE-like system, allowing the primary user to walk around, while allowing other viewers
to come along for the ride. (Image courtesy of Chauncey Frend.)

Figure 1.2

In this Rome Reborn application for educating participants about the statue of Maxentius,
icons indicate where audio recordings with information about the Basilica and statue can
be activated. (Image courtesy of Frischer Consulting, Inc.)
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e If a geologist wants to prepare the team for a research trip to the field—perhaps
many thousands of miles away—and would like them to have at least some nomi-
nal familiarity with the region, perhaps they can go on a virtual reconnaissance
trip first. Or maybe any tourist who plans to visit modern Rome in the near future!

o Ifadesigner wants to work free-form in three dimensions, they might engage with
a 3D painting tool, or a tool with 3D shapes that can be placed and manipulated,
perhaps adding visual or vocal annotations for later visits to the world either by
themself or collaborators or clients.

e And yes, if someone does want a challenge where they find themself in a world
with fantastical weapons accompanied by companions to battle a hoard of foes...
well they can do that too.

Obviously there are enormous possibilities of how one can make use of the medium of
VR. And in each of the instances listed above there are many different scenarios expand-
ing the potential exponentially. Indeed, many of these propositions have already been
explored—some for decades [Craig et al., 2009].

1.3.1 Early Experimentation

In his paper and talk on “The Ultimate Display,” computer graphics pioneer Ivan Sutherland
succinctly expressed many of these notions even before he and his colleagues developed
the first VR system with a computer-generated virtual world [Sutherland, 1965]. Thus once
Sutherland’s team did develop the first HMD driven by computer simulation [Sutherland,
1968], those first VR virtual worlds were far too simple to accomplish any of the concepts
listed above. Indeed, other than the real-time perspective rendering, these worlds were not
very interesting at all.

Yet these worlds, or at least the conceptualization of The Ultimate Display with these
working demonstrations were enough to spark the imagination in others who recognized
that eventually the technology would be sufficient to create such worlds, and they set
out to move the technology forward, and along the way explore the effectiveness of this
nascent medium. Among those that recognized the medium’s potential were Fred Brooks
and Scott Fisher.

Fred Brooks, as chair of the new Department of Computer Science at the University of
North Carolina at Chapel Hill (UNC-CH), was enthralled by the possibilities of what was
to later be named virtual reality. One of the first projects for exploring the utility of the
medium for scientific advancement was the GROPE project [Brooks et al., 1990]. GROPE
was both a tool for researching molecular dynamics, and also a system by which the per-
formance of the researchers could be measured. In their paper, Brooks and colleagues
report four key conclusions about the utility of such an interface:

e Adding haptics to a visual display improves “perception and understanding both of
force fields and of world models populated with impenetrable objects.”

e Adding a haptics feedback interface to the tool seems to improve performance by
about two-fold (yet they seemed to be expecting a better improvement).

e Researchers (chemists) were able to use the system to quickly arrive at what (unbe-
knownst to them) were good, even optimal, docking positions of a drug into an
active site of a protein molecule.

1. VR as a Medium



e Researchers (chemists) found that they had a much higher understanding of “the
details of the receptor site and its force fields, and of why a particular drug docks
well or poorly.”

They also made the (accurate) prediction that “entertainment, not scientific visualization,
will drive and pace the technology” [Brooks et al., 1990].

Beyond academia, one organization with a need for good tools for science and engi-
neering research and development was the U.S. space agency, NASA. Beginning in the
mid-1980s (again before VR was the term), Scott Fisher formed the VIrtual Environment
Workstation (VIEW) lab to do as the title implied—explore the technology and content
creation of virtual environments, with a focal point on what would come to be called
virtual reality [Fisher et al., 1988] (Figure 1.3). At the time they had to build or contract
companies to prototype and build the interface hardware required for VR. Specifically,
they built their own head-based viewing displays in-house, and contracted to VPL for
“datagloves” (a glove input device that provides hand and finger pose tracking).

After some time exploring the display and rendering technology, the team also began
looking at applications relevant to NASA’s mission. One application in particular that
came about from this work was the Virtual Windtunnel (VWT) [Bryson and Levit, 1992].
The VWT project was shared between a handful of organizations, mostly within NASA,
but also some academic institutions, including Brown University, where they began work
on how to best design the user interface.

Figure 1.3

In the NASA VIEW program commercial HMDs were not yet available, so NASA often built
their own units (here the second version), and also commissioned contractors to construct
units. (Image courtesy of NASA / S.S. Fisher, W. Sisler, 1986.)
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1.3.2 Early Commercial Success

Before becoming viable, virtual reality had to be explored, and we’ve seen a couple of those
explorations. Eventually, the technology reached a point where researchers, technologists, and
business-minded people would explore how this technology could be financially profitable.

Flight simulation was the early commercial success, and already had a large pool of
consumers able to pay the costs of what was then pretty expensive equipment. Of course,
this enterprise was well before the concept was looked upon as virtual reality, and to a
large degree used technologies different from the typical head-tracking that was becom-
ing common in the growing field. At the time it was labeled “out-the-window simulation,”
which today we might consider a particular genre of VR. And so this success is different
than some of the other attempts at income-earning VR.

In the mid 1990s, research studies demonstrated the profitable (in a patient-healing
sense of profit) use of VR for exposure treatment for psychological afflictions, beginning
with the treatment of phobias. Specifically, collaborators at Emory University and Georgia
Tech teamed up [Rothbaum et al., 1996], and after the research success created the com-
pany Virtually Better Inc. to package hardware and software for purchase by clinicians
for the treatment of various phobias directly in the doctor’s office—whereas the typical
phobia exposure therapy would often involve traveling to various sites where the fear can
be experienced in the real world—a small step at a time.

Later, in addition to phobia exposure, Virtually Better also explored the treatment of
Post Traumatic Stress Disorder (PTSD) with clinicians guiding treatments through an
interface control board. This has also been further researched by collaborators with mili-
tary units, which during times of conflict often have an abundance of patients (Figure 1.4).

For people in every-day experiences there have also been opportunities to experience
VR at various public-venue installations. The first notable foray into public-VR came from
the company W-Industries. They created the Virtuality arcade-VR system—a system using
personal-computer capacity systems for computation and graphics, and an internally

Figure 1.4

In the Bravemind program realistic events from a war zone are recreated to help guide
soldiers suffering from PTSD to recovery (through the aid of a clinician). (Image courtesy of
Skip Rizzo, USC-ICT.)
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designed HMD along with position-tracked controllers and the sitting or standing kiosks
for the players (Figure 1.5).

The initial push was to place groupings of two or four units in standard video arcades
of the era (early 1990s), where multiple people could compete in a shared virtual world,
starting with the “classic” Dactyl Nightmare. The problem is that unlike most of the game
machines in an arcade (which don’t require an employee’s constant attention), VR experi-
ences require considerable explanation, and then also supervision while the game is tak-
ing place—otherwise either the participant might damage something, or not know what
to do and have a terrible experience. This extra personnel expense, combined with the
more expensive gaming units, as well as larger floor space requirements made these sys-
tems an unsustainable investment for most arcades—though at the beginning, the novelty
may have brought some new customers, it just wasn’t enough to cover the expenses.

Another business model attempted with the Virtuality systems was to have an extended
experience that would require return visits. The Legend Quest experience was thus devel-
oped to provide a VR role-playing style game, years before it would be popular as a desktop
gaming genre. In Legend Quest, players explore a Dungeons & Dragons style world and
battle skeletons and giant spiders and wolves, etc, as well as finding treasure and equip-
ment that they can use to further their quest. By promoting the experience as something
people would return to with a consistent group of friends to continue their quests, they
looked to create an on-going audience.

And while certainly this was breakthrough technology at the consumer-access level,
and there was considerable interest for a time, it simply was before its time. Virtuality was
first released in 1990, and by 1997 the company was filing for bankruptcy.

Another foray into VR for public consumption was entered by the Walt Disney com-
panies. At first, there was a single VR experience that was made available as a “limited
release” at the Epcot Center in Orlando Florida. Indeed, this release was also a means for

Figure 1.5

In the Legend Quest experience (a Dungeons & Dragons styled quest game for multiple
players using the Virtuality arcade-VR system), participants face creatures as they go out
on quests to find treasures in the virtual world. (Images courtesy of Virtuality Group PLC.)

1.3 To What End?

11



the Disney VR creative team to test what worked best with the general population as far as
VR was concerned. For example, the VR pods that were deployed had ergonomics similar
to a motorcycle, and indeed could be tilted from side to side. However it was found that
this “feature” was a detriment to the experience for too many people, so it was disabled,
and the seats were set to be immobile, which is how they were ultimately deployed in the
“wider” release [Pausch et al., 1996].

One modern business model for location-based VR entertainment (i.e. public venue) is
to have multiplayer mission-based experiences, often using widely recognized intellectual
property such as from the Ghostbusters and Star Wars film series. The VOID group has
developed this model, deploying experience venues in several cities world-wide. To make
these venues attract audiences, they go beyond what can be experienced in the home, pro-
viding on-body tactile effects for multiple players along with technologies such as 30" x 30"
physical tracked walking space, passive haptics, and 4D effects (e.g. misters, wind, heat,
smell). But there are also those pursuing a business model of VR arcades, where people
can pay an hourly rate to use consumer VR systems, but with the added benefit of a large
library of software they would otherwise have to purchase. Plus a VR arcade will have
helpers who know how to operate the system and be able to help them get started with
the experiences—and perhaps recommend experiences. Also, the reduced hardware costs,
and indeed software that is more cost effective—either because it has become easier to
develop, or because it is being sold at mass-market costs. On top of all that, the public
audience is now much more amenable to virtual reality, and generally more comfortable
with higher-technology interfaces.

1.3.3 Reaping the Rewards of VR

So there is certainly fun to be had from VR, and there are plenty of entertainment oppor-
tunities available. Indeed, in the modern era of VR (post January 2016), VR for entertain-
ment dwarfs the other uses of VR, whereas in the past, VR was almost exclusively used for
scientific, business, and military purposes. Now all non-gaming uses of VR have essen-
tially become the “noise” in the VR economy. Even so, the use of VR in the non-gaming
areas has also increased, but it is just more difficult to notice. So there are still many uses
of VR that can be profitable.

The profits obtained by VR are not necessarily financial rewards. So in what ways can
VR profit us?

 Intellectually (Scientifically): VR can help reveal interrelationships within data-
sets that might otherwise be hard to find.

e Educationally: VR can bring students to places (including abstract places) that
let them explore worlds and tinker with the relationships between concepts and
become better informed through personal experience.

e Experientially: VR can provide the means to practice a skill in a circumstance
more closely resembling the actual activity—except perhaps more safely, and with
better statistical analysis of their performance over time. In some cases, they might
prepare for a particular operation (be it medical or combat or whatever). Another
experiential benefit comes from the narrative offshoot style of VR (“cinematic-
VR”), which provides a means of fictional and journalistic narratives that put the
viewer in the scene, even if their only interaction is in how they turn their head.
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e Healthily: In addition to better training and preparation by medical personnel,
and better medical devices and pharmaceuticals through scientific explorations,
we have already found how VR can serve to improve the mental health of patients
with particular maladies.

e Creatively: VR can assist in creative pursuits both on the design and design review
side of things, and in the fine arts, and sometimes even the performing arts.

e and of course: Financially: When VR can help prevent a bad design, or lead more
quickly to a revelation about a medical issue, or avoid drilling where there is
no oil, that savings in time and materials is savings in money. Or perhaps some
future application may provide the tools for doing direct financial analysis and/or
business process assays.

To reiterate, gaming and entertainment now dominate the landscape of immer-
sive experiences, with the “serious” applications only being a fraction of the available
applications—perhaps even a seemingly insignificant amount. Yet the pool of “serious”
applications continues to grow, and there are also many new tools for the building of
custom applications—custom applications that can be easily shared with others now more
likely to have compatible hardware configurations.

1.4 Design Choices

Not surprisingly, the design of VR experiences has shifted dramatically due to the rise of
consumer VR systems. Both on the hardware front, but also in world creation software
that has made it easier to jump in and start creating virtual worlds. In a short overview
chapter we can only touch upon the basics. For an in-depth look at design choices, I un-
humbly refer to my book-long exploration of VR [Sherman and Craig, 2018].

1.4.1 Designing for the Hardware

In the past there was very little consistency between VR systems (perhaps other than a
small cadre of CAVE installations that shared software through a user community). In
many other cases, software was written in-house, and generally that’s where it stayed. For
software that was shared between sites with non-homogeneous hardware, the software
would thus need to be able to handle a wide variety of configurations, and certainly that
software did exist, but few of these tools were installed in more than a handful of facilities
[Bierbaum et al., 2001; Kreylos, 2008; Sherman et al., 2013].

In the past a major consideration for the development of a new VR experience was
what hardware it should be designed for: CAVE vs. HMD; one hand or two; track finger
movements, or use buttons and joysticks; and whether to track other parts of the body.
Of course in many instances these decisions were made at the time of establishing the
research lab which, once it chose a CAVE or an HMD, that is the hardware all their soft-
ware would target from that point forward.

With the advent of consumer VR systems, most include an HMD with two hand
controllers—or on the lower end of the scale (i.e. phone holders to convert a phone into an HMD
with a built-in computer). For a time, these may be independent consumer bases, and certainly
differences will remain—the computing power of a phone will likely always be less than a desk-
top, and the phone interface controllers will probably be simpler than a full HMD system (though
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in this case perhaps at some point both will simply track a user’s hand directly). But for now, they
are different, and most full HMD systems will have two full 6-DOF controllers (location and
orientation) whereas the phone systems may have one 3-DOF controller (orientation only).

1.4.2 Designing with Modern Software

Creators are now developing to a much larger user base, and even when creating applica-
tions for use in-house, lower hardware costs allow for several teams and users within their
organization able to be equipped to make use of the tool. Certainly the big boon for devel-
opment has been the inclusion of VR interface features into popular game development
systems—aka “game engines”—such as Unity and Unreal (both of which are featured in
various chapters in this book).

In addition to providing a platform that can be easier to quickly begin creating a virtual
world, game engines can also now abstract the type of VR device to the point where devel-
opers are less concerned about specific hardware interface devices, and more concerned
with how body movements (gestures) can be melded with physical controls such as but-
tons and joysticks to provide an intuitive user interface.

Because game engines have become so widely used, and simplify application creation
for HMD VR systems, other developers have likewise created the means to link at least one
of the popular game engines (Unity) with CAVE-style VR displays. (For example, see the
gem in Chapter 4 [Tredinnick and Ponto, 2019]).

1.4.3 Designing the Virtual World

The design of virtual worlds for virtual reality interfaces is of course a very important
component of the resultant experience. Indeed, it is sufficiently important that a few para-
graphs in an introductory chapter on developing VR is unsuitable for attempting to pro-
vide advice on what works and what should be avoided. However, we can convey some
broad choices that designers will need to address from the outset (and other chapters in
this book will provide further advice).

Probably the first choice a VR experience designer will consider is how to represent the
world. And the first question for that representation is whether the world should be veri-
similar or not. Verisimilar, which means appearing to be real, is often thought of as a good
thing, and in many cases, such as providing a simulation experience for training, realism
is especially important. But the look of reality is not necessarily important in other cases,
and that can go either direction: less real, or hyper-real/fantastical.

Representations that are less real can serve the tasks of visualization and data inquiry
well. In cases such as exploring a relationship graph there aren’t even any real-world cor-
ollaries to make verisimilar a possibility. The same is true in the case of molecular visu-
alizations, once you get smaller than the wavelength of visible light. But scientists have
constructed representations that have become familiar to the point that we accept them
as being true (even though to a degree there are certainly some aspects that are misrepre-
sentations of reality).

We could consider the other end of the spectrum then to be fantastical worlds where
things look somewhat realistic, but go beyond what we know to be possible in our
planet Earth existence. We might encounter these representations in worlds designed to
entertain us either as an interactive game, or as an experiential narrative (360-movie /
Cinematic-VR).
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Thus broadly speaking we can see this as three steps in semblance to our reality:

o utilitarian
e verisimilar
o fantastical

1.4.4 Designing the Interface to the World

For the user interface to the world, we might again divide interface styles into realistic and
non-realistic. And again considering tools for exploring data or exploring designs (per-
haps the look of a new shoe), we might have a utilitarian interface that instead of having
to physically walk through the space, we can fly or spring through the world around us.
Indeed, verisimilar means of travel can become rather tedious when viewing a building
that has been designed for a client to inspect: does one have to walk up all the stairs and all
the way down the hall just to look at the corner office?

The two primary aspects of an experience that require user interaction involve their
movement through the world and their ability to manipulate objects within the world. For
example, does the user make a fist grabbing gesture to take hold of an object? Or perhaps
they can point at the object from a distance and pull a trigger that “grabs” the object while
it is well beyond their physical reach. In considering both travel and manipulation, we
might find where the two overlap. For example, one might use the grab action on a virtual
steering wheel object in the virtual world, which in turn affects movement through the
world. Alternately, the world itself may be thought of as an object which can be grabbed!

1.4.4.1 Navigation: Travel + Wayfinding

Once again, for training simulations, the verisimilar course would generally be the best,
though within reason, if physical walking isn’t an impactful part of the training, then
perhaps a means of jumping or flying through the space can be acceptable, but then maybe
the hand-world interface should be more realistic.

Flying around unrealistically might be an appropriate travel interface both for utili-
tarian types of experiences (e.g. molecular visualization) and for fantastical experiences.
Perhaps the exact same interface operations will be good in either instance. Although
flying in the fantastical world might require flapping of the arms, or at least making a
Superman flying pose.

Again, travel and object manipulation might present overlapping design options.
Specifically, as alluded to above, one might consider the world to be an object when
designing the means to move through the world. From the user’s perspective: the question
is what is being moved? Me, or the world? And perhaps—though not sufficiently studied—
if you consider the world to be an object that you are moving as you are remain still, your
brain might then not consider the vestibular perception of non-motion to be a mismatch
with your visual perception (which would be beneficial in reducing sim-sickness).

Of course, the most realistic form of travel is the physical movement of the user’s own
body—physical locomotion. Though certainly most adults generally have enough experi-
ence in the control of vehicles (or perhaps even mounted animals) that enables these forms
to be treated as methods of travel that match their everyday experience.

Otherwise, a common form of travel in VR is simply to point in the desired direction
of movement and away you go. A newer solution, made popular by companies selling VR
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to consumers, has been the point-teleport (or what I call “tele-hop”) method of travel.
By avoiding continuous virtual movement it is thought to reduce the likelihood of sim-
sickness. This form of travel is operated ether by pointing at the floor to where you want
to hop, or pointing upward with a parabolic arc emanating from your hand/controller
and where it arcs back downward contacting a flat surface, that’s where you’ll jump when
you release the activation. (In some cases the direction you face when you land can be a
rotational offset controlled either by a wrist rotation or a valuator input.)

Another choice available to VR experience designers is to take the available physical move-
ment space and make it seem larger than the reality. These techniques work by fooling the user
either into thinking they are walking straight when in fact they are walking in a circular arc
(redirected walking [Razzaque et al., 2001]), or by altering the world behind their back causing
them to exit a space with the outside world rotated from how it was when they entered the
space (impossible spaces [Suma et al., 2011]). A small game that demonstrates the impossible
spaces is the “Unseen Diplomacy” experience (Figure 1.6), which has users moving down cor-
ridors and crawling through ducts, and as they do, the outer world is altered in order to always
keep the user within the physical walking space. The notion of redirected walking is discussed
in some detail in Chapters 27 and 28 of this book [Steinicke, 2019; Azmandian et al., 2019].

One other aspect of moving through a virtual world is the concept of wayfinding.
We can think of wayfinding as being the flip-side of travel, whereby the two operations
together (wayfinding + travel) comprise the complete operation of navigation. Navigation
then is moving through the world with a purposeful destination and consciously working
to arrive at the right place.

Features that can be designed into a virtual world to assist with wayfinding include
things such as large, distinguishable landmarks, signs that point the way toward particu-
lar points of interest, and maps, which might be static maps, or GPS-style maps that show
where you are located within the world.

Figure 1.6

In Unseen Diplomacy, the virtual world is generated such that users are always turned back
fo remain within the trackable bounds of the real world.
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1.4.4.2 Object Interaction

Another important consideration for the interaction design of a VR experience is how the
user(s) can interact with objects. We have already alluded to two forms of interaction—
making a fist when in contact with an object to initiate a grab operation is the first; the other
form is the telekinetic reach style where the user might shoot a ray from one of their hands,
and when that ray hits an object that is not just part of the background scenery, then it can be
grabbed with an activation trigger. The user might then be able to summon the object to their
proximity, or manipulate it remotely by twisting it or flying it across the room and placing it.

At the top level, we speak of four classifications for how manipulations can be actioned
by the user:

e Direct user control: gestured actions performed by the user that mimic a real-
world interaction;

e Physical control: using a physical device that the user touches to control an ele-
ment of the virtual world;

e Virtual control: using virtual objects (those within the world itself) to control
another element of the virtual world; and

e Agent control: giving commands (typically vocally) to an entity within the vir-
tual world to have it perform the manipulation.

The verisimilar approach is of course to use the direct user control approach as it is defined
as mimicking reality. Of course, as with the other design choices, strict fidelity to reality
is not always the best (or most appropriate) selection. Yet that does not mean direct user
control should always be avoided. Sometimes the physical control method is problematic
for the reason that it is too easy for the developer to map button presses or joystick move-
ments to actions in the world, which is convenient for them to program, but can often be
non-intuitive and thus hard to remember for the users. Virtual controls have the issue that
because they exist only in the virtual world, another control method is required to manip-
ulate the virtual controls! Perhaps there is a virtual lever within the virtual world, and the
participant operates that lever with direct user control—i.e. they reach for the knob at the
end of the lever, make a fist, and move the lever up (Figure 1.7). The agent control method
requires a means of communicating with the agent. Modern speech recognition solves
half of this problem, but the system must then parse the meaning from the word sequence.
And the other ingredient of manipulating the virtual world is how the world is pro-
grammed to respond to the actions. With modern game engines, a common method is to
apply simulated physics to the objects in the world that the user can interact with, and just
allow the realistic object interactions proceed unscripted. Again, this verisimilar method
might be good in some situations, but not the best solution in others. For example in our
molecular viewer, we might want to properly calculate bonding forces between the mole-
cules, but not have “realistic” gravity which causes the molecules to fall to the ground—we’d
rather have them remain floating in space for the user to choose their own preferred view.

1.5 In Closing

So there it is, a quick introduction to virtual reality, and how as designers of immersive
experiences there are first and foremost, many avenues for which VR can be applied and

1.5 In Closing
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Figure 1.7

In Titanic VR, there are virtual controls that are operated using the physical hand controller
fo "grab” the joystick to manipulate the controls of the submersible the participant is virtu-
ally riding. This experience also permits direct physical inputs using the circular fouchpads
on the controllers as an alternate means of affecting the submersible operations.

be useful, and while we might all enjoy being entertained, we should continue to explore
that plethora of directions this medium can be taken. And when designing experiences in
these varying fields, design for the task at hand. You might even use the same software—
the same game engine—when working on your molecular viewer, but you can employ
different features of that software to provide an interface appropriate to the task.

The rest of this book provides a wide variety of tips, techniques, concepts, and simply
things to think about when creating immersive experiences, and so read through the ones
that seem to apply to your immediate goals, and then skim the rest.

Let’s get out there and create the best virtual reality experiences we can.
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VR and Media of Attraction

Design Lessons from History

Rebecca Rouse
Rensselaer Polytechnic Institute

2.1 Infroducing Media of 2.3 Connecting to Design
Aftraction Practice
2.2  Historical Examples

2.1 Introducing Media of Attraction

Designers working with emerging media today, such as virtual reality (VR), may have
much in common with other early practitioners working with new technologies from
years past. Design practice changes in significant ways as a medium undergoes the eco-
nomic, cultural, and technological processes of institutionalization. Pioneering VR
designers today, for example, likely have more in common in terms of challenges faced,
techniques used, and solutions implemented with the pioneering designers of old media,
than they will with mainstream designers who work with VR if it becomes as institution-
alized as Hollywood film or commercial videogames. This chapter presents a theoretical
and historical framework for understanding the work of practitioners at the forefront as
designers of media of attraction. This cross-historical perspective can not only give us new
insights about how to design work with emerging media, but also encourage us to rethink
some central debates in the field, including how we might value and understand our own
work today. What would Georges Mélies, or Alice Guy Blaché, or any other of these early
adventurers in the new media of years past, have created with VR? The media of attrac-
tion concept looks back to earlier innovators to gain inspiration and insight for our own
practice with technologies like VR, and future media yet to emerge.

What are media of attraction? This concept is inspired by film scholarship on what
is known as Cinema of Attraction. Beginning in the late 1970s and early 1980s a group
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of film scholars [Gunning 1986, 2003; Musser 1990, 1994; Abel 1993; Gaudreault 2011]
came to realize the way early film had been understood was misguided. Early cinema
had previously been looked at through the lens of contemporary film and characterized
as an ‘infant’ cinema, not quite worthy of scholarly investigation. Historicized from a
standpoint of medium centricity (a way of thinking that is a hallmark of Modernism) the
development narrative had been constructed to center on the most talented practitioners
uncovering or discovering the essential characteristics inherent to film. These discoveries
then allowed the film medium to develop to its natural and fullest potential, starting in
silence and black and white, then progressing to sound, and then color, large formats, 3D,
the digital, and beyond.

This way of thinking had some problems. The early cinema works were devalued as
primitive, and as a result they had not been studied closely. In addition, the surrounding
ancillary cultural and economic practices that were a part of early film had not been stud-
ied either. And the role of these cultural and economic forces in the development of film as
an institutionalized form (as we know it today) had not been closely examined, because the
myth of medium centric development served as a totalizing explanation. Unsurprisingly,
the neat periodization of film history related above has since been debunked [Abel and
Altman 2001; McMahan 2002]. It turns out the innovation and development processes for
film were much messier and more circular—a process certainly familiar to those working
with emerging technologies today.

In the late 1970s and early 1980s when this group of film scholars and historians dug
more deeply, they found that early work on film was so different from the later institu-
tionalized form, they needed a new word to describe it. They coined the term Cinema of
Attraction to describe films made around the world from the 1890s to about 1907-1908,
when the film institutionalizing process began to take oft with more speed. This change
occurred thanks to developments like the formation of Thomas Edison’s Motion Picture
Patents Company (MPPC) in 1908. (Edison’s MPPC began to conglomerate independent
producers and impose standards in the burgeoning industry, as well as introduce costly
litigation for patent infringement, and generally narrow the field, making entry into the
industry more difficult for newcomers.) But why did the film scholars choose the term
attraction to describe these early works? Their thesis is that these early works exhibit a
remarkable range of qualities, making it difficult to gather them all under one term, but
they all share the quality of attraction. This means that for the spectator, these film experi-
ences all include an aspect of wonder or astonishment at the capability of the film tech-
nology itself. In addition, early films were often exhibited as attractions, at World’s Fairs
and Expositions, as a part of vaudeville shows, and in other explicitly performative venues
like the Musée Grévin in Paris, alongside magic shows and other illusions and spectacles.

Beyond the exhibition venues, there were many significant differences between Cinema
of Attraction films and the later institutionalized films we know today. To begin with,
the pioneering filmmakers had no word for their role. This was before the term ‘direc-
tor’ was developed, and as a result they were called all sorts of names including presenter
of views, operator, moving photographer, and kinematographer, and often unnamed and
uncredited (credits did not regularly appear in the earliest films, and there was no copy-
right process for scripts until 1912). There was no streamlined distribution network in the
beginning years, and so films were exhibited in other venues such as fairs and vaudeville
houses. In addition, the director did not do the editing; this was the job of the presenter.
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The person responsible for exhibiting a collection of films at a venue would be the one
to decide in what order the short films would be shown, whether to make any cuts, and
whether to add sound such as live musicians, a film narrator (a live performer who would
accompany projection), or even live actors staged behind the projection screen voicing
dialogue.

This ecosystem surrounding early film presentation points to another unique qual-
ity for Cinema of Attraction—it often lacked narrative self-sufficiency. Supporting tech-
nologies and techniques (and people) were needed to help the audience make sense of the
experience. This may sound familiar to designers working with new technologies today.
The experience for today’s users is rarely as seamless as some technology developers or the
popular press might have us believe. Often, good old-fashioned, human interaction and
performance is key to bringing users in and out of the experience, for troubleshooting,
and for explaining or teaching users how to engage the technology.

The case of early sound in film is a good example to further illustrate this often circular,
messy, and fascinating history of technology development. Contrary to what many of us
may remember from history class, The Jazz Singer (1927) was not the first sound film. As
Alison McMahan has so brilliantly articulated, a closer look at the historical development
of sound in film “rewrites periodization” of film history [McMahan 2002, p. 45]. By 1902,
Gaumont, a major French filmmaking company, was making sound films (with hundreds
produced between 1902 and the early 19-teens—see Figure 2.1.) But even earlier, the tech-
nology had been demonstrated by three different companies at the 1900 Paris Universal
Exposition. Before that, the German filmmaker Oskar Messter began work with sound
film in 1896, and still earlier, Edison’s Dickson Experimental Sound Film was developed
in 1894.

Figure 2.1

Film still from Alice Guy Blaché’s Tourne une Phonoscéne (1905). Alice Guy Blaché directs a
sound film at Gaumont, in one of the first “backstage” films. This film depicts Blaché at work
in the Gaumont studio in Paris with the Chronophone ‘sound-on-disc’ technology.

2.1 Introducing Media of Attraction

23



It must be noted, the technologies used to create these early sound film experiences
were not the same as the famous The Jazz Singer feature length ‘talkie’ in 1927. Later films
used a different sound synchronization technology, with optical synchronization, mean-
ing the sound was photographically recorded onto the side of the image film strip. These
later sound films also used more advanced technologies for amplification. The earlier films
used ‘sound-on disc’ recording technologies like the phonograph, along with mechani-
cal synchronization techniques to play the phonograph record and film images together,
and compressed air systems for amplification of sound. The earlier systems were difficult
to develop for, and often glitchy in performance. But they were nevertheless widespread
and enjoyed by the film-going public. So the silent film era was not so silent after all.
McMahan has gone on to develop a compelling argument for the public expectation and
understanding that even those films shown without synchronized sound in the early years
were understood by audiences as supposed to have sound. McMahan also demonstrates
that early film practitioners had sound in mind as they wrote and directed these early
projects, using sound (voiced or not) to advance dramatic narrative, create atmosphere,
for comic effect, and so forth.

Looking at the incredibly complex and fascinating history of early sound film with
its multiplicity of approaches, technologies, and techniques reveals a messiness (and
creative flexibility) that may seem more familiar to those of us working with new tech-
nologies today, and less like the polished technologies, codified team structures, and
streamlined processes of Hollywood. If we accept there is not much connection between
Cinema of Attraction and cinema in its contemporary institutionalized form, then can
we find an interesting relationship between Cinema of Attraction and other media in
attraction phases, such as radio, television, and even VR today? If emerging media
works today could be understood as part of a larger, cross-historical category of media
of attraction, instead of naive or embryonic forms of some forthcoming standardized
form, we might open up new ways of understanding this type of work and how it should
be valued. Some of the dominant rhetorics about innovation, standardization, and
seamlessness might be reframed, and we could have a new perspective on what consti-
tutes progress in the field. To further explore this idea, I suggest a set of characteristics
or qualities that define media of attraction, based on both historical research as well as
my own experiences as a mixed reality designer working with emerging technologies
over the past 12 years.

Thinking in this cross-historical manner can allow a kind of genealogical approach
to emerge, looking at technologies and creative practice across time periods (Figure 2.2).
Take for example Winsor McKay’s Gertie the Dinosaur (1914) [Canemaker 2005]. Being
aware of the surrounding cultural and economic forces at work to produce this kind of
media artifact mean it is no longer just an example of “early animation” that is primitive
compared to contemporary works by Disney and Pixar, but that it has all sorts of interest-
ing connections with other practices, both from before (such as animal shows and chalk
talks) and after (like Mixed Reality).

In summary, media of attraction can be understood as encompassing great variety
and exuberant divergence in creative strategies across time and technologies, but with
four central characteristics in common across this multiplicity: media of attraction are
Unassimilated, Interdisciplinary, Seamed, and Participatory.
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-Blair Maclntyre, 2001 in geographic locations

Towards a visual representation for the genealogy of media of attraction artifacts, highlighting historical and
aesthetic connections, with Gertfie the Dinosaur as an example. The fop tree, with solid line connections,

displays historical influences on the artifact; the bottom tree displays later descendants.

2.1.1 Characteristic 1: Media of Attfraction are Unassimilated

Unassimilated here refers to a set of related qualities that undergird media of attraction.
These media are not yet institutionalized, meaning they retain a sense of novelty for audi-
ences, and have no formal, codified training for practitioners. They also lack a formalized
means of criticism, having no ‘language’ or standard set of aesthetic/formal characteris-
tics established as best practices. A valuable outcome of these qualities of unassimilation is
the opportunity to develop a wide range of custom-made artifacts, unfettered by the con-
ventions of production and reception seen in established media. On the other hand, the
unassimilated qualities of media of attraction also lead to some detrimental outcomes—
most notably difficulty in distributing work, and lack of archiving.

2.1.2 Characteristic 2: Media of Attraction are Interdisciplinary

Media of attraction draw on multiple art forms and techniques, and necessitate the appli-
cation of a variety of skills and approaches. They usually require complex teams to support

2.1 Introducing Media of Attraction
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this mode of production. Interdisciplinary teams not only result in particular challenges,
but also have the potential for synergy, leading to a rich multiplicity of forms and func-
tions, and an enigmatic quality not seen as often in fully institutionalized forms or those
created by a solo producer.

2.1.3 Characteristic 3: Media of Attraction are Seamed

Contrary to the rhetoric and even outright hype of popular press that often surrounds
media of attraction, the artifacts themselves do not exhibit a seamless quality. Instead,
edges show, and the patchwork of ways in which multiple forms of representation come
together are not hidden. Sometimes, this manifests as a lack of narrative ‘self-sufficiency,
meaning ancillary structures, technologies, and techniques are needed for the audience
member to make sense of the experience. As discussed in Sherman and Craig’s paper
on Literacy in Virtual Reality, the VR user is “about as literate as a beginning reader
[...] often, we need an expert to guide us through the meanings of elements we don’t yet
comprehend—typically a person involved in the creation of the application” [Sherman
and Craig 1995, p. 39]. However, this exposure of seams can also be leveraged for the
pleasure of mediation, enhancing the user experience, by making the user aware of the
technology itself, and enabling a double sense of wonder at both the mastery of the design-
ers, and the technological illusion itself. Of course, this is not always achieved; seams also
have the potential to confuse and frustrate users.

2.1.4 Characteristic 4: Media of Attraction are Participatory

Media of attraction artifacts all reach out to their audiences to engage in a direct way. This
engagement stretches along a continuum, from direct address soliciting audience responses in
performance contexts like vaudeville theaters, to interactive mechanical and digital systems
that require user input to run. Tensions are developed between attraction, narrative, partici-
pation or interactivity, and seamedness, however, these tensions can prove to be productive.

Across all four of these characteristics, a vast variety of aesthetic, structural, and narra-
tive choices are available to media of attraction practitioners. By definition, these choices
have not yet been narrowed (or closed off) at this stage of the medium’s development. This
array of choices is nevertheless all inextricably bound up with the particular challenges, lim-
its, and affordances of the technology at hand—all of which the creators are (at times quite
painfully) aware. Still, there is an exciting promise for the designer working at the frontier
of a media of attraction: the possibility to mine these four characteristics for exploration of
the widest variety of approaches, to support creativity, and to value bespoke, novel solutions.
More in-depth discussion of each of these characteristics can be found in recent publications
[Rouse 2016; Rouse, Chang, & Ruzanka 2017]. These characteristics can also be observed in
early VR work, surveyed in Developing Virtual Reality Applications [Craig et al. 2009]

2.2 Historical Examples

To further illustrate the media of attraction concept, a variety of examples across time peri-
ods are presented. Instead of revisiting well-trodden ground and discussing works by those
already considered major designers in the history books, designers and examples discussed
less often are highlighted, as they have much to offer in terms of insight and inspiration.

26

2. VR and Media of Attraction



2.2.1 Robert Barker and Panoramania

The panorama, first patented by Irish military landscape painter Robert Barker in 1787,
has been discussed by several theorists as pre-cinematic or pre-VR [Grau 2003; Griffiths
2008]. Georges Mélies himself even noted a connection between the panorama and film in
his fascinating 1907 treatise on the art of filmmaking, “Kinematographic Views” [Méliés
1907]. Mélies discusses the need for absolute precision in backdrop and set painting for
film, recommending filmmakers seek out painters with panorama painting experience,
because of their skill in creating not only detailed, perspectively correct painting on flat
and curved surfaces, but also their ability to incorporate physical three-dimensional
objects into the panorama exhibition space, in what might be understood as a relative
of today’s Mixed Reality. The panorama is an interesting example to examine from a
media of attraction perspective at a macro level, not focusing on the work of a particular
designer, but looking at the technology’s trajectory in overview. To understand the pan-
orama’s story, it helps to understand the particulars of how these immersive illusions were
designed and developed. Even with advances in linear perspective painting and drawing
techniques in the late 1700s, it was no easy task to produce these large-scale, meticulously
painted immersive illusions.

Stephen Oettermann’s excellent study of the history of the panorama goes into great
detail about the necessary process and techniques required to develop these works
[Oettermann and Schneider 1997]. The first step was to scout a location, which needed to
provide a high central point from which one could have a clear view of the surrounding
landscape. Then, a 360° sketch was made to scale while on site. Next, the canvas needed
to be prepared and mounted in a cylindrical frame. This created a complication for draw-
ing perspective correctly, because there were two curvatures that needed to be accounted
for, both the cylindrical curvature of the canvas that creates the panorama’s surrounding
circle as well as the curvature of the canvas bowing inward, produced as a result of stretch-
ing the fabric on its frame.

The next step was to apply the outlines of the sketch. This step was difficult as well,
because the artists who worked on drawing the outlines were positioned so close to the
canvas, which was quite large, that it was not possible for them to draw in perspective
correctly. Therefore, another artist acted as a guide, positioned in the center of the pan-
orama. The guide would use a long pointer with a charcoal attached on the end to mark
corrections for the artists working close to the canvas. After the outline of the sketch was
completed, paint was applied. Lighting and architecture also needed to be considered, and
in 1793, 6years after Robert Barker filed his panorama patent, the first panorama rotunda
was designed and built explicitly for the purpose of showcasing panorama paintings in
London’s Leicester Square (see Figure 2.3). The rotunda was designed to maximize the
illusion of the panorama, by first plunging the visitor into darkness at the entrance to the
rotunda, then leading them up a darkened walkway or stairs to the large, dimly lit exhi-
bition space where vellum was stretched over a skylight above. The skylight allowed for
variations in light, such as from passing clouds, to create the most realistic and dynamic
impression possible.

The panorama was a wild success, fortuitously timed to coincide with Europe’s indus-
trial revolution and new middle class. A visit to the panorama was as much a chance to
see its wonders as it was to be seen by others in society. It was an event. Following Barker’s
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Figure 2.3

The drawing’s caption reads, “Section of the Rotunda, Leicester Square, in which is exhib-
ited the PANORAMA. Published May 15, 1801. Robert Mitchell, Architect.”

innovation, a “Panoramania” swept across Europe and the UK throughout the late 18th
and early 19th centuries, drawing millions of visitors to specially built rotundas [Hyde
1988]. Panoramas even went on tour to other rotundas, which was no easy feat due to alack
of standard dimensions for canvasses and rotundas. Additional innovations were added
to the panorama to increase the immersive and performative effects: three-dimensional
elements like clay figures; effects such as sound, wind, and smoke; a live performer acting
as a narrator or guide; souvenirs in the form of miniature panoramas; scrolling panorama
toys; moving panoramas that simulated journeys or were used in theatre productions or
‘dioramas,” and even panorama ‘rides.’

Of these panorama rides, both the Cineorama and the Mareorama sound particularly
spectacular in the few accounts that detail their existence, meticulously researched in
Errki Huhtamo’s work on the topic. Both the Cineorama and the Mareorama (in French:
Maerorama) were exhibited at the 1900 Exhibition Universelle in Paris. The Cineorama
was the first film panorama, and was designed to represent a hot-air balloon flight.
Spectators climbed into a viewing platform that resembled a hot air balloon based with a
large balloon base tethered above, and then panoramic footage from a balloon ascent and
descent were shown on all sides, giving the feeling of flight. While the Cineorama was
hugely successful, the other complex panorama ride at the 1900 exhibition was less so.
The Mareorama simulated a Mediterranean Sea voyage. Visitors climbed aboard a steam
ship platform that pitched and rolled, with side-scrolling painted panoramas evoking for-
ward movement. Fans produced ocean breezes, lighting effects simulated day, night, and
a lightning storm, actual seaweed and tar added to the atmosphere, and actors played the
part of deckhands and locals from ports at stops along the journey. However, like many
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experiences developed in research labs today that simultaneously push the envelope of
creativity and technical capability, the Mareorama never worked reliably, and hosted very
few visitors [Huhtamo 2013].

Despite these innovations, such as the use of large-scale film projection and scroll-
ing panoramas in motion, the basic, painted panorama remained a popular and reliable
favorite. As discussed in Oetermann’s history of the form, they can be understood as an
early visual mass medium, and were so popular there were even miniature panoramas to
take home from the experience—intricately detailed guides to the panoramas known as
“souvenir programs” (see Figure 2.4). As the panorama’s popularity continued to increase
throughout the 1800s, the inclusion of innovations such as movement and narration
became more widespread. Banvard’s Mississippi River Journey (1852) was a good example
of a theatrical version of the panorama experience. Audiences sat in a darkened audi-
torium, watched a side-scrolling painted panorama on stage, accompanied by dynamic

Figure 2.4

This detailed guide illustrates the Battle of Trafalgar panorama displayed at the Leicester
Square rotunda in 1806 by Robert Barker's son, Henry, who clearly felt some anxiety
about inheriting the business after his father had recently died. Visitors are provided with
numbered positions with *Reference to the English Line of Battle” as well as “The Enemy
Line.” The lower caption reads: "HENRY ASTON BARKER, as Proprietor of the PANORAMA,
LEISTER-SQUARE, takes the Liberty of informing the Public, that the various Views and other
Subjects which have been exhibited in it, were taken by him, and painted under his sole
Management, during the Life of his Father. He therefore hopes, that the same Attention
fo give Satisfaction, by strict and faithful Representation, will entitle him to a Contfinuance
of that Patronage with which the Panorama has for so many Years been honored. Open
from Ten till Dusk—Admittance to each Painting, One Shilling—N. B. [Latin nota bene, which
means “note well.”] A Person always attends to explain the Painting.”
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narration from John Banvard, the painter himself. These performances were several hours
long, with the panorama scrolling slowly horizontally in real time, to simulate the experi-
ence of leisurely boating down the Mississippi river in person. This version of the pan-
orama experience begins to sound pre-cinematic indeed, with an audience seated together
in the dark, watching a real-time representation of a river journey, narrated by a charis-
matic performer.

This experience is perhaps not so different from many of the first immersive large-
format films, such as Cinerama’s Windjammer (1958), which chronicles a 17,000 mile
Norwegian schooner trip, and the early IMAX film, The Greatest Places (1998), which
includes a segment navigating the Amazon River, as well as a selection of other spectacu-
lar and hard-to-reach geographies, and we can even see some connections with elements
of early experiments in 360-VR films such as the New York Times’ The Displaced (2015).
Across all of these variations in the panoramic form, it is striking to note the similarities
clustered around the four media of attraction characteristics. As an unassimilated nov-
elty, the panorama was consistently exhibited as a attraction, with no formalized train-
ing for its designers, and no codified form of critique to evaluate its formal and aesthetic
qualities. In terms of interdisciplinarity, the panorama grew to pull from a multitude of
sources including landscape painting, architecture, sculpture, engineering, and theatre.
As a participatory medium, the panorama called out to its visitors to enter, be enveloped,
and explore on foot in the rotunda-based format.

As for the panorama’s seams, these were evident in a variety of ways including angles or
views where the mechanisms of illusion were readily perceptible. An example of this might
be in a panorama that includes not only the painted, cylindrical image, but also physical
objects. Some panoramas included clay figures in the foreground, closer to the visitors’
viewing platform, to extend the illusion. Some of these clay figures would be split in half,
at the border of the canvas, with the rear half of the figure portrayed by two-dimensional
panting, and the half of the figure in the foreground created in three-dimensional clay
projecting into the space. This kind of literal seam, down the middle of a figure, could
become perceptible if lighting conditions were less than ideal, for example. Other seams
include the use of guides or maps to instruct users how one ought to move through the
space to follow the historical narratives presented, and live performers acting as guides or
re-enactors. It is easy to imagine visitors’ mixed experiences in complex historical battle
panoramas, which were probably the most common genre represented, as the experience
vacillated between enjoyment and wonder at the spectacle of the immersive view, and con-
fusion or even frustration at how to follow points of action along the spatialized narrative,
identify historical figures, locations, and so forth.

Yet despite the panorama medium’s incredible popularity as a durable crowd-pleaser
for over a century, it never quite reached an institutionalized state, and remained an
attraction diffused across theatre, fairs and expositions, and spectacular rotundas, with
no centralized distribution network and no production standards, never quite becoming
integrated, codified, and commonplace. It is interesting to note that despite its popularity
and reach, the form essentially remained a media of attraction, operating culturally more
like a theme park than film, radio, television, or videogames. It would be a fascinating
project to further investigate the cultural and economic forces that combined to produce
this outcome, as the destiny of VR in terms of cultural positioning is speculated about
today.
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Another commonality across the panorama’s iterations bears mentioning: the sto-
ries that were told seem to fall into particular categories: historic battles (reflecting the
military background of the landscape painters like Robert Barker who pioneered the
form); faraway places or virtual travel; and the display of new technologies such as rail-
roads, steamships, and hot air balloons. Notably, fiction was not represented. This marks
another contrast with the coming form of film. While the earliest films were dominated
by ‘actualities’ or proto-documentaries, the first pioneers, including Georges Méliés,
Edwin S. Porter, and Alice Guy Blaché (who is discussed below), were major innovators
of the development of the fiction form for film. Media theorist Marie Laure Ryan has
articulated the question of ‘fit, in terms of a medium finding what type of narrative it
can present most compellingly, as the crucial factor in terms of determining a medium’s
entertainment capacity, and cultural staying power [Ryan 2004, p. 356]. It is possible
that one contributing factor to the panorama’s decline was its lack of engagement with
fictional narratives.

2.2.2 The Films of Alice Guy Blaché

Alice Guy Blaché’s story intersects with the panorama through her visit to the 1900
Exhibition Universelle in Paris. She was awarded the Dipléme de collaboratrice or Award
to Collaborator for her exhibiting her film work at the fair, and while there is no proof
of her visiting the Cineorama or Mareorama, it is highly likely she was at least aware
of the attractions. Blaché’s employer, the Gaumont photography and film company, had
recently acquired the rights to an early sound film technology, improved upon it, and
added projection capabilities and sound amplification. Blaché worked as an office man-
ager for Gaumont, and was tasked with creating many films for the company, includ-
ing promotional films to demonstrate the new sound and projection system, dubbed
the Chronophone. Sound was recorded first, using a phonograph, then performers were
filmed lip-synching. The synchronization and sound amplification aspects of the system
were still glitchy, but sufficiently impressive that when exhibited at the 1900 Exposition,
Gaumont was awarded the Grand Prix [Abel 1998, p. 11]. And it was at this same fair that
Blaché came across the art exhibition by James Tissot of his biblical paintings. She pur-
chased a copy of the Tissot Bible for herself, and went on to use the artwork in the volume
as the blueprint for one of her most elaborate and lengthy early films, La Vie du Christ in
1906, much in the way later filmmakers used storyboards—although this was well before
that practice was established [Blaché 1986, pp. 45-46].

Although Alice Guy Blaché may not be quite the household name of early film his-
tory that Georges Méliés and Edwin S. Porter are, throughout her career as a director,
writer, producer (and even performer) in early film from 1896 to 1920, she worked on
over 1,000 films. While other early film pioneers like the Lumiére brothers made no films
after 1905, and Mélies and Porter left the industry in 1913 as it moved full-throttle into
institutionalization, Blaché persisted, adapted, and continued to produce innovative and
successful work. Where the panorama provides an interesting example of a medium of
attraction that never transformed into an institutionalized media form, film provides a
counterpoint. Blaché’s 24-year film career is a particularly interesting corpus, given the
span her work bridges from film’s Cinema of Attraction beginnings through the birth of
Hollywood, and her own practice led her from Paris, to New Jersey and New York (the first
US film hub), and then on to California.

2.2 Historical Examples
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Blaché’s filmography boasts representative works from every genre imaginable, includ-
ing actuality films (precursors to documentary), musicals (phonoscénes), slapstick com-
edy, religious drama, social satire, melodrama, and romance. Her contributions to the
development of the fiction film or story film are landmark, along with her contemporaries
Mélies, Porter, and the Lumiéres. (This group were all aware of each others’ works, and
even borrowed to the point of remaking each others’ films.) Blaché is also credited with
major contributions to the discipline of film acting; her studio was famous for the giant
banner that read “Be Natural!” hung behind the camera, facing the performers.

The incredible range of experimentation that is a hallmark of the media of attraction
phase can be seen across Blaché’s early films. From the single year of 1906, for example,
looking across just four of the scores of films she created that year, we see an incred-
ible variety, from documentary, to social satire, to religious epic, and slapstick comedy
(see Figure 2.5). Le ballon dirigible “La Patrie” falls into the documentary category, and
chronicles the launch of a large airship built by the French military. The ship backs out of
its hangar, is released from its moorings, and floats off, fading into an increasingly cloudy
sky. (The feeling of mystique created by the fade at the end of the film is enhanced by
the ship’s ill-fated history; a year after the film was shot the ship was lost after becoming
unmoored, drifting over Wales and Ireland, and then out to sea, never to be recovered.).
La Patrie also contributes to long-standing, fascinating sub-genre of films about balloon-
ing, including films shot from balloons by photographer-balloonists such as Félix Nadar,
and the creators of the Cineorama at the Paris Exhibition Universelle in 1900. Nadar’s
colorful memoirs on the subject, recently translated into English, are an excellent resource
[Nadar 1900].

Created in the same year as La Patrie, Blaché’s La glu (1906) presents a slapstick com-
edy centered on a young boy who finds that all sorts of mischief can be achieved with a
large pot of curiously strong glue. The boy paints a bench and steps with the mixture, and
manages to trap an unsuspecting pair of ladies, as well as the good Samaritans who would
try to help them get loose, before becoming trapped himself at the end with the large glue
pot stuck to his own bottom, in a gesture of comedic justice.

Also in 1906, Les resultants du feminisme showcases yet another genre for Blaché; social
satire. This film explores the feared results of the suffrage movement—complete gender
role reversals. In the film, male actors exhibit stereotypically female behaviors, ironing
clothes, fussing about hats and other accessories, tending to children, and shyly fending
oftf unwanted sexual advances. The female actors portray stereotypical male behaviors,
smoking pipes, relaxing in coffee shops, pawing the ‘girls” in the film, and refusing to
acknowledge their parentage of children born out of wedlock! The result is not only come-
dic, but also a sly commentary on the essentially performative nature of gender, even more
remarkable for this nuance given its date decades before contemporary gender studies
scholarship on the subject of performativity by Judith Butler and others.

And finally, from the same year, La vie du Christ is an epic religious drama, bringing the
illustrations from the Tissot Bible to life. This film is incredibly long and complex for the
time, running at nearly 33 min, with a cast of over 300 extras. Across all four of these films
(which are available to watch on YouTube.com) we see Blaché’s exuberant experimenta-
tion with the plasticity of the film form, special effects like cuts and superimpositions,
a variety of acting styles, and a range of storytelling techniques. In contrast, by the late
teens, as film began to leave the media of attraction phase for institutionalization, Blaché’s
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Figure 2.5

(From top) Stills from three of Alice Guy Blaché’s 1906 films. La Glu: An unsuspecting cou-
ple become stuck to their steps. Les Resulfants du Feminisme: Men perform stereotypically
female tasks, ironing and sewing, while the woman puts her feet up to relax. La Vie du Christ:
Scene depicting the last supper.
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work continued to be successful and interesting, however a narrower focus had settled in,
emphasizing melodrama and romance. The market also skewed towards the presentation
of feature films, which of course took longer to produce, perhaps also limiting experimen-
tation. The benefit of this narrower focus was of course the ability to specialize and refine.

2.2.3 Muriel Cooper’s Information Landscapes

Moving to the more recent past, Muriel Cooper’s work with the Visible Language Workshop
at the MIT Media Lab provides another fascinating example of media of attraction. As dis-
cussed in research from David Reinfurt and Robert Wiesenberger, Cooper’s lab worked at
the forefront of interactive graphics and hypertext, producing the landmark Information
Landscapes project, presented at TED in 1994 [Reinfurt 2007; Reinfurt and Wiesenberger
2017]. Cooper’s innovative early interactive 3D work opened up questions about interaction
design we still wrestle with today, particularly in 3D environments like VR.

Cooper began her career in print graphic design, and early on showed an interest in inno-
vating forms and pushing boundaries. Her methods were heavily inspired by the Bauhaus
workshop traditions, and she was the designer of the iconic MIT Press colophon logo.

During her time as the design director of the press from 1967 to 1974, she developed a
series of processes and systems to revitalize the press. Integrating a new IBM Electric type-
writer, Cooper was able to circumnavigate the usually lengthy back-and-forth between
press and professional typesetter to generate drafts. Cooper also experimented with the
print form, including a flip book in the margins of one of her publications, and showcasing
another by creating a filmed stop-motion animation of its pages.

Although her background was in art and design, it was clear she had a penchant for
technology and experimentation. This thread continued and developed further in her
work, as she began to offer a course at MIT, “Messages and Means,” in collaboration with
fellow designer and technologist Ron MacNeil. In this hands-on workshop course, students
explored printing technologies, graphic and information design. The space occupied by
this wildly popular course was known as the Visible Language Workshop (VLW). When
Nicholas Negroponte founded the MIT Media Lab in 1985, he invited Cooper and MacNeil
to bring the VLW to the Media Lab as one of the initial seven research foci.

Relocating to the Media Lab positioned Cooper ideally to integrate ‘cast-offs’ from
the other research centers in the lab (slightly outdated hardware or software the other
researchers had finished with, but was still significantly advanced in terms of what was
commercially available.) Digital printing, large-format Polaroid photography, image
transmission through the emerging internet, and experiments with real-time interac-
tive 3D graphics and typographic space were all part of the work developed in the VLW.
This last research project, titled Information Landscapes, was presented publicly shortly
before Cooper’s untimely death in 1994. Information Landscapes was an interactive 3D
textual universe, providing novel ways of displaying data relationships and navigating
text. Concepts about transparency, blur, and scale were explored in terms of usability in
the new graphic space, and innovative solutions developed that we now take for granted
in interaction design.

Cooper was prescient not only in her cutting-edge design work, but also in the ques-
tions she asked. In a talk she gave at the Walker Art Center in 1987, she addressed subjects
including the links between physical and digital design artifacts, toolkits, and pro-
cesses; presented a vision of the future as ubiquitous computing well before the term was
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coined; questioned the ethics of copying and collaboration in the digital and internet age;
discussed the role of the computer as an interdisciplinary change agent, breaking down
traditional academic categories; and positioned the core role of graphics as the interface
for accessing information like big data in the digital age [Cooper 1987].

Quoted on the Art Director’s Club page inducting Cooper into their Hall of Fame,
Cooper stated in 1994 shortly before her death: “When you start talking about design
in relation to computers, youre not just talking about how information appears on the
screen, you're talking about how it’s designed into the architecture of the machine and of
the language. You have different capabilities, different constraints and variables than you
have in any other medium, and nobody even knows what they are yet” [Art Directors Club
2004]. Cooper was acknowledging the open field in computing and information design at
the time as a media of attraction.

2.3 Connecting to Design Practice

What can a media of attraction approach offer designers in VR today? First, a different out-
look than is often expressed. By understanding the unique value of works created in media
of attraction phases, we might not wish standardization upon ourselves quite so fervently.
When emerging media solidify into “platforms,” they become less flexible in many ways.
The embedded politics of system become entrenched, audience expectations calcify, and
a developed market demands certain production qualities and viewpoints. Platforms and
systems are not the only elements of institutionalized media with embedded politics. An
established media’s language’ is also political at core, in terms of what is chosen and high-
lighted, how values are communicated, and what is left out or even invisible. By embracing
amedia of attraction approach as designers of new media today, we might more consciously
value the multiplicity we are in, and work to better catalogue and archive the rich variety of
artifacts we generate, and the design processes with which we experiment.

In addition, a set of prescriptive principles can be suggested, based on the four cen-
tral qualities of media of attraction as unassimilated, interdisciplinary, seamed, and
participatory:

e Unassimilated media must be carefully archived. We need an archive of attraction,
that values the rich multiplicity found in these types of artifacts. We need a way
of representing genealogical relationships between related forms, and must pay
careful attention to the voice of the designer, which has often been lost in the case
of historical media of attraction.

e Interdisciplinary media require interdisciplinary teams, and therefore careful
attention to the process of team building. There is a wealth of literature of the
topic of teamwork, but research on performing arts teams may be most relevant
for other expressive domains.

o Seamed media are best approached through seamful design tactics that seek to
exploit these rough edges. Seams in media of attraction may not only be caused
by technical limitations, but also by issues related to these media’s lack of assimi-
lation, such as lack of conventions or audience expectations. A seamful design
approach identifies the areas of dissonance, and incorporates them into the design
as affordances or opportunities for creative interaction.

2.3 Connecting to Design Practice
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e As participatory media, media of attraction need to be designed to support emer-
gent interpretations. User behavior with media of attraction is often highly unpre-
dictable, given the unassimilated nature of the technologies and techniques in
play. To accommodate this, and develop the naive user’s creativity as an asset,
designers should work to strike a balance between providing opportunities for
emergent interactions to develop, and careful consideration of how to provide
proper constraints to ensure a meaningful experience.

Finally, in the design process, media of attraction exercises could be developed to fur-
ther strengthen design techniques in line with the media of attraction tradition. Many
emerging media claim to incorporate all previous media. This has been claimed about
film, radio, television, the computer, and is certainly claimed about VR as well, at least
in the popular press and trade publications. A historically-centered media of attraction
ideation exercise could help practitioners more actively and meaningfully engage with
playful remediations, by suggesting a design concept be sketched out for a variety of
‘dead’ media. For example, a concept to create an educational VR application to tell the
story of your town’s history during the contentious midcentury urban renewal/historic
preservation era could be sketched out for the panorama, the stereoscope, flip book,
chronophone, and radio before moving to the VR platform. These ‘dead’ media ver-
sions may provide alternate forms of storytelling, modes of representation, and sensory
engagements that might not be as easily excavated working in the digital medium alone.

In conclusion, the media of attraction design approach suggested here should be
developed into a more nuanced and complete framework, created in collaboration with
the larger community, and based on continuing historical research across time periods
and technologies such as early radio, television, and videogames. The aim is to produce
a design vocabulary that is generative and specific, but ultimately values the multiplic-
ity at the core of media of attraction. Instead of thinking of progress in VR (or whatever
media of attraction emerges in the post-VR landscape) as the narrowing toward best prac-
tices that exploit unique affordances, and eventual canonization as an institutionalized
medium, we could re-imagine progress as the continued great exploration of the widest
variety of approaches.
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Experience with general purpose game engines such as Unity are quickly becoming a
requirement for anyone looking to create virtual reality (VR) experiences. In addition
to having skill with a particular game engine there are also many VR specific SDK’s and
APT’s out there for each VR hardware set. Valve has attempted to take some of the com-
plexity out of supporting multiple VR platforms by publishing its OpenVR API which
provides developers with a common software API across multiple VR hardware platforms.
Valve has also published the SteamVR Unity Plugin which is a set of tools that allows
developers to access OpenVR device functionality easily in Unity and simplifies common
VR experience requirements such as hand interactions and locomotion.

In this chapter we look at how to get started creating cross platform VR experiences
using Unity and the SteamVR Unity Plugin. We will look at how to create a VR scene, how
to interact with objects, and how to use teleportation as means of locomotion.
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This chapter has been created using Unity 2017.1.0p5, SteamVR Unity Plugin 1.2.2 and
an HTC Vive, and later tested with Unity 2017.3.1f1sg and SteamVR Plugin 2.0.1. The
Oculus Rift with Touch as well as later versions of Unity and SteamVR should function
similarly. You must have Steam and the SteamVR Runtime installed as well.

3.1 SteamVR Unity Plugin Overview

The SteamVR Unity Plugin is a collection of assets provided by Valve to make creating
VR experiences using Unity on OpenVR devices as simple as possible. Most importantly,
the package contains VR camera rig prefabs and scripts which give developers access to
tracked devices, such as HMD’s and motion controllers, and low level SteamVR system
events.

In addition, Valve has included code for the Interaction System; a lightweight and
flexible system for interacting with game objects and managing the context specific
behavior of tracked VR devices by sending messages based on Hover and Attached states
to interactable game objects.

3.2 How to Import the SteamVR Unity Plugin

We’re going to get the SteamVR Unity Plugin from the Unity Asset Store, so open up a new
Unity project and then click on Window in the menu bar to open the drop down and then
select Asset Store. In the search field enter ‘SteamVR Plugin’ and look for the result from
Valve Corporation (Figure 3.1).

Select this result and then click on Import to bring the contents into your project.
After the import you will be prompted to accept the Recommended Project Settings. Click
Accept All to allow those changes. As of version 2.0 of the SteamVR Plugin it will also
provide a window of how to configure the inputs—choosing the defaults is fine.

SteamVR Plugin

Scripting

Valve Corporation
*xkkk (1869) O i

@)

ATTN: When upgrading from an older I ' l V R
version, it is best to first delete the SteamVR

folder in your project, and then import the

package. You may also want to delete any

*openvr_api" files in your Plugins folder and

its subfolders before importing the new

package.

The SteamVR SDK allows developers to

Figure 3.1
SteamVR Plugin from the Unity Asset Store.

44

3. Getting Started with SteamVR and Unity



3.3 Create a Very Simple SteamVR Scene in Unity

Let’s start exploring the SteamVR package by creating a simple scene. First, select Assets/
Create/Scene from the menu bar and call it SteamVR_Intro. Your scene will appear
under the Assets folder in the Project panel. Double-click to open the scene if it is not
already open.

Let’s create a platform to stand on by adding a plane to our scene. Right-click on the
Hierarchy panel and select 3D Object/Plane. A 10 x 10 plane centered at the origin in
our scene will be created. Select the plane in the hierarchy and rename it Floor in the
inspector.

Now we need a VR camera rig for our scene. Delete the default MainCamera in the
Hierarchy pane and then expand the Assets/SteamVR/Prefabs folder in the Project pane.
Select the [CameraRig] prefab and drag it over to the Hierarchy pane to place it in the
scene at the origin. You'll see the play area boundary wireframe appear in your scene
(Figure 3.2).

Expanding the [CameraRig] (now in the hierarchy) reveals three subcompo-
nents, including the Camera (head) object and two controllers—Controller (left) and
Controller (right). If you expand the Camera (head) object, you will reveal the Camera
(eye) and Camera (ears) objects (Figure 3.3).

# Scene = Hierarchy

| Shaded +||20 || % |9) | & 1v|]| Gizmos ~| @Al ) | Create | @Al )
- v € SsteamVR_Intro* .=
Directional Light
Floor

= = i

Figure 3.2

A basic SteamVR scene.

v € steamVR_Intro*
Directional Light
Floor

¥ [CameraRig]
» Controller (left)
» Controller (right)

¥ Camera (head Figure 3.3
Camera (ears) Here is the [CameraRig] object with the Camera (head)
expanded and the eye selected.
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Figure 3.4

Make sure all SteamVR device icons are green (pictured are the
icons for the standard HTC Vive).

You're just about ready to run your VR scene. Make sure the SteamVR Runtime is
running and that all of the device icons are green (Figure 3.4). You can start the SteamVR
Runtime by clicking on the VR button in the menu bar of the Steam application. Once
SteamVR is loaded and ready all you need to do is click on the Play button or press CTRL-P
(CMD-P on OS§/X) in Unity to enter Play mode and then put on your headset. You should
now be looking around in your first SteamVR scene!

3.4 Interaction System

Now that you’ve got a VR scene up and running you’ll probably want to add a few objects
and start playing with them. Luckily Valve has included an Interaction System with
SteamVR that will allow you to perform simple interactions quickly and easily.

The Interaction System included with SteamVR was the basis for the mini-games
included with Valve’s The Lab VR demo, so if youre familiar with The Lab you will
recognize some of options available to you in the Interaction System. All of the code,
prefabs and other assets for the Interaction System can be found under Assets/SteamVR/
InteractionSystem.

3.5 Core Components of the Interaction System

The Interaction System contains a number of objects for you to use in your own code. Here
are seven components that are at the heart of the Interaction System.

3.5.1 Player

The Player prefab, located under Assets/SteamVR/InteractionSystem/Core/Prefabs (in
earlier versions without the “Core/” portion), represents the user in the scene and is the
core of the Interaction System. Similar to [CameraRig], the Player prefab includes all of
the tracked objects such as the controllers and head as well as the main camera and audio
listener. In addition to those fundamentals the Player prefab adds Interaction System spe-
cific scripts such as the Hand script. To get started with the Interaction System simply
delete the existing [CameraRig] from your scene and drag in the Player prefab.

With the Player prefab, you can do some testing when an HMD display isn’t handy by
going into “2D Debug” mode, which allows you to use the standard WASD keys to move
around (Figure 3.5). The “2D Debug” mode is automatically enabled when no VR system
is found, or it can be activated with a toggle.

3.5.2 Hand

While the Player prefab forms the core of the Interaction System, the Hand class is the
real workhorse. This class is attached to each controller and forms the basis of interaction
with other objects in the scene. The Hand class checks the objects it is hovering over for
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WASD/Arrow Keys to translate the camera
Right mouse click to rotate the camera
Left mouse click for standard interactions

Figure 3.5

The Player prefab provides a "2D Debug” (i.e. non-VR) mode that allows developers to do
festing without the need for an HMD. The foggle button on the bottom resumes VR mode
when available.

Figure 3.6

When a controller of the Player prefab interacts with other objects in the scene that are set
as “Interactable’, the object is highlighted with a silhouette. (Also note that in versions of
the SteamVR Plugin 2.0 and later the Player prefab adds a hand model to the controllers,
as shown.)

an Interactable component and sends them messages based on the current hover state
(Figure 3.6).

3.5.3 Interactable

While there’s not very much code in the Interactable class, it serves as an important identi-
fier in the Interaction System and allows a reference to the Hand to be obtained. Adding
this component to any game object with a collider will allow the Hand to recognize the
object as interactable (Figure 3.7). When you touch an object with the Interactable com-
ponent attached, but no other interaction extensions, you will be able to see the controller

3.5 Core Components of the Interaction System
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Figure 3.7

This inspector panel shows a basic Sphere object with the “Interactable” script added,
including many new options in version 2.0 of the SteamVR Plugin.

outline appear when your controller enters the object’s collider and you will feel a haptic
bump. You will need additional behavioral components attached if you wish to expand the
interaction. See for example Throwable below.

3.5.4 Throwable

Adding this script component to an object will allow the user to pick up the object and
throw it. The object will attach to the hand when the trigger button is pressed (Figure 3.8).
When the trigger button is released the throwable is detached from the hand and the
hand’s velocity is transferred to the object. This script requires the Interactable script as
well as a rigid body and the VelocityEstimator script. Since these requirements are hard-
coded into the script via the [RequireComponent] tag, Unity will go ahead and add
them for you if they are not already present.

3.5.5 LinearDrive

This class allows you to create objects with defined linear paths to be moved only along
those paths. For example, you can use it to create levers or sliding drawers that only trans-
mit the hand’s motion along a defined linear path between the start position transform
and end position transform. To map between the points, create an empty GameObject
for the StartPosition and EndPosition each and then drag them into the matching slots in
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the Inspector (Figure 3.9). The public Linear Mapping variable will be updated at runtime
to reflect how far along the LinearDrive is between the StartPosition and the EndPosition.
(The LinearMapping script is created and attached to the LinearDrive at run time if it
doesn’t already exist.)

@ (b) =
o

~ ZInteractable

,Ar.‘

List is Empty

]

. On Detach From Hand ()

List is Empty
)

s e e e Rt =
 Snap Attach Ease in ¢

‘ Defauit-Matarial Ge
» W Shader [Stusdars =

[ ——

Figure 3.8

(a) Here the user grabs and is about fo throw the large sphere. (b) Adding the "Throwable”
script also adds a Rigidbody to the object along with the “Velocity Estimator” script.

@) 2]

" & “
[ el

o
Default-Material *
> Shader (Swndad -

Figure 3.9

(o) Here the user grabs the cube and can slide it between the capsule and cylinder. (b) The
“Linear Drive” script includes fields fo specify the two ends along with the object may slide.
(Often the ends would be invisible game objects, but here we have chosen visible objects
for demonstration.) (c) While running, a “Linear Mapping” script is added and shows the
percentage distance of the cube from the capsule o the cylinder (*Value™).

3.5 Core Components of the Interaction System
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Figure 3.10

(0) Here the user grabs and rotates a bar. The bar can only be rotated about it's X-axis.
(b) The CircularDrive script has many options, however in this example we have left them all
as the default, including the axis of rotation.

3.5.6 CircularDrive

The CircularDrive limits an object’s motion to rotation about one rotational axis.
This component is useful for creating interactable wheels, spinners and dials (Figure 3.10).

3.5.7 ltemPackages

An ItemPackage is a collection of objects that will temporarily replace the functionality
of the hand. A good example of this is the longbow in The Lab. When a user picks up the
longbow one hand is replaced with the bow while the other hand is replaced by the arrow.
While holding the Longbow ItemPackage the functionality of the hand is replaced by the
behaviour of the longbow. ItemPackages are useful for creating tools which have context
sensitive behaviour when attached to the hand (Figure 3.11).

To use an ItemPackage in your scene you will need to create prefabs for the one or two
items you want to attach to the hands and then give the ItemPackage references to those
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Figure 3.1

The SteamVR Plugin provides a Longbow ItemPackage as an example. In this sample
scene the user clicks on the cube at which point their primary hand is mapped to the
“ltem Prefab” (here the Longbow), and the "Other Hand Item Prefab” is the ArrowHand.
The “LongbowltemPackage” is itself a prefab that is assigned to the spawning object—in
this scene the cube.

prefabs. Then you will make your ItemPackage a prefab and create an ItemPackageSpawner
and give the ItemPackageSpawner a reference to the ItemPackage prefab.

3.6 Interaction System Example Scene

Valve has helpfully included an example scene with the Interaction System which shows
off much of the functionality included with the package. You can find the scene under
Assets/SteamVR/InteractionSystem/Samples/Interaction_Example (in previous editions
there was a “Scenes/” folder between “Samples/” and “Interaction_Example”).

Explore each exhibit in the scene in VR and then have a look at each component in
the Unity Inspector pane to get a better idea of how each part of the Interaction System
combines to form a series of interesting interactions with a few simple building blocks
(Figure 3.12).

3.7 Using the Interaction System to Throw a Ball

Let’s have a look at how we can leverage the Interaction System to create a throwable ball.

1. Open the SteamVR_Intro scene we created earlier and delete the [CameraRig]
object if you haven't already.

2. Drag the Player prefab from Assets/SteamVR/InteractionSystem/Prefabs into
the Hierarchy pane to create a copy of the prefab at the origin (if you haven’t
already).

3.7 Using the Interaction System to Throw a Ball
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Figure 3.12

A view of the Interaction System demonstration scene which shows how several of the
interaction scripts available in the SteamVR Plugin work.

Right-click in the Hierarchy and select 3D Object/Sphere to create a sphere.
Select the Sphere in the Hierarchy.

Set the Transform’s (X, Y, Z) Position to (0, 0.1, 0) in the Inspector.

Set the Transform’s (X, Y, Z) Scale to (0.2, 0.2, 0.2) in the Inspector.

Click Add Component and add the Throwable script as a component.

NGk »

Note that Unity automatically added an Interactable component to the Sphere because
Interactable is a required component of Throwable (similarly for the RigidBody and Velocity
Estimator components).

Now click Play or press CTRL4P to start Play mode and put on your HMD. When the
controller highlights to indicate it is hovering over the Sphere you should be able to pick
it up by pressing and holding the trigger button. Release the trigger button to throw the
sphere.

3.8 Adding New Behavior to Button Presses

Using the interaction system to add behavior on button presses is very straightforward.
All SteamVR device button presses are handled in the SteamVR_Controller class. You can
get a reference to the SteamVR_Controller device through the Hand and you get a refer-
ence to the Hand through the Interactable attached to the game object. Let’s add some
behavior to our Sphere so interacting with it changes the functionality of the hand it is
currently attached to.

Create a new C# script on the Sphere by selecting it in the Hierarchy and then clicking
Add Component in the Inspector. Select New Script, name the script SphereBehaviour and
then enter the text in Listing 3.1.
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Listing 3.1. Adding simple behavior fo controller buttons.

using UnityEngine;
using Valve.VR.InteractionSystem;

[RequireComponent (typeof (Interactable) )]
public class SphereBehaviour : MonoBehaviour

{

private Hand hand;

// Get a reference to the Hand through the OnAttachedToHand event in Interactable
private void OnAttachedToHand (Hand attachedHand)
{

Debug.Log (" m) g

hand = attachedHand;

}

// Remove the reference when the object is detached from the Hand
private void OnDetachedFromHand (Hand attachedHand)
{

Debug.Log (" ™) p

hand = null;

}

void Update ()
{
// Check if object is attached to a Hand
if (hand != null) {
// Use the SteamVR_Controller reference to check for a button press
if (hand.controller.GetPressDown (SteamVR_Controller.ButtonMask.Touchpad) )
// Do something when attached and button pressed
Debug.Log (" W) g

{

Save the script and hit Play in Unity to see this script in action.

1. Pick up the Sphere by holding down the Trigger button and you will see the
message “Attached to Hand” printed out in the Console pane.

2. Click the Touchpad button on the top of the controller to see the “Touchpad
Pressed Down” message in the Console.

3. Finally, release the Trigger button to see the “Detached from Hand” message
appear in the Console.

The Throwable behavior is already using the Trigger button so we looked for a click on the
Touchpad. If you do not have any action assigned to the Trigger button on your object and
want to use the Trigger instead of the Touchpad for your action, you can simplify the code
above by using hand.GetStandardInteractionButtonDown() instead of hand.
controller.GetPressDown(SteamVR_Controller.ButtonMask.Touchpad).
In general, in SteamVR you can access all of the button states on your controller by get-
ting a reference to the underlying SteamVR_Controller.Device, using the desired

3.8 Adding New Behavior to Button Presses
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‘GetAction’ method and passing in the SteamVR_Controller.ButtonMask for
the button you are interested in polling. For the Vive you have the following options for
ButtonMask:

e System

e ApplicationMenu
e Grip

e Touchpad

e Trigger

3.9 Teleporting

The SteamVR Interaction System code also includes the teleportation system used for loco-
motion in The Lab. You can easily add this system to your scene to start moving around.

The Teleportation system has three basic components: Teleporting, TeleportPoint, and
TeleportArea.

3.9.1 Teleporting

The Teleporting prefab found under Assets/SteamVR/InteractionSystem/Teleport/Prefabs
contains all of the code needed to add teleportation to your scene. The teleportation system
is fairly complicated and contains many components but most of the logic is contained in
the Teleport script. Luckily the Teleporting prefab has everything we need ready to go.
Simply drag this prefab into your scene to get started.

3.9.2 TeleportPoint

The TeleportPoint prefab represents one point where the player can teleport to. The player
will be teleported to the center of this point regardless of exactly where the arc was pointed.
Place one of these prefabs when you want to have more precise control over where the
player will end up (Figure 3.13).

To add TeleportPoint to the SteamVR_Intro scene follow these steps:

1. Drag the Teleporting prefab into the Hierarchy.

2. Drag the TeleportPoint prefab into the Hierarchy.

3. Select the TeleportPoint object in the Hierarchy and use the Move tool to place it
somewhere in the scene. Keep it on top of the Floor plane by making sure that its
Transform’s Y-value stays at zero or above.

4. Click Play and put on your HMD.

5. Press and hold the Touchpad button to bring up the teleport arc and reveal
available TeleportPoints.

6. Point the arc at the TeleportPoint and release the Touchpad button to be
teleported to the center of the TeleportPoint.

3.9.3 TeleportArea

The TeleportArea script allows the player to teleport to any mesh this script is attached to
as long as that mesh also has a collider attached. The player will be teleported to the exact
point on the mesh where the arc was pointed (Figure 3.14).
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Figure 3.13

(a) A point to which the user can teleport is shown with an arrow pointing to the location
on the floor. (b) The "TeleportPoint” script allows the colors of the teleport marker to be set,
and automatically includes the Animation component for the indicator (e.g. the arrow) to
move up and down.
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Figure 3.14

(o) For the TeleportArea script, a rectangular area is shown on the teleport surface which
represents the area of movement as configured for the system—with the particular point
where the user will land represented by the translucent cylinder. (b) The TeleportArea script
is added o a plane mesh in the game world (called “TeleportPlane”).

3.9 Teleporting



To add a TeleportArea to the SteamVR_Intro scene follow these steps:

1. Drag the Teleporting prefab into the Hierarchy if it’s not already in the scene.
2. Right-click on the Floor plane in the Hierarchy.
3. Select 3D Object/Plane to create a new plane as a child of the original Floor plane
in our scene.
4. Rename the new child plane TeleportPlane.
5. Select TeleportPlane in the Hierarchy.
6. Set the Y-value of TeleportPlane’s Transform to 0.001 so that it is floating 1 mm
above Floor.
7. Click Add Component in the Inspector and add a TeleportArea script to
TeleportPlane.
Click Play and put on your HMD.
9. Press and hold the Touchpad button to bring up the teleport arc and reveal the
TeleportPlane.
10. Point the arc anywhere on TeleportPlane and release the Touchpad button to be
teleported to that location.

*®

3.10 Where to Go from Here

In this chapter we’ve gone over the basics of starting a VR project using Unity and the
SteamVR Unity Plugin. By using the Interaction System as a basis for adding behaviour
and the Teleport system for locomotion you’ve got the building blocks you need to create
a wide variety of compelling VR experiences.

When you're ready to dig deeper into the SteamVR Unity Plugin you can start by explor-
ing the rest of code that is included in the package. In addition to finding this code on the
Unity Asset Store, as we have in this chapter, you can find the latest version of OpenVR
and the SteamVR Unity Plugin at Valve’s public GitHub repository [SteamVR GitHub].

For general questions and help with SteamVR you can go to the SteamVR section of the
Steam Community Forums [SteamVR Forums].

For more developer and hardware focused support you can go to the SteamVR
Developer Hardware Community Forums [SteamVR Hardware Forums].

Finally, if you're looking for more tutorials and VR how-to’s as well as in-depth VR and
AR courses checkout my website, VR Dev School [VR Dev School] at http://learn.vrdev.
school/.
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UnICAVE

A Distributed Rendering System for Unity3D

Ross Tredinnick and Kevin Ponto
University of Wisconsin

4.1  Introduction 4.3 Challenges
4.2  The UniCAVE Plugin 4.4  Conclusion

4.1 Introduction

Recently, Unity3D has become a top choice content authoring tool for virtual reality
(VR) development. VR systems have traditionally come in two forms: head-mounted
display systems (HMDs), in which the displays are affixed to the user’s forehead, and
CAVE systems, in which the display system surrounds the user [Cruz-Neira et al., 1993].
While the hardware and software environments for HMD systems have become some-
what standardized, CAVE systems tend to be unique, with display technology, screen
positions, and environment size varying considerably from system to system. Unity3D
provides excellent support for consumer market HMDs such as the Oculus Rift and HTC
Vive; however, support for non head-mounted VR display systems such as CAVEs and
tiled display walls [Ponto et al., 2015] has been limited. A commercially available effort
towards solving this problem exists [Kuntz, 2015]; however, no open source solution to the
problem exists, thus inhibiting widespread adoption of Unity3D for non head-mounted
systems. The complications from driving such systems include distributing rendering
content, supporting stereoscopic rendering, and interfacing with tracking technologies.
This chapter introduces UniCAVE, a free Unity3D plugin, which provides support for
these types of distributed VR rendering systems. Some basic familiarity with Unity3D
is expected and will aid in successfully adapting the plugin on an immersive non head-
mounted VR display system.
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4.2 The UniCAVE Plugin

The UniCAVE plugin works on immersive display systems driven by either a single
machine or a cluster. Cluster-based immersive display systems distribute rendering, track-
ing, and processing across many machines, thus creating another layer of challenges to
operate with these systems. While subsequent sections of this chapter will focus on the
challenges of running Unity3D seamlessly across a distributed, immersive projection VR
environment, all introduced solutions also apply to single machine environments.

4.2.1 Configuration

Methods for configuring CAVE systems have traditionally relied on input files, often con-
figured through text. This method can make initial configuration and debugging quite
difficult. Visual configuration mechanisms have shown great promise [Kuntz, 2015]; how-
ever, these systems have utilized their own proprietary graphical user interface to produce
standard configuration files, thus requiring the additional step of learning the GUI tool
to create correct configuration files as well as potentially learning a new configuration file
format.

The UniCAVE plugin attempts to solve these configuration issues by allowing users
to make use of the Unity3D editing environment to configure an immersive projection
setup. This approach has several advantages compared to what is traditionally utilized.
First, assuming some basic prior experience with Unity3D, the Unity3D editor presents
a familiar user interface, allowing users to potentially configure their environment more
rapidly. Second, hierarchical transformations can be applied to the entire display system.
This enables operations such as scaling all projection surfaces to be accomplished through
parent transformation. Finally, display system setups can be parented to game objects,
enabling the dynamic movement of the viewing position based on game-level interaction.

4.2.2 Architecture

The overarching challenge when adapting a game engine such as Unity3D to a non head-
mounted VR display system is to maintain display synchronization, that is to maintain a
seamless (optionally) head-tracked, stereoscopic image across displays connected to one
or more PCs via distributed rendering. Raffin et al. [2006] highlight various techniques
for synchronizing a display cluster. Following Raffin’s terminology: UniCAVE falls into
a Sort-First data parallelism scheme with static partitioning of the scene. In this scheme,
each machine in a cluster renders scene objects that are visible within its frustum, and the
final image is the side-by-side composition of the various display images. Data distribution
occurs from a single head node to other machines in the cluster. UniCAVE accomplishes
data distribution through a combination of Unity3D networking techniques that allow the
sharing of camera transformations, user input, randomization seeds, and time step infor-
mation. Details on the networking setup of UniCAVE is covered in Section 4.4. Prior to
covering the networking component of UniCAVE, it is first necessary to understand how
UniCAVE is setup and the differences in how rendering is performed within the plugin.
In order to accomplish the distributed rendering necessary to seamlessly render and
synchronize a display cluster using Unity3D, the UniCAVE plugin extends the existing
Unity3D editor and engine functionality. UniCAVE can be downloaded as a unitypackage
file [Tredinnick et al., 2017] and extracted into any Unity3D scene as shown in Figure 4.1.
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The UniCAVE unitypackage consists of several prefab objects that have a similar struc-
ture. An example prefab that works with a six-sided CAVE system using one head node
and six rendering nodes is shown in Figure 4.2. Each prefab contains two main object
types within the hierarchy, a series of objects that represent the physical display system

UniCavePlugin
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Figure 4.1
Importing the UniCAVE unitypackage.
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%

Figure 4.2

UniCAVE configuration for a six-sided CAVE System within the Unity3D editor. The system
hierarchy is displayed on the tab on the left.
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projection surfaces (Displays) and a series of cameras that perform the rendering onto the
projection surfaces (Head). For systems that have 6-degree-of-freedom (6-DOF) track-
ing input devices, two additional objects (Wand, Input) exist in the prefab hierarchy to
enable correct tracking of an input device. UniCAVE uses a previously developed plugin
for interfacing with the VRPN open-source virtual reality input system to handle a variety
of input devices [Redig, 2014; Taylor et al., 2001].

Listing 4.1. Code snippet for calculating camera transformations within UniCAVE.

//
//
//
//
//
//

plane is the quad object associated with the cameras
and set via the Unity editor

eyeOffset should be the offset from the tracking device
to the eye in tracker space.

trackedRotation is the Tracker Rotation object that

tracks he

ad orientation via VRPN.

void CalcMVP (Camera eye, GameObject plane, Vector3 eyeOffset,

Quaternion trackerRotation,
Camera. StereoscopicEye e)

Vector3 pll, plr, pur;

// ¢
//

amera holder’s position is tracked via VRPN
(this assumes it is immediately above this object)

Vector3 trackedHead = this.transform.parent.position;

Mesh
pll =
plr =
pur =
// we
//

this.
Vecto
eye.t
// se
eye.p
eye.S

m = plane.GetComponent<MeshFilters> () .mesh;
plane.transform.TransformPoint (m.vertices[0]) ;
plane.transform.TransformPoint (m.vertices[2]) ;
plane.transform.TransformPoint (m.vertices[3]) ;
want cameras to be oriented the same as the

plane we’re projecting onto

transform.rotation = plane.transform.rotation;

r3 eyePos = trackedHead + (trackerRotation * eyeOffset) ;

ransform.position = eyePos;

t both below to handle native / non-native stereo

rojectionMatrix = asymProj (pll, plr, pul, eyePos, eye);

etStereoProjectionMatrix (e, eye.projectionMatrix) ;

Under the Head game object, a number of game objects containing Unity3D cam-
era objects exist per machine: one for monoscopic rendering; or two for stereoscopic
rendering. Under the Displays game object, a number of game objects representing
physical projection surfaces exist. A key UniCAVE script is the “PhysicalDisplay.cs”
script on child game objects of Displays. This script associates the one or two cam-
eras with the physical surface dimensions via an asymmetric perspective projection
matrix calculation. A snippet of the setup for this calculation is shown in Listing 4.1.
Details about the asymmetric perspective projection calculation are discussed below
in Section 4.2.3.

4.2.3 Camera Projections

Typical perspective projection matrices, as calculated within OpenGL and DirectX, assume
a user is centered relative to the display and not moving. This generally makes sense, as
graphics applications are developed assuming the user is operating the application with
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(a) (b)

Figure 4.3

The Unity3D quad representing the display surface is outlined in green. (a) Shows the stan-
dard camera projection, while (b) shows the camera with the asymmetric projection.

their view centered on the monitor and without any sort of 6-degree-of-freedom (6-DOF)
tracking system. For CAVE or tiled display systems that incorporate head tracking, a view
of the scene must be rendered with perspective according to where the user is physically
located relative to the display surface. UniCAVE handles this by allowing a user to define
their physical display setup via Unity3D quad objects and then ties the asymmetric pro-
jection specifically to a quad via the Unity script in Listing 4.2 as adopted from Kooima
[2019]. An example of the effect of the above script on a camera’s projection in Unity3D
versus a normal perspective projection is shown in Figure 4.3.

4.2.4 Networking

An important principle for distributed rendering involves the coordination of events
between systems. Raffin and Soares highlight various techniques for synchronizing a dis-
play cluster [Raffin et al., 2006]. Put simply, many cluster-based systems aim to have the
same actions happen at the same time while distributing viewpoints between nodes.

Key components within Unity3D that UniCAVE uses for accomplishing distrib-
uted rendering are Unity3D’s NetworkManager and NetworkIdentity components
together with the NetworkBehaviour class. Game objects that need distribution require a
NetworklIdentity component, which is automatically created if a script that inherits from
NetworkBehaviour is attached to the game object. A NetworkManager component must
be used to instantiate a connection between a server and clients, this is currently done
within the NetworklInitialization.cs script. Following the data distribution concept of pass-
ing information from a head node to slaves as discussed in Raffin et al. [2006], UniCAVE
assumes one machine serves as a head node, and thus the server, while other machines act
as slaves, thus clients. The NetworkInitialization script’s HeadMachine variable defines
the machine name within the cluster that acts as the server. Network initialization is per-
formed in the NetworklInitialization.cs script via the NetworkManager.StartServer
Unity3D function, called on the head node machine, while a NetworkManager.

4.2 The UniCAVE Plugin
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StartClient function call connects the slaves to the head node. A precaution must
be made while starting up multiple executables and initializing the network, as there is
no guarantee that the head node has initialized the server prior to slave nodes attempt-
ing to connect to it. To address this circumstance, UniCAVE checks the Unity3D
asynchronous callback function, void OnFailedToConnect (NetworkConnectio
nError error) that will occur after issuing an unacknowledged NetworkManager.
StartClient function call. When a connection fails, the client machines wait two sec-
onds and then attempt to reconnect. This repeats until a successful connection is made or
a predetermined number of attempts occurs and a failure state is reached.

Listing 4.2. Unity C# code snippet calculating projection matrix for an asymmetric perspective projec-
fion from an eye point fo the corners of a quad.

// point_11, point_ lr, point _ul are lower left, lower right,
and upper left points defining projection quad
Matrix4x4 asymProj (Vector3 point_ 11, Vector3 point lr,

/7

{

Vector3 point_ul, Vector3 eyePos, Camera cam)

Vector3 right = (point_lr - point_11) .normalized;
Vector3 up = (point_ul - point_11) .normalized;
Vector3 normal = Vector3.Cross(vr, vu).normalized;
// compute screen corner vectors from eye

Vector3 v_11 = point_11 - eyePos;

Vector3 v_lr = point_lr - eyePos;

Vector3 v_ur = point_ur - eyePos;

// find the distance from the eye to screen plane

//
float

d

any point works here, v_11 chosen arbitrarily

= Vector3.Dot (v_11, normal) ;

// calculate and set matrix values

float
float
float
float
float
float

n

O K H rh

t

= cam.nearClipPlane;

= cam.farClipPlane;

= Vector3.Dot (right, v_11) * n / d;
= Vector3.Dot (right, v_1r) * n / d;
= Vector3.Dot (up, v_11) * n / d;

= Vector3.Dot (up, v_ur)* n / d;

Matrix4x4 mat = Matrix4x4::zero;

mat [0
mat [0
mat [1
mat [1
mat [2
mat [2
mat [3

1

1

1

1

1

1

1

0] =2.0£ *n / (r - 1);

2] = (r + 1)/ (r - 1);

1] = 2.0f *n / (t - b);

2] = (£t + b)/ (£ - b);

2] = -(f + n) / (f - n);

3] = (-2.0f * £ * n) / (£ — n);
2] = -1.0f;

return mat;

The NetworkIdentity component and NetworkBehaviour class serves to keep cer-
tain variables and components of a game object synchronized across a network. Certain
Unity3D networking components, such as NetworkTransform and NetworkAnimator
(both which inherit from NetworkBehaviour), can synchronize components such as trans-
forms and animators across a network. Within the UniCAVE hierarchy, NetworkIdentity
components exist on the Head object to synchronize positional camera tracking, the Wand
object for synchronizing a tracked input device, and the parent object of the UniCAVE
prefab (e.g. CAVE in Figure 4.2), for synchronizing user navigation. A script on two objects
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(Head and Wand) called VRPNTrack.cs handles the interfacing with VRPN and sets the
object transform position (location) and/or orientation (depending on whether the “Track
Position” and/or “Track Rotation” check boxes are on or off in the Unity3D inspector) from
a VRPN enabled tracking system. This script also derives from NetworkBehaviour so that
tracking information can be synchronized, which can be done via a NetworkTransform
component. One note, a NetworkTransform component has only a maximum send rate
of 29 frames per second, and in a real-time VR system, the update rate, and thus network
send rate would at least be 60 frames per second. Due to this limitation, UniCAVE explic-
itly synchronizes head tracking information using RPC calls as this allows for a greater
send rate of the head node tracking information. This occurs in the UCNetwork.cs script,
which is attached to the parent object in the hierarchy (e.g. CAVE in Figure 4.2).

4.2.5 Timing

The overall system must stay synchronized to guarantee a seamless projection display.
This helps subsystems such as Animation, Physics, and Particles stay synchronized across
nodes. Maintaining a consistent timing across nodes becomes particularly challenging in
Unity3D, as we cannot directly set a common frame time amongst nodes via an exposed
class variable (although this can be done for the physics update loop via the Unity3D’s
variable Time.fixedDeltaTime). To work around this problem, UniCAVE uses an
exposed variable Time.timeScale to adjust the time scale of the engine—timeScale
is typically used for effects such as slow-motion.

The UniCAVE plugin uses the Time.timeScale variable to synchronize nodes
within a cluster by monitoring the relative game time of the master and slave nodes. When
the game time of a slave node is ahead of the master node, the plugin slows down the slave
node slightly for a few frames, and likewise if the slave node is behind the master node,
the plugin speeds up the time scale of the slave node. This concept is handled via the fol-
lowing equation:

(M, -S)+A,.)
Asynu

timeScale =

A, is a tunable parameter which controls the rate at which timeScale is adjusted. M, is
the time since start of application on the master node, while S, is the time-scaled game
time of a slave node. Setting A, . at a rate too frequent or infrequent can cause irregulari-
ties in performance. In practice, the authors found that syncing the time every tenth of
a second maintains smooth synchronization between nodes. This equation has shown to
synchronize animations across a six-sided CAVE system and aid in synchronizing other
sub-systems that rely on engine time. If timing is slightly off, users would notice that
images at seams in the display are not perfectly seamless, so tweaking the Sync Time

(A,,,0) value in the UCNetwork.cs script may help.

sync

4.2.6 Random Numbers

Random number generation within a display cluster must guarantee that all machines
initiate their random number generators with the same seed number in order to guarantee
matching numbers across nodes. UniCAVE achieves this by sending the random number
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seed generated by the head node to all slave nodes within the cluster, whereby the slave
nodes then use that seed to initialize their respective random number generators using the
Unity3D function Unity.Random.InitState(int seed). Similar to synchronizing
head node transformations, UniCAVE makes use of networking RPC function calls to
send the data from head node to slave nodes. See the UniCAVE source for an example and
Unity3D’s documentation networking RPC calls for further information.

4.3 Challenges

While the UniCAVE plugin provides support for many of the features needed for a dis-
tributed rendering environment, certain challenges still remain. These challenges include:
input, multiple displays, stereo, multiple GPUs, and underlying software changes.

4.3.1 Input

Input serves as a challenge when trying to create a distributed rendering system within
Unity3D due to limitations in how Unity3D provides access to a project’s input defini-
tions. UniCAVE supports basic input via interfacing with VRPN and furthermore sup-
ports basic distribution of the input across a cluster. Ideally, one would be able to tap into
Unity’s input processing system by taking advantage of such functions as Unity.Input.
GetKeyDown and call it once with the expectation that it would run across the cluster.
We can see how this does not work in a cluster by considering input from a keyboard.
Keyboard and other direct inputs do not work on a clustered Unity3D system because
they are only attached to one machine, and the user, probably situated at the head node,
could press a key, but the script running and calling the GetKeyDown function would
only detect a key press on the head node, not the other machines in a cluster. A potential
solution to this would be to be able to “inject” input events into the Unity engine; however,
this is currently not an exposed feature within the Unity scripting engine. Input events
can only be detected rather than injected. UniCAVE provides basic support for sending
keyboard input across the cluster by checking whether the Input.inputString vari-
able has a length greater than zero, and, if so, it sends the string from head node to slave
nodes. A user of the plugin could then custom script an action dependent on the value of
the string sent across the network.

Currently, UniCAVE handles VRPN wand button presses by detecting a wand button
press on the head node and then disguising these values within a Unity transform object,
which is synchronized via a NetworkTransform component and therefore sent across the
cluster automatically. Slave machines check the values of this transform to see if they are
non-zero, and, if so, perform some sort of action (such as changing the color of a mate-
rial within the model). Currently, analog input from a wand navigates the user within the
scene by adjusting the transform of the UniCAVE parent prefab object on the head node.
The Wand.cs script provides some options (such as navigation speed and limiting vertical
movement) for customizing the default navigation technique. The adjustments made to
the transform of this prefab synchronize across a cluster via RPC calls, allowing basic user
navigation within a scene. Overall, the current solution for input is far from ideal, and the
UniCAVE authors are seeking and working out ways for improving the current clustered
input solution.
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4.3.2 Multiple Displays

There are certain nuanced differences in Unity3D when attempting to use multiple
displays for DirectX vs. OpenGL executable builds and between operating systems.
Currently, Unity3D (Version 5.5) does not support multiple displays when building
with OpenGL on Windows. However, it does support multiple displays when build-
ing OpenGL on Linux. DirectX executable builds support multiple displays, with the
caveat that additional displays must be explicitly activated. In UniCAVE, an extra dis-
play will be activated if the user toggles on the “Use Specific Display” checkbox and
specifies a display index on the PhysicalDisplay script. This will automatically adjust any
created camera object’s target display to the specified index, i.e. “Display 2” instead of
“Display 1” if the index is set to 1 instead of 0. Some of the pre-packaged prefabs within
UniCAVE are configured to work with multiple displays, particularly prefabs meant to
be built with DirectX.

In the case of using OpenGL on Windows, multiple displays are handled as a single
window spread over them with camera viewports dividing the window into separate
parts. In this situation, all cameras target “Display 1” but then the Viewport Rect values
are modified. A summary example of these differences is shown in Figure 4.4. UniCAVE
comes pre-packaged with example prefabs to handle the OpenGL for Windows case.

4.3.3 Stereo

The UniCAVE plugin provides support for different stereo techniques. Techniques such
as quad-buffered stereo, side-by-side stereo, or split-screen stereo are configured by way
of setting up the correct camera and viewport configurations in the Unity3D editor. For
quad-buffered stereo, which often requires setting an underlying operating system ste-
reo flag for the window, UniCAVE offers particular options depending on the version of
Unity3D. Prior to Version 5.1, Unity3D provided no support for quad-buffered active ste-
reo. To support OpenGL quad-buffered stereo in this case, the UniCAVE plugin provides
a stereo injection technique by way of GLIntercept [Trebilco, 2013]. The plugin works by
counting how many glClear calls are made on a bound frame buffer that returns true for a
glGetBooleanv(GL_STEREO) call. The GL_STEREO check ensures that the counter
only increments for the main rendering window, instead of frame buffer objects for off-
screen rendering, as they return false for this check.

The release of Version 5.1 of Unity3D added a player settings option titled “virtual real-
ity supported.” When checking this box, a list of VR-supported devices can be chosen.
This was largely added for support of commercially-available HMDs such as the Oculus
Riftand HTC Vive. One option, titled “Stereo Display (non-head mounted),” provides sup-
port for quad-buffered stereo. One caveat of using this option is that Unity3D’s underly-
ing engine follows a stereo rendering path, and, prior to Version 5.4.2, it would simply
use an automatically computed version of the projection matrix, which, in the case of
immersive projection display systems (e.g. a CAVE), might be wrong due to the matrix’s
lack of support for head tracking and correct asymmetric projection. With the release of
Unity3D 5.4.2, the function Camera.SetStereoProjectionMatrix can be used to
set a custom projection matrix, thus allowing asymmetric perspective projection matri-
ces as described in this chapter to be assigned in conjunction with enabling the “Stereo
Display (non-head mounted)” option.

4.3 Challenges
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Figure 4.4

Comparing handling of multiple displays between OpenGL and DirectX builds. In this exam-
ple, two displays are used for stereo rendering where a single eye is assigned fo each
display.

4.3.4 Multiple GPUs

A note for users of systems with multiple GPUs, Unity3D contains a hidden “-gpu #”
executable command line argument. Enabling this argument can benefit systems with
multi-GPU setups, although adjustments to application launching might be required. For
example, a prefab that would have used multiple displays might now, instead, render to a
single display, but more than one instantiation of the application could be launched with
the “-gpu #” command line argument with a value matching the index of the GPU driv-
ing the corresponding portion of the OS desktop. The Unity.Display.SetParams
function can be used to move and resize the application window to match the portion
of the OS desktop being driven by a GPU. The authors have successfully enabled this
on a dual GPU immersive display setup, seeing nearly double frame rate speeds in most
applications.
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4.3.5 Underlying Software Changes

As Unity3D is a continuing, developing software tool, features are continuously being
added and also periodically removed. This evolution means that more efficient methods
of utilizing the Unity3D infrastructure for distributed display systems might be possible
in the future. On the other hand, the methods described in this chapter might become
unsupported in future versions of Unity3D software. This problem is well described by
O’Leary et al. [2017] in the case of VR support for the Visualization Toolkit (VTK). While
the hope would be that someday the features of this plugin become integrated into the
Unity3D core software infrastructure, the UniCAVE plugin provides support for these
types of systems in the interim.

4.4 Conclusion

UniCAVE is an on-going project that has a website at https://unicave.discovery.wisc.edu
and a GitHub repository at https:/github.com/livingenvironmentslab/UniCAVE. The web-
site contains documentation for the plugin as well as a step-by-step guide on how to create
your own prefab for an immersive projection system. (As of this publication, support for
Unity version 2018 can be found in the GitHub repository.) The UniCAVE team encour-
ages those who create such prefabs to contribute them to the active repository, so that
others with similar configurations might use your prefab to avoid “reinventing the wheel.”
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5.1 Introduction 5.4  Motivating Application:
5.2 Kinect Head Tracked VR with
5.3 Working with the Kinect Pointer

SDK 5.5 Conclusion

51 Introduction

This chapter shows how to use the Microsoft Kinect sensor V2 to track body parts and how
to set up a stationary (non-headset) virtual reality (VR) display with head-tracked per-
spective and pointing. Topics include how to set up the virtual camera perspective, how
to render stereoscopic imagery in side-by-side stereo format, how to get started with the
Kinect to obtain body part positions, and how to use the Kinect data to move the virtual
cameras and an interaction wand. We illustrate these concepts using Unity 2018.3 scripts,
a Kinect 2 sensor with the Windows adapter, and a 3D TV with side-by-side stereoscopic
capabilities (Figure 5.1). The code will be comprehensible to most Unity or VR developers,
and we recommend that readers know the basics of matrix transformations and coordi-
nate spaces.

5.2 Kinect

The Kinect sensor is a low-cost depth camera that measures color and depth of points in its
view. It uses this information and decision trees to classify points into specific body parts,
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Figure 5.1

An example of the final Perspective TV application. The user does not need to wear any
fracking devices; fracking is handled with the Kinect. Note the Kinect clamped on the TV's
stand to keep it near the TV.

and then it fits a skeleton to these body parts. While marketed mainly as an input device
for video games, the Kinect has been used for many other types of applications, such as
environment sensing for robots and body tracking for “serious” VR applications. With the
Kinect V2, your application will be able to detect the positions of 26 different joints on up
to six people within its view, plus detect some basic body state information, analyze facial
expressions, and more.

5.3 Working with the Kinect SDK

5.3.1 Getting the SDK

The Kinect For Windows SDK 2.0 and associated Unity add-on packages can be down-
loaded from the Microsoft Kinect Developer website [Microsoft 2019]. There are three
Unity packages included: the standard Kinect assets used for tracking body joints, assets
for tracking face movement and expressions, and assets for using gesture recognition. This
chapter will only consider the standard body joint package.

In addition to the Unity packages, example scripts and a scene included under Kinect
View folder give a starting example for reading Kinect joint data and visualizing the
body. The scripts BodySourceManager.cs and BodySourceView.cs are of particular inter-
est. Examining these scripts is recommended, as this chapter will build from these when
describing how to track joint positions.
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5.3.2 Kinect SDK Components

The Kinect SDK contains many classes and scripts. We will briefly explain the purpose
and contents of the classes most important to this chapter.

BodyFrame and BodyFrameReader: The information captured by the Kinect is given
to the developer through three major objects: a color frame, a depth frame, and a body
frame. The color and depth frames report information from the Kinect’s color and depth
cameras, respectively, while the body frame reports information about the bodies the
Kinect has identified. The latest body frame can be grabbed from the body frame reader.
Once a frame is grabbed, you can pull body information as an array of Body objects.

Body: The body object contains all information about a single body the Kinect has
identified. Most interestingly, it contains information about the different joints in the
body in a collection called “Joints” that maps a JointType to the actual Joint object. It
also contains some other basic information, like hand state, whether the person is wearing
glasses, and whether their eyes are open are closed. Each Body contains a unique tracking
ID, and should be referenced through it.

Joint and JointType: For each body, the Kinect tracks the local positions of 26 “joints,”
primarily those that connect two body segments such as the elbows or knees. However, the
Kinect API uses the name “joints” more generally, also referring to segment endpoints such
as the head position. The JointType class is a simple enumeration of all of the joints the
Kinect is tracking. Examine this class to get an idea for what parts of the body you can track.

5.4 Motivating Application: Head Tracked VR with Pointer

Traditional stationary (non-headset) VR displays, such as projection displays or desktop
“fish tank” displays, make the virtual world feel real in part by naturally changing the per-
spective as the viewer’s head moves. This is required for an accurate perspective 3D geome-
try, making the screen or monitor analogous to a window into the 3D virtual world—where
the view changes when looking from different locations. This changing perspective pro-
vides a powerful depth cue with head motion. Even with monoscopic displays, the motion
can provide a sense of 3D space, especially when viewed with a single eye or through a video
camera (see the Johnny Lee YouTube video for a popular example [Lee 2007]). In contrast,
standard 3D movie or desktop game systems usually lack head tracking and are rendered
based on a particular fixed viewer position—correct only from a static “sweet spot.” Due
to the proliferation of consumer-grade trackers, such as the Kinect, it is now affordable to
provide a head-tracked VR experience with a standard 3D monitor or TV.

5.4.1 Unity Object Overview

The approach for building the head-tracked display in Unity relies on a few in-game
objects and scripts, organized as follows and shown in Figure 5.2:

e A top-level base object (a Unity empty GameObject), which we have called
“Perspective TV,” holds the other components, grouping them, and allowing
them to be moved as a collection.

e A“quad” (four vertex polygon) scaled to represent the viewable monitor size (width
in x, height in y), is parented to the “Perspective TV~ object and should have the
same origin and orientation as the “Perspective TV” base. This representation of

5.4 Motivating Application: Head Tracked VR with Pointer
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Figure 5.2
All Unity objects under the Perspective TV hierarchy.

your monitor will be used to compute the projections. Making this an in-game
object allows easy changes to the monitor size and helps show whether projections
are working (in Unity’s editor).

e An object that we call “Kinect Base” represents the Kinect and contains the script
that retrieves joint positions. Its position (location) and rotation (if any) in relation to
the TV Quad should be made to match how the real Kinect is placed relative to the
real monitor. For simplicity, we suggest starting with the Kinect placed in the same
orientation as the monitor (no rotation) and placed just above or below the monitor.

e A “Head” object represents the position of the user’s head. The position will be set
based on Kinect tracking. The head should be oriented (rotated) the same way as the
TV, matching how users typically view the TV. Note that if you extend tracking to
include head orientation, perspective would be incrementally improved by applying
head rotation, allowing the location of each eye to be determined more precisely.

¢ A camera or set of cameras acts as a surrogate for the eyes. Each camera has a script
configuring the perspective view. The camera objects should be children of the
head object to follow the head and remain oriented the same way as the head and
TV. Note that if you extend tracking to include head orientation, the eye objects
should be scripted to rotate into alignment with the TV, rather than matching head
alignment, to satisfy requirements for the perspective matrix construction.

e A wand pointer will be used for pointing at scene objects for interaction. The
wand uses a thin cylinder and has a script that defines the pointing direction
based on certain joint positions.

5.4.2 Camera Projection Matrix for an Off-Axis Eye

A virtual camera’s frustum is the volume that it sees. The frustum contents get projected
onto the viewing screen. This frustum can be described by a common 6-parameter model
shown in Figure 5.3. This defines the volume in terms of distances, or coordinates, along
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Figure 5.3

A common 6-parameter camera model that defines a perspective frustum. Left, right, top,
and bottom define the distances from the camera, along principal axes, to the front win-
dow edges.

principal axes of a coordinate system centered on the camera (eye). A slice through the
pyramid at distance near from the camera defines a virtual viewing window that ranges
from left to right in eye X coordinates and bottom to top in eye Y coordinates. This X axis
points toward the screen’s (eye’s) right, and Y points up.

The six frustum parameters can be converted into a projection matrix as part of cam-
era configuration for graphics rendering. A script from the Unity documentation on the
Camera.projectionMatrix variable shows exactly how to convert the parameters into a
projection matrix. The relevant code can be seen in Listing 5.1.

Listing 5.1. Taken from Unity developer documentation for the Camera class (version 2018.3)
[Unity 2019].

// Set a Unity camera projection matrix with custom values
Matrix4x4 PerspectiveOffCenter (float left, float right, float bottom, float top, float near,
float far) {

float x = 2.0f * near / (right - left);
float y = 2.0f * near / (top - bottom) ;
float a = (right + left) / (right - left);
float b = (top + bottom) / (top - bottom) ;
float ¢ = - (far + near) / (far - near);
float d = -(2.0f * far * near) / (far - near);
float e = -1.0f;

Matrix4x4 mat = new Matrix4x4 () ;

mat [0, 0] = x;

mat [0, 1] = 0;

mat [0, 2] = a;

mat [0, 3] = 0;

mat [1, 0] = 0;

mat [1, 1] = y;

5.4 Motivating Application: Head Tracked VR with Pointer
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return mat;

To create a head-tracked perspective window, we set up a frustum that matches the
pyramid defined by the real eye and the real viewing surface (monitor). We first mea-
sure the dimensions of the real screen, and the algorithm uses these to calculate monitor
extents along principal axes of the eye (or screen, because eye and screen coordinate sys-
tems are aligned for the 6-parameter model). Consider an eye that is off-center from the
monitor as shown in Figure 5.4, with the monitor and eye both represented in the eye’s
coordinate system:

left = monPos.x—(W/2.0)
right = left+ W

top = monPos.y+(H/2.0)
bottom = top—H

near = monPos.z

The frustum from these calculated parameters has a front “window,” or pyramid slice,
matching the monitor size and distance from the eye. It also would set up the camera’s

left

|
Q
‘9 b
(0,0
e H
monPos
W

Figure 5.4

The monitor and eye. The monPos is the position of the center of the monitor and it will be
computed in the eye-aftached coordinate system (so, it holds the center’s distances from
the eye). W and H are the monitor’s width and height, respectively. Left and top are the dis-
tances from the eye to the left and top sides of the monitor.
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near plane to this eye distance, but that is not usually desired, because objects closer
to the eye than the near plane will not render. However, we want a 3D view that allows
object to “pop out” some distance in front of the screen. To enable the application
to show objects closer than the screen surface, we separate the near plane from the
monitor distance by scaling all parameters by s = near/monPos.Z, where near is now an
arbitrary desired near plane distance (such as the Unity camera default value). Scaling
all the parameters together like this preserves field of view (angles in the pyramid) but
moves the slices defining the visible depth range. The near and far values can then be
set as desired.
The final camera parameter values are:

near = (as selected by developer, typically a small value)
s = near/monPos.Z

left = (monPos.x-W/2.0) * s

right = left + (W * 5)

top = (monPos.y + H/2.0) * s

bottom = top—(H * s)

We now create a script—we’ll call it PerspectiveCamera.cs—that can be placed on the cam-
era to give it the desired frustum. It will need a reference to the monitor quad (rectangle),
described earlier, to convey the monitor’s size. Note the script uses Unity’s “LateUpdate()”
instead of “Update()”, to ensure the camera setup runs after the head position is set
(otherwise, the perspective could be computed using the head position from a prior
frame). The script is shown in Listing 5.2:

Listing 5.2. PerspectiveCamera.cs: set an off-axis view based on the location of an eye.

// PerspectiveCamera.cs
public Transform _monitor;
private Camera _cam; // Reference should be set in Start

void LateUpdate () {
// Get the monitor’s position in the eye/camera’s coordinate system

Vector3 monPos = this.transform.InverseTransformPoint (_monitor.transform.position) ;

// Define width and height from the monitor quad.

float H = _monitor.localScale.y;

float W = monitor.localScale.x;

float s = _cam.nearClipPlane / monPos.z;
float left = (monPos.x - W / 2.0) * s;
float right = left + (W * s);

float top = (monPos.y + H / 2.0) * s;
float bottom = top - (H * s);

float near = _cam.nearClipPlane;

float far = _cam.farClipPlane;

// The PerspectiveOffCenter function from Listing 5.1 should be included in this script.
_cam.projectionMatrix = PerspectiveOffCenter (left, right, bottom, top, near, far);

5.4 Motivating Application: Head Tracked VR with Pointer



In Unity, you can tag this script to execute in edit mode to more easily see its effects.
As you move the camera around, its frustum edges should continue to run through the
defined monitor quad’s corners. If you build a room behind the quad, then you will see
your view of the room change as the camera moves.

5.4.3 Side-by-Side Stereoscopic 3D

We next set up a two-camera rig for stereoscopic rendering. Note that Unity has a built-in
stereo rendering capability with rendering speedups, but it does not currently have suffi-
cient parameters to reproduce the required viewing geometry for head-tracked stationary
displays—it doesn’t handle arbitrary head/eye positions relative to the screen.

Many stereoscopic 3D consumer displays support a “side-by-side” image format. This
format places the left and right eye images on each corresponding half of a single input
image, and the device then separates the two halves back into left and right images. For
example, for 3D TVs with battery-powered shutter glasses, two half-size images are
stretched across the entire screen when in 3D mode, and the TV alternatingly shows
these left and right images in sync with LCD shutters in the 3D glasses. Some pas-
sive 3D TVs use alternating lines for left and right views, with light from these lines
being polarized in different ways to be separated by polarizing lenses on the glasses. In
Unity, side-by-side rendering can be done using two cameras, one for each eye, that are
separated by the distance between the viewer’s eyes, also known as the interpupillary
distance or IPD.

To set up a stereo pair of cameras in Unity, create an empty GameObject representing
the head and create two cameras as child objects. These two camera objects, the left and
right eyes, should be offset along the head x direction by half of the IPD per eye/direc-
tion, to create a total separation of IPD. In some cases, y and z offsets may also need to
be applied for more accuracy, if there is substantial distance from the eyes to where the
Kinect places the head joint. Each camera should have its viewport width reduced to a
value of 0.5 to cover only half the screen. The viewport representing the right eye should
be moved to cover the right half of the screen by setting the X value to 0.5, as shown in
Figure 5.5. Each camera should then have the PerspectiveCamera.cs script placed on it, to
set the proper perspective frustum. Each camera (eye) will then produce slightly different
images from the other, as seen in Figure 5.6.

A screen-centered (on-axis) head position using the monitor’s 3D mode should produce
an accurate perspective window when your head’s distance from the screen matches the
virtual camera’s distance from the monitor quad.

Note that certain TV features such as motion smoothing or noise reduction can intro-
duce visual lag. We suggest disabling such features and enabling any special lag-reducing
“game modes” when available.

5.4.4 Adding Head Tracking

5.4.4.1 Retrieving Joint Positions

The KinectView main scene from Microsoft’s Unity package gives valuable insight into
how Kinect data can be accessed. The first step is to create a manager to access and store all

Kinect Body data. The script BodySourceManager.cs included with the Unity package can
be reused for this. Its purpose is to collect Body instances from the KinectSensor class’s
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Camera viewport and transform setftings for the left and right eyes, using an IPD of 0.69.

Figure 5.6

An example of side-by-side half-width images for left and right eyes.

BodyFrameReader, putting the body information into an array to be read from the class
we will create.

The second main step is to create the script that then reads joint data. The
BodySourceView.cs script effectively finds all joints for all bodies tracked by the Kinect.
We need to ensure that our 3D application consistently tracks the head of a single tracked
body—it is only possible to provide consistent correct 3D for a single person. We will call
our script that does this TrackBodies.cs.

5.4 Motivating Application: Head Tracked VR with Pointer



A first step in creating this script is to create a function for retrieving a desired joint’s
position from a single known body. Such a function is defined in Listing 5.3.

Listing 5.3. Excerpt from “TrackBodies.cs”: function to extract the proper joint position data relative to

the Kinect.

// from TrackBodies.cs

private Vector3 GetJointLocalPosition(Kinect.Body body, Kinect.JointType jt) ({
//Note that because Joint is ambiguous between the default Unity Joint class
// and the Kinect Joint, the full namespace will need to be spelled out
Windows.Kinect.Joint joint = body.Joints[jt];
return new Vector3 (joint.Position.X, joint.Position.Y, joint.Position.Z);

As indicated by the name of the function (GetJointLocalPosition), it returns the local
position of the specified joint. Here, local refers to the right-handed coordinate system
that the Kinect uses to report positions—reported in meters with respect to its base. For
example, if the Kinect reports the head joint at (1, .7, 3), the user’s head is 1 m to the right
of the Kinect (viewed from the front), .7 m above, and 3 m away from it. Note that mapping
the coordinate to a corresponding Unity object’s space can involve negating the z coordi-
nate to convert to Unity’s left-handed convention.

Local coordinates are sufficient for particular applications. For example, some appli-
cations only need to know the distance to a user, or what body pose gesture is made.
However, if your application needs to know the joint’s position relative to an object in
the world (e.g., testing foot collision with a soccer ball), you typically convert the posi-
tion into a world-referenced position. Generally, TrackBodies.cs is added to a GameObject
that can be considered the Kinect base and is positioned in the virtual world as needed. A
joint’s world-referenced position can be found by transforming the local Kinect-reported
position as shown in Listing 5.4. Note the z negation to switch from right-handed to left-
handed conventions.

Listing 5.4. Excerpt from “TrackBodies.cs”: function to extract joint position data relative to the world

coordinates.

// from TrackBodies.cs

private Vector3 GetJointWorldPosition (Kinect.Body body, Kinect.JointType jt) {
Windows.Kinect.Joint joint = body.Joints[jt];
return this.transform.TransformPoint (new Vector3 (joint.Position.X, joint.Position.Y,

-joint.Position.Z) ;

Position tracking can be demonstrated by making the script track the head of a user
in view. This involves adding code to the script’s Update loop in fashion similar to
Microsoft’s BodySourceView.cs script. The code is shown in Listing 5.5—without stan-
dard null checks:
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Listing 5.5. Excerpt from TrackBodies.cs: tracks the position of heads in the Kinect’s view and mounts an
object to them.

// from TrackBodies.cs
public BodySourceManger _bodyManager;
private Dictionary<ulong, GameObject> _heads; // Map body IDs to a created head object

void Update () {
Kinect.Body[] bodyData = _bodyManager.GetData() ;
// Collect unique IDs for each tracked body.
List<ulong> trackedIDs = new List<ulong>() ;
foreach (var body in bodyData) {
if (body.isTracked)
trackedIDs.Add (body.trackingId) ;

// Go through the IDs in the head dictionary to remove heads that are not tracked
foreach (var ID in _heads.Keys) {
if (!trackedIDs.Contains (ID)) {
Destroy (_Heads[ID]) ;
_heads.remove (ID) ;
}
}

// Update the positions of heads for each body.
UpdateTracking (bodyData) ;

}

private void UpdateTracking(Kinect.Body[] bodyData) {

// For each body, update the head position

// If there’s a new body, create a new head

foreach (var body in bodyData) {

if (body.isTracked) ({
if (! _heads.ContainsKey (body.trackingId) {

// Create some basic gameobject and put it in _heads map
CreateHead (body.TrackingId) ;

// Update position of that GameObject
_heads [body.trackingId] .transform.position =
GetJointWorldPosition (body, Kinect.JointType.Head) ;

With this script, any person entering the Kinect’s field of view will spawn an object that
follows along the head’s tracked position in the game. If a person leaves the view, then the
object tracking their head will be destroyed. Because the position is being transformed by
the Kinect Base object’s transform, you can move the Kinect Base object around and the
tracked heads will follow.

5.4.4.2 Tracking a Single User

Our application requires that only a single user’s head data be read and maintained for
consistent 3D. TrackBodies.cs can read the position of a joint from any single known body,
but how do we keep track of which one should be read? The solution is simple: because
the Kinect maintains a single unique ID for each body in view, we keep track of a desired
ID and only read the head joint of the body associated with it. To that end, we modify
TrackBodies.cs as shown in Listing 5.6:

5.4 Motivating Application: Head Tracked VR with Pointer
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Listing 5.6. TrackBodies.cs: changes the previous TrackBodies script to track a single user; needed
to give consistent 3D. The user is arbitrarily defined, But the FindNewBody function can optionally be
enhanced fo pick a user in view with greater specification.

// from
private
private
private

private

TrackBodies.cs

ulong _singleUserId;

Kinect.Body _singleUserBody = null;
int bodiesPresent = 0;

void UpdateTracking (Kinect.Body[] bodyData)

// Ensure there is a tracked body, otherwise return

int

bodiesPresent = 0;

foreach (var body in bodyData)

if

//
/7
if

}

if (body.IsTracked) bodiesPresent++;

(bodiesPresent == 0)

_singleUserBody = null;

return;

If the current body being tracked isn’t in our known bodies, pick a new one

This occurs when the application first starts or the tracked user walks out of view
(!_heads.ContainsKey (_singleUserId)) {

_singleUserBody = FindNewBody (bodyData) ;
_singleUserId = _singleUserBody.TrackingId;
CreateHead (_singleUserId) ;

// Update head position
_heads[_singleUserId] .transform.position =

}

GetJointWorldPosition (_singleUserBody, Kinect.JointType.Head) ;

private Kinect.Body FindNewBody (Kinect.Body[] bodyData)
foreach (var body in bodyData) {

}

// Kinect does not always put a valid body in the first slot of bodyData
// We need to go through the array and pick the first valid one.

if (body.TrackingId == 0) continue;

return body;

return null;

The FindNewBody function is simplistic, and only finds the first valid body the Kinect
sees in no particular order, but could be changed to find the closest user, a user making a
particular gesture, etc. This script allows access to a single consistent body that can then be
tracked from external scripts through a simple function such as in Listing 5.7.

Listing 5.7. From TrackBodies.cs: allows for external scripts to access the position data for a single user.
For example, the perspective camera will use it to tfrack the single user’s head position.

// GetUserJointWorldPosition() allows external scripts to access position data for the single
// tracked user
public Vector3 GetUserJointWorldPosition (Kinect.JointType jt) {

sLig

(_singleUserBody != null)
return GetJointWorldPosition(_singleUserBody, jt);
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else
return this.transform.position; // If nobody in view, just return a generic value

5.4.4.3 Linking Head Position and Perspective Camera

Finally, we make head position tracked for the perspective cameras to give the viewer
an accurate 3D perspective. The code, shown in Listing 5.8, can be added to the Update
function of a new script we’ll call FollowHead.cs, which can then be placed on the
head object.

Listing 5.8. Excerpt from FollowHead.cs: moves the attached GameObject to follow the fracked head
position. Attaching this to the head object will create the desired perspective 3D effect.

Vector3 headPose = TrackBodies.instance.GetUserJointWorldPosition (Kinect.JointType.Head) ;
this.transform.position = headPose;

5.4.5 Adding a Pointer for Interaction

Just looking at a scene through a perspective window can be interesting, but being able to
interact with the scene is critical to making engaging VR applications. One common way
to interact in VR is through a wand or pointer ray. These are typically defined by a tracked
controller with some kind of button to trigger interaction. But, it is possible, with the
Kinect’s body tracking, to use the viewer’s pointing direction and hand gesture informa-
tion to define a wand and trigger.

The wand avatar can be a long thin cylinder (large local Y scale). Rotate the cylinder
around the X axis by 90° and parent it to an empty GameObject placed at the end of
the cylinder, as in Figure 5.7. This creates a more convenient wand coordinate system
for the following code and allows you to affect wand length by adjusting the parent’s
local Z scale. The user’s pointing direction can be defined as the normalized vector
between two joints on the user’s arm, such as the elbow and wrist. To point the wand in
that direction, we’ll create a script called Pointer.cs in the Wand parent object, shown
in Listing 5.9.

¥ Pointer
Cylinder

xo
Rotation x990
Scale (0,01

v]—zos—]
Yoo zo 1

Yo 1z[o.01 ]

Figure 5.7

Example of a pointer wand. The given transform is for the inner cylinder.
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Listing 5.9. Excerpt from Pointer.cs: Update() loop to move the pointer wand. Using the example joints,
the wand will be placed on the user’s right wrist, and will point in the direction defined by the vector from
their elbow to their wrist.

// from Pointer.cs
public Kinect.JointType pointingFrom = Kinect.JointType.ElbowRight;
public Kinect.JointType pointingTo = Kinect.JointType.WristRight;

void Update () {
Vector3 pfPose TrackBodies.instance.GetUserJointWorldPosition (pointingFrom) ;
Vector3 ptPose TrackBodies.instance.GetUserJointWorldPosition (pointingTo) ;
Vector3 pointingDir = (ptPose - pfPose) .normalized;
// Point the wand in the proper direction and place it on the “pointing to” joint
this.transform.rotation Quaternion.LookRotation (pointingDir) ;
this.transform.position ptPose;

We use the elbow-to-wrist direction as our default pointing direction because using
palm and finger joints can give jittery results. Developers can try other combinations to

identify what works with their application and Kinect placement.

In addition to joint positions, the Kinect gives some other information about tracked
body part states. This includes the state of the user’s hands, with possible states being open,
closed, and lasso (referring to a state in which the user holds two fingers up). We use the
closed state of the non-pointing hand (left in this example) to trigger interaction. There is
a tradeoff between using the pointing hand to trigger, which may be more intuitive, and
using the non-pointing hand, which may reduce side-effect motion or jitter of the pointing

hand. We add the code in Listing 5.10 to TrackBodies.cs to retrieve hand state:

Listing 5.10. Excerpt from TrackBodies.cs: allows external scripts to access the left hand state of the
single user.

Public Kinect.HandState GetSingleUserHandState() {
return _singleUserBody.HandLeftState;
}

The Pointer.cs script can then be updated to detect interaction through the code in

Listing 5.11:

Listing 5.11. Excerpt from Pointer.cs: detects if the user has closed their left hand, and calls some interact
function.

if (TrackBodies.instance.GetSingleUserHandState() == Kinect.HandState.Closed) ({
Interact () ;
}

The Interact function can then be defined in a way that is appropriate for your appli-
cation. Common interactions include selecting or picking up an object that the wand is
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intersecting, or teleporting to an indicated area in the scene. For example, to activate an
object the wand is touching, you could find the object either with a raycast from the base
of the wand or by checking collisions with the wand. If this finds an object, you could send
a message using Unity’s GameObject.SendMessage() function, telling it to run the proper
activation code. Many other interactions and implementation methods are possible.

5.4.6 Tips for Good 3D Scenes

The placement of objects becomes significantly more important when considering 3D. The
scene will look dull if all objects are exclusively placed far from the user. Objects will “pop
out” at the user when they are closer (between the screen and the eye) and the stereo effect
is also stronger for closer objects. But, note that objects very close to the eye can be diffi-
cult to view. If your application permits movement throughout the world, then you should
expect the viewer to move close to things, creating more dynamic views.

High contrast features can increase ghosting (bleeding of one eye’s image into the
other), which varies for different types of glasses. For example, a bright white line on a
black background is a worst case, and such features should be avoided if possible. Setting
the background color to something neutral can help.

The scale of objects also becomes more important when designing for VR. With an
effective perspective view, the scale of scene objects should appear equal to its designed
value; 1 meter in the virtual world should appear to be 1 meter to the viewer. It is possible
to change this by scaling the configuration of the TV/monitor to make the scene appear
smaller, or down to make it appear larger. This involves scaling the values of H and W
when computing the perspective matrix, and scaling the Head position by the same ratio.
All required scaling can be achieved by simply scaling the Perspective TV root object of
the configuration by some uniform value.

5.5 Conclusion

This chapter presented a method for creating a low-cost stationary VR display using a
Kinect V2 sensor and a 3D TV. With this combination of hardware, the user will not have
to wear any tracking devices. Completing the exercises in this chapter lays the ground-
work for creating interactive VR applications with access to other tracking information
from the Kinect. The perspective viewing concepts are similar to those used in many VR
systems.
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6.1 Overview

There is now a diverse range of consumer virtual reality hardware. Unfortunately, this
diverse hardware comes with a diverse variety of tools, platforms, environments, and plugins
for development. Developers may need to get their hands on many bits of equipment to test
their applications in order to support a variety of platforms. Users are increasingly using a
variety of add-on devices for which custom code may be required (e.g., a walking platform
or a glove). Larger developers who want to support the main consumer systems can afford
the time to create custom user interfaces for each platform. However, smaller developers, or
professional users who want to support their own custom systems, may struggle to main-
tain large codebases with lots of optionality for different hardware.

While there are efforts to support device abstraction such as Open Source Virtual
Reality [OSVR, 2017], and OpenXR [Khronos Group Inc., 2017], these address relatively
low-level device abstractions. Their aim is to isolate APIs for specific devices so that appli-
cation code doesn’t need to know the specifics of, say, which tracking devices are attached.
These efforts allow, or will allow, the user to switch hardware, as long as that hardware
roughly matches in functionality. To the application, it might not matter exactly what
head-mounted display (HMD) is attached to the computer, or which tracking system is
used. However, the application still needs to make decisions about how to implement
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interactions between the user and the environment, and with these device abstractions
the application author might need to support various different cases such as whether or
not the hand-held controllers have analogue joysticks, support finger gestures, etc.

For many application developers who want to support a variety of hardware, coding to
each platform is repetitive and error prone. Each application must be developed for each plat-
form, with its different devices and its different potential ways of interacting with the user.
High-level toolkits may help (e.g. Vrui [Kreylos, 2008] or VRTK [The Stonefox, 2017]), but
these do not directly address the problem of making the application as portable as possible.

We note that the building of virtual reality applications involves writing two main
types of code: environment-specific code that implements behaviors (interaction styles)
for the application, and code that deals with input devices and implements locomotion
and object manipulation. The latter code is often quite generic. It is commonly re-used
between applications and might be itself quite complex. The former is often much more
specific to the application, or even a specific asset within the application. It might itself be
commonly reused (e.g., code for opening and closing doors), but this code doesn’t need to
depend on the specific details of the virtual reality interface.

Thus, we propose the Vehicle Pattern, which is an interface and set of conventions that
try to separate these code concerns so that applications can be ported very quickly between
hardware platforms or customized to support uncommon hardware. We use the term “vehi-
cle” because this conveys the idea that the user needs an interface to travel and interact over
long distances. In addition, this was the term used for a similar concept in an experimental
virtual reality system called DIVE [Frécon and Stenius, 1998; Frécon et al., 2001]. The term
“pattern” is used across many areas of design to refer to solutions to design problems that
are generic and re-useable. Many readers may have come across the term in the context of
software design patterns [Gamma et al., 1995] but the concept is quite general and has been
applied broadly to the design of human-computer interfaces (e.g. [Seffah, 2010]).

6.2 Vehicle Pattern
6.2.1 Design

The main idea behind the Vehicle Pattern is to make as few dependencies between
environment-specific code and interaction code as possible. We illustrate the pattern by
an implementation in Unity, though we have found that similar principles using different
implementation strategies are useful on other platforms.

First, we can examine how the user interaction code and environment-specific code are
inter-connected. Unity uses a scene graph abstraction, where a tree structure is formed
from objects called GameObjects. Each GameObject of the scene graph has one or more
instances of Components. Each Component type represents a type of functionality such
as 3D transformations, visual and audio rendering, meshes, collision volumes, etc. The
developer extends the functionality of the scene graph by writing scripts that compile to
create new types of Components that can then be added to GameObjects.

There are explicit and implicit mechanisms by which the functions of different
GameObjects become inter-connected. Explicit mechanisms include Components holding
references to other Components or GameObjects. It is very common for a script Component
to have a public variable which is a reference to another GameObject. The developer can
assign this reference within the Unity development environment by dragging a GameObject
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to this variable. This makes a tight connection between the two. It is also common for
scripts to look up other components and game objects based on name, type, tags or layers
(see the Unity documentation for description of these). Sometimes the script will look these
up dynamically, and sometimes they are looked up once and then considered constant.
These types of explicit connections cause problems when scene-graphs are rearranged.

There are various implicit mechanisms that create relationships between objects.
Proximity between objects might cause collision events in the scene, objects might inter-
act through ray-casting, or objects might even cause visual effects such as shadowing. We
describe the impact of some of these in the following sections.

6.2.2 Vehicle and Zone

The main part of the pattern is to create two isolated sub-graphs in the scene named
Vehicle and Zone. It is not strictly necessary to create two separate graphs, but it makes
the different roles of the two sub-graphs very obvious and it facilitates easy deletion and
replacement of the Vehicle (Figure 6.1). The Vehicle contains GameObjects that isolate
the device-specific and interaction-specific code. The Zone is the environment-specific
code. These two sub-graphs interact implicitly: the renderers in the Vehicle will “see” the
Zone objects, the collision volumes in both will interact, and physics engine will consider
both sets of objects ensemble. However, we want to minimize explicit code interactions
between the two or at least provide a specific point of code interaction.

If we have set up the Vehicle correctly, then it should be interchangeable for any other
Vehicle. In our demonstration in Unity, the Vehicles are relatively straightforward: they
provide for locomotion about the environment, selection of objects and grabbing of
objects. We will discuss two example Vehicles that we use commonly in our own testing:
one that supports the HTC Vive and one that supports interaction with the mouse and
keyboard. We want to support the latter not only because it is a still a common control sys-
tem, but also because during iterative development is it often convenient not to have to put
on an HMD and step away from the desk in order to do a quick test. We have commonly
had two or more Vehicles embedded in the Unity scene, but with all but one disabled, so
that the developer can very rapidly switch between platforms.

We discuss implementation specific details in Section 6.2.5, but first we describe how
scripts in the Vehicle and Zone can interact.

6.2.3 VehicleMaster Singleton

Many behaviors are initiated by input from the user. In standard Unity design, scripts
have various callback functions that respond to different events. These callbacks include a

= Hierarchy | =
Create ~ | (arAll
v € hmd-lab-vive =
¥ Vehicle
VehicleMaster
» [CameraRig]
[SteamVR]
¥ Zone
» CubeRotator Figure 6.1
» CubeColourChanger —_—
» HMDLab
Ground

A fragment of a screen capture of the Unity Editor
showing an example scene comprising a Vehicle
and a Zone.
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function called once a frame (Update), but also functions on collision between objects (e.g.
OnTriggerEnter), amongst others. We would like to enable a similarly simple program-
ming model. We also want to allow the support of functions that go the other way, where
objects in the scene change the vehicle behaviour. This is not discussed in this chapter, but
is an easy extension (see online materials).

We achieve these goals by adding a singleton class that represents the Vehicle’s func-
tionality. The following code from the VehicleMaster class shows the creation of singleton
class. A singleton class is a common software design pattern: exactly one of these objects
is created at run-time, and this single object can be found by a static reference at run-time.

Listing 6.1. Part of the VehicleMaster class showing the implementation of a singleton.

// VehicleMaster is the main interface class between the Vehicle and Zone
public class VehicleMaster : MonoBehaviour {

private static VehicleMaster instance;

// Construct

private VehicleMaster() { }

// Instance

public static VehicleMaster Instance {

get {
if (instance == null)
instance = GameObject.FindObjectOfType (typeof (VehicleMaster))
as VehicleMaster;
return instance;

}

In the Listing 6.1 code, the get function represents the accessor on the public static
Instance variable. Another script can then just access the variable VehicleMaster.
Instance to point to the singleton object. Thus, later we will see lines of code such as the
following (Listing 6.2):

Listing 6.2. Registering a callback delegate with the VehicleMaster singleton.

VehicleMaster.Instance.OnGrabStartThis += OnTouchOrGrab;

where a script on an object under the Zone sub-graph uses this singleton to register a
callback.

6.2.4 Event Delegates

The main function of the singleton is to provide a single point for registering functions to
be called by user interaction. The goal is to hide any device-specific or device-ensemble
configuration from the Zone. We introduce four generic events that objects can register for:

e TouchStart: the user reaches out and makes contact with an object
e TouchEnd: the user stops touching a touchable object

e GrabStart: the user grabs and tries to manipulate an object

e GrabEnd: the user drops an object that they were able to grab
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Of these, the intentions GrabStart/GrabEnd are obvious: the user wants to pick up a
scene object and will drop it later. Touch is less obvious. It makes sense with a device with
tracked input: some proxy of the user’s hand or fingers collides with the object. It is not
immediately obvious with a mouse and keyboard or a rotation only device with a single
button such as Google Cardboard- and Daydream-based devices. However, we think the
meaning can be clear. The “user is reaching out” has an analogy to clicking on something
with a mouse, or dwelling on a fixed target in the case of head gaze-based interaction.
These types of interaction are very common in virtual reality systems and they are logi-
cally different to grabbing an object, which is usually triggered by holding a button.

We added a negotiation step, where the Vehicle essentially asks whether the object can
be touched or grabbed. We also support a script registering interest in interactions with
just its own GameObject, or in any attempt to touch or grab an object. This can support
behaviors specific to a particular object (see the example in Section 6.2.6 of a cube that
changes color when picked up), or are general to any interaction (e.g., playing a sound
when an object is dropped).

The following code excerpt (Listing 6.3) shows the implementation of
DoTouchStart, which is the function a vehicle implementation would call inside
VehicleMaster when it wishes to announce that the user has started to touch an object. The
function takes not only the target of the touch, but also the object that touched it. At the
moment, this source object is vehicle implementation dependent, but as discussed later, a
future implementation may try to implement an abstract avatar representation so that the
receiving script can tell which body part touched the object.

Listing 6.3. A fragment from the VehicleMaster implementation showing how the touch event is
processed.

// Event Handling
//
// Touch events
public delegate bool OnTouchStartEvent (GameObject target, GameObject source) ;
public event OnTouchStartEvent OnTouchStartAny;
public event OnTouchStartEvent OnTouchStartThis;
// DoTouchStart () method calls delegate functions to notify them that the vehicle
// implementation is attempting to grab the object.
// returns true when it succesfully grabs the object; false when the grab fails.
public bool DoTouchStart (GameObject target, GameObject source) {
// Trigger those delegates that registered for all callbacks
if (OnTouchStartAny != null && OnTouchStartAny.GetInvocationList () != null &&
OnTouchStartAny.GetInvocationList () .Length > 0) {
OnTouchStartAny (target, source);
1
// Trigger those delegates that registered for their individual callback
if (OnTouchStartThis != null && OnTouchStartThis. GetInvocationList () != null &&
OnTouchStartThis.GetInvocationList () .Length > 0) {
System.Delegate[] handlers = OnTouchStartThis.GetInvocationList () ;
bool success = true;
foreach (var item in handlers) {
MonoBehaviour interestedObject = (MonoBehaviour) (item.Target) ;
if (interestedObject.gameObject.Equals (target)) {
object [] parameters = new object[] { target, source };
success &= (bool)item.Method.Invoke (interestedObject, parameters) ;
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}

}

return success;

return true;

The code uses the C# event and delegate mechanism. An external script will define a
function of type OnTouchStartEvent. Note that the external script can register on
two types of events: OnTouchStartAny or OnTouchStartThis.

Within the OnTouchStartEvent function, there are two main blocks of code. The first
calls the delegate functions of all the scripts that have registered interest in any object being
touched. The second block checks that the target object matches the script that the delegate
is registered to (through the cast to MonoBehaviour which is the base class for all script
components). Note that the invocation of the delegate (item.Method.Invoke) returns a
boolean. This is then combined with any other flags from other delegates to return to the
vehicle implementation a success or failure. For example, the vehicle should stop any response
to touching this object. This is useful for ignoring objects that cannot currently be touched.

6.2.5 Vehicle Implementations

We have developed various vehicles for different platforms. We have various custom vir-
tual reality systems in the lab, so our vehicles tend to be quite specific. However, we illus-
trate the principles with two simple vehicles, one for keyboard and mouse, and one for the
HTC Vive. We list short excerpts from the vehicle implementations as these are simple
variants of example code.

6.2.5.1 Vive Vehicle

The Vive vehicle is based on the standard SteamVR Unity plugin. Our vehicle is based on
code from an online tutorial that we have used in student projects [de Kerckhove, 2017].

We start with the default scene graph for a SteamVR application. This adds GameObjects
for the camera system, the camera and the two main controllers. To each of the controllers
we add a small sphere collider and set it to be a collision trigger. In a script attached to each
controller we then add a script (ViveController.cs). The following code (Listing 6.4)
shows how touch is then implemented very easily, based on the collider on the controller
game object hitting other colliders in the scene. OnTriggerEnter is a standard Unity
callback from the collision system.

Listing 6.4. Part of the Vive Vehicle implementation showing how the touch event is implemented.

// Use the Unity OnTriggerEnter () method to implementation implement touch for

// the Vive Vehicle.

public void OnTriggerEnter (Collider other) ({

(1vehicleMaster.Instance.DoTouchStart (other.gameObject, this.gameObject)) {

ahiE

}

return;

SetCollidingObject (other) ;
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Note that the call through to DoTouchStart function can be rejected, indicating
that this object is not touchable. See the online material for the detail of implementation
of touch ending, and grabbing.

This demonstration implements locomotion through a simple teleport technique. This
involves an implicit interaction between the Vehicle and Zone, which is that the teleport
technique can only effect travel to points on objects in a layer labeled “Ground.” However,
this is a simple constraint to enforce, and we can use the same labeled objects in the Mouse
and Keyboard Vehicle.

6.2.5.2 Mouse and Keyboard Vehicle

This demonstration is based on Unity’s Standard Asset package. It modifies two scripts:
RigidbodyFirstPersonController and DragRigidbody.

The first-person locomotion controller has been modified with a simple switch between
moving mode and manipulation mode, and some code that we don’t discuss in this chap-
ter that constrains the walkable region to the same region that the Vive vehicle’s teleport
functionality can reach.

We illustrate the grabbing functionality in the following excerpt (Listing 6.5). When
the user presses a mouse button, a ray is cast into the scene. The object that is hit should
have a RigidBody component. We then call through the VehicleMaster to check whether
the object can be picked up or not (VehicleMaster.Instance.DoGrabStart).

Listing 6.5. Part of the Update function for the Mouse and Keyboard vehicle that uses the Unity Physics

Engine to send a ray aftached to the mouse into the screen.

// We need to actually hit an object (if not then return)
RaycastHit hit = new RaycastHit () ;
if (!Physics.Raycast (mainCamera.ScreenPointToRay (Input.mousePosition) .origin,
mainCamera.ScreenPointToRay (Input.mousePosition) .direction,
out hit, 100, Physics.DefaultRaycastLayers)
return;

// We need to hit an object that’s a rigidbody (otherwise return)
if (!hit.rigidbody)
return;

// We need a rigidbody that’s earmarked as grabbable (otherwise return)
if (!VehicleMaster.Instance.DoGrabStart (hit.rigidbody.gameObject, this.gameObject))
return;

// At this point we know that hit.rigidbody is an object we can grab
// (see online material for the rest of the vehicle implementation)

See the online materials for the rest of the implementation of this example vehicle.

6.2.6 Demonstrations

A very simple demonstration is shown in Figure 6.2. This is a distilled version of a basic
environment we use in various experiments at UCL where the user is sat in a virtual ver-
sion of the lab where they are physically sat. The online materials include a second simple
demonstration which is a recreation of the virtual pit demonstration [Usoh et al., 1999];
this is a common demonstration that we use with new users of virtual reality.
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Figure 6.2

A simple scene modelled on one of our labs at UCL. The
left cube is not manipulable and will spin when the user
attempts to interact with it. The right cube is being held by
the user and is changing color.

There are two interactive objects in this environment that illustrate the main principles
of the Vehicle Pattern. We show the whole scripts to emphasize how similar these are to
standard script structures. The first interactive object is the cube on the left of the table
in Figure 6.2. (It is called CubeRotator in the scene graph in Figure 6.1). In Listing 6.6
you can see how the delegate is registered with the lines in the Awake callback. Note that
the OnTouchOrGrab function rejects the touch or grab and then starts a co-routine to
spin the object.

Listing 6.6. The BoxSpin class spins the object when it is grabbed.

// BoxSpin.cs
// A behaviour that causes an object to spin when the object is grabbed.
public class BoxSpin : MonoBehaviour {

private bool moving;

// register the OnTouchOrGrab script (delegate) to OTST & OGST
void Awake () {
moving = false;
VehicleMaster.Instance.OnTouchStartThis += OnTouchOrGrab;
VehicleMaster.Instance.OnGrabStartThis += OnTouchOrGrab;

bool OnTouchOrGrab (GameObject source, GameObject target) {
if (!moving) {
StartCoroutine ("MoveAndWait") ;
}

return false; // Reject the touch event

}

// A coroutine that rotates “this” object once
IEnumerator MoveAndWait () {
float angle = 0;
moving = true;
while (angle <= 360.0)
this.transform.eulerAngles = new Vector3 (0, angle, 0);
angle = angle + 3.0f;
yield return new WaitForFixedUpdate () ;
}
this. transform.eulerAngles = new Vector3 (0, 0, 0);
StopCoroutine ("MoveAndWait") ;
moving = false;
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The code for the second box is very similar (see Listing 6.7). It registers two different
delegates, OnGrabStart and OnGrabEnd. The former accepts the grab event and thus
the vehicle is now free to manipulate the object. It also starts to change the color of the
object. The color changing is stopped when the latter delegate is called, remaining as the
last randomly selected colour.

Listing 6.7. The ColourChange class behaviours causes an object fo change colour repeatedly when
held.

// ColourChange.cs
// The ColourChange behaviour causes an object to change colour repeatedly
// when the user is holding the object.
public class ColourChange : MonoBehaviour {
private bool changing;
Renderer rend; // Store “this” object’s renderer component

// When “game” starts (world is initialized)

void Awake () {
rend = this.GetComponent<Renderers() ;
changing = false;
VehicleMaster.Instance.OnGrabStartThis += OnGrabStart;
VehicleMaster.Instance.OnGrabEndThis += OnGrabEnd;

}

// While “this” object is grabbed change colour.
bool OnGrabStart (GameObject source, GameObject target) {
if (!changing) ({
StartCoroutine ("ChangeColour") ;
}

return true; // Accept the Grab event

}

// Disable the colour change when the grab is ended
bool OnGrabEnd (GameObject source, GameObject target) {
if (changing)
StopCoroutine ("ChangeColour") ;
changing = false;
}

return true;

}

// Change colour of “this” object for every .5 seconds until the co-routine is cancelled.
IEnumerator ChangeColour () {
changing = true;
while (true) {
rend.material.SetColor (" Color", new Color (Random.Range (0F, 1F),
Random.Range (0F, 1F), Random.Range (0F, 1F)));
yield return new WaitForSeconds (0.5f) ;

}

6.3 Discussion

6.3.1 Constraints and Limitations

The separation between Vehicle and Zone relies on several implicit assumptions. For exam-
ple: a natural human scale of objects; an understanding that the Vehicle will not create
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collision volumes that are too large and that the camera will move at a certain range of
speeds (so that collision detection works), etc. The Vehicle Pattern as described is sufficient
for basic applications that do not have highly specialized needs for interaction. The pattern is
easy to extend to fit specific needs, and we continue to develop our example implementation.

For example, an obvious extension would be to develop a standard representation of
the user’s avatar so that environment-specific interaction could start to address the ava-
tar’s representation. This would usefully include scene graph objects that components can
discover which indicate the user’s head position, hand positions, standing position, etc.,
so that even environment-specific scripts can reference them. For example, a script might
want to animate an avatar so that it looks at a user. It would also be useful to have a more
refined collision volume associated with the user so that fine-scale collision detection can
be done. For a Vehicle based on a mouse and keyboard, or other interface without full 3D
tracking, some of these avatar object positions would need to be hypothesized based on
the camera position and user interaction.

When we get to the area of dynamic user interfaces that construct visual representations
inside the scene such as menus, the decisions become more difficult. The separation of
touch and grab works in many situations, but there is currently no fallback for an environ-
ment behavior that is triggered by a specific button on a controller. If this was needed the
programmer would have to customize the Vehicle itself. However, in our opinion abstrac-
tions such as the Vehicle can be extended to cover a very wide range of application needs.

The Vehicle Pattern doesn’t deal with porting of visual and audio assets between dif-
ferent platforms. Some platforms are significantly less powerful than others. When pro-
ducing a game in Unity it is common to simplify assets for low-end platforms and keep
different versions of scenes. How assets can be managed in real-time to support low-end
platforms remains a research question.

6.3.2 Related Work

The Vehicle Pattern is strongly influenced by prior work in the area that uses similar prin-
ciples. In particular models of web-browsing where the user has a lot of control over their
web browser’s behavior. Although a lot of functionality is fixed, users can customize their
web browser with various extensions. Presently, most VR development is not supporting
this type of customizability for the user. Our Vehicle Pattern highlights the fact that by
having developers begin the development process with device abstractions, interaction
techniques are no longer customizable by the end user. The Vehicle Pattern is part of a
skeleton implementation by the author, called Yther, that proposes one type of solution to
this dilemma [Steed, 2015].

Previous efforts to support a broad range of 3D interfaces have acknowledged similar
problems. The VRML97 and then X3D standards [VRML, 1997; X3D, 2013] had specific
methods to support device independence. For example, the NavigationInfo node had
arecommended type of locomotion, such as “Walk” or “Fly” that the browser should sup-
port. In addition, manipulation of objects was done in a way that could imply motion con-
straints. For example, the PlaneSensor node supported objects that could be dragged
along a surface. It was up to the VRML or X3D browser to determine how to implement
the dragging within the user interface.

Our pattern is most strongly related to the vehicle concept from an older research plat-
form called DIVE [Frécon and Stenius, 1998; Frécon et al., 2001]. This was browser-centric
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in the sense that scenes were developed independent of user interaction specification, and
each user installed and ran a browser that could implement interaction in various ways.
In fact, the browsers themselves were highly customizable (they were written in the TCL
language), so a browser could dynamically switch its interaction style, or in the DIVE ter-
minology switch “Vehicle.” The system was event-based, with decoupled message passing
between the browser and in-scene objects. Some of message types are similar to the dele-
gate types we propose: they included grasp, select and move events. They also included var-
ious events for multi-user interaction, and other application-level events such as loading
of sub-scenes. Although we have previously argued for asynchronous message passing as
a mechanism to decouple user-interaction and environment-specific code, delegate-based
calling seems more appropriate in modern platforms where latency is paramount [Steed,
2008]. Asynchronous message passing has its advantages, but especially in Unity there are
significant downsides. For example, developers often rely on knowing the rough ordering
or lack of ordering of different functions (e.g., callbacks from different internal functions
such as fixed-update callbacks, the order of script evaluation in a scene graph, .Net 2.0
yield functionality, etc.), which can match poorly with asynchronous message-passing.

6.4 Conclusions

The excitement around consumer virtual reality, and the ready availability of a variety
of new devices means that there are great opportunities to develop new user interfaces.
Unfortunately, there is a dearth of high-level toolkits that simplify support for a range of
devices. While development environments such as Unity or Unreal Engine enable devel-
opment for many devices, porting code between different devices, or ensembles of devices,
is tricky.

In this chapter we have described the Vehicle Pattern, which attempts to separate
the concerns of programming support for user-interaction on devices, from virtual
environment-specific behavior. This pattern has proved very useful in our lab, where stu-
dents may want to develop on one machine, but quickly deploy to another that supports
a specific hardware configuration. While the skeleton implementation is simple, we hope
that it can be useful for others as is. We also hope that the principles can help inform future
toolkits so that some conventions, or even standards, can emerge that alleviate some of the
need for the developer to consider which virtual reality systems their content may run on.
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WebXR

Virfual Reality... in the Browser

Luis Diego Gonzalez-Zaniga and Peter O’'Shaughnessy

7.1 Do Virtual Reality... inthe 7.6  Web APIs: They Get Along
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7.2  The “Immersive Web” 7.7  Making Your WebXR
Specification Content Accessible
7.3  Distribution and Offline
Accessibility of Content 7.8  Progressive Enhancement
Made Easy of WebXR Applications
7.4  Write Once, Run 7.9 Recommendations
Anywhere When Creating WebXR
7.5 Available Tools for Fast Experiences
and Easy VR Creation 7.10 Summary

7.1 Do Virtual Reality... in the Browser

Virtual Reality allows us to create and experience immersive spaces by putting the user
in the center of the data and environment. While this is exciting, desirable, and (kind of)
new, the ease of entry into the medium for developers and consumers is far from being
accessible, comfortable, or affordable. Among the many challenges that pose barriers
towards massive adoption of Cross Reality (XR, referring to the collection of VR, AR and
MR) we can cite: (1) device and content availability, (2) scattered and scarce content, and
(3) alack of social interactions in the available experiences. Thankfully, each of these bar-
riers are waning.

The standard way for distributing XR content nowadays is through the traditional
app store model. While this is appropriate for some experiences, it has disadvantages
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and might not be the ideal distribution channel for all types of experiences. The current
paradigm requires users go to a closed environment (app store) to wait several minutes
to download onto their devices hundreds of megabytes, for an experience they will most
likely use once. An interesting alternative might be to look to the web browser, since it
allows frictionless XR experiences at the tap of a link, with no third-party policies or
store-approval required.

The commoditization of the web browser has led us to underestimate its power.
We associate it with email, social media, and other web pages we visit only when there
is no default app for the task at hand. What we might not be aware of is that recent
improvements in the web platform give modern browsers growing access to device sen-
sors (like geolocation, accelerometer, biometric), external devices (gamepads, MIDI,
Bluetooth, USB) and native-like features (push notifications, ability to work offline,
access to file system). In this growing set of features for web browsers, WebXR (for-
merly WebVR) is poised to be an API that enables a form of Cross Reality (XR) by using
web technologies.

For the consumer, WebXR can theoretically enable most devices with a modern web
browser to experience immersive content, even without a headset, by means of the ‘magic
window’ (refer to the section “Progressive Enhancement of WebXR Applications”). It also
permits experiences to adapt to the device they are being accessed through. This makes
consuming content an easy endeavor, and ensures that content is truly accessible.

From a developer’s perspective, WebXR removes a lot of the complexity associated with
hardware configurations and leverages existing standard web knowledge to create these
immersive environments. Every developer with basic experience of HTML, CSS, and
JavaScript can create XR applications with just a text editor and a web server. Exploiting
this abstraction is key for a fast expansion of diverse XR content.

Additionally, this means that the cost of entry for a user to experience XR is gone,
or greatly reduced, since they can use their own mobile devices and laptops to access
the content. It is the same for developers, where no significant investment is required to
start testing or developing content for limited experiences. (Full room-scale experiences
require high end tracking sensors).

7.2 The "Immersive Web” Specification

We have mentioned WebXR in the previous section. It is important to explain specifically
what this is. WebXR is an experimental JavaScript API that provides interfaces to XR
hardware (VR/AR/MR), allowing developers to build compelling and comfortable experi-
ences on the web. At the time of writing (February 2018), the WebXR specification is in
active development and its stable release is version 1.1 [Vukicevic 2017].

The group formerly known as the “W3C WebVR Community Group” is behind it, and
they announced in December 2017 that going forward they were expanding the scope
(of WebVR) and renaming the group as the Immersive Web Community Group. Also, the
term WebXR would now be used to refer to its expanded scope and the API [W3C 2017].
As such, the effort that was formerly known as the WebVR 2.0 specification will become
the “WebXR Devices API” specification. It is important to say that this does not change
the focus of developers and designers interested in WebVR, as 1.1 is still the stable version
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and the easiest way to build WebXR experiences today. You can contribute and see the
ongoing work the WebXR GitHub repository found in [WebVR_CG 2017].

This specification is not an official W3C Standard, nor is it on the W3C Standards
track—yet. Needless to say, the excitement and collaboration surrounding this technol-
ogy is huge, with support from browser vendors like Mozilla, Samsung, Google and
Microsoft.

In a nutshell, the WebXR API specification introduces interfaces to the DOM
(Document Object Model) to support runtime access to VR (and eventually AR/MR)
functionality. Presently, the “v1.1” is standard and supported in many browsers, and work
continues towards the WebXR spec.

This specification covers a wide range of elements associated with VR, ranging from
device ids, pose data (for headset and accessories), eye parameters and frame data, to
extensions of other Web APIs like the Gamepad API. We will not cover these interfaces
directly, since they are bound to change soon. Thankfully for developers, many of these
changes will not be visible since we can create experiences through frameworks that wrap
and abstract the underlying API. Please refer to the 1.1 spec document for information.
And get in touch with the Community Group if you have interest in shaping the future of
WebXR.

7.3 Distribution and Accessibility of Content Made Easy

The implementation of virtual reality in a web browser, like all other things that adhere to
web standards, best practices, and an open technology stack, benefit from having a strong
distribution and great accessibility. In its simplest form, a WebXR experience is a web
page. As such, it is accessed through a URL, easily shared through a link, and compatible
with other web technologies. This is extremely powerful, and allows anyone to build inno-
vative experiences that can span across physical and digital locations and devices.

7.3.1 Transcend Virtual Barriers with Physical Web

A physical “web beacon” is a low-powered, battery efficient device that broadcasts con-
tent over Bluetooth. Right now we can set up a physical web beacon with a URL that’s
picked up by a service provided by a browser or app (like “CloseBy” in Samsung Internet
or “Project Magnet” by Mozilla). This URL generally generates a notification that will
redirect you to a web page on your mobile device. This page might be WebXR enabled,
whereby you can “experience” it on a headset (Samsung Gear VR, Google Daydream or
Cardboard). All of this in little more than half a minute. You could even save the app to
your home screen (using the Service Worker API to create a Progressive Web App, which
is a web site that can work offline and have access to push notifications) to use as a direct
access to relaunch a VR experience whenever you want. Put simply, in only two taps you
can be providing your users a VR experience (Figure 7.1).

This can provide a frictionless way to engage our users. Imagine a user who might be
walking in front of a movie theater or museum and receives a notification about a VR
experience related to an exhibition available. The user can opt in if they prefer to get this
type of notification, and they can immediately go to the browser and pan around their
smartphone to get a preview or interact with the experience (Figure 7.2).

7.3 Distribution and Accessibility of Content Made Easy
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“From a physical object to the browser to your home screen to your headset.”
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Figure 7.2

Samsung’s "CloseBy” and Android’s "nearby” nofifications.

7.3.2 Engage through a Magic Window

Around 85% of users view WebVR content this way through a magic window [Bozorgzadeh
2017]. Much of the value derives from users being engaged early on and in a friction-
less manner, thus “WebVR’s magic window is the gateway for pushing VR to billions
of people”. To date there is no other way of consuming VR content that is as accessible
(content and device-wise) or that has this type of massive reach.

The web can become the preferred way of distributing VR content; the same way it
became the preferred way to distribute video content. It is compatible with many devices,
platforms, and its core technologies support interactivity, communication, and boost
sharing in unprecedented ways for VR (Figure 7.3).
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Figure 7.3

Delivery platform for WebVR content.

7.4 Write Once, Run Anywhere

It is the promise that many frameworks have tried to deliver for a long time—the holy grail
of development. It is no secret that standard web technologies are as close as it gets to writ-
ing once and running everywhere. WebVR 1.1 support has been implemented in several
browsers. As WebVR is adopted by more browser platforms, a growing number of devices
can support the same WebVR experience (Figure 7.4).

Overall, we see that Samsung Internet, Firefox Nightly, Chromium, Chrome for Android,
Oculus Browser (formerly Carmel), Microsoft Edge, and Mozilla Servo all support the spec-
ification. These implementations are referred to as experimental and subject to change.
This generally means WebXR implementation in browsers is disabled by default, except
Oculus Browser and Samsung Internet for Gear VR 5.6. Firefox 55 now supports WebVR 1.1
since August 2017 and Chrome on Android on Daydream-compatible devices will enable
this with an origin trial (i.e. data developers can register to have it enabled for all users on
their domain for a fixed period of time).

Noteworthy is the fact that all major VR consumer platforms (except for PSVR) are
covered. In theory, we can run our WebVR 1.1 applications in all platforms, with sup-
port for peripherals varying through VR headsets. With one codebase, we can target
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Figure 7.4
WebVR support as of October 2017.

7.4 Write Once, Run Anywhere

105



six different HMDs, and with an elegant design we can make the experiences in these
headsets perform optimally.

In the case of browsers not supporting the specification, there is an option to use a
JavaScript implementation of the WebVR/WebXR specification. These implementations
are the WebVR Polyfill [GoogleVR 2017] by the Google VR team and the the WebXR
Polyfill from Mozilla, which supports building AR applications using WebXR. These
decide which rendering mechanism to use depending on the configuration of the browser.
Mobile devices provide device motion events, can render in stereo, include mesh-based
lens distortion and handle the user interface (UI) and user experience (UX) to enter
and exit VR mode. “Polyfilled” desktop browsers use mouse events and keyboard arrow
keys to look around a scene. The WebVR Polyfill can be seen here https://github.com/
immersive-web/webvr-polyfill, while the WebXR Polyfill can be seen here https:/github.
com/mozilla/webxr-polyfill.

7.5 Available Tools for Fast and Easy VR Creation

There are several options available to start building content for WebVR/WebXR. They
adapt to different scenarios making it an easy to find an option that fits your needs.
Beginning with the simplest and progressing to the most complex, the most popular
alternatives are:

7.5.1 GuriVR

GuriVR is a free, open source project created to allow anyone to make Virtual Reality
experiences with the lowest possible learning curve. It provides an online editor that cre-
ates Virtual Reality scenes from the users’ natural language. This method of creating VR
does not require any coding. An example from the GuriVR website (https://gurivr.com)
(Figure 7.5):

For example my first scene will last 500 seconds and display an image located at https://
s3.amazonaws.com/gurivr/logo.png along with a text saying: “Guri is cool!” to my left and a
panorama located at https://s3.amazonaws.com/gurivr/pano.jpg

text
panorama

Figure 7.5

GuriVR example output.
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7.5.2 Vizor.io

Vizor.io allows the user to create spherical 360° tours, stories, sites, and WebVR experi-
ences by dragging and dropping elements. The company also has a visual programming
tool named “Patches” which lets you create scenes and add interactivity and motion.
It also has a hosting option for publishing experiences (Figure 7.6).

7.5.3 A-Frame

A-Frame is a web framework for building virtual reality experiences. It allows the cre-
ation of WebVR content with HTML and the “Entity-Component” design pattern. It is
one of the easiest and most powerful ways to develop WebXR content. Built on top of the
popular 3D graphics library Three.js (more on this below), it allows developers to define
a scene in a declarative, extensible and composable way. It is supported by Mozilla and
maintained by the community. It also features a visual inspector in which you can modify
and create scenes hierarchically.

7.5.4 React VR

React VR is a project from Facebook Open Source that lets you build VR apps using only
JavaScript. It uses the same design as the popular React library, letting you compose a rich
VR world and UI from declarative components.

7.5.5 BabylonJS

Babylon]S is a complete JavaScript framework for building 3D games with HTML5,
WebGL and WebAudio.

Figure 7.6

Vizor.io Patches’ visual programming tool.
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7.5.6 PlayCanvas

PlayCanvas is a free and open source engine. It can be used to develop 3D HTML5 and
WebGL games, along with WebVR content. PlayCanvas created the WebGL 2 demo
“After the Flood” which showcases the updated shading language (OpenGL ES Shading
Language 3.0), Multiple Render Targets and other new features [Gilbert & Albeza 2017].

7.5.7 ThreedS

You can also create WebVR content directly in Three.js, with THREE.VRControls on
the camera and THREE.VREffect on the renderer. It is worth noting that A-Frame wraps
Three]JS, giving A-Frame access to the underlying Three]S library and all the accompany-
ing features including inputs, etc.

7.6 Web APIs: They Get Along Very Nicely with WelbXR

There is also the ability to integrate other Web APIs into VR experiences, broadening the
development options. Some of these are still experimental technologies.

7.6.1 Play with Positional Audio

The browser provides a powerful system for audio manipulation through the Web
Audio API. This API allows developers to choose audio sources, add effects to these
sources, analyze them to create visualizations and apply spatial effects, among other
functionalities.

In a similar way that a ‘context’ exists for graphics in the browser, there is a
context for audio. This context permits the creation of audio nodes that can be sources,
effects or destinations and routes them through a graph to achieve the desired effect
(Figure 7.7).

These nodes are linked into chains and simple graphs (webs) by their inputs and out-
puts. Among the available effect-nodes in the Web Audio context are: Biquad filters, con-
volution effects, delays, dynamic compression, and gain (volume). Of special interest for
a VR experience is the Panner node, because it represents the position and behavior of an
audio source (signal) in space. This type of node describes its position with right handed
Cartesian coordinates, its movement using a velocity vector and its directionality using a
directionality cone.

You can refer to a demo of using the Web Audio API to spatialize audio in
https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API/Web_audio_
spatialization_basics. You can also achieve this effect with tools in selected frameworks,
such as using A-Frame’s sound component (Listing 7.1).

destination

Figure 7.7

Types of nodes in the WebAudio context.
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Listing 7.1. A-Frame sound HTML component featuring position.

<a-sound src="src: url(click.mp3)" autoplay="true" position="0 2 5"></a-sound>

7.6.2 Add Gamepads to Your Experience

Virtual Reality applications that allow for user interaction are more engaging. In an
immersive environment, you can have objects with different Degrees of Freedom (DOF).
Degrees of Freedom refer to the movement of a rigid body inside space, which in VR
relates to translation and rotation.

From a controller point of view, you can have 3-DOF orientation (pitch, yaw, and roll)
or 6-DOF orientation and location (where you additionally access location in X, Y, and Z).
There are several methods with which we can allow a user to select and manipulate objects
ranging from no controller (sometimes referred to as 0-DOF) where the user stares at an
element and actions it (aka “fuse button”), to 3-DOF where you can track a device’s orien-
tation and 6-DOF where additionally you can track their location in space.

Currently supported in Samsung Internet, Edge, Chrome, Firefox, and Opera browsers,
the Gamepad API is a way to access and use gamepads and other game controllers from
the browser (see Figure 7.8). Any controller that works as a standard Bluetooth controller
can be used. Its buttons, triggers and analog sticks get mapped to buttons and axes on the
Gamepad object. Two hardware examples that can be used with a browser are the Xbox
One controller and Nintendo Switch Joy-Cons [Gonzalez & Cannon 2017].

You can respond to the connection and disconnection events of a controller, as well as
gain access to buttons and axes (Figure 7.9).

Additionally, the WebVR 1.1 specification enhances the Gamepad API by facilitating
information on a controller’s pose, if supported by the device. Another way of accessing
gamepads is through wrappers over the Gamepad API developed for specific frameworks,
like A-Frame 0.6.0 which brings controller support to Daydream and Gear VR.

navigator )
-getGamepads () ®
Q% —=> > °
connect query access
gamepad browser controls

Figure 7.8

Access gamepads from the browser.

7.7 Making Your WebXR Content Accessible Offline

The web can now allow websites to work without an internet connection. It is important
that VR experiences are not entirely dependent upon having internet access because even
the best web app in the world would then provide a bad UX if it suffered a loss of con-
nectivity. Browsers will display a generic offline UT and the experience is lost. More wor-
risome is the fact that this loss of connectivity is not infrequent, and that our dependence
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Gamepad mappings. (Courtesy of Samsung Internet.)

of network coverage or Wi-Fi is quite high. A common myth about web experiences is
that they require connectivity to work. The most recent attempt at fixing this problem are
Service Workers [Russell, Song, Archibald, & Kruisselbrink 2016]. They allow the control
of AppCache-implied behaviors with a fine degree of granularity. This means that it can
be easily used to tell an app to use cached assets first, enabling a default experience when
the XR app has no connectivity.

Service workers are key to enable “Progressive Web Apps” (referred from now on as
PWAs), for which support exists in Chrome, Firefox, Samsung Internet, Edge and Opera.
PWAs are experiences that are responsive, fast, secure, independent of connection and
have the reach of the web. They can provide the best of the web capabilities and the best
of native technologies, by allowing the use of push notifications, access to device sensors,
and placement of the app on the home screen.

We can see in Figure 7.10 how a service worker will attempt to first match a resource
request from a page with cached resources. This is key since it allows developers to down-
load the resources the first time the user visits a page hosting a VR experience, allowing
this experience to not only work offline but also load faster the next time it is accessed.
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Service Workers 101. (Courtesy of Mozilla Hacks and Samsung Infernet.)
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Apart from providing a nice UX for the experience when offline, if the VR experience
doesn’t require assets from the network (say, a social media VR app that pulls down some
data stream), then the entire app can reside as an independent, offline-first VR applica-
tion. Any combination in between is possible, and enables VR apps like the 3D composi-
tion viewer “Progressive A-Painter” [Balouet 2017] to the offline 360° image viewer Bubble
[Samsung Internet 2017].

To enable a WebXR application to become a PWA, you must comply with the same
requirements needed for any other web page, from being served over an HTTPS connec-
tion to having the proper application file descriptors such as the manifest. For a detailed
PWA check list, use developer tools like SonarWhal [SonarWhal 2018] and Google’s
Lighthouse [Google 2017]. Lighthouse can process a page to audit these requirements.

7.8 Progressive Enhancement of WebXR Applications

The reach of an application is only as good as how it adapts to different ways of experienc-
ing it. If you limit your XR application’s distribution to a store that only supports a small
subset of hardware, you're restricting your reach. If youre developing your experience to
be tailored to a specific hardware, then you're losing reach as well. Maximizing reach is
about elegant design, a design that doesn’t leave users behind and is flexible enough to
work in a case where there is no headset involved, all the way up to the case where there is
room tracking (Figure 7.11).

With a browser, you can poll for available functionality and adapt your experience to
it. It’s a good practice and web developers are accustomed to providing fallbacks when
a specific API or feature is not implemented. This translates to XR experiences that can
start engaging users with the “magic window effect” and tapping the screen to interact
with objects.

This “magic window effect” refers to the ability to consume WebXR on a desktop or
mobile device without a headset, where the content can be seen through the device as if
this were a window into the XR world. In mobile devices, orientation sensors help posi-
tion the visualization accordingly, while in desktops you can pan around with the mouse.

Users can also go into VR mode and put their phone into a Google Cardboard, to get a
slightly more immersive experience, and from there the experience adapts to extra com-
ponents of functionality. This includes controllers with 3 degrees of freedom (3-DOF) like
the Daydream and Gear VR controllers and more complex 6 degrees of freedom (6-DOF)
experiences with room position tracking. With a combination of WebAPIs and a robust
feature check in place, you can make sure your experience is as accessible to as many
devices as possible.

loo] ]

ODoF mobile only

Figure 7.11

Different type of experiences available with WebVR.
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79 Recommendations When Creating WebXR Experiences

When you are creating WebXR experiences, there are some recommendations to take into
consideration, which can enhance the experience.

Take advantage of the browser: Part of the benefit of doing immersive experiences in
the browser is that you have at your disposal a wide array of APIs that can help you achieve
innovative experiences. You can also take advantage of different APIs to achieve things
like speech recognition and Bluetooth device integration with your applications.

Make your experience comply with Progressive Enhancement: With many devices
supporting modern browsers, you want to expand the reach of your application to as many
of them as possible. Making a progressively enhanced experience doesn’t mean having the
same experience in every device, but rather having any experience on every device.

Add Sound: Often overlooked, audio is an important part of any immersive experience.
The easiest way to proceed with audio is to set a background sound that acts as ambient
noise. Different frameworks provide different ways of playing sounds, but they gener-
ally provide straightforward ways of positioning and playing audio through JavaScript.
Remember to test in different platforms, since mobile browsers handle audio differently
from their desktop and VR counterparts.

710 Summary

Creating immersive experiences is now possible in a browser. There is a specification for
an API in the works, and several frameworks and tools available to do so. In targeting
web browsers, there is a broad set of devices that can engage with those experiences, but
we have to take this into account to ensure the experience can be used to some degree
in every device. Using web technologies to build immersive experiences also opens the
door to combining different technologies built into the browser, like speech recogni-
tion, or geolocation, along with access to a plethora of devices that can be accessed
through JavaScript APIs—indeed it is possible to add room tracking with a Kinect to a
Cardboard-based experience for example, or even to control real Bluetooth devices from
the virtual world.

The strength of the web lies in its ability to connect. These connections enrich
experiences, allowing for more social, sharable, frictionless, open, and interactive
applications.
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Greyhouse

Building the Neighborhood Coffee
Shop in Unreal Engine for VR

Booker Smith and David Whittinghill

Purdue University

8.1 Infroduction 8.5 Getting Started with

8.2 Unreal in Virtual Reality Unreal

8.3 Casing the Greyhouse 8.6 Recreating the Greyhouse
8.4  Pre-Production 8.7 The Finished Product

8.1 Introduction

Greyhouse is a locally famous coffee and pastry shop near our laboratory, well liked and
often visited by the Purdue community. Progress being what it is, recent construction
is shaking things up, and the beloved old shop will be getting a new look later this year.
Out with the old, in with the new. For the sake of posterity, we have decided to virtually
preserve the old place, using the Unreal game engine to create a VR representation of the
shop optimized for the HTC Vive system (Figure 8.1).

8.2 Unreal in Virtual Reality

Fortunately for us, VR in Unreal is quite simple for the Vive. Developers can use the stan-
dard templates, which easily permit a Vive preview, or they can use the Unreal “Virtual
Reality” template which allows deeper control of the controls and headset and includes
handy functions for teleporting and other VR capabilities. For this chapter, we are going to
stick with the standard templates. The Virtual Reality template requires a bit of Blueprint
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Figure 8.1
The Greyhouse.

(Unreal’s visual scripting language) coding, which is a bit beyond the scope of a purely
introductory chapter.

The Vive depends upon Valve’s Steam software platform for drivers and applica-
tion loading. Vive developers must install Steam and enable SteamVR and make sure
the SteamVR plugin is enabled in the editor. SteamVR is the mediator between the VR
hardware and any games or applications that seek to communicate with it. In the case of
Unreal Engine, when the editor first opens it checks for the presence of SteamVR and, if it
finds it, it loads the “Virtual Reality” development template; when SteamVR is not present,
this template option is not displayed. Since we are using standard templates, we will use
the template called “First Person.” This template delivers a VR experience controlled via a
traditional WASD keyboard/mouse input scheme (Figure 8.2).

8.3 Casing the Greyhouse

We first photographed Greyhouse the way it presently is to capture its light, color geom-
etry, and overall ambience. We have elected to use Unreal to block out a BSP representa-
tion of what is a fairly simple scene but one that is, to us, fairly familiar. Initially, we chose
to use Unreal’s VR editor and though the tools are promising and quite a lot of fun to use,
at the time of this writing they are still experimental. Rather than risking the final release
of Unreal VR Editor being dramatically different than the present experimental build, we
chose to build using the traditional 2D mouse and keyboard interface.

We also chose to build our Greyhouse scene using only BSP’s and starter content
shipped with the engine. If one were trying to model a scene for a professional VR
production they would use static meshes and custom-made 3d models. This chapter is

118

8. Greyhouse



Projects

Choose a template to use as a starting point for your new project. Any of these features can
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VR preset.

instead meant to be a fairly simple learning exercise through which new Unreal develop-
ers can gain some familiarity with the Unreal Editor and get familiar with the environ-
ment. Using Unreal’s more advanced “Virtual Reality” development templates not only
enables the use of motion controllers, avatar teleportation, and other fun VR features, but
also requires coding and thus will be left to more advanced lessons elsewhere. Our hope
is that we provide the reader a window into the process of using only in-platform assets
to approximate an interesting real world scene. Our goal was not high-fidelity simula-
tion, but rather to see just how far we could re-purpose the engine’s off-the-shelf content
to make a nonetheless interesting VR scene that captures some of the spirit of the source
material.

8.4 Pre-Production

e Visit the location to recreate, and take pictures that capture enough detail and
information such that you have a robust reference package from which you can
derive the location’s color, lighting, dimensions, and general ambience. Pay atten-
tion to the location’s various architectural shapes and cues, materials, lighting,
and other interesting details.

8.4 Pre-Production
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e It helps to have your reference images always visible during level construction. We
like using a dual monitor configuration in which the reference materials are on the
secondary screen while our level construction is completed on the primary screen.

8.5 Getting Started with Unreal

The Unreal Engine is a free download available from www.unrealengine.com and runs
on Windows and Mac. Once you have created your unique user account, download the
Launcher application, which will allow you to download the game engine and editor. For
this particular project, we used version 4.16.2.

At the top of the screen (Figure 8.3), you will see multiple tabs, click on the one named
“Unreal Engine.” On the left is the Library button, click on it and the main window pres-
ents a button called “Add Versions.” Click to select your version of choice (in this exercise,
we are using 4.16.2). Click “Launch” to begin.

Creating a Project

e Choose the “New Project” tab, the “Blueprint” tab, then select the “Virtual
Reality” icon;

¢ Select the “Desktop/Console,
settings; and

e Select alocation in your file system where you want to store your project.

» «

Maximum Quality,” and “With Starter Content”

Note, the Unreal Editor is often performing numerous file writes in the background dur-
ing development. As such, having your files stored on an external or networked drive will
cause the editor to feel sluggish and result in much slower loading. We highly recommend
you save your work to a location on your local file system and then, if you want to maintain
a backup, use a source control program or manually copy your project files to your backup
location periodically.

Once the project is loaded you will be presented with a scene containing various VR
Template items (Figure 8.2). We will not be using the elements in this scene (Figure 8.4),

oIr
Ll
Unreal Engine

"Sh" E"!'“ E ersions # Add Versions 00B

Grab the source on GitHub Latest Release Notes

Community
Learn

Marketplace

Library

No user projects found

Figure 8.3

Choosing an engine version.
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Figure 8.4

Opening scene with starter content.

except for “SkyLight” and “ExponentialHeightFog.” You can see the items in World
Outliner, click to highlight them, and delete all other items. The World Outliner is one of
the panes in Unreal Engine that allows the developer to view the contents of their scene
as a textual, hierarchical list rather than as a three-dimensional world (Figure 8.5). The
World Outliner and the Viewport do in fact represent the exact same data.

A

Figure 8.5
The World Outliner (in red).

8.5 Getting Started with Unreal
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8.6 Recreating the Greyhouse

First, we construct the basic room. We did not measure the physical Greyhouse’s dimen-
sions so we instead used a best guess approximation. In the Modes window (Figure 8.6),
select the Geometry tab where a number of pre-fab objects are available to drag into the
Scene window. We constructed the walls, floors, and ceilings out of nine “Box” BSP’s
which were then scaled into flat planes and placed to form the room. We constructed the
floor as four BSP’s so that we could have different textures on them (to more closely match
Greyhouse’s floors).

8.6.1 The Floor

There will be no other characters walking through the scene when it is completed. Without
some patrons walking about, it is more difficult to perceive the “feel” and flow of the space.
To compensate, we provide some subtle visual hints by rotating the texture of the wood
floor strategically, as the anisotropic effect of the wood grain serves as vision lines, draw-
ing attention to interesting aspects of the scene. For instance, the diagonal wood in the
entry and retail section point to the counter and display, alerting the user to the cash
register.

Moving forward, one encounters wood whose direction is against the grain, acting
as a visual cue of a barrier. Following its lines, the viewer sees the employee-only door.
Customers only encounter this region after a purchase, so the spatial layout of the shop
and the sight lines of its decor both urge your mind’s eye to the next region, a region

File Edit Window Help
iy Modes

Veoieay®

Recently Placed
Box

Basic

Lights Gone

Cinematic Cylinder

Visual Effects
| Curved Stair
| Geometry
I

Volumes Linear Stair

All Classes
Spiral Stair

Sphere

Figure 8.6

In the Modes window, select the Place tab overhead tab, then the Geometry left tab.
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whose wood grain pattern matches that of your current location. This layout encourages
customers to sit down and enjoy their purchases in that area of the shop. It also is based
on shopping psychology in real life: it causes one to pause and see the other wares, or in
Greyhouse’s case, items like sugar and creamer, which then moves the customer forward,
reducing congestion in the main commerce space/entryway. In low traffic times, this is
welcoming, because there is no line, and in high traffic times, it draws people from the
eaves to the display counter and menu, because the flow of people creates a space that cus-
tomers want to fill. Designing a virtual space, even a simple one like this, can be enhanced
by simple visual cues like rotated textures, because in so doing, we model the same subtle
human mechanics one finds in real life. This helps realism!

One extremely helpful feature in the Unreal Editor is snapping (Figure 8.7). Snapping
causes objects that are dragged and dropped into the scene to “snap” to gridlines that run
through the world. These gridlines can be set to any desired granularity. Each transforma-
tion tool: Translation, Rotation, and Scaling has its own snap values, which the user can
customize. Using snapping helps maintain right angles between objects and helps prevent
object overlap (which can cause “z-fighting” in the final render)—and it generally makes a
level designer’s work a whole lot easier.

8.6.1.1 Usability Note: ALT-drag

In the following data value tables frequent references are made to the ALT-drag sequence.
This is a simple way to clone a piece of geometry in the scene while retaining the original
geometry’s orientation in the scene. It is an extremely handy feature for building walls
as in most cases a left-hand wall and right-hand wall are oriented similarly. Cloning
like this removes the need to reposition new geometry along all three axes. Naturally,
this is also handy for any situation in which uniform orientation is necessary (ceilings/
walls, etc.).

8.6.1.2 Usability Note: Surface Properties Submenu

The Surface Properties submmenu is not displayed by default for geometry. To enable this
submenu, from within the Modes window select the Paint option (Figure 8.8). This will
then make the Surface Properties submenu appear in the Details pane (Figure 8.9).

8.6.2 Floor Segments

There are four floor panels. Each row below in Table 8.1 lists attribute values used to create
the floor pieces. Enter the values below in the Details window for each floor piece.

p .9

Play Launch

(@ o[ @)m)(~]E] 5 @] 5 ) (&] 003125 ) m 4) 2

Figure 8.7

Transformation tools and their accompanying snap values.
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Figure 8.8
The Paint Tab.
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Figure 8.9

The Surface Properties submenu and the 90° rotation button.

Table 8.1 Floor Segments

Location Rotation Scale Brush
XYz X Vz XYz Brush Type Brush Shape X Vz
1 0,0,0 0,0,0 6, 6,.08 Additive Box 300, 600, 200
2 Use ALT-drag to clone Floor 1 along the Y green axis
Surface Properties—rotate: 90° menu button
3 Use ALT-drag to clone Floor 2 and drag along the X (red) axis
1795,-1840,0  0,0,0 6,1,.08 Additive Box 300, 600, 200
4 Use ALT-drag to clone Floor 3 and drag along the Y (green) axis
0,—4200, 0 0,0,0 6, 6, .08 Additive Box 300, 600, 200

Surface Properties—rotate: 90° menu button
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8.6.3 Walls—Base Architecture

Creating walls is very similar to how floors are created: Box BSP’s are placed and res-
caled to create each structure. Since walls are more (but not entirely) uniform, to save
work we will be applying materials and cloning them with the materials applied using
ALT-drag.

Drag a BSP into the scene and set its Location to (—945, 0, 108), its Scale to (1, 6, 1), and
its Brush value to (300, 600, 200).

To create materials, open the Content Browser. In the Content Browser open Starter
Materials/Materials. Find the material named M_Basic_Wall, right-click it, and click
duplicate. Now right-click the duplicated material, and rename it whatever you like; we
renamed ours “New_Wall.” Drag the New_Wall material into the Scene pane and onto the
new wall Box that was just created.

For the remaining walls, create duplicates of the first wall using ALT-drag. Each dupli-

cate will have the attributes provided in Table 8.2.

8.6.4 Walls—Windows and Doorways

To create openings within walls for windows and doorways, we again used Box BSP’s,
except we now use the Subtractive Brush type (Figure 8.10). Subtractive geometry is used
to “carve out” openings in another piece of geometry. As was the case for walls, Box BSP’s
are dragged and dropped onto the Scene pane, which we then follow up by manually edit-
ing the values in the Details pane.

The window and door attributes are as in Table 8.3.

Table 8.2 Walls: Base Architecture

Location Rotation Scale Brush
XYz XYz X Y.z XYz
1 This piece was created in the instructions above
2 —945, -3135, 108 0,0,90 1, 1,1 1200, 200, 200
3 —-710, 1610, 248 0,0, 45 24,1,2.4 200, 50, 200
4 865, —1950, 657 0,0,0 1,1,1 200, 200, 200
5 45,1700, 108 0,0,0 1,1,1 200, 200, 200
6 800, 120, 120 0,0, 90 1,1,1 200, 200, 200
7 1670, —1590, 552 180, 0,0 1.34,1.09, 1.34 200, 200, 200
8 1700, 2200, 212 0,0,0 1.34,1.09, 1.34 200, 200, 200
Repeat the material creation and application process above, but use M_Brick_Clay_New
9 Clone this from Wall 8 so that it inherits the M_Brick_Clay_New material
1980, -3770, 108 0, 0,-90 1,1,1.09 200, 200, 200
10 —100, —=5100, 482 0,0,0 1.34,1.09, 1.34 200, 200, 200
Repeat the material creation and application process above, but use the M_Wall_New material
11 —-100, 5100, 112 0,0,0 1.34,1.09, 1.34 200, 200, 200

Repeat the material creation and application process above, but use the M_Wood_Floor_Clay_
‘Walnut_Worn material
12 2130, -2990, 110 0,0,0 1,1.65,1 200, 200, 200

Repeat the material creation and application process above to create a dark gray material
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Figure 8.10 (I T C—

Setting Additive vs. Subtractive brush type.

Table 8.3 Walls: Windows and Doors

Location Rotation Scale Brush Brush

X V.z XYz XYz Type Brush Shape XYz
1 710, 1610, 270 0,0, 45 24,1,24 Subtractive Box 180, 60, 210
2 —875,-95, 415 0,0,0 .5,12,1.25 Subtractive Box 200, 200, 200
3 —875,-3350, 415 0,0,0 .5,12,1.25 Subtractive Box 200, 200, 200
4 —675,—4975, 180 0,0,0 .5,12,1.25 Subtractive Box 200, 200, 200
5 —675,—-4975,-180 0,0,0 .5,12,1.25 Subtractive Box 200, 200, 200
6 —410, —4975, 180 0,0,0 .5,12,1.25 Subtractive Box 200, 200, 200
7 —145, —4975, 180 0,0,0 5,12, 1.25 Subtractive Box 200, 200, 200
8 120, —4975, 180 0,0,0 .5,12,1.25 Subtractive Box 200, 200, 200
9 375,-4975, 180 0,0,0 .5,12,1.25 Subtractive Box 200, 200, 200
10 640, —4975, 180 0,0,0 .5,12,1.25 Subtractive Box 200, 200, 200
11 905, —4975, 180 0,0,0 5,12, 1.25 Subtractive Box 200, 200, 200
12 1170, —4975, 180 0,0,0 .5,12,1.25 Subtractive Box 200, 200, 200
13 1435, -4975, 180 0,0,0 .5,12,1.25 Subtractive Box 200, 200, 200
14 1700, —4975, 180 0,0,0 5,12, 1.25 Subtractive Box 200, 200, 200
15 1955, -4975, 180 0,0,0 .5,12,1.25 Subtractive Box 200, 200, 200
16 1080, —3650, 145 0,0,0 2.12,.43,.46  Subtractive Box 200, 200, 200
17 610, 1815, 355 0,0,0 1,1,1 Subtractive Box 200, 200, 200
8.6.5 Ceiling

The ceiling is a clone of the floor. Hold CTRL and select the four floor pieces. Release
CTRL, and ALT-drag the selected pieces upwards to clone. While the four pieces are still
selected, right-click on any of the pieces and select Group. We recommend setting a value
of 775 for the Location Z value.
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8.6.6 Decor

Here we illustrate how we created the “furniture” and decor used to furnish our space.

Remember, we are purposely avoiding creating proper 3D models and are instead try-

ing to capture the feel of the original Greyhouse while using only BSP’s, primitives, and
“canned” assets found in the Unreal’s Starter Content package. As such,
ward the work we are illustrating is more “art” than science. We ask the reader to allow us
some creative license as quite a bit of imagination will be required of the viewer’s eye. This

is the MacGuyver of virtual spaces.

from here for-

The decor item properties are as shown in the following subsections (Tables 8.4-8.7).

8.6.6.1 Open-Air Shelving Unit

Table 8.4 Open-Air Shelving Unit

BSP Box
Location Rotation Scale Brush
XYz XYz XYz Brush Type Brush Shape XYz
1070, -3650, 110 0,0,0 2.44, 44,1 Additive Box 200, 200, 200
All faces material: M_Wood_Pine (drag onto BSP from Starter Content/Materials)
8.6.6.2 Cashier’'s Counter
Table 8.5 Cashier’s Counter
BSP Box
Location Rotation Scale Brush
X Vz X Yz X Vz Brush Type Brush Shape X Vz
145, 0, 108 0,0,0 1,6,1 Additive Box 300, 600, 200

Countertop material: M_Rock_Marble_Polished
Customer-facing material: M_Wood_Oak

8.6.6.3 Pasiry Display

Table 8.6 Pastry Display

BSP Cylinder
Location Rotation Scale
XYz XYz X vz Brush Type Brush Shape
150, 845, 205 90, 0, 180 75,1, 8.44 Subtractive Cylinder
Z: 200; outer radius: 200; sides: 60
150, 900, 205 90, 0, 180 75,1, 8.44 Additive Cylinder

Z: 200; outer radius: 200; sides: 60

8.6 Recreating the Greyhouse
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8.6.6.4 "Piano” (Yeah, Yeah, This One's a Stretch...)

Table 8.7 “Piano”

BSP Box
Location Rotation Scale Brush
XYz XYz XYz Brush Type Brush Shape XYz
1775, -4700, 145 0,0, 30 2.09, .69, 1 Additive Box 200, 200, 200

All-faces material: M_Tech_Panel

8.6.6.5 Tables

For the tables we will be using the static mesh tables that are included as part of the
Starter Content. From within the Content Browser, navigate to Props/SM_TableRound
(Figure 8.11).

Drag the table icon onto the Scene Pane and set the positional parameters as in
Table 8.8.

BAGINE/S & impot B SaveAll €

Figure 8.11

Locating the table prop.

Table 8.8 Tables

Location Rotation Scale

XYz X Y.z XYz

1 530, -2630, 10 0,0,0 3,3,2
2 —74, 2960, 10 0,0,-135 3,3,2
3 —180,-3583, 10 0,0,-130 3,3,2
4 —550, —4690, 10 0,0,-90 3,3,2
5 630, —4660, 10 0,0,0 3,4,2
6 435,-4110, 10 0,0,0 3,4,2
7 1765, —4140, 10 0,0,0 2,2,2
8 1765, 3455, 10 0,0,0 2,2,2
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Table 8.9 Stools

Location Rotation Scale

XYz XYz Xz
1 —720,-3115, 10 0,0,0 1,1,2.25
2 —720, -2260, 10 0,0,0 1,1,2.25
3 —720,-1035, 10 0,0,0 1,1,2.25
4 —720,-180, 10 0,0,0 1,1,2.25
5 —720, 675, 10 0,0,0 1,1,2.25
6 -710,-1800, 10 0,0,0 1,1,2.25

8.6.6.6 Stools

The stools will use the same static mesh as our tables. They will just be stretched and
narrowed to be more “stool like”. From within the Content Browser, navigate to Props/
SM_TableRound. Drag the table icon onto the Scene Pane and set the positional param-

eters as in Table 8.9.

8.6.6.7 Props

Last of all we place the various plants, sculptures, and miscellaneous objects about the
scene. Below are the values we used to approximate the original Greyhouse but, frankly,
placement is a matter of taste. Feel free to move around as you see fit. We do, however,
include recipes for distorting and reshaping Starter Content assets such that they no lon-
ger resemble their original. For instance, we got a lot of mileage (yours may vary) with the
SM_Table_Round: elongating it upward and scaling its X and Z makes it a nice barstool,
uniform-scaling it way down and rotating it makes it a desk fan, and so on. We include
these examples to hopefully inspire the reader to take their own creative license with the
Starter Content materials and make their own interesting creations.

8.6.6.8 Plants
The plants will use the following static mesh from the Starter Content package: Content
Browser/Starter Content/Props/SM_Bush. Place as in Table 8.10.

8.6.6.9 Ceiling Light Fixtures

The ceiling light fixtures used the following static mesh from the Starter Content package:
Content Browser/Starter Content/Blueprints/Blueprint_CeilingLight. After placing the
first light, use ALT-drag to duplicate the other lights. Place as in Table 8.11.

Table 8.10 Props

Location Rotation Scale

XYz XYz XYz
1 1705, —4745, 245 0,0,0 .6, .6, 1.875
2 200, 500, 210 0,0,0 .6, .6,1.875
3 200, 800, 210 0,0,0 .6, .6,1.875
4 200, 1060, 210 0,0,0 .6, .6, 1.875
5 200, 1310, 210 0,0,0 .6, .6, 1.875

8.6 Recreating the Greyhouse

129



Table 8.11 Ceiling Light Fixtures

Location Rotation Scale

XYz XYz XYz
1 1830, —3325, 765 0,0,0 .6,.6,1.875
2 1830, —3600, 765 0,0,0 .6, .6, 1.875
3 1830, —3765, 765 0,0,0 .6, .6,1.875
4 1830, —4040, 765 0,0,0 .6, .6, 1.875
5 1830, —4355, 765 0,0,0 .6, .6, 1.875
6 1830, —4630, 765 0,0,0 .6, .6, 1.875

8.6.6.10 Point Lighting

If this were a professional production, then designers would study the lighting in the
Greyhouse in order to determine its particular layout of diffuse lighting sources. However,
the spirit of this chapter is for beginner friendliness and rapid prototyping. As such, we
used point lights to create some ambient illumination throughout the scene. It may not be
accurate per se, but it does capture the ambiance of the original location.

Open the Modes window, Lights, Point Light (Figure 8.12), and drag lights onto the
Scene Pane, setting their attributes as in Table 8.12.

8.6.6.11 The Doors

The doors used the following static mesh from the Starter Content package: Content
Browser/Props/SM_Door. After placing the first door, use ALT-drag to clone the other
doors. Place as in Table 8.13.
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Table 8.12 Point Lighting

Location Intensity

XYz XYz
1 500, —1250, 395 1000
2 500, =750, 395 1000
3 500, —250, 395 1000
4 500, 250, 395 1000
5 500, 750, 395 1000
6 500, 1250, 395 1000
7 635, 4730, 395 1000
8 1750, —5250, 395 1000
9 1750, —3250, 395 1000

Table 8.13 The Doors

Location Rotation Scale
XV.z X V.2 XV.z
1 -592,1738,18 0,0, —45 1,1.94,2.47
2 —839,1491,18 0,0, 135 1,1.94,2.47
3 860,—1830, 10 0,0,0 2.59,2.59,2.59
4 2025,-3175,10 0,0,—-180  1.88,1.66,1.88
5  2025,-2875,10 0,0,0 1.88, 1.66, 1.88

Table 8.14 The Doors” Frames

Location Rotation Scale
X vz X vz X vz
1 712,612, 13 0, 0,—45 2.56,3.84,2.5
2 870,—-1945,8 0,0,0 2.56, 2.56, 2.59

8.6.6.12 The Doors’ Frames

The door frames used the following static mesh from the Starter Content package: Content
Browser/Props/SM_DoorFrame. After placing the first door frame, use ALT-drag to clone
the other frame. Place as in Table 8.14.

8.6.6.13 Miscellaneous

The remaining items constitute the various minutia around the shop and serve to give the
space a personal touch (Figure 8.13). Place items as in Table 8.15.

8.7 The Finished Product

In the end we arrived at a decidedly approximate recreation of the original Greyhouse
that we hope captures the essence of the original if not necessarily the specifics. This
tutorial was designed to help an absolute beginner get started with Unreal for VR while
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Figure 8.13

The simulated environment versus the original.

Table 8.15 Miscellaneous Decoration

Location Rotation Scale
XYz XYz XYz
Weird unreal orb thing 1745, —3450, 150 0, 0,-30 .125,.125,.125
Content Browser/Props/SM_MatPreviewMesh_02
Statue 610, —4855, 150 0,0,0 1,1,1
Content Browser/Props/SM_Statue
Decorative rock 1155, -3640, 100 0,0,0 125, .125,.125
Content Browser/Props/SM_MatPreviewMesh_02
Arch Thing 1155, —3640, 100 0,0,0 125, .125, .125
Content Browser/Props/SM_MatPreviewMesh_02
Old-timey camera 1225, —3640, 100 0,0,0 2,2,2
Content Browser/Props/SM_CornerFrame
Shelf 1 —845, -85, 280 0,0,0 4,12,1
Content Browser/Props/SM_Shelf
Shelf 2 —845,-3282, 280 0,0,0 4,12,1
Content Browser/Props/SM_Shelf
Desk fan 1228, 3653, 208.57 0,0,0 .125,.125, .125
Modes/geometry/cone
1215, -3620, 255 —90,0,20 0.375,0.375,0.375
Content Browser/Props/SM_CornerFrame

demonstrating how existing assets can be repurposed to let the reader get started right
away on creating interesting original virtual environments.

Upon loading this map, you will be able to view the world using your HTC Vive headset
and navigate it with the keyboard and mouse. To take the experience to the next level and
enable motion controllers and avatar teleportation functionality, study Unreal’s “Virtual
Reality” template and Blueprint’s visual scripting system.
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Bridging Scientific Visualization
and Unreal VR

Kees Van Koofen

NVIDIA

9.1
9.2
9.3
9.4
9.5

9.6

This chapter presents a practical solution integrating consumer virtual reality (VR)
hardware into a scientific visualization pipeline. To this end, it shows the benefits of such
hardware, but especially the challenges of using it with existing scientific visualization
tools. The proposed solution then is to use the Unreal Engine for solving the rendering
problem and the setup of a VR environment with interaction; then, a pair of plugins is
described bridging the Unreal engine application to existing scientific visualization tools.
After a technical explanation of the bridge, the workflow and interactions with it are
shown. What follows is an explanation on how to integrate the bridge into your own sci-
entific visualization application of choice. Lastly, some practical limitations and future
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9.1 Benefits and Challenges of Consumer VR

The rise of consumer VR hardware in the gaming space has had a domino effect in other
areas too. It is already a commodity in professional visualization, where it provides a
means for architectural tours, previews of consumer products and design collaboration.
It is also being employed in professional trainings, in education, and in psychological or
occupational therapy. It even finds a use in object and environment reconstruction, for
example, in the field of archeology.

It is therefore not surprising that there is considerable interest to use this technology
in scientific visualization as well. The increased depth perception of current HMDs over
standard monitors is useful for analyzing complex datasets. The ability to navigate and
position oneself within a dataset is easier than with a traditional mouse and keyboard.
Many types of interactions with the dataset feel more natural using consumer VR instead
of the standard desktop UI. Additionally, the cost and space requirements as compared to
a CAVE setup are much smaller; a basic setup at the desktop usually suffices.

There are of course drawbacks associated with the usage of consumer VR. For one,
consumer VR is not yet easy to use for augmented-reality purposes, for example in com-
bination with the physical environment, or in collaboration with other users in the same
room. The headset is still too bulky for that, making it cumbersome to don and doff. While
in-HMD exterior views are often supported via an outward-facing camera, they are not
yet capable enough for precision tasks. However, these aspects are expected to improve
considerably as technology matures.

Furthermore, it takes a considerable engineering effort to adapt an existing scientific
visualization pipeline to the VR use-case. First off, a smooth experience in a VR HMD
requires a high-frequency low-latency graphical update loop, which does not slow down
under the various possible interactions with the scientific data. The whole scientific
visualization pipeline should help maintain this requirement, from the generation of the
geometry to the actual rendering.

Additionally, the interaction style in VR is different from keyboard and mouse at
a standard monitor. Often it is not even clear which parts of the interaction are most
comfortably done from within the VR environment, prompting a full redesign of the
interaction with the scientific visualization software. This includes a lot of prototyping
and testing. While such activities are usually not a problem for commercial use-cases, it
does pose a problem for scientific visualization, where there is a comparatively small bud-
get and time window for development and especially maintenance of software not directly
related to a particular research project.

9.2 Leveraging Existing Technology

This chapter focuses on the aforementioned problem of integrating VR into a scientific
visualization pipeline. It has been designed to affect existing scientific workflows as little
as possible, while at the same time requiring very little investment in terms of money and
engineering effort. It does this by leveraging technology from the gaming space, where lots
of effort has already been put into the software platforms for design of virtual interactive
environments, in the form of freely available game engines.
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These engines have been developed using large budgets and lots of manpower over
many years, where they have been put to the test in countless applications. Some of these
engines employ the latest technological developments for VR rendering, so the developer
does not have to take care of supporting new rendering algorithms or hardware features.
The added benefit is that this technology is designed to be easy to use, for people who do
not necessarily have software engineering or visualization skills themselves. Mostly, it
will not require any programming in order to set up and prototype new interaction or
exploration ideas.

Understandably, it is impractical to try and integrate existing scientific visualization
tools directly into a game engine or vice versa. A considerable amount of work has been
spent over the last decades across multiple disciplines to develop visualization technol-
ogy and plugins, for all the data management and geometry generation that is necessary
before the rendering can even begin. Copying this work would be too costly to undertake
or to maintain. So instead, it is preferable to use the scientific software for its data man-
agement and generation strengths, and the game engine for its rendering and prototyping
strengths. Using plugins, both can be coupled to show the 3D data of the scientific visu-
alization that would traditionally be displayed on a standard monitor in the virtual VR
environment created by the game engine.

The next sections describe an example bridge between one specific scientific visualiza-
tion tool and one specific game engine: ParaView and the Unreal Engine. Both are widely
used, familiar to many, and therefore enjoy a lot of community support. Furthermore, the
Unreal Engine already has many applications in professional visualization, and is one of
the foremost platforms for integration of the latest developments in VR rendering technol-
ogy. The bridge allows the user to build their own application using the Unreal Engine,
which then connects to ParaView while running in a standalone fashion.

While both VTK and ParaView already contain VR integrations (as described by
[O’Leary et al. 2017; Martin et al. 2016] respectively) that perform rather well for selected
situations, they neither offer the freedom of scene creation and prototyping of interaction,
nor many of the advanced rendering effects available in the Unreal Engine. This solution
therefore attempts to make a bridge in a similar fashion as in [Rajlich 1995], but with a
larger focus on maintaining VR rendering performance under geometry modification.

At the time of writing, the plugin was tested to work with Unreal Engine 4.14 and
ParaView 5.4, and supports both the Windows platform as well as Linux. It will be made
available on the website that accompanies this book.

9.3 A Bridge of Plugins

The most straightforward way of bridging ParaView and Unreal is to use plugins for both
technologies. Therefore, the bridge will consist of a plugin in ParaView that reacts to any
change in the ParaView visualization pipeline, and identifies the changed geometry, tex-
ture, and transformation data. The ParaView plugin sends those changes over to a shared
memory block, that can in turn be read by the Unreal plugin. The Unreal plugin takes
the changes and uses them to update geometry, textures, and transformations for specific
actors and meshes within the virtual reality environment. These two plugins are in com-
bination referred to as the “External Visualization Plugin.”

9.3 A Bridge of Plugins
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Note that the choice for sending data over shared memory forces the user to execute
the instance of the ParaView client application on the same machine as the instance of the
Unreal application—the rendered geometry should be fully present on one single work-
station. The technology does not support use of the Unreal application to render images
remotely on for example a High Performance Cluster, or use images as they are streamed
from rendering processes on an HPC. Of course, it is entirely conceivable that an HPC
processes geometry on its nodes before it is sent over to a ParaView client process, after
which the client workstation could automatically display an up-to-date scene in the Unreal
VR environment.

To increase the efficiency of the shared memory buffer for reading and writing, the
buffer is split in two (double-buffered), so that ParaView can write to one part of the buf-
fer while Unreal reads from the other part. Once either application is done reading or
writing, it makes its part of the buffer available for the next write or read respectively. This
way, Unreal does not have to wait for ParaView to finish writing before it can start read-
ing. Conversely, ParaView does not have to wait for Unreal to finish updating its graphics
resources before it can provide the next batch of geometry.

To illustrate the two plugins working together, Figure 9.1a shows a typical ParaView
screen with imported geometry that is being rendered as a mesh in the ParaView OpenGL
output window. This particular dataset is a timeseries dataset, so the geometry changes
from one timestep to the next. For every new geometry that ParaView generates for the
individual timesteps, the ParaView plugin sends the geometry via the shared memory
block to the Unreal plugin. As the Unreal plugin runs in an Unreal application on the
same machine, it automatically updates the timeseries data within a mesh belonging to a
specific actor placed in the Unreal VR application. The output of the Unreal application is
represented by Figure 9.1b.

(b)

Figure 9.1

(@) A typical time-series data running in ParaView. (b) The time-series data is automati-
cally fransferred to an Unreal VR application, running simultaneously on the same
machine. (Dataset courtesy of the Juelich Supercomputing Center, Institute of Combustion
Technology.)
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The choice of which Unreal actor should receive geometry from which separate geom-
etry in ParaView is completely up to the user of the ParaView plugin. The plugin gives the
user control over which geometries belong to an actor chosen from a list of actors available
in the Unreal scene, so that any mapping of pieces of ParaView geometry to Unreal actors
is reasonable. This is further explained in Section 9.6.

9.4 The Execution Model

As previously noted, it is imperative that the Unreal application is rendering frames at
90Hz, or the VR experience will be unbearable. The rendering part of the Unreal VR
application therefore cannot wait for large geometries to be updated before proceeding
with rendering, especially if it happens as frequently as with timeseries datasets.

Unreal provi