

VR Developer Gems

http://www.taylorandfrancis.com

VR Developer Gems

Edited by
William R. Sherman

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2019 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper

International Standard Book Number-13: 978-1-138-03012-1 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize
to copyright holders if permission to publish in this form has not been obtained. If any copyright material
has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter
invented, including photocopying, microfilming, and recording, or in any information storage or retrieval
system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Names: Sherman, William R., author.
Title: VR programing gems / William R. Sherman.
Other titles: Virtual reality programming gems
Description: Boca Raton : Taylor & Francis, a CRC title, part of the Taylor & Francis

imprint, a member of the Taylor & Francis Group, the academic division of T&F
Informa, plc, 2019. | Includes bibliographical references.

Identifiers: LCCN 2018056231 | ISBN 9781138030121 (hardback : acid-free paper)
Subjects: LCSH: Virtual reality—Computer programs.
Classification: LCC QA76.9.C65 S48 2019 | DDC 006.8—dc23
LC record available at https://lccn.loc.gov/2018056231

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.copyright.com
http://www.copyright.com
http://www.copyright.com
https://lccn.loc.gov
http://www.taylorandfrancis.com
http://www.crcpress.com

v

Contents

Preface	 ix

Editor	 xv

List of Contributors	 xvii

Section I  The Medium of VR

	 1	 VR as a Medium	 3

William R. Sherman

	 2	 VR and Media of Attraction: Design Lessons from History	 21

Rebecca Rouse

Section II  VR with Game Engines

	 3	 Getting Started with SteamVR and Unity	 43

Lee Wasilenko

	 4	 UniCAVE: A Distributed Rendering System for Unity3D	 59

Ross Tredinnick and Kevin Ponto

	 5	 Using the Kinect for Head-Tracked Perspective and Pointing in
Stationary VR Displays	 71

Jason W. Woodworth and Christoph W. Borst

vi Contents

	 6	 The Vehicle Pattern for Simplifying Cross-Platform Virtual Reality
Development	 87

Anthony Steed

	 7	 WebXR: Virtual Reality… in the Browser	 101

Luis Diego González-Zúñiga and Peter O’Shaughnessy

	 8	 Greyhouse: Building the Neighborhood Coffee Shop in Unreal
Engine for VR	 117

Booker Smith and David Whittinghill

	 9	 Bridging Scientific Visualization and Unreal VR	 133

Kees Van Kooten

Section III  Interaction

	10	 Brownboxing: The Secret to Rapid VR Prototyping	 151

Shawn Patton

	 11	 Bi-Manual Interaction for Manipulation, Volume Selection,
and Travel: Using the Leap Motion, Game Controllers and
Mobile Devices	 161

Elliot Hunt, Rajiv Khadka, and Amy C. Banić

	 12	 Effortless 3D Selection through Progressive Refinement	 211

Doug A. Bowman, Regis Kopper, and Felipe Bacim

	 13	 Travel in Virtual Reality	 229

Jason Leigh

	 14	 From Painting to Widgets, 6-DOF and Bimanual Input Beyond
Pointing	 243

Bret Jackson and Daniel F. Keefe

Section IV  Agents & Avatars

	15	 Making Virtual Reality Social: Getting Virtual Humans into Your
Virtual Environment	 271

Andrew Cordar, Yao Heng, Fatemeh Tavassoli, Jeffrey Wood, and
Benjamin Lok

viiContents

	 16	 Building a Social VR App	 289

Bernie Roehl

	 17	 Avatar Embodiment, Behavior Replication, and Kinematics in
Virtual Reality	 321

Daniel Roth, Jan-Philipp Stauffert, and Marc Erich Latoschik

Section V  Third Person POV Cameras

	18	 Recording and Replaying Virtual Environments for
Development and Diagnosis	 349

Anthony Steed, Mingqian Wang, and Jason Drummond

	 19	 Capturing Cinematic Shots of Virtual Reality Scenes in Unity	 363

Andrew Cunningham and Maxime Cordeil

	20	 A Stereoscopic 3D View for Virtual Reality Spectators	 371

Andrew Guagliardo, Jason Leigh, and Ming-Der Yang

Section VI  Virtual Worlds

	21	 The Utility of Virtual Reality for Science and Engineering	 383

Kenny Gruchalla and Nicholas Brunhart-Lupo

	22	 Immersion and Visualizing Artistic Spaces in Virtual Reality	 403

Margaret Dolinsky

	23	 Embodied Montage: Constructing Meaning in Virtual Reality	 415

Deniz Tortum and Ainsley Sutherland

Section VII  Advanced Rendering for VR

	24	 Omnidirectional Stereoscopic Projections for VR	 423

John E. Stone

	25	 Volume Lenses for VR	 437

Jason W. Woodworth and Christoph W. Borst

viii Contents

Section VIII  Perception for Immersion

	26	 Check Your Work: Evaluating VE Effectiveness Using Presence	 453

Richard Skarbez and Mary C. Whitton

	27	 Misperception of Self-motion and Its Compensation in Virtual
Reality	 465

Frank Steinicke

	28	 Exploring Large Environments with Redirected Walking	 485

Mahdi Azmandian, Rhys Yahata, and Evan Suma Rosenberg

Section IX  DIY VR Hardware

	29	 Building and Interfacing Input and Output Devices	 515

Kyle Johnsen

	30	 A Tinkerer’s Perspective on VR Displays	 529

J. Adam Jones

	31	 Environmental Feedback for VR Systems	 551

Chauncey E. Frend

Section X  Building the Infrastructure of VR

	32	 Virtual Reality System Concepts Illustrated Using OSVR	 571

Russell M. Taylor II

	33	 Perspective Projection for VR	 617

Robert Kooima

	34	 Fast and Easy Collision Detection for Rigid and Deformable
Objects	 629

Rene Weller and Gabriel Zachmann

Index� 661

ix

Preface

Wow! As my co-author Alan Craig and I state in our book Understanding Virtual Reality,
second edition, virtual reality (VR), a technology-driven medium that has been making
steady progress for literally half a century, has, all of a sudden, become an overnight success.

Surely however, over the entire course of those 50 years, a lot of good work has been
done and shared throughout the (then) relatively small VR community. I (and I’m sure
others) have felt for some time that we need a Gems-style book to help not just that com-
munity but also help all the new enthusiasts joining in. Because of other book projects
hanging over me, it took some time before I felt comfortable pulling the trigger on a
“Gems” book—though as it happens, the rapid growth of the VR community sufficiently
compelled me to disregard sanity and initiate this book even before that other project was
complete. And so, with the help of Rick Adams at Taylor and Francis, I embarked on this
effort to collect useful contributions in bite-sized morsels of wisdom to share with that
growing community.

As with other “Gems” series, the goal with this volume is to provide concepts and code
that can help old and new practitioners to do something new or bring a new approach
to current and future projects. VR Developer Gems probably has a more even balance
between concepts and code than many of the other series of this type. For readers look-
ing primarily for code, there is plenty of that, but we hope that all readers will find the
value in knowing more about the audience of VR experiences, both from the approach of
human perception along with their expectations of the medium and how those expecta-
tions change as the medium and the audience matures.

Chapter Roundup

The most important consideration for a gems collection book is who the contributors
should be and what topics they can address. My goal was to find authors who were experts
in many different areas as well as from different eras of VR development. Furthermore,
I had hoped to get contributions from all seven continents (including work done in
Antarctica). Not all my recruiting efforts were successful, often the timing of competing

x Preface

deadlines was a factor—and while I didn’t quite get all the continents this time, there is a
pretty good mix of authors and topics.

I also worked to have a broad composition of software tool representations, but the
book has somewhat of a Unity bias. This was not intentional but more of a consequence
that there is an imbalance in Unity usage within the VR research community, which is
thus reflected here.

On the people side, a good portion of the contributors have been working in the field of
VR for half of the medium’s 50 years of evolution. Many other contributors have perhaps
been working for only a decade or so, and a few are up and coming toolsmiths, applica-
tions developers, and theorists.

For this volume, contributions were solicited from existing VR-related email lists (includ-
ing my own personal list of VR colleagues), plus I reached out to individuals recommended
to me by those who learned of the project through one channel or another. And finally, I
invited contributions based on interesting VR projects that I encountered while doing my
own VR research—did I mention I happened to be writing another book at the time.

Once all the contributions were confirmed, I divided and ordered them into ten catego-
ries to help our readers quickly find chapters of immediate interest. Obviously for a “gems”
book, readers are not expected to engage with each chapter in the order presented, but
given a list of topics, they (you) might be able to quickly find related topics that might be
immediately beneficial and then by considering the other chapter section groupings will
find themselves (yourself) intrigued by what else might be hidden in the mix.

Time Value of Knowledge

Progress in the medium of VR continues to accelerate, which means, we now enjoy improve-
ments to hardware, software development tools, and most importantly, highly polished
experiences faster than can be absorbed. While this keeps us all on our toes, it also has the
unfortunate consequence of dating and moving onto other fashions of what’s presently
hot in the VR developer community. This consequence can affect different topics/chapters
of this book at different rates. Of course overall the principles of good development don’t
change and neither do basic graphical transformations, but sometimes the programming
interface used evolves in such a way that our code no longer matches the new interface.

In some chapters, the choice was made to provide algorithms in pseudo-code that the
reader can then transpose into their own preferred development environment. In other cases,
code examples are for a specific development environment. In these cases, however, the code
has been commented to a point where a developer using another system (or an evolved ver-
sion of the same system) can still apply the principles presented to their own work.

I’ll mention some of the editorial oversight later, but code comments was one place
where I tried to ensure consistency among the chapters. Indeed, one of my longstanding
personal programming principles has been the insistence of highly (and well) commented
code. (As an undergraduate student, I was taught in one of my first classes on artificial
intelligence that the primary reader of any code you write will be a human.) And I found
that often the particular human reading those comments would be me. Undoubtedly,
more often than not, comments I wrote years before would help me know what I was
thinking at the time I was developing whatever code I was now reevaluating. So I know
firsthand the value of good commenting habits.

xiPreface

Quirks of Editorship

In the prefaces of my other book-scale publishing efforts, I (and my co-author) speak of
our “quirks of authorship.” Well in this effort I have a different role. Certainly not all the
authors are going to write in the same style, and I had no intent to coax style uniformity.
However, I did attempt to have this book present a fairly consistent usage of terminol-
ogy, while not wanting to be overly heavy-handed in forcing my particular quirks on the
authors (perhaps with one exception).

And that exception is my one “forbidden” term: immersive virtual reality. (A phrase
you will not see again here and should exclude from your thoughts!) Why do I eschew
that term? Well, I contend that the use of that term implies that there would also be non-
immersive VR—but “physical immersion” is a key element of VR, perhaps the primary
element. Thus, there cannot be, and therefore, I don’t want to imply the existence of, a
non-immersive form of VR. So to avoid that implication, I avoid-like-the-plaque the use
of that term.

There are other terminology expressions which I encourage, though don’t 100% man-
date, such as preferring the use of the word “travel” when talking about moving around a
space and saving “navigation” for when movement is combined with wayfinding.

Another terminology issue I have is with the term “position,” which I find to be ambig-
uous in that it can mean anything from a 1-D point on a number line to a point in 3-D
coordinate space, to the rotational setting of a knob, to telling someone not to move any
of their body parts—“hold that position.” Therefore, my tendency is to use “location” for a
point in N-space (1-D, 2-D, 3-D) and “orientation” for a sequence of rotations about given
axes. When using “position,” I prefer to then qualify what usage is being indicated, such
as 6-degree-of-freedom (DOF) position (which means both location and orientation and
is the type of value returned by a “6-DOF position tracker”). (And I contend that most
people also subconsciously believe that to be the case even if in their writings they treat
“position” to only mean “location.” In fact, I believe I can demonstrate that they subcon-
sciously believe that but only in person and only when they don’t know that I’m demon-
strating that.) But alas, my influence is limited and most game engines use “position” to
specifically refer to “location in 3D coordinates.”

One last terminology consideration is, as with my other books, I prefer the use of sin-
gular them/their as genderless pronouns, and I point to Shakespeare and Austin as trend-
setters in that regard.

In Unity C# the “this” operator refers to the object to which a script has been attached.
However in most Unity C# code you will not notice many uses of “this” because for many
of the common uses of “this” such as referring to the object’s “transform” value Unity
assumes the intent is “this.transform”. As this book is designed as a pedagogical resource,
I prefer to avoid the “implicit this” and make it explicit. Thus you may notice a greater
preponderance of “this” operators in the Unity code herein.

One final quirk (not counting extensive comments mentioned in the previous section), or
perhaps this is more of a pet-peeve of mine, is the use of numeric citations. Many academic
papers use numeric superscripts to call out reference citations, but as I read those papers, I
find it annoying to have hold my place and interrupt my reading to search at the back of the
paper/chapter/book to see who is being cited. Thus, for the chapters herein, I have imposed
my preference for citations that indicate author(s) and year directly within the prose.

xii Preface

Acknowledgments

All published books are a team effort, and a book with contributed chapters even more
so. My first thanks go to Rick Adams and his team at Taylor & Francis, including
Jessica Vega and Jennifer Stair as well as Kritheka and the rest of the production team at
codeMantra. Rick and I had been discussing the possibility of my doing a programming-
oriented book on VR for a few years before we decided 1) I was too busy to write an entire
new book by myself and 2) the VR programming paradigm had shifted considerably from
VR-specific libraries that interface with OpenGL—though I still do work in that sphere
from time to time, as required. So in 2015, Rick and I agreed that a gems-style book was a
good solution to those two considerations. And thus, our journey began.

Next I would like to thank my long-time colleagues John Stone and Dan Coming, with
whom I’ve worked and continue to work on various VR-related projects. John and Dan
both provided encouragement for pursuing the gems-style book and provided advice in
chapter recruitment and selection.

Obviously all the contributing authors provide the most important value that this
book provides, and I thank them profusely for agreeing to contribute and then following
through not just with a first draft but with my multiple requests for changes and clarifica-
tions that, for some, may have bordered on the obsessive. I also owe my thanks to all the
contributors for their patience as this book took 18 months or so longer than I anticipated
for it to make it to the shelf. I take full responsibility for that, from my crazy conceit that I
could juggle this at the same time as working on another big book project as well as teach-
ing and all my other responsibilities.

I also would like to thank the VR community at large. It doesn’t seem that long ago that
I was a newbie myself participating in a community of experts who were always willing to
share their knowledge with anyone joining the community and in particular with a couple
of youngish researchers from a fairly nascent VR facility at a supercomputing center in the
Midwest who audaciously thought they were ready to write a book on VR (back in 1994).
Of particular note are the IEEE VR and SIGGRAPH communities where ideas and dem-
onstrations of VR were great places to connect and learn.

Speaking of supercomputing centers, I was blessed with the opportunity to start my
career at a premiere (in conversation I might argue the premiere—at least at the time)
supercomputer center—the National Center for Supercomputing Applications (NCSA)
where I was able to expand my knowledge of computer graphics and then VR as part of
The Visualization Group. From there my thanks go to the people at the Desert Research
Institute who entrusted me with a brand new Vis and VR team. And finally to another
great visualization team at another amazing supercomputing organization—the Advanced
Visualization Lab at Indiana University. I’ve been privileged to not just have time and
access to the best equipment but also great people with whom to collaborate. And of
course, one of those people is Alan Craig with whom I’ve been co-authoring articles and
then books on VR and during that time travelling the world visiting VR facilities near
and far to gather as much information as possible from all the wonderful researchers and
practitioners at those labs—and then debate each other on the best way to communicate
what we learned.

Of course, I also owe a debt of gratitude to my wife Sheryl and the rest of our family that
allow me to spend evenings and weekends working on this and other VR projects!

xiiiPreface

A Look to the Future

As noted at the outset of the preface, I had hoped to include many more authors and many
more topics in this volume. In particular, I’d like to see more inclusion of the Unreal
Engine for VR development, along with more Unity implementations. Ideally, if there is a
favorable outcome for this book, there will be a favorable outlook for additional volumes
in this series.

Possible future volumes would not necessarily have the same chapter section group-
ings, but neither will sections from this volume be excluded. And perhaps we’ll get that
contribution from Antarctica among other new domains.

http://www.taylorandfrancis.com

xv

Editor

William R. Sherman is a member of the Indiana University Advanced Visualization Lab,
where he leads efforts in scientific visualization and VR. He also teaches undergraduate
and graduate courses on VR and visualization, which he has done for two decades, includ-
ing at the University of Nevada, Reno (UNR) and before that, at the University of Illinois
at Urbana–Champaign (UIUC).

Previously he founded the Center for Advanced Visualization, Computation, and
Modeling (CAVCaM) at the Desert Research Institute (DRI), where he led the VR and
visualization efforts, including overseeing the installation of a FLEX CAVE-style VR sys-
tem as well as a six-sided CAVE system. Prior to DRI, he led the VR effort at the NCSA at
UIUC, working with the Electronic Visualization Lab to install and operate the second
CAVE VR system—at NCSA in 1994.

He has authored several book chapters and papers on the topics of scientific visualiza-
tion and VR and has organized and led “bootcamps” on immersive visualization in col-
laboration with the Idaho National Laboratory and Kitware, Inc. Sherman is the architect
of the FreeVR VR integration library. He has attended every single IEEE Virtual Reality
Conference since 1995 and was chair of the 2008 Conference in Reno Nevada. Even prior
to consumer availability of VR, Sherman had the opportunity to visit and participate in a
plethora of VR experiences at more than 100 VR research and development labs throughout
the world. And he is the co-author of the books: Understanding Virtual Reality, Developing
Virtual Reality Applications, and Understanding Virtual Reality, second edition.

http://www.taylorandfrancis.com

xvii

List of Contributors

Mahdi Azmandian
University of Southern California
Los Angeles, California

Felipe Bacim
Apple, Inc.
Cupertino, California

Amy C. Banić
University of Wyoming
Laramie, Wyoming

Christoph W. Borst
University of Louisiana at Lafayette
Lafayette, Louisiana

Doug A. Bowman
Center for Human-Computer Interaction,

Virginia Tech
Blacksburg, Virginia

Nicholas Brunhart-Lupo
National Renewable Energy Laboratory
Golden, Colorado

Andrew Cordar
University of Florida
Gainesville, Florida

Maxime Cordeil
Faculty of Information Technology
Monash University
Melbourne, Victoria, Australia

Andrew Cunningham
School of Information Technology and

Mathematical Sciences
 University of South Australia
Adelaide, South Australia, Australia

Margaret Dolinsky
Indiana University
Bloomington, Indiana

Jason Drummond
University College London
Bloomsbury, London

Chauncey E. Frend
Indiana University (IUPUI)
Indianapolis, Indiana

Luis Diego González-Zúñiga
Samsung Research
Staines, UK

xviii List of Contributors

Kenny Gruchalla
National Renewable Energy Laboratory
Golden, Colorado
and
University of Colorado at Boulder
Boulder, Colorado

Andrew Guagliardo
University of Hawaiʻi at Mānoa
Honolulu, Hawaii

Yao Heng
University of Florida
Gainesville, Florida

Elliot Hunt
University of Wyoming
Laramie, Wyoming

Bret Jackson
Macalester College
Saint Paul, Minnesota

Kyle Johnsen
University of Georgia
Athens, Georgia

J. Adam Jones
University of Mississippi
Oxford, Mississippi

Daniel F. Keefe
University of Minnesota
Minneapolis, Minnesota

Rajiv Khadka
University of Wyoming
Laramie, Wyoming

Robert Kooima
Chicago, Illinois

Regis Kopper
Duke University
Durham, North Carolina

Marc Erich Latoschik
University of Würzburg
Würzburg, Germany

Jason Leigh
University of Hawaiʻi at Mānoa
Honolulu, Hawaii

Benjamin Lok
University of Florida
Gainesville, Florida

Peter O’Shaughnessy
John Lewis Partnership
Bracknell, UK

Shawn Patton
Principal Game Designer at Schell Games
Pittsburgh, Pennsylvania

Kevin Ponto
University of Wisconsin
Madison, Wisconsin

Bernie Roehl
Virtual Escapes Inc.
Waterloo, Ontario, Canada

Evan Suma Rosenberg
University of Minnesota
Minneapolis, Minnesota

Daniel Roth
University of Würzburg
Würzburg, Germany

Rebecca Rouse
Rensselaer Polytechnic Institute
Troy, New York

William R. Sherman
Indiana University
Bloomington, Indiana

Richard Skarbez
La Trobe University
Melbourne, Victoria

xixList of Contributors

Booker Smith
Purdue University
West Lafayette, Indiana

Jan-Philipp Stauffert
University of Würzburg
Würzburg, Germany

Anthony Steed
University College London
Bloomsbury, London

Frank Steinicke
University of Hamburg
Hamburg, Germany

John E. Stone
University of Illinois at

Urbana-Champaign
Urbana, Illinois

Ainsley Sutherland
MIT Comparative Media Studies
Cambridge, Massachusetts

Fatemeh Tavassoli
University of Florida
Gainesville, Florida

Russell M. Taylor II
ReliaSolve LLC
Pittsboro, North Carolina

Deniz Tortum
MIT Comparative Media Studies
Cambridge, Massachusetts

Ross Tredinnick
University of Wisconsin
Madison, Wisconsin

Kees Van Kooten
NVIDIA
Santa Clara, California

Mingqian Wang
University College London
Bloomsbury, London

Lee Wasilenko
VR Dev School Inc.
and
Orange Bridge Studios Inc.
Nelson, British Columbia

Rene Weller
University of Bremen
Bremen, Germany

David Whittinghill
Purdue University
West Lafayette, Indiana

Mary C. Whitton
University of North Carolina at Chapel

Hill
Chapel Hill, North Carolina

Jeffrey Wood
University of Florida
Gainesville, Florida

Jason W. Woodworth
University of Louisiana at Lafayette
Lafayette, Louisiana

Rhys Yahata
University of Southern California
Los Angeles, California

Ming-Der Yang
National Chung Hsing University
Taichung, Taiwan

Gabriel Zachmann
University of Bremen
Bremen, Germany

http://www.taylorandfrancis.com

Section I
The Medium of VR

http://www.taylorandfrancis.com

3

1
VR as a Medium
William R. Sherman
Indiana University

1.1 � What Makes VR Interesting?

As with any distinct medium, virtual reality has characteristics that make it unique and
of interest to creators and audiences alike. The primary unique characteristic of VR is
physical immersion—the interactive response of how the world is continually rendered to
be in perspective for the participants. For perspective vision and sound, the full 6-DOF
position (location and orientation) of the head is “tracked,” and in most cases one or both
hands are also tracked to provide an intuitive 3D interface. Because the VR system follows
the body of the participants, interactions with the virtual world occur at the proportion
of the user. Thus, these three characteristics—physical immersion, intuitive 3D interface,
and human scaled interactions—make VR a singular medium that enables participants to
have more control over and often be more connected with a virtual world beyond what is
achieved in other media.

1.2 � What Makes VR VR?

The definition that I’ve adhered to for virtual reality for many years is: “A medium com-
posed of interactive computer simulations that sense the participant’s position and actions,
vand replace or augment the feedback to one or more senses, giving the feeling of being
mentally immersed or being “present” in the simulation” [Sherman and Craig, 2018].

1.1	 What Makes VR
Interesting?

1.2	 What Makes VR VR?

1.3	 To What End?
1.4	 Design Choices
1.5	 In Closing

4 1.  VR as a Medium

Which is a long sentence, but has four bite-sized phrases:
First, as alluded to above, virtual reality is a medium, which means it is a means of

conveying ideas from person to person, or people to people: from creators to recipients.
The ideas conveyed are expressed as an imaginary, or “virtual,” world. Moreover, the ideas
experienced may or may not be exactly the message that is received by the recipient; for
there are many factors arising from the circumstances of a participant that influence their
take on the experience. Furthermore, the medium itself is a filter on concepts as they are
conveyed, and thus has a higher, over-arching influence on consumers of the medium—
“the medium is the message” as McLuhan has proclaimed [McLuhan, 1964].

The second phrase of our definition is that computer simulations sense the position
and actions of the participant—participants are “tracked.” Their heads are tracked, as well
as one or two hands, perhaps more. We might technically describe this data as 6-degree-
of-freedom (6-DOF) position tracking inputs. There can also be other inputs such as but-
ton presses, joystick movements, trigger pulls, and 3-DOF tracking (just orientation).

A VR system needs the position tracking data for the third component of the definition—
replacing or augmenting feedback to the human participant. For the human senses to
accept the stimuli as being a replacement or augmentation of the real world, that stimuli
must respond naturally. And for the stimuli to respond naturally, it should be presented
in a way that changes as the participant moves—rendered to their *perspective*. It is this
perspective rendering that makes VR different from standard computer graphics on a dis-
play monitor.

Finally, the fourth aspect of our definition is that this is all done with the goal of putting
the participant inside the simulation (aka inside the virtual world). In other words, the
user should feel as though they are in the same space as the subject matter. We often refer
to this as being immersed, or feeling present in the simulation. The word “immerse” is
ambiguous, however, about whether one is physically or mentally engaged with the world,
which will be addressed shortly.

1.2.1 � Key Elements of a Virtual Reality Experience
From the definition of virtual reality, there are some key elements that are a natural con-
sequence of creating a VR experience:

•• The Participant(s) of the Experience;
•• The Creator(s) of the Experience;
•• The Virtual World;
•• Physical Immersion; and
•• Interactivity.

As already indicated, VR is a medium, and as such it is about conveying ideas and informa-
tion from people (the creators) to other people (the participants)—or perhaps sometimes
the participants are the creators. Thus the involved people on both sides of the experience
are essential to a VR experience—there wouldn’t be an experience without them.

The virtual world is also key in that for a medium to operate, there must be something
to convey from one side to the other. There must be some content. A virtual world is
the content of what is conveyed by virtual reality (as well as other media such as novels,
motion pictures, etc.). As with other media, the virtual world may be fiction or non-fiction.

51.2  What Makes VR VR?

The content may be everyday or fantastical. It may be to learn how to accomplish a task, or
become more familiar with the workings of a molecule.

We indicated at the outset that physical immersion is one of the things that makes
VR interesting—it is also a key ingredient that distinguishes VR from other media. Our
definition of VR also integrates the notion of immersion, but in that case focuses on a dif-
ferent aspect of immersion—mental immersion. Immersion can thus be partitioned into
two concepts: physical immersion and mental immersion.

Mental immersion is imagining oneself in another place or situation. Physical immer-
sion is having the ability to (bodily) interact in a place or situation. For virtual reality we
might say:

•• Mental Immersion: when the mind engages a world as though it were real.
•• Physical Immersion: when the body engages a world as though it were real.

Physical and mental immersion are thus not the same thing, though the two can certainly
go hand-in-hand. Importantly, while mental immersion is often important to a VR expe-
rience, we can also attain mental immersion from many other media. Therefore, mental
immersion is not a unique aspect of virtual reality.

One way in which the two forms of immersion are intertwined (and indeed this might
also be possible for other media) is through physiological responses—responses such as
increases in heart rate, perspiration, and perhaps rate of breathing. If one’s heart starts
beating rapidly from an experience through a medium, does that not also imply that their
body is engaged in the world? Okay, yes, it is the brain (the mind) that is controlling those
bodily functions, but then the brain is part of the body! So perhaps the demarcation of
what is and is not physical immersion is a little blurry.

In any event, the medium of VR does require that the virtual world be presented from a
physical perspective that matches their body movement, in particular their head.

1.2.2 � What’s in a Name?
We have a pretty solid definition of what it is, but this medium we now call virtual reality
has not always gone by that name. It wasn’t until 1989 when the expression virtual reality
was coined and popularized by the founder of VPL, one of the first companies to market
this technology: Jaron Lanier. Funded through contracts with NASA, Lanier’s company,
VPL, developed a head-mounted display and a glove-input device for NASA, which were
also made available for purchase by research labs around the world. These products, the
VPL Eye-phones and the VPL Data-glove, were perhaps the first time research teams could
explore virtual reality without having to also develop the technology itself.

Prior to the coining of virtual reality, the medium was often referred to as “Virtual
Environments” or “Immersive Environments.” Going back to the original VR system from
Ivan Sutherland’s lab (in Harvard and then moved to the University of Utah), the system
was simply known simply as the “Head Mounted Display.” The more interesting name
was assigned to one of the tracking technologies: “The Sword of Damocles.” The Sword of
Damocles referred specifically to the mechanical tracking system that was mounted to and
extended from the ceiling—hanging over the participant reminiscent of the fabled sword.

Before Sutherland’s system, there were flight simulators to train pilots on various
aspects of flight, but to that point (and not for another few years), these simulators did

6 1.  VR as a Medium

not use digital computers to simulate the virtual world, and thus they fall outside our
particular definition of virtual reality. However, modern flight (and ship and railroading)
simulators do fall within our definition, and in general can be considered a specific form
of virtual reality.

1.3 � To What End?

Knowing what VR is, and having a name to refer to it, while important, do not get to the
heart of why we should pursue this medium. We need to address the question: what can we
do with it? Or more importantly, why should we make use of this medium over another,
perhaps easier to wield, medium?

Observing the current VR landscape, one could be forgiven for mistaking it as being all
about games and gaming. And perhaps for some (or most) users it is! Certainly the gam-
ing market plays a major role in the medium, particularly by serving as a catalyst that has
made VR affordable. However, that’s not how the medium was first envisioned, and indeed
there are many other established “genres” of VR experiences.

Yet, being a catalyst for affordability isn’t necessarily the only contribution of enter-
tainment VR experiences—people who learn how to interact within such virtual worlds
become accustomed to the interface, and can jump right in when it comes to some other
(e.g. scientific, business, etc.) uses of VR.

So, if not just for fun, how else might VR be employed?

•• If we can put researchers, designers, etc. into a world where some object exists
(future automobile, future building, future wing design), then what can they learn
by visiting that world? If they learn that there is a mistake in that future car or
wing design, they can come back to present reality and make corrections.

•• If a new worker needs to become familiar with machines they are not accustomed
to operating, can we send them to a world where mistakes are not catastrophic
(or even mildly detrimental), and have them return to our reality now familiar
with those machines?

•• If a museum-goer has not personally suffered a brain injury, can we send them
to a world where they can get a small taste of the inner, unseen, impairment of a
person who does suffer ailments from injury or disease, and then return a little
wiser?

•• If a patient visits a world where something playful and snowy is occurring, can
we keep their mind away from the reality of painful treatments as they undergo
them?

•• If another patient wants to inure themself (under the guidance of a therapist) of
some psychological handicap or traumatic memory, can we help them do so in a
safe place, and at a measured pace.

•• If someone has to learn how to make quick decisions in particular scenarios that
may arise as they execute a mission, can we put them in representative situations
where decisions are made, and where that experience can be relived and reevalu-
ated afterward? (Of course, in this case, the first widespread use of what we can
consider VR—flight simulation—has done this for decades. Now though this has
been extended to friend/foe room evacuation missions and even sports.)

71.3  To What End?

•• If a biologist wants to shrink themself and fly around molecular structures to gain
insights on how water moves through a membrane pore, or how chlorophyll con-
verts sunlight into energy, we can make it so. And they can share that world with
collaborators and students (Figure 1.1).

•• If a student wants to explore ancient Rome (Figure 1.2), or Harlem in the Roaring
20 s, by “walking” the streets themself, or perhaps led by a guide with information
about the sights and sounds of the era, they can do so without leaving their home,
or dorm.

•• If a documentarian wants to capture events in a visually and sonically all-
encompassing way, such that it can be presented back in as realistic a form as
possible, then they can provide the means for others to have a partial first-person
experience of that event.

Figure 1.1

The VMD molecular visualization tool has both desktop and VR interfaces. Here VMD is run
in a CAVE-like system, allowing the primary user to walk around, while allowing other viewers
to come along for the ride. (Image courtesy of Chauncey Frend.)

Figure 1.2

In this Rome Reborn application for educating participants about the statue of Maxentius,
icons indicate where audio recordings with information about the Basilica and statue can
be activated. (Image courtesy of Frischer Consulting, Inc.)

8 1.  VR as a Medium

•• If a geologist wants to prepare the team for a research trip to the field—perhaps
many thousands of miles away—and would like them to have at least some nomi-
nal familiarity with the region, perhaps they can go on a virtual reconnaissance
trip first. Or maybe any tourist who plans to visit modern Rome in the near future!

•• If a designer wants to work free-form in three dimensions, they might engage with
a 3D painting tool, or a tool with 3D shapes that can be placed and manipulated,
perhaps adding visual or vocal annotations for later visits to the world either by
themself or collaborators or clients.

•• And yes, if someone does want a challenge where they find themself in a world
with fantastical weapons accompanied by companions to battle a hoard of foes…
well they can do that too.

Obviously there are enormous possibilities of how one can make use of the medium of
VR. And in each of the instances listed above there are many different scenarios expand-
ing the potential exponentially. Indeed, many of these propositions have already been
explored—some for decades [Craig et al., 2009].

1.3.1 � Early Experimentation
In his paper and talk on “The Ultimate Display,” computer graphics pioneer Ivan Sutherland
succinctly expressed many of these notions even before he and his colleagues developed
the first VR system with a computer-generated virtual world [Sutherland, 1965]. Thus once
Sutherland’s team did develop the first HMD driven by computer simulation [Sutherland,
1968], those first VR virtual worlds were far too simple to accomplish any of the concepts
listed above. Indeed, other than the real-time perspective rendering, these worlds were not
very interesting at all.

Yet these worlds, or at least the conceptualization of The Ultimate Display with these
working demonstrations were enough to spark the imagination in others who recognized
that eventually the technology would be sufficient to create such worlds, and they set
out to move the technology forward, and along the way explore the effectiveness of this
nascent medium. Among those that recognized the medium’s potential were Fred Brooks
and Scott Fisher.

Fred Brooks, as chair of the new Department of Computer Science at the University of
North Carolina at Chapel Hill (UNC-CH), was enthralled by the possibilities of what was
to later be named virtual reality. One of the first projects for exploring the utility of the
medium for scientific advancement was the GROPE project [Brooks et al., 1990]. GROPE
was both a tool for researching molecular dynamics, and also a system by which the per-
formance of the researchers could be measured. In their paper, Brooks and colleagues
report four key conclusions about the utility of such an interface:

•• Adding haptics to a visual display improves “perception and understanding both of
force fields and of world models populated with impenetrable objects.”

•• Adding a haptics feedback interface to the tool seems to improve performance by
about two-fold (yet they seemed to be expecting a better improvement).

•• Researchers (chemists) were able to use the system to quickly arrive at what (unbe-
knownst to them) were good, even optimal, docking positions of a drug into an
active site of a protein molecule.

91.3  To What End?

•• Researchers (chemists) found that they had a much higher understanding of “the
details of the receptor site and its force fields, and of why a particular drug docks
well or poorly.”

They also made the (accurate) prediction that “entertainment, not scientific visualization,
will drive and pace the technology” [Brooks et al., 1990].

Beyond academia, one organization with a need for good tools for science and engi-
neering research and development was the U.S. space agency, NASA. Beginning in the
mid-1980s (again before VR was the term), Scott Fisher formed the VIrtual Environment
Workstation (VIEW) lab to do as the title implied—explore the technology and content
creation of virtual environments, with a focal point on what would come to be called
virtual reality [Fisher et al., 1988] (Figure 1.3). At the time they had to build or contract
companies to prototype and build the interface hardware required for VR. Specifically,
they built their own head-based viewing displays in-house, and contracted to VPL for
“datagloves” (a glove input device that provides hand and finger pose tracking).

After some time exploring the display and rendering technology, the team also began
looking at applications relevant to NASA’s mission. One application in particular that
came about from this work was the Virtual Windtunnel (VWT) [Bryson and Levit, 1992].
The VWT project was shared between a handful of organizations, mostly within NASA,
but also some academic institutions, including Brown University, where they began work
on how to best design the user interface.

Figure 1.3

In the NASA VIEW program commercial HMDs were not yet available, so NASA often built
their own units (here the second version), and also commissioned contractors to construct
units. (Image courtesy of NASA / S.S. Fisher, W. Sisler, 1986.)

10 1.  VR as a Medium

1.3.2 � Early Commercial Success
Before becoming viable, virtual reality had to be explored, and we’ve seen a couple of those
explorations. Eventually, the technology reached a point where researchers, technologists, and
business-minded people would explore how this technology could be financially profitable.

Flight simulation was the early commercial success, and already had a large pool of
consumers able to pay the costs of what was then pretty expensive equipment. Of course,
this enterprise was well before the concept was looked upon as virtual reality, and to a
large degree used technologies different from the typical head-tracking that was becom-
ing common in the growing field. At the time it was labeled “out-the-window simulation,”
which today we might consider a particular genre of VR. And so this success is different
than some of the other attempts at income-earning VR.

In the mid 1990s, research studies demonstrated the profitable (in a patient-healing
sense of profit) use of VR for exposure treatment for psychological afflictions, beginning
with the treatment of phobias. Specifically, collaborators at Emory University and Georgia
Tech teamed up [Rothbaum et al., 1996], and after the research success created the com-
pany Virtually Better Inc. to package hardware and software for purchase by clinicians
for the treatment of various phobias directly in the doctor’s office—whereas the typical
phobia exposure therapy would often involve traveling to various sites where the fear can
be experienced in the real world—a small step at a time.

Later, in addition to phobia exposure, Virtually Better also explored the treatment of
Post Traumatic Stress Disorder (PTSD) with clinicians guiding treatments through an
interface control board. This has also been further researched by collaborators with mili-
tary units, which during times of conflict often have an abundance of patients (Figure 1.4).

For people in every-day experiences there have also been opportunities to experience
VR at various public-venue installations. The first notable foray into public-VR came from
the company W-Industries. They created the Virtuality arcade-VR system—a system using
personal-computer capacity systems for computation and graphics, and an internally

Figure 1.4

In the Bravemind program realistic events from a war zone are recreated to help guide
soldiers suffering from PTSD to recovery (through the aid of a clinician). (Image courtesy of
Skip Rizzo, USC-ICT.)

111.3  To What End?

designed HMD along with position-tracked controllers and the sitting or standing kiosks
for the players (Figure 1.5).

The initial push was to place groupings of two or four units in standard video arcades
of the era (early 1990s), where multiple people could compete in a shared virtual world,
starting with the “classic” Dactyl Nightmare. The problem is that unlike most of the game
machines in an arcade (which don’t require an employee’s constant attention), VR experi-
ences require considerable explanation, and then also supervision while the game is tak-
ing place—otherwise either the participant might damage something, or not know what
to do and have a terrible experience. This extra personnel expense, combined with the
more expensive gaming units, as well as larger floor space requirements made these sys-
tems an unsustainable investment for most arcades—though at the beginning, the novelty
may have brought some new customers, it just wasn’t enough to cover the expenses.

Another business model attempted with the Virtuality systems was to have an extended
experience that would require return visits. The Legend Quest experience was thus devel-
oped to provide a VR role-playing style game, years before it would be popular as a desktop
gaming genre. In Legend Quest, players explore a Dungeons & Dragons style world and
battle skeletons and giant spiders and wolves, etc, as well as finding treasure and equip-
ment that they can use to further their quest. By promoting the experience as something
people would return to with a consistent group of friends to continue their quests, they
looked to create an on-going audience.

And while certainly this was breakthrough technology at the consumer-access level,
and there was considerable interest for a time, it simply was before its time. Virtuality was
first released in 1990, and by 1997 the company was filing for bankruptcy.

Another foray into VR for public consumption was entered by the Walt Disney com-
panies. At first, there was a single VR experience that was made available as a “limited
release” at the Epcot Center in Orlando Florida. Indeed, this release was also a means for

Figure 1.5

In the Legend Quest experience (a Dungeons & Dragons styled quest game for multiple
players using the Virtuality arcade-VR system), participants face creatures as they go out
on quests to find treasures in the virtual world. (Images courtesy of Virtuality Group PLC.)

12 1.  VR as a Medium

the Disney VR creative team to test what worked best with the general population as far as
VR was concerned. For example, the VR pods that were deployed had ergonomics similar
to a motorcycle, and indeed could be tilted from side to side. However it was found that
this “feature” was a detriment to the experience for too many people, so it was disabled,
and the seats were set to be immobile, which is how they were ultimately deployed in the
“wider” release [Pausch et al., 1996].

One modern business model for location-based VR entertainment (i.e. public venue) is
to have multiplayer mission-based experiences, often using widely recognized intellectual
property such as from the Ghostbusters and Star Wars film series. The VOID group has
developed this model, deploying experience venues in several cities world-wide. To make
these venues attract audiences, they go beyond what can be experienced in the home, pro-
viding on-body tactile effects for multiple players along with technologies such as 30′ × 30′
physical tracked walking space, passive haptics, and 4D effects (e.g. misters, wind, heat,
smell). But there are also those pursuing a business model of VR arcades, where people
can pay an hourly rate to use consumer VR systems, but with the added benefit of a large
library of software they would otherwise have to purchase. Plus a VR arcade will have
helpers who know how to operate the system and be able to help them get started with
the experiences—and perhaps recommend experiences. Also, the reduced hardware costs,
and indeed software that is more cost effective—either because it has become easier to
develop, or because it is being sold at mass-market costs. On top of all that, the public
audience is now much more amenable to virtual reality, and generally more comfortable
with higher-technology interfaces.

1.3.3 � Reaping the Rewards of VR
So there is certainly fun to be had from VR, and there are plenty of entertainment oppor-
tunities available. Indeed, in the modern era of VR (post January 2016), VR for entertain-
ment dwarfs the other uses of VR, whereas in the past, VR was almost exclusively used for
scientific, business, and military purposes. Now all non-gaming uses of VR have essen-
tially become the “noise” in the VR economy. Even so, the use of VR in the non-gaming
areas has also increased, but it is just more difficult to notice. So there are still many uses
of VR that can be profitable.

The profits obtained by VR are not necessarily financial rewards. So in what ways can
VR profit us?

•• Intellectually (Scientifically): VR can help reveal interrelationships within data-
sets that might otherwise be hard to find.

•• Educationally: VR can bring students to places (including abstract places) that
let them explore worlds and tinker with the relationships between concepts and
become better informed through personal experience.

•• Experientially: VR can provide the means to practice a skill in a circumstance
more closely resembling the actual activity—except perhaps more safely, and with
better statistical analysis of their performance over time. In some cases, they might
prepare for a particular operation (be it medical or combat or whatever). Another
experiential benefit comes from the narrative offshoot style of VR (“cinematic-
VR”), which provides a means of fictional and journalistic narratives that put the
viewer in the scene, even if their only interaction is in how they turn their head.

131.4  Design Choices

•• Healthily: In addition to better training and preparation by medical personnel,
and better medical devices and pharmaceuticals through scientific explorations,
we have already found how VR can serve to improve the mental health of patients
with particular maladies.

•• Creatively: VR can assist in creative pursuits both on the design and design review
side of things, and in the fine arts, and sometimes even the performing arts.

•• and of course: Financially: When VR can help prevent a bad design, or lead more
quickly to a revelation about a medical issue, or avoid drilling where there is
no oil, that savings in time and materials is savings in money. Or perhaps some
future application may provide the tools for doing direct financial analysis and/or
business process assays.

To reiterate, gaming and entertainment now dominate the landscape of immer-
sive experiences, with the “serious” applications only being a fraction of the available
applications—perhaps even a seemingly insignificant amount. Yet the pool of “serious”
applications continues to grow, and there are also many new tools for the building of
custom applications—custom applications that can be easily shared with others now more
likely to have compatible hardware configurations.

1.4 � Design Choices

Not surprisingly, the design of VR experiences has shifted dramatically due to the rise of
consumer VR systems. Both on the hardware front, but also in world creation software
that has made it easier to jump in and start creating virtual worlds. In a short overview
chapter we can only touch upon the basics. For an in-depth look at design choices, I un-
humbly refer to my book-long exploration of VR [Sherman and Craig, 2018].

1.4.1 � Designing for the Hardware
In the past there was very little consistency between VR systems (perhaps other than a
small cadre of CAVE installations that shared software through a user community). In
many other cases, software was written in-house, and generally that’s where it stayed. For
software that was shared between sites with non-homogeneous hardware, the software
would thus need to be able to handle a wide variety of configurations, and certainly that
software did exist, but few of these tools were installed in more than a handful of facilities
[Bierbaum et al., 2001; Kreylos, 2008; Sherman et al., 2013].

In the past a major consideration for the development of a new VR experience was
what hardware it should be designed for: CAVE vs. HMD; one hand or two; track finger
movements, or use buttons and joysticks; and whether to track other parts of the body.
Of course in many instances these decisions were made at the time of establishing the
research lab which, once it chose a CAVE or an HMD, that is the hardware all their soft-
ware would target from that point forward.

With the advent of consumer VR systems, most include an HMD with two hand
controllers—or on the lower end of the scale (i.e. phone holders to convert a phone into an HMD
with a built-in computer). For a time, these may be independent consumer bases, and certainly
differences will remain—the computing power of a phone will likely always be less than a desk-
top, and the phone interface controllers will probably be simpler than a full HMD system (though

14 1.  VR as a Medium

in this case perhaps at some point both will simply track a user’s hand directly). But for now, they
are different, and most full HMD systems will have two full 6-DOF controllers (location and
orientation) whereas the phone systems may have one 3-DOF controller (orientation only).

1.4.2 � Designing with Modern Software
Creators are now developing to a much larger user base, and even when creating applica-
tions for use in-house, lower hardware costs allow for several teams and users within their
organization able to be equipped to make use of the tool. Certainly the big boon for devel-
opment has been the inclusion of VR interface features into popular game development
systems—aka “game engines”—such as Unity and Unreal (both of which are featured in
various chapters in this book).

In addition to providing a platform that can be easier to quickly begin creating a virtual
world, game engines can also now abstract the type of VR device to the point where devel-
opers are less concerned about specific hardware interface devices, and more concerned
with how body movements (gestures) can be melded with physical controls such as but-
tons and joysticks to provide an intuitive user interface.

Because game engines have become so widely used, and simplify application creation
for HMD VR systems, other developers have likewise created the means to link at least one
of the popular game engines (Unity) with CAVE-style VR displays. (For example, see the
gem in Chapter 4 [Tredinnick and Ponto, 2019]).

1.4.3 � Designing the Virtual World
The design of virtual worlds for virtual reality interfaces is of course a very important
component of the resultant experience. Indeed, it is sufficiently important that a few para-
graphs in an introductory chapter on developing VR is unsuitable for attempting to pro-
vide advice on what works and what should be avoided. However, we can convey some
broad choices that designers will need to address from the outset (and other chapters in
this book will provide further advice).

Probably the first choice a VR experience designer will consider is how to represent the
world. And the first question for that representation is whether the world should be veri-
similar or not. Verisimilar, which means appearing to be real, is often thought of as a good
thing, and in many cases, such as providing a simulation experience for training, realism
is especially important. But the look of reality is not necessarily important in other cases,
and that can go either direction: less real, or hyper-real/fantastical.

Representations that are less real can serve the tasks of visualization and data inquiry
well. In cases such as exploring a relationship graph there aren’t even any real-world cor-
ollaries to make verisimilar a possibility. The same is true in the case of molecular visu-
alizations, once you get smaller than the wavelength of visible light. But scientists have
constructed representations that have become familiar to the point that we accept them
as being true (even though to a degree there are certainly some aspects that are misrepre-
sentations of reality).

We could consider the other end of the spectrum then to be fantastical worlds where
things look somewhat realistic, but go beyond what we know to be possible in our
planet Earth existence. We might encounter these representations in worlds designed to
entertain us either as an interactive game, or as an experiential narrative (360-movie /
Cinematic-VR).

151.4  Design Choices

Thus broadly speaking we can see this as three steps in semblance to our reality:

•• utilitarian
•• verisimilar
•• fantastical

1.4.4 � Designing the Interface to the World
For the user interface to the world, we might again divide interface styles into realistic and
non-realistic. And again considering tools for exploring data or exploring designs (per-
haps the look of a new shoe), we might have a utilitarian interface that instead of having
to physically walk through the space, we can fly or spring through the world around us.
Indeed, verisimilar means of travel can become rather tedious when viewing a building
that has been designed for a client to inspect: does one have to walk up all the stairs and all
the way down the hall just to look at the corner office?

The two primary aspects of an experience that require user interaction involve their
movement through the world and their ability to manipulate objects within the world. For
example, does the user make a fist grabbing gesture to take hold of an object? Or perhaps
they can point at the object from a distance and pull a trigger that “grabs” the object while
it is well beyond their physical reach. In considering both travel and manipulation, we
might find where the two overlap. For example, one might use the grab action on a virtual
steering wheel object in the virtual world, which in turn affects movement through the
world. Alternately, the world itself may be thought of as an object which can be grabbed!

1.4.4.1 � Navigation: Travel + Wayfinding

Once again, for training simulations, the verisimilar course would generally be the best,
though within reason, if physical walking isn’t an impactful part of the training, then
perhaps a means of jumping or flying through the space can be acceptable, but then maybe
the hand-world interface should be more realistic.

Flying around unrealistically might be an appropriate travel interface both for utili-
tarian types of experiences (e.g. molecular visualization) and for fantastical experiences.
Perhaps the exact same interface operations will be good in either instance. Although
flying in the fantastical world might require flapping of the arms, or at least making a
Superman flying pose.

Again, travel and object manipulation might present overlapping design options.
Specifically, as alluded to above, one might consider the world to be an object when
designing the means to move through the world. From the user’s perspective: the question
is what is being moved? Me, or the world? And perhaps—though not sufficiently studied—
if you consider the world to be an object that you are moving as you are remain still, your
brain might then not consider the vestibular perception of non-motion to be a mismatch
with your visual perception (which would be beneficial in reducing sim-sickness).

Of course, the most realistic form of travel is the physical movement of the user’s own
body—physical locomotion. Though certainly most adults generally have enough experi-
ence in the control of vehicles (or perhaps even mounted animals) that enables these forms
to be treated as methods of travel that match their everyday experience.

Otherwise, a common form of travel in VR is simply to point in the desired direction
of movement and away you go. A newer solution, made popular by companies selling VR

16 1.  VR as a Medium

to consumers, has been the point-teleport (or what I call “tele-hop”) method of travel.
By avoiding continuous virtual movement it is thought to reduce the likelihood of sim-
sickness. This form of travel is operated ether by pointing at the floor to where you want
to hop, or pointing upward with a parabolic arc emanating from your hand/controller
and where it arcs back downward contacting a flat surface, that’s where you’ll jump when
you release the activation. (In some cases the direction you face when you land can be a
rotational offset controlled either by a wrist rotation or a valuator input.)

Another choice available to VR experience designers is to take the available physical move-
ment space and make it seem larger than the reality. These techniques work by fooling the user
either into thinking they are walking straight when in fact they are walking in a circular arc
(redirected walking [Razzaque et al., 2001]), or by altering the world behind their back causing
them to exit a space with the outside world rotated from how it was when they entered the
space (impossible spaces [Suma et al., 2011]). A small game that demonstrates the impossible
spaces is the “Unseen Diplomacy” experience (Figure 1.6), which has users moving down cor-
ridors and crawling through ducts, and as they do, the outer world is altered in order to always
keep the user within the physical walking space. The notion of redirected walking is discussed
in some detail in Chapters 27 and 28 of this book [Steinicke, 2019; Azmandian et al., 2019].

One other aspect of moving through a virtual world is the concept of wayfinding.
We can think of wayfinding as being the flip-side of travel, whereby the two operations
together (wayfinding + travel) comprise the complete operation of navigation. Navigation
then is moving through the world with a purposeful destination and consciously working
to arrive at the right place.

Features that can be designed into a virtual world to assist with wayfinding include
things such as large, distinguishable landmarks, signs that point the way toward particu-
lar points of interest, and maps, which might be static maps, or GPS-style maps that show
where you are located within the world.

Figure 1.6

In Unseen Diplomacy, the virtual world is generated such that users are always turned back
to remain within the trackable bounds of the real world.

171.5  In Closing

1.4.4.2 � Object Interaction

Another important consideration for the interaction design of a VR experience is how the
user(s) can interact with objects. We have already alluded to two forms of interaction—
making a fist when in contact with an object to initiate a grab operation is the first; the other
form is the telekinetic reach style where the user might shoot a ray from one of their hands,
and when that ray hits an object that is not just part of the background scenery, then it can be
grabbed with an activation trigger. The user might then be able to summon the object to their
proximity, or manipulate it remotely by twisting it or flying it across the room and placing it.

At the top level, we speak of four classifications for how manipulations can be actioned
by the user:

•• Direct user control: gestured actions performed by the user that mimic a real-
world interaction;

•• Physical control: using a physical device that the user touches to control an ele-
ment of the virtual world;

•• Virtual control: using virtual objects (those within the world itself) to control
another element of the virtual world; and

•• Agent control: giving commands (typically vocally) to an entity within the vir-
tual world to have it perform the manipulation.

The verisimilar approach is of course to use the direct user control approach as it is defined
as mimicking reality. Of course, as with the other design choices, strict fidelity to reality
is not always the best (or most appropriate) selection. Yet that does not mean direct user
control should always be avoided. Sometimes the physical control method is problematic
for the reason that it is too easy for the developer to map button presses or joystick move-
ments to actions in the world, which is convenient for them to program, but can often be
non-intuitive and thus hard to remember for the users. Virtual controls have the issue that
because they exist only in the virtual world, another control method is required to manip-
ulate the virtual controls! Perhaps there is a virtual lever within the virtual world, and the
participant operates that lever with direct user control—i.e. they reach for the knob at the
end of the lever, make a fist, and move the lever up (Figure 1.7). The agent control method
requires a means of communicating with the agent. Modern speech recognition solves
half of this problem, but the system must then parse the meaning from the word sequence.

And the other ingredient of manipulating the virtual world is how the world is pro-
grammed to respond to the actions. With modern game engines, a common method is to
apply simulated physics to the objects in the world that the user can interact with, and just
allow the realistic object interactions proceed unscripted. Again, this verisimilar method
might be good in some situations, but not the best solution in others. For example in our
molecular viewer, we might want to properly calculate bonding forces between the mole-
cules, but not have “realistic” gravity which causes the molecules to fall to the ground—we’d
rather have them remain floating in space for the user to choose their own preferred view.

1.5 � In Closing

So there it is, a quick introduction to virtual reality, and how as designers of immersive
experiences there are first and foremost, many avenues for which VR can be applied and

18 1.  VR as a Medium

be useful, and while we might all enjoy being entertained, we should continue to explore
that plethora of directions this medium can be taken. And when designing experiences in
these varying fields, design for the task at hand. You might even use the same software—
the same game engine—when working on your molecular viewer, but you can employ
different features of that software to provide an interface appropriate to the task.

The rest of this book provides a wide variety of tips, techniques, concepts, and simply
things to think about when creating immersive experiences, and so read through the ones
that seem to apply to your immediate goals, and then skim the rest.

Let’s get out there and create the best virtual reality experiences we can.

References

[Azmandian et al., 2019]

Azmandian, Mahdi, Rhys Yahata, and Evan Suma-Rosenberg (2019). Exploring large envi-
ronments with redirected walking. In Sherman, W. R., editor, VR Developer Gems,
Chapter 28. Boca Raton, FL: A K Peters/CRC Press.

[Bierbaum et al., 2001]

Bierbaum, Allen, Christopher Just, Patrick Hartling, Kevin Meinert, Albert Baker, and
Carolina Cruz-Neira (2001). VR juggler: A virtual platform for virtual reality appli-
cation development. In Proceedings of the IEEE Virtual Reality 2001 Conference,
Yokohama, Japan: IEEE, pages 89–96.

Figure 1.7

In Titanic VR, there are virtual controls that are operated using the physical hand controller
to “grab” the joystick to manipulate the controls of the submersible the participant is virtu-
ally riding. This experience also permits direct physical inputs using the circular touchpads
on the controllers as an alternate means of affecting the submersible operations.

19References

[Brooks et al., 1990]

Brooks, Jr., Fred. P., Ming Ouh-Young, James J. Batter, and P. Jerome Kilpatrick (1990).
Project grope GROPE—Haptic displays for scientific visualization. SIGGRAPH
Computer Graphics, Dallas, TX, 24(4):177–185.

[Bryson and Levit, 1992]

Bryson, Steve and Creon Levit (1992). The virtual wind tunnel. IEEE Computer Graphics
and Applications, 12(4):25–34.

[Craig et al. 2009]

Craig, Alan B., William R. Sherman, and Jeffrey D. Will (2009) Developing Virtual Reality
Applications. Burlington, MA: Morgan Kaufmann Publishers.

[Fisher et al., 1988]

Fisher, Scott, Elizabeth M. Wenzel, C. Coler, and Michael W. McGreevy (1988). Virtual
environment interface workstations. In Proceedings of the Human Factors Society 32nd
Annual Meeting, Santa Monica, CA, pages 91–95.

[Kreylos, 2008]

Kreylos, Oliver (2008). Environment-independent VR development. In International
Symposium on Visual Computing (ISVC), Las Vegas, NV: Springer, pages 901–912.

[McLuhan, 1964]

McLuhan, Marshall (1964). Understanding Media: The Extensions of Man. New York,
Toronto: McGraw-Hill.

[Pausch et al., 1996]

Pausch, Randy, Jon Snoddy, Robert Taylor, Scott Watson, and Eric Haseltine (1996).
Disney’s Aladdin: first steps toward storytelling in virtual reality. In SIGGRAPH ’96,
Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive
Techniques, New Orleans, LA: ACM, pages 193–203.

[Razzaque et al., 2001]

Razzaque, Sharif, Zac Kohn, and Mary Whitton (2001). Redirected Walking: Technical
Report TR01–007. Technical report, University of North Carolina at Chapel Hill,
Chapel Hill, NC.

20 1.  VR as a Medium

[Rothbaum et al., 1996]

Rothbaum, Barbara Olasov, Larry Hodges, Benjamin A. Watson, G. Drew Kessler, and Dan
Opdyke (1996). Virtual reality exposure therapy in the treatment of fear of flying:
A case report. Behaviour Research and Therapy, 34(5–6):477–481.

[Sherman et al., 2013]

Sherman, William. R., Daniel Coming, and Simon Su (2013). FreeVR: Honoring the past,
looking to the future. In Proceedings of the Engineering Reality of Virtual Reality
2013, San Francisco, CA: International Society for Optics and Photonics (SPIE),
volume 8649, pages 864–906.

[Sherman and Craig, 2018]

Sherman, William. R. and Alan B. Craig (2018). Understanding Virtual Reality: Interface,
Application, and Design, Second Edition. Cambridge, MA: Elsevier.

[Steinicke, 2019]

Steinicke, Frank (2019). Misperception of self-motion and its compensation in virtual real-
ity. In Sherman, W. R., editor, VR Developer Gems, Chapter 27. Boca Raton, FL: A K
Peters/CRC Press.

[Suma et al., 2011]

Suma, Evan A., Seth Clark, Samantha Finkelstein, Zachary Wartell, David Krum, and Mark
Bolas (2011). Leveraging change blindness for redirection in virtual environments. In
Proceedings of the IEEE Virtual Reality 2011 Conference, Singapore, pages 159–166.

[Sutherland, 1965]

Sutherland, Ivan. E. (1965). The ultimate display. In Proceedings of 3rd International
Federation for Information Processing (IFIP) Congress, New York, NY, pages 506–508.

[Sutherland, 1968]

Sutherland, Ivan. E. (1968). A head-mounted three dimentional display. In Proceedings of
4th International Federation for Information Processing (IFIP) Congress, Edinburgh,
UK, pages 757–764.

[Tredinnick and Ponto, 2019]

Tredinnick, Ross and Kevin Ponto (2019). UniCAVE: A distributed rendering system for
Unity3D. In Sherman, W. R., editor, VR Developer Gems, Chapter 4. Boca Raton, FL:
A K Peters/CRC Press.

21

2
VR and Media of Attraction
Design Lessons from History

Rebecca Rouse
Rensselaer Polytechnic Institute

2.1 � Introducing Media of Attraction

Designers working with emerging media today, such as virtual reality (VR), may have
much in common with other early practitioners working with new technologies from
years past. Design practice changes in significant ways as a medium undergoes the eco-
nomic, cultural, and technological processes of institutionalization. Pioneering VR
designers today, for example, likely have more in common in terms of challenges faced,
techniques used, and solutions implemented with the pioneering designers of old media,
than they will with mainstream designers who work with VR if it becomes as institution-
alized as Hollywood film or commercial videogames. This chapter presents a theoretical
and historical framework for understanding the work of practitioners at the forefront as
designers of media of attraction. This cross-historical perspective can not only give us new
insights about how to design work with emerging media, but also encourage us to rethink
some central debates in the field, including how we might value and understand our own
work today. What would Georges Méliès, or Alice Guy Blaché, or any other of these early
adventurers in the new media of years past, have created with VR? The media of attrac-
tion concept looks back to earlier innovators to gain inspiration and insight for our own
practice with technologies like VR, and future media yet to emerge.

What are media of attraction? This concept is inspired by film scholarship on what
is known as Cinema of Attraction. Beginning in the late 1970s and early 1980s a group

2.1	 Introducing Media of
Attraction

2.2	 Historical Examples

2.3	 Connecting to Design
Practice

22 2.  VR and Media of Attraction

of film scholars [Gunning 1986, 2003; Musser 1990, 1994; Abel 1993; Gaudreault 2011]
came to realize the way early film had been understood was misguided. Early cinema
had previously been looked at through the lens of contemporary film and characterized
as an ‘infant’ cinema, not quite worthy of scholarly investigation. Historicized from a
standpoint of medium centricity (a way of thinking that is a hallmark of Modernism) the
development narrative had been constructed to center on the most talented practitioners
uncovering or discovering the essential characteristics inherent to film. These discoveries
then allowed the film medium to develop to its natural and fullest potential, starting in
silence and black and white, then progressing to sound, and then color, large formats, 3D,
the digital, and beyond.

This way of thinking had some problems. The early cinema works were devalued as
primitive, and as a result they had not been studied closely. In addition, the surrounding
ancillary cultural and economic practices that were a part of early film had not been stud-
ied either. And the role of these cultural and economic forces in the development of film as
an institutionalized form (as we know it today) had not been closely examined, because the
myth of medium centric development served as a totalizing explanation. Unsurprisingly,
the neat periodization of film history related above has since been debunked [Abel and
Altman 2001; McMahan 2002]. It turns out the innovation and development processes for
film were much messier and more circular—a process certainly familiar to those working
with emerging technologies today.

In the late 1970s and early 1980s when this group of film scholars and historians dug
more deeply, they found that early work on film was so different from the later institu-
tionalized form, they needed a new word to describe it. They coined the term Cinema of
Attraction to describe films made around the world from the 1890s to about 1907–1908,
when the film institutionalizing process began to take off with more speed. This change
occurred thanks to developments like the formation of Thomas Edison’s Motion Picture
Patents Company (MPPC) in 1908. (Edison’s MPPC began to conglomerate independent
producers and impose standards in the burgeoning industry, as well as introduce costly
litigation for patent infringement, and generally narrow the field, making entry into the
industry more difficult for newcomers.) But why did the film scholars choose the term
attraction to describe these early works? Their thesis is that these early works exhibit a
remarkable range of qualities, making it difficult to gather them all under one term, but
they all share the quality of attraction. This means that for the spectator, these film experi-
ences all include an aspect of wonder or astonishment at the capability of the film tech-
nology itself. In addition, early films were often exhibited as attractions, at World’s Fairs
and Expositions, as a part of vaudeville shows, and in other explicitly performative venues
like the Musée Grévin in Paris, alongside magic shows and other illusions and spectacles.

Beyond the exhibition venues, there were many significant differences between Cinema
of Attraction films and the later institutionalized films we know today. To begin with,
the pioneering filmmakers had no word for their role. This was before the term ‘direc-
tor’ was developed, and as a result they were called all sorts of names including presenter
of views, operator, moving photographer, and kinematographer, and often unnamed and
uncredited (credits did not regularly appear in the earliest films, and there was no copy-
right process for scripts until 1912). There was no streamlined distribution network in the
beginning years, and so films were exhibited in other venues such as fairs and vaudeville
houses. In addition, the director did not do the editing; this was the job of the presenter.

232.1  Introducing Media of Attraction

The person responsible for exhibiting a collection of films at a venue would be the one
to decide in what order the short films would be shown, whether to make any cuts, and
whether to add sound such as live musicians, a film narrator (a live performer who would
accompany projection), or even live actors staged behind the projection screen voicing
dialogue.

This ecosystem surrounding early film presentation points to another unique qual-
ity for Cinema of Attraction—it often lacked narrative self-sufficiency. Supporting tech-
nologies and techniques (and people) were needed to help the audience make sense of the
experience. This may sound familiar to designers working with new technologies today.
The experience for today’s users is rarely as seamless as some technology developers or the
popular press might have us believe. Often, good old-fashioned, human interaction and
performance is key to bringing users in and out of the experience, for troubleshooting,
and for explaining or teaching users how to engage the technology.

The case of early sound in film is a good example to further illustrate this often circular,
messy, and fascinating history of technology development. Contrary to what many of us
may remember from history class, The Jazz Singer (1927) was not the first sound film. As
Alison McMahan has so brilliantly articulated, a closer look at the historical development
of sound in film “rewrites periodization” of film history [McMahan 2002, p. 45]. By 1902,
Gaumont, a major French filmmaking company, was making sound films (with hundreds
produced between 1902 and the early 19-teens—see Figure 2.1.) But even earlier, the tech-
nology had been demonstrated by three different companies at the 1900 Paris Universal
Exposition. Before that, the German filmmaker Oskar Messter began work with sound
film in 1896, and still earlier, Edison’s Dickson Experimental Sound Film was developed
in 1894.

Figure 2.1

Film still from Alice Guy Blaché’s Tourne une Phonoscène (1905). Alice Guy Blaché directs a
sound film at Gaumont, in one of the first “backstage” films. This film depicts Blaché at work
in the Gaumont studio in Paris with the Chronophone ‘sound-on-disc’ technology.

24 2.  VR and Media of Attraction

It must be noted, the technologies used to create these early sound film experiences
were not the same as the famous The Jazz Singer feature length ‘talkie’ in 1927. Later films
used a different sound synchronization technology, with optical synchronization, mean-
ing the sound was photographically recorded onto the side of the image film strip. These
later sound films also used more advanced technologies for amplification. The earlier films
used ‘sound-on disc’ recording technologies like the phonograph, along with mechani-
cal synchronization techniques to play the phonograph record and film images together,
and compressed air systems for amplification of sound. The earlier systems were difficult
to develop for, and often glitchy in performance. But they were nevertheless widespread
and enjoyed by the film-going public. So the silent film era was not so silent after all.
McMahan has gone on to develop a compelling argument for the public expectation and
understanding that even those films shown without synchronized sound in the early years
were understood by audiences as supposed to have sound. McMahan also demonstrates
that early film practitioners had sound in mind as they wrote and directed these early
projects, using sound (voiced or not) to advance dramatic narrative, create atmosphere,
for comic effect, and so forth.

Looking at the incredibly complex and fascinating history of early sound film with
its multiplicity of approaches, technologies, and techniques reveals a messiness (and
creative flexibility) that may seem more familiar to those of us working with new tech-
nologies today, and less like the polished technologies, codified team structures, and
streamlined processes of Hollywood. If we accept there is not much connection between
Cinema of Attraction and cinema in its contemporary institutionalized form, then can
we find an interesting relationship between Cinema of Attraction and other media in
attraction phases, such as radio, television, and even VR today? If emerging media
works today could be understood as part of a larger, cross-historical category of media
of attraction, instead of naïve or embryonic forms of some forthcoming standardized
form, we might open up new ways of understanding this type of work and how it should
be valued. Some of the dominant rhetorics about innovation, standardization, and
seamlessness might be reframed, and we could have a new perspective on what consti-
tutes progress in the field. To further explore this idea, I suggest a set of characteristics
or qualities that define media of attraction, based on both historical research as well as
my own experiences as a mixed reality designer working with emerging technologies
over the past 12 years.

Thinking in this cross-historical manner can allow a kind of genealogical approach
to emerge, looking at technologies and creative practice across time periods (Figure 2.2).
Take for example Winsor McKay’s Gertie the Dinosaur (1914) [Canemaker 2005]. Being
aware of the surrounding cultural and economic forces at work to produce this kind of
media artifact mean it is no longer just an example of “early animation” that is primitive
compared to contemporary works by Disney and Pixar, but that it has all sorts of interest-
ing connections with other practices, both from before (such as animal shows and chalk
talks) and after (like Mixed Reality).

In summary, media of attraction can be understood as encompassing great variety
and exuberant divergence in creative strategies across time and technologies, but with
four central characteristics in common across this multiplicity: media of attraction are
Unassimilated, Interdisciplinary, Seamed, and Participatory.

252.1  Introducing Media of Attraction

2.1.1 � Characteristic 1: Media of Attraction are Unassimilated
Unassimilated here refers to a set of related qualities that undergird media of attraction.
These media are not yet institutionalized, meaning they retain a sense of novelty for audi-
ences, and have no formal, codified training for practitioners. They also lack a formalized
means of criticism, having no ‘language’ or standard set of aesthetic/formal characteris-
tics established as best practices. A valuable outcome of these qualities of unassimilation is
the opportunity to develop a wide range of custom-made artifacts, unfettered by the con-
ventions of production and reception seen in established media. On the other hand, the
unassimilated qualities of media of attraction also lead to some detrimental outcomes—
most notably difficulty in distributing work, and lack of archiving.

2.1.2 � Characteristic 2: Media of Attraction are Interdisciplinary
Media of attraction draw on multiple art forms and techniques, and necessitate the appli-
cation of a variety of skills and approaches. They usually require complex teams to support

-3500 BC, Egypt - 1600s England when
Elizabeth 1 opened her collection to the public

Animals on display in royal menageries

-Philip Astley, originator of
the circus format, 1768

England

Circus acts with animals

-Stamford Raffles, 1828
London Zoo, England

First modern ‘scientific’ zoo

-first zoo with natural feature
enclosures, displaying both

animals and humans
-Carl Hegenbeck, 1874

Hamburg, Germany

Hagenbeck Tierpark

-Various performers, with
animals including big cats,

horses, monkeys,
donkeys, bears, birds,
goats, pigs, kangaroos.

1880s-1930s
vaudeville performances

‘Animal acts’

-Frank Beard, 1895-1905
Methodist Minister, Salt Lake City, Utah

Religious education ‘chalk talks’
-Winsor McCay, Vernon Grant, and

others, 1906 - 1930s
vaudeville performances

‘Chalk talk’ acts

-Winsor McCay, 1914
vaudeville performances

Gertie the Dinosaur

-J. Stuart Blackton, 1900
Vitagraph Studios, Brooklyn NY
first film to combine animated

and live action

The Enchanted Drawing

Early projected animation,
-Charles-Emile Reynaud, 1892
Musee Grevin, Paris, France

“Pauvre Pierrot”First flip book patent
-John Barnes Linnett, 1868

England

“Kineograph”

-Walt Disney, 1923-1927
Series of black-and-white animated

shorts starring a live-action girl

“Alice Comedies”

-Winsor McCay, 1914
vaudeville performance

Gertie the Dinosaur

-Charles Walters, 1954
MGM Technicolor musical combining live
action underwater performance by Esther

Williams with Tom and Jerry animation

“Dangerous When Wet”

-Blair Maclntyre, 2001
Augmented Reality experience in which the user plays

the part of Alice, at the tea party with three interactive AR
characters (the Dormouse, March Hare, and Madhatter)

“Alice’s Adventures in New Media”

-Niantic, 2016
Mobile Augmented Reality game

superimposes animated characters
in geographic locations

“Poke’mon GO”

-Peter Jackson, 2001-2003
Golem character portrayed by combining

live actor Andy Serkis’ motion capture
with computer animation

“The Lord of the Rings”

Figure 2.2

Towards a visual representation for the genealogy of media of attraction artifacts, highlighting historical and
aesthetic connections, with Gertie the Dinosaur as an example. The top tree, with solid line connections,
displays historical influences on the artifact; the bottom tree displays later descendants.

26 2.  VR and Media of Attraction

this mode of production. Interdisciplinary teams not only result in particular challenges,
but also have the potential for synergy, leading to a rich multiplicity of forms and func-
tions, and an enigmatic quality not seen as often in fully institutionalized forms or those
created by a solo producer.

2.1.3 � Characteristic 3: Media of Attraction are Seamed
Contrary to the rhetoric and even outright hype of popular press that often surrounds
media of attraction, the artifacts themselves do not exhibit a seamless quality. Instead,
edges show, and the patchwork of ways in which multiple forms of representation come
together are not hidden. Sometimes, this manifests as a lack of narrative ‘self-sufficiency,’
meaning ancillary structures, technologies, and techniques are needed for the audience
member to make sense of the experience. As discussed in Sherman and Craig’s paper
on Literacy in Virtual Reality, the VR user is “about as literate as a beginning reader
[…] often, we need an expert to guide us through the meanings of elements we don’t yet
comprehend—typically a person involved in the creation of the application” [Sherman
and Craig 1995, p. 39]. However, this exposure of seams can also be leveraged for the
pleasure of mediation, enhancing the user experience, by making the user aware of the
technology itself, and enabling a double sense of wonder at both the mastery of the design-
ers, and the technological illusion itself. Of course, this is not always achieved; seams also
have the potential to confuse and frustrate users.

2.1.4 � Characteristic 4: Media of Attraction are Participatory
Media of attraction artifacts all reach out to their audiences to engage in a direct way. This
engagement stretches along a continuum, from direct address soliciting audience responses in
performance contexts like vaudeville theaters, to interactive mechanical and digital systems
that require user input to run. Tensions are developed between attraction, narrative, partici-
pation or interactivity, and seamedness, however, these tensions can prove to be productive.

Across all four of these characteristics, a vast variety of aesthetic, structural, and narra-
tive choices are available to media of attraction practitioners. By definition, these choices
have not yet been narrowed (or closed off) at this stage of the medium’s development. This
array of choices is nevertheless all inextricably bound up with the particular challenges, lim-
its, and affordances of the technology at hand—all of which the creators are (at times quite
painfully) aware. Still, there is an exciting promise for the designer working at the frontier
of a media of attraction: the possibility to mine these four characteristics for exploration of
the widest variety of approaches, to support creativity, and to value bespoke, novel solutions.
More in-depth discussion of each of these characteristics can be found in recent publications
[Rouse 2016; Rouse, Chang, & Ruzanka 2017]. These characteristics can also be observed in
early VR work, surveyed in Developing Virtual Reality Applications [Craig et al. 2009]

2.2 � Historical Examples

To further illustrate the media of attraction concept, a variety of examples across time peri-
ods are presented. Instead of revisiting well-trodden ground and discussing works by those
already considered major designers in the history books, designers and examples discussed
less often are highlighted, as they have much to offer in terms of insight and inspiration.

272.2  Historical Examples

2.2.1 � Robert Barker and Panoramania
The panorama, first patented by Irish military landscape painter Robert Barker in 1787,
has been discussed by several theorists as pre-cinematic or pre-VR [Grau 2003; Griffiths
2008]. Georges Méliès himself even noted a connection between the panorama and film in
his fascinating 1907 treatise on the art of filmmaking, “Kinematographic Views” [Méliès
1907]. Méliès discusses the need for absolute precision in backdrop and set painting for
film, recommending filmmakers seek out painters with panorama painting experience,
because of their skill in creating not only detailed, perspectively correct painting on flat
and curved surfaces, but also their ability to incorporate physical three-dimensional
objects into the panorama exhibition space, in what might be understood as a relative
of today’s Mixed Reality. The panorama is an interesting example to examine from a
media of attraction perspective at a macro level, not focusing on the work of a particular
designer, but looking at the technology’s trajectory in overview. To understand the pan-
orama’s story, it helps to understand the particulars of how these immersive illusions were
designed and developed. Even with advances in linear perspective painting and drawing
techniques in the late 1700s, it was no easy task to produce these large-scale, meticulously
painted immersive illusions.

Stephen Oettermann’s excellent study of the history of the panorama goes into great
detail about the necessary process and techniques required to develop these works
[Oettermann and Schneider 1997]. The first step was to scout a location, which needed to
provide a high central point from which one could have a clear view of the surrounding
landscape. Then, a 360° sketch was made to scale while on site. Next, the canvas needed
to be prepared and mounted in a cylindrical frame. This created a complication for draw-
ing perspective correctly, because there were two curvatures that needed to be accounted
for, both the cylindrical curvature of the canvas that creates the panorama’s surrounding
circle as well as the curvature of the canvas bowing inward, produced as a result of stretch-
ing the fabric on its frame.

The next step was to apply the outlines of the sketch. This step was difficult as well,
because the artists who worked on drawing the outlines were positioned so close to the
canvas, which was quite large, that it was not possible for them to draw in perspective
correctly. Therefore, another artist acted as a guide, positioned in the center of the pan-
orama. The guide would use a long pointer with a charcoal attached on the end to mark
corrections for the artists working close to the canvas. After the outline of the sketch was
completed, paint was applied. Lighting and architecture also needed to be considered, and
in 1793, 6 years after Robert Barker filed his panorama patent, the first panorama rotunda
was designed and built explicitly for the purpose of showcasing panorama paintings in
London’s Leicester Square (see Figure 2.3). The rotunda was designed to maximize the
illusion of the panorama, by first plunging the visitor into darkness at the entrance to the
rotunda, then leading them up a darkened walkway or stairs to the large, dimly lit exhi-
bition space where vellum was stretched over a skylight above. The skylight allowed for
variations in light, such as from passing clouds, to create the most realistic and dynamic
impression possible.

The panorama was a wild success, fortuitously timed to coincide with Europe’s indus-
trial revolution and new middle class. A visit to the panorama was as much a chance to
see its wonders as it was to be seen by others in society. It was an event. Following Barker’s

28 2.  VR and Media of Attraction

innovation, a “Panoramania” swept across Europe and the UK throughout the late 18th
and early 19th centuries, drawing millions of visitors to specially built rotundas [Hyde
1988]. Panoramas even went on tour to other rotundas, which was no easy feat due to a lack
of standard dimensions for canvasses and rotundas. Additional innovations were added
to the panorama to increase the immersive and performative effects: three-dimensional
elements like clay figures; effects such as sound, wind, and smoke; a live performer acting
as a narrator or guide; souvenirs in the form of miniature panoramas; scrolling panorama
toys; moving panoramas that simulated journeys or were used in theatre productions or
‘dioramas,’ and even panorama ‘rides.’

Of these panorama rides, both the Cineorama and the Mareorama sound particularly
spectacular in the few accounts that detail their existence, meticulously researched in
Errki Huhtamo’s work on the topic. Both the Cineorama and the Mareorama (in French:
Maerorama) were exhibited at the 1900 Exhibition Universelle in Paris. The Cineorama
was the first film panorama, and was designed to represent a hot-air balloon flight.
Spectators climbed into a viewing platform that resembled a hot air balloon based with a
large balloon base tethered above, and then panoramic footage from a balloon ascent and
descent were shown on all sides, giving the feeling of flight. While the Cineorama was
hugely successful, the other complex panorama ride at the 1900 exhibition was less so.
The Mareorama simulated a Mediterranean Sea voyage. Visitors climbed aboard a steam
ship platform that pitched and rolled, with side-scrolling painted panoramas evoking for-
ward movement. Fans produced ocean breezes, lighting effects simulated day, night, and
a lightning storm, actual seaweed and tar added to the atmosphere, and actors played the
part of deckhands and locals from ports at stops along the journey. However, like many

Figure 2.3

The drawing’s caption reads, “Section of the Rotunda, Leicester Square, in which is exhib-
ited the PANORAMA. Published May 15, 1801. Robert Mitchell, Architect.”

292.2  Historical Examples

experiences developed in research labs today that simultaneously push the envelope of
creativity and technical capability, the Mareorama never worked reliably, and hosted very
few visitors [Huhtamo 2013].

Despite these innovations, such as the use of large-scale film projection and scroll-
ing panoramas in motion, the basic, painted panorama remained a popular and reliable
favorite. As discussed in Oetermann’s history of the form, they can be understood as an
early visual mass medium, and were so popular there were even miniature panoramas to
take home from the experience—intricately detailed guides to the panoramas known as
“souvenir programs” (see Figure 2.4). As the panorama’s popularity continued to increase
throughout the 1800s, the inclusion of innovations such as movement and narration
became more widespread. Banvard’s Mississippi River Journey (1852) was a good example
of a theatrical version of the panorama experience. Audiences sat in a darkened audi-
torium, watched a side-scrolling painted panorama on stage, accompanied by dynamic

Figure 2.4

This detailed guide illustrates the Battle of Trafalgar panorama displayed at the Leicester
Square rotunda in 1806 by Robert Barker’s son, Henry, who clearly felt some anxiety
about inheriting the business after his father had recently died. Visitors are provided with
numbered positions with “Reference to the English Line of Battle” as well as “The Enemy
Line.” The lower caption reads: “HENRY ASTON BARKER, as Proprietor of the PANORAMA,
LEISTER-SQUARE, takes the Liberty of informing the Public, that the various Views and other
Subjects which have been exhibited in it, were taken by him, and painted under his sole
Management, during the Life of his Father. He therefore hopes, that the same Attention
to give Satisfaction, by strict and faithful Representation, will entitle him to a Continuance
of that Patronage with which the Panorama has for so many Years been honored. Open
from Ten till Dusk—Admittance to each Painting, One Shilling—N. B. [Latin nota bene, which
means “note well.”] A Person always attends to explain the Painting.”

30 2.  VR and Media of Attraction

narration from John Banvard, the painter himself. These performances were several hours
long, with the panorama scrolling slowly horizontally in real time, to simulate the experi-
ence of leisurely boating down the Mississippi river in person. This version of the pan-
orama experience begins to sound pre-cinematic indeed, with an audience seated together
in the dark, watching a real-time representation of a river journey, narrated by a charis-
matic performer.

This experience is perhaps not so different from many of the first immersive large-
format films, such as Cinerama’s Windjammer (1958), which chronicles a 17,000 mile
Norwegian schooner trip, and the early IMAX film, The Greatest Places (1998), which
includes a segment navigating the Amazon River, as well as a selection of other spectacu-
lar and hard-to-reach geographies, and we can even see some connections with elements
of early experiments in 360-VR films such as the New York Times’ The Displaced (2015).
Across all of these variations in the panoramic form, it is striking to note the similarities
clustered around the four media of attraction characteristics. As an unassimilated nov-
elty, the panorama was consistently exhibited as a attraction, with no formalized train-
ing for its designers, and no codified form of critique to evaluate its formal and aesthetic
qualities. In terms of interdisciplinarity, the panorama grew to pull from a multitude of
sources including landscape painting, architecture, sculpture, engineering, and theatre.
As a participatory medium, the panorama called out to its visitors to enter, be enveloped,
and explore on foot in the rotunda-based format.

As for the panorama’s seams, these were evident in a variety of ways including angles or
views where the mechanisms of illusion were readily perceptible. An example of this might
be in a panorama that includes not only the painted, cylindrical image, but also physical
objects. Some panoramas included clay figures in the foreground, closer to the visitors’
viewing platform, to extend the illusion. Some of these clay figures would be split in half,
at the border of the canvas, with the rear half of the figure portrayed by two-dimensional
panting, and the half of the figure in the foreground created in three-dimensional clay
projecting into the space. This kind of literal seam, down the middle of a figure, could
become perceptible if lighting conditions were less than ideal, for example. Other seams
include the use of guides or maps to instruct users how one ought to move through the
space to follow the historical narratives presented, and live performers acting as guides or
re-enactors. It is easy to imagine visitors’ mixed experiences in complex historical battle
panoramas, which were probably the most common genre represented, as the experience
vacillated between enjoyment and wonder at the spectacle of the immersive view, and con-
fusion or even frustration at how to follow points of action along the spatialized narrative,
identify historical figures, locations, and so forth.

Yet despite the panorama medium’s incredible popularity as a durable crowd-pleaser
for over a century, it never quite reached an institutionalized state, and remained an
attraction diffused across theatre, fairs and expositions, and spectacular rotundas, with
no centralized distribution network and no production standards, never quite becoming
integrated, codified, and commonplace. It is interesting to note that despite its popularity
and reach, the form essentially remained a media of attraction, operating culturally more
like a theme park than film, radio, television, or videogames. It would be a fascinating
project to further investigate the cultural and economic forces that combined to produce
this outcome, as the destiny of VR in terms of cultural positioning is speculated about
today.

312.2  Historical Examples

Another commonality across the panorama’s iterations bears mentioning: the sto-
ries that were told seem to fall into particular categories: historic battles (reflecting the
military background of the landscape painters like Robert Barker who pioneered the
form); faraway places or virtual travel; and the display of new technologies such as rail-
roads, steamships, and hot air balloons. Notably, fiction was not represented. This marks
another contrast with the coming form of film. While the earliest films were dominated
by ‘actualities’ or proto-documentaries, the first pioneers, including Georges Méliès,
Edwin S. Porter, and Alice Guy Blaché (who is discussed below), were major innovators
of the development of the fiction form for film. Media theorist Marie Laure Ryan has
articulated the question of ‘fit,’ in terms of a medium finding what type of narrative it
can present most compellingly, as the crucial factor in terms of determining a medium’s
entertainment capacity, and cultural staying power [Ryan 2004, p. 356]. It is possible
that one contributing factor to the panorama’s decline was its lack of engagement with
fictional narratives.

2.2.2 � The Films of Alice Guy Blaché
Alice Guy Blaché’s story intersects with the panorama through her visit to the 1900
Exhibition Universelle in Paris. She was awarded the Diplôme de collaboratrice or Award
to Collaborator for her exhibiting her film work at the fair, and while there is no proof
of her visiting the Cineorama or Mareorama, it is highly likely she was at least aware
of the attractions. Blaché’s employer, the Gaumont photography and film company, had
recently acquired the rights to an early sound film technology, improved upon it, and
added projection capabilities and sound amplification. Blaché worked as an office man-
ager for Gaumont, and was tasked with creating many films for the company, includ-
ing promotional films to demonstrate the new sound and projection system, dubbed
the Chronophone. Sound was recorded first, using a phonograph, then performers were
filmed lip-synching. The synchronization and sound amplification aspects of the system
were still glitchy, but sufficiently impressive that when exhibited at the 1900 Exposition,
Gaumont was awarded the Grand Prix [Abel 1998, p. 11]. And it was at this same fair that
Blaché came across the art exhibition by James Tissot of his biblical paintings. She pur-
chased a copy of the Tissot Bible for herself, and went on to use the artwork in the volume
as the blueprint for one of her most elaborate and lengthy early films, La Vie du Christ in
1906, much in the way later filmmakers used storyboards—although this was well before
that practice was established [Blaché 1986, pp. 45–46].

Although Alice Guy Blaché may not be quite the household name of early film his-
tory that Georges Méliès and Edwin S. Porter are, throughout her career as a director,
writer, producer (and even performer) in early film from 1896 to 1920, she worked on
over 1,000 films. While other early film pioneers like the Lumière brothers made no films
after 1905, and Méliès and Porter left the industry in 1913 as it moved full-throttle into
institutionalization, Blaché persisted, adapted, and continued to produce innovative and
successful work. Where the panorama provides an interesting example of a medium of
attraction that never transformed into an institutionalized media form, film provides a
counterpoint. Blaché’s 24-year film career is a particularly interesting corpus, given the
span her work bridges from film’s Cinema of Attraction beginnings through the birth of
Hollywood, and her own practice led her from Paris, to New Jersey and New York (the first
US film hub), and then on to California.

32 2.  VR and Media of Attraction

Blaché’s filmography boasts representative works from every genre imaginable, includ-
ing actuality films (precursors to documentary), musicals (phonoscènes), slapstick com-
edy, religious drama, social satire, melodrama, and romance. Her contributions to the
development of the fiction film or story film are landmark, along with her contemporaries
Méliès, Porter, and the Lumières. (This group were all aware of each others’ works, and
even borrowed to the point of remaking each others’ films.) Blaché is also credited with
major contributions to the discipline of film acting; her studio was famous for the giant
banner that read “Be Natural!” hung behind the camera, facing the performers.

The incredible range of experimentation that is a hallmark of the media of attraction
phase can be seen across Blaché’s early films. From the single year of 1906, for example,
looking across just four of the scores of films she created that year, we see an incred-
ible variety, from documentary, to social satire, to religious epic, and slapstick comedy
(see Figure 2.5). Le ballon dirigible “La Patrie” falls into the documentary category, and
chronicles the launch of a large airship built by the French military. The ship backs out of
its hangar, is released from its moorings, and floats off, fading into an increasingly cloudy
sky. (The feeling of mystique created by the fade at the end of the film is enhanced by
the ship’s ill-fated history; a year after the film was shot the ship was lost after becoming
unmoored, drifting over Wales and Ireland, and then out to sea, never to be recovered.).
La Patrie also contributes to long-standing, fascinating sub-genre of films about balloon-
ing, including films shot from balloons by photographer-balloonists such as Félix Nadar,
and the creators of the Cineorama at the Paris Exhibition Universelle in 1900. Nadar’s
colorful memoirs on the subject, recently translated into English, are an excellent resource
[Nadar 1900].

Created in the same year as La Patrie, Blaché’s La glu (1906) presents a slapstick com-
edy centered on a young boy who finds that all sorts of mischief can be achieved with a
large pot of curiously strong glue. The boy paints a bench and steps with the mixture, and
manages to trap an unsuspecting pair of ladies, as well as the good Samaritans who would
try to help them get loose, before becoming trapped himself at the end with the large glue
pot stuck to his own bottom, in a gesture of comedic justice.

Also in 1906, Les resultants du feminisme showcases yet another genre for Blaché; social
satire. This film explores the feared results of the suffrage movement—complete gender
role reversals. In the film, male actors exhibit stereotypically female behaviors, ironing
clothes, fussing about hats and other accessories, tending to children, and shyly fending
off unwanted sexual advances. The female actors portray stereotypical male behaviors,
smoking pipes, relaxing in coffee shops, pawing the ‘girls’ in the film, and refusing to
acknowledge their parentage of children born out of wedlock! The result is not only come-
dic, but also a sly commentary on the essentially performative nature of gender, even more
remarkable for this nuance given its date decades before contemporary gender studies
scholarship on the subject of performativity by Judith Butler and others.

And finally, from the same year, La vie du Christ is an epic religious drama, bringing the
illustrations from the Tissot Bible to life. This film is incredibly long and complex for the
time, running at nearly 33 min, with a cast of over 300 extras. Across all four of these films
(which are available to watch on YouTube.com) we see Blaché’s exuberant experimenta-
tion with the plasticity of the film form, special effects like cuts and superimpositions,
a variety of acting styles, and a range of storytelling techniques. In contrast, by the late
teens, as film began to leave the media of attraction phase for institutionalization, Blaché’s

http://YouTube.com

332.2  Historical Examples

Figure 2.5

(From top) Stills from three of Alice Guy Blaché’s 1906 films. La Glu: An unsuspecting cou-
ple become stuck to their steps. Les Resultants du Feminisme: Men perform stereotypically
female tasks, ironing and sewing, while the woman puts her feet up to relax. La Vie du Christ:
Scene depicting the last supper.

34 2.  VR and Media of Attraction

work continued to be successful and interesting, however a narrower focus had settled in,
emphasizing melodrama and romance. The market also skewed towards the presentation
of feature films, which of course took longer to produce, perhaps also limiting experimen-
tation. The benefit of this narrower focus was of course the ability to specialize and refine.

2.2.3 � Muriel Cooper’s Information Landscapes
Moving to the more recent past, Muriel Cooper’s work with the Visible Language Workshop
at the MIT Media Lab provides another fascinating example of media of attraction. As dis-
cussed in research from David Reinfurt and Robert Wiesenberger, Cooper’s lab worked at
the forefront of interactive graphics and hypertext, producing the landmark Information
Landscapes project, presented at TED in 1994 [Reinfurt 2007; Reinfurt and Wiesenberger
2017]. Cooper’s innovative early interactive 3D work opened up questions about interaction
design we still wrestle with today, particularly in 3D environments like VR.

Cooper began her career in print graphic design, and early on showed an interest in inno-
vating forms and pushing boundaries. Her methods were heavily inspired by the Bauhaus
workshop traditions, and she was the designer of the iconic MIT Press colophon logo.

During her time as the design director of the press from 1967 to 1974, she developed a
series of processes and systems to revitalize the press. Integrating a new IBM Electric type-
writer, Cooper was able to circumnavigate the usually lengthy back-and-forth between
press and professional typesetter to generate drafts. Cooper also experimented with the
print form, including a flip book in the margins of one of her publications, and showcasing
another by creating a filmed stop-motion animation of its pages.

Although her background was in art and design, it was clear she had a penchant for
technology and experimentation. This thread continued and developed further in her
work, as she began to offer a course at MIT, “Messages and Means,” in collaboration with
fellow designer and technologist Ron MacNeil. In this hands-on workshop course, students
explored printing technologies, graphic and information design. The space occupied by
this wildly popular course was known as the Visible Language Workshop (VLW). When
Nicholas Negroponte founded the MIT Media Lab in 1985, he invited Cooper and MacNeil
to bring the VLW to the Media Lab as one of the initial seven research foci.

Relocating to the Media Lab positioned Cooper ideally to integrate ‘cast-offs’ from
the other research centers in the lab (slightly outdated hardware or software the other
researchers had finished with, but was still significantly advanced in terms of what was
commercially available.) Digital printing, large-format Polaroid photography, image
transmission through the emerging internet, and experiments with real-time interac-
tive 3D graphics and typographic space were all part of the work developed in the VLW.
This last research project, titled Information Landscapes, was presented publicly shortly
before Cooper’s untimely death in 1994. Information Landscapes was an interactive 3D
textual universe, providing novel ways of displaying data relationships and navigating
text. Concepts about transparency, blur, and scale were explored in terms of usability in
the new graphic space, and innovative solutions developed that we now take for granted
in interaction design.

Cooper was prescient not only in her cutting-edge design work, but also in the ques-
tions she asked. In a talk she gave at the Walker Art Center in 1987, she addressed subjects
including the links between physical and digital design artifacts, toolkits, and pro-
cesses; presented a vision of the future as ubiquitous computing well before the term was

352.3  Connecting to Design Practice

coined; questioned the ethics of copying and collaboration in the digital and internet age;
discussed the role of the computer as an interdisciplinary change agent, breaking down
traditional academic categories; and positioned the core role of graphics as the interface
for accessing information like big data in the digital age [Cooper 1987].

Quoted on the Art Director’s Club page inducting Cooper into their Hall of Fame,
Cooper stated in 1994 shortly before her death: “When you start talking about design
in relation to computers, you’re not just talking about how information appears on the
screen, you’re talking about how it’s designed into the architecture of the machine and of
the language. You have different capabilities, different constraints and variables than you
have in any other medium, and nobody even knows what they are yet” [Art Directors Club
2004]. Cooper was acknowledging the open field in computing and information design at
the time as a media of attraction.

2.3 � Connecting to Design Practice

What can a media of attraction approach offer designers in VR today? First, a different out-
look than is often expressed. By understanding the unique value of works created in media
of attraction phases, we might not wish standardization upon ourselves quite so fervently.
When emerging media solidify into “platforms,” they become less flexible in many ways.
The embedded politics of system become entrenched, audience expectations calcify, and
a developed market demands certain production qualities and viewpoints. Platforms and
systems are not the only elements of institutionalized media with embedded politics. An
established media’s ‘language’ is also political at core, in terms of what is chosen and high-
lighted, how values are communicated, and what is left out or even invisible. By embracing
a media of attraction approach as designers of new media today, we might more consciously
value the multiplicity we are in, and work to better catalogue and archive the rich variety of
artifacts we generate, and the design processes with which we experiment.

In addition, a set of prescriptive principles can be suggested, based on the four cen-
tral qualities of media of attraction as unassimilated, interdisciplinary, seamed, and
participatory:

•• Unassimilated media must be carefully archived. We need an archive of attraction,
that values the rich multiplicity found in these types of artifacts. We need a way
of representing genealogical relationships between related forms, and must pay
careful attention to the voice of the designer, which has often been lost in the case
of historical media of attraction.

•• Interdisciplinary media require interdisciplinary teams, and therefore careful
attention to the process of team building. There is a wealth of literature of the
topic of teamwork, but research on performing arts teams may be most relevant
for other expressive domains.

•• Seamed media are best approached through seamful design tactics that seek to
exploit these rough edges. Seams in media of attraction may not only be caused
by technical limitations, but also by issues related to these media’s lack of assimi-
lation, such as lack of conventions or audience expectations. A seamful design
approach identifies the areas of dissonance, and incorporates them into the design
as affordances or opportunities for creative interaction.

36 2.  VR and Media of Attraction

•• As participatory media, media of attraction need to be designed to support emer-
gent interpretations. User behavior with media of attraction is often highly unpre-
dictable, given the unassimilated nature of the technologies and techniques in
play. To accommodate this, and develop the naïve user’s creativity as an asset,
designers should work to strike a balance between providing opportunities for
emergent interactions to develop, and careful consideration of how to provide
proper constraints to ensure a meaningful experience.

Finally, in the design process, media of attraction exercises could be developed to fur-
ther strengthen design techniques in line with the media of attraction tradition. Many
emerging media claim to incorporate all previous media. This has been claimed about
film, radio, television, the computer, and is certainly claimed about VR as well, at least
in the popular press and trade publications. A historically-centered media of attraction
ideation exercise could help practitioners more actively and meaningfully engage with
playful remediations, by suggesting a design concept be sketched out for a variety of
‘dead’ media. For example, a concept to create an educational VR application to tell the
story of your town’s history during the contentious midcentury urban renewal/historic
preservation era could be sketched out for the panorama, the stereoscope, flip book,
chronophone, and radio before moving to the VR platform. These ‘dead’ media ver-
sions may provide alternate forms of storytelling, modes of representation, and sensory
engagements that might not be as easily excavated working in the digital medium alone.

In conclusion, the media of attraction design approach suggested here should be
developed into a more nuanced and complete framework, created in collaboration with
the larger community, and based on continuing historical research across time periods
and technologies such as early radio, television, and videogames. The aim is to produce
a design vocabulary that is generative and specific, but ultimately values the multiplic-
ity at the core of media of attraction. Instead of thinking of progress in VR (or whatever
media of attraction emerges in the post-VR landscape) as the narrowing toward best prac-
tices that exploit unique affordances, and eventual canonization as an institutionalized
medium, we could re-imagine progress as the continued great exploration of the widest
variety of approaches.

References

[Abel 1993]

Abel, Richard (1993) French Film Theory and Criticism: A History/Anthology: Volume 1:
1907–1929. Princeton, NJ: Princeton University Press.

[Abel 1998]

Abel, Richard (1998) The Ciné Goes to Town: French Cinema, 1896–1914, Updated and
Expanded Edition. Berkeley, Los Angeles, and London: University of California
Press.

37References

[Abel and Altman 2001]

Abel, Richard, and Rick R. Altman, Eds. (2001) The Sounds of Early Cinema. Bloomington
and Indianapolis, IN: Indiana University Press.

[Blaché 1986]

Blaché, Alice Guy, Trans: Roberta Blaché and Simone Blaché, Ed: Slide, Anthony (1986)
The Memoirs of Alice Guy Blaché. Lanham, MD and Kent, England: Scarecrow
Press, Inc.

[Canemaker 2005]

Canemaker, John (2005) Winsor McKay: His Life and Art. New York: Harry Abrams.

[Cooper 1987]

Cooper, Muriel (1987) Art and technology in the information age. Insights Design Lecture
Series. Minneapolis MN: Walker Art Center.

[Craig et al. 2009]

Craig, Alan B., William R. Sherman, and Jeffrey D. Will (2009) Developing Virtual Reality
Applications. Burlington, MA: Morgan Kaufmann Publishers.

[Gaudreault 2011]

Gaudreault, André (2011) Film and Attraction: From Kinematography to Cinema. Chicago,
IL: University of Illinois Press.

[Grau 2003]

Grau, Oliver (2003) Virtual Art: From Illusion to Immersion. Cambridge, MA: MIT Press.

[Griffiths 2008]

Griffiths, Alison (2008) Shivers Down Your Spine: Cinema, Museums, and the Immersive
View. New York: Columbia University Press.

[Gunning 1986]

Gunning, Tom (1986) The cinema of attraction: Early film, its spectator and the avant-
garde. Wide Angle, 8 3–4, pp. 63–70.

38 2.  VR and Media of Attraction

[Gunning 2003]

Gunning, Tom (2003) Re-newing old technologies: Astonishment, second nature, and the
uncanny in technology from the previous turn-of-the-century. In: Thorburn, D., and
Jenkins, H. (Eds.). Rethinking Media Change: The Aesthetics of Transition. Cambridge,
MA: MIT Press, pp. 39–60.

[Huhtamo 2013]

Huhtamo, Erkki (2013) Illusions in Motion: Media Archeology of the Moving Panorama
and Related Spectacles. Cambridge, MA: MIT Press.

[Hyde 1988]

Hyde, Ralph (1988) Panoramania! The Art and Entertainment of the All-Embracing View.
London: Trefoil Publications.

[McMahan 2002]

McMahan, Alison (2002) Alice Guy Blaché: Lost Visionary of the Cinema. New York and
London: Continuum International Publishing Group, Inc.

[Méliès 1907]

Méliès, Georges (1907) Kinematographic views. In: Gaudreault, A. (Ed.). Film and Attraction:
From Kinematography to Cinema. Chicago, IL: University of Illinois Press.

[Art Directors Club 2004]

Muriel Cooper (2004) adcglobal.org. Art directors club hall of fame biography. http://
adcglobal.org/hall-of-fame/muriel-cooper/

[Musser 1990]

Musser, Charles (1990) The Emergence of Cinema: The American Screen to 1907. New York:
Scribners.

[Musser 1994]

Musser, Charles (1994) Rethinking early cinema: Cinema of attractions and narrativity.
Yale Journal of Criticism, 7 2, pp. 203–232.

[Nadar 1900]

Nadar, Félix (1900) When I was a Photographer. Trans: Eduardo Cadava and Liana
Theodoratou. Cambridge, MA: MIT Press, 2015.

http://adcglobal.org
http://adcglobal.org
http://adcglobal.org

39References

[Oettermann and Schneider 1997]

Oettermann, Stephan, and Deborah Lucas Schneider (1997) The Panorama: History of a
Mass Medium. New York: Zone Books.

[Reinfurt 2007]

Reinfurt, David (2007) This Stands as a Sketch for the Future: Muriel Cooper and the Visible
Language Workshop. Cambridge, MA: Center for Advanced Visual Studies, MIT.

[Reinfurt and Wiesenberger 2017]

Reinfurt, David, and Robert Wiesenberger (2017) Muriel Cooper at MIT, 1954–1994.
Cambridge, MA: MIT Press.

[Rouse 2016]

Rouse, Rebecca (2016) Media of attraction: A media archeology approach to panoramas,
kinematography, mixed reality and beyond. In: Nack, F., and Gordon, A. S. (Eds.).
Interactive Storytelling: Lecture Notes in Computer Science 100045. Berlin, Germany:
Springer Press International, pp. 97–107.

[Rouse et al. 2017]

Rouse, Rebecca, Benjamin, Chang, and Silvia Ruzanka (2017) Diving into the multiplicity:
Liberating your design process from a convention-centered approach. In Proceedings
of the IEEE Virtual Reality Conference, Los Angeles, CA, pp. 429–430.

[Ryan 2004]

Ryan, Marie-Laure (2004) Will new media produce new narratives? In: Ryan, M. (Ed.).
Narrative Across Media. Lincoln, NE: University of Nebraska Press, pp. 337–359.

[Sherman and Craig 1995]

Sherman, William R., and Alan B. Craig (1995) Literacy in virtual reality: A new medium.
ACM SIGGRAPH Computer Graphics, 29 4, pp. 37–42.

http://www.taylorandfrancis.com

Section II
VR with Game

Engines

http://www.taylorandfrancis.com

43

3
Getting Started with
SteamVR and Unity
Lee Wasilenko
VR Dev School Inc.
Orange Bridge Studios Inc.

Experience with general purpose game engines such as Unity are quickly becoming a
requirement for anyone looking to create virtual reality (VR) experiences. In addition
to having skill with a particular game engine there are also many VR specific SDK’s and
API’s out there for each VR hardware set. Valve has attempted to take some of the com-
plexity out of supporting multiple VR platforms by publishing its OpenVR API which
provides developers with a common software API across multiple VR hardware platforms.
Valve has also published the SteamVR Unity Plugin which is a set of tools that allows
developers to access OpenVR device functionality easily in Unity and simplifies common
VR experience requirements such as hand interactions and locomotion.

In this chapter we look at how to get started creating cross platform VR experiences
using Unity and the SteamVR Unity Plugin. We will look at how to create a VR scene, how
to interact with objects, and how to use teleportation as means of locomotion.

3.1	 SteamVR Unity Plugin
Overview

3.2	 How to Import the
SteamVR Unity Plugin

3.3	 Create a Very Simple
SteamVR Scene in Unity

3.4	 Interaction System
3.5	 Core Components of the

Interaction System

3.6	 Interaction System
Example Scene

3.7	 Using the Interaction
System to Throw a Ball

3.8	 Adding New Behavior to
Button Presses

3.9	 Teleporting
3.10	 Where to Go from Here

44 3.  Getting Started with SteamVR and Unity

This chapter has been created using Unity 2017.1.0p5, SteamVR Unity Plugin 1.2.2 and
an HTC Vive, and later tested with Unity 2017.3.1f1sg and SteamVR Plugin 2.0.1. The
Oculus Rift with Touch as well as later versions of Unity and SteamVR should function
similarly. You must have Steam and the SteamVR Runtime installed as well.

3.1 � SteamVR Unity Plugin Overview

The SteamVR Unity Plugin is a collection of assets provided by Valve to make creating
VR experiences using Unity on OpenVR devices as simple as possible. Most importantly,
the package contains VR camera rig prefabs and scripts which give developers access to
tracked devices, such as HMD’s and motion controllers, and low level SteamVR system
events.

In addition, Valve has included code for the Interaction System; a lightweight and
flexible system for interacting with game objects and managing the context specific
behavior of tracked VR devices by sending messages based on Hover and Attached states
to interactable game objects.

3.2 � How to Import the SteamVR Unity Plugin

We’re going to get the SteamVR Unity Plugin from the Unity Asset Store, so open up a new
Unity project and then click on Window in the menu bar to open the drop down and then
select Asset Store. In the search field enter ‘SteamVR Plugin’ and look for the result from
Valve Corporation (Figure 3.1).

Select this result and then click on Import to bring the contents into your project.
After the import you will be prompted to accept the Recommended Project Settings. Click
Accept All to allow those changes. As of version 2.0 of the SteamVR Plugin it will also
provide a window of how to configure the inputs—choosing the defaults is fine.

Figure 3.1

SteamVR Plugin from the Unity Asset Store.

453.3  Create a Very Simple SteamVR Scene in Unity

3.3 � Create a Very Simple SteamVR Scene in Unity

Let’s start exploring the SteamVR package by creating a simple scene. First, select Assets/
Create/Scene from the menu bar and call it SteamVR_Intro. Your scene will appear
under the Assets folder in the Project panel. Double-click to open the scene if it is not
already open.

Let’s create a platform to stand on by adding a plane to our scene. Right-click on the
Hierarchy panel and select 3D Object/Plane. A 10 × 10 plane centered at the origin in
our scene will be created. Select the plane in the hierarchy and rename it Floor in the
inspector.

Now we need a VR camera rig for our scene. Delete the default MainCamera in the
Hierarchy pane and then expand the Assets/SteamVR/Prefabs folder in the Project pane.
Select the [CameraRig] prefab and drag it over to the Hierarchy pane to place it in the
scene at the origin. You’ll see the play area boundary wireframe appear in your scene
(Figure 3.2).

Expanding the [CameraRig] (now in the hierarchy) reveals three subcompo-
nents, including the Camera (head) object and two controllers—Controller (left) and
Controller (right). If you expand the Camera (head) object, you will reveal the Camera
(eye) and Camera (ears) objects (Figure 3.3).

Figure 3.2

A basic SteamVR scene.

Figure 3.3

Here is the [CameraRig] object with the Camera (head)
expanded and the eye selected.

46 3.  Getting Started with SteamVR and Unity

You’re just about ready to run your VR scene. Make sure the SteamVR Runtime is
running and that all of the device icons are green (Figure 3.4). You can start the SteamVR
Runtime by clicking on the VR button in the menu bar of the Steam application. Once
SteamVR is loaded and ready all you need to do is click on the Play button or press CTRL-P
(CMD-P on OS/X) in Unity to enter Play mode and then put on your headset. You should
now be looking around in your first SteamVR scene!

3.4 � Interaction System

Now that you’ve got a VR scene up and running you’ll probably want to add a few objects
and start playing with them. Luckily Valve has included an Interaction System with
SteamVR that will allow you to perform simple interactions quickly and easily.

The Interaction System included with SteamVR was the basis for the mini-games
included with Valve’s The Lab VR demo, so if you’re familiar with The Lab you will
recognize some of options available to you in the Interaction System. All of the code,
prefabs and other assets for the Interaction System can be found under Assets/SteamVR/
InteractionSystem.

3.5 � Core Components of the Interaction System

The Interaction System contains a number of objects for you to use in your own code. Here
are seven components that are at the heart of the Interaction System.

3.5.1 � Player
The Player prefab, located under Assets/SteamVR/InteractionSystem/Core/Prefabs (in
earlier versions without the “Core/” portion), represents the user in the scene and is the
core of the Interaction System. Similar to [CameraRig], the Player prefab includes all of
the tracked objects such as the controllers and head as well as the main camera and audio
listener. In addition to those fundamentals the Player prefab adds Interaction System spe-
cific scripts such as the Hand script. To get started with the Interaction System simply
delete the existing [CameraRig] from your scene and drag in the Player prefab.

With the Player prefab, you can do some testing when an HMD display isn’t handy by
going into “2D Debug” mode, which allows you to use the standard WASD keys to move
around (Figure 3.5). The “2D Debug” mode is automatically enabled when no VR system
is found, or it can be activated with a toggle.

3.5.2 � Hand
While the Player prefab forms the core of the Interaction System, the Hand class is the
real workhorse. This class is attached to each controller and forms the basis of interaction
with other objects in the scene. The Hand class checks the objects it is hovering over for

Figure 3.4

Make sure all SteamVR device icons are green (pictured are the
icons for the standard HTC Vive).

473.5  Core Components of the Interaction System

an Interactable component and sends them messages based on the current hover state
(Figure 3.6).

3.5.3 � Interactable
While there’s not very much code in the Interactable class, it serves as an important identi-
fier in the Interaction System and allows a reference to the Hand to be obtained. Adding
this component to any game object with a collider will allow the Hand to recognize the
object as interactable (Figure 3.7). When you touch an object with the Interactable com-
ponent attached, but no other interaction extensions, you will be able to see the controller

Figure 3.5

The Player prefab provides a “2D Debug” (i.e. non-VR) mode that allows developers to do
testing without the need for an HMD. The toggle button on the bottom resumes VR mode
when available.

Figure 3.6

When a controller of the Player prefab interacts with other objects in the scene that are set
as “Interactable”, the object is highlighted with a silhouette. (Also note that in versions of
the SteamVR Plugin 2.0 and later the Player prefab adds a hand model to the controllers,
as shown.)

48 3.  Getting Started with SteamVR and Unity

outline appear when your controller enters the object’s collider and you will feel a haptic
bump. You will need additional behavioral components attached if you wish to expand the
interaction. See for example Throwable below.

3.5.4 � Throwable
Adding this script component to an object will allow the user to pick up the object and
throw it. The object will attach to the hand when the trigger button is pressed (Figure 3.8).
When the trigger button is released the throwable is detached from the hand and the
hand’s velocity is transferred to the object. This script requires the Interactable script as
well as a rigid body and the VelocityEstimator script. Since these requirements are hard-
coded into the script via the [RequireComponent] tag, Unity will go ahead and add
them for you if they are not already present.

3.5.5 � LinearDrive
This class allows you to create objects with defined linear paths to be moved only along
those paths. For example, you can use it to create levers or sliding drawers that only trans-
mit the hand’s motion along a defined linear path between the start position transform
and end position transform. To map between the points, create an empty GameObject
for the StartPosition and EndPosition each and then drag them into the matching slots in

Figure 3.7

This inspector panel shows a basic Sphere object with the “Interactable” script added,
including many new options in version 2.0 of the SteamVR Plugin.

493.5  Core Components of the Interaction System

the Inspector (Figure 3.9). The public Linear Mapping variable will be updated at runtime
to reflect how far along the LinearDrive is between the StartPosition and the EndPosition.
(The LinearMapping script is created and attached to the LinearDrive at run time if it
doesn’t already exist.)

Figure 3.8

(a) Here the user grabs and is about to throw the large sphere. (b) Adding the “Throwable”
script also adds a Rigidbody to the object along with the “Velocity Estimator” script.

Figure 3.9

(a) Here the user grabs the cube and can slide it between the capsule and cylinder. (b) The
“Linear Drive” script includes fields to specify the two ends along with the object may slide.
(Often the ends would be invisible game objects, but here we have chosen visible objects
for demonstration.) (c) While running, a “Linear Mapping” script is added and shows the
percentage distance of the cube from the capsule to the cylinder (“Value”).

50 3.  Getting Started with SteamVR and Unity

3.5.6 � CircularDrive
The CircularDrive limits an object’s motion to rotation about one rotational axis.
This component is useful for creating interactable wheels, spinners and dials (Figure 3.10).

3.5.7 � ItemPackages
An ItemPackage is a collection of objects that will temporarily replace the functionality
of the hand. A good example of this is the longbow in The Lab. When a user picks up the
longbow one hand is replaced with the bow while the other hand is replaced by the arrow.
While holding the Longbow ItemPackage the functionality of the hand is replaced by the
behaviour of the longbow. ItemPackages are useful for creating tools which have context
sensitive behaviour when attached to the hand (Figure 3.11).

To use an ItemPackage in your scene you will need to create prefabs for the one or two
items you want to attach to the hands and then give the ItemPackage references to those

Figure 3.10

(a) Here the user grabs and rotates a bar. The bar can only be rotated about it’s X-axis.
(b) The CircularDrive script has many options, however in this example we have left them all
as the default, including the axis of rotation.

513.7  Using the Interaction System to Throw a Ball

prefabs. Then you will make your ItemPackage a prefab and create an ItemPackageSpawner
and give the ItemPackageSpawner a reference to the ItemPackage prefab.

3.6 � Interaction System Example Scene

Valve has helpfully included an example scene with the Interaction System which shows
off much of the functionality included with the package. You can find the scene under
Assets/SteamVR/InteractionSystem/Samples/Interaction_Example (in previous editions
there was a “Scenes/” folder between “Samples/” and “Interaction_Example”).

Explore each exhibit in the scene in VR and then have a look at each component in
the Unity Inspector pane to get a better idea of how each part of the Interaction System
combines to form a series of interesting interactions with a few simple building blocks
(Figure 3.12).

3.7 � Using the Interaction System to Throw a Ball

Let’s have a look at how we can leverage the Interaction System to create a throwable ball.

	 1.	 Open the SteamVR_Intro scene we created earlier and delete the [CameraRig]
object if you haven’t already.

	 2.	 Drag the Player prefab from Assets/SteamVR/InteractionSystem/Prefabs into
the Hierarchy pane to create a copy of the prefab at the origin (if you haven’t
already).

Figure 3.11

The SteamVR Plugin provides a Longbow ItemPackage as an example. In this sample
scene the user clicks on the cube at which point their primary hand is mapped to the
“Item Prefab” (here the Longbow), and the “Other Hand Item Prefab” is the ArrowHand.
The “LongbowItemPackage” is itself a prefab that is assigned to the spawning object—in
this scene the cube.

52 3.  Getting Started with SteamVR and Unity

	 3.	 Right-click in the Hierarchy and select 3D Object/Sphere to create a sphere.
	 4.	 Select the Sphere in the Hierarchy.
	 5.	 Set the Transform’s (X, Y, Z) Position to (0, 0.1, 0) in the Inspector.
	 6.	 Set the Transform’s (X, Y, Z) Scale to (0.2, 0.2, 0.2) in the Inspector.
	 7.	 Click Add Component and add the Throwable script as a component.

Note that Unity automatically added an Interactable component to the Sphere because
Interactable is a required component of Throwable (similarly for the RigidBody and Velocity
Estimator components).

Now click Play or press CTRL+P to start Play mode and put on your HMD. When the
controller highlights to indicate it is hovering over the Sphere you should be able to pick
it up by pressing and holding the trigger button. Release the trigger button to throw the
sphere.

3.8 � Adding New Behavior to Button Presses

Using the interaction system to add behavior on button presses is very straightforward.
All SteamVR device button presses are handled in the SteamVR_Controller class. You can
get a reference to the SteamVR_Controller device through the Hand and you get a refer-
ence to the Hand through the Interactable attached to the game object. Let’s add some
behavior to our Sphere so interacting with it changes the functionality of the hand it is
currently attached to.

Create a new C# script on the Sphere by selecting it in the Hierarchy and then clicking
Add Component in the Inspector. Select New Script, name the script SphereBehaviour and
then enter the text in Listing 3.1.

Figure 3.12

A view of the Interaction System demonstration scene which shows how several of the
interaction scripts available in the SteamVR Plugin work.

533.8  Adding New Behavior to Button Presses

Save the script and hit Play in Unity to see this script in action.

	 1.	 Pick up the Sphere by holding down the Trigger button and you will see the
message “Attached to Hand” printed out in the Console pane.

	 2.	 Click the Touchpad button on the top of the controller to see the “Touchpad
Pressed Down” message in the Console.

	 3.	 Finally, release the Trigger button to see the “Detached from Hand” message
appear in the Console.

The Throwable behavior is already using the Trigger button so we looked for a click on the
Touchpad. If you do not have any action assigned to the Trigger button on your object and
want to use the Trigger instead of the Touchpad for your action, you can simplify the code
above by using hand.GetStandardInteractionButtonDown() instead of hand.
controller.GetPressDown(SteamVR_Controller.ButtonMask.Touchpad).

In general, in SteamVR you can access all of the button states on your controller by get-
ting a reference to the underlying SteamVR_Controller.Device, using the desired

Listing 3.1.  Adding simple behavior to controller buttons.

using UnityEngine;
using Valve.VR.InteractionSystem;

[RequireComponent(typeof(Interactable))]
public class SphereBehaviour : MonoBehaviour
{

 private Hand hand;

 // Get a reference to the Hand through the OnAttachedToHand event in Interactable
 private void OnAttachedToHand(Hand attachedHand)
 {
 Debug.Log("Attached to Hand");
 hand = attachedHand;
 }

 // Remove the reference when the object is detached from the Hand
 private void OnDetachedFromHand(Hand attachedHand)
 {
 Debug.Log("Detached from Hand");
 hand = null;
 }

 void Update()
 {
 // Check if object is attached to a Hand
 if (hand != null) {
 // Use the SteamVR_Controller reference to check for a button press
 if (hand.controller.GetPressDown(SteamVR_Controller.ButtonMask.Touchpad)) {
 // Do something when attached and button pressed
 Debug.Log("Touchpad Pressed Down");
 }
 }
 }
}

54 3.  Getting Started with SteamVR and Unity

‘GetAction’ method and passing in the SteamVR_Controller.ButtonMask for
the button you are interested in polling. For the Vive you have the following options for
ButtonMask:

•• System
•• ApplicationMenu
•• Grip
•• Touchpad
•• Trigger

3.9 � Teleporting

The SteamVR Interaction System code also includes the teleportation system used for loco-
motion in The Lab. You can easily add this system to your scene to start moving around.

The Teleportation system has three basic components: Teleporting, TeleportPoint, and
TeleportArea.

3.9.1 � Teleporting
The Teleporting prefab found under Assets/SteamVR/InteractionSystem/Teleport/Prefabs
contains all of the code needed to add teleportation to your scene. The teleportation system
is fairly complicated and contains many components but most of the logic is contained in
the Teleport script. Luckily the Teleporting prefab has everything we need ready to go.
Simply drag this prefab into your scene to get started.

3.9.2 � TeleportPoint
The TeleportPoint prefab represents one point where the player can teleport to. The player
will be teleported to the center of this point regardless of exactly where the arc was pointed.
Place one of these prefabs when you want to have more precise control over where the
player will end up (Figure 3.13).

To add TeleportPoint to the SteamVR_Intro scene follow these steps:

	 1.	 Drag the Teleporting prefab into the Hierarchy.
	 2.	 Drag the TeleportPoint prefab into the Hierarchy.
	 3.	 Select the TeleportPoint object in the Hierarchy and use the Move tool to place it

somewhere in the scene. Keep it on top of the Floor plane by making sure that its
Transform’s Y-value stays at zero or above.

	 4.	 Click Play and put on your HMD.
	 5.	 Press and hold the Touchpad button to bring up the teleport arc and reveal

available TeleportPoints.
	 6.	 Point the arc at the TeleportPoint and release the Touchpad button to be

teleported to the center of the TeleportPoint.

3.9.3 � TeleportArea
The TeleportArea script allows the player to teleport to any mesh this script is attached to
as long as that mesh also has a collider attached. The player will be teleported to the exact
point on the mesh where the arc was pointed (Figure 3.14).

553.9  Teleporting

Figure 3.13

(a) A point to which the user can teleport is shown with an arrow pointing to the location
on the floor. (b) The “TeleportPoint” script allows the colors of the teleport marker to be set,
and automatically includes the Animation component for the indicator (e.g. the arrow) to
move up and down.

Figure 3.14

(a) For the TeleportArea script, a rectangular area is shown on the teleport surface which
represents the area of movement as configured for the system—with the particular point
where the user will land represented by the translucent cylinder. (b) The TeleportArea script
is added to a plane mesh in the game world (called “TeleportPlane”).

56 3.  Getting Started with SteamVR and Unity

To add a TeleportArea to the SteamVR_Intro scene follow these steps:

	 1.	 Drag the Teleporting prefab into the Hierarchy if it’s not already in the scene.
	 2.	 Right-click on the Floor plane in the Hierarchy.
	 3.	 Select 3D Object/Plane to create a new plane as a child of the original Floor plane

in our scene.
	 4.	 Rename the new child plane TeleportPlane.
	 5.	 Select TeleportPlane in the Hierarchy.
	 6.	 Set the Y-value of TeleportPlane’s Transform to 0.001 so that it is floating 1 mm

above Floor.
	 7.	 Click Add Component in the Inspector and add a TeleportArea script to

TeleportPlane.
	 8.	 Click Play and put on your HMD.
	 9.	 Press and hold the Touchpad button to bring up the teleport arc and reveal the

TeleportPlane.
	 10.	 Point the arc anywhere on TeleportPlane and release the Touchpad button to be

teleported to that location.

3.10 � Where to Go from Here

In this chapter we’ve gone over the basics of starting a VR project using Unity and the
SteamVR Unity Plugin. By using the Interaction System as a basis for adding behaviour
and the Teleport system for locomotion you’ve got the building blocks you need to create
a wide variety of compelling VR experiences.

When you’re ready to dig deeper into the SteamVR Unity Plugin you can start by explor-
ing the rest of code that is included in the package. In addition to finding this code on the
Unity Asset Store, as we have in this chapter, you can find the latest version of OpenVR
and the SteamVR Unity Plugin at Valve’s public GitHub repository [SteamVR GitHub].

For general questions and help with SteamVR you can go to the SteamVR section of the
Steam Community Forums [SteamVR Forums].

For more developer and hardware focused support you can go to the SteamVR
Developer Hardware Community Forums [SteamVR Hardware Forums].

Finally, if you’re looking for more tutorials and VR how-to’s as well as in-depth VR and
AR courses checkout my website, VR Dev School [VR Dev School] at http://learn.vrdev.
school/.

References

[SteamVR Forums]

SteamVR Forums. SteamVR https://steamcommunity.com/app/250820/discussions/

[SteamVR Hardware Forums]

SteamVR Hardware Forums. SteamVR Developer Hardware https://steamcommunity.
com/app/358720/discussions/

http://learn.vrdev.school
http://learn.vrdev.school
https://steamcommunity.com
https://steamcommunity.com
https://steamcommunity.com

57References

[SteamVR GitHub]

SteamVR GitHub. https://github.com/ValveSoftware/steamvr_unity_plugin/tree/master/
Assets/SteamVR

[VR Dev School]

VR Dev School. http://learn.vrdev.school/

https://github.com
https://github.com
http://learn.vrdev.school

http://www.taylorandfrancis.com

59

4
UniCAVE
A Distributed Rendering System for Unity3D

Ross Tredinnick and Kevin Ponto
University of Wisconsin

4.1 � Introduction

Recently, Unity3D has become a top choice content authoring tool for virtual reality
(VR) development. VR systems have traditionally come in two forms: head-mounted
display systems (HMDs), in which the displays are affixed to the user’s forehead, and
CAVE systems, in which the display system surrounds the user [Cruz-Neira et al., 1993].
While the hardware and software environments for HMD systems have become some-
what standardized, CAVE systems tend to be unique, with display technology, screen
positions, and environment size varying considerably from system to system. Unity3D
provides excellent support for consumer market HMDs such as the Oculus Rift and HTC
Vive; however, support for non head-mounted VR display systems such as CAVEs and
tiled display walls [Ponto et al., 2015] has been limited. A commercially available effort
towards solving this problem exists [Kuntz, 2015]; however, no open source solution to the
problem exists, thus inhibiting widespread adoption of Unity3D for non head-mounted
systems. The complications from driving such systems include distributing rendering
content, supporting stereoscopic rendering, and interfacing with tracking technologies.
This chapter introduces UniCAVE, a free Unity3D plugin, which provides support for
these types of distributed VR rendering systems. Some basic familiarity with Unity3D
is expected and will aid in successfully adapting the plugin on an immersive non head-
mounted VR display system.

4.1	 Introduction
4.2	 The UniCAVE Plugin

4.3	 Challenges
4.4	 Conclusion

60 4.  UniCAVE

4.2 � The UniCAVE Plugin

The UniCAVE plugin works on immersive display systems driven by either a single
machine or a cluster. Cluster-based immersive display systems distribute rendering, track-
ing, and processing across many machines, thus creating another layer of challenges to
operate with these systems. While subsequent sections of this chapter will focus on the
challenges of running Unity3D seamlessly across a distributed, immersive projection VR
environment, all introduced solutions also apply to single machine environments.

4.2.1 � Configuration
Methods for configuring CAVE systems have traditionally relied on input files, often con-
figured through text. This method can make initial configuration and debugging quite
difficult. Visual configuration mechanisms have shown great promise [Kuntz, 2015]; how-
ever, these systems have utilized their own proprietary graphical user interface to produce
standard configuration files, thus requiring the additional step of learning the GUI tool
to create correct configuration files as well as potentially learning a new configuration file
format.

The UniCAVE plugin attempts to solve these configuration issues by allowing users
to make use of the Unity3D editing environment to configure an immersive projection
setup. This approach has several advantages compared to what is traditionally utilized.
First, assuming some basic prior experience with Unity3D, the Unity3D editor presents
a familiar user interface, allowing users to potentially configure their environment more
rapidly. Second, hierarchical transformations can be applied to the entire display system.
This enables operations such as scaling all projection surfaces to be accomplished through
parent transformation. Finally, display system setups can be parented to game objects,
enabling the dynamic movement of the viewing position based on game-level interaction.

4.2.2 � Architecture
The overarching challenge when adapting a game engine such as Unity3D to a non head-
mounted VR display system is to maintain display synchronization, that is to maintain a
seamless (optionally) head-tracked, stereoscopic image across displays connected to one
or more PCs via distributed rendering. Raffin et al. [2006] highlight various techniques
for synchronizing a display cluster. Following Raffin’s terminology: UniCAVE falls into
a Sort-First data parallelism scheme with static partitioning of the scene. In this scheme,
each machine in a cluster renders scene objects that are visible within its frustum, and the
final image is the side-by-side composition of the various display images. Data distribution
occurs from a single head node to other machines in the cluster. UniCAVE accomplishes
data distribution through a combination of Unity3D networking techniques that allow the
sharing of camera transformations, user input, randomization seeds, and time step infor-
mation. Details on the networking setup of UniCAVE is covered in Section 4.4. Prior to
covering the networking component of UniCAVE, it is first necessary to understand how
UniCAVE is setup and the differences in how rendering is performed within the plugin.

In order to accomplish the distributed rendering necessary to seamlessly render and
synchronize a display cluster using Unity3D, the UniCAVE plugin extends the existing
Unity3D editor and engine functionality. UniCAVE can be downloaded as a unitypackage
file [Tredinnick et al., 2017] and extracted into any Unity3D scene as shown in Figure 4.1.

614.2  The UniCAVE Plugin

The UniCAVE unitypackage consists of several prefab objects that have a similar struc-
ture. An example prefab that works with a six-sided CAVE system using one head node
and six rendering nodes is shown in Figure 4.2. Each prefab contains two main object
types within the hierarchy, a series of objects that represent the physical display system

Figure 4.1

Importing the UniCAVE unitypackage.

Figure 4.2

UniCAVE configuration for a six-sided CAVE System within the Unity3D editor. The system
hierarchy is displayed on the tab on the left.

62 4.  UniCAVE

projection surfaces (Displays) and a series of cameras that perform the rendering onto the
projection surfaces (Head). For systems that have 6-degree-of-freedom (6-DOF) track-
ing input devices, two additional objects (Wand, Input) exist in the prefab hierarchy to
enable correct tracking of an input device. UniCAVE uses a previously developed plugin
for interfacing with the VRPN open-source virtual reality input system to handle a variety
of input devices [Redig, 2014; Taylor et al., 2001].

Under the Head game object, a number of game objects containing Unity3D cam-
era objects exist per machine: one for monoscopic rendering; or two for stereoscopic
rendering. Under the Displays game object, a number of game objects representing
physical projection surfaces exist. A key UniCAVE script is the “PhysicalDisplay.cs”
script on child game objects of Displays. This script associates the one or two cam-
eras with the physical surface dimensions via an asymmetric perspective projection
matrix calculation. A snippet of the setup for this calculation is shown in Listing 4.1.
Details about the asymmetric perspective projection calculation are discussed below
in Section 4.2.3.

4.2.3 � Camera Projections
Typical perspective projection matrices, as calculated within OpenGL and DirectX, assume
a user is centered relative to the display and not moving. This generally makes sense, as
graphics applications are developed assuming the user is operating the application with

Listing 4.1.  Code snippet for calculating camera transformations within UniCAVE.

// plane is the quad object associated with the cameras
// and set via the Unity editor
// eyeOffset should be the offset from the tracking device
// to the eye in tracker space.
// trackedRotation is the Tracker Rotation object that
// tracks head orientation via VRPN.
void CalcMVP(Camera eye, GameObject plane, Vector3 eyeOffset,
 Quaternion trackerRotation,
 Camera. StereoscopicEye e)
{
 Vector3 pll, plr, pur;
 // camera holder’s position is tracked via VRPN
 // (this assumes it is immediately above this object)
 Vector3 trackedHead = this.transform.parent.position;
 Mesh m = plane.GetComponent<MeshFilter>().mesh;
 pll = plane.transform.TransformPoint(m.vertices[0]);
 plr = plane.transform.TransformPoint(m.vertices[2]);
 pur = plane.transform.TransformPoint(m.vertices[3]);
 // we want cameras to be oriented the same as the
 // plane we’re projecting onto
 this.transform.rotation = plane.transform.rotation;
 Vector3 eyePos = trackedHead + (trackerRotation * eyeOffset);
 eye.transform.position = eyePos;
 // set both below to handle native / non-native stereo
 eye.projectionMatrix = asymProj(pll, plr, pul, eyePos, eye);
 eye.SetStereoProjectionMatrix(e, eye.projectionMatrix);
}

634.2  The UniCAVE Plugin

their view centered on the monitor and without any sort of 6-degree-of-freedom (6-DOF)
tracking system. For CAVE or tiled display systems that incorporate head tracking, a view
of the scene must be rendered with perspective according to where the user is physically
located relative to the display surface. UniCAVE handles this by allowing a user to define
their physical display setup via Unity3D quad objects and then ties the asymmetric pro-
jection specifically to a quad via the Unity script in Listing 4.2 as adopted from Kooima
[2019]. An example of the effect of the above script on a camera’s projection in Unity3D
versus a normal perspective projection is shown in Figure 4.3.

4.2.4 � Networking
An important principle for distributed rendering involves the coordination of events
between systems. Raffin and Soares highlight various techniques for synchronizing a dis-
play cluster [Raffin et al., 2006]. Put simply, many cluster-based systems aim to have the
same actions happen at the same time while distributing viewpoints between nodes.

Key components within Unity3D that UniCAVE uses for accomplishing distrib-
uted rendering are Unity3D’s NetworkManager and NetworkIdentity components
together with the NetworkBehaviour class. Game objects that need distribution require a
NetworkIdentity component, which is automatically created if a script that inherits from
NetworkBehaviour is attached to the game object. A NetworkManager component must
be used to instantiate a connection between a server and clients, this is currently done
within the NetworkInitialization.cs script. Following the data distribution concept of pass-
ing information from a head node to slaves as discussed in Raffin et al. [2006], UniCAVE
assumes one machine serves as a head node, and thus the server, while other machines act
as slaves, thus clients. The NetworkInitialization script’s HeadMachine variable defines
the machine name within the cluster that acts as the server. Network initialization is per-
formed in the NetworkInitialization.cs script via the NetworkManager.StartServer
Unity3D function, called on the head node machine, while a NetworkManager.

Figure 4.3

The Unity3D quad representing the display surface is outlined in green. (a) Shows the stan-
dard camera projection, while (b) shows the camera with the asymmetric projection.

64 4.  UniCAVE

StartClient function call connects the slaves to the head node. A precaution must
be made while starting up multiple executables and initializing the network, as there is
no guarantee that the head node has initialized the server prior to slave nodes attempt-
ing to connect to it. To address this circumstance, UniCAVE checks the Unity3D
asynchronous callback function, void OnFailedToConnect(NetworkConnectio
nError error) that will occur after issuing an unacknowledged NetworkManager.
StartClient function call. When a connection fails, the client machines wait two sec-
onds and then attempt to reconnect. This repeats until a successful connection is made or
a predetermined number of attempts occurs and a failure state is reached.

The NetworkIdentity component and NetworkBehaviour class serves to keep cer-
tain variables and components of a game object synchronized across a network. Certain
Unity3D networking components, such as NetworkTransform and NetworkAnimator
(both which inherit from NetworkBehaviour), can synchronize components such as trans-
forms and animators across a network. Within the UniCAVE hierarchy, NetworkIdentity
components exist on the Head object to synchronize positional camera tracking, the Wand
object for synchronizing a tracked input device, and the parent object of the UniCAVE
prefab (e.g. CAVE in Figure 4.2), for synchronizing user navigation. A script on two objects

Listing 4.2.  Unity C# code snippet calculating projection matrix for an asymmetric perspective projec-
tion from an eye point to the corners of a quad.

// point_ll, point_lr, point_ul are lower left, lower right,
// and upper left points defining projection quad
Matrix4x4 asymProj(Vector3 point_ll, Vector3 point_lr,
 Vector3 point_ul, Vector3 eyePos, Camera cam)
{
 Vector3 right = (point_lr – point_ll).normalized;
 Vector3 up = (point_ul – point_ll).normalized;
 Vector3 normal = Vector3.Cross(vr, vu).normalized;
 // compute screen corner vectors from eye
 Vector3 v_ll = point_ll – eyePos;
 Vector3 v_lr = point_lr – eyePos;
 Vector3 v_ur = point_ur – eyePos;
 // find the distance from the eye to screen plane
 // any point works here, v_ll chosen arbitrarily
 float d = Vector3.Dot(v_ll, normal);
 // calculate and set matrix values
 float n = cam.nearClipPlane;
 float f = cam.farClipPlane;
 float l = Vector3.Dot(right, v_ll) * n / d;
 float r = Vector3.Dot(right, v_lr) * n / d;
 float b = Vector3.Dot(up, v_ll) * n / d;
 float t = Vector3.Dot(up, v_ur)* n / d;
 Matrix4x4 mat = Matrix4x4::zero;
 mat[0 ,0] = 2.0f * n / (r − l);
 mat[0 ,2] = (r + l)/ (r − l);
 mat[1 ,1] = 2.0f * n / (t − b);
 mat[1 ,2] = (t + b)/ (t – b);
 mat[2 ,2] = −(f + n) / (f − n);
 mat[2 ,3] = (−2.0f * f * n) / (f — n);
 mat[3 ,2] = −1.0f;
 return mat;
}

654.2  The UniCAVE Plugin

(Head and Wand) called VRPNTrack.cs handles the interfacing with VRPN and sets the
object transform position (location) and/or orientation (depending on whether the “Track
Position” and/or “Track Rotation” check boxes are on or off in the Unity3D inspector) from
a VRPN enabled tracking system. This script also derives from NetworkBehaviour so that
tracking information can be synchronized, which can be done via a NetworkTransform
component. One note, a NetworkTransform component has only a maximum send rate
of 29 frames per second, and in a real-time VR system, the update rate, and thus network
send rate would at least be 60 frames per second. Due to this limitation, UniCAVE explic-
itly synchronizes head tracking information using RPC calls as this allows for a greater
send rate of the head node tracking information. This occurs in the UCNetwork.cs script,
which is attached to the parent object in the hierarchy (e.g. CAVE in Figure 4.2).

4.2.5 � Timing
The overall system must stay synchronized to guarantee a seamless projection display.
This helps subsystems such as Animation, Physics, and Particles stay synchronized across
nodes. Maintaining a consistent timing across nodes becomes particularly challenging in
Unity3D, as we cannot directly set a common frame time amongst nodes via an exposed
class variable (although this can be done for the physics update loop via the Unity3D’s
variable Time.fixedDeltaTime). To work around this problem, UniCAVE uses an
exposed variable Time.timeScale to adjust the time scale of the engine—timeScale
is typically used for effects such as slow-motion.

The UniCAVE plugin uses the Time.timeScale variable to synchronize nodes
within a cluster by monitoring the relative game time of the master and slave nodes. When
the game time of a slave node is ahead of the master node, the plugin slows down the slave
node slightly for a few frames, and likewise if the slave node is behind the master node,
the plugin speeds up the time scale of the slave node. This concept is handled via the fol-
lowing equation:

	

()()
=

− + ∆
∆

M St t sync

sync
timeScale

∆sync is a tunable parameter which controls the rate at which timeScale is adjusted. Mt is
the time since start of application on the master node, while St is the time-scaled game
time of a slave node. Setting ∆sync at a rate too frequent or infrequent can cause irregulari-
ties in performance. In practice, the authors found that syncing the time every tenth of
a second maintains smooth synchronization between nodes. This equation has shown to
synchronize animations across a six-sided CAVE system and aid in synchronizing other
sub-systems that rely on engine time. If timing is slightly off, users would notice that
images at seams in the display are not perfectly seamless, so tweaking the Sync Time
(∆sync) value in the UCNetwork.cs script may help.

4.2.6 � Random Numbers
Random number generation within a display cluster must guarantee that all machines
initiate their random number generators with the same seed number in order to guarantee
matching numbers across nodes. UniCAVE achieves this by sending the random number

66 4.  UniCAVE

seed generated by the head node to all slave nodes within the cluster, whereby the slave
nodes then use that seed to initialize their respective random number generators using the
Unity3D function Unity.Random.InitState(int seed). Similar to synchronizing
head node transformations, UniCAVE makes use of networking RPC function calls to
send the data from head node to slave nodes. See the UniCAVE source for an example and
Unity3D’s documentation networking RPC calls for further information.

4.3 � Challenges

While the UniCAVE plugin provides support for many of the features needed for a dis-
tributed rendering environment, certain challenges still remain. These challenges include:
input, multiple displays, stereo, multiple GPUs, and underlying software changes.

4.3.1 � Input
Input serves as a challenge when trying to create a distributed rendering system within
Unity3D due to limitations in how Unity3D provides access to a project’s input defini-
tions. UniCAVE supports basic input via interfacing with VRPN and furthermore sup-
ports basic distribution of the input across a cluster. Ideally, one would be able to tap into
Unity’s input processing system by taking advantage of such functions as Unity.Input.
GetKeyDown and call it once with the expectation that it would run across the cluster.
We can see how this does not work in a cluster by considering input from a keyboard.
Keyboard and other direct inputs do not work on a clustered Unity3D system because
they are only attached to one machine, and the user, probably situated at the head node,
could press a key, but the script running and calling the GetKeyDown function would
only detect a key press on the head node, not the other machines in a cluster. A potential
solution to this would be to be able to “inject” input events into the Unity engine; however,
this is currently not an exposed feature within the Unity scripting engine. Input events
can only be detected rather than injected. UniCAVE provides basic support for sending
keyboard input across the cluster by checking whether the Input.inputString vari-
able has a length greater than zero, and, if so, it sends the string from head node to slave
nodes. A user of the plugin could then custom script an action dependent on the value of
the string sent across the network.

Currently, UniCAVE handles VRPN wand button presses by detecting a wand button
press on the head node and then disguising these values within a Unity transform object,
which is synchronized via a NetworkTransform component and therefore sent across the
cluster automatically. Slave machines check the values of this transform to see if they are
non-zero, and, if so, perform some sort of action (such as changing the color of a mate-
rial within the model). Currently, analog input from a wand navigates the user within the
scene by adjusting the transform of the UniCAVE parent prefab object on the head node.
The Wand.cs script provides some options (such as navigation speed and limiting vertical
movement) for customizing the default navigation technique. The adjustments made to
the transform of this prefab synchronize across a cluster via RPC calls, allowing basic user
navigation within a scene. Overall, the current solution for input is far from ideal, and the
UniCAVE authors are seeking and working out ways for improving the current clustered
input solution.

674.3  Challenges

4.3.2 � Multiple Displays
There are certain nuanced differences in Unity3D when attempting to use multiple
displays for DirectX vs. OpenGL executable builds and between operating systems.
Currently, Unity3D (Version 5.5) does not support multiple displays when building
with OpenGL on Windows. However, it does support multiple displays when build-
ing OpenGL on Linux. DirectX executable builds support multiple displays, with the
caveat that additional displays must be explicitly activated. In UniCAVE, an extra dis-
play will be activated if the user toggles on the “Use Specific Display” checkbox and
specifies a display index on the PhysicalDisplay script. This will automatically adjust any
created camera object’s target display to the specified index, i.e. “Display 2” instead of
“Display 1” if the index is set to 1 instead of 0. Some of the pre-packaged prefabs within
UniCAVE are configured to work with multiple displays, particularly prefabs meant to
be built with DirectX.

In the case of using OpenGL on Windows, multiple displays are handled as a single
window spread over them with camera viewports dividing the window into separate
parts. In this situation, all cameras target “Display 1” but then the Viewport Rect values
are modified. A summary example of these differences is shown in Figure 4.4. UniCAVE
comes pre-packaged with example prefabs to handle the OpenGL for Windows case.

4.3.3 � Stereo
The UniCAVE plugin provides support for different stereo techniques. Techniques such
as quad-buffered stereo, side-by-side stereo, or split-screen stereo are configured by way
of setting up the correct camera and viewport configurations in the Unity3D editor. For
quad-buffered stereo, which often requires setting an underlying operating system ste-
reo flag for the window, UniCAVE offers particular options depending on the version of
Unity3D. Prior to Version 5.1, Unity3D provided no support for quad-buffered active ste-
reo. To support OpenGL quad-buffered stereo in this case, the UniCAVE plugin provides
a stereo injection technique by way of GLIntercept [Trebilco, 2013]. The plugin works by
counting how many glClear calls are made on a bound frame buffer that returns true for a
glGetBooleanv(GL _ STEREO) call. The GL _ STEREO check ensures that the counter
only increments for the main rendering window, instead of frame buffer objects for off-
screen rendering, as they return false for this check.

The release of Version 5.1 of Unity3D added a player settings option titled “virtual real-
ity supported.” When checking this box, a list of VR-supported devices can be chosen.
This was largely added for support of commercially-available HMDs such as the Oculus
Rift and HTC Vive. One option, titled “Stereo Display (non-head mounted),” provides sup-
port for quad-buffered stereo. One caveat of using this option is that Unity3D’s underly-
ing engine follows a stereo rendering path, and, prior to Version 5.4.2, it would simply
use an automatically computed version of the projection matrix, which, in the case of
immersive projection display systems (e.g. a CAVE), might be wrong due to the matrix’s
lack of support for head tracking and correct asymmetric projection. With the release of
Unity3D 5.4.2, the function Camera.SetStereoProjectionMatrix can be used to
set a custom projection matrix, thus allowing asymmetric perspective projection matri-
ces as described in this chapter to be assigned in conjunction with enabling the “Stereo
Display (non-head mounted)” option.

68 4.  UniCAVE

4.3.4 � Multiple GPUs
A note for users of systems with multiple GPUs, Unity3D contains a hidden “-gpu #”
executable command line argument. Enabling this argument can benefit systems with
multi-GPU setups, although adjustments to application launching might be required. For
example, a prefab that would have used multiple displays might now, instead, render to a
single display, but more than one instantiation of the application could be launched with
the “-gpu #” command line argument with a value matching the index of the GPU driv-
ing the corresponding portion of the OS desktop. The Unity.Display.SetParams
function can be used to move and resize the application window to match the portion
of the OS desktop being driven by a GPU. The authors have successfully enabled this
on a dual GPU immersive display setup, seeing nearly double frame rate speeds in most
applications.

Figure 4.4

Comparing handling of multiple displays between OpenGL and DirectX builds. In this exam-
ple, two displays are used for stereo rendering where a single eye is assigned to each
display.

69References

4.3.5 � Underlying Software Changes
As Unity3D is a continuing, developing software tool, features are continuously being
added and also periodically removed. This evolution means that more efficient methods
of utilizing the Unity3D infrastructure for distributed display systems might be possible
in the future. On the other hand, the methods described in this chapter might become
unsupported in future versions of Unity3D software. This problem is well described by
O’Leary et al. [2017] in the case of VR support for the Visualization Toolkit (VTK). While
the hope would be that someday the features of this plugin become integrated into the
Unity3D core software infrastructure, the UniCAVE plugin provides support for these
types of systems in the interim.

4.4 � Conclusion

UniCAVE is an on-going project that has a website at https://unicave.discovery.wisc.edu
and a GitHub repository at https://github.com/livingenvironmentslab/UniCAVE. The web-
site contains documentation for the plugin as well as a step-by-step guide on how to create
your own prefab for an immersive projection system. (As of this publication, support for
Unity version 2018 can be found in the GitHub repository.) The UniCAVE team encour-
ages those who create such prefabs to contribute them to the active repository, so that
others with similar configurations might use your prefab to avoid “reinventing the wheel.”

References

[Cruz-Neira et al., 1993]

Cruz-Neira, Carolina, Daniel J. Sandin, and Thomas A. DeFanti (1993). Surround-screen
projection-based virtual reality: The design and implementation of the CAVE. In
Proceedings of the 20th Annual Conference on Computer Graphics and Interactive
Techniques, Anaheim, CA: ACM, August 1–6, pages 135–142.

[Kooima, 2019]

Kooima, Robert (2019). Perspective projection for VR. In Sherman, W. R., editor, VR
Developer Gems, Chapter 33. Boca Raton, FL: A K Peters/CRC Press.

[Kuntz, 2015]

Kuntz, Sébastien (2015). MiddleVR a generic VR toolbox. In Proceedings of 2015 IEEE
Virtual Reality (VR), Arles, France, March 23–27, pages 391–392.

[O’Leary et al., 2017]

O’Leary, Patrick, Sankhesh Jhaveri, Aashish Chaudhary, William Sherman, Ken Martin,
David Lonie, Eric Whiting, James Money, and Sandy McKenzie (2017). Enhancements
to VTK enabling scientific visualization in immersive environments. In Proceedings
of Virtual Reality (VR), Los Angeles, CA: IEEE, March 18–22, pages 186–194.

https://unicave.discovery.wisc.edu
https://github.com

70 4.  UniCAVE

[Ponto et al., 2015]

Ponto, Kevin, Joe Kohlmann, and Ross Tredinnick. (2015). DSCVR: Designing a
commodity hybrid virtual reality system. Virtual Reality, 19(1):57–70.

[Raffin et al., 2006]

Raffin, Bruno, Luciano Soares, Tao Ni, Robert Ball, Greg S. Schmidt, Mark A. Livingston,
Oliver G. Staadt, and Richard May (2006). PC clusters for virtual reality. In
Proceedings of IEEE Virtual Reality Conference (VR 2006), Alexandria, VA: IEEE,
March 25–29, pages 215–222.

[Redig, 2014]

Redig, Scott (github: “Laremere”) (2014). Simple VRPN wrapper for Unity. https://github.
com/Laremere/unityVRPN

[Taylor et al., 2001]

Taylor II, Russell M., Thomas C. Hudson, Adam Seeger, Hans Weber, Jeffrey Juliano,
and Aron T. Helser (2001). VRPN: A device-independent, network-transparent VR
peripheral system. In Proceedings of the ACM Symposium on Virtual Reality Software
and Technology, Banff, AB: ACM, November 15–17, pages 55–61.

[Trebilco, 2013]

Trebilco, Damian (2013). GLIntercept-OpenGL function call interceptor/logger. https://
github.com/dtrebilco/glintercept

[Tredinnick et al., 2017]

Tredinnick, Ross, Brady Boettcher, Sam Solovy, Simon Smith, and Kevin Ponto (2017).
UniCAVE github repository. https://github.com/livingenvironmentslab/unicave

https://github.com
https://github.com
https://github.com
https://github.com
https://github.com

71

5
Using the Kinect for Head-Tracked
Perspective and Pointing in
Stationary VR Displays
Jason W. Woodworth and Christoph W. Borst
University of Louisiana at Lafayette

5.1 � Introduction

This chapter shows how to use the Microsoft Kinect sensor V2 to track body parts and how
to set up a stationary (non-headset) virtual reality (VR) display with head-tracked per-
spective and pointing. Topics include how to set up the virtual camera perspective, how
to render stereoscopic imagery in side-by-side stereo format, how to get started with the
Kinect to obtain body part positions, and how to use the Kinect data to move the virtual
cameras and an interaction wand. We illustrate these concepts using Unity 2018.3 scripts,
a Kinect 2 sensor with the Windows adapter, and a 3D TV with side-by-side stereoscopic
capabilities (Figure 5.1). The code will be comprehensible to most Unity or VR developers,
and we recommend that readers know the basics of matrix transformations and coordi-
nate spaces.

5.2 � Kinect

The Kinect sensor is a low-cost depth camera that measures color and depth of points in its
view. It uses this information and decision trees to classify points into specific body parts,

5.1	 Introduction
5.2	 Kinect
5.3	 Working with the Kinect

SDK

5.4	 Motivating Application:
Head Tracked VR with
Pointer

5.5 	 Conclusion

72 5.  Using the Kinect for Head-Tracked Perspective and Pointing in Stationary VR Displays

and then it fits a skeleton to these body parts. While marketed mainly as an input device
for video games, the Kinect has been used for many other types of applications, such as
environment sensing for robots and body tracking for “serious” VR applications. With the
Kinect V2, your application will be able to detect the positions of 26 different joints on up
to six people within its view, plus detect some basic body state information, analyze facial
expressions, and more.

5.3 � Working with the Kinect SDK

5.3.1 � Getting the SDK
The Kinect For Windows SDK 2.0 and associated Unity add-on packages can be down-
loaded from the Microsoft Kinect Developer website [Microsoft 2019]. There are three
Unity packages included: the standard Kinect assets used for tracking body joints, assets
for tracking face movement and expressions, and assets for using gesture recognition. This
chapter will only consider the standard body joint package.

In addition to the Unity packages, example scripts and a scene included under Kinect
View folder give a starting example for reading Kinect joint data and visualizing the
body. The scripts BodySourceManager.cs and BodySourceView.cs are of particular inter-
est. Examining these scripts is recommended, as this chapter will build from these when
describing how to track joint positions.

Figure 5.1

An example of the final Perspective TV application. The user does not need to wear any
tracking devices; tracking is handled with the Kinect. Note the Kinect clamped on the TV’s
stand to keep it near the TV.

735.4  Motivating Application: Head Tracked VR with Pointer

5.3.2 � Kinect SDK Components
The Kinect SDK contains many classes and scripts. We will briefly explain the purpose
and contents of the classes most important to this chapter.

BodyFrame and BodyFrameReader: The information captured by the Kinect is given
to the developer through three major objects: a color frame, a depth frame, and a body
frame. The color and depth frames report information from the Kinect’s color and depth
cameras, respectively, while the body frame reports information about the bodies the
Kinect has identified. The latest body frame can be grabbed from the body frame reader.
Once a frame is grabbed, you can pull body information as an array of Body objects.

Body: The body object contains all information about a single body the Kinect has
identified. Most interestingly, it contains information about the different joints in the
body in a collection called “Joints” that maps a JointType to the actual Joint object. It
also contains some other basic information, like hand state, whether the person is wearing
glasses, and whether their eyes are open are closed. Each Body contains a unique tracking
ID, and should be referenced through it.

Joint and JointType: For each body, the Kinect tracks the local positions of 26 “joints,”
primarily those that connect two body segments such as the elbows or knees. However, the
Kinect API uses the name “joints” more generally, also referring to segment endpoints such
as the head position. The JointType class is a simple enumeration of all of the joints the
Kinect is tracking. Examine this class to get an idea for what parts of the body you can track.

5.4 � Motivating Application: Head Tracked VR with Pointer

Traditional stationary (non-headset) VR displays, such as projection displays or desktop
“fish tank” displays, make the virtual world feel real in part by naturally changing the per-
spective as the viewer’s head moves. This is required for an accurate perspective 3D geome-
try, making the screen or monitor analogous to a window into the 3D virtual world—where
the view changes when looking from different locations. This changing perspective pro-
vides a powerful depth cue with head motion. Even with monoscopic displays, the motion
can provide a sense of 3D space, especially when viewed with a single eye or through a video
camera (see the Johnny Lee YouTube video for a popular example [Lee 2007]). In contrast,
standard 3D movie or desktop game systems usually lack head tracking and are rendered
based on a particular fixed viewer position—correct only from a static “sweet spot.” Due
to the proliferation of consumer-grade trackers, such as the Kinect, it is now affordable to
provide a head-tracked VR experience with a standard 3D monitor or TV.

5.4.1 � Unity Object Overview
The approach for building the head-tracked display in Unity relies on a few in-game
objects and scripts, organized as follows and shown in Figure 5.2:

•• A top-level base object (a Unity empty GameObject), which we have called
“Perspective TV,” holds the other components, grouping them, and allowing
them to be moved as a collection.

•• A “quad” (four vertex polygon) scaled to represent the viewable monitor size (width
in x, height in y), is parented to the “Perspective TV” object and should have the
same origin and orientation as the “Perspective TV” base. This representation of

74 5.  Using the Kinect for Head-Tracked Perspective and Pointing in Stationary VR Displays

your monitor will be used to compute the projections. Making this an in-game
object allows easy changes to the monitor size and helps show whether projections
are working (in Unity’s editor).

•• An object that we call “Kinect Base” represents the Kinect and contains the script
that retrieves joint positions. Its position (location) and rotation (if any) in relation to
the TV Quad should be made to match how the real Kinect is placed relative to the
real monitor. For simplicity, we suggest starting with the Kinect placed in the same
orientation as the monitor (no rotation) and placed just above or below the monitor.

•• A “Head” object represents the position of the user’s head. The position will be set
based on Kinect tracking. The head should be oriented (rotated) the same way as the
TV, matching how users typically view the TV. Note that if you extend tracking to
include head orientation, perspective would be incrementally improved by applying
head rotation, allowing the location of each eye to be determined more precisely.

•• A camera or set of cameras acts as a surrogate for the eyes. Each camera has a script
configuring the perspective view. The camera objects should be children of the
head object to follow the head and remain oriented the same way as the head and
TV. Note that if you extend tracking to include head orientation, the eye objects
should be scripted to rotate into alignment with the TV, rather than matching head
alignment, to satisfy requirements for the perspective matrix construction.

•• A wand pointer will be used for pointing at scene objects for interaction. The
wand uses a thin cylinder and has a script that defines the pointing direction
based on certain joint positions.

5.4.2 � Camera Projection Matrix for an Off-Axis Eye
A virtual camera’s frustum is the volume that it sees. The frustum contents get projected
onto the viewing screen. This frustum can be described by a common 6-parameter model
shown in Figure 5.3. This defines the volume in terms of distances, or coordinates, along

Figure 5.2

All Unity objects under the Perspective TV hierarchy.

755.4  Motivating Application: Head Tracked VR with Pointer

principal axes of a coordinate system centered on the camera (eye). A slice through the
pyramid at distance near from the camera defines a virtual viewing window that ranges
from left to right in eye X coordinates and bottom to top in eye Y coordinates. This X axis
points toward the screen’s (eye’s) right, and Y points up.

The six frustum parameters can be converted into a projection matrix as part of cam-
era configuration for graphics rendering. A script from the Unity documentation on the
Camera.projectionMatrix variable shows exactly how to convert the parameters into a
projection matrix. The relevant code can be seen in Listing 5.1.

Listing 5.1.  Taken from Unity developer documentation for the Camera class (version 2018.3)
[Unity 2019].

// Set a Unity camera projection matrix with custom values
Matrix4x4 PerspectiveOffCenter(float left, float right, float bottom, float top, float near,
float far) {
 float x = 2.0f * near / (right – left);
 float y = 2.0f * near / (top – bottom);
 float a = (right + left) / (right – left);
 float b = (top + bottom) / (top – bottom);
 float c = -(far + near) / (far – near);
 float d = -(2.0f * far * near) / (far – near);
 float e = -1.0f;
 Matrix4x4 mat = new Matrix4x4();
 mat[0, 0] = x;
 mat[0, 1] = 0;
 mat[0, 2] = a;
 mat[0, 3] = 0;
 mat[1, 0] = 0;
 mat[1, 1] = y;

Near

x

y

Left

Top

Bottom Right

Far

Figure 5.3

A common 6-parameter camera model that defines a perspective frustum. Left, right, top,
and bottom define the distances from the camera, along principal axes, to the front win-
dow edges.

76 5.  Using the Kinect for Head-Tracked Perspective and Pointing in Stationary VR Displays

To create a head-tracked perspective window, we set up a frustum that matches the
pyramid defined by the real eye and the real viewing surface (monitor). We first mea-
sure the dimensions of the real screen, and the algorithm uses these to calculate monitor
extents along principal axes of the eye (or screen, because eye and screen coordinate sys-
tems are aligned for the 6-parameter model). Consider an eye that is off-center from the
monitor as shown in Figure 5.4, with the monitor and eye both represented in the eye’s
coordinate system:

	 left = monPos.x−(W/2.0)
	 right = left + W
	 top = monPos.y + (H/2.0)
	 bottom = top−H
	 near = monPos.z

The frustum from these calculated parameters has a front “window,” or pyramid slice,
matching the monitor size and distance from the eye. It also would set up the camera’s

 mat[1, 2] = b;
 mat[1, 3] = 0;
 mat[2, 0] = 0;
 mat[2, 1] = 0;
 mat[2, 2] = c;
 mat[2, 3] = d;
 mat[3, 0] = 0;
 mat[3, 1] = 0;
 mat[3, 2] = e;
 mat[3, 3] = 0;
 return mat;
}

left

(0,0)

monPos

W

H

to
p

Figure 5.4

The monitor and eye. The monPos is the position of the center of the monitor and it will be
computed in the eye-attached coordinate system (so, it holds the center’s distances from
the eye). W and H are the monitor’s width and height, respectively. Left and top are the dis-
tances from the eye to the left and top sides of the monitor.

775.4  Motivating Application: Head Tracked VR with Pointer

near plane to this eye distance, but that is not usually desired, because objects closer
to the eye than the near plane will not render. However, we want a 3D view that allows
object to “pop out” some distance in front of the screen. To enable the application
to show objects closer than the screen surface, we separate the near plane from the
monitor distance by scaling all parameters by s = near/monPos.Z, where near is now an
arbitrary desired near plane distance (such as the Unity camera default value). Scaling
all the parameters together like this preserves field of view (angles in the pyramid) but
moves the slices defining the visible depth range. The near and far values can then be
set as desired.

The final camera parameter values are:

near = (as selected by developer, typically a small value)
s = near/monPos.Z
left = (monPos.x−W/2.0) * s
right = left + (W * s)
top = (monPos.y + H/2.0) * s
bottom = top−(H * s)

We now create a script—we’ll call it PerspectiveCamera.cs—that can be placed on the cam-
era to give it the desired frustum. It will need a reference to the monitor quad (rectangle),
described earlier, to convey the monitor’s size. Note the script uses Unity’s “LateUpdate()”
instead of “Update()”, to ensure the camera setup runs after the head position is set
(otherwise, the perspective could be computed using the head position from a prior
frame). The script is shown in Listing 5.2:

Listing 5.2.  PerspectiveCamera.cs: set an off-axis view based on the location of an eye.

// PerspectiveCamera.cs
public Transform _monitor;
private Camera _cam; // Reference should be set in Start

void LateUpdate() {
	 // Get the monitor’s position in the eye/camera’s coordinate system
	 Vector3 monPos = this.transform.InverseTransformPoint(_monitor.transform.position);
	
 // Define width and height from the monitor quad.
 float H = _monitor.localScale.y;
 float W = _monitor.localScale.x;
 float s = _cam.nearClipPlane / monPos.z;

 float left = (monPos.x – W / 2.0) * s;
 float right = left + (W * s);
 float top = (monPos.y + H / 2.0) * s;
 float bottom = top – (H * s);
 float near = _cam.nearClipPlane;
 float far = _cam.farClipPlane;

 // The PerspectiveOffCenter function from Listing 5.1 should be included in this script.
 _cam.projectionMatrix = PerspectiveOffCenter(left, right, bottom, top, near, far);
}

78 5.  Using the Kinect for Head-Tracked Perspective and Pointing in Stationary VR Displays

In Unity, you can tag this script to execute in edit mode to more easily see its effects.
As you move the camera around, its frustum edges should continue to run through the
defined monitor quad’s corners. If you build a room behind the quad, then you will see
your view of the room change as the camera moves.

5.4.3 � Side-by-Side Stereoscopic 3D
We next set up a two-camera rig for stereoscopic rendering. Note that Unity has a built-in
stereo rendering capability with rendering speedups, but it does not currently have suffi-
cient parameters to reproduce the required viewing geometry for head-tracked stationary
displays—it doesn’t handle arbitrary head/eye positions relative to the screen.

Many stereoscopic 3D consumer displays support a “side-by-side” image format. This
format places the left and right eye images on each corresponding half of a single input
image, and the device then separates the two halves back into left and right images. For
example, for 3D TVs with battery-powered shutter glasses, two half-size images are
stretched across the entire screen when in 3D mode, and the TV alternatingly shows
these left and right images in sync with LCD shutters in the 3D glasses. Some pas-
sive 3D TVs use alternating lines for left and right views, with light from these lines
being polarized in different ways to be separated by polarizing lenses on the glasses. In
Unity, side-by-side rendering can be done using two cameras, one for each eye, that are
separated by the distance between the viewer’s eyes, also known as the interpupillary
distance or IPD.

To set up a stereo pair of cameras in Unity, create an empty GameObject representing
the head and create two cameras as child objects. These two camera objects, the left and
right eyes, should be offset along the head x direction by half of the IPD per eye/direc-
tion, to create a total separation of IPD. In some cases, y and z offsets may also need to
be applied for more accuracy, if there is substantial distance from the eyes to where the
Kinect places the head joint. Each camera should have its viewport width reduced to a
value of 0.5 to cover only half the screen. The viewport representing the right eye should
be moved to cover the right half of the screen by setting the X value to 0.5, as shown in
Figure 5.5. Each camera should then have the PerspectiveCamera.cs script placed on it, to
set the proper perspective frustum. Each camera (eye) will then produce slightly different
images from the other, as seen in Figure 5.6.

A screen-centered (on-axis) head position using the monitor’s 3D mode should produce
an accurate perspective window when your head’s distance from the screen matches the
virtual camera’s distance from the monitor quad.

Note that certain TV features such as motion smoothing or noise reduction can intro-
duce visual lag. We suggest disabling such features and enabling any special lag-reducing
“game modes” when available.

5.4.4 � Adding Head Tracking
5.4.4.1 � Retrieving Joint Positions

The KinectView main scene from Microsoft’s Unity package gives valuable insight into
how Kinect data can be accessed. The first step is to create a manager to access and store all
Kinect Body data. The script BodySourceManager.cs included with the Unity package can
be reused for this. Its purpose is to collect Body instances from the KinectSensor class’s

795.4  Motivating Application: Head Tracked VR with Pointer

BodyFrameReader, putting the body information into an array to be read from the class
we will create.

The second main step is to create the script that then reads joint data. The
BodySourceView.cs script effectively finds all joints for all bodies tracked by the Kinect.
We need to ensure that our 3D application consistently tracks the head of a single tracked
body—it is only possible to provide consistent correct 3D for a single person. We will call
our script that does this TrackBodies.cs.

Figure 5.5

Camera viewport and transform settings for the left and right eyes, using an IPD of 0.69.

Figure 5.6

An example of side-by-side half-width images for left and right eyes.

80 5.  Using the Kinect for Head-Tracked Perspective and Pointing in Stationary VR Displays

A first step in creating this script is to create a function for retrieving a desired joint’s
position from a single known body. Such a function is defined in Listing 5.3.

As indicated by the name of the function (GetJointLocalPosition), it returns the local
position of the specified joint. Here, local refers to the right-handed coordinate system
that the Kinect uses to report positions—reported in meters with respect to its base. For
example, if the Kinect reports the head joint at (1, .7, 3), the user’s head is 1 m to the right
of the Kinect (viewed from the front), .7 m above, and 3 m away from it. Note that mapping
the coordinate to a corresponding Unity object’s space can involve negating the z coordi-
nate to convert to Unity’s left-handed convention.

Local coordinates are sufficient for particular applications. For example, some appli-
cations only need to know the distance to a user, or what body pose gesture is made.
However, if your application needs to know the joint’s position relative to an object in
the world (e.g., testing foot collision with a soccer ball), you typically convert the posi-
tion into a world-referenced position. Generally, TrackBodies.cs is added to a GameObject
that can be considered the Kinect base and is positioned in the virtual world as needed. A
joint’s world-referenced position can be found by transforming the local Kinect-reported
position as shown in Listing 5.4. Note the z negation to switch from right-handed to left-
handed conventions.

Position tracking can be demonstrated by making the script track the head of a user
in view. This involves adding code to the script’s Update loop in fashion similar to
Microsoft’s BodySourceView.cs script. The code is shown in Listing 5.5—without stan-
dard null checks:

Listing 5.3.  Excerpt from “TrackBodies.cs”: function to extract the proper joint position data relative to
the Kinect.

// from TrackBodies.cs
private Vector3 GetJointLocalPosition(Kinect.Body body, Kinect.JointType jt) {
	 //Note that because Joint is ambiguous between the default Unity Joint class
	 // and the Kinect Joint, the full namespace will need to be spelled out
	 Windows.Kinect.Joint joint = body.Joints[jt];
	 return new Vector3(joint.Position.X, joint.Position.Y, joint.Position.Z);
}

Listing 5.4.  Excerpt from “TrackBodies.cs”: function to extract joint position data relative to the world
coordinates.

// from TrackBodies.cs
private Vector3 GetJointWorldPosition(Kinect.Body body, Kinect.JointType jt) {
	 Windows.Kinect.Joint joint = body.Joints[jt];
	 return this.transform.TransformPoint(new Vector3(�joint.Position.X, joint.Position.Y,

-joint.Position.Z);
}

815.4  Motivating Application: Head Tracked VR with Pointer

With this script, any person entering the Kinect’s field of view will spawn an object that
follows along the head’s tracked position in the game. If a person leaves the view, then the
object tracking their head will be destroyed. Because the position is being transformed by
the Kinect Base object’s transform, you can move the Kinect Base object around and the
tracked heads will follow.

5.4.4.2 � Tracking a Single User

Our application requires that only a single user’s head data be read and maintained for
consistent 3D. TrackBodies.cs can read the position of a joint from any single known body,
but how do we keep track of which one should be read? The solution is simple: because
the Kinect maintains a single unique ID for each body in view, we keep track of a desired
ID and only read the head joint of the body associated with it. To that end, we modify
TrackBodies.cs as shown in Listing 5.6:

Listing 5.5.  Excerpt from TrackBodies.cs: tracks the position of heads in the Kinect’s view and mounts an
object to them.

// from TrackBodies.cs
public BodySourceManger _bodyManager;
private Dictionary<ulong, GameObject> _heads; // Map body IDs to a created head object

void Update() {
 Kinect.Body[] bodyData = _bodyManager.GetData();
 // Collect unique IDs for each tracked body.
 List<ulong> trackedIDs = new List<ulong>();
 foreach (var body in bodyData) {
 if (body.isTracked)
 trackedIDs.Add(body.trackingId);
 }
 // Go through the IDs in the head dictionary to remove heads that are not tracked
 foreach (var ID in _heads.Keys) {
 if (!trackedIDs.Contains(ID)) {
 Destroy(_Heads[ID]);
 _heads.remove(ID);
 }
 }

 // Update the positions of heads for each body.
 UpdateTracking(bodyData);
}

private void UpdateTracking(Kinect.Body[] bodyData) {
 // For each body, update the head position
 // If there’s a new body, create a new head
 foreach (var body in bodyData) {
 if (body.isTracked) {
 if (!_heads.ContainsKey(body.trackingId) {
 // Create some basic gameobject and put it in _heads map
 CreateHead(body.TrackingId);
 }
 // Update position of that GameObject
 _heads[body.trackingId].transform.position =
 GetJointWorldPosition(body, Kinect.JointType.Head);
 }
 }
}

82 5.  Using the Kinect for Head-Tracked Perspective and Pointing in Stationary VR Displays

The FindNewBody function is simplistic, and only finds the first valid body the Kinect
sees in no particular order, but could be changed to find the closest user, a user making a
particular gesture, etc. This script allows access to a single consistent body that can then be
tracked from external scripts through a simple function such as in Listing 5.7.

Listing 5.6.  TrackBodies.cs: changes the previous TrackBodies script to track a single user; needed
to give consistent 3D. The user is arbitrarily defined, But the FindNewBody function can optionally be
enhanced to pick a user in view with greater specification.

// from TrackBodies.cs
private ulong _singleUserId;
private Kinect.Body _singleUserBody = null;
private int bodiesPresent = 0;

private void UpdateTracking(Kinect.Body[] bodyData) {
 // Ensure there is a tracked body, otherwise return
 int bodiesPresent = 0;
 foreach (var body in bodyData)
 if (body.IsTracked) bodiesPresent++;
 if (bodiesPresent == 0) {
 _singleUserBody = null;
 return;
 }

 // If the current body being tracked isn’t in our known bodies, pick a new one
 // This occurs when the application first starts or the tracked user walks out of view
 if (!_heads.ContainsKey(_singleUserId)) {
 _singleUserBody = FindNewBody(bodyData);
 _singleUserId = _singleUserBody.TrackingId;
 CreateHead(_singleUserId);
 }

 // Update head position
 _heads[_singleUserId].transform.position =
 GetJointWorldPosition(_singleUserBody, Kinect.JointType.Head);
}

private Kinect.Body FindNewBody(Kinect.Body[] bodyData) {
 foreach (var body in bodyData) {
 // Kinect does not always put a valid body in the first slot of bodyData
 // We need to go through the array and pick the first valid one.
 if (body.TrackingId == 0) continue;
 return body;
 }
 return null;
}

Listing 5.7.  From TrackBodies.cs: allows for external scripts to access the position data for a single user.
For example, the perspective camera will use it to track the single user’s head position.

// GetUserJointWorldPosition() allows external scripts to access position data for the single
// tracked user
public Vector3 GetUserJointWorldPosition(Kinect.JointType jt) {
 if (_singleUserBody != null)
 return GetJointWorldPosition(_singleUserBody, jt);

835.4  Motivating Application: Head Tracked VR with Pointer

5.4.4.3 � Linking Head Position and Perspective Camera

Finally, we make head position tracked for the perspective cameras to give the viewer
an accurate 3D perspective. The code, shown in Listing 5.8, can be added to the Update
function of a new script we’ll call FollowHead.cs, which can then be placed on the
head object.

5.4.5 � Adding a Pointer for Interaction
Just looking at a scene through a perspective window can be interesting, but being able to
interact with the scene is critical to making engaging VR applications. One common way
to interact in VR is through a wand or pointer ray. These are typically defined by a tracked
controller with some kind of button to trigger interaction. But, it is possible, with the
Kinect’s body tracking, to use the viewer’s pointing direction and hand gesture informa-
tion to define a wand and trigger.

The wand avatar can be a long thin cylinder (large local Y scale). Rotate the cylinder
around the X axis by 90° and parent it to an empty GameObject placed at the end of
the cylinder, as in Figure 5.7. This creates a more convenient wand coordinate system
for the following code and allows you to affect wand length by adjusting the parent’s
local Z scale. The user’s pointing direction can be defined as the normalized vector
between two joints on the user’s arm, such as the elbow and wrist. To point the wand in
that direction, we’ll create a script called Pointer.cs in the Wand parent object, shown
in Listing 5.9.

Listing 5.8.  Excerpt from FollowHead.cs: moves the attached GameObject to follow the tracked head
position. Attaching this to the head object will create the desired perspective 3D effect.

 Vector3 headPose = TrackBodies.instance.GetUserJointWorldPosition(Kinect.JointType.Head);
 this.transform.position = headPose;

 else
 return this.transform.position; // If nobody in view, just return a generic value
}

Figure 5.7

Example of a pointer wand. The given transform is for the inner cylinder.

84 5.  Using the Kinect for Head-Tracked Perspective and Pointing in Stationary VR Displays

We use the elbow-to-wrist direction as our default pointing direction because using
palm and finger joints can give jittery results. Developers can try other combinations to
identify what works with their application and Kinect placement.

In addition to joint positions, the Kinect gives some other information about tracked
body part states. This includes the state of the user’s hands, with possible states being open,
closed, and lasso (referring to a state in which the user holds two fingers up). We use the
closed state of the non-pointing hand (left in this example) to trigger interaction. There is
a tradeoff between using the pointing hand to trigger, which may be more intuitive, and
using the non-pointing hand, which may reduce side-effect motion or jitter of the pointing
hand. We add the code in Listing 5.10 to TrackBodies.cs to retrieve hand state:

The Pointer.cs script can then be updated to detect interaction through the code in
Listing 5.11:

The Interact function can then be defined in a way that is appropriate for your appli-
cation. Common interactions include selecting or picking up an object that the wand is

Listing 5.9.  Excerpt from Pointer.cs: Update() loop to move the pointer wand. Using the example joints,
the wand will be placed on the user’s right wrist, and will point in the direction defined by the vector from
their elbow to their wrist.

// from Pointer.cs
public Kinect.JointType pointingFrom = Kinect.JointType.ElbowRight;
public Kinect.JointType pointingTo = Kinect.JointType.WristRight;

void Update() {
 Vector3 pfPose = TrackBodies.instance.GetUserJointWorldPosition(pointingFrom);
 Vector3 ptPose = TrackBodies.instance.GetUserJointWorldPosition(pointingTo);
 Vector3 pointingDir = (ptPose - pfPose).normalized;
 // Point the wand in the proper direction and place it on the “pointing to” joint
 this.transform.rotation = Quaternion.LookRotation(pointingDir);
 this.transform.position = ptPose;
}

Listing 5.10.  Excerpt from TrackBodies.cs: allows external scripts to access the left hand state of the
single user.

Public Kinect.HandState GetSingleUserHandState() {
 return _singleUserBody.HandLeftState;
}

Listing 5.11.  Excerpt from Pointer.cs: detects if the user has closed their left hand, and calls some interact
function.

 if (TrackBodies.instance.GetSingleUserHandState() == Kinect.HandState.Closed) {
 Interact();
 }

85References

intersecting, or teleporting to an indicated area in the scene. For example, to activate an
object the wand is touching, you could find the object either with a raycast from the base
of the wand or by checking collisions with the wand. If this finds an object, you could send
a message using Unity’s GameObject.SendMessage() function, telling it to run the proper
activation code. Many other interactions and implementation methods are possible.

5.4.6 � Tips for Good 3D Scenes
The placement of objects becomes significantly more important when considering 3D. The
scene will look dull if all objects are exclusively placed far from the user. Objects will “pop
out” at the user when they are closer (between the screen and the eye) and the stereo effect
is also stronger for closer objects. But, note that objects very close to the eye can be diffi-
cult to view. If your application permits movement throughout the world, then you should
expect the viewer to move close to things, creating more dynamic views.

High contrast features can increase ghosting (bleeding of one eye’s image into the
other), which varies for different types of glasses. For example, a bright white line on a
black background is a worst case, and such features should be avoided if possible. Setting
the background color to something neutral can help.

The scale of objects also becomes more important when designing for VR. With an
effective perspective view, the scale of scene objects should appear equal to its designed
value; 1 meter in the virtual world should appear to be 1 meter to the viewer. It is possible
to change this by scaling the configuration of the TV/monitor to make the scene appear
smaller, or down to make it appear larger. This involves scaling the values of H and W
when computing the perspective matrix, and scaling the Head position by the same ratio.
All required scaling can be achieved by simply scaling the Perspective TV root object of
the configuration by some uniform value.

5.5 � Conclusion

This chapter presented a method for creating a low-cost stationary VR display using a
Kinect V2 sensor and a 3D TV. With this combination of hardware, the user will not have
to wear any tracking devices. Completing the exercises in this chapter lays the ground-
work for creating interactive VR applications with access to other tracking information
from the Kinect. The perspective viewing concepts are similar to those used in many VR
systems.

Acknowledgment

Part of this material is based upon work supported by the National Science Foundation
under Grant No. 1451833.

References

[Lee 2007]

Lee, Johnny (2007, December 21). Head Tracking for Desktop VR Displays using the Wii
Remote [Video File]. Retrieved from https://youtu.be/Jd3-eiid-Uw

https://youtu.be

86 5.  Using the Kinect for Head-Tracked Perspective and Pointing in Stationary VR Displays

[Microsoft 2019]

Microsoft (2019). Developing with Kinect for Windows. Retrieved from https://developer.
microsoft.com/en-us/windows/kinect/develop

[Unity 2019]

Unity (2019). Camera.projectionMatrix. Retrieved from https://docs.unity3d.com/2018.3/
Documentation/ScriptReference/Camera-projectionMatrix.html

https://developer.microsoft.com
https://developer.microsoft.com
https://docs.unity3d.com
https://docs.unity3d.com

87

6
The Vehicle Pattern for
Simplifying Cross-Platform
Virtual Reality Development
Anthony Steed
University College London

6.1 � Overview

There is now a diverse range of consumer virtual reality hardware. Unfortunately, this
diverse hardware comes with a diverse variety of tools, platforms, environments, and plugins
for development. Developers may need to get their hands on many bits of equipment to test
their applications in order to support a variety of platforms. Users are increasingly using a
variety of add-on devices for which custom code may be required (e.g., a walking platform
or a glove). Larger developers who want to support the main consumer systems can afford
the time to create custom user interfaces for each platform. However, smaller developers, or
professional users who want to support their own custom systems, may struggle to main-
tain large codebases with lots of optionality for different hardware.

While there are efforts to support device abstraction such as Open Source Virtual
Reality [OSVR, 2017], and OpenXR [Khronos Group Inc., 2017], these address relatively
low-level device abstractions. Their aim is to isolate APIs for specific devices so that appli-
cation code doesn’t need to know the specifics of, say, which tracking devices are attached.
These efforts allow, or will allow, the user to switch hardware, as long as that hardware
roughly matches in functionality. To the application, it might not matter exactly what
head-mounted display (HMD) is attached to the computer, or which tracking system is
used. However, the application still needs to make decisions about how to implement

6.1	 Overview
6.2	 Vehicle Pattern

6.3	 Discussion
6.4	 Conclusions

88 6.  The Vehicle Pattern for Simplifying Cross-Platform Virtual Reality Development

interactions between the user and the environment, and with these device abstractions
the application author might need to support various different cases such as whether or
not the hand-held controllers have analogue joysticks, support finger gestures, etc.

For many application developers who want to support a variety of hardware, coding to
each platform is repetitive and error prone. Each application must be developed for each plat-
form, with its different devices and its different potential ways of interacting with the user.
High-level toolkits may help (e.g. Vrui [Kreylos, 2008] or VRTK [The Stonefox, 2017]), but
these do not directly address the problem of making the application as portable as possible.

We note that the building of virtual reality applications involves writing two main
types of code: environment-specific code that implements behaviors (interaction styles)
for the application, and code that deals with input devices and implements locomotion
and object manipulation. The latter code is often quite generic. It is commonly re-used
between applications and might be itself quite complex. The former is often much more
specific to the application, or even a specific asset within the application. It might itself be
commonly reused (e.g., code for opening and closing doors), but this code doesn’t need to
depend on the specific details of the virtual reality interface.

Thus, we propose the Vehicle Pattern, which is an interface and set of conventions that
try to separate these code concerns so that applications can be ported very quickly between
hardware platforms or customized to support uncommon hardware. We use the term “vehi-
cle” because this conveys the idea that the user needs an interface to travel and interact over
long distances. In addition, this was the term used for a similar concept in an experimental
virtual reality system called DIVE [Frécon and Stenius, 1998; Frécon et al., 2001]. The term
“pattern” is used across many areas of design to refer to solutions to design problems that
are generic and re-useable. Many readers may have come across the term in the context of
software design patterns [Gamma et al., 1995] but the concept is quite general and has been
applied broadly to the design of human-computer interfaces (e.g. [Seffah, 2010]).

6.2 � Vehicle Pattern

6.2.1 � Design
The main idea behind the Vehicle Pattern is to make as few dependencies between
environment-specific code and interaction code as possible. We illustrate the pattern by
an implementation in Unity, though we have found that similar principles using different
implementation strategies are useful on other platforms.

First, we can examine how the user interaction code and environment-specific code are
inter-connected. Unity uses a scene graph abstraction, where a tree structure is formed
from objects called GameObjects. Each GameObject of the scene graph has one or more
instances of Components. Each Component type represents a type of functionality such
as 3D transformations, visual and audio rendering, meshes, collision volumes, etc. The
developer extends the functionality of the scene graph by writing scripts that compile to
create new types of Components that can then be added to GameObjects.

There are explicit and implicit mechanisms by which the functions of different
GameObjects become inter-connected. Explicit mechanisms include Components holding
references to other Components or GameObjects. It is very common for a script Component
to have a public variable which is a reference to another GameObject. The developer can
assign this reference within the Unity development environment by dragging a GameObject

896.2  Vehicle Pattern

to this variable. This makes a tight connection between the two. It is also common for
scripts to look up other components and game objects based on name, type, tags or layers
(see the Unity documentation for description of these). Sometimes the script will look these
up dynamically, and sometimes they are looked up once and then considered constant.
These types of explicit connections cause problems when scene-graphs are rearranged.

There are various implicit mechanisms that create relationships between objects.
Proximity between objects might cause collision events in the scene, objects might inter-
act through ray-casting, or objects might even cause visual effects such as shadowing. We
describe the impact of some of these in the following sections.

6.2.2 � Vehicle and Zone
The main part of the pattern is to create two isolated sub-graphs in the scene named
Vehicle and Zone. It is not strictly necessary to create two separate graphs, but it makes
the different roles of the two sub-graphs very obvious and it facilitates easy deletion and
replacement of the Vehicle (Figure 6.1). The Vehicle contains GameObjects that isolate
the device-specific and interaction-specific code. The Zone is the environment-specific
code. These two sub-graphs interact implicitly: the renderers in the Vehicle will “see” the
Zone objects, the collision volumes in both will interact, and physics engine will consider
both sets of objects ensemble. However, we want to minimize explicit code interactions
between the two or at least provide a specific point of code interaction.

If we have set up the Vehicle correctly, then it should be interchangeable for any other
Vehicle. In our demonstration in Unity, the Vehicles are relatively straightforward: they
provide for locomotion about the environment, selection of objects and grabbing of
objects. We will discuss two example Vehicles that we use commonly in our own testing:
one that supports the HTC Vive and one that supports interaction with the mouse and
keyboard. We want to support the latter not only because it is a still a common control sys-
tem, but also because during iterative development is it often convenient not to have to put
on an HMD and step away from the desk in order to do a quick test. We have commonly
had two or more Vehicles embedded in the Unity scene, but with all but one disabled, so
that the developer can very rapidly switch between platforms.

We discuss implementation specific details in Section 6.2.5, but first we describe how
scripts in the Vehicle and Zone can interact.

6.2.3 � VehicleMaster Singleton
Many behaviors are initiated by input from the user. In standard Unity design, scripts
have various callback functions that respond to different events. These callbacks include a

Figure 6.1

A fragment of a screen capture of the Unity Editor
showing an example scene comprising a Vehicle
and a Zone.

90 6.  The Vehicle Pattern for Simplifying Cross-Platform Virtual Reality Development

function called once a frame (Update), but also functions on collision between objects (e.g.
OnTriggerEnter), amongst others. We would like to enable a similarly simple program-
ming model. We also want to allow the support of functions that go the other way, where
objects in the scene change the vehicle behaviour. This is not discussed in this chapter, but
is an easy extension (see online materials).

We achieve these goals by adding a singleton class that represents the Vehicle’s func-
tionality. The following code from the VehicleMaster class shows the creation of singleton
class. A singleton class is a common software design pattern: exactly one of these objects
is created at run-time, and this single object can be found by a static reference at run-time.

In the Listing 6.1 code, the get function represents the accessor on the public static
Instance variable. Another script can then just access the variable VehicleMaster.
Instance to point to the singleton object. Thus, later we will see lines of code such as the
following (Listing 6.2):

where a script on an object under the Zone sub-graph uses this singleton to register a
callback.

6.2.4 � Event Delegates
The main function of the singleton is to provide a single point for registering functions to
be called by user interaction. The goal is to hide any device-specific or device-ensemble
configuration from the Zone. We introduce four generic events that objects can register for:

•• TouchStart: the user reaches out and makes contact with an object
•• TouchEnd: the user stops touching a touchable object
•• GrabStart: the user grabs and tries to manipulate an object
•• GrabEnd: the user drops an object that they were able to grab

Listing 6.1.  Part of the VehicleMaster class showing the implementation of a singleton.

// VehicleMaster is the main interface class between the Vehicle and Zone
public class VehicleMaster : MonoBehaviour {
 private static VehicleMaster instance;
 // Construct
 private VehicleMaster() { }
 // Instance
 public static VehicleMaster Instance {
 get {
 if (instance == null)
 instance = GameObject.FindObjectOfType (typeof(VehicleMaster))
 as VehicleMaster;
 return instance;
 }
}

Listing 6.2.  Registering a callback delegate with the VehicleMaster singleton.

 VehicleMaster.Instance.OnGrabStartThis += OnTouchOrGrab;

916.2  Vehicle Pattern

Of these, the intentions GrabStart/GrabEnd are obvious: the user wants to pick up a
scene object and will drop it later. Touch is less obvious. It makes sense with a device with
tracked input: some proxy of the user’s hand or fingers collides with the object. It is not
immediately obvious with a mouse and keyboard or a rotation only device with a single
button such as Google Cardboard- and Daydream-based devices. However, we think the
meaning can be clear. The “user is reaching out” has an analogy to clicking on something
with a mouse, or dwelling on a fixed target in the case of head gaze-based interaction.
These types of interaction are very common in virtual reality systems and they are logi-
cally different to grabbing an object, which is usually triggered by holding a button.

We added a negotiation step, where the Vehicle essentially asks whether the object can
be touched or grabbed. We also support a script registering interest in interactions with
just its own GameObject, or in any attempt to touch or grab an object. This can support
behaviors specific to a particular object (see the example in Section 6.2.6 of a cube that
changes color when picked up), or are general to any interaction (e.g., playing a sound
when an object is dropped).

The following code excerpt (Listing 6.3) shows the implementation of
DoTouchStart, which is the function a vehicle implementation would call inside
VehicleMaster when it wishes to announce that the user has started to touch an object. The
function takes not only the target of the touch, but also the object that touched it. At the
moment, this source object is vehicle implementation dependent, but as discussed later, a
future implementation may try to implement an abstract avatar representation so that the
receiving script can tell which body part touched the object.

Listing 6.3.  A fragment from the VehicleMaster implementation showing how the touch event is
processed.

// Event Handling :
//
// Touch events
public delegate bool OnTouchStartEvent(GameObject target, GameObject source);
public event OnTouchStartEvent OnTouchStartAny;
public event OnTouchStartEvent OnTouchStartThis;
// DoTouchStart() method calls delegate functions to notify them that the vehicle
// implementation is attempting to grab the object.
// returns true when it succesfully grabs the object; false when the grab fails.
public bool DoTouchStart(GameObject target, GameObject source) {
 // Trigger those delegates that registered for all callbacks
 if (OnTouchStartAny != null && OnTouchStartAny.GetInvocationList () != null &&
 OnTouchStartAny.GetInvocationList().Length > 0) {
 OnTouchStartAny (target, source);
 }
 // Trigger those delegates that registered for their individual callback
 if (OnTouchStartThis != null && OnTouchStartThis. GetInvocationList () != null &&
 OnTouchStartThis.GetInvocationList().Length > 0) {
 System.Delegate[] handlers = OnTouchStartThis.GetInvocationList();
 bool success = true;
 foreach (var item in handlers) {
 MonoBehaviour interestedObject = (MonoBehaviour)(item.Target);
 if (interestedObject.gameObject.Equals(target)) {
 object[] parameters = new object[] { target, source };
 success &= (bool)item.Method.Invoke(interestedObject, parameters);
 }

92 6.  The Vehicle Pattern for Simplifying Cross-Platform Virtual Reality Development

The code uses the C# event and delegate mechanism. An external script will define a
function of type OnTouchStartEvent. Note that the external script can register on
two types of events: OnTouchStartAny or OnTouchStartThis.

Within the OnTouchStartEvent function, there are two main blocks of code. The first
calls the delegate functions of all the scripts that have registered interest in any object being
touched. The second block checks that the target object matches the script that the delegate
is registered to (through the cast to MonoBehaviour which is the base class for all script
components). Note that the invocation of the delegate (item.Method.Invoke) returns a
boolean. This is then combined with any other flags from other delegates to return to the
vehicle implementation a success or failure. For example, the vehicle should stop any response
to touching this object. This is useful for ignoring objects that cannot currently be touched.

6.2.5 � Vehicle Implementations
We have developed various vehicles for different platforms. We have various custom vir-
tual reality systems in the lab, so our vehicles tend to be quite specific. However, we illus-
trate the principles with two simple vehicles, one for keyboard and mouse, and one for the
HTC Vive. We list short excerpts from the vehicle implementations as these are simple
variants of example code.

6.2.5.1 � Vive Vehicle

The Vive vehicle is based on the standard SteamVR Unity plugin. Our vehicle is based on
code from an online tutorial that we have used in student projects [de Kerckhove, 2017].

We start with the default scene graph for a SteamVR application. This adds GameObjects
for the camera system, the camera and the two main controllers. To each of the controllers
we add a small sphere collider and set it to be a collision trigger. In a script attached to each
controller we then add a script (ViveController.cs). The following code (Listing 6.4)
shows how touch is then implemented very easily, based on the collider on the controller
game object hitting other colliders in the scene. OnTriggerEnter is a standard Unity
callback from the collision system.

 }
 return success;
 }
 return true;
}

Listing 6.4.  Part of the Vive Vehicle implementation showing how the touch event is implemented.

// Use the Unity OnTriggerEnter() method to implementation implement touch for
// the Vive Vehicle.
public void OnTriggerEnter(Collider other) {
 if (!VehicleMaster.Instance.DoTouchStart(other.gameObject, this.gameObject)) {
 return;
 }
 SetCollidingObject(other);
}

936.2  Vehicle Pattern

Note that the call through to DoTouchStart function can be rejected, indicating
that this object is not touchable. See the online material for the detail of implementation
of touch ending, and grabbing.

This demonstration implements locomotion through a simple teleport technique. This
involves an implicit interaction between the Vehicle and Zone, which is that the teleport
technique can only effect travel to points on objects in a layer labeled “Ground.” However,
this is a simple constraint to enforce, and we can use the same labeled objects in the Mouse
and Keyboard Vehicle.

6.2.5.2 � Mouse and Keyboard Vehicle

This demonstration is based on Unity’s Standard Asset package. It modifies two scripts:
RigidbodyFirstPersonController and DragRigidbody.

The first-person locomotion controller has been modified with a simple switch between
moving mode and manipulation mode, and some code that we don’t discuss in this chap-
ter that constrains the walkable region to the same region that the Vive vehicle’s teleport
functionality can reach.

We illustrate the grabbing functionality in the following excerpt (Listing 6.5). When
the user presses a mouse button, a ray is cast into the scene. The object that is hit should
have a RigidBody component. We then call through the VehicleMaster to check whether
the object can be picked up or not (VehicleMaster.Instance.DoGrabStart).

See the online materials for the rest of the implementation of this example vehicle.

6.2.6 � Demonstrations
A very simple demonstration is shown in Figure 6.2. This is a distilled version of a basic
environment we use in various experiments at UCL where the user is sat in a virtual ver-
sion of the lab where they are physically sat. The online materials include a second simple
demonstration which is a recreation of the virtual pit demonstration [Usoh et al., 1999];
this is a common demonstration that we use with new users of virtual reality.

Listing 6.5.  Part of the Update function for the Mouse and Keyboard vehicle that uses the Unity Physics
Engine to send a ray attached to the mouse into the screen.

// We need to actually hit an object (if not then return)
RaycastHit hit = new RaycastHit();
if (!Physics.Raycast(mainCamera.ScreenPointToRay(Input.mousePosition).origin,
 mainCamera.ScreenPointToRay(Input.mousePosition).direction,
 out hit, 100, Physics.DefaultRaycastLayers)
 return;

// We need to hit an object that’s a rigidbody (otherwise return)
if (!hit.rigidbody)
 return;

// We need a rigidbody that’s earmarked as grabbable (otherwise return)
if (!VehicleMaster.Instance.DoGrabStart(hit.rigidbody.gameObject, this.gameObject))
 return;

// At this point we know that hit.rigidbody is an object we can grab
// (see online material for the rest of the vehicle implementation)

94 6.  The Vehicle Pattern for Simplifying Cross-Platform Virtual Reality Development

There are two interactive objects in this environment that illustrate the main principles
of the Vehicle Pattern. We show the whole scripts to emphasize how similar these are to
standard script structures. The first interactive object is the cube on the left of the table
in Figure 6.2. (It is called CubeRotator in the scene graph in Figure 6.1). In Listing 6.6
you can see how the delegate is registered with the lines in the Awake callback. Note that
the OnTouchOrGrab function rejects the touch or grab and then starts a co-routine to
spin the object.

Listing 6.6.  The BoxSpin class spins the object when it is grabbed.

// BoxSpin.cs
// A behaviour that causes an object to spin when the object is grabbed.
public class BoxSpin : MonoBehaviour {
 private bool moving;

 // register the OnTouchOrGrab script (delegate) to OTST & OGST
 void Awake() {
 moving = false;
 VehicleMaster.Instance.OnTouchStartThis += OnTouchOrGrab;
 VehicleMaster.Instance.OnGrabStartThis += OnTouchOrGrab;
 }

 bool OnTouchOrGrab(GameObject source, GameObject target) {
 if (!moving) {
 StartCoroutine("MoveAndWait");
 }
 return false; // Reject the touch event
 }

 // A coroutine that rotates “this” object once
 IEnumerator MoveAndWait() {
 float angle = 0;
 moving = true;
 while (angle <= 360.0) {
 this.transform.eulerAngles = new Vector3(0, angle, 0);
 angle = angle + 3.0f;
 yield return new WaitForFixedUpdate();
 }
 this. transform.eulerAngles = new Vector3(0, 0, 0);
 StopCoroutine("MoveAndWait");
 moving = false;
 }
}

Figure 6.2

A simple scene modelled on one of our labs at UCL. The
left cube is not manipulable and will spin when the user
attempts to interact with it. The right cube is being held by
the user and is changing color.

956.3  Discussion

The code for the second box is very similar (see Listing 6.7). It registers two different
delegates, OnGrabStart and OnGrabEnd. The former accepts the grab event and thus
the vehicle is now free to manipulate the object. It also starts to change the color of the
object. The color changing is stopped when the latter delegate is called, remaining as the
last randomly selected colour.

6.3 � Discussion

6.3.1 � Constraints and Limitations
The separation between Vehicle and Zone relies on several implicit assumptions. For exam-
ple: a natural human scale of objects; an understanding that the Vehicle will not create

Listing 6.7.  The ColourChange class behaviours causes an object to change colour repeatedly when
held.

// ColourChange.cs
// The ColourChange behaviour causes an object to change colour repeatedly
// when the user is holding the object.
public class ColourChange : MonoBehaviour {
 private bool changing;
 Renderer rend;	 // Store “this” object’s renderer component

 // When “game” starts (world is initialized)
 void Awake() {
 rend = this.GetComponent<Renderer>();
 changing = false;
 VehicleMaster.Instance.OnGrabStartThis += OnGrabStart;
 VehicleMaster.Instance.OnGrabEndThis += OnGrabEnd;
 }

 // While “this” object is grabbed change colour.
 bool OnGrabStart(GameObject source, GameObject target) {
 if (!changing) {
 StartCoroutine("ChangeColour");
 }
 return true; // Accept the Grab event
 }

 // Disable the colour change when the grab is ended
 bool OnGrabEnd(GameObject source, GameObject target) {
 if (changing) {
 StopCoroutine("ChangeColour");
 changing = false;
 }
 return true;
 }

 // Change colour of “this” object for every .5 seconds until the co-routine is cancelled.
 IEnumerator ChangeColour() {
 changing = true;
 while (true) {
 rend.material.SetColor("_Color", new Color(Random.Range(0F, 1F),
 Random.Range(0F, 1F), Random.Range(0F, 1F)));
 yield return new WaitForSeconds(0.5f);
 }
 }
}

96 6.  The Vehicle Pattern for Simplifying Cross-Platform Virtual Reality Development

collision volumes that are too large and that the camera will move at a certain range of
speeds (so that collision detection works), etc. The Vehicle Pattern as described is sufficient
for basic applications that do not have highly specialized needs for interaction. The pattern is
easy to extend to fit specific needs, and we continue to develop our example implementation.

For example, an obvious extension would be to develop a standard representation of
the user’s avatar so that environment-specific interaction could start to address the ava-
tar’s representation. This would usefully include scene graph objects that components can
discover which indicate the user’s head position, hand positions, standing position, etc.,
so that even environment-specific scripts can reference them. For example, a script might
want to animate an avatar so that it looks at a user. It would also be useful to have a more
refined collision volume associated with the user so that fine-scale collision detection can
be done. For a Vehicle based on a mouse and keyboard, or other interface without full 3D
tracking, some of these avatar object positions would need to be hypothesized based on
the camera position and user interaction.

When we get to the area of dynamic user interfaces that construct visual representations
inside the scene such as menus, the decisions become more difficult. The separation of
touch and grab works in many situations, but there is currently no fallback for an environ-
ment behavior that is triggered by a specific button on a controller. If this was needed the
programmer would have to customize the Vehicle itself. However, in our opinion abstrac-
tions such as the Vehicle can be extended to cover a very wide range of application needs.

The Vehicle Pattern doesn’t deal with porting of visual and audio assets between dif-
ferent platforms. Some platforms are significantly less powerful than others. When pro-
ducing a game in Unity it is common to simplify assets for low-end platforms and keep
different versions of scenes. How assets can be managed in real-time to support low-end
platforms remains a research question.

6.3.2 � Related Work
The Vehicle Pattern is strongly influenced by prior work in the area that uses similar prin-
ciples. In particular models of web-browsing where the user has a lot of control over their
web browser’s behavior. Although a lot of functionality is fixed, users can customize their
web browser with various extensions. Presently, most VR development is not supporting
this type of customizability for the user. Our Vehicle Pattern highlights the fact that by
having developers begin the development process with device abstractions, interaction
techniques are no longer customizable by the end user. The Vehicle Pattern is part of a
skeleton implementation by the author, called Yther, that proposes one type of solution to
this dilemma [Steed, 2015].

Previous efforts to support a broad range of 3D interfaces have acknowledged similar
problems. The VRML97 and then X3D standards [VRML, 1997; X3D, 2013] had specific
methods to support device independence. For example, the NavigationInfo node had
a recommended type of locomotion, such as “Walk” or “Fly” that the browser should sup-
port. In addition, manipulation of objects was done in a way that could imply motion con-
straints. For example, the PlaneSensor node supported objects that could be dragged
along a surface. It was up to the VRML or X3D browser to determine how to implement
the dragging within the user interface.

Our pattern is most strongly related to the vehicle concept from an older research plat-
form called DIVE [Frécon and Stenius, 1998; Frécon et al., 2001]. This was browser-centric

97References

in the sense that scenes were developed independent of user interaction specification, and
each user installed and ran a browser that could implement interaction in various ways.
In fact, the browsers themselves were highly customizable (they were written in the TCL
language), so a browser could dynamically switch its interaction style, or in the DIVE ter-
minology switch “Vehicle.” The system was event-based, with decoupled message passing
between the browser and in-scene objects. Some of message types are similar to the dele-
gate types we propose: they included grasp, select and move events. They also included var-
ious events for multi-user interaction, and other application-level events such as loading
of sub-scenes. Although we have previously argued for asynchronous message passing as
a mechanism to decouple user-interaction and environment-specific code, delegate-based
calling seems more appropriate in modern platforms where latency is paramount [Steed,
2008]. Asynchronous message passing has its advantages, but especially in Unity there are
significant downsides. For example, developers often rely on knowing the rough ordering
or lack of ordering of different functions (e.g., callbacks from different internal functions
such as fixed-update callbacks, the order of script evaluation in a scene graph, .Net 2.0
yield functionality, etc.), which can match poorly with asynchronous message-passing.

6.4 � Conclusions

The excitement around consumer virtual reality, and the ready availability of a variety
of new devices means that there are great opportunities to develop new user interfaces.
Unfortunately, there is a dearth of high-level toolkits that simplify support for a range of
devices. While development environments such as Unity or Unreal Engine enable devel-
opment for many devices, porting code between different devices, or ensembles of devices,
is tricky.

In this chapter we have described the Vehicle Pattern, which attempts to separate
the concerns of programming support for user-interaction on devices, from virtual
environment-specific behavior. This pattern has proved very useful in our lab, where stu-
dents may want to develop on one machine, but quickly deploy to another that supports
a specific hardware configuration. While the skeleton implementation is simple, we hope
that it can be useful for others as is. We also hope that the principles can help inform future
toolkits so that some conventions, or even standards, can emerge that alleviate some of the
need for the developer to consider which virtual reality systems their content may run on.

References

[de Kerckhove, 2017]

de Kerckhove, Eric Van (2017). HTC Vive Tutorial for Unity. https://raywenderlich.
com/149239/htc-vive-tutorial-unity/. (accessed July 1, 2017).

[Frécon et al., 2001]

Frécon, Emmanuel, Gareth Smith, Anthony Steed, Mårten Stenius, and Olov Ståhl
(2001). An overview of the COVEN platform. Presence: Teleoperators and Virtual
Environments, 10(1):109–127.

https://raywenderlich.com
https://raywenderlich.com

98 6.  The Vehicle Pattern for Simplifying Cross-Platform Virtual Reality Development

[Frécon and Stenius, 1998]

Frécon, Emmanuel, and Mårten Stenius (1998). DIVE: A scaleable network architecture
for distributed virtual environments. Distributed Systems Engineering, 5(3):91.

[Gamma et al., 1995]

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides (1995). Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley Longman
Publishing Co., Inc.: Boston, MA.

[Khronos Group Inc., 2017]

Khronos Group Inc. (2017). OpenXR, Cross-platform, Portable, Virtual Reality. https://
khronos.org/openxr. (accessed July 1, 2017).

[Kreylos, 2008]

Kreylos, O. (2008). Environment-independent VR development. In Proceedings of
Advances in Visual Computing: 4th International Symposium, ISVC 2008, Las Vegas,
NV: Springer Berlin Heidelberg, December 1–3. Proceedings, Part I, pages 901–912.

[OSVR, 2017]

OSVR (2017). Open Source Virtual Reality. http://osvr.com/software.html. (accessed
July 1, 2017).

[Seffah, 2010]

Seffah, Ahmed (2010). The evolution of design patterns in HCI: From pattern languages
to pattern-oriented design. In Proceedings of the 1st International Workshop on
Pattern-Driven Engineering of Interactive Computing Systems, Berlin, Germany:
ACM, pages 4–9.

[Steed, 2008]

Steed, Anthony (2008). Some useful abstractions for re-usable virtual environment plat-
form. In Proceedings of the IEEE VR SEARIS Workshop, Reno, NV.

[Steed, 2015]

Steed, Anthony (2015). Yther: A proposal and initial prototype of a virtual real-
ity content sharing system. In Proceedings of the 25th International Conference
on Artificial Reality and Telexistence and 20th Eurographics Symposium on
Virtual Environments, ICAT–EGVE ’15, Aire-la-Ville, Switzerland: Eurographics
Association, pages 151–158.

https://khronos.org
https://khronos.org
http://osvr.com

99References

[The Stonefox, 2017]

The Stonefox (GitHub handle) (2017). VRTK—Virtual Reality Toolkit. https://vrtoolkit.
readme.io/. (accessed July 1, 2017).

[Usoh et al., 1999]

Usoh, Martin, Kevin Arthur, Mary C. Whitton, Rui Bastos, Anthony Steed, Mel Slater,
and Frederick P. Brooks (1999). Walking > walking-in-place > flying, in virtual envi-
ronments. In Proceedings of the 26th Annual Conference on Computer Graphics and
Interactive Techniques, Los Angeles, CA: ACM Press/Addison-Wesley Publishing
Co., pages 359–364.

[VRML, 1997]

VRML (1997). ISO/IEC/DIS14772, The Virtual Reality Modeling Language. https://
web3d.org/files/specifications/14772/V2.0/index.html

[X3D, 2013]

X3D (2013). ISO/IEC IS 19775-1, X3D Abstract: Node Definitions. http://web3d.org/
documents/specifications/197751/V3.3/index.html

https://vrtoolkit.readme.io
https://vrtoolkit.readme.io
https://web3d.org
https://web3d.org
http://web3d.org
http://web3d.org

http://www.taylorandfrancis.com

101

7
WebXR
Virtual Reality… in the Browser

Luis Diego González-Zúñiga and Peter O’Shaughnessy

7.1 � Do Virtual Reality… in the Browser

Virtual Reality allows us to create and experience immersive spaces by putting the user
in the center of the data and environment. While this is exciting, desirable, and (kind of)
new, the ease of entry into the medium for developers and consumers is far from being
accessible, comfortable, or affordable. Among the many challenges that pose barriers
towards massive adoption of Cross Reality (XR, referring to the collection of VR, AR and
MR) we can cite: (1) device and content availability, (2) scattered and scarce content, and
(3) a lack of social interactions in the available experiences. Thankfully, each of these bar-
riers are waning.

The standard way for distributing XR content nowadays is through the traditional
app store model. While this is appropriate for some experiences, it has disadvantages

7.1	 Do Virtual Reality… in the
Browser

7.2	 The “Immersive Web”
Specification

7.3	 Distribution and
Accessibility of Content
Made Easy

7.4	 Write Once, Run
Anywhere

7.5	 Available Tools for Fast
and Easy VR Creation

7.6	 Web APIs: They Get Along
Very Nicely with WebXR

7.7	 Making Your WebXR
Content Accessible
Offline

7.8	 Progressive Enhancement
of WebXR Applications

7.9	 Recommendations
When Creating WebXR
Experiences

7.10	 Summary

102 7.  WebXR

and might not be the ideal distribution channel for all types of experiences. The current
paradigm requires users go to a closed environment (app store) to wait several minutes
to download onto their devices hundreds of megabytes, for an experience they will most
likely use once. An interesting alternative might be to look to the web browser, since it
allows frictionless XR experiences at the tap of a link, with no third-party policies or
store-approval required.

The commoditization of the web browser has led us to underestimate its power.
We associate it with email, social media, and other web pages we visit only when there
is no default app for the task at hand. What we might not be aware of is that recent
improvements in the web platform give modern browsers growing access to device sen-
sors (like geolocation, accelerometer, biometric), external devices (gamepads, MIDI,
Bluetooth, USB) and native-like features (push notifications, ability to work offline,
access to file system). In this growing set of features for web browsers, WebXR (for-
merly WebVR) is poised to be an API that enables a form of Cross Reality (XR) by using
web technologies.

For the consumer, WebXR can theoretically enable most devices with a modern web
browser to experience immersive content, even without a headset, by means of the ‘magic
window’ (refer to the section “Progressive Enhancement of WebXR Applications”). It also
permits experiences to adapt to the device they are being accessed through. This makes
consuming content an easy endeavor, and ensures that content is truly accessible.

From a developer’s perspective, WebXR removes a lot of the complexity associated with
hardware configurations and leverages existing standard web knowledge to create these
immersive environments. Every developer with basic experience of HTML, CSS, and
JavaScript can create XR applications with just a text editor and a web server. Exploiting
this abstraction is key for a fast expansion of diverse XR content.

Additionally, this means that the cost of entry for a user to experience XR is gone,
or greatly reduced, since they can use their own mobile devices and laptops to access
the content. It is the same for developers, where no significant investment is required to
start testing or developing content for limited experiences. (Full room-scale experiences
require high end tracking sensors).

7.2 � The “Immersive Web” Specification

We have mentioned WebXR in the previous section. It is important to explain specifically
what this is. WebXR is an experimental JavaScript API that provides interfaces to XR
hardware (VR/AR/MR), allowing developers to build compelling and comfortable experi-
ences on the web. At the time of writing (February 2018), the WebXR specification is in
active development and its stable release is version 1.1 [Vukicevic 2017].

The group formerly known as the “W3C WebVR Community Group” is behind it, and
they announced in December 2017 that going forward they were expanding the scope
(of WebVR) and renaming the group as the Immersive Web Community Group. Also, the
term WebXR would now be used to refer to its expanded scope and the API [W3C 2017].
As such, the effort that was formerly known as the WebVR 2.0 specification will become
the “WebXR Devices API” specification. It is important to say that this does not change
the focus of developers and designers interested in WebVR, as 1.1 is still the stable version

1037.3  Distribution and Accessibility of Content Made Easy

and the easiest way to build WebXR experiences today. You can contribute and see the
ongoing work the WebXR GitHub repository found in [WebVR_CG 2017].

This specification is not an official W3C Standard, nor is it on the W3C Standards
track—yet. Needless to say, the excitement and collaboration surrounding this technol-
ogy is huge, with support from browser vendors like Mozilla, Samsung, Google and
Microsoft.

In a nutshell, the WebXR API specification introduces interfaces to the DOM
(Document Object Model) to support runtime access to VR (and eventually AR/MR)
functionality. Presently, the “v1.1” is standard and supported in many browsers, and work
continues towards the WebXR spec.

This specification covers a wide range of elements associated with VR, ranging from
device ids, pose data (for headset and accessories), eye parameters and frame data, to
extensions of other Web APIs like the Gamepad API. We will not cover these interfaces
directly, since they are bound to change soon. Thankfully for developers, many of these
changes will not be visible since we can create experiences through frameworks that wrap
and abstract the underlying API. Please refer to the 1.1 spec document for information.
And get in touch with the Community Group if you have interest in shaping the future of
WebXR.

7.3 � Distribution and Accessibility of Content Made Easy

The implementation of virtual reality in a web browser, like all other things that adhere to
web standards, best practices, and an open technology stack, benefit from having a strong
distribution and great accessibility. In its simplest form, a WebXR experience is a web
page. As such, it is accessed through a URL, easily shared through a link, and compatible
with other web technologies. This is extremely powerful, and allows anyone to build inno-
vative experiences that can span across physical and digital locations and devices.

7.3.1 � Transcend Virtual Barriers with Physical Web
A physical “web beacon” is a low-powered, battery efficient device that broadcasts con-
tent over Bluetooth. Right now we can set up a physical web beacon with a URL that’s
picked up by a service provided by a browser or app (like “CloseBy” in Samsung Internet
or “Project Magnet” by Mozilla). This URL generally generates a notification that will
redirect you to a web page on your mobile device. This page might be WebXR enabled,
whereby you can “experience” it on a headset (Samsung Gear VR, Google Daydream or
Cardboard). All of this in little more than half a minute. You could even save the app to
your home screen (using the Service Worker API to create a Progressive Web App, which
is a web site that can work offline and have access to push notifications) to use as a direct
access to relaunch a VR experience whenever you want. Put simply, in only two taps you
can be providing your users a VR experience (Figure 7.1).

This can provide a frictionless way to engage our users. Imagine a user who might be
walking in front of a movie theater or museum and receives a notification about a VR
experience related to an exhibition available. The user can opt in if they prefer to get this
type of notification, and they can immediately go to the browser and pan around their
smartphone to get a preview or interact with the experience (Figure 7.2).

104 7.  WebXR

7.3.2 � Engage through a Magic Window
Around 85% of users view WebVR content this way through a magic window [Bozorgzadeh
2017]. Much of the value derives from users being engaged early on and in a friction-
less manner, thus “WebVR’s magic window is the gateway for pushing VR to billions
of people”. To date there is no other way of consuming VR content that is as accessible
(content and device-wise) or that has this type of massive reach.

The web can become the preferred way of distributing VR content; the same way it
became the preferred way to distribute video content. It is compatible with many devices,
platforms, and its core technologies support interactivity, communication, and boost
sharing in unprecedented ways for VR (Figure 7.3).

Figure 7.2

Samsung’s “CloseBy” and Android’s “nearby” notifications.

13:09
Search with DuckDuckGo

Figure 7.1

“From a physical object to the browser to your home screen to your headset.”

1057.4  Write Once, Run Anywhere

7.4 � Write Once, Run Anywhere

It is the promise that many frameworks have tried to deliver for a long time—the holy grail
of development. It is no secret that standard web technologies are as close as it gets to writ-
ing once and running everywhere. WebVR 1.1 support has been implemented in several
browsers. As WebVR is adopted by more browser platforms, a growing number of devices
can support the same WebVR experience (Figure 7.4).

Overall, we see that Samsung Internet, Firefox Nightly, Chromium, Chrome for Android,
Oculus Browser (formerly Carmel), Microsoft Edge, and Mozilla Servo all support the spec-
ification. These implementations are referred to as experimental and subject to change.
This generally means WebXR implementation in browsers is disabled by default, except
Oculus Browser and Samsung Internet for Gear VR 5.6. Firefox 55 now supports WebVR 1.1
since August 2017 and Chrome on Android on Daydream-compatible devices will enable
this with an origin trial (i.e. data developers can register to have it enabled for all users on
their domain for a fixed period of time).

Noteworthy is the fact that all major VR consumer platforms (except for PSVR) are
covered. In theory, we can run our WebVR 1.1 applications in all platforms, with sup-
port for peripherals varying through VR headsets. With one codebase, we can target

Figure 7.3

Delivery platform for WebVR content.

Figure 7.4

WebVR support as of October 2017.

106 7.  WebXR

six different HMDs, and with an elegant design we can make the experiences in these
headsets perform optimally.

In the case of browsers not supporting the specification, there is an option to use a
JavaScript implementation of the WebVR/WebXR specification. These implementations
are the WebVR Polyfill [GoogleVR 2017] by the Google VR team and the the WebXR
Polyfill from Mozilla, which supports building AR applications using WebXR. These
decide which rendering mechanism to use depending on the configuration of the browser.
Mobile devices provide device motion events, can render in stereo, include mesh-based
lens distortion and handle the user interface (UI) and user experience (UX) to enter
and exit VR mode. “Polyfilled” desktop browsers use mouse events and keyboard arrow
keys to look around a scene. The WebVR Polyfill can be seen here https://github.com/
immersive-web/webvr-polyfill, while the WebXR Polyfill can be seen here https://github.
com/mozilla/webxr-polyfill.

7.5 � Available Tools for Fast and Easy VR Creation

There are several options available to start building content for WebVR/WebXR. They
adapt to different scenarios making it an easy to find an option that fits your needs.
Beginning with the simplest and progressing to the most complex, the most popular
alternatives are:

7.5.1 � GuriVR
GuriVR is a free, open source project created to allow anyone to make Virtual Reality
experiences with the lowest possible learning curve. It provides an online editor that cre-
ates Virtual Reality scenes from the users’ natural language. This method of creating VR
does not require any coding. An example from the GuriVR website (https://gurivr.com)
(Figure 7.5):

For example my first scene will last 500 seconds and display an image located at https://
s3.amazonaws.com/gurivr/logo.png along with a text saying: “Guri is cool!” to my left and a
panorama located at https://s3.amazonaws.com/gurivr/pano.jpg

Figure 7.5

GuriVR example output.

https://github.com
https://github.com
https://github.com
https://github.com
https://gurivr.com
https://s3.amazonaws.com
https://s3.amazonaws.com
https://s3.amazonaws.com

1077.5  Available Tools for Fast and Easy VR Creation

7.5.2 � Vizor.io
Vizor.io allows the user to create spherical 360° tours, stories, sites, and WebVR experi-
ences by dragging and dropping elements. The company also has a visual programming
tool named “Patches” which lets you create scenes and add interactivity and motion.
It also has a hosting option for publishing experiences (Figure 7.6).

7.5.3 � A-Frame
A-Frame is a web framework for building virtual reality experiences. It allows the cre-
ation of WebVR content with HTML and the “Entity-Component” design pattern. It is
one of the easiest and most powerful ways to develop WebXR content. Built on top of the
popular 3D graphics library Three.js (more on this below), it allows developers to define
a scene in a declarative, extensible and composable way. It is supported by Mozilla and
maintained by the community. It also features a visual inspector in which you can modify
and create scenes hierarchically.

7.5.4 � React VR
React VR is a project from Facebook Open Source that lets you build VR apps using only
JavaScript. It uses the same design as the popular React library, letting you compose a rich
VR world and UI from declarative components.

7.5.5 � BabylonJS
BabylonJS is a complete JavaScript framework for building 3D games with HTML5,
WebGL and WebAudio.

Figure 7.6

Vizor.io Patches’ visual programming tool.

http://Vizor.io
http://Vizor.io
http://Vizor.io

108 7.  WebXR

7.5.6 � PlayCanvas
PlayCanvas is a free and open source engine. It can be used to develop 3D HTML5 and
WebGL games, along with WebVR content. PlayCanvas created the WebGL 2 demo
“After the Flood” which showcases the updated shading language (OpenGL ES Shading
Language 3.0), Multiple Render Targets and other new features [Gilbert & Albeza 2017].

7.5.7 � ThreeJS
You can also create WebVR content directly in Three.js, with THREE.VRControls on
the camera and THREE.VREffect on the renderer. It is worth noting that A-Frame wraps
ThreeJS, giving A-Frame access to the underlying ThreeJS library and all the accompany-
ing features including inputs, etc.

7.6 � Web APIs: They Get Along Very Nicely with WebXR

There is also the ability to integrate other Web APIs into VR experiences, broadening the
development options. Some of these are still experimental technologies.

7.6.1 � Play with Positional Audio
The browser provides a powerful system for audio manipulation through the Web
Audio API. This API allows developers to choose audio sources, add effects to these
sources, analyze them to create visualizations and apply spatial effects, among other
functionalities.

In a similar way that a ‘context’ exists for graphics in the browser, there is a
context for audio. This context permits the creation of audio nodes that can be sources,
effects or destinations and routes them through a graph to achieve the desired effect
(Figure 7.7).

These nodes are linked into chains and simple graphs (webs) by their inputs and out-
puts. Among the available effect-nodes in the Web Audio context are: Biquad filters, con-
volution effects, delays, dynamic compression, and gain (volume). Of special interest for
a VR experience is the Panner node, because it represents the position and behavior of an
audio source (signal) in space. This type of node describes its position with right handed
Cartesian coordinates, its movement using a velocity vector and its directionality using a
directionality cone.

You can refer to a demo of using the Web Audio API to spatialize audio in
https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API/Web_audio_
spatialization_basics. You can also achieve this effect with tools in selected frameworks,
such as using A-Frame’s sound component (Listing 7.1).

effectsinputs destination

Figure 7.7

Types of nodes in the WebAudio context.

https://developer.mozilla.org
https://developer.mozilla.org

1097.7  Making Your WebXR Content Accessible Offline

7.6.2 � Add Gamepads to Your Experience
Virtual Reality applications that allow for user interaction are more engaging. In an
immersive environment, you can have objects with different Degrees of Freedom (DOF).
Degrees of Freedom refer to the movement of a rigid body inside space, which in VR
relates to translation and rotation.

From a controller point of view, you can have 3-DOF orientation (pitch, yaw, and roll)
or 6-DOF orientation and location (where you additionally access location in X, Y, and Z).
There are several methods with which we can allow a user to select and manipulate objects
ranging from no controller (sometimes referred to as 0-DOF) where the user stares at an
element and actions it (aka “fuse button”), to 3-DOF where you can track a device’s orien-
tation and 6-DOF where additionally you can track their location in space.

Currently supported in Samsung Internet, Edge, Chrome, Firefox, and Opera browsers,
the Gamepad API is a way to access and use gamepads and other game controllers from
the browser (see Figure 7.8). Any controller that works as a standard Bluetooth controller
can be used. Its buttons, triggers and analog sticks get mapped to buttons and axes on the
Gamepad object. Two hardware examples that can be used with a browser are the Xbox
One controller and Nintendo Switch Joy-Cons [González & Cannon 2017].

You can respond to the connection and disconnection events of a controller, as well as
gain access to buttons and axes (Figure 7.9).

Additionally, the WebVR 1.1 specification enhances the Gamepad API by facilitating
information on a controller’s pose, if supported by the device. Another way of accessing
gamepads is through wrappers over the Gamepad API developed for specific frameworks,
like A-Frame 0.6.0 which brings controller support to Daydream and Gear VR.

7.7 � Making Your WebXR Content Accessible Offline

The web can now allow websites to work without an internet connection. It is important
that VR experiences are not entirely dependent upon having internet access because even
the best web app in the world would then provide a bad UX if it suffered a loss of con-
nectivity. Browsers will display a generic offline UI and the experience is lost. More wor-
risome is the fact that this loss of connectivity is not infrequent, and that our dependence

Listing 7.1.  A-Frame sound HTML component featuring position.

<a-sound src="src: url(click.mp3)" autoplay="true" position="0 2 5"></a-sound>

query
browser

navigator
·getGamepads()

access
controls

X
A

B
Y

connect
gamepad

Figure 7.8

Access gamepads from the browser.

110 7.  WebXR

of network coverage or Wi-Fi is quite high. A common myth about web experiences is
that they require connectivity to work. The most recent attempt at fixing this problem are
Service Workers [Russell, Song, Archibald, & Kruisselbrink 2016]. They allow the control
of AppCache-implied behaviors with a fine degree of granularity. This means that it can
be easily used to tell an app to use cached assets first, enabling a default experience when
the XR app has no connectivity.

Service workers are key to enable “Progressive Web Apps” (referred from now on as
PWAs), for which support exists in Chrome, Firefox, Samsung Internet, Edge and Opera.
PWAs are experiences that are responsive, fast, secure, independent of connection and
have the reach of the web. They can provide the best of the web capabilities and the best
of native technologies, by allowing the use of push notifications, access to device sensors,
and placement of the app on the home screen.

We can see in Figure 7.10 how a service worker will attempt to first match a resource
request from a page with cached resources. This is key since it allows developers to down-
load the resources the first time the user visits a page hosting a VR experience, allowing
this experience to not only work offline but also load faster the next time it is accessed.

Figure 7.9

Gamepad mappings. (Courtesy of Samsung Internet.)

1117.7  Making Your WebXR Content Accessible Offline

Page

(a)

(b)

Navigation/Resource
request

Respond to
client

fetch event

onfetch
SWMatched

response

Attempt to
match cache

Cache

Page Page

Figure 7.10

Service Workers 101. (Courtesy of Mozilla Hacks and Samsung Internet.)

112 7.  WebXR

Apart from providing a nice UX for the experience when offline, if the VR experience
doesn’t require assets from the network (say, a social media VR app that pulls down some
data stream), then the entire app can reside as an independent, offline-first VR applica-
tion. Any combination in between is possible, and enables VR apps like the 3D composi-
tion viewer “Progressive A-Painter” [Balouet 2017] to the offline 360° image viewer Bubble
[Samsung Internet 2017].

To enable a WebXR application to become a PWA, you must comply with the same
requirements needed for any other web page, from being served over an HTTPS connec-
tion to having the proper application file descriptors such as the manifest. For a detailed
PWA check list, use developer tools like SonarWhal [SonarWhal 2018] and Google’s
Lighthouse [Google 2017]. Lighthouse can process a page to audit these requirements.

7.8 � Progressive Enhancement of WebXR Applications

The reach of an application is only as good as how it adapts to different ways of experienc-
ing it. If you limit your XR application’s distribution to a store that only supports a small
subset of hardware, you’re restricting your reach. If you’re developing your experience to
be tailored to a specific hardware, then you’re losing reach as well. Maximizing reach is
about elegant design, a design that doesn’t leave users behind and is flexible enough to
work in a case where there is no headset involved, all the way up to the case where there is
room tracking (Figure 7.11).

With a browser, you can poll for available functionality and adapt your experience to
it. It’s a good practice and web developers are accustomed to providing fallbacks when
a specific API or feature is not implemented. This translates to XR experiences that can
start engaging users with the “magic window effect” and tapping the screen to interact
with objects.

This “magic window effect” refers to the ability to consume WebXR on a desktop or
mobile device without a headset, where the content can be seen through the device as if
this were a window into the XR world. In mobile devices, orientation sensors help posi-
tion the visualization accordingly, while in desktops you can pan around with the mouse.

Users can also go into VR mode and put their phone into a Google Cardboard, to get a
slightly more immersive experience, and from there the experience adapts to extra com-
ponents of functionality. This includes controllers with 3 degrees of freedom (3-DOF) like
the Daydream and Gear VR controllers and more complex 6 degrees of freedom (6-DOF)
experiences with room position tracking. With a combination of WebAPIs and a robust
feature check in place, you can make sure your experience is as accessible to as many
devices as possible.

Figure 7.11

Different type of experiences available with WebVR.

113References

7.9 � Recommendations When Creating WebXR Experiences

When you are creating WebXR experiences, there are some recommendations to take into
consideration, which can enhance the experience.

Take advantage of the browser: Part of the benefit of doing immersive experiences in
the browser is that you have at your disposal a wide array of APIs that can help you achieve
innovative experiences. You can also take advantage of different APIs to achieve things
like speech recognition and Bluetooth device integration with your applications.

Make your experience comply with Progressive Enhancement: With many devices
supporting modern browsers, you want to expand the reach of your application to as many
of them as possible. Making a progressively enhanced experience doesn’t mean having the
same experience in every device, but rather having any experience on every device.

Add Sound: Often overlooked, audio is an important part of any immersive experience.
The easiest way to proceed with audio is to set a background sound that acts as ambient
noise. Different frameworks provide different ways of playing sounds, but they gener-
ally provide straightforward ways of positioning and playing audio through JavaScript.
Remember to test in different platforms, since mobile browsers handle audio differently
from their desktop and VR counterparts.

7.10 � Summary

Creating immersive experiences is now possible in a browser. There is a specification for
an API in the works, and several frameworks and tools available to do so. In targeting
web browsers, there is a broad set of devices that can engage with those experiences, but
we have to take this into account to ensure the experience can be used to some degree
in every device. Using web technologies to build immersive experiences also opens the
door to combining different technologies built into the browser, like speech recogni-
tion, or geolocation, along with access to a plethora of devices that can be accessed
through JavaScript APIs—indeed it is possible to add room tracking with a Kinect to a
Cardboard-based experience for example, or even to control real Bluetooth devices from
the virtual world.

The strength of the web lies in its ability to connect. These connections enrich
experiences, allowing for more social, sharable, frictionless, open, and interactive
applications.

Acknowledgements

We would like to thank Salvador de la Puente González (Mozilla) and Thomas Balouet
(Virtuleap) for their review of the content in this chapter.

References

[Balouet 2017]

Balouet, Thomas (2017). “Progressive Web A-Painter: 3D VR in Your Pocket.” Retrieved
from Medium.com: https://medium.com/@tombalou/progressive-web-a-painter-
3d-vr-in-your-pocket-ef15a425559

http://Medium.com:
https://medium.com
https://medium.com

114 7.  WebXR

[Bozorgzadeh 2017]

Bozorgzadeh, Amir-Esmaeil (2017). “WebVR’s Magic Window is the Gateway for Pushing
VR to Billions of People.” Retrieved from UploadVR: https://uploadvr.com/
webvrs-magic-window-gateway-pushing-vr-billions-people/

[Gilbert & Albeza 2017]

Gilbert, Jeff, and Belén Albeza (2017). “WebGL 2 Lands in Firefox.” Retrieved from Mozilla
Hacks: https://hacks.mozilla.org/2017/01/webgl-2-lands-in-firefox/

[González & Cannon 2017]

González, Diego, and Ada Cannon (2017). “The Gamepad Reloaded.” Retrieved
from Samsung Internet Medium: https://medium.com/samsung-internet-dev/
the-gamepad-reloaded-5ba866770003

[Google 2017]

Google (2017). “Lighthouse.” Retrieved from Tools for Web Developers: https://developers.
google.com/web/tools/light

[GoogleVR 2017]

GoogleVR (2017). googlevr/webvr-polyfill. Retrieved from GitHub: https://github.com/
immersive-web/webvr-polyfill

[Russell, Song, Archibald, & Kruisselbrink 2016]

Russell, Alex, Jungkee Song, Jake Archibald, and Marijn Kruisselbrink (2016). “Service
Workers 1.” Retrieved from W3C: https://w3.org/TR/service-workers-1/

[Samsung Internet 2017]

Samsung Internet (2017). “Bubble.” Retrieved from bubble: https://bubble.pictures

[SonarWhal 2018]

SonarWhal (2018). Retrieved from SonarWhal.com: https://sonarwhal.com/

[Vukicevic 2017]

Vukicevic, Vladimir, Brandon Jones, Kearwood Gilbert, and Chris Van Wiemeersch (2017).
“WebVR, Editor’s Draft, 2” October 2017. Retrieved from GitHub: https://immersive-
web.github.io/webvr/spec/1.1/

https://uploadvr.com
https://uploadvr.com
https://hacks.mozilla.org
https://medium.com
https://medium.com
https://developers.google.com
https://developers.google.com
https://github.com
https://github.com
https://w3.org
https://bubble.pictures
http://SonarWhal.com:
https://sonarwhal.com
https://immersive-web.github.io
https://immersive-web.github.io

115References

[W3C 2017]

W3C (2017). “W3C Community Groups.” Retrieved from WebVR Community Group:
https://w3.org/community/webvr/

[WebVR_CG 2017]

WebVR_CG (2017). “WebVR Spec.” Retrieved from GitHub: https://immersive-web.
github.io/webvr/

https://w3.org
https://immersive-web.github.io
https://immersive-web.github.io

http://www.taylorandfrancis.com

117

8
Greyhouse
Building the Neighborhood Coffee
Shop in Unreal Engine for VR

Booker Smith and David Whittinghill
Purdue University

8.1  �Introduction

Greyhouse is a locally famous coffee and pastry shop near our laboratory, well liked and
often visited by the Purdue community. Progress being what it is, recent construction
is shaking things up, and the beloved old shop will be getting a new look later this year.
Out with the old, in with the new. For the sake of posterity, we have decided to virtually
preserve the old place, using the Unreal game engine to create a VR representation of the
shop optimized for the HTC Vive system (Figure 8.1).

8.2 � Unreal in Virtual Reality

Fortunately for us, VR in Unreal is quite simple for the Vive. Developers can use the stan-
dard templates, which easily permit a Vive preview, or they can use the Unreal “Virtual
Reality” template which allows deeper control of the controls and headset and includes
handy functions for teleporting and other VR capabilities. For this chapter, we are going to
stick with the standard templates. The Virtual Reality template requires a bit of Blueprint

8.1	 Introduction
8.2	 Unreal in Virtual Reality
8.3	 Casing the Greyhouse
8.4	 Pre-Production

8.5	 Getting Started with
Unreal

8.6	 Recreating the Greyhouse
8.7	 The Finished Product

118 8.  Greyhouse

(Unreal’s visual scripting language) coding, which is a bit beyond the scope of a purely
introductory chapter.

The Vive depends upon Valve’s Steam software platform for drivers and applica-
tion loading. Vive developers must install Steam and enable SteamVR and make sure
the SteamVR plugin is enabled in the editor. SteamVR is the mediator between the VR
hardware and any games or applications that seek to communicate with it. In the case of
Unreal Engine, when the editor first opens it checks for the presence of SteamVR and, if it
finds it, it loads the “Virtual Reality” development template; when SteamVR is not present,
this template option is not displayed. Since we are using standard templates, we will use
the template called “First Person.” This template delivers a VR experience controlled via a
traditional WASD keyboard/mouse input scheme (Figure 8.2).

8.3 � Casing the Greyhouse

We first photographed Greyhouse the way it presently is to capture its light, color geom-
etry, and overall ambience. We have elected to use Unreal to block out a BSP representa-
tion of what is a fairly simple scene but one that is, to us, fairly familiar. Initially, we chose
to use Unreal’s VR editor and though the tools are promising and quite a lot of fun to use,
at the time of this writing they are still experimental. Rather than risking the final release
of Unreal VR Editor being dramatically different than the present experimental build, we
chose to build using the traditional 2D mouse and keyboard interface.

We also chose to build our Greyhouse scene using only BSP’s and starter content
shipped with the engine. If one were trying to model a scene for a professional VR
production they would use static meshes and custom-made 3d models. This chapter is

Figure 8.1

The Greyhouse.

1198.4  Pre-Production

instead meant to be a fairly simple learning exercise through which new Unreal develop-
ers can gain some familiarity with the Unreal Editor and get familiar with the environ-
ment. Using Unreal’s more advanced “Virtual Reality” development templates not only
enables the use of motion controllers, avatar teleportation, and other fun VR features, but
also requires coding and thus will be left to more advanced lessons elsewhere. Our hope
is that we provide the reader a window into the process of using only in-platform assets
to approximate an interesting real world scene. Our goal was not high-fidelity simula-
tion, but rather to see just how far we could re-purpose the engine’s off-the-shelf content
to make a nonetheless interesting VR scene that captures some of the spirit of the source
material.

8.4 � Pre-Production

•• Visit the location to recreate, and take pictures that capture enough detail and
information such that you have a robust reference package from which you can
derive the location’s color, lighting, dimensions, and general ambience. Pay atten-
tion to the location’s various architectural shapes and cues, materials, lighting,
and other interesting details.

Figure 8.2

VR preset.

120 8.  Greyhouse

•• It helps to have your reference images always visible during level construction. We
like using a dual monitor configuration in which the reference materials are on the
secondary screen while our level construction is completed on the primary screen.

8.5 � Getting Started with Unreal

The Unreal Engine is a free download available from www.unrealengine.com and runs
on Windows and Mac. Once you have created your unique user account, download the
Launcher application, which will allow you to download the game engine and editor. For
this particular project, we used version 4.16.2.

At the top of the screen (Figure 8.3), you will see multiple tabs, click on the one named
“Unreal Engine.” On the left is the Library button, click on it and the main window pres-
ents a button called “Add Versions.” Click to select your version of choice (in this exercise,
we are using 4.16.2). Click “Launch” to begin.

Creating a Project

•• Choose the “New Project” tab, the “Blueprint” tab, then select the “Virtual
Reality” icon;

•• Select the “Desktop/Console,” “Maximum Quality,” and “With Starter Content”
settings; and

•• Select a location in your file system where you want to store your project.

Note, the Unreal Editor is often performing numerous file writes in the background dur-
ing development. As such, having your files stored on an external or networked drive will
cause the editor to feel sluggish and result in much slower loading. We highly recommend
you save your work to a location on your local file system and then, if you want to maintain
a backup, use a source control program or manually copy your project files to your backup
location periodically.

Once the project is loaded you will be presented with a scene containing various VR
Template items (Figure 8.2). We will not be using the elements in this scene (Figure 8.4),

Figure 8.3

Choosing an engine version.

http://www.unrealengine.com

1218.5  Getting Started with Unreal

except for “SkyLight” and “ExponentialHeightFog.” You can see the items in World
Outliner, click to highlight them, and delete all other items. The World Outliner is one of
the panes in Unreal Engine that allows the developer to view the contents of their scene
as a textual, hierarchical list rather than as a three-dimensional world (Figure 8.5). The
World Outliner and the Viewport do in fact represent the exact same data.

Figure 8.4

Opening scene with starter content.

Figure 8.5

The World Outliner (in red).

122 8.  Greyhouse

8.6 � Recreating the Greyhouse

First, we construct the basic room. We did not measure the physical Greyhouse’s dimen-
sions so we instead used a best guess approximation. In the Modes window (Figure 8.6),
select the Geometry tab where a number of pre-fab objects are available to drag into the
Scene window. We constructed the walls, floors, and ceilings out of nine “Box” BSP’s
which were then scaled into flat planes and placed to form the room. We constructed the
floor as four BSP’s so that we could have different textures on them (to more closely match
Greyhouse’s floors).

8.6.1 � The Floor
There will be no other characters walking through the scene when it is completed. Without
some patrons walking about, it is more difficult to perceive the “feel” and flow of the space.
To compensate, we provide some subtle visual hints by rotating the texture of the wood
floor strategically, as the anisotropic effect of the wood grain serves as vision lines, draw-
ing attention to interesting aspects of the scene. For instance, the diagonal wood in the
entry and retail section point to the counter and display, alerting the user to the cash
register.

Moving forward, one encounters wood whose direction is against the grain, acting
as a visual cue of a barrier. Following its lines, the viewer sees the employee-only door.
Customers only encounter this region after a purchase, so the spatial layout of the shop
and the sight lines of its decor both urge your mind’s eye to the next region, a region

Figure 8.6

In the Modes window, select the Place tab overhead tab, then the Geometry left tab.

1238.6  Recreating the Greyhouse

whose wood grain pattern matches that of your current location. This layout encourages
customers to sit down and enjoy their purchases in that area of the shop. It also is based
on shopping psychology in real life: it causes one to pause and see the other wares, or in
Greyhouse’s case, items like sugar and creamer, which then moves the customer forward,
reducing congestion in the main commerce space/entryway. In low traffic times, this is
welcoming, because there is no line, and in high traffic times, it draws people from the
eaves to the display counter and menu, because the flow of people creates a space that cus-
tomers want to fill. Designing a virtual space, even a simple one like this, can be enhanced
by simple visual cues like rotated textures, because in so doing, we model the same subtle
human mechanics one finds in real life. This helps realism!

One extremely helpful feature in the Unreal Editor is snapping (Figure 8.7). Snapping
causes objects that are dragged and dropped into the scene to “snap” to gridlines that run
through the world. These gridlines can be set to any desired granularity. Each transforma-
tion tool: Translation, Rotation, and Scaling has its own snap values, which the user can
customize. Using snapping helps maintain right angles between objects and helps prevent
object overlap (which can cause “z-fighting” in the final render)—and it generally makes a
level designer’s work a whole lot easier.

8.6.1.1 � Usability Note: ALT-drag

In the following data value tables frequent references are made to the ALT-drag sequence.
This is a simple way to clone a piece of geometry in the scene while retaining the original
geometry’s orientation in the scene. It is an extremely handy feature for building walls
as in most cases a left-hand wall and right-hand wall are oriented similarly. Cloning
like this removes the need to reposition new geometry along all three axes. Naturally,
this is also handy for any situation in which uniform orientation is necessary (ceilings/
walls, etc.).

8.6.1.2 � Usability Note: Surface Properties Submenu

The Surface Properties submmenu is not displayed by default for geometry. To enable this
submenu, from within the Modes window select the Paint option (Figure 8.8). This will
then make the Surface Properties submenu appear in the Details pane (Figure 8.9).

8.6.2 � Floor Segments
There are four floor panels. Each row below in Table 8.1 lists attribute values used to create
the floor pieces. Enter the values below in the Details window for each floor piece.

Figure 8.7

Transformation tools and their accompanying snap values.

124 8.  Greyhouse

Table 8.1  Floor Segments

Location
x, y, z

Rotation
x, y, z

Scale
x, y, z Brush Type Brush Shape

Brush
x, y, z

1 0, 0, 0 0, 0, 0 6, 6, .08 Additive Box 300, 600, 200
2 Use ALT-drag to clone Floor 1 along the Y green axis

Surface Properties—rotate: 90° menu button
3 Use ALT-drag to clone Floor 2 and drag along the X (red) axis

1795, −1840, 0 0, 0, 0 6, 1, .08 Additive Box 300, 600, 200
4 Use ALT-drag to clone Floor 3 and drag along the Y (green) axis

0, −4200, 0 0, 0, 0 6, 6, .08 Additive Box 300, 600, 200
Surface Properties—rotate: 90° menu button

Figure 8.9

The Surface Properties submenu and the 90° rotation button.

Figure 8.8

The Paint Tab.

1258.6  Recreating the Greyhouse

8.6.3 � Walls—Base Architecture
Creating walls is very similar to how floors are created: Box BSP’s are placed and res-
caled to create each structure. Since walls are more (but not entirely) uniform, to save
work we will be applying materials and cloning them with the materials applied using
ALT-drag.

Drag a BSP into the scene and set its Location to (−945, 0, 108), its Scale to (1, 6, 1), and
its Brush value to (300, 600, 200).

To create materials, open the Content Browser. In the Content Browser open Starter
Materials/Materials. Find the material named M_Basic_Wall, right-click it, and click
duplicate. Now right-click the duplicated material, and rename it whatever you like; we
renamed ours “New_Wall.” Drag the New_Wall material into the Scene pane and onto the
new wall Box that was just created.

For the remaining walls, create duplicates of the first wall using ALT-drag. Each dupli-
cate will have the attributes provided in Table 8.2.

8.6.4 � Walls—Windows and Doorways
To create openings within walls for windows and doorways, we again used Box BSP’s,
except we now use the Subtractive Brush type (Figure 8.10). Subtractive geometry is used
to “carve out” openings in another piece of geometry. As was the case for walls, Box BSP’s
are dragged and dropped onto the Scene pane, which we then follow up by manually edit-
ing the values in the Details pane.

The window and door attributes are as in Table 8.3.

Table 8.2  Walls: Base Architecture

Location
x, y, z

Rotation
x, y, z

Scale
x, y, z

Brush
x, y, z

1 This piece was created in the instructions above
2 −945, −3135, 108 0, 0, 90 1, 1, 1 1200, 200, 200
3 −710, 1610, 248 0, 0, 45 2.4, 1, 2.4 200, 50, 200
4 865, −1950, 657 0, 0, 0 1, 1, 1 200, 200, 200
5 45, 1700, 108 0, 0, 0 1, 1, 1 200, 200, 200
6 800, 120, 120 0, 0, 90 1, 1, 1 200, 200, 200
7 1670, −1590, 552 180, 0, 0 1.34, 1.09, 1.34 200, 200, 200
8 1700, −2200, 212 0, 0, 0 1.34, 1.09, 1.34 200, 200, 200

Repeat the material creation and application process above, but use M_Brick_Clay_New

9 Clone this from Wall 8 so that it inherits the M_Brick_Clay_New material
1980, −3770, 108 0, 0, −90 1, 1, 1.09 200, 200, 200

10 −100, −5100, 482 0, 0, 0 1.34, 1.09, 1.34 200, 200, 200
Repeat the material creation and application process above, but use the M_Wall_New material

11 −100, −5100, 112 0, 0, 0 1.34, 1.09, 1.34 200, 200, 200
Repeat the material creation and application process above, but use the M_Wood_Floor_Clay_

Walnut_Worn material
12 2130, −2990, 110 0, 0, 0 1, 1.65, 1 200, 200, 200

Repeat the material creation and application process above to create a dark gray material

126 8.  Greyhouse

8.6.5 � Ceiling
The ceiling is a clone of the floor. Hold CTRL and select the four floor pieces. Release
CTRL, and ALT-drag the selected pieces upwards to clone. While the four pieces are still
selected, right-click on any of the pieces and select Group. We recommend setting a value
of 775 for the Location Z value.

Table 8.3  Walls: Windows and Doors

Location
x, y, z

Rotation
x, y, z

Scale
x, y, z

Brush
Type Brush Shape

Brush
x, y, z

1 710, 1610, 270 0, 0, 45 2.4, 1, 2.4 Subtractive Box 180, 60, 210
2 −875, −95, 415 0, 0, 0 .5, 12, 1.25 Subtractive Box 200, 200, 200
3 −875, −3350, 415 0, 0, 0 .5, 12, 1.25 Subtractive Box 200, 200, 200
4 −675, −4975, 180 0, 0, 0 .5, 12, 1.25 Subtractive Box 200, 200, 200
5 −675, −4975, −180 0, 0, 0 .5, 12, 1.25 Subtractive Box 200, 200, 200
6 −410, −4975, 180 0, 0, 0 .5, 12, 1.25 Subtractive Box 200, 200, 200
7 −145, −4975, 180 0, 0, 0 .5, 12, 1.25 Subtractive Box 200, 200, 200
8 120, −4975, 180 0, 0, 0 .5, 12, 1.25 Subtractive Box 200, 200, 200
9 375, −4975, 180 0, 0, 0 .5, 12, 1.25 Subtractive Box 200, 200, 200
10 640, −4975, 180 0, 0, 0 .5, 12, 1.25 Subtractive Box 200, 200, 200
11 905, −4975, 180 0, 0, 0 .5, 12, 1.25 Subtractive Box 200, 200, 200
12 1170, −4975, 180 0, 0, 0 .5, 12, 1.25 Subtractive Box 200, 200, 200
13 1435, −4975, 180 0, 0, 0 .5, 12, 1.25 Subtractive Box 200, 200, 200
14 1700, −4975, 180 0, 0, 0 .5, 12, 1.25 Subtractive Box 200, 200, 200
15 1955, −4975, 180 0, 0, 0 .5, 12, 1.25 Subtractive Box 200, 200, 200
16 1080, −3650, 145 0, 0, 0 2.12, .43, .46 Subtractive Box 200, 200, 200
17 610, 1815, 355 0, 0, 0 1, 1, 1 Subtractive Box 200, 200, 200

Figure 8.10

Setting Additive vs. Subtractive brush type.

1278.6  Recreating the Greyhouse

8.6.6 � Decor
Here we illustrate how we created the “furniture” and decor used to furnish our space.
Remember, we are purposely avoiding creating proper 3D models and are instead try-
ing to capture the feel of the original Greyhouse while using only BSP’s, primitives, and
“canned” assets found in the Unreal’s Starter Content package. As such, from here for-
ward the work we are illustrating is more “art” than science. We ask the reader to allow us
some creative license as quite a bit of imagination will be required of the viewer’s eye. This
is the MacGuyver of virtual spaces.

The decor item properties are as shown in the following subsections (Tables 8.4–8.7).

8.6.6.1 � Open-Air Shelving Unit

8.6.6.2 � Cashier’s Counter

8.6.6.3 � Pastry Display

Table 8.4  Open-Air Shelving Unit

BSP Box

Location
x, y, z

Rotation
x, y, z

Scale
x, y, z Brush Type Brush Shape

Brush
x, y, z

1070, −3650, 110 0, 0, 0 2.44, .44, 1 Additive Box 200, 200, 200

All faces material: M_Wood_Pine (drag onto BSP from Starter Content/Materials)

Table 8.5  Cashier’s Counter

BSP Box

Location
x, y, z

Rotation
x, y, z

Scale
x, y, z Brush Type Brush Shape

Brush
x, y, z

145, 0, 108 0, 0, 0 1, 6, 1 Additive Box 300, 600, 200
Countertop material: M_Rock_Marble_Polished
Customer-facing material: M_Wood_Oak

Table 8.6  Pastry Display

BSP Cylinder

Location
x, y, z

Rotation
x, y, z

Scale
x, y, z Brush Type Brush Shape

150, 845, 205 90, 0, 180 .75, 1, 8.44 Subtractive Cylinder
Z: 200; outer radius: 200; sides: 60
150, 900, 205 90, 0, 180 .75, 1, 8.44 Additive Cylinder
Z: 200; outer radius: 200; sides: 60

128 8.  Greyhouse

8.6.6.4 � “Piano” (Yeah, Yeah, This One’s a Stretch…)

8.6.6.5 � Tables

For the tables we will be using the static mesh tables that are included as part of the
Starter Content. From within the Content Browser, navigate to Props/SM_TableRound
(Figure 8.11).

Drag the table icon onto the Scene Pane and set the positional parameters as in
Table 8.8.

Table 8.8  Tables

Location
x, y, z

Rotation
x, y, z

Scale
x, y, z

1 530, −2630, 10 0, 0, 0 3, 3, 2
2 −74, −2960, 10 0, 0, −135 3, 3, 2
3 −180, −3583, 10 0, 0, −130 3, 3, 2
4 −550, −4690, 10 0, 0, −90 3, 3, 2
5 630, −4660, 10 0, 0, 0 3, 4, 2
6 435, −4110, 10 0, 0, 0 3, 4, 2
7 1765, −4140, 10 0, 0, 0 2, 2, 2
8 1765, −3455, 10 0, 0, 0 2, 2, 2

Figure 8.11

Locating the table prop.

Table 8.7  “Piano”

BSP Box

Location
x, y, z

Rotation
x, y, z

Scale
x, y, z Brush Type Brush Shape

Brush
x, y, z

1775, −4700, 145 0, 0, 30 2.09, .69, 1 Additive Box 200, 200, 200
All-faces material: M_Tech_Panel

1298.6  Recreating the Greyhouse

8.6.6.6 � Stools

The stools will use the same static mesh as our tables. They will just be stretched and
narrowed to be more “stool like”. From within the Content Browser, navigate to Props/
SM_TableRound. Drag the table icon onto the Scene Pane and set the positional param-
eters as in Table 8.9.

8.6.6.7 � Props

Last of all we place the various plants, sculptures, and miscellaneous objects about the
scene. Below are the values we used to approximate the original Greyhouse but, frankly,
placement is a matter of taste. Feel free to move around as you see fit. We do, however,
include recipes for distorting and reshaping Starter Content assets such that they no lon-
ger resemble their original. For instance, we got a lot of mileage (yours may vary) with the
SM_Table_Round: elongating it upward and scaling its X and Z makes it a nice barstool,
uniform-scaling it way down and rotating it makes it a desk fan, and so on. We include
these examples to hopefully inspire the reader to take their own creative license with the
Starter Content materials and make their own interesting creations.

8.6.6.8 � Plants

The plants will use the following static mesh from the Starter Content package: Content
Browser/Starter Content/Props/SM_Bush. Place as in Table 8.10.

8.6.6.9 � Ceiling Light Fixtures

The ceiling light fixtures used the following static mesh from the Starter Content package:
Content Browser/Starter Content/Blueprints/Blueprint_CeilingLight. After placing the
first light, use ALT-drag to duplicate the other lights. Place as in Table 8.11.

Table 8.10  Props

Location
x, y, z

Rotation
x, y, z

Scale
x, y, z

1 1705, −4745, 245 0, 0, 0 .6, .6, 1.875
2 200, 500, 210 0, 0, 0 .6, .6, 1.875
3 200, 800, 210 0, 0, 0 .6, .6, 1.875
4 200, 1060, 210 0, 0, 0 .6, .6, 1.875
5 200, 1310, 210 0, 0, 0 .6, .6, 1.875

Table 8.9  Stools

Location
x, y, z

Rotation
x, y, z

Scale
x, y, z

1 −720, −3115, 10 0, 0, 0 1, 1, 2.25
2 −720, −2260, 10 0, 0, 0 1, 1, 2.25
3 −720, −1035, 10 0, 0, 0 1, 1, 2.25
4 −720, −180, 10 0, 0, 0 1, 1, 2.25
5 −720, 675, 10 0, 0, 0 1, 1, 2.25
6 −710, −1800, 10 0, 0, 0 1, 1, 2.25

130 8.  Greyhouse

8.6.6.10 � Point Lighting

If this were a professional production, then designers would study the lighting in the
Greyhouse in order to determine its particular layout of diffuse lighting sources. However,
the spirit of this chapter is for beginner friendliness and rapid prototyping. As such, we
used point lights to create some ambient illumination throughout the scene. It may not be
accurate per se, but it does capture the ambiance of the original location.

Open the Modes window, Lights, Point Light (Figure 8.12), and drag lights onto the
Scene Pane, setting their attributes as in Table 8.12.

8.6.6.11 � The Doors

The doors used the following static mesh from the Starter Content package: Content
Browser/Props/SM_Door. After placing the first door, use ALT-drag to clone the other
doors. Place as in Table 8.13.

Table 8.11  Ceiling Light Fixtures

Location
x, y, z

Rotation
x, y, z

Scale
x, y, z

1 1830, −3325, 765 0, 0, 0 .6, .6, 1.875
2 1830, −3600, 765 0, 0, 0 .6, .6, 1.875
3 1830, −3765, 765 0, 0, 0 .6, .6, 1.875
4 1830, −4040, 765 0, 0, 0 .6, .6, 1.875
5 1830, −4355, 765 0, 0, 0 .6, .6, 1.875
6 1830, −4630, 765 0, 0, 0 .6, .6, 1.875

Figure 8.12

Selecting a point light.

1318.7  The Finished Product

8.6.6.12 � The Doors’ Frames

The door frames used the following static mesh from the Starter Content package: Content
Browser/Props/SM_DoorFrame. After placing the first door frame, use ALT-drag to clone
the other frame. Place as in Table 8.14.

8.6.6.13 � Miscellaneous

The remaining items constitute the various minutia around the shop and serve to give the
space a personal touch (Figure 8.13). Place items as in Table 8.15.

8.7 � The Finished Product

In the end we arrived at a decidedly approximate recreation of the original Greyhouse
that we hope captures the essence of the original if not necessarily the specifics. This
tutorial was designed to help an absolute beginner get started with Unreal for VR while

Table 8.12  Point Lighting

Location
x, y, z

Intensity
x, y, z

1 500, −1250, 395 1000
2 500, −750, 395 1000
3 500, −250, 395 1000
4 500, 250, 395 1000
5 500, 750, 395 1000
6 500, 1250, 395 1000
7 635, −4730, 395 1000
8 1750, −5250, 395 1000
9 1750, −3250, 395 1000

Table 8.13  The Doors

Location
x, y, z

Rotation
x, y, z

Scale
x, y, z

1 −592, 1738, 18 0, 0, −45 1, 1.94, 2.47
2 −839, 1491, 18 0, 0, 135 1, 1.94, 2.47
3 860, −1830, 10 0, 0, 0 2.59, 2.59, 2.59
4 2025, −3175, 10 0, 0, −180 1.88, 1.66, 1.88
5 2025, −2875, 10 0, 0, 0 1.88, 1.66, 1.88

Table 8.14  The Doors’ Frames

Location
x, y, z

Rotation
x, y, z

Scale
x, y, z

1 712, 612, 13 0, 0, −45 2.56, 3.84, 2.5
2 870, −1945, 8 0, 0, 0 2.56, 2.56, 2.59

132 8.  Greyhouse

demonstrating how existing assets can be repurposed to let the reader get started right
away on creating interesting original virtual environments.

Upon loading this map, you will be able to view the world using your HTC Vive headset
and navigate it with the keyboard and mouse. To take the experience to the next level and
enable motion controllers and avatar teleportation functionality, study Unreal’s “Virtual
Reality” template and Blueprint’s visual scripting system.

Table 8.15  Miscellaneous Decoration

Location
x, y, z

Rotation
x, y, z

Scale
x, y, z

Weird unreal orb thing 1745, −3450, 150 0, 0, −30 .125, .125, .125
Content Browser/Props/SM_MatPreviewMesh_02
Statue 610, −4855, 150 0, 0, 0 1, 1, 1
Content Browser/Props/SM_Statue
Decorative rock 1155, −3640, 100 0, 0, 0 .125, .125, .125
Content Browser/Props/SM_MatPreviewMesh_02
Arch Thing 1155, −3640, 100 0, 0, 0 .125, .125, .125
Content Browser/Props/SM_MatPreviewMesh_02
Old-timey camera 1225, −3640, 100 0, 0, 0 2, 2, 2
Content Browser/Props/SM_CornerFrame
Shelf 1 −845, −85, 280 0, 0, 0 4, 12, 1
Content Browser/Props/SM_Shelf
Shelf 2 −845, −3282, 280 0, 0, 0 4, 12, 1
Content Browser/Props/SM_Shelf
Desk fan 1228, −3653, 208.57 0, 0, 0 .125, .125, .125
Modes/geometry/cone

1215, −3620, 255 −90, 0, 20 0.375, 0.375, 0.375

Content Browser/Props/SM_CornerFrame

Figure 8.13

The simulated environment versus the original.

133

9
Bridging Scientific Visualization
and Unreal VR
Kees Van Kooten
NVIDIA

This chapter presents a practical solution integrating consumer virtual reality (VR)
hardware into a scientific visualization pipeline. To this end, it shows the benefits of such
hardware, but especially the challenges of using it with existing scientific visualization
tools. The proposed solution then is to use the Unreal Engine for solving the rendering
problem and the setup of a VR environment with interaction; then, a pair of plugins is
described bridging the Unreal engine application to existing scientific visualization tools.
After a technical explanation of the bridge, the workflow and interactions with it are
shown. What follows is an explanation on how to integrate the bridge into your own sci-
entific visualization application of choice. Lastly, some practical limitations and future
directions will be discussed.

9.1	 Benefits and Challenges
of Consumer VR

9.2	 Leveraging Existing
Technology

9.3	 A Bridge of Plugins
9.4	 The Execution Model
9.5	 Updating the Graphics

Resources
9.6	 ParaView to Unreal

Logical Mapping

9.7	 The Unreal-ParaView
Workflow

9.8	 Integration into Other
SciVis Tools

9.9	 Limits on Performance
and Data Sizes

9.10	 Conclusion and Future
Work

134 9.  Bridging Scientific Visualization and Unreal VR

9.1 � Benefits and Challenges of Consumer VR

The rise of consumer VR hardware in the gaming space has had a domino effect in other
areas too. It is already a commodity in professional visualization, where it provides a
means for architectural tours, previews of consumer products and design collaboration.
It is also being employed in professional trainings, in education, and in psychological or
occupational therapy. It even finds a use in object and environment reconstruction, for
example, in the field of archeology.

It is therefore not surprising that there is considerable interest to use this technology
in scientific visualization as well. The increased depth perception of current HMDs over
standard monitors is useful for analyzing complex datasets. The ability to navigate and
position oneself within a dataset is easier than with a traditional mouse and keyboard.
Many types of interactions with the dataset feel more natural using consumer VR instead
of the standard desktop UI. Additionally, the cost and space requirements as compared to
a CAVE setup are much smaller; a basic setup at the desktop usually suffices.

There are of course drawbacks associated with the usage of consumer VR. For one,
consumer VR is not yet easy to use for augmented-reality purposes, for example in com-
bination with the physical environment, or in collaboration with other users in the same
room. The headset is still too bulky for that, making it cumbersome to don and doff. While
in-HMD exterior views are often supported via an outward-facing camera, they are not
yet capable enough for precision tasks. However, these aspects are expected to improve
considerably as technology matures.

Furthermore, it takes a considerable engineering effort to adapt an existing scientific
visualization pipeline to the VR use-case. First off, a smooth experience in a VR HMD
requires a high-frequency low-latency graphical update loop, which does not slow down
under the various possible interactions with the scientific data. The whole scientific
visualization pipeline should help maintain this requirement, from the generation of the
geometry to the actual rendering.

Additionally, the interaction style in VR is different from keyboard and mouse at
a standard monitor. Often it is not even clear which parts of the interaction are most
comfortably done from within the VR environment, prompting a full redesign of the
interaction with the scientific visualization software. This includes a lot of prototyping
and testing. While such activities are usually not a problem for commercial use-cases, it
does pose a problem for scientific visualization, where there is a comparatively small bud-
get and time window for development and especially maintenance of software not directly
related to a particular research project.

9.2 � Leveraging Existing Technology

This chapter focuses on the aforementioned problem of integrating VR into a scientific
visualization pipeline. It has been designed to affect existing scientific workflows as little
as possible, while at the same time requiring very little investment in terms of money and
engineering effort. It does this by leveraging technology from the gaming space, where lots
of effort has already been put into the software platforms for design of virtual interactive
environments, in the form of freely available game engines.

1359.3  A Bridge of Plugins

These engines have been developed using large budgets and lots of manpower over
many years, where they have been put to the test in countless applications. Some of these
engines employ the latest technological developments for VR rendering, so the developer
does not have to take care of supporting new rendering algorithms or hardware features.
The added benefit is that this technology is designed to be easy to use, for people who do
not necessarily have software engineering or visualization skills themselves. Mostly, it
will not require any programming in order to set up and prototype new interaction or
exploration ideas.

Understandably, it is impractical to try and integrate existing scientific visualization
tools directly into a game engine or vice versa. A considerable amount of work has been
spent over the last decades across multiple disciplines to develop visualization technol-
ogy and plugins, for all the data management and geometry generation that is necessary
before the rendering can even begin. Copying this work would be too costly to undertake
or to maintain. So instead, it is preferable to use the scientific software for its data man-
agement and generation strengths, and the game engine for its rendering and prototyping
strengths. Using plugins, both can be coupled to show the 3D data of the scientific visu-
alization that would traditionally be displayed on a standard monitor in the virtual VR
environment created by the game engine.

The next sections describe an example bridge between one specific scientific visualiza-
tion tool and one specific game engine: ParaView and the Unreal Engine. Both are widely
used, familiar to many, and therefore enjoy a lot of community support. Furthermore, the
Unreal Engine already has many applications in professional visualization, and is one of
the foremost platforms for integration of the latest developments in VR rendering technol-
ogy. The bridge allows the user to build their own application using the Unreal Engine,
which then connects to ParaView while running in a standalone fashion.

While both VTK and ParaView already contain VR integrations (as described by
[O’Leary et al. 2017; Martin et al. 2016] respectively) that perform rather well for selected
situations, they neither offer the freedom of scene creation and prototyping of interaction,
nor many of the advanced rendering effects available in the Unreal Engine. This solution
therefore attempts to make a bridge in a similar fashion as in [Rajlich 1995], but with a
larger focus on maintaining VR rendering performance under geometry modification.

At the time of writing, the plugin was tested to work with Unreal Engine 4.14 and
ParaView 5.4, and supports both the Windows platform as well as Linux. It will be made
available on the website that accompanies this book.

9.3 � A Bridge of Plugins

The most straightforward way of bridging ParaView and Unreal is to use plugins for both
technologies. Therefore, the bridge will consist of a plugin in ParaView that reacts to any
change in the ParaView visualization pipeline, and identifies the changed geometry, tex-
ture, and transformation data. The ParaView plugin sends those changes over to a shared
memory block, that can in turn be read by the Unreal plugin. The Unreal plugin takes
the changes and uses them to update geometry, textures, and transformations for specific
actors and meshes within the virtual reality environment. These two plugins are in com-
bination referred to as the “External Visualization Plugin.”

136 9.  Bridging Scientific Visualization and Unreal VR

Note that the choice for sending data over shared memory forces the user to execute
the instance of the ParaView client application on the same machine as the instance of the
Unreal application—the rendered geometry should be fully present on one single work-
station. The technology does not support use of the Unreal application to render images
remotely on for example a High Performance Cluster, or use images as they are streamed
from rendering processes on an HPC. Of course, it is entirely conceivable that an HPC
processes geometry on its nodes before it is sent over to a ParaView client process, after
which the client workstation could automatically display an up-to-date scene in the Unreal
VR environment.

To increase the efficiency of the shared memory buffer for reading and writing, the
buffer is split in two (double-buffered), so that ParaView can write to one part of the buf-
fer while Unreal reads from the other part. Once either application is done reading or
writing, it makes its part of the buffer available for the next write or read respectively. This
way, Unreal does not have to wait for ParaView to finish writing before it can start read-
ing. Conversely, ParaView does not have to wait for Unreal to finish updating its graphics
resources before it can provide the next batch of geometry.

To illustrate the two plugins working together, Figure 9.1a shows a typical ParaView
screen with imported geometry that is being rendered as a mesh in the ParaView OpenGL
output window. This particular dataset is a timeseries dataset, so the geometry changes
from one timestep to the next. For every new geometry that ParaView generates for the
individual timesteps, the ParaView plugin sends the geometry via the shared memory
block to the Unreal plugin. As the Unreal plugin runs in an Unreal application on the
same machine, it automatically updates the timeseries data within a mesh belonging to a
specific actor placed in the Unreal VR application. The output of the Unreal application is
represented by Figure 9.1b.

Figure 9.1

(a) A typical time-series data running in ParaView. (b) The time-series data is automati-
cally transferred to an Unreal VR application, running simultaneously on the same
machine. (Dataset courtesy of the Juelich Supercomputing Center, Institute of Combustion
Technology.)

1379.4  The Execution Model

The choice of which Unreal actor should receive geometry from which separate geom-
etry in ParaView is completely up to the user of the ParaView plugin. The plugin gives the
user control over which geometries belong to an actor chosen from a list of actors available
in the Unreal scene, so that any mapping of pieces of ParaView geometry to Unreal actors
is reasonable. This is further explained in Section 9.6.

9.4 � The Execution Model

As previously noted, it is imperative that the Unreal application is rendering frames at
90 Hz, or the VR experience will be unbearable. The rendering part of the Unreal VR
application therefore cannot wait for large geometries to be updated before proceeding
with rendering, especially if it happens as frequently as with timeseries datasets.

Unreal provides a multi-threaded environment whereby different CPU cores on the
system to work on separate aspects of the application. Whenever a visualization transfer
plugin is added to an Unreal application, an additional “External Visualization Thread”
will be added to the existing set of threads. This new thread handles geometry updates,
so that the render loop can run without stalling. It reads geometry from the shared
“Geometry Transfer Buffer” and copies it into graphics resources. As long as the threads
are properly synchronized, geometry updates should not influence the frequency at which
rendering is performed. The standard Unreal Engine application employs this strategy to
separate game logic execution from rendering; by default, any application based on it will
contain both a game thread and a render thread. The former executes game logic while
the latter fills the graphics command buffer and synchronizes with the graphics hardware
executing that command buffer.

A summary of the different stages in the execution model is represented by Figure 9.2.
From left to right, it shows the ParaView plugin filling the Geometry Transfer Buffer with
geometry, while the External Visualization Thread of the Unreal plugin is reading pre-
viously submitted geometry from another part of the buffer. That thread is part of the
Unreal Engine application, which additionally contains the game and render thread.

Note that the External Visualization Thread can run at a much lower frequency than
the game thread or the render thread, as the lower frequency of geometry updates will not

Figure 9.2

The ParaView-Unreal execution model, with ParaView on the left side and Unreal with its
threads on the right side. The shared Geometry Transfer Buffer is used for streaming data
from one side to the other.

138 9.  Bridging Scientific Visualization and Unreal VR

be detrimental to the experience of the user within the VR environment. This allows for
arbitrarily large geometries to be transferred, merely at the cost of animation smoothness.

9.5 � Updating the Graphics Resources

The previous section described the External Visualization Thread of the Unreal plugin,
which is responsible for reading geometry and texture data from the Geometry Transfer
Buffer and copying it into graphics resources. However, the graphics API is generally
assumed not to be multithreaded, so any kind of graphics resource creation or update
API call in the External Visualization Thread must still be synchronized with the render
thread API calls to execute properly. This can result in render thread stalls. For example,
if a geometry update would require the creation of a large rendering resource, that act
alone would stall the rendering pipeline, even though the eventual filling of that graph-
ics resource can be performed asynchronously. Further complications exist for updating
the graphics resource: while it is possible to get a pointer to a resource for asynchronous
updates on another thread than the one where rendering takes place, the programmer still
must ensure this update does not happen in a block of memory that is concurrently used
for rendering operations. So how does the External Visualization Thread get around these
problems?

The solution to updating graphics resources within an Unreal application while ren-
dering, is again based on double-buffering, similar to the solution for transferring data
between the two applications. At the start of the application, the External Visualization
Thread pre-allocates a number of graphics resources, like vertexbuffers, indexbuffers, and
texturebuffers of different sizes. These resources are exclusive to the External Visualization
Thread, and are therefore initially not used for rendering. Whenever ParaView provides
new geometry to the Unreal application, the best-fitting resource is selected and updated
asynchronously from the render thread. This can trivially be done in a safe manner, as the
resource is not used for rendering. Once the resource is updated, it can be handed off to
the render thread for use in the display of a mesh or material. This resource is marked as
used by the External Visualization thread and can therefore not be updated again.

Any subsequent geometry update will pick an as-of-yet unused resource from the pool
for updating. Once the update is finished and the resource sent to a geometry that was
already using an older resource, the reference to the resource is simply flipped to the new
one, which doesn’t delay the render thread at all. At the next rendered frame, the new
resource will simply be used instead of the old one. The old resource is marked to be
freed up again, but it cannot immediately be reused. It may still take several frames before
the rendering thread and driver is truly finished with the resource. Therefore, the render
thread increases a counter on all such marked-for-free resources at every rendered frame,
and once that counter hits a certain value for a particular resource, that resource can be
freely used by the External Visualization Thread again. As long as the amount of resources
pre-allocated by the External Visualization Thread is sufficient to support the maximum
scene complexity targeting a 90 Hz framerate, there will always be resources available for
the next update.

There is one caveat to the system of updating graphics resources as described above.
Within one frame, only a limited amount of graphics resources can be written to before it
saturates the PCIe bus, which then again causes slowdown on the render thread. Therefore,

1399.6  ParaView to Unreal Logical Mapping

the External Visualization Thread will update only a fixed amount of data per frame, wait-
ing for subsequent frames to continue writing into graphics resources. Therefore, while
it can take multiple frames for the External Visualization Thread to finish updating all
graphics resources, the impact to the rendering frequency is minimized.

9.6 � ParaView to Unreal Logical Mapping

In the Unreal software architecture, geometry is represented by one or more meshes
belonging to actors in an Unreal scene. Actors are typically independent from the per-
spective of user-interaction, as they are at the top of a transformation hierarchy. ParaView
on the other hand uses pipelines; one pipeline is generally a collection of stages, consisting
of data inputs and outputs and filters in between. Those stages work in a serial fashion,
transforming inputs from the previous stage in the pipeline, creating or modifying geom-
etry, and passing their output to the input of the next stage. Any stage can provide its
intermediate geometry as visual output. Because of that, the ParaView rendering backend
allocates a separate vtkActor for each such output. Therefore, it is logical to be able to
map any ParaView pipeline stage (vtkActor) to any Unreal actor. This is highlighted in
Figure 9.3.

The External Visualization plugin allows the user to choose which ParaView stages
should be grouped within the same actor in Unreal, and which ones will be part of a sepa-
rate Unreal actor. The goal of such a grouping is to be able to independently interact with
parts of the ParaView visualization, or to join separate parts of the ParaView visualization
within one Unreal actor.

To support this, every Unreal actor’s mesh is broken up into different sections, each
one belonging to a unique ParaView stage. Whenever a ParaView stage is created, a new
section is reserved within the Unreal mesh belonging to the Unreal actor to which the
ParaView stage maps. From that point, the External Visualization Thread can add and
remove graphics resources like vertex and index buffers to the reserved sections, and
update or replace these when new geometry comes in, as explained in Section 9.5.

Data Input 1

Data Input 2

Actor 1

U
nreal

Actor 2

Actor 3

Filter 1

Filter 2

Pa
ra

Vi
ew

Filter 3

Figure 9.3

Each individual stage in a ParaView pipeline can show its intermediate output by being
mapped to one or more Unreal actors (containing meshes) or one or more ParaView actors
can map to a single Unreal actor. Filter 2 creates no geometry, and therefore is not mapped
to any Unreal actor.

140 9.  Bridging Scientific Visualization and Unreal VR

Note that one geometry buffer coming from the pool of buffers held by the External
Visualization Thread may be assigned to one mesh section at one point in time, and a
different one at another point in time. Each section has a reference to its own material,
thereby supporting multiple materials over an actor’s entire mesh. The assignment of
geometry buffers from the External Visualization Thread’s pool of resources to the differ-
ent mesh sections is depicted in Figure 9.4.

Textures are updated in a similar fashion: a pool of textures is pre-allocated and assigned
to the geometry sections’ materials on-demand. To prevent that run-time changes of a tex-
ture’s size will stall the rendering pipeline, all pre-allocated textures are chosen to be of
a size at least as large as maximally required during operation of the plugin, and smaller
textures simply update only a sub-region of a pre-allocated larger texture resource. This is
possible due to the number of required surface textures in scientific visualization typically
being small. The original geometry’s texture coordinates are adjusted during the geometry
update to fall within the larger texture’s sub-region. Figure 9.5 shows a textured ParaView
actor being represented in an Unreal Engine application.

Buffer 0
Allocated

Section 0

Actor 0
Render Thread

Actor 1

Actor 2

Section 2

Section 1
External Vis

Thread

Buffer 1
Allocated

Buffer 3
Allocated

Buffer 4
Allocated

Buffer 2
Free

Figure 9.4

Mapping of the pre-allocated graphics resources from the External Visualization Thread to
the reserved sections of an actor’s geometry on the render thread. While Buffer 1 is assigned
to Section 0, it has to wait until the render thread finishes with Buffer 0 to reuse it. Section 1
has no buffers attached, and therefore contains no geometry to render.

Figure 9.5

A ParaView actor with color mapping, as represented by the External Visualization plugin in
an Unreal Engine application.

1419.7  The Unreal-ParaView Workflow

9.7 � The Unreal-ParaView Workflow

Usage of the ParaView plugin is easy: once it is loaded into ParaView, it will automatically
transport any visible geometry to a running Unreal Engine application. This only holds
for mesh geometry; volume data or points and lines are not supported. The “Display”
section of the “Properties” panel of a ParaView pipeline stage will automatically show the
“Surface ExternalVis” representation for any geometry that can be sent over. Changing
this representation will disable the item from being transferred to the Unreal VR scene.
Also, the plugin adds the header “External Visualization” to the “Display” section of the
“Properties” panel. Under this header, the user can set options for that control how the
ParaView pipeline stage is sent to Unreal VR. One such option is the “External Actor
Id.” All pipeline stages with the same identifier are grouped into one actor in the Unreal
VR scene, whereas stages with different identifiers are grouped into different actors. The
options explained above are shown in Figure 9.6.

The Unreal plugin works a bit differently, as there is no such thing as a monolithic
Unreal Engine application. Rather, one uses the Unreal Editor to construct a scene out
of standard elements and possibly custom ones coming from plugins. Once the scene has
been constructed, it can be converted into an application. The editor provides tools for
rapid prototyping interactions and graphics even before the standalone application is gen-
erated, which allows the user to create any kind of virtual environment around the data
that will come from ParaView and test it.

To start building your own environment using the Unreal Engine, I recommend
following one of the many online tutorials, like the ones from [Epic Games 2017;
Looman 2016]. Unreal comes with a standard VR template containing basic VR controls
and an environment in which to play around. When creating a new project, just choose

1

2

Figure 9.6

(1) shows the representation—changing it disables sending data over to Unreal.
(2) represents the actor identifier in the Unreal scene.

142 9.  Bridging Scientific Visualization and Unreal VR

the “Virtual Reality” option in the “Blueprint” tab to get going. To include the External
Visualization plugin, go to the project folder generated by the Unreal Editor, create a
“Plugins” folder and unzip the External Visualization plugin into it.

The External Visualization plugin can be included within any application generated by
the Unreal Editor, not just a VR application. It gives the user a new actor class called the
“External Vis Actor,” and by inserting instances of this class in the scene, the user chooses
where it is possible to spawn ParaView geometry. These are the actors that the user can
then choose under the “External Visualization” header in the ParaView pipeline stage
property menu. This is shown in Figure 9.7.

Before the actor can be used, it has to be given a proper scale, and a material that allows
for two-sided rendering and automatic texturing. Such a material is included in the plugin,
under the name “M_BaseMatDoubleSided” in “StarterContent/Materials.”
Just drag the material called “M_BaseMatDoubleSided” onto the “Material” sec-
tion of the External Vis Actor in the Unreal VR scene. This process is demonstrated in
Figure 9.8.

The External Vis Actor can be made subject to interactions and visual transformations
like any other normal actor, opening a host of possibilities for prototyping. For exam-
ple, it is quite easy to set up interactions for grabbing the object, scaling it and clipping
through its geometry. In fact, grabbing objects is already supported by the standard VR
template: just create a blueprint around the External Vis Actor that implements the Pickup
Actor Interface (see the “BP_PickupCube” blueprint as an example in the standard VR
template), and add a physics collision box component to register overlap with the motion
controller. Figure 9.9 shows two possible interactions in a VR scene.

Figure 9.7

After opening an Unreal VR template project with the plugin included, the External Vis Actor
appears in the Unreal Editor and can be dragged into the scene.

1439.8  Integration into Other SciVis Tools

9.8 � Integration into Other SciVis Tools

The ParaView-Unreal bridge demonstrates an automatic process to send arbitrary geom-
etry to an Unreal VR scene from within ParaView. In the future, it would be beneficial for
the area of scientific visualization if any arbitrary scientific visualization tool or pipeline

1
2

3

Figure 9.8

The External Vis Actor should be scaled appropriately at (1), the M_BaseMatDoubleSided
material can be copied from the plugin content folder and selected using (2), and that
material can then be dropped onto the actor in (3).

Figure 9.9

The first two images show the mechanism of grabbing an object and placing it at a new
position. The third image shows geometry clipping in action, using a sphere shape to clip
away an area around the hand.

144 9.  Bridging Scientific Visualization and Unreal VR

could send its geometry over to an Unreal VR scene. Therefore, the sourcecode of the
ParaView plugin contains a header and implementation file that allows anyone to create a
bridge between their favorite visualization tool and the Unreal Engine. These files define
the class ExternalVisBridge, which provides a shared memory connection with the
Unreal VR scene and the convenience functions to send geometry and other data.

The process that ExternalVisBridge follows for sending user data to Unreal VR
is summarized by Listing 9.1. Upon creation of a class instance, the necessary shared
resources are created with “OpenStream.” Before the user can transfer data, the applica-
tion has to request ownership over the shared memory block to communicate with Unreal
VR, as only one instance of the same application may be connected to the Unreal VR scene
at a time. This is done with the function “GrabOwnership”. Once ownership over the
communication channel has been obtained, the shared buffer has to be free for writing,
which is tested by calling StartProduce(). At that point, writing to the shared buffer
can start.

Listing 9.1.  Pseudo Code demonstrating the use of ExternalVisBridge.

void main()
{
 //Create an instance of ExternalVisBridge
 externalVisBridge = new ExternalVisBridge;	
	
 //This initializes the shared memory resources.
 externalVisBridge->OpenStream();

 //Make sure no two applications are communicating
 //with Unreal at the same time, and,
 //wait until there is space to fill the shared buffer.
 //(use “false” for non-blocking call)
 if externalVisBridge->GrabOwnership()
 && externalVisBridge->StartProduce(true){
 for every geometry {
 if added or updated {
 //Request a geometry data for the specified actor/section,
 //which allocates sufficient memory for the requested number
 //of vertices (with requested attributes),
 //indices and texels
 ExternalVisGeomData* geomData =
 externalVisBridge->ProduceGeomData(actorId, sectionId,
 numVertices, AF_NORMALS | AF_TEXCOORDS,
 numIndices, texWidth, texHeight);
	
 //Copy actual vertex, index and texel data over to the
 //shared memory pointer to by geomData
 if geomData {
 geomData->TexFilter = TF_NEAREST;
 geomData->TexAddressX = TA_CLAMP;
 geomData->TexAddressY = TA_CLAMP;
 memcpy(geomData->FirstIndex(), userIndices,
 geomData->IndexSize() * numIndices);
 memcpy(geomData->FirstTexel(), userTexture,
 geomData->TexelSize() * texWidth * texHeight);
 memcpy(geomData->FirstVertex(AF_POSITION), userVerts,
 geomData->VertexSize(AF_POSITION) * numVertices);
 //Do a similar copy while replacing AF_POSITION with
 //AF_NORMALS and AF_TEXCOORDS

1459.8  Integration into Other SciVis Tools

The process of copying data is fairly simple: for every geometry to be created or updated,
request an “ExternalVisGeomData” structure using “ProduceGeomData”, which
reserves part of shared memory and returns a pointer towards it. The request is initiated
by providing the number of vertices, indices, and texture size, along with the required
vertex attributes, which together define the size of the reserved shared memory. The struc-
ture is initialized with an actor id and section id to identify what has to be updated on the
Unreal side.

The actor id and section id passed along with the ExternalVisGeomData structure
are chosen by the user application itself, and can be any arbitrary value. Usually every
different chunk of geometry has a unique section id, and the actor id is chosen based
on which geometries should be grouped within the same Unreal actor, as explained in
Section 9.6. If a certain actor or section is sent over that does not exist in Unreal, a new
one is automatically created by the Unreal plugin. For future updates to the geometry, the
same actor and section id have to be used in order for the geometry to be replaced cor-
rectly in Unreal.

After creation of the ExternalVisGeomData structure, the vertex, index and tex-
ture data still have to be copied to shared memory manually. To this end, one can retrieve
the “FirstVertex”, “FirstIndex” and “FirstTexel” pointers, into which all verti-
ces, indices, or texels can be copied contiguously. All vertex attributes, indices, and texels
have to adhere to a strict format, which is outlined in the ExternalVisBridge header
file. Along with the data, some vertex and texture properties can be passed along, such as
the texture filter and addressing functions.

To remove a geometry call “ProduceEmptyGeomData” instead of
“ProduceGeomData”, with the actor and section id of the geometry to be removed. No
further data has to be filled into the ExternalVisGeomData structure that the func-
tion returns.

Once the batch of geometries is copied to shared memory, calling “EndProduce”
makes the shared memory section available for reading by the Unreal plugin.

 }
 } else {
 //Send a request via shared memory to erase geometry
 //referenced by actorId and sectionId.
 ExternalVisGeomData* geomData =
 externalVisBridge->ProduceEmptyGeomData(actorId, sectionId);
 }
 }

 //Explicitly tell ExternalVisBridge that the current batch of
 //geometries have been copied to shared memory. This makes the
 //buffer available for Unreal to be read.
 externalVisBridge->EndProduce()
 }

 //Destroy the ExternalVisBridge instance,
 //which closes all handles to shared resources.
 //The shared resources may or may not be destroyed,
 //based on whether any other process is still using them.
 delete externalVisBridge;
}

146 9.  Bridging Scientific Visualization and Unreal VR

Not all data that is communicated from a scientific visualization application to Unreal
necessarily has to be transferred via shared memory. Examples of this are plenty: one
could wish to change Unreal graphics settings from outside the Unreal application, trig-
ger an animation sequence, or play certain sound effects. Many of those commands do not
involve much data and the requirement for asynchronous resource updates on the Unreal
side. Even more importantly, this also pertains to commands issued from Unreal to the
scientific visualization application. Examples there include the specification of a position
in 3D space to generate new streamlines, controlling replay of a timeseries dataset, or
enabling certain pipeline filters.

The Unreal-ParaView bridge contains an example of a TCP/IP-based communica-
tion channel for the utilities mentioned above. Due to the application-specific nature of
such communication, this feature has not yet been fleshed out, and will not be described
in detail in this chapter. However, it would be quite simple to use the communication
channel to achieve the goals listed above. The files “vtkPVExternalVisCommunic
ator.h” in ParaView and “ExternalVisCommunicator.h” in the Unreal plugin can
be inspected to find out how the communication channel can be set up.

9.9 � Limits on Performance and Data Sizes

Sections 9.4 and 9.5 showed how the Unreal VR plugin is able to maintain a 90 Hz ren-
dering loop while transmitting geometry data from ParaView and updating graphics
resources within Unreal. Even though it decreases rendering stalls, there is still a number
of performance bottlenecks in the execution of the application.

For one, the number of static polygons that can be rendered at 90 Hz in an Unreal VR
environment is bounded to around 15 million on a single GTX 1080. While it is possible
to dynamically update a full 15 million polygon geometry, it requires multiple frames to
send all data over the PCIe bus. Within scenes that are not expensive to render, 1–2 million
polygons per frame can be transferred before it starts to impact the framerate. That means
it takes roughly 10 frames of latency for the full geometry to become visible in the VR
scene. The more complex a scene becomes to render, the longer the latency, as the PCIe
transfers and the rendering still happen synchronously on the driver level.

Furthermore, there is a limit on how fast ParaView updates its geometry for every step in
a time-series dataset. This limits the frequency at which ParaView can send updated geom-
etry to the Unreal VR scene. Naively, ParaView loads the geometry anew from disk each
timestep, but this can be mitigated by inserting a “Temporal Cache” filter below the geom-
etry output. Once a timestep has been processed, this filter stores the result in memory for
the next time the timestep is loaded. Even with such an optimization in place and some
customizations to prevent ParaView from rendering its data when the Unreal VR applica-
tion is active, ParaView is only able to update timeseries data for timesteps consisting of 1–2
million polygons at around 20 Hz, using a typical 3.5 GHz Intel Haswell desktop processor.

9.10 � Conclusion and Future Work

The ParaView-Unreal bridge provides a low-cost opportunity for integration of the latest
VR rendering techniques into scientific visualization pipelines. It also opens up an easy-
to-use workflow for prototyping different visualization and interaction strategies in a VR

1479.10  Conclusion and Future Work

environment. This is of much use to many branches of research that require the enhanced
depth perception of VR and could benefit from the improved rendering quality offered by
the game engine. However, due to the single-workstation constraint, the bridge is not yet
usable for visualization in most large-data HPC use-cases.

One possible way to resolve this could be to develop a multi-node Unreal rendering
backend for visualization of larger datasets. While this would certainly enable rasteriza-
tion rendering of larger datasets, it is costly to develop, and it is not yet clear how the
solution would handle the large latencies of rendered frames coming back from the HPC
system. Given the interface of the bridge, it should not be a lot of effort to make it work
across a range of other scientific visualization tools in the near future, such as VMD or
VisIt. However, these packages often benefit from rendering techniques that are different
from rasterization, like raytracing and volume rendering. Such techniques are less effi-
cient for VR, as they often have a somewhat lower baseline performance and can therefore
not meet the 90 Hz refresh rate requirement.

Even though other rendering techniques may be hard to achieve for a VR use-case,
there should still be an effort to include them in order for VR to become more main-
stream in scientific visualization. The reason other rendering techniques are so useful
for scientific visualization is manifold: raytracing can provide more insight into data by a
more natural support of global lighting techniques, which increases the user’s perception
of shape for complex geometries. Also, as datasets get larger, these complex geometries
may even be more efficient to render with a raytracing method than using rasterization.
Then, there will be a great need for rendering transparent geometry and especially volume
data. While the latter requires a rendering method that quickly gets too expensive for
higher levels of detail in VR, the former is challenging as well. Rasterization of transparent
geometry requires considerable effort to sort rendering primitives (whether triangles or
pixels) to correctly render the image. While it may be possible to break up geometry auto-
matically in ways to support this, it will still have a negative impact on the performance of
transferring dynamic geometry into a VR scene. Lastly, scientific visualization sometimes
requires specialized shading routines and materials, which may not be easy to replicate in
the model employed by the Unreal engine. The developer will have to perform a custom
translation from one rendering pipeline into another, which requires a large investment of
resources. It would be beneficial if all these techniques could just simply be combined with
the rasterization that is provided by the Unreal Engine, instead of replicating the benefits
of one method into another in a less-than-ideal form.

An important part of the bridge that has only briefly been touched on in Section 9.8,
is communication from Unreal back into the ParaView. A fundamental goal of the bridge
is for the user to be able to efficiently perform certain actions in the VR environment that
they are familiar with in ParaView as well. Examples include control over how to play
time-series datasets, inserting streamlines and changing isosurface contours. It is impor-
tant that these operations are not performed natively in the Unreal application, but that
communication with the ParaView application exposes such functionality, along with any
other functionality that the SciVis software offers.

Another area in which future development of the bridge could take place is easy col-
laboration in VR, especially concerning manipulation of datasets. The ease of collabora-
tion enabled by CAVE-style VR systems is still one of their major selling points, and hard
to currently match with consumer VR.

148 9.  Bridging Scientific Visualization and Unreal VR

References

[Epic Games 2017]

Epic Games (2017) Unreal Basic Scene and Lighting Tutorial: Lighting Quick Start Guide.
Accessed October 4, 2017. https://docs.unrealengine.com/latest/INT/Engine/
Rendering/LightingAndShadows/QuickStart/index.html

[Looman 2016]

Looman, Tom Blog: VR Template Guide for Unreal Engine 4, Sept. 9, 2016. http://
tomlooman.com/vrtemplate/

[Martin et al. 2016]

Martin, Ken, David DeMarle, Sankhesh Jhaveri, and Utkarsh Ayachit
(2016) Blog: Taking ParaView into Virtual Reality, Sept. 22, 2016.
https://blog.kitware.com/taking-paraview-into-virtual-reality/

[O’Leary et al. 2017]

O’Leary, Patrick, Sankhesh Jhaveri, Aashish Chaudhary, William Sherman, Ken
Martin, David Lonie, Eric Whiting, James Money, and Sandy McKenzie (2017)
Enhancements to VTK enabling scientific visualization in immersive environments.
In Proceedings of IEEE Virtual Reality (VR), Los Angeles, CA: IEEE, pp. 186–194.

[Rajlich 1995]

Rajlich, Paul J. (1995) An object oriented approach to developing visualization tools
portable across desktop and virtual environments, MS Thesis, Computer Science,
University of Illinois at Urbana-Champaign. http://visbox.com/prajlich/T/bigT.html

https://docs.unrealengine.com
https://docs.unrealengine.com
http://tomlooman.com
http://tomlooman.com
https://blog.kitware.com
http://visbox.com

Section III
Interaction

http://www.taylorandfrancis.com

151

10
Brownboxing
The Secret to Rapid VR Prototyping

Shawn Patton
Principal Game Designer at Schell Games

10.1 � Introduction

Creating a Virtual Reality (VR) game or experience can be a large undertaking. In the
consumer marketplace, VR is a new medium and expectations can vary widely. As a devel-
oper, production costs can quickly balloon past original estimates as the depth of the interac-
tions required to maintain presence quickly eat through resources. To an investor faced with
increasing costs, confused and cautious consumers, and a small install base, VR is a risk.

10.1	 Introduction
10.2	 �Benefits
10.3	 Limitations of Brownboxing

10.4	 Practical Process
10.5	 Playtesting
10.6	 Conclusion

152 10.  Brownboxing

So what is a fledgling industry to do?
Well, first, be confident in VR’s innate ability to transport a person to other worlds.

Virtual Reality may be new to the mainstream consumer, but it has been proving its power
and allure in smaller venues for decades. Once people try “good” VR they are hooked; now
we simply need to provide that content. You would not be reading this book if you did not
believe that.

Second, know that you will be able to employ tools to bring the cost of development
time down. That is what this chapter is all about. Fast iteration is the key to making great
experiences and games in general—with VR content this is doubly so. In VR development,
physical prototyping is the third dimension to paper prototyping’s two. Just as paper pro-
totyping speeds up creation of 2D games, physical prototyping is the closest analog to VR
we have. What better way to create physical prototypes than with cardboard? So come
with me as we dive into the world of brownboxing: creating physical prototypes with
cardboard (Figure 10.1).

10.2 � Benefits

We will start by discussing the benefits of this, perhaps unorthodox, approach. After all,
if you are going to convince your manager or producer that setting up a “box fort” in the
office is worthwhile, you had better have good reasons.

	 1.	 Leverage a Low-tech Solution to a High-tech Problem
Having naïve people play your game, or playtesting, is key to making it the best

it can be. You will learn so much. What are they thinking? Why are they thinking
it? When and why are they frustrated? Learning these lessons as quickly as pos-
sible as early as possible is the goal of brownboxing. You can brownbox a 3D set
or a key interaction with no specialized skills, no engineers, no artists—just some
cardboard, tape, and relevant props you find lying around. This method keeps
other team members free to work on the underlying systems. Or, if they are not so
engaged, they can join in on the crafting fun. Creating a brownbox setup together

Figure 10.1

Henry inspects a brownbox after completing his playtest.

15310.2  Benefits

can be a great way for a new team to get to know each other, and when lessons are
learned by the whole team at once, they are that much more powerful.

As an example of this phenomenon, while building a phone circuit board inter-
action for I Expect You to Die, I discovered that the location we had imagined for
the interaction would be too far from the phone itself. Working with one of the
artists, we started to move the interaction closer but got called away for a meet-
ing or some other interruption. When I returned I found another artist and our
tech lead had finished it off with some details I would not have contemplated but
that tied it all together well. This cooperative building with physical materials is
refreshing in an industry where most of our work is done on a screen and, well,
doesn’t involve duct tape.

	 2.	 Quickly Define Spheres of Interaction and Attention Draws
Early in the process of creating new VR content, be it an experience or a game,

you need to clearly understand what your player can, and will, reach for. Certainly
this problem changes based on whether you are room scale, have in-world move-
ment, are in a cockpit, have full 6 DOF position tracking, 3-DOF orientation-only
tracking, or are further limited by the tracking technology (e.g. is turning around
a problem?), but the question remains. Players are going to want to grab some
things (while surprising you by not grabbing others) and will generally explore
their surroundings. Brownboxing is perfect for quickly testing and understand-
ing player expectations in this sphere of interaction.

Having worked on the spatial puzzler Water Bears VR, the escape-the-room
puzzler I Expect You to Die, the RTS Frostbound VR, and the creative builder and
puzzler Lego Brickheadz Builder VR, my direct experience leans more toward
stationary puzzlers, but one can anticipate that there are lessons to be learned
for most VR experiences through this brownbox approach. Certainly it makes
sense for room scale and games with cockpits, but even titles based around warp-
ing movement have key set pieces that can be mocked up in our world and thus
explored quickly. Once mocked up, take particular note of where your players
look first; what do they gravitate toward or away from? The player’s attention is
prized above all in a medium where you can look anywhere, so understanding
early what draws the player will be advantageous.

	 3.	 Rapidly Iterate
As soon as you start putting naïve people in your brownbox world you will find

aspects you want to change. And you can! Easily. Need to add an in-world sign
describing a weird interaction? Grab a marker! Need to move that console a foot
to the left? Pick it up and move it! That cabinet should open to the left instead of
the right so it doesn’t block that indicator light, right? Move that duct tape hinge
and you’re good! Every creative process chases the dream of rapid iteration, but
few come as close as brownboxing. Yes, there are limitations, and we will discuss
those in the next section, but for now revel in your freedom to iterate quickly! Tear
that piece off, cut a hole there—you can always tape it back up.

Have a knick-knack on your desk that kind of looks like what you might model
later? Bring it over. Need a sound effect for when that door opens? Your phone has
a voice memo app and your voice has all the sound effects you could need, so get
recording. Embrace your inner toddler: build with blocks, imagine and make real.

154 10.  Brownboxing

It is quite freeing once you get started. Worried what your manager or producer
will say? Show them the quick progress you’ve made, the time shaved off the sched-
ule of three other employees because of the issues you discovered and squashed, or,
failing all that, show them this chapter; I’ll talk to them for you (Figures 10.2–10.4).

10.3 � Limitations of Brownboxing

Yes, there are some; it is not all spray adhesive and glitter. Only by understanding the
limitations will you maximize the results of your brownbox building.

	 1.	 Requires Physical Space
It should not be surprising that building an interactive space out of card-

board takes up room, but choosing that space is where it all starts, so let’s think it

Figure 10.2

A phone created by a group effort and then
iterated on.

Figure 10.3

Lucy inspects her immediate surroundings.

Figure 10.4

A newspaper went through many iterations to get
the text just right.

15510.3  Limitations of Brownboxing

through. Every office and workspace is different, but a single cardboard prototype
of a device or interactable should be able to fit in some corner somewhere. Keep
in mind lighting conditions, general employee traffic patterns, and noise levels
when you are choosing a spot. You don’t want an overly public location because
you don’t want to distract anyone while conducting playtests. A conference room
would probably be the best space but those are often hard to find—especially for
any significant duration.

Also, while room scale is doable, creating multiple rooms within a build-
ing (such as would be traversed by warping) would be problematic. Where
brownboxing primarily shines over its cousin “whiteboxing” is in creating an
interaction rich space around the participant. So find an out-of-the-way corner,
grab some cardboard, and get to work! (Whiteboxing is a stage of desktop game
development where basic in-engine levels are created from cubes and some simple
models with flat single color textures—i.e. the world-scape is mostly white. It is
usually the first time people can play a new game or experience.)

	 2.	 Difficult to Simulate Magic and Projectiles
In I Expect You to Die, you play as a late 1950s era secret agent, trying to com-

plete missions while, well, not dying. You are aided by telekinetic implants that
allow you to pick up and manipulate far away objects via telekinetic beams (TK
beams). This conceit dates back to the original prototypes which were mouse-
based (a control scheme the game still supports to this day). You have an aiming
reticle you can move left/right and up/down with the mouse, and it auto-picks
depth. When you click to pick objects up, you can use the mouse wheel to “reel”
them in or out. This also allows for the game to have room-size areas easily
supported on non-room-size VR platforms, as well as being darn convenient in
general. (Trust me, I miss it while playing other games.) Even with hand input we
support the TK beams, and brownboxing TK-related puzzles is difficult. You can
try to describe and entice players to try out the ability, but it’s just not the same.
As a result, when testing I make mental concessions and encourage the player in
certain ways that I would never do in a normal playtest. Then I need to account for
that when assessing the strengths and weaknesses of the level and revisit the issue
during the subsequent whitebox testing phase.

Similarly, when players need to shoot something, well, you kind of just need
to wing it. Do you err on the side of them always being awesome shots? Probably,
but your game may call for a different approach; either way, be aware of the
shortcomings and you’ll be fine.

	 3.	 False Results Due to Level of Polish
Probably the easiest trap to fall into when judging what draws players’ atten-

tion with a brownbox is that interactable items tend to have more love put into
them than non-interactable ones. For example, when an entire console is brown
cardboard and there are two nifty red buttons inserted into it, those will both
stand out and draw the eye. When the final game model is made, will both still
stand out, or is one lost in that freshly baked shadow? The opposite is true as well;
a handle that would be obvious in a real piece of furniture tends to blend in when
everything is cardboard. You might find you have to “art up” a larger area to make
a key piece of information blend in (Figures 10.5–10.7).

156 10.  Brownboxing

10.4 � Practical Process

We have talked about the pros and cons (and how to mitigate them), but let us talk now
a bit about the practical process of building and some tips and tricks that may be helpful
along the way.

	 1.	 Set Clear Goals
Whether you are creating a single room experience, a multi-dungeon plat-

former, or something in between, I am confident brownboxing can speed up the
early stages of your VR development, but you have got to go into it with some

Figure 10.5

Sometimes a folding sound-dampening wall presents
itself as useful. And yes, the ladder was part of it.

Figure 10.6

The author facilitating the use of telekinesis
to bring a box over.

Figure 10.7

The inside of the engine had to have extra bits added in to
make the functional parts not pop quite as much.

15710.4  Practical Process

clear goals. How will a player explore Room A? What will a player try to do with
Device B? When they hear Audio C, will they grab Doodad D or reach for Thing-
a-ma-jig E? These are great questions for brownboxing.

That said, you will also get answers to questions you never even thought to ask,
such as: Do we need to make the metal tray cover ricochet bullets back at the assassin?
(Apparently the answer to that is a resounding yes, because the majority of players
think that should work!) So set your goals and questions ahead of time, but also have
a broad enough information gathering process to catch unexpected diamonds.

	 2.	 Collect Materials Ahead of Time
Since the first brownbox on the original IEYTD, Schell Games has kept a stock-

pile of cardboard and odds and ends lying around. Big box stores now crush,
horde, and recycle their refrigerator boxes, so don’t count on them being available.
However, with the dominance of online shopping and meal kit delivery services
(meal kit boxes are really nicely sized), a quick office email should net you more
than enough raw material if everyone chips in.

Items such as PVC tubes of various thicknesses go a long way as well as tiny
LED party favors and other knick knacks that can be scrounged or purchased
from your local dollar store (and I’m talking a true dollar store, not one of those
“around a dollar” stores).

	 3.	 Location
I touched on it before, but the best location for a brownbox has as many of the

following qualities as possible:
	 A.	 Away from people trying to work/prying eyes
	 B.	 Lighting that can be controlled
	 C.	 Enough space for the finished product and, ideally, storage for leftovers/scraps
	 D.	 Power outlets (for lamps and things)
	 E.	 Relatively distraction-free but with the ability to make noise when necessary

(see A)
	 4.	 Construction tips

•• I know you want to use duct tape for everything, but know that if you hang
the load wrong or your brownbox is in direct sunlight, you will find structural
integrity failing after a day or so. Pens, PVC tubes, and random bolts often
make much better hinges.

•• Hot glue is your friend for anything you really want to stay where you put it. It
also peels off of most painted drywall & plaster easily, though please do a spot
test first. It also sticks to most masonry if you’re working in one of those fancy
new old-exposed-brick offices.

•• Thick markers are always better than thin. Think about easy-to-read labels and
signage. Save yourself some hassle and spring for a couple wide-tip markers.
Red and black should be enough. If you need finer text, go with the next tip:

−− Printed labels—adhered with spray adhesive or rolled scotch tape is key.
(I must have gone through six iterations on one printed prop to get the
wording exactly right.)

−− Think outside the box. We used a folding sound dampening wall on wheels
for a large part of one brownbox we made. Don’t be afraid to put a folding
table or lamp with a few modifications in. Let your imagination go wild.

158 10.  Brownboxing

	 5.	 Some Details Matter, Some Don’t
When we talk about where to spend your time budget while brownboxing, it’s

in the details. While you want to avoid the false positives described above, you
also need to make sure certain things read well and that you’re providing as much
feedback to the player as possible. That way, if it works for the player in brownbox
and the feedback only gets better in the final game, you will know you’re design-
ing a good experience. For example, have a bell that goes off to get the player’s
attention, put a flashing LED on a console that you stop when they do the cor-
rect thing, and record sounds or scratch dialogue on your phone for those key
moments. As a rule, if you are about to spend some art love on an aspect of your
brownbox, ask if it is providing valuable feedback to the player. If the answer is
yes, go for it (Figures 10.8 and 10.9).

Figure 10.8

A pile of cardboard and a bunch of random stuff is key.

Figure 10.9

An LED for attention, a car jack for heft, and a bell for arrival feedback are examples of
details that will really sell your brownbox.

15910.5  Playtesting

10.5 � Playtesting

After a couple days (maximum) you should have something you can begin testing with.
That rough layout will serve to discover so many things from the first run-through that
you will be altering it soon enough anyway. Once you have spent a day or so preparing this
awesome brownbox experience to test a naïve person with—how do you go about it? First,
find a person not on your immediate team, ideally in your target demographic, and find a
good time for them to play. Book the appointment and make sure you have the following
figured out:

	 1.	 The Script
After all the brainstorming has run its course, start by condensing all the ideas

into a player experience document. That is to say, from the player’s perspective,
what they experience. From that create a brownbox script. Record any informa-
tion needed to seed the player to give every player the same experience. Also, map
out the most likely side branches and deviations from the “best path” through the
game and how they should be handled. If you will need helpers to “trigger events”
or play audio, consider making special versions of the script just for them or at
least highlight their parts. This document will change very quickly the first few
playtests as you hammer out the largest issues, so have your red pen handy.

	 2.	 Your Role
The role you play as brownbox moderator is akin to a D&D game master or

improv actor. You need to know when and how to present new information, what
to describe in more detail, when to hold your tongue and let things play out, and
you need to do it all in real time. The first couple run-throughs will be rough, but
that’s all part of the process of making interactive content. At first your brown-
box world will be pretty broken, so don’t hesitate to make big changes quickly or
improvise on the spot. It is better to get at the heart of what your guest wanted
to do and what they expected would happen than to shut them down because the
script doesn’t support it. Once you get the experience to a state where a player can
run through it start to finish, then lock it in.

Now, go make changes and print out a new script or record new audio prompts
for those contingencies you just discovered. Make any “permanent” structural
changes to boxes that need to be made. As things progress, when you test new play-
ers, try to stick more closely to the script and say and do the same actions the same
way each time. Pretend you are the computer AI, taking in player input as actions
and spitting out what your internal algorithm tells you to. Have no fear, you will
change it again later, but try to get at least four solid playthroughs this way.

	 3.	 Guest expectations
A few notes on guests for brownboxing. They probably cannot be people off

the street, not yet at any rate. These should be developers not on your team who
have good imaginations. As host, make it clear that they are helping you; if any-
thing is confusing or frustrating it’s your fault, not theirs. Let them know that the
brownbox nature will necessitate you having to describe some things or usher
them through some interactions. Ask them to speak their thoughts out loud as
they play, asking for clarification when they need it and generally keeping you in

160 10.  Brownboxing

the loop of what they are thinking. Not just useful for note taking, this running
commentary will make clear whether they are jumping to incorrect conclusions
because of the rough cardboard setup or because of flawed or faulty game design.

	 4.	 Data Collection Methodology
If you can, it is nice to have someone taking notes while you host. You can

still jot down notes privately yourself in the script, but it doesn’t hurt to have two
records. Video can be good to have, either to show the team later if they cannot be
there for the playthroughs or as reference. Even if you don’t end up using much of
it, there will probably be a couple of times when you are glad you had it.

Then there are post-playtest questions. The goal is to get unadulterated feelings
from the testers. You do not want to lead them in any way, but you want to find
out what they were thinking. Obviously every experience is different, but I highly
recommend the following four questions for games in general, but VR specifically:

	 1.	 What was the most frustrating moment or aspect of what you just played?
	 2.	 What was your favorite moment or aspect of what you just played?
	 3.	 Was there anything you wanted to do that you couldn’t?
	 4.	 If you had a magic wand to wave, and you could change, add, or remove

anything from the experience, what would it be?
I ask them in that order, every time, and write down what they say, in order. You
might see some overlap in responses, but that’s ok, that just means it was really
important to them. Most of the time you will see different answers for number 3
(“Wanted”) and number 4 (“Wand”), which is good intel. Also, you will be able
to compare answers from different players who played the same version of the
brownbox. Recognizing frustration trends and acting to fix them is obviously key.
However, calling out favorite moments and capitalizing on them by putting in
more content “like that” in a polish phase later can turn an ok experience into a
great one (Figure 10.10).

10.6 � Conclusion

Virtual Reality is here to stay. It is a flourishing medium that will take its place next to
PC, console, and mobile. As developers it is our job to create compelling content for this
growing medium in a cost-effective manner. Making fun interactions that have depth and
preserve immersion takes iteration, and iteration takes time. Brownboxing can be an effi-
cient first step to creating a fun VR space. The information learned helps inform the next
steps, typically the in-engine, roughly outlined, whitebox stage of development. So grab
some cardboard, tape, and markers and start making the future of interactive content!

Figure 10.10

Tom contemplates his options as the game master waits
patiently off to the side.

161

11
Bi-Manual Interaction for
Manipulation, Volume
Selection, and Travel
Using the Leap Motion, Game
Controllers and Mobile Devices

Elliot Hunt, Rajiv Khadka, and Amy C. Banic’
University of Wyoming

In this Gem, you will learn how to set up a basic bi-manual (two-handed) interaction,
specifically through object manipulation and selection/manipulation of a selection
volume. These techniques will be demonstrated using a LEAP Motion Hand Tracker,
standard game controllers, and Android-based mobile devices. The programming code
in this chapter has been tested with Unity (v 5.6.1f1), using MonoDevelop (v 6.1.2.44) and
Android Studio (v 2.3.1), though your solution is not limited to this compiler or Unity
version.

11.1	 �Part I: Getting Started with Unity and Leap Motion Hand
Tracking

11.2	 �Part II: Bi-Manual Object Manipulation
11.3	 �Part III: Manual Volumetric Selection and Manipulation
11.4	 �Part IV: Bi-Manual Travel Using Typical Game Controllers
11.5	 �Part V: Bi-Manual Manipulation and Travel Using Mobile Devices
11.6	 �Conclusion

162 11.  Bi-Manual Interaction for Manipulation, Volume Selection, and Travel

11.1 � Part I: Getting Started with Unity and
Leap Motion Hand Tracking

To get started, in this part we will build a Unity scene that incorporates the finger skeletal
information provided by the LEAP finger tracking device from Leap Motion. With the
finger tracking, users will be able to manipulate objects in a virtual environment using
their bare hands. The basics learned in this part will serve as a foundation to learn how
to manipulate a selection volume to select multiple objects or data points. These examples
provide details on manipulation through specific translation, rotation, and scaling tasks.

11.1.1 � Step 1: Set Up a Basic Unity Scene
Set up a basic Unity scene (see Unity help files for basic setup) with a plane and a few
3D objects in the scene to manipulate. Simply right click within the hierarchy and find
“Plane” under the “3D Object” sub-menu as shown in Figure 11.1. As part of a basic scene,
we will add a plane to serve as the ‘floor’ of the environment (should you want to add
gravity to the environment). When objects are picked up by a user and dropped, then
the objects can be stopped by a “Plane,” instead of falling forever. The values of X: 0.0, Y:
0.2, and Z: −5.0 were used to position the camera at the edge of the plane. Add a few 3D
objects in your environment, for this Gem we added a cube to interact with and manipu-
late. Navigate to Assets → LeapMotion → Modules → InteractionEngine → Examples →
InteractionObjects → Prefabs and there is a list of several objects that can be put into the
scene. Pick one and drag it to the hierarchy. In this Gem the cube was positioned at (X: 0.0,
Y: 0.4, Z: −5.0). Let’s name the scene; we call ours “GemScene.”

Figure 11.1

Create a plane object by right-clicking in the hierarchy. This plane will serve as our floor.

16311.1  Part I: Getting Started with Unity and Leap Motion Hand Tracking

11.1.2 � Step 2: Import LEAP Assets
Now that we have a basic scene to work with, we can import the LEAP’s core assets.
But before you unbox that LEAP, we have some downloading to do. On LEAP Motion’s
website, http://leapmotion.com, download the latest drivers (this GEM uses 3.2.0 Orion).
Find your way to the developer section of LEAP’s website and download Unity Assets
for Leap Motion (4.2.0) as well as the “Leap Motion Interaction Engine” (1.0.1) Module.
Install those drivers, restart if necessary, and re-open the Unity project. Drag and drop
your downloaded Core Assets file and Interaction Engine into the Assets folder within the
Project window and the files will be imported. Alternatively, you can right click within the
Project window, go to Import Package, then to Import Custom Package, navigate to your
downloads, and select the “Leap Motion” package.

11.1.3 � Step 3: Adding Virtual Hands
Right click on our scene and, if you haven’t already, save it! Then right click again,
and click “Unload Scene.” As you navigate through the folders in the Project window,
you’ll find within LeapMotion → Core → Scenes, five example scenes provided by LEAP
with basic implementations of the LEAP Motion Core Package. To try any of these out,
double-click on each demo scene, one at a time, in the prefab assets folder. You can switch
between scenes in this way to view LEAP’s example scenes. There are examples for both
Augmented Reality and for use with a Virtual Reality headset within the Scenes folder.
We will be modeling ours after the “Leap_Hands_Demo_Desktop” scene. The Virtual
Reality Headset implementation with a LEAP is simple, and will be explained at the end
of this section. For now, however, let’s return to our scene and implement the LEAP and
Virtual Hands.

Several example implementations of LEAP’s core asset package are provided within the
core asset package itself. You can find those examples as “Scenes” located in the Assets/
Scenes/directory (Figure 11.2).

To add LEAP support to your unity scene, first make sure to return to you “GemScene”
scene, then select LeapMotion → Core → Prefabs within the Project window. Within the
Prefabs folder, should be a Unity prefab asset named “LeapHandController.” Drag this
into the Hierarchy and release it on top of our “Main Camera” object and it will become a
child of “Main Camera.” If you are familiar with scene graphs, you will be aware that the
child of an object within Unity inherits many features of its parent, including any real-
time updates to position information. From now on, when and if we move Main Camera,
“LeapHandController” will move with it. The opposite is not true, however, as we can still
move “LeapHandController” independently of (relative to) its parent.

At this point, plug in the LEAP device. However, the physical hands in the real world
will not yet be associated with any virtual objects. Let’s fix this! In order for the LEAP
to correctly access a set of virtual hand models (which we will add in our scene now),
we must start by adding an empty object. Right click within the Hierarchy, select Create
Empty, and a new object will appear within the Hierarchy. This object will not have a
visible representation within the scene and is best thought of as merely a container to
hold objects. Name it anything you’d like—this Gem uses the name “HandFolder”.
Now, it is time to add the virtual hand models that LEAP has included (though you
can import other hand models from the Unity Asset store). Drag CapsuleHand_L and
CapsuleHand_R to the top of “HandFolder” to place them as children of “HandFolder.”

http://leapmotion.com

164 11.  Bi-Manual Interaction for Manipulation, Volume Selection, and Travel

Now, select “LeapHandController” and in the Inspector panel, scroll to the bottom. You
should find a section titled “Hand Pool (Script).” Under Models Parent, drag the Empty
Object—“HandFolder”—to this box. Now the Hand Controller knows where to find the
models! Change the Model Pool’s Size value to 1 and drag “CapsuleHand_L” to the Left
Model field, and “CapsuleHand_R” to the Right Model field from the hierarchy. Make
sure ‘Is Enabled’ is checked, as well as ‘Can Duplicate,’ and rename the Group Name. In
the interest of modelling our controller after the “Leap_Hands_Demo_Desktop” exam-
ple, above “Hand Pool (Script)” in “Leap Service Provider (Script),” check the box next to
“Override Device Type” and make sure “Override Device Type With” is set to “Peripheral.”
By the time you’re done, your screen should look like Figure 11.3.

You should now be able to plug in the LEAP motion, hit the play button, and control the
Virtual Hands with your real ones!

11.1.4 � Setting-up Physics for the Hands
Adding physics attributes to the hands allows us to pick up objects and interact with them
within Unity. In reality, each of your hands is controlling two hands: A visual hand—i.e.,
the Capsule Hands—and another (invisible) hand that occupies the same space. This sec-
ond hand—the Physics Hand—is what detects collisions and lets us pick up objects.

In LEAP’s interaction engine (version 1.0.1), the physics hands are handled inter-
nally, so all you need to do is create an Interaction Manager object as well as Interaction
objects. Navigate to Assets → LeapMotion → InteractionEngine → Prefabs and drag the

Figure 11.2

Five example scenes are available under the “Scenes” folder in the Leap Motion Unity
package.

16511.1  Part I: Getting Started with Unity and Leap Motion Hand Tracking

“Interaction Manager” object into your hierarchy window. Press play—you may receive a
warning about your Timestep at this point that looks like Figure 11.4.

Simply follow the instructions and change the associated value. This is due to modern
VR headsets that operate at a much higher refresh rate rather than a standard monitor
[Oculus VR 2018; Niehorster et al. 2017]. Tip: There is also the potential that a second error
message relating to the gravity of the project being set too high will appear. This can safely
be ignored and may be altered in future iterations of the Interaction Engine. Try pressing
play again—everything should work this time!

11.1.5 � Supporting Interaction with Objects
As you can see in Figure 11.5, there are three axes with arrows to shift the object’s
location—simply click and drag the Z-axis arrow to shift your cube to be roughly between
the Capsulehands located on screen—i.e., to bring it within reach of the LEAP. Press the
play button and experiment with using the LEAP to pick up the object you’ve created!

Figure 11.3

Using the Inspector panel to fill in the proper values in the “HandModeIsVisible” object.

Figure 11.4

For HMD virtual reality experiences, 90 Hz (.0111 ms/frame) is the modern standard visual
rendering rate.

166 11.  Bi-Manual Interaction for Manipulation, Volume Selection, and Travel

There may be a strange clipping phenomenon that happens to both the virtual hands
and the object as they intersect (Figure 11.6). This is caused by objects that are too near
the camera. Unity cameras have a parameter of how near objects can be before they are
“clipped” from view. To reduce the clipping, lower the setting of the Clipping Plane “Near”
value, to perhaps 0.1 (default is 0.3 m). You can also turn off the forearm portion of your
capsule hands. To remove them, find “CapsuleHand_L” and “CapsuleHand_R” in the
Inspector and find the “Show Arm” checkbox, which you can toggle within the Inspector.

Figure 11.5

The arrows emanating from an object allow the developer to manipulate the object’s
location using the mouse. Here we bring an object to be within reach of the LEAP device.

Figure 11.6

By default, objects are clipped (a) as they approach the camera (i.e. the user’s eyes) within
30 cm. By decreasing the near clipping distance for the camera (b) the rendering can be
improved.

16711.2  Part II: Bi-Manual Object Manipulation

11.2 � Part II: Bi-Manual Object Manipulation

11.2.1 � Step 1: Basics of Object Manipulation in Unity
We now explore the use of C# scripting to enable the manipulation of objects within
the virtual world. Scripts are added to the objects in the scene. To add a script to the
object you would like to modify (i.e., the cube in Figure 11.6), click on the object in the
hierarchy panel and scroll to the bottom of its Inspector panel. At the bottom should be
a button titled “Add Component”—click it. We’re going to want to add a “New Script,”
so scroll to the bottom of the new menu and click again. For this Gem, title the script
“Simple Grow Script.” We’ll be adding different versions of this script later. Double
click on your script and it should open in a code editor. We prefer MonoDevelop—if
MonoDevelop is not the default, you can change your default compiler by going to
Edit → Preferences → External Tools → External Script Editor and select your compiler
of choice.

Tip: It may also be worth considering updating your project to a more recent .Net
Framework to reduce the number of build errors present. To do this in MonoDevelop,
right click on your project(s), “Assembly-CSharp” and “Assembly-CSharp-Editor” in this
case, select “Options,” then Build → General. Change “Target framework” to “Mono/.NET
4.0” as in Figure 11.7.

Figure 11.7

The target compiling system of your Unity project can be changed to “Mono/.NET 4.0”,
which enables you to compile your code using a MonoDevelop Project, a GNOME-based
IDE primarily designed for C# and other .NET languages. (These examples have been tested
on this framework, you may use another but we cannot guarantee these examples will
compile without modification in that case.)

http://$$$�Mono

168 11.  Bi-Manual Interaction for Manipulation, Volume Selection, and Travel

Creating a new script produces a default skeleton of the script’s code (Listing 11.1):

Change Update() to the alternative FixedUpdate(), because FixedUpdate() is
called more regularly than Update() and is beneficial for performing physics calcula-
tions. Next, we will implement the feature that uses the data from the LEAP controllers
to manipulate objects in the scene. To do this we will use functions specific to the Unity
API. (Of course, the specific syntax may change someday with future updates to Unity,
much as updates to LEAP’s interaction engine may alter the previous steps slightly, but the
structure of the algorithm should remain.)

To manipulate the scale of an object we will use the localScale variable that is a part of
the Transform class. This is connected to the Scale values as seen in the Inspector panel of
Unity—with the script, we alter the values at runtime. (Note that one feature of Unity is
that changes made during runtime are temporary, and revert back to the initial state when
the execution ends.) The “localScale” is represented as a Vector3 type with three float (real)
values. To make an object that increases in size, we can continually increase these Vector3
values as exemplified in Listing 11.2. Unity C# scripts can implicitly use the “this” opera-
tor for components that are part of the object to which the script is attached. For example
the “this.” in Listing 11.2 is unnecessary—the “transform” component of the associated
object implies it. However for clarity, it can be beneficial to include it nevertheless.

Note that the C# “+=” notation allows a value to be added-to a variable, so we can
simplify our added line of code as this:

 this.transform.localScale += new Vector3(0.0005F, 0.0005F, 0.0005F);

Listing 11.1.  The initial (skeletal) C# Unity script.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class SimpleGrow : MonoBehaviour {

 // Use this for initialization
 void Start () {

 }

 // Update is called once per frame
 void Update () {

 }
}

Listing 11.2.  Change Update() to FixedUpdate() and increase the scale of the object.

 // FixedUpdate is called regularly and roughly once per frame
 void FixedUpdate() {
 this.transform.localScale = transform.localScale + new Vector3(0.0005F, 0.0005F, 0.0005F);
 }

16911.2  Part II: Bi-Manual Object Manipulation

Press control S (̂ S)—or Command-S (⌘-S) on OS/X systems—to save your script and
press the Play button in Unity—your interaction object should swell larger and larger!
Larger numbers instead of 0.0005F, such as 0.001F, will make the cube grow faster, and
each value can scale at an independent rate if you so choose.

You can also change the values of position (i.e. location) and orientation of the object in
a similar way. Here are examples of code to do each of these actions, respectively:

 this.transform.position += new Vector3(0.0005F, 0.0005F, 0.0005F);

Or change the position along each individual axis:

 this.transform.position += new Vector3(0.0005F, 0.0F, 0.0F); // X axis
 this.transform.position += new Vector3(0.0F, 0.0005F, 0.0F); // Y axis
 this.transform.position += new Vector3(0.0F, 0.0F, 0.0005F); // Z axis

Example of how to change the orientation of the object:

 // three values each represent a rotation angle for X,Y,Z axes respectively
 this.transform.rotation += Quaternion.Euler(new Vector3(0.0005F,
 0.0005F, 0.0005F));

Example of how to change the orientation of the object local to its own axis:
 // local object y axis
 this.transform.Rotate(Vector3.up * rotationAngle, Space.self);
 // local object x axis
 this.transform.Rotate(Vector3.right * rotationAngle, Space.self);
 // local object z axis
 this.transform.Rotate(Vector3.forward * rotationAngle, Space.self);

To regulate rotation rate based on the framerate, be sure to add “* Time.deltaTime”,
for example:

 this.transform.Rotate(Vector3.up*rotationAngle*Time.deltaTime,Space.self);

11.2.2 � Step 2: Object Translation and Scaling Using Two
Hands (Distance between the Two Hands)

In this step, you will learn to manipulate the size of the cube to correlate to the distance
between the two hands. That is to say, no matter whether you are holding it or have it
sitting on the ground, it will grow and shrink with every motion between your hands.
A slight change in the code will enable change in position instead of scale. In step 3, you
will learn a variation of this in which a user can use a pinch gesture to initiate the scaling.
In step 4, you will add rotation.

Let’s get started. To create a new script, right click on the old script within the inspec-
tor window and click Remove Component. Next, add a new script in the same way we did
previously. We’ll need to include LEAP’s library for this script, thus in this script, under
the other “using” statements, write “using Leap;”. Tip: A list of classes that are within
the LEAP API can be found on the Leap Motion webpage: https://developer.leapmotion.
com/documentation/csharp/api/Leap_Classes.html

Remember to change Update() to FixedUpdate(). The Leap Motion sends infor-
mation about every frame to its libraries for processing and to access this, we must

https://developer.leapmotion.com
https://developer.leapmotion.com

170 11.  Bi-Manual Interaction for Manipulation, Volume Selection, and Travel

create a controller object. The controller represents the physical leap controller and the
data it sends every frame. Declare a controller within the fields section of our script so
that update can access it and let’s initialize it upon the object’s initialization—within
Start(); (Listing 11.3).

For this to work in real time, we need to access each and every frame sent by the
Leap controller—and we need each and every hand within that frame. Every update
within our script should have hands present. We can do so with the following within
FixedUpdate(); It is best to make sure our controller is connected before we do
anything with it. The following shows that we add both to FixedUpdate():

Now, we need to access the information for each hand within a frame to calculate the
distance between them. Thankfully, our controller’s frames will each provide a list of
hands that are detected—all we have to do is access them and create Hand objects.

 List<Hand> hands = frame.Hands;
 Hand firstHand = hands[0];
 Hand secondHand = hands[1];

Notice any problems? What if there is only one hand is on screen? Add a conditional (“if”)
statement to prevent unnecessary processing:

 if (frame.Hands.Count > 1) {
 List<Hand> hands = frame.Hands;
 Hand firstHand = hands[0];
 Hand secondHand = hands[1];
 }

Listing 11.3.  An example implementation of a Leap Motion controller Unity C# script.

using Leap; // Add this for access to LEAP Motion API
public class DirectGrow : MonoBehaviour {
 Controller controller; // Gives us data from the LEAP Controller.
 // Use this for initialization
 void Start() {
 controller = new Controller();
 }
 // Continues in Listing 11.4

Listing 11.4.  In each frame, obtain the Leap Motion controller data via the LEAP API.

 void FixedUpdate() {
 if (controller.IsConnected) {
 // Gather a frame from LEAP controller with every update.
 Frame frame = controller.Frame();
 }
 }
}

17111.2  Part II: Bi-Manual Object Manipulation

The positioning of each part of the hand is stored as a vector—and for this particular
script, we are going to tether everything to the positions of palms of the hands. We can use
Unity’s DistanceTo() function of a Vector to calculate it, as shown:
 float distance;
 distance = firstHand.PalmPosition.DistanceTo(secondHand.PalmPosition);

This distance is going to be a little much for our object—so we can use a factor value to
change the ratio of object scaling verses the motion of the hands. At this point, the code
will look like Listing 11.5.

Remember to add the script to the cube object in the scene hierarchy, and then hit play
in Unity and test out your new scaling script!

To use two hands to change the position of the object using the distance, simply replace
the line of code that updates the scale with this line of code:

 this.transform.position = new Vector3(distance, distance, distance);

Listing 11.5.  The complete C# Script for changing the size of an object based on the distance between
two LEAP-detected hands.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using Leap; // Add this for access to LEAP Motion API
public class DirectGrow : MonoBehaviour {
 Controller controller;	//Gives us data from the LEAP Controller.

 // Perform initialization
 void Start() {
 controller = new Controller();
 }

 // FixedUpdate is called roughly once per frame
 void FixedUpdate() {
 if (controller.IsConnected) {
 // Gathers a frame from LEAP controller with every update.
 Frame frame = controller.Frame();
 if (frame.Hands.Count > 1) {
 //The two first hands in each frame.
 List<Hand> hands = frame.Hands;
 Hand firstHand = hands[0];
 Hand secondHand = hands[1];
 float distance;
 distance = firstHand.PalmPosition.DistanceTo(secondHand.PalmPosition);
 // distance between two hands' palms.
 �distance = distance * 0.001F; �//0.001F is a factor to adjust the
 				 �// distance to something more usable.
 �// The scale of the object will always be related to the distance
 // between a user's two palms.
 this.�transform.localScale = new Vector3(distance, distance, distance);
 }
 }
 }
}

172 11.  Bi-Manual Interaction for Manipulation, Volume Selection, and Travel

11.2.3 � Step 3: Object Scaling with Two Hands (Pinch to Scale)
In this version, we will create a script that enables a user to pick up the object, and while
holding it, increase and decrease the scale with two hands. Scroll down to the Interaction
Behaviour script component within the Inspector panel—make sure that the box under
Grasp Settings titled “Allow Multi Grasp” is checked. Tip: In previous versions of the inter-
action engine, this box was located in the Interaction Manager, so it may exist elsewhere
in alternative versions of Unity.

For this operation, we will title this script ‘PinchToGrow.’ Include the code as we have
it thus far, or you can start with a new script. In your class declaration line, put the title of
your new script in instead of the old one. Follow this example:

public class DirectGrow : MonoBehaviour {

turns into this:

public class PinchToGrow : MonoBehaviour {

This section focuses on two main aspects: first, we are going to calculate distance from
the pointer finger position rather than the palms; and second, we are going to detect
when the hands have both grasped the object. Fingers are stored similarly to the way
hands are stored in the Leap code and there are multiple methods to access them. In
this Gem, we access them as a list. We will make two lists—one for each hand—and
assign the active finger as the pointer finger—number 1 in the list. The following code
demonstrates this:

 List<Finger> firstFingers = firstHand.Fingers;
 List<Finger> secondFingers = secondHand.Fingers;
 Finger firstFinger = firstFingers[1]; // Index finger on hand #1
 Finger secondFinger = secondFingers[1]; // Index finger on hand #2

Using the LEAP API to find the location of the tips of the user’s fingers, we calculate the
distance between them:

 distance = firstFinger.StabilizedTipPosition.DistanceTo(secondFinger.
StabilizedTipPosition);

Tip: In this calculation, TipPosition can be used instead of StabilizedTipPosition—
however it is preferred to use the more Stabilized version for Virtual Reality to allow for
more precise real-time interaction.

Next, we demonstrate how to detect object grasp. For this version of the Unity engine and
LEAP API two handed grasping of the object is detected with the “InteractionBehaviour”
script object. Tip: This is something that has frequently changed with Leap’s Interaction
Engine updates and it may again change in the future. First, add Leap.Unity.Interaction to
the using list:
 using Leap.Unity.Interaction;

Use Unity’s GetComponent to initialize the InteractionBehaviour object itself. Use the
following code in the fields section to declare it:
 InteractionBehaviour iB;

17311.2  Part II: Bi-Manual Object Manipulation

Initialize it as follows:
 iB = GetComponent<InteractionBehaviour>();

Now we will use it! With the following code, it can be determined how many hands are
grasping the current object. If the number is two, then scale. If the number of hands is
other than two, scale will not be permitted.

 if (frame.Hands.Count > 1 && iB.graspingHands.Count == 2)
 { … }

The script should now resemble Listing 11.6.

Listing 11.6.  The complete “PinchToGrow” C# script.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using Leap;			 // Add this for access to LEAP API
using Leap.Unity.Interaction;	 �// Add this for setting up interaction metaphors similar
				 // to physically interacting with objects using your
				 // hands, such as grasp, hover, or touch an object
public class PinchToGrow : MonoBehaviour {
 �Controller controller;	 �// Gives us data from the LEAP Controller.
 �InteractionBehaviour iB;	 �// Gives us information about the object's state in Unity.

 // Use this for initialization
 void Start() {
 // Get InteractionBehaviour from object.
 controller = new Controller();
 iB = GetComponent<InteractionBehaviour>();
 }

 // FixedUpdate is called roughly once per frame
 void FixedUpdate() {
 if (controller.IsConnected) {

 // Gathers a frame from LEAP controller with every update.
 Frame frame = controller.Frame();

 if (frame.Hands.Count > 1 && iB.graspingHands.Count == 2) {
 // The two first hands in each frame.
 List<Hand> hands = frame.Hands;
 Hand firstHand = hands[0];
 Hand secondHand = hands[1];

 // Accesses the pointer finger of each hand.
 List<Finger> firstFingers = firstHand.Fingers;
 List<Finger> secondFingers = secondHand.Fingers;
 Finger firstFinger = firstFingers[1];
 Finger secondFinger = secondFingers[1];

 // distance between two hands' palms.
 float distance;
 �distance = firstFinger.StabilizedTipPosition.DistanceTo(secondFinger. 	

  StabilizedTipPosition);

 // Adjusts the distance to something more usable.
 distance = distance * 0.001F;

174 11.  Bi-Manual Interaction for Manipulation, Volume Selection, and Travel

Press play and test it out! Pick up the object and grab it with two hands and see how big
and little you can make the object!

11.2.4 � Step 4: Object Rotation Using Two Hands
There are many methods for changing the rotation based on the hands. The follow-
ing rotation examples are based on the methods [Ulinski et al. 2007]: Hand-in-Middle,
Hand-on-Corners, and Two-Corners. A simple method uses direct manipulation, where
the rotation from a single hand is used to rotate an object, as to simulate that a hand grasped
the object from the center. Notice in the example below the function “ToQuaternion()”.
This function servers to convert from Leap Quaternion to Unity Quaternion. The follow-
ing example represents a direct change in rotation. To implement a relative change, use
“+=” instead of “=”.

 this.transform.localRotation = firstHand.Rotation.ToQuaternion();

If you wish to offset the rotation by some amount based on the actual hand’s position, i.e.,
if the hand was located on the outside of the object, instead of the center, then follow this
example.

 Vector targetDir = firstHand.PalmPosition – this.transform.position;
 �// order matters depending on which hand you want to initiate the

// direction
 float rotateBy = speed * Time.deltaTime; // Where speed is a float value
 this.transform.rotation = Quaternion.RotateTowards(Transform.forward,
 targetDir.ToVector3(), rotateBy, 0.0f);

You may not wish to use the direct rotation or if your Leap controller is mounted in such
a way that the orientations of the hands are different than the orientation of the objects in
relation to a user’s view, you may want to obtain the rotational values in a different way.
The following provides such an example where direction is the directional vector from the
palm towards the fingers.
 float pitch = firstHand.direction().pitch();
 float yaw = firstHand.direction().yaw();
 float roll = firstHand.palmNormal().roll();

Another method of rotating an object or volume with your hands involves the use of the
position of the two hands to define the rotation. The positions of the two hands relative to
one another define a vector by which the object or volume will be rotated. This vector can
be aligned along each of the x, y, and z axes of the object/volume or can be aligned along
the diagonal. Notice that the “Vector” here is a Leap Vector, so we need to convert it to a
Unity Vector3, using the “.ToVector3()” command.

 // The scale of the object will always be related to the
 // distance between a user's two palms.
 this.transform.localScale = new Vector3(distance, distance, distance);
 }
 }
 }
}

17511.3  Part III: Manual Volumetric Selection and Manipulation

 // This code rotates the object or volume about its local z-axis based
 // on the directional vector defined by the positions of the two hands
 // Substitute “transform.forward” for “transform.up” for the local y-axis
 // and “transform.right” for the local x-axis.
 Vector targetDir = firstHand.PalmPosition – secondhand.PalmPosition;
 �// order matters depending on which hand you want to initiate the

// direction
 float rotateBy = speed * Time.deltaTime; // Where speed is a float value
 �this.transform.rotation = Quaternion.RotateTowards(Transform.forward,
 targetDir.ToVector3(), rotateBy, 0.0f);

11.2.5 � Alternative Software Implementations
The scripts in Sections 11.3.2 and 11.3.3 are designed using the Leap Motion Tracker—
however, with the most recent iteration of Leap’s interaction engine, support for HTC
Vive, and Oculus Touch controllers are supported within the interaction engine itself.
Whether you want to go about it this way through Leap’s interaction engine is entirely
up to you—but the general concept of scaling in this way is applicable so long as the dis-
tance between objects can be calculated. It is also worth considering that the Leap has
been designed to be mounted on a Virtual Reality headset. When it comes to alternative
Software Implementations of the above, it is important to realize that a direct one-to-one
scaling like this is useful on its own, but can be altered in many ways. The maximum size
can be limited, for example—restricting scale to not create objects that are too big for the
screen. Indirect scaling can be used instead of a direct one-to-one mapping. Instead of
scaling all three values of a vector, the position grasped on the object could determine
which way the object is skewed. Or the height of the object can be fixed so only the width
and depth can be skewed. Different pinches with different fingers could represent different
ways of stretching and skewing an object.

Another implementation of the code in Section 11.3.4 can be implemented to select
virtual objects or volumes of data. By using a collider to detect multiple impacts, one
could trigger multiple objects to be selected—much in the same way you click and drag
your cursor on a desktop to create a box, selecting multiple files. This would allow many
objects to be simultaneously moved, stretched, skewed, and otherwise manipulated rather
than each one at a time.

11.3 � Part III: Manual Volumetric Selection and Manipulation

Volumetric selection and manipulation in virtual reality is really a special case of object
manipulation. First, the volume is created (for example as a rectangular volume). Then,
using the Bi-manual Interaction for Object Manipulation in a similar way, the volume
for selection can be controlled and manipulated (Figure 11.8). Components to Volumetric
selection: (1) Manipulation of the Selection Volume, (2) Visual Feedback, and (3) Selection
Identification/Indication.

	 a.	 Manipulation of the Selection Volume can be done exactly as we have shown you
how to manipulate an object.

	 b.	 Next, you will need to see the boundaries of the volume and what is in the volume,
therefore the object or mesh you are using for the volume should be rendered
using wireframe. You will need a wireframe object to serve as your volume. You

176 11.  Bi-Manual Interaction for Manipulation, Volume Selection, and Travel

can easily do this by creating a mesh and only rendering the lines between the
points. If you would like to use a simple cube as your volume, Unity has this
capability and can be done easily as in Listing 11.7.

	 c.	 Third, you will need to incorporate Selection Identification, which is to identify
what objects or data are within the volumetric space. We can accomplish this
in Unity using colliders. Your volume should have a collider and the objects or
meshes that represent the data in the scene should also have colliders. In this
Gem, we will demonstrate how to identify those objects and then to add/delete
from a list of selected objects in the scene.

First, make sure that your cube has a collider and is set to serve as a trigger. In the Inspector
tab, with the selection volume cube selected, you can click the ‘isTrigger’ checkbox, as
shown in Figure 11.9.

To set add a ‘Box Collider’ using scripting, use the following code where you create the
volume selection primitive.

Listing 11.7.  Draw a cube with wireframe rendering to use as a tool for volume selection in Unity.

using UnityEngine;
using System.Collections;
public class ExampleClass : MonoBehaviour {
 void OnDrawGizmosSelected() {
 Gizmos.color = Color.yellow;
 Gizmos.DrawWireCube(this.transform.position, new Vector3(1, 1, 1));
 }
}

Figure 11.8

Example of physical (a) bimanual selection of objects (b) and volumetric data (c).

Figure 11.9

After adding the ‘Box Collider’ component in the inspector tab, click on this checkbox next
to ‘Is Trigger’ to set it to serve as a trigger.

17711.3  Part III: Manual Volumetric Selection and Manipulation

 BoxCollider boxC = gameObject.AddComponent<BoxCollider>();

To set the “isTrigger” mode using scripting, you would use the following code where you
create the volume selection primitive.
 boxC.isTrigger = true;

Set up each object to have the variable “isSelected”.

using UnityEngine;
using System.Collections;
public class selectionClass : MonoBehaviour {
 bool isSelected;
 bool isIdentified;
 ...
}

Next you want to set up the volume selection primitive, such as the cube, to recognize
what objects are within its bounds and identify them as ‘selected.’ Handy Tip: Make sure
that the objects you are trying to select all have rigidBodies in order for the Collider to work.

Then provide the user a means of activation such as a button press (or other input)
to communicate that the objects within the bounds are to be selected (or unselected).
The example code in Listing 11.9 is for handling the input.

You can do a similar step to deselect objects using a different button.

Listing 11.8.  Sample Unity C# code to demonstrate how to identify which objects are within the volume
selection tool.

 void OnTriggerStay(Collider object) {
 if (collision.gameObject.GetComponent<selectionClass>().isIdentified == false) {
 collision.gameObject.GetComponent<selectionClass>().isIdentified = true;
 }
 }

Listing 11.9.  Sample code to demonstrate how to mark objects, that are within the swept volume
(identified from listing 11.8), as selected with a button press.

 GameObject objectsToAdd[];
 if (Input.GetButtonDown(buttonNameOfSelection)) {
 objectsToAdd = FindObjectsOfType<GameObject>();
 for (int i = 0; i < objectsToAdd.Length(); i++) {
 // keep track of your own list
 if (objectsToAdd[i].GetComponent<selectionClass>().isIdentified == true) {
 objlist.add(objectsToAdd[i]); �// add to the list of selected objects
 				 // or add the element of selected
 objectsToAdd[i].GetComponent<selectionClass>().isSelected = true;
 }
 }
 }

178 11.  Bi-Manual Interaction for Manipulation, Volume Selection, and Travel

You can even change the properties of the objects, such as color, to provide feedback to
the user that they have been selected.

11.4 � Part IV: Bi-Manual Travel Using Typical Game Controllers

11.4.1 � Step 1: Set-Up Controllers with Unity
Simple controllers can be added to any VR environment. They are especially useful when
working with adaptable VR displays, such as Google Cardboard or another type of head-
set that can be used with a mobile device. This portion of our gem demonstrates how to
add micro controllers to a Unity project and script them to control objects for selection or
manipulation or even the camera to perform travel.

11.4.1.1 � Setting Up the Controllers for Input

In order to use the input from any input device or controller, we need to register the
input device and buttons with Unity. To do this select “Edit” from the top menu in
Unity, then Project Settings → Input. In the inspector tab and “InputManager”
will appear. In this tab, we will map the input device settings. There will be a num-
ber of input devices that will appear (such as “Mouse X” and “Mouse Y”) depending
on what devices you have connected to your computer. For more details about the

Listing 11.10.  Sample Unity C# code to demonstrate how to ‘deselect’ objects, that are in the volume
tool (identified from Listing 11.8), with a button press.

 GameObject objectsToAdd[];
 if (Input.GetButtonDown(buttonNameOfDeselection)) {
 objectsToAdd = FindObjectsOfType<GameObject>();
 for (int i = 0; i < objectsToAdd.Length(); i++) {
 // keep track of your own list
 if (objectsToAdd[i].GetComponent<selectionClass>().isIdentified == true) {
 �objlist.remove(objectsToAdd[i]);	 �// remove from the list of selected objects
 �					 �// or remove the element of selected
 objectsToAdd[i].GetComponent<selectionClass>().isSelected = false;
 }
 }
 }

Listing 11.11.  Sample Unity C# code to change a property of the selection objects as a way to provide
feedback to the user to know which objects are currently selected.

 GameObject selectedObjects;
 Color newColor = new Color(redValue, greenValue, blueValue, alphaValue);
 selectedObjects.FindGameObjectsWithTag("SELECTED");
 for (int i = 0; i < selectedObjects.Length(); i++) {
 selectedObjects[i].GetComponent<Renderer>().material.color = newColor;
 }

17911.4  Part IV: Bi-Manual Travel Using Typical Game Controllers

“InputManager” please refer to the Unity documentation at https://docs.unity3d.com/
Manual/class-InputManager.html.

For the joystick controller horizontal and vertical, for the purpose of following this
Gem, the settings should be as follows (Figure 11.10). You may change the axis and names
depending on how you would like to program your own input control.

It is recommended to delete existing elements in the InputManager that you are not
using for your Unity project. You can create new elements by modifying exiting ones or
duplicating existing elements and then modifying them. We will need to add an element
for each of the buttons we are using on the controller. Begin by either modifying an exist-
ing element you will not use or duplicate and modify. Change the name to “ButtonA.” For
the purpose of following this Gem, we will assign “ButtonA” to “joystick button 3.” If you
wish you can assign an alternative button, such as “mouse 0” in order to test your script is
working if the controller device may not be. Figure 11.11 shows the resulting parameters.

Next, we create “ButtonB,” “ButtonX,” and “ButtonY.” Then we assign “joystick
button 2,” “joystick button1,” and “joystick button 0,” respectively. Use the input device
manager to determine which physical buttons from your input device map to the corre-
sponding output.

11.4.1.2 � Adding the Controller Model for Demonstration

We use a model of one of the controllers to demonstrate the controller input and manip-
ulation on objects (Figure 11.12). First, we add the model to our Unity environment.

Figure 11.10

InputManager settings for joystick controller.

https://docs.unity3d.com
https://docs.unity3d.com

180 11.  Bi-Manual Interaction for Manipulation, Volume Selection, and Travel

Select “Assets” from the top menu in Unity, and then select “Import New Asset,” navigate
to where you have stored the BlackController.skp and select. Once in the assets direc-
tory, you can drag and drop the controller into the hierarchy window tab to add to your
Unity scene.

Figure 11.11

Parameters for ButtonA in the InputManager.

Figure 11.12

The model of the controller is shown in the scene view with separate object components for
each of the buttons that will be manipulated using the input from the controller. (Thank you
to Daniel Wilches for creation of the model.)

18111.4  Part IV: Bi-Manual Travel Using Typical Game Controllers

11.4.1.3 � Using Controller Input to Manipulate Objects

Once you have the model set up or any other objects for manipulation, we want to
associate the controller input with object manipulation. We can start with one button
control. Within the “Assets/Scripts” directory, right-click and select “Create” then “C#
Script.” Rename the script to “InputController” for the purpose of following this Gem. Of
course the name of the script can be changed. There will be two default functions within
the new script of “Start()” and “Update()”.

Once you have created your script, the script will still need to be associated with a game
object. This can be done in a number of ways. For simplicity, we create an “Empty Game
Object” by right-clicking in the Unity game hierarchy, select “Create Empty”. Rename this
to “GameController” for the purpose of following this Gem. Once created, click on the
“Inspector” tab for the object and click on “Add Component,” then select “Scripts,” and
then you will find and select your script “InputController.” The Inspector tab will look like
the following image in Figure 11.13.

You may use the “Start()” function to initialize any variables used. To control one but-
ton, we will add a variable “buttonA” of type Transform class to keep track of the current
and new position of the A button game object. The Transform class is further documented
by Unity at https://docs.unity3d.com/ScriptReference/Transform.html.

 public Transform buttonA;
 Vector3 buttonA_position;

Once you add these variables in your script, the inspector tab will update to include the
transform object for button A as seen in Figure 11.14.

Figure 11.13

View of Inspector Tab after adding a script to an object. The InputController script was
added in this case.

Figure 11.14

View of Inspector Tab after adding a variable, a button in this case, to the class of that
object.

https://docs.unity3d.com

182 11.  Bi-Manual Interaction for Manipulation, Volume Selection, and Travel

Once this appears, we want to associate the Transform class variables with an object we
wish to manipulate. Click on the small circle to the right of “Button A,” None (Transform),
circled in Figure 11.14. The following list of game objects (Note: your list may be slightly
different) will appear and select the object you wish to manipulate. To follow this Gem,
we will select button A game object shown in the list of game objects that appears
(Figure 11.15) when clicking on the small circle in Figure 11.14.

Once button A game object is selected, the Inspector tab should result as shown in
Figure 11.16.

Let’s revisit our script. Within the “Update()” function, first to retrieve and store the
current position of the game object button A, add the following code:

 buttonA_position = buttonA.localPosition;

Figure 11.15

List of game objects that can be manipulated.

Figure 11.16

“Button A” Transform object is now associated with the transform of the “A” game object.

18311.4  Part IV: Bi-Manual Travel Using Typical Game Controllers

Then add the following lines of code to continuously check at each frame if an input
event occurred and whether that event was the button press of button A.

 if (Input.GetButtonDown("ButtonA")) {
 ...
 }

This code checks whether the button was pressed down once. We can also check whether
the button was released with the following code.

 if (Input.GetButtonUp("ButtonA")) {
 ...
 }

Using these two if ("conditional") statements we can manipulate the button in the model
up and down at the moment the user is pressing the button in and out on the control-
ler. The following code will update the position of the button: either inside the controller
(when button is pressed down) or return outside the controller (when button is released).
The position of the button game object is modified along the y axis since this axis is per-
pendicular to the model of the controller. The position is modified and then the “local
position” of the button A game object is updated. In our Unity project we also use the fol-
lowing scale 1 mm = 0.001 units in our VR environment.

 if (Input.GetButtonDown("ButtonA")) {
 buttonA_position.y -= 0.001F;
 buttonA.localPosition = buttonA_position;
 }
 if (Input.GetButtonUp("ButtonA")) {
 buttonA_position.y += 0.001F;
 buttonA.localPosition = buttonA_position;
 }

Depending on where you may align the game object controller model in your Unity
environment, you may manipulate the objects along different axes.

Run the Unity project to test that your button A is responding to your input.
Now that you have one button working, we can duplicate this process to manipulate

the other buttons on the controller. We can simplify the code by creating a function that
will check each of the buttons using the button name and appropriate Transform object.
Create a Transform object for each button, or you can create a list of buttons.

 public Transform buttonA, buttonB, buttonX, buttonY;

Once we add these Transform objects, we will associate them each with the appropriate
game objects we wish to manipulate as we did with button A earlier. In Figure 11.17, in the
Inspector tab for InputController game object, we see each Transform object associated
with the appropriate game objects.

Create the new function “CheckButtonPressed” as follows:

 void CheckButtonPressed(string buttonName,Transform buttonTransform) {
 ...
 }

184 11.  Bi-Manual Interaction for Manipulation, Volume Selection, and Travel

Then add the code from above modified to use the functions arguments as in Listing 11.12.

Within the “Update()” function, we can now add the function calls to check for each
of the button events.

 CheckButtonPressed("ButtonA", buttonA);
 CheckButtonPressed("ButtonB", buttonB);
 CheckButtonPressed("ButtonX", buttonX);
 CheckButtonPressed("ButtonY", buttonY);

Run the Unity project to test that all of your buttons are responsive and moving the
corresponding objects.

Next, we can add a function that will check and retrieve input from the joystick of the
controller. First be sure to add the following variables to our script:

 public Transform joystick;
 private Vector3 initialJoystickPosition;

Be sure to associate the joystick Transform object with the appropriate game object for
manipulation as seen in Figure 11.18.

Listing 11.12.  Sample code to translate the object “button” to make it appear to be pressed in the scene
as a result of the user pressing the that corresponding button from the mapping in Figure 11.16.

 void CheckButtonPressed(string buttonName,Transform buttonTransform) {
 Vector3 tmpPosition;
 tmpPosition = buttonTransform.localPosition;
 if (Input.GetButtonDown(buttonName)) {
 tmpPosition.y -= 0.001F;
 buttonTransform.localPosition = tmpPosition;
 }
 if (Input.GetButtonUp(buttonName)) {
 tmpPosition.y += 0.001F;
 buttonTransform.localPosition = tmpPosition;
 }
 } // end CheckButtonPressed

Figure 11.17

Transform objects are now associated with the appropriate game objects for manipulation.

18511.4  Part IV: Bi-Manual Travel Using Typical Game Controllers

Then, create a new function called “UpdateJoystick()” that will be called in the
“Update()” function:

 void UpdateJoystick() {
 ...
 }

The joystick has two axes we can retrieve variable input from with the following lines of
code which each return a float value.

 float x = Input.GetAxis("Horizontal");
 float y = Input.GetAxis("Vertical");

This float value represents the displacement of the amount the joystick has moved from
the stationary position. We can obtain the original position of the joystick game object
in the “Start()” function so that we may update the position with this displacement
when the joystick is moved by the user.

 void Start() {
 initialJoystickPosition = joystick.localPosition;
 }

You can then use these values as a scaling factor to manipulate an object’s position or
other properties. The following code demonstrates the change in position of the joystick
game object as the actual joystick is updated.

Listing 11.13.  Sample Unity C# code using the valuators for translating an object.

 void UpdateJoystick() {
 float x = Input.GetAxis("Horizontal");
 float y = Input.GetAxis("Vertical");
 Vector3 tmpPosition = initialJoystickPosition;

Figure 11.18

Joystick Transform object is now associated with the appropriate joystick game object for
manipulation.

186 11.  Bi-Manual Interaction for Manipulation, Volume Selection, and Travel

To use the joystick controller for object manipulation outside of the object’s script
which has been ‘selected,’ first you will need a method to identify the object for selection
and store it as the selected Object. This can be completed through a selection method
described in an alternative VR Gem chapter. Once selected, you can perform translation,
rotation, and scale on that object. Here are a few code snippets of translation, rotation, and
scale respectfully.

Listing 11.14 is for 2D manipulation, or explicitly setting the axis of control. In the next
two steps 2 and 3, this example will be extended to divide the axial control between the
two hands, or rather two controllers.

11.4.2 � Step 2: Configure Controller Input for Travel Control
One method for setting up bi-manual control for travel is to use one hand controller to
control steering (rotation around the camera’s vertical axis) and another hand controller
for control of forward/back and left/right (assuming you are navigating by foot or in a
vehicle in the virtual environment. An example for 6-DOF travel will be provided later
in this example). To begin, we will reuse our code from the controller input but instead
of manipulating an object, we will manipulate the camera game object to simulate travel.
We will demonstrate this through two types of travel: (1) gaze-based travel (assuming you

 tmpPosition.x -= 0.002F * x;
 tmpPosition.y -= 0.002F * y;
 joystick.localPosition = tmpPosition;
 } // end UpdateJoystick

Listing 11.14.  Sample Unity C# code that demonstrates how to use joystick valuators to translate, rotate,
and scale, in that order in the code.

 // This code fragment grabs the values from the joystick provided by it’s
 // up/down left/right input.
 GameObject selectedObject;
 Vector3 tmpPosition;
 float x= Input.GetAxis("Horizontal");
 float y= Input.GetAxis("Vertical");
 // performs translation on an object
 tmpPosition = selectedObject.localPosition;
 tmpPosition.x += x * scaleFactor;
 tmpPosition.y += y * scaleFactor;
 selectedObject.localPosition = tmpPosition;
 // performs rotation on an object
 Vector3 tmpRotation;
 tmpRotation = selectedObject.transform.rotation;
 Quaternion rotateBy = Quaternion.Euler((new Vector(x,y,0) * Time.deltaTime);
 selectedObject.MoveRotation(tmpRotation * rotateBy);
 // performs scale on an object
 Vector3 tmpScale;
 tmpScale = selectedObject.transform.localScale;
 tmpPosition.x += x * scaleFactor;
 tmpPosition.y += y * scaleFactor;
 selectedObject.localScale = tmpScale;

18711.4  Part IV: Bi-Manual Travel Using Typical Game Controllers

have additional controls or sensors to update the camera view) and (2) pointing-based
travel. Similarly, you could set up pointing-based travel with additional sensors.

11.4.2.1 � Accessing the Camera to Manipulate It for Travel

Using input from the controller, instead of changing the position of the buttons in our 3D
Model of the controller, we can add this control to our camera to control travel through a
VR environment. In the Unity project file, for virtual reality you will need to have set up
your stereoscopic camera rig (either explicitly or through a loaded plugin from the pro-
vider of your head-mounted display). First, add your main camera (for a VR environment
add a left/right camera rig for stereoscopic viewing, or appropriate rig for your VR viewer
or Head-Mounted Display) as shown in Figure 11.19.

Once you have this set up and configured (out of the scope of this chapter), then we will
use the main camera to control travel. (Note: if there is no main camera, then use either
the left or right eye camera but choose the one which serves as the ‘parent’ camera so that
moving one camera will also appropriate move the other cameras). First, select the main
or other ‘parent’ camera in the scene, shown in Figure 11.20.

Then, add a new script to handle the updates for the camera manipulation (Figure 11.21).

Figure 11.19

Image of the scene hierarchy (scene graph) with the camera rig for stereoscopic viewing.

Figure 11.20

Image showing the main parent camera selected from the stereoscopic camera rig.

Figure 11.21

Image showing in the inspector tab for the main parent camera, the script that was added
as a component.

188 11.  Bi-Manual Interaction for Manipulation, Volume Selection, and Travel

In this script is where you will set up travel control based on updates from the controller:

	 a.	 gaze-based travel example:
Once your camera is in your environment, then select the main camera in the

hierarchy tab, and add a new script in the inspector tab. You can name your script
travelController. In here is where the camera will be updated based on the joystick
input. Translating the camera along its forward and back vectors will use “trans-
form.forward.” If you use the Vector3.forward then it will use the world coordinate
system forward vector and not the local coordinate system of the camera.

 float x = Input.GetAxis("Horizontal");
 float y = Input.GetAxis("Vertical");
 float scaleFactor = 0.002f * Time.deltaTime;
 �// use a value according to the scale of your VR environment
 // and the speed at which you want the camera to travel
 this.transform.Translate(transform.forward * x * scaleFactor);
 this.transform.Translate(transform.forward*-1 * y * scaleFactor);

Handy Tip: The example provided should be in a script in the camera object.
However, you could have the camera update from the JoystickUpdate()
function. In this case, you would need to fetch the game object for the camera and
then perform the translate command.
 GameObject camera;
 Camera = GameObject.Find("MainCamera");
 camera.transform.Translate(camera.transform.forward * x *
 scaleFactor);
 camera.transform.Translate(camera.transform.forward * -1 * y *
 scaleFactor);

	 b.	 Pointing-based travel, i.e., Input Controller axis-based travel example:
Once your camera is in your environment, then you will need to identify the vec-

tor to move the camera in the direction. This can be accomplished through various
tracking equipment. Attach your tracker on your joystick controller and using the
appropriate method from your tracking system, retrieve the axis from the track-
able used on the joystick. Once you have this vector, we will refer to as “Vector3
Direction;” then you can update the camera in the JoystickUpdate() function:
 GameObject camera;
 Camera = GameObject.Find("MainCamera");
 camera.transform.Translate(Direction * x * scaleFactor);
 camera.transform.Translate(Direction * -1 * y * scaleFactor);

If you do not have a tracker, this is a great opportunity to use two controllers and divide
the travel control between the two controllers for bi-manual travel control. Please con-
tinue to step 3 to learn how to implement two controllers for bi-manual travel control.

11.4.3 � Step 3: Finalizing Bi-Manual Controller Travel
In both travel examples above, a rotation of the camera view (tracked head-mounted dis-
play) or the controller (tracked) will handle travel rotation. If no tracker is present or simply
wish to use two controllers, then the following examples will provide details of how to
divide the travel control. If the directional vector is not rotated, then you will need to add

18911.4  Part IV: Bi-Manual Travel Using Typical Game Controllers

rotation (or otherwise steering) for travel. In the next two sections, examples are provided
to set up separate directional and steering control between the two controllers/hands. Two
full examples will be shown: (1) reduced degrees-of-freedom (DOF) travel (for human
walking/running or vehicle travel) and (2) full 6-DOF travel will be shown. There are other
various combinations for how to divide the travel control between the two controllers.

11.4.3.1 � Add the Second Controller to Your Unity Environment

To set up the second controller, both controllers will need to be recognized and connected
through the Bluetooth. Once connected, you will perform a similar step to adding the sec-
ond controller as when the first controller was added in “Part IV: Bi-manual Travel using
Controllers, Step 1” of this chapter. When doing so, there is an added step to differentiate
the input for each controller. In Unity, select the menu Edit → Project Settings → Input to
open the Input Manager in the Inspector tab. Then the single controller will have “hori-
zontal” and “vertical” input as shown on the left in the following image. For the second
controller, right click over the horizontal input tab, and select “Duplicate Array Element,”
as shown in the right in Figure 11.22.

Then a new horizontal tab will appear, as shown in the left of the following image.
Rename this to differentiate from the first controller, such as “Horizontal2,” and specify
that input comes from joystick 2 as shown on the left in Figure 11.23. Next, do the same

Figure 11.22

Image showing the elements and values for the InputManager (a). Further showing the
selection of ‘duplicate array element’ when right-clicking the ‘horizontal’ element (b).

190 11.  Bi-Manual Interaction for Manipulation, Volume Selection, and Travel

for the vertical axis, such as “Vertical2,” as shown on the right in Figure 11.23. For both
horizontal and vertical axes, if using the joystick as a keyboard, the key button mappings
will need to be updated for the output from the joysticks.

Remember to grab the input from your controllers. In the BimanualControllerTravel
script in the main camera, the following lines of code will be added to the “void Update
() { … }” function in the script.

 x = Input.GetAxis("Horizontal"); // x and y are type float
 y = Input.GetAxis("Vertical");
 x2 = Input.GetAxis("Horizontal2"); // x2 and y2 are type float
 y2 = Input.GetAxis("Vertical2");

11.4.4 � Step 4: Configuring the Controllers for the
Mapping of Travel Components

11.4.4.1 � Mapping for Hand Controller 1 (Speed and Steering)

Using one controller (after configuring the controller in Unity in step 1), this example
shows how to set up the vertical axis of the controller to increase/decrease speed and the
horizontal axis of the controller to control steering (rotation around the camera’s vertical

Figure 11.23

Image showing the duplicated elements producing ‘Horizontal2’ (a) and ‘Vertical2’ (b) and
the added values.

19111.4  Part IV: Bi-Manual Travel Using Typical Game Controllers

axis, or yaw rotation). In this example, full 6-DOF is not implemented so Pitch and Roll
rotations are not implemented here—but provided later in this example).

First, set up a variable for the speed of travel. You may need to set up a variable to
represent the change in speed.

 float travelSpeed;
 float deltaTravelSpeed;

Then, set a base value in the “void Start () { … }” function of the BimanualControllerTravel
script in the main Camera. The value can be based on your environment scale and the
amount of speed corresponding to the travel (i.e. walking vs. running vs. vehicle travel).

 travelSpeed = 1.0F * Time.deltaTime; �// 1.0F is the travel scale factor
 deltaTravelSpeed = 0.5F;

Next, the other code will be added to the “void Update() { … }” function of the
BimanualControllerTravel script in the main Camera. In this example, y will be used for
increasing/decreasing speed and x will be used for steering control. The change in input from
the vertical axis of the controller will automatically change whether increasing or decreasing
(in other words, so there is no need to add a ‘negative’ assignment for travelSpeed).

 travelSpeed += y * deltaTravelSpeed;

Next, set up steering. First, set up a variable for the angle of steering.

 float steeringSpeed;

Then, set a base value in the “void Start() { … }” function of the
BimanualControllerTravel script in the main Camera. The value can be based on your
environment scale and the amount of angle corresponding to the travel (i.e. walking vs.
running vs. vehicle travel).

 steeringSpeed = 15.0F * Time.deltaTime;

Next, the other code will be added to the “void Update() { … }” function of the
BimanualControllerTravel script in the main Camera.

 this.transform.Rotate(this.transform.up,y * steeringSpeed);

11.4.4.2 � Mapping for Hand Controller 2 (Directional
Control—Forward/Back, Left/Right)

To set up one controller for directional control, extend the code from the example above,
only instead of using the vector direction defined from the tracking, use the directional
vector from the camera and then use the values from the controller to update. The follow-
ing example demonstrates how to do this in the “void Update () { … }” function
of the BimanualControllerTravel script in the Main Camera.

 this.transform.Translate(this.transform.forward * x2 * travelSpeed);
 this.transform.Translate(this.transform.forward * y2 * travelSpeed);

192 11.  Bi-Manual Interaction for Manipulation, Volume Selection, and Travel

Handy Tip: since we are adding this to a script in the camera object, there is not a need to
access the camera object. If you decide to instead add the travel control code to a controller
object or another object, then remember that you will need to access the camera first:

 GameObject camera;
 camera = GameObject.Find("MainCamera");

And then replace any “transform.XXX” with “camera.transform.XXX”.

11.4.4.3 � For 6-Degrees-of-Freedom Control, Divide the
Axial Control between the Two Controllers

To set up two controllers for 6-degrees of freedom control, you will need to decide how to
set up the mappings between them. If you have two axes per controller, then you may need
to use the A and B buttons to change manipulation mode.

One example mapping is to use separate buttons to activate a particular mode. For
example, button A on the non-dominate hand controller activates translation and button
B on the non-dominate hand controller activates rotation. When in translation mode,
the vertical axis on the dominate hand controller can be used to control forward/back
movement (local z-axis translation) while the horizontal axis on the dominate hand con-
troller can be used to control left/right movement (local x-axis translation) (relative to the
camera/user’s view). Then the vertical axis on the non-dominate hand controller can be
used to control the up/down movement (local y-axis translation).

When the mode is switched to rotational control, the vertical axis on the dominate
hand controller can control rotation around the local x-axis (pitch) while the horizontal
axis on the dominate hand controller controls rotation around the local y-axis (yaw) (rela-
tive to the camera/user’s view). At the same time, the horizontal axis on the non-dominate
hand controller controls the rotation around the local x-axis (roll).

This is only one example mapping and may not reflect the most optimal performance.
Hinckley and his collaborators provide other possibilities [Hinckley et al. 1997]. More
recent research literature reflects advice on task division for performance [Balakrishnan
and Hinckley 1999].

Listing 11.15 provides a code example for the description of a 6-DOF mapping using
the dominant and non-dominate hands for bi-manual interaction.

Listing 11.15.  Sample Unity C# code that access the input from two devices and updates the rotation
and translation of the camera or could be applied to any object.

 float xDom, yDom;	 // The X and Y location of the dominante hand
 �float xNonD, yNonD;	�// The X and Y location of the non-dominante hand
 xDom = Input.GetAxis("Horizontal");	 // x and y are type float
 yDom = Input.GetAxis("Vertical");
 xNonD = Input.GetAxis("Horizontal2");	 // x2 and y2 are type float
 yNonD = Input.GetAxis("Vertical2");

 […]

 if (Input.GetButtonDown("ButtonA_NonD")) {
 mode = 1; // for translation
 }

19311.5  Part V: Bi-Manual Manipulation and Travel Using Mobile Devices

11.5 � Part V: Bi-Manual Manipulation and
Travel Using Mobile Devices

In this portion of this chapter, we will take what we have learned about bi-manual control
and apply it in another context, through the use of mobile devices (tablets, phones, etc.).
Our examples focus on implementation with Android mobile devices. In this section, you
will learn (1) how to establish a connection with the mobile device and your VR environ-
ment, (2) how to collect the two-dimensional touch gesture data from the devices and
translate that into input into a virtual environment, (3) how to divide the input from two
mobile devices as bi-manual control for 3D object manipulation, and (4) how to further
extend step 3 for travel in a virtual environment.

11.5.1 � Step 1: Set-Up Two Mobile Devices or Players
(Instructions Based on Android)

There are several ways to set this up, but we will demonstrate two methods: (1) Via
Bluetooth and (2) Via Wi-Fi (local wireless network). First, you will need to create a
.java project that will run on each of your mobile devices. An easy way to do this is to
use Android Studio, the official IDE for Android project development [Android Studio
2018]. If you do not have Android Studio, download Android Studio from their offi-
cial website, https://developer.android.com/studio/. After downloading the Android
Studio, create a new project by selecting “Start a new Android Studio project” as shown
in Figure 11.24.

When creating your new project, provide an application name, such as a name that
describes your project, and company domain, such as your institution or where you want
your application to have credit for, as shown in Figure 11.25.

Since you will need to have your .java file run on the mobile devices, you will need to
select which platform you are targeting to build the project. In this example, we will use
Phone and Tablet → Minimum SDK (API 19: Android 4.4 Kitkat). The menu selection
is shown in Figure 11.26. This will enable our project to run on devices which have at least
Android version 4.4 “Kitkat”. This version came out on October 13, 2013, so all modern
Android devices will be able to use our program.

We will then create a new activity to describe the user interface for the interaction with
the phone as shown in Figure 11.27.

 if (Input.GetButtonDown("ButtonB_NonD")) {
 mode = 2; // for rotation
 }
 if (mode == 1) {
 this.transform.Translate(this.transform.forward * yDom * travelSpeed);
 this.transform.Translate(this.transform.right * xDom * travelSpeed);
 this.transform.Translate(this.transform.up * yNonD * travelSpeed);
 } else if (mode == 2) {
 �this.transform.Rotate(this.transform.right, yDom * steeringSpeed); // pitch
 this.transform.Rotate(this.transform.up, xDom * steeringSpeed); // yaw
 �this.transform.Rotate(this.transform.forward, xNonD * steeringSpeed); // roll
 }

https://developer.android.com

194 11.  Bi-Manual Interaction for Manipulation, Volume Selection, and Travel

After the “Activity” name is defined, click the finish button which will create the proj-
ect, after which will proceed in setting up Bluetooth or Wi-Fi connection depending upon
our requirement for transferring of data between server and client described in the fol-
lowing two steps.

Figure 11.24

Image showing option to create a new Android project.

Figure 11.25

Image showing application name and company domain for the new project created.

19511.5  Part V: Bi-Manual Manipulation and Travel Using Mobile Devices

Figure 11.26

Image showing platform and minimum SDK selection for the target project.

Figure 11.27

Image showing where to input “Activity” name for creating a user interface for interaction
with the phone.

196 11.  Bi-Manual Interaction for Manipulation, Volume Selection, and Travel

	 1.	 You have the option to use either Bluetooth or wireless network for connection.
In this section, we will describe connecting mobile using Bluetooth for transfer
of the information between server and client. After we have created an Android
Project, we use the “Activity” created called “MainActivity.java” to initialize and
connect with the Bluetooth.

Next, we will create variables to store the Bluetooth information and socket
connection.
 BluetoothAdapter bluetooth1 = null;
 BluetoothDevice device1 = null;
 BluetoothSocket socket1 = null;
 PrintStream ps1;

Next, we will use the onCreate() function to initialize Bluetooth and a socket
connection. Listing 11.16 provides example code to establish Bluetooth and socket
connections. Note: the code will create a Bluetooth socket to start a secure outgo-
ing connection to the mobile device that you are using for user input. The number
is a UUID which is a service record to lookup RFCOMM channel. RFCOMM is
a simple set of transport protocols which provides emulated RS-232 serial ports.
The number is a universally unique identifier (UUID) which is different for each
Android Phone. A user can get their UUID of the Android phone by navigating
to Menu → Settings → About Phone → Status.

Listing 11.16.  This Android Java source listing provides a code example to set up the Bluetooth connec-
tion using a socket to send/receive the data from the touch-based device to your virtual environment
run from your Unity 3D project.

public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.startscreen);
 bluetooth1 = BluetoothAdapter.getDefaultAdapter();

 try {
 // bluetooth mac address(iq's)
 device1 = bluetooth1.getRemoteDevice("XX:XX:XX:XX:XX:XX");
 } catch(Exception e) {
 Toast.makeText(this, "No Device", Toast.LENGTH_SHORT).show();
 }

 try {
 �socket1 = device1.createRfcommSocketToServiceRecord(UUID.
	 fromString("######-##-####-####-##########"));
 // The number ######-##-####-####-########## is a UUID which is a
 // service record to lookup RFCOMM channel. RFCOMM is a simple set
 // of transport protocols which provides emulated RS-232 serial
 // ports. The number is a universally unique identifier (UUID) which
 // is different for each Android device.
 } catch (Exception e1) {
 Toast.makeText(getApplicationContext(), "no socket"+e1.getLocalizedMessage(),
 Toast.LENGTH_LONG).show();
 }
 try {
 socket1.connect();
 ps1 = new PrintStream(socket1.getOutputStream()); // adds the info to the message stream

19711.5  Part V: Bi-Manual Manipulation and Travel Using Mobile Devices

	 2.	 In this example we will be using a local Wi-Fi network for the data transfer in
our project. First, we need to allow our “Activity” created (described in the pre-
vious step on Bluetooth connections) to use the sensor of the Android phone.
We have created the “Activity” called MainActivity.java so this will implement
SensorEventListener.
public class MainActivity extends Activity implements 			
	 SensorEventListener{ … }

We will then set up a variable for our Wi-Fi connection.
 private WifiManager wifiManager;
 private WifiManager.WifiLock wifiLock;

We will now use the OnCreate() function to initialize and start the activity.
Listing 11.17 provides a code example for initializing and starting activity for
Wi-Fi connection management.

Now that we have initialized the “Activity” for the Wi-Fi Connection, we need to obtain
the IP address of the mobile phone connected using the Wi-Fi Connection. We will use the
getIpAddress() function to initialize and get the IP address. Listing 11.18 provides a
code example for obtaining the IP address of the phone connected to the Wi-Fi network.

Listing 11.17.  This Andoird Java listing provides a code example for initializing the Wi-Fi connection on
the mobile device that you are using for input.

 @Override //overriding the parent class
 protected void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 // Register sensors
 sensorManager = (SensorManager)getSystemService(Context.SENSOR_SERVICE);

 wifiManager = (WifiManager)this.getSystemService(Context.WIFI_SERVICE);
 wifiLock = wifiManager.createWifiLock("TrackTableWifiLock");
 }

 } catch (Exception e1) {
 Toast.makeText(getApplicationContext(), "no connection"+e1.getLocalizedMessage(),
 Toast.LENGTH_LONG).show();
 }
}

Listing 11.18.  This Android Java listing provides a code example for obtaining the IP address of the
mobile device or phone which is connected to the Wi-Fi network.

 private String getIpAddress()
 {
 try {
 String ips = "";

198 11.  Bi-Manual Interaction for Manipulation, Volume Selection, and Travel

Now that we have made a Wi-Fi connection with the phone, we need to create a socket
connection which will send the information from the server to the client (i.e., mobile
device) connected to it. We will create a new class ServerSocketTransfer which will
handle our data transfer through a socket using threads.

 public class ServerSocketThread extends Thread {...}

Next set up variables to store socket and port information in the ServerSocketTransfer
class created.

 private String TAG = "ServerSocketTransfer";
 public const int PORT = 8080;
 private ConcurrentLinkedQueue<String> currentClientQueue = null;
 private ServerSocket serverSocket = null;

Next will create a run function run to initiate a thread to transfer the data through the
socket to a port defined above. Listing 11.19 provides a code example to create and set up
socket connection to transfer data through a port defined above.

 Enumeration<NetworkInterface> enumNetworkInterfaces = NetworkInterface.
 getNetworkInterfaces();

 while (enumNetworkInterfaces.hasMoreElements()) {
 NetworkInterface networkInterface = enumNetworkInterfaces.nextElement();
 Enumeration<InetAddress> enumInetAddress = networkInterface.getInetAddresses();

 while (enumInetAddress.hasMoreElements()) {
 InetAddress inetAddress = enumInetAddress.nextElement();

 if (inetAddress.isSiteLocalAddress())
 ips += inetAddress.getHostAddress();
 }
 }
 return ips;
 }
 catch (SocketException e) {
 Log.e(TAG, "Main:" + e.getMessage());
 throw new RuntimeException(e);
 }
 }

Listing 11.19.  This Android Java listing provides a code example to set up and manage the socket con-
nection to send/receive data from your mobile device you are using for Input to the virtual environment
run by your unity 3D project.

@Override //overriding the parent class
 public void run()
 {
 try {
 serverSocket = new ServerSocket(PORT);
 while (true) {
 Log.e(TAG, "Waiting for a connection ...");
 Socket socket = serverSocket.accept();

19911.5  Part V: Bi-Manual Manipulation and Travel Using Mobile Devices

After the Wi-Fi connection and socket have been set up, we will create a function to
use the sensor to obtain and then send the information of the position (x & y) of a touch
on the screen and send the values that represent the physical orientation of the mobile. We
will use onSensorChanged() function in the MainActivity class created above to get the
sensor information of position from the touch event and orientation from the IMU sensor.
This function will be called automatically when the mobile sensor detects any changed
information. Listing 11.20 provides a code sample to get mobile sensor information on
change detect.

 Log.e(TAG, "Received a connection !");
 handler.sendEmptyMessage(1);
 if (currentClientQueue != null)
 currentClientQueue.add(ClientSocketThread.STOP_WORKER);
 // Avoid two clients using the same queue, create one new and forget old one
 currentClientQueue = new ConcurrentLinkedQueue<>();
 // Start the client attendant
 new ClientSocketThread(socket, currentClientQueue, handler).start();
 }
 }
 catch (IOException e) {
 if (!e.getMessage().equals("Socket closed")) {
 Log.e(TAG, "Server:" + e.getMessage());
 throw new RuntimeException(e);
 }
 }
 finally {
 freeServerSocket();
 }
 }

Listing 11. 20.  This Android Java listing provides an example of how to send the position (x,y) values
from the touch event and the quaternion (quat[0..3]) representing the orientation values from the IMU.

@Override //overriding the parent class
 public void onSensorChanged(SensorEvent event)
 {
 if (event.sensor.getType() == Sensor.TYPE_ROTATION_VECTOR) {
 SensorManager.getQuaternionFromVector(quat, event.values);

 serverThread.sendData(
 // Orientation:
 quat[1],
 quat[2],
 quat[3],
 quat[0],
 // Location:
 deltaX, deltaY);
 // NOTE: deltaX and deltaY are declared globally within
 // the scope of the script class
 deltaX = deltaY = 0;
 } else {
 Log.e(TAG, "Main: Unknown sensor type" + event.sensor.getType());
 }
 }

200 11.  Bi-Manual Interaction for Manipulation, Volume Selection, and Travel

In summary, in this step you have learned how to initialize either a Bluetooth or Wi-Fi
connection between a mobile device and server, created socket and ports for data trans-
fer and then set up the sensor to detect and send information to/from a mobile device
using the socket created. In the following section, we will set up Unity (running on the
computer that will run the virtual environment) to receive the sensor data obtained from
the socket.

11.5.2 � Step 2: How to Set Up Unity to Receive Input from the Mobile Device
In step 1, we established a Bluetooth or Wi-Fi connection with a mobile device and can
run the code on the device to set up a server and socket communication link. Now we
will create a new Unity Project as described in previous sections (see the section: Set Up a
Basic Unity Scene). Within our Unity Project, we will create a new GameObject (which we
will call “GameController”) in the hierarchy (shown in Figure 11.28) which will include
our scripts for connecting with the socket and port.

Next, we attach the script to the “GameController” Object (Figure 11.29). Our script is
called SocketConnection.cs which has the code to connect to the server socket and port.

Next, in your “ServerConnection” script, we will create a variable to store the socket
and data from the socket port in the script. This variable will be used initialize the socket
and port and then read the data from it. The following are example code to include in your
script to declare the socket, later used in Listing 11.21.

Figure 11.28

Create a GameObject (renamed to “GameController”) for attaching the script for the
socket connection.

20111.5  Part V: Bi-Manual Manipulation and Travel Using Mobile Devices

 private string host;
 private int port;
 private Socket socket;
 private StreamReader reader;

Next, we will add a function to our script that will initialize the socket and read data from
this socket in the Unity project. Listing 11.21 provides a code sample to create a new socket
for connection and read the data from it.

Next, we use this data from the socket to move an object in the unity environment. We
will create a 3D Object (Cube) and move that cube in the environment using the sensor
data from the mobile device (Figure 11.30).

Next, we will attach our script to this new cube Gameobject. This script has the code to
get the data information from the socket and apply it to the translation and rotation of the
cube in the Unity environment.

We will add variables to store the translation and orientation data obtained from the
socket and use them to move the cube accordingly when we interact through the mobile
interface.

 public Transform translationLocalAxes;
 private Quaternion objectOriginalRotation;

Listing 11.21.  This listing provides example code to read the data from the socket.

 protected override void InitializeDevice()
 {
 socket = new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.Tcp);
 socket.ReceiveTimeout = readTimeout;
 socket.Connect(host, port);
 reader = new StreamReader(new NetworkStream(socket), System.Text.Encoding.UTF8);
 cmd_queue.Enqueue("_Client Connected");
 }

Figure 11.29

Add the script to the GameObject named “GameController”.

202 11.  Bi-Manual Interaction for Manipulation, Volume Selection, and Travel

Now, we can use the Unity Update() function on the manipulation object (or grab the
reference to the game object as in Listing 11.14) to update the translation and orienta-
tion of the object in each frame. Listing 11.22 provides a code example to take the data
from the socket connection and use it to interact with the object created in the unity
environment.

Listing 11.23 shows another great example of controlling an object is that you can use the
orientation of one device to determine the directional translation, but not rotate the object.

Listing 11.22.  This Unity C# script provides an example of how to use the data from the socket to update
the rotation and translation of an object.

 // Update is called once per frame
 void Update()
 {
 string data = implObject.GetNextReading();
 if (data == null)
 return;
 // Rotation
 Quaternion rotation = AdjustRotation(new Quaternion(data.quat_x, data.quat_y,
 data.quat_z, data.quat_w));
 this.transform.rotation = rotation;
 // Translation
 this.transform.Translate(this.transform.right * data.pos_x,
 this.transform.up * data.pos_y, 0, Space.Self);
 // Note: You can also modify the localPosition, here is another way:
 // this.transform.localPosition = translationLocalAxes.right *
 // data.pos_x - translationLocalAxes.up * data.pos_y;
 }

Listing 11.23.  This Unity C# listing provides an example of using the orientation of the IMU to determine
direction of the translation that will result from the touch events.

 // Update is called once per frame
 void Update()
 {
 string data = implObject.GetNextReading();

Figure 11.30

Add a 3D Gameobject (here a cube) into the Unity environment.

20311.5  Part V: Bi-Manual Manipulation and Travel Using Mobile Devices

Thus far, we have a specific example that gathers the orientation of the IMU sensor
data from the mobile device to update the rotation of a cube in a virtual environment.
While this example is basic, it can be extended to more complex interactions with multi-
ple objects and menus in the virtual environment. Interaction options include modifying
what sensor data is used (see step 1) and/or how that data is translated into modifications
of the virtual environment within Unity (step 2). In the next step, we will demonstrate
how to set up a second mobile device for bi-manual use and control.

11.5.3 � Step 3: Adding the Second Mobile Devices
With one mobile device connected, sending data, passing the data to the Unity project,
and updating the virtual environment (steps 1 and 2), we can now add a second mobile
device for bi-manual control. Once the dual-connection is established, we will explore
further interface examples in steps 4 and 5 using two mobile devices. The procedure to
add a second mobile device is similar to steps 1 and 2 for one mobile device; the only dif-
ference is that you will need to create an additional socket and port in the server through
which to make either the Bluetooth or the Wi-Fi connection for the second mobile phone.
The following example configures the second socket and port for an already established
Wi-Fi connection.

 public static final int PORT = 8080;
 public static final int PORT2 = 8082;
 private ConcurrentLinkedQueue<String> currentClientQueue = null;
 private ConcurrentLinkedQueue<String> currentClientQueue2 = null;
 private ServerSocket serverSocket = null;
 private ServerSocket serverSocket2 = null;

Follow the example in Listing 11.18 by copying the entire section, and for all the variable
names add a “2”, for example:

 serverSocket2 = new ServerSocket(PORT2);
 Socket socket2 = serverSocket2.accept();
 currentClientQueue2 = new ConcurrentLinkedQueue<>();

For the Unity project, we will also create additional variables as described in the previous
step to store the socket and data read from the socket of the second mobile device. Of course,
you will also need to add a second socket listener in your Unity project. The following
is an example of the variables you will need to add to your Unity SocketConnection.

 if (data == null)
 return;
 // Rotation
 Quaternion rotation = AdjustRotation(new Quaternion(data.quat_x, data.quat_y,
 data.quat_z, data.quat_w));
 Vector3 dirX = this.transform.TransformDirection(this.transform.right * rotation);
 Vector3 dirY = this.transform.TransformDirection(this.transform.forward * rotation);
 // Translation
 this.transform.translate(rotation * this.transform.right * data.pos_x,
 rotation * this.transform.up * data.pos_y, 0, Space.Self);
 }

204 11.  Bi-Manual Interaction for Manipulation, Volume Selection, and Travel

cs file (alternatively you can create a second SocketConnection2.cs file to add to your
GameObject).

 private string host;
 private int portOne;
 private int portTwo;
 private Socket socketOne;
 private Socket socketTwo;
 private StreamReader readerOne;
 private StreamReader readerTwo;

Next, we will read and update the stream data from the socket connection and use it for
the translation and rotation actions in each frame. Be sure to copy the lines of code in
Listing 11.21, but modify the variable names for your second mobile device. The following
are a few lines of excerpted code to provide an example of this.

 socketTwo = new Socket(AddressFamily.InterNetwork, 			
					 SocketType.Stream, ProtocolType.Tcp);
 socketTwo.ReceiveTimeout = readTimeout;
 socketTwo.Connect(host, port);
 readerTwo = new StreamReader(new NetworkStream(socketTwo), 	 	 	
 					   System.Text.Encoding.UTF8);

Using these values, you can access the data from your second socket to update objects in
the virtual environment, similar to Listing 11.22. Now that you have two mobile devices
connected and updating data in a virtual environment, you are ready for steps 4 and 5 to
set up bi-manual interaction control.

11.5.4 � Step 4: Configure Bi-Manual Interaction for Manipulation Control
Using two mobile devices provides us with one method to interact with a virtual environ-
ment using both hands (i.e. Figure 11.31). With access to input from both hands, we can
divide the tasks between them to control and manipulate the world in an efficient manner.
There are a number of ways to conduct this division. Here, we will provide three basic
examples.

Figure 11.31

Examples of bi-manual control using mobile devices.

20511.5  Part V: Bi-Manual Manipulation and Travel Using Mobile Devices

Example 1: We can divide our bi-manual interaction between our two hands by hav-
ing one hand control translation of an object and another hand control the orientation.
Listing 11.24 provides a code sample for this form of interaction.

This code updates the data obtained from the stream each frame. The first mobile
phone connection controls the rotation and the second mobile phone controls the transla-
tion of the object—a bi-manual interaction. As in this example interaction, we can divide
the translation and orientation control, however, with translation updated only from one
touch plane, a mode will need to be added for full translational control in all three dimen-
sions. While we can use a button to mode switch between movement in the x-y, x-z, and
y-z planes, mode switches are cognitively demanding. Thus, in example two, we extend
this interface to full 6-degrees of freedom control by dividing the axial translation among
the two hands.

Example 2: One hand controls orientation, but the 3-degrees of freedom for translation
are divided between the two mobile devices (i.e. the two hands). One hand (preferably the
non-dominate hand) controls translation in the x-y plane and the other hand (preferably
the dominate hand) controls translation in the x-z plane. Of course, these divisions of
axial control can be customized to the preference of the user.

Listing 11.24.  This listing Unity C# script provides an example of reading data from two different mobile
devices then using one to update the translation of an object and the other to update the rotation.

 // Update is called once per frame
 void Update()
 {
 string dataOne = implObject.GetNextReading();
 string dataTwo = implObject.GetNextReading();
 if (dataOne == null || dataTwo == null)
 return;
 // Rotation
 Quaternion rotation = AdjustRotation(new Quaternion(dataOne.quat_x, dataOne.quat_y,
 dataOne.quat_z, dataOne.quat_w));
 this.transform.rotation = rotation;
 // Translation in the x/y plane.
 this.transform.translate(this.transform.right * dataTwo.pos_x,
 this.transform.up * dataTwo.pos_y, 0, Space.Self);
 }

Listing 11.25.  This Unity C# listing provides an example of how to use the 2D plane from each touch
device to update translation in the x/y plane and the x/z plane separately.

 // Update is called once per frame
 void Update()
 {
 string dataOne = implObject.GetNextReading();
 string dataTwo = implObject.GetNextReading();
 if (dataOne == null || dataTwo == null)
 return;
 // Rotation from device one.

206 11.  Bi-Manual Interaction for Manipulation, Volume Selection, and Travel

A unique benefit of using bimanual interaction is that you can provide coordinated
interaction. In Example 3: both hands work together to update rotation and translation of
an object. Specifically, hands can be rotated ‘in-phase,’ meaning the rotation of an object
can be manipulated through directional motion actions. Similarly, touch gestures can
be executed ‘in-phase’ or singularly for translation. Listing 11.26 demonstrates an exam-
ple for scale operations, where touch gestures can be moved in ‘anti-phase,’ meaning in
opposite directions at the same time.

To this point, we have explored basic examples to divide the input between the two
mobile devices to set up bi-manual control. Starting from these basic examples and read-
ing about the most recent bi-manual interaction techniques in research you have the tools
to implement new and more advanced methods of bi-manual control interfaces.

Listing 11.26.  This Unity C# script provides an example of how to scale using combined touch input from
both devices.

 // Update is called once per frame
 void Update()
 {
 string dataOne = implObject.GetNextReading();
 string dataTwo = implObject.GetNextReading();
 float minDistance = 1.0;
 float maxDistance = 10.0;
 float mínDistScale = 0.1;
 float maxDistScale = 1.0;
 if (dataOne == null || dataTwo == null)
 return;
 positionFirstMobile = new Vector3(dataOne.pos_x, dataOne.pos_y, 0);
 positionSecondMobile = new Vector3(dataTwo.pos_x, dataTwo.pos_y, 0);
 float distanceBetweenSwipe = (positionFirstMobile - positionSecondMobile).magnitude;
 // Normalizing
 float normValue = (distanceBetweenSwipe - minDistance) / (maxDistance - minDistance);
 // Changing the value to Vector3(1,1,1) * some_value_of_scale
 float minScale = Vector3.one * mínDistScale;
 float maxScale = Vector3.one * mínDistScale;
 // Interpolate between between the maxScale and minScale
 this.transform.localScale = Vector3.Lerp(maxScale, minScale, norm);
 }

 Quaternion rotation = AdjustRotation(new Quaternion(dataOne.quat_x, dataOne.quat_y,
 dataOne.quat_z, dataOne.quat_w));
 this.transform.rotation = rotation;
 // Translation in the x/y plane on device one.
 transform.translate(this.transform.right * dataOne.pos_x,
 this.transform.up * dataOne.pos_y, 0, Space.Self);
 // Translation in the x/z plane on device two.
 this.transform.translate(this.transform.right * dataTwo.pos_x, 0,
 this.transform.forward * dataTwo.pos_y, Space.Self);
 // or you can have the device only control z, for example:
 // this.transform.translate(0, 0, this.transform.forward * dataTwo.pos_y, Space.Self);
 }

20711.5  Part V: Bi-Manual Manipulation and Travel Using Mobile Devices

11.5.5 � Step 5: Configure Bi-Manual Interaction for Travel Control
Here, we provide basic examples of bi-manual interaction for travel control. These exam-
ples are similar to step 4, but we now use the data to travel by controlling the stereoscopic
camera rig, instead of an object.

Example 1: First, we set up one device to control roll, pitch, and yaw of the camera
while both devices can control travel along the local axes of the camera. Listing 11.27
demonstrates example code for the Update() function of the camera rig (from “Step 2:
Configure Controller Input for Travel Control” earlier in this chapter).

We can use additional data to adjust for the speed of the travel. We will add the
onFling() function to the Mainactivity class created previously in Step 1. This onFling()
function detects fling events when they occur and provides the speed of fling in x and
y position. A ‘fling’ event is a ‘swipe’ event based on an ending velocity. Listing 11.28
provides a code sample to detect fling gestures which will return the velocity of a fling in
position x and y.

Listing 11.28.  This listing provides an example Android Java function to return the velocity of a fling
gesture in position x and y.

@Override //overriding the parent class
 public boolean onFling(MotionEvent e1, MotionEvent e2, float velocityX, float velocityY)
 {
 return super.onFling(e1, e2, velocityX, velocityY);
 }

Listing 11.27.  This Unity C# listing provides an example of using the data from two touch-based devices
to update rotation and translation of the camera.

 void Update()
 {
 string dataOne = implObject.GetNextReading();
 string dataTwo = implObject.GetNextReading();
 float scaleFactor = 0.002f * Time.deltaTime;
 if (dataOne == null || dataTwo == null)
 return;
 // One device controls roll,pitch, yaw
 Quaternion rotation = AdjustRotation(new Quaternion(dataOne.quat_x, dataOne.quat_y,
 dataOne.quat_z, dataOne.quat_w));
 this.transform.rotation = rotation;
 // One device controls forward/back translation
 this.transform.Translate(this.transform.forward * dataOne.pos_y * scaleFactor);
 // Another device controls left/right and up/down translation
 this.transform.Translate(this.transform.right * dataTwo.pos_x * scaleFactor);
 this.transform.Translate(this.transform.up * dataTwo.pos_y * scaleFactor);
 // Remember, if this code is not added to a script within the parent camera of the
 //camera rig, be sure to reference the camera GameObject (ie. Camera.transform.Translate)
 }

208 11.  Bi-Manual Interaction for Manipulation, Volume Selection, and Travel

This function provides the speed of the fling in the x and y directions which we send
through the server socket as before. Example 2: Thus now we can use the fling data to
affect the translation speed of the movement, with orientation controlled by data from
another mobile phone. For Listing 11.29, we can alter Listing 11.27 to instead use these
values for the speed of travel.

You now have the wherewithal to set up your two devices for travel control. You can
modify the division of tasks to your preferences for travel or combine with other devices
or methods.

11.6 � Conclusion

In summary, this chapter provides instructions for bare-handed bi-manual object manip-
ulation and volume selection tool control, as well as bi-manual manipulation and travel
using two input controllers. While the instructions and examples provided in this chapter
provide assistance to create basic interactions in a virtual reality environment, they also
serve as a foundation and can be easily extended to provide more complex interaction.

Specifically, this chapter provided details for how to set up Unity with Leap hand track-
ing and then incorporate that input to translate, rotate, and scale objects with one and two
hands. You can use these examples to employ your bare hands to control objects in a real
application, such as picking up or throwing objects, modeling or changing properties of
objects, and even using your hands to navigate in the VE. More sophisticated bare-handed
selection and manipulation techniques published in recent research can be implemented
from the basis of the knowledge gained in this chapter.

Second, this chapter expands on the basic hand interaction examples to set up a basic
volumetric selection tool. Examples demonstrate how to identify objects for selection, change

Listing 11.29.  Unity C# sample Unity C# script code that uses the fling event to control the speed of travel.

 void Update()
 {
 string dataOne = implObject.GetNextReading();
 string dataTwo = implObject.GetNextReading();
 float scaleFactor = 0.002f * Time.deltaTime;

 if (dataOne == null || dataTwo == null)
 return;

 //One device controls roll,pitch, yaw
 Quaternion rotation = AdjustRotation(new Quaternion(dataOne.quat_x, dataOne.quat_y,
 dataOne.quat_z, dataOne.quat_w));
 this.transform.rotation = rotation;
 //One device controls forward/back translation
 this.transform.Translate(this.transform.forward * dataOne.pos_y * velocityY);
 //Another device controls left/right and up/down translation
 this.transform.Translate(this.ransform.right * dataTwo.pos_x * velocityX);
 this.transform.Translate(this.ransform.up * dataTwo.pos_y * velocityY);
 //Remember, if this code is not added to a script within the parent camera of the
 //camera rig, be sure to reference the camera GameObject (ie. Camera.transform.Translate)
 }

209References

properties, and control the volume selection tool using two hands. With these examples,
you can use your hands to manipulate a multi-object selection tool. While these examples
use solid objects, objects can also be defined as sprites or data points to be used in a real-
time volumetric data renderer in Unity or another application. Furthermore, other selection
techniques published in recent research could be implemented using the hand tracking and
manipulating the basic volume in a different way as defined by those techniques.

Third, this chapter instructs how to set up Unity to utilize input from two input
controllers for object translation, rotation, and scale as well as travel (by moving the
camera). Examples demonstrates reduced degrees-of-freedom travel and full 6-degrees-
of-freedom travel. These examples are great to use for mobile VR applications with VR
viewers (e.g. Google Cardboards) due to the small form factor of the controllers and
the wireless communication over Bluetooth. They could be further extended for more
advanced interaction techniques now that you know how to set them up, access the input
values, and use those values to control objects in Unity.

Lastly, this chapter provides details of how to set up two mobile devices for bi-manual
input control of a Unity virtual environment. In the last section (Part V), you were able
to connect two mobile devices over Bluetooth or Wi-Fi to manipulate objects in a Unity
virtual environment. Further you learned to use the data to set up bi-manual control of
orientation, translation, and scale of those objects as well as travel. While these are basic
examples, they can be extended further to perform more advanced interaction control
using the mobile devices. Further you can use these examples as a foundation to assess
other buttons or sensor data to increase the amount of interaction functionality or more
appropriately balance interaction tasks across devices for advanced interaction in virtual
environments.

In conclusion, we hope that you are able to use these examples to get started or as a
foundation for more advanced bi-manual control. Feel free to contact the authors regard-
ing the details in this chapter or for more advice on bi-manual interaction techniques.

References

[Android Studio 2018]

Android (2018, October 23). Detect Common Gestures. Retrieved from https://developer.
android.com/training/gestures/detector#java

[Balakrishnan and Hinckley 1999]

Balakrishnan, Ravin, and Ken Hinckley (1999). The role of kinesthetic reference frames in
two-handed input performance. In Proceedings of the 12th Annual ACM Symposium
on User Interface Software and Technology (pp. 171–178). ACM, Asheville, North
Carolina.

[Hinckley et al. 1997]

Hinckley, Ken, and Randy F. Pausch, and Dennis Proffitt (1997). Attention and visual
feedback: The bimanual frame of reference. In Proceedings of the 1997 Symposium on
Interactive 3D Graphics (pp. 121–ff). ACM, Providence, Rhode Island.

https://developer.android.com
https://developer.android.com

210 11.  Bi-Manual Interaction for Manipulation, Volume Selection, and Travel

[Niehorster et al. 2017]

Niehorster, Diederick C., Li, and Markus Lappe (2017). The accuracy and precision of
position and orientation tracking in the HTC Vive virtual reality system for scien-
tific research. i-Perception, 8(3). doi:10.117/2041669517708205.

[Oculus VR 2018]

Oculus VR LLC. (2018). Oculus Developer Guide. URL: https://developer.oculus.com/rift/.

[Ulinski et al. 2007]

Ulinski, Amy, Catherine Zanbaka, Zachary Wartell, Paula Goolkasian, and Larry F.
Hodges (2007). Two handed selection techniques for volumetric data. In 2007 IEEE
Symposium on 3D User Interfaces. IEEE, Charlotte, North Carolina.

https://developer.oculus.com

211

12
Effortless 3D Selection through
Progressive Refinement
Doug A. Bowman
Center for Human-Computer Interaction, Virginia Tech

Regis Kopper
Duke University

Felipe Bacim
Apple, Inc.

Most virtual reality (VR) applications need a 3D selection technique—a way to pick or tar-
get objects in the virtual scene. While basic techniques like ray-casting can work in many
situations, a more advanced form of 3D selection can give your users a better experience
if your scene has many small, distant, cluttered, or moving objects. This chapter describes
several such techniques based on the concept of progressive refinement, and it will help
you choose which techniques to use for your application.

12.1 � Introduction

3D selection, in which a user picks one or more objects in a VR environment, has been
called one of the “universal” 3D interaction tasks [LaViola et al. 2017]. Selection takes
place in almost every VR application, except for those that are purely passive experiences
(such as watching a VR film).

12.1	 Introduction
12.2	 Common Problems in 3D

Selection

12.3	 Progressive Refinement
12.4	 Techniques
12.5	 Conclusion

212 12.  Effortless 3D Selection through Progressive Refinement

Examples of 3D selection include:

•• Targeting or “shooting” an object to be destroyed in a game
•• Activating an interactive virtual object, such as a virtual switch that turns on a

machine
•• Picking an item in a menu
•• Choosing an object for a follow-up action, such as manipulation, scaling, copying,

or deleting

Like most 3D interaction tasks, selection has some real-world analogs that are often used
as the basic metaphors for VR selection techniques. The most obvious is the touching
metaphor, which selects objects when they are contacted or grasped by a virtual hand or
virtual tool, which is typically controlled via tracked movements of the user’s own hand
or a handheld controller.

Touching is clearly easy to understand, because it maps directly to users’ experiences in
the real world, but it is not easy to use for selection of objects at a distance, or when selec-
tion is used for shooting. Such selection tasks often make use of a pointing technique, in
which the user’s finger or a tool is used to indicate the direction to the desired object. Laser
pointers or guns provide real-world metaphors for selection by pointing.

Basic versions of these techniques are simple to implement and work well in many 3D
selection scenarios. For example, in the game Fantastic Contraption, selection of parts to
be used in building a contraption is performed simply by touching them with the hand-
held controller. Pointing is used in the Oculus Home menu, which employs a simple laser
pointer approach to select apps and controls.

Not all selection tasks in VR, however, are so simple. Straightforward touching and
pointing techniques can be difficult or impossible to use when objects are far away, small,
densely packed, and/or moving. To address these issues, a wide variety of more advanced
3D selection techniques has been proposed (see LaViola et al. [2017] for an overview).

In this chapter, we’ll take a look at a class of 3D selection techniques based on progres-
sive refinement, which is the idea of gradually reducing the set of selectable objects until
only one remains. When implemented well, progressive refinement techniques allow users
to perform very difficult selection tasks with very little physical or mental effort, without
increasing the time needed for selection.

We begin by looking more closely at four characteristics of 3D selection tasks that
cause problems and increased difficulty. Next, we’ll define progressive refinement more
precisely and explain how and why the approach works. In the remainder of the chapter,
we’ll describe the design and implementation of three 3D selection techniques based on
progressive refinement, and how developers can use these techniques to make demanding
selection tasks seem effortless to users.

12.2 � Common Problems in 3D Selection

As we discussed in the introduction, many selection tasks can be easily handled with
basic touching or pointing techniques, but other tasks are significantly more difficult.
If appropriate interaction techniques are not used in these scenarios, then users can spend

21312.2  Common Problems in 3D Selection

significant time and effort on object selection, and may make many selection errors. This
can lead to frustration, fatigue, and an all-around poor user experience. The primary
factors that cause difficulty in 3D selection are distance, size, density, and movement.

12.2.1 � Distance
The most obvious issue is that selection targets may be far away from the user. Objects
beyond arm’s reach cannot be selected at all by basic touching techniques—unless the user
can travel (move within the virtual environment) to bring the object within arm’s reach.

One obvious solution to the distance problem is to use a pointing-based selection
technique, like ray-casting [Mine 1995]. In some cases, this is all that’s needed. However,
the ability of users to point accurately depends on the visual size of objects, and faraway
objects will have a smaller visual size. Accurate pointing is hindered by both tracking jitter
and natural tremor of the user’s hand. Small movements of the hand and slight noise in
the tracker signal can result in large movements at the end of the ray. Thus, an object that
would be easy to select within a few meters can become very hard to select when it is much
farther away [Wingrave and Bowman 2005].

Touching metaphors can still be used to select distant objects through the concept of
arm extension [Bowman and Hodges 1997]. For example, the Go-Go technique [Poupyrev
et al. 1996] allows the user to reach much farther into the environment with the virtual
arm than is possible in the real world, by applying a non-linear mapping from the physi-
cal reach distance to the virtual reach distance. Like ray-casting, however, this scaling of
reach comes at the cost of accuracy. Small physical hand movements will make the virtual
hand move larger distances, making it sometimes difficult to touch distant objects with
the virtual hand.

12.2.2 � Size
Closely related to the problem of distance is the issue of target size. Touching and pointing
techniques work well when objects are nearby and large enough. However, when targets
are too far away or too small, tracker jitter and hand tremor make it hard to position or
orient the hand accurately enough for selection.

There are several different aspects of size that deserve consideration. First, there’s the
distinction between absolute size and visual size. A sphere with a 1-m diameter has a 1-m
diameter regardless of its location relative to the user—that’s absolute size. But as we hinted
in the previous subsection, that same sphere appears smaller and smaller (in visual size)
to the user as it moves farther away. The accuracy of touching-based techniques depends
on the absolute object size, while the accuracy of pointing-based techniques depends on
visual size.

We should also note that objects don’t have a single size; they may be sized differently
in different dimensions. Imagine a square brick wall—it is relatively large in width and
height, but relatively small in thickness. If a pointing technique is being used to select the
wall, then it will be much easier to select when looking at the front or back of the wall, but
more difficult to select when looking at the wall edgewise. On the other hand, with a dis-
tant touching technique like Go-Go, it is likely to be more difficult to select the wall when
looking at the front or back, because the wall object is small in the depth dimension, and
the technique provides less precision in the depth dimension.

214 12.  Effortless 3D Selection through Progressive Refinement

Many 3D selection techniques have been designed to address the dual problems of
distance and size. For example, the 3D Bubble Cursor [Vanacken et al. 2007] uses a vol-
ume cursor instead of a point cursor, and this volume (called the “bubble”) changes size
dynamically so that it always contains a single object. In this way, the user can always select
the nearest object to the cursor without having to position the cursor precisely. Similarly,
the Bent Pick-Ray technique [Riege et al. 2006] is a pointing-based technique that reduces
precision requirements. It automatically bends the pointing ray so that it intersects the
object closest to the unbent ray. Finally, PRISM [Frees et al. 2007] is an example of a tech-
nique that dynamically changes the level of precision (known as the control-display ratio)
to allow both long-distance movements of the hand and precise placement. When the
user’s hand is moving quickly, the virtual hand moves very quickly; however, when the
user slows down, the virtual hand moves even slower.

12.2.3 � Density
A third confounding factor for 3D selection is object density (i.e., how close selectable objects
are to one another). With high density of objects, there will be more occlusion, and there-
fore targets will have smaller visual size. Imagine a pizza box sitting on the table. Selecting
it from the side would be difficult with a pointing technique due to small visual size, but it
would be easy enough to raise your hand so you were pointing at the top of the box. But if
instead we have a whole stack of pizza boxes, and we want to select a box in the middle of the
stack, we have no choice but to select it from the side, because only the side is visible.

In addition, when objects are very near to one another, small movements of the user’s
hand (caused by tremor or tracker jitter) can cause the selection target to jump from
one object to another and back again quickly and unpredictably. This is the downside of
techniques like 3D Bubble Cursor and Bent Pick-Ray—they only work well when there
is empty space (no selectable objects) around the target. Otherwise, the user will have to
touch or point to the objects precisely.

Figure 12.1 shows a virtual supermarket, developed as the test environment for the first
IEEE 3DUI Contest [Figueroa et al. 2010]. Users had to find three marked objects in the
supermarket and select them to put them in their shopping carts. Note how this environ-
ment has a very large number of objects, many of which are far away, small, and densely
packed. Even state-of-the-art 3D selection techniques can be frustrating and error prone
in an environment like this.

12.2.4 � Movement
Object movement is a fourth issue that can negatively impact the effectiveness of 3D selec-
tion. When objects are moving, users not only have to provide precise position, distance,
or direction information, but also precise timing. Most 3D selection techniques do not
explicitly consider moving objects, and therefore are difficult to use for moving object
selection.

Many 3D environments consist primarily or exclusively of static objects, but moving
objects are common in certain types of 3D applications. Targeting moving enemies in
a game is probably the most prominent example. But selection of moving objects may
also occur in 3D simulations and animations. Of course, it is always possible to include a
“pause” function to stop the movement before selection, but this approach may not always
be desirable.

21512.3  Progressive Refinement

A few researchers have considered the moving object selection problem and developed
techniques specifically to address this issue. For example, the Hook technique [Ortega
2013] is based on the observation that users must track and pursue moving objects in order
to select them. Therefore, it looks at the distances from the hand/cursor to each object
in the scene over time and maintains a score for each object, indicating the probability
that the user is trying to select the object. When the user indicates a selection (e.g., by
pressing a button), the object with the highest score is selected.

12.2.5 � The Need for a New Approach
All of the techniques described above can help users overcome the problems of distance,
size, density, and movement during 3D selection tasks. However, they often require extra
effort from the user when the circumstances of selection are difficult. For example, Go-Go
allows selection at a distance, but requires even more hand precision for distant objects,
and Hook allows selection of moving objects, but requires users to follow the desired
object for a while before it becomes selectable. These “immediate selection” techniques
require the user to perform selection in a single precise step and result in users spending
more time to select targets in order to be more accurate (an effect known as the speed-
accuracy trade-off). The progressive refinement techniques we describe in the rest of the
chapter take a different approach.

12.3 � Progressive Refinement

While traditional selection techniques use immediate selection and require great care
and precision from the user, progressive refinement techniques gradually refine the set of

Figure 12.1

Virtual supermarket illustrating the issues of distance, size, and density in 3D selection.

216 12.  Effortless 3D Selection through Progressive Refinement

selectable objects to reduce the required precision of the task. For most progressive refine-
ment techniques, this means that a series of rough or imprecise actions can be used to
accomplish a precise result, reducing the overall interaction effort.

There is an inherent tradeoff between immediate techniques and progressive refine-
ment techniques. Progressive refinement requires a process of selection, often using mul-
tiple steps, although each step can be very fast and accurate. Immediate techniques, on
the other hand, involve a single high-precision spatial selection at the expense of having a
higher error probability for difficult selection tasks.

The goal of progressive refinement technique design, therefore, is to make the multiple
selection steps as simple and fast as baseline immediate selection techniques are, while
being much more accurate when the target is small. This can be thought of as “beating” the
speed-accuracy tradeoff. By using the concept of progressive refinement, we have shown
it is possible to provide highly accurate selection techniques that require significantly less
precision from the user when compared to immediate techniques.

For more information on the theory of progressive refinement, including a design space
that can be used to generate ideas for new progressive refinement techniques, see our pub-
lications [Kopper et al. 2011; Bacim et al. 2013; Bacim 2015].

There are several selection techniques in the literature that can be classified as pro-
gressive refinement. For example, the Flower Ray [Grossman and Balakrishnan 2006]
uses ray-casting to intersect a number of objects, and then displays those objects in a
flower-like menu surrounding the ray to allow the user to specify the desired target. Other
3D selection techniques based on progressive refinement include Expand [Cashion et al.
2012], StarGazer [Hansen et al. 2008], and Shadow Cone-Casting [Steed and Parker 2004].
We focus on three progressive refinement techniques developed in our lab.

12.4 � Techniques

In the 3D Interaction Group at Virginia Tech, we have designed, developed, and evalu-
ated dozens of novel 3D selection techniques, including several based on the progressive
refinement concept. Three of the best techniques are described below: SQUAD, FRIZ, and
Double Bubble.

12.4.1 � SQUAD
Sphere-casting refined by quad-menu selection (SQUAD) was the first progressive refine-
ment selection technique developed in our lab. We designed it specifically for situations
like the supermarket shown in Figure 12.1, with distant, small, and densely packed objects.
SQUAD achieves rapid yet precise selection by dividing selection into two discrete steps,
the first being spatial and in-context and the second being out-of-context.

12.4.1.1 � Description

The first step of SQUAD uses a modified version of ray-casting that casts a sphere onto
the nearest intersecting surface in the VE to determine the set of selectable objects. This
subtask is called sphere-casting. The user simply has to ensure that the desired object is
inside or touching the sphere, so that it can be picked from among the other objects in the
next phase. Figure 12.2 illustrates this selection phase. Sphere-casting avoids the precision
issues of ray-casting and allows selection of occluded objects.

21712.4  Techniques

Upon completion of the first phase, all objects that are inside or touching the sphere are
evenly distributed among four quadrants on the screen. This phase is called quad-menu
refinement. Users refine the selection by ray-casting anywhere in the quadrant that con-
tains the target item, each time reducing the number of objects per quadrant until the
desired object is the only one left. The selection is completed after a refinement action
is performed on a quadrant containing a single object. This process is illustrated in
Figure 12.3. The maximum number of selections necessary in the quad menu is the ceiling
of (log4 n), where n is the initial number of items coming from the sphere-casting phase.
For example, if the sphere has between 17 and 64 objects inside it, SQUAD would require
at most four clicks to select the target (one click for sphere-casting and three clicks for the
quad-menu). Up to 256 objects requires at most 5 clicks and up to 1,024 objects requires
at most 6 clicks.

12.4.1.2 � Implementation

Sphere-casting could be implemented by casting an invisible ray into the scene in the
natural pointing direction defined by a tracked handheld controller. Naïvely, the first
intersection of this ray with a geometric object in the scene could determine the center of
the sphere. In practice, however, this can cause the sphere to jump between objects at dif-
ferent depths because of tracker or hand jitter. Therefore, we implement sphere-casting by
first casting a cone into the 3D environment and centering the sphere at the depth of the
nearest object that falls inside the cone.

In order to improve confidence that the desired object will be available, the sphere’s
radius increases the farther the user is from the nearest intersecting surface, keeping the
visual size of the sphere constant while increasing its volume. In our implementation the
sphere’s radius was set to appear to have a 26° visual size.

Figure 12.2

Sphere-casting.

218 12.  Effortless 3D Selection through Progressive Refinement

Objects inside or touching the sphere should be highlighted to let the user know
whether the desired target will be selectable after sphere-casting. Testing all objects in the
scene could be very compute-intensive, so it is helpful to use a data structure like an octree
to limit calculations to those objects in cells that the sphere touches or contains. Once
the candidate objects have been determined, it is usually sufficient to test for collisions or
containment with the objects’ bounding boxes, since the worst thing that will happen is
that a few objects outside the sphere but near it will be made selectable.

The quad-menu step is implemented as a full-screen overlay. In a projection-based VR
system, this may mean simply taking over one of the physical screens and displaying the
quad-menu instead of the virtual environment. In a head-worn display, the quad-menu
can be displayed on a polygon that is attached to the user’s head so that it will be in view
no matter which way the user is looking. However, this polygon should be far enough away
from the user’s eyes that it does not cause eye fatigue, and large enough so that it fills most
or all of the field of view.

The highlighted objects from the sphere-casting step are distributed evenly (perhaps
randomly) into the four quadrants, with each quadrant storing its own list of objects. Our
implementation creates copies of the objects rather than moving the objects from the 3D
scene. Objects will also need to be scaled so that they appear to be approximately the same
visual size as all the others. We found it helpful to animate the objects in the quad-menu to
rotate slowly in place, so that users could clearly see the 3D shape of the objects. Note that
object distribution doesn’t have to be random; it could be based on spatial location within
the sphere, size, color, shape, or any other relevant criterion.

Selecting a quadrant from the quad-menu uses a simple ray-casting approach. The
quadrants should be considered to extend beyond the edges of the screen, so that users only
have to point roughly up, down, left, or right to hit the desired quadrant. We highlight the

Figure 12.3

Quad-menu refinement.

21912.4  Techniques

entire quadrant background so that it is clear which quadrant will be selected. After the
first selection, the items in that quadrant are redistributed to all four quadrants, and this
continues until the selected quadrant had only one object, which is selected.

An alternative implementation for the quad-menu display is to decouple the view of the
quad menu from the gesture used to refine. For example, the quad-menu can be displayed
in a portion of the field of view, and the quadrants can be chosen based on the direction
the user is pointing. This alternate design benefits applications where keeping the spatial
context is important. One example is in a VR game where the user selects an item from an
inventory while keeping track of possible foes in the scene.

12.4.1.3 � When to Use It

Because the quad-menu refinements are done out of context, it is important that the target
be visually distinct from any other objects. Alternatively, if the goal is to select any one
object from multiple instances regardless of spatial location, SQUAD is also effective. For
example, in Figure 12.2, if the goal was to select a water bottle, any bottle would suffice.

SQUAD should be used when the targets are small (in our study, it was faster than ray-
casting when objects were less than 0.5° across) and/or the object density is not too high
(up to 16 objects inside the sphere). The biggest strength of SQUAD, however, is its preci-
sion. Our study found that even when ray-casting is faster, it greatly increases the chance
of error [Kopper et al. 2011]. However, SQUAD leads to virtually 100% success, regardless
of target size or density.

For this reason, SQUAD is well suited for situations where the cost of an erroneous selec-
tion is higher than the cost of a slower selection. SQUAD is also appropriate for situations
where there are many objects arranged along a surface or clustered in space. Finally, SQUAD
can address the selection of moving objects, since as long as the target object is inside the
sphere in the first phase of selection, it will be available (and not moving) in the quad-menu.

SQUAD is not well suited for situations where the spatial context is important to
determine the selection target. In those scenarios, other progressive refinement tech-
niques are preferred.

12.4.2 � FRIZ
The primary limitation of SQUAD is that it requires target objects to be visually distinct.
This happens because users have to perform the refinement phase of selection outside
of the objects’ spatial context. One way to increase accuracy in selection without taking
objects out of their spatial context is to increase the target size. In order to do this, users
can zoom into the region of the screen containing the target. This is the idea behind a fam-
ily of Zoom selection techniques. In this section, we describe Flexible Rapid Incremental
Zoom (FRIZ), the most effective Zoom-based technique we implemented in our work.

12.4.2.1 � Description

We tried two basic approaches to Zoom-based selection. The first was Discrete Zoom,
in which users point to discrete regions of the screen (e.g., quadrants), and that region
zooms in to fill the entire screen until the target object is large enough to select directly
via ray-casting (Figure 12.4).

The second approach we tried was Continuous Zoom, in which the user can zoom in
continuously in the direction of a 2D cursor controlled by a tracked handheld device.

220 12.  Effortless 3D Selection through Progressive Refinement

This way, users can simply point roughly toward the object and zoom in until the target is
large enough for selection (Figure 12.5).

The best feature of the Discrete Zoom technique was the low precision it required in
selecting the quadrants for zoom. Its main issue, however, was that every refinement phase
required users to perform a new visual search for the target. On the other hand, while
Continuous Zoom only required users to perform visual search once, it required more
precision than Discrete Zoom. FRIZ is a hybrid of the two approaches that combines the
strengths of both techniques into one improved design.

To maintain low precision requirements, we use discrete zoom steps: every time the user
presses the zoom in/out button, a pre-determined amount of zoom is used and a short anima-
tion is shown, like in the Discrete Zoom technique. A zoom preview window indicates what
part of the screen the next level of zoom will show. A 2D cursor is displayed at the location
on the screen where the ray is pointing, and the user can choose to select the object under the
cursor at any time. Moreover, the cursor stays in the same location in the zoomed image as it
was before the zoom operation. Figure 12.6 shows two refinement steps in which the cursor
stays in place and the image simply grows around it, as indicated by the blue preview window.

12.4.2.2 � Implementation

Zooming in 3D computer graphics is usually done either by applying a scale to the model-
view matrix or by scaling the width and height of the view volume [Shreiner 2009]. However,
these techniques zoom in to the center of the current view, whereas our technique needs

Figure 12.4

Three refinement steps of the Discrete Zoom technique.

Figure 12.5

Three snapshots of different zoom levels achieved with the Continuous Zoom technique.

22112.4  Techniques

to be able to zoom into specific areas of the screen. We considered rendering the scene to
a texture and then magnifying it, but this would reduce visual detail. We also considered
simply moving the camera rather than zooming, but this can cause occlusion issues.

Instead, we implement zooming by adjusting the frustum to do off-axis projection while
also reducing the field of view (Figure 12.7). Most 3D computer graphics make use of on-
axis perspective projection, in which the viewing direction is perpendicular to the view
plane and goes through its center (as in the left image in Figure 12.7). However, in order to
get an undistorted and zoomed-in view of a certain region of the original view frustum, we
need to use an off-axis projection, where the viewing direction is not perpendicular to the

Figure 12.6

Two refinement steps of the FRIZ technique.

View
 PlaneViewing

directi
on

Camera
FOV

Viewing
Direction

View
 plane

Camera

(a) (b)

FOV

Figure 12.7

Zooming implementation in FRIZ. The large triangle represents the view frustum (shown in 2D
for clarity); dark blue shapes are rendered, while light blue shapes are clipped. (a) Original
viewing situation. (b) After the user selects the upper portion of the view for zooming, we
render an off-axis projection with a reduced field of view, resulting in an exact replica of the
image seen within the zoom window in step 1.

222 12.  Effortless 3D Selection through Progressive Refinement

view plane (right image of Figure 12.7). In most graphics engines, this requires the creation
of a custom projection matrix. At the same time, we must also modify the viewing frustum
to give it a narrower field of view. This generates the exact same image as the one shown in
the selected region of the screen initially (see Figure 12.6 for an example), and zoom is cor-
rectly applied in the image plane without distortions or spatial aliasing. For more detail on
off-axis projections, see [Cruz-Neira et al. 1993; Kooima 2019].

Several alternatives for zoom window positioning were considered for the final design
of FRIZ. The zoom window could always have the cursor at the center, which would allow
users to zoom into regions of the screen not visible in the original view. The zoom window
could be snapped to the edges of the screen to avoid this effect, but in either alternative the
user would have to re-adjust the cursor position every time zoom is performed.

The solution was to snap the zoom window to the edges of the screen, but zoom in the
direction of the cursor position and guarantee that the cursor will point at the same object
in the 3D environment after zooming in or out. We do this by matching the position of
the cursor in the current zoom level and the next level (illustrated by the zoom preview
window), creating an off-axis projection frustum that has the cursor at the same position.
This feature also eliminates visual search once a refinement is made.

12.4.2.3 � When to Use It

Our studies [Bacim 2015], run on a large projection screen VR system, show that FRIZ,
like other progressive refinement techniques, results in almost perfect selection accu-
racy. It has the desirable property that easy-to-select objects can be selected directly by
ray-casting; zoom is always optional and can be used only when needed. FRIZ is some-
times a bit slower than other state-of-the-art progressive refinement and immediate
techniques, possibly because users zoom in farther than necessary to be able to select the
target accurately. Overall, FRIZ is a solid technique choice in 3D environments with high
levels of density, small targets, and/or distant targets.

However, it should be noted that FRIZ would not be ideal for selecting moving objects,
since objects might move out of the zoomed-in region before they could be selected. We
also have not tried FRIZ in a head-worn display. Zooming may feel strange to users when
there is no fixed screen, and it is unclear how head tracking should affect the view when
it is zoomed in.

12.4.3 � Double Bubble
Similar to SQUAD and FRIZ, Double Bubble implements selection in two phases. As its
name implies, Double Bubble uses two selections based on the Bubble Cursor approach
[Grossman and Balakrishnan 2005], in which the cursor is a sphere that dynamically
changes size so at least one object is selectable at all times. The first selection is done in the
3D environment, and, if there is more than one object inside the bubble, a second selec-
tion is done in an on-screen overlay menu with original relative locations and distances
preserved (Figure 12.8). A Bubble Cursor is used in this second phase as well to allow fast
direct selection of the target object.

12.4.3.1 � Description

We saw earlier that SQUAD reduces the precision required to select small objects by cast-
ing a large sphere into the environment and making all objects inside the sphere selectable.

22312.4  Techniques

However, this approach is not very practical in cluttered environments, as the user may
end up with a very large number of objects inside the sphere, which will result in more
time spent in the quad-menu phase to disambiguate selection. The use of a Bubble Cursor
in the first phase of Double Bubble reduces the size of the sphere without necessarily
increasing the precision needed for pointing.

The second refinement phase in Double Bubble lays out the objects selected in the
first phase in a screen-space grid, similar to Expand [Cashion et al. 2012]. A standard 2D
Bubble Cursor, in which the bubble always contains exactly one object, is used for direct
selection of the target object in this grid.

Double Bubble also addresses the main limitation of SQUAD: objects needing to be
visually distinct to recognize them in the second phase. Double Bubble uses a transpar-
ent menu background and a quick animation that shows the objects moving from their
original positions in the scene to their new positions in the menu. This allows users to
keep track of the target object as it moves. We also show a line that connects the currently
highlighted object in the menu to its original counterpart in the scene. The right side of
Figure 12.8 shows these improvements.

To further improve users’ ability to understand the relationship between the objects in
the menu and their counterparts in the scene, Double Bubble distributes the objects based
on their original spatial layout. For example, if object A is to the left of object B when they
are selected, object A will be to the left of object B in the menu as well. This means relative
locations of objects are preserved in the menu. Similarly, Double Bubble also preserves
relative distances between objects. For instance, if object C is close to object A, but far
from object B, this will be reflected in the menu.

12.4.3.2 � Implementation

The first refinement phase in Double Bubble uses a slightly modified version of the origi-
nal 2D Bubble Cursor. All visible objects are projected onto the screen as 2D objects,
and only those objects are initially selectable. Selection is always done in 2D screen
space, and the bubble changes its radius based on the closest selectable pixel, which is

Figure 12.8

Two selection phases of Double Bubble: Bubble Cursor for initial in-context selection (a),
and Bubble Cursor used to enhance selection of object in the menu (b).

224 12.  Effortless 3D Selection through Progressive Refinement

associated with an object. We use 2D screen-space selection to ensure that all objects
“underneath” the bubble are selectable, no matter their depth in the 3D environment.
The main difference from the original Bubble Cursor [Grossman and Balakrishnan
2005] is that we introduce a minimum bubble size, and if the bubble contains more
than one selectable object inside it when the user performs selection, they are sent to the
second selection phase.

Positioning the proxy objects in the menu in the second phase of Double Bubble is done
by calculating the relative position of all the objects inside the sphere in screen space, and
remapping that to the entire screen. In practice, this menu works like a popped-out and
zoomed-in version of all objects that are selectable from the first phase.

12.4.3.3 � When to Use It

Double Bubble has been shown to be highly accurate in a wide variety of selection task
scenarios, and speed of selection is comparable to other progressive refinement and imme-
diate selection techniques. It was also considered to be very easy to use by participants
in our studies [Bacim 2015]. Like FRIZ, it can be used in 3D scenes that have very small
and distant objects, and high object density. Easy-to-select objects can be selected directly
with the first Bubble Cursor, avoiding the second stage. Unlike FRIZ, it is also appropriate
for moving objects, since objects “caught” in the first bubble will show up in the second
phase menu.

Overall, Double Bubble is a great general-purpose technique if any 3D selection tasks
are expected to be difficult for users. It has a number of nice properties:

•• It provides proper spatial cues and preserves spatial relationships between objects
in the menu

•• It reduces visual search time in the menu due to the spatial cues
•• It balances the amount of effort and precision required in both phases of selection
•• It decreases the amount of pointing precision needed by providing Bubble Cursor

snapping in both phases and larger targets in the second phase

As with FRIZ, we have not experimented with Double Bubble in head-worn displays.
Some tweaks to the design would be required, since the camera might be moving due to
head-tracking during the second selection phase, but we expect that Double Bubble would
remain highly effective with head-worn displays.

12.5 � Conclusion

Many VR applications require users to select 3D objects, and the complexity of 3D envi-
ronments will only continue to increase. To ensure that users are not frustrated by the
difficulty of selection tasks, developers should consider state-of-the-art techniques
for increasing speed and accuracy as compared to the standard touching and pointing
techniques.

In this chapter, we introduced the concept of progressive refinement techniques for 3D
selection. These multi-stage techniques are more complex, both from the developer’s and
the user’s perspective. However, they offer speed that is comparable to baseline techniques

225References

while greatly increasing accuracy. By using multiple selection steps, where each step is
quick and effortless, progressive refinement techniques can beat the speed-accuracy trad-
eoff. They allow users to be confident in their selections without expending too much physi-
cal or mental effort, so they can focus on what’s most important in the VR application: the
experience.

References

[Bacim 2015]

Bacim, Felipe (2015). Increasing selection accuracy and speed through progressive refine-
ment. Ph.D. dissertation, Virginia Tech.

[Bacim et al. 2013]

Bacim, Felipe, Regis Kopper, and Doug A. Bowman (2013). Design and evaluation of
3D selection techniques based on progressive refinement. International Journal of
Human-Computer Studies, 71(7), 785–802.

[Bowman and Hodges 1997]

Bowman, Doug A., and Larry F. Hodges (1997). An evaluation of techniques for grabbing
and manipulating remote objects in immersive virtual environments. In Proceedings
of the Symposium on Interactive 3D graphics, Providence, RI: ACM (pp. 35–ff).

[Cashion et al. 2012]

Cashion, Jeffrey, Chadwick Wingrave, and Joseph J. LaViola Jr. (2012). Dense and
dynamic 3D selection for game-based virtual environments. IEEE Transactions on
Visualization and Computer Graphics, 18(4), 634–642.

[Cruz-Neira et al. 1993]

Cruz-Neira, Carolina, Daniel J. Sandin, and Thomas A. DeFanti (1993). Surround-screen
projection-based virtual reality: The design and implementation of the CAVE. In
Proceedings of the 20th Annual Conference on Computer Graphics and Interactive
Techniques, Anaheim, CA: ACM (pp. 135–142).

[Figueroa et al. 2010]

Figueroa, Pablo, Yoshifumi Kitamura, Sébastien Kuntz, Lode Vanacken, Steven Maesen,
Tom De Weyer, Sofie Notelaers, Johanna Renny Octavia, Anastasia Beznosyk, Karin
Coninx, Felipe Bacim, Regis Kopper, Anamary Leal, Tao Ni, Doug A. Bowman
(2010). 3DUI 2010 contest grand prize winners. IEEE Computer Graphics and
Applications, 30(6), 86–96.

226 12.  Effortless 3D Selection through Progressive Refinement

[Frees et al. 2007]

Frees, Scott, G. Drew Kessler, and Edwin Kay (2007). PRISM interaction for enhanc-
ing control in immersive virtual environments. ACM Transactions on Computer-
Human Interaction, 14(1), 2.

[Grossman and Balakrishnan 2005]

Grossman, Tovi, and Ravin Balakrishnan (2005). The bubble cursor: Enhancing target
acquisition by dynamic resizing of the cursor’s activation area. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, Portland, OR: ACM
(pp. 281–290).

[Grossman & Balakrishnan 2006]

Grossman, Tovi, and Ravin Balakrishnan (2006). The design and evaluation of selec-
tion techniques for 3D volumetric displays. In Proceedings of the 19th Annual ACM
Symposium on User Interface Software and Technology, Montreux, Switzerland: ACM
(pp. 3–12).

[Hansen et al. 2008]

Hansen, Dan Witzner, Henrik H. T. Skovsgaard, John Paulin Hansen, and Emilie
Møllenbach (2008). Noise tolerant selection by gaze-controlled pan and zoom in
3D. In Proceedings of the 2008 Symposium on Eye Tracking Research & Applications,
Savannah, GA: ACM (pp. 205–212).

[Kooima 2019]

Kooima, Robert (2019). Perspective projection for VR. In Sherman, W. R., editor, VR
Developer Gems, Chapter 33. A K Peters/CRC Press: Boca Raton, FL.

[Kopper et al. 2011]

Kopper, Regis, Felipe Bacim, and Doug A. Bowman (2011). Rapid and accurate 3D selec-
tion by progressive refinement. In Proceedings of IEEE Symposium on 3D User
Interfaces, Singapore: IEEE (pp. 67–74).

[LaViola et al. 2017]

LaViola Jr., Joseph J., Ernst Kruijff, Ryan P. McMahan, Doug Bowman, and Ivan P. Poupyrev
(2017). 3D User Interfaces: Theory and Practice. Addison-Wesley Professional:
Boston, MA.

[Mine 1995]

Mine, Mark R. (1995). Virtual environment interaction techniques. UNC Chapel Hill CS
Dept. Technical Report.

227References

[Ortega 2013]

Ortega, Michael (2013). Hook: Heuristics for selecting 3D moving objects in dense target
environments. In Proceedings of IEEE Symposium on 3D User Interfaces, Orlando,
FL: IEEE (pp. 119–122).

[Poupyrev et al. 1996]

Poupyrev, Ivan, Mark Billinghurst, Suzanne Weghorst, and Tadao Ichikawa (1996). The
Go-Go interaction technique: Non-linear mapping for direct manipulation in VR.
In Proceedings of the 9th Annual ACM Symposium on User Interface Software and
Technology, Seattle, WA: ACM (pp. 79–80).

[Riege et al. 2006]

Riege, Kai, Thorsten Holtkämper, Gerold Wesche, and Bernd Fröhlich (2006). The bent
pick ray: An extended pointing technique for multi-user interaction. In Proceedings
of IEEE Symposium on 3D User Interfaces, Alexandria, VA: IEEE (pp. 62–65).

[Schreiner 2009]

Shreiner, Dave (2009). OpenGL Programming Guide: The Official Guide to Learning
OpenGL, Versions 3.0 and 3.1. Pearson Education: London.

[Steed and Parker 2004]

Steed, Anthony, and Chris Parker (2004). 3D selection strategies for head tracked and
non-head tracked operation of spatially immersive displays. In Proceedings of 8th
International Immersive Projection Technology Workshop (pp. 13–14).

[Vanacken et al. 2007]

Vanacken, Lode, Tovi Grossman, and Karin Coninx (2007). Exploring the effects of envi-
ronment density and target visibility on object selection in 3D virtual environments.
In Proceedings of IEEE Symposium on 3D User Interfaces, Charlotte, NC: IEEE.

[Wingrave and Bowman 2005]

Wingrave, Chadwick A., and Doug A. Bowman (2005). Baseline factors for raycasting
selection. In Proceedings of HCI International, Las Vegas, NV.

http://www.taylorandfrancis.com

229

13
Travel in Virtual Reality
Jason Leigh
University of Hawai‘i at Ma–noa

13.1 � Introduction

Travelling in virtual reality (VR) is needed to provide a user the freedom to move in a
virtual space beyond the limits of the physical space in which the VR hardware is situated.
For example, while in the real world I may only be able to move a few feet while tethered
to my VR hardware, in the virtual world I might like to travel greater distances. This
may occur with the push of a button, a flick of a joystick, the tilt of a VR controller, or by
walking atop an omnidirectional treadmill.

In this chapter however we focus on the most common use cases—where a user may
be holding one or more VR controllers each capable of detecting 6-degree of freedom
(6-DOF) motion (location in X, Y, Z, and rotation around X, Y, Z), and typically equipped
with at least a joystick and/or directional pad, and multiple buttons.

Before we begin we’ll consider criteria that make up a good travel scheme. Then we will
examine a number of VR travel schemes in the context of these criteria. You can use this
to help you decide which scheme is most appropriate for your application and audience.
Most of these schemes can be found online, especially in the Unity Asset Store. One gem
of a travel scheme which is not in the Asset Store is the Omni-navigator—a minimalistic
but elegant full 6-DOF travel scheme that is most useful when first prototyping a new VR
application where you want the flexibility of being able to look at your VR world from any

13.1	 Introduction
13.2	 What Makes a Good

Travel Scheme?
13.3	 The Contestants
13.4	 The Omni-Navigator in

Detail

13.5	 Setting Up the
Omni-Navigator
Script in Unity

13.6	 The Knobs
(Script Settings)

13.7	 Conclusion

230 13.  Travel in Virtual Reality

perspective without constraint. We will describe how to implement this travel scheme in
detail in this chapter.

13.2 � What Makes a Good Travel Scheme?

An effective travel scheme should attempt to meet as best as possible, the following criteria:

	 1.	 It should minimize the number of interface controls used (e.g., buttons).
	 2.	 It should maximize the degrees of freedom of movement possible.
	 3.	 It should be as easy to learn as possible.
	 4.	 It should minimally fatigue the user.
	 5.	 It should minimize the potential for nausea and eye strain.
	 6.	 It should maximally maintain presence.
	 7.	 It should be applicable to a wide range of VR hardware such as Head Mounted

Displays (HMDs), Room-based environments such as CAVEs [Cruz-Neira et al.
1992], CAVE2s [Febretti et al. 2013, 2014], CyberCANOEs [Kawano et al. 2017]
and SunCAVEs.

Against these criteria we will describe and evaluate the following travel schemes: (1) first-
person-shooter-style travel, (2) tele-hop, (3) waypoint navigation, (4) grappling hook
navigation, and (5) the omni-directional navigator. Then we will go into detail in the
implementation of the Omni-directional navigator.

13.3 � The Contestants

The Table below (Table 13.1) summarizes all the travel schemes compared against our
seven criteria for evaluating them.

13.3.1 � First-Person-Shooter-Style
This scheme first appeared in projection-based virtual environments such as the CAVE in
the early 1990s. The CAVE is a ten-foot-shaped room whose walls are rear-projected with
stereoscopic 3D images (see Figure 13.1 for some examples). Most CAVEs tended to leave
the rear open for entry and exit. And on rare occasion there were a few with screens on
all six sides.

The popular travel scheme, which is still applicable today and pre-dates all first-person-
shooter video games, uses the joystick on the VR controller/wand to move forward and
backward along the direction of the wand, and turn left/right along the vertical axis.
Strafing (moving sideways) is achieved by pointing the wand in the direction of strafe and
pushing the joystick forwards or backwards. This scheme is most commonly used for trav-
eling along a horizontal plane although movement upward and downward is possible by
pointing the wand upward or downward and pushing the joystick forwards or backwards.
The main advantage of this scheme is that it allows the traveler to always face the front of
the CAVE while traveling. For HMDs this can help mitigate the user getting tangled up
by the display cord.

With the advent of the popular video game DOOM in 1993, the use of WASD keys
for moving forwards, backwards, strafing left and right became a de-facto standard for

23113.3  The Contestants

first-person-shooter video games. Turning under this scheme was performed by moving
the mouse left and right, while looking up and down was performed by moving the mouse
up and down. Pictured in Figure 13.2b the VR equivalent of this scheme is to use the joy-
stick or direction pad to mimic WASD and to use the physical turn of one’s head to mimic
the movement of the mouse. The direction of strafe is applied perpendicularly to the for-
ward vector of the user’s head. As with the previous travel scheme, this scheme is ideal
for moving along a horizontal plane as found in most first-person-shooter games. This
scheme takes better advantage of the fact that HMDs allow the user to face any direction at
the risk of getting tangled up in the display cord (until cords are eventually eliminated in
future HMDs). It is however not well suited for supporting pitching and rolling in a fully
three-dimensional environment, unless additional input controls are incorporated. This
scheme is also not well suited for CAVEs, CAVE2s, etc., where rotation de-coupled from
the view is often desired.

13.3.2 � The Tele-Hop
Tele-Hop works by having a user point a virtual target at the destination and pressing
a button (Figure 13.3). In most VR applications the target extends at the end of the VR
controller/wand in an arc that intersects with the horizontal surface intended as the

Figure 13.1

The CAVE™: CAVE Automatic Virtual Environment (a) and the CAVE2™ (b) at the
Electronic Visualization Laboratory at the University of Illinois at Chicago; the SunCAVE
Environment (c) at the Qualcomm Institute at the University of California San Diego; and
the CyberCANOE: Cyber-enabled Collaboration Analysis Navigation & Observation
Environment at the Laboratory for Advanced Visualization & Applications at the University
of Hawai‘i at Ma–noa (d).

232 13.  Travel in Virtual Reality

destination of the tele-hop. The chief advantage of this scheme is that the potential for
motion sickness is very low. It is also very easy for novice users to learn to use. The disad-
vantage however is that tele-hop can disrupt the users’ sense of mental immersion (pres-
ence) in the VR environment. This scheme was frequently used in the earliest Oculus and
HTC Vive applications as their software developers feared that the VR experiences might
cause their novice audience to become motion sick, thereby potentially “killing” the VR
market before it had left the starting block.

13.3.3 � The Grappling Hook
The grappling hook is similar to the tele-hop scheme in that the user points at a
destination to travel toward. It differs from the tele-hop scheme in that, once a target

Forwards

(a)

Turn Turn

Strafe Backwards

(b)

Turn

Strafe Strafe

Backwards

Forwards

Figure 13.2

First-person-shooter-style travel in CAVE (a) and in Head Mounted Display (b).

23313.3  The Contestants

is selected, the VR camera will then interpolate a path toward the target. This scheme’s
main advantage is that it is easy to learn how to use while maintaining a sense of pres-
ence in the environment. Anecdotal evidence suggests that if the movement is highly
accelerated such that the experience becomes akin to “warping,” then motion sickness
can be mitigated as the images are presented as a brief series of strobes (which at 4–8 Hz
has been shown to reduce motion sickness) [Reschke et al. 2006]. Motion sickness in
head mounted displays can be further mitigated by reducing the field of view during
warping [Ruddle 2004].

13.3.4 � Waypoints
Waypoints are perhaps the easiest means of traveling in VR for the user. It is essentially
auto-pilot for VR. In general, a user is given four buttons—two of the buttons are for
moving to the next and previous waypoints (Figure 13.4). The third button is to move to
the home waypoint (to reset the VR experience). The last button is to play and pause the
entire set of waypoints in a sequence. Movement between waypoints generally involves a
smooth interpolation of location and orientation of the VR camera. This scheme is good at
maintaining presence at the risk of introducing motion sickness. This scheme is also very
useful for creating pre-scripted tours of a virtual environment hence alleviating the user
from having to learn any kind of travel scheme.

Figure 13.3

The tele-hop control scheme.

234 13.  Travel in Virtual Reality

13.3.5 � The Omni-Navigator
All the previous travel schemes imposed constraints on movements in one form or
another. Tele-hop and grappling hook travel schemes typically do not allow for any
change in orientation. Waypoints impose pre-set travel points from which the user cannot
deviate. The first-person-shooter-style travel schemes are not ideal if pitching and rolling
is needed.

In the Omni-navigator scheme the user imagines that they are holding an airplane or
bird in their hand and how they position and orient the bird determines how the user will
navigate through the space. To use this navigation scheme, the user begins by holding
the wand at an initial origin/starting position and orientation. Then by pressing a button
and moving the wand from that origin, the distance, direction and orientation from the
initial origin determines the direction, rate of translation (movement in location) and
rotation about all three axes (Figure 13.5). For example, to move forward, the user presses
the trigger button and moves the wand forward. The distance from the starting position
of the wand determines the speed of movement. To move upward, the user presses the
button and moves upward. The distance from the starting position again determines the
speed of movement. To pitch, yaw, or roll, the user presses the trigger button and tilts
the wand in one or more of the three axes. The greater the angle of tilt the more rapid
the rotation.

This travel scheme has the advantage that with only the use of one button and the
position of the wand, the user can achieve full 6-degree of freedom movement in addition

Figure 13.4

The waypoint control scheme.

23513.4  The Omni-Navigator in Detail

to rate of movement. Of course, if desired, some degrees of movement can also be
constrained. For example, if a VR developer wanted to adapt this scheme to a first-per-
son-shoot-style of movement along a horizontal plane, one simply has to exclude vertical
movement, pitching and rolling.

One potential disadvantage of this scheme, of those we have covered, is that it is per-
haps the least intuitive for novices. However, the difficulty can be mitigated by reducing
the speed of movement as well as drawing a paper airplane or bird in the navigation hand
so the user has a frame of reference for understanding the travel scheme. Another poten-
tial disadvantage of this scheme is that it can cause motion sickness for users (and in a
CAVE, their riders) with poor travel skills. However, once mastered, users typically find
the degree of control unparalleled by any other travel scheme.

The next section explains in greater detail the algorithm and its implementation in
SteamVR and Unity.

13.4 � The Omni-Navigator in Detail

In most VR environments there is the notion of a “container” in which the user’s head
and wand controllers are held. So when travel is performed it is this container that is
moved through the larger virtual space, and then from within the container the user
may walk around the limited physical space constrained by the VR hardware—it’s
like riding on a rectangular, invisible platform or vessel. In SteamVR the container is
called the “Camera Rig” ([CameraRig]) and is encapsulated in a Unity Game Object
(Figure 13.6).

Figure 13.5

The Omni-navigator control scheme.

236 13.  Travel in Virtual Reality

The algorithm below describes how to use the aforementioned interaction scheme to
move the “container” through space.

	 1.	 First obtain the starting position and orientation (transform) of the wand
controller before travel is enacted.

	 2.	 Measure the distance between the new position of the wand and the start-
ing position. Incrementally move the container in the direction and speed
determined.

	 3.	 Measure the angular difference between the new orientation of the wand and the
starting orientation of the wand. Incrementally rotate the container by the angu-
lar difference determined. The rate of rotation is determined by the magnitude of
the angular difference.

Now let’s look at the algorithm in greater detail by examining its corresponding C# source
code fragments for SteamVR using the Unity game engine. Additional information on
how to use the script is provided after the description of the algorithm and code.

	 1.	 if travel button is pressed the first time (changes state from being unpressed) store
the wand’s position and orientation in local coordinate space (startPosition,
startRotation)
startPosition = wand.transform.localPosition;
startRotation = wand.transform.localRotation;

Else steps 2 & 3:

Figure 13.6

During navigation the Unity [CameraRig] acts like a “container” that carries with it the head,
and wand. In SteamVR, the bright blue box is referred to as the SteamVR_Play Area, which
essentially marks the boundaries of the “container”.

23713.4  The Omni-Navigator in Detail

	 2.	 Perform translation:
	 a.	 Find the difference between startPosition and current position of wand

in local coordinates, call this movement. In essence this is the vector describ-
ing the direction and speed we want to move in.
Vector3 movement = wand.transform.localPosition - startPosition;

	 b.	 As mentioned earlier, since we want to be able to move independently of the direc-
tion we are looking there is the notion of a “container” in VR, and it is this container
that is moving through space and the head and wands are inside this container. In
SteamVR this container is the [CameraRig] object. The Unity Editor is used to
attach the navigation script to the [CameraRig] object (see Figure 13.9).

	 c.	 The movement vector is applied to the [CameraRig] to create the appropri-
ate translation (movement) through space.
this.transform.Translate(movement * Time.deltaTime * moveSpeed);

	 3.	 Next we address the rotation:
	 a.	 We obtain the current orientation of the wand in local coordinates—call this

newRotation

Quaternion newRotation = wand.transform.localRotation;

	 b.	 Calculate "diffAng"—the angle between the startRotation and
newRotation angle.
diffAng = Quaternion.Inverse(startRotation *
	 Quaternion.Inverse(newRotation));

	 c.	 We apply a spherical interpolation (slerp) between the angle diffAng and
the identity to determine the fractional angle to turn at each time step.
frac_rotate = Quaternion.Slerp(Quaternion.identity, diffAng,
	 Time.deltaTime * rotateSpeed);

	 d.	 We apply this fractional angle to the current rotation angle of the [Camera Rig].
// NOTE: in the following line we use the implicit "this." operator
for the transforms.
transform.localRotation = transform.localRotation * frac_rotate;

13.4.1 � Adding Constraints
If we wish to constrain movement so that no movement in the upward direction (y) occurs
(such as for applications where we would like navigation to only involve walking rather
than flying) we can set the y component of the movement vector to zero after step 2. We can
likewise do the same for the x and z components if our application calls for such constraints.

If we wish to lock rotation so that it only occurs around one of the three axes we zero
out the other two axis components in both startRotation and newRotation after
step 3. Lastly, it is often useful to be able to reset navigation to an initial starting location
and orientation. To achieve this one can simply interpolate from the current position and
orientation of the [CameraRig] to the initial position and orientation.

For more details on how the aforementioned constraints are implemented in C#,
the reader should examine the source code for the Omni-navigator provided for this book.

238 13.  Travel in Virtual Reality

13.5 � Setting Up the Omni-Navigator Script in Unity

Figure 13.7 shows the demonstrational Unity environment for the Omni-navigator
included with the book. In the environment you will be surrounded by a large blue fractal.
Within the fractal is an orange cube with the LAVA logo on it. When you press the trig-
ger of the right wand controller, a bird will appear indicating that you are in travel mode.
With the trigger pressed you can motion with the wand to perform travel as described
earlier. To stop travel at any time, release the trigger. When you hold the side button on the
wand, the Omni-navigator brings you back toward its designated home position (which is
set to 0, 0, 0 in the demonstration).

Figure 13.8 shows the development screen for the application. The Omni-navigator
script is a component of the [CameraRig] object.

A Capsule Collider and a Rigid Body component are used to prevent the [CameraRig]
from falling through the ground or passing through walls. As mentioned earlier, the head
and wand are children of the [CameraRig], which acts as the “container” that travels through
the virtual space. The function AdjustPlayerCollider() in the full script is used to
adjust the position of the collider based on the position of the user’s head. This ensures
that collisions are detected against the user (who may move independent of the container)
rather than the container itself. So for example if you are standing close to the orange cube
and attempt to walk into it, the collider will move with you and in the process prevent you
from passing through the orange cube. Furthermore AdjustPlayerCollider() also
adjusts the collider’s height, so if a user crouches the collider reduces in height. This allows
a user to then crawl through low spaces if necessary.

Figure 13.7

The demonstration environment for the Omni-navigator.

23913.6  The Knobs (Script Settings)

If instead, in your application, you prefer to collide between the virtual world and the
container then you can omit calling AdjustPlayerCollider() and leave the default
collider component locked to the center of the container.

13.6 � The Knobs (Script Settings)

Once you have installed the Omni-navigator script into the [CameraRig] you can adjust
its options within the field box for each public setting (see Figure 13.9 for the Unity Editor
view). The meaning of the fields are:

•• Wand (GameObject): The Unity game object representing the wand to use for
travel.

•• The Eye (GameObject): The Unity game object representing the user’s eye in
SteamVR (useful for determining the height of the capsule collider).

•• Disable Navigation (in X, Y, Z): Disable movement along the selected axes.

Figure 13.8

The Unity development environment showing the [CameraRig] settings in the Inspector view
(on the right).

240 13.  Travel in Virtual Reality

•• Lock Rotation: Lock rotation around an axis (either X, Y, or Z). Lock rotation so
that it only occurs along one of the axes.

•• Move Speed: Movement speed in (grid-units/s).
•• Rotate Speed: Rotation speed in (degrees/s).
•• Reset Position (Vector3): Position considered the home position for the

environment.
•• Reset Rotation (Vector3): Specify the home rotation angle about X, Y, and Z
•• Cursor (GameObject): Specify a 3D model asset to make visible when in naviga-

tion mode (in this example the bird is assigned as the cursor).
•• Char Height: Anticipated height of the user (set to 1.78 m by default).
•• Forehead Height: Height of the user’s forehead (set to 0.15 m by default).

13.7 � Conclusion

Table 13.1 summarizes the relative advantages and disadvantages of the various travel
schemes and is a good place to look to help you decide on an appropriate scheme to use
in your VR application. The Omni-navigator is excellent if you don’t want to rush into
committing to a travel scheme yet, but want the ability to explore your environment
before making the final choice. As such, even if you were to choose one of the other travel
schemes as the primary scheme for your users, the Omni-navigator still makes an excel-
lent “god-mode” travel scheme that lets you to move through the virtual space completely
unconstrained.

Acknowledgments

This work was co-sponsored by the Academy for Creative Media System and the National
Science Foundation awards ACI 1550126 and CNS 1530873.

Figure 13.9

A close-up view of the Omni-navigator script component.

241References

References

[Cruz-Neira et al. 1992]

Cruz-Neira, Carolina, Daniel J. Sandin, Thomas A. DeFanti, Robert V. Kenyon, and
John C. Hart (June 1992). The CAVE®: Audio visual experience automatic virtual
environment. Communications of the ACM.

[Febretti et al. 2013]

Febretti, Alessandro, Arthur Nishimoto, Terrance Thigpen, Jonas Talandis, Lance Long,
J. D. Pirtle, Tom Peterka, Alan Verlo, Maxine Brown, Dana Plepys, Dan Sandin, Luc
Renambot, Andrew Johnson, and Jason Leigh (2013). CAVE2: A hybrid reality envi-
ronment for immersive simulation and information analysis. In Proceedings of the
Engineering Reality of Virtual Reality 2013, San Francisco, CA: IS&T/SPIE Electronic
Imaging, February 4, 2013.

Table 13.1  Comparison of Common Virtual Reality Travel Schemes

First-Person-
Shooter 1990s

First-Person-
Shooter

Post-DOOM Tele-Hop
Grappling

Hook Waypoint Nav OmniNav

Number of
controls used

Joystick/DPAD &
6-DOF wand

Joystick/DPAD &
6-DOF head &
wand

Button & 6-DOF
wand

Button &
6-DOF
wand

3 buttons Button & 6-DOF
wand

Deg of freedom
enabled

4 4 3 3 1 6

Fatigue Low Low Low Low Very Low Low
Difficulty Easy Easy Easy Easy Very Easy Medium
Motion

sickness
Medium Medium Low Medium Medium Medium

Presence High High Low Medium Medium High
HMD OK OK OK OK OK OK
6-wall CAVE OK OK OK OK OK OK
WAVE, walls,

4- or 5-wall
CAVE,
CAVE2,
CyberCANOE

OK Cannot see rear
to navigate

Cannot turn Cannot
turn

Cannot see rear
waypoint

OK

Advantages Easy to learn 2D
travel scheme
that also works
in wall-based VR
environments

Easy to learn 2D
travel scheme

Good for traveling
long distances
and minimizing
nausea at the cost
at immersion

Good for
traveling
long
distances

Good for novices
and traveling
long distances
at the cost of
immersion

Most flexible
generic
navigation
scheme. Good
for “god mode”

242 13.  Travel in Virtual Reality

[Febretti et al. 2014]

Febretti, Alessandro, Arthur Nishimoto, Victor Mateevitsi, Luc Renambot, Andrew
Johnson, and Jason Leigh (2014). Omegalib: A multi-view application framework
for hybrid reality display environments. In Proceedings of 2014 IEEE Virtual Reality
(VR), Minneapolis, MN: IEEE, pp. 9–14. doi:10.1109/VR.2014.6802043.

[Kawano et al. 2017]

Kawano, Noel, Ryan Theriot, Jack Lam, Eric Wu, Andrew Guagliardo, Dylan Kobayashi,
Alberto Gonzalez, Ken Uchida, and Jason Leigh (2017). The destiny-class
CyberCANOE—A surround screen, stereoscopic, cyber-enabled collaboration anal-
ysis navigation and observation environment. In Proceedings of IS&T International
Symposium on Electronic Imaging Science and Technology, Burlingame, CA,
pp. 25–30.

[Reschke et al. 2006]

Reschke, Millard F., Jeffrey T. Somers, and George Ford (Jan 2006). Stroboscopic vision
as a treatment for motion sickness: Strobe lighting vs shutter glasses. Aviation Space
Environment Medicine, 77(1), pp. 2–7.

[Ruddle 2004]

Ruddle, Roy A. (2004) The effect of environment characteristics and user interaction
on levels of virtual environment sickness. In Proceedings of IEEE Virtual Reality,
Chicago, IL: IEEE. 11, pp. 141–148. doi:10.1109/VR.2004.1310067.

243

14
From Painting to Widgets,
6-DOF and Bimanual
Input Beyond Pointing
Bret Jackson
Macalester College

Daniel F. Keefe
University of Minnesota

In this chapter, we present an approach to designing expressive 3D user interfaces that
make use of handheld input devices tracked in 3D space to go beyond a simple pointing
metaphor. We show how employing the State Design Pattern can be useful for implement-
ing interfaces in this style, and we provide examples from recent work highlighting par-
ticular design considerations. We hope that the reader will come away with the knowledge
and inspiration to design more complex and expressive 3D user interfaces.

14.1	 �Introduction
14.2	 �VR Bimanual UI

Framework and
Terminology

14.3	 �Example 1: Implementing
a 3D Painting User
Interface

14.4	 �Example 2: Adding
Proximity Events and
Widgets

14.5	 �Example 3: Adding
Constraints, Control, and
Dynamic Widgets

14.6	 �Conclusions

244 14.  From Painting to Widgets, 6-DOF and Bimanual Input Beyond Pointing

14.1 � Introduction

What would you do if you could hold a magic wand in your hand? Better yet, one in
each hand! From the early days of virtual reality (VR), hardware and software designers
have continued to return again and again to the concept of VR wands—handheld, tracked
6-degree-of-freedom input devices—as a primary means of input. Note, by 6-degree-of-
freedom, abbreviated 6-DOF, we mean 3 degrees for positioning (location) plus 3 degrees
for rotating (orientation). The names of these devices (e.g., wand, stylus, 3D mouse, game
controller) and number of buttons, joysticks, trackpads and other options have changed
over the years, but there seems to be something fundamentally appealing and exciting
about the opportunity to interact with the computer by moving one (or more) 6-DOF
tracked devices through the air.

Despite this fundamental appeal and the consistent evolution of hand input VR hard-
ware over the years, we find that the majority of VR applications simply do not take advan-
tage of the amazing opportunity provided by holding a magic wand in one’s hand. The
most obvious thing to do with one of these devices is to point. Thus, there are countless
examples of VR laser pointers and flying metaphors (i.e., point the wand in the direction
you wish to fly). These metaphors are a fine and useful starting point, but what else is
possible? How do we go beyond pointing and/or integrate it within larger, more complex
interfaces? Surely, there must be more we can do with a magic wand in our hands!

Conceptually, 6-DOF stylus input can support many interactions that go beyond or
build upon pointing. We encourage readers to consider designing interfaces that sup-
port more expressive, complex poses and gestures, often made in a body-centric way,
and we provide several examples later in the chapter. Many of these “beyond-pointing”
interfaces will take advantage of user interaction within arm’s reach, perhaps involving
direct manipulation with virtual content. Beyond-pointing interfaces built upon 6-DOF
input devices can also be used to define spatial relationships (3D poses, orientations, dis-
tances) relative to one’s body; grab objects and rotate, translate, scale, and twist them; and
make sweeping movements and gestures over time. All these types of interactions may be
made directly in 3D space or relative to some form of virtual widget. What’s more, with
two 6-DOF tracked devices, one in each hand, a bimanual user interface can be created
whereby each of these beyond-pointing interactions can be combined to create simultane-
ous and composite interactions. Just as we might hold a piece of pottery in one hand while
painting on it with the other, in a composite 6-DOF interaction, one hand can set the
context for the other. This potential to harness natural, body-scale, and coordinated (e.g.,
bimanual) input is where we believe VR will shine.

Given this broad design space and great potential, why don’t we see more beyond-
pointing interfaces in current VR applications? We believe there are several reasons.
First, it requires a different approach to programming. In desktop-based programming,
our most common computing paradigm, the assumption is that the user controls just
a single cursor. Thus, most programs rely upon this single cursor to set focus for input
events and so on. In recent years, as multi-touch user interfaces have become more widely
utilized, it has been exciting to see this assumption challenged more and more often, and
new multi-cursor infrastructure for desktop, tablet, and phone platforms is emerging.
This is useful for VR, as many new VR programmers may at least be familiar with the
concept of multi-cursor input now. Yet, there are still important differences. For example,

24514.2  VR Bimanual UI Framework and Terminology

in VR, each cursor has more degrees of freedom; users often stand up without access to a
keyboard or other complementary devices; and often it is dark or the view of our hands
is blocked, so we work with input devices we cannot see. Whereas pointing and clicking
is the dominant interaction mode in desktop computing, the VR situation is different,
and user interface concepts such as gesture and spatial proximity become much more
important. Thus, a different approach is needed when designing and implementing these
VR interfaces.

How then does one design and program useful VR beyond-pointing interfaces?
Answering this question is the key message of this chapter. Our approach is to first intro-
duce a general framework and terminology that can apply to any VR bimanual user
interface. Then, we walk through a series of three examples that build upon each other
to demonstrate how sophisticated 6-DOF, beyond-pointing, bimanual VR user interfaces
can be built upon this framework.

14.2 � VR Bimanual UI Framework and Terminology

The framework we promote is event-based. Inputs, such as button presses, generate events;
the VR program listens for these events and then responds appropriately. We also treat
movements of the 6-DOF trackers as events, similar to the way modern windowing sys-
tems report mouse move events. Since this movement is often nearly continuous, this
means that an application can expect to respond to tracker move events almost every
frame.

Although event-based user interfaces are common in desktop computing, there are
several important nuances in VR. For example, the need to work with multiple 3D coor-
dinate systems and the need to interpret input relative to the current digital and physical
context. It is possible today to purchase a VR input device with more buttons than we
have fingers. Many developers will thus be tempted to simply assign one system action
to each button. This is fine for expert users who are willing to put time into training and
who will eventually develop a mental map of the input devices, but we advocate a differ-
ent approach. We demonstrate several examples where the context in which input events
occur can be used to disambiguate users’ intent. Thus, context (from both the physical
and virtual worlds) is important. The state machine design pattern that we suggest for
programming VR interfaces helps programmers to track and respond appropriately to
changes in context.

14.2.1 � Definitions
Before demonstrating with examples how this framework can be applied to create exciting
VR interfaces, let’s begin with just a few definitions:

14.2.1.1 � Coordinate Systems

Tracker Space: The raw data from the tracking system is reported in a Tracker Space
coordinate system (origin and axes), as shown in Figure 14.1a. This coordinate system may
align with the Room Space coordinate system, but does not always. In a calibrated system,
the raw data is converted into Room Space before being reported in the tracker matrix.

Room Space: A coordinate system defined relative to the physical space the VR display
hardware occupies. The Room Space coordinate system provides a way to relate tracking

246 14.  From Painting to Widgets, 6-DOF and Bimanual Input Beyond Pointing

data to graphics, since the virtual cameras used to render VR graphics are also defined in
Room Space coordinates.

Virtual Space: A coordinate system used to define virtual content that may move
relative to the physical room. Virtual Space content may be rotated, scaled, or translated
relative to the Room Space coordinate system, but Room Space content will stay fixed
within the room. A virtualToRoom 4 × 4 transformation matrix is used to encode the
transformation between Virtual Space and Room Space.

14.2.1.2 � Devices, Events, and Widgets

6-DOF: 6-Degree-of-Freedom. Three Position (Location) + three Rotation (Orientation).
Tracked Device: A VR input device, such as a wand or stylus, that can be tracked

in 3D space, often with 6 degrees of freedom. Often the device will have buttons or
other inputs. When the device is moved, a Tracker_Move event is generated, and when
a button is depressed and later released, Button_Down and then Button_Up events are
generated.

Figure 14.1

(a) Tracker Space is defined relative to the specific 3D tracking hardware. (b) Room Space
is defined relative to the physical VR display. Sometimes this is the same as Tracker Space,
but often it differs slightly, for example, in a projection-based VR display, the origin of Room
Space may be defined conveniently to be located at the center of the display or the center
of the walkable area. The virtual cameras set up in the VR graphics engine will be defined in
Room Space; so, Room Space provides the essential link between tracking hardware and
graphics rendering. Some virtual content (e.g., cursors, menus) may be defined in Room
Space coordinates when the intent is for their virtual positions to stay consistent within the
physical room. (c) The main content of the virtual scene is typically defined in a separate
coordinate system called Virtual Space. (d) This Virtual Space content may be scaled,
translated, or rotated relative to Room Space in order to make large viewpoint adjustments
(travel through the virtual world).

24714.2  VR Bimanual UI Framework and Terminology

Event: A discrete programmatic signal generated in response to user input, for example
a press or release of a button or movement of a tracked device to a new location or orienta-
tion relative to its last move event.

Tracker and Tracker Matrix: Each tracked device has (or can be modeled as having) a
6-DOF tracker attached to it. The Tracker Matrix is the raw data, typically a 4 × 4 trans-
formation matrix, reported by this tracking hardware. These are the data reported by
Tracker_Move events. The Tracker Matrix is reported in Room Space coordinates.

Cursor and Proxy Matrix: An icon or other visual representation of the tracked
device displayed in VR for the user to see. In some applications the cursor may be drawn
at the exact location defined by the Tracker Matrix, but we will discuss several examples
where it is useful to offset this location slightly. For example, imagine a snap-to-grid
mode, where small positional movements of a physical tracker are ignored in order
to keep the virtual tracker locked onto a grid point. Thus, we add the concept of a Proxy
Matrix, which stores the current position (location) and orientation of a virtual proxy for
the tracker. The cursor is drawn at the position and orientation specified in the Proxy
Matrix, which is defined in Room Space and is often close to, but not necessarily the
same, as the Tracker Matrix.

Widget: A virtual user interface object, such as a menu, that responds to and provides
a visual target for user input. Widgets may be defined in Room Space so that they appear
to occupy the same space as the user (often useful for menus), or they may be defined in
Virtual Space so that they move together with a virtual scene.

14.2.1.3 � Context-Based User Interface

Interface Context: A discrete set of circumstances defined by both the virtual environ-
ment and the physical environment that requires input events to be interpreted differently.
The circumstances are often significant enough that each interface context would include
a change in visual feedback for the user.

State: We suggest an implementation based upon the state design pattern, where each
state is a programmatic representation of the interface context.

14.2.2 � State Design Pattern
There are many ways to implement beyond-pointing VR interfaces. We make two recom-
mendations. First, and most importantly, recognize the importance of the interface con-
text (defined above) in VR and choose a style of implementation that is designed to handle
this context elegantly—in contrast, the approach we have too often seen is to handle state
changes via one long conditional (if) statement, which does not scale well. Second, we
recommend a specific approach that makes use of the state design pattern used extensively
in object-oriented software design. Since this is the approach used in the remainder of the
chapter, we begin with a brief description of the State Pattern.

“The State Pattern allows an object to alter its behavior when its internal state changes.
The object will appear to change its class” [Freeman et al., 2004]. Figure 14.2 shows an
example diagrammed in Unified Markup Language (UML).

In our approach, a client (e.g., your program’s main loop), will notify UITechnique
that some input event has occurred by calling onEvent1(), onEvent2(), etc. But, the way
in which the user interface responds could be quite different depending upon which
ConcreteState is currently active. Thus, your job as a software designer and programmer

248 14.  From Painting to Widgets, 6-DOF and Bimanual Input Beyond Pointing

is to determine how to properly divide your desired functionality into states and to imple-
ment these in separate ConcreteState* classes. The remainder of this chapter provides a
series of increasingly complex examples to demonstrate how this may be accomplished.

14.3 � Example 1: Implementing a 3D Painting User Interface

Our first example demonstrates how to implement a basic 3D painting user interface.
There is a long history of VR applications based on 3D painting metaphors. Early work in
this style can be found in Clark’s surface designing system [Clark, 1976], 3-Draw [Sachs
et al., 1991], 3DM [Butterworth et al., 1992], and Holosketch [Deering, 1995]. A second
generation of 3D painting user interfaces can be found in applications, such as BLUI
[Brody and Hartman, 1999], CavePainting [Keefe et al., 2001, 2005], Surface Drawing
[Schkolne et al., 2001], FreeDrawer [Wesche and Seidel, 2001], and Digital Tape Drawing
[Grossman et al., 2002]. More recently, Drawing on Air [Keefe et al., 2007, 2008a, 2008b],
Shape Modeling with Sketched Feature Lines [Perkunder et al., 2010], Mockup Builder
[De Araùjo et al., 2012, 2013] and Lift-Off [Jackson and Keefe, 2016] are representative of
an ongoing emphasis within the VR research community on improving control in free-
hand 3D painting and drawing user interfaces. In parallel, 3D painting applications built
in industry, including Tilt Brush [Google, 2017], have leveraged commodity hardware
and modern graphics rendering to make the techniques widely accessible and even more
compelling. The examples pictured in Figure 14.3 are from CavePainting and Drawing
on Air.

3D painting interfaces are excellent examples for our discussion of how to build
beyond-pointing VR interfaces. The common interaction in all of them—creating new
virtual forms via sweeping, gestural movements of a tracked wand in space—requires
interpreting 6-DOF input in a way that goes well beyond pointing. Artists report making
dance-like, gestural movements that incorporate not just the 3D path of the brush but also

UITechnique

onEvent1() {
 currentState.handleEvent1()
}

onEvent2() {
 currentState.handleEvent2()
}

...

State

+ handleEvent1()

+ handleEvent2()

ConcreteStateA

+ handleEvent2()

+ handleEvent1()

- currentState

ConcreteStateB

+ handleEvent1()

+ handleEvent2()

Figure 14.2

A generic illustration of the state design pattern applied to handling user input
events. UITechnique always maintains one current state. When your program calls
UITechnique::onEvent1() or UITechnique::onEvent2(), these calls are passed on to whichever
ConcreteState class is pointed to by currentState.

24914.3  Example 1: Implementing a 3D Painting User Interface

the orientation along the path [Zen, 2004; Mäkelä et al., 2004; Keefe, 2011]. There are many
possible extensions in these tools that also go beyond pointing, ranging from interaction
with physical props and virtual widgets to bimanual precision 3D drawing interfaces.

Let’s begin the technical discussion by describing the core hardware and input events
we expect in a bimanual interface for 3D painting. Our description assumes that the user
is holding two tracked devices, each with a single button. When the button on the device
held in the dominant hand is pressed, the event named DH_Down is generated, and when
it is released, DH_Up is generated. Likewise, the button on the device held in the non-
dominant hand generates NDH_Down and NDH_Up events. Finally, DH_Move and
NDH_Move events are generated whenever the tracking system reports a change in the
position or orientation for the corresponding tracked device.

The basic 3D painting interface described in this example (Example 1) supports two
key user interactions. First, the dominant hand is used to paint—when users press and
hold a button on this tracked device, a stream of virtual “paint” begins to emerge from the
brush, and as they move and twist the brush through the air, additional paint, which could
take almost any form in VR, is deposited along the path. Second, the non-dominant hand
is used to “grab onto” the virtual painting and move it around. We call this reframing the
painting. While reframing, changes in the full position (location and orientation) of the
non-dominant hand are applied to the virtualToRoom matrix, so it is possible to both
translate and rotate the painting in order to get a good look at it from different angles and
place it in a comfortable position for making the next brushstroke. While reframing, it is
also possible to enter a scaling mode. Simultaneously holding down the dominant hand
button (so now, the button on each hand is depressed) activates a scaling mode where the
scale of the virtualToRoom matrix is adjusted to scale the painting up or down in propor-
tion to the distance between the two hands.

Figure 14.4 is a diagram of a state machine that can be used to implement this basic
functionality. The interaction technique begins in the IDLE state. Notice that when a DH_
Down event is generated, the state transitions to the PAINT state. This is the most impor-
tant interaction in the whole user interface. When PAINT is entered, a new brush stroke is
created. While in the PAINT state, each DH_Move event adds a new segment of geometry
to this stroke. Finally, a DH_Up event triggers a transition back to the IDLE state.

Figure 14.3

3D Paintings created in VR using the CavePainting and Drawing on Air interfaces.

250 14.  From Painting to Widgets, 6-DOF and Bimanual Input Beyond Pointing

N
D

H
_U

p
D

H
_D

ow
n

R
EF
R
A
M
E_
W
O
R
LD

N
D

H
_M

ov
e/

 u
pd

at
e

vi
rt

ua
lT

oR
oo

m
tr

an
sf

or
m

D
H

_D
ow

n

N
D

H
_D

ow
n

ID
LE

D
H

_U
p

P
A
IN
T

en
te

r/
 c

re
at

e
st

ro
ke

D
H

_M
ov

e/
 a

dd
 t

o
st

ro
ke

ex
it/

 e
nd

 s
tr

ok
e

N
D

H
_U

p

D
H

_U
p

S
C
A
LE
_
W
O
R
LD

D
H

_M
ov

e,
 N

D
H

_M
ov

e/
up

da
te

 v
ir
tu

al
To

R
oo

m
tr

an
sf

or
m

Fi
g

u
re

 1
4.

4

Th
e

 fi
n

ite
 s

ta
te

 m
a

c
h

in
e

 fo
r a

 b
a

si
c

 3
D

 p
a

in
tin

g
 u

se
r i

n
te

rf
a

c
e.

25114.3  Example 1: Implementing a 3D Painting User Interface

Reframing is engaged from the IDLE state. A NDH_Down event triggers a transition to
the REFRAME_WORLD state. From here, a DH_Down event triggers a further transition
to the SCALE_WORLD state.

This last transition, from REFRAME_WORLD to SCALE_WORLD, is the first exam-
ple in this chapter of a common pattern that we argue is a critical component of beyond-
pointing user interfaces. Here, the DH_Down event triggers a different response depending
upon the current state. In the REFRAME_WORLD state, DH_Down transitions to a scal-
ing mode, whereas in the START state, DH_Down starts painting. Thus, the meaning of
DH_Down is overloaded; it takes on a different meaning depending upon the context.

In this case, this overloaded behavior makes perfect sense. In general, the dominant
hand is for painting and the non-dominant hand is for reframing, but once we have
engaged a reframing operation, it is natural to extend this operation just a bit to adjust the
scale in response to the motion of the two hands. There is no need to add a separate button
to the input devices to support this, instead, we can reuse the same dominant hand button
used for painting. This has an intuitive meaning for the user. Reframing and scaling can
be described as, “grab on to the painting with one hand to translate and rotate, and grab
on with two to scale it”, and the user only needs to be able to locate a single button on each
tracked device in order to perform all of the operations.

Now that we have designed an appropriate state machine, we can begin to trans-
late the idea into actual code. Figure 14.5 is a class diagram that illustrates how this

- currentState

BasicPaint3DUI

+ onDHDown()
+ onDHUp()
+ onDHMove()

+ onNDHDown()
+ onNDHUp()
+ onNDHMove()

+changeState(newState: State)

State

+ enterState()
+ exitState()

+ onDHDown()
+ onDHUp()
+ onDHMove()

+ onNDHDown()
+ onNDHUp()
+ onNDHMove()

IdleState

+ enterState()
+ exitState()

+ onDHDown()
+ onDHUp()
+ onDHMove()

+ onNDHDown()
+ onNDHUp()
+ onNDHMove()

PaintState

+ enterState()
+ exitState()

+ onDHDown()
+ onDHUp()
+ onDHMove()

+ onNDHDown()
+ onNDHUp()
+ onNDHMove()

ScaleWorldState

+ enterState()
+ exitState()

+ onDHDown()
+ onDHUp()
+ onDHMove()

+ onNDHDown()
+ onNDHUp()
+ onNDHMove()

ReframeWorldState

+ enterState()
+ exitState()

+ onDHDown()
+ onDHUp()
+ onDHMove()

+ onNDHDown()
+ onNDHUp()
+ onNDHMove()

Concrete
Subclasses

Abstract
Base Class

Figure 14.5

UML class diagram for the classes needed to implement the state machine diagrammed
in Figure 14.4.

252 14.  From Painting to Widgets, 6-DOF and Bimanual Input Beyond Pointing

basic 3D painting state machine can be implemented using the State Design Pattern.
BasicPaint3DUI serves as the main class that should be connected to the rest of your pro-
gram. It includes a currentState member variable that points to an object of type State,
which is an abstract class. There are four concrete implementations of State, one for each
of the states defined in Figure 14.4. When BasicPaint3DUI is created, it will create one
instance of each of the four concrete implementations and save a reference to each. Then,
the job of BasicPaint3DUI is simply to act as a pass-through object. When your program
tells it that a DH_Down event has occurred by calling onDHDown(), it simply passes this
event through to the current state, which will handle the event appropriately. In C++, the
code to implement this pass-through feature can be very simple, as shown in Listing 14.1.

The implementation for passing other events through to the current state would follow
the same pattern.

It is also important for BasicPaint3DUI to implement a method for changing the state,
as shown in Listing 14.2.

The concrete implementations of State may then call BasicPaint3DUI::changeState(..)
whenever they receive an event that should trigger a state change or otherwise determine
that a state change is required.

With these key code snippets in mind, consider the following example implementation
of PaintState in Listing 14.3, one of the concrete states in the basic painting interface.

Listing 14.1.  Pass through an input event to the current state handler.

void BasicPaint3DUI::onDHDown() {
 currentState–>onDHDown();
}

Listing 14.2.  Handle a state transition.

void BasicPaint3DUI::changeState(State *newState) {
 if (newState != currentState) {
 currentState–>exitState() ;
 currentState = newState;
 newState–>enterState();
 }
}

Listing 14.3.  Example implementation of the PaintState.

class PaintState {
public:
 PaintState(BasicPaint3DUI *in_uiTechnique, State *in_startState) {
 uiTechnique = in_uiTechnique;
 startState = in_startState;
 }

25314.4  Example 2: Adding Proximity Events and Widgets

Of course, in a real implementation the code needed to create a new brushstroke and
add geometry to it is likely to be quite complex, so this PaintState class would need to
interface with graphics libraries and be much more detailed in practice. Keeping this com-
plexity isolated to a single class is another reason why treating the user interface code for
the painting context as its own class is useful.

14.4 � Example 2: Adding Proximity Events and Widgets

This second example builds upon the first, adding the features needed to turn the basic 3D
painting interface of Example 1 into a complete application. The first addition is an inter-
face to resize the virtual brush; it introduces the notion of proximity events, which are
used several times throughout the remainder of the chapter. The second addition makes
it possible to interact with 3D widgets (e.g., menus, color pickers, other virtual objects).
As in Example 1, context will be important in both of these new features. If the artist user
is in the middle of a grand, sweeping brushstroke and happens to move the brush into a
widget, we wish to just ignore that contact with the widget and continue on with the paint-
ing operation. On the other hand, if the user is not actively painting at the moment, then
moving the virtual brush within close proximity of a widget is a good indication that the
user intends to work with that widget.

Figure 14.6 adds two new features to the same finite state machine pictured in
Figure 14.4. The first feature, brush resizing, makes it possible for artists to adjust the
thickness of the paintbrush, essentially adjusting the line weight of the virtual 3D marks it
will create. Since this operation is similar to scaling, a similar interface is used. The brush
size is set to be proportional to the distance between the hands. The brush cursor is also
adjusted during this operation—immediate visual feedback is important.

The most interesting aspect of this brush resizing interaction for our discussion is the
way it is activated. Notice in Figure 14.6 that the RESIZE_BRUSH state is entered only
after first entering a HANDS_TOGETHER state. This is a new state that we enter only
when we determine that the two hands are within close proximity to each other, and serves
to disambiguate the meaning of the DH_Down event. Since paint brushes are relatively
small compared to the size of our bodies, users naturally put their hands close together
in order to adjust the brush size. In contrast, the hands are rarely held close to each other

 void enterState() {
 // create a new brush stroke object here.
 }

 void onDHMove() {
 // add geometry to the brush stroke object here.
 }

 void onDHUp() {
 uiTechnique–>changeState(startState);
 }

private:
 BasicPaint3DUI *uiTechnique;
 State *startState;
};

254 14.  From Painting to Widgets, 6-DOF and Bimanual Input Beyond Pointing

P
A

IN
T

en

te
r/

 c
re

at
e

st
ro

ke
D

H
_M

ov
e/

 a
dd

 to
 s

tr
ok

e
ex

it/
 e

nd
 s

tr
ok

e

N
D

H
_D

ow
n

D
H

 D
ow

n
N

D
H

_U
p

D
H

_U
p

R
E

F
R

A
M

E
_W

O
R

L
D

N
D

H
_M

ov
e/

 u
pd

at
e

vi
rt

ua
lT

oR
oo

m
tr

an
sf

or
m

D
H

_D
ow

n
S

C
A

L
E

_W
O

R
L

D
D

H
_M

ov
e,

 N
D

H
_M

ov
e/

up
da

te
 v

irt
ua

lT
oR

oo
m

tr
an

sf
or

m
D

H
_U

p

ID
L

E
N

D
H

_U
p

W
id

ge
t_

E
xi

t

W
id

ge
t_

E
nt

er

H
an

ds
_T

og
et

he
r

H
an

ds
_A

pa
rt

as
 n

ee
de

d

H
A

N
D

S
_T

O
G

E
T

H
E

R

D
H

_D
ow

n

D
H

_U
p

R
E

S
IZ

E
_B

R
U

S
H

D
H

_M
ov

e,
 N

D
H

_M
ov

e/
up

da
te

 b
ru

sh
 s

iz
e

W
ID

G
E

T
_A

C
T

IV
E

A
S

 N
E

E
D

E
D

 B
Y

T
H

E
 W

ID
G

E
T

as
 n

ee
de

d

Fi
g

u
re

 1
4.

6

Th
e

 b
a

si
c

 3
D

 p
a

in
tin

g
 s

ta
te

 m
a

c
h

in
e

 is
 e

xt
e

n
d

e
d

 h
e

re
 to

 s
u

p
p

o
rt

 b
ru

sh
 re

si
zi

n
g

 (
b

lu
e)

 a
n

d
 in

te
ra

c
tio

n
 w

ith
 a

 w
id

g
e

t (
g

re
e

n)
.

25514.4  Example 2: Adding Proximity Events and Widgets

while painting, since that is performed with the dominant hand while the non-dominant
hand is at one’s side. Thus, we use the proximity of the hands as a cue to disambiguate
the user’s intent. If the distance between the two hands is within a threshold (e.g., 15 cm),
then we wish to transition from the IDLE state to the HANDS_TOGETHER state. From
within the HANDS_TOGETHER state, a DH_Down event will trigger a transition to the
RESIZE_BRUSH state. In contrast, if the hands are not within the proximity threshold,
then a DH_Down event within the IDLE state will trigger a transition to the PAINT state
as before. Visual feedback helps users understand how this proximity-based interface
works, so it is recommended to include a change in the brush cursor to indicate that a but-
ton press will engage the resizing operation when within the HANDS_TOGETHER state.

There are several possible ways to implement this proximity-based functionality.
Sticking with the event-based framework described thus far, we recommend detecting the
instant the distance between the two hands falls under a threshold and treating this as a
discrete Hands_Together event. Similarly, when the distance between the hands is greater
than the threshold, this can also be treated as a significant event, which we call Hands_
Apart. The advantage of this approach (generating new events) as opposed to including
distance calculations and logic directly within the state machines is that the transitions
remain simple—the state machine simply transitions whenever it receives the appropriate
event. Of course, the distance calculations do need to happen somewhere, and for this we
introduce the idea of Proximity Events—events, just like those generated from a regular
input device, but generated dynamically in response to tracker input.

The Proximity Events needed for the features described in this chapter can be generated
by the state machine diagrammed in Figure 14.7. We call this our “Proximity Checker.”
The state machine contains two orthogonal regions running in parallel to output different
types of Proximity Events.

For each new event received by the application, the event is passed first to the Proximity
Checker, which acts as a virtual input device, and then on to the larger, application-oriented
finite state machines, such as the one diagrammed in Figure 14.6. If the Proximity Checker
generates new events, these are simply added to the current event queue. For example,
notice in the left half of Figure 14.7 that the Hands_Together and Hands_Apart events
mentioned earlier are generated in response to specific distance calculations. The same
strategy is used to generate Widget_Enter and Widget_Exit events.

The second key feature introduced in the updated finite state machine diagrammed in
Figure 14.6 is the ability to interact with widgets. For a 3D painting application, common
widgets include a color picker, texture picker, menu of 3D style types (i.e., different styles
of geometry for the paint), and menu of system control operations (e.g., load, save, print,
undo, redo). All of these can be implemented with the same pattern illustrated in green
within Figure 14.6. Here, the Widget_Enter event generated by the Proximity Checker is
used to control the state transition. Because the system only responds to Widget_Enter
when in the IDLE state, a widget (e.g., menu) can be activated as intended from this state
but if we happen to hover over the menu while in the process of painting (i.e., while in
the PAINT state), the Widget_Enter event is ignored, elegantly avoiding an unintended
activation of the menu.

The Proximity Checker can be extended to test proximity to multiple widgets, each
with its own _Enter and _Exit events. It is flexible for widgets needing to respond differ-
ently depending on how many hands are inside the widget. The right half of Figure 14.7

256 14.  From Painting to Widgets, 6-DOF and Bimanual Input Beyond Pointing

ID
LE

D
H

_M
ov

e
or

 N
D

H
_M

ov
e

[e
ls

e]
[d

is
ta

nc
e

be
tw

ee
n

ha
nd

s
<

 th
re

sh
ol

d]
 /

ge
ne

ra
te

_h
an

ds
_t

og
et

he
r_

ev
en

t(
)

[d
is

ta
nc

e
be

tw
ee

n
ha

nd
s

>
 th

re
sh

ol
d

/
ge

ne
ra

te
_h

an
ds

_a
pa

rt
_e

ve
nt

()

ID
LE

D
H
_
IN
_
W
ID
G
ET

N
D
H
_
N
O
T_
IN
_
W
ID
G
ET

[D
H

 e
nt

er
ed

 w
id

ge
t]/

ge
ne

ra
te

_D
H

_w
id

ge
t_

en
te

r_
ev

en
t(

)

[e
ls

e]
D

H
_M

ov
e

D
H
_
N
O
T_
IN
_
W
ID
G
ET

N
D
H
_
IN
_
W
ID
G
ET

B
O
TH
_
H
A
N
D
S
_
IN
_
W
ID
G
ET

N
D

H
_M

ov
e

[e
ls

e]

[N
D

H
 e

nt
er

ed
 w

id
ge

t]/
ge

ne
ra

te
_N

D
H

_w
id

ge
t_

en
te

r_
ev

en
t(

)

N
D

H
_M

ov
e

[e
ls

e]

[N
D

H
 e

nt
er

ed
 w

id
ge

t]/
ge

ne
ra

te
_w

id
ge

t_
en

te
r_

ev
en

t(
)

D
H

_M
ov

e

[D
H

 e
xi

te
d

w
id

ge
t]/

ge
ne

ra
te

_D
H

_w
id

ge
t_

ex
it_

ev
en

t(
)

[e
ls

e]

N
D

H
_M

ov
e

[e
ls

e]

[N
D

H
 e

xi
te

d
w

id
ge

t]/
ge

ne
ra

te
_N

D
H

_w
id

ge
t_

ex
it_

ev
en

t(
)

D
H

_M
ov

e
[e

ls
e]

[D
H

 e
nt

er
ed

 w
id

ge
t]/

ge
ne

ra
te

_w
id

ge
t_

en
te

r_
ev

en
t(

)

[e
ls

e]
[D

H
 e

xi
te

d
w

id
ge

t]/
ge

ne
ra

te
_w

id
ge

t_
ex

it_
ev

en
t(

)

N
D

H
_M

ov
e

[e
ls

e]
[N

D
H

 e
xi

te
d

w
id

ge
t]/

ge
ne

ra
te

_w
id

ge
t_

ex
it_

ev
en

t(
)

D
H

_M
ov

e

Fi
g

u
re

 1
4.

7

Th
is

 P
ro

xi
m

ity
 C

h
e

c
ke

r
st

a
te

 m
a

c
h

in
e

,
sh

o
w

n
 w

ith
 t

w
o

 o
rt

h
o

g
o

n
a

l r
e

g
io

n
s

ru
n

n
in

g
 in

 p
a

ra
lle

l,
a

c
ts

 a
s

a
 v

irt
u

a
l i

n
p

u
t

d
e

vi
c

e
,

in
te

rp
re

tin
g

Tr

a
c

ke
r_

M
o

ve
 e

ve
n

ts
 fr

o
m

 re
g

u
la

r i
n

p
u

t d
e

vi
c

e
s

a
n

d
 g

e
n

e
ra

tin
g

 n
e

w
 e

ve
n

ts
, f

o
r e

xa
m

p
le

, a
 H

a
n

d
s_

To
g

e
th

e
r e

ve
n

t t
o

 s
ig

n
ify

 th
e

 in
st

a
n

t t
h

e

tr
a

c
ke

d
 d

e
vi

c
e

s
h

e
ld

 in
 th

e
 h

a
n

d
s

c
o

m
e

 w
ith

in
 a

 s
h

o
rt

 d
is

ta
n

c
e

 o
f e

a
c

h
 o

th
e

r.

25714.5  Example 3: Adding Constraints, Control, and Dynamic Widgets

shows how a DH_Enter_Widget event is generated when the dominant hand enters a wid-
get and a NDH_Enter_Widget event when the non-dominant hand enters.

The Proximity Checker can also be extended to test for more elaborate gestures. For
example, _Enter events might be redefined to mean that a tracked device is approaching
the location of the widget but does not yet fall within its bounds or to mean that a tracked
device is pointing toward the widget or has performed some other more elaborate gesture.
In some versions of the CavePainting system a menu palette is activated at the location
of the non-dominant hand when the user turns over their hand to look at their palm, a
gesture that naturally defines a surface plane and evokes the idea of holding a palette in
one’s hand. Regardless of the method of activation, once the widget is activated, the sys-
tem transitions to a WIDGET_ACTIVE state and further movements and button presses
are handled as determined by the widget’s state(s). Multiple widgets can be included in the
design simply by duplicating the same pattern within the finite state machine (and renam-
ing WIDGET_ACTIVE to be specific to each widget). Some widgets may be simple to
implement, having just one state, and others may define additional states and transitions
that hang off of their widget active state.

Figure 14.8 shows several example widgets from various versions of the CavePainting
application developed at Brown University between 2000 and 2007. These widgets (various
styles of menus, a 3D color picker) are relatively simple in that they can be implemented
by adding just one or two “widget” states to the diagram in Figure 14.6. The next section
builds upon these simple widgets, describing an example of a more complex, dynamic
widget that includes multiple interaction modes and responds in real-time to the positions
and orientations of both hands.

14.5 � Example 3: Adding Constraints, Control,
and Dynamic Widgets

This example presents additional possibilities for adding smart constraints, improving
control, and integrating dynamic computation into VR widgets that are inspired by the

Figure 14.8

Example widgets used in CavePainting. Left: The blue “Artwork Layers” widget is an example
of a 3D menu with a standard box-like layout. The palette of circular menus at the bottom
activate in the location of the non-dominant hand when users flip their hand over, as if to
look at their palm. The brush, controlled by the dominant hand, is currently hovering over
the “Brush_Properties” sub-menu. Clicking and holding at this point would activate a range
of choices displayed radially outward. Middle: A 3D color picker widget maps the Hue-
Saturation-Value color space to a true 3D space, users work with this widget simply by mov-
ing the hand within the bounds of the double-sided cone. Right: A texture selection widget
is used to change the visual appearance of the virtual paint strokes.

258 14.  From Painting to Widgets, 6-DOF and Bimanual Input Beyond Pointing

Lift-Off 3D modeling interface [Jackson and Keefe, 2016] shown in Figure 14.9. The Lift-
Off modeling interface makes use of several bimanual interactions and 3D widgets that
go beyond pointing and are more complex than the previous examples. We will start by
briefly summarizing the user interface followed by more in-depth discussions of specific
implementation details.

14.5.1 � Overview of the Lift-Off Interface
The Lift-Off workflow starts by creating 2D pencil-and-paper sketches (Figure 14.9a).
These sketches are integrated into the VR environment as 3D slides placed in space. Slides
are chosen and placed using the slide selection and placer widget shown in Figure 14.10.

After the slide is placed in space, the artist can select a curve from the 2D imagery. This
is accomplished by placing both tracked devices inside the activation area of the slide. The
curve selection widget shows a cubic Bézier guide curve (shown in red in Figure 14.9b
and c) that is projected on the surface of the slide. Each tracked device controls two of
the Bézier control points (shown as the blue curve handles) to adjust the position and
curvature. The guide curve gives visual feedback and functions like a magnetic rope. It
pulls along the selected curve (shown in green) which settles onto the closest curve identi-
fied in the underlying pixel data of the slide texture. Clicking the button on the dominant
hand’s tracked device confirms the curve selection, and the curve now becomes a dynamic
3D widget called a rail that can be adjusted and bent in 3D space by rotating the tracked
devices (Figure 14.9d).

Figure 14.9

The Lift-Off 3D modeling interface. (a) 2D sketches are placed as 3D slides in the VR envi-
ronment. (b) When both hands are within the activation distance of a slide, a guide curve
(shown in red) is projected on the slide. (c) Rotating the tracked devices moves the curve
handles changing the shape of the curve guide. The selected curve (shown in green) is
influenced by the guide but is constrained to follow curve features identified automatically
in the image. (d) The selected curve is lifted off the slide and placed in space as a rail.
Rotation of the tracked devices changes the shape of the rail by bending to adjust depth.
(e) Multiple rails create a wireframe. Surfaces are swept between rails to create the model.
(f) The resulting 3D model rendered with Blender.

25914.5  Example 3: Adding Constraints, Control, and Dynamic Widgets

After a series of these rail creation actions, the artist builds up a wireframe of con-
necting rails defining the outlines of the 3D model that they are creating (Figure 14.9e).
Connections are facilitated by snapping the virtual cursors to the endpoints of existing
rails, either in 3D space or projected onto the surface of the slide, when the tracked device
is close to an existing endpoint.

Two final modeling operations are needed: first, the ability to divide a rail into two
pieces to add new endpoints for future connections, and second, a way of creating sur-
faces between the rails to form the geometry of the 3D model. Approaching a rail with
the tracked device will highlight it. Clicking and releasing a button will divide the rail.
However, if the tracked device is swept away from the highlighted rail before releasing
the button, then a surface will be created filling in the spaces between the particular rails
indicated by the direction of the sweep gesture.

14.5.2 � Implementing Gesture-Based State Changes
There are several interesting design and implementation details that make this interface
more complex than the previous two examples. The complete Lift-Off finite state machine
is diagrammed in Figure 14.13. Here, we explore the implementation details of a sub-
set of the state machine used to split rails in two pieces or to create surfaces between
them, as described in the previous section. The subset of the state machine is shown in
Figure 14.11. This interaction illustrates an important difference from previous examples
because changes from one state to another depend on gestural 3D movements, in addition
to proximity or button presses.

Gestural state changes can be challenging to implement because they depend on device
input over a sequence of time. The possible output states can also be divergent. For exam-
ple, in Figure 14.11 from the RAIL_ACTIVE state, a DH_Down event can signal the start
of two possible transitions. If the DH_Up event is received before the tracked device is
moved significantly, then the rail is split, and the state transitions to the back to IDLE.
However, if the stylus is moved more than a specified distance from the rail, the system

Figure 14.10

Left: A slide selection widget. Placing both tracked devices near a slide and creating a
DH_Down event selects the slide, like lifting a picture off of a wall. Right: The selected slide
sticks to the tracked devices until a second DH_Down event confirms the position. Rotating
the tracked devices changes slide orientation and moving them further apart adjusts the
scale. Note the red cursor representations of the tracked devices. The cursors are offset
using a proxy matrix to avoid occlusions of the stereo images by the hands.

260 14.  From Painting to Widgets, 6-DOF and Bimanual Input Beyond Pointing

R
ai

l_
E

xi
t

R
ai

l_
E

nt
er

ID
LE

D
H

_D
ow

n
R
A
IL
_
A
C
TI
V
E

en
te

r/
 h

ig
hl

ig
ht

 r
ai

l

D
H

_U
p/

 s
pl

it
ra

il

D
IS
TA
N
C
E_
C
H
EC
K
ER

D
H

_M
ov

e,
 N

D
H

_M
ov

e/
ch

ec
k

di
st

an
ce

[d
is

ta
nc

e
m

ov
ed

 >
 th

re
sh

ol
d]

S
U
R
FA
C
E_
S
W
EE
P

D
H

_M
ov

e,
 N

D
H

_M
ov

e/
up

da
te

 s
ur

fa
ce

[e
ls

e]

D
H

_U
p

Fi
g

u
re

 1
4.

11

A
 s

u
b

se
t o

f t
h

e
 L

ift
-O

ff
m

o
d

e
lin

g
 s

ta
te

 m
a

c
h

in
e

 u
se

d
 fo

r d
iv

id
in

g
 ra

ils
 o

r s
w

e
e

p
in

g
 s

u
rf

a
c

e
s

b
e

tw
e

e
n

 th
e

m
.

26114.5  Example 3: Adding Constraints, Control, and Dynamic Widgets

enters the SURFACE_SWEEP state and a surface is created. A DH_Up at this point will
finalize the surface creation and return the state back to IDLE.

To implement this type of gestural state change, we introduce a new state called
DISTANCE_CHECKER. In this state, the DH_Move event is used to update the cursor
position, but the state also calculates the distance the cursor has moved from the rail.
If this distance increases above a threshold, then it will automatically transition to the
SURFACE_SWEEP state.

14.5.3 � Implementing Dynamic Widgets
Compared to the basic Proximity Checker used to activate widget states in Example 2,
Lift-Off presents an added challenge. What makes this interaction different than the pre-
vious examples is that the slide and rail widgets are dynamic. They do not exist at the start
of the program and their number depends on how many the user has created at runtime.
Figure 14.12 extends the subset of the Lift-Off state machine shown in Figure 14.11. In
this example the transition from IDLE to the RAIL_ACTIVE or SLIDE_ACTIVE states
depends on the Proximity Checker calculating the distance to the closest slide or rail to
determine whether it is within a threshold. This requires additional computation, a com-
mon occurrence for dynamic widgets.

To implement this efficiently, the Proximity Checker, acting as a virtual input device,
must contain a reference to a shared data structure holding a list of dynamic widgets,
updated as they are created. The 3D_RAIL_PLACEMENT state also needs to contain a
reference to this data structure since it will add new rail widgets to the list.

At runtime, the list of dynamic widgets can be sorted to find the closest one using a
custom comparison function. For each widget in the list, the function calculates the dis-
tance to the tracked object. Storing the widget data in a KD-Tree [Bentley, 1975] or other
space-partitioning data structure will accelerate this process. The comparison function
can also take into account the relative priority for different types of widgets. For example,
the Lift-Off interface gives preference to slides when determining the closest object so that
users can start to select new curves even when a 3D rail lies near a slide.

Implementing dynamic widgets also calls for interpreting the DH_Move events dif-
ferently. For static widgets, which are typically defined in Room Space coordinates, data
provided by Tracker_Move events can be interpreted directly since they are also provided
in Room Space coordinates. However, for dynamic widgets the tracker events might need
to be interpreted in Virtual Space. Here, the relative position of the slides and rail widgets
directly depends on the virtual model being created, and the events must be interpreted in
the same coordinate system, Virtual Space.

The slide widgets are dynamic in another way as well. Each slide contains a differ-
ent 2D texture that is determined at runtime. As a result, the user interface to select
curves must be flexible and controlled enough that users are able to indicate their desired
selection regardless of the particular texture. In the next section, we describe how to
implement contextual constraints (e.g. real-time image processing) to improve control
of 3DUIs.

14.5.4 � Contextual Constraints to Improve Control
A major challenge for beyond-pointing interfaces is that they can be difficult for users to
control effectively. For example, CavePainting [Keefe et al., 2001] allows a user to create

262 14.  From Painting to Widgets, 6-DOF and Bimanual Input Beyond Pointing

R
ai

l_
E

xi
t

R
ai

l_
E

nt
er

S
lid

e_
E

nt
er

ID
LE

D
H

_D
ow

n
R
A
IL
_
A
C
TI
V
E

en
te

r/
 h

ig
hl

ig
ht

 r
ai

l

D
H

_U
p/

 s
pl

it
ra

il

D
IS
TA
N
C
E_
C
H
EC
K
ER

D
H

_M
ov

e,
 N

D
H

_M
ov

e/
ch

ec
k

di
st

an
ce

S
lid

e_
E

xi
t

S
LI
D
E_
A
C
TI
V
E

D
H

_M
ov

e,
N

D
H

_M
ov

e/
 u

pd
at

e
cu

rv
e

se
le

ct
io

n

3
D
_
R
A
IL
_
P
LA
C
EM
EN
T

D
H

_M
ov

e,
 N

D
H

_M
ov

e/
up

da
te

 r
ai

l

D
H

_D
ow

n

D
H

_D
ow

n

S
U
R
FA
C
E_
S
W
EE
P

D
H

_M
ov

e,
 N

D
H

_M
ov

e/
up

da
te

 s
ur

fa
ce

[e
ls

e]

D
H

_U
p

[d
is

ta
nc

e
m

ov
ed

 >
 th

re
sh

ol
d]

Fi
g

u
re

 1
4.

12

Th
e

 L
ift

-O
ff

m
o

d
e

lin
g

 s
ta

te
 m

a
c

h
in

e
 is

 e
xt

e
n

d
e

d
 h

e
re

 to
 s

u
p

p
o

rt
 ra

il
c

re
a

tio
n

 (
g

re
e

n)
.

26314.5  Example 3: Adding Constraints, Control, and Dynamic Widgets

exciting gestural lines swept through the air, but it falls short of allowing an artist to draw
a precise curve or even a perfectly straight line.

Using Lift-Off as an example, we advocate for using smart contextual constraints to
improve control while limiting the impact on freedom of expression. The use of this state-
based framework for beyond-pointing interfaces makes them easier to implement because
the interpretation of events (i.e. the interface context) is encapsulated inside a class repre-
senting a particular state.

Lift-Off makes use of contextual constraints in several ways. In the SLIDE_ACTIVE
state, each hand only has 3-DOF (two for the xy-position of the guide curve endpoint on
the slide texture and one for rotation to indicate the position of the curve handle). This
level of constraint is possible because the actual selection is based on image-based compu-
tations to set the selected curve.

Control is further improved by adding the ability to snap the cursor to an endpoint of a
previously selected curve when the cursor is nearby, constraining the movement to ignore
small hand jitters. Snapping is accomplished by adjusting the cursor position. In this situ-
ation the cursor position differs from the tracked object position by means of a Proxy
Matrix. Actions that are based on the tracker’s position (like selecting curve endpoints) in
either room or virtual space should take this Proxy Matrix into account.

Contextual constraints are also used in the 3D_RAIL_PLACEMENT state. In this
state, the user input is interpreted within the context of the guide surface (the transparent
grid extending from the slide in the extruded shape of the selected curve, Figure 14.9d).
Cursors are constrained to follow the closest point on the guide surface to each of the
tracked objects’ positions. The 3D rail is constrained to lie on the surface, although its
shape can now be bent along this surface in 3D. These constraints make it possible to cre-
ate precise curves and straight lines to model complex shapes with precision.

Lift-Off’s finite state machine has a series of state transitions that linearly follow a series
of steps. As seen in Figure 14.12, this still fits within the state framework described above.
In fact, it would be challenging to implement it without the state design pattern. This raises
the question of when to add a new state to a program. We recommend creating a new state
(i.e. a new program class) when the context of an interaction changes and input events
must be interpreted differently. This is usually correlated with changes in visual feedback
and the ways that the input should be constrained to add control. In this example, the
SLIDE_ACTIVE and 3D_RAIL_PLACEMENT states are distinct because the way they
constrain the cursors and interpret the DH_Move and NDH_Move events is different.

When you want to enhance control in VR, turn to constraints. In developing user
interfaces, you should find the things that you can do well with 6-DOF input and do them.
Then, find the things that do not work very well and add constraints.

14.5.5 � Putting It All Together
In this example we have described how the Lift-Off interface can serve as inspiration
for gesture-based state changes with dynamic widgets involving computation that can
improve users’ control through constraints. In addition to the rail creation process
described in Section 14.1, Lift-Off also supports rail creation by directly painting rails in
the air in the style of the 3D paint application in Example 1. It has additional states for
reframing and scaling, as well as saving and loading models, and deleting the artwork.
The full finite state machine for Lift-Off is diagrammed in Figure 14.13. In contrast to

264 14.  From Painting to Widgets, 6-DOF and Bimanual Input Beyond Pointing

N
D

H
_U

p
D

H
_D

ow
n

R
EF
R
A
M
E_
W
O
R
LD

N
D

H
_M

ov
e/

 u
pd

at
e

vi
rt

ua
lT

oR
oo

m
tr

an
sf

or
m

D
H

_D
ow

n

R
ai

l_
E

xi
t

R
ai

l_
E

nt
er

S
lid

e_
E

nt
er

N
D

H
_D

ow
n

ID
LED

H
_U

p

P
A
IN
T

en
te

r/
 c

re
at

e
st

ro
ke

D
H

_M
ov

e/
 a

dd
 t

o
st

ro
ke

ex
it/

 e
nd

 s
tr

ok
e

N
D

H
_U

p

D
H

_U
p

S
C
A
LE
_
W
O
R
LD

D
H

_M
ov

e,
 N

D
H

_M
ov

e/
up

da
te

 v
ir
tu

al
To

R
oo

m
tr

an
sf

or
m

D
H

_D
ow

n
R
A
IL
_
A
C
TI
V
E

en
te

r/
 h

ig
hl

ig
ht

 r
ai

l

D
IS
TA
N
C
E_
C
H
EC
K
ER

D
H

_M
ov

e,
 N

D
H

_M
ov

e/

ch
ec

k
di

st
an

ce

S
lid

e_
E

xi
t

S
LI
D
E_
A
C
TI
V
E

D
H

_M
ov

e,
N

D
H

_M
ov

e/
up

da
te

 c
ur

ve

3
D
_
R
A
IL
_
P
LA
C
EM
EN
T

D
H

_M
ov

e,
 N

D
H

_M
ov

e/
up

da
te

 r
ai

l

D
H

_D
ow

n

D
H

_D
ow

n

S
U
R
FA
C
E_
S
W
EE
P

D
H

_M
ov

e,
 N

D
H

_M
ov

e/
up

da
te

 s
ur

fa
ce

[e
ls

e]

M
EN
U
_
A
C
TI
V
E

D
H

_M
ov

e/
 u

pd
at

e
se

le
ct

io
n

hi
gh

lig
ht

S
EL
EC
T_
S
LI
D
E

D
H

_M
ov

e,
N

D
H

_M
ov

e/
up

da
te

sl
id

e
se

le
ct

io
n

P
LA
C
E_
S
LI
D
E

D
H

_M
ov

e,
 N

D
H

_M
ov

e/
up

da
te

 s
lid

e
tr

an
sf

or
m

FI
LE
_
M
EN
U
_
A
C
TI
V
E

D
H

_M
ov

e/
 u

pd
at

e
se

le
ct

io
n

hi
gh

lig
ht

D
H

_U
p

M
en

u_
E

nt
er

M
en

u_
E

xi
t

[to
uc

hi
ng

 s
lid

e
op

tio
n]

D
H

_D
ow

n

D
H

_D
ow

n

[to
uc

hi
ng

 e
xp

or
t o

pt
io

n/

ex
po

rt
 3

D
 m

od
el

]
[to

uc
hi

ng
 s

av
e

op
tio

n/

sa
ve

 a
rt

w
or

k]
[to

uc
hi

ng
 o

pe
n

op
tio

n/

op
en

 a
rt

w
or

k]

M
en

u_
E

xi
t

D
H

_U
p/

sp

lit
 r

ai
l

[to
uc

hi
ng

 im
po

rt
 o

pt
io

n/

im
po

rt
 3

D
 m

od
el

]

[d
is

ta
nc

e
m

ov
ed

 >
 th

re
sh

ol
d]

D
H

_D
ow

n
[to

uc
hi

ng
 fi

le
 o

pt
io

n]

[e
ls

e]

[e
ls

e]

D
H

_D
ow

n

Fi
g

u
re

 1
4.

13

Th
e

 L
ift

-O
ff

m
o

d
e

lin
g

 s
ta

te
 m

a
c

h
in

e
 b

u
ild

s
o

n
 th

e
 b

a
si

c
 3

D
 p

a
in

tin
g

 a
p

p
lic

a
tio

n
. I

t h
a

s
m

o
re

 c
o

m
p

le
x

tr
a

n
si

tio
n

s,
 in

c
lu

d
in

g
 m

a
n

y
st

a
te

s
th

a
t

a
re

 c
h

a
in

e
d

 to
g

e
th

e
r.

Th
is

 tr
a

n
si

tio
n

a
l l

o
g

ic
 w

o
u

ld
 b

e
 c

h
a

lle
n

g
in

g
 to

 e
le

g
a

n
tly

 im
p

le
m

e
n

t w
ith

o
u

t t
h

e
 S

ta
te

 P
a

tt
e

rn
.

265References

the previous two examples, this example shows how a more complex user interface can
be implemented using states, and hopefully it provides motivation for adoption of this
approach. Creating a complete system of this scale and complexity would be extremely
challenging without the organizational structure of the state framework.

14.6 � Conclusions

Many VR user interfaces can be implemented using this state-based UI framework. The
examples presented here show only a few possibilities, but we hope that they have inspired the
reader to create user interfaces that go beyond pointing to accomplish more complex tasks.
In designing new user interfaces, you should take full advantage of the amazing opportunity
VR affords by holding magic wands in our hands, and you should use both hands. When you
get two hands involved in the interaction, you should use state and the interaction context
intelligently to provided significant functionality with a small number of buttons. Resist the
urge to add one more button to the device for every new feature that comes along—your users
will thank you when one button magically does what they want depending on the context.

References

[Bentley, 1975]

Bentley, Jon Louis (1975). Multidimensional binary search trees used for associative
searching. Communications of the ACM, 18(9):509–517.

[Brody and Hartman, 1999]

Brody, Arthur William, and Chris Hartman (1999). BLUI: A body language user inter-
face for 3D gestural drawing. In: Proceedings of SPIE: Human Vision and Electronic
Imaging, 3644(3):356–363.

[Butterworth et al., 1992]

Butterworth, Jeff, Andrew Davidson, Stephen, Hench, and T. Marc Olano (1992). 3DM: A
three dimensional modeler using a head-mounted display. In Proceedings of the 1992
Symposium on Interactive 3D Graphics, New York: ACM, pages 135–138.

[Clark, 1976]

Clark, James H (1976). Designing surfaces in 3-D. Communications of the ACM,
19(8):454–460.

[De Araùjo et al., 2012]

De Araùjo, Bruno R., Géry Casiez, and Joaquim A. Jorge (2012). Mockup builder: Direct 3D
modeling on and above the surface in a continuous interaction space. In Proceedings
of Graphics Interface 2012, GI ’12, Toronto, ON: Canadian Information Processing
Society, pages 173–180.

266 14.  From Painting to Widgets, 6-DOF and Bimanual Input Beyond Pointing

[De Araújo et al., 2013]

De Araújo, Bruno R., Géry Casiez, Joaquim A. Jorge, and Martin Hachet (2013). Mockup
builder: 3D modeling on and above the surface. Computers & Graphics, 37(3):165–178.

[Deering, 1995]

Deering, Michael F (1995). HoloSketch: A virtual reality sketching/animation tool. ACM
Transactions on Computer Human Interaction, 2(3):220–238.

[Freeman et al., 2004]

Freeman, Eric, Elisabeth Robson, Bert Bates, and Kathy Sierra (2004). Head First Design
Patterns: A Brain-Friendly Guide. California: O’Reilly Media, Inc.

[Google, 2017]

Google Inc. (2017). Tilt brush. https://tiltbrush.com/.

[Grossman et al., 2002]

Grossman, Tovi, Ravin Balakrishnan, Gordon Kurtenbach, George Fitzmaurice, Azam
Khan, and Bill Buxton (2002). Creating principal 3D curves with digital tape draw-
ing. In Proceedings of the Conference on Human Factors in Computing Systems, New
York: ACM, pages 121–128.

[Jackson and Keefe, 2016]

Jackson, Bret and Daniel F. Keefe (2016). Lift-off: Using reference imagery and freehand
sketching to create 3D models in VR. IEEE Transactions on Visualization and
Computer Graphics, 22(4):1442–1451.

[Keefe, 2011]

Keefe, Daniel F. (2011). From gesture to form: The evolution of expressive freehand spatial
interfaces. Leonardo, 44(5):460–461.

[Keefe et al., 2001]

Keefe, Daniel F., Daniel Acevedo Feliz, Tomer Moscovich, David H. Laidlaw, and Joseph J.
LaViola Jr. (2001). CavePainting: A fully immersive 3D artistic medium and interac-
tive experience. In Proceedings of I3D, North Carolina: ACM, pages 85–93.

[Keefe et al., 2005]

Keefe, Daniel F., David B. Karelitz, Eileen L. Vote, and David H. Laidlaw (2005). Artistic
collaboration in designing VR visualizations. IEEE Computer Graphics and
Applications (CG&A), 25(2):18–23.

https://tiltbrush.com

267References

[Keefe et al., 2007]

Keefe, Daniel F., Robert C. Zeleznik, and David H. Laidlaw (2007). Drawing on air: Input
techniques for controlled 3D line illustration. IEEE Transactions on Visualization
and Computer Graphics, 13(5):1067–1081.

[Keefe et al., 2008a]

Keefe, Daniel F., Daniel Acevedo, Jadrian Miles, Fritz Drury, Sharon M. Swartz,
and David H. Laidlaw (2008). Scientific sketching for collaborative VR visual-
ization design. IEEE Transactions on Visualization and Computer Graphics,
14(4):835–847.

[Keefe et al., 2008b]

Keefe, Daniel F., Robert C. Zeleznik, and David H. Laidlaw (2008). Tech-note: Dynamic
dragging for input of 3D trajectories. In Proceedings of IEEE Symposium on 3D User
Interfaces, Nevada, pages 51–54.

[Mäkelä et al., 2004]

Mäkelä, Wille, Markku Reunanen, and Tapio Takala (2004). Possibilities and limita-
tions of immersive free-hand expression: A case study with professional artists. In
Proceedings of the 12th Annual ACM International Conference on Multimedia, New
York: ACM, pages 504–507.

[Perkunder et al., 2010]

Perkunder, Helen, Johann Habakuk Israel, and Marc Alexa (2010). Shape modeling with
sketched feature lines in immersive 3d environments. In Proceedings of the 7th Sketch-
Based Interfaces and Modeling Symposium, SBIM ’10, Aire-la-Ville, Switzerland:
Eurographics Association, pages 127–134.

[Sachs et al., 1991]

Sachs, Emanuel, Andrew Roberts, and David Stoops (1991). 3-Draw: A tool for designing
3D shapes. IEEE Computer Graphics and Applications (CG&A), 11(6):18–26.

[Schkolne et al., 2001]

Schkolne, Steven, Michael Pruett, and Peter Schröder (2001). Surface drawing: Creating
organic 3D shapes with the hand and tangible tools. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’01, New York: ACM,
pages 261–268.

268 14.  From Painting to Widgets, 6-DOF and Bimanual Input Beyond Pointing

[Wesche and Seidel, 2001]

Wesche, Gerold, and Hans-Peter Seidel (2001). FreeDrawer: A free-form sketching sys-
tem on the responsive workbench. In Proceedings of the ACM Symposium on Virtual
Reality Software and Technology, VRST ’01, New York: ACM, pages 167–174.

[Zen, 2004]

Zen, Jen (2004). Painting in air. In Proceedings of ACM SIGGRAPH 2004, 38(3):7–9.

Section IV
Agents & Avatars

http://www.taylorandfrancis.com

271

15
Making Virtual Reality Social
Getting Virtual Humans into
Your Virtual Environment

Andrew Cordar, Yao Heng, Fatemeh Tavassoli,
Jeffrey Wood, and Benjamin Lok
University of Florida

15.1 � Overview of Virtual Humans

Virtual humans are the embodiment of realistic computer-modeled characters for virtual
worlds. Incorporating virtual humans into your virtual environment can provide a sense
of life to the experience. Incorporating social interactions with the virtual humans can
expand the applicability to scenarios including training, therapy, and education. In this
article, we briefly explore the applications of virtual humans, components of a virtual
human, and work through a concrete example of how to incorporate a virtual human into
a virtual environment. Finally, we discuss upcoming trends in virtual humans.

Virtual humans are composed of a 3D shape model, animations, sounds, and models
for behavior, emotion, and cognition. As an example, Figure 15.1 shows a virtual human
playing the role of a patient for which medical students can practice patient observation
and communication skills. The virtual human patient is part of the Neurological Exam
Rehearsal Virtual Environment project [Rivera-Guiterrez et al. 2014]. The virtual human’s
appearance was made to resemble a patient who had been injured in a bike accident and
has come into the clinic complaining of double vision. To create the virtual human with the
injury, 3D modeling tools were used with reference images of similar patients. The behaviors

15.1	 Overview of Virtual Humans
15.2	 Components of a Virtual Human
15.3	 Building a Virtual Human: A Step by Step Tutorial
15.4	 Future of Virtual Humans

272 15.  Making Virtual Reality Social

and emotions of the virtual human were elicited through interviews with domain experts
(neurologists) and realized by graphical artists. The flexibility to control attributes of the
virtual human’s form (e.g., showing abnormalities in eye movement as in the medical train-
ing scenario) is one of the strengths of using virtual humans in virtual reality. The virtual
human’s physical and behavioral traits can be explicitly specified and controlled. Physical
traits such as gender, race, ethnicity, and body shapes can be explicitly defined. Behavioral
traits, such as facial expression, body language, and personality features, are also defined
and controlled by the virtual environment authors. This level of control of virtual social
actors with which the user can interact is a powerful attribute of virtual humans. The con-
cept of “virtual humans” is also referred to as “virtual agents,” “embodied conversational
agents,” or occasionally “avatars”—though the term “avatar” is more properly limited to the
embodiment of actual human users in the virtual environment.

Virtual humans are used in many fields, including extensively in medicine, psychology,
and the military. In medicine, virtual humans are used in training, such as patients and
teammates. Virtual humans provide additional opportunities to train team and patient
communication skills. In psychology, virtual humans are used to reduce phobias, stress,
and post-traumatic stress disorder in patients. Patients use virtual reality and interact
with virtual humans through therapist-controlled exposure therapy sessions. For exam-
ple, people who have a fear of public speaking can practice in front of a virtual crowd. In
the military, virtual humans are used as teammates and combatants to train soldiers on
strategic decision making, reaction time, and teamwork. Virtual reality simulations and
virtual humans provide inexpensive and repetitive training opportunities to hone skills.

15.2 � Components of a Virtual Human

Creating a virtual reality experience that incorporates virtual humans includes consider-
ing (1) the inputs, cognitive model, and outputs for the virtual human and (2) the virtual

Figure 15.1

An example of virtual human patient complaining of double vision after a bike accident
[nervesim 2014].

27315.2  Components of a Virtual Human

environment. The virtual environment that the interaction occurs within is critical in
developing and setting the context and is critical to achieving social training goals. As a
concrete example in the next two sections, we will consider a virtual human conversation
partner for users learning English. The user will practice basic social conventions and
communication with the virtual human. Such a scenario would be beneficial to those
traveling to an English-speaking country, allowing practice and cultural exploration
before one’s trip.

The virtual environment sets the context for the experience and is important for
domain learners to properly situate the interaction. The virtual environment should focus
on establishing a narrative for the social interaction. Social interactions are affected by
the environment they occur in, so the virtual environment chosen will impact how the
user will interact with the virtual human. In our example of creating a virtual human
to help people to practice their English oral skills, the environment should reflect the
verbal lesson we are trying to impart. For example, presenting an airport ticket counter
virtual environment would be appropriate to practice speaking about ticket booking or
travel issues. By practicing the conversations with virtual humans in the appropriate vir-
tual environment, we anticipate improved training capabilities of the virtual experience.
High quality virtual environment models can be found through online resources (both
free and paid) such as TurboSquid, SketchUp, 3D Warehouse, and Unity’s Asset store.
These third-party acquired models often require processing for importing and model
complexity reduction to work within a real-time rendering system.

A virtual human has three components: inputs, cognitive processing, and outputs.
The inputs are how the user communicates (e.g., body posture, speech, and gestures) to
the virtual human. The cognitive processing is how the system processes the inputs and
generates the virtual human’s response. The outputs are the form of the virtual human
and how the virtual human responds to the user’s input. In our example, if the user speaks
“Hello, my name is John” while waving their hand, the virtual human system would pro-
cess the input, identify the intent behind the user’s speech (in this case a greeting), and
either generate or retrieve an appropriate response, e.g., “Hello, my name is Susan how can
I help you today” while playing an animation of hand waving.

Inputs: The inputs to the virtual human are analogous to the inputs (verbal and non-
verbal) humans perceive when interacting with other humans. Verbal cues are usually
captured with a microphone recording the audio of a user speaking to the virtual human.
The audio is then processed by a speech-to-text engine—we have found the Google Cloud
Speech API and IBM Watson Speech-To-Text to perform well for one-on-one conversa-
tions with virtual humans. Other common input formats include typing to the virtual
human or a selecting from a predefined set of dialogue options [Google Cloud Speech API
2017; Watson 2017].

The non-verbal inputs of the user to the virtual human includes capturing the body
and facial gestures. Some commercial tracking systems are image-based and can capture
multiple peoples’ form. Inexpensive, commodity body tracking system includes the
Kinect One Motion Sensor for the body form and the Leap Motion Controller for hand
gestures.

Cognitive Processing: Given the verbal and nonverbal inputs to the virtual
human, a cognitive system generates the best response from the virtual human. The
multitude of ways to approach modeling the cognition of the virtual human is an

274 15.  Making Virtual Reality Social

extensive topic beyond the scope of this article. However, generally the cognitive sys-
tem is generative-based (i.e., the system generates in real-time a response to the user’s
inputs), retrieval-based (i.e., the system has a set of predefined responses and tries to
identify which response to present given the inputs), or uses a Wizard of Oz approach
(i.e., an observing human controls the responses of the virtual human) [Wilson and
Rosenberg 1988]. As retrieval-based systems are the most common approach used in vir-
tual human applications, we outline a retrieval-based system for our English-language
practicing conversation partner.

For a given interaction scenario, a virtual human’s script is constructed to enable the
virtual human to respond to user’s questions. A question-answering virtual human script
includes a set of similar questions for each response the virtual human will generate
(Figure 15.2). To construct the script, the script author (typically a person with domain
expertise) uses a system to input the set of questions the virtual human will respond to
and the corresponding response. For example, if the user says “Hello,” or “Hi, my name
is John,” “Hi there,” or any of dozens of similar greetings, the virtual human ticket agent
would say “Hi, my name is Susan, how can I help you today?”

The challenge is anticipating the large set of dialogue that the user would speak to a vir-
tual human. To quickly create a virtual human capable of answering basic questions, there
are systems such as USC’s Virtual Human Toolkit and the University of Florida’s Virtual
People Factory that provide prebuilt templates of common questions and responses for
virtual humans. These systems also leverage natural language understanding libraries to
assist the author in rapidly creating a robust virtual conversation partner [USC’s Virtual
Human Toolkit 2017; Virtual People Factory 2017].

When the user asks the virtual human a question, the system would search the set of
anticipated questions to find the question most similar to the one asked. If a similar ques-
tion in the virtual human script is identified, the virtual human will use the corresponding

Figure 15.2

Virtual human script example.

27515.2  Components of a Virtual Human

answer as a response. The response would include the text to be displayed, the audio file of
a voice talent speaking the text, and associated gestures and animations.

Other approaches to virtual humans include connecting with machine learning-based
intent recognizers (e.g., Google’s Dialogflow—nee Api.ai, Facebook’s Wit, and Microsoft’s
LUIS). If the number of intents is relatively small and the conversation is structured
(which would be the case for a conversation partner encompassing small topics such as
purchasing airline tickets), then intent recognizers can provide an accurate and rapid way
to generate virtual human responses [API.ai 2017; Wit.ai 2017; Microsoft 2017].

In addition to the language model for the virtual human, the virtual human behavior
script refers to the output audio of the virtual human’s responses and the virtual human’s
animations. Combined with proper outputs (audio, gestures, and animations) accurate
responses help a virtual human appear to behave like a real person.

Outputs: The outputs of a virtual human system include the virtual human’s visual
appearance, audio, and animations and gestures. To create the virtual human’s visual
appearance, a virtual human modeling system is commonly used. Virtual human modeling
systems include Adobe Fuse [2017], Autodesk Character Generator [2017], Reallusion
Character Creator [2017]. A virtual human modeling system typically provides base virtual
human models (Figure 15.3). The base virtual human models have varying races, ethnici-
ties, and genders. The base models are customizable including changing facial characteris-
tics, body size and proportions, and colors or textures of clothes. When building a virtual
human, the developer should consider how a user will likely respond to the particularities
of that virtual human model. In our example of a virtual human for practicing English lan-
guage conversations, the character should appear welcoming, from the region being visited
(including dress, mannerisms, style), and use an appropriate voice talent.

After creating the 3D model, the next step is to rig and animate the virtual human.
Rigging and animating the virtual human involves integrating a virtual set of control
points (called a skeleton) for the virtual human and enabling textures to properly be
applied (skinning). The rigged virtual human allows for motion-captured animations
to be applied. By using a rig, the same animation (e.g. hand-waving) can be applied to

Figure 15.3

(a) Interface to quickly create characters using a library of high-quality 3D content, from
faces and bodies to clothing and textures. (b) Simple character size and proportion settings
automatically adjust the clothing and other attributes [Adobe Fuse 2017].

276 15.  Making Virtual Reality Social

multiple virtual humans. Animation and rigging can be applied by using systems that have
pre-built or easily modifiable animations. For example, Mixamo’s Online 3D Animation
Service [2017] can rig a 3D model with a full skeleton and skinning weights and make it
ready for animation. Mixamo also has a library of animations to apply to your virtual
human (Figure 15.4).

The process of lip-synching synchronizes the virtual human’s facial animations to the
virtual human’s auditory response. For lip-synching, tools such as LipSync pro for Unity
[2017], FaceFX [2017], and SALSA [2017] convert audio to facial animations. Some of these
tools allow controlling eye and eyebrow movements as well as facial expressions to make
talking animations more plausible and engaging.

15.3 � Building a Virtual Human: A Step by Step Tutorial

In this tutorial, an example conversational virtual human will be created for a virtual
environment. Continuing with the example of practicing English with a virtual human
ticket agent, first an environment of the airline ticket counter will be integrated into a
Unity 3D project (Figure 15.5). Unity 3D is a popular game engine easily deployed to
multiple platforms including mobile, web, desktop, and VR platforms. The Unity version
shown in this tutorial is 5.6.2f1.

To create the virtual human, there are several tools that we can use to generate a 3D
model. In this example, Autodesk Character Generator (charactergenerator.autodesk.
com) will be used. Autodesk Character Generator is an online tool that will allow you to
create your own custom 3D characters after you register for an account. Though you can
create a free Autodesk account, it may be worth considering opting for a paid account
to access the Premium features. Registering for an education account will also give you
access to the Premium features. The Premium features allow you to generate high resolu-
tion models that will be compatible with lip-syncing tools. When creating a new character,
select a base model. After character selection, the next step will allow for altering aspects
of the character such as hair style, skin tone, or clothes.

After creating the virtual human ticket agent, export the model for import into the
Unity environment. The virtual human ticket agent should be in the “Character Designs”

Figure 15.4

(a) Auto rigging a 3D model in Mixamo. (b) Browsing animations from a library of anima-
tions in Mixamo.

http://charactergenerator.autodesk.com
http://charactergenerator.autodesk.com

27715.3  Building a Virtual Human: A Step by Step Tutorial

window (Figure 15.6). Select the “Generate character” icon which will prompt you with
choosing the export options for your character. If you have a premium account, then
you will want to choose most of the options in Figure 15.7. When it comes to Facial
Expressions, the selection you make in the export settings will depend on the software

Figure 15.5

A ticket counter environment is imported into the Unity project.

Figure 15.6

Your virtual human in the Character Designs window.

278 15.  Making Virtual Reality Social

you choose to use for lip-syncing. For example, the Unity extension LipSync Pro supports
both Facial blend shapes and Facial bone rig but the extension SALSA with RandomEyes
only supports Facial blend shapes. Once the appropriate settings have been chosen, select
“Generate.” The result will be an FBX file containing your virtual human.

Generating your character will take several minutes and you’ll be left with a 3D model
that you can import into a virtual environment.

Open up the Unity scene with your virtual environment. Import the FBX file to the
project. If successful, a prefab for the virtual human ticket agent can be dragged and
dropped into the scene.

The next step is to add animations. For this step, Mixamo (www.mixamo.com) will be
used, so temporarily set aside the Unity interface. Mixamo is an online tool that allows
you to animate your own 3D characters with a free account. Upload the virtual human
ticket agent 3D model into Mixamo and set it as the current character (which enables
animation preview). To begin, choose an idle animation (Figure 15.8). The idle anima-
tion will play when the virtual human ticket agent is waiting for user inputs. Typical idle
animations include shifting one’s weight, looking around, and making subtle gestures.

Figure 15.7

Settings to export your model from Autodesk Character Generator into Unity.

http://www.mixamo.com

27915.3  Building a Virtual Human: A Step by Step Tutorial

Next, select the animations to be associated with the virtual human’s responses (e.g. greet-
ing the user, asking for the destination of the ticket, stating the price, and closing). After
selecting the animations to apply to your virtual human, download the animations into
your assets. Load the animations into Unity using “Import New Asset” and select “Fix
now” for any errors that may pop up during the import process.

To attach the animations to the virtual human in Unity, create a new Animator
Controller (Listing 15.1) and add it to the virtual human’s Animator component
(Figures 15.9 and 15.10).

Open the Animator Controller, which should be empty except for an “Any state” bubble
and an “Entry” bubble (Figure 15.11). Drag and drop your idle animation into this view
and name it Idle in the Inspector window (Figure 15.12).

To verify that it works correctly, click the Play button to view the virtual human ticket
agent performing the idle animation.

Figure 15.8

A few examples of idle animations provided by Mixamo.

280 15.  Making Virtual Reality Social

The next step is to record audio and generating lip-syncing animations. In this exam-
ple, four phrases will be recorded for the virtual human ticket agent (e.g., “Hi, my name
is Susan, how can I help you today?”) A good microphone is recommended, and com-
mon sound editing software such as Audacity can enable the voice talent to rapidly record
phrases. Export the audio files in a format supported by Unity (e.g. .aif, .wav, .mp3, and
.ogg). Import the audio file assets into the Unity project under a new folder named “Audio.”
Different lip-syncing tools use varying methods to link the animation to the audio.
As mentioned before, some of these lip-syncing tools may require the facial expressions of
the virtual human’s 3D model to be generated with a facial bone rig, and others may use

Listing 15.1.  Create an Animator and several AudioClip variables. Use the GetComponent method to
finish creating the Animator variable.

// Declare an Animator Controller variable and three AudioClip variables
private Animator anim;
public AudioClip helloResponse, goodbyeResponse, howAreYouResponse;

// Bind variable anim to the Animator Controller we have created in Unity
void Start() {
	 LogSystem.InstallDefaultReactors();
	 Debug.Log("ExampleStreaming", "Start();");

	 anim = this.GetComponent<Animator>();

	 this.StartRecording();
}

Figure 15.9

Create a new Animator Controller.

28115.3  Building a Virtual Human: A Step by Step Tutorial

Figure 15.10

Add the Animation Controller you created to your virtual human.

282 15.  Making Virtual Reality Social

facial blend shapes (which will require regeneration of the virtual human model with the
appropriate changes made to the settings shown in Figure 15.7).

In the airline ticket conversation example, the user will speak common English phrases
with the virtual human. In this tutorial, we’ll use IBM Watson Speech-to-Text to pro-
cess the user’s spoken voice in real-time. You will need to register for an IBM Bluemix
account to take advantage of this service. Though the Speech-to-Text is a paid service, a
1-month free trial can be used for this tutorial. IBM Watson Speech-to-Text has a down-
loadable SDK for Unity (This tutorial uses SDK version 0.13.0.), which includes a variety of

Figure 15.11

Your empty Animator Controller.

Figure 15.12

The idle animation is added to the virtual human.

28315.3  Building a Virtual Human: A Step by Step Tutorial

sample scenes that demonstrate how to interface with the Speech-to-Text API. Specifically,
the sample scene called “ExampleStreaming” uses a simple script to demonstrate how to
use the Speech-to-Text API. The script can be altered, or another controller script can be
written to determine when to play animations and audio based upon the text result from
the Speech-to-Text service. Listing 15.2 shows an example alteration.

Of note is the Trigger called “IsSpeaking.” IsSpeaking notifies the Animation Controller to
play a particular animation once and then revert back to the previous animation. Going back
to the Animation Controller, add the remaining gestures to the controller. Make the appropri-
ate transitions in both directions between the Idle animation and the new animation and add a
new Trigger Paramater named “IsSpeaking” to the controller so that it looks like Figure 15.13.

For the transition from the Idle animation to the new animation, add “IsSpeaking” to
the list of Conditions and make sure “Has Exit Time” is unchecked as in Figure 15.14.

Listing 15.2.  Alterations to the ExampleStreaming scene to enable an animation and audio to play
given the results of the Speech-to-Text processing.

// This function shows how to use the Speech-to-Text API to enable the
// virtual human to respond user’s spoken voice in real-time
private void OnRecognize(SpeechRecognitionEvent result) {
 if (result != null && result.results.Length > 0) {
 foreach (var res in result.results) {
 foreach (var alt in res.alternatives) {
 string text = alt.transcript;
 Debug.Log("ExampleStreaming", string.Format("{0} ({1}, {2:0.00})\n",
 text, res.final ? "Final" : "Interim", alt.confidence));

 // if the service has reached a final decision on what the user said
 // we want to trigger an audio clip and an animation
 if (res.final) {
 // first we must get the AudioSource that our clip will be
 // played from
 AudioSource audio = this.GetComponent<AudioSource>();

 // now we need to check for what the user said using
 // an if statement
 if (text.Trim().Equals("hello")) {
 // to have our virtual human response, we cause an animation
 // to play and play the appropriate audio clip as a response
 anim.SetTrigger("IsSpeaking");
 audio.clip = helloResponse;
 audio.Play();
 } else if (text.Trim().Equals("goodbye")) {
 anim.SetTrigger("IsSpeaking");
 audio.clip = goodbyeResponse;
 audio.Play();
 } else if (text.Trim().Equals("how are you")) {
 anim.SetTrigger("IsSpeaking");
 audio.clip = howAreYouResponse;
 audio.Play();
 }
 }
 }
 }
 }
}

284 15.  Making Virtual Reality Social

Figure 15.13

Adding the head_gesture animation with transitions using the IsSpeaking Trigger.

Figure 15.14

Settings for incorporating additional animations to transition between the idle animation
and the new animation.

28515.4  Future of Virtual Humans

Congratulations, you now have a conversational virtual human with whom a user can
practice English communication (Figure 15.15). Press Play and try speaking to the virtual
human ticket agent using one of the phrases tagged in the script. Now that you under-
stand the basics of what makes a virtual human, try incorporating an intent recognition
services such as Microsoft’s LUIS [2017] and API.ai [2017] to make a more conversational
character.

15.4 � Future of Virtual Humans

15.4.1 � Overview
With expected improvements in graphical realism, animation, artificial intelligence, vir-
tual humans will continue to develop in their ability to present increasingly realistic and
complex social interactions. These enhancements will enable virtual humans to be applied
to a growing list of scenarios. More interestingly is that the conversational virtual humans
will be applicable in a spectrum of systems from augmented to mixed to virtual reality.

With the ticket agent virtual human, a user can interact with a conversational 3D vir-
tual human through a face-to-face interaction (Figure 15.15) inside a VR head-mounted
display. In the future, as augmented reality devices reach consumers, they can take the
conversation with their virtual human companion with them. New world-scanning tech-
nologies will enable the virtual human to be aware of and capable of discussing items in
the real world. Thus in the future, there will be a continuum of devices (see Figure 15.16)

Figure 15.15

A virtual human ticket agent that would respond to being spoken to by the user.

286 15.  Making Virtual Reality Social

through which users can interact with virtual humans: from cell phones to head-mounted
displays.

The availability of tools facilitating important input, behavioral, and output compo-
nents has made the creation of “fleshed out” virtual humans much easier. With conversa-
tional agents becoming more and more ubiquitous, it is very likely that people will interact
with virtual humans daily to automate or assist many aspects of their life.

References

[Adobe Fuse 2017]

Adobe Fuse (2017). http://adobe.com/products/fuse.html, accessed 6/25/17

[API.ai 2017]

API.ai (2017). https://api.ai/, accessed 6/24/17

[Autodesk Character Generator 2017]

Autodesk Character Generator (2017). https://charactergenerator.autodesk.com/,
accessed 9/18/17

[FaceFX 2017]

FaceFX (2017). https://facefx.com/, accessed 9/18/17

[Google Cloud Speech API 2017]

Google Cloud Speech API (2017). https://cloud.google.com/speech/, accessed 9/26/17

[LipSync pro for Unity 2017]

LipSync pro for Unity (2017). https://lipsync.rogodigital.com/, accessed 9/18/17

Figure 15.16

Continuum of devices a virtual human can embody.

http://adobe.com
https://api.ai
https://charactergenerator.autodesk.com
https://facefx.com
https://cloud.google.com
https://lipsync.rogodigital.com

287References

[Massive 2017]

Massive (2017). http://massivesoftware.com/, accessed 6/24/17

[Microsoft 2017]

Microsoft (2017). https://luis.ai/, accessed 6/24/17

[Mixamo 2017]

Mixamo (2017). http://mixamo.com, accessed 9/18/17

[nervesim 2014]

nervesim (2014). http://nervesim.com/, accessed 6/25/17

[Reallusion Character Creator 2017]

Reallusion Character Creator (2017). https://reallusion.com/character-creator/, accessed
9/18/17

[Rivera-Guiterrez 2014]

Rivera-Gutierrez, Diego, Andrea Kleinsmith, Teresa Johnson, Rebecca Lyons, Juan
Cendan, and Benjamin Lok (2014). Towards a reflective practicum of embodied
conversational agent experiences. In IEEE International Conference on Advanced
Learning Technologies (ICALT), Athens, Greece: IEEE.

[SALSA 2017]

SALSA (2017). http://crazyminnowstudio.com/unity-3d/lip-sync-salsa/, accessed 9/18/17

[USC’s Virtual Human Toolkit 2017]

USC’s Virtual Human Toolkit (2017). https://vhtoolkit.ict.usc.edu/, accessed 9/26/17

[Virtual People Factory 2017]

Virtual People Factory (2017). http://vpf2.cise.ufl.edu/, accessed 9/26/17

[Watson 2017]

Watson (2017). https://ibm.com/watson/developercloud/conversation.html, accessed
6/24/17

http://massivesoftware.com
https://luis.ai
http://mixamo.com
http://nervesim.com
https://reallusion.com
http://crazyminnowstudio.com
https://vhtoolkit.ict.usc.edu
http://vpf2.cise.ufl.edu
https://ibm.com

288 15.  Making Virtual Reality Social

[Wilson and Rosenberg 1988]

Wilson, James, and Daniel Rosenberg (1988). Rapid prototyping for user interface design.
In Handbook of Human-Computer Interaction, M. Helander (Ed.). Amsterdam:
North-Holland, pp. 859–875. Doi:10.1016/B978-0-444-70536-5.50044-0.

[Wit.ai 2017]

Wit.ai (2017). https://wit.ai/, accessed 6/24/17

https://wit.ai

289

16
Building a Social VR App
Bernie Roehl
Virtual Escapes Inc.

Please note that specific details of the various interfaces may have changed considerably since
this chapter was originally written. These instructions use Unity version 2017.3.1f1, SteamVR
version 1.2.3, and VRTK version 3.1.0. Of course, the gist of this chapter is on the networking
aspects, so the design of the virtual world itself is secondary. You can build any world you like.
Please refer to the online documentation of the various libraries for more up-to-date information.

This chapter provides a step by step tutorial on how to create a shared social virtual reality
space. We will create an interactive world in the Unity game engine using the VRTK toolkit
for VR interactions, and then add the ability to connect with other people using the Photon
networking toolkit. The “Altspace” experience provides a commercial example from which
we can draw inspiration (Figure 16.1 shows a typical Altspace social world).

16.1	 Introduction
16.2	 Games vs Worlds
16.3	 What’s Out There
16.4	 Choices
16.5	 Platform
16.6	 Engine
16.7	 Networking
16.8	 Toolkits
16.9	 Setup
16.10	 Travel
16.11	 Interaction
16.12	 Adding an Object
16.13	 SDK Configuration and

Testing

16.14	 Creating Avatars
16.15	 All about Networking
16.16	 Shared State
16.17	 Instantiating Objects
16.18	 Servers and Rooms
16.19	 Object Ownership
16.20	 Adding Voice Chat
16.21	 Lipsync
16.22	 Opening and Closing

the Hands
16.23	 Summary and Ideas for

Further Work

290 16.  Building a Social VR App

16.1 � Introduction

The VR industry has a crisis of content. Everyone knows that VR games are great and
provide a far better experience than a desktop PC or a console, but the problem is that the
selection of games is still quite limited. Even more limited is the selection of genres… you
can only kill so many zombies or react to so many jump scares before the novelty starts
to wear off.

The challenge, of course, is that building games is a massive, time-consuming and
expensive process that companies aren’t willing to invest in until there’s an established
market. And yet, where will that market come from if the content selection is limited?

The answer is to look beyond games, and to start thinking of virtual reality not as a
“game” but as an actual place—one where you can interact with other people in much the
same way you do in the real world. The result is an endless supply of content, because the
“content” is other people.

16.2 � Games vs Worlds

Back in the day, I was one of the beta testers for Second Life. When I showed it to friends,
everyone said the same thing—“cool game.” I explained (over and over) that it wasn’t actu-
ally a game, but they didn’t seem to get it. It certainly looked like I was playing a game, and
if it wasn’t a game… what was it?

The way I finally got them to understand the difference was to say “Okay, it’s a game.”
Their next question was “great, how do I play?”, at which point I would say “well, there
aren’t any rules.” Then they would ask “so how do I win?” I explained that you can’t win,
and you can’t lose. Finally, they would say “well, it’s not really a game then.” And, of
course, they’d be right.

Figure 16.1

Two users share a private space in the Altspace social VR application. They can speak to
each other, display emoticons that float upward from their head, and here they are watch-
ing a video together.

29116.5  Platform

A Social VR environment is a place, not a game. You can certainly play games within
a virtual world—I’ve played catch, paintball, charades, Dungeons & Dragons and Cards
Against Humanity in various virtual worlds—but the world is a place where you play
those games, not a game in itself.

16.3 � What’s Out There

As I write this in the summer of 2017, there are a number of “social VR” systems out there.
Altspace [Altspace], VR Chat [VRChat], High Fidelity [High Fidelity], vTime [vTime], Rec
Room [Against Gravity], Big Screen [Big Screen], Oculus Rooms [Oculus 2016], Facebook
Spaces [Facebook], Janus VR [JanusVR], Sansar [Linden Research], Anyland [Lowe &
Lenssen] and many others. They all have a variety of features and many different kinds of
user interface, but over time they’re all learning from each other and starting to converge
on a common set of features.

What they all have in common are the following:

•• Users are represented by avatars
•• Users can move around the virtual world
•• Users can talk to each other
•• There’s some indication of who’s speaking, so you can associate the voice with an

avatar

In addition, most of them allow you to interact with virtual objects (tossing a ball around,
building forts out of blocks, that sort of thing).

In this chapter, we’re going to build a simple social VR application from scratch that
implements all of those basic features. And we’re going to do it all in an afternoon, using
less than 200 lines of code.

Let’s get started.

16.4 � Choices

Before we begin, we have some choices to make. It is still early days for VR, so it is not yet
possible to build an application once and have it run everywhere. That day will come, but
until it does we need to decide on the following:

•• What platforms are we targeting?
•• What engine should we use?
•• What networking technology should we use, or should we “roll our own”?
•• What toolkits should we use for building the app?

Let’s examine each of those more closely.

16.5 � Platform

Broadly speaking, there are two types of platform for VR—desktop and mobile. Desktop-
based systems (such as the HTC Vive and the Oculus Rift) are much more powerful, and
generally include some sort of hand-held controllers. Mobile systems lack the graphics and

292 16.  Building a Social VR App

computing power that desktop-based systems have, and they have much more limited input
devices (if any at all). If we’re going to target desktop, then it will be difficult or impossible
to port our app back to a mobile platform. If we design for a mobile platform, moving to a
desktop-based system is a lot easier. For this reason alone, it is tempting to go mobile-first
(especially since it has a much lower price and consequently a much larger install base).

However, we really want to give our users a sense of presence that can only be achieved
by actually touching and interacting with virtual objects. We therefore will be targeting
desktop VR systems such as the Vive and the Rift. Those two devices are similar enough
that we can support both, and possibly even the new Microsoft-designed “Mixed-reality”
headsets that are coming out from Dell, Acer and others in the near future. Theoretically,
we could also support Sony’s PlayStation VR.

16.6 � Engine

Our choice of engine is important. The available engines are different enough that chang-
ing from one to another mid-project is equivalent to starting over from scratch, which is
why nobody does that. While there are a half-dozen engines that support VR, there are
really only two which, at the time of this writing, have a significant install base—Unity
and Unreal.

While Unreal certainly has its virtues, the overwhelming majority of VR development
has taken place in Unity. Unity has always been multi-platform, so it is easier to port to new
systems if there’s a need for it. It also has the best support from VR hardware developers—
when a new input device comes out, it has Unity support from Day 1 and support for other
engines comes later (or doesn’t). So, for this project at least, we’ll be using Unity.

16.7 � Networking

At one time, there were four of five different networking solutions for Unity. However,
the choice has now narrowed to just two major options—Photon [Exit Games] or UNET
[Unity UNET]. Both systems work well, and are well-supported. They have different
approaches, but very similar APIs. UNET comes directly from Unity Technologies, so it
has tight integration with the engine. Photon is cross-platform, and supports everything
from 2D shooters on mobile phones all the way through massive multi-player games.

The deciding factor, at least for us, is that Photon has built-in support for voice chat.
While voice chat can certainly be added to UNET (e.g. using the DFVoice package from
the Unity Asset Store), the simplicity of having it already integrated into the networking
system makes Photon the winning choice.

It is worth noting at this point that the choices we’ve made are the same as the ones
made by the majority of existing Social VR systems—Altspace, VR Chat, Rec Room,
Anyland and many others all use Unity and Photon. So we’re in good company.

16.8 � Toolkits

While it is certainly possible to build a VR application directly in Unity, especially with
the additions that came out starting with Unity 5.6 (and have continued to be enhanced
through new Unity editions), there is a lot of basic functionality that is common to a range

29316.9  Setup

of VR apps. Things like moving around, teleporting, interacting with objects, and so on are
becoming standard, and there are several toolkits out there that implement those features.

As of this writing, the most popular and most comprehensive toolkit is VRTK [Extend
Reality]. Originally designed for the Vive (through SteamVR [Valve SteamVR]), the tool-
kit now also supports the Oculus SDK [Oculus SDK] and has some preliminary support
for Google Daydream [Google VR].

As with all toolkits, this one has its strengths and weaknesses. Its greatest strengths
are that it covers all the basic functionality we’ll require, has good documentation and a
comprehensive set of examples and tutorial videos. It is also completely free.

The biggest challenge to using VRTK is that it is in a constant state of flux. Whenever you
upgrade to the latest version, some things will break and force you to spend time tracking
down and fixing the issues rather than working on your own code. The constant changes
also mean that some of the documentation and online tutorials are outdated, and are no
longer applicable to the version you’re using. For our project, we’re using the very latest ver-
sion of VRTK (3.1.0). However, by the time you read this, some things may have changed.

Despite these problems, VRTK is by far the best toolkit out there and we’ll be making
extensive use of it in our project. Note that VRTK is open source, and that means that it
won’t necessarily be fully supported by the original author. However there is a community
of users, and since it’s open source, that community can always work on any issues that arise.

16.9 � Setup

Now that we’ve chosen our platform and tools, it is time to get them set up. Open up Unity,
go to the Unity Asset Store and download and install SteamVR, VRTK, Photon Unity
Networking (PUN) and Photon Voice (Figure 16.2). Follow the installation instructions
for Photon, including going to their web portal (https://photonengine.com) and choosing
a Photon plan (perhaps the free option for now), and requesting a pair of app ids (one for
PUN and one for Voice). Make sure these are set in the Photon configuration (Figure 16.3).

Figure 16.2

For this Gem, we will make use of three packages from the Unity Asset Store: VRTK, Photon
Networking and Photon Voice.

https://photonengine.com

294 16.  Building a Social VR App

Also download a sample world. I used the free “3D Modular Kit” from Barking Dog and
just started from their demo scene (renaming it to “VRGemsMultiUser”), but you can use
whatever you like. Once downloaded, drag the world into your hierarchy or scene view.
Mark it as static (see Figure 16.4), and add a mesh collider if it doesn’t already have one—the
3D Modular Kit demo scene does. Advanced features such as marking lights as Mixed, bak-
ing the lighting, and adding occlusion culling are beyond the scope of this chapter.

Next, we’ll set up SteamVR. Remove or disable the MainCamera, and drag the
[CameraRig] prefab from the SteamVR prefabs folder into the scene. Position it just slightly

Figure 16.3

Go to the Photon Cloud signup page, get an account, and create two new applications,
one for Photon for Unity Networking (Photon PUN) and the other for Photon Voice. You will be
provided an “App ID” for each (partially shown in this example).

Figure 16.4

Set our “_Level” object (or whatever your terrain is called) to be Static—click on the empty
box in the upper right corner (indicated by the red circle) making the checkmark appear.

29516.10  Travel

above where you want the user to start out in the scene. In a full Social VR application, you
would have multiple spawn points and a script to randomly assign users to one of those
locations when they arrive, but for now we’ll keep it simple.

Our next step is to set up VRTK. This has become much more straightforward in recent
versions of VRTK which are designed to make it easier to change platforms. In the past,
you would have to operate on the children of [CameraRig] and duplicate your work for
each platform. Now you operate on a kind of “shadow” copy of those, and the [CameraRig]
(or other rig) gets set up for you automatically at runtime. (These instructions pertain to
VRTK version 3.1.0. The ease of setup has continued to evolve with more recent versions.)

Create an empty GameObject called [VRTK], and put three empty GameObjects under
it—naming them PlayArea, LeftController and RightController as shown in Figure 16.5.

The PlayArea object represents the tracking volume, and corresponds to the
[CameraRig]. As shown in Figure 16.6, you should add the VRTK_BodyPhysics com-
ponent to it, to prevent the user from walking through walls, and you should also add the
VRTK_HeightAdjustTeleporter component on it to enable teleporting.

16.10 � Travel

Our travel scheme is based on the one used in High Fidelity. The left-hand controller will
be used for walking and comfort mode turning (rotating in instantaneous steps), and
the right controller will be used for teleporting. Altspace has recently adopted a similar
approach, and hopefully others will follow soon.

To implement walking and turning, we add a VRTK_TouchpadControl to
our LeftController object. We also add a VRTK_SlideObjectControlAction
component to handle forward/backward movement, and a VRTK_SnapRotate​
ObjectControlAction component to handle comfort-mode turning (See Figure 16.7).

Note that in VRTK_TouchpadControl we’ve set the Primary Activation
Button to Touchpad_Press. The default is Touchpad_Touch, which is unpleasant

Figure 16.5

The Unity hierarchy window showing a simple world with the SteamVR “[CameraRig]”,
and “[VRTK]”. Add three empty gameObjects under [VRTK] naming them PlayArea,
LeftController, and RightController.

296 16.  Building a Social VR App

since whenever the user casually comes in contact with the touchpad they’ll unexpectedly
go spinning and sliding away. We also set Action Modifier Button to Undefined.

On the VRTK_SlideObjectControlAction component we’ve changed the
Listen On Axis setting to be the Y axis (i.e., pushing up and down on the touchpad—
the touchpad’s Y axis—will slide the user forward and back). We’ll also set the Maximum
Speed to be 1.4 m/s, which is normal human walking speed. And we point the Object
Control Script to point to the VRTK_TouchpadControl on this very object.

On the VRTK_SnapRotateObjectControlAction component, we’ve used the
default X axis (i.e. pushing left and right on the touchpad) for the step-turn (comfort) style
of turning the user left and right. We’ve also set the blink transition speed to zero to pre-
vent a fade-out/fade-in whenever we turn. And again we point the Object Control Script
to the VRTK_TouchpadControl on this LeftController.

Figure 16.6

Add the VRTK_BodyPhysics and the VRTK_HeightAdjustTeleport scripts as components to
the PlayArea GameObject.

29716.11  Interaction

To implement teleportation, we add a VRTK_Pointer component to
the RightController. See Figure 16.8 for a sample configuration. We also add
a VRTK_BezierPointerRenderer to display the teleport beam. Make sure
the Pointer Renderer field of VRTK_Pointer references the VRTK_
BezierPointerRenderer component (circled in the figure). We can optionally set
the pointer color, and add custom objects for the tracer, the cursor and the valid/invalid
location objects. You may also want to increase the tracer density a bit.

16.11 � Interaction

We want both controllers to let you pick up objects by using the trigger (which is the
convention that most Social VR apps have adopted). To implement this, we add

Figure 16.7

Add script components VRTK_TouchpadControl, VRTK_SlideObjectControlAction and
VRTK_SnapRotateObjectControlAction to the LeftController GameObject. Change the
parameters as shown (and discussed in the text).

298 16.  Building a Social VR App

a VRTK_InteractGrab component to both controllers, along with a VRTK_
ControllerEvents component that maps the inputs to abstract events. Set the Grab
Toggle Button to be Trigger Press (circled in Figure 16.9).

16.12 � Adding an Object

Now we need something to interact with. Let’s create a ball that we can toss around.
Add a sphere to the scene, resize it to be a bit smaller, position it someplace above the

ground in your scene, and optionally give it a material to make it stand out a bit. You can

Figure 16.8

On the RightController add the VRTK_Pointer and VRTK_BezierPointerRenderer scripts to
travel by short teleports (“tele-hopping”).

29916.12  Adding an Object

use the VRTK Interactable Object Wizard (found in the Unity editor menus as Window/
VRTK/Set Up Interactable Object) to make the sphere interactable. As a floating window,
a bug prevents all the controls from appearing, so drag it into a tab. (I moved it to share
the panel with the Inspector tab.)

Set Hold Button to Grab and change the Grab Attach Mechanic to Fixed
Joint (See Figure 16.10). You can also optionally set a highlight color (I happen to like
green).

With your “ball” selected in the hierarchy, when you hit the big “Setup Interactable
Object” button at the bottom all the necessary components will be added to our ball,
then close the wizard. In the Inspector tab you can see all the components added to the
ball object (See Figure 16.11). If you don’t want to use the wizard, then you can add the

Figure 16.9

In addition to the scripts we’ve already added, for each controller add the VRTK_
ControllerEvents, the VRTK_ControllerActions, the VRTK_InteractTouch and the VRTK_
InteractGrab scripts. For the Controller Events script, set the “Grab Toggle Button” field to the
“Trigger_Press” option (circled).

300 16.  Building a Social VR App

necessary components by hand. It gets tedious, especially if you have a large number of
objects to set up, so I recommend using the wizard.

16.13 � SDK Configuration and Testing

Finally, we add a VRTK_SDKManager to the [VRTK] object and do a Quick Select of the
SteamVR runtime (See Figure 16.12). Then click the auto-populate button. If you’ve set
everything up correctly, all the fields should be filled in. You may have to click the auto-
populate button four or five times to get it to “take”. If that doesn’t work, then you will
need to manually drag your LeftController and RightController objects (the children of
[VRTK]) into the Script Alias Left Controller and Script Alias Right
Controller fields respectively.

Figure 16.10

Bring up the “Setup [Interactable] Object” wizard using the Unity Editor menu under
Window → VRTK → Set Up Interactable Object (you can leave it as a floating panel, or drag
it to be a tab of one of the editor panels). With this wizard, you can make adjustments to
how interactions operate. Here we enable the “Hold Button To Grab” entry and set “Grab
Attach Mechanic” to be “Fixed Joint” (circled). Then to apply these settings to the selected
object(s), press the large “Setup selected object” button at the bottom of the panel (cir-
cled). When this button is pressed, all the components needed for interaction will be added
to the selected objects in the hierarchy.

30116.14  Creating Avatars

At this point you should be able to walk forward and backward and comfort-turn
using the left controller, teleport using the right controller, and pick up and throw objects
with either hand. Not bad, considering we haven’t written a single line of code! That’s the
advantage of using a toolkit like VRTK.

16.14 � Creating Avatars

There are two basic types of avatars. There are fully articulated avatars that consist of a
single mesh with a skeletal structure and vertex weights, like the ones seen in VR Chat or
High Fidelity. Then there are much simpler avatars, made up of a collection of one or more
separate body parts (like the ones in Altspace or Rec Room). Since the first type requires
complex operations like inverse kinematics, we’re going to keep it simple and just treat our
body segments as separate objects.

As this is a zero-budget project, we can’t hire an artist to create these avatars. Instead,
we’ll have to fall back on “programmer art”. See Figure 16.13 for an example.

Figure 16.11

With the “ball” object selected in the hierarchy (a), the setup object wizard will add all the
additional components needed to interact with that object using the hand controllers (b).
Note that the haptic settings are zero by default, so if you want to feel vibrations when touch-
ing or grabbing the ball, experiment with the settings like we have done here.

302 16.  Building a Social VR App

I’m sure you’re very impressed.
The avatar consists of a head, a torso and a pair of hands. The hands are made up of boxes,

and are actually taken from one of the VRTK examples. The torso is just a capsule, with a flat-
tened blue cylinder for a chest plate so we know which way the body is facing. The chest plate
could be used to display the user’s picture, the way it is done in Oculus Rooms for example.

Figure 16.12

Add the VRTK_SDKManager script to the [VRTK] GameObject and populate the fields—
Ideally, the “Auto Populate Linked Objects” button will do this for you.

Figure 16.13

A humanoid-like avatar created using the basic shapes provided in Unity.

30316.15  All about Networking

The head is a sphere, with two smaller spheres for eyes and a stretched cube for a mouth. The
eyes and mouth are children of the head, so the head is effectively one piece. The chest plate
is a child of the torso. The left hand is exactly the same as the right, but scaled by −1 in the X
axis. They should all be given contrasting materials so you can see the features.

Note that the head and torso models are children of corresponding empty GameObjects.
This allows us to make adjustments to the scale and rotation of the models that remain
unaffected by the transforms of their parent objects (which will be synchronized over the
network, as we’ll see later).

Figure 16.14 shows what the head and torso look like in the Hierarchy pane of the
Unity editor:

We also need to set all the body parts (head, hands and torso and all their descendants)
to be on the layer called “IgnoreRaycast” (See Figure 16.15). Otherwise VRTK’s body phys-
ics will cause us to collide with our own body, which would lead to confusing results (most
commonly, flying off into the air).

Alternatively, you could define a new layer for this purpose and add it to the list of
layers that the body physics component ignores. Or simply remove all the colliders from
those objects and their descendants.

16.15 � All about Networking

We’ll soon be writing some code, but before we do it is important to understand how the
networking system works. Much of this is common to both Photon and UNET, so even
though we’ll be using Photon for this project, the concepts and API are very similar in

Figure 16.14

Unity hierarchy showing the [VRTK], Head, Torso and dependent child nodes.

Figure 16.15

To avoid avatar objects from colliding with each other, set the layer to be “Ignore Raycast”.

304 16.  Building a Social VR App

UNET. (Note that there are other approaches to sharing state information in multi-user
networks. The approach taken by Photon and UNET is just one way of doing things.)

16.16 � Shared State

The key idea is that objects in the world will be sharing state information. If you think about
it, there are basically three kinds of objects in the world—(1) static objects that never change
and are essentially part of the background (and are generally marked as static in Unity), (2)
objects whose state is entirely a function of some common set of values (like the hands of a
clock, which move constantly but whose value can be determined entirely from the time of
day and a knowledge of your shared world’s timezone), and (3) dynamic objects whose state
is controlled by something unpredictable. That “something” can be a user, an NPC (non-
player character), or a physics engine. It is these dynamic objects we must be concerned with.

Any dynamic object needs to have a single, authoritative source of state information at
any given time. In the case of an avatar, the user’s actions (as captured by their VR headset
and controllers) are the source of the 6-DOF position information of their body parts. In
the case of an NPC, there’s some code running somewhere that controls the NPC’s avatar.
In the case of objects controlled by physics, there’s a physics simulation running some-
where that provides definitive position information for that particular object.

State information can consist of anything at all, not just locations and orientations
(“rotations”). The color of a material, the intensity of a light source, the volume of a
sound and so on are all examples of state information. Sharing state information from
the authoritative source to the other instances of an object running on other users’ client
machines is called synchronization. In Photon, this is carried out using a PhotonView
component on the object.

A PhotonView observes one or more components of some set of GameObjects in your
scene and serializes them onto the network. It also deserializes updates from the network
and applies them to the GameObjects in your scene. Any observed component will have
its OnSerializePhotonView() method called periodically to handle serialization
and deserialization.

The most common case is sharing location and rotation. There’s a special component
called a PhotonTransformView, which handles smoothing and interpolation of those
values. If you add that component to an object, it will automatically add a PhotonView,
but you still need to add the PhotonTransformView to the list of observed com-
ponents on the PhotonView. We’ll do exactly that for our head, torso, left hand and
right hand GameObjects. We’ll also make sure that the “position” and “orientation” of
PhotonTransformView are enabled, so they get synchronized over the network.

We’ll do the same for the ball we created earlier, but we’ll include the scale information
since we resized the ball from 1 meter down to something more reasonable. An alternative
approach is to make the ball a child of an empty GameObject, and move all the compo-
nents from the Sphere to the new object. The reason you would do this is that you can then
scale the sphere independently of the parent GameObject, which means the scale of the
parent is 1, 1, 1 and never needs to be sent over the network. That reduces your bandwidth
use substantially.

Because the ball is controlled by physics, you’ll also need to add a
PhotonRigidbodyView component and make sure it is added to the list of

30516.16  Shared State

components that the PhotonView observes. This component will send the velocity
and angular velocity to the other clients so that they can update their physics engines
to simulate the ball’s motion. Also change the Interpolate Option on the
PhotonTransformView to LERP and set the speed to 5 (See Figure 16.16).

Figure 16.16

For the PhotonView object, set the two synchronize features (position and rotation) to
interpolate using LERP, with a speed of 5.

306 16.  Building a Social VR App

There are some subtleties to all this that we’ll cover later in the section on Object
Ownership.

16.17 � Instantiating Objects

You may be familiar with the Object.Instantiate() method in Unity, which can
create new GameObjects at runtime by using an existing GameObject as a prototype.
That’s fine for single-user applications, but when we instantiate an object in a multi-
user application we need to create copies of it on all the other clients. We do this using
PhotonNetwork.Instantiate(). Instead of a local prefab asset, it takes the name of
a prefab that must be stored in a folder that you create called “Resources.” That way the
other clients can also look in their Resources folder for a prefab of the appropriate name
to be instantiated.

Creating a prefab in Unity is easy—just drag a GameObject into the Project window. In
our case, we’ll be dragging the head, hands and torso into the Resources folder. You’ll need
to drag each one individually. When you’ve dragged them all into the Resources folder,
you can delete them from the scene.

Note that we don’t need to create a prefab for our ball, since it’s already part of the
scene. However, if you plan to create additional balls at runtime then you would create a
prefab for them.

16.18 � Servers and Rooms

When our app starts up, it needs to get connected to the network. Photon’s approach is
very different from that of Unity, so this section only applies to Photon.

When you first set up Photon Networking for your app, you gave it a unique AppId that
you obtained from the web portal. In fact, you got two of them—one for your app, and one
for the voice chat (which we’ll discuss later). You can also specify a geographic region for
your game, to determine which server it should connect to. And finally, when you do the
actual connection, you provide an arbitrary string (typically a version number) to identify
which version of your app you’ll be using. This allows you to change the specifics of how
you share state or make RPC calls and still support the old version as well as the new one.
Everyone will only “see” other clients running the same version of your app as they are.

The combination of geographic region, AppId and version number define a “game,” i.e.,
a connection point for your virtual world. In order for two users to share the same virtual
space, all three of those values must match.

When you first connect to the network, you’re actually communicating with some-
thing called a Master Server. We’re not going to talk about that in detail, but the Master
Server maintains a list of “rooms” (i.e., instances of virtual worlds) that the user can enter.
You can obtain that list from the server and present it to the user so they can choose
a particular instance to enter, which is what you would typically see in Altspace or
VRChat or vTime. In our case, we’re only going to have a single instance which we’ll call
“Main room.”

And now, at last, we’re going to start writing some code.
We’ll create a script called “NetMan.cs” that will manage our network connection.

We can place it on any GameObject, and in our case we’ll just put it on our existing

30716.18  Servers and Rooms

[VRTK] object. When Start() is called on our NetMan component, we connect to the
MasterServer passing it a version number.

When the connection is established, Photon calls our OnConnectedToMaster()
method. It is here that we might present the user with a UI that lets them choose an
instance of a world. Instead, we’ll simply join our “Main room,” creating it if it doesn’t
already exist.

Once we’ve successfully entered the room, we create instances of our avatar’s various
body parts. This causes them to also be instantiated on all the other connected clients. If a
client joins later, they will automatically be informed of these objects without our having
to do anything.

You’ll notice that we keep references to these objects around, as global variables. That
is because we’ll use NetMan.cs to perform one more important function—reading the
input devices and updating the transforms of our head and hands (top of Listing 16.4).

Listing 16.1.  When the game is initialized, connect to the Photon Network.

// NetMan.cs – manage our Photon network connection
void Start()
{
 PhotonNetwork.ConnectUsingSettings("1.0");
}

Listing 16.2.  When connected to the server, join the “Main room”.

// OnConnectedToMaster() – put user in the Main room when joining a game
void OnConnectedToMaster()
{
 PhotonNetwork.JoinOrCreateRoom("Main room", new RoomOptions { MaxPlayers = 10 }, null);
}

Listing 16.3.  When joining the “Main room”, initialize moving objects—in this case the user’s avatar.

// OnJoinedRoom() – initialize objects that will move. In this case, the avatar.
void OnJoinedRoom()
{
 head = PhotonNetwork.Instantiate("Head",
	 headTracker.position, headTracker.rotation, 0);
 leftHand = PhotonNetwork.Instantiate("LeftHand",
	 leftHandTracker.position, leftHandTracker.rotation, 0);
 rightHand = PhotonNetwork.Instantiate("RightHand",
	 rightHandTracker.position, rightHandTracker.rotation, 0);
 torso = PhotonNetwork.Instantiate("Torso",
	 headTracker.position, headTracker.rotation, 0);
}

308 16.  Building a Social VR App

In order to do that, we’ll need to have references to those input devices. Fortunately,
VRTK provides a way of doing that using its VRTK_DeviceFinder. We’ll get those
references in our Start() method and keep them around in global variables. Here are
the declarations for all our globals, along with our updated Start() method:

And finally, we need an Update() method that will handle reading the input devices
and updating the transforms of the body parts we instantiated:

Listing 16.4.  Adding global variables, and storing in them references to the tracked user body parts.

// Top of the expanded NetMan.cs script
using UnityEngine;
using VRTK;

public class NetMan : MonoBehaviour
{

// these variables refer to the transforms that are tracked by the Vive hardware
private Transform headTracker; // position of the head as reported by the VR system
private Transform leftHandTracker, rightHandTracker;	 // positions of the hands
// these GameObjects correspond to the various body parts
private GameObject head, leftHand, rightHand, torso;

void Start()
{
 headTracker = VRTK.VRTK_DeviceFinder.DeviceTransform(VRTK.VRTK_DeviceFinder.Devices.Headset);
 leftHandTracker = VRTK.VRTK_DeviceFinder.DeviceTransform(VRTK.VRTK_DeviceFinder.Devices.
 Left_Controller);
 rightHandTracker = VRTK.VRTK_DeviceFinder.DeviceTransform(VRTK.VRTK_DeviceFinder.Devices.
 Right_Controller);
 PhotonNetwork.ConnectUsingSettings("1.0");
}

Listing 16.5.  Copy the User Input Transformations into the Avatar Objects.

// Update() – Copy the input transformation data from the user’s body parts to their avatar.
void Update()
{
 // update network objects from trackers
 if (head != null) {
 head.transform.position = headTracker.position;
 head.transform.rotation = headTracker.rotation;
 }
 if (leftHand != null) {
 leftHand.transform.position = leftHandTracker.position;
 leftHand.transform.rotation = leftHandTracker.rotation;
 }
 if (rightHand != null) {
 rightHand.transform.position = rightHandTracker.position;
 rightHand.transform.rotation = rightHandTracker.rotation;
 }
}

30916.18  Servers and Rooms

The reason we check whether the head, leftHand, and rightHand are not null is so we
don’t get a null-reference error before the scene is loaded or after it’s unloaded. Note that
when the scene is unloaded (i.e., we leave the room) the game objects for our body parts,
which were instantiated when we joined the room, are destroyed. Unity will cleverly cause
destroyed objects to successfully compare to null.

Note that this updating does not need to be part of our network manager. You could
have a completely separate script component just for copying the information from the
input devices to the transforms. The main reason we put it here is that we have easy access
to the GameObjects we instantiated for the head and hands.

You’ll notice that there’s no input device associated with the torso. If we had a Vive
puck tracker, we could certainly attach it to our chest to track the torso. However, without
a tracker, we can still make some assumptions—for example, the torso is under the head,
and it generally tries to face the same way as the user’s head. We’ll add some code to the
end of our Update() method:

We position the torso half a meter below the head. To find out whether we need to rotate
the torso to follow the head, we first take the forward vector of the user’s head (i.e., the
direction the head is facing) and project it onto the ground plane. Since the torso is always
upright, its forward vector is always parallel to the ground plane as well. That makes it easy
to check the angle between them. If the user’s head is facing more than 30° away from the
direction the body is facing, we set a private boolean variable called torsoTurning to
true which causes the body to re-align itself with the head. If the torso is turning, we lerp
its forward vector towards the head facing direction and stop when the vectors are within
5° of each other.

Since the torso has a PhotonTransformView component on it, the updates we make
to the torso’s transform get synchronized over the network, just as if we were actually
tracking the torso.

We’re going to add one more feature. When the user enters a room, we’re going to
reduce the opacity of the models corresponding to their controllers in order to make the
hands more prominent. We could even set the opacity to zero to hide the controllers alto-
gether. When the user leaves the room (and their virtual hands go away) we restore the
controllers to full opacity. This again is similar to what VRChat and Altspace do.

Listing 16.6.  Adding a simple IK (Inverse Kinematics) routine to cause the torso to move somewhat
realistically.

 // Simple IK algorithm to determine the direction of the torso
 if (torso != null) {
 torso.transform.position = head.transform.position - 0.5f * Vector3.up;
 Vector3 headFacing = Vector3.ProjectOnPlane(head.transform.forward,Vector3.up);
 if (torsoTurning) {
 torso.transform.forward = Vector3.Lerp(torso.transform.forward,
 headFacing, 5 * Time.deltaTime);
   if (Vector3.Angle(headFacing, torso.transform.forward) < 10)
 torsoTurning = false;
 } else if (Vector3.Angle(headFacing, torso.transform.forward) > 30)
 torsoTurning = true;
 }

310 16.  Building a Social VR App

Note that we don’t completely disable the controllers, since they need to be there for
VRTK’s grabbing to work.

We have to hide our own head as well. Because the camera is positioned inside the head,
it will see the eyes and mouth. This is easy to fix—just turn off the renderers on our own
head just after creating the head object:

You can do the same with your torso, if you find it distracting.
For systems that use a single articulated mesh, this approach won’t work. Instead, you

can use an old trick—just set the scale of the bone associated with the head to zero:

Listing 16.7.  When joining and exiting rooms, set the visibility of the controller such that they are not sub-
stantially present when in the “room” (allowing the avatars to be seen more clearly).

// OnJoinedRoom() – after initializing the objects, also reduce the opacity of the controller 	
// models
void OnJoinedRoom()
{
 … // previous code

 // Reduce the opacity of the left and right tracker models (so the avatar can be seen better)
 leftHandTracker.GetComponent<VRTK_ControllerActions>().SetControllerOpacity(0.15f);
 rightHandTracker.GetComponent<VRTK_ControllerActions>().SetControllerOpacity(0.15f);
}

// OnLeftRoom() – when leaving a room restore the controller models to full visibility
void OnLeftRoom()
{
 // Set the visibily of the left and right controller objects to 100%
 �leftHandTracker.GetComponent<VRTK_ControllerActions>().SetControllerOpacity(1);
 �rightHandTracker.GetComponent<VRTK_ControllerActions>().SetControllerOpacity(1);
}

Listing 16.8.  Loop through all the game objects under the “head” object and disable their rendering
(because we don’t see our own face). [Add this to the OnJoinedRoom() method.]

 // Disable the rendering For all the avatar objects that are part of the head
 foreach (Renderer renderer in head.GetComponentsInChildren<Renderer>()) {
 renderer.enabled = false;
 }

Listing 16.9.  In cases where an avatar mesh is used rather than component avatar parts (which is not
the case described in this chapter), to eliminate the rendering of the head, set the size of it’s “bone” (i.e.
node in the skeleton) to zero.

 // Set the “bone” (node) of the head to (0,0,0) so it doesn’t obstruct the view
 animator.GetBoneTransform(HumanBodyBones.Head).localScale = Vector3.zero;

31116.19  Object Ownership

This causes all the geometry that is rigidly attached to the head to shrink to invisibility.
If you look closely at VRChat, you’ll notice they use this trick too.

16.19 � Object Ownership

As we mentioned earlier, it is important that each object have exactly one definitive source
of state information at any given time. Photon has the concept of an object being “owned”
by a particular networked client.

Whenever we instantiate an object through Photon, we are considered the owner of
that object. So in the case of head, hands, and torso, our headset and controllers are always
the source of state information. When we leave a room, the objects we created are auto-
matically destroyed. This is what we want for our avatar, since it wouldn’t make sense for
it to hang around once we’ve left the world.

But what about the ball? It was never instantiated, since it’s already part of the scene.
Who owns it?

It turns out that Photon has the notion of a Master Client (not to be confused with
the Master Server which we mentioned earlier, despite the similar names). The Master
Client is an ordinary client machine in the simulation, but it’s responsible for looking
after the state of networked objects not owned by anyone else. The first client to enter the
world becomes the Master Client, and when they leave a new Master Client is automati-
cally assigned by the server. When the last client disconnects, the state of the world is lost
(which means that when someone re-enters the world it will be in its default state). There
are ways of persisting the state of objects in empty worlds, but we won’t be covering that
in this chapter.

Now that we understand Master Clients, we can begin to work out what happens with
the ball. When the first client joins the world, it becomes the Master Client and takes
ownership of the ball. It begins to run its physics simulation. The ball falls, and perhaps
hits some object and bounces around, eventually coming to rest in the scene. As part of
this simulation, the ball’s position, rotation, velocity and angular velocity are all changing
constantly.

When another client joins the world, it will also be running a physics simulation for
the ball. However, it’s not the owner of the ball—the Master Client is. The Master Client’s
values for the position, rotation, velocity, and angular velocity are definitive, and are sent
out to the other clients which override their own values with the ones received from the
network. In between updates, the velocity and angular velocity are used to do a kind of
“dead reckoning” so the ball keeps moving as you would expect, but on the next update it
will be moved to the correct location. That is why we specified LERP (Linear intERPola-
tion) when we first created the ball, and set the interpolation speed to 5, so the ball would
quickly and smoothly move to the location received over the network.

All this works great until we pick up the ball. At that point, things get (even) more
complex.

Whenever we pick up the ball, we want it to respond instantly when we move our hand.
We do this with a script on the ball that registers two of its methods with the VRTK_
InteractableObject component—one that gets called when the ball is grabbed, and
the other that gets called when the ball is released.

312 16.  Building a Social VR App

When our method gets called that says the user has grabbed the ball, we tell Photon
that we want to take ownership of the object. When the user moves their hand, VRTK
updates the position of the ball. Since we own the ball, that information is definitive and
gets sent out to all the other clients.

When our method gets called that says the user has released the ball, we return owner-
ship to the Master Client.

However, if that’s all we do, we’ll have a problem. The physics engine on each client will
be constantly trying to update the position of the ball, but the updates we send out will also
be trying to update the ball’s position according to the position of our hand. In between
network updates, the ball will move according to physics instead of following our hand.
When an update comes in, the ball will jump back to our hand only to be pulled away again
by physics. In effect, the physics engine and the network are fighting for custody of the ball.

To solve this, we use another networking feature called a “remote procedure call” or
RPC. A method can be declared as a remote procedure by prefixing it with [PunRPC],
which means that it can be called from other clients. To call it, we just use the RPC method
on our PhotonView. When making such a call, we can specify whether to call all the
clients (including ourselves) or everyone but ourselves.

In Unity, rigidbodies designated as isKinematic are not controlled by the physics
engine (though they can still interact with objects that are). Thus, when we grab the ball, we
make an RPC call informing all the other clients to mark the rigidbody component of their
copy of the ball as isKinematic while we ourselves mark it as not isKinematic. That
way, physics for the ball will be run on our client but not on any of the others. Our client
needs the ball to use simulated physics because VRTK uses physics for holding onto objects.

When we release the ball, we make another RPC call to mark it as non-kinematic for
everyone and let all the clients again run their own physics simulations.

Here’s the TakeOwnershipOnGrab.cs script component that we add to the ball:

Listing 16.10.  The TakeOwnershipOnGrab.cs script initializes the object on startup (Awake), registers
tasks to perform when the object is grabbed and released, and in those tasks, disables/enables the
physics simulation’s control over the object such that when the object is grabbed, it is controlled by the
user rather than the simulation.

// Take network ownership of this gameobject when the user grabs it
// Written by Bernie Roehl, May 2017

using UnityEngine;
using VRTK;

public class TakeOwnershipOnGrab : Photon.MonoBehaviour
{

 private Rigidbody rigidBody;
 private VRTK_InteractableObject iObj;

 void Awake()
 {
 rigidBody = GetComponent<Rigidbody>();
 iObj = GetComponent<VRTK_InteractableObject>();
 }

31316.19  Object Ownership

Notice that we obtain and store references to the Rigidbody and the VRTK_
InteractableObject components in our Awake() method, in order to avoid the
overhead of looking up those components all the time.

Note that you also need to change the field Fixed in the PhotonView to Takeover,
and of course add the TakeOwnershipOnGrab component to the list of observables in
the PhotonView (See Figure 16.17).

 void OnEnable()
 {
 iObj.InteractableObjectGrabbed += ObjectGrabbed;
 iObj.InteractableObjectUngrabbed += ObjectUngrabbed;
 }

 void OnDisable()
 {
 iObj.InteractableObjectGrabbed -= ObjectGrabbed;
 iObj.InteractableObjectUngrabbed -= ObjectUngrabbed;
 }

 private void ObjectGrabbed(object sender, InteractableObjectEventArgs e)
 {
 photonView.TransferOwnership(PhotonNetwork.player);
 rigidBody.isKinematic = false;
 photonView.RPC("SetKinematic", PhotonTargets.Others, true);
 }

 private void ObjectUngrabbed(object sender, InteractableObjectEventArgs e)
 {
 photonView.RPC("SetKinematic", PhotonTargets.All, false);
 }

 [PunRPC] // This prefix indicates that this method can be called from other clients.
 public void SetKinematic(bool kinematic)
 {
 rigidBody.isKinematic = kinematic;
 }

}

Figure 16.17

For our grabbable objects, the PhotonView should be set to “Takeover” scene mode, and
have those objects added as “Observable Components.”

314 16.  Building a Social VR App

This approach to sharing ownership works for 90% of the things you’re likely to do.
However, it is not perfect. There are cases where more sophisticated physics simulations
will be needed, but that is a topic beyond the scope of this chapter.

16.20 � Adding Voice Chat

As you recall from earlier, the main reason we chose Photon over UNET is that it
provides built-in support for voice chat. Implementing voice chat is very easy—just
add a PhotonVoiceRecorder component to the mouth of our avatar along with a
PhotonView. You’ll need to drag your Head prefab into the scene to access the mouth.
Add the PhotonVoiceRecorder and PhotonView components to the mouth, select
the Head, and click Apply at the top of the inspector to apply those changes to the prefab
(See Figure 16.18). Once the prefab is created, you can delete it (the head) from the scene.

Figure 16.18

Add the PhotonVoiceSpeaker, PhotonVoiceRecorder and PhotonView scripts to the mount
object in the hierarchy, and click “Apply” to update the prefab.

31516.21  Lipsync

That is literally all there is to it. The PhotonVoiceRecorder component will
automatically add an AudioSource component to the mouth object, along with a
PhotonVoiceSpeaker. Together they will handle the entire process of capturing your
voice input from a microphone device, sending it over the network, and playing it back. It will
be spatialized by Unity, so you’ll actually hear the person’s voice coming from their mouth.

16.21 � Lipsync

There are several approaches to doing realtime lipsync. Among these approaches are for-
mant analysis, neural networks and other complex algorithmic approaches which extract
phonemes from audio and map them into visemes (mouth poses).

In our case, we’re going to keep it simple. We’ll just use the amplitude of the audio sig-
nal to open and close the mouth of our avatar. This works well enough for puppets in the
real world, and given how simple our avatar head is, we don’t really want to do anything
more complex.

At this point, we need to decide where to do the lipsync. We can either do it on the
originating client where the audio is captured, or on the other clients where the audio is
played back. Either way, there are trade-offs to consider.

If we do the lipsync on the source client, then we have to share that state information over
the network. Since the voice and state information are handled independently by Photon,
it is hard to ensure that the two will be synchronized. If they aren’t, it will look like we’re
watching a badly-dubbed movie where the actors’ mouths don’t match with what they’re say-
ing. We could piggy-back the lipsync data on the audio so they travel together, but because
Photon presents the voice chat interface as a “black box” there’s no easy way to do that.

The alternative is to do lipsync on each client. That gives us perfect synchronization,
and (slightly) reduces the amount of data we have to send over the network, but it does
mean we have the computational overhead of doing lipsync for each character, on each
client. Every client that enters the world puts an additional burden on the processors in all
the other clients.

However, there are ways of managing the computational load. We could impose a limit
to the number of clients that can join our world—for example, vTime (which runs on
mobile devices with limited CPU power) imposes a hard limit of four users per world.
Another approach is to monitor how far away an avatar is from the user, and not bother
doing lipsync beyond a certain distance.

For our simple app, we’ll be doing lipsync on each instance of our avatar rather than on
the originator. The following code is based on a blog post by Chris Entropy [2016].

Listing 16.11.  For lip-syncing, initialize the source and data storage in Awake(), and then calculate the
volume (loudness) in the Update() routine, using that data to scale the avatar mouth.

// SimpleLipsync.cs – use the amplitude of the sound data to adjust the size
// of the avatar’s mount, doing the computation on the viewing-client side.
public class SimpleLipsync : MonoBehaviour
{
 public float mouthScale = 4;		 // Adjust for how big to make the mouth
 public float updateStep = 0.1f;	 // How much time should pass before recalculating

316 16.  Building a Social VR App

The idea here is simple. We periodically (once every updateStep seconds) take a
sample of the audio data. We average all the samples to compute the current amplitude.
Note that none of this is related to networking at all—it would work fine to create a level
meter in a single-player game, for example, and it will work with any audio source.

Drag your Head prefab into the scene, find the Mouth object, and drag the script
onto it. Select the Head, hit Apply to update the prefab, then delete the head.

For this simple example, we use the amplitude to adjust the scale of the box represent-
ing our mouth. If we had an avatar with a jaw that they can open and close, then we could
easily adapt the code to do that instead. Or we could go the route that Altspace has chosen
for their “robot” avatars, and just change the emissive color value on one of the avatar’s
materials. Lots of options.

16.22 � Opening and Closing the Hands

We’re going to add one more feature. It may seem like a trivial one, but it introduces some
important ideas. We’re going to let the user open and close their hands using the triggers
on their controllers.

You’ll recall that the triggers have been configured in VRTK to do the grabbing
of objects. Quite independent of that, we can read the value of the trigger and store it

 public int sampleDataLength = 1024;	 // Size of the array for sampling the loudness

 private AudioSource audioSource;
 private float currentUpdateTime = 0f;
 private float[] clipSampleData;
 private Vector3 initialScale;

 void Awake()
 {
 audioSource = this.GetComponent<AudioSource>();
 clipSampleData = new float[sampleDataLength];
 initialScale = this.transform.localScale;
 }

 // Update() – For each sample window, calculate the amplitude of
 // the waveform by adding up and averaging all the wave offsets. Use
 // the calculated amplitude (“loudness”) to scale the size of
 // the mouth object (in its own coordinate systems).
 void Update()
 {
 currentUpdateTime += Time.deltaTime;
 if (currentUpdateTime >= updateStep) {
 currentUpdateTime = 0f;
 float clipLoudness = 0f;
 if (audioSource.clip != null) {
 audioSource.clip.GetData(clipSampleData, audioSource.timeSamples);
 for (int i = 0; i < clipSampleData.Length; ++i)
 clipLoudness += Mathf.Abs(clipSampleData[i]);
 clipLoudness /= sampleDataLength;
 }
 this.transform.localScale = (1 + mouthScale * clipLoudness) * initialScale;
 }
 }
}

31716.22  Opening and Closing the Hands

in a variable. We can then share that state information over the network, and apply
it to the hands.

This example requires implementing our own network serialization and deserializa-
tion. Serialization is the process of taking values and sending them out over the network
in a determined order, and deserialization is the reverse.

The class derives from Photon.MonoBehaviour rather than MonoBehaviour,
so it can override callback methods such as OnSerializePhotonView().

Notice that we find and store references to the finger objects in our Start() method,
as looking them up is a time-consuming operation that we don’t want to repeat each
frame. We also get a “which-hand” reference to the controller for each hand (as deter-
mined by a public variable on this component that we can set to Left or Right in the
Unity inspector).

Listing 16.12.  A script to put on a hand that uses the controller’s trigger to reflect how far open the
hand should be rendered. This data is then serialized and transmitted to the other clients sharing
the world.

// Hand.cs – Determine the open-ness of each hand (using the controller triggers),
// and transmit that (serialized) data to the other clients.
public class Hand : Photon.MonoBehaviour	 // Note that we inherit from “Photon”
{
 public enum SIDE { LEFT, RIGHT };	 �// Create an enumeration to help decode the

// network data
 public SIDE whichHand;

 private Transform gripFingers, pointerFinger;
 private VRTK_ControllerEvents controllerEvents;
 private float closeAmount = 0;	 // How far closed? 0 (none), 1 (fully)

 void Start()
 {
 gripFingers = this.transform.Find("Container/GripFingerContainer");
 pointerFinger = this.transform.Find("Container/PointerFingerContainer");
 controllerEvents = (whichHand == SIDE.LEFT ?
	 VRTK_DeviceFinder.GetControllerLeftHand() :
	 VRTK_DeviceFinder.GetControllerRightHand()).
	 GetComponent<VRTK_ControllerEvents>();
 }

 public void OnPhotonSerializeView(PhotonStream stream, PhotonMessageInfo info)
 {
 if (stream.isWriting)
 stream.SendNext(closeAmount);
 else
 closeAmount = (float)stream.ReceiveNext();
 }

 void Update()
 {
 if (photonView.isMine)
 closeAmount = controllerEvents.GetTriggerAxis();
 gripFingers.localEulerAngles = new Vector3(closeAmount * 90f, 0f, 0f);
 pointerFinger.localEulerAngles = new Vector3(closeAmount * 90f, 0f, 0f);
 }
}

318 16.  Building a Social VR App

We use a variable called closeAmount to indicate how far the hand is closed, with 1
being fully closed and 0 being fully open.

In OnSerializePhotonView(), we write closeAmount to the network stream
(if we’re on the data sending side) or else read it from the network stream.

In Update(), we check to see whether we own the network view (i.e., is this our
hand). If so, we set the variable closeAmount from the trigger value. This will later
get sent out over the network in OnSerializePhotonView(). In any case, we use the
closeAmount to rotate the fingers. The value of closeAmount will either have just
been read from our trigger, or will have been set in OnSerializePhotonView(). We
scale the value to the range 0°–90°.

Once you’ve got this script, you need to add it to each hand’s prefab. You can just drag
it onto the LeftHand and RightHand prefabs in the Resources folder. Be sure the set the
“Which Hand” field to “Right” for the right hand (it defaults to “Left”).

The reason this particular segment of code is important is that it forms the basis for
sharing all kinds of other information from input devices. If you have eye trackers on
your headset, this is how you would read and send the 2D or 3D vectors representing
the user’s gaze. If you have facial expression capture, this is how you would send the data
(either as facial action units, or simple expression values). As VR input devices become
more advanced, you’ll use components like this one to share the data over the network.

16.23 � Summary and Ideas for Further Work

So there you have it—a basic Social VR system with avatars, voice chat, lipsync, articulated
fingers, and objects you can pick up and throw around. Not bad for a few hours of work
and a couple hundred lines of code.

Of course, there are many things you can add. As mentioned, you can have multiple
instances of your virtual world for the user to choose from; you can have a variety of dif-
ferent scenes, from western towns to moon bases; you can add multiple different avatar
designs, and even support custom avatars the way VR Chat does (you may want to look
into Unity asset bundles if you’re going to do something like that).

You can add a UI system to allow the user to choose between worlds, change avatars,
login and so on. You can use a backend database to maintain friends lists. You can allow
people to mute and block others. You can add personal-space bubbles.

What you have now is a good foundation. Where you go from here is up to you. I’d love
to hear what you come up with! Just drop me a line at broehl@bernieroehl.com. Also be sure
to check out http://virtualescapes.ca/vrgems/ for any updates to the code in this chapter.

Many thanks to Erick Passos of Exit Games for checking the accuracy of the
Photon portions of this chapter, and to Keith Makse of Red Meat Games for his help in
beta testing.

References

[Against Gravity]

Against Gravity. URL: https://againstgrav.com/rec-room/

mailto:broehl@bernieroehl.com
http://virtualescapes.ca
https://againstgrav.com

319References

[Altspace]

Altspace. URL: https://altvr.com/

[Big Screen]

Big Screen. URL: http://bigscreenvr.com/

[Entropy 2016]

Entropy, Chris. Unity Forum Answer to “How do I get the current volume level (ampli-
tude) of playing audio”. URL: https://answers.unity.com/questions/1167177/index.
html

[Exit Games]

Exit Games, Photon SDK. URL: https://photonengine.com

[Extend Reality]

Extend Reality, Extend Reality Ltd. VTTK documentation. URL: http://vrtk.io

[Facebook]

Facebook. URL: https://facebook.com/spaces

[Google VR]

Google VR, Google VR Daydream. URL: https://vr.google.com/daydream/developers/

[High Fidelity]

High Fidelity. URL: https://highfidelity.com/

[JanusVR]

JanusVR. URL: https://janusvr.com/

[Linden Research]

Linden Research. URL: https://sansar.com/

[Lowe & Lenssen]

Lowe, Scott and Philipp Lenssen. “Anyland.” URL: http://anyland.com/

https://altvr.com
http://bigscreenvr.com
https://answers.unity.com
https://answers.unity.com
https://photonengine.com
http://vrtk.io
https://facebook.com
https://vr.google.com
https://highfidelity.com
https://janusvr.com
https://sansar.com
http://anyland.com

320 16.  Building a Social VR App

[Oculus 2016]

Oculus (2016), The Oculus Team, blog entry “Join Friends in VR with Oculus Rooms and
Parties”. URL: https://oculus.com/blog/join-friends-in-vr-with-oculus-rooms-and-
parties/

[Oculus SDK]

Oculus SDK, Oculus Developers URL: https://developer.oculus.com/

[Unity UNET]

Unity UNET, Unity User Manual: Multiplayer and Networking page. URL: https://docs.
unity3d.com/Manual/UNet.html

[Valve SteamVR]

Valve SteamVR, Valve Corporation, SteamVR Documentation. URL: https://
steamcommunity.com/steamvr

[VRChat]

VRChat. URL: https://vrchat.com/

[vTime]

vTime. URL: https://vtime.net/

https://oculus.com
https://oculus.com
https://developer.oculus.com
https://docs.unity3d.com
https://docs.unity3d.com
http://steamcommunity.com
https://vrchat.com
https://vtime.net
http://steamcommunity.com

321

17
Avatar Embodiment,
Behavior Replication, and
Kinematics in Virtual Reality
Daniel Roth, Jan-Philipp Stauffert, and Marc Erich Latoschik
University of Würzburg

17.1 � Introduction

Virtual reality (VR) strongly depends on a convincing place illusion typically achieved by
accurate head-tracked stereoscopic view generation of a plausible artificial 3D environment
[Slater et al., 2009]. However, the accorded sense of presence (or “being there”) can be posi-
tively affected by avatars, virtual alter-egos which are located in the virtual space and which
mimic one’s body and its movements. Avatars can be defined as virtual characters driven by
human movements. In contrast to avatars, virtual characters that are driven by computer
algorithms are termed (embodied) virtual agents [Bailenson and Blascovich, 2004]. In a
sense, avatars transfer the perception of the physical body to the perception of owning a
virtual body [Slater et al., 2009; Lugrin et al., 2015; Latoschik et al., 2016; Roth et al., 2017a].

This fascinating illusion can evoke perceptual effects strong enough to perceive excitement
or fear [Roth et al., 2016b; Argelaguet et al., 2016], taking the perspective of a virtual body.

17.1	 Introduction
17.2	 Avatars as Animation

Targets
17.3	 Body Motion
17.4	 Camera Properties,

Placement and
Calibration

17.5	 Facial Expression
17.6	 Gaze
17.7	 Conclusion

322 17.  Avatar Embodiment, Behavior Replication, and Kinematics in Virtual Reality

The perception of the virtual body ownership is moderated by top-down (e.g., appearance
realism and appearance personalization) as well as bottom-up effects (e.g., latency and repli-
cation coherence) [Maselli and Slater, 2013; Waltemate et al., 2018]. The effect of this illusion
can be so strong that we change our behavior based on the visual characteristics of the vir-
tual body in form of “afterglow” effects. Multiple previous works show that we adopt behav-
iors that we associate with avatar characteristics, such as behaving more confidently when
being assigned a tall avatar or a reduction of negative stereotyping when being embodied as
elderly avatar, which is known as the Proteus effect [Yee and Bailenson, 2006, 2007].

Additionally, avatar embodiment provides a direct way to include nonverbal behavior
in virtual social interactions, and hence may affect aspects presence (e.g., social presence
or “a medium’s ability to connect people” [Nowak and Biocca, 2003]), as well as social
judgments such as sympathy, empathy, or trust toward communication partners in virtual
encounters [Roth et al., 2016c; Bente et al., 2008]. Previous research shows that nonverbal
behavior is a substantial factor in social interactions, and estimates suggest up to 65%
of the meaning in a social situation is communicated through nonverbal behavior—see
Burgoon et al. [2011] for an overview. Therefore, one pragmatic goal for future VR simu-
lations is to increase the extent to which human behaviors such as body motion, facial
expression, and eye gaze are conveyed through avatars [Roth et al., 2017b].

17.2 � Avatars as Animation Targets

A central aspect of a convincing avatar simulation is their dynamism, ideally mimicking
exactly the motions of their owners. Virtual characters are typically visualized based on the
rendering of a textured mesh (also called skin) and additional surface data, see Figure 17.1.
Instead of transforming each mesh vertex individually to create an animation, a skeletal
model (sometimes referred to as character rig or articulated model) is employed. In character
animation, creating a character’s skeleton is known as rigging. The skeleton of a virtual char-
acter consists of a number of bone objects, interconnected through joints, which can be bound
to skin vertices by weighting the respective mesh parts. Bone transformations of the skel-
eton then manipulate the bound mesh vertices according to the predefined binding weights.
These weights can be defined by automated, semi-automated or manual processes, often called
skinning.

Figure 17.1

(A) Exemplary skeleton hierarchy. In this case, the hips describe the root node and the left
hand, or in characters with more detail, the finger tips could be end-effectors. For more
information on character hierarchies see Parent [2012]. (B) The illustration shows typical
components of a virtual character: (a) the skeleton; (b) joints bound (weighted) to the
mesh; (c) the mesh shaded using a material component, and (d) an applied texture.

32317.3  Body Motion

The skeleton of humanoid characters is typically a topological structure of bones that
approximate the structure of the human skeleton. The free end of each chain is often called
end-effector. The range of motion of each joint connecting the bones is defined by the
degrees-of-freedom (DOF) in movement and can be restricted to approximate human
joint behavior using kinematic solvers. Modern game and simulation engines (such as
Unity, Unreal Engine, and alike) often provide the infrastructure for humanoid kine-
matic or muscular models that, once defined and mapped, allow the developer to modify,
restrict, or extend the movement space of the avatar on the basis of human limitations.

Skeletons are typically represented in hierarchical structure—see the ISO/IEC
19774:2005 H-Anim Standard [Human Animation Working Group et al., 2006] for one
standard to use for joint labeling and structure. When representing hierarchical struc-
tures, a root node (root object, e.g., the hips) is defined, which is the parent node of one
or more child nodes and constitutes the coordinate system of the hierarchy structure pre-
defined by a known position in the global coordinate system. Child node positions are
typically described in relation to the root node [Parent, 2012].

Creating rigged characters can be done with a variety of free and commercial prod-
ucts, such as MakeHuman [MakeHuman, 2016], Adobe Fuse [Adobe, 2017], Autodesk
Character Generator [Autodesk, Inc., 2014], and many others. To achieve higher levels of
realism and personalization, models can be reproduced from photogrammetry, a method
for the extraction of surface points and surface properties from images, which can be
used to create avatar meshes. Using personalized avatars can further improve embodi-
ment in VR and support accepting the virtual body [Waltemate et al., 2018; Latoschik
et al., 2017; Achenbach et al., 2017]. As a third option, characters made by 3D digital artists
can be acquired from online shops, see also Chapter 15 of this book [Cordar et al., 2019].
To breathe life into a virtual character’s lifeless state, a tracking system to sense motion
behaviors such as body motion, facial expression or gaze is required. The required motion
capture to drive avatar behavior is extensively used in the cinematic industry as well as
in interactive simulations and games, see also [Roth et al., 2018c]. Several approaches for
motion tracking exist, of which many are capable of replicating human movements within
VR in real-time. Thus, we refine the definition of avatars in this context: an avatar requires
a real-time connection between physical and virtual behavior.

17.3 � Body Motion

The tracking of body movement is usually achieved by systems that are based on (1) active
optical markers, (2) passive optical markers, (3) marker-less computer vision techniques
(e.g., structured light coding/depth mapping/time-of-flight), (4) inertial sensor combina-
tions, (5) artificial magnetic fields [Sherman and Craig, 2002, 2018; Roth, 2016], or a com-
bination of those (see LaViola et al. [2017], Part 3 for general information on hardware
systems for 3D user interfaces). For large-scale tracking systems, radio frequency-based
techniques [Roth et al., 2018a] may be utilized and combined with trackers for feet and
hands. With regard to body motion, we may often find ourselves utilizing systems built for
digital animation for the cinematic industry or kinesiology research—i.e., motion capture
(MoCap) systems. While MoCap systems are often capable of providing real-time track-
ing data, the real-time requirements for each field differ, as does the typical workflow as
depicted in Figure 17.2.

324 17.  Avatar Embodiment, Behavior Replication, and Kinematics in Virtual Reality

The choice of the system relies on numerous criteria, such as the required quality, the
available budget, the scalability needs of the system (e.g., single-user vs. multi-user, proto-
type vs. consumer application), the allowable invasiveness of the system, and the pipeline
into which it needs to be integrated. In the worst case, a very invasive system can end in
what is described as the “cyborg’s dilemma” [Biocca, 1997], which is the change of one’s
own body schema and identity due to potential technological burdens such as intrusive
technologies or multiple heavy sensors. However, learning from our experiments, we
find a general rule of thumb to be: for a higher degree of perceived avatar embodiment
(virtual body ownership), minimal latency, quality and robustness of the tracking should
be preferred over other requirements. This is because sensorimotor coherence is a key
bottom-up factor in fostering this illusion [Maselli and Slater, 2013]. Spanlang et al. [2014]
provide an introduction on how to build an embodiment lab for research purposes based
on a passive-marker system. Today, state-of-the-art machine learning techniques boost
the quality and speed of non-invasive, marker-less computer vision-based systems for full
body tracking, making them competitive to marker-based solutions [Stoll et al., 2011].
Full-body markerless motion tracking is also available from sensors such as the Microsoft
Kinect, which combine algorithms to reconstruct pose from RGB-depth or time-of-flight
sensor data. However, the robustness of these systems is often insufficient for a first person
perspective form of virtual embodiment. Yet by combining HMD tracking with marker-
less hand-tracking sensors (e.g., Leap Motion) some user embodiment (though reduced)
can be evoked [Argelaguet et al., 2016].

Most motion tracking systems are able to output 6-DOF rigid body (defined by a com-
bination of three or more non-collinear markers or features) or joint data to use as feature

Motion
Capture

Scene

offline
(non real-time)

offline
(non real-time)

online
(real-time
parallel)

Post
Processing

Character
Mapping/

Scene

Character
Mapping/

Simulation
Engine

Simulation
Engine

Rendering Stimulus

Motion
Tracking/

Input

Simulation
Update

Render &
Display

Motion
Update

Figure 17.2

An illustration of how the workflows of cinematic digital animation (offline) and virtual reality
simulations (firm/hard real-time) differ. Timeliness is of no concern in digital animation, and
digital artists usually strive for image perfection (rendering) using post processed motion
capture data. VR simulations on the other hand require real-time responsiveness and thus
the simulation engine is confronted with real-time transformation updates for the character
animation.

32517.3  Body Motion

points for the animation. Although not truly rigid, the human body can be described
as a combination of approximately rigid segments. Thus, some systems are capable of
full body pose estimation and calculate a kinematic model through marker clusters or
feature clusters, that can be used to drive a virtual character’s behavior. In turn, as one
would expect, the calculation of the kinematic model requires computational processes
that may or may not be effective/precise and therefore may or may not deliver a satisfying
result—depending on the objective and requirements for the simulation. A high-quality
pose estimation and the reconstruction of realistic human movements requires sophisti-
cated computation. This computation can increase the computational cost of the overall
process and, in turn, the expected end-to-end latency from motion to visual feedback
(also known as motion-to-photon latency [Lincoln et al., 2016]; see Friston and Steed
[2014] for ways to measure latency that can also be adapted for simulations using body
motion tracking).

17.3.1 � Interfacing with Simulation Engines
Various frameworks provide substantial support for the integration of motion tracking
into VR simulations: (1) the manufacturers of tracking systems often deliver SDKs for
data streaming or plugins for the integration; (2) middleware such as middleVR [Kuntz,
2015] or OpenNI [Occipital, Inc., 2017] provide most required features; and (3) open and
standardized protocols such as VRPN [Taylor et al., 2001] can be utilized.

Given their abundance, many developers will find themselves using a game or simula-
tion engine (e.g., Unity, Unreal Engine, WorldViz or equivalent) which is why we consider
this use case in providing the steps for the integration of full body skeleton data. State of
the art tracking systems usually support this option. If one plans to use consumer hard-
ware, for example, an RGB-depth (RGBD) based sensor such as the Microsoft Kinect,
one might want to use the available SDKs or a toolkit such as FAAST [Suma et al., 2011a,
2011b] or Brekel Pro Body [Brekel, 2008], to interface with the engine.

17.3.2 � Receiving the Data
For our realistically behaving avatar, our first task is to receive data from the tracking
(client) application. As the tracking server will often continually send data (UDP is most
common), it is useful to have two open communication channels/ports: the data connec-
tion as well as a command connection for invoking events and communicating the status
from the simulation application back to the tracking application (tracking server).

In some cases, a conversion of the coordinates needs to be applied to the data received
from the tracking server to match the coordinate system of the client application (e.g., left-
handed to right-handed conversions).

Note that the following examples are based on a Unity application. To our hope, they
are sufficiently abstract to show the concept and be implemented in any engine of choice.
Many available integrations (from third parties or system suppliers, such as [NaturalPoint,
Inc., 2018]) use similar concepts and inspired the following examples. For a conversion of
Unreal/Unity terms see Joessu et al. [2017].

The interfacing consists of two parts: (1) adapting the rate that tracking data is provided
to the rate it can be consumed at; and (2) translating the tracking data to data usable by the
application. The issue of unequal data rates can be handled with a loop that conducts the
simulation and rendering where the tracking data is queried once or multiple times per

326 17.  Avatar Embodiment, Behavior Replication, and Kinematics in Virtual Reality

iteration at specific points in time. For tracking input (as opposed to button presses), only
the most recent data is relevant.

One approach is to accept tracking data in a separate thread at the pace of the sending
instance. This data is then provided to the application that queries at its own pace. Upon
starting the application, we create a connection that runs in parallel. It calls a callback
function when data arrives as shown in the code in Listing 17.1.

Before tracking data is received, the client requests information about how this data
will be structured and what parts of the tracked body it represents. This request allows the
required memory for the data exchange to be reserved. This memory will be updated every
time new tracking information is received. On the other side, this memory is the reference
that is used by the application to update its avatar representations. For our example, we refer
to the variable pointing to this memory location as skeletons as it holds the bone trans-
formation information of all tracked users.

When a data packet arrives, its content is dissected and translated to a representation
consumable by the application. Here, for the sake of simplicity, we assume that one data
frame contains updated positions and orientations for every joint of every tracked person
(Listing 17.2).

Note that data might be in different formats, taking advantage of the hierarchical
skeleton structure and forward kinematics. The position and orientation values could
be sent only for the root node/the hips, followed by rotation values for each joint. While
in many cases the extraction of the information from the data frame might be more
extensive, the following code shows the general concept irrespective of the underlying
pose solver.

Listing 17.1.  Upon establishing a connection, the message structure is negotiated before receiving
tracking data.

// establish connection to the tracking server
client = new TrackingReceiver(serverAddress);

// get information from the server about the data layout
UpdateDefinitions();

// register callback that is called whenever new tracking data arrives
client.registerCallbackForData(OnDataReceive);

Listing 17.2.  For each received update, save the updated bone positions and orientations.

using System.Threading;
...

private SkeletonStream skeletons;
private Skeleton skeleton;
private mutex skeletonAccess;

// callback that is called when new data arrives

32717.3  Body Motion

As receiving data and updating the skeleton happens in a thread decoupled from the
main application’s thread, the update is protected by a mutex. A mutex is used to mutually
exclude simultaneous access to a block of code, usually to prevent one stream from read-
ing data that may be incomplete because another thread hasn’t yet completed its task. In
the main thread, the mapping of the source data to the target avatar takes place.

17.3.3 � Mapping the Source Motion Data to the Target Character
To use the motion data in the application, the skeleton model has to be translated to the
target skeletal representation of the avatar. Therefore, the real-time skeleton data stream
needs to be linked to a virtual character which is thus animated by the user’s behavior.
Both Unity and Unreal come with animation systems (Animation Module/Mecanim
[Unity Technologies, 2014]/Persona [Epic Games, Inc., 2017]) that allow virtual characters
to be animated by prerecorded movements (movement cycles) in a state machine prin-
ciple. However, for live user data we need to access the target avatars in real-time and map
the received joint data accordingly. Note that with ongoing engine updates, the animation
system interfaces are subject to change. In Unity, the target virtual character needs to
be preconfigured and appropriately rigged/skinned to fulfill the criteria of a humanoid
character (a minimum of 15 bones, rooted at the hip, and including all extremities). When
these requirements are met, the character can be defined as “humanoid;” in special cases
a “generic” definition can work. A humanoid avatar can then represent a humanoid pose
that is abstracted from the skeleton rig*.

In order to drive the humanoid target avatar we can construct a humanoid source ava-
tar with the corresponding (Game) objects as an object tree to relate to the skeleton rep-
resentations of the tracking system, see Figure 17.3. This process is often referred to as
retargeting. References to the objects are handled through a bone id/game object map, see
Listing 17.3.

*	 Note: The notion in Unity is that an “Avatar” object is a template object for an avatar not necessarily in need
for a visual representation. Although this contradicts the definition stated above, we will stick with the Unity
namespace for the examples for the sake of coherence.

void OnDataReceive(data) {
 // use mutex lock to prevent other parts of the application
 // from accessing the skeleton data while it gets updated
 lock(skeletonAccess);

 // update each bone in each skeleton with the received data
 foreach (var skeleton in skeletons) {
 foreach (var skeletonBone in skeleton.bones) {
 skeletonBone.position = data[skeleton.id][skeletonBone.id].position;
 skeletonBone.orientation = data[skeleton.id][skeletonBone.id].orientation;
 }
 }

 // release mutex lock to allow other parts of the application
 //	 to access the newly updated skeleton data
 unlock(skeletonAccess);
}

328 17.  Avatar Embodiment, Behavior Replication, and Kinematics in Virtual Reality

Listing 17.3.  A game object tree is created, relating to the structure of a skeleton and its bones.

private Dictionary<int, GameObject> boneObjectMap;
private GameObject rootObject;
...

void CreateBoneObjects(){
 boneObjectMap = new Dictionary<int, GameObject>(skeleton.bones.Count);
 rootObject = new GameObject(rootObjectName);

 foreach (var skeletonBone in skeleton.bones) {
 // create a new game object for each skeleton bone.
 GameObject boneObject = new GameObject(skeletonBone.Name);
 // set the bone in the right position of the object tree,
 // depending on the skeleton hierarchy.
 if (skeletonBone.parent == null) boneObject.parent = rootObject;
 else boneObject.parent = boneObjectMap[skeletonBone.parent.id];
 ...
 // store the reference to the boneObject in a bone id / game object map
 boneObjectMap[skeletonBone.id] = boneObject;
 }
}

Figure 17.3

Retargeting pipeline. At the initialization (start) of the application, an object tree is cre-
ated of each tracked skeleton. This object tree is the root of the humanoid source avatar.
Similarly, a destination avatar is created. In the main application loop, the object tree is
updated with the skeleton data. This implicitly updates the source avatar as it is built on the
object tree’s references. Finally, the updated pose of the source avatar is transferred to the
target avatar.

32917.3  Body Motion

The next step is to map the skeleton representation of the tracking system and the just cre-
ated bone objects to the human anatomy of the engine’s animation system, see Listing 17.4.

Since the sourcePoseHandler was created with the references to the previously created
bone object tree, any changes to the bone objects directly affect the human pose of the
sourcePoseHandler. During the application loop, the bone objects are directly assigned
the skeleton’s values, using the BoneObjectMap. After allocating the skeleton values (see
Listing 17.5), the sourcePoseHandler is used to extract the current pose of the source ava-
tar. The pose is then assigned to the target avatar using the targetPoseHandler.

Listing 17.4.  Map the skeleton representation to the human anatomy of the engine’s animator.

void MecanimSetup() {
 ...
 // set up the HumanDescription for the source avatar.
 HumanDescription humanDescription = new HumanDescription();
 humanDescription.human = makeHumanBonesFromSkeletonBones​(skeleton.bones);
 humanDescription.skeleton = retargetSkeleton(skeleton);

 // take the HumanDescription and the object tree root to build the source avatar.
 sourceAvatar = AvatarBuilder.BuildHumanAvatar(rootObject, humanDescription);

 // create pose handlers for the source and the target avatar.
 sourcePoseHandler = new HumanPoseHandler(sourceAvatar, rootObject);
 targetPoseHandler = new HumanPoseHandler(targetAvatar, targetRootObject);
}

Listing 17.5.  Skeleton values are assigned to the object tree during the application loop. The generated
human pose is used to retarget the data to the corresponding target avatar.

void Update()
{
 // update the bone game objects with the current skeleton state.
 SkeletonState skeletonState = StreamingClient.GetLatestSkeletonState​(skeleton);
 if (skeletonState != null){
 foreach (var skeletonBone in skeleton.bones) {
 TrackingPose currentBonePose;
 GameObject boneObject;
 skeletonState.BonePoses.TryGetValue(skeletonBone.id, out currentBonePose);
 boneObjectMap.TryGetValue(skeletonBone.id, out boneObject);

 if (currentBonePose != null && boneObject != null){
 boneObject.localPosition = currentBonePose.Position;
 boneObject.localRotation = currentBonePose.Orientation;
 }
 }
 }

 // interpret the streamed pose into Mecanim muscle space representation
 // and retarget the muscle space pose to the destination avatar.
 if (sourcePoseHandler != null && targetPoseHandler != null){
 sourcePoseHandler.GetHumanPose(ref humanPose);
 targetPoseHandler.SetHumanPose(ref humanPose);
 }
}

330 17.  Avatar Embodiment, Behavior Replication, and Kinematics in Virtual Reality

Once the input data is retargeted to the target avatar, the avatar’s body motion should
closely reflect the real user motion.

The approach presented here is one option to drive an avatar’s body motion based on an
OptiTrack passive marker system and the respective interface. The procedure is strongly
dependent on the engine’s animation system which is subject to change due to engine
updates. On the upside, this procedure allows us to easily integrate almost any virtual
character that respects the basic rules to be configured as humanoid by the engine and,
thus, inherit a lot of flexibility in character usage. On the downside, the procedure strongly
depends on the kinematic solving of the engine, which leaves us (at the time of writing)
little control over how kinematic solving is applied and may result in unwanted artifacts
such as “foot skating” due to a strong use of forward kinematic solving, i.e., solving the
pose as function of a root position and consecutive child joint angles.

One alternative approach is to directly retarget raw skeleton input to a character rig.
This approach can be very precise, but only works for certain combinations of track-
ing input and character skeletons, and is difficult to generalize. Another method is to
gain more control over kinematic solving by using third party plugins such as FinalIK
[RootMotion, 2018] that provides more control over the kinematic solving; this is dis-
cussed further in Section 17.5.

17.3.4 � Character Scaling
One should keep in mind that the avatar has certain measurements that may not exactly
match the (physical) human user. Thus, especially in the case of a first-person perspec-
tive rendering using a head-mounted display (HMD), appropriate scaling is necessary.
Exact scaling is preferred, but without a photogrammetric copy, universal scaling of the
character according to the user’s height is a useful approximation, see Listing 17.6. In this
case, the character measurements should be close to the user measurements to avoid con-
tortions of the limb proportions. With pre-skinned characters, scaling individual bones
will lead to unwanted artifacts in the mesh deformation. Thus, current approaches try to
compensate for these artifacts while allowing avatar scaling based on the user’s measure-
ments [Takala and Heiskanen, 2018].

Integrations for tracking systems that support full skeletal data can often be retrieved
from the system supplier as SDKs or plugins for leading game engines. In some cases,

Listing 17.6.  A rough but accessible approach to universal scaling.

// get character height during initialization
var smr = GetComponentInChildren<SkinnedMeshRenderer>();
var characterHeight = smr.sharedMesh.bounds.size.y;

// get user height, e.g., from menu
userHeight = Parameters.userHeight;

// adjust scale
multiplier = (userHeight / characterHeight);
character.transform.localScale = new Vector3(multiplier, multiplier, multiplier);

33117.3  Body Motion

however, it may be necessary or beneficial to use a reduced set of features to reconstruct
the full body motion.

17.3.5 � Inverse Kinematic and Combined Approaches
In contrast to processing full body skeleton data for the simulation, it may be necessary
or beneficial to approximate full human body movement from limited, but key features.
Sparseness of tracking points can have different causes, for example: (1) the tracking sys-
tem might not be capable of delivering the desired amount of tracking points; (2) the
experience design requires minimal invasiveness (i.e., a demo application or a clinical
research project); or (3) the application has crucial latency or latency jitter requirements
[Stauffert et al., 2018], attainable only by gaining control over timeliness and performing
the kinematic computation on the client [Roth et al., 2016b].

One way to approximate full human movement is with a set of rigid bodies, each defined
by three or more markers. In this case, the concept of inverse kinematics (IK) comes in
handy, as it allows us to approximate full body movement from fewer (e.g., five or six)
key terminal end-effector positions. In contrast to forward (or direct) kinematics (FK)
which describe the positions of the body parts as a function of joint angles, IK determines
the character’s pose and joint rotations from the positions of the end-effectors through
the kinematic chain, i.e., the constraint locations for bones are specified and solved for
joint angles with respect to the DOF of each joint. In our research, we show that using
reduced (simpler) tracking (see Figure 17.4) can lead to lower end-to-end latency due to
reduced tracking overhead as compared with a full marker set and predefined skeletal
calculations—which usually utilize hybrid solving models based on FK/IK combinations.
Users did not report any significant decrease in the quality of the experience [Roth et al.,
2016b]. Yet, the situation was controlled, and the movement was limited to regular walking.

For real-time avatar animation, the usual practice is to track the hands/wrists, the head,
and the feet as they represent the skeletal end-effectors. However, from experience, we find
that it helps to introduce an additional feature point at the hips, which otherwise has to be
approximated from the limbs, head and arm positions and may not result in satisfying real-
ism for complex movements such as crawling or sitting. This approach can then be seen as
a hybrid approach, but it still reduces potential tracking overhead and therefore calculation
costs on the tracking system side. Alan Zucconi [2017] provides an introduction on how to
use IK and its basic underpinnings. Tolani et al. [2000] summarize traditional mathemati-
cal solutions and present a combined solution. Further readings on numerical and analyti-
cal methods can be found in the fields of game programming and robotics [Buss, 2004].

Sensing solutions from VR devices such as Oculus Touch or the HTC Vive Trackers can
be used to track IK feature points. More often than not, we can use the interfaces provided
with a particular game or simulation engine. Most state-of-the art engines offer sophisti-
cated IK solvers and custom middleware can be included (e.g., IKinema [IKinema Limited,
2017] or FinalIK [roo, 2018]). However, as these functions are mathematical approxima-
tions, different approaches can differ in their reconstruction quality. The code in Listing
17.7 gives a simple example of how to interface a tracking feature’s position and rotation
(transformation goal/target) with Unity’s Mecanim animator for IK-driven animations.
By doing so, hands and feet can be positioned via tracking data and the kinematic model
of Unity’s Mecanim then solves the character’s pose. For further information and other
extended examples see also [NaturalPoint, Inc., 2017; Unity Technologies, 2017a, 2017b].

332 17.  Avatar Embodiment, Behavior Replication, and Kinematics in Virtual Reality

17.4 � Camera Properties, Placement and Calibration

Correct placement and properties of the virtual camera are important for applications
supporting avatar embodiment. The virtual camera transformation should replicate the
physical transformation of the user’s eye positions as accurately as possible. The mis-
placement and wrong interconnection of the virtual camera can lead to strange camera
movements, an increase of potential sickness effects, awkward perspectives, and clipping
artifacts. In usual applications one might set a near frustum plane to an arbitrary level that
fits the simulation requirements. However, in embodied applications, the near frustum
needs to be set to a minimum level in order to not be able to see “through” your body.
This typically prevents collisions of frustum and mesh and thus the user from seeing the
“inside” of an arm or hand that is close to the virtual camera which could lead to a break
in the perception of presence.

The HMD tracking (i.e., a tracking target that closely approximates the user’s eye posi-
tions) or a rigid body tracking (see, e.g., NaturalPoint, Inc. [2017]) typically serve as physi-
cal reference for the virtual camera movement. In some cases, such as full body tracking
or the reduced IK setup used in the example scene in Figure 17.4, the reference tracking
target for the IK model might be the neck bone or the center of the head rather than the
eye positions. In all cases, the virtual camera can be attached as child object of (or trans-
formed with) the respective joint (e.g., the neck) data including a horizontal and vertical
offset accounting for the translational difference between tracking target/joint and the
eye positions to assure the proper rendering of the visual scene according to the physical
movement. This is sometimes referred to as neck model or head-neck model.

In some cases, it can be useful to fuse data of two tracking systems, for example, absolute
full body tracking with relative inertial measurement unit (IMU) tracking. IMU tracking
data is usually available with lower latency and at higher frequency in comparison to abso-
lute optical tracking systems, but can suffer from rotational drift. Therefore, combining
(i.e., fusing) low latency rotational IMU tracking data with absolute positioning of a sec-
ond system (e.g., marker-based full body tracking) can reduce simulator sickness effects.
Logically, both systems have to be calibrated to the same coordinate space. Listing 17.8
shows such a rotational calibration in a camera update. To calibrate both systems, we
provide a method for recalibrating the HMD orientation to match the more accurate
absolute rotational data through the cam.calibration flag. In this simplified example,

Listing 17.7.  Gaps from reduced tracking information can be inferred with Unity’s inverse kinematics
functions. In the example, a humanoid character is coupled to an animator component and a distinct
joint of the virtual character is driven by a transformation object (TransformationGoal).

private Animator animator;
...

// set up the inverse kinematics for one joint
if (TransformationGoal != null) {
 animator.SetIKPositionWeight(AvatarIKGoal.Joint, 1);
 animator.SetIKRotationWeight(AvatarIKGoal.Joint, 1);
 animator.SetIKPosition(AvatarIKGoal.Joint,TransformationGoal.position);
 animator.SetIKRotation(AvatarIKGoal.Joint,TransformationGoal.rotation);
}

33317.4  Camera Properties, Placement and Calibration

we modify the virtual camera’s parent object coordinate system (camContainer) to
represent the transformation required to compensate the accumulated drift in the y (up)
axis. Such calibrations should be performed before a VR session and/or continuously (i.e.,
drift correction) when the influence of the drift makes a longer experience unpleasant.
Using interpolation to transition through the correction prevents abrupt changes of the
camera’s orientation. In cases with a large lag between the input of both tracking systems,
the HMD should be immobile during the initial calibration and more sophisticated pre-
diction methods can be applied. Thus far, we found that calibrating the world-up axis
results in the least perceptual artifacts.

Listing 17.8.  When flagged, calculate and store a gyroscopic drift compensation offset for the camera
view. The calibration modifies the orientation of an (empty) parent (Game)object camContainer, as
some VR integrations may not allow modifying the camera directly or may overwrite the rotational com-
pensation if applied directly to the camera (cam).

// recalibrate the camera (cam) y-rotation to compensate for
// drift if requested
void Calibration() {
 // check whether a calibration was requested
 if (cam.calibrationRequested) {
 // rotate container parented to camera to compensate current drift

Figure 17.4

A prototypical scenario similar to the “Pit” [Meehan, 2001; Roth et al., 2016b] (using passive
haptics on the feet). The user is either equipped with a full body suit and marker set (a), or
a reduced IK rigid body marker set (b). Data from either tracking set is approximated to
skeleton movements (c) via a kinematic model. The screenshots (d) display the respective
first and third person view in the simulation that can be achieved by both approaches but
with different quality and latency properties.

334 17.  Avatar Embodiment, Behavior Replication, and Kinematics in Virtual Reality

17.5 � Facial Expression

Facial expressions have tremendous impact on our social interactions and the way we
perceive others. Especially important in the detection of affective states, facial expres-
sions as a nonverbal communication channel contribute to understanding others’ inten-
tions and their emotions [Roth et al., 2016a]. For embodied VR applications the replication
of facial expressions to virtual characters makes sense when there is visual feedback of
the self-representation (i.e., in the form of a virtual mirror) or in the case of multi-user
environments.

In general, two major approaches to track and animate facial expressions can be distin-
guished ([Parke and Waters, 2008] is a good overview on the topic). First, a facial skeleton
can be defined and transformed according to physical markers attached to the user (e.g.,
passive optical markers) or virtual markers that are positioned using tracking software
(e.g., computer vision-based approaches). Second, and more widely used for real-time pur-
poses, facial blendshapes (predefined morph targets) can be defined as morph properties
of the avatar’s face and deformed according to tracking software inputs [Orvalho et al.,
2012]. Both animation methods have benefits and limitations.

Using facial skeletons, the limits in accurate weighting and skinning sometimes
result in unnatural behaviors. Facial blendshapes seem, at first, to be limited in degrees
of freedom, but weighted combinations of blendshapes can have numerous dimensions.
However, the algorithmic models can break when too many blendshapes are evoked
in combination. Recent state of the art computer vision and machine learning algo-
rithms allow for non-intrusive RGB or RGBD based real-time tracking of facial expres-
sions [Weise et al., 2011]. Although these performance captures are quite robust in
their replication accuracy, latencies often go beyond 150 ms. Current sensor prototypes
compatible with HMDs track lower facial expressions [Yu and Park, 2016; BinaryVR,
2017], including EMG sensors integrated into the HMD casing [Mavridou et al., 2017].
Research also found that a combination of sensory input (e.g., EMG or strain sensors
plus RGBD cameras) mounted within an HMD can lead to good results while covering
the full facial behavior [Li et al., 2015]. Treating the avatar as a display medium, repli-
cating blendshapes for facial animation necessarily requires the target avatar to either
directly support the set of blendshapes delivered as data from the tracking system, or
a related set that can be retargeted (mapping similar source and target blendshapes) by
appropriate weighting. Listing 17.9 shows an exemplary blendshape based implementa-
tion using influence weights. To retarget a larger set of facial blendshapes, lookup tables
can be used [Roth et al., 2017b].

 camContainer.rotation =
 Quaternion.AngleAxis(headBone.eulerAngles.y, world.up)
 * Quaternion.Inverse(Quaternion.AngleAxis(cam.localRotation.eulerAngles.y, world.up));

 // reset calibration request
 cam.calibrationRequested = false;
 }
}

33517.6  Gaze

17.6 � Gaze

Human gaze is especially important in social interactions [Kleinke, 1986] (e.g., for signal-
ing attention and for eye contact) and can increase behavioral realism to an even higher
degree. Eye trackers (or gaze trackers), which were previously expensive investments have
become available in low cost versions, first as desktop sensors and finally as HMD inte-
grations (e.g., [Tobii AB, 2017; Pupil Labs, 2018; or FOVE, Inc., 2017]). Most eye track-
ers emit infrared light (or an infrared light pattern) which in turn delivers lighting for
images captured by one or two cameras. Using image processing techniques an (auto-)
calibrated system usually delivers virtual gaze targets (2D pixel values of the focus point
on the screen) and/or eyeball position and rotation, and/or eye/head position and rota-
tion. Using head or eye positions and gaze targets we can derive the direction the user is
looking at in the scene, by constructing a ray into the scene originating from the center
of the eyes.

With the position of the center between both eyes (e) and a direction (d


) we can form
the ray = + ⋅r e t d 



. The tracker may already deliver these values. If not, they have to be
derived. If the position of the center of the eyes is unknown, it can be approximated by
using the head position with an offset. If the tracker delivers a gaze target, this has to be
brought into 3D space by applying knowledge about the depth of the image plane relative
to the user. With a 3D gaze target (g) the direction can be derived as −g e  . In turn, one
can infer the avatar’s eye rotations by utilizing the gaze target screen values (or respec-
tively viewport values) and the user’s head rotation by constructing a rotation according
to these values with respect to the virtual camera’s field of view and camera’s aspect ratio.
Multiplying this rotation with the inverse head rotation will then result in a local replica-
tion of the physical gaze behavior to the avatar’s eye movements.

To increase smoothness, filters can be applied. Eye trackers with low quality might
deliver some arbitrary null value if the user is not detected by the tracker. One way of
coping with these null values is to simply use an upper or lower threshold for filtering

Listing 17.9.  Facial blendshapes can be modified by a predefined weighted sum of one or more source
blendshapes.

MeshRenderer avatarMesh;
BlendshapeStream float[] facialExpressionWeights;

...

// updates the avatar’s facial blendshapes
void facialExpressionUpdate(float[] blendshapeWeights) {

 // retarget blendshape 1:1 match
 // e.g., source is ‘smile’ and target is ‘smile’
 avatarMesh.SetBlendshapeValue(1, blendshapeSourceData[1] * blendshapeWeights[1]);

 // retarget blendshape 1:many match
 // e.g., source is ‘smile’ and targets are ‘smileLeft’ + ‘smileRight’
 avatarMesh.SetBlendshapeValue(2, blendshapeSourceData[2] * blendshapeWeights[2]);
 avatarMesh.SetBlendshapeValue(3, blendshapeSourceData[3] * blendshapeWeights[3]);
}

336 17.  Avatar Embodiment, Behavior Replication, and Kinematics in Virtual Reality

(else, take the old value), or to identify the null value and implement the necessary logic.
In social scenarios, social gaze models could be one option to cope for disruptions in the
transmission (Figure 17.5) [Roth et al., 2018b].

17.7 � Conclusion

In this chapter, we covered the principles of avatar embodiment and behavior repro-
duction for VR simulations. Tracking techniques and implementations for replicating
behaviors from body motion, facial expression, and gaze to avatars have been discussed.
Using this knowledge, developers can include embodiment in their simulations to evoke
illusions of virtual body ownership or increase the level of social behaviors transmitted.
Tracking devices for real-time behavior replication have gained interest and many sen-
sors as well as integrations for real-time behavioral replication are becoming accessible.
Thus, one can expect further improvements in speed and accuracy, and behavioral realism

Figure 17.5

(a) Avatars following gaze targets accurately rotating their eyeballs (avatars by faceshift
AG/infinite 3D head scan by Lee Perry-Smith). (b) HMD-based eye-tracking using a
FOVE device. To prevent artefacts, the maximal rotation can be restricted (right exam-
ple). Other refinements include the approximation of coupled behavior of eyeball and
eyelids.

337Acknowledgements

(e.g., ongoing approaches to include finger movements), especially with the prominence of
machine learning in current developments (Figure 17.6).

When working with motion tracking or on applications that evoke embodiment, we
sometimes find ourselves confronted with bottlenecks that result from blackboxed inte-
grations. Developers should be aware of system specifications and plan their pipelines and
component combinations. Being constrained to the engine backend can have benefits, but
restricts control over the pipeline.

The next generations of HMDs will most likely be equipped with integrated sen-
sors for facial expressions and eye-tracking. Computer vision-based machine learning
approaches to motion capturing and reconstruction will become more applicable for
embodiment simulations. In the long run, we might expect brain-computer interfaces
as sensors of intended behaviors [Slater, 2014]—short-cutting the loop between intention
and motor activation. Our virtual bodies might be modified by additional limbs, e.g.,
to increase efficiency [Won et al., 2015]. Finally, artificially modified [Roth et al., 2015,
2018d] or visually transformed [Roth et al., 2018a] behaviors could drastically change
communication paradigms in VR. Ethical discussions on transmission, data security,
and modification need to be part of future developments. All together, these examples
indicate the enormous potential of Avatar Embodiment, Behavior Replication, and
Kinematics in Virtual Realities.

Acknowledgements

We thank Gary Bente, Julia Büser, David Fernes, Dmitri Galakhov, Peter Kullmann,
David Mal, Christian Felix Purps, Felix Stetter, Sebastian von Mammen, Kristoffer
Waldow, as well as Case Bowman & François Asseman (NaturalPoint/OptiTrack), Thibaut
Weise (faceshift/Apple), and Kenneth Ryu (binaryVR) for their help, support and feed-
back during projects, developments and studies that led to the conclusions and knowledge
described in this summary.

Figure 17.6

Full replication of body movement, lower facial expressions, and gaze behavior to a virtual
avatar.

338 17.  Avatar Embodiment, Behavior Replication, and Kinematics in Virtual Reality

References

[Achenbach et al., 2017]

Achenbach, Jascha, Thomas Waltemate, Marc Erich Latoschik, and Mario Botsch
(2017). Fast generation of realistic virtual humans. In Proceedings of the 23rd ACM
Symposium on Virtual Reality Software and Technology, page 12. ACM, Gothenburg,
Sweden.

[Adobe, 2017]

Adobe (2017). Adobe Fuse, Adobe Systems Software Ireland Ltd. http://adobe.com/
products/fuse.html. Accessed: 2017-09-25.

[Argelaguet et al., 2016]

Argelaguet, Ferran, Ludovic Hoyet, Michael Trico, and Anatole Lécuyer (2016).
The role of interaction in virtual embodiment: Effects of the virtual hand represen-
tation. In Proceedings of Virtual Reality (VR), pages 3–10. IEEE, Greenville, South
Carolina.

[Autodesk, Inc., 2014]

Autodesk, Inc. (2014). Autodesk Character Generator. https://charactergenerator.autodesk.
com/. Accessed: 2017-09-25.

[Bailenson and Blascovich, 2004]

Bailenson, Jeremy N., and Jim Blascovich (2004). Avatars. In Encyclopedia of Human-
Computer Interaction. Berkshire Publishing Group: Barrington, MA.

[Bente et al., 2008]

Bente, Gary, Sabine Rüggenberg, Nicole C. Krämer, and Felix Eschenburg (2008). Avatar-
mediated networking: Increasing social presence and interpersonal trust in net-
based collaborations. Human Communication Research, 34(2): 287–318.

[BinaryVR, 2017]

BinaryVR (2017). BinaryVR—BinaryVR Dev Kit V1. https://medium.com/@hyprsense/
releasing-vr-sdk-1-1-2-today-6bf99f57ccb7.

[Biocca, 1997]

Biocca, Frank (1997). The cyborg’s dilemma: Progressive embodiment in virtual environ-
ments. Journal of Computer-Mediated Communication, 3(2).

http://adobe.com
http://adobe.com
https://charactergenerator.autodesk.com
https://charactergenerator.autodesk.com
https://medium.com
https://medium.com

339References

[Brekel, 2008]

Brekel (2008). http://brekel.com/brekel-kinect-pro-body/. Accessed: 2017-09-25.

[Burgoon et al., 2011]

Burgoon, Judee K., Laura K. Guerrero, and Valerie Manusov (2011). Nonverbal signals.
The SAGE Handbook of Interpersonal Communication. In Knapp, M. L., Daly, J. A.,
editors, SAGE: London.

[Buss, 2004]

Buss, Samuel R. (2004). Introduction to inverse kinematics with Jacobian transpose,
pseudoinverse and damped least squares methods. IEEE Journal of Robotics and
Automation, 17(1–19): 16.

[Cordar et al., 2019]

Cordar, Andrew, Yao Heng, Fatemeh Tavassoli, Jeffrey Wood, and Benjamin Lok (2019).
Making virtual reality social: Getting virtual humans into your virtual environ-
ment. In Sherman, W. R., editor, VR Developer Gems, Chapter 15. A K Peters/CRC
Press, Boca Raton, Florida.

[Epic Games, Inc., 2017]

Epic Games, Inc. (2017). Animation editors. https://docs.unrealengine.com/latest/INT/
Engine/Animation/Persona/. Accessed: 2017-09-26.

[FOVE, Inc., 2017]

FOVE, Inc. (2017). FOVE eye tracking virtual reality headset. https://getfove.com/.
Accessed: 2017-09-26.

[Friston and Steed, 2014]

Friston, Sebastian, and Anthony Steed (2014). Measuring latency in virtual environments.
IEEE Transactions on Visualization and Computer Graphics, 20(4): 616–625.

[Human Animation Working Group et al., 2006]

Human Animation Working Group et al. (2006). Information Technology Computer
Graphics and Image Processing Humanoid Animation (h-anim). ISO/IEC FCD
19774: 200x. http://www.web3d.org/documents/specifications/197741/V2.0/HAnim/
HAnimArchitecture.html.

[IKinema Limited, 2017]

IKinema Limited (2017). IKinema website. https://ikinema.com/. Accessed: 2017-10-20.

http://brekel.com
https://docs.unrealengine.com
https://docs.unrealengine.com
https://getfove.com
http://www.web3d.org
http://www.web3d.org
https://ikinema.com

340 17.  Avatar Embodiment, Behavior Replication, and Kinematics in Virtual Reality

[Joessu et al., 2017]

Joessu, KitatusStudios, and SNDRKeene (2017). Transitioning from Unity to UE4—Epic
Wiki. https://wiki.unrealengine.com/Transitioning_from_Unity_to_UE4

[Kleinke, 1986]

Kleinke, Chris L. (1986). Gaze and eye contact: A research review. Psychological Bulletin,
100(1): 78–100.

[Kuntz, 2015]

Kuntz, Sébastien (2015). MiddleVR a generic VR toolbox. In Proceedings of Virtual Reality
(VR), pages 391–392. IEEE, Arles, France. Unityplugin at http://middlevr.com/
middlevr-for-unity/.

[Latoschik et al., 2016]

Latoschik, Mark Erich, Jean-Luc Lugrin, and Daniel Roth (2016). FakeMi: A fake mirror
system for avatar embodiment studies. In Proceedings of the 22nd ACM Conference
on Virtual Reality Software and Technology, pages 73–76. ACM, Munich, Germany.

[Latoschik et al., 2017]

Latoschik, Marc Erich, Daniel Roth, Dominik Gall, Jascha Achenbach, Thomas
Waltemate, and Mario Botsch (2017). The effect of avatar realism in immersive
social virtual realities. In Proceedings of the 23rd ACM Symposium on Virtual
Reality Software and Technology, page 39. ACM, Gothenburg, Sweden.

[LaViola et al., 2017]

LaViola Jr., Joseph J., Ernst Kruijff, Ryan P. McMahan, Doug Bowman, and Ivan
P. Poupyrev (2017). 3D User Interfaces: Theory and Practice. Addison-Wesley
Professional: Boston, MA.

[Li et al., 2015]

Li, Hao, Laura Trutoiu, Kyle Olszewski, Lingyu Wei, Tristan Trutna, Pei-Lun Hsieh, Aaron
Nicholls, and Chongyang Ma (2015). Facial performance sensing head-mounted dis-
play. ACM Transactions on Graphics (TOG), 34(4): 47.

[Lincoln et al., 2016]

Lincoln, Peter, Alex Blate, Montek Singh, Turner Whitted, Andrei State, Anselmo Lastra,
and Henry Fuchs (2016). From motion to photons in 80 microseconds: Towards min-
imal latency for virtual and augmented reality. IEEE Transactions on Visualization
and Computer Graphics, 22(4): 1367–1376.

https://wiki.unrealengine.com
http://middlevr.com
http://middlevr.com

341References

[Lugrin et al., 2015]

Lugrin, Jean-Luc, Johanna Latt, and Marc Erich Latoschik (2015). Avatar anthropomor-
phism and illusion of body ownership in VR. In Proceedings of Virtual Reality (VR),
pages 229–230. IEEE, Arles, France.

[MakeHuman, 2016]

MakeHuman (2016). MakeHuman. http://makehuman.org/. Accessed: 2017-09-25.

[Maselli and Slater, 2013]

Maselli, Antonella, and Mel Slater (2013). The building blocks of the full body ownership
illusion. Frontiers in Human Neuroscience, 7: 83.

[Mavridou et al., 2017]

Mavridou, Ifigeneia, James T. McGhee, Mahyar Hamedi, Moshen Fatoorechi, Andrew
Cleal, Emili Balaguer-Ballester, Ellen Seiss, G. Cox, and Charles Nduka (2017).
FACETEQ: A novel platform for measuring emotion in VR. In Proceedings of the
Virtual Reality International Conference-Laval Virtual, page 9. ACM, Laval, France.

[Meehan, 2001]

Meehan, Michael (2001). Physiological reaction as an objective measure of presence in
virtual environments. PhD thesis, University of North Carolina at Chapel Hill.

[NaturalPoint, Inc., 2017]

NaturalPoint, Inc. (2017). OptiTrack manual—Unity plugin. http://v20.wiki.optitrack.
com/index.php?title=OptiTrack_Unity_Plugin. Accessed: 2017-10-20.

[NaturalPoint, Inc., 2018]

NaturalPoint, Inc. (2018). OptiTrack Unity Integration. http://optitrack.com/unity-
integration/index.html. Accessed: 2017-10-20.

[Nowak and Biocca, 2003]

Nowak, Kristine L., and Frank Biocca (2003). The effect of the agency and anthropomor-
phism users’ sense of telepresence, copresence, and social presence in virtual envi-
ronments. Presence, 12(5): 481–494.

[Occipital, Inc., 2017]

Occipital, Inc. (2017). OpenNI. https://structure.io/openni. Accessed: 2017-09-25.

http://makehuman.org
http://v20.wiki.optitrack.com
http://v20.wiki.optitrack.com
http://optitrack.com
http://optitrack.com
https://structure.io

342 17.  Avatar Embodiment, Behavior Replication, and Kinematics in Virtual Reality

[Orvalho et al., 2012]

Orvalho, Verónica, Pedro Bastos, Frederic I. Parke, Bruno Oliveira, and Xenxo Alvarez
(2012). A facial rigging survey. In Cani, M., Ganovelli, F., editors, Eurographics
(STARs): 183–204.

[Parent, 2012]

Parent, Rick (2012). Computer Animation: Algorithms and Techniques. Elsevier/Morgan
Kaufmann Publishers, Waltham, MA.

[Parke and Waters, 2008]

Parke, Frederic I., and Keith Waters (2008). Computer Facial Animation. CRC Press, Boca
Raton, Florida.

[Pupil Labs, 2018]

Pupil Labs (2018). Pupil Labs. https://pupil-labs.com/.

[RootMotion, 2018]

RootMotion (2018). Final IK—RootMotion. http://www.root-motion.com/final-ik.html

[Roth et al., 2015]

Roth, Daniel, Marc Erich Latoschik, Kai Vogeley, and Gary Bente (2015). Hybrid avatar-
agent technology—A conceptual step towards mediated “social” virtual reality and
its respective challenges. i-com, 14(2): 107–114.

[Roth, 2016]

Roth, Daniel (2016). The study of interpersonal communication using virtual environ-
ments and digital animation: Approaches and methodologies. In Presentation on the
66th Annual Conference of the International Communication Association (ICA), June
9–13, Fukuoka, Japan.

[Roth et al., 2016a]

Roth, Daniel, Carola Bloch, Anne-Kathrin Wilbers, Marc Erich Latoschik, Kai Kaspar,
and Gary Bente (2016). What you see is what you get: Channel dominance in the
decoding of affective nonverbal behavior displayed by avatars. In Presentation on the
66th Annual Conference of the International Communication Association (ICA), June
9–13, Fukuoka, Japan.

https://pupil-labs.com
http://www.root-motion.com

343References

[Roth et al., 2016b]

Roth, Daniel, Jean-Luc Lugrin, Julia Büser, Gary Bente, Arnulph Fuhrmann, and Marc
Erich Latoschik (2016). A simplified inverse kinematic approach for embodied vr
applications. In Proceedings of Virtual Reality (VR), pages 275–276. IEEE, Greenville,
South Carolina.

[Roth et al., 2016c]

Roth, Daniel, Jean-Luc Lugrin, Dmitri Galakhov, Arvid Hofmann, Gary Bente, Marc
Erich Latoschik, and Arnulph Fuhrmann (2016). Avatar realism and social interac-
tion quality in virtual reality. In Proceedings of Virtual Reality (VR), pages 277–278.
IEEE, Greenville, South Carolina.

[Roth et al., 2017a]

Roth, Daniel, Jean-Luc Lugrin, Marc Erich Latoschik, and Stephan Huber (2017). Alpha
IVBO-construction of a scale to measure the illusion of virtual body ownership. In
Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in
Computing Systems, pages 2875–2883. ACM, Denver, Colorado.

[Roth et al., 2017b]

Roth, Daniel, Kristoffer Waldow, Marc Erich Latoschik, Arnulph Fuhrmann, and Gary
Bente (2017). Socially immersive avatar-based communication. In Proceedings of
Virtual Reality (VR), pages 259–260. IEEE, Los Angeles, California.

[Roth et al., 2018a]

Roth, Daniel, Constantin Kleinbeck, Tobias Feigl, Christopher Mutschler, and Marc Erich
Latoschik (2018). Beyond replication: Augmenting social behaviors in multi-user
virtual realities. In Proceedings of the 25th IEEE Virtual Reality (VR) Conference,
Reutlingen, Germany.

[Roth et al., 2018b]

Roth, Daniel, Peter Kullmann, Gary Bente, Dominik Gall, and Marc Erich Latoschik
(2018). Effects of hybrid and synthetic social gaze in avatar-mediated interactions.
In Proceedings of the 17th IEEE International Symposium on Mixed and Augmented
Reality (ISMAR) Adjunct. IEEE, ACM, Munich, Germany.

[Roth et al., 2018c]

Roth, Daniel, Jean-Luc Lugrin, Sebastian von Mammen, and Marc Erich Latoschik (2018).
Controllers & inputs: Masters of puppets. In Banks, J., editor, Avatar, Assembled—The
Social and Technical Anatomy of Digital Bodies, 106, Digital Formations, 281–290.
Peter Lang Publishing, Inc.: New York.

344 17.  Avatar Embodiment, Behavior Replication, and Kinematics in Virtual Reality

[Roth et al., 2018d]

Roth, Daniel, David Mal, Christian Felix Purps, Peter Kullmann, and Marc Erich
Latoschik (2018). Injecting nonverbal mimicry with hybrid avatar-agent technolo-
gies: A naïve approach. In Proceedings of the 6th ACM Symposium on Spatial User
Interaction (SUI). ACM, Berlin, Germany.

[Sherman and Craig, 2002]

Sherman, William R. and Alan B. Craig (2002). Understanding Virtual Reality: Interface,
Application, and Design. Elsevier/Morgan Kaufmann: Burlington, MA.

[Sherman and Craig, 2018]

Sherman, William R. and Craig (2018). Understanding Virtual Reality: Interface, Application,
and Design, 2nd edition. Elsevier/Morgan Kaufmann: Amsterdam, the Netherlands.

[Slater, 2014]

Slater, Mel (2014). Grand challenges in virtual environments. Frontiers in Robotics and AI, 1(3).

[Slater et al., 2009]

Slater, Mel, Daniel Pérez-Marcos, H. Henrik Ehrsson, and Maria V. Sanchez-Vives (2009).
Inducing illusory ownership of a virtual body. Frontiers in Neuroscience, 3(2): 214.

[Spanlang et al., 2014]

Spanlang, Bernhard, Jean-Marie Normand, David Borland, Konstantina Kilteni, Elias
Giannopoulos, Ausiàs Pomés, Mar González-Franco, Daniel Perez-Marcos, Jorge
Arroyo-Palacios, Xavi Navarro Muncunill, and Mel Slater (2014). How to build an
embodiment lab: Achieving body representation illusions in virtual reality. Frontiers
in Robotics and AI, 1: 9.

[Stauffert et al., 2018]

Stauffert, Jan-Philipp, Florian Niebling, and Marc Erich Latoschik (2018). Effects of latency
jitter on simulator sickness in a search task. In Proceedings of the 25th IEEE Virtual
Reality (VR) Conference, Reutlingen, Germany.

[Stoll et al., 2011]

Stoll, Carsten, Nils Hasler, Juergen Gall, Hans-Peter Seidel, and Christian Theobalt
(2011). Fast articulated motion tracking using a sums of Gaussians body model. In
Proceedings of Computer Vision (ICCV), 2011 IEEE International Conference, pages
951–958. IEEE, Barcelona, Spain.

345References

[Suma et al., 2011a]

Suma, Evan A., Belinda Lange, Albert Skip Rizzo, David M. Krum, and Mark Bolas (2011).
FAAST: The Flexible Action and Articulated Skeleton Toolkit. In Proceedings of
Virtual Reality Conference (VR), pages 247–248. IEEE, Singapore.

[Suma et al., 2011b]

Suma, Evan A., Belinda Lange, Skip Rizzo, David Krum, and Mark Bolas (2011). Flexible
Action and Articulated Skeleton Toolkit (FAAST). https://projects.ict.usc.edu/mxr/
faast. Accessed: 2017-07-18.

[Takala and Heiskanen, 2018]

Takala, Tuukka M., and Heikki Heiskanen (2018). Auto-scaled full body avatars for vir-
tual reality: Facilitating interactive virtual body modification. In Proceedings of the
25th IEEE Virtual Reality (VR) Conference, Reutlingen, Germany.

[Taylor et al., 2001]

Taylor II, Russell M., Thomas C. Hudson, Adam Seeger, Hans Weber, Jeffrey Juliano,
and Aron T. Helser (2001). VRPN: A device-independent, network-transparent VR
peripheral system. In Proceedings of the ACM Smposium on Virtual Reality Software
and Technology, pages 55–61. ACM, Banff, Canada. Available at https://github.com/
vrpn/vrpn.

[Tobii AB, 2017]

Tobii AB (2017). Tobii eye tracking in virtual reality. https://tobii.com/tech/products/vr/.
Accessed: 2017-09-26.

[Tolani et al., 2000]

Tolani, Deepak, Ambarish Goswami, and Norman I. Badler (2000). Real-time inverse kine-
matics techniques for anthropomorphic limbs. Graphical Models, 62(5): 353–388.

[Unity Technologies, 2014]

Unity Technologies (2014). Mecanim animation system. https://docs.unity3d.com/462/
Documentation/Manual/MecanimAnimationSystem.html. Accessed: 2017-09-26.

[Unity Technologies, 2017a]

Unity Technologies (2017). Unity user manual—Animation system overview. https://docs.
unity3d.com/Manual/AnimationOverview.html. Accessed: 2017-10-20.

https://projects.ict.usc.edu
https://projects.ict.usc.edu
https://github.com
https://github.com
https://tobii.com
https://docs.unity3d.com
https://docs.unity3d.com
https://docs.unity3d.com
https://docs.unity3d.com

346 17.  Avatar Embodiment, Behavior Replication, and Kinematics in Virtual Reality

[Unity Technologies, 2017b]

Unity Technologies (2017). Unity user manual—Inverse kinematics. https://docs.unity3d.
com/Manual/InverseKinematics.html. Accessed: 2017-10-20.

[Waltemate et al., 2018]

Waltemate, Thomas, Dominik Gall, Daniel Roth, Mario Botsch, and Marc Erich Latoschik
(2018). The impact of avatar personalization and immersion on virtual body own-
ership, presence, and emotional response. IEEE Transactions on Visualization and
Computer Graphics, 24(4): 1643–1652.

[Weise et al., 2011]

Weise, Thibaut, Sofien Bouaziz, Hao Li, and Mark Pauly (2011). Realtime performance-
based facial animation. In Proceedings of ACM SIGGRAPH 2011, pages 77: 1–77:10,
New York. ACM.

[Won et al., 2015]

Won, Andrea Stevenson, Jeremy N. Bailenson, and Jaron Lanier (2015). Homuncular
flexibility: The human ability to inhabit nonhuman avatars. In Scott, R. A.,
Buchmann, M. C., editors, Emerging Trends in the Social and Behavioral Sciences: An
Interdisciplinary, Searchable, and Linkable Resource.

[Yee and Bailenson, 2006]

Yee, Nick, and Jeremy N. Bailenson (2006). Walk a mile in digital shoes: The impact of
embodied perspective-taking on the reduction of negative stereotyping in immer-
sive virtual environments. Proceedings of PRESENCE: The 9th Annual International
Workshop on Presence, August 24–26, Cleveland, OH.

[Yee and Bailenson, 2007]

Yee, Nick, and Jeremy Bailenson (2007). The Proteus effect: The effect of transformed self-
representation on behavior. Human Communication Research, 33(3): 271–290.

[Yu and Park, 2016]

Yu, Jihun, and Jungwoon Park (2016). Real-time facial tracking in virtual reality. In
Proceedings of SIGGRAPH ASIA 2016 VR Showcase, SA ’16, pages 4: 1–4, New York.
ACM.

[Zucconi, 2017]

Zucconi, Alan. (2017). FOVE Eye Tracking Virtual Reality Headset. http://alanzucconi.
com/2017/04/10/robotic-arms/. Accessed: 2017-09-26.

https://docs.unity3d.com
https://docs.unity3d.com
http://alanzucconi.com
http://alanzucconi.com

Section V
Third Person

POV Cameras

http://www.taylorandfrancis.com

349

18
Recording and Replaying
Virtual Environments for
Development and Diagnosis
Anthony Steed, Mingqian Wang, and Jason Drummond
University College London

18.1 � Overview

The user of a virtual reality experience has a lot of freedom to move and interact. As a
developer, or experimenter, understanding user experience can be very hard. From a video
of the session it can be difficult to determine what happened. Sometimes you want to put
yourself in the shoes of the user and ask why something specific happened, or why the user
chose to make a particular action.

In attempting to develop and debug our own virtual reality applications, we have found
that recording and replaying elements of the virtual environment can be very useful. In
our experimental work, we have often used recordings for later analysis. For example,
checking whether users witnessed a particular event occur, or to count collisions between
the user and obstacles in an environment. Recording and replaying also has uses in creat-
ing demonstrations or tutorials for software, or simply for creating new content to be used
in animations.

We have implemented or used many variants of record and replay over the years; from
systems that could completely record the application state and replay it, through to cus-
tom mechanisms that would record only key information. The former is attractive for
low-level debugging, but it is hard to engineer and can generate extremely large log files.

18.1	 �Overview
18.2	 �Design
18.3	 �Examples

18.4	 �Discussion
18.5	 �Conclusions

350 18.  Recording and Replaying Virtual Environments for Development and Diagnosis

Not all software is amenable to this unless you have the complete source code. The latter
can fail to capture all the details of the application, but it is very quick to implement. This
latter variant can also easily use file formats that can be imported into other software for
inspection and analysis.

In this chapter we outline some simple tools for recording and replaying on the Unity
platform. We support basic recording to comma-separated value (CSV) files which can
be easily loaded in Excel or Matlab. We illustrate the use of the tools with two examples.
The first is recording of the user’s behavior in a simple scene with a puzzle. The operator
can record the movement of a user and then play this back. During the playback they see a
simple avatar representation of the previous user and can experience this from a first per-
son point of view. This allows them to see what the user was doing from an immersive per-
spective and potentially generate hypotheses about how the user was tackling the puzzle.
The second example is recording of a skeletal animation. In this example the operator gets
some simple tools to edit recordings of the motion. Although not a fully featured motion
editor, this example illustrates the main principles of recording an animation for content
production.

18.2 � Design

18.2.1 � Overview
In this chapter we focus on recording movement of objects in the scene. The goal is to pro-
vide simple scripts that are easy to extend to support more complex use cases. Many use
cases will need other variables or properties to be recorded and replayed, but these can be
added in a straight-forward manner, see Section 18.4.1.

A secondary goal is to output the recording files into a format re-usable by other soft-
ware. Thus, we use a very simple file format using comma-separated values, which is very
easy to parse by other tools. For example, one common use is simply to load them into
Excel to plot user trajectories around the space.

18.2.2 � Recording Types and Rate
A key question is what to record and how often. Frequently we want to reconstruct what
users did, and what they saw, because we want to reconstruct the users’ experiences.
However, we also might want to recreate the complete state of the environment. For
example, we might want to make a world persistent, so that it is available for users to re-
experience later, see Section 18.4.2. Logging systems often rely on serialisation procedures;
that is, all objects that make up the scene are asked to record their state to disk. This tech-
nique is common across many types of systems and is a common functionality in many
programming languages. However, it generates large files that have state that is usually
difficult to re-use in other applications. Given the high update rates of modern virtual
reality systems, this type of approach needs careful implementation so that the system
doesn’t become slower simply because of the repeated serialisation.

Therefore, a key decision is to focus on extracting only data that we want to record and
replay from the scene. The code we demonstrate focuses on recording and replaying the
positions of objects. In some ways, it is similar to the motion capture format Biovision
Hierarchy (BVH), which is commonly used to store movement animations. In fact, one
use we will demonstrate is the simple recording and replaying of files that would be easy to

35118.2  Design

edit into a BVH-compatible format. A key difference is that BVH focuses on animation of
skeletal rigs, whereas we need a format that can cope with arbitrary sets of moving objects
including skeletal rigs (i.e., mostly animated by rotations of joints) and entities moving in
six degrees of freedom.

In this chapter our demonstrations focus on user or character motion. A simple exten-
sion could record other values that are necessary to recreate the state of the application,
such as floating point values that are needed by shaders or flags that indicate the state of
objects. If scene behavior is non-deterministic or dependent on the full history of user
behavior (e.g., imagine a game level with multiple moving agents that are stalking the
user), then we would need to be mindful of what to record in order to reconstruct the
appearance of the scene.

Having settled on what information to record, a second issue is how often to record
information. Given that current consumer hardware has a display rate of around 90Hz,
we record at the display rate. Replaying at faster or slower speeds is relatively simple for
motion behaviors, but leads to problems with other values where the results of an inter-
polated value might not make sense. For example, a binary flag can’t be interpolated, but
the game state might not make sense if an interpolated frame is added for a motion, but
doesn’t exist for the flag (e.g. consider a flag that occurs when a moving object hits another
object). Issues like this are why completely general record and replay systems are hard to
build.

18.2.3 � Recorder Script
The key to our implementation is the Recorder script which saves motion state to a log
file. Initially, we will not worry about the user interface for recording. See Section 18.3 for
examples that use different interface types.

In Listing 18.1 we show the overall form of the script. The script has an array of ref-
erence to Transform components. The first logPositionRotationObjects is an
array of single objects for which the script will record the full position and rotation each
frame. The second logRotationTreeObjects is an array of the roots of sub-graphs
for which the script will record the rotation of each child. Rotation-only sub-graphs are
very commonly used in skeletal animation. If the animation includes translations and
rotations, then each member of the sub-tree would need to be added to the logPosi-
tionRotationObjects independently.

The script is quite naive in the way that it records to the file with the given name (file-
Name). Everything happens inside the standard Unity Update() function. Each time
recording mode is activated by setting the public flag recording it calls initialize-
File which creates a header line on the file (Listing 18.1), and then it writes the current
state of the specified objects to the file.

Listing 18.1.  The declaration of the Recorder class, the main public variables and the per-frame update
function.

// Recorder.cs
// Recorder class: starts and stops the recording process
// Add script to an empty gameObject

352 18.  Recording and Replaying Virtual Environments for Development and Diagnosis

The initializeFile and writeDataToFile functions are defined in Listing
18.2. The function initializeFile starts to build a header line for the log file with the
current time and a frame count, then calls helper functions to append the relevant details
from the lists of objects that are slated for storage.

Similarly, writeDataToFile writes the time and frame count, and calls helper func-
tions for the lists of objects.

Listing 18.2.  Writer methods for the data logging.

 // Write a line to the file that indicates the values for each “column” of data.
 private void initializeFile(string fileName) {
 StringBuilder headerBuilder = new StringBuilder();
 headerBuilder.Append("Time" + "," + "FrameCount" + ",");
 foreach (Transform t in logPositionRotationObjects) {
 appendPositionRotationHeader(t, headerBuilder);
 }
 foreach (Transform t in logRotationTreeObjects) {
 appendRotationTreeHeader(t, headerBuilder);
 }
 File.AppendAllText(fileName, headerBuilder.ToString(0, headerBuilder.Length – 1));
 }

using System.IO;
using System.Text;

public class Recorder : MonoBehaviour {

 public Transform[] logPositionRotationObjects; // objects to record full transforms
 public Transform[] logRotationTreeObjects; // sub-graph nodes recording rotations
 public string fileName; // file to store recorded log data
 public bool recording = false; // set this to true to begin recording

 private bool isInitalised = false;
 private int frameCount = 0;
 private float startRecordingTime = 0.0f;

 void Update() {
 // Change recording state
 if (recording && !isInitalised) {
 Debug.Log("Start_recording");
 startRecordingTime = Time.unscaledTime;
 initializeFile(fileName);
 isInitalised = true;
 }

 if (!recording && isInitalised) {
 Debug.Log("recording_finished");
 isInitalised = false;
 frameCount = 0;
 }

 if (isInitalised) {
 frameCount++;
 writeDataToFile(fileName);
 }
 }

35318.2  Design

Listing 18.3 shows the helper functions. The function appendPositionRota-
tionHeader appends a header showing the six values that will be logged. The associ-
ated function appendPositionRotationData outputs those values. The function
appendRotationTreeHeader does a recursive output of the names and three rota-
tion values for the tree. The associated function appendRotationTreeData outputs
the rotation values in the same order.

 // Write time & frame count followed by transform data in arrays
 private void writeDataToFile(string fileName) {
 StringBuilder dataBuilder = new StringBuilder();
 dataBuilder.Append("\n" + (Time.unscaledTime – startRecordingTime) + "," + frameCount +
",");
 foreach (Transform t in logPositionRotationObjects) {
 appendPositionRotationData(t, dataBuilder);
 }
 foreach (Transform t in logRotationTreeObjects) {
 appendRotationTreeData(t, dataBuilder);
 }
 File.AppendAllText(fileName, dataBuilder.ToString(0, dataBuilder.Length – 1));
 }

Listing 18.3.  Helper methods for creating the data log strings.

 // Appends the name of a single position and rotation variable to a string.
 private void appendPositionRotationHeader(Transform rootnode, StringBuilder stringbuild) {
 stringbuild.Append(rootnode.name + "PosX" + "," + rootnode.name + "PosY" + "," +
 rootnode.name + "PosZ" + "," + rootnode.name + "RotX" + "," +
 rootnode.name + "RotY" + "," + rootnode.name + "RotZ" + ",");
 }

 // Appends the position and rotation values to a string.
 private void appendPositionRotationData(Transform rootnode, StringBuilder stringbuild) {
 stringbuild.Append(rootnode.localPosition.x + "," + rootnode.localPosition.y + "," +
 rootnode.localPosition.z + "," + rootnode.localEulerAngles.x + "," +
 rootnode.localEulerAngles.y + "," + rootnode.localEulerAngles.z + ",");
 }

 // Appends the variable names in a tree of rotations to a string
 private void appendRotationTreeHeader(Transform rootnode, StringBuilder stringbuild) {
 stringbuild.Append(rootnode.name + "RotX" + "," + rootnode.name + "RotY" + "," +
 rootnode.name + "RotZ" + ",");
 for (int i = 0; i < rootnode.childCount; i++) {
 Transform child = rootnode.GetChild(i);
 appendRotationTreeHeader(child, stringbuild);
 }
 }

 // Appends the values in tree of rotations to a string
 private void appendRotationTreeData(Transform rootnode, StringBuilder stringbuild) {
 stringbuild.Append(rootnode.localEulerAngles.x + "," +
 rootnode.localEulerAngles.y + "," +
 rootnode.localEulerAngles.z + ",");
 for (int i = 0; i < childCount rootnode.childCount; i++) {

354 18.  Recording and Replaying Virtual Environments for Development and Diagnosis

18.2.4 �Replayer Script
The Replayer script (Listing 18.4) mirrors the Recorder script. The code similarly references
arrays of Transform objects that will be modified. The code assumes that the structures
of the transforms are the same. There is no enforcement for the transforms to have the
same names as those recorded, as it is common in our own recordings to use a different set
of objects to play back recordings than those used for the recordings. However, it would
be simple to add name checking, and to check whether the structures of the Transform
objects and their sub-trees match.

To read the file, a helper function loadDataToArray reads one line into an array
currDataArr which is of size columnCount. The count of columns is done in an ini-
tialization phase wherein the header is parsed. The function updateAll iterates through
all the objects to be replayed. It uses the two functions updatePositionRotationOb-
jects and updateRotationTreeObjects to update the Transform objects appro-
priately. The former function skips through the array of stored data six indices at a time
(three locations, three orientations). The latter recurses through the tree taking three float
values at a time (orientation only). Both loadDataToArray, and updateAll are called
from the Update callback in the Replayer script, see the online materials for full details.

 Transform child = rootnode.GetChild(i);
 appendRotationTreeData(child, stringbuild);
 }
 }
}

Listing 18.4.  Replayer methods for loading data from a log file and setting the appropriate position and
rotation values for objects in the scene graph.

 // Reads one line from the log file into an array of values
 private void loadDataToArray() {
 string[] values = sr.ReadLine().Split(',');
 for (int i = 0; i < columnCount; i++) {
 currDataArr[i] = float.Parse(values[i]);
 }
 }

 // Call once to update all the objects that are replayed. Must have previously
 // loaded a line from the log file into the array currDataArray (see loadDataToArray())
 private void updateAll() {
 int idx = 2; // Skip time and frame count
 foreach (Transform t in replayPositionRotationObjects) {
 idx = updatePositionRotationObjects(t, idx);
 }
 foreach (Transform t in replayRotationTreeObjects) {
 idx = updateRotationTreeObjects(t, idx);
 }
 }

 // Reads the position and rotation for a single object
 private int updatePositionRotationObjects(Transform rootnode, int idx) {
 rootnode.localPosition = new Vector3(currDataArr[idx], currDataArr[idx + 1],
 currDataArr[idx + 2]);

35518.3  Examples

Another useful function of the Replayer script is the ability to skip to any frame in the
log file. We could store the whole log file in memory, but this is rather onerous; some of
our log files are over an hour in duration. Thus, we use file access mechanisms to re-scan
the file. See the online materials for the full class for replaying.

18.3 � Examples

18.3.1 � User Motion
Our first example is of recording a user doing a tangram puzzle inside a head-mounted
display. We are interested in where the user looks while doing the puzzle. The demonstra-
tion below is configured for the HTC Vive system. It was developed for Unity 5.6.2f.

The scene set up is very simple (Figure 18.1). The main scene graph follows the Vehicle
Pattern as described in Chapter 6 of this volume. The Vehicle contains simple function-
ality to support the HTC Vive using the SteamVR package. The responsibility of this scene
sub-graph is to provide the functionality to move around the scene, manipulate objects
and create any first-person representation of the user’s own avatar. The Zone object con-
tains the scene itself (Tangram for the puzzle, and HMDLab for the room and furniture)
and the Record and Replay object which has the record and replay scripts, and an
avatar which is a simple collection of objects to represent the user during the replay. The
replay avatar consists of models of a head-mounted display and two hand controllers.

In Figure 18.2 we see the Unity property inspector for the Record object. The Recorder
script’s field Position Rotation Objects (which matches the class variable log-
PositionRotationObjects, see Section 18.2.2) is set up to track four objects from
the Vehicle: the head, left hand, right hand, and overall position of the user in the scene
which is controlled by the Vehicle object’s transform.

The Record and Replay object has a script (RecordReplayControl—Listing 18.5)
to start and stop the recording and replaying. An excerpt from its script is below. On the
key “Q,” the recording starts with a log file name composed of the exact time of day. The
key “W” stops the recording. The key “O” starts the replay of the latest recording, and “P”
stops the replay. The function newestLogFile finds the latest log file.

 rootnode.localEulerAngles = new Vector3(currDataArr[idx + 3], currDataArr[idx + 4],
 currDataArr[idx + 5]);
 return idx + 6;
 }

 // Recursively reads the rotation for an object in a rotation tree
 private int updateRotationTreeObjects(Transform rootnode, int idx) {
 rootnode.localEulerAngles = new Vector3(currDataArr[idx], currDataArr[idx + 1],
 currDataArr[idx + 2]);
 idx = idx + 3;

 for (int k = 0; k < rootnode.childCount; k++) {
 Transform child = rootnode.GetChild(k);
 idx = updateRotationTreeObjects(child, idx);
 }
 return idx;
 }

356 18.  Recording and Replaying Virtual Environments for Development and Diagnosis

Listing 18.5.  Part of the RecordReplayControl showing keyboard controls for recording and playback.

 // Update() function reads key presses to control the recording and replaying
 void Update() {
 if (Input.GetKeyDown(KeyCode.Q)) {
 DateTime now = System.DateTime.Now;
 recorder.fileName = now.Year.ToString() + now.Month.ToString() +

Figure 18.2

Part of the Unity inspector for the Recorder object. We can see the list of four recorded
objects that are required to record the user’s main behaviour. The recording is currently
active.

Figure 18.1

The Unity scene-graph for the first example—the tangram puzzle world.

35718.3  Examples

Figure 18.3 shows a view of the replay in progress. We used simple objects to represent
the user. The rays coming from the head and hands help visualise the gaze and pointing
targets of the user.

18.3.2 � Character Animation
Our second demonstration is more complex. It is a system for creating recordings during
content development. The scene shown in Figure 18.4 has two human characters con-
trolled by skeletal rigs. In this demonstration, the first character in purple and yellow
is controlled by an external source. Our normal use of this tool is to have this character

 now.Day.ToString() + "_" + now.Hour.ToString() + "-" +
 now.Minute.ToString() + "-" + now.Second.ToString() + ".log";
 recorder.recording = true;
 replayer.playing = false;
 avatar.SetActive(false);
 }
 if (Input.GetKeyDown(KeyCode.W)) {
 recorder.recording = false;
 }
 if (Input.GetKeyDown(KeyCode.O)) {
 replayer.fileName = newestLogFile();
 Debug.Log("Newest_log_file_is_" + replayer.fileName);
 replayer.playing= true;
 recorder.recording = false;
 avatar.SetActive(true);
 }
 if (Input.GetKeyDown(KeyCode.P)) {
 replayer.playing = false;
 avatar.SetActive(false);
 }
 }

Figure 18.3

A fragment of a screen capture of the Unity Editor showing an example scene replaying the
puzzle solving task.

358 18.  Recording and Replaying Virtual Environments for Development and Diagnosis

controlled by a motion capture rig such as a Perception Neuron. However, in the example
provided it is actually replaying a motion capture animation. The second character in
green and orange is replaying a recording.

The demonstration provides a user interface for scrolling through the animation (top of
Figure 18.4) and functionality to mark sections of an animation for replacement (bottom
right of Figure 18.4). This interface exploits the same simple functionalities of the record
and replay scripts as the first example. Under the hood, editing an existing file is done by
composing fragments of previous files.

18.4 � Discussion

18.4.1 � Extensions
The code presented in this chapter is a framework that is easy to extend for other purposes.
For example, it would be easy to add logging information for input devices such as joystick
and button values. When we run experiments, we often record secondary values that can
be more easily calculated by the game engine than external tools. For example, determin-
ing whether a particular object was touched by the user or whether the user looked at a
particular object.

Another type of extension is linking the recording of the virtual environment behavior
to external recordings. It can be useful to log timestamps from video cameras, external
sensors (e.g. heart-rate sensors), voice recordings of the user, etc. While some of these
devices may involve separate recording systems, we recommend that some time signal or

Figure 18.4

The second example scene. The character in purple and yellow is playing a motion capture
animation. The character in green and orange is a replay of a recording. The slider and but-
tons at the top of the screen allow the user to scroll through the animation. The small control
at the bottom right allows the user to edit the recorded animation.

35918.5  Conclusions

flags be brought into the Unity scene so that synchronization can be maintained. Unity
has a variety of useful plugins to connect to other sensors, so in many cases it may be pos-
sible to control an external device, and its logging, directly from within Unity.

A final type of extension is additional visualization tools on top of the raw replay of the
events, or visualization of multiple replays simultaneously. Although the operator can be
immersed within the replay, it can be difficult to understand the user’s actions or inten-
tions. It can be useful to visualize aggregate behavior such as lines showing the route users
took through the environment or heatmaps of gaze directions.

18.4.2 � Related Work
There is a considerable amount of previous work in this area. A large proportion of games
include a game replay mechanism. If the game is deterministic, then a replay mechanism
can be constructed simply by recording the determinants of the initial state (e.g. random
numbers) and then the sequence of inputs. Otherwise the state of the scene elements can
be stored and replayed with a similar mechanism to that we have described.

The concept of recording and replaying as a resource for re-use in virtual environment
also has a long history. Perhaps the first demonstration was the virtual mail system, where
users could record segments of the virtual environment and send them to other users
[Imai et al., 1999]. Today, as an example, the Altspace system allows events to be recorded
and replayed to new audiences [Altspace, 2016]. Many useful reasons for recording experi-
ences are described by Dolinsky et al. [2012].

There is a strong relationship between the requirement to network systems together,
and the ability to record events. The networking protocols that underpin a collaborative
virtual environment need to record short-term behavior and copy it to other sites [Steed
and Oliveira, 2009]. However, the requirements are slightly different; for example, net-
work sharing only needs to reconstruct an approximation of state, so it is typical to sim-
plify the information that is sent. The record and replay of the Massive system is a good
demonstration of some advanced uses of recording multiple users’ activities and replaying
them within a scene [Greenhalgh et al., 2002].

A common mechanism for recording application state is the use of serialization mecha-
nisms. Serialization allows a program to save the state of a group of objects, by having each
object have its own functionality to save and load its state to a file or database. These mech-
anisms have internal or core library support in many languages. The Javascript Object
Notation (JSON) is one example that now has broad support [JSON, 2017]. It provides for
data-only write and read of Javascript objects, though there are readers and writers avail-
able in many languages. Alternatively, the implementer of a virtual environment could
also add their own serialization. It is easy to implement such a mechanism in Unity [Daily,
2014].

18.5 � Conclusions

In this chapter we have given an overview of the utility of record and replay mechanisms
for developers of virtual reality experiences. Because it can be hard to understand what
users do inside the virtual environment, we have found that creating recordings allows us
to visualize behavior to uncover problems with the system, or discover how users tackle
interaction tasks. We have also found recording and replaying useful during creation of

360 18.  Recording and Replaying Virtual Environments for Development and Diagnosis

new content for our environments. Finally, we have previously advocated for broader shar-
ing of experiment log files within the virtual reality research community [Friedman et al.,
2006; Steptoe and Steed, 2012] to facilitate new types of analysis and allow validation of
experimental results.

The implementation and examples we provide are very simple, but they are a good
basis for exploration. Recording and replaying more complicated systems is potentially
a difficult task because of the complex interaction between data and functionality that is
common in scene-graph and scripting-based systems. However, even as they are, the tools
are already useful for recording diagnostic information about user performance that can
aid in developing new applications.

The examples included are on the accompanying website. The avatars we use are simple
open source models we created ourselves. The second example uses a basketball motion
capture from the Carnegie Mellon University Graphics Lab Motion Capture Database.
These motion captures are available as a Unity package on the asset store [cMonkeys,
2017].

References

[Altspace, 2016]

Altspace (2016). AltspaceVR Blog, VR Capture. https://altvr.com/vrcapture/. Accessed:
2017-07-25.

[cMonkeys, 2017]

cMonkeys (2017). Huge FBX Mocap Library part 1. https:/assetstore.unity3d.com/en/#!/
content/19991/. Accessed: 2017-07-25.

[Daily, 2014]

Daily, Eric (2014). How to Save and Load Your Players’ Progress in Unity. https://
gamedevelopment.tutsplus.com/tutorials/how-to-save-and-load-your-players-
progress-in-unity--cms-20934/. Accessed: 2017-07-25.

[Dolinsky et al., 2012]

Dolinsky, Margaret, William Sherman, Eric Wernert, and Yichen Catherine Chi (2012).
Reordering virtual reality: Recording and recreating real-time experiences.

[Friedman et al., 2006]

Friedman, Doron, Andrea Brogni, Christoph Guger, Angus Antley, Anthony Steed, and
Mel Slater (2006). Sharing and analyzing data from presence experiments. Presence:
Teleoperators and Virtual Environments, 15(5): 599–610.

https://altvr.com
https:/assetstore.unity3d.com/en/#!/content/19991/.Accessed:
https:/assetstore.unity3d.com/en/#!/content/19991/.Accessed:
https://gamedevelopment.tutsplus.com
https://gamedevelopment.tutsplus.com
https://gamedevelopment.tutsplus.com

361References

[Greenhalgh et al., 2002]

Greenhalgh, Chris, Martin Flintham, Jim Purbrick, and Steve Benford (2002). Applications
of temporal links: Recording and replaying virtual environments. In Proceedings
IEEE Virtual Reality 2002, Orlando, FL, pp. 101–108.

[Imai et al., 1999]

Imai, Tomoko, Andrew E. Johnson, Jason Leigh, David E. Pape, and Thomas A. DeFanti
(1999). The virtual mail system. In Proceedings IEEE Virtual Reality (Cat. No.
99CB36316), Houston, TX, p. 78.

[JSON, 2017]

JSON (2017). Introducing JSON. http://json.org/. Accessed: 2017-07-25.

[Steed and Oliveira, 2009]

Steed, Anthony, and Manuel Fradinho Oliveira (2009). Networked Graphics: Building
Networked Games and Virtual Environments. Elsevier, Amsterdam.

[Steptoe and Steed, 2012]

Steptoe, William, and Anthony Steed (2012). Multimodal data capture and analysis of
interaction in immersive collaborative virtual environments. Presence: Teleoperators
and Virtual Environments, 21(4): 388–405.

http://json.org

http://www.taylorandfrancis.com

363

19
Capturing Cinematic Shots of
Virtual Reality Scenes in Unity
Andrew Cunningham
University of South Australia

Maxime Cordeil
Monash University

19.1 � Introduction

Producing compelling videos of VR content is valuable to many domains, whether as a
marketing resource to sell a product or game, or a tool to educate users on a particu-
lar VR application, or to capture and document a research project. Compelling videos
should make use of well-established cinematic techniques such as multiple camera shots
and points of view, as these techniques are well known to help strengthen the narrative
conveyed in a video [Arijon, 1991].

Shooting high-quality video of interactive VR scenes can be both a difficult task and
take a considerable amount of time to produce; time that is at a premium due to the novel
development involved in VR applications. Furthermore, videos captured directly from
a VR user’s view can be of a poor quality because of the small erratic head movements
that occur as a natural part of the human sensorimotor interaction process. While these
movements are a completely natural, unconscious process, to an outside viewer they can
be distracting and, in the worst case, confusing.

This chapter introduces a set of behaviors for Unity designed to address the need
for producing high-quality video of VR applications. These behaviors are implemented

19.1	 Introduction
19.2	 Camera Director
19.3	 Cameras
19.4	 Putting It All Together

364 19.  Capturing Cinematic Shots of Virtual Reality Scenes in Unity

through a camera director and a toolbox of cameras each providing different cinematic
shots suited towards capturing specific aspects of a VR application. These cameras are:
(1) a smoothed camera to eliminate erratic user head movements, (2) an orbit camera to
capture the broad scope of the VR world, and (3) a shoulder-style camera to capture the
user’s hand controller interactions. These cameras are presented with general guidelines
on where they are best used.

19.2 � Camera Director

The purpose of the camera director is to provide a means to select between any of the cine-
matic views of a VR scene—all of which can be captured independently of the user’s actual
point of view. To achieve this, the director facilitates switching between various cameras
placed by the user in the scene to provide more cinematic variety in the shots captured.

The camera director behavior (Listing 19.1) contains a list of camera references that can
be switched between by pressing the numeric keyboard keys. By default, the first camera
in the director’s list will be the active camera when starting up. The camera director may
be attached to any game object within the scene, though to facilitate easy access and ref-
erencing, a good convention is to place the behavior on an empty game object within the
root of the scene hierarchy and to name the object “[CameraDirector]”.

Listing 19.1.  A camera director behaviour, responsible for user-controlled switching between a list of
cameras.

// CameraDirector.cs
// This script is responsible for the user-controlled
// switching between a list of cameras
// Attach this script to any game object in the scene
// (e.g. empty "[CameraDirector]")
using System.Collections.Generic;
using UnityEngine;

public class CameraDirector : MonoBehaviour
{
 [SerializeField]
 List<Camera> videocameras = new List<Camera>();

 void Start() {
 SetCamera(0);
 }

 void Update() {
 // map number keys to camera in the list of cameras
 for (int i = 0; i < videocameras.Count; i++) {
 if (Input.GetKeyDown(KeyCode.Alpha1 + i)) {
 SetCamera(i);
 }
 }
 }

 // enable a camera by number
 void SetCamera(int idx) {
 for (int i = 0; i < videocameras.Count; ++i) {
 videocameras[i].gameObject.SetActive(i == idx);
 }
 }
}

36519.3  Cameras

19.3 � Cameras

Along with a camera director, it is useful to have a “toolbox” of cameras to provide a
variety of potentially interesting shots that can be used to emphasize various aspects of
the scene or narrative. Depending on what you are trying to emphasize with a particular
shot, you would use a different type of camera. This section presents three types of cam-
eras that can be used to capture VR content, and discusses where each type of camera is
best suited.

19.3.1 � Smooth Follow Camera
The first camera we consider aims to smooth the natural but erratic head movements that
a user in VR may not be conscious of. This camera will closely follow a target camera,
specifically the active VR camera, using a smoother linear interpolation function. The
result of this is a smooth tracking camera producing a view that is much easier for outside
viewers to watch and understand. The resulting footage appears to a viewer as though the
user is controlling their viewpoint with a specific purpose.

The smoothed camera is enabled through a SmoothFollow behavior attached to a
camera within the scene, as presented in Listing 19.2. This camera contains a reference to
the transform to follow (generally being the main VR headset camera) as well as a speed
parameter and an isSmoothed boolean parameter. The speed parameter will control
how quickly the smoothed camera will follow the target camera. The isSmoothed bool-
ean will disable the smoothing effect on or off and is useful for contrasting the effect of the
smoothing with the default camera.

Listing 19.2.  A smooth follow-camera behaviour that will linearly interpolate to follow a referenced
transform.

// SmoothFollow.cs
// Linearly interpolate a camera to follow a given transform (game object)
// Attach this script to the moving camera in the scene
using UnityEngine;

public class SmoothFollow : MonoBehaviour
{
 public Transform target; // the object to follow (typically HMD view)

 public float speed = 2.0f;
 public bool isSmoothed = true;

 private void Update()
 {
 // toggle the smoothing when ’S’ key is pressed
 if (Input.GetKeyDown(KeyCode.S)) {
 isSmoothed = !isSmoothed;
 }
 }

 // smooth follow is applied in LateUpdate() to ensure the target transform
 // has already updated its movement for the current frame
 void LateUpdate()
 {
 if (isSmoothed) {

366 19.  Capturing Cinematic Shots of Virtual Reality Scenes in Unity

This style of camera is useful for shots that need to show what a user is seeing in VR in
an understandable and clear manner. It is also useful for situations where hand controller
interaction occurs in front of the user’s face, although it is worth noting that many VR
interactions occur just below the user’s chest where the user can leverage proprioception
over visual cognition. In those cases, other cameras such as the shoulder camera presented
below are better suited. Finally, when trying to capture a shot that conveys frantic action, a
“shakey cam” camera with no smoothing may be preferable, in which case you can disable
the isSmoothed boolean in the SmoothFollow behaviour.

19.3.2 � Orbit Camera
An orbit camera will orbit around any game object at a set speed, determined by a speed
property, and distance, determined by the initial relative distance to the target game
object. This type of camera is useful for conveying a sense of space or to provide an over-
view of a scene. The orbit camera behavior presented here will orbit around a specific
transform, whether it is a stationary object in the scene or the transform of the user’s
head itself.

This behavior presented in Listing 19.3 has a target transform referencing the object
that is being orbited. You may add an empty game object into the scene to orbit around
an arbitrary point in the scene, or attach it to the user’s camera to orbit around the user as
they move. The speed parameter determines the orbit speed in units per second.

 // use LERP (Linear intERPolation) to transition to the target
 this.transform.position = Vector3.Lerp(this.transform.position, target.position,
 Time.deltaTime * speed);
 this.transform.rotation = Quaternion.Lerp(this.transform.rotation, target.rotation,
 Time.deltaTime * speed);
 } else {
 this.transform.position = target.position;
 this.transform.rotation = target.rotation;
 }
 }
}

Listing 19.3:  The orbit camera behaviour will orbit around a referenced transform within the scene.

// OrbitCamera.cs
// Orbit a camera around a given transform (game object)
// Attach this script to the moving camera in the scene
using UnityEngine;

public class OrbitCamera : MonoBehaviour
{
 public bool orbit;	 // toggle to enable/disable orbiting
 public float speed = 1.0f;	 // orbiting speed
 public Transform target;	 // game object around which to orbit

 // incrementally move the camera to the next position
 void LateUpdate()
 {

36719.3  Cameras

Consider using an orbit camera in shots where you want to provide an overview of
the scene without showing too much detail, or to provide an overview of the user’s hand
controller interaction from multiple different angles.

19.3.3 � Shoulder Camera
As the name suggests, a shoulder camera will follow the user’s point of view from slightly
above and behind his shoulder. This section presents a more generalized version of a
shoulder camera that may be positioned anywhere relative to the user’s viewpoint. The
code for the shoulder camera behavior is presented in Listing 19.4. This behavior contains
an offset vector that determines the offset from the target transform. The tracking of
the target transform occurs using a SmoothDamp function that provides more dynamic
movement than a typical linear interpolation, giving the impression that the camera is
handheld.

A shoulder style camera is useful for capturing hand controller interactions, especially
where the interactions take place at or below the user’s torso—an area that is generally not
captured by a headset camera.

 if (target != null && orbit) {
 this.transform.Translate(Vector3.right * speed * Time.deltaTime);
 this.transform.LookAt(target);
 }
 }
}

Listing 19.4:  A generalized shoulder camera.

// ShoulderCamera.cs
// Move camera to follow the user over their shoulder
// Attach this script to the moving camera in the scene
using UnityEngine;

public class ShoulderCamera : MonoBehaviour
{
 public Transform target;	 	 // object to follow
 public Vector3 offset;	 	 // distance from action
 �public float smoothTime = 1.0f;	 // how fast to smooth the movements

 Vector3 velocity = new Vector3();

 void LateUpdate()
 {
 if (target != null) {
 var targetPosition = target.position + target.TransformVector(offset);
 this.transform.position = Vector3.SmoothDamp(this.transform.position, targetPosition,
 ref velocity, smoothTime);
 this.transform.LookAt(target);
 }
 }
}

368 19.  Capturing Cinematic Shots of Virtual Reality Scenes in Unity

19.4 � Putting It All Together

With the camera director and camera toolbox scripts in your Unity project, the next
step is to instance and link the various elements together. Begin by adding the camera
director script to a new (empty) game object within the VR scene. Add camera objects
to the scene for each of the cameras types presented in the toolbox and add their respec-
tive behaviors to the game object. From Unity 5.6 onwards, Unity favors displaying
non-stereo cameras to the main display, so ensure that the Target Eye property of each
camera is set to “None (Main Display).” Setup any transform references to point to the
transform (game object) you wish to track, and add any additional stationary cameras
you may need. Finally, drag references for each of these cameras into camera list of the
camera director.

To test the cameras, run the scene through Unity. By default, the first camera in
the camera director will become active. Switch between the camera using the numeric
keyboard keys as required. Once you have tested the camera setup, use screen capture
software to record the footage of your project, either from within Unity itself or from a
built executable. Follow the general guidelines for each camera presented in this chapter
and, if time permits, capture multiple shots of the same scene and activity with different
cameras to provide you with more variety when editing the final video together. On
single-display setups, multiple shots can be captured sequentially by re-enacting interac-
tions and activating different cameras using the camera director. On multi-display set-
ups, different cameras can be assigned to each display and captured simultaneously, either
within the editor by using multiple “Game” windows, or from a built executable using the
Display class from UnityEngine. It should be noted that rendering to multiple displays
and, at the same time, recording those displays can introduce performance issues such as
lowered frame rates.

While there are a multitude more potential types of cameras that may be implemented,
the cameras presented in this chapter were selected specifically for the value they bring
to capturing VR applications, as summarised in Table 19.1. Notably, the smooth follow
camera will provide immediate benefits when replacing the default camera, as illustrated
in Figure 19.1 and with some experimentation you will be able to determine the best use-
cases for the other cameras presented. Once you have mastered these cameras, you may
want to investigate more traditional cinematic camera techniques such as the dolly zoom
or the dutch angle.

Table 19.1  A Summary of the Cameras Presented in this Chapter

Camera Type Value in VR

Smooth follow Filter out the erratic unconscious head movements from the VR user, resulting in a view
that is much easier for outside viewers to watch.

Orbit Orbit around a point in the scene, providing an immersive overview of the VR scene.
Shoulder Follow from a relative distance from the user, providing a method for clearly capturing

hand controller interactions.

369 Reference

Acknowledgements

This work has been supported by the Data to Decisions Cooperative Research Centre
whose activities are funded by the Australian Commonwealth Government’s Cooperative
Research Centres Programme.

Reference

[Arijon, 1991]

Arijon, Daniel (1991). Grammar of the Film Language. Los Angeles, CA: Silman-James
Press.

Figure 19.1

A series of images illustrating the effect of capturing a smooth follow camera compared
to a standard camera. (a) A series of images showing the raw capture of a user’s head
camera, where the user is tilting their head unconsciously as they look from left to right. (b)
A smooth follow camera following the head camera. The horizon is much more stable and
the motion is easier for a viewer to track.

http://www.taylorandfrancis.com

371

20
A Stereoscopic 3D View for
Virtual Reality Spectators
Andrew Guagliardo
University of Hawai‘i at Ma–noa

Jason Leigh
University of Hawai‘i at Ma–noa

Ming-Der Yang
National Chung Hsing University

A major part of Virtual Reality’s appeal over other forms of media, is the sense of immer-
sion a virtual environment provides, and therefore there is much desire to be able to share
that experience. Whereas room-based VR environments such as CAVEs allow several
people to share a VR experience simultaneously, head-mounted displays (HMDs), such
as the Vive or Oculus, are primarily solitary experiences. In order for audience mem-
bers to see what the HMD-wearer is seeing, the default approach is to present a mono-
scopic preview window on a monitor. However, given the low cost of 3D televisions today
it is possible to also give audience members a more immersive experience by providing a
simultaneous stereoscopic view.

The gem presented in this chapter, called the Stereoscopic Spectator View (SSV), is a
script for the Unity engine to enable VR applications to be enhanced with a simultane-
ous stereoscopic 3D view for audience members. This chapter will first explain briefly the

20.1	 Stereoscopic 3D in a
Nutshell

20.2	 Stereo Spectator View
Script

20.3	 The Interlace Shader
20.4	 The Final Pieces of the

StereoSpectatorView
Script

372 20.  A Stereoscopic 3D View for Virtual Reality Spectators

fundamentals of stereoscopic computer graphics, and then provide an overview of the
approach to make the stereoscopic view work in Unity. At first glance one might think that
it is sufficient to simply mirror the left- and right-eye images of the HMD-wearer. This is
only a partial solution. From our experience, a simple mirroring can cause the audience
to experience eye strain, especially as the viewpoint of the HMD wearer’s head changes so
rapidly from moment to moment. To implement the SSV experience well, it is important
to smooth out the HMD-wearer’s viewpoint changes before presenting them to the audi-
ence. This will be elaborated on further in this chapter as well.

20.1 � Stereoscopic 3D in a Nutshell

Human vision allows for perceiving the world with depth—in three dimensions. This is pos-
sible because our eyes are offset on our heads and so each eye simultaneously sees a slightly
different image from the other. The brain fuses these two images, and as a result we perceive
depth. To achieve this in virtual reality, two cameras, offset like our eyeballs, must simulta-
neously take two pictures and present them to each eye of the viewer. Using polarizing filters
or alternating the left and right eye images, it is possible to feed these two different pictures
to a person’s left and right eye achieving the perceived stereoscopic effect. A passive stereo
display creates an interlaced image, whereby the left and right eye views are interleaved in
alternating rows from the top to the bottom of the display. Wearing polarized glasses, with
an opposing pair of linear or circularly polarized lenses, allows the user to receive the dis-
tinct images in their left and right eyes, enabling stereoscopic depth perception. Two ways
of conveying stereoscopic pairs to the display are either to stack the left and right images on
top of each other or place them side by side. A passive 3D television will take those images
and perform the necessary interleaving to match the interleaved lines of polarization on
the display, whereas an active 3D television image will take the two images and alternate
between showing the left and right images rapidly while simultaneously triggering the view-
er’s glasses to allow only the correct image to be received by each of the viewer’s eyes.

20.1.1 � The Nuts and Bolts of a Stereo Spectator View in Unity
The Unity script that we will describe can present 3D images in both side-by-side and
interleaved modes making it useable on both passive stereo and active stereo 3D televi-
sions. Performing the image interleaving is slightly more complex than presenting the
images side-by-side, and so this chapter will focus on the former.

Three things are required to produce the interleaved images:

	 1.	 Two cameras that will serve as the “eyes.” These cameras will provide the different
views needed for the effect.

	 2.	 A shader that will take the two images from the “eyes” and interleave them, so that
they display properly for a passive stereo effect.

	 3.	 A script to control the creation of the cameras and their movement. The script also
ensures that the camera’s views are correctly connected to the shader and properly
creates the interleaved effect for the display.

All three of these items will be attached to a Unity GameObject either as a prefab, or an
object in your Scene.

37320.2  Stereo Spectator View Script

20.1.2 � The Final Game Object
Pictured in Figure 20.1 is the final GameObject we will be creating, as seen in the inspector
panel of Unity.

We will require both a script named StereoSpectatorView as well as a shader to do
the actual interlacing of our images. We’ll start with our StereoSpectatorView script
(Listing 20.1).

20.2 � Stereo Spectator View Script

Listing 20.1.  The settings and internal variables for the SSV script.

// StereoSpectatorView.cs script
using UnityEngine;
using System;
using System.Collections;
using System.Collections.Generic;

public class StereoSpectatorView : MonoBehaviour {
 public GameObject CamRigParent;		 // the viewpoint to track
 public float slerpValue = .05f;		 // the rate at which we follow the viewpoint
 public float displacement = 0.2f;		 // the displacement between the “eyes”
 Camera rightCamera, leftCamera, interlacedCam;	 // camera references for SSV effect
 Texture2D interlaceMask;	 		 // opacity mask for interleaving lines
 Material mat;		 			 �// the material with our interlacing shader

Figure 20.1

Inspector panel view of the game object containing the SSV script.

374 20.  A Stereoscopic 3D View for Virtual Reality Spectators

After setting up the basic script we need a function to create our cameras (Listing 20.2).

Now that we have our two “eyes” (rightCamera & leftCamera) and our interlaceCam we
need to put everything in place (Listing 20.3).

Listing 20.2.  The MakeCameras() method creates and initializes the SSV camera objects.

 void MakeCameras()
 {
 rightCamera = new GameObject().AddComponent<Camera>();
 rightCamera.name = "rightCamera";

 leftCamera = new GameObject().AddComponent<Camera>();
 leftCamera.name = "leftCamera";

 interlacedCam = this.gameObject.AddComponent<Camera>();
 interlacedCam.name = "interlacedCam";

 }

 // We will create & enhance Start() and Update() as we go along
 void Start() { }

 void Update() { }

}

Listing 20.3.  Link and position all the viewer cameras.

 void SetCameraProperty()
 {
 // position the right eye camera
 rightCamera.transform.parent = this.transform;
 rightCamera.transform.localPosition = new Vector3(displacement, 0, 0);
 rightCamera.transform.localRotation = Quaternion.Euler(0, 0, 0);

 // repeat for the left
 leftCamera.transform.parent = this.transform;
 leftCamera.transform.localPosition = new Vector3​(-displacement, 0, 0);
 leftCamera.transform.localRotation = Quaternion.Euler(0, 0, 0);

 // make sure they will render to the display, not the user in the headset
 rightCamera.depth = 1;
 rightCamera.stereoTargetEye = StereoTargetEyeMask.None;

 leftCamera.depth = 1;
 leftCamera.stereoTargetEye = StereoTargetEyeMask.None;

 // now the camera we will use for interlacing
 this.transform.localPosition = new Vector3(0, 0, 0);
 interlacedCam.stereoTargetEye = StereoTargetEyeMask.None;
 interlacedCam.depth = 1;
 }

37520.2  Stereo Spectator View Script

We should change our Start function to call the two functions we just made. It should
now look as in Listing 20.4.

Now that we have all of our necessary cameras we can create the three textures used to
create the interlace effect. We will first need a texture to use as a mask, which will mask
out every other row of a given image (Listing 20.5).

Next we need to direct the eye-cameras to send their rendered image to a render tex-
ture, rather than rendering to the display. This will provide the two textures on which the
mask will be applied in order to create the interlaced image (Listing 20.6).

Listing 20.4.  Initialize the cameras upon scene initialization.

 void Start() {
 MakeCameras();
 SetCameraProperty();
 }

Listing 20.5.  A function to procedurally generate a texture for masking every other line.

 void MakeInterlaceTexture()
 {
 interlaceMask = new Texture2D(Screen.width, Screen.height, TextureFormat.RGB24, false);

 for (int y = 0; y < Screen.height; y++) {
 if (y % 2 > 0) {
 for (int x = 0; x < Screen.width; x++) {
 interlaceMask.SetPixel(x, y, Color.green);
 }
 } else {
 for (int x = 0; x < Screen.width; x++) {
 interlaceMask.SetPixel(x, y, Color.red);
 }
 }
 }
 interlaceMask.Apply();
 }

Listing 20.6.  Set left & right eye camera views to render as textures such that they can be further pro-
cessed into a single interlaced stereoscopic view.

 void CreateRenderTextures()
 {
 mat = new Material(Shader.Find("Custom/Interlace"));

 // assign interlaceMask
 mat.mainTexture = interlaceMask;

 // make our other textures to grab from the cameras
 RenderTexture leftCamTex = new RenderTexture(Screen.width, Screen.height, 24);

376 20.  A Stereoscopic 3D View for Virtual Reality Spectators

Let’s add these new functions to our Start() method as well (Listing 20.7).

The “Interlace” custom shader referenced in Listing 20.6 must also be written. Create a
new shader in the resources folder of your project hierarchy. If you do not have a resources
folder yet, create one and place your new shader there. Listing 20.8 shows the code for the
new shader.

20.3 � The Interlace Shader

Listing 20.7.  Add the masking texture and render-texture placeholder creation to Start().

 void Start()
 {
 ...
 MakeInterlaceTexture();
 CreateRenderTextures();
 }

Listing 20.8.  The CG GPU shader that will interleave two camera views into a single interleaved view
suitable for passive stereoscopic monitors.

Shader "Custom/Interlace" {

	 Properties
	 {
		 _MainTex ("Interlace Texture", 2D) = "" {}
		 _Texture1 ("Left Eye", 2D) = "" {}
		 _Texture2 ("Right Eye", 2D) = "" {}
		 _Texture3 ("Interlaced Mask", 2D) = "" {}
		
	 }

	 SubShader
	 {

		 Pass{
			 CGPROGRAM

 RenderTexture rightCamTex = new RenderTexture(Screen.width, Screen.height, 24);

 // plug in right/left camera rendertexture to the right slot
 leftCamera.targetTexture = leftCamTex;
 rightCamera.targetTexture = rightCamTex;

 // assign all these textures to our material
 mat.mainTexture = interlaceMask;
 mat.SetTexture("_Texture1", leftCamTex);
 mat.SetTexture("_Texture2", rightCamTex);
 }

37720.3  The Interlace Shader

In a nutshell, this shader works by using a mask to pull out every other row of a texture
map. One texture has the odd rows masked out, the other has the even rows masked out.
By combining the results, we end up with a complete image, each row alternating as a
piece of the image from the left and right “eyes.” If you want to learn more, then you can
look up splat map shaders, from which this shader is based.

			 #pragma vertex MyVertexProgram
			 #pragma fragment MyFragmentProgram

			 #include "UnityCG.cginc"

			 sampler2D _Texture3;
			 float4 _Texture3_ST;
			 int _Flip = 1;

			 sampler2D _Texture1, _Texture2;

			 struct VertexData
			 {
				 float4 position : POSITION;
				 float2 uv : TEXCOORD0;
			 };

			 struct Interpolators
			 {
				 float4 position : SV_POSITION;
				 float2 uv : TEXCOORD0;
				 float2 uvSplat : TEXCOORD1;
			 };

			 Interpolators MyVertexProgram (VertexData v)
			 {
				 Interpolators i;
				 i.position = UnityObjectToClipPos​(v.position);
				 i.uv = TRANSFORM_TEX(v.uv, _Texture3);
				 i.uvSplat = v.uv;
				 return i;
			 }

			 float4 MyFragmentProgram (Interpolators i) : SV_TARGET
			 {
				 float4 splat = tex2D(_Texture3, i.uvSplat);
				 if (_Flip < 1) {
					 return
						 tex2D(_Texture1, i.uv) * splat.g +
						 tex2D(_Texture2, i.uv) * splat.r;
				 }
				 return
					 tex2D(_Texture1, i.uv) * splat.r +
					 tex2D(_Texture2, i.uv) * splat.g;
			 }

			 ENDCG
		 }
	 }
}

378 20.  A Stereoscopic 3D View for Virtual Reality Spectators

20.4 � The Final Pieces of the StereoSpectatorView Script

Add the code in Listing 20.9 to your StereoSpectatorView script.

And finally, add the code in Listing 20.10 to your update function. This code will allow
the Stereo Spectator View to follow the CamRigParent object when it moves around. Note,
we implement this with Unity’s Slerp() function to enable the spectator to follow behind
the VR camera while attenuating the jarring head-tracked view. The slerpValue can be
reduced to near zero to provide smoother motion or set to 1 to produce the exact same
view as the VR camera’s view—though generally not recommended for the sake of the
audience’s comfort.

You will need to assign the CamRigParent in the inspector. This will be whatever
GameObject you want the Stereo Spectator View to follow. Usually you will want to use the
camera that the VR user sees through. For SteamVR this is labelled as the Camera (eye).
You can also us other GameObjects in order to allow for third person views, or views other
than that of the VR user. Now put an object in your scene, in front of the item you have set
as the CamRigParent, and hit play to test it.

The game window should now show an interlaced image suitable for use on passive ste-
reo displays (Figure 20.2). If you have a passive stereo display, test your project there. You
should see that when wearing the properly filtered glasses each eye sees a slightly different
perspective of the scene. However, it likely is not perfect and will need some calibration,
which can be done by adjusting the displacement between the left and right cameras.

There are a few additional utility items that should be added to this script. These
additional functions include a way to perform runtime calibration of the effect and a
method for saving the calibration. Both of these features are already implemented in the
StereoSpectatorView script that is included in the “3D View for Spectators” sample scenes
with this book. Feel free to use them as provided, or implement your own methods for
runtime calibration and saving and loading settings.

Listing 20.9.  Add the special OnRenderImage() method that finally “paints” the image on the display.

 private void OnRenderImage(RenderTexture source, RenderTexture destination) {
 // use null for source to blit directly to main display
 Graphics.Blit(null as RenderTexture, mat);
 }

Listing 20.10.  Set the SSV camera to generally follow the HMD camera.

 void Update() {
 this.transform.position = Vector3.Slerp(this.transform.position,
 CamRigParent.transform.position, slerpValue);

 this.transform.rotation = Quaternion.Slerp(this.transform.rotation,
 CamRigParent.transform.rotation, slerpValue);

 }

37920.4  The Final Pieces of the StereoSpectatorView Script

Figure 20.2

An interlaced stereoscopic rendering of a simple scene. The “ghosting” that appears in the
image is really just how the results appear when not viewed through proper filtering glasses
on an interlaced stereoscopic display.

http://www.taylorandfrancis.com

Section VI
Virtual Worlds

http://www.taylorandfrancis.com

383

21
The Utility of Virtual Reality for
Science and Engineering
Kenny Gruchalla
National Renewable Energy Laboratory
University of Colorado at Boulder

Nicholas Brunhart-Lupo
National Renewable Energy Laboratory

In our daily usage of the large-scale immersive virtual environment at the National
Renewable Energy Laboratory (NREL), we have observed how this VR system can be a
useful tool to enhance scientific and engineering workflows. On multiple occasions, we
have observed scientists and engineers discover features in their data using immersive
environments that they had not seen in prior investigations of their data on traditional
desktop displays. We have embedded more information into our analytics tools, allowing
engineers to explore complex multivariate spaces. We have observed natural interactions
with 3D objects and how those interactions seem to catalyze understanding. And we
have seen improved collaboration with groups of stakeholders. In this chapter, we discuss
these practical advantages of immersive visualization in the context of several real-world
examples.

21.1 � Introduction

Scientific visualization is the transformation of complex scientific data into visual
images through computer graphics and data processing algorithms. The fundamental

21.1	 �Introduction
21.2	 �Background

21.3	 �NREL VR Use Cases
21.4	 �Conclusion

384 21.  The Utility of Virtual Reality for Science and Engineering

premise of scientific visualization is that the human mind excels at pattern matching
and visual interpretation; we are readily able to identify patterns and anomalies in visual
data, and we can contextualize those patterns with all our domain knowledge. A visual
representation of data can engage more human cognitive machinery than looking at a list
of numbers, and by doing so, we can gain a deeper understanding of the data in a shorter
amount of time.

As an example, consider Anscombe’s quartet (Table 21.1), which consists of four
datasets synthesized by British statistician Francis Anscombe [1973]. Each set is very sim-
ple, consisting of 11 two-dimensional points. If we apply standard statistical metrics on
these sets, the results are almost identical. The mean of x and y for each of the four datasets
is 9.00 and 7.50 respectively, the correlation between x and y are also the same with 0.816,
and the linear regression line for the datasets is the same. A researcher using these metrics
might then be led to assume that the datasets were similar. However, when we plot these
four datasets (Figure 21.1), at a glance, we can immediately see that each is very different.
There is a general linear relationship in the first set, a clear non-linear relationship in the
second, a strong linear relationship with an outlier in the third, and the fourth has very
different distribution being heavily skewed by an outlier. By plotting these data, we can
instantly see the differences in their character and distributions. Of course, there are other
statistical methods that can tease out these differences in a more quantitative manner, but
these require a level of sophistication far exceeding the simple action of plotting these
data. Anscombe’s point is that without a visual understanding of your data, you may not
know which statistical techniques to apply.

While Anscombe’s quartet demonstrates the value of visualizing our data, to truly make
the most of our very sophisticated pattern matching and visual interpretation capabilities,
we should consider that these visual and cognitive abilities have evolved from our sense
of place and embodiment. We understand our world by moving through it, interacting

Table 21.1  Anscombe’s Quartet: Data

1 2 3 4

x y x y x y x y

10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58
8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76
13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71
9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84
11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47
14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04
6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25
4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50
12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56
7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91
5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89

Mean x̄ = 9 	 ȳ ≈ 7.5
Variance σ 2

x = 11 	 σ 2
y ≈ 4.12

Correlation (x,y) 	 0.816
Regression 	 y = 3.00 + 0.500x

38521.1  Introduction

with it, and examining it from different perspectives. When we want to go somewhere,
we walk. When we want something, we reach out and grab it. When we wish to see under
something, we crouch.

VR promises to bring that embodiment to the visualization and understanding
of data. Here, a combination of hardware and software provides a psychophysical
experience of being surrounded by a computer-generated scene, physically immersing
users in a virtual world wherein they can explore complex spatial structures by looking
around them, walking through them, and viewing them from different points of view.
The medium of VR is built on rapidly evolving technology, moving in the past few years
from large laboratory installations to commodity head-mounted displays (HMDs) and
now mobile platforms. VR systems provide a head-tracked, typically stereoscopic, view
into a virtual scene. Different VR systems provide different levels of immersion. Bowman
and McMahan [2007] define the level of immersion as an objective and measurable fea-
ture of a visualization system, measuring how close the system’s visual output is to real-
world visual stimuli. A system’s level of immersion is dependent on a variety of factors
including:

•• head-tracking—the scene is rendered based on the physical location and
orientation of the user’s head

•• stereoscopy—providing a depth cue by providing each eye a different perspective
•• field of view (FOV)—the size of the visual field that can be viewed instantaneously
•• field of regard (FOR)—the total size of the visual field surrounding the user
•• resolution—the number of distinct pixels in each dimension
•• frame rate—the frequency of generating images of the scene
•• refresh rate—the frequency of the display hardware’s redraw
•• kinesthesia support—the awareness of the position and movement of one’s own

body.

CAVE-like [Cruz-Neira et al., 1993] environments are currently the state of the art and
provide the highest level of immersion with head-tracked, stereoscopic images projected
onto multiple surfaces in a room-sized installation that users can physically walk into
(see Figure 21.2). Commodity VR HMDs (e.g., the HTC Vive) currently provide a lower

5 10 15 20

0
5

10
15

Data Set 1

x

y

5 10 15 20

0
5

10
15

Data Set 2

x
y

5 10 15 20

0
5

10
15

Data Set 3

x

y

5 10 15 20

0
5

10
15

Data Set 4

x

y

Figure 21.1

Anscombe’s Quartet. The four datasets have nearly identical simple descriptive statistics
(see Table 21.1), but are visually distinctive when plotted. The quartet provides a simple
demonstration of the importance of visualizing data before analyzing it.

386 21.  The Utility of Virtual Reality for Science and Engineering

level of immersion with stereo and head-tracking, but relatively low FOVs and resolu-
tions, and with no view of one’s body, kinesthesia is limited to proprioception. Augmented
reality (AR) HMDs (e.g., the HoloLens), which augment the user’s view of physical space
by layering in a rendered scene, fully support kinesthesia but currently suffer from low
resolutions, and FOVs. The gaming industry revolutionized the field of visualization
when they commoditized graphics processing units (GPUs). A similar transformation is
approaching for immersive visualization with the commoditization of AR and VR headsets.
The current state of the HMD technology is still inferior to state-of-the-art CAVE-style
immersive environments. However, the level of immersion of the next generations of these
HMD technologies could surpass these expensive high-end installations.

High-levels of immersion appear to provide cognitive benefits to the visualization of
complex data by supporting natural body movements and well-practiced automatic brain
function that facilitates reasoning in the virtual world. Additionally, the extra degrees of
freedom afforded by VR can provide additional visibility into the relationships of complex
multivariate data common to scientific and engineering analysis.

In this chapter, we explore some of the potential benefits of using immersive
visualization for science and engineering supported by several real-world examples.

21.2 � Background

We are not alone in believing that immersive visualization has benefits in the visual
analysis of complex data. Scientific visualization has been a focal point for VR for many
years [Bryson, 1996; van Dam et al., 2000, 2002; Kuhlen and Hentschel, 2014]. And there
is growing evidence that higher levels of stereoscopy, head tracking, FOV, and FOR
working together can be beneficial. For example, empirical studies show improved per-
ception and understanding of spatially complex data [Ware and Franck, 1996; Richardson
et al., 1999; Schuchardt and Bowman, 2007; Ragan et al., 2013; Laha et al., 2014] inside
immersive environments. Likewise, studies with complex 3D interaction tasks have
shown improved task performance [Narayan et al., 2005; McMahan et al., 2006] in
immersive environments. The extra degrees of freedom afforded by VR have been shown

Figure 21.2

The immersive virtual environment at NREL Insight Center. (a) The system is an optically
tracked space with a rear-projected wall and a front-projected floor. (b) Wind engineers
standing inside the environment are evaluating the wake forming behind a wind turbine.

38721.3  NREL VR Use Cases

to improve understanding of high-dimensional data representations [Arns et al., 1999;
Raja et al., 2004; Ni et al., 2006] when searching for or comparing complex abstract data.
Furthermore, installations that support multiple users have been shown to improve
collaboration [Narayan et al., 2005; D’Angelo et al., 2008; Marai et al., 2016]. These stud-
ies, and others like them, substantiate the benefits of immersive interfaces. However,
these studies are limited to isolated tasks and how they might relate to scientific and
engineering workflows is not always obvious.

The benefits of immersion in real-world settings is less examined in the literature, as
conducting empirical experiments in these settings is difficult with many confounding
variables. However, there are a few controlled studies on real-world applications that also
show similar benefits from VR. The oil and gas industry was one of the earliest adopters,
and a controlled study [Gruchalla, 2004] found significant benefits for immersion when
comparing oil-well path planning activities in a CAVE-style immersive environment com-
pared to a stereoscopic desktop environment. Immersion was shown to have significant
benefits for biological data analysis in laser confocal microscopy data that emphasized
understanding of spatial relationships [Prabhat et al., 2008].

While there are few controlled studies on real-world applications, there is a breadth
of anecdotal evidence of real discoveries made with the aid of immersive technologies.
For example, there have been discoveries made in biology [Brady et al., 1995], molecular
biology [Gruchalla et al., 2008], geoscience [Kreylos et al., 2006], remote sensing [Gardner
et al., 2003], forestry [Bohrer et al., 2008], and archaeology [Acevedo et al., 2001]. While
the benefits of immersive virtual reality may be difficult to verify scientifically for sci-
ence and engineering applications, the anecdotal discoveries made while using immersive
virtual reality are suggestive of the utility.

21.3 � NREL VR Use Cases

The National Renewable Energy Laboratory (NREL) is the U.S. Department of Energy’s
(DOE’s) primary national laboratory for renewable energy and energy efficiency research.
The NREL Insight Center combines state-of-the-art visualization and collaboration tools
to promote knowledge discovery in experimental data, high-resolution microscopy, and
large-scale simulation data. One of the primary tools used in the NREL Insight Center
is a large-scale (CAVE-like) immersive virtual environment. In our day-to-day usage of
this environment for scientific and engineering workflows, we have observed multiple
discoveries and witnessed the practical benefits of immersive technology, which we
describe here.

21.3.1 � System
The immersive virtual environment at the Insight Center is a custom design, composed
of six active stereoscopic projectors that illuminate two surfaces: a wall and a floor
(Figure 21.2). The projected space is 5 m wide, 2.5 m high, and 1.75 m deep with 3,540 ×
1,728 pixels on the wall, and 3,540 × 1,080 pixels on the floor. A six-camera ViconTM sys-
tem optically tracks the whole volume. The system is driven by a single Linux server with
dual 8-core Sandy Bridge processors, half a terabyte of RAM, and three NVIDIA Quadro
M6000 GPUs. The primary input device is a commodity LogitechTM joystick augmented
with optical markers to track its 3D position. In addition, we employ a variety of custom

388 21.  The Utility of Virtual Reality for Science and Engineering

built input devices specialized to particular workflows. We handle all tracking and input
control through VRPN [Taylor et al., 2001].

We support a variety of software applications in the space. Immersive ParaView
[Shetty et al., 2011], FreeVR-enabled VMD [Sherman et al., 2013], and the commercial
application Avizo provide scientists and engineers a pathway to move visualizations directly
from their desktops to our immersive environment. We also support Unity-based applica-
tions, which provide a relatively easy programming model for scientists and engineers who
wish to develop their own applications for the system. However, these tools are generally
only used for preliminary investigations. The vast majority of the applications run in the
system (and the applications detailed in this chapter) were custom built on our immersive
software framework, Isopach, written in C++, and powered by Qt and OpenGL. Isopach
is a high-performance scene-graph library and full stack application toolkit optimized for
our multi-projector, multi-screen environment, and includes image handling, an object-
component scene model, geometry operations, threading, and other utilities. By employing
the most recent graphics API features (shaders) tuned to our hardware, we have a perfor-
mance advantage over more general immersive software frameworks. It is also designed to
facilitate coupling with other software, such as simulation codes written in C, R-based statis-
tics scripts, and web data sources. The library provides a lower-level API compared to other
frameworks, requiring more expertise to build a given visualization application, but allows
the developer to uniquely tailor the user interface and experience for each investigation.

21.3.2 � Improved Spatial Judgments
From our observations, one of the primary benefits of our immersive system is the
improved ability for our users to make spatial judgments. Being able to physically move
inside spatially complex datasets has allowed our scientists to identify structures—and
the spaces between structures—that were not noticed or were impossible to notice using
traditional desktop visualization.

One such discovery came when visualizing the morphology of organic photovoltaic
(OPV) materials. These materials consist of interpenetrating networks of a polymer and
fullerene materials, as can be seen in Figure 21.3. The polymer absorbs light, and the
resulting excitation migrates, injecting a negative charge into the fullerene and leaving
a positive charge behind in the polymer. These charges travel through the two material
networks, ideally reaching electrodes to produce current. By examining the pathways for
different morphologies, we can develop intuition about how modifying the materials will
affect OPV device properties. Figure 21.3 is a typical representation of traditional analy-
sis on these materials. While 2D renderings can be useful, the inner structure is largely
occluded. Even when transparency is added, or matter is culled, the complex material
network makes it difficult for the researcher to follow strands of material.

We built a visualization tool for our immersive system and invited the scientist leading
these investigations to explore the 3D immersive version of these 2D renderings. When
he stepped inside one of the morphologies, he uttered the three most exciting words in
science, “Huh? That’s funny.” The visualization allowed him to physically explore the
morphology. He could stand in the middle of his dataset, move to interesting places by
walking and look behind the occlusions just by moving his head. In VR, depth is depth,
and he could follow pathways with his finger from point to point. What he discovered
was the heterogeneity of these morphologies that he could not easily appreciate in the

38921.3  NREL VR Use Cases

desktop visualizations, features that the 2D perspective obscured. This new appreciation
of his data was immediate and fostered changes to the statistical measures that were being
applied to these materials. This observation was a real-world encounter of Anscombe’s
thesis; a qualitative understanding of the data helped the scientist develop his quantitative
measurements.

We have seen similar discoveries in the visualization of molecular dynamics (MD)
simulations of solar materials. MD simulations were being used to investigate how different
polymer chains would stack inside the active layer of an OPV device. Based on x-ray
diffraction imaging and traditional visualization of the MD results, researchers believed
the stacking properties of two polymers to be qualitatively similar. However, when they
examined these polymers using our immersive system (see Figure 21.4), they determined
that only one exhibited a structure known as π-stacking while the other did not.

We have also seen users make spatial discoveries that were clearly relative to their
bodies. We supported a project team that virtually constructed a large concentrating solar
collector, a structure tens of meters in length, with curved mirrors that focus the light,
using the resulting heat to generate electricity. These collectors are constructed in the
field, requiring scaffold and supporting jig. The team wished to understand if there were
flaws in the jig design which would complicate this assembly or challenge construction of
the collector with the jig. The virtual assembly supplemented their traditional design and
analysis using 3D CAD modeling tools and small-scale physical 3D models.

Figure 21.3

A simulated representation of a bulk heterojunction used in the active layer of organic pho-
tovoltaic devices (OPV), consisting of interpenetrating networks of polymer and fullerene
material. Here a skeletonization of the polymer is shown in blue and a skeletonization of the
fullerene in red. Understanding this structure and how electrons might transport through it,
is a challenging problem. Using VR, scientists discovered structures in these materials that
they had not seen using desktop displays.

390 21.  The Utility of Virtual Reality for Science and Engineering

We presented the collector, its assembly jig, and assembly platforms to the project team
at a 1:1 scale inside the immersive environment. We provided props to the user, consisting
of a foam tube and a foam beam with trackers; the visualization tool attaches geometry
to these tracked objects, so the users could move collector struts in the virtual space
(see Figure 21.5). The application highlighted the collision of parts with the base structure
as the user moved those parts into position.

In a single working session, the project team discovered nearly a dozen issues with
the jig design. They were able to identify numerous places where connecting components
would require dangerous extensions to reach, where beams and struts would likely collide
with the scaffolding, and positions where construction workers would likely have difficulty
manipulating a rivet gun.

At this point, the design team had already gone through more traditional steps of design
and analysis. They had thoroughly modeled the structure to the threads on the bolts, they
had 3D printed models on their desks, but only by bringing the model to human scale,
and allowing them to explore the collector as they would a real prototype, were they able
to uncover these issues.

This example demonstrates a unique capability provided by immersive visualization
that cannot be duplicated, or emulated, in traditional visualization. Users were able to ask
and answer simple questions like “can I reach this?” Allowing users to test their creations
without incurring significant fabrication costs and time investments is a powerful addition
to the engineer’s toolkit.

21.3.3 � 3D Interaction
The virtual assembly of the concentrating solar collector also demonstrates the utility
of being able to manipulate 3D objects directly in 3D space. The engineers were able to

Figure 21.4

Investigating polymer stacking in the active layers of OPV devices. Using VR, scientist were
able to qualitatively distinguish stacking characteristics between materials that were not
obvious with more traditional visualization techniques.

39121.3  NREL VR Use Cases

precisely move and place components of the structure to better understand the workflow
and the complexities of assembling the collector.

We have also seen the utility of 3D interaction for analyzing computational fluid
dynamics (CFD) data of simulated flow inside the cabins of electric vehicles. The efficiency
of heating and cooling electric vehicles is an area of research at NREL, as these loads can
have a significant impact on the driving range of an electric vehicle [Kiss et al., 2015].
The airflow inside vehicle cabins can be quite complex (see Figure 21.6), and developing a
visualization that provides a clear view of that flow is a challenging problem.

VR provides a medium to interactively investigate the flow by directly seeding particles
into that flow. We transfer the velocity vector fields from CFD simulations into the work-
ing volume of our immersive environment, and we render a partial mesh of the vehicle’s
body as context. The user can release massless particles into this flow with a touch of a
button on the tracked joystick, injecting up to 20,000 particles into the velocity vector
field by ‘painting’ with the controller (see Figure 21.7). These particles are then advected
by the flow and change color to reflect the temperature at their current location in the
volume. The particles diminish in size over a fixed amount of time, so as to not clutter the
visualization. Further, we stretch the particles along the velocity vector; this helps the eye
catch fast moving particles. The particles are rendered using instance rendering, a feature
found in most modern graphics APIs, which renders all 20,000 particles in a single draw
call, keeping the visualization interactive.

Before being introduced to the immersive virtual environment, the vehicle engineers
would evaluate the flows through 2D cross-sections. This VR application provides the

Figure 21.5

An engineer places a strut during the virtual assembly of a concentrating solar collector.
The red strut in the figure is mapped to the prop held by the engineer. Using VR, engineers
were able to identify design issues that they had not identified with their CAD/CAM tools and
physical scale models.

392 21.  The Utility of Virtual Reality for Science and Engineering

engineers a method to explore the air flows in a manner that is simply not possible in a
2D context. They can easily pick points to seed particles and move their bodies to follow
the flow of particles. Engineers were able to probe areas of interest directly and quickly
isolate the features in this complex flow. The engineers reported discovering vortices and
regions of high flow in the immersive context that they had not found in their previous
non-immersive visualizations of the data.

Figure 21.6

Streamline rendering of an electric vehicle simulation, displaying airflow inside the
cabin. Note the mannequin’s feet at the lower left of the image. Color represents relative
temperature. The airflow inside the cabin is complex and difficult to understand.

Figure 21.7

Inside the same vehicle as Figure 21.6, a user interactively explores the airflow inside an
electric vehicle cabin, by directly seeding particles into the flow. Using this VR system,
engineers were able to identify flow characteristics they had not discovered using desktop
visualization tools.

39321.3  NREL VR Use Cases

21.3.4 � High-Dimensional Data
As an immersive environment provides extra degrees-of-freedom, we have seen benefits
toward the exploration of high-dimensional and highly multivariate datasets. In the very
simplest case, consider the two-dimensional scatter plot, which is the mainstay of data
analysis; in VR the direct analog is a three-dimensional scatter plot. We have mapped
additional dimensions to point size and color, providing five-dimensional data directly in
the immersive environment. Users can probe individual points and use interactive planes
for additive half-space selection to isolate regions of interest (see Figure 21.8).

Going further, many data visualization techniques for even higher-dimensional data
have analogs in a 3D environment. For example, we have generalized the two-dimensional
parallel-coordinates visualization technique as parallel-planes in VR. In traditional parallel
coordinates, data dimensions are mapped onto coordinate axes as a series of parallel lines
[Inselberg, 1985]. We map pairs of the multivariate dimensions onto a series of parallel
2D scatter plots and connect individual observations in the dataset with a polyline, as
shown in Figure 21.9. This construct allows users to explore datasets with 12 or more vari-
able dimensions in a convenient fashion. Regions of the rectangles can be “brushed” to
highlight and select observations of interest. This brushing and selection action is used to
explore existing data, but is also used to visually provide input parameter spaces to launch
simulations or processes that provide additional data; it is in this manner that users can
easily “paint” questions and have an attached model provide answers in near-real-time.
We have observed that these immersive analytics tools can accelerate users’ realization of
insights about the simulation and its output [Brunhart-Lupo et al., 2016].

VR’s extra degrees-of-freedom have also allowed us to re-imagine and bring new con-
text to other highly multivariate datasets. For example, electric power distribution systems
represent a significant visualization and analysis challenge, as they have a large number
of temporally and spatially varying quantities (i.e., voltage, real power, and reactive power
across three phases, solar irradiance, varieties of control equipment with different opera-
tional parameters and scenarios, and dynamically changing load). Even highly trained

Figure 21.8

A user interactively exploring and selecting clusters in a five-dimensional dataset on a three-
dimensional scatter plot. Half-spaces, created by the planes, define the user’s selection.

394 21.  The Utility of Virtual Reality for Science and Engineering

engineers have difficulty fully comprehending these interactions, especially between
variables using traditional two-dimensional geographic representations.

To help address this challenge, we developed an immersive three-dimensional visual-
ization technique for distribution networks by elevating the power lines as a function of
their voltage and sizing them as a function of their power flow (see Figure 21.10). There

Figure 21.9

VR can support higher-dimensional visualization constructs, such as parallel planes that
link observations on parallel 2D scatter plots in a high-dimensional parameter space.

Figure 21.10

Three-dimensional visualization of a power distribution system, representing the highly
multivariate space of a power flow simulation. Power system engineers used VR to augment
their traditional analysis workflows.

39521.3  NREL VR Use Cases

are three phases of power in A/C distribution systems. Each line is “hung” in the vertical
dimension by its per-unit voltage and shaped by the real and reactive power present on the
line. By adding a degree of freedom, we have taken what is typically a four-dimensional
visualization (i.e., network topology and two line variables mapped to width and color)
and extended it to an eleven-dimensional space: three phases of voltage, three phases of
real power, and three phases of reactive power embedded with the 2D network topology.

In addition to line information, we represent the state of other elements on the system.
Voltage regulators are visualized as vertical cylinders, spanning their input and output
voltages. Generation sources are spheres geographically positioned in the horizontal plane
and positioned vertically by output voltage.

Users can manipulate floating 2D plots that provide details on demand; these are virtual
billboards in the immersive space that the user can grab and re-position in three-space
using the optically tracked joystick. A companion time-series view provides an overview
of the study feeder’s line loads and generation during a single day. This view provides the
primary temporal interface for the three-dimensional views, allowing the user to set the
current time or animate through time. Users can probe details of individual components
by intersecting a component with the joystick and creating a three-dimensional tooltip
with a button press. The tooltip provides both metadata (i.e., characteristics about the data
itself) and time-series plots (e.g., time-varying variables applicable to the component).

This VR application has been used by power system engineers to evaluate complex
control strategies on a distribution feeder [Palmintier et al., 2016] and provided novel
visibility into the multivariate relationships in these data. The immersive visualization
was used to support the traditional analysis of these power flow simulations, augmenting
the power systems research engineers’ typical workflow. Engineers would schedule time
in our immersive environment to troubleshoot the simulation, posing questions about
complex multivariate relationships that were not readily accessible using traditional two-
dimensional displays and plots. Specifically, the immersive application was utilized to
troubleshoot voltage imbalance between phases, as the immersive visualization provided
topological context for the voltage profiles in all three phases. The engineers were readily
able to identify gradual phase separations along the topology. The engineers also utilized
the multivariate spatial information of the VR application to understand the location and
cause of “over-voltages” on the system.

21.3.5 � Collaboration
One of the benefits of our large-scale system that we repeatedly observe is how the space
seems to facilitate collaborative reasoning about data. The large scale allows multiple
researchers to gather inside the environment simultaneously, which many teams have
indicated they find more collaborative than crowding around a small computer screen or
sitting around a conference table.

One example is financial and investment modeling. A number of researchers at NREL
are exploring how market forces can impact investments in renewable energy. These prob-
lems are highly interdisciplinary, bringing financial analysts, market specialists, and indus-
try experts together with modeling and simulation groups. Through multiple meetings,
attended by these professionals and held in our immersive environment and supported by
the on-demand simulation request framework discussed in the previous section (and dis-
played in the parallel-planes projection), we have observed a highly proficient, frictionless

396 21.  The Utility of Virtual Reality for Science and Engineering

environment. A cluster would form around an individual chosen as the ad-hoc primary
visualization user; the group would ask questions of the model, and new results displayed
for discussion. Frequently, groups would spin off to talk in depth about a certain notable
data point before rejoining the main cluster for more questions-and-answers, replacing
what would have been month-long conversations over email, and long-latency requests for
new data. Though initially skeptical, the users reported enjoyment of the environment and
noted the amount of research they could accomplish in a short amount of time.

In another example, we have been using the system for collaborative design and
planning studies of the NREL campus (see Figure 21.11), where multiple stakeholders
can gather and evaluate planning scenarios combining technical, economic, and policy
perspectives. As before, we have facilitated these types of design and planning meet-
ings by loosely coupling multiple simulation tools with our immersive, VR environment.
For the NREL campus planning studies, this means an economic optimization model
combined with an electrical power flow model of the campus to allow users to interac-
tively manipulate the on-site power generation and electrical loads. Though in its early
stages, we have already been able to discover opportunities for energy systems integration
on our campus by bringing our site planners and leadership together in this environment,
and have received requests to create similar models of other sites.

Our experiences in these kinds of studies are preliminary, but we are discovering that
analysis can proceed at a rapid pace not only when immersive spaces allow collaboration
between multiple users, but also when the visualization provides a substrate, either through
simulation, machine learning, or statistical analysis, to let these users ask questions about
their data, or request new simulations on the fly to test hypotheses. This machine-powered
question and response format appears to be key in our future visualizations.

Figure 21.11

NREL campus planning study that allows groups of stakeholders to interactively evaluate
the techno-economic impacts of design decisions.

397References

21.4 � Conclusion

In our daily usage of the large-scale immersive virtual environment at NREL, we
have observed multiple practical benefits of immersive technology. We have witnessed
discoveries made in VR that had gone overlooked using traditional data analysis methods.
We have seen how researchers can expedite analysis through intuitive 3D interaction
with their data. We have been able to embed more information into our analytics tools,
allowing engineers to agilely explore complex multivariate spaces. We have seen groups of
stakeholders bring their perspectives together on planning decisions.

VR cannot and should not replace the entire visualization and analysis stack, but
immersive visualization has its place as a valued tool in NREL’s analysis stockpile and
has augmented how some researchers do their science. For some NREL researchers, an
immersive examination is now the first step in the data analysis workflow: a physical walk-
through of the data, to get a qualitative understanding of the features, before developing
the statistical or quantitative measures of those data. For others, it becomes part of an
iterative debugging process to refine simulation models. Still, others use it to communi-
cate and collaborate with a variety of audiences.

A transformation is approaching for immersive visualization. AR and VR are being
commoditized by the entertainment industry with relatively low-cost HMDs, just
as GPUs were commoditized more than a decade ago. While the level of immersion
of these commodity systems cannot currently compete with the large-scale state-of-
the-art immersive environments, like the one installed at NREL, their capabilities are
rapidly advancing and will soon surpass these expensive high-end installations. As their
capabilities improve, AR and VR will revolutionize analysis for many classes of complex
scientific and engineering data.

Acknowledgments

This work was supported by the U.S. Department of Energy under Contract No. DE-AC36–
08GO28308 with Alliance for Sustainable Energy, LLC, the Manager and Operator of the
National Renewable Energy Laboratory. Funding provided by U.S. Department of Energy
Office of Energy Efficiency and Renewable Energy. NREL is a national laboratory of the
U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated
by the Alliance for Sustainable Energy, LLC.

References

[Acevedo et al., 2001]

Acevedo, Daniel, Eileen Vote, David H. Laidlaw, and Martha S. Joukowsky (2001).
Archaeological data visualization in VR: Analysis of lamp finds at the Great Temple
of Petra, a case study. In Proceedings of the Conference on Visualization ’01, VIS ’01,
Washington, DC: IEEE Computer Society, pp. 493–496.

[Anscombe, 1973]

Anscombe, Francis J. (1973). Graphs in statistical analysis. The American Statistician, 27(1):
17–21.

398 21.  The Utility of Virtual Reality for Science and Engineering

[Arns et al., 1999]

Arns, Laura, Dianne Cook, and Carolina Cruz-Neira (1999). The benefits of statistical visu-
alization in an immersive environment. In Proceedings IEEE Virtual Reality (Cat. No.
99CB36316), Houston, TX, pp. 88–95.

[Bohrer et al., 2008]

Bohrer, Gil, Marcos Longo, David J. Zielinski, and Rachael Brady (2008). VR visualisation
as an interdisciplinary collaborative data exploration tool for large eddy simulations of
biosphere-atmosphere interactions. In International Symposium on Visual Computing
(ISVC 2008), Las Vegas, NV. Berlin: Springer, pp. 856–866.

[Bowman and McMahan, 2007]

Bowman, Doug A., and Ryan P. McMahan (2007). Virtual reality: How much immersion is
enough? Computer, 40(7): 36–43.

[Brady et al., 1995]

Brady, Rachael, John Pixton, George Baxter, Patrick Moran, Clinton S. Potter, Bridget Carragher,
and Andrew Belmont (1995). Crumbs: a virtual environment tracking tool for biological
imaging. In Proceedings 1995 Biomedical Visualization, Atlanta, GA, pp. 18–25, 82.

[Brunhart-Lupo et al., 2016]

Brunhart-Lupo, Nicholas, Brian W. Bush, Kenny Gruchalla, and Steve Smith (2016).
Simulation exploration through immersive parallel planes. In 2016 Workshop on
Immersive Analytics (IA), Greenville, SC, pp. 19–24.

[Bryson, 1996]

Bryson, Steve (1996). Virtual reality in scientific visualization. Communications of the ACM,
39(5): 62–71.

[Cruz-Neira et al., 1993]

Cruz-Neira, Carolina, Daniel J. Sandin, and Thomas A. DeFanti (1993). Surround-screen
projection-based virtual reality: The design and implementation of the CAVE. In
Proceedings of the 20th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’93, New York: ACM, pp. 135–142.

[D’Angelo et al., 2008]

D’Angelo, David, Gerold Wesche, Maxim Foursa, and Manfred Bogen (2008). The benefits
of co-located collaboration and immersion on assembly modeling in virtual envi-
ronments. In Proceedings of the 4th International Symposium on Advances in Visual
Computing, ISVC ’08, Berlin: Springer, pp. 478–487.

399References

[Gardner et al., 2003]

Gardner, Joseph V., Timothy Warner, M. Duane Nellis, and Tomas Brandtberg (2003).
Virtual reality technology for lidar data analysis. In Proc. SPIE, vol. 5097, pp. 48–57.

[Gruchalla, 2004]

Gruchalla, Kenny (2004). Immersive well-path editing: Investigating the added value of
immersion. In Proceedings of the IEEE Virtual Reality 2004, Washington, DC: IEEE
Computer Society, pp. 157–164.

[Gruchalla et al., 2008]

Gruchalla, Kenny, Mark Dubin, Jonathan Marbach, and Elizabeth Bradley (2008).
Immersive examination of the qualitative structure of biomolecules. In International
Workshop on Qualitative Reasoning about Physical Systems, Boulder, CO, pp. 36–41.

[Inselberg, 1985]

Inselberg, Alfred (1985). The plane with parallel coordinates. The Visual Computer, 1(2):
69–91.

[Kiss et al., 2015]

Kiss, Tibor, Jason Lustbader, and Daniel Leighton (2015). Modeling of an electric vehi-
cle thermal management system in matlab/simulink. In SAE Technical Paper. SAE
International.

[Kreylos et al., 2006]

Kreylos, Oliver, Gerald Bawden, Tony Bernardin, Magali I. Billen, Eric S. Cowgill, Ryan
D. Gold, Bernd Hamann, Margarete Jadamec, Louise H. Kellogg, Oliver G. Staadt,
and Dawn Y. Sumner (2006). Enabling scientific workflows in virtual reality. In
Proceedings of the 2006 ACM International Conference on Virtual Reality Continuum
and Its Applications, VRCIA ’06, New York: ACM, pp. 155–162.

[Kuhlen and Hentschel, 2014]

Kuhlen, Torsten Wolfgang, and Bernd Hentschel (2014). Quo vadis CAVE: Does immer-
sive visualization still matter? IEEE Computer Graphics and Applications, 34(5):
14–21.

[Laha et al., 2014]

Laha, Bireswar, Doug A. Bowman, and John J. Socha (2014). Effects of VR system fidel-
ity on analyzing isosurface visualization of volume datasets. IEEE Transactions on
Visualization and Computer Graphics, 20(4): 513–522.

400 21.  The Utility of Virtual Reality for Science and Engineering

[Marai et al., 2016]

Marai, G. Elisabeta, Angus G. Forbes, and Andrew Johnson (2016). Interdisciplinary immer-
sive analytics at the Electronic Visualization Laboratory: Lessons learned and upcoming
challenges. In 2016 Workshop on Immersive Analytics (IA), Greenville, SC, pp. 54–59.

[McMahan et al., 2006]

McMahan, Ryan P., Doug Gorton, Joe Gresock, Will McConnell, and Doug A. Bowman
(2006). Separating the effects of level of immersion and 3D interaction techniques.
In Proceedings of the ACM Symposium on Virtual Reality Software and Technology,
VRST’06, New York: ACM, pp. 108–111.

[Narayan et al., 2005]

Narayan, Michael, Leo Waugh, Xiaoyu Zhang, Pradyut Bafna, and Doug Bowman (2005).
Quantifying the benefits of immersion for collaboration in virtual environments.
In Proceedings of the ACM Symposium on Virtual Reality Software and Technology,
VRST’05, New York: ACM, pp. 78–81.

[Ni et al., 2006]

Ni, Tao, Doug A. Bowman, and Jian Chen (2006). Increased display size and resolution
improve task performance in information-rich virtual environments. In Proceedings
of Graphics Interface 2006, GI’06, Toronto, ON: Canadian Information Processing
Society, pp. 139–146.

[Palmintier et al., 2016]

Palmintier, Bryan, Julieta Giraldez, Kenny Gruchalla, Peter Gotseff, Adarsh Nagarajan,
Tom Harris, Bruce Bugbee, Murali Baggu, Jesse Gantz, and Ethan Boardman (2016).
Feeder voltage regulation with high-penetration PV using advanced inverters and a
distribution management system: A Duke Energy case study. Technical Report NREL/
TP-5D00–65551, National Renewable Energy Laboratory.

[Prabhat et al., 2008]

Prabhat, Andrew Forsberg, Michael Katzourin, Kristi Wharton, and Mel Slater (2008). A
comparative study of desktop, fishtank, and CAVE systems for the exploration of vol-
ume rendered confocal data sets. IEEE Transactions on Visualization and Computer
Graphics, 14(3): 551–563.

[Ragan et al., 2013]

Ragan, Eric D., Regis Kopper, Philip Schuchardt, and Doug A. Bowman (2013). Studying the
effects of stereo, head tracking, and field of regard on a small-scale spatial judgment
task. IEEE Transactions on Visualization and Computer Graphics, 19(5): 886–896.

401References

[Raja et al., 2004]

Raja, Dheva, Doug A. Bowman, John Lucas, and Chris North (2004). Exploring the ben-
efits of immersion in abstract information visualization. In In Proceedings of 8th
International Immersive Projection Technology Workshop, pp. 61–69.

[Richardson et al., 1999]

Richardson, Anthony E., Daniel R. Montello, and Mary Hegarty (1999). Spatial knowledge
acquisition from maps and from navigation in real and virtual environments. Memory
& Cognition, 27(4): 741–750.

[Schuchardt and Bowman, 2007]

Schuchardt, Philip, and Doug A. Bowman (2007). The benefits of immersion for spatial
understanding of complex underground cave systems. In Proceedings of the 2007
ACM Symposium on Virtual Reality Software and Technology, VRST ’07, New York:
ACM, pp. 121–124.

[Sherman et al., 2013]

Sherman, William R., Daniel Coming, and Simon Su (2013). FreeVR: Honoring the past,
looking to the future. In Proceedings of the SPIE, vol. 8649, Burlingame, CA, pp.
864906-1–864906-15.

[Shetty et al., 2011]

Shetty, Nikhil, Aashish Chaudhary, Daniel Coming, William R. Sherman, Patrick O’Leary,
Eric T. Whiting, and Simon Su (2011). Immersive ParaView: A community-based,
immersive, universal scientific visualization application. In Proceedings of the 2011
IEEE Virtual Reality Conference, VR’11, Washington, DC: IEEE Computer Society,
pp. 239–240.

[Taylor et al., 2001]

Taylor II, Russell M., Thomas C. Hudson, Adam Seeger, Hans Weber, Jeffrey Juliano, and
Aron T. Helser (2001). VRPN: A device-independent, network-transparent VR
peripheral system. In Proceedings of the ACM Symposium on Virtual Reality Software
and Technology, VRST’01, New York: ACM, pp. 55–61.

[van Dam et al., 2000]

van Dam, Andries, Andrew S. Forsberg, David H. Laidlaw, Joseph J. LaViola, and Rosemary
M. Simpson (2000). Immersive VR for scientific visualization: a progress report. IEEE
Computer Graphics and Applications, 20(6): 26–52.

402 21.  The Utility of Virtual Reality for Science and Engineering

[van Dam et al., 2002]

van Dam, Andries, David H. Laidlaw, and Rosemary Michelle Simpson (2002). Experiments
in immersive virtual reality for scientific visualization. Computers & Graphics, 26(4):
535–555.

[Ware and Franck, 1996]

Ware, Colin, and Glenn Franck (1996). Evaluating stereo and motion cues for visualizing
information nets in three dimensions. ACM Transactions on Graphics, 15(2): 121–140.

403

22
Immersion and Visualizing
Artistic Spaces in Virtual Reality
Margaret Dolinsky
Indiana University at Lafayette

This chapter explores how the experience of creating artwork for virtual reality systems
relies on shifting sensory perceptions through “emotables,” or affective entities that estab-
lish aesthetics. Virtual reality (VR) art and design, framed in terms of a fine arts aesthet-
ics encourages artists to build a visual rhetoric for VR that is distinct from that of video
games or cinema. One such rhetorical approach emphasizes using art fundamentals such
as line, shape, form, scale, and color to build visual metaphors I term “emotables.” The
results—construction of “emotables”—animates objects as symbolic building blocks to
shape the environment and assist with the visitor’s navigation through its visual environ-
ment. These emotables then are used to construct environments and establish “cyberity”,
the temperance for being that occurs while in cyberspace. Rather than see still images or
videos that represent VR, a visitor has to be in the VR art in order to experience it and
moreover, navigate it to understand it.

22.1	 Introduction: The Rise of VR
22.2	 VR: An Evolving Medium
22.3	 Immersion: A Key to Virtual Reality
22.4	 Making Special with Immersion and Perceptual Awareness
22.5	 Aesthetic Experience: VR Art Evokes Visitor Action and

Reaction
22.6	 Engaging Forward with “Emotables”

404 22.  Immersion and Visualizing Artistic Spaces in Virtual Reality

22.1 � Introduction: The Rise of VR

The recent popular interest in virtual reality is the direct result of the wide availability of
graphics hardware driven to serve the needs of the gaming community. Virtual reality,
in some form or another, has been around much longer than graphical based games, and
this chapter offers a point of view separate from the industry of competitive gaming and
concentrates on shaping visual choices through art exploration and creative expression.
Now that computer graphics technology is more accessible, VR has become a shifting
quantity with a variety of displays available which influences the engagement with the
environment.

The fine arts tradition emphasizes aesthetics as the approach towards VR experience
pursuits (See Figure 22.1). Rather than a coded goal of “does it work?” the success here
relies on the shape of a line—how lines are created as a source of flow through the environ-
ment, how shapes envelope, engulf and engage the visitor. It is critical that the emotables
define a semblance of order to allow the visitor to find a unique path to uncover and expe-
rience choices. These choices are emphasized through the aesthetic moments to be experi-
enced. I create plastic artworks (drawings, paintings, collages, and sculptures) that inform
my virtual worlds. The shape of a line in a drawing suggests multiple interpretations for
becoming multi-dimensional worlds that translate into a dynamic VR art experience. In
the evolution of one’s own creative voice, that voice expands through the shaping of move-
ment in VR and real time interactive experience. Virtual reality can serve the artist in
their quest towards discovering a visual voice through their cultivation of a visceral truth
by combining the visual aesthetics of line, color, shape, proportion, volume and stature
of the objects with the situation of consciousness and active exploration. Virtual reality
situates the visitor’s consciousness in an alternate world and asks them to act decisively,
in the moment. This encourages the visitor to become actively involved in identifying
and navigating an unfamiliar space. As a result, the visitor explores the environment by
making it their own experience. They can decide the moment to move left or right, or to

Figure 22.1

Figuratively Speaking, in the Indiana University Virtual Reality Theater. Using large screen
projection displays artists are dialoguing with art and walking in the worlds of their
aesthetic visions.

40522.2  VR: An Evolving Medium

move their head up or down or to turn around or to look under objects. The experience is
revealed through their conscious choices. Through artistic expression, the medium of VR
forms a rhetoric distinct from traditional computer graphics.

Games are consumer driven, mass market products that challenge users with goal-
oriented activities that are often linear, hierarchical, and designed with an assurance
that a predictable comfort level will be maintained. This is accomplished by introducing
mythological themes that are easily assimilated into the gaming culture such as search-
ing for items, combatting foes, and accumulating wealth. It is possible to describe virtual
reality as an extension of the gaming market, but that would be misleading. Virtual real-
ity actually is an experience, much like the conceptual art of Agnes Denes [Denes 1993],
Nancy Holt [Lee and Schaber 2015], Alice Aycock [Risatti 1985], James Turrell (Adcock
and Turrell 1990], and Robert Smithson [Smithson and Smithson 1996], who present aes-
thetic experience by creating art as events, situations, or happenings. These moments of
posturing visitors within time and light within a landscape enriches the viewing by shift-
ing perceptions of truth and promoting special moments of being.

22.2 � VR: An Evolving Medium

Since the 1960s, the investigation of VR has developed rich research communities at
university campuses, corporations, and military complexes—earlier if one considers
flight simulation as a type of VR. Today these places include the University of North
Carolina at Chapel Hill, the University of Illinois at Chicago, the Virtual Reality
Medical Center in San Diego, Ford Motor Company, Facebook, Intel Labs among so
many more companies and emerging start-ups. Virtual reality has a legacy in visu-
alization for scientific, mathematical and information visualization, medical train-
ing, architectural rendering and communication in the arts and humanities. Many
fields develop strategies for interacting with data and complex information in three-
dimensional space. No field has a particular protocol for creating virtual reality and
no virtual reality environment follows a standard protocol. At the outset, software and
hardware tended to be custom made and designed in-house or shared among a group
of collaborative institutions. All of the environments offered unique opportunities
for immersion and provided a strategy for navigation. Understanding navigation and
interacting with visual and auditory information becomes the virtual reality challenge
for the creator, and more likely, the creative team. Consumer market products for VR
bring the research and development challenge for building environments right into the
home. What does that offer us?

Virtual reality provides alternative strategies for creating immersive experiences. VR
is typically understood or discussed in terms of video games, films, interactive videos and
the like but it is actually redefining those genres in a distinctive way—it has the ability to
extend these media. However, we can begin with VR as a strategy in and of itself because
it presents experience—and currently that reality of experience is ill-defined. That is one
of the reasons why VR has been so problematic as a “Wild West” frontier. Artists, develop-
ers, and visitors to virtual environments find themselves in dialogues about VR without
a manual or lexicon.

The biggest reason why VR appears to be a wild frontier is that it is not easily contex-
tualized. The term itself has been used to refer to large displays, small displays, and web

406 22.  Immersion and Visualizing Artistic Spaces in Virtual Reality

displays with a plethora of supporting devices depending on who is claiming it at the time.
And that is only the technology, never mind the environments themselves.

Approaching VR with an artistic strategy offers an opportunity for creating expression
and affecting perception of a visitor within a multi-dimensional physicality of complex
characterization of space and sound. Programming art in VR establishes a link between
the computer and the imagination. The pleasure of pushing brightly colored paints around
with a long handle paintbrush is extended to generating pixels that fly through the air. The
immediacy, the smell, the sensuality, and the feeling of pure intoxication occurs when
virtual environments appear from darkness. Now logical phrases calculate floating point
number values to create three dimensional objects. Tools are available through 3D mod-
eling packages and improved image manipulation software that allow artists to expand
their ideas about static objects to how they should appear when they are experienced in
relation to a navigational sequence. This becomes a narrative that exists in a 360° arena.
VR becomes a fascinating challenge for the artist and designer to unfold experience from
multiple vantage points. As creative director, one has to think about the artistic value, the
design methodology, and the software solutions being offered to the visitor.

Tools will allow us to create environments and artwork directly inside virtual reality.
It is imperative to understand VR as art and continue to expand the aesthetic role in inter-
active experience.

22.3 � Immersion: A Key to Virtual Reality

Key to VR’s interactive experience is immersion. Immersion offers a perceptual shift; it
is mental awareness of a reality that enhances the normal or real world. Virtual reality
offers a method to recognize an added component to everyday awareness. VR interaction
can be subtle such as approaching an object or an emotable and having the entity react by
changing its appearance through color, shape or size, or creating sounds, or by generating
movement or placement changes. By making interactions possible for the visitor, choices
engage the visitor and promote understanding and immersion within the environment.

Consider the mentally immersive medium of the book. An absorbing read enriches life.
As if the author is sending us messages, whether fiction, non-fiction, imagined, or histori-
cal, these messages each in their own way form an immersion into a perceptual shift. Avid
readers will consider a good book to be an escape or a type of friend. One can hold a book
as if it is a companion that provides comradery late at night or in the adventure of a plane
flight. The virtual environment is essentially the book; the emotables shape the story of the
virtual environment by communicating ways to navigate its messages.

As an object, the emotable can be very apparent or rather subtle. However, aesthetics
position the emotable as a tool of VR immersion. Through the act of reading the emotable,
one is led or sometimes dragged or other times found tripping over the expression in order
to realize the narrative. Our immersion is part of the drive to discover how the narrative
unfolds and to become consumed by it so much so that we suspend our disbelief over to
the reality of virtual circumstances. The most effective experiences add a layer to our con-
scious awareness. And that layer enhances the normal or real world, it is superimposed on
our reality and we experience an awareness that is a simultaneous and parallel flow state.
It is through this absorption into the language of the emotable that we sense an engage-
ment with a virtual reality that can entertain, inform, and enrich us.

40722.4  Making Special with Immersion and Perceptual Awareness

22.4 � Making Special with Immersion and Perceptual Awareness

For me, VR serves a biological drive to create or “make special.” According to Dissanayake’s
research in "Art as Human Behavior: Toward an Ethological View of Art," humans are
driven to create objects that are beyond a utilitarian design [Dissanayake 1980]. We make
objects special in an effort to satisfy a desire towards creating something. We want to be
surrounded by objects of greater value. This need to appreciate the significance of objects
is an indicator of cognitive awareness. Making special is a drive for a perceptual shift
and an appreciation of aesthetics. This drive enhances immersion. Creating emotables in
virtual reality makes it is possible to achieve the feeling of “making special” for the artist
creating the environment and for the visitor exploring the environment.

Emotables set the stage for mental immersion in virtual reality and indicates a direc-
tion for further pursuits.

VR combines two trajectories, technical (hardware, software) and experiential (percep-
tual, artistic, purposeful, scientific, training, etc.). One definition states that virtual reality
is a “very powerful and compelling computer application by which humans can interface
and interact with computer-generated environments in a way that mimics real life and
engages all the senses” [Burdea and Coiffet 2003]. Sherman and Craig defined it as hav-
ing four key elements: Virtual World, Physical and Mental Immersion, and Interactivity
[Sherman and Craig 2002]; and then recognized two more key elements: the Participant,
and the Creators [Sherman and Craig 2018]. Steuer writes that many people describe VR
as a medium like television or the radio, but he considers it “a particular kind of experi-
ence” (unique) rather than a technological assemblage [Steuer 1992].

As a result, hardware people talk about the hardware, software people talk about the
software, and art people talk about the aesthetics. Together, VR is experience. In fact,
all of these components make up VR and go hand in hand. For example, the efficiency
of the technological components and the efficacy of their execution provide for smooth
navigation which allows the perceptual field to accept the environment more readily. This
doesn’t mean that the environment needs to approach realism for an effective experience.
It means that the graphics must respond effortlessly to the rotation of your head or the
pointing of your finger, etc. The interaction and visual motion should be smooth in order
to provide a conscious psychological sense of immersion that is a result of aesthetics: mak-
ing special with hardware, software, and displays.

Immersion in VR will improve as real time rendering improves. As VR operation
becomes a smooth occurrence, VR begins to stabilize, the expectations of hardware and
software become more predictable and so does the playback during engagement. As these
smooth conditions become normative, we will be able to speak about ourselves in the state
of VR with more certainty. I am proposing a name for this state. The status of existing in
the virtual world—cyberity (as opposed to sobriety)—is the state of being cyber. Cyberity
is the temperance or moderation of being cyber. Cyberity occurs in such spaces as virtual
reality, artificial reality, augmented reality, cyberspace, cyber-presence, second life, etc.

Cyberity is determined by the experiential moment which is shaped by its artistry.
The artistry can be to focus on the phenomena of art-making and perception-shifting
using a variety of strategies from digital drawing, digital painting, and digital sculpting
as well as scanning and photographic techniques to create virtual worlds. The experience
is also defined by the VR displays which include CAVEs, ImmersaDesks, John-e-boxes,

408 22.  Immersion and Visualizing Artistic Spaces in Virtual Reality

Oculus Rift HMD, VIVE HMD, Wide-Angle Virtual Environment (WAVEs), Flat panels,
IQ-walls, phones, HoloLenses, and other augmented reality displays. This wide berth of
devices range from small single visitor displays to large group projection displays. CAVE-
like rooms or wall displays for multiple persons allows groups of people to look directly
at one another creating a level of co-existence between the people, VR, and shared time
and place.

There are those who believe that VR is truly realized in a single visitor display such as a
head mounted display (HMD) and that the HMD is the true source of immersion [Laurel
2016]. This attitude suggests that one must be alone in the environment isolated from the
real world, and cut off from seeing one’s body or others or the world we live in. The HMD
separates the visitor from the self and the actual surroundings, which can be problematic
if one’s movements are not safely negotiated or monitored. Adherence to a single visitor
display will prove to be a privileged vision with the proliferation of surround screens,
touch walls, augmented reality, and the like which expands our relationships to include
the natural environment and our graphics capabilities.

The configuration of displays and their supporting technologies provide very different
types of physical immersion and as a result, very different experiences. The visual display
delivers the virtual environment or destination in which to discover the artwork itself.
The technology drives the real world environmental conditions for viewing. The technol-
ogy can help to shape the experience but the visual phenomena combined with audio
immersion is core to the experience. The artist should maintain a conscientious dialogue
with their creative process when inviting visitors into an unknown world exemplify-
ing a space we are wholly within, visually immersed and interactively and thoughtfully
connected to.

22.5 � Aesthetic Experience: VR Art Evokes
Visitor Action and Reaction

The VR artist challenges the visitor to withhold their sense of disbelief in order to navigate
a world that they may have never imagined facing before. In the initial encounter the visi-
tor realizes that the newfound world fills their field of view. The sense of presence gained
through the experience depends on how tracking devices and related peripheral devices
are used to facilitate interaction.

Taking the opportunity to create artworks using state-of-the-art technologies and
high performance networks for gallery and museum installations, dramatic theater
events and operas widens the expression possibilities. This includes projection displays
that incorporate 3D computer graphics, real-time animation, real-time video process-
ing, facial detection, stereo audio, stereo video and real -time interaction. The real-time
interaction includes some form of position tracking system integrated into the graph-
ics output. Such systems could include an electromagnetic tracker, an infrared camera
tracker or a facial detection tracking system. The artwork requires the ability to display
the visual graphics in real time and may use many processor-intensive programs running
simultaneously. The artwork does not require a sequential playback device; it requires the
artwork to be generated during the time of the visitor’s interaction. The work is realized
as the visitor moves, manipulates, navigates or in some way alters the reality of the art
experience.

40922.5  Aesthetic Experience: VR Art Evokes Visitor Action and Reaction

Through various forms of VR which include CAVE, HMDs, surround screen 360°
video, smartphone, second life, stereo cinema, 3D video, planetariums, domes, IMAX
theaters, etc., different kinds of reality can be offered. The physical immersion experi-
ence is fundamental to VR but the available hardware requires specific software to display
artwork in these various venues. A virtual reality artwork is not interchangeable as it is
typically optimized for a specific display such as a handheld device, or a surround display
like a planetarium.

Virtual reality requires having viewer-centered perspective, however domes and iMAX
theaters do not have viewer centered perspective. They may display in stereo-vision but
they are not VR because they have camera perspective. 360° video is physically immersive
when seen on an HMD but it is not viewer-centered perspective. Viewers of 360° video
are in the camera point of view which is a fixed POV. The visitor is not moving in virtual
space; rather their head is rotating around to understand the view. A CAVE promotes
viewer-centered perspective to the navigator. VR experiences can be considered as a venue
much like a baseball stadium, symphony hall, or nightclub. As you arrive, you can feel that
others are collectively creating the immersive space that everyone is sharing.

So how do we share VR through art? What makes VR an excellent arts space? Translating
ideas into a three-dimensional space with 360° viewing is challenging. It is problematic in
terms of understanding which direction to face. Visitors may be watching for some time
before realizing the action is occurring behind them. The key is to establish a variety of
viewpoints, to orient the visitor at the start and be able to reset that orientation for each
visit. Each direction in VR art is a possibility for experience where every viewpoint offers
the prospect of discovering an element of the environment. VR is distinguished from a
3D film because VR offers interaction beyond the photographic imagination, with non-
linearity and non-hierarchical navigation and with the ability to experience environments
without a predefined beginning, middle, and end.

In VR, the visitor is no longer bound to the fixed frame of a still image or the fixed point
of view of a camera or the fixed length of a cinematic film. Rather than sitting in front of a
flat display the visitor is immersed in in a three-dimensional sound environment. In VR,
the visitor discovers and defines the walk through the imagery by interacting with its ele-
ments or emotables.

As an artist, I am interested in artistic expression of ideas that provoke perceptual
pleasure and provide emotional possibilities. I have created the term ‘emotable’ to define a
digital character that represents ability, emotion, motive, and voice. The emotable helps to
establish an aesthetic and place the visitor in an environment. An emotable represents an
affective entity. An emotable may have a facial expression and a unique voice. An emotable
represents an aspect of the environment that uses aesthetics as a method for establishing
the terrain and wayfinding in order to immerse the visitor. It acts as its own entity to
define the environment and establish the visitor’s cyberity, or consciousness in VR.

The emotables depend on metaphors that provide objects with certain characteristics
that define the environment and its expressive qualities. For example, an emotable on a
wall can appear fixed until it is approached, whereupon it grows more dimensional, alters
in size and reveals itself as a doorway. This is the metaphorical equivalent of walking
down a hallway to discover doorways and windows and contemplate options in order to
choose a particular path. By being attracted to an emotable and a direction, recognition
and approach become levels of interaction with the emotable. By integrating the emotable

410 22.  Immersion and Visualizing Artistic Spaces in Virtual Reality

into our consciousness we develop an understanding with the emotable. Visitors are hav-
ing a reciprocal dialogue with the VR world. The emotable is an affective entity or element
that establishes the interaction.

Much of my artwork is involved in communicating an emotion or a type of social com-
munication. Art processes (painting, drawing, and sculpture) open up the possibilities
to discover shapes and lines and colors that evoke the imagery to represent these vari-
ous conscious and subconscious phenomena and establish them into VR circumstances.
For me, creating pen, pencil, and brush markings allows me to immediately express the
intrinsic associations I make with the world. I interpret these drawings by exploring the
metaphors that they reveal in VR. VR allows me to expand on the associations I make with
the real world. Artworks are metaphorically expressive as they portray realism or pure
abstraction or data [Cox 2006] and metaphor is the approach for investigating how artistic
virtual environments can be ascribed.

Much like swapping the letters in a JUMBLE puzzle to form a word, VR offers the abil-
ity to swap boundaries from reality to “virtuality.” Many of my VR artwork experiences
rely on portraiture or characters to situate the visitor within the environment. The human
is the visitor in the virtual world of emotables. For example, in “Figuratively Speaking,” one
encounters a VR artwork where abstract characters share a world where hearts fly in the
sky and boats rock in the ocean and “guards” flail their arms in haphazard consternation.
Some of the emotables in the environment are beckoning and others attempt blocking
which allows for a responsive and intuitive navigation. The emotables fill the environment
as characters (figures) and their parts configure the landscape. The emotables form the
land and the figures by being interchangeable parts. For example, a nose can be singular
entity on a face or can be multiples to establish a forest. By presenting the emotables with
various configurations, the visitor is provided with multiple pathways of interpretation
and direction.

The essential methodology for designing a virtual environment is to start with a
familiar object in the real world and shape it characteristics—be they realistic, exag-
gerated or abstract. For example, I enjoy the homonym ‘nose’ and ‘knows.’ When I
look at someone, I see their nose. I tend to draw the nose first when I create a por-
trait. The nose becomes a confrontation point and a discernment point. By combining
these ideas, I created a forest of tall green noses that provide a shelter for two charac-
ters in an intimate conversation. They are having a dialogue in the Forest of Knowses
(See Figure 22.2). The noses are not obvious noses unless you look at the characters in
the forest, the trees are actually their noses grown tall and turned green. The audio
sounds an imaginative dialogue that gives them a voice that whispers to the visitor as
they approach.

22.6 � Engaging Forward with “Emotables”

A critical aesthetic element of the VR art environment is what I term ‘emotables.’ An
emotable’s construction and placement situates consciousness by establishing the aesthet-
ics of the environment to guide visitors through virtual reality. The emotable represents
an affective entity and provides ability, emotion, motive, and voice to a VR scene. The
emotables’ abilities are signals for the visitor to explore their own abilities in the VR. The
emotables’ emotion situates consciousness through the mise-en-scène. The emotables’

411References

motives provide motivation for further exploration. The emotables’ voices provide sound
locators and substantiates the tone of the scene. An emotable is any element in the scene.
The emotable can have facial expressions and a unique voice but it does not represent any
person. It acts as its own entity and may mirror a receptive visitor. The emotable is oppo-
site of an avatar that represents a particular person.

Aesthetics helps define a visual rhetoric for virtual reality and facilitate visitors with
navigational strategies.

VR artwork communicates to the visitor through the emotable, an affective entity
that defines the environment and the possibilities within it. The VR visitor’s experi-
ence is established by their cyberity, their moderation of cyberspace and their ability
to make special while in it. Artists will continue to define VR as they creatively define
their voice and establish visual VR rhetoric and aspects of cyberity through aesthetic
moments.

References

[Adcock & Turrell 1990]

Adcock, Craig E. and James Turrell. James Turrell: the Art of Light and Space. Oakland,
CA: University of California Press, 1990.

[Burdea & Coiffet 2003]

Burdea, Grigore C. and Philippe Coiffet. Virtual Reality Technology, Vol. 1. Hoboken, NJ:
John Wiley & Sons, 2003.

Figure 22.2

“Forest of Knowses” in Figuratively Speaking. As an aesthetic strategy, the nose as an
emotable is used in figurative elements and landscape elements to unify the environment.
The forest of noses leads us to the figures that are whispering nose to nose. In effect, the
emotables are speaking in the environment and parts of the faces are establishing the
environment as a forest.

412 22.  Immersion and Visualizing Artistic Spaces in Virtual Reality

[Cox 2006]

Cox, Donna. Metaphoric mappings: The art of visualization. In: Fishwick, P. ed. Aesthetic
Computing. Cambridge, MA: MIT Press, pp. 89–114, 2006.

[Denes 1993]

Denes, Agnes. Notes on eco-logic: Environmental artwork, visual philosophy and global
perspective, Leonardo 26(5), 387–395, 1993.

[Dissanayake 1980]

Dissanayake, Ellen. Art as a human behavior: Toward an ethological view of art, Journal
of Aesthetics and Art Criticism 38(4), 397–406, 1980.

[Dolinsky 2018]

Dolinsky, Margaret. Facing experience: A painter’s canvas in virtual reality, Manuscript
submitted for publication, 2018.

[Laurel 2016]

Laurel, Brenda. What is virtual reality? 2016. doi:10.13140/RG.2.1.4415.0643. https://
researchgate.net/publication/301891235_What_Is_Virtual_Reality

[Lee & Schaber 2015]

Lee, Pamela M. and Ines Schaber. Nancy Holt: Sightlines. Oakland, CA: University of
California Press, 2015.

[Risatti 1985]

Risatti, Howard. The sculpture of Alice Aycock and some observations on her work,
Woman’s Art Journal 6(1), 28–38, 1985.

[Sherman & Craig 2002]

Sherman, William R. and Alan B. Craig. Understanding Virtual Reality. San Francisco,
CA: Morgan Kaufman Publishers, 2002.

[Sherman & Craig 2018]

Sherman, William R. and Alan B. Craig. Understanding Virtual Reality, second edition,
San Francisco, CA: Morgan Kaufman Publishers, 2018.

https://researchgate.net
https://researchgate.net

413References

[Smithson & Smithson 1996]

Smithson, Peter and Robert Smithson. Robert Smithson: The Collected Writings. Oakland,
CA: University of California Press, 1996.

[Steuer 1992]

Steuer, Jonathan. Defining virtual reality: Dimensions determining telepresence. Journal
of Communication 42(4), 73–93, 1992.

http://www.taylorandfrancis.com

415

23
Embodied Montage
Constructing Meaning in Virtual Reality

Deniz Tortum and Ainsley Sutherland
MIT Comparative Media Studies

Virtual reality (VR) storytelling allows unprecedented levels of interactivity, sometimes
at the cost of traditional methods for telling a story—a tradeoff described as the “nar-
rative paradox” in gaming literature [Harrell 2013]. VR is positioned between gameplay
and film. It demands new techniques that take advantage of the unique qualities of the
medium. This chapter discusses embodied montage, a technique that draws from film
montage, adapted to the physical, sensory world of VR storytelling. The “magic” of chang-
ing your body’s abilities in the world is an ancient concept, and this section will describe
how the technical affordances of VR open up new possibilities in this realm. We will dis-
cuss specific techniques by looking at examples of existing VR artwork. As you create your
own VR projects, you will be able to consider carefully how to design interactive stories
and mechanics that use perception in new and effective ways.

23.1 � Don’t Look Back

To begin thinking about this, consider the myth of Orpheus. In the famous myth of
Orpheus and Eurydice, perception itself has dire consequences. Deeply in love with his
wife, Orpheus seeks to bring her back from death. He travels to the underworld to save
her. Hades offers him her return on one condition: Orpheus must not look back at her
until they have left the underworld. If he looks back, she will stay there forever. Though
they travel together towards the entrance to hell, Orpheus trusting that Eurydice is close

23.1	 Don’t Look Back
23.2	 Virtual Reality Systems

and Perception

23.3	 Embodied Montage
23.4	 Case Studies
23.5	 Conclusion

416 23.  Embodied Montage

behind, he grows increasingly doubtful. At the last moment, unable to bear the possibility
that she might not be with him, Orpheus looks back. Eurydice, who had indeed been just
behind him, is trapped in the underworld forever. This ancient myth has been ripe with
meaning for philosophers and writers concerned with the consequences of our gaze. It
also speaks to something quintessential in VR.

The act of looking has consequences for Orpheus. It creates “action at a distance;” though
he doesn’t touch Eurydice, his gaze both causes change in himself (he has knowledge,
verifies her presence) and changes in the world (Eurydice must stay in the underworld).
Generally, we are accustomed to the first consequence of looking, as sight is one of the pri-
mary ways in which people learn about and understand their environment. Sight changes
our knowledge of the world. In this myth, however, sight changes the world itself.

23.2 � Virtual Reality Systems and Perception

Uniquely, virtual reality enables the opportunity to bring these types of interactions to the
fore more easily than in other media. Artists can create these types of moments in virtual
reality because it is a dynamic computational medium, tracking all of a user’s bodily input,
from movement around a room to the direction of a look. Tying action to consequence is a
unique affordance of virtual reality, and creates the foundation of embodied montage.

To understand why this is possible with VR, let’s take a look at the affordances of real-
time engines and head-mounted displays (HMDs). Real-time graphics engines are not
new, they have been used in games since the 1990s. Crucially, they render a display based
on user input: where the user is looking, what location the user has moved to, etc. This
is in contrast to a linear display as you would see in a non-interactive animated film or
movie. In VR, this adaptable display is even more closely aligned with our body and our
natural movements. VR peripherals, like controls, microphones, and the head-mounted
display work in tandem to provide information about our physical movements, such as
gaze, voice, height, and so on to the computational system. Think about it like this: a tra-
ditional video game reacts to inputs in the form of button presses—intentional, discrete
inputs. A VR system is graphically adjusting to much more complex and overlapping
inputs: turning your head as you walk forward, holding an object as you sit down.

While we can design interactions in the same way—e.g., jumping causes you to move
up and then down again—mimicking what we encounter in the physical world, it is
important to register that as a design choice. The realism of virtual “reality” is constructed.
By acknowledging this, creators can push the medium to more experimental and novel
ends [Arnheim 1969].

Currently, a variety of unique VR experiences have experimented with what happens
when we don’t reproduce the physical world in our VR design choices. The framework of
Embodied Montage, a concept borrowed from the montage of cinema, helps us to analyze
and understand this type of design.

23.3 � Embodied Montage

We expect certain outcomes from our body’s movement and perception—like looking
completely around to see what is behind us. That action isn’t necessarily a given in a
virtual reality environment and can be altered expressively. By breaking the illusion of

41723.4  Case Studies

naturalistic realism, particularly within the body, we are able to create new and additional
meanings from adjacent sensations. Embodied montage originates in a study of film his-
tory, specifically the history of montage.

In the 1920s, Soviet filmmakers developed an approach to film editing called “mon-
tage.” [Eisenstein and Leyda 1949] Rather than creating sequences in which shots fol-
low each other seamlessly, these filmmakers placed contradicting shots directly after one
another. These two shots when combined create a third meaning that does not exist in
either of the shots alone, and the whole ends up being greater than the sum of each shot.
The heart of montage lies in creative juxtaposition.

In VR the “third meaning” of montage can appear from new connections between the
body and the environment, and between action and perception. For example, VR systems
can create new perceptual experiences that we don’t have access to in everyday life: such
as projecting different images to each eye, or changing the field of vision, or the effect
of mass and gravity on a body. Such separations between what we expect, and what we
actually perceive allow the artists to make novel combinations between actions and their
consequences and to reconfigure the body and its relation to the environment. Embodied
montage offers a response to narrative paradox in interactive experiences and serves as a
narrative tool for virtual reality.

23.4 � Case Studies

In a nutshell, using virtual reality we break the existing, expected relationship between a
user’s actions and their consequences. For example, we expect walking to produce move-
ment, we expect contact with an object to produce an effect on the body. But in virtual
reality, we must design these interactions intentionally. Embodied montage can be addi-
tive or subtractive: it can either create a new pairing between action and consequence or
it can break an already existing pairing. The case studies demonstrate how artists have
broken and reconnected our expectations about how our actions produce effects in the
virtual world (Figure 23.1).

Figure 23.1

Users move to where they look in Oscar Raby’s Assent.

418 23.  Embodied Montage

23.4.1 � Assent—Oscar Raby
Created by Oscar Raby in 2013, Assent is a critically acclaimed virtual reality docu-
mentary. In this experience, users take on the perspective of the artist’s father, a former
soldier who served in the Chilean army during the Pinochet military regime. The
piece centers on the experience of witnessing a mass execution during this time. The
mechanic for moving in this experience is tied to the viewer’s gaze. The user looks at
a particular place (a technique known as “dwelling”) for several seconds, and then
moves towards it. This interaction mechanism combines the action of looking with the
consequence of moving, linking these two acts. This gives new meaning to the act of
looking. What emerges in this juxtaposition is that looking is active, has consequences
in space, and is involved. This mechanic gains resonance when seen in the context of
witnessing, where even observation can be a form of participation or suffering. In the
physical world, our gaze doesn’t move us. But by tying perception and consequence
together in a new way in the virtual world, Raby has employed embodied montage to
create meaning.

23.4.2 � “Maquette” section of “The Sky is a Gap”—Rachel Rossin
In this piece, the user finds themself in a 3D rendering of a house; the everyday objects
in the house are presented as imperfectly rendered 3D objects. Rossin utilizes the opti-
cal trackers in the HTC Vive HMD system to track a user’s movement in space. The
user’s movement in space also controls passage of time, making the room explode as
the user moves. This causes the body to become an interface for changing temporal-
ity. If the user does not move, then time does not pass. For example, unlike a video,
where time is fixed and linear, time itself could be controlled by a user’s movement
within a space. In games such as A Slower Speed of Light and Braid, “time control” is
a kind of “game mechanic.” In VR it can be more tightly linked to embodiment and
perception—where the system responds in a nuanced way to subconscious or uninten-
tional actions (Figure 23.2).

In this experience, time becomes a capability of the body. Cognitive scientist and lin-
guist Mark Johnson writes that humans think about time through the analogy of moving
in space: “We (adults) conceptualize time via deep, systematic spatial movement meta-
phors in which the passage of time is understood as relative motion in space” [Johnson
2007]. The embodied montage in “Maquette” allows this abstract concept to be enacted
and observed.

Action Consequence Analysis

Looking Movement Looking (and witnessing) is an active, rather
than passive interaction with the world

Action Consequence Analysis

Walking Control of the Timeline Our perception of time is subjective,
connected to our activity and location.

41923.4  Case Studies

23.4.3 � Notes on Blindness—Arnaud Colinart et al.
Created by Arnaud Colinart, Amaury La Burthe, Peter Middleton, and James Spinney in
2016 as a companion piece to the film with the same name, Notes on Blindness has been a
festival favorite, winning the Storyscapes Awards at Tribeca Film Festival 2016. This proj-
ect attempts to represent the experience of a blind person. In the piece, as the user stares
at dark and empty places in the environment where positional audio can be heard, the
shapes of objects begin to take form. In this way, the act of staring is combined with the
appearance of previously unseen shapes. This pairing is a representation of how important
sound is to blind persons, and how they use sound to interpret the world. The user in Notes
on Blindness also perceives objects (visually) through attending to the sounds they create.

23.4.4 � Project Syria—Nonny de la Peña
Project Syria was created by Nonny de la Peña in 2014. This immersive journalism piece
was commissioned by The World Economic Forum to raise awareness about the children
displaced because of the Syrian civil war. This project recreates the experience of a bomb-
ing in Aleppo, Syria. A room-scale installation, Project Syria uses the virtual reality head-
set and optical tracking to positionally track the user. The user begins in a 3D modelled
Aleppo streetscape. After a brief chance to walk and explore the street, there is an explo-
sion, and a cloud of smoke covers the street.

This is a crucial moment of disembodiment within the piece. The explosion is created
through sound and image only; no other bodily sense is stimulated. Simulations do not

Figure 23.2

Users control the timeline with their movement in Rachel Rossin’s Maquette.

Action Consequence Analysis

Listening Seeing Reversing the primacy of sight over sound
mimics the sensory schema of a blind person.

420 23.  Embodied Montage

replicate reality point for point, but rather only selected elements of it. In Project Syria
when the rocket strikes the street, the body of the user is unaffected; the action of explo-
sion is detached from the perception of feeling pain. Even though debris strikes the virtual
body of the user, her physical body is not affected. This is a ripe creative moment that
virtual reality pieces should acknowledge and make creative use of. In Project Syria, such
disembodiment could signify the impossibility of fully understanding such a situation.

23.5 � Conclusion

As you design and develop your virtual reality experiences, consider how the embodied
nature of the VR systems interact with the affordances of the real-time 3D engines. We
have the opportunity to tell stories not just with images and words but by juxtaposing
actions and perception. Embodied montage techniques don’t assume that virtual reality
must also be realistic: they make use of the medium formally to produce critical effects.

Though these VR works are early examples in a young field, they point towards the
creative potential immersive media has to produce poetic meaning and deepen a narrative
in new ways.

References

[Arnheim 1969]

Arnheim, Rudolf. Film as Art. Berkeley, CA: University of California, 1969.

[Eisenstein and Leyda 1949]

Eisenstein, Sergei, and Jay Leyda (ed. and trans.) Film form: Essays in Film Theory. New York:
Harcourt, 1949.

[Harrell 2013]

Harrell, D. Fox. Phantasmal Media: An Approach to Imagination, Computation, and
Expression. Cambridge, MA: MIT Press, 2013.

[Johnson 2007]

Johnson, Mark. The meaning of the Body: Aesthetics of Human Understanding. Chicago, IL:
University of Chicago Press, 2007.

Action Consequence Analysis

Collision with
objects

No effect on body A spectator in this virtual experience will always be a ghost, unable to
completely understand or experience the violence of the situation.

Section VII
Advanced

Rendering for VR

http://www.taylorandfrancis.com

423

24
Omnidirectional Stereoscopic
Projections for VR
John E. Stone
University of Illinois at Urbana-Champaign

This chapter describes omnidirectional stereoscopic projections that are used by both
immersive camera systems and by rendering software to produce images and movies
suitable for viewing in a wide range of immersive displays such as low-cost commodity vir-
tual reality (VR) HMDs. Omnidirectional stereoscopic projections provide the user with
an opportunity to experience an immersive view of pre-generated imagery that supports
intuitive exploration with at least two degrees of freedom of head orientation. This chapter
describes common approaches for omnidirectional projections, their strengths and weak-
nesses, and methods for their implementation in rendering software.*

24.1 � Introduction and Context

Omnidirectional stereoscopic projections (OSPs) are widely used to support capture or
rendering, encoding, transmission, and playback of immersive image and movie content
on a broad range of virtual reality HMDs, including power-constrained devices such
as smartphone-based VR HMDs such as Samsung’s GearVR, Google Cardboard and
Daydream, and others [Stone et al., 2016a,b; Sener et al., 2014]. Ray tracing engines can

*	 Portions of this chapter ©2016 IEEE. Reprinted by permission (Stone et al., 2016b).

24.1	 Introduction and Context
24.2	 Methods
24.3	 Omnidirectional

Rendering and Display

24.4	 Equirectangular
Projection Sample Code

24.5	 Closing Thoughts

424 24.  Omnidirectional Stereoscopic Projections for VR

directly render a variety of omni-stereo projections including equirectangular (some-
times called latitude-longitude) — mapping from a rectangular image to spherical
latitude-longitude angles), cube map (spherical projection mapped onto the six faces of
a cube), and other special projections such as planetarium dome master (hemispherical
projection mapped to a circular region inscribed within a square image). The images and
movies produced by OSPs can often be imported directly into conventional image and
video editing software, where with a few noteworthy differences, they can be edited
and post-processed using the same tools used for standard planar images. Indeed, omnidi-
rectional VR movies are supported in YouTube and Vimeo, allowing them to be streamed
to a wide variety of playback hardware. By incorporating support for OSPs, rendering
software and post-processing tools can then support production workflows for immersive
content, directly producing images and movies for viewing with immersive displays such
as HMDs.

Images captured by omnidirectional live-camera arrays require significant post-
processing to align and feather images, filling the view in all directions, and warping or
resampling images to obtain a complete OSP from the array of cameras. Non-stereoscopic
omnidirectional projections can often be implemented with existing graphics
programming APIs and libraries through multi-stage rendering and warping, but the
need for stereoscopic output in OSPs presents an additional challenge that is often not
explicitly supported by existing APIs. Widely used rasterization APIs such as OpenGL
and Direct X lack support for non-planar projections, requiring special techniques to
generate commonly used OSP encodings. In contrast, it is often easy to directly implement
a wide variety of OSP encodings in renderers based on so-called ray casting or ray tracing
methods. Custom-written CG-camera functions that control primary ray generation is an
area of significant flexibility in most ray tracing engines, making OSPs easy to implement
in practice (Figures 24.1 and 24.2).

Figure 24.1

Left eye equirectangular subimage from an omnidirectional stereoscopic projection of a
Satellite Tobacco Mosaic Virus (STMV) scene containing over 626,000 objects, shown with
ambient occlusion lighting, depth of field focal blur, two directional lights, and shadows.

42524.2  Methods

24.2 � Methods

OSPs and related panoramic projections attempt to generate images that encompass most
or all of the plenoptic function (all rays of light passing through a point in space) for a
given eye location [Adelson and Bergen, 1991; McMillan and Bishop, 1995]. The images
resulting from OSPs can be reprojected for arbitrary viewing orientations and fields of
view by texture mapping OSP images onto a focal surface’s proxy geometry surrounding
the camera in a conventional rendering pipeline. Since any number of reprojections can
be performed independently, using the OSP image as input, multiple independent views
and therefore multiple users can be can be supported using the same shared head or
camera location. OSP view-orientation-independence can be exploited to allow the use
of advanced rendering techniques such progressive refinement ray tracing, where ongo-
ing rendering continually refines the image presented to the user(s). Changes to a user’s
viewing direction does not change the omnidirectional projection. Progressive refinement
rendering can continue until the camera location is moved to a new location, requiring
that the progressive refinement rendering process be restarted.

24.2.1 � Equirectangular and Cubic Omnidirectional Projections
Previously, one of the most widely used applications of omnidirectional projections
was for environment texture mapping. Environment mapping provides a convincing
graphical illusion of mirror-like reflections on shiny objects without the need to render
mathematically correct reflections of the entire surrounding environment. Environment
texture maps are typically stored either as a equirectangular projection of a sphere
[Paeth, 1990; Musgrave, 1992] or as a cubic projection (i.e., unfolded cube) [Greene,
1986]. These two OSP encodings are fairly simple to render, but have some shortcomings.
One shortcoming in particular is the uneven distribution of OSP image pixels per unit

Figure 24.2

Left eye equirectangular subimage from an omnidirectional stereoscopic projection of an
HIV-1 capsid scene containing 9.7-million objects, shown with ambient occlusion lighting
using a maximum occlusion distance cutoff, a point-light “headlight” at the camera
location, and shadows.

426 24.  Omnidirectional Stereoscopic Projections for VR

of solid angle (steradians of field of view). For example, in equirectangular projections,
far more OSP image pixels are spent near the poles, performing unnecessarily dense
rendering work there, even though ironically for areas less likely to be viewed (straight-up
and straight-down), whereas pixel density (and rendering work/samples) is least-dense at
the horizon. Other omnidirectional projections could be created on arbitrary focal plane
surfaces other than spheres or cubes, to maximize uniformity of the solid angle sampled
by each pixel (and rendering work), but these two projections are simple and benefit from
high performance hardware support in modern GPUs and rendering APIs.

Because their support is entrenched in rendering hardware and software and within
VR image and video formats, we focus on variants of the equirectangular or cubic pro-
jections to render, store, transmit, and reproject omnidirectional scenes for HMDs. All
omnidirectional projection approaches involve compromises between the most efficient
(most uniform) mapping of omnidirectional image pixels to the field of view (steradians
of solid angle or area on a sphere), complexities in indexing and storage, and potential for
image or video compression artifacts. Equirectangular projections oversample the regions
surrounding the polar axis, so they are not as pixel-efficient as they could be. Cubic pro-
jections oversample regions near the cube corners, but to a lesser degree than the polar
regions in equirectangular projections.

24.2.2 � Stereoscopic Adaptation of Omnidirectional Projections
The popular equirectangular and cubic projections both work well for photographic appli-
cations and for monoscopic rendering (see Figure 24.3a), but as is they do not support
stereoscopy — owing to the backward-stereo images produced when viewing to the rear,
and no stereo effect when looking to the sides when displaying a pair of such projections
rendered with laterally displaced eye locations. One solution described by Peleg and Ben-
Ezra is a so-called “circular stereoscopic projection” (see Figure 24.3b) for photographic
capture applications that provides a correct stereoscopic view over the full 360°circle.
They describe image capture by sweeping a slit camera over circular path, laterally offset
from the center of projection, with the camera view direction roughly tangent to the circle
[Peleg and Ben-Ezra, 1999]. In related work Simon et al. [2004] and Bourke [2006] describe
the use of circular projections with image warping, for stereoscopic viewing. Simon et al.
note that stereo views reconstructed from the circular projection approach are perfect for
the viewing direction, but moving off-axis, they gradually distort the view direction in the
periphery of a user’s field of view, emphasizing that the view is “always correct where you
are looking.” When rendering for VR HMDs, which often already suffer from a variety of
other off-axis optical aberrations, this tends to be a satisfactory compromise.

Having decided upon equirectangular or cubic OSPs, we resolve a remaining obstacle
for effective use with HMDs by combining these approaches with the circular projection
technique. Stereoscopic circular projection is correct when the viewer constrains their
viewing direction near the horizon, but not when the zenith or nadir points on the OSP
polar axis are visible, since the viewer will see backward-stereo images in the hemisphere
behind the pole (from the viewer’s perspective). One can adapt the circular projection, as
shown in Figure 24.3c, by modulating the stereoscopic eye separation such that it begins
at normal eye separation near the horizon, and is smoothly decreased, reaching zero
when either the zenith or nadir points on the polar axis are visible, producing a mono-
scopic image. The modulation of eye separation can be computed as a function of the

42724.2  Methods

cross product of the viewing direction and the polar axis, and the display half-field-of-
view angle. Furthermore, the OSP approach allows the system to handle the completely
arbitrary HMD head poses necessary for independent multi-user viewing of the same OSP
stereo image.

24.2.3 � Image and Video Compression Considerations
State-of-the-art image and video compression algorithms take advantage of extensive
knowledge about details of the human visual system and human perception. So-called
“lossy” compression approaches purposefully discard image information that is consid-
ered redundant, low importance, or otherwise imperceptible to most viewers. As an exam-
ple, software tools that implement popular image and video compression standards such
as JPEG and MPEG typically begin the first stage of compression by converting images
from an RGB color space to a luminance-chrominance colorspace (e.g., YUV or YCbCr)
that allows better compression ratios by exploiting knowledge of biology of color vision
related to the density of retinal rods and cones in the human eye. After colorspace con-
version, the next steps in compression typically involve downsampling of chrominance
information, on the basis that the retina in the human eye contains a much larger num-
ber of rods (brightness or luminance detection) than cones (chrominance detection).

Figure 24.3

Omnidirectional stereoscopic projection approach. (a) A conventional non-stereo omni-
directional projection (at the horizon). (b) Circular stereoscopic projection adapted from
(a), as described by Peleg and Ben-Ezra [1999] (c) Our omnidirectional stereoscopic pro-
jection (OSP) adapts (b) with modulation of the stereo eye separation distance, to prevent
backward-stereo when either the zenith or nadir points of the polar axis are in view.

428 24.  Omnidirectional Stereoscopic Projections for VR

Compression algorithms therefore preserve a full-resolution luminance channel, but
typically downsample the two chrominance channels to half resolution (halved horizontal
resolution) or quarter resolution (both horizontal and vertical resolution are halved).

In video compression terminology, the original full-resolution luminance-chrominance
image would be referred to as a 4:4:4 chrominance sampling mode, half-horizontal resolution
chrominance subsampling would be referred to as 4:2:2 sampling, and quarter-resolution
chrominance subsampling would referred to as 4:2:0 sampling. The information loss due
to chrominance subsampling is an early step where some “lossy” compression occurs, even
before the much more sophisticated steps of image or video compression begin.

The video chrominance subsampling format notation is particularly useful to be aware
of when considering the impact of compression on omnidirectional images. We can
see that any subimage tile “edges” in an omnidirectional projection could potentially be
blurred in the two chrominance channels if they occur on a pixel boundary with an odd-
numbered index. It is therefore best to choose an image size and layout for omnidirectional
projections that avoids putting any edges on odd pixel indices.

In addition to colorspace conversion and chrominance downsampling, many image
and video compression approaches use a block-based scheme to decompose and compress
an image or video sequence, attempting to exploit spatial or temporal redundancy to
achieve higher compression ratios. Some commonly used compression block sizes are
8 × 8 and 16 × 16. To avoid block related compression artifacts, it is therefore advisable to
ensure that any subimage edges in an omnidirectional image are placed only at compres-
sion block boundaries, and that the image is an even multiple of the block size used by the
underlying compression scheme.

The equirectangular image layout provides unbroken continuity within the image,
which is beneficial for minimizing compression artifacts, and is immediately compat-
ible with any other image or movie post-processing workflow. The primary consideration
when using image or video compression tools with the equirectangular omnidirectional
image layout is to ensure that the overall image size is an even multiple of the compression
block size, e.g., 16 in most cases.

Cubic projections present an extra challenge for artifact-free compression and post-
processing when they are organized into a conventional rectangular image layout, since
they are composed of six subimages that cannot be tiled to completely eliminate disconti-
nuities at their edges. The edge discontinuities are therefore a source of potential problems
for tools or post-processing workflows that do not take this into account. To make cubic
projections compatible with conventional rectangular image storage and compression
formats, the subimage tiles must either be arranged in a rectangular layout, or the unfolded
cubic image would need to be padded with empty space to create a rectangular image from
the six unfolded cube subimages. To ensure that block artifacts do not harm the edge
boundaries for the individual cubic projection subimages (cube facets), they again should
be sized to an even multiple of the compression block size, e.g., a multiple of 16.

24.3 � Omnidirectional Rendering and Display

OSPs are ideally suited for display using HMDs connected to a conventional laptop or
workstation, or by mobile phone-based or self-contained HMDs, but they can also be
shown in stereoscopic full-dome theaters, CAVE-like displays, or on conventional 3-D

42924.3  Omnidirectional Rendering and Display

TVs and monitors. However, they are most aptly suited for viewing with HMDs, since
HMDs have a particularly challenging requirement for smooth, low-latency, high-frame-
rate display updates — not just for improved immersion, but most importantly, to prevent
users from experiencing so-called simulator sickness.

24.3.1 � Omnidirectional Stereo Rendering
It is a straightforward task to devise ray tracer camera implementations for the OSPs we
have described, but it is worth noting a few details that may be beneficial for ray tracing
software efficiency.

The left- and right-eye stereoscopic images resulting from an OSP can be rendered
completely independently of each other. However, due to the highly parallel nature of
ray tracing software on modern CPUs and massively parallel GPU hardware, it is usually
advantageous for the renderer to aggregate as much work as possible into a single pass. By
rendering both the left- and right-eye subimages at once, there are more independent items
of work available for processing by tens (CPUs) or thousands (GPUs) of arithmetic units,
often resulting in higher overall performance and reduced API overhead. Furthermore,
within an individual left- or right-eye subimage, there may be several OSP sub-viewports
and associated subimages, e.g., such as the individual cube facets in the cubic projection
for one eye, as shown in Figure 24.4. By choosing an appropriate stereoscopic and per-eye
image packing and encoding format, all of the views can be rendered in a single rendering
pass, again maximizing available parallelism and reducing API overheads.

The only additional computational costs associated with the image and subimage pack-
ing described above is the requirement for a small amount of additional indexing logic to
convert an incoming X or Y coordinate in the final packed image, into the appropriate
internal coordinates and associated camera projection parameters required by its associ-
ated subimage and the kind of OSP being used. This generally amounts to a division of the
incoming OSP image coordinate by subimage size, where the integral part of the quotient
indicates which subimage the pixel/sample are associated with, and the fractional part
of the quotient is used to compute the internal subimage coordinate need for rendering,
e.g., for an individual cube face in a cubic projection. The cost of the subimage indexing
operations can be minimized by precomputing arithmetic subexpressions common to all
pixels, and by replacing costly operations such as divides by multiplies with their recipro-
cal values, for example.

Figure 24.4

Example omnidirectional cube map side-by-side stereoscopic image layout associated
with a GearVR sample application for viewing images and movies. Each cube subimage is
labeled with the first letter of the cube face, as Back, Front, Top, Bottom, Left, or Right.

430 24.  Omnidirectional Stereoscopic Projections for VR

24.3.2 � Omnidirectional Stereo Image Display
For convenience and efficiency in rendering, post-processing, and final display, it is ben-
eficial to pack the resulting stereoscopic OSP subimages together in the same memory
buffer. Each packed OSP image then contains a stereo pair in an over-under or side-by-
side arrangement. The over-under stereo pair arrangement provides greatest software
interoperability since subimages are stored contiguously in memory, but each subimage
can also be directly accessed independently, e.g., by functions not explicitly designed for
stereoscopic image pairs.

Renderers based on ray casting or ray tracing methods can produce such final-form
packed OSP images in a single rendering pass, by determining the correct left/right eye
projection assignment from the stereoscopic subimage that each pixel is associated with
as each primary ray is generated. This works well for both equirectangular and cube
map OSPs.

Once the OSP image has been rendered, the resulting OSP subimages are reprojected
and rasterized, e.g., by OpenGL, for the display. Reprojection is achieved by texturing the

a b c

d e f

Figure 24.5

Left eye HMD images for Satellite Tobacco Mosaic Virus capsid and RNA (a-d), and the
HIV-1 capsid (e,f), with roughly 100° FoV. The images show the HMD reprojection of the OSP
images in Figures 24.1 and 24.2, with HMD lens distortion correction steps. The STMV images
show the left eye OSP reprojection with: (a) no lens distortion corrections; (b) geometric lens
distortion correction only (mesh shown); (c) geometric and chromatic aberration correc-
tions (mesh shown); (d) final left eye HMD image. The HIV images show (e): no lens distortion
correction; (f) final left eye HMD image.

43124.4  Equirectangular Projection Sample Code

OSP image onto an origin-centered spherical or cubic projection surface (as appropriate),
with the camera also located at the origin (centered inside the projection surface), using a
view frustum that matches the HMD or other display hardware. For stereoscopic display,
the left and right eye subimages are reprojected and rasterized independently.

It is sometimes desirable to provide the user with graphical information in the form of
heads-up display (HUD) overlays or other interfaces, or to draw special avatar geometry
that represents the user’s wand, hand, or arm pose along with sighting lines for various
picking or manipulation operations. User interfaces and 3-D augmentation geometry can
be drawn and composited on top of the OSP rendering prior to display using conventional
texturing and depth buffering operations. The presentation of the OSP renderings on a
particular display is finalized by applying any display-specific warping or distortion cor-
rection operations, which is particularly important for commodity HMDs. Figure 24.5
shows HMD eye images in various stages of applying distortion corrections.

24.4 � Equirectangular Projection Sample Code

The C source code shown in Listings 24.1 and 24.2 implements a simple equirectangular
camera with optional support for antialiasing. The sample code shown here is adapted
from an implementation in the Tachyon parallel ray tracing engine [Stone, 1998]. The two
functions below can be used to generate a stereoscopic equirectangular OSP image in a
single rendering pass, based on the caller-provided camera location, stereoscopic interoc-
ular distance (IOD), and the X and Y coordinates of the pixel in the final OSP image plane.

Listing 24.1.  The cam_stereo_equirectangular_ray() function uses the caller-provided X-Y OSP image
coordinate to calculate the ray direction and origin, it traces the new ray and returns the resulting color.

/*
* cam_stereo_equirectangular_ray()
* Generate an omnidirectional equirectangular camera ray, with or without
* modulation of stereo eye separation by latitude angle, no antialiasing
* This camera splits the image into over/under stereoscopic viewports
* that contain the left eye view in the top subimage,
* and the right eye view in the bottom subimage.
*/

color cam_stereo_equirectangular_ray(rayType *ray, float x, float y) {
 float sin_ax, cos_ax, sin_ay, cos_ay;	 /* lat-long angle sin/cos values */
 float rdx, rdy, rdz;	 /* ray direction vector components */
 float invlen;	 /* unit vector normalization factor */
 float vpx, vpy, eyeshift;	 /* viewport width/height and half-IOD */
 vector eye_axial;	 /* rightward stereo eye shift direction */
 scenedef *scene = ray->scene;	 /* global scene data and attributes */
 /* compute stereo subimage viewport coordinates from image coordinates, */
 /* with two vertically stacked viewports in Y (each with height vpszy) */
 float vpszy = scene->vres * 0.5;	 /* viewport is half height of full image */
 vpx = x;	 /* X coordinate is also viewport X coord */
 if (y >= vpszy) {
 vpy = y - vpszy;	 /* left eye viewport subimage on top */
 eyeshift = -scene->camera.eyeshift;	 /* shift left, by half of IOD */
 } else {
 vpy = y;	 /* right eye viewport subimage on bottom */
 eyeshift = scene->camera.eyeshift;	 /* shift right, by half of IOD */
 }

432 24.  Omnidirectional Stereoscopic Projections for VR

 /* compute mx and my, the midpoint coords of the viewport subimage */
 float mx = scene->hres * 0.5f;	 /* viewport spans width of full image */
 float my = vpszy * 0.5f;	 /* two vertically stacked viewports in Y */
 /* compute lat-long radians per pixel in the resulting viewport subimage */
 float radperpix_x = (3.1415926f / scene->hres) * 2.0f;
 float radperpix_y = (3.1415926f / vpszy);
 /* compute the lat-long angles the pixel/sample's viewport (VP) cords */
 float ax = (vpx - mx) * radperpix_x;	 /* X angle from mid VP, longitude */
 float ay = (vpy - my) * radperpix_y;	 /* Y angle from mid VP, latitude */
 sincosf(ax, &sin_ax, &cos_ax);
 sincosf(ay, &sin_ay, &cos_ay);
 /* compute the ray direction vector components (rd[xyz]) from the */
 /* lat-long angles and orthogonal camera basis vectors */
 rdx = cos_ay * (cos_ax * scene->camera.viewvec.x +
 sin_ax * scene->camera.rightvec.x) +
 sin_ay * scene->camera.upvec.x;
 rdy = cos_ay * (cos_ax * scene->camera.viewvec.y +
 sin_ax * scene->camera.rightvec.y) +
 sin_ay * scene->camera.upvec.y;
 rdz = cos_ay * (cos_ax * scene->camera.viewvec.z +
 sin_ax * scene->camera.rightvec.z) +
 sin_ay * scene->camera.upvec.z;
 /* normalize the ray direction vector to unit length, */
 /* and set the new ray direction */
 invlen = 1.0 / SQRT(rdx*rdx + rdy*rdy + rdz*rdz);
 ray->dir.x = rdx * invlen;
 ray->dir.y = rdy * invlen;
 ray->dir.z = rdz * invlen;
 /* eye_axial: cross-product of up and ray direction, a unit "right" */
 /* vector used to shift the stereoscopic eye position (ray origin) */
 VCross(&scene->camera.upvec, &ray->dir, &eye_axial);
 /* optionally modulate eyeshift by latitude angle to */
 /* prevent backward-stereo when looking at the poles */
 if (scene->camera.modulate_eyeshift) {
 /* modulate eyeshift by latitude angle and cosine-power scale factor */
 eyeshift *= powf(fabsf(cos_ay), scene->camera.modulate_eyeshift_pow);
 }
 /* shift the eye (ray origin) by the eyeshift distance */
 /* (half of the IOD) */
 ray->origin.x = scene->camera.center.x + eyeshift * eye_axial.x;
 ray->origin.y = scene->camera.center.y + eyeshift * eye_axial.y;
 ray->origin.z = scene->camera.center.z + eyeshift * eye_axial.z;
 return trace_primary_ray(ray);	   /* trace ray and return shaded color */
}

Listing 24.2.  The cam_stereo_aa_equirectangular_ray() function calls cam_stereo_equirectangular_
ray() to compute an antialiased color by jittering the requested image plane locations of multiple
samples, averaging them together, and returning the final color to the caller.

/*
* cam_stereo_aa_equirectangular_ray()
* Generate omnidirectional equirectangular camera ray(s),
* potentially incorporating antialiasing.
* This camera splits the image into over/under stereoscopic viewports
* that contain the left eye view in the top subimage,
* and the right eye view in the bottom subimage.
*/

43324.5  Closing Thoughts

The primary ray generation function in Listing 24.1 is intended to be driven by a calling
routine that iterates over all of the pixels in the final image. The function makes only read-
only accesses to shared scene and camera data structures during rendering, so it supports
parallel ray tracing with an arbitrary number of independent worker threads.

The function in Listing 24.2 provides a simple antialiasing implementation that itera-
tively accumulates antialiasing samples by calling the primary ray generation routine in
Listing 24.1, averaging them together with a simple box filter. This routine also operates
without the need to write to shared scene or camera data structures and is also inherently
parallel.

Stereoscopic rendering is provided in an over/under stereo encoded format with the left
eye image into the top half of a double-high framebuffer, and the right eye into the lower
half. The subsequent OpenGL drawing code can trivially unpack and draw the two images
with simple pointer offset arithmetic.

The sample source code in both listings is a starting point that is intended to be easy
to understand and adapt to other ray tracing frameworks. Many CPU/GPU hardware-
dependent optimizations are possible but are beyond the scope of this article.

24.5 � Closing Thoughts

This chapter has provided an introduction to omnidirectional sterescopic projections and
their use. While these projections do not replace conventional stereoscopic projections
and rendering approaches that have no limitations on head orientation, they can be used to
provide immersive experiences that can be easily displayed even on low-cost commodity
hardware devices such as smartphone-based HMDs with constrained rendering power.
The stereoscopic equirectangular OSP image format described here can be used to generate

color cam_stereo_aa_equirectangular_ray(rayType *ray, float x, float y) {
 color col, avcol;	 /* temp color, and color accumulator */
 int alias;	 /* antialiasing sample counter */
 scenedef *scene = ray->scene;	 /* scene handle */
 float scale;	 /* color averaging/normalization factor */
 col=cam_stereo_equirectangular_ray(ray, x, y); /* trace un-jittered ray */
 /* perform antialiasing if enabled. */
 /* samples are run through a very simple box filter averaging */
 /* each of the sample pixel colors to produce a final result */
 for (alias = 1; alias <= scene->antialiasing; alias++) {
 float jxy[2];
 jitter_offset2f(&ray->randval, jxy);
 avcol=cam_stereo_equirectangular_ray(ray, x + jxy[0], y + jxy[1]);
 col.r += avcol.r;	 /* accumulate antialiasing samples */
 col.g += avcol.g;
 col.b += avcol.b;
 }
 /* average sample colors, back to range 0.0 - 1.0 */
 scale = 1.0f / (scene->antialiasing + 1.0f);
 col.r *= scale;
 col.g *= scale;
 col.b *= scale;

 return col;
}

434 24.  Omnidirectional Stereoscopic Projections for VR

content for online VR video streaming with YouTube and Vimeo. Both streaming services
provide tools and video content uploading procedures for equirectangular format source
material. Similarly, OSPs enable offline pre-rendering of immersive content that would not
be feasible to render in real time on even the world’s fastest supercomputers.

Acknowledgments

This work was supported in part by the National Institutes of Health, under grant
P41-GM104601.

References

[Adelson and Bergen, 1991]

Adelson, Edward H. and James R. Bergen (1991). The plenoptic function and the elements
of early vision. In Landy, M. and Movshon, J. A. (eds.) Computational Models of
Visual Processing, pp. 3–20. MIT Press, Cambridge, MA.

[Bourke, 2006]

Bourke, Paul (2006). Synthetic stereoscopic panoramic images. In Zha, H., Pan, Z.,
Thwaites, H., Addison, A., and Forte, M. (eds.) Interactive Technologies and
Sociotechnical Systems. Lecture Notes in Computer Science, vol. 4270, pp. 147–155.
Springer, Berlin.

[Greene, 1986]

Greene, Ned (1986). Environment mapping and other applications of world projections.
Computer Graphics and Applications, IEEE, 6(11):21–29.

[McMillan and Bishop, 1995]

McMillan, Leonard and Gary Bishop (1995). Plenoptic modeling: An image-based render-
ing system. In Proceedings of the 22nd Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH’95, Los Angeles, CA: ACM, pp. 39–46.

[Musgrave, 1992]

Musgrave, Kenton (1992). A panoramic virtual screen for ray tracing. In Kirk, D. (ed.)
Graphics Gems III, Chapter VI.4, pp. 288–294. Academic Press, San Diego, CA.

[Paeth, 1990]

Paeth, Alan W. (1990). Digital cartography for computer graphics. In Glassner, A. S. (ed.)
Graphics Gems, pp. 307–320. Academic Press, Boston, MA.

435References

[Peleg and Ben-Ezra, 1999]

Peleg, Shmuel and Moshe Ben-Ezra (1999). Stereo panorama with a single camera. In IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, Fort
Collins, CO, vol. 1, p. 401.

[Sener et al., 2014]

Sener, Melih, John E. Stone, Angela Barragan, Abhishek Singharoy, Ivan Teo, Kirby L.
Vandivort, Barry Isralewitz, Bo Liu, Boon Chong Goh, James C. Phillips, Lena F.
Kourkoutis, C. Neil Hunter, and Klaus Schulten (2014). Visualization of energy
conversion processes in a light harvesting organelle at atomic detail. In Proceedings
of the International Conference on High Performance Computing, Networking, Storage
and Analysis, SC’14, New Orleans, LA: IEEE Press, 4 p.

[Simon et al., 2004]

Simon, Andreas, Randall C. Smith, and Richard R. Pawlicki (2004). Omnistereo for
panoramic virtual environment display systems. In IEEE Virtual Reality, 2004.
Proceedings, Chicago, IL, pp. 67–279.

[Stone, 1998]

Stone, John E. (1998). An efficient library for parallel ray tracing and animation. Master’s
thesis, Computer Science Department, University of Missouri-Rolla.

[Stone et al., 2016a]

Stone, John E., Melih Sener, Kirby L. Vandivort, Angela Barragan, Abhishek Singharoy,
Ivan Teo, Joao V. Ribeiro, Barry Isralewitz, Bo Liu, Boon Chong Goh, James C.
Phillips, Craig MacGregor-Chatwin, Matthew P. Johnson, Lena F. Kourkoutis,
C. Neil Hunter, and Klaus Schulten (2016). Atomic detail visualization of
photosynthetic membranes with GPU-accelerated ray tracing. Parallel Computing,
55:17–27.

[Stone et al., 2016b]

Stone, John E., William R. Sherman, and Klaus Schulten (2016). Immersive molecular
visualization with omnidirectional stereoscopic ray tracing and remote rendering.
In 2016 IEEE International Parallel and Distributed Processing Symposium Workshop
(IPDPSW), Chicago, IL, pp. 1048–1057.

http://www.taylorandfrancis.com

437

25
Volume Lenses for VR
Jason W. Woodworth and Christoph W. Borst
University of Louisiana at Lafayette

25.1 � Introduction

This chapter shows how to create lens effects for 3D scenes within virtual reality (VR), with
implementation examples using Unity. We start with 3D box lenses that change shading
or visibility of objects inside the lens volume. We then show how the same basic rendering
technique can create a window or portal-like lens. We also show how Unity’s built-in VR
features can be used for immersive stereoscopic lens viewing in consumer devices such as
the Rift or Vive. Examples were created with Unity 5.6 (we have also successfully tested
them with Unity 2018.3). The code will be comprehensible to most Unity or VR develop-
ers, and we recommend basic knowledge of shaders for Unity.

25.2 � Volume and Flat Lenses in 3D

Volume lenses are 3D regions, such as boxes, that show content or use a rendering style
different from the rest of a 3D scene. For example, in 1996, Viega presented an X-ray vol-
ume that revealed bones beneath skin and described both “volumetric” and “flat” lenses
for 3D scenes [Viega et al. 1996]. Such effects can be considered a 3D version of earlier 2D
effects like the Magic Lenses in Toolglass [Bier et al. 1993] or magnifying portals in Pad
[Perlin and Fox 1993]. In our own work, we explored interactive 3D lenses in VR for sci-
entific data exploration, for example, changing surface appearance to enhance features in
a selected terrain region [Borst et al. 2010], viewing weather data from different times in
subregions [Borst et al. 2011], and arranging multiple dataset views in a 3D window system
[Borst et al. 2007].

25.1	 Introduction
25.2	 Volume and Flat Lenses

in 3D

25.3	 Unity Implementation
Details

25.4	 Other Notes

438 25.  Volume Lenses for VR

The difference between flat and volume lenses in 3D is illustrated in Figure 25.1. Both
types can be rendered using volume lens rendering, although additional rendering meth-
ods can be considered for flat lenses. The flat lens behaves more like what one may expect
from real-world lenses, and it can be used to render effects like a portal, window, or mirror
that include stereoscopic visuals. The affected region depends on the user’s point of view,
which is notable in VR, because the head may move or because multiple users in shared
environments have different viewpoints. In contrast, volume lenses are used so that a par-
ticular region is affected regardless of viewpoint.

25.2.1 � Main Rendering Concept
In this chapter, we focus on lens rendering using a conceptually simple in/out test in
a shader [Borst et al. 2007]. During rendering, a fragment (pixel) can easily be tested
against a box lens boundary using a coordinate range test in the box’s local space,
against general planes using the plane equation, against an implicit surface model such
as F(x, y, z) = x2 + y2 + z2 + R2 for a sphere, or with Boolean and mathematical combina-
tions of such shapes. We use this idea to implement a box volume lens and a rectangular
flat lens (portal) in Unity. Some other rendering approaches are mentioned at the end
of this chapter.

25.3 � Unity Implementation Details

Our first implementation example is a simple box volume lens that inverts the color
of fragments (pixels) inside. This lens may rotate and scale so that it can be connected
to a VR wand controller, among other things. We then present an object-replacement
version showing a different world inside the lens. Finally, we’ll show how to use a vol-
ume lens to render a portal-like flat lens that affects all objects behind a lens from the
eye’s point of view. Examples here are implemented using a per-object shader approach,
meaning the associated shader code will need to be placed in every shader used by
affected objects. An alternative approach will be mentioned at the end of this chap-
ter. The code will be comprehensible to Unity developers with moderate knowledge
of shaders. It is recommended to read Unity’s “Gentle Introduction to Shaders” before
starting [Zucconi 2015].

Figure 25.1

Flat lens (a) vs. Volume lens (b) in 3D.

43925.3  Unity Implementation Details

25.3.1 � Color Inversion Lens
To invert the color of fragments in a lens (demonstrated in Figure 25.2), we first test
whether a fragment is inside or outside the lens. For a box lens, this is accomplished by
bounds checks on each fragment in a shader. To support the checks, the fragment attri-
butes include fragment position with respect to a lens object’s local coordinate system.
To provide a needed transform matrix, create a standard Unity cube and apply a script
including the code in Listing 25.1 in the Update loop. This cube will be made partially
transparent so viewers can see both the cube boundary and the effect inside.

This code sets a global matrix accessible to any shader as a uniform variable. The matrix
transforms world-referenced coordinates into the local, or “canonical,” lens space, where
in/out tests will be done. Doing in/out tests in this lens space supports a simple bounds
check that is independent of lens position, orientation, or scale.

The in/out test will be included in any shader used by objects that you want to be con-
sidered by the lens. For this example, we will assume you are using a Unity surface shader.
A later section will mention adaptation to a vertex and fragment shader.

Unity can provide the world position for each fragment. The code in Listing 25.2 applies
the transform that converts to lens space. As exemplified in Listing 25.2, make sure that
your surf() function input struct contains a definition for worldPos, and that the shader

Listing 25.1.  Provide shaders access to the object’s transformation matrix.

void Update() {
 // ...
 // Adding this line to Update() sets a matrix that is accessible to all shaders.
 // The line should be added at the end of Update, if anything is done to affect
 // the transform (movement, rotation, etc…)
 Shader.SetGlobalMatrix("_LensMat", this.transform.worldToLocalMatrix);
}

Figure 25.2

An example scene in which a box volume lens inverts the color of all objects within it. The
square on the floor and darker parts of the chairs indicate that they are within the lens.

440 25.  Volume Lenses for VR

declares a variable for the lens’s matrix. In the surf function, multiply the world position
by the lens matrix to get the desired position:

The lens’s bounds range from −0.5 to 0.5 in each dimension, in its local coordinate
space. Thus, the in/out test only requires checking three position elements against those
bounds and returning a value specifying the result (in or out), as in Listing 25.3.

The in/out test function returns a −1 if the fragment is found to be inside the lens. The
main surf function will thus check for this and apply the desired effect (here, invert the
color), as shown in Listing 25.4.

Listing 25.2.  Convert current fragement’s position into a lens-space position.

// Unity Shader
struct Input {
 // Various other parameters
 float3 worldPos; // Input world position used to calculate local position
 // (lens space position) in the surf() function.
}
uniform float4x4 _LensMat; // Set by setting global matrix in the lens cube object.
void surf(Input IN, inout SurfaceOutputStandard o) {
 float4 pos = float4(IN.worldPos.x, IN.worldPos.y, IN.worldPos.z, 1);
 pos = mul(_LensMat, pos);
 // Rest of shader code
	 …
}

Listing 25.3.  Check whether a fragment is within the boundary of the lens.

// Unity shader (cont)
float inoutCube(float4 pos) { // pos is fragment position in lens space
 // Repeatedly check for the six bounds, return 1 if not inside
 if (pos.x < -.5 || pos.x > .5)
 return 1;
 if (pos.y < -.5 || pos.y > .5)
 return 1;
 if (pos.z < -.5 || pos.z > .5)
 return 1;
 // If all checks are passed, it is inside the lens.
 return -1;
}

Listing 25.4.  Apply an effect (in this example, invert the color) when the fragment is inside the lens.

// Unity shader color reverse surf() example
void surf(Input IN, inout SurfaceOutputStandard o) {
 // Adjust fragment albedo based on in/out position test

44125.3  Unity Implementation Details

25.3.2 � Object Replacement (Visibility) Lens
Our next example makes the lens appear to replace the scene with another scene (shown in
Figures 25.3 and 25.4), and is implemented by controlling visibility of objects based on in/
out tests. The visibility shader will include a property that allows the developer to specify
whether a material should be hidden or shown inside the lens (or outside of it). As seen
in Listing 25.5, instead of inverting the albedo as before, the surf function will now clip
(discard) fragments based on the in/out test.

 float io = inoutCube(pos);
 if (io < 0)
 o.Albedo = float3(1,1,1) – o.Albedo;
}

Figure 25.3

A view of the two separate worlds, the main world (a) and hidden world (b).

Figure 25.4

A cubic visibility lens reveals the hidden world and hides the main world. The lens boundary
is shaded for emphasis.

442 25.  Volume Lenses for VR

One way to build your Unity scene in a manageable way is to create two scenes, one for
each world (in/out), with each having materials using one “_World” value. The two scenes
can then be loaded into the editor simultaneously to facilitate working on them together,
while keeping each scene separable for working with it individually. An object in the main
scene (the world that is shown outside the lens) can have a script on it to additively load the
second scene on start, allowing it to work in Unity builds.

Use of a standard rendering engine such as Unity limits control of interaction between
the two scenes in terms of light or shadows. So, we present a few different approaches
for handling shadows. The objects in each scene can be on a per-world layer, with the
culling mask of each light set up so the light only affects the desired world’s layer. The
initial #pragma tag in a shader can contain a parameter for specifying how Unity will
handle shadows for the shaded object. Combining the standard shadow parameter, full-
forwardshadows, with standard forward rendering will result in clipped fragments cast-
ing and receiving shadows, giving objects an undesirable “ghost” appearance. Changing
to deferred rendering will cause clipped fragments to only cast shadows, which will only
appear in the corresponding world when lighting is properly layered. However, Unity is
known to not fully support certain features, such as partial transparency, in deferred ren-
dering mode. If the scene must be rendered with forward rendering, the shadow param-
eter can be changed to addshadow to have clipped fragments neither receive nor cast
shadows. However, depending on the application, this may be undesirable due to apparent
gaps in the shadows (see Figure 25.5). A different approach to avoid light interactions, not
detailed here, is to render two completely separate images for inner and outer lens content
and compose the results, considering both color and depth buffers from the renders.

25.3.3 � Flat Portal for 3D, or General Convex Polyhedral Lenses
To illustrate the relationship between volume lens rendering and flat lenses, and as an
example of handling convex polyhedral lens shapes that can be more general, we show a
portal-like flat lens implemented using general plane boundaries. As illustrated in early
3D lens work [Viega et al. 1996], a flat lens for 3D can be rendered as a 3D volume lens

Listing 25.5.  A lens effect to reveal a hidden world. Object fragments are discarded based on their
position in relation to the lens.

// Unity shader hidden world surf() example
// NOTE: Properties is a special Unity shader block that exposes shader values to Unity’s
// material inspector.
Properties {
 // Other properties such as color go here
 // Materials should specify if they exist in world 1 (main world), or 0 (hidden world)
 _World("World Number", int) = 1
}
void surf(Input IN, inout SurfaceOutputStandard o) {
 // Compute fragment position in lens space
 float io = inoutCube(pos);
 if (_World) // If the fragment is in the main world, discard if it’s in the lens
 clip(io); // standard clip() function: discard fragment when (io < 0)
 else // If the fragment is in the hidden world, discard if it’s outside the lens
 clip(-io); // discard fragment when (io > 0)
}

44325.3  Unity Implementation Details

shaped to contain exactly the part of the scene behind a 2D lens object, from the point of
view of the eye (camera), and considering perspective projection. This 3D shape is analo-
gous to a perspective view frustum, as the volume lens can be considered the frustum that
would be used if we were projecting to the flat lens surface (see Figures 25.6 and 25.7). It
can also be considered analogous to a shadow volume, to the extent that its sides are an
extrusion of an object silhouette through the view frustum.

For a rectangular flat lens in any orientation, the corresponding 3D volume lens shape
(frustum) can be represented by the five planes that bound it: one for the front face (the flat
lens’s plane) and one for each of its four sides. In Unity, we will represent the lens in-game
with a quad that is used as the front face of the volume (frustum) shape. The other planes
are calculated to pass through the quad’s edges and through an eye point.

The plane equation below computes a signed distance between a point and the plane:

	 () = ⋅ + ,F P P N D

Figure 25.5

Deferred rendering with fullforwardshadows (a) compared to forward rendering with add-
shadow (b). Compare shadows in the two images to note the shadow gaps in the right
image, e.g., under the table and the left chair.

Figure 25.6

An example of our scene with the flat portal lens. To the viewing camera (a), it appears that
the second world is viewable through the rectangular lens. In the scene view (b), we see
that the affected volume is more of a pyramid in shape.

444 25.  Volume Lenses for VR

where: P is the 3D point coordinate being evaluated, N is the plane’s normal (we choose
the inward-facing normal), and D is precomputed as (− P0 · N) where P0 is a known point
on the plane.

A lens in/out test can use this to determine on which side of the plane a fragment lies.
The in/out test for a whole volume then consists of checking whether the fragment is to the
inner side of every bounding plane. This approach extends to handle any convex polyhe-
dral volume lens, although its cost can be high when there are many sides.

For simplicity of finding normals, we represent everything in the world coordinate sys-
tem. We will calculate the plane normals facing the inside of the lens frustum. The front
face plane uses the 2D lens quad’s forward vector (negated, depending on which side of the
quad the camera is on) and D is computed using the quad’s world position as P0 above. For
each side plane of the frustum, the normal can be found by the cross product of two edge
vectors: one between two lens corners and the other between the camera position and a
corner. D can be computed using the camera position or one of these corners as P0 above.

To ensure inward-facing normals regardless of which side the quad is viewed from,
we first distinguish its back or front using the sign of the dot product between the quad’s
forward vector and the vector from the lens to the camera. Normals are negated depend-
ing on this sign.

All planes should be set up in a script on the portal lens (quad). In that script, a plane
can be represented as a Vector4, with the first three values being the 3D normal and the
fourth value being D, and all information can be passed to the shader at once. The Update
loop would thus include the code from Listing 25.6.

Listing 25.6.  Setup a flat-lens using 5 planes in a Unity C# script.

// Add to Update() function after any adjustments to transform are made.

// If we’re facing the back side of the lens, we need to negate the normals.
Vector3 vectorToCamera = this.transform.position – Camera.main.transform.position;
float dot = Vector3.Dot(this.transform.forward, vectorToCamera);

Figure 25.7

An example of a frustum defined by the viewing camera and a quad. All fragments within
the bounds of the frustum behind the grey quad should be affected.

44525.3  Unity Implementation Details

The surface shader can then perform a volume in/out test by checking on which side of
each boundary plane the tested fragment lies, as shown in Listing 25.7.

int negateFactor;
if (dot < 0)
 negateFactor = -1;
else
 negateFactor = 1;

// Assign position values for the corners of the quad
Vector3 topRight = transform.TransformPoint(.5f, .5f, 0f);
Vector3 topLeft = transform.TransformPoint(-.5f, .5f, 0f);
Vector3 bottomLeft = transform.TransformPoint(-.5f, -.5f, 0f);
Vector3 bottomRight = transform.TransformPoint(.5f, -.5f, 0f);

// Compute forward normal
Vector3 forwardNormal = -transform.forward * negateFactor;
float forwardD = -Vector3.Dot(transform.position, forwardNormal);
Vector4 forwardNormalWithD = new Vector4(forwardNormal.x, forwardNormal.y, 		
 forwardNormal.z, forwardD);

// Compute the right plane normal
Vector3 v1 = topRight - Camera.main.transform.position;
Vector3 v2 = bottomRight - Camera.main.transform.position;
Vector3 rightNormal = Vector3.Cross(v1, v2).normalized * negateFactor;
float rightD = -Vector3.Dot(topRight, rightNormal);
Vector4 rightNormalWithD = new Vector4(rightNormal.x, rightNormal.y, rightNormal.z, rightD);

… // The setup code for other planes goes here. All other side planes can be computed
 // similarly, just using different corners of the quad.

// Set uniform shader variables for all normals
// Note that the lens matrix is no longer needed now that we work in world space
Shader.SetGlobalVector("_ForwardNormal", forwardNormalWithD);
Shader.SetGlobalVector("_RightNormal", rightNormalWithD);
Shader.SetGlobalVector("_LeftNormal", leftNormalWithD);
Shader.SetGlobalVector("_TopNormal", topNormalWithD);
Shader.SetGlobalVector("_BottomNormal", bottomNormalWithD);

Listing 25.7.  The in/out test and fragment modifier for a flat-lens frustum.

// The following functions should be placed directly above the surf() function in the shader.

float distPlane(float3 fragmentWorldPos, float4 normal) {
 return dot(fragmentWorldPos, normal.xyz) + normal.w;
}
float inoutFrustum(float4 fragmentWorldPos) {
 // Repeatedly check if the fragment is behind the plane
 // Return 1 when outside and -1 when inside
 if (distPlane(pos.xyz, _RightNormal) > 0)
	 return 1;
 if (distPlane(pos.xyz, _LeftNormal) > 0)
	 return 1;
 if (distPlane(pos.xyz, _TopNormal) > 0)
	 return 1;

446 25.  Volume Lenses for VR

When running a scene with a quad portal lens, you should see from the main camera
perspective that the “hidden world” is revealed only through the quad, even when varying
quad scale and rotation. This portal could be held in a tracked virtual hand to give your
users an easy-to-use portal into a hidden world.

25.3.4 � Stereoscopic Flat Lens Rendering
The technique above described portal rendering for a single eye. For stereoscopic render-
ing, which is standard in VR, there are two eyes in different positions. The region seen
through flat lenses should be different for each eye (seen in Figure 25.8). So, we need to
define different planes per eye.

Left and right images can be rendered using two separate rendering passes (in Unity, we
use two separate cameras), changing lens planes between passes. A per-camera script can
run the code to compute the normals for the camera’s position. Alternatively, for emerg-
ing multi-projection features (sometimes called single-pass stereo), a shader would need
to choose between two sets of planes based on which projection (eye) is being processed.

To set this up for a head-mounted VR display using Unity’s built-in VR features, create
two co-located cameras, parent them to a new empty GameObject representing the head,
and change the “Target Eye” parameter in the Camera’s inspector to Left or Right (one of

 if (distPlane(pos.xyz, _BottomNormal) > 0)
	 return 1;
 if (distPlane(pos.xyz, _ForwardNormal) > 0)
	 return 1;
 return -1;
}
// Unity shader surf() example for hidden world revealed in frustum instead of cube
void surf(Input IN, inout SurfaceOutputStandard o) {
 float worldPos = float4(IN.worldPos, 1);
 float io = inoutFrustum(worldPos);
 if (_World)
 clip(io);
 else
 clip(-io);
}

Figure 25.8

A side-by-side view for two eyes viewing the scene. Note that the lens covers slightly different
parts of the scene in each eye.

44725.3  Unity Implementation Details

each). Also check the “Virtual Reality Supported” checkbox and choose the appropriate
VR SDK in Unity’s Player Settings, so Unity will move and rotate these two cameras based
on your tracked HMD and will render the images for their respective eyes. Also in Player
Settings, set the stereo rendering method to multi-pass to allow the cameras to render
separate images. Multi-pass rendering has each camera render the entire scene, then move
to the next camera, while single-pass renders a single object to each camera, then moves
on to the next object. Note that if you are using a premade VR rig from Oculus OVR or
SteamVR, it must use two eye objects to work as above. SteamVR typically uses a single
camera object.

To set up different lens planes per camera, the normals should be computed and set up
for the shader in the OnPreRender function for each camera. This means the script should
be placed on each camera and have a reference to the lens quad. The OnPreRender func-
tion can find the eye position and use it for normal calculation as shown in Listing 25.8.

The visibility shader can remain the same, and will run with different values for each
camera. The resulting script should work for standard Unity-compatible HMDs.

Listing 25.8.  Calculate the normals for each camera (of a stereoscopic view) for proper lens effects in VR.

// Place this C# script on each camera to properly calculate the normals required for
// the lens operations in a stereoscopic view
void OnPreRender() {
 // Get the position of the appropriate eye
 if (GetComponent<Camera>().stereoTargetEye == StereoTargetEyeMask.Left)
 eyePos = XR.InputTracking.GetLocalPosition(XR.XRNode.LeftEye);
 else if (GetComponent<Camera>().stereoTargetEye == StereoTargetEyeMask.Right)
 eyePos = XR.InputTracking.GetLocalPosition(XR.XRNode.RightEye);
 // Assuming there is a parent “head” object, transform eyePos into world space
 eyePos = this.transform.parent.TransformPoint(eyePos);

 // Determine if negation is necessary, as shown in Listing 25.6
 … // (Here is where you place a dot product check as in Listing 25.6)

 // Calculate planes, making sure to use eyePos for camera position,
 // and a reference to the lens quad for its position
 Vector3 forwardNormal = -lensQuad.forward * negateFactor;
 float forwardD = -Vector3.Dot(lensQuad.position, forwardNormal);
 Vector4 forwardNormalD = new Vector4(forwardNormal.x, forwardNormal.y, 				
 forwardNormal.z, forwardD);

 // Compute the right plane
 Vector3 v1 = topRight - eyePos;
 Vector3 v2 = bottomRight - eyePos;
 Vector3 rightNormal = Vector3.Cross(v1, v2).normalized * negateFactor;
 float rightD = -Vector3.Dot(topRight, rightNormal);
 Vector4 rightNormalD = new Vector4(rightNormal.x, rightNormal.y, rightNormal.z, rightD);

 // All other side planes should be computed similarly, and global vectors set
 // for the shader as shown in Listing 25.6
 // * use eyePos and lensQuad as above
 // * the shader global vector is the same
 …
}

448 25.  Volume Lenses for VR

25.4 � Other Notes

Though this chapter has given examples using Unity’s surface shader, it is possible to use
these techniques with standard vertex and fragment shaders. When converting the frag-
ment position to canonical lens space, it is possible to perform the matrix multiplication
in the vertex shader, with the results being interpolated by hardware into fragment values
[Borst et al. 2007]. If using a polyhedral shape constructed from planes, the distance from
a point to a plane can be interpolated from vertex to fragment values as well. The frag-
ment shader should still test this in/out value to determine whether the fragment should
be clipped.

Whereas this chapter primarily discusses a per-object approach (with a shader applied
in each object that should be affected), a more global approach is possible. A Unity fea-
ture called Replacement Shaders [Unity 2017] allows a camera to replace the shader of
every object seen with another specified shader. The replacement shader can read proper-
ties from the materials it sees, and so can still render using those values. However, they
will have to be used in the same manner (e.g., same lighting applied, or some monolithic
shader that handles all cases). This technique avoids per-object script requirements and
allows for all checks to be done in a single shader, and the whole scene will be more easily
affected. On the other hand, the per-object approach we described simplifies some per-
object control, e.g., affecting objects in a room but not the walls surrounding them.

We elsewhere discuss some other rendering approaches and their tradeoffs [Borst
et al. 2010]. Viega used six general clipping planes available in SGI’s graphics hardware to
divide the scene into seven subregions related to cube lens boundaries, each region being
rendered by a separate pass [Viega et al. 1996]. Another technique uses three-pass depth
peeling, essentially using two depth buffers to distinguish pixels behind the lens, inside
the lens, or elsewhere [Ropinski and Hinrichs 2004]. Other approaches have considered
stencil buffer techniques [Fuhrmann and Groeller 1998], ray-traced volume data render-
ing [Wang et al. 2005], and 3D texture-based volumetric data rendering [Plate et al. 2007].
Note that with volume lenses, unlike with flat lenses, exterior-world objects may be visible
both in front of and behind (“through”) a volume lens. Flat lenses have commonly been
rendered with other techniques that do not apply to the more general volume lenses.

This chapter did not cover advanced 3D lens rendering concepts. For a starting point-
ing, interested readers can consider work such as multi-lens combinations [Borst et al.
2010, 2011, Mendez et al. 2006] or speedup techniques [Borst et al. 2010, 2011].

Acknowledgment

Part of this material is based upon work supported by the National Science Foundation
under Grant No. 1451833.

References

[Bier et al. 1993]

Bier, Eric A., Maureen C. Stone, Ken Pier, William Buxton, and Tony D. DeRose, Toolglass
and magic lenses: The see-through interface, Proceedings of the SIGGRAPH,
Anaheim, CA, pp. 73–80, 1993.

449 References

[Borst et al. 2007]

Borst, Christoph W., Vijay B. Baiyya, Christopher M. Best, and Gary L. Kinsland,
Volumetric windows: Application to interpretation of scientific data, shader-based
rendering method, and performance evaluation, Proceedings of CGVR, Las Vegas,
NV, pp. 72–78, CSREA, 2007.

[Borst et al. 2010]

Borst, Christoph W., Jan-Phillip Tiesel, and Christopher M. Best, Real-time render-
ing method and performance evaluation of composable 3D lenses for interactive
VR, IEEE Transactions on Visualization and Computer Graphics, vol. 16, no. 3,
pp. 394–410, 2010.

[Borst et al. 2011]

Borst, Christoph W., Jan-Phillip Tiesel, Emad Habib, and Kaushik Das, Single-pass
composable 3D lens rendering and spatiotemporal 3D lens,” IEEE Transactions on
Visualization and Computer Graphics, vol. 17, no. 9, pp. 1259–1272, 2011.

[Fuhrmann and Groeller 1998]

Fuhrmann, Anton and Eduard Groeller, Real-time techniques for 3D flow visualization,
Proceedings of the IEEE Visualization, NC, pp. 305–312, 1998.

[Mendez et al. 2006]

Mendez, Erick, Denis Kalkofen, and Dieter Schmalstieg, Interactive context-driven
visualization tools for augmented reality, Proceedings of ISMAR, Santa Barbara, CA,
pp. 209–218. IEEE and ACM, 2006.

[Perlin and Fox 1993]

Perlin, Ken and David Fox, Pad: An alternative approach to the computer interface,
Proceedings of the SIGGRAPH, Anaheim, CA, pp. 57–64, 1993.

[Plate et al. 2007]

Plate, John, Thorsten Holtkaemper, and Bernd Froehlich, A flexible multi-volume shader
framework for arbitrarily intersecting multi-resolution datasets, IEEE Transactions
on Visualization and Computer Graphics, vol. 13, no. 6, pp. 1584–1591, 2007.

[Unity 2017]

Rendering with Replaced Shaders, 2017. Unity online manual, Retrieved from https://
docs.unity3d.com/Manual/SL-ShaderReplacement.html

https://docs.unity3d.com
https://docs.unity3d.com

450 25.  Volume Lenses for VR

[Ropinski and Hinrichs 2004]

Ropinski, Timo and Klaus Hinrichs, Real-time rendering of 3D magic lenses having
arbitrary convex shapes, International Conference in Central Europe on Computer
Graphics (WSCG), Bory, Czech Republic, pp. 379–386, 2004.

[Viega et al. 1996]

Viega, John, Matthew J. Conway, George Williams, and Randy Pausch, 3D magic lenses,
Proceedings of the ACM UIST, Seattle, WA, pp. 51–58, 1996.

[Wang et al. 2005]

Wang, Lujin, Ye Zhao, Klaus Mueller, and Arie Kaufman, The magic volume lens: An
interactive focus+context technique for volume rendering, Proceedings of the IEEE
Visualization, Minneapolis, MN, pp. 367–374, 2005.

[Zucconi 2015]

Zucconi, Alan, A gentle introduction to shaders, Unity online tutorials Retrieved from 2015.
https://unity3d.com/learn/tutorials/topics/graphics/gentle-introduction-shaders,
6/10/2015.

https://unity3d.com

Section VIII
Perception for

Immersion

http://www.taylorandfrancis.com

453

26
Check Your Work
Evaluating VE Effectiveness Using Presence

Richard Skarbez
La Trobe University

Mary C. Whitton
University of North Carolina at Chapel Hill

A virtual reality (VR) application may target any of a variety of domains, from archi-
tectural walkthroughs to psychological therapy. Regardless of the specific applica-
tion domain, however, there may be a need to evaluate the effectiveness of the virtual
experience. In some cases, this evaluation may involve objective measurements, such as
user performance on a standard test following training in virtual reality. In many cases,
though, evaluating the general, overall effectiveness of a virtual reality application will
involve measuring one or more subjective constructs. The most commonly encountered
such construct is presence.

Presence, commonly defined as a user’s sense of “being there” in a virtual environment,
has been studied in conjunction with computer-mediated environments since at least 1983
when Akin and colleagues defined the term telepresence. Perhaps the main reason for
the continuing interest in the presence construct is that it is applicable to a wide range of
virtual experiences. This is desirable for several reasons: first, to the extent of its generaliz-
ability, it is not necessary to develop a new measure specifically to evaluate each individual
VE, and second, it enables comparisons between different VEs.

26.1	 Presence and Related
Constructs

26.2	 Measuring Presence

26.3	 Questionnaires
26.4	 Other Measures
26.5	 Conclusion

454 26.  Check Your Work

That said, presence is not the only dimension of user experience in virtual reality, and
it may not be the best measure for all applications. As discussed later in this chapter, we
believe that presence can be decomposed into Place Illusion, Plausibility Illusion, and
Social Presence Illusion, and that, depending on your application, these subcomponents
may be more relevant than an overall sense of presence. Other constructs that may be
useful for evaluating a virtual experience include immersion and coherence (discussed
later in this chapter), involvement/engagement [McQuarrie and Munson, 1992], and flow
[Csikszentmihalyi, 1990].

26.1 � Presence and Related Constructs

Presence is most commonly defined as the sense of “being there” in a virtual space. Presence
is inherently subjective and internal (philosophers call such feelings qualia); this subjec-
tive and internal nature makes the measurement of presence very difficult. The following
sections will talk more about the measurement of presence, setting out several broad cat-
egories of presence measures as well as pointing out several specific ones, along with best
practices for their use. The remainder of this section, however, focuses on the definition
of presence and some related terms, as well some thoughts regarding what the structure
of presence might be. A more extensive treatment of the various ways presence is defined
and measured can be found in [Skarbez et al., 2017a]. (If you’re not interested in presence
theory, feel free to skip to the next section, but we’ll try to keep it brief.)

First, we discuss the constructs of Place Illusion and Plausibility Illusion. As the intro-
duction suggests, over the 30+ years that the term presence has been associated with medi-
ated and virtual environments, many researchers and developers have proposed their
own definitions of it. This has resulted in the term presence being both used widely and
used with different meanings. To address the latter problem, Mel Slater proposed that we
focus on two constructs, Place Illusion and Plausibility Illusion, rather than on presence.
Place Illusion corresponds to the definition of presence as “being there”; specifically, Slater
defines it as “the… illusion of being in a place in spite of the sure knowledge that you are
not there.” Plausibility Illusion is a new introduction to the literature, which Slater defines
as, “the illusion that what is apparently happening is really happening (even though you
know for sure that it is not)” [Slater, 2009].

Place Illusion and Plausibility Illusion, then, are also qualia—subjective and internal
sensations. But it is sometimes helpful to think about the objective characteristics of the
virtual experience that enable Place Illusion and Plausibility Illusion to occur. To that end,
we define the terms immersion and coherence.

Immersion is another term that has multiple definitions in the literature. We follow
Slater in considering immersion an objective characteristic of a VE system. Specifically,
we define immersion as the set of valid actions supported by a VE, and we define a valid
action as any physical action a user can take that changes the state of the environment or
their perception of it. For example, a head-tracked VE system is more immersive than a
non-head-tracked system because the action of turning or moving your head results in
a change to your viewpoint in the VE. The immersion of a VE constrains a user’s Place
Illusion, but it does not determine it. Place Illusion also depends on how a user interacts
with the VE—if you don’t move your head at all, it doesn’t matter whether your display
is head-tracked—as well as on the user’s traits (relatively permanent characteristics, such

45526.1  Presence and Related Constructs

as their innate tendency to experience Place Illusion) and state (their temporary charac-
teristics, such as whether or not they are distracted at the time). That is, Place Illusion is a
function of immersion and individual characteristics.

We have defined the term coherence to be to Plausibility Illusion as immersion is to
Place Illusion—an objective characteristic of the virtual experience that constrains a
user’s Plausibility Illusion. Specifically, we define coherence as the set of reasonable cir-
cumstances supported by a VE, and a reasonable circumstance as a state of affairs that is
self-evident given prior knowledge. For example, if you’ve been led to believe that a VE
represents the “real world,” a version of that VE where people walk on the ground would
be more coherent than one where they float through the air. Again, Plausibility Illusion is
a function of coherence as well as individual differences.

Another important concept is social presence. Once again, there are varying and con-
flicting definitions in the literature, but we follow Biocca in defining social presence as the
awareness of the copresence of another sentient being combined with a sense of engage-
ment with that being, and copresence as the sense of being with an other in the same space.
In other words, social presence is the sense of engaging with another intelligence who is
in the space with you. We argue for the use of the term Social Presence Illusion instead
of social presence, to avoid the ambiguity associated with the terms presence and social
presence. Social Presence Illusion arises from the existence of another seemingly sentient
being in the space (we call this company), the coherence of that being’s behavior, and the
traits and state of the user.

Given that there is now the term Place Illusion to refer to the sense of “being there,” the
general term presence can be redefined to match its meaning in common practice. Many
practitioners already use the term presence loosely to mean the overall “goodness” of a
virtual experience. We therefore propose a redefinition of the term presence to mean the
perceived realness of a mediated or virtual experience.

The relationships between the concepts discussed in this section are shown in
Figure 26.1.

PRESENCE

PLACE
ILLUSION

SOCIAL PRESENCE
ILLUSION

PLAUSIBILITY
ILLUSION

COHERENCECOMPANY

Subjective feelings of user (qualia) Objective characteristics of the VE

IMMERSION

Figure 26.1

Proposed relationships between presence and related constructs.

456 26.  Check Your Work

26.2 � Measuring Presence

The literature on virtual environments reports many methods for evaluating the qual-
ity of the user’s experiences—that is, the level of presence the user experiences. Some
measures are subjective responses from the users, some are objective readings from
sensors (physiological or otherwise), and some are based on experimenters’ observa-
tions. We present a short primer on measures and then discuss the most frequently
used measures.

26.2.1 � Characteristics of a good measure
The sub-discipline of psychology called psychometrics teaches that for results from any
measure to be credible, the measure must be valid, reliable, objective and sensitive [Lipsey
and Hurley, 2009; Singleton and Straits, 2009].

•• Validity means that the measure in fact measures what it says it is measuring.
Validity is often demonstrated by showing a strong correlation between results
from a new measure and results from an existing measure that is known to be
valid.

•• Reliability means that the results of the measure are stable and consistent over
time. Reliability is demonstrated by repeating the stimulus and measure after a
period of time and showing strong correlation between the sets of results.

•• Objectivity means that the measure is free from bias resulting from the partici-
pant’s or the experimenter’s thoughts and feelings while completing or scoring
the measure.

•• Sensitivity concerns whether the reported measure can distinguish between
multiple levels of the factor being measured.

Another factor important for evaluating VEs is how contemporaneous measurement
taking is with the VE experience, i.e., is the measurement made during the experience or
sometime later. When we take measures after the VE experience, we are asking users to
remember and accurately report how they felt during the experience. The possibility of
faulty or uncertain memory after even a short time can confound results, so best practices
suggest that measures be made during or as soon after the VE experience as possible.
Another concern is that by taking only a single measurement after the fact, we are unable
to measure any variations in presence that occurred over the course of the experience.

Unfortunately, the desire for a contemporaneous measure can conflict with the desire
for a measurement technique that does not induce breaks in presence [Slater and Steed,
2000]. If, for example, a measure requires a user to wear additional hardware, or to adjust
a dial to indicate their feeling of presence, such intrusions from the “real world” may
confound your results by artificially decreasing the very construct you set out to measure.

Another desirable measurement characteristic is that collecting the measure does not
require modifying the virtual experience. Post-experiment questionnaires, for example,
can be administered after any virtual experience without changing the experience. On
the other hand, physiological metrics have generally been validated only for VEs that are
known to induce stress. If you want to evaluate a non-stress-causing VE, you either need
to artificially add stress-inducing content, or find another measure.

45726.3  Questionnaires

26.2.2 � Kinds of Measures
Measures used to judge how well a VE evokes the feeling of being present in the virtual
scenario include presence questionnaires, observations of behavior, physiological data,
psychophysical analyses, and interviews. Each type of measure has strengths and weak-
nesses (see Table 26.1).

Because there is no psychometrically perfect, completely objective, and generalizable
measure of VE quality, we recommend you, if possible, use multiple measures of presence.
If all of your results point toward the same interpretation, you can have increased confi-
dence in the validity of your conclusions. This multiple measure technique, very common
in qualitative research in the social sciences, is called triangulation.

26.3 � Questionnaires

Questionnaires are the dominant type of measure in which users self-report their level
of feelings of presence. They are typically administered immediately after the user
experiences the VE and are scored on one scale or on several sub-scales as defined by the
questionnaire developers. The questions most often require a rating, ranking, or a Likert-
type response. Experimenters often supplement formal questionnaire data with user
responses to experimenter-developed questions. These supplemental questions are often
specific to the VE experience and can be open-ended to elicit longer and richer responses
from users.

Table 26.1  Pros and Cons of Measure Types

Type of Measure Pros (+) Cons (−)

Questionnaires •	 There are several well accepted presence
questionnaires

•	 Easy to administer and score

•	 Subjective, self-report
•	 Cannot measure concepts about which

there are no questions
•	 Administered post-experience

Behavioral •	 Contemporaneous
•	 Minimal interference with experience
•	 Objective, within limits of rubric and

human observers

•	 Requires scoring rubric
•	 May require multiple trained observers

(unless scored algorithmically)
•	 May be difficult to judge subtle behaviors

Physiological •	 Contemporaneous
•	 Objective
•	 Demonstrated correlation of change in

heart rate with SUS questionnaire results
[Meehan et al., 2002]

•	 Requires gathering base- line data
•	 Few stimuli evoke useful levels of signal

change
•	 Equipment can encumber user
•	 Lag time between stimulus and change in

measure
Psychophysical •	 Combines subjective and objective; results

come directly from contemporaneously
reported user preferences for varying
levels of stimuli

•	 Requires the ability to modify the
physical stimulus level during testing

•	 Ranks multiple experiences or
implementations, rather than yielding
a single “score”

Interviews •	 Users will tell you things about the system
and experience you never thought to ask
about

•	 Possible interviewer and scorer bias
•	 Analysis may require multiple scorers
•	 Cost of recording and transcription

458 26.  Check Your Work

We next describe several of the most widely used questionnaires and summarize
information about them in Table 26.2.

26.3.1 � Slater-Usoh-Steed (SUS) Presence Questionnaire
The SUS questionnaire asks specific questions about “being there”, so it directly mea-
sures the level of Place Illusion (see Section 26.1) experienced by the user. The SUS is short
and easily administered orally, online, or with pencil and paper. It allows some tuning of
the questions for a specific virtual environment, e.g., the generic question “How present
did you feel in the virtual place?” can be customized to “How present did you feel in the
elevator?” [Usoh et al., 2000].

Be careful with statistical analysis of Likert-type data. Responses to the SUS ques-
tions are chosen from Likert-type scales, where values typically range from 1 to 7. A prob-
lem that is inherent to analysis of Likert-type data is that they are ordinal, not interval. (In
other words, we don’t know whether the distance between 2 and 3 is the same distance as
between 4 and 5; all the values represent is an ordering.) It is not good practice to use sta-
tistics such as the mean as it cannot be meaningfully computed for ordinal data. A more
appropriate way to summarize such data is convert the response for each question to a
binary value (say, responses of 6 or 7 are counted at HIGH, and all other scores are not),
and then for each individual, the total count of HIGH scores is their SUS score. Note that
this same method can be used for other questionnaires with Likert-type responses; it is
not only for the SUS questionnaire.

26.3.2 � Witmer-Singer Presence Questionnaire (WS PQ)
The WS PQ generates an overall score as well as four subscale scores reflecting a model of
Presence having four factors: users’ ability to control events in the environment; the extent
and quality of sensory information; the degree to which the system enables the user to
avoid distraction; and the consistency, meaningfulness, and realism of the virtual stimuli.
Each of the 19 questions with demonstrated reliability in the questionnaire addresses an
aspect of one of these four factors [Witmer et al., 2005].

Don’t arbitrarily subset questionnaires. If you’re going to use a questionnaire, use the
whole thing (or at least entire subscales). While it may be tempting to use a subset of an
entire questionnaire if you’re interested in how well your VE performs in a specific area,
e.g., realism, this is a mistake: There is no guarantee that the subset of questions has the
same validity and reliability as the entire questionnaire, so you should give less credence
to those results when developing your conclusions. Furthermore, your results can no lon-
ger be meaningfully compared with other evaluations that used the same questionnaire.

Table 26.2  Some Widely Used Questionnaires

Questionnaire # items Subscales Intended Use

SUS 6 No separate subscales Virtual environments
WS PQ 19+ Control; Sensory; Distraction; Realism Virtual environments
ITC-SOPI 44 Sense of Physical Space; Engagement;

Naturalness; Negative Effects
Cross-media

SSQ 16 Nausea; Oculomotor; Disorientation Simulators (also often used in
virtual environments)

45926.4  Other Measures

There’s no free lunch. When you choose a questionnaire, pay attention to what is in
it, as well as what isn’t: you can only get out of a questionnaire information about con-
cepts that are covered in the questions. The Witmer-Singer PQ has a subscale devoted
to attention and distraction factors. As a result, subjecting questionnaire responses
to additional analysis, such as a factor analysis, is likely to reveal that attention is an
important and distinguishable component of presence. On the other hand, the WS PQ
does not have any questions relating to Social Presence Illusion or factors contribut-
ing to it. So even if the social aspects of a VE are very important to the overall experi-
ence, that will not be apparent in your analysis if you’ve used the WS PQ as your only
measure.

26.3.3 � ITC Sense of Presence Inventory (ITC-SOPI)
The ITC-SOPI was developed by researchers supported by the UK’s Independent Television
Commission (ITC) with the intention of being applicable across a range of media—not
only immersive virtual environments, but also television, computer games, and more.
Therefore, there are no questions that ask specifically about properties of the system or of
the content. The questionnaire was not designed with subscales in mind, but a subsequent
factor analysis revealed four factors: sense of physical space, engagement, naturalness, and
negative effects [Lessiter et al., 2001].

26.3.4 � Simulator Sickness Questionnaire (SSQ)
Simulator sickness is the name given to undesirable side effects of a VE experience such
as nausea, dizziness, and eye fatigue. The Simulator Sickness Questionnaire has long been
the standard for quantifying the severity of these side effects [Kennedy et al., 1993]. The
rule of thumb is that the higher the SSQ score, the lower the presence. A high SSQ score
across a group of users typically implies one or more problems in the VE system. The SSQ
subscale scores can help developers target their efforts to improve the system and reduce
the incidence of simulator sickness.

26.4 � Other Measures

26.4.1 � Behavioral Measures
Theory says that if users are sufficiently present in the VE, they will “react as if real”
[Slater, 2009]. Behaviors can be physical movements: Some are large enough to be seen
and categorized by observers/raters, e.g., ducking to avoid a limb while riding a bicycle
in a VE. Other movements are subtle, such as how users move their heads when trying to
locate the source of a sound, and are best captured in signals from sensors.

Behaviors are also important when evaluating the quality of the Social Presence Illusion.
Observers can score body language and the content and tone (e.g., friendly, condescending,
angry) of verbal interactions between users and virtual humans/intelligent entities.
Sensors, e.g., head and eye trackers, can capture data for coding and analysis of behaviors
such as eye contact between real and virtual humans.

Use multiple observers. In order to avoid introducing bias, always use multiple
observers/raters for behavioral observations, whether they score during live sessions or
from video. The experimenters and observers should develop a scoring rubric and then the
observers should train using it until their ratings match most of the time.

460 26.  Check Your Work

Define algorithmic measures. In some instances, it may be possible to derive behav-
ioral measures from recorded sensor data. This can reduce or eliminate the reliance on
human raters. For example, if users’ positions in the virtual environment are logged and
time-stamped, it is possible to determine the amount of time a user spent in a given virtual
room via direct analysis of the logs.

Log, log, log. Today, disk space is plentiful and cheap, but gathering experimental data
remains time-consuming, for both experimenters and participants. Especially in light of
the previous paragraph, one should record as much data as can be readily gathered. It is
generally difficult or impossible to gather additional data for a given participant after the
fact. It is better to have it and not need it, than to need it and not have it.

26.4.2 � Physiological Measures
Physiological measures were one of the first contemporaneous, objective correlates of
presence that was developed [Meehan et al., 2002]. The physiological responses most often
measured are heart rate, skin temperature, and galvanic skin response (GSR) (also known
as skin conductance response or electrodermal activity). Users put in a stressful situation,
e.g., crossing a ravine on a worn-out bridge, exhibit changes in each of these signals—
heart rate and GSR increase (your heart beats faster and your palms sweat), while skin
temperature decreases at the extremities.

In the general population, there is wide variation in the baseline values of these three
factors, so the signals’ change from baseline is the data preferred for analysis. Baseline
measures should be taken over about 3 min while users are in the VE, but before exposing
the user to the high-stress environment. Change in heart rate has proven the most useful
in our work.

Choose measures and sensors carefully. Skin temperature changes slowly, and thus
requires longer VE exposures both to gather baseline and to gather data in the target VE.
Users should be encumbered as little as possible by physiological monitoring equipment
and the sensors should mount firmly to the user to accommodate user motion when in the
VE. For example, our older GSR sensors did not mount securely to fingers, so data collec-
tion was unreliable.

Ethical treatment of users. Be sensitive to issues of privacy and gender if, for instance,
EEG sensors must be placed on a user’s torso. This is one example of a broader topic of
ethical treatment of users. Find out whether you need approval from your local ethics
board (in the United States, the Institutional Review Board) to carry out VE experience
evaluations. Apply for and get that approval if it is needed. The board review will insure
that you follow required guidelines that protect your users, you, and your institution.

26.4.3 � Psychophysical Measures
Often used to determine at what level a stimulus becomes noticeable, psychophysics is the
study of the relationship between physical stimuli and individuals’ perceptions of those
stimuli. The physical stimuli are objectively described; the users’ reports are subjective.
For example, psychophysical techniques have been used to investigate how low VE system
latency must be before the user does not notice it.

More recently, psychophysical techniques have been used to evaluate factors that
contribute to Place Illusion and Plausibility Illusion in virtual experiences [Slater et al.,
2010; Bergström et al., 2017; Skarbez et al., 2017b]. In such studies, users are exposed

46126.5  Conclusion

to a high-quality VE and instructed to remember, for example, “how real it feels.” They
are then placed in a lower-quality VE and given the option to improve various objective
aspects of the VE (such as illumination quality or field of view) until it feels “as real” as
the experience they were asked to remember. The order in which aspects are upgraded
is recorded. This method results in an objective ranking of which VE factors are most
important to users’ subjective experiences.

Consider how you choose and present your physical stimuli. Make sure that within
each category, you can at least argue a priori for an ordering of the “steps” from best to
worst. This is easy for some factors (usually immersion), like field of view, but compli-
cated for others (usually coherence), such as virtual body quality. Similarly, try to make
sure that the steps are roughly equal in the amount of perceived improvement between
categories.

26.4.4 � Interviews
Post-experience interviews are almost always an illuminating addition to other measures
of VE effectiveness. Users are often eager to tell you what they think about your VE—good
and bad. What experimenters look for in their analysis of interview data are things that
are complete surprises and things, expected or unexpected, that are mentioned by mul-
tiple users. Data from interviews is often used to support and explain results from other
measures, helping triangulate overall conclusions.

Interviews can be structured or semi-structured. While structured interviews, inter-
views asking each user the same set of questions, can be administered online, unless
they allow open-ended responses they do not encourage respondents to elaborate on and
explain their responses. We believe a face-to-face semi-structured interview is superior. In
such an interview, the interviewer has a set of questions to cover with each interviewee,
but can also ask follow-up questions and follow threads and ideas introduced by the user
to elicit as much information as possible.

Getting the most from your interviews. There are commercial content analysis tools
that help identify themes that emerge in the interviews. Recording and transcribing inter-
views allows you to revisit all interviews once the themes emerge and to quote interesting
remarks precisely.

26.5 � Conclusion

In this chapter we have discussed methods and best practices for evaluating virtual envi-
ronments, focusing on the presence construct and the various ways it is measured. While
there are a variety of constructs that one can measure, and a variety of ways that one can
choose to measure each construct, we believe that there are some general principles that
apply regardless of what you seek to measure.

First, put some thought into your choice of constructs. We have focused primarily on
presence in this chapter, but presence is not the only or necessarily the best construct for
evaluating every virtual experience.

Second, put some thought into your choice of measures. Even within a category
of measure, not all measures are created equal. Questionnaires may address different
subscales, or physiological measures may have different physical characteristics. Choose
measures that suit your application.

462 26.  Check Your Work

Finally, if possible, use multiple measures for the construct that you care about. No
single measure is perfect, and we have discussed some of the pros and cons associated with
different types of measures in Table 26.1. But if you collect multiple measures and they all
indicate the same thing, you can report your results with much greater confidence.

This chapter has by no means provided an exhaustive discussion of how to evaluate
users’ experiences of virtual environments. But we hope that we have provided some illu-
mination and some helpful suggestions on how you might do so in the event that you do,
at some point, need to make sure that your VE is actually doing what you want it to do.

References

[Bergström et al., 2017]

Bergström, Ilias, Sérgio Azevedo, Panos Papiotis, Nuno Saldanha, and Mel Slater (2017).
The plausibility of a string quartet performance in virtual reality. IEEE Transactions
on Visualization and Computer Graphics, 23(4):1352–1359.

[Csikszentmihalyi, 1990]

Csikszentmihalyi, Mihaly (1990). Flow: The psychology of optimal experience. Harper and
Row, New York.

[Kennedy et al., 1993]

Kennedy, Robert S., Norman E. Lane, Kevin S. Berbaum, and Michael G. Lilienthal (1993).
Simulator sickness questionnaire: An enhanced method for quantifying simulator
sickness. The International Journal of Aviation Psychology, 3(3):203–220.

[Lessiter et al., 2001]

Lessiter, Jane, Jonathan Freeman, Edmund Keogh, and Jules Davidoff (2001). A cross-
media presence questionnaire: The ITC-sense of presence inventory. Presence:
Teleoperators and Virtual Environments, 10:282–297.

[Lipsey and Hurley, 2009]

Lipsey, Mark W. and Sean M. Hurley (2009). Design sensitivity: Statistical power for
applied experimental research. In Bickman, L. and Rog, D. J., eds., The SAGE
Handbook of Applied Social Research Methods, 2nd edition, chapter 2, pp. 44–76.
SAGE Publications, Inc., Thousand Oaks, CA.

[McQuarrie and Munson, 1992]

McQuarrie, Edward F. and J. Michael Munson (1992). A revised product involvement
inventory: Improved usability and validity. NA—Advances in Consumer Research,
19:108–115.

463References

[Meehan et al., 2002]

Meehan, Michael, Brent Insko, Mary Whitton, and Frederick P. Brooks Jr. (2002).
Physiological measures of presence in stressful virtual environments. In Proceedings
of the 29th Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’02, pp. 645–652. ACM, New York.

[Singleton and Straits, 2009]

Singleton Jr., Royce A. and Bruce C. Straits (2009). Measurement. In Approaches to Social
Research, 5th edition, chapter 5. Oxford University Press, New York.

[Skarbez et al., 2017a]

Skarbez, Richard, Frederick P. Brooks Jr., and Mary C. Whitton (2017). A survey of
presence and related concepts. ACM Computing Surveys, 50(6):1–39.

[Skarbez et al., 2017b]

Skarbez, Richard, Solene Neyret, Frederick P. Brooks Jr., Mel Slater, and Mary C.
Whitton (2017). A psychophysical experiment regarding components of the plau-
sibility illusion. IEEE Transactions on Visualization and Computer Graphics,
23(4):1369–1378.

[Slater, 2009]

Slater, Mel (2009). Place illusion and plausibility can lead to realistic behavior in immer-
sive virtual environments. Philosophical Transactions of the Royal Society of London.
Series B, Biological sciences, 364:3549–3557.

[Slater and Steed, 2000]

Slater, Mel and Anthony Steed (2000). A virtual presence counter. Presence: Teleoperators
and Virtual Environments, 9:413–434.

[Slater et al., 2010]

Slater, Mel, Bernhard Spanlang and David Corominas (2010). Simulating virtual envi-
ronments within virtual environments as the basis for a psychophysics of presence.
ACM Transactions on Graphics, 29: 92: 1–92:9.

[Usoh et al., 2000]

Usoh, Martin, Ernest Catena, Sima Arman, and Mel Slater (2000). Using presence
questionnaires in reality. Presence: Teleoperators and Virtual Environments,
9:497–503.

464 26.  Check Your Work

[Witmer et al., 2005]

Witmer, Bob G., Christian J. Jerome, and Michael J. Singer (2005). The factor structure
of the presence questionnaire. Presence: Teleoperators and Virtual Environments,
14(3):298–312.

465

27
Misperception of Self-motion and
Its Compensation in Virtual Reality
Frank Steinicke
University of Hamburg

One major benefit of wearable computers is that users can naturally move and explore
computer-mediated realities. Walking through the real world is one of the most funda-
mental processes of humans, and its consideration in immersive virtual environments
(IVEs—aka “virtual reality”) is of major importance for many application domains, such
as those requiring immersive walkthroughs. However, previous research shows that the
user egocentric perception of space and motion severely differs in these environments
compared with the real world—an effect often attributed to slight discrepancies in sensory
cues, perhaps caused by tracking inaccuracy or system latency.

From a simple physics perspective, walking or more general self-motions can be defined
by the three components (i) speed, (ii) distance, and (iii) time. Determining motions in the
frame of reference of a human observer imposes a significant challenge to the perceptual pro-
cesses in the human brain, and the resulting speed, distance, and time percepts are not always
accurate (as illustrated in Figure 27.1). In previous VR research these components have been
evaluated in different experiments, i. e., using largely different hardware, software and proto-
cols. However, experiments show that in many situations these components are significantly
misperceived. In particular, users largely underestimate virtual distances and slightly under-
estimate virtual speed while moving through the IVE. Using visual illusions and manipula-
tions of certain rendering parameters can improve the perception of the motion components.

27.1	 Introduction
27.2	 Self-motion Perception and Misperception
27.3	 Visual Illusions and Manipulation to Compensate Self-Motion

Misperception
27.4	 Conclusion and Future Directions

466 27.  Misperception of Self-motion and Its Compensation in Virtual Reality

In this chapter we explore the perception of the three components of self-motion dur-
ing immersive walkthroughs, and how they can be altered using simple illusions.

27.1 � Introduction

The motion of an observer or scene object in the real world or in a virtual world (VW) is of
great interest to many research and application fields. This includes computer-generated
imagery, e. g., in movies or games, in which a sequence of individual images evoke the illu-
sion of a moving picture [Thompson et al., 2011]. In the real world, humans may move by
walking or running, physical objects move and sometimes actuate each other, and, finally,
the earth spins around itself as well as around the sun. From a simple physics perspective,
such motions can be defined by three main components: (i) (linear or angular) speed and
(ii) distances (or revolutions), as well as (iii) time. The interrelation between these compo-
nents is given by the speed of motion, which is defined as the change in position (location)
or orientation of an object with respect to time:

	 =s d t	 (27.1)

with speed s, distance d, and time t. Motion can be observed by attaching a frame of refer-
ence to an object and measuring its change relative to another reference frame.

As there is no absolute frame of reference, absolute motion cannot be determined;
everything in the universe can be considered to be moving [Bottema and Roth, 2012].
Determining motions in the frame of reference of a human observer imposes a significant
challenge to the perceptual processes in the human brain, and the resulting percepts of
motions are not always accurate [Berthoz, 2000]. Misperception of speed, distances, and
time has been observed for different forms of self-motion in the real world [Efron, 1970,

Figure 27.1

Illustration of the mathematically well-defined components of motion (the speed triangle)
with the interrelations between actual and perceived motion speed, distances and time.
The question remains whether this relation is also valid from a perceptual point of view.

46727.1  Introduction

Gibb et al., 2010; Mao et al., 2010]. This raises the question whether the mathematically
well-defined components of motion (illustrated in Figure 27.1) and their interrelations are
also valid from a perceptual point of view.

In the context of self-motion, walking is often regarded as the most basic and intuitive
form of locomotion within an environment. Self-motion estimates from walking are often
found to be more accurate than for other forms of motion [Ruddle and Lessels, 2009]. This
may be explained by adaptation and training due to early childhood and evolutionary
tuning of the human brain to the physical affordances for locomotion of the body [Choi
and Bastian, 2007]. While walking in the real world, sensory information such as vestibu-
lar, proprioceptive, and efferent copy signals* as well as visual and auditive information
creates consistent multi-sensory cues that indicate one’s own motion [Wertheim, 1994].
However, a large body of research has shown that spatial perception in IVEs differs from
the real world. Empirical data shows that static and walked distances are often systemati-
cally over- or underestimated in IVEs (cf. [Loomis and Knapp, 2003] and [Renner et al.,
2013] for thorough reviews) even when the displayed world is modeled as an exact replica
of the real laboratory in which the experiments are conducted [Interrante et al., 2006].

Less empirical data exists on speed misperception in IVEs, the available data suggests a
tendency for underestimating visual speed during walking [Banton et al., 2005; Bruder et
al., 2012a; Steinicke et al., 2010b; Durgin et al., 2005b]. There is evidence that time percep-
tion can deviate from accurate judgments due to visual or auditive stimulation related to
motion misperception [Grondin, 2008; Roussel et al., 2009; Sarrazin et al., 2004]. Different
causes of motion misperception in IVEs have been identified, including hardware char-
acteristics [Jones et al., 2012; Willemsen et al., 2009], rendering issues [Thompson et al.,
2011], and miscalibration [Kuhl et al., 2009; Willemsen et al., 2008].

As discussed, for distance and speed perception in IVEs, over- or underestimations
have been well documented by researchers in different hardware, software and experi-
mental protocols. In contrast, perception of time has not been extensively researched in
IVEs thus far. The only empirical experiment in the area of time perception in IVEs has
been conducted by Schatzschneider et al. [2016]. They found some environmental cues
such as the movement of the sun can be artificially manipulated in VR, and thus have the
potential to change the perception of time.

Remarkably, only Bruder et al. [2014] have compared self-motion estimation in the
three components distance, speed, and time using the same setup and a similar action-
based two-alternative forced-choice experimental design. Their experiments in an Oculus
Rift HMD DK 2 showed that participants largely underestimated virtual distances, slightly
underestimated virtual speed, and slightly overestimated elapsed time.

To summarize, several research efforts have shown that the user perception of self-
motion severely differs in IVEs compared to the real world. A challenging question is
whether and how such misperceptions can be compensated.

The main contributions of this chapter are:

•• a summary of results in self-motion perception of speed, distances, and time in
IVEs, and

•• approaches to compensate the often-observed misperceptions of self-motion.

*	 An efference copy is an internal copy of a movement-producing signal generated by the motor

468 27.  Misperception of Self-motion and Its Compensation in Virtual Reality

27.2 � Self-motion Perception and Misperception

27.2.1 � Distance Perception
During self-motion in IVEs, different cues provide information about the travel distance
with respect to the motion speed or time [Mohler, 2007]. Humans can use these cues to
keep track of distance traveled, the remaining distance to a goal, or discriminate travel
distance intervals [Bremmer and Lappe, 1999]. Although humans are considerably good
at making distance judgments in the real world, experiments in IVEs show that character-
istic estimation errors occur such that distances are often severely overestimated for very
short distances and underestimated for longer distances [Loomis et al., 1993]. However,
current developments in the area of gaze-contingent and adaptive focus displays have
slightly improved the situation, but misperception still occurs [Padmanaban et al., 2017].

Different misperception effects were found over a large range of IVEs and experimental
methods to measure distance estimation. While verbal estimates of the distance to a tar-
get can be used to assess distance perception, methods based on visually directed actions
have been found to generally provide more accurate results [Loomis and Knapp, 2003].
The most widely used action-based method is blind walking, in which subjects are asked
to walk without vision to a previously seen target. Several experiments have shown that
over medium range distances subjects can accurately indicate distances using the blind
walking method [Rieser et al., 1990]. Other action-based methods include triangulated
walking and timed imagined walking [Fukusima et al., 1997; Klein et al., 2009; Plumert
et al., 2004]. Moreover, perceptual matching methods can be used, in which subjects
match the distance or size of a target to the distance or size of a reference object, respec-
tively [Loomis and Philbeck, 2008].

Although there is a large interest in solving the distance misperception problem, the
reasons for this perceptual shift are still largely unknown, as are approaches to reduce
such misperceptions. Kuhl et al. [2009] observed that miscalibration of HMD optics is a
main reason for distance misperception, although subjects underestimated distances even
for correctly calibrated HMDs [Kellner et al., 2012]. Willemsen et al. [2009] compared
HMD properties with natural viewing in the real world and observed that mechanical
restrictions of HMDs can cause slight differences in distance judgments. Jones et al. [2011,
2012] found that increasing the field of view of HMDs to approximate the visual angle of
the human eyes helps alleviate distance misperception. Interrante et al. [2006] showed
that the VE has an impact on distance judgments with underestimation being reduced if
subjects are immersed in an accurate virtual replica of the real-world surroundings than
in a hypothetical VE. Studies by Phillips et al. [2009] further showed that the visual ren-
dering style affects distance judgments. They observed that distance underestimation was
increased for a non-photorealistic rendering style than in a photorealistic (verisimilar)
scene.

27.2.2 � Speed Perception
Different sensory motion cues support the perception of the speed of walking in an IVE
(cf. [Durgin et al., 2005a]). Visual motion information is often estimated as most reli-
able by the perceptual system, but can cause incorrect motion percepts. For example, in
the illusion of linear vection [Berthoz, 2000] observers feel their body moving although
they are physically stationary because they are presented with large-field visual motion

46927.2  Self-motion Perception and Misperception

that resembles the motion pattern normally experienced during self-motion. Humans
use such optic flow patterns to determine their speed of movement, although the speed
of retinal motion signals is not uniquely related to movement speed. Any translational
motion from the visual velocity of any point in the scene depends on the distance of the
point from the eye, i. e., points farther away move slower over the retina than points closer
to the eye [Bremmer and Lappe, 1999; Warren, 1998]. Banton et al. [2005] observed for
subjects walking on a treadmill with an HMD that optic flow fields at the speed of the
treadmill were estimated as approximately 53% slower than their walking speed. Durgin
et al. [2005a] reported on a series of experiments with subjects wearing HMDs while walk-
ing on a treadmill or over solid ground. Their results show that subjects often estimated
subtracted speeds of displayed optic flow fields as matching their walking speed. Steinicke
et al. [2010b] evaluated speed estimation of subjects in an HMD environment with a real
walking user interface in which they manipulated subjects’ self-motion speed in the VE
compared to their walking speed in the real world. Their results show that on average sub-
jects underestimated their walking speed by approximately 7%. Bruder et al. [2012b,2013]
showed that visual illusions related to optic flow perception can change self-motion speed
estimates in IVEs.

27.2.3 � Time Perception
Although human temporal perception in IVEs is a relatively unexplored area, there has
been some research exploring time perception in VEs. For instance, it has been shown that
immersing chemotherapy patients in IVEs can reduce their perceived duration of certain
treatments [Schneider et al., 2011]. Furthermore, experimental studies of time perception
in the field of psychology have well established that estimates of stimulus duration do not
always match its actual time interval, and are affected by a variety of factors [Efron, 1970].
Since the brain internally cannot directly measure time, it is theorized that it estimates
time based on internal biological or psychological events, or external signals [Grondin,
2008]. The effect of exogenous cues (i. e., external cues used to reset a biological clock—
zeitgebers) from the local environment on endogenous biological clocks (e. g., circadian
rhythms) is studied in the field of chronobiology [Kramer and Merrow, 2013]. It is possible
that differences in exogenous time cues between the real world and IVEs have an effect on
internal human time perception. In particular, system latency is known to change the per-
ception of sensory synchronicity [Shi et al., 2010] and can degrade the perceptual stability
of the environment [Allison et al., 2001].

Space and time are interdependent phenomena not only in physics, but also in human
perception [Grondin, 2008]. Helson coined the term tau effect for the phenomenon wherein
the variation of the time between spatial events can affect judgments of their spatial layout
(cf. [Helson and King, 1931; Jones and Huang, 1982; Sarrazin et al., 2004]). For instance,
Helson and King [1931] conducted a tactile estimation experiment that stimulating three
equidistant surface points p1, p2, and p3 with ||p2 − p1|| = ||p3 − p2|| at points in time t1, t2,
and t 3 for different durations ||t2 − t1|| > ||t3 − t2|| in which they observed that subjects judge
the distance between p1 and p2 as longer than between p2 and p3. That is, even though the
distances between successive points was the same, the lengthened temporal stimulation
led to an increased distance perception.

Conversely, Cohen et al. [1953] coined the term kappa effect for the phenomenon
wherein the variation of the spatial layout of events can affect judgments of their temporal

470 27.  Misperception of Self-motion and Its Compensation in Virtual Reality

layout (cf. [Grondin, 2008; Roussel et al., 2009]). They observed for a visual bisection task
that three successive flashes at spatial points p1, p2, and p3 for different distances ||p2 − p1|| >
||p3 − p2|| with points in time t1, t2, and t3 with ||t2 − t1|| = ||t3 − t2|| that subjects judge the
duration between t1 and t2 as shorter than the duration between t2 and t3, which underlines
the mutual effects of distances and time.

27.3 � Visual Illusions and Manipulation to
Compensate Self-Motion Misperception

As described above, several works have shown that the user perception of self-motion
severely differs in IVEs compared with the real world. In this section, we explore how
such misperceptions can be compensated for by using visual illusions and manipulations
of the IVE.

27.3.1 � Compensation of Distance and Size Misperception
Accurate perception of size and distance in IVEs is important for many applications.
However, as described above, several experiments have revealed that spatial perception
of VEs often deviates from the real world, even when the virtual scene is modeled as an
accurate replica of a familiar physical environment. Previous research has elucidated vari-
ous factors that can facilitate perceptual shifts. In this context, we consider the effects of
modified geometric rendering parameters on spatial cues and spatial perception [Bruder
et al., 2012a].

When presenting computer-generated images on a physical display, we distinguish
between the virtual rendering parameters and the physical display setup. To provide a
view of a virtual scene on a head-referenced display (such as an HMD) that matches what a
user would see in a corresponding real-world scene, the computer graphics rendering sys-
tem has to be calibrated to the physical display characteristics. In particular, the geometric
field of view (GFOV) in the rendering environment has to be set to the visual angle cov-
ered by the display screens in front of the user’s eyes. Furthermore, the geometric inter-
pupillary distance (GIPD) of the user has to be applied to the binocular camera model as
shown in Figure 27.2. Any discrepancy between these parameters will affect various size
and distance cues and cause perceptual shifts [Bruder et al., 2012a].

In this section, we describe the effects of spatial transformations caused by variations
of the GFOV and the GIPD in on-axis stereographic display environments. In a psycho-
physical experiment, we have evaluated the mutual impact of the two parameters on size
and distance perception, and set the results in relation to the models for these cues. In
this experiment, participants were asked to judge distance and size properties of virtual
objects placed in a realistic virtual scene (see Figure 27.3). As visual stimulus, we used a
virtual hallway scene of 3.8 m × 2.5 m × 35 m (in width, length, and height), which was
rendered with Crytek’s CryEngine 3. We used a split screen design of a virtual hallway
(see Figure 27.3), with the left-hand side view being rendered with one pair of GFOV and
GIPD, and the right-hand side view being rendered with another. We did not use the
stereoscopic rendering facilities of the CryEngine 3, but added an interface to our own
software which handled the generation of the split-screen stereo pair and provided accu-
rate on-axis stereoscopic renderings. As illustrated in Figure 27.3, in both virtual scenes
we placed a virtual avatar (Caucasian male, 1.85m height) as the focus object. We used the

47127.3  Visual Illusions and Manipulation to Compensate Self-Motion Misperception

far clipping
plane

virtual
image

near
plane

near focal far

vertical
resolution

horizontal
resolution

strafe

up

look

left
eye

right
eye

GIPD

GFOV

Figure 27.2

An idealized binocular camera model in three-dimensional computer graphics for HMDs.
For better legibility, only the view frustum for the left eye camera object is shown. The right
eye camera frustum results from a translation by GIPD along the strafe vector.

Figure 27.3

Illustration of the compensation approaches of distance and size misperception: View of
the split-screen visual stimulus used in the experiment (here illustrated with red-cyan ana-
glyphs). Participants had to compare size and distance of the avatars displayed in the left
and right view.

472 27.  Misperception of Self-motion and Its Compensation in Virtual Reality

distance of the avatar from the observer as the between-subjects variable, and tested three
distances: 4, 6 and 8 m.

The results of our experiment suggest that variations in the GFOV (within the tested
range) have a strong influence on distance judgments, whereas variations in the GIPD
(within the tested range) mainly affect size judgments. Larger GFOVs resulted in objects
being judged as farther away from the observer. Larger GIPDs resulted in objects being
judged as closer to the observer, although distance discrimination performance appears to
be less influenced by the GIPD than by the GFOV. The tested GIPDs had only a slight effect
on distance judgments when set in direct relation to the tested range of GFOVs.

Our results indicate that for cue conflicts introduced with increased GFOV and GIPD
in realistic virtual scenes, human distance and size perception differs from the predictions
of the models for reduced-cue visual stimuli (i. e., stereopsis and retinal size) described in
[Bruder et al., 2012a]. In particular, for a typical range of miscalibrated GFOVs, the results
indicate a strong effect on relative distance perception, with little effect on relative size
perception. In contrast, for a typical range of miscalibrated GIPDs, the results indicate
only a slight effect on relative distance perception, but a stronger effect on relative size
perception. However, variations in both parameters can be used to alter the perception of
size and distance.

27.3.2 � Compensation of Speed Misperception
In this section we focus on the approaches to compensate misperception of speed.

27.3.2.1 � Manipulating Visual Motions

Various researchers focused on manipulating landmarks in IVEs, which do not have to be
as true as in the real world. For instance, Suma et al. [2010] exploited change blindness by
shifting the position of landmarks, such as doors in an architectural model which often go
unnoticed by observers when the altered landmark was not in the observer’s view during
the change. These changes can also be induced if the visual information is disrupted during
saccadic eye motions or a short inter-stimulus interval [Steinicke et al., 2010a]. Less abrupt
approaches are based on moving a virtual scene or individual landmarks relative to a
user’s motion [Razzaque, 2005]. For instance, Interrante et al. [2007] described approaches
to upscale walked distances in immersive VEs to compensate perceived underestimation
of travel distances in VR. Similarly, Steinicke et al. [2010b] proposed up- or downscaling
rotation angles to compensate observed under- or overestimation of rotations. Although,
such approaches can be applied to enhance self-motion judgments, and support unlim-
ited walking through VEs even when restricted to a limited real world interaction space
[Steinicke et al., 2010b], the amount of manipulation that goes unnoticed by users is lim-
ited. Furthermore, manipulation of virtual motions can produce some practical issues.
Since the user’s physical movements do not match their motion in the VE, an introduced
discrepancy can affect typical distance cues exploited in some professions. For instance,
counting steps as distance measure is a simple approximation in the fields of architecture
or urban planning, which would be distorted if the mapping between the physical and vir-
tual motion is manipulated. Another drawback of these manipulations results from find-
ings of Kohli et al. [2005] and Bruder et al. [2009] in the area of passive haptics, in which
physical props, which are aligned with virtual objects, are used to provide passive haptic
feedback for their virtual counterparts. In the case of manipulated mappings between real

47327.3  Visual Illusions and Manipulation to Compensate Self-Motion Misperception

movements and virtual motions, highly complex prediction and planning is required to
keep virtual objects and physical props aligned.

27.3.2.2 � Optic Flow Manipulations

Scaling user motion in VEs affects not only landmarks, but also changes the perceived
speed of optic flow motion information. Manipulation of such optic flow cues has been
considered as the contributing factor for affecting self-motion perception. However, the
potential of such optic flow manipulations to induce self-motion illusions in VEs have
rarely been studied in VR environments.

Apparent motion can be induced by directly stimulating the optic flow perception
process, e. g., via transparent overlay of stationary scenes with three-dimensional par-
ticle flow fields or sinusoidal gradients [Giese, 1997], or by modulating local features in
the visual scene, such as looped, time varying displacements of object contours [Freeman
et al., 1991].

In this section we describe techniques for such optic flow self-motion illusions in IVEs
[Bruder et al., 2012b]. In comparison with previous approaches these techniques neither
manipulate landmarks in the VE [Suma et al., 2010] nor introduce discrepancies between
real and virtual motions [Steinicke et al., 2010b]. In psychophysical experiments we ana-
lyzed whether and how much these approaches can affect self-motion perception in VEs
when applied to different regions of the visual field. These manipulations can affect self-
motion perception in VEs, but omit a quantitative discrepancy between real and virtual
motions. In particular, we considered within which regions of the virtual view these
apparent self-motion illusions can be applied, i. e., the ground plane or peripheral vision.
Therefore, we experimentally introduced four illusions and demonstrated that optic flow
manipulation can significantly affect users’ self-motion judgments [Bruder et al., 2012b].

Through multiple trials, we either blended layered motion fields over the virtual scene
using (1) particle flow fields, (2) sinusoidal gradients [Giese, 1997] or (3) motion of an infi-
nite surface textured with a seamless tiled pattern approximating those in the virtual view
(illustrated in Figure 27.4a–c). The illusion differs significantly from layered flow fields,
because the edges in the rendered view move globally with virtual camera motions, but
the illusion modulates the edges to stimulate local motion detectors of the visual system
[Adelson and Bergen, 1985] (illustrated in Figure 27.4d).

Next, we studied illusory motion based on (4) change blindness by introducing a short-
term gray screen as an inter-stimulus interval (ISI). We manipulated the one-to-one
mapping to virtual camera motions directly with gains ∈gTI  and ∈ 3gRI  , similar to
translation and rotation gains described in [Steinicke et al., 2010a], i. e., we introduced an
offset to the actual camera location and orientation accumulated from the last ISI occur-
rence, and reverted to zero at each ISI onset. We apply an ISI of 100 ms duration for reverse
motion (see Figure 27.4e). An example is shown in Figure 27.4f.

The experimental results show that the illusions can affect travel distance judgments in
VEs. In particular, we established that the underestimation of travel distances observed
in the case of a one-to-one mapping from real to virtual motions of a user can be com-
pensated for by applying illusory motion with the points of subjective equality (PSEs)
determined experimentally. We also evaluated potential of the presented illusions for
enhancing applicability of scaled walking by countering the increased or decreased vir-
tual traveling speed of a user through induced illusory motion. Our results show that

474 27.  Misperception of Self-motion and Its Compensation in Virtual Reality

participants judged real and virtual motions as equal, which under standard rendering
they usually do not. This illustrates the potential of visual illusions to be applied when
virtual motions must be manipulated with scaled walking gains that otherwise would
be detected by users. Moreover, we found that illusory motion stimuli can be limited to
peripheral regions or the ground plane only, which limits visual artifacts and distraction
of users in immersive virtual worlds.

Figure 27.4

Screenshots illustrating layered motion with (a) particles, (b) sinusoidal gradients and
(c) textures fitted to the scene, as well as (d) contour filtering, (e) change blindness and
(f) contrast inversion. Please note that the illusory motion stimuli illustrated here are limited
to peripheral regions.

47527.3  Visual Illusions and Manipulation to Compensate Self-Motion Misperception

27.3.3 � Manipulation of Time Perception
In this section, we describe the effects of manipulated zeitgebers (biological clock cues) on
time estimation as yet unexplored factors of spatiotemporal perception in IVEs. We con-
ducted an experiment to analyze human sensitivity to temporal durations while immersed
in an HMD as well as a non-immersive display.

The experiment was performed in our laboratory, which was sealed from external cues
during the experiment. Participants wore an Oculus Rift DK2 HMD for the stimulus pre-
sentation. The visual stimulus consisted of a virtual tropical island with sand, palm trees
and ocean water. For rendering, system control, and logging we used an Intel computer with
4.0 GHz Core i7 processor, 16 GB of main memory and a Nvidia Quadro K5200 graphics
card. The stimuli were rendered with the Unity 3D 5.0.3 engine. During the experiment,
participants were seated in an MWE Lab Emperor chair, which provides a comfortable pose
similar to the virtual sun lounger on the virtual beach in the VE. The virtual world shown to
the participants during the experiment consisted of a virtual morning with a rising sun. We
set the initial virtual local time of day to 7 am and approximated a sunny morning to ensure
there would always be sufficient light available for the different tasks in the experiment. To
simulate the virtual movement of the sun at different speeds, we implemented a realistic sun
model in Unity 3D. In particular, a directional light was moved around the virtual hemi-
sphere and the ambient lighting was manipulated using keyframe animations to simulate
a natural change in color from red to blue after sunrise. A procedural skybox drew a white
circle, dependent on the rotation of the directional light in the scene with sunshafts rendered
as a post-effect (see Figure 27.5). The palm trees in the virtual scene were self-shadowing and
cast soft shadows to provide additional cues about the position and movement of the sun.

We found that manipulations of external zeitgebers (cues) caused by a natural or unnat-
ural movement of the virtual sun in the sky had a significant effect on time judgments. The
key result is that whether the sun moved or was stationary was the major factor—there was

Figure 27.5

Illustration of the virtual island from a bird’s eye perspective and movement of the sun in the
virtual world scaled by the three time gains gt 0,1,2{ }∈ corresponding to no, realistic and
double speed sun movement.

476 27.  Misperception of Self-motion and Its Compensation in Virtual Reality

little effect from altering the speed of the sun’s movement across the sky. Thus, increas-
ing the speed of the sun to twice its natural speed did not result in a significant change
in time estimates. Hence, it appears that time estimation is improved in the presence of
a dynamically moving sun while it is degraded in static virtual scenes. This is an impor-
tant implication for implementing near-natural IVEs since it suggests that humans extract
time information from the representation and movements of a virtual sun.

27.4 � Conclusion and Future Directions

In this chapter we analyzed the triplet of self-motion speed, distance, and time percep-
tion in an IVE. As illustrated in Figure 27.1, differences in this self-motion triplet reveal
perceptual biases, which may be effected by VR hardware and software or individual dif-
ferences. We reviewed previous research work, which show that the user perception of
self-motion severely differs in IVEs compared to the real world. Furthermore, we have
summarized approaches to compensate these misperceptions of self-motion.

More research is necessary to understand the reasons, interrelations, and implications
of such perceptual biases introduced by VR technologies in IVEs. This chapter can serve
as a starting point to conduct research in the area of compensating misperception in IVE,
which is important for the success of VR and associated technologies.

References

[Adelson and Bergen, 1985]

Adelson, Edward H. and James R. Bergen (1985). Spatiotemporal energy models for the
perception of motion. Journal of the Optical Society of America A, 2(2): 284–299.

[Allison et al., 2001]

Allison, Robert S., Laurence R. Harris, Michael Jenkin, Urszula Jasiobedzka, and James
E. Zacher (2001). Tolerance of temporal delay in virtual environments. In IEEE
Proceedings of the Virtual Reality (VR), Yokohama, Japan, pp. 247–253. IEEE.

[Banton et al., 2005]

Banton, Tom, Jeanine Stefanucci, Frank Durgin, Adam Fass, and Dennis Proffitt (2005).
The perception of walking speed in a virtual environment. Presence, 14(4): 394–406.

[Berthoz, 2000]

Berthoz, Alain (2000). The Brain’s Sense of Movement. Harvard University Press,
Cambridge, MA.

[Bottema and Roth, 2012]

Bottema, Oene and Bernard Roth (2012). Theoretical Kinematics. Dover Publications, New
York.

477References

[Bremmer and Lappe, 1999]

Bremmer, Frank and Markus Lappe (1999). The use of optical velocities for distance dis-
crimination and reproduction during visually simulated self-motion. Experimental
Brain Research, 127(1): 33–42.

[Bruder and Steinicke, 2014]

Bruder, Gerd and Frank Steinicke (2014). Threefolded motion perception during immer-
sive walkthroughs. In Proceedings of the 20th ACM Symposium on Virtual Reality
Software and Technology (VRST), Edinburgh, Scotland, pp. 177–185.

[Bruder et al., 2009]

Bruder, Gerd, Frank Steinicke, and Klaus H. Hinrichs (2009). Arch-explore: A natural
user interface for immersive architectural walkthroughs. In Proceedings of IEEE
Symposium on 3D User Interfaces (3DUI), Lafayette, Louisiana, pp. 75–82.

[Bruder et al., 2012a]

Bruder, Gerd, Andreas Pusch, and Frank Steinicke (2012). Analyzing effects of geomet-
ric rendering parameters on size and distance estimation in on-axis stereographics.
In Proceedings of ACM Symposium on Applied Perception (SAP), Los Angeles, CA,
pp. 111–118. ACM.

[Bruder et al., 2012b]

Bruder, Gerd, Frank Steinicke, Phil Wieland, and Markus Lappe (2012). Tuning self-
motion perception in virtual reality with visual illusions. IEEE Transactions on
Visualization and Computer Graphics (TVCG), 18(7): 1068–1078.

[Bruder et al., 2013]

Bruder, Gerd, Phil Wieland, Benjamin Bolte, Markus Lappe, and Frank Steinicke (2013).
Going with the flow: Modifying self-motion perception with computer-mediated
optic flow. In IEEE Proceedings of the International Symposium on Mixed and
Augmenting Reality (ISMAR), Adelaide, Australia, pp. 67–74. IEEE.

[Choi and Bastian, 2007]

Choi, Julia T. and Amy J. Bastian (2007). Adaptation reveals independent control net-
works for human walking. Nature Neuroscience, 10(8): 1055–1062.

[Cohen et al., 1953]

Cohen, John, C. E. M. Hansel, and John D. Sylvester (1953). A new phenomenon in time
judgment. Nature, 172: 901.

478 27.  Misperception of Self-motion and Its Compensation in Virtual Reality

[Durgin et al., 2005a]

Durgin, Frank H., Krista Gigone, and Rebecca Scott (2005). Perception of Visual
Speed While Moving. Journal of Experimental Psychology: Human Perception and
Performance, 31(2): 339–353.

[Durgin et al., 2005b]

Durgin, Frank H., Adar Pelah, Laura F. Fox, Jed Lewis, Rachel Kane, and Katherine A.
Walley (2005). Self-motion perception during locomotor recalibration: More
than meets the eye. Journal of Experimental Psychology: Human Perception and
Performance, 31(3): 398–419.

[Efron, 1970]

Efron, Robert (1970). Effect of stimulus duration on perceptual onset and offset latencies.
Perception & Psychophysics, 8(4): 231–234.

[Freeman et al., 1991]

Freeman, William R., Edward H. Adelson, and David J. Heeger (1991). Motion without
movement. In SIGGRAPH ‘91 Proceedings of the 18th Annual Conference on Computer
Graphics and Interactive Techniques, Las Vegas, NV, vol. 25, pp. 27–30. ACM.

[Fukusima et al., 1997]

Fukusima, Sergio S., Jack M. Loomis, and José A. Da Silva (1997). Visual perception of
egocentric distance as assessed by triangulation. Journal of Experimental Psychology:
Human Perception and Performance, 23(1): 86–100.

[Gibb et al., 2010]

Gibb, Randy, Rob Gray, and Lauren Scharff (2010). Aviation Visual Perception: Research,
Misperception and Mishaps. Ashgate, Farnham.

[Giese, 1997]

Giese, Martin Alexander (1997). A dynamical model for the perceptual organization of
apparent motion. PhD thesis, Ruhr-University Bochum.

[Grondin, 2008]

Grondin, Simon, ed. (2008). Psychology of Time. Emerald Group Publishing Ltd., Bingley.

[Helson and King, 1931]

Helson, Harry and Samuel M. King (1931). The tau effect: An example of psychological
relativity. Journal of Experimental Psychology: General, 14: 202–217.

479References

[Interrante et al., 2006]

Interrante, Victoria, Brian Ries, and Lee Anderson (2006). Distance perception in immer-
sive virtual environments, revisited. In IEEE Proceedings of the Virtual Reality (VR),
Alexandria, VA, pp. 3–10. IEEE.

[Interrante et al., 2007]

Interrante, Victoria, Brian Ries, and Lee Anderson (2007). Seven league boots: A new
metaphor for augmented locomotion through moderately large scale immersive
virtual environments. In Proceedings of IEEE Symposium on 3D User Interfaces,
Charlotte, NC, pp. 167–170. IEEE.

[Jones and Huang, 1982]

Jones, Bill and Yih Lehr Huang (1982). Space-time dependencies in psychophysical
judgment of extent and duration: Algebraic models of the tau and kappa effects.
Psychological Bulletin, 91(1): 128–142.

[Jones et al., 2011]

Jones, J. Adam, J. Edward Swan II, Gurjot Singh, and Stephen Ellis (2011). Peripheral
visual information and its effect on distance judgments in virtual and augmented
environments. In Proceedings of Symposium on Applied Perception in Graphics and
Visualization (APGV), Toulouse, France, pp. 29–36. ACM.

[Jones et al., 2012]

Jones, J. Adam, Evan A. Suma, David M. Krum, and Mark Bolas (2012). Comparability
of narrow and wide field-of-view head-mounted displays for medium-field distance
judgments. In Proceedings of Symposium on Applied Perception (SAP), Los Angeles,
CA, p. 119. ACM.

[Kellner et al., 2012]

Kellner, Falko, Benjamin Bolte, Gerd Bruder, Ulrich Rautenberg, Frank Steinicke, Markus
Lappe, and Reinhard Koch (2012). Geometric calibration of head-mounted dis-
plays and its effects on distance estimation. IEEE Transactions on Visualization and
Computer Graphics (TVCG), 18(4): 589–596.

[Klein et al., 2009]

Klein, Eric J., J. Edward Swan, Gregory S. Schmidt, Mark A. Livingston, and Oliver G.
Staadt (2009). Measurement protocols for medium-field distance perception in large-
screen immersive displays. In IEEE Proceedings of the Virtual Reality (VR), Lafayette,
Louisiana, pp. 107–113. IEEE.

480 27.  Misperception of Self-motion and Its Compensation in Virtual Reality

[Kohli et al., 2005]

Kohli, Luv, Eric Burns, Dorian Miller, and Henry Fuchs (2005). Combining passive hap-
tics with redirected walking. In Proceedings of the 2005 International Conference on
Augmented Tele-Existence (ICAT), vol. 157, Christchurch, New Zealand, pp. 253–254.
ACM.

[Kramer and Merrow, 2013]

Kramer, Achim and Martha Merrow, eds. (2013). Circadian Clocks. Handbook of
Experimental Pharmacology, vol. 217. Springer, Berlin.

[Kuhl et al., 2009]

Kuhl, Scott A., William B. Thompson, and Sarah H. Creem-Regehr (2009). HMD calibra-
tion and its effects on distance judgments. ACM Transactions on Applied Perception
(TAP), 5: 1–24.

[Loomis et al., 1993]

Loomis, Jack M., Roberta L. Klatzky, Reginald G. Golledge, Joseph G. Cicinelli, James W.
Pellegrino, and Phyllis A. Fry (1993). Nonvisual navigation by blind and sighted:
Assessment of path integration ability. Journal of Experimental Psychology: General,
122(1): 73–91.

[Loomis and Knapp, 2003]

Loomis, Jack M. and Joshua M. Knapp (2003). Visual perception of egocentric distance
in real and virtual environments. In Hettinger, L. J. and Haas, M. W., (eds.) Virtual
and Adaptive Environments. Lawrence Erlbaum Associates Publishers, Mahwah, NJ.

[Loomis and Philbeck, 2008]

Loomis, Jack M. and John W. Philbeck (2008). Measuring spatial perception with spa-
tial updating and action. In Klatzky, R. L., Behrmann, M., MacWhinney, B. (eds.)
Embodiment, Ego-Space, and Action, pp. 1–43. Psychology Press, New York.

[Mao et al., 2010]

Mao, Baohua, Zongzhong Tian, Haijun Huang, and Ziyou Gao, eds (2010). Traffic and
Transportation Studies 2010. ASCE, Reston, VA.

[Mohler, 2007]

Mohler, Betty Jo (2007). The effect of feedback within a virtual environment on human
distance perception and adaptation. PhD thesis, University of Utah, Salt Lake City,
UT. ProQuest.

481References

[Padmanaban et al., 2017]

Padmanaban, Nitish, Robert Konrad, Tal Stramer, Emily A. Cooper, and Gordon
Wetzstein (2017). Optimizing virtual reality for all users through gaze-contingent
and adaptive focus displays. Proceedings of the National Academy of Sciences of the
United States of America, 114(9): 2183–2188.

[Phillips et al., 2009]

Phillips, Lane, Brian Ries, Victoria Interrante, Michael Kaeding, and Lee Anderson
(2009). Distance perception in NPR immersive virtual environments, revisited.
In Proceedings of Symposium on Applied Perception in Graphics and Visualization
(APGV), Chania, Crete, Greece, pp. 11–14. ACM.

[Plumert et al., 2004]

Plumert, Jodie M., Joseph K. Kearney, and James F. Cremer (2004). Distance perception in
real and virtual environments. In Proceedings of Symposium on Applied Perception in
Graphics and Visualization (APGV), Los Angeles, CA, pp. 27–34.

[Razzaque, 2005]

Razzaque, Sharif (2005). Redirected walking. PhD thesis, University of North Carolina,
Chapel Hill.

[Renner et al., 2013]

Renner, Rebekka S., Boris M. Velichkovsky, and Jens R. Helmert (2013). The Perception
of egocentric distances in virtual environments—a review. ACM Computing Surveys
(CSUR), 46(2): 23.

[Rieser et al., 1990]

Rieser, John J., Daniel H. Ashmead, Charles R. Taylor, and Grant A. Youngquist (1990).
Visual perception and the guidance of locomotion without vision to previously seen
targets. Perception, 19(5): 675–689.

[Roussel et al., 2009]

Roussel, Marie-Ève, Simon Grondin, and Peter Killeen (2009). Spatial effects on temporal
categorization. Perception, 38(5): 748–762.

[Ruddle and Lessels, 2009]

Ruddle, Roy A. and Simon Lessels (2009). The benefits of using a walking interface to
navigate virtual environments. ACM Transactions on Computer-Human Interaction
(TOCHI), 16(1): 5: 1–5:18.

482 27.  Misperception of Self-motion and Its Compensation in Virtual Reality

[Sarrazin et al., 2004]

Sarrazin, Jean-Christophe, Marie-Dominique Giraudo, Jean Pailhous, and Reinoud
J. Bootsma (2004). Dynamics of balancing space and time in memory: Tau and
kappa effects revisited. Journal of Experimental Psychology: Human Perception and
Performance, 30(3): 411–430.

[Schatzschneider et al., 2016]

Schatzschneider, Christian, Gerd Bruder, and Frank Steinicke (2016). Who turned the
clock? Effects of manipulated zeitgebers, cognitive load and immersion on time esti-
mation. IEEE Transaction Visualization Computer Graphics, 22(4): 1387–1395.

[Schneider et al., 2011]

Schneider, Susan M., Cassandra K. Kisby, and Elizabeth P. Flint (2011). Effect of virtual
reality on time perception in patients receiving chemotherapy. Supportive Care in
Cancer, 19: 555–564.

[Shi et al., 2010]

Shi, Zhuanghua, Heng Zou, and Hermann J. Müller (2010). Temporal perception of visual-
haptic events in multimodal telepresence system. In Zadeh, M. H. (eds.) Advances in
Haptics, pp. 437–449. InTech.

[Steinicke et al., 2010a]

Steinicke, Frank, Gerd Bruder, Klaus Hinrichs, and Pete Willemsen (2010). Change blind-
ness phenomena for stereoscopic projection systems. In IEEE Proceedings of the
Virtual Reality (VR), Waltham, MA, pp. 187–194. IEEE.

[Steinicke et al., 2010b]

Steinicke, Frank, Gerd Bruder, Jason Jerald, Harald Fenz, and Markus Lappe (2010).
Estimation of detection thresholds for redirected walking techniques. IEEE
Transactions on Visualization and Computer Graphics (TVCG), 16(1): 17–27.

[Suma et al., 2010]

Suma, Evan A., Seth Clark, Samantha L. Finkelstein, and Zachary Wartell (2010).
Exploiting change blindness to expand walkable space in a virtual environment. In
Proceedings of IEEE Virtual Reality (VR), Waltham, MA, pp. 305–306.

[Thompson et al., 2011]

Thompson, William, Roland Fleming, Sarah Creem-Regehr, and Jeanine Kelly Stefanucci
(2011). Visual Perception from a Computer Graphics Perspective. A K Peters, Ltd,
Wellesley, MA.

483References

[Warren, 1998]

Warren Jr., William H. (1998). Visually controlled locomotion: 40 years later. Ecological
Psychology, 10(3–4): 177–219.

[Wertheim, 1994]

Wertheim, Alexander H. (1994). Motion perception during self-motion, the direct versus
inferential controversy revisited. Behavioral and Brain Sciences, 17(2): 293–355.

[Willemsen et al., 2008]

Willemsen, Peter, Amy A. Gooch, William B. Thompson, and Sarah H. Creem-Regehr
(2008). Effects of stereo viewing conditions on distance perception in virtual envi-
ronments. Presence: Teleoperators & Virtual Environments, 17(1): 91–101.

[Willemsen et al., 2009]

Willemsen, Peter, Mark B. Colton, Sarah H. Creem-Regehr, and William B. Thompson
(2009). The effects of head-mounted display mechanical properties and field-of-
view on distance judgments in virtual environments. ACM Transactions on Applied
Perception (TAP), 2(6): 1–14.

http://www.taylorandfrancis.com

485

28
Exploring Large Environments
with Redirected Walking
Mahdi Azmandian and Rhys Yahata
University of Southern California

Evan Suma Rosenberg
University of Minnesota

Enabling natural exploration of interactive virtual environments is highly desirable for
many practical applications. Virtual reality applications that rely on controllers or mouse
and keyboard movement do not fully replicate the physical and perceptual cues from the
real world, and often fall short of providing a strong sense of immersion. On the other
hand, research has shown that using a natural walking interface results in an enhanced
sense of presence [Usoh et al., 1999] and efficient navigation [Ruddle and Lessels, 2009;
Suma et al., 2010]. Furthermore, users who experience walking in an environment have
improved spatial awareness and can develop better cognitive maps of virtual worlds
[Ruddle et al., 2011]. However, supporting natural locomotion for exploring arbitrarily
large virtual environments is not feasible because the dimensions of the physical tracked
space will ultimately constrain the size of the virtual world that may be navigated.

Redirected walking is a perceptual illusion that aims to overcome this restriction by
extending the range of environments that can be traversed on foot within a limited tracked
space [Razzaque et al., 2001]. Leveraging the characteristics of human perception, redirection
works by manipulating the mapping between physical and virtual motions. When employed

28.1	 The Theory of Redirected
Walking

28.2	 Implementation Options
28.3	 Setting Up the Scene

Graph

28.4	 Execution Sequence in
One Frame of Redirection

28.5	 Redirection Strategies
28.6	 Implementing Resets
28.7	 Practical Considerations

486 28.  Exploring Large Environments with Redirected Walking

properly, redirected walking offers a software-level solution to the seemingly intractable
problem of limited physical space. This chapter provides tools to easily incorporate redirected
walking into a virtual reality application. Though these techniques have been implemented
in the open-source Redirected Walking Toolkit for the Unity game engine, they can also be
extended for use in other platforms, as these concepts are universal [Azmandian et al., 2016].

28.1 � The Theory of Redirected Walking

The general approach employed during redirected walking can be summarized as manip-
ulation of the mapping between physical body movement and the user’s corresponding
motions in the virtual environment. Ideally, these manipulations will remain impercep-
tible and will keep the user contained within the tracked space.

28.1.1 � Manipulating Perception
Redirection works by taking advantage of a key aspect of the human perceptual system:
vision tends to dominate over vestibular sensation. According to previous work, visual
and body-based spatial sensory systems are attuned to different ranges of motion fre-
quency [Gibson, 1933], and when senses are in conflict, vision is dominant and is naturally
used to correct accumulated error in the body-based senses [Burns et al., 2005; Posner et
al., 1976; Souman et al., 2009]. Therefore, when injecting artificial motions during redirec-
tion, the discrepancy between sensory cues introduces a conflict that is resolved by relying
on vision over other senses [Jürgens et al., 1999].

28.1.2 � Decoupling Real and Virtual Motions
Conventionally, there is a static one-to-one mapping between the real and virtual coor-
dinate systems. For instance, a forward motion of 1 m in the tracked space would result
in a 1.0 m forward translation in the respective virtual environment. When applying
redirected walking, however, the one-to-one relationship is disrupted. When motions are
injected to the virtual user, the correspondence between coordinates is altered such that
at any given moment, a single point in the tracking space can be mapped to a different
point in the virtual environment. Thus, the shape of the user’s real world and virtual world
trajectories will be different. However, when wearing a virtual reality headset, the real
world is not visible, and users will therefore rely primarily on the visual feedback from
movement in the virtual environment. This divergence of trajectories is the key element
that allows mapping a virtual path that would normally exceed the boundaries of the real
world tracked space into one that can fit seemingly within it.

28.1.3 � Redirection Gains
Redirected walking must adhere to a specific set of rules in order to remain impercep-
tible to the user. The manipulations must be restricted to a percentage multiplier of some
component of the user’s physical motion, which are generally referred to as gains. In the
research literature, three different motion manipulation techniques have been identified:
(a) translation gain, (b) rotation gain, and (c) curvature gain [Suma et al., 2012].

28.1.3.1 � Translation Gain

Translation gain (gt) involves scaling the user’s velocity, usually in the forward direction,
resulting in a displacement in the virtual world that is either faster or slower than the

48728.1  The Theory of Redirected Walking

actual physical movement. The term gt is often expressed as the ratio between virtual and
real translations. For instance, gt = 1.2 would refer to a 20% upscaling and gt = 0.8 equates
to a 20% downscaling of virtual translation relative to real translation. Figure 28.1 illus-
trates the difference between real and virtual displacement when the translation gain is
greater than 1.

It is worth mentioning that an alternative convention is to define gt as the ratio of
injected motion to real motion, making gt = 0 the point of no gain applied, and positive
and negative values refer to upscaling and downscaling respectively. The same definition
can be used for rotation gain. We prefer the ratio convention for its mathematical elegance.

28.1.3.2 � Rotation Gain

Rotation gain (gr) refers to scaling the change in orientation as the user physically rotates,
effectively increasing or decreasing perceived rotation. Similar to gt, gr is expressed as a
scalar that measures the ratio of virtual to real rotation. Figure 28.2 illustrates the differ-
ence between real and virtual rotation when the rotation gain is greater than 1.

28.1.3.3 � Curvature Gain

Curvature gain (gc) involves applying a continuous rotation while the user is walking in
the forward direction. In contrast with the other two gains, gc does not directly scale a
motion, but rather injects one type of motion (rotation) in response to another motion
(translation). Therefore, the unit for curvature gain is “rotation applied per unit of transla-
tion.” In practice, when curvature gain is applied, users will alter their physical trajectory
to walk along a curved path in the real world even though the path in the virtual world
appears straight (see Figure 28.3).

It should be noted since curvature and rotation gains both involve injecting rotations, it
is common practice to only apply one of the two at a given point in time. This is to prevent
gains from becoming noticeable. We will elaborate on this later in this chapter.

Figure 28.1

The user’s virtual displacement is larger than the real displacement when gt > 1.

Figure 28.2

The user’s virtual rotation is larger than the real rotation when gr > 1.

488 28.  Exploring Large Environments with Redirected Walking

28.1.4 � Gain Detection Thresholds
Redirected walking is a perceptual manipulation that should remain undetected by the
user. In order to achieve this, each type of gain must be restricted to the user’s detection
thresholds. While these values are subjective and vary from one user to another, scientists
have empirically measured these thresholds for the average person [Steinicke et al., 2010].
Reported results indicate that the range of unnoticeable values is [0.86, 1.26] for transla-
tion gain and [0.8, 1.49] for rotation gain. As for curvature gain, curving a straight virtual
path into an arc with a radius of at least 22 m will remain imperceptible, which translates
to a 2.6°/1 m traveled.

The efficacy of redirection is highly dependent on the detection thresholds. Therefore, in
some use cases, it is desirable to prioritize redirection efficacy over perceptibility, applying
stronger gains that can better redirect users at the compromise of potential detection. The
most common example of this is using a curvature radius of 7.5 m (instead of 22), which
has been often used by many researchers and is considered accepted practice [Hodgson
and Bachmann, 2013].

28.1.5 � Reorientation
Imposing limits on gains entails a restriction on the mapping capabilities of redirection.
This in turn means applying redirection gains exclusively is not sufficient to ensure user
containment within the tracked space. Thus, when the user inevitably reaches a physical
boundary, a fail-safe mechanism must be triggered to prevent the user from leaving the
tracked space. Such a safety measure is known as a reorientation technique. The purpose of
a reorientation is not only to immediately prevent the user from leaving the tracked space,
but also to manipulate the real to virtual mapping in a way that progression in the user’s
desired virtual direction becomes possible.

Note that reorientation techniques should be triggered before the user reaches hard
boundary limits. This is typically implemented by placing triggers inside the tracked space
within a fixed distance from each boundary limit, providing a buffer for the user to react
to reorientation cues safely.

Figure 28.3

When curvature gain is applied, the real trajectory is curved
while the perceived virtual trajectory is straight.

48928.1  The Theory of Redirected Walking

Also worth noting is that some advanced techniques in the literature involve perform-
ing a reorientation even when the user is not approaching a boundary. This is typically
done as part of a planning strategy that strives to avoid multiple near-boundary reorienta-
tions by a priori activating an earlier reorientation.

28.1.5.1 � Resets

The most widely used form of reorientation is a reset, which predates coining the term
reorientation technique and is the first of its kind [Williams et al., 2007]. At a functional
level, resets use gains (typically rotation) to reorient the user. Visually, resets are presented
as a prompt, instructing the user to turn in place or walk in a specific direction. Once the
task is complete, the prompt disappears and the user can continue walking in their origi-
nal direction in the virtual world without leaving the tracked space.

The 2:1-Turn reset is a popular reset option that instructs the user to perform a 360°
rotation in place while scaling the virtual rotation by a factor of 2, resulting in a 180° rota-
tion in the real world. Thus, by the time the reset task is complete, the user will be facing
the center of the tracked space. This method can also be seen as rotation gain applied at
the boundary, mapping a 180° real rotation to a 360 virtual rotation. As a result, the user
can resume walking in the (pre-reset) intended direction, which now physically maps to
the opposite direction in the tracked space.

28.1.6 � Redirected Walking System
Redirection gains offer a non-intrusive unnoticeable mechanism for trying to keep users
within the tracked space, while reorientations offer a guaranteed containment technique
that temporarily interrupts users’ navigation through the virtual world (Figure 28.4).
These two methods combined form a redirected walking system for large-scale explora-
tion that ensures users remain within the physical tracked space, regardless of the size of
the virtual environment.

Bolstering redirected walking with reorientations forms a complete solution. However,
it is important to note that reorientations alone are sufficient for exploring large environ-
ments. The user can freely roam the virtual environment and will simply ricochet off the
real-world boundaries with a reorientation when needed. However, in practice, the goal

Figure 28.4

High level architecture of a redirected walking system.

490 28.  Exploring Large Environments with Redirected Walking

(primary objective) is to minimize reorientations since they disrupt the flow of the experi-
ence. When redirected walking is employed effectively in conjunction with reorientation,
the frequency of interruptions can be substantially reduced [Azmandian et al., 2015].

28.2 � Implementation Options

Implementing redirected walking in a game engine requires providing a mechanism to
dynamically adjust the mapping between the real and virtual worlds. This can be achieved
by moving the GameObject node representing the entire real world relative to the vir-
tual world GameObject node. If this movement were visualized, it would appear as two
different planes of the real and virtual world shifting and sliding on top of each other,
dynamically redefining the mapping between their coordinate systems. The next section
will examine and compare two different approaches for accomplishing this mapping.

28.2.1 � Static Real World
Perhaps the most intuitive approach is to keep the real -world static and inject vir-
tual motions of redirection gains by manipulating the transform of the virtual world’s
GameObject node. To implement translation gain and upscale the perceived virtual
movement by 20%, the entire virtual world will move in the opposite direction of the
user’s translation, at 20% of the user’s instantaneous speed (Figure 28.5).

Figure 28.5

The effect of applying translation gain with a static virtual world vs a static real world. Dotted
outlines correspond to the previous state of elements in the scene. Starting from state (a),
after the user translates (b), either the real world (blue square) is kept static and the virtual
elements move in the opposite direction (c) or the virtual world is kept static, and the real
world including the real user are shifted along the direction of the user’s translation. The
blue square represents the physical tracked space.

49128.3  Setting Up the Scene Graph

Having a static real world can help with better understanding how redirection works
and visualizing the movement, however translating and rotating the virtual world can
cause artifacts derived by any physics engine simulations. In addition to repercussions
with physics, moving a large virtual environment can also add substantial computational
overhead in more complex environments.

28.2.2 � Static Virtual World
To mitigate artifacts caused by moving the virtual world, gains can be implemented by
moving the real world while leaving the virtual world static. Revisiting the static real
world example, a translation gain of gt = 1.2 is implemented by moving the real world
along the opposite direction of the user’s translation, at 20% of the user’s instantaneous
speed (Figure 28.5). Note that the tracked user is considered part of the real world, thus
moving the real world will indirectly move the real user as well. Consequently, when gains
are applied, the user’s pose (location and orientation) relative to the real world (including
the tracked space) will be preserved.

The remainder of this chapter will be expanding on the static virtual world imple-
mentation. The architecture and code presented will be in reference to the open-source
Redirected Walking Toolkit for Unity [Azmandian et al., 2016]. The toolkit was designed
to serve as a unified platform for developing, benchmarking, and deploying redirected
walking algorithms. Encapsulated as a package for the Unity game engine, the toolkit
seamlessly integrates with standard virtual reality configurations, requiring minimal
configuration effort for content developers [Unity Technologies, 2017].

28.3 � Setting Up the Scene Graph

Adding support for redirected walking involves setting up a representation of the dynamic
real world as a GameObject that contains the tracked space along with the tracked
user within that hierarchy (Figure 28.6). Everything outside of this structure is consid-
ered external and part of the virtual world which will remain unaffected by redirection.
The primary objects in this structure are Redirected User, Tracked Space, and
Tracked User.

Figure 28.6

Screenshot of the GameObject hierarchy in the Unity scene
graph.

492 28.  Exploring Large Environments with Redirected Walking

28.3.1 � The Redirected User
The Redirected User node is the root object in the redirection hierarchy and is con-
sidered the representation of the real world. Assuming the origin of the virtual world
is the origin of the scene’s coordinate system, the transform of Redirected User is
essentially the mapping from the virtual world origin to the real-world origin. With this
design, applying redirection and affecting gains is simply enacted by manipulating the
position and rotation of this object.

28.3.2 � The Tracked Space
The Tracked Space node is assumed to be a rectangular plane with the dimensions
matching the available physical tracked space. This element is key in determining when
the user is approaching a boundary in order to react with reorientation tasks accordingly.

In addition to the dimensions of this object, the placement is also crucial. Depending
on the configuration of the tracking system, the origin of the real world may or may not
be at the center of the tracked space. Thus, a translational or rotational offset may need
to be applied for this object to align with the physical tracked space. This offset must be
applied during or prior to initialization and no further manipulation should be applied to
this object’s transform.

28.3.3 � The Tracked User
Tracked User should contain the root object of the components used for determin-
ing the pose of the user in the tracked space. The arrangement of these components
depends on the specific tracking hardware and software, but they must be placed under
the Redirected User node. Furthermore, if the tracking system relies on any trans-
forms (such as an origin reference object—aka “prop”) they must also be placed under the
Redirected User node to ensure the effects of redirection gains are also correctly
propagated to those elements of the real world.

28.4  �Execution Sequence in One Frame of Redirection

To minimize the chance of detection, redirection gains are applied gradually in a continu-
ous fashion (at every frame) for a smooth, interwoven affecting of change. This process
involves examining the changes that occurred since the last frame and using this infor-
mation to determine the extent translations and rotations must be applied to the redi-
rected user GameObject. Figure 28.7 illustrates the sequence of actions taken during
each frame.

28.4.1 � Keeping Track of Real Physical Movement
It is the user’s change in pose that enables the application of undetectable gains. The amount
of actual user translation determines how much translation and curvature gain can be
applied and the amount of rotation determines how much rotation gain can be applied.
Note that redirected walking can be formulated as a two-dimensional problem since the
input and output of redirection lies in the horizontal plane (the ground). Consequently,
only the user’s translation in the horizontal plane is measured, and for rotation, only the
angle change about the horizontal plane (heading) is calculated between frames.

49328.4  Execution Sequence in One Frame of Redirection

The two questions that need to be answered in this stage are: (1) how much did the
user translate (expressed as a 3D vector represented solely on the horizontal plane) and
(2) how much did the user rotate (expressed as an angle), both of which are relative to the
last frame. These questions will be answered by following a sequence of three steps, two
of which happen before applying gains and the third happens after the gains have been
applied.

28.4.1.1 � Step 1: Get Current Pose

The first step is to extract the pose of the user from the perspective of the horizontal plane.
This pose can be expressed as a position vector currPos that lies in the horizontal plane
and a direction unit vector currDir of the user’s heading projected onto the horizontal
plane.

Here the Flat(Vector3) helper function takes the given Vector3 input and projects
it onto the horizontal plane by setting its y component to 0. Here the Flat(Vector3)
helper function takes the given Vector3 input and projects it onto the horizontal plane by
setting its y component to 0.

// Step 1: project the 3D position and direction vectors onto the 2D
// horizontal plane
Vector3 currPos = Flat(headTransform.position);
Vector3 currDir = Flat(headTransform.forward).normalized;

28.4.1.2 � Step 2: Measure the Changes

This step measures how currPos and currDir have changed for this new frame, rela-
tive to previously measured prevPos and prevDir variables from the previous frame.

Figure 28.7

Sequence of actions taken during one frame of redirection.

494 28.  Exploring Large Environments with Redirected Walking

// Step 2: calculate the movement delta
Vector3 deltaPos = currPos - prevPos;
float deltaDir = Utilities.SignedAngle(prevDir, currDir);

The helper function SignedAngle calculates the angle between two given vectors lying
in the horizontal plane and assigns a sign to this angle based on its direction.

28.4.1.3 � Step 3: Update Previous Pose

At the tail end of the redirection frame, the prevPos and prevDir variables need to be
updated in order to be used by the next frame.

// Step 3: store current values for next frame
prevPos = Flat(headTransform.position);
prevDir = Flat(headTransform.forward);

Note that if step 3 happens immediately after step 2 (instead of after the gains are applied),
the deltaPos and deltaDir calculations in the next frame will also include changes
affected by the gains, which is incorrect. The objective is to ensure deltaPos and del-
taDir explicitly measure only real physical movement, in other words how much of the
translation and rotation since the last frame was caused strictly by user movement.

This situation also hints at a possible pitfall when using redirection with augmented
travel capabilities such as teleportation. If the position and rotation measurements are taken
at incorrect times, then a sudden teleportation can be measured as part of deltaPos and
deltaDir, which can lead to a sudden injection of motion from gains. The key is to ensure
all artificial motion injections (travel) happen between step 1 and 3, that is to say no injec-
tions take place after step 3 and before step 1 of the following frame. This ensures the mea-
surements taken in step 2 reflect changes that were only caused by the user’s locomotion.

28.4.2 � Applying Gains
This section describes how to apply a translation gain of gt, rotation gain of gr and curva-
ture gain of gc in one frame of redirection. How the values for each of these variables is
determined will be explained later in the chapter. It is important to reiterate that each gain
value acts as a ratio or scaling factor, meaning the final degree of translation or rotation to
apply also depends on the measured user movement since the last frame.

28.4.2.1 � Translation Gain

To apply translation gain, calculate the amount of translation to apply using the scaling
factor gt and the vector of physical position change (in the horizontal plane). Then apply
this translation to Redirected User (referenced as redirectedUser) relative to
the virtual coordinate system.

// translate the user by the gain-modified movement
Vector3 translationToApply = (1 - g_t) * deltaPos;
redirectedUser.Translate(translationToApply, Space.World);

28.4.2.2 � Rotation Gain

When applying rotation gain, the world must pivot around the user’s head position (in the
horizontal plane). Therefore, injecting rotation gain implicitly translates Redirected
User in addition to rotating it.

49528.5  Redirection Strategies

// rotate the user by the gain-modified movement
float rotationToApply = (1 - g_r) * deltaDir;
redirectedUser.RotateAround(Flat(headPos), Vector3.up, rotationToApply);

28.4.2.3 � Curvature Gain

Curvature gain is inherently similar to rotation gain in that they both apply a rotation
around the user’s head position. The difference is that their enabling element is different.
Whereas rotation gain is activated in the presence of head rotations, on the other hand,
curvature gain is instead reliant on the existence of body translation (as conveyed through
head movement).

// add user rotation based on the distance moved
float curvatureToApply = g_c * deltaPos.magnitude;
redirectedUser.RotateAround(Flat(headPos), Vector3.up, curvatureToApply);

Since rotation and curvature gain have different causes yet similar effects, it is common to
apply just one of the two in the same frame (time slice) in order to prevent two-fold rota-
tions or alternatively the two partially fighting and canceling each other out. Furthermore,
how a user’s gain sensitivity thresholds can change when more than one gain is applied
in a single frame remains an open question since previous research has only investigated
these thresholds individually.

28.5 � Redirection Strategies

At a high level, redirection can be summed up as the following actions in each frame:

	 1.	 measure user movement
	 2.	 determine gain values
	 3.	 apply gains

While in some cases gain values may be set manually, they are often determined by an
algorithm known as a redirection strategy. A redirection strategy aims to adjust gains in
a manner that would keep the user contained in the tracked space while keeping gains
below detection thresholds.

Devising an optimal redirection strategy is a fundamental problem in redirected walk-
ing and a variety of approaches have been proposed. This chapter covers commonly used
redirection strategies in virtual reality applications.

28.5.1 � Steer-to-Center
The basic heuristic of “steer-to-center” is to apply rotations (via rotation and curva-
ture gains) to steer the user towards the center of the tracked space (Figure 28.8a). This
approach was originally proposed by Razzaque et al. [2001] and expanded on by Hodgson
and Bachmann [2013]. In these implementations, the curvature radius was set to 7.5 m,
and rotations gains were kept within [0.85, 1.3].

Hodgson et al.’s version of steer-to-center along with its pseudocode is covered
in their 2013 study and its implementation can be found in our toolkit [Hodgson and
Bachmann, 2013].

496 28.  Exploring Large Environments with Redirected Walking

28.5.2 � Steer-to-Orbit
The idea behind this strategy is to steer the user into orbit around the center of the tracked
space using rotation and curvature gains (Figure 28.8b). Steer-to-orbit and steer-to-center
are functionally very similar, but with different heuristics. Both were similarly presented
and extended by Razzaque et al. [2001] and Hodgson and Bachmann [2013] respectively
with similar gain restrictions.

Hodgson et al.’s version of of steer-to-orbit along with its pseudocode is also covered
in their 2013 study and its implementation can be found in our toolkit [Hodgson and
Bachmann, 2013].

28.5.3 � Center-Based Translation
This algorithm was introduced by Azmandian et al. to improve the efficacy of redirection
strategies that only inject rotations [Azmandian et al., 2015]. The “center-based transla-
tion” method uses translation gains to slow down the user when moving away from the
tracked space (Figure 28.9). Expressed in terms of gains, this implies using a constant
maximum translation gain when the user’s translation vector points away from the center
of the tracked space (i.e., the dot product between the direction to the center and user’s
movement vector is negative). The upscaling of virtual movement boosts the user’s prog-
ress in the desired direction of movement before reaching a tracked space boundary.

The maximum translation gain value is set to 1.2 based on detection thresholds mea-
sured by Steinicke et al. and its implementation can be found in the toolkit [Steinicke
et al., 2010].

28.5.4 � Zigzag Redirection
This technique was how redirected walking was originally introduced, demonstrating
how it can be used effectively in a relatively small tracked space. Although the zigzag

Figure 28.8

A demonstration of the user’s path in the real world when the steer-to-center and steer-
to-orbit strategies are used. With steer-to-center, when the user walks along a straight line
in the virtual environment, the path will curve back to the center forming a circle passing
through the center of the tracked space. On the other hand, for steer-to-orbit, the path is
curved such that the user orbits around the center of the tracked space. The blue square
represents the physical tracked space. (a) steer-to-center, (b) steer-to-orbit.

49728.5  Redirection Strategies

redirection technique is not a generalized approach, it serves as a useful method for any
application aiming to expand the limits of room-scale tracking.

Zigzag redirection requires the user to walk along a zigzag-shaped path in the virtual
environment. At each corner when the user turns, virtual rotations are downscaled such
that in the real world the user rotates an entire 180°. As a result, the user walks back and
forth along a single line in the tracked space, collapsing the zigzag path into stacked lines
akin to folding an accordion (Figure 28.10).

Razzaque’s original implementation used only rotation gain. However, our toolkit con-
tains a more robust version, proposed by Azmandian et al., that uses all three gain types,
and thus is more resilient to moderate deviations [Azmandian et al., 2014].

Figure 28.9

Center-based translation gain upscales virtual translations when the user is (a) moving
away from the center of the tracked space, otherwise (b) no translation gains are applied.
The dot product of the user’s movement vector (solid black), with the vector toward the cen-
ter (red dashed) is positive when moving toward the center, negative when moving away.
The blue square represents the physical tracked space.

Figure 28.10

Using Zigzag redirection, a virtual trajectory shaped like a zigzag can map to a real trajec-
tory of walking back and forth between two points, thus collapsing the path into a much
tighter area.

498 28.  Exploring Large Environments with Redirected Walking

28.6 � Implementing Resets

Resets are a safety mechanism in the redirected walking system. They need to be enabled
reliably, at the right time, and near the boundary, in order to safely stop the user from
leaving the tracked space. The three main components of implementing resets are:
(1) determining when to trigger the reset, (2) efficiently communicating the required task
with appropriate cues, and (3) using rotation gain to execute the reorientation.

28.6.1 � Reset Trigger and Reaction Time
Triggering a reset is based on where the user is in the tracked physical space, how they
move, and how quickly they can be expected to react to reset cues.

The simplest way of setting rules for triggering resets is to use a buffer zone (Figure 28.11).
This approach sets triggers at a fixed safety distance (d) away from each boundary such
that when the user’s distance to a boundary drops below d, a signal fires indicating the
need for a reset (Figure 28.12).

The safety distance d is often determined based on some model of people’s delay in
reacting to cues and how rapidly they slow down (Figure 28.13). By modeling the user’s
slowdown in the worst case scenario (when they approach the boundary head-on (perpen-
dicularly) as in Figure 28.14) the value of d is determined. In practice, d = 1 mis suitable for
novice users and it can be lowered down to d = 0.5 m for more experienced users.

Strictly relying on boundary proximity for triggering resets can cause undesirable arti-
facts such as aggressive firing of resets. The most prevalent case is when the user slightly
grazes the reset trigger without the intention of leaving the tracked space. More sophisti-
cated implementations can be designed that account for: (a) the user’s velocity (speed and
direction) of movement when approaching the boundary and (b) the angle between the
user’s orientation and the tracked space center (as opposed to the angle with the nearest
boundary). This information can help with dynamically adjusting the safety distance and
also preventing back-to-back resets.

Figure 28.11

Resets are fired when a user collides with a reset trigger (dashed-square outline) placed
at safety distance d from a hard boundary (outermost square outline). This grants the user
the opportunity to safely react to the reset prompt within the buffer (cross-hatched area).

49928.6  Implementing Resets

28.6.2 � Prompting Reset Task with Cues
The purpose of the reset task prompt is to communicate the necessary reset task and elicit
the required response promptly. Although no formal studies have investigated the most
effective manner of communicating the need for a reset, our intuition suggests that pro-
viding multimodal cues can reduce the expected response time. At the very minimum,

Figure 28.12

When the user reaches a reset trigger, a reset is fired and the
reset prompt appears.

Figure 28.13

Once the user is prompted with the reset task, they eventually
react to the prompt and slow down until coming to a full stop
before reaching the tracked space boundary. The reset task
is then performed typically within the buffer area.

Figure 28.14

The best and worst cases for determining reaction time. The best case (a) is when the
user is walking almost parallel to the tracked space while the worst case is (b) where they
approach the boundary head on.

500 28.  Exploring Large Environments with Redirected Walking

visual cues should be displayed but when possible, audio cues along with haptic cues help
quickly grab the user’s attention.

Since a reset is a critical safety mechanism, it is recommended to have a tutorial intro-
ducing users to the reset instructions prior to the experience. This exposure can help
familiarize users with the cues under safe conditions, help them understand what to
expect, and ensure they are on alert when they encounter them later as a last-minute safety
warning.

The following paragraphs introduce two categories of cues used to communicate when
to do a reset and how close the user is to a boundary.

28.6.2.1 � Reset Trigger Cues

This category of cues signals specifically when it is time to perform the reset task. An
example of a common visual cue would be to simply show a heads-up-display text reading
“Turn In Place” along with a stop sign icon (Figure 28.15). Additionally, an instant short
beep audio cue and even a tactile vibration could help with notifying the user of a reset.
More examples are discussed in Section 28.7.3.

28.6.2.2 � Boundary Limit Cues

Ideally, reset trigger cues should be sufficient in grabbing the user’s attention. However,
if the user does not react quickly enough, as an extra safety measure a warning can be
explicitly communicated indicating how close they are to a boundary.

One way of going about this is to tint the entire screen red, using increasingly stronger
shades as the user approaches the edge of the tracking space. The audio counterpart to this
would be to play a continuous sound clip (such as static noise) that increases in volume as a
function of proximity to a boundary. Similarly, gradually increasing the intensity of haptic
feedback can be included for a more pronounced warning.

Figure 28.15

Example of a basic reset prompt communicating the task of stopping and turning in place.

50128.6  Implementing Resets

Another common metaphor is to gradually fade in some form of a wall (also referred to
as a chaperone), explicitly informing the user where the approaching boundary is. This is
an effective method that leverages people’s natural instinct to speedily react to oncoming
obstacles.

Note that boundary limit cues can intentionally be more intrusive by design since they
serve as a last line of safety warning.

28.6.3 � Reset Variations
A variety of reset types have been introduced in the literature within the broader corpus
of reorientation techniques [Williams et al., 2007]. This chapter is specifically limited to
the category of resets that requires the user to rotate in-place to complete the reorienta-
tion task. Within this scope, rotation gains are used to reorient the user to face toward the
tracked space. The variations within this reset category are determined by what rotation
gains are used and by the user’s target orientation.

Note that in the techniques presented below, rotation gain is always greater than zero.
However, a technique known as freeze resetting involves setting the gain to zero where
the user’s rotation in the horizontal plane (yaw) is immediately canceled out in each
frame (by rotating the real world along with the user but in the opposite direction—such
that the world seems to rotate along with the user). This can be technically categorized
as a rotation-in-place reset, but in practice, freeze-resetting is more jarring than using
normal—albeit possibly noticeable—rotation scaling (gr > 0).

In all reset variations, below the user is instructed to stop and rotate in-place an entire
360°. What angle the user rotates in the real world depends on the specific reset type.
Regardless of the real-world result, in the virtual world, the user always faces the original
direction they were facing prior to the reset. This allows the user to continue progression
along their intended virtual path without disrupting overall progression of the virtual
trajectory. Naturally, once the 360° virtual rotation is complete, reset trigger cues are dis-
abled allowing further advancement.

28.6.3.1  2�:1-Turn Reset

The simple 2:1-Turn reset uses a 2 to 1 ratio of virtual to real rotations, which is a constant
rotation gain of gr = 2. As a result, the 360° virtual rotation always maps to a 180° real rota-
tion, causing the user to physically face opposite the direction they were facing when the
reset was triggered (Figure 28.16). The intuition behind this approach is to have the user go
back to where they came from, which is probably an unobstructed direction to walk along
in the tracked space (but this heuristic is often suboptimal).

Turning to face the opposite direction of movement might not always be the most
beneficial strategy, especially when approaching a boundary with a heading almost
parallel to the boundary. An even worse of this is when the user is near a corner of the
tracked space, causing back-to-back resets happening alternatively at adjacent boundaries
(Figure 28.17).

28.6.3.2 � Face-Center Reset

A better approach that overcomes the back-to-back problem is to scale rotations such that
the user always faces the center of the tracked space by the end of the reset. Ensuring the
user faces the center is a bit more involved than simply setting a constant rotation gain.

502 28.  Exploring Large Environments with Redirected Walking

The reason for this is that the user’s turning direction during the reset affects the end
result. For the 2:1-Turn reset, +180° and −180° are essentially the same. However, if for
instance a 150° rotation is required to face the center, a −150° rotation would not yield the
same result.

To implement a face-center reset, first measure the target injection angle α by finding the
angle between the user’s initial heading and the target direction (the vector from the user’s
position to the center). Note that α is not an unsigned value. If the user rotates in the same
direction as α, an upscaling would be required, setting rotation gain to α= ++ 360 | |

360
gr .

However, if the user rotates in the opposite direction, the rotation must be downscaled by
setting α= +− 360 | |

360
gr (Figure 28.18).

Figure 28.16

Progression and mechanics of the 2:1-Turn reset. The user virtually rotates 360° while physi-
cally rotating only 180°. The user can then continue walking along the original virtual direc-
tion while now physically walking in the opposite direction within the tracked space. The
blue square represents the physical tracked space. (a) initial state, (b) during reset, (c)
terminal state.

Figure 28.17

Undesirable scenario for 2:1-Turn reset that leads to back-to-back resets. The blue square
represents the physical tracked space.

50328.6  Implementing Resets

The simplest way to accomplish this goal is to keep track of the user’s overall real
rotation since the beginning of the reset β. If at any point β changes directionality, then
the rotation gain being applied also needs to switch from one value (+gr or −gr) to the
other (−gr or +gr). The rotation gain at the exact frame of directionality change however
needs to be set such that all previous injections are undone, and the overall injection
applied is (1 − +gr) ⋅ β or (1 −  −gr) ⋅ β for the new target +gr or −gr respectively. This extra
calculation is to ensure erratic rotation residuals don’t accumulate if the user keeps swivel-
ing around their starting orientation.

These nuances in implementing face-center reset are addressed in the implementation
available in the toolkit along with an alternative approach that makes better use of user
rotation to prevent the need to undo previous injections if the user oscillates during the
reset.

28.6.3.3 � More Reset Tweaks

By default, resets take the user’s initial head orientation as a reference for the user’s ini-
tial direction and require a 360° virtual rotation that begins and ends with this vector.
However, if for some reason at the moment a reset is triggered the user is facing a dif-
ferent direction than they are moving, then it might be preferable to instead take the
user’s recent average vector of velocity (using a short window leading up to the current
moment), and consider that as the starting orientation—in lieu of determining the body
direction by tracking the torso. This way when a face-center reset is enabled, once the
reset task is complete, the user’s direction of movement will face the center instead of the
user’s offset gaze.

Another modification that can be done is to redirect the user to physically face the
farthest corner of in the tracked space (instead of the center as in face-center resets). The
intuition for this is to maximize possible walking space along the direction of movement
after the reset. However, no research evidence has shown this approach to be superior to
face-center.

Figure 28.18

(a) When a face-center reset is triggered, two different rotations α or α′ can be applied to
achieve the desired target orientation. (b) If α’s direction matches the direction of the user’s
overall rotation (β), the real world will rotate α degrees during the reset. (c) Otherwise, if
the user is rotating in the opposite direction, or not rotating, the face-center reset will inject
a rotation of α′ to achieve the target orientation. The blue square represents the physical
tracked space.

504 28.  Exploring Large Environments with Redirected Walking

Lastly, another commonly used approach is to reorient the user perpendicular to the
nearest boundary (known as the away-from-wall technique). However, this approach has
flaws similar to 2:1-Turn. Overall, using face-center reset is the recommended approach for
general cases.

28.7 � Practical Considerations

While the implementation details presented here in conjunction with the open-source
toolkit are meant to facilitate an effortless plug-and-play system for redirected walking,
applying redirection in a virtual reality application demands a bit of finesse, and is an art
in its own right. Beyond the science and machinery of redirected walking, there is a degree
of engineering and tailoring that is necessary to meet the needs of the target audience and
specific deployment context. This section covers adjustments and alterations that can be
made beyond a strict implementation in order to deliver the optimal redirected walking
experience.

28.7.1 � Setting Detection Thresholds
Though Steinicke’s [Steinicke et al., 2010] empirically-measured detection thresholds are
the de facto scientific standard for setting gain thresholds, plenty of researchers including
Hodgson and Bachmann [2013] still recommend using more aggressive gain values. This
section addresses the variety of reasons as to why in practice it is possible to use greater
gain intensities without users noticing.

In order to understand why Steinicke’s thresholds may be disregarded (loosened), it is
important to understand how detection thresholds are measured. In a typical threshold
estimation study, users are often instructed to first perform a task, and are then asked
whether they noticed a visual discrepancy. What this means is that participants are fore-
told about the presence of manipulations and are—as a result—unintentionally primed
for noticing their existence. In fact, when inspecting user responses, it is not uncommon
for users to claim they noticed something even when no gains were applied. This is argu-
ably an inherent and perhaps inevitable flaw of gain estimation studies. However, it is not
difficult to imagine unnoticeably applying stronger gains when users are unaware of the
possibility of redirection gains. This is because a great deal of mismatch is required for an
unsuspecting user to question the soundness of a presumed-to-be accurate one-to-one
mapping tracking system.

The second potentially confounding factor is the generalization of detection thresh-
olds. The variance of between-user thresholds is not negligible, and prescribing the aver-
age detection threshold can be an overestimation for some while an underestimation
for others. Not only is noticeability substantially subjective, but recent research has also
hinted to the possibility of adaptation effects [Grechkin et al., 2016]. This means with
exposure to gains, over time users can build up a tolerance, thus conditioning them to
higher thresholds of detection. The degree of this adaptation effect can also vary from one
individual to another.

Even if individuals have constant factors of detection sensitivity, a slew of other fac-
tors affect the specific context in which redirection is applied. One such factor that varies
from one experience to another is user engagement. Realizing that redirection is a form
of illusion, as with any other of its kind, it can be all the more effective in remaining a

50528.7  Practical Considerations

mystery with the aid of misdirection. A user being preoccupied with a demanding task is
conjectured to be less likely to detect redirection in comparison to a user wandering an
environment with no pressing objectives.

Not all gain detection factors however are necessarily human-dependent. In practice,
the density of the virtual environment can also be a determinant, which may be explained
by optical flow and the stimulation of the periphery. Furthermore, the virtual reality hard-
ware specifications can also affect the noticeability—including HMD intrinsics (such as
field-of-view) and tracking fidelity. Of course, the matter is further complicated by the
varying degree of impact each of these external factors has on different users.

The variety of influencing factors complicates how to estimate gain detection thresh-
olds for an individual. As an improvement upon using reported detection thresholds, it is
recommended to use a calibration process that gauges each user’s detection sensitivity for
a specific experience (virtual environment, objective, and hardware). This can be done
rather efficiently by using adaptive methods for measuring gain sensitivity [Grechkin
et al., 2016]. Additionally, a custom-tailored set of detection thresholds can also give
higher priority to redirection efficacy by using more aggressive gains, aiming less for
preventing detection and more for reducing resets. It is critical however to always pre-
vent inducing simulator sickness and compromising the experience of redirected walk-
ing altogether.

28.7.2 � Restricting Reset Gains
The intensity of rotation gains applied in rotate-in-place resets often violate the detec-
tion thresholds reported by Steinicke. Though this is a common compromise serving the
goal of efficient recovery from an interrupted state, the strong manipulations can cause
discomfort in addition to being noticeable by some users. The simplest remedy for users
prone to simulator sickness is to instruct them to rotate 720° in the virtual world. The
added rotation allows for using a lower rotation gain factor to alleviate user discomfort
(although it may make them dizzy, and also the entanglement of a tether could start to be
problematic).

28.7.3 � Reset Prompt Choices and UI Options
Resets are arguably the least desirable component of a redirected walking system, and
thus the main objective of a redirection strategy is to minimize their use. However, if
employing a reset is absolutely necessary, it is essential to mitigate the level of disruption
caused to the narrative and the flow of the experience. The ideal reset would present itself
organically, integrate seamlessly within the narrative and be congruent with the theme of
the virtual experience, all while efficiently reorienting the user and maintaining her sense
of immersion.

A common approach for improving the reset interaction is to mask the reset prompt
with a task that is germane to the experience without changing the underlying mechan-
ics (known as skinning the reset). The first example of skinning resets was presented by
Peck, who introduced the idea of reorientation with distractors [Peck et al., 2009]. Peck
proposed using a virtual hummingbird to grab the user’s attention, thus triggering the
head rotations needed for reorientation. Suma et al. presented a context-sensitive reorien-
tation as a photography-themed task in a tactical scouting experience [Suma et al., 2015].
Depending on the reset angle required, users were either asked to perform 360° visual

506 28.  Exploring Large Environments with Redirected Walking

rotation to capture a virtual panorama image (Figure 28.19) or turn and face a point of
interest in the environment and snap a picture for reconnaissance (Figure 28.20). The
environment was populated with points of interest that would be chosen as photography
targets based on the user’s location.

Grechkin also proposed the rotate-and-walk reorientation technique with a novel
underlying mechanic [Grechkin et al., 2015]. This approach involved introducing side
objectives as points of interest that would be newly spawned or highlighted. The user

Figure 28.19

The virtual panorama reset task requiring the user to rotate 360° to complete a panorama
shot.

Figure 28.20

The virtual snapshot reset task requiring the user to turn to a point of interest and snap a
picture before resuming progression.

50728.7  Practical Considerations

would then be required to visit this point of interest before progressing further along the
virtual path. The user’s translations and rotations to and from the side objective provide
opportunities for applying redirection gains for reorientation.

28.7.4 � Tracked Space Requirements and Expected Performance
The most important practical question for redirected walking is “How much space is
required to effectively deploy redirection?” Answering this question requires (a) a defined
performance metric, (b) a method for measuring performance, and (c) knowledge of what
influences performance.

Azmandian et al.’s simulation study is a seminal research endeavor that has attempted
to formally address this matter [Azmandian et al., 2015]. Given that the frequency of resets
is the main crux of any redirected walking experience, the performance measure they
used was the average virtual distance traveled between resets (ratio of total virtual dis-
tance traveled to the number of total resets). Performance measurements were conducted
using a simulation platform that eventually evolved into the Redirected Walking Toolkit
[Azmandian et al., 2016]. The use of simulations made it possible to systematically control
for a variety of interacting factors including: user behavior, tracked space dimensions,
the structure of the virtual environment and type of the virtual path, as well as internal
parameters of the redirection strategies such as detection thresholds and the reset type
used.

The results indicated that the minimum viable size of physical tracked space for redi-
rected walking in the most general case is approximately 6 m × 6 m with performance
continuously improving in larger tracked spaces. At the same time, no “optimal” tracked
space size can guarantee the absence of contacts with the boundary. They also found that
the best overall performance can be achieved using the steer-to-center strategy combined
with center-based translation gain in conjunction with face-center resets deployed in
square tracked spaces.

Using these results, the best guideline for determining what tracked-space size would
meet one’s requirements is to inspect the performance graph across varying (square-
shaped) tracked spaces sizes (Figure 28.21). Note that the side length reported here is
based on the effective walking area (inside the reset safety trigger) which can be calculated
as (actual side length −2 × safety trigger length). If encountering a reset every 10 m of
walking is satisfactory, then an effective tracked space of 8 × 8 m would be required. If that
is not sufficient, to see resets every 20 m, then a space of at least 12 × 12 m would be neces-
sary. Ultimately, the right choice of space dimensions comes down to what reset frequency
is considered tolerable and the trade-off with the cost of the tracked space.

Though the results of this research shed light on some fundamental practical mat-
ters, what is important to point out is that these results are essentially a lower bound on
expected performance for redirected walking. More advanced redirection strategies have
been introduced in the literature that can drastically improve performance. These tech-
niques leverage knowledge of the architectural layout of the virtual environment and the
tasks the user will be required to perform. With foreknowledge of expected user move-
ment actions, the VR experience designer can plan more effective redirection strategies.
Although Zigzag redirection is a simple technique with limited applicability, it does exem-
plify and showcase how a planning algorithm can substantially reduce the need for resets
and be more effective than a general redirection strategy.

508 28.  Exploring Large Environments with Redirected Walking

In the current state of understanding in redirected walking research, in order to have
a compelling room-scale redirection experience, advanced planning strategies should be
used, which inherently limits the scope of viable virtual experiences. For instance, having
an experience akin to first-person shooter games in VR where predicting user behavior
is complex, planning algorithms may not be applicable, and therefore general strategies
must be used, resulting in undesirable performance as seen in Figure 28.21. On the other
hand, linear narratives, while restrictive, still offer immersive experiences conducive for
redirection through optimal design strategies. More tools are expected to be made avail-
able for content creation and level design that are interwoven with planning strategies to
deliver optimal redirected walking experiences.

References

[Azmandian et al., 2014]

Azmandian, Mahdi, Mark Bolas, and Evan Suma (2014). Countering user deviation dur-
ing redirected walking. In Proceedings of the ACM Symposium on Applied Perception,
Vancouver, BC, p. 4503.

[Azmandian et al., 2015]

Azmandian, Mahdi, Timofey Grechkin, Mark Bolas, and Evan Suma (2015). Physical
space requirements for redirected walking: How size and shape affect performance.
In Eurographics Symposium on Virtual Environments 2015, Kyoto, Japan: The
Eurographics Association, pp. 93–100.

Figure 28.21

Expected performance for redirected walking in the general case for a given “effective
walking area” (area within safety trigger).

509References

[Azmandian et al., 2016]

Azmandian, Mahdi, Timofey Grechkin, Mark Bolas, and Evan Suma (2016). The redirected
walking toolkit: A unified development platform for exploring large virtual envi-
ronments. In 2016 IEEE 2nd Workshop on Everyday Virtual Reality (WEVR), Kyoto,
Japan, pp. 9–14.

[Burns et al., 2005]

Burns, Eric, Sharif Razzaque, Abigail T. Panter, Mary C. Whitton, Matthew R. McCallus,
and Frederick P. Brooks Jr. (2005). The hand is slower than the eye: A quantitative
exploration of visual dominance over proprioception. In IEEE Virtual Reality, 2005.
Proceedings. VR 2005, Bonn, Germany: IEEE, pp. 3–10.

[Gibson, 1933]

Gibson, James J. (1933). Adaptation, after-effect and contrast in the perception of curved
lines. Journal of Experimental Psychology, 16(1): 1–31.

[Grechkin et al., 2015]

Grechkin, Timofey, Mahdi Azmandian, Mark Bolas, and Evan Suma (2015). Towards
context-sensitive reorientation for real walking in virtual reality. In 2015 IEEE Virtual
Reality (VR), Arles, France: IEEE, pp. 185–186.

[Grechkin et al., 2016]

Grechkin, Timofey, Jerald Thomas, Mahdi Azmandian, Mark Bolas, and Evan Suma
(2016). Revisiting detection thresholds for redirected walking: Combining translation
and curvature gains. In Proceedings of the ACM Symposium on Applied Perception,
Anaheim, CA: ACM, pp. 113–120.

[Hodgson and Bachmann, 2013]

Hodgson, Eric, and Eric Bachmann (2013). Comparing four approaches to generalized
redirected walking: Simulation and live user data. IEEE Transactions on Visualization
and Computer Graphics, 19(4): 634–643.

[Jürgens et al., 1999]

Jürgens, R., T. Boß, and W. Becker (1999). Podokinetic after-rotation does not depend on
sensory conflict. Experimental Brain Research, 128(4): 563–567.

[Peck et al., 2009]

Peck, Tabitha C., Henry Fuchs, and Mary C. Whitton (2009). Evaluation of reorienta-
tion techniques and distractors for walking in large virtual environments. IEEE
Transactions on Visualization and Computer Graphics, 15(3): 383–394.

510 28.  Exploring Large Environments with Redirected Walking

[Posner et al., 1976]

Posner, Michael I., Mary J. Nissen, and Raymond M. Klein (1976). Visual dominance: An
information-processing account of its origins and significance. Psychological Review,
83(2): 157.

[Razzaque et al., 2001]

Razzaque, Sharif, Zachariah Kohn, and Mary C. Whitton (2001). Redirected Walking. In
Proceedings of EUROGRAPHICS, Manchester, UK, pp. 289–294.

[Ruddle and Lessels, 2009]

Ruddle, Roy A., and Simon Lessels (2009). The benefits of using a walking interface to
navigate virtual environments. ACM Transactions on Computer-Human Interaction
(TOCHI), 16(1): 5.

[Ruddle et al., 2011]

Ruddle, Roy A., Ekaterina Volkova, and Heinrich H. Bülthoff (2011). Walking improves
your cognitive map in environments that are large-scale and large in extent. ACM
Transactions on Computer-Human Interaction (TOCHI), 18(2): 10.

[Souman et al., 2009]

Souman, Jan L., Ilja Frissen, Manish N. Sreenivasa, and Marc O. Ernst (2009). Walking
straight into circles. Current Biology, 19(18): 1538–1542.

[Steinicke et al., 2010]

Steinicke, Frank, Gerd Bruder, Jason Jerald, Harald Frenz, and Markus Lappe (2010).
Estimation of detection thresholds for redirected walking techniques. IEEE
Transactions on Visualization and Computer Graphics, 16(1): 17–27.

[Suma et al., 2010]

Suma, Evan, Samantha Finkelstein, Myra Reid, Sabarish Babu, Amy Ulinski and Larry F.
Hodges (2010). Evaluation of the cognitive effects of travel technique in complex real
and virtual environments. IEEE Transactions on Visualization and Computer Graphics,
16(4): 690–702.

[Suma et al., 2012]

Suma, Evan A., Grud Bruder, Frank Steinicke, David M. Krum, and Mark Bolas (2012). A
taxonomy for deploying redirection techniques in immersive virtual environments. In
Proceedings—IEEE Virtual Reality, Costa Mesa, CA, pp. 43–46.

511References

[Suma et al., 2015]

Suma, Evan A., Mahdi Azmandian, Timofey Grechkin, Thai Phan, and Mark Bolas (2015).
Making small spaces feel large: Infinite walking in virtual reality. In ACM SIGGRAPH
2015 Emerging Technologies, SIGGRAPH’ 15, New York: ACM, pp. 16:1–16:1.

[Unity Technologies, 2017]

Unity Technologies (2017). Unity3D game engine. https://unity3d.com/. Accessed:
2017-02-02.

[Usoh et al., 1999]

Usoh, Martin, Kevin Arthur, Mary C. Whitton, Rui Bastos, Anthony Steed, Mel Slater,
and Frederick P. Brooks Jr. (1999). Walking > walking-in-place > flying, in virtual
environments. In Proceedings of the 26th Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH’ 99, New York: ACM Press/Addison-Wesley
Publishing Co., pp. 359–364.

[Williams et al., 2007]

Williams, Betsy, Gayathri Narasimham, Bjoern Rump, Timothy P. McNamara, Thomas
H. Carr, John Rieser, and Bobby Bodenheimer (2007). Exploring large virtual envi-
ronments with an HMD when physical space is limited. In Proceedings of the 4th
Symposium on Applied Perception in Graphics and Visualization—APGV ’07, Tubingen,
Germany, vol. 1(212), p. 41.

https://unity3d.com

http://www.taylorandfrancis.com

Section IX
DIY VR Hardware

http://www.taylorandfrancis.com

515

29
Building and Interfacing
Input and Output Devices
Kyle Johnsen
University of Georgia

In this chapter we will explore sensing and controls tasks that link the physical environment
to a virtual environment. This chapter shows a complete pipeline for interfacing physical
sensors and actuators to a Unity3D-based interactive simulator using a development micro-
controller with basic analog to digital circuits. The example provided deals specifically with
interfacing Arduino hardware to Unity3D; however, translating this code for other game
engines or microcontroller platforms should be straightforward. Basic analog to digital cir-
cuits are included that cover the majority of direct current sensor and actuator types.

29.1 � Introduction

This chapter provides a general method for electronic interfacing of custom input and out-
put devices that allow the digital virtual reality world to interact with the analog physical
world. Using this method allows VR devices to be tailored to an application, rather than
the application being constrained to available off-the-shelf devices.

29.1	 �Introduction
29.2	 �Section I—Fundamental Electronics
29.3	 �Section II—Interfacing
29.4	 �Example 1: Build-Your-Own Motion-Controller Gamepad

with Vibration
29.5	 �Section III—Software
29.6	 �VR Program
29.7	 �Section IV—Conclusion

516 29.  Building and Interfacing Input and Output Devices

There are generally three levels to such interfacing.

•• Highest-level: Using an embedded, but otherwise general purpose, computer.
These devices are capable of similar interfacing as the VR computer, but are typi-
cally smaller, lower power, and can be wired directly to digital sensors and actua-
tors. They are typically connected to the VR computer through a network.

•• Intermediate-level: Using a data acquisition and control module. These devices
can interface to a wide variety of analog sensors and actuators. They are most
commonly wired to the VR computer through a bus (e.g. USB), and manufactur-
ers provide the (typically proprietary) required device drivers and libraries.

•• Low-level: Building a data acquisition and control module yourself. This offers
the most flexibility in terms of sensing accuracy/precision/latency, control, size,
power, and communication.

This chapter covers the low-level method.

29.2 � Section I—Fundamental Electronics

Except for using an embedded computer to interface an off-the-shelf device, some
knowledge of analog electronics is required, the most basic being an understanding of
the terms voltage (SI unit “volt, V”) and current (SI unit “ampere, A”, often abbrevi-
ated “amps”,), which respectively describe the energy and flow of a quantity of charge,
(SI unit “Coulomb”, C), as well as resistance (SI unit “Ohm”, Ω) to that flow and power
(SI unit “Watt”, W) generated/dissipated by it.

Electrical charge is a property of a substance. Most people remember that “like charges
repel and opposite charges attract.” This is true, if the particles can move. Most metals, such
as copper, contain an enormous number of mobile negatively charged particles called elec-
trons (1g of copper material contains approximately 9.4 × 1021 mobile electrons). Having
many free charged particles allows metals to be used as electrical channels (conductors)
through which charges move, which happens if an electric field (caused by separation of
positively and negatively charged particles) is present. When charged particles move, they
can generate light, heat and magnetic fields, which can be used to perform useful work,
such as moving a motor.

Electrical current is a measurement of the quantity of charge (Coulombs) moving
through a conductor per unit time. Its unit, the Ampere, is a measurement of (Coulombs/
second), i.e., 1 A = 1 C/1 s. Given that 1 Coulomb represents the charge on −6.24 × 1018
electrons (a seemingly arbitrary negative value because Coulombs were defined before
electrons were discovered), an enormous number of charged particles are moving through
the conductor per second at 1 A. However, electrical current does not imply the speed of an
individual charged particle, which is typically very slow, on the order of millimeters per
second. Electrical current is analogous to a measurement of the amount of water moving
through a pipe over time. The speed of an individual water molecule may be slow, but the
overall quantity may be very large.

Electrical voltage is a measurement of the potential energy (SI unit “Joule”, J) of a
charged particle. Its unit, the Volt, is a measurement of (Joules/Coulomb), i.e., 1 V = 1 J/1 C.

51729.2  Section I—Fundamental Electronics

Voltage can only be measured between two points, meaning it is the energy change to a
quantity of charge that moves between those points.

Electrical resistance is a property of all conductors, and is the ratio of voltage to cur-
rent, i.e., R = V/I, or more commonly stated V = IR. This relationship, called Ohm’s Law, is
the most fundamental equation in electronics.

Electrical power is the last term you should know, and is the most confusing because
many people equate power and energy. Power is the change in energy over time (1 W =
1 J/1 s). In electronics, we mostly think about power generation and dissipation. Within a
power source, this is the product of Voltage and Current between the positive and negative
terminals. Within a conductor, it is the same, but can be related to resistance (by using
Ohm’s Law to substitute I or V for R) as P = I 2R or P = V 2/R.

29.2.1 � Analog Sensors
Analog sensors convert a physical state or event into a corresponding, analogous measur-
able electrical one. Sensors come in many varieties, differing widely on the type of electri-
cal output they produce. For the most part, a sensor exists for every physical property such
as light, temperature, sound, or motion. Sensors are selected both by their measurement
properties (accuracy, sensitivity, and range with respect to the physical property), and also
by their electrical characteristics, and particularly how they are designed to interface with
other electronics. Some produce a varying voltage, while others produce varying current
or varying resistance. Still others modulate their output onto a carrier signal, such as by
varying the frequency of a voltage sine wave or the time of a pulse.

For example, consider a normally-open push button. A normally open push button
may be a mechanical sensor that converts the physical button state {unpushed, pushed}
into the electrical resistance {∞, 0} by making a connection between two terminals when
it is pressed down. By measuring the resistance, we can determine the state.

29.2.2 � Analog Actuators
Actuating is the opposite of sensing. An analog actuator converts an electrical state or
event into an analogous physical one, such as light, heat, sound, or motion. Many of the
same qualities apply to actuators as sensors. The most significant difference is that actua-
tion typically requires much more power than sensing.

29.2.3 � Analog-Digital Conversion
To get data that a digital computer can process, the analog signal must be converted to
a set of binary values. This process is managed by an analog to digital converter (ADC)
unit. A typical ADC linearly maps a voltage range between 0 and a supplied reference
voltage into an N-bit value. For example, a 10-bit ADC using a 5 V reference would typi-
cally map 0 V to 00000000002 and 5 V to 11111111112. A value of 2.5 V would be mapped
to 01111111112. For a 10-bit ADC, there are 210 possible binary values for the input voltage
range, making the resolution 5/1023 V / bit.

Other properties to consider are the sample time, how much time it takes to reliably
convert a stable voltage, and the sampling period, how much time passes between the
start of each sample. Very fast (e.g. nanosecond-level sample period), high-resolution (e.g.
24-bit) ADCs can be found in cameras and sound cards. More typical ADCs are 10-bit or

518 29.  Building and Interfacing Input and Output Devices

12-bit resolution and sample in the high microseconds to low milliseconds (note, you’ll
often see the frequency, rather than the period). Higher sample times usually result in
better accuracies. For current-based or resistance-based sensors, an intermediate current-
voltage or resistance-voltage circuit is often needed if not included in the ADC.

When you convert a changing analog signal to digital samples, you may lose infor-
mation if you do not sample fast enough. The Nyquist-Shannon Sampling Theorem pro-
vides some insight into this problem, showing that you can only recover information from
signal frequencies that are less than half of your sampling frequency. In other words, if
your signal is 10 Hz (10 oscillations per second), you should sample at more than 20 Hz.
However, this is for pure sinusoidal signals. In practice, for VR input systems, sample as
fast as your system can handle. The faster the sample time, the lower the input latency—a
key quality measure for a VR input system.

Similarly, an N-bit digital value can be converted to a voltage within a reference range
by a digital to analog converter (DAC). This voltage is typically meant as a control signal
(rather than something used to power a device). If more power is needed (often the case),
a transistor (electronic switch) or relay (electromechanical switch) can be employed as
amplifiers. The maximum power of a DAC will be specified, and should not be exceeded
by the power required from the device, or damage could occur to the converter and what-
ever is attached.

29.2.4 � Digital Sensors and Actuators
Some sensors and actuators have control units that contain ADC, DAC, memory, and
logic elements that are designed to communicate directly with another digital device using
an established, typically standardized, protocol stack over one (Serial) or more (Parallel)
communication links. The protocols used by the devices must match at both ends, making
this a key consideration when choosing a digital sensor or actuator. Another important
characteristic of digital devices is that they normally have a fixed latency between the
physical event and digital signal that cannot be improved.

29.3 � Section II—Interfacing

The remainder of this chapter covers practical cases of high, intermediate, and low-level
interfacing. The Arduino, ecosystem is used for the embedded systems, while Unity3D is
used for VR simulation and rendering.

29.3.1 � Low-Level “Do-It-Yourself” Analog Interfacing
A low-level interfacing method is indicated when size, timing, and power are all critical to
the application, all of which are critical to embedding sensors inside of a VR device. This
flexibility comes at a cost of complexity and physical construction time relative to higher
level methods.

A key component to this approach is the microcontroller, which usually contains all nec-
essary ADC, DAC, and logic/timing components in a single package. These are also often
embedded into a development board that provides power and standard external interfaces
(ports, headers) for connecting to other devices as well as a crystal oscillator. The micro-
controller this example uses is the ATMEGA328P, produced by Atmel Semiconductors.
The development board is the Arduino Uno R3, which is widely available, and runs the

51929.4  Example 1: Build-Your-Own Motion-Controller Gamepad with Vibration

microcontroller at 16 MHz and 5 V. It contains a USB-Serial adapter that simultaneously
powers the device and emulates a corresponding serial device on the host PC (note that
drivers for this are commonplace, and should work on most modern operating systems
without additional installation requirements). On Windows, this will result in a virtual
COM port, listed in device manager. On Mac and Linux, this will be a TTY device listed
under “/dev”.

The Arduino ecosystem, more broadly, is a complete development environment for
embedded systems. It is an attempt at simplification of microcontroller programming
process. Code is written in C++ within a text file, called a sketch, which at a minimum
contains setup() and loop() functions. These are linked to a template file that contains
the main() entrypoint, and subsequently calls a microcontroller-specific init() function,
the sketch’s setup() function once, and then the sketch’s loop() function repeatedly. The
default development environment further encapsulates the specifics of compiling and
uploading the sketch to the microcontroller on the chosen development board.

Once a sketch is uploaded to the microcontroller (stored in flash memory, so the pro-
gram is maintained when power is lost), it is independent from the computer (aside from
power, which can also be supplied via a battery or AC/DC adapter). The USB connection
can, however, still be used to interface with other programs on the computer.

Note that while the code below appears to be highly Arduino specific, all microcon-
trollers have similar features and the vast majority have C or C++ libraries and compil-
ers. Also, the Arduino development board can be replaced by only the microcontroller, a
suitable power supply, and a communications device. This can greatly reduce power usage
and space.

29.4 � Example 1: Build-Your-Own Motion-
Controller Gamepad with Vibration

A gamepad is a composite set of buttons, joysticks, and motion sensors that are con-
nected as a composite digital input/output device. An electronics design for a 3-button,
2-axis joystick gamepad with an accelerometer, vibration feedback, and light is presented
here, alongside a generic Arduino-Unity interface that can be easily extended for cus-
tom designs. Note that with the accelerometer, we provide our gamepad with 3 Degree of
Freedom (3-DOF) capabilities that most game controllers do not include (two exceptions
being the Nintento Wii remote and Google Daydream controllers).

The schematic is presented here, both as a circuit diagram (Figure 29.1), which describes
the connectivity between components using standard circuit symbols, as well as a “bread-
board” diagram, which shows a possible prototyping layout (Figure 29.2). Note that wire
colors are irrelevant, and are used only for clarity.

The circuit shown in Figures 29.1 and 29.2 uses a 2-axis joystick module that outputs
0 to Vcc for each of the axes (centered at Vcc/2). It also has a built-in push-button that con-
nects the SEL pin to GND while pushed in.

The three-axis accelerometer has three voltage outputs, that range from 0 to Vcc (cen-
tered at Vcc/2), and senses from −3 g to 3 g. This accelerometer, the ADXL335, has a maxi-
mum Vcc voltage of 3.6 V. In order to use the full range of the ADC, the Vcc voltage is
attached to the AREF pin to 3.3 V. This also means that the joystick must use 3.3 V for Vcc
to have the same full range. Note, Vcc stands for common-collector, a term historically

520 29.  Building and Interfacing Input and Output Devices

associated with the device using bipolar junction transistors, but in modern use means
where the positive power supply connection is made.

The two pushbuttons are connected to pins 7 and 8 respectively. Like the joystick but-
ton, while pushed in, the buttons connect the pin to ground. Each button is connected

Figure 29.1

The circuit schematic diagram for the game controller using the Arduino.

Arduino Uno R3
Development Board

Thumb Joystick

Vibration
Motor

Accelerometer

Push Buttons

Transistor
LED

Breadboard

Figure 29.2

The wiring diagram connecting the Arduino board to the game controller I/O on the bread-
board. (Red wires are 3.3 V Vcc, black wires are GND, other colors are for wiring clarity, and
do not signify anything in particular.)

52129.5  Section III—Software

between an available input pin on the Arduino Uno Board (ADC or a “digital” input,
which is a very fast 1-bit ADC, sometimes called a comparator) and ground (labelled
GND). All ADC pins can be used as digital inputs, but only the ADC pins can be used for
higher resolution (10-bit in the case of the ATMega328) analog conversions.

Pins 9 & 10 are output pins, for controlling a vibration motor and a light (LED) respec-
tively. Most output circuits such as these require additional components to ensure that
current limits (40 mA for each output pin on the Arduino Uno R3) are not exceeded. The
LED pin current is limited with a 1K resistor connected between the pin and the anode
of the LED. This allows for a bright light when pin 10 is set to HIGH voltage (5 V on the
Arduino Uno), providing roughly 3 mA of current to the LED (Vforward = 2 V), according
to Ohm’s Law: (5 V − 2 VLED)/1,000. The vibration motor is trickier to use, as it requires
more current (usually over 100 mA) to operate. In these cases, a transistor can be used
as an electronic switch. The circuit uses an NPN transistor, the PN2222A. When a small
current moves from the base junction of the transistor to the emitter junction, a massive
(approximately 300x) amount of current can move from the collector to the emitter. To
limit the base current (which would otherwise be very high), another 1 K resistor is con-
nected between pin 9 and the transistor base pin. This limits the base current to around
4 mA, and the collector current to about 1.2 A. The motor is then connected between 3.3 V
and the collector, and the emitter is connected to ground.

Both pin 9 & 10 can be controlled in two ways, as binary outputs (HIGH or LOW), or
as PWM outputs. PWM stands for pulse-width-modulation, and means that the pin can
be set to turn its output HIGH for a certain period of time, then LOW for the remaining
period of time. The ratio of the HIGH to the total period is called the “duty-cycle.” The
sample period is either 1/490s, or 1/980s depending on which PWM pin is used (the pins
marked with a ~ on the Arduino Uno).

29.5 � Section III—Software

Once the circuit is constructed, and all connections are verified, an Arduino program can
be written to periodically sample and transmit each sensor reading through the Arduino
serial port. It also reads commands from the serial port and controls outputs. The pro-
gram is designed to be generic, and can be adapted for most controller types by changing
only the upper block of code. It is further designed to minimize the amount of latency
when writing and reading data from the serial port.

The program (Listing 29.1) starts with assigning variable names to pin numbers.
Variable arrays are used to shorten the code, and allow for future expansion.

Listing 29.1.  Arduino I/O communications program (C).

/*********** Gamepad Configuration *********/
const int NUM_DIGITAL_IN = 3;
int digitalInPins[NUM_DIGITAL_IN] = {6, 7, 8}; // Thumb, b1, b2
int digitalInPinTypes[NUM_DIGITAL_IN] = {1, 1, 1}; // 1 for pullup
const int NUM_ANALOG_IN = 5;
int analogInPins[NUM_ANALOG_IN] = {A2, A1, A0, A4, A3}; // X,Y,Z,Horz,Vert
const int NUM_DIGITAL_OUT = 1;

522 29.  Building and Interfacing Input and Output Devices

int digitalOutPins[NUM_DIGITAL_OUT] = {10}; // LED
const int NUM_ANALOG_OUT = 1;
int analogOutPins[NUM_ANALOG_OUT] = {9}; // Vibration Motor
int ADC_REFERENCE = EXTERNAL; // see Arduino documentation for analogReference()

/********** Serial Communication *********/
const unsigned long baudRate = 115200;
const int startByte = 0x72; //arbitrary (but avoid 0x00 & 0xFF)
int lastByte = 0; // book-keeping, do not change
int readIndex = 0;

/********** Microcontroller Initialization *********/
void setup() {
 Serial.begin(baudRate);
 for (int i = 0; i < NUM_DIGITAL_IN; i++) {
 pinMode(digitalInPins[i], digitalInPinTypes ? INPUT_PULLUP : INPUT);
 }
 for (int i = 0; i < NUM_DIGITAL_OUT; i++) {
 pinMode(digitalOutPins[i], OUTPUT);
 }
 for (int i = 0; i < NUM_ANALOG_OUT; i++) {
 pinMode(analogOutPins[i], OUTPUT);
 }
 analogReference(EXTERNAL);
}

/********* Called repeatedly by the Arduino base code ********/
void loop() {

 Serial.flush(); // wait for any prior serial output to complete
 Serial.write(startByte);

 // write inputs (bit packed)
 byte inputStates = 0;
 for (int i = 0; i < NUM_DIGITAL_IN; i++) {
 int shift = i % 8;
 int b = !digitalRead(digitalInPins[i]); // 1 (pressed) or 0 (unpressed)
 inputStates |= (b << shift); // put in bit field
 if (shift == 7 || i == (NUM_DIGITAL_IN - 1)) {
 writeByteWithEscapes(inputStates);
 inputStates = 0;
 }
 }

 // write analogs (packed into 2 little-endian bytes per analog)
 int analogStates[NUM_ANALOG_IN];
 for (int i = 0; i < NUM_ANALOG_IN; i++) {
 analogStates[i] = analogRead(analogInPins[i]);
 writeByteWithEscapes(analogStates[i] & 0x00FF);
 writeByteWithEscapes((analogStates[i] >> 8) & 0x00FF);
 }

 // read output commands
 while (Serial.available()) {
 byte b = (byte)Serial.read();
 // handle packet alignment with the possibility of escaped start bytes
 if (b == startByte && lastByte != startByte) {
 lastByte = b;
 continue; // must wait to see if it's escaped
 } else if (b != startByte && lastByte == startByte) {
 // start of a packet, reset the read index
 lastByte = b;
 readIndex = 0;

52329.5  Section III—Software

Arduino digital pins are also known as general purpose input/output pins – this means
that they can be used to detect digital signals (i.e. as inputs) or can be used to change digi-
tal signals (as outputs). The Arduino library function pinMode() is used (perhaps unsur-
prisingly) to select the pin mode for each connected pin. For input pins, there are two
options: INPUT and INPUT_PULLUP. When set as INPUT, the pin’s voltage is deter-
mined entirely by external circuitry. When set as INPUT_PULLUP, an internal resistor
is switched on, connecting the pin to logic HIGH. However, the resistance value of the
resistor is in the range of 25–50 kΩ. This means that it will not normally influence the pin
voltage, except for when there is no connection to the pin, in which case the voltage will be
read as HIGH. The button pins are set as INPUT_PULLUP, as they are connected to push-
buttons, such that when pushed they will connect the pin directly to LOW voltage. When
unpushed, because of the pullup resistor, they will be read as HIGH. The output pins are
set as an OUTPUT, indicating that their function is to power a device.

The analogReference() function is used to change the default ADC reference point from
5 V to the external voltage at Aref (3.3 V in the example). This means 3.3 V will read as
1,023, and 0 V will read as 0. If this were not done, 3.3 V would read as 614, losing 2/5 of
the possible resolution.

The configuration block also initializes some global bookkeeping variables necessary
for our application’s communication protocol. The “baud-rate” specifies the number of

 } else if (b == startByte && lastByte == startByte) {
 lastByte = 0; // not the start byte
 } else {
 lastByte = b;
 }

 // read bit-packed digital outputs
 if (readIndex < (NUM_DIGITAL_OUT + 7)/8) {
 int offset = readIndex;
 for (int i = 0; i < 8; i++) {
 int pinIndex = offset * 8 + i;
 if (pinIndex >= NUM_DIGITAL_OUT) {
 break;
 }
 int pin = digitalOutPins[pinIndex];
 digitalWrite(digitalOutPins[i], (b & (1 << i) > 0) ? HIGH : LOW);
 }
 readIndex++;
 } else { // done with digital, next read the analog output commands
 analogWrite(analogOutPins[readIndex++], b);
 }
 if (readIndex >= (NUM_DIGITAL_OUT + 7)/8 + NUM_ANALOG_OUT) {
 readIndex = 0;
 }
 }
}

/********** Helper Function for handling start byte escaping *********/
void writeByteWithEscapes(byte b) {
 if (b == startByte) {
 Serial.write(startByte);
 }
 Serial.write(b);
}

524 29.  Building and Interfacing Input and Output Devices

transmitted bits per second (for binary communications), and is a very important con-
sideration. Choosing the highest reliable baud rate (normally 115, 200 bits/s) is normally
acceptable and desirable. This will place an upper limit on the send rate. For example, if the
packet size is 12 bytes (as it is in this example), the maximum number of transmissions/
second is 115,200 / 8 / 12 or about 1,200 transmissions/s. This assumes that the Serial port
is always in use. In practice, the update rate will be less, but it will be highly consistent.

The communication protocol is designed to ensure that each data packet sent through
the serial port can be correctly aligned, i.e., the reader knows where it starts. Some pro-
tocols use ASCII encoding to do this, but this results in a significant overhead relative to
using unencoded binary bytes. The protocol in use is typical of Serial communications. It
uses a known “start byte” that has an arbitrary value. As the start byte could potentially
occur within the data, any start bytes within the data are duplicated. Thus, a standalone
start byte indicates the start of a message, while two in a row indicates one actual instance
of the byte alone. This incurs overhead, but is minimal. Using a non-boundary (i.e. not
0x00 or 0xFF) value for the start-byte minimizes the probability of this byte occurring
in the data.

29.6 � VR Program

A corresponding program (Listing 29.2) on the VR system serves to read all inputs from
the serial port, and send control outputs. This example is provided as a C# Unity3D script,
and tested on the Microsoft Windows operating system. The script can be attached to
any scene object. It is the complement to the Arduino program. The principle difference
is the use of a C# thread. This difference is associated with Unity’s Mono Development
environment implementation of the .NET SerialPort class, which does not implement
asynchronous access to the SerialPort. Thus, reading and writing must be done synchro-
nously, and in a thread, so as not to slow down the VR rendering.

Listing 29.2.  Unity I/O communications program (C#).

// Unity I/O Communications Program (ArduinoGamepad.cs)
using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using System.IO.Ports;
using System;
using System.Threading;

public class ArduinoGamepad : MonoBehaviour
{
 // Configuration block
 public static int numDigitalIn = 3;
 public static int numAnalogIn = 5;
 public static int numDigitalOut = 1;
 public static int numAnalogOut = 1;
 const int startByte = 0x72;
 public string port = "\\\\.\\COM8";
 public int baudRate = 115200;

52529.6  VR Program

 // Private members
 SerialPort p;
 ThreadStart serialThreadStart;
 Thread serialThread;
 bool threadQuit = false;
 bool[] digitalIns = new bool[numDigitalIn];
 ushort[] analogIns = new ushort[numAnalogIn];
 bool[] digitalOuts = new bool[numDigitalOut];
 byte[] analogOuts = new byte[numAnalogOut];

 // Start
 // - Called once by Unity when the script is enabled, before Update
 void Start() {
 p = new SerialPort(port, baudRate, Parity.None, 8, StopBits.One);
 p.ReadTimeout = 1;
 p.WriteTimeout = 1;
 p.Open();
 serialThreadStart = new ThreadStart(serialThreadFunc);
 serialThread = new Thread(serialThreadStart);
 serialThread.Start();
 }

 // getAnalogInput
 // - retrieves the latest value for a particular analog input 0 – numAnalogIn
 // - return values will be between 0 and 1023 for typical Arduino ADCs
 public int getAnalogInput(int a) {
 lock(analogIns) {
 return analogIns[a];
 }
 }
 // setAnalogOutput
 // - sets the strength of a particular analog output 0 - numAnalogOut //
 public void setAnalogOutput(int a, int v) {
 lock(analogOuts) {
 analogOuts[a] = (byte)v;
 }
 }

 // getDigitalInput
 // - retrieves the latest state for a particular digital input 0 – numDigitalIn
 // - returns true if the digital input is HIGH (1), false if the digital input is LOW (0)
 public bool getDigitalInput(int d) {
 lock(digitalIns) {
 return digitalIns[d];
 }
 }
 // setDigitalOutput
 // - sets the state of a particular digital output input 0 – numDigitalOut
 // - set v to true if the digital output should be HIGH (1),
 // or false if the digital output should be is LOW (0)
 public void setDigitalOutput(int d, bool v) {
 lock(digitalOuts) {
 digitalOuts[d] = v;
 }
 }

 // writePacket
 // - called by the serial thread to send digital and analog outputs to the Arduino
 void writePacket() {
 p.BaseStream.WriteByte(startByte);
 lock(digitalOuts) {
 int bitField = 0;

526 29.  Building and Interfacing Input and Output Devices

 for (int i = 0; i < digitalOuts.Length; i++) {
 int shift = i % 8;
 if (digitalOuts[i]) {
 bitField = bitField | (1 << shift);
 }
 if (shift == 7 || i == (digitalOuts.Length - 1)) {
 if (bitField == startByte) {
 p.BaseStream.WriteByte(startByte);
 }
 p.BaseStream.WriteByte((byte)bitField);
 bitField = 0;
 }
 }
 }
 lock(analogOuts) {
 for (int i = 0; i < analogOuts.Length; i++) {
 if (analogOuts[i] == startByte) {
 p.BaseStream.WriteByte(startByte);
 }
 p.BaseStream.WriteByte(analogOuts[i]);
 }
 p.BaseStream.Flush();
 }
 }
 // readPacket
 // - called by the serial thread to handle incoming digital & analog inputs from the Arduino
 void readPacket(byte[] buffer) {
 p.BaseStream.Flush();
 lock(digitalIns) {
 for (int i = 0; i < digitalIns.Length; i++) {
 digitalIns[i] = (buffer[i / 8] & (1 << i)) != 0;
 }
 }
 lock(analogIns) {
 for (int i = 0; i < analogIns.Length; i++) {
 int index = i * 2 + (numDigitalIn + 7) / 8;
 analogIns[i] = (ushort)((buffer[index + 1] << 8) | buffer[index]);
 }
 }
 }

 // serialThreadFunc
 // - started by the monobehavior to handle serial communication with minimal delay
 void serialThreadFunc() {
 byte[] buffer = new byte[numAnalogIn * 2 + (numDigitalIn + 7) / 8];
 int readIndex = 0;
 int lastByte = 0;

 while (!threadQuit) {
 int b = -1;
 try {
 b = p.ReadByte();
 } catch (TimeoutException) {
 writePacket ();
 continue;
 }

 if (b == startByte && lastByte != startByte) {
 lastByte = b;
 continue;
 } else if (b != startByte && lastByte == startByte) {
 lastByte = b;

52729.7  Section IV—Conclusion

29.7 � Section IV—Conclusion

The approach taken here is one of many possibilities. Several adaptations may be desirable.
For example, a simple change might be to only send values that change. However, this
would require some overhead to specify which values changed, making the protocol more
complex. Additionally, high frequency control is not possible with this scheme, as the
serial bandwidth is too low. Smaller packets would help, as would a higher baud rate.
Furthermore, wireless communication could be added. Several drop-in wired serial
replacements are available, such as the Digi XBee (Series 1) devices. Other products use
higher bandwidth protocols (e.g. SPI or I2C) such as the NRF24L01+, and would require
more work, but provide lower latency. Finally, using WiFi or Bluetooth is also possible
through Arduino, but these technologies add significant latency, and should be used with
care for VR applications.

 readIndex = 0;
 } else if (b == startByte && lastByte == startByte) {
 lastByte = 0;
 } else {
 lastByte = b;
 }
 lock(buffer) {
 buffer[readIndex++] = (byte)b;
 }

 if (readIndex == buffer.Length) {
 readPacket(buffer);
 writePacket();
 readIndex = 0;
 }
 }
 if (p.IsOpen) {
 p.Close();
 }
 }

 // OnApplicationQuit
 // - called once by Unity when the application is stopped normally,
 // or stop is pressed in the editor
 // - this stops the thread
 void OnApplicationQuit() {
 threadQuit = true;
 }
}

http://www.taylorandfrancis.com

529

30
A Tinkerer’s Perspective
on VR Displays
J. Adam Jones
University of Mississippi

In this chapter, we look at virtual reality (VR) displays from a different perspective—that
of the VR tinkerer. As a result, this chapter will be presented in a fairly informal manner.
We will be focusing exclusively on components, hardware, and the effect they have on
display design. Topics to be covered include display panels, optics, physical structure, head-
mounting techniques, and the like. Regardless of your background or foreknowledge, I
hope this chapter will be digestible and insightful.

30.1 � Introduction

The motivation of a tinkerer may be different from your typical academic, scientist, or
engineer, but these groups can, and often do, overlap. I want to take some time to give you
an idea as to why this chapter is perhaps a little less technical and a little more practical
than ones you may have seen elsewhere. Let’s do this by talking about the motivations of
the people who typically work with VR displays.

Academics and researchers are usually tool, or instrumentation, focused. They are often
using VR as a means to study something else. This something else can be almost anything
from brain function to automotive repair. Sometimes they are studying VR itself with the
hopes of improving the technology, but in recent years advancements in VR technology
seem to be coming more rapidly from industry. Since VR is a tool for their work, they are
largely interested in having displays that are well-built, low-hassle, and high precision.

30.1	 �Introduction
30.2	 �Display Panels
30.3	 �Optics

30.4	 �Scaffolding
30.5	� 3D Printing Tips
30.6	 �A Final Note

530 30.  A Tinkerer’s Perspective on VR Displays

Engineers working in the development of VR displays, on the other hand, may be inter-
ested more in producing displays that will fill the needs of gamers, academics, scientists,
or other clients. Some engineers may be more research centric, focusing on pushing the
boundaries of what is possible, but still with the focus of eventually making a product.

Tinkerers, however, tend to be prototype oriented. Their focus is less on making a tool
or a product. Instead, they may be more interested in how far they can get on creativity,
wit, and limited resources. Their prototypes may not be cutting edge technology, but it
will almost certainly be a feat of creative engineering. Best of all, anyone can be a tinkerer
regardless of their day job, though tinkering tends to be an afterhours activity. This brings
up another interesting characteristic of the tinkerer. They do not usually have a lab or a big
budget for their prototypes. These are folks who are doing their work with pocket change
and in their garage, dorm room, or wherever they can find work space. This is the target
audience of this chapter.

We are going to cover the basic components and design considerations that you will
need to build a workable VR display prototype similar to those shown in Figure 30.1.
Often prototypes are not engineered with exacting precision, but with a little bit of fore-
knowledge you can greatly improve the quality of your prototypes. With time, practice,
and some further investigation, you can produce prototypes that approach professional
production standards. This chapter will not get you there by itself, but it will set you in the
right direction and hopefully help you avoid some headache and frustration along the way.

30.1.1 � Diving In
OK, let’s do this—dive into the topic. First, we need to go over some up-front informa-
tion. The VR display type that most people are familiar with is called the head-mounted
display, or HMD for short. An HMD is a VR display that is meant to be worn on your head
like goggles or a helmet. Some folks also call them head-worn displays since this sounds a

Figure 30.1

Students assembling a 3D printed display. You may notice the display’s various compo-
nents: display panel, optics, scaffoling, and other electronics.

53130.2  Display Panels

little less invasive. I can sympathize with this argument, but the acronym HMD is embed-
ded deeply in VR culture. When you’re wearing an HMD, the things that you are seeing
and interacting with are usually called the virtual environment. You will sometimes hear
people use the terms virtual environment and virtual world interchangeably.

What you see in the virtual environment is usually what theater goers call “3D.” I put
this in quotes because it is a little more complicated than that. In computer graphics terms,
anything that shows a picture of a three-dimensional space is considered 3D graphics
(including common on-screen computer games). The “3D” that you get when you watch a
3D movie is something very specific called stereoscopic 3D. This means that you are seeing
two unique views simultaneously, one view with your right eye and another with your left
(stereo = two, scopic = view). This is how most HMDs show 3D virtual environments —
using stereoscopic views. Each eye sees a slightly different view of the world both in reality
and virtual reality. This lets us get more 3D information about what we see than when just
using one eye and results in the “pop-out” effect experienced in 3D movies. There are some
HMDs that show 3D scenes from only one eye’s point of view. These are called monoscopic.
The HMDs that we’re going to talk about in this chapter are all stereoscopic HMDs, but
many of the things we will discuss could easily apply to monoscopic designs as well.

Every HMD has at least three components: an image source, a focusing mechanism,
and a scaffolding to hold them all together. We are going to talk about some of the factors
that you’ll need to consider when dealing with these components and making a design
that will work with them. We will begin by looking at image sources, or what actually
shows your virtual environment. Next, we’ll talk about the kind of optics you’ll need to
make the image of your virtual environment focusable. Finally, we’ll end by going over the
options you have to put these components together into a complete display. Hopefully, by
the end of this chapter, you will be ready to build your own VR display prototype.

30.2 � Display Panels

Virtual reality is largely about being visually immersed in a virtual world. This means that
we will need some way to display images of this world to the user. Before we talk about dis-
playing images in your HMD, let’s take a moment to talk a little about how people see the
world. One of the simplest ways of explaining human vision is to say that our eyes detect
light from the world around us and turn it into a picture that our brains can actually see.
This explanation has three distinct parts. First, the world provides us with light. Second,
our eyes accept that light. Third, our brain interprets the light and tells us what we see (or
at least what we think we see). In virtual reality, we are trying to replace the real world light
with light that we control with a computer. People who study human vision call the light
that enters the eye the optical array. This term makes a lot of sense if you think a bit about
vision. Rays of light enter our eye and they show us the structure of the world around us.
You can think of the optical array as just meaning structured light (optical = light, array =
structure).

We can use a computer to generate a picture of a virtual world using pixels on a display.
These pixels are seen as a 2D array or grid of colored dots of light. This means that our
virtual world is visually composed of a pixel array. This pixel array becomes a synthetic
optical array which we substitute for the real world. Herein lies a problem.… We can have
a nearly infinite number of rays of light coming into our eyes from the real world, but an

532 30.  A Tinkerer’s Perspective on VR Displays

image rendered on a computer has a finite number of pixels. Essentially, we substitute pix-
els for rays of light in virtual reality. This is one of the most important tasks of a VR visual
display, and it relies on the device that you choose to present images through your HMD.

Anything that you can use to display a picture can be used as an image generator for a
virtual environment. We could use video projectors, LCDs, LEDs, lasers, or any number
of devices, but for our purposes we’re going to focus exclusively on LCD panels. Why are
we looking at these? Because we are living in the age of the display panel! In the homes
of most people I know, myself included, display panels outnumber people by at least 2:1.
Take a minute and count the display panels in your home. They are in our TVs, desktop/
laptop computers, tablet devices, smartphones, cameras, thermostats, and many other
things (there is even an LCD panel in my vacuum cleaner). They are an essentially ubiq-
uitous part of life in many places of the world. This has implications for the VR tinkerer.
First, the prevalence of these display panels has driven down their price considerably. For
instance, as of the writing of this chapter, you can easily find lightweight 7” LCD pan-
els with moderately high resolution for under $50 from many online marketplaces. An
example is shown in Figure 30.2. Second, it has also gotten easier to harvest LCD panels
from broken or second hand goods. You may be surprised at the components you’d be able
to harvest from your local second-hand stores. These low-cost, off-the-shelf display panels
have become the workhorse of many VR tinkerers and hardware hackers.

Figure 30.2

A common off-the-shelf LCD panel and its driver board (a). A thin ribbon cable is used to
connect the panel and driver board. A close-up view of the ports available on the driver
board is also shown (b).

53330.2  Display Panels

30.2.1 � Resolution
One of the first numbers that people look at when getting a desktop monitor is screen reso-
lution, or the total number of pixels in the screen. Usually this is given as the number of
pixels along the width of the screen and the number of pixels along the height of the screen
(e.g., 1920 × 1080). In some modern televisions, resolution is described in terms of only
the vertical number of pixels and the ratio of horizontal to vertical pixels (e.g., 1080, 16:9).
When picking a display panel for your project, you will probably be tempted to look for
display panels with the highest resolution. This is a reasonable approach, but it isn’t always
the best approach. Working with VR displays is different than working with computer
monitors or televisions. The difference is in how we use them. For instance, monitors and
televisions usually sit in a room at some stationary position—on a desk, table, or mounted
on the wall. They don’t typically move around much, so if you want to get a look at the
whole screen at once, you stand back, away from it. You could even stand far enough away
that you can’t make out individual pixels on the screen. On the other hand, if you want
to get a close look at something on the screen, you move closer to it. You can get so close
that you can see even individual pixels. How large the pixels appear depends on how close
you are to the screen. This means that the visual angle (how much of your total vision is
covered by something) occupied by a pixel changes based on your viewing position. If you
think of it like that, when you’re standing far from the screen, there are more pixels per
degree of your vision and less when you’re standing closer. This is called angular resolu-
tion, or how many pixels there are per degree of vision. In virtual reality, the display panel
isn’t sitting somewhere your room. It is attached to your head. You cannot get closer, you
cannot get further away. This means that you are more interested in the angular resolu-
tion of your display than the traditional resolution. For this reason, you want to look for a
display that has the smallest, most densely packed pixels that you can get. Why does this
matter so much? When you display a virtual environment, you are creating a volumetric
space that is composed of 3D pixels called voxels. These voxels are the overlap of two pixels
(one seen by the right eye and one seen by the left eye). They define the smallest possible
chunk of 3D space that you can draw (Figure 30.3). The smaller the pixels, the smaller the
chunks of space you can represent, and the better your 3D resolution. For this reason,
depending on what you want your display prototype to do, you may actually prefer to use
a 1280 × 800, 5in display as opposed to a 1920 × 1080, 8in display.

30.2.2 � Estimating Angular Resolution
How exactly can you figure out a VR display’s angular resolution? That turns out to be a
complicated question to answer because of the way most HMDs magnify the view of the
display panel. The optical systems used in most off-the-shelf HMDs do not uniformly
magnify the screen. This causes distortions in the image you see through the lenses mak-
ing the angle subtended by the pixels change across your view! It is much easier to estimate
the average angular resolution if you know the HMD’s pixels resolution and field of view
(FOV). FOV is the total visual angle that one eye can see in the HMD. If you’re trying to
estimate the angular resolution of an off-the-shelf VR display, you’ll want to consult the
manufacturer’s specifications to find the FOV. When manufacturer’s quote field of view,
they often use diagonal field of view or the field of view measured between opposite corners
of the screen (upper left and lower right or upper right to lower left). Once you’ve gotten

534 30.  A Tinkerer’s Perspective on VR Displays

the diagonal FOV and the screen’s resolution, you can estimate the average angular reso-
lution as the ratio of degrees of FOV to the number of pixels across the screen’s diagonal.
We’ve got to do some math for this. Fortunately, the mathematics is pretty lightweight. If
we are estimating angular resolution (Aest), we know the horizontal pixel resolution (px),
the vertical pixel resolution (py), and the diagonal FOV (Fd), then the formula will be:

	 =
+2 2Aest

F

p p
d

x y
	 (30.1)

Sometimes, you may see manufacturers listing total field of view. This usually refers to the
combined field of view of both eyes in the HMD. However, the views of each eye typically
overlap to some degree. When calculating angular resolution, you want to know what
each eye can see, not what both can see simultaneously. This is a common “gotcha” when
estimating a VR display’s angular resolution.

30.2.3 � The Screen Door Effect
Having higher angular resolution also helps in avoiding the screen door effect (Figure 30.4).
The screen door effect occurs when the virtual world appears pixelated almost as though
it is being viewed through a window or door screen. This is largely an issue of the angular
resolution of your HMD, but it is also exacerbated by empty gaps between pixels in your
display panel. These gaps can give the appearance of a literal screen laying atop the pixels
of the display, making low-resolution imagery more noticeable. Fortunately, prototypes

Figure 30.3

An illustration of voxels seen in a 3D display.

53530.2  Display Panels

usually have looser design requirements than production-grade designs. Depending
on what you want to do with your prototype, you might be able to get by with a pretty
modest display panel. Generally, I don’t worry too much about the screen door effect in
a prototype. This is because the effect is most noticeable when you’re looking at a station-
ary image, but this isn’t what you’re usually doing in VR. You’re almost always looking
around, moving your eyes, head, or body. Our visual system is very good at filtering out
visual noise, especially when moving. As such, the power of the screen door effect greatly
diminishes when either the scene or user is in motion. After a few minutes, many people
stop noticing it at all.

30.2.4 � Design Considerations
From the tinkerer’s perspective, your choice in display panel dictates a lot of your design
constraints. This isn’t very surprising since the display panel is a very functionally
important component. It is what actually presents the virtual world to the user. It is also
the single largest component that your design will have to accommodate. Another fac-
tor that must be considered is that the display panel almost always requires a separate
driver board that serves as an interface with your computer (Figure 30.2). Of course, the
panel’s width and height will affect the minimum width and height of your HMD design
as well. Essentially, your design will probably be centered around accommodating the
display panel.

You also have to consider how many display panels you will need. There are generally
two configurations that are seen in HMD designs: one panel or two panel designs. Older
HMDs often had a separate display panel for each of the user’s eyes. In this approach,
a display panel and a focusing mechanism are physically attached to one another and
present a single, monocular view to the user. By necessity, you would have two of these
arrangements (one for each eye). These could then be adjusted independently to align

Figure 30.4

An example of the “screen door effect” at multiple scales. The red highlighted area pro-
vides a close-up view of large between-pixel gaps. The yellow highlighted area shows a
microscopic view of a single pixel. Notice that tiny gaps are present even within the pixel
itself. These can be discerned in very low resolution, high magnification HMDs.

536 30.  A Tinkerer’s Perspective on VR Displays

with the user’s eyes. This is a pretty big advantage because people’s eyes are spaced
differently from one person to the next (typical range is from 58 to 72 mm, average is
63 mm). Since each eye has its own independent, moveable display and optics, the two
panel design could easily accommodate a wide range of users. The disadvantage of this
approach was that you need additional circuitry to drive two display panels, not to men-
tion mechanical parts to adjust for the eye separation. This often leads to either bulkier
HMDs or completely separate display driver boxes to which the HMD must be tethered.
However, as displays and driver boards are getting smaller and cheaper, the pendulum
is swinging back toward the two panel design. Several consumer-level displays are now
using this configuration.

Some modern consumer-level displays, however, opt for using a single display panel
to present both the left and right eye views. As you would expect, the left eye’s view is
drawn on the left side of the screen and the right eye’s view is drawn on the right side
(Figure 30.5). This design has a couple advantages. Since you only have a single display
panel, you only need one driver board which can often easily be packaged in the HMD
itself without need for an external driver box. The second advantage is that it can be
much cheaper! The display panel is likely to be the most expensive part of your proto-
type, so keeping the number of panels low is financially desirable. However, there are
some disadvantages as well. Since you have a single panel, the lenses are usually rigidly
fixed to the panel and not easily adjustable. This makes accommodating a wide range of
eye separations difficult. Additionally, the center of each eye’s view will probably not be
aligned with the center of the viewport on the screen. This can prove to be a more difficult
rendering situation. However, this is more of a software issue that is beyond the scope of
this hardware-oriented chapter. Just be aware that this may be an issue for single-panel
configurations.

Figure 30.5

An example of a 3D scene as shown in a single panel VR display. This arrangement is called
side-by-side stereo.

53730.3  Optics

30.3 � Optics

Once you’ve gotten something that can display an image, you have to make it visible to
the user. The naïve assumption would be that you can just put the display panel directly
in front of the user as you would with a typical monitor, only a lot closer to the face. This
should work, right? Let’s do an experiment right now. Grab a piece of paper with some
writing on it (or even a cellphone with some text on the screen). Now, hold it about 2 in.
(≈5 cm) from your eyes and try to read it. You probably can’t. Why is this? The paper that
you’re trying to read is closer to you than your eyes can actually focus. In order for you
to be able to read the text, you’ll have to move the paper farther away from your eyes.
Depending on your age and vision, this distance might be an arm’s length or more away.
For a head-worn VR display, having the screens this far away from your eyes would not be
reasonable. Since we cannot physically move the display panel very far from your eye, can
we optically move it farther away? The answer, of course, is yes! We can make our displays
look farther away than they actually are by using lenses to bend light. This is the primary
purpose of the focusing mechanisms in VR displays.

In many old-school VR displays (as well as many modern, professional displays), you’ll
find complicated focusing mechanisms consisting of multiple lenses, prisms, beam-
splitters, or mirrors. However, most modern consumer-grade VR displays use a single
lens per eye to focus and magnify the images that you see. Optical engineering is a pretty
heavy subject and can be rather complicated. Fortunately, the astute tinkerer can get by
with some basic knowledge and equipment.

Tinkering with optics can get expensive very quickly, especially if you are shopping
for professional-grade equipment. Fortunately, if you know some basics about how optics
work and where to look, you can do some pretty sophisticated stuff cheaply. Let’s start off
with lenses. The most common kind of lens you’ll most likely be working with are convex
lenses. Most off-the-shelf magnifying glasses are of this type. They are also usually made
from lightweight plastic, very cheap, and widely available (from both online and brick-
and-mortar retailers). This makes magnifying glasses a great source of inexpensive lenses
for VR tinkering. It is no coincidence that some of the early consumer VR displays used
single, plastic lenses like those found in magnifiers. One of the trade-offs for plastic lenses
(especially those harvested from off-the-shelf magnifiers) is that they tend to produce more
distortions in the image. They are often very clear when looking through the middle, but
the periphery may appear less focused, blurry, or even wavy. This can sometimes be attrib-
uted to uneven cooling or other manufacturing problems that would not be evident when
simply using them for their intended purpose. In my experience with off-the-shelf magni-
fiers, glass lenses usually produce better overall images and are only a few dollars more
expensive than plastic lenses. However, glass lenses are usually much heavier than their
plastic counterparts. In the end, your choice of glass or plastic will probably come down
to a tradeoff of weight verses image quality. Take the lenses in Figure 30.6, for example.
The left lens is glass and the lens on the right is plastic. Notice that the image seen through
the glass lens is much clearer around the edges than with the plastic lens, but the plastic
lens weighs almost half (7 g) as much as the glass lens (13 g)! If you are building a display
where weight is important and image quality along the edge of your view isn’t important,
plastic lenses will probably be your best bet. On the other hand, if you’re building a display

538 30.  A Tinkerer’s Perspective on VR Displays

where image quality is more important, weight be damned, you’ll almost certainly want
to go with a glass lens.

30.3.1 � Measuring Focal Length
When shopping around for lenses, you will need to know a couple things. First, what size
lens are you going to need for your project? Lenses tend to come in a several standard
diameters. Common lens diameters that are useful to the VR tinkerer are 50 and 38 mm.
The 38 mm diameter lens is particularly common. The next thing you’ll need to pick is
a focal length. Every lens has a position at which light projected from a very far distance
converges to a single point. Why is this number important? If you’re using a single lens
to focus your display, the focal length is going to dictate the maximum distance at which
you can place your display panel and it still be focusable. When specifying lenses for your
projects, you might also see focal length listed as focal power. Focal power has its own unit
called diopters. Don’t worry though; diopters are just the inverse of the focal length or, in
other words, one divided by the focal length in meters (not millimeters). Since they are
just straight inverses, you can also convert diopters to meters by dividing one by the focal
power. A “gotcha” to keep in mind, however, is that we usually work in either centimeters
or millimeters when building a display, so make sure you are converting your focal lengths
to the correct units.

Figure 30.6

Two off-the-shelf magnifiers, one glass (a), the other plastic (b). The images on the bottom
illustrate the image clarity and distortions.

53930.3  Optics

Since focal length is going to determine the spacing between your display panel and
lens, it is a pretty important number. If you are buying professional-grade lenses from
a well-established optics provider, the focal length provided in their specifications will
probably be pretty close to the true focal length. However, such specifications are seldom
provided with off-the-shelf magnifiers. In this case, you’ll need to measure the focal length
for yourself. It is also a good idea to confirm the focal length of lenses that may have been
purchased from outlets that could be selling ultra-cheap lenses which might not have been
manufactured to exacting standards. I have found some to be off by as much as 20 mm. In
an optics lab, you might do this with an optical mounting rail, a special light source, and
some complicated mounting hardware. Fortunately, we can approximate this setup using
parts that you almost certainly have around your home or office. The trick to estimating
a lens’s focal length is understanding exactly what the focal length is in optical terms.
The focal length is the distance at which parallel light rays entering one side of the lens
converge to a single point on the other side of the lens. That sounds a bit abstract, so let’s
put that in more concrete terms. We can think of parallel rays as being light coming from
a source that is very, very far away (effectively infinitely far) from your lens. The closer the
light source is to your lens, the less parallel they are. The focal length can be thought of as
the distance from the lens at which we get a clearly projected image of light sources that
are very, very far away on the other side of the lens. Now that we know this, we can use a
little trick to estimate the focal length of almost any lens.

I personally recommend working with 38 mm diameter lenses because this type of
lens is common in magnifiers, lens sets, some HMDs, and in ophthalmology. This means
that you can find them almost everywhere! These also work out well when improvising
a mounting enclosure. The standard cardboard tube used with paper towels and other
papers has a diameter of 43 mm (roughly 1.7 in.). As you can see in Figure 30.7, a small

Figure 30.7

An improvised 38 mm lens mount using a slice of a cardboard tube and a large binder clip.

540 30.  A Tinkerer’s Perspective on VR Displays

piece cut from one of these tubes acts quite well as a lens enclosure and includes enough
slack to act as a handle that can be held by a standard binder clip. (Tip: use the arms of the
binder clip to brace the lens in its cardboard enclosure.) This gives us a fairly sturdy rig for
holding our lens. You will also need an object to serve as a projection surface. A notecard
in a binder clip will suffice. You will also need a ruler, preferably metric with millimeter
divisions. Finally, you’ll need to find a brightly lit window with about 6 m (roughly 20 ft)
of space in front of it. Once you’ve gotten all of these things, place your lens (inside its
holder) on your ruler at 6 m from your window with the ruler’s length pointing toward
the window. On the opposite side of the lens from the window, place your notecard. You
will probably see some light blobs projected through the lens onto the notecard. This is the
unfocused image of the window. Slowly slide the notecard along the ruler until the light
blobs sharpen into a focused picture of the window (the image will be upside down, but
this is okay). Figure 30.8 shows an example of what you should see when you’ve found the
focal length. When you find the spot where the image of the window frame is most sharply
focused, write down how far the notecard is from the lens on your ruler. You will want to
repeat this measurement several times and take the average.

The measurement that you now have is going to be very close to your lens’s focal length,
but it is not quite right. Recall that the focal length is the distance at which light coming
from an infinitely far light source converges to a single point after passing through your
lens. Since your window is certainly not infinitely far away, this means that the measured
distance is not the true focal length. However, we can apply a simple correction to this
measurement to get us much closer to the actual value. You could derive this correction
from optics equations, but I will spare you that task. If the average measurement is 93 mm
or smaller, multiplying the measurement by 0.99 and rounding to the nearest millimeter
will give you a very close approximation. For measurements greater than 93 mm, you will
need to perform this correction and then subtract an additional 1 mm. For lenses with
focal lengths of 125 mm or less, this approximation will give you an estimate within 99%
of the lens’s actual focal length. Of course, this is assuming that you’ve taken good, careful
measurements.

Figure 30.8

Here we see an example of the focal length measurement procedure (a) and the window
being used as a focal reference (b). Notice that the projected image of the window on the
notecard appears upside down.

54130.3  Optics

30.3.2 � Ballparking Focal Length
If you do not need very high accuracy, have enough room, or have the patience to do the
above estimation procedure, you can “eyeball” a lens’s focal length using the same setup as
above. Lay your ruler on a flat surface, and place the lens at one end. This time, instead of a
notecard, put a business card (or anything with writing on it) in a binder clip at the oppo-
site end of the ruler. Now, you will need to look through the lens. Your view of the card will
be very blurry. If it is not blurry you either have placed the card too close to the lens or you
have a lens with a very long focal length. If it is the former, make sure you have the card
and the lens as far apart on the ruler as possible. If it is the latter, then this method will not
work well for this lens. Assuming that you see a blurry image of the card, begin to slowly
move the card close to the lens until it becomes sharply focused. The distance at which
your view of the card is sharply focused will be approximately the lens’s focal length. Keep
in mind, however, that this is a very, very rough estimation and will probably be off by
multiple millimeters. This method also assumes that you have either normal (20/20) or
corrected-to-normal (glasses, contact lenses, etc.) vision. Essentially, what you’re measur-
ing is the maximum distance from the lens where light is focused into your eye as opposed
to onto a projection surface as in the previous method. Again, I must emphasize that this
method is only a very rough, ballpark estimate.

30.3.3 � Design Considerations
Though I recommend using the lens’s focal length as the display separation, it can still be
focusable at some distances shorter than the focal length, but only up to a point. The trick
is that by using lenses to focus an image, what you’re really doing is changing the angle
that light enters one side of the lens and leaves the other. By changing the angle that light
enters the eye, you can effectively make light appear to be coming from any distance you
want. When your display panel is placed exactly at the focal length of the lens, the light
entering the eye is composed of parallel rays and appears as though it’s coming from a
very, very far distance, so far in fact that is it effectively infinitely far away. Light that exits
the lens in parallel rays is called collimated (the rays are parallel, forming columns, so
they are collimated. Get it?). Many VR displays are collimated, especially research-grade
displays. This can be an issue though. Not everyone has very good far vision. If you have
normal or corrected-to-normal vision, viewing a collimated image in a VR display will
be no problem. If you happen to be nearsighted, however, then you will still see a blurry
image. For this reason, you may actually want the distance between the display panel and
the lens to be slightly less than the focal length. Conversely, if you move the display panel
beyond the focal length of the lens, the image is not naturally focusable by the human eye
and will be seen as blurry to all users regardless of their visual acuity.

Choosing the separation between the display panel and lens is actually a really big
decision. Why? Think back to what we said about how lenses focus light. They make the
light at some distance appear to be coming from some other distance. Since your lens will
be focusing light coming from your display panel, it will make all light coming from your
display appear to be coming from one fixed distance. This means that your eye will be
focused at that distance no matter at which distance you’re actually looking in the virtual
environment. This mismatch between where you are looking and where your eye is focus-
ing can cause eye strain. To give an analogy, it is like putting on someone else’s glasses

542 30.  A Tinkerer’s Perspective on VR Displays

and looking around. You might be able to see through them, but it makes your eyes feel
weird or even hurt! You want to minimize this mismatch in your VR display. Generally
speaking, collimated images (using the lens’s actual focal length) are pretty comfortable
for most viewing distances except those very close to the eye. However, if you are building
a display where the user will only be viewing imagery that is within arm’s length, such as a
work bench or desktop, then you may want to separate the display and lenses by a distance
slightly smaller than the focal length. Keep in mind, that if you move the display and lens
too close to each other, you’ll end up with a blurry, unfocusable image again. Regardless of
your final decision, you’ll need to know the separation that you will be using before mov-
ing on to designing the rest of your display.

30.4 � Scaffolding

You have probably chosen a display panel and some lens for your prototype display. Now, you
need to think about the part that most people seem to forget even exists—the scaffolding.
This is the part of your display that holds all of your components in place, in particular the
lenses relative to the display panel. Sometimes it is called the case or shell, but I prefer the
term scaffolding. The reason behind this is that the scaffolding does not necessarily need to
enclose the display. Its most important function is providing the structure for your display.
Since you are likely to be tinkering with a prototype that you’ve hacked together, you will
probably be making modifications and additions along the way. The scaffolding will act as
the foundation upon which you make these modifications. Because of this, you will need
to design your scaffolding with that in mind. In this section, we will discuss some helpful
design recommendations that are geared toward 3D printed VR displays.

30.4.1 � Open vs. Enclosed Scaffolding
Your next design choice is whether to have an open or enclosed scaffolding. An enclosed
scaffolding is probably what you are used to seeing (e.g., Figure 30.9a). This kind of scaf-
folding acts both as a framework to hold your components and as a shell to cover and
protect them. Open scaffolding acts simply as the framework to hold your components
(e.g., Figure 30.9b). Both of these have their places. For instance, the enclosed scaffold-
ing is almost certainly what you would want any production display to use. When you
are shipping products out to thousands of users who will be using your display under a
variety of unknown conditions, you want it to be as well protected as possible. However,
the open scaffolding has certain advantages too. If you’re building a prototype display,
having an open scaffolding makes it much easier to access components, make structural
modifications, or just fiddle with things. Since this chapter focuses primarily on building
prototypes, we’re going to talk mostly about open scaffolding.

30.4.2 � Component-Based Design
If you’ve ever made a 3D printed prototype, then you likely know that muddled feeling of
despair, anger, confusion, and utter frustration after having spent nine hours waiting for
a print to finish only to find that you made the smallest error in your design. It might be
just a mistake of a couple millimeters (or even less for things like threading), but the whole
part is completely useless. You now have to modify your model and spend another nine
hours waiting to find out what other mistakes you have made. To make matters worse,

54330.4  Scaffolding

you’re burning through filament! Will you have enough on this spool? No? How far into
the print do you think you can make it on this spool? Four hours, maybe five? Who knows!
It is the worst game of chance ever… I have seen many very good designers struggle with
these issues, each having trash cans filled with failed prints.

I come from a computer science background where component-based design is a big
deal. We are often taught to write programs in such a way as to have individual “compo-
nents” that do specific functions that can easily be built and tested. I like to bring this
design style to building physical prototypes, too. Whenever possible, I recommend opting
to design a display prototype as a series of small interlocking parts instead of a single large
part (e.g., Figure 30.9b). This will often require a little more up-front work when designing
your prototype, but it will save you a lot of printing time and material in the long run. This
idea works really well with open scaffolding style displays. For instance, the open scaf-
folding can consist of a series of individual parts that connect together to form a skeleton
for your display. Conversely, component-based design doesn’t really lend itself to enclosed
scaffolding where it also serves as a shell for the display. If you are using an enclosed scaf-
folding, it usually has to accommodate the mounting of multiple internal parts while also
covering the display’s exterior. This often results in large, monolithic parts that cannot be
easily decomposed. As such, an open scaffolding designed as a series of individual com-
ponents is much more forgiving in terms of print time, filament use, error correction, and
modification.

There are nearly infinite ways to design a display, but there are certain functional com-
ponents that you will almost always see regardless of whether you use open or enclosed
scaffolding. If you take a close look at most VR displays, they almost always have three
basic components: lens mount, display panel frame, and circuit/electronics mount. The
lens mount has the specific job of holding your optics relative to your display panel. Often

Figure 30.9

Examples of enclosed (a) and open (b) scaffoldings.

544 30.  A Tinkerer’s Perspective on VR Displays

this part will also serve as a faceplate, as can be seen in Figure 30.10. Above, you can see
that the lens holder in the enclosed design is a single, large piece that forms the bulk of the
display’s case. In the open scaffolding display, you can see that the lens mount consists of
five individual pieces. While there are five pieces, we only needed to design two models.
We have one model of the faceplate and one model for the legs that attach the faceplate to
the display panel frame. Why one model of the four legs? All of the legs are either rotated
or mirrored copies of each other. If your lens mount is also acting as a faceplate, an impor-
tant design feature that must be included is a significant amount of open space between
the left and right lenses for the user’s nose to sit comfortably.

The display panel frame has the modest, but important, purpose of holding the display
panel stationary while attaching to the lens mount/faceplate. Even in enclosed display
designs, this component is usually separate from the rest of the scaffolding and not part of
the external casing. Regardless of scaffolding type, this can easily be a single part. If you
are designing an open scaffolding, this will probably be your largest single component,
so you might actually want to decompose it into several smaller pieces. For instance, in
the example above (Figure 30.10b, c), the display scaffolding was intended to be part of
a snap-together kit that would fit into a very small box. So that the display panel frame
would fit, I opted to make it into four small parts. In the enclosed scaffolding example, on
the other hand, you can see that this component is a single continuous, rectangular frame
that would fit snuggly around the display panel.

The circuit/electronics mount is the part of your display that will serve primarily as
the attachment point for your driver board. Regardless of display technology, you will
almost always have a circuit board (usually packaged with the display panel) that takes
some standard video input, such as VGA or HDMI, and translates it into the necessary
signals to illuminate your display pixels. An example of this can be seen in Figure 30.2.

Figure 30.10

A deconstructed view of the enclosed (a) and open (b) scaffolding examples.

54530.4  Scaffolding

Usually, there is a single, very thin ribbon cable that attaches this circuit board to the
display panel. Since this cable is pretty fragile, you do not want to leave the driver board
hanging inside your HMD. You will need a way to rigidly attach it to the rest of the display.
In the enclosed design above, the driver board is mounted on the backmost face of the
enclosure. Also notice that there is a small window on the mounting to allow the ribbon
cable to pass to the back of the display panel. It is not uncommon for the electronics of a
display to be mounted in this part of the enclosure, but they are seldom outward facing
as in the example above. In the open scaffolding example, however, notice that the driver
board’s mount is probably the most complicated part of the design. Don’t be surprised if
this is the case for you too. Though display panels and lenses tend to come in standard
sizes, this is not the case for the display’s driver board. They often have unique shapes,
sizes, and attachment points from one manufacturer and model to the next.

30.4.3 � Head Attachments
Once you have completed your display prototype and are satisfied with its function, you
have the task of figuring out how to wear it. After all, these are head-mounted displays.
There are actually several approaches you can take that can be both comfortable and easy
to implement.

People often use ski goggles as an analogy for wearing a VR display (Figure 30.11a).
This is a decent analogy, so it would seem reasonable to use a similar way to attach it to
your head, right? Not always. Most ski goggles attach with a single elastic strap to hold
itself against your face with pressure. This works well for ski goggles since they are pretty
lightweight, but VR displays tend to be a lot heavier. Using a goggle strap results in the
weight of the display being supported partially by the strap and partially by the user’s
nose. This quickly becomes uncomfortable and will likely leave the user’s nose red and
possibly bruised. As such, avoiding goggle-style straps is a good idea unless your display
is exceedingly light.

There is a simple modification (Figure 30.11b), that you can make to the goggle strap
approach that will make the display much more comfortable for the user. By adding a
strap across the top of the user’s head that attaches to the top of the HMD and to the back
of the goggle strap, you lift the weight off the nose and distribute it over the head. This is

Figure 30.11

Examples of head mounting options including ski goggles (a), head straps (b), and rigid
headgear (c).

546 30.  A Tinkerer’s Perspective on VR Displays

generally a comfortable arrangement and can be implemented with as little as two long
hook-and-loop fastener strips. Since this approach will likely have the user’s face in direct
contact with the display, you will need to add some padding to the faceplate. This can be
done with felt or adhesive foam crafting sheets.

Another common method is to take the headgear approach, sometimes referred to as
a halo. This method uses a rigid or semi-rigid harness to strap the HMD to the user’s
head. A common headgear implementation (Figure 30.11c) is to use the straps from an
off-the-shelf welding mask. These straps can be easily found for under $20 from many
online retailers. An advantage of this approach is that the headgear usually comes with a
ratcheting adjustment knob that allows the user to easily adjust the size and tightness of
the attachment.

30.4.4 � Additional Attachments
When building a prototype display, you want to plan for modification. One way that I
like to do this is by adding attachment points in the form of clips along the scaffolding. In
the open scaffolding example above, you can see that the same style clip attachments that
the circuit mount uses are also on the bottom of the frame. Why are they there? I don’t
know—at least not yet! Those attachment points can be used for the next idea you come up
with to accessorize your display. I recommend coming up with an attachment scheme, like
clips, that you can use as a standard on your prototypes. 3D printing also makes support-
ing this idea really easy. I have a model of just the clip attachment point (see Figure 30.12).
I can take that clip model, stick it on any other model, and then print a piece that can have
a new attachment point. This is very useful. Also, adding gaps between parts can be use-
ful in case you need to run small wires, add head straps to your display, or accommodate
some yet unknown accessory.

Figure 30.12

Attachment clip examples. These can be attached to various points on your design to
accommodate accessories.

54730.5  3D Printing Tips

Unfortunately, you will never be able to plan for all possible modifications that you may
want to make to your prototype. Similarly, you might not be sure what modifications you
might want to undo in the future either. For this, you need to work out a sturdy but revers-
ible attachment method. One of the best ways to accommodate unexpected modifications
that may also need to be reversible is good ol’ hot glue. This crafting staple can be your best
friend in a pinch, but it is not perfect. Unfortunately, hot glue is hot… Big surprise, right?
The problem is that many devices are made from plastic, and they can deform or discolor
when heated. On some rough or porous surfaces, hot glue might not want to peel off when
you try to remove it. For this reason, I’m actually not a fan of using hot glue by itself. I
recommend using the combination of masking tape and hot glue. Apply the masking tape
to the surface that you want to make your attachment and then hot glue your accessory to
the tape. This serves several purposes. First, masking tape has an adhesive that is designed
to be removed without damaging the surface to which it is attached (some even have pH
neutral adhesives). Second, it acts as a thermal barrier between the hot glue and the under-
lying surface. In this sense, it works like a pot holder when taking a hot dish from your
oven. Third, it prevents the hot glue from getting embedded into porous surfaces, making
future removal of the attachment much easier.

30.5 � 3D Printing Tips

For prototyping VR displays, 3D printing is an awesome tool. You can go from having no
manufacturing experience to making workable parts without tons of training or financial
investment. I used to draw up designs and then bum shop time from family and friends.
Turnaround time on a usable design could be days or weeks. Now, I can turn out several
revisions of a part in a day! My modest little 3D printer is like having a tiny machine shop
in my garage…just a really finicky machine shop that only works in plastic and runs on
frustration. Don’t get me wrong, I love 3D printing. It has completely changed the way
(and how quickly) I build stuff. If you know its limits and how to work around them, you
can do some really great prototyping. Keep in mind, I’m not a 3D printing guru. I’m just a
computer science geek who likes to tinker. Having said this, I want to share some tips and
tricks that I’ve come across while fiddling around in the garage.

After looking at the display design examples in the previous section, you might be
tempted to go with an enclosed scaffolding for your prototype because it has far fewer
parts. The enclosed design has three parts while the open design has ten! More parts,
more things to go wrong and reprint, right? Also, more parts means more work, right?
Maybe not. Take a closer look at the open scaffolding example. Even though there are ten
total parts to the scaffolding, there are only five unique parts. The rest are either exact
duplicates or mirrors of some other part. This can greatly reduce the amount of redesign
work you will have to do in the future. For instance, if you make a mistake on the legs that
attach to the display panel frame, you probably won’t have to make a new lens holder. This
design style also works well for accommodating changes to your designs. For example,
if you decide to change to a different diameter lens, you’ll only have to modify a single,
quickly printable part of the display.

One of the catches to 3D printing is that you can’t print in midair. This means that
every layer that you print must have something printed below it for support. To allow
you to print models that have overhanging parts, you usually have to print a removable

548 30.  A Tinkerer’s Perspective on VR Displays

support. These supports have to be removed once the print is complete. More often than
not, the removal of these supports makes the surface of your print a little rougher, but this
can be smoothed with a bit of sandpaper. However, this will usually leave the surface of
your print looking scuffed. This is more of an aesthetic problem though. The bigger issue
is that the support structure has to be disposed of once your print is completed. This can
be a big waste of material. Many printers can print slants of around 40 degrees without
the need for support structure. If you design your prototype with this in mind, you can
make remarkably complex parts without the need for additional support structure. For
instance, both of the scaffolding examples pictured earlier were printed without any sup-
port structure.

Another important “gotcha”, especially for those of you who may be new to 3D print-
ing, is sizing your parts. When printing parts that are intended to fit within each other,
snap together, or screw together, you need to account for the sloppiness of 3D printers.
Most additive 3D printers, specifically the kind that use plastic filaments, are essentially
very precise hot glue guns (robotic hot glue guns, but hot glue guns nonetheless). They
melt a tube of plastic and push it through a nozzle onto some surface where the plastic
cools and sticks. Printers are very good at placing the nozzle almost exactly where it needs
to go, but then it has to push out that gooey melted plastic. This is the sloppy part of 3D
printing. Most printers are somewhat calibrated to account for this sloppiness, but it is
affected by a lot of variables. Extrusion speed, nozzle size, tiny clogs, minute variations in
filament thickness, air temperature, and tons of other factors can affect how the plastic is
extruded. Because of this you usually need to account for sloppiness in your prints. For
instance, let’s pretend that you have a peg attached to some larger part that you want to fit
into a hole in another part. You can reasonably assume that the centers of the peg and hole
will be in the correct places, but you usually cannot assume that their diameters will be
correct. In general, regardless of how you are manufacturing your parts, you will almost
always need to very slightly undersize the peg to fit a hole of a given size. The extrusion
slop in 3D printing usually requires you to further undersize your peg. I have had the
opportunity to use several filament-based 3D printers from multiple manufacturers. With
very few exceptions (exactly one), they all needed this adjustment. For very small peg/hole
pairs, you may end up under-sizing the peg to the point that it is no longer a strong attach-
ment point. For these circumstances, you will likely need to slightly oversize the hole in
order to retain some strength at the attachment point.

30.6 � A Final Note

I hope that this chapter has provided some insight into designing a VR display prototype.
Getting started does involve a lot of tinkering and fiddling with your designs, but ulti-
mately you will get the hang of it. I also believe the approach of tinkering with technolo-
gies, like VR, is a great way to learn. Through tinkering with something, you develop a
more detailed understanding of how it works, what it is capable of, where its limits are,
and what new things it could potentially do. This is something that I teach my lab students.
I have noticed, however, that sometimes it can be hard for them to get started, especially
when it comes to building a prototype. Once they get started, however, they almost can’t
stop! It can be fun, challenging, and informative. One important thing that I tell them is
that no matter how well you plan your prototype, your first design will not be your final

54930.6  A Final Note

design. By default, this means that your first design won’t work (at least not the way you
planned). Regardless, just build something to get started. There are some things that you
would never even think of without having first laid hands on your prototype. Don’t be
afraid of errors, failed builds, or design mistakes. Just build something, learn something,
and then build something better.

http://www.taylorandfrancis.com

551

31
Environmental Feedback
for VR Systems
Chauncey E. Frend
Indiana University (IUPUI)

Contemporary virtual reality systems typically offer user feedback in the form of 3D spa-
tialized visuals and sounds. Eye-sight and stereophonic hearing are the two most easily
stimulated human senses in virtual reality (VR) thanks to readily available VR displays
optimized for modern computer graphics and spatial audio. If you ponder the concept
of immersive quality in terms of how realistic a VR experience feels you might find
the immersive quality to be satisfactory in systems like the HTC Vive™ or Oculus Rift
w/Touch™. However, there is always room for improvement. This chapter focuses on prag-
matically engaging a user’s senses beyond the default modes of sight and sound to strive
for much higher physical and mental immersive qualities through multimodal feedback.

31.1 � Background

Presenting environmental feedback for immersive experiences has always been an uphill
struggle, typically relegated to pioneering VR practitioners. Providing a realistic sense of
simple environmental conditions like hot and cold or humid and dry in VR is still rele-
gated as novelty. VR systems using environmental effects are sparse throughout the world
and usually found in expensive theme park installations or some university research labs.

31.1	 Background
31.2	 A Traditional Approach
31.3	 An Updated Approach
31.4	 cy.PIPES™ EFD Control

System Integration

31.5	 Safety Considerations
31.6	 VR Software Integration
31.7	 Custom Environmental

Feedback Effects
31.8	 Concluding Thoughts

552 31.  Environmental Feedback for VR Systems

Existing examples not only demonstrate the possibilities, but also reveal the inflexibility
in how they can be incorporated into VR systems designed for the average VR user.

Among the pioneers of environmental feedback is Morton Heilig with his Sensorama
system [Heilig 1962]. The Sensorama machine still exists and resembles an arcade kiosk
where users watch stereoscopic films ranging from dune buggying, helicopter rides,
motorcycling, and Belly dancing. Each experience was displayed with a wide field of view,
wind effects, aromas, and vibrations. Sensorama users would sit and place their chin in
a fixed position where the machine could display the 3D movie, wind, and aromas to
them as they remain in a controlled pose. With the source footage being on film reel the
multimodal effects were set to happen with known timings which could then be acti-
vated and controlled electromechanically. Each effect was contextually accurate to what
was being shown on the screen. There are many more pioneers in this area not covered
here including Laube Hans [1959], Yasuyuki Yanagida et al. [2003], and Disney Imagineer
Mark Sumner [Moseley 2016] just to name a few.

Often creating a new environmental feedback system feels like one is reinventing the
wheel. This is because multimodal feedback systems are few and far between, and thus dif-
ficult to experience first-hand. Developers often have to develop new hardware and soft-
ware tools within their project cycle consuming considerable time and energy. Solutions
often come to market and fade away. At trade and technical conferences, it is not uncom-
mon to have opportunities to directly experience environmental feedback systems. Good
conferences for these opportunities include IEEE Virtual Reality, Interservice/Industry
Training Simulation & Education (IITSEC), and International Association of Amusement
Parks & Attractions (IAAPA).

As a novel (or “novelty”) area, there is still more research to be done, and many ques-
tions to be answered. For example, questions such as what are the typical fluid dynamics
of wind on a person’s body in common environments and how can this be simulated in
VR? Or, how can the thermal resolution of a multimodal VR system be measured and
optimized? Answering questions like these will lead the VR development community fur-
ther down the road to a more purposeful and prevalent use of environmental feedback
systems within—VR ultimately raising the bar for the state of the art.

31.2 � A Traditional Approach

Two approaches to environmental feedback are to place the transducers on body-wearable
“displays” versus mounting the effects as part of the room environment. Wearable dis-
plays might be used as a means to reduce cost and complexity. The focus of this chapter is
on room mounted multimodal effects.

We will first explore adding a heat effect to a virtual world. Perhaps the virtual world
has a pair of suns on an alien planet which provide warmth from two distinct directions
matching the visuals. Or perhaps there is a dragon blowing fire at a user which should feel
like a blast of hot air from a particular direction. In this example, we will work with the
HTC Vive™ HMD VR system configured with a room tracked space of 3 × 3 m2.

A basic AC heat lamp inside a fixture is easily acquired for less than $15. (We will
address safety issues later in the chapter, which you should read before setting out to imple-
ment this or other examples.) The first issue is that a heat lamp’s effective radiation is only
about 0.5 m so more than one will likely be needed for even coverage. (Space heaters have

55331.2  A Traditional Approach

an effective range of about 1 m, but have a slow response.) A single heat source therefore is
insufficient for a 3 × 3 m2 space. Envisioning the 3 × 3 m2 tracked space of our VR system as
a cube with six sides where the user is allowed to move around freely reveals the difficulty.
As heat in the real world has directionality it should in the virtual world as well. Thus, we
could put four heat lamps and space heaters on each side to provide even coverage of the
cube, but this would be 48 individual heat sources to mount and cable, as well as purchase.

Knowing the content of the VR experiences can mitigate the problem somewhat. For a
virtual sun then there should be heating environmental feedback devices (EFDs) placed above
the user to simulate the virtual warmth. If a dragon will be blowing fire towards the front of
the tracked space, then you can focus on placing the heat EFDs on the front of the tracked
space. There might be some confusion here regarding the tracked space orientation to a vir-
tual dragon. Typically, an HTC Vive™ tracked space has a fixed orientation between the virtual
and real worlds, which can be repositioned through the commonly used teleport feature, but
you could assume the rotation will remain consistent. This might mean that the dragon is
scripted to only blow fire towards portions of the tracked space that have heat EFDs present.

The next issue to consider is how the VR system will control all of the heat EFDs in
synchronization with the other sensorial renderings of the virtual world?

Control solutions fall within the engineering versus software domain. Except for the
“Maker” community, modern software engineers and programmers seldom delve into the
programmatic control of electrical or mechanical systems. Before taking on this challenge
one should know what has been used in the past within the VR community.

Hülsmann et al. [2013] published on the use of a lighting control system known as
the MultiDim MKIII Dimmerpack system which controlled EFDs using serial digital
multiplex (DMX) protocol [DMX 2017] which is common in live entertainment systems.
Deligiannidis and Jacob [2006] published on a research system known as The VR Scooter
where wind and vibrotactile EFDs were controlled using an AR-16 relay interface and
the STA-16 status input interface from the Electronic Energy Control company. This con-
trol mechanism would be typically used by electricians on home or business automation
systems. Programmable Logic Controllers (PLCs) are a type of control solution chosen
for theme park attractions where many PLCs are networked together to control arrays of
EFDs in synchronization with electromechanical ride vehicles and digital displays. Even
prior to the use of VR content the conveyance of ride vehicles in theme parks has long
been orchestrated by PLCs. Thus, the adaptation of PLC software for the control of EFDs
is a natural fit for a theme park engineer. PLC code examples for integrating EFDs within
a VR system remain few and far between. Some VR hobbyists have controlled EFDs using
a USB connected series of mechanical relays called a Phidget™ interface kit. The four or
eight relays available on a kit can each control an AC or DC EFD. Available application
programmer interfaces (APIs) include C, C#, Java, Python, JavaScript, and Max/MSP.

One effort replicated by each of the listed control solutions is the development of a new
driver software. Typically, this driver software is responsible for simultaneously control-
ling the EFDs as well as responding to communications that originate in the VR sys-
tem’s virtual world. Each EFD arranged around the VR system’s tracked space needs to
be recorded into a configuration file that might include location and orientation of the
EFD in relation to the tracked space’s 3D origin. This information may be utilized within
the virtual world or the control system driver to appropriately control EFDs that relate to
environmental stimulus simulated in the virtual world. For example, if wind in the virtual

554 31.  Environmental Feedback for VR Systems

world is only occurring from the front of a user then only the fans located in front of the
user should be activated.

The communications from the VR system are formed by code classes implemented to be
consistent with what the driver code in the control device expects. Events within the virtual
world prompt methods within these classes to assemble packets with commands and other
information that are communicated to the control system. A packet is usually formatted
with rules known as a protocol. For example, a DMX controller uses a protocol known
as DMX512. Similarly, a PLC may be configured to utilize a protocol known as ModBus.
These communications between a VR system and a control system generally occur over a
serial or network connection. In summary, authoring the software layer for an EFD control
solution typically requires code classes for events and communication within the virtual
world, a configuration record of all attached EFDs, and a driver for the control hardware to
receive and act on packets as well as electronically manipulate connected EFDs.

31.3 � An Updated Approach

In the previous sections we discussed some of the decisions that have to be made in order
to extend a VR system with environmental feedback support. Another way to think about
the coverage of EFDs arranged around a user is the way most of us think about surround
sound systems. Standard surround sound systems are marketed as 4.1, 5.1, and 7.1 where
the first number represents the number of mid-hi toned speakers positioned around a
viewing area and the second number indicates the presence of a sub-woofer for low tones.
Each surround sound solution represents a step up in quality for the audio experience.
These systems function based on a standardized design where audio streams are packaged
into channels. The amount of channels used is standardized to match surround sound
systems utilizing 4.1, 5.1, or 7.1 arrangements. For, example a 7.1 surround sound system
will provide a rich audio experience for a user watching any film that supports 7.1 sur-
round sound and eight audio channels are utilized. Seven channels are utilized for mid- to
high-toned speakers and one channel for the subwoofer. Audio technicians also know
the arrangement of each of these speakers around the viewing audience. This standard of
speaker placement and channel design allows for audio mixing to accommodate sound
emitting from different directions in relation to the movie. EFD arrangements may also
be thought of in terms of surround configurations. A standard does not yet exist for envi-
ronmental feedback systems, but as you work with these types of systems you will develop
a sense for your own preferred arrangements. For example, a configuration of EFD cover-
age used for a seated VR experience is shown in Figure 31.1 [Frend 2016]. Four fans are
mounted horizontally around the user from four angles, two heat lamps are mounted
before and behind the user. Finally, a PVC manifold is mounted below the front heat lamp.
This PVC device was custom made to emit scents. This EFD arrangement is generic and
could sufficiently render environmental feedback for many different virtual worlds.

Popular VR systems today are generally not seated experiences and more experimenta-
tion might suggest a generic coverage for typical 3 × 3 m2 tracked spaces or larger. Envision
once again the 3 × 3 m2 tracked space of our VR system as a cube with six sides where the
user is allowed to move freely and consider how you might arrange fans and heat lamps to
support many virtual worlds. This arrangement experimentation can be slow and discour-
aging without an effective EFD control solution.

55531.3  An Updated Approach

An updated approach to controlling EFDs can be found in a cy.PIPES™ device which
was designed with VR developers in mind to enable rapid experimentation. For the rest
of this chapter we will refer to the cy.PIPES™ EFD control solution as our example control
system. This control system is pictured in Figure 31.2 [Cyutil 2017].

Figure 31.1

A seated multimodal VR system.

Figure 31.2

A cy.PIPES™ device used for controlling EFDs.

556 31.  Environmental Feedback for VR Systems

On the top face of the device there are six AC wall outlets as found in North America.
Next to each socket is a light to indicate whether that EFD channel is on, along with a fuse
access cap. On the front of the unit are four USB ports and an Ethernet socket. Inside are
two circuits, the first is a computer system known as a Raspberry Pi 3, which is designed
for embedded computing and has a distribution of Linux installed. The second circuit is a
series of six solid-state relays. This control system is designed to communicate with a VR
system using either a WiFi or a wired Ethernet connection. EFDs are connected to the
outlets on the top of the device and extension cords may be used.

The software layer includes a “Spatial Manager” tool for coordinating a network config-
uration and an EFD configuration. A network configuration stores the unique IP address
and ID number for each control device being used. Multiple control devices can be used
and orchestrated as if they are all a single device. The advantage of using many control
devices will be discussed later on. Within the EFD configuration each EFD is cataloged
by which channel it is plugged into, the type of EFD, location, rotation, and scale of each
device. The process for cataloging the EFD configuration will be discussed later.

The control device has a driver installed that is designed to interface with a Unity 3D
integration plugin. The Unity 3D game engine is one of the most widely used development
tools for VR applications.

31.4 � cy.PIPES™ EFD Control System Integration

This section shows how to setup one particular EFD control solution—one geared specifi-
cally for virtual reality experiences. While this particular implementation is for commer-
cial hardware, the interface software is available as open source [Frend 2017] and may be
explored, and perhaps even extended to other hardware solutions.

Once you have a configured VR system you are now ready to incorporate EFDs using
the cy.PIPES™ control solution. Each control device can support six EFDs from the six AC
sockets on the top of the device. Sketch on a white board how you would prefer to arrange
EFDs around your VR system’s tracked space. Acquire your EFDs, mounting hardware,
extension cords, network cables, and one control device for every six EFDs.

During installation of your EFDs connect each control device with a network cable
prior to the power cable. (Making these connections first will help mitigate network con-
nection issues.) As you plug in EFDs to each control device do not worry about sorting the
order. You only need to make sure each EFD is actually plugged into a control device. The
sorting process will be completed during the EFD configuration process described later.

Once all EFDs are placed and each control device is connected with network and power
cables the next step is to create the network configuration. On your VR computer install
and run the cy.PIPES™ Spatial Manager tool that comes with the system. Figure 31.3 shows
what this interface looks like.

First the Spatial Manager needs to find all the control devices connected to your net-
work. Click the “Run Network Scan” button to find all active control devices on the local
network. This usually takes about 10–30 s (Figure 31.4).

The first control device found will be assigned as the master device and you will see
its IP address and ID number displayed in the Spatial Manager. At this point the control
devices are in a standby mode waiting for the network launch command. The network
launch command orchestrates a series of processes on each control device to link them

55731.4  cy.PIPES™ EFD Control System Integration

to the master control device as children. Click the “Send Launch Command” button to
activate the network configuration on all control devices. This activation prompts each
control device to enter their active state and respond to command packets from the VR
system. The buttons labeled “Master Ch1–6” allow you to sequentially test each channel
on the master device.

Click on the tab below labeled “cy.PIPES Network” and all control devices attached
to your network are listed on the right of the screen. You can manually test each channel
(ch1–ch6) on each unit here by clicking the “ch” buttons. Figure 31.5 shows an image of
this interface. This network configuration process has to be done every time you boot the

Figure 31.3

The cy.PIPES™ Spatial Manager interface.

Figure 31.4

The cy.PIPES™ Spatial Manager interface displaying an IP address and ID number (in green).

558 31.  Environmental Feedback for VR Systems

system because each control device may be assigned a different IP address each reboot.
At this point the network configuration is complete and the next step is to create the EFD
configuration.

Ensure your VR system is configured and functioning before continuing on to the
EFD configuration. On the left side “cy.PIPES Network” screen will be a series of buttons
for various types of VR systems. With your VR system connected click the “RUN: VIVE
Configuration Tool” or “RUN: RIFT+TOUCH Configuration Tool.” This will launch a VR
application that will allow you to configure each EFD’s type, placement, orientation, and
scale. Take a look around. You will see virtual control devices that represent the ones you
have set up in the real world. An example screenshot is shown in Figure 31.6.

To start configuring, aim the ray coming from one of your hand controllers at one of
the buttons labeled “CONFIGURE:” below any of the virtual control devices and pull
the trigger. Now you will configure each channel of this device. Select the “Ch1” but-
ton and notice, when using the HTC Vive™, that the front facing camera turns on and a
menu appears over one of your hand controllers. This experience is not optimized as an
augmented reality tool, but the experience may resemble augmented reality to you. The
purpose of the front facing camera is to help you collocate your hands with the EFD being
configured. Also take notice that the EFD connected on channel 1 of the selected control
device is activated. If you are using the Oculus RIFT™ you will have to peak under the
headset through the nose piece or periodically lift the headset to see EFDs because it is not
equipped with a camera. Figure 31.7 shows an example screenshot.

Your task now is to choose the type of EFD that is on this channel by pointing your
other handset at the menu items shown over the first controller. For example, heat lamps
or space heaters would be the item shaped like a yellow sun for a heat type EFD. Choose
the left wind type for fans. For all other types of EFDs choose Other. The other types
of effects include specialized EFDs like scent emitters, shake motors, or even air blast

Figure 31.5

The cy.PIPES™ Spatial Manager interface displaying attached control devices.

55931.4  cy.PIPES™ EFD Control System Integration

emitters. After making the selection an icon matching the type you selected will appear
near your second controller. You now need to superimpose it as close as you can to the real
world EFD. Once it is placed use the scale slider to approximately match the scale of the
device. Figure 31.8 shows a diagram of this concept.

Once you have completed this, save by selecting “DONE” below the virtual control
device just configured and repeat the process for each channel. Once you have finished

Figure 31.6

Screenshot of the cy.PIPES™ VR EFD Configuration Tool.

Figure 31.7

Screenshot of the cy.PIPES™ VR EFD Configuration Tool with the HTC Vive™ front facing
camera activated.

560 31.  Environmental Feedback for VR Systems

configuring all six channels on a control device select “FINISHED” and repeat for any
other control device. If there is nothing attached to a channel it is ok to skip it. You only
have to do this EFD configuration process once when you first setup your system. The EFD
configuration data will persist on your machine as a configuration file for each cy.PIPES™
system associated by a unique “unit ID” number. Above it is mentioned that the IP address
details for each cy.PIPES™ system may change, so the unique “unit ID” is utilized to recon-
nect to the correct EFDs. You will only need to repeat if you reconfigure your VR tracked
space or rearrange the EFDs around your space. You may make adjustments to single
channels as needed later without harming the entire EFD configuration. Once you have
configured each channel on each unit you can simply close the VR configuration tool.
The EFD configuration data is now saved on your system as a JSON (JavaScript Object
Notation) file which will be used at runtime by any VR application utilizing the cy.PIPES™
Unity 3D plugin.

31.5 � Safety Considerations

Before we move on to talk about building VR applications with EFD control systems here
are a few important safety considerations. The cy.PIPES™ system itself uses high voltage
sockets. Never plug anything into a cy.PIPES™ device that cannot handle 120 V AC cur-
rent. Never take apart a cy.PIPES™ device as the internal components are energized with
high voltage current while powered on. Electric shocks can cause injury or even death.

Figure 31.8

Diagram of placing a virtual fan EFD over a real fan EFD in three-dimensional space.

56131.6  VR Software Integration

Basic EFDs that have been mentioned in this chapter include house fans, heat lamps, space
heaters, and AC shake motors. More advanced EFDs mentioned include scent emitters and
air blasts. These are not off-the-shelf and need to be custom made. This will be discussed
below, but DO NOT attempt to make these yourself unless you are a trained electronics
professional. You are responsible for the results of an EFD you choose. Verify that an EFD
you choose is rated for 120 V AC and 5 A or less. A maximum of 600 W can be drawn
from each channel before the fuse will blow and protect the internal relays. Use caution
when installing heat lamps as they can shatter easily if finger oils are left on the glass bulb.
Also be sure to cover the front of a heat lamp fixture or fan with a metal mesh or guard
to protect users from the hot surface or fan blades. Let your users know before they enter
your VR system of potential hazards like burns and collisions with EFDs. The cy.PIPES™
system offers the capability to modulate, turn on and off, the power outlets using intensity
settings converted to pulse width modulation (PWM). For example, PWM can control
fans to express various wind intensities. It is dangerous to purposely configure an outlet as
a fan type EFD and plug a different type of EFD into this outlet. Applying PWM to EFDs
that are not fans can cause damage to these EFDs or even ignite a fire. Please read and obey
all safety procedures and warnings provided with EFDs and control devices.

31.6 � VR Software Integration

As a new EFD control solution not many VR applications support the cy.PIPES™ device.
This section explains how to integrate cy.PIPES™ support into your own VR application
using the Unity 3D game engine. This section assumes you are proficient with Unity and
have a virtual world you would like to add environmental feedback effects to. Provided
with your control device is a Unity integration package. Import this into your Unity proj-
ect as a custom package. A new folder will become available in your project under Assets/
cyPIPES. Open Assets/cyPIPES/Prefabs and locate the cyPIPES prefab. Simply add this
prefab to your scene’s hierarchy. If you are using the VR plugin known as “SteamVR”
your tracked space object is likely the “[CameraRig]” prefab. Select the cyPIPES object and
in the public field “VR play space obj” located inside the cyPIPESparsePost component
shown in the inspector drag “[CameraRig]” in as the reference. Now your EFD configura-
tion that you created with the VR configuration application will be illustrated in the vir-
tual tracked space. If you press play now and look at your scene view tab you will see lines
much like the ones pictured in Figure 31.9.

What this view shows are the EFD assignments to invisible tiles that represent the six
sides of your VR tracked space. Each EFD is assigned to these sides as individual members
of each tile. The blue lines are raycasts from each EFD toward the center of the tracked
space and the green lines are raycasts from each EFD away from the center. These raycasts
from each EFD pass through at least one of the tiles (sides of the imaginary cube) and this
is how each EFD is assigned to each tile.

The next step is to add virtual environmental effects to your virtual world to trigger
your EFDs appropriately. In Assets/cyPIPES/Prefabs you will find environmental effects
prefabs like “heat_fx_source_cyPIPES.” There is an environmental effect source prefab
for wind, heat, and “other” types of effects. Place one into your scene at an appropriate
place. For example, if you have a virtual fire place a heat source prefab as a child of this

562 31.  Environmental Feedback for VR Systems

fire object and reset its local position to 0,0,0. This should place the virtual heat effect at
the pivot point of the fire object. Next select your heat source prefab and in the inspector
change its range value to a number (in meters) reasonable for the effective range (for exam-
ple 5 m). Make sure your VR headset is within the tracked space and preview your scene.
As long as you are within the effective range of the virtual fire and you have a configured
heat EFD in the direction of your virtual fire any heat EFDs in this direction should be
actively providing heat.

You may place as many virtual environmental effects sources in your scene as you
need. When wind environmental effects are used you can set their range and intensity.
Intensities of 1–3 are supported where an intensity of 1 is a light ambient breeze which
usually signals to a user they are “outside.” An intensity of 2 is a light pulse much like it
feels like when rough weather is forming and an intensity of 3 is fully on which is usually
what it feels like to stand on a windy coastline or riding a motorcycle for example. These
are all observations based on common house fans. Your results may vary if you choose to
experiment with very large fans like industrial units or very small fans. You are making
a sensorial display and the subjective “resolution” of this display is based on the EFDs
chosen and the arrangement you design. Pictured in Figure 31.10 is what can be viewed
in Unity’s scene view tab during preview mode when you have many effects prefabs. Each
effect raycasts a line toward the user and detects whether they are within range and if a
tile has been intersected. These raycast checks will always follow the user. Animating or
scripting movement of a virtual environmental effect source is supported. For example,
if a virtual heat effect is scripted to move through the sky of a virtual environment cor-
responding with the movement of a virtual sun, the heat effect source direction will be
perceived to move with the virtual sun’s movement-assuming heat EFDs are installed in
the VR system.

Figure 31.9

A screenshot from Unity where each virtual EFD is shown as a white square and a blue and
green line is drawn from each (toward and away from the center, respectively).

56331.6  VR Software Integration

Here are a few tips on how to use the plugin in some clever ways. A typical example
might be something like having a dragon that blows fire at a user, whereby you could
attach a heat effect prefab to the dragon’s mouth and script the prefab’s active state with
Unity’s commonly used “GameObject.SetActive(true)” or false to expose the effect only
when the dragon blows fire. A trickier case is when you want wind effect prefabs to appear
as a suction event. For example, an airlock opens on a spacecraft and you want the air
to seem like it is rushing out. For this sensation you can place a wind effect prefab at the
airlock where the air is going out and set its intensity to a negative value like “−3” and the
control system will activate the fans that are located opposite of the side between the user
and the airlock creating the suction effect.

In certain cases, you might want to manually change the behavior of an individual
channel on a specific control device. Located in Assets\cyPIPES\Examples\ManualControl
is a prefab object named “exampleManualfx.prefab.” Place this prefab in your hierarchy,
and then start preview mode. In preview mode you will notice in the inspector with this
prefab selected each control device and each channel is exposed within new components
named “cyPIPES_ManualControl”. Pictured in Figure 31.11 is the inspector view of the
prefab showing three control devices attached. You can individually toggle on and off each
channel with the check boxes next to each channel. These check boxes help you find the
specific EFD that you are trying to control. Once you find it make a note of the seven digit
“unit ID” number.

Next shut off preview mode and open the script component named “exampleMan-
ualControlScript”. This script is shown in Listing 31.1. The purpose of this script is to
demonstrate boilerplate code that turns channel 2 on and off by pressing the spacebar.

Figure 31.10

Screenshot from Unity’s scene view showing virtual environmental effects around the user’s
tracked space.

564 31.  Environmental Feedback for VR Systems

Figure 31.11

The Unity inspector view of the cyPIPES_ManualControl prefab.

56531.7  Custom Environmental Feedback Effects

Line 7 creates the “manualEvent” object that is assigned on line 12. Lines 21 and 24 show
how an individual channel on a specific control device is targeted.

Manually scripting the behavior of channels comes in handy when working with input
devices that should trigger effects. For example, if a VR user is equipped with a virtual
flame thrower the flame thrower could be triggered by a handset button press event and
in this case a specific heat EFD could also be triggered with this button press so that the
virtual flame is felt as ambient heat.

31.7 � Custom Environmental Feedback Effects

The previous sections have covered how to setup commonly acquired EFDs like fans or
heat lamps. An exciting area of multimodal VR is the innovation of new EFDs. The most
sought after custom EFD is a scent emitter. There are many ways to design a system to emit
scents. One way is by using compressed air over vials filled with liquid scents perpendicu-
larly connected to air lines. A control device channel can trigger a solenoid valve rated for
120-V AC current to turn the air flow on and off. The illustration in Figure 31.12 shows
this configuration.

Each airline can deliver a single scent by terminating into a manifold with a constantly
running fan blowing through it. Figure 31.13 shows a user behind an example scent

Listing 31.1.  A Unity code class example for scripting manual channel states in cy.PIPES™ devices.

566 31.  Environmental Feedback for VR Systems

manifold made from PVC piping and a small desk fan is attached to the back wafting the
scents toward the user.

Scent emitters are typically complicated systems like this, but other effects are relatively
simple. To create a shake motor you only need to source an electric motor rated for AC power
and securely attach a small weight to one side of the drive shaft. Attach this motor securely
to the floor or a chair and connect to a control device channel to generate a simple shaking
effect. For example, this effect has been used to simulate what a WWI biplane cockpit feels
like when the defensive machine gun is fired during a VR flight simulation (Figure 13.14).

Figure 31.12

The configuration of a custom scent emitter EFD.

Figure 31.13

A user seated behind a custom scent emitter EFD.

567References

31.8 � Concluding Thoughts

Extending modern day VR systems for environmental feedback is fertile ground for inno-
vation. VR developers need only to experiment with arranging and controlling EFDs to
find new ways to tell better stories, train better technicians, and share educational experi-
ences that allow users to feel like they are somewhere real. Multimodal VR should be more
prevalent and hopefully you now feel empowered to engage.

References

[Cyutil 2017]

cy.PIPES™. Commercial Website. CYUTIL llc. URL: http://cyutil.io/

[DMX 2017]

DMX-512. 2017. Web. 1 Oct. 2017. URL: http://dmx-512.com/.

[Deligiannidis and Jacob, 2006]

Deligiannidis, Leonidas and Robert J. K. Jacob. The VR scooter: Wind and tactile feedback
improve user performance. 3D User Interfaces, 2006. 3DUI 2006. IEEE Symposium on
Proceedings of 3D User Interfaces, Alexandria, VA: IEEE. 2006.

Figure 31.14

A user standing under an incandescent heat lamp feeling warmth coming from a simu-
lated hot air balloon blast valve. Fans surrounding the user provide breezes to simulate the
wind conditions as the balloon’s elevation changes. (Pictured in the bottom right corner is
the user’s perspective of the hot air balloon blast valve in the virtual environment.)

http://cyutil.io
http://dmx-512.com

568 31.  Environmental Feedback for VR Systems

[Frend 2016]

Frend, Chauncey E. (2016). Piazza d’Oro: A VR 4D Tour. YouTube online video clip, 8 Jan.
2016. URL: https://youtu.be/c389W_IDSrg.

[Frend 2017]

Frend, Chauncey E. (2017). CYUTIL/cyPIPES-UnityIntegration-SteamVR. GitHub.
CYUTIL, 01 Oct. 2017. Web. 01 Oct. 2017. URL: https://github.com/CYUTIL/
cyPIPES-UnityIntegration-SteamVR.

[Hans 1959]

Hans, Laube. Motion pictures with synchronized odor emission. U.S. Patent No. 2,905,049.
22 Sep. 1959.

[Heilig 1962]

Heilig, Morton L. (1962). Sensorama simulator. U.S. Patent No. 3,050,870. 28 Aug. 1962.

[Hülsmann et al., 2013]

Hülsmann, Felix, Julia Fröhlich, Nikita Mattar, and Ipke Wachsmuth (2013). Wind and
warmth in virtual reality: Requirements and chances. Proceedings of the Workshop
Virtuelle & Erweiterte Realität, Würzburg, Germany. 2013.

[Moseley 2016]

Moseley, Doobie. DCA interviews: The stories behind the original California Adventure -
Page 4 of 6. https://www.laughingplace.com/w/featured/2016/02/05/dca-interviews-
stories-behind-original-california-adventure/, 06 Feb. 2016. Web. 01 Oct. 2017.

[Yanagida et al., 2003]

Yanagida, Yasuyuki, Shinjiro Kawato, Haruo Noma, Nobuji Tetsutani, and Akira Tomono
(2003). A nose-tracked, personal olfactory display. ACM SIGGRAPH 2003 Sketches &
Applications, San Diego, CA: ACM. 2003.

https://youtu.be
https://github.com
https://github.com
https://www.laughingplace.com
https://www.laughingplace.com

Section X
Building the

Infrastructure of VR

http://www.taylorandfrancis.com

571

32
Virtual Reality System Concepts
Illustrated Using OSVR
Russell M. Taylor II
ReliaSolve LLC
UNC Chapel Hill Computer Science

The immersive nature of virtual and augmented reality systems engages the human visual
system in ways that require wider field of view and lower latency than other 3D computer
graphics systems to provide artifact-free rendering that avoids inducing fatigue and dis-
comfort in viewers. The need to construct consistent transformations between multiple
objects in the system (head, hands, and/or screens) requires a common space. The need to
precisely match the viewing direction requires off-axis projection matrices that are care-
fully matched to the relative positions of the viewer’s eyes and screens. System lens designs
often induce chromatic aberration and nonlinear distortions of the screen images that
depend on the location of the viewer’s eyes with respect to the lenses and the location
of the lenses with respect to the screens. The temporal sampling apertures of tracking
systems and the finite times required to render and scan out the images, together with
operating-system-induced delays, introduce latency between the viewer’s head pose and
the images being displayed at a given moment in time.

32.1	 Common Space
32.2	 Projection and Viewing

Transformations
32.3	 Distortion Correction
32.4	 Handling Latency and

Jitter
32.5	 Frame Sync
32.6	 Predictive Tracking

32.7	 Time Warp
32.8	 Direct Rendering

(aka Direct Mode,
Direct-to-Display)

32.9	 Overfill and Oversampling
32.10	Rendering State
32.11	Conclusion

572 32.  Virtual Reality System Concepts Illustrated Using OSVR

Virtual Reality (VR) systems have developed a set of approaches to addressing these
issues. The result of applying these concepts is a geometric rendering state that describes
to the application how to render each eye. As the visual sense is the primary perceptual
channel exploited by virtual reality systems, that is the focus of this chapter—getting the
visual aspects correct is paramount.

This chapter introduces each of these issues, presenting both theoretical descriptions
and example implementations in the Open-Source VR system (OSVR.org). OSVR is a
universal open source VR ecosystem for technologies across different brands and compa-
nies pioneered and led by Yuval Boger with a core development team at Sensics including
Ryan Pavlik, Jeremy Bell, Greg Aring, Georgiy Frolov, and Kevin Godby. Chapter author
Russ Taylor provided consulting support including developing the RenderManager ren-
dering kit that implements many of the functions described herein. Many others from
the growing OSVR community have contributed to its development. The Apache 2 open-
source and open-hardware licensing for OSVR makes it an effective base for building both
research and commercial solutions.

32.1 � Common Space

To enable proper rendering, the viewer’s head (and sometimes eyes) are tracked. Because
of the need to interact with the virtual world, their hands are also often tracked; indeed, to
enable a feeling of presence, some systems track a whole-body skeleton. In head-mounted
systems the screens are attached to the viewer’s head, in CAVE-like systems they are
located in the real world, and in projection-based systems they are projected onto objects
located in the real world. This section describes the spaces needed to support viewing and
interacting with the virtual world.

As seen in Figure 32.1, VR systems often involve separate devices at different locations.
The computational loads involved, the need for physical separation between cameras and

Figure 32.1

This shows three versions of the Nanomanipulator system that enabled a viewer to see
and touch real atoms and molecules using a scanned-probe microscope [Taylor et al.
1993]. The left image shows a non-VR mode of operation using standard 3D graphics and a
force display pen where only the hand is tracked. The center image shows a magnetically-
tracked head-mounted display system co-registered with a mechanical force-feedback
hand-tracking system (the image seen in one eye is displayed on the screen for collabora-
tors). The right image shows optically tracked glasses with the viewer looking at a stereo
display and using a force-feedback hand-tracking system.

http://OSVR.org

57332.1  Common Space

the objects they are tracking, and the fact that different vendors provide different tracking
systems means that often more than one device is used to perform tracking. An inertial
measurement unit augmented by an external camera may be used to track the head while
a depth camera is used to determine the whole-body skeleton. For screen-based systems,
the screens are necessarily at different fixed locations in the room while the viewer’s head
is tracked separately. A force-feedback device may be used to track the hand and interact
with the world while a camera-based system is used to track the viewer’s head.

Consistent display and interaction requires determining the transformations between
each tracked object in the same coordinate system. Figure 32.2 follows the model in
[Robinett and Holloway1992], which calls this coordinate system Room space, a space that
is rigidly attached to the physical room or vehicle where the viewer is located. Room space
is connected to the Virtual World space in which the application object lives by a trans-
formation that enables the entire VR system to move as a unit in the world. Depending on
the system, displays live in either Room space (fishtank VR, CAVE-like systems) or Head
space (head-mounted displays). The locations of various tracker bases live in room space
and measure sensors that are attached with an offset and rotation to head, hand, and any
other tracked space. Because the application may want to draw things in these spaces
(hand models, indication of camera location), the VR system must make its spaces avail-
able to the application.

Application
Spaces

Tracker

Head

Real World
(Room Space)

Hand

L. Eye R. Eye

Modify this to fly,
scale, or grab world

Virtual World

Measured by tracker

HMD
Screen

CAVE/dome
Screen(s)

HMD
Screen

Sensor Sensor

Figure 32.2

This VR space diagram, reworked from [Robinett and Holloway 1992], shows the spaces
managed by a VR system. Solid lines are determined during system calibration; dashed
lines are updated during viewing (with the application managing its own set of spaces,
which it can modify at will). The large-dot blue transforms (eyes and screens) are used
together to determine the projection and viewing transformations. On some systems, the
eyes may also be tracked, but the transformations described in this chapter ignore this
tracking.

574 32.  Virtual Reality System Concepts Illustrated Using OSVR

32.1.1 � Implementation of Spaces Within OSVR
OSVR is separated into server and client portions, with servers managing devices and
keeping track of semantic paths that provide meaningful names (for example, mapping/
xbox/button/0 to /me/hands/left/fingerTrigger) and that describe how transformations are
nested to provide VR-relevant transformations (for example, mapping /myExternalOculus/
tracker/0 to /me/head).

OSVR is also separated into subsystems: Core and RenderManager are the two that will
be referenced here. Core manages devices, transformations, configuration, and message
passing. RenderManager implements advanced rendering techniques for a number of ren-
dering systems (OpenGL, Direct3D, GLES).

OSVR_Core manages the common spaces within OSVR using one or more osvr_server
processes. Client applications connect to these servers to find out about devices and events.
OSVR uses interfaces to provide access to spaces and other devices, which are accessed by
named paths as shown in Listing 32.1:

Once configured, the client context can be updated. Each call to update reads all mes-
sages from the server and updates the state of all interfaces. This state is only updated
when requested, so that a consistent set of interface states can be used for rendering to all
eyes. Once the context has been updated for a frame, the application can read the state of
any interfaces along with the time at which the state was valid as shown in Listing 32.2:

For trackers that provide them, velocity and acceleration information is also available
in the interface state, supporting predictive tracking.

32.2 � Projection and Viewing Transformations

This section describes projection transformation and the portions of the viewing transfor-
mation required to set the viewpoint. It is adapted from [OSVRView 2016]. It assumes pla-
nar rectangular screens. See the Distortion Correction section below for how to convert
distorted systems (non-ideal lenses, non-planar display surfaces) into the planar model
used here.

Listing 32.1.  Getting an interface to head space.

 OSVR_ClientContext m_context;
 m_context = osvrClientInit("com.osvr.renderManager");
 std::string headSpaceName = "/me/head";
 OSVR_ClientInterface m_roomFromHeadInterface;
 OSVR_PoseState m_roomFromHead; ///< Transform to use for head space
 osvrClientGetInterface(m_context, headSpaceName.c_str(), &m_roomFromHeadInterface);

Listing 32.2.  Reading the head pose state.

 osvrClientUpdate(m_context);
 OSVR_TimeValue timestamp;
 osvrGetPoseState(m_roomFromHeadInterface, ×tamp, &m_roomFromHead);

57532.2  Projection and Viewing Transformations

This discussion ignores the effects of eye tracking, and it also ignores the fact that the
center of projection of the eye is not the same as its center of rotation. (The center of
projection is always along the viewing direction in front of the center of rotation, so the
approximation is slight.) With eye tracking the only change is to move each eye’s position
from the center of rotation of the eye to the tracked center of its entrance pupil.

32.2.1 � Overview
The purpose of the combined projection and viewing transformations are to provide a
geometric description of how to properly project 3D points onto one or more rectangular
planar screens that the viewer is looking at in such a way that they appear to remain fixed
in space as the viewer’s head moves and rotates.

When dealing with fixed-screen displays (head-tracked stereo on a monitor, CAVE
displays, or VR desk designs), the screen remain fixed in room space and the eyes move
around. When dealing with head-mounted displays, each screen moves along with the
eyes and remains at the same location in head space. Although this affects how these loca-
tions are determined, it does not affect the basic mathematics involved or the approach to
determining the viewing transformations.

To make the discussion easier to illustrate and understand, it is presented initially for
the 2D case and then extended into 3D.

32.2.2 � Without Lenses
Figure 32.3 shows the situation without lenses. This matches the case for fixed-screen dis-
plays, but is an approximation for head-mounted configurations. (The case with lenses
will be discussed next.) The transformations can be computed in physical-world units, for
example, meters; they do not depend on the window size in pixels. The location and size
of each screen and all eye positions are all that is needed to determine the projection and
viewing transformations. Methods for determining these locations are described in the
Implementation section.

32.2.2.1 � Projection Transformation

The result of projection is a 2D image on a planar projection surface. To appear correctly
when drawn on the screen, this projection surface needs to be parallel to the physical

Screen

Eye

Pr
oj

ec
tio

n
Di

r.

Figure 32.3

Top view of the projection transformation parameters without lenses. In general, the projec-
tion direction is not the same as the gaze direction towards the center of the screen (off-axis
projection).

576 32.  Virtual Reality System Concepts Illustrated Using OSVR

screen and it must subtend the same region on the retina. It can be moved closer to or
further from the eye, but then must be scaled so that its edges are at the same projected
locations as the real screen. This is easiest to think about in terms of angles and a viewing
direction, which are independent of depth.

It is tempting to project along the presumed gaze direction, which is towards the center of
the screen. However, doing so would project onto a planar surface that is not parallel to the
screen. To make the two parallel, the projection direction must be perpendicular to the screen,
along its normal vector. Note that this will make the center of projection lie outside the screen
if the gaze direction is sufficiently off center. (Another term for this case, where the gaze and
projection vectors differ, is off-axis projection.) Given this unique projection direction, two
angles can be specified, one for each edge of the screen. One rotates the projection direction to
point towards the left edge of the screen (a slight positive rotation in Figure 32.3) and the other
to point to the right edge of the screen (a large negative rotation in Figure 32.3). Chapter 33
provides details of constructing an off-axis projection matrix [Kooima 2019].

32.2.2.2 � Viewing Transformation

The job of the viewing transformation is to place the center of projection at the location
of the eye in Virtual World space (where the graphical objects to be rendered are defined).
This placement requires translating the origin in Eye space to its location in world space
and rotating it so that the negative Z axis in eye space is looking along the projection direc-
tion in world space. Together with the projection transformation, this operation takes 3D
points in world space and projects them onto a virtual screen that is consistent with the
pose of the physical screen compared to the center of the physical viewer’s eye location.

32.2.3 � Going to 3D
Going from the 2D-to-1D projection example above to a 3D-to-2D projection requires
another translation to set the vertical location of the eye with respect to the screen. It also
requires two more rotations. These rotate the world so that the X axis in eye space is paral-
lel to the X axis in screen space (from left to right) and the Y axis is parallel to the Y axis
in screen space (from bottom to top). Together with the Z rotation, this aligns the four
corners of the virtual screen with the corners of the physical screen.

32.2.4 � Implementation
The projection and viewing transformations must ultimately be implemented in the graph-
ics library being used to display the world. These libraries (OpenGL, Direct 3D, Unreal,
Unity, Vulkan, and others) each have their own coordinate systems. Some of the them are
right-handed, and some left-handed. Some have the origin at the upper-left corner of the
screen and some at the lower left. Some have specified world-space units (meters, centime-
ters) and some do not.

The coordinate system used in this chapter matches the OSVR internal coordinate sys-
tem. As with many toolkits, OSVR includes utility adapters to convert its internal represen-
tations of viewing and projection matrices to the formats used by various rendering libraries.

32.2.4.1 � Finding Eye Space

In OSVR, Head space is defined with its origin halfway between the center of rotation of
the viewer’s eyes, with its X axis pointing towards the right eye, its Y axis pointing up out

57732.2  Projection and Viewing Transformations

the top of the viewer’s head, and its Z axis pointing out the back of the head. Getting from
room space to head space is the job of the tracking and interaction systems as described
elsewhere. Getting from head space to eye space for each eye is a matter of translating
along the X axis by half of the inter-pupillary distance (IPD) in +X for the right eye and -X
for the left.

32.2.4.2 � Determining Screen Edges

For head-mounted displays without eye tracking, the screen edges are fixed in eye space.
This means that the projection transformation remains fixed for a given eye as the viewer’s
head moves around the environment so that only the viewing transformation requires
updating.

For fixed-screen displays, the location of each screen must be measured or constructed
such that the locations of its edges are known in room space. The relative position and
orientation of each eye relative to each screen changes between each rendered frame, so
both the viewing and projection transformations must be updated. This is also required
for eye-tracked head-mounted display (HMD) systems.

Because the screens in the HMD are too close for most viewers to focus on, HMD dis-
plays employ lenses to turn the physical screen into a virtual image. The impact of this is
described in the next section.

32.2.5 � With Ideal Lenses
An ideal lens uniformly magnifies or minifies all objects behind it, scaling their size and
distance consistently. As shown in Figure 32.4, this enlarges the screen and moves it fur-
ther away, producing an image of the screen that is parallel to the actual screen but located
behind it. Note that the rays through the lens bend, causing the image to appear larger
than a direct projection would be, yielding a wider field of view.

The algorithm for determining the projection and viewing transforms remains the
same as above, but now all measurements are made from the image of the screen rather
than the physical screen. This is not theoretically challenging, but it is a practical challenge
to determine when the lens parameters are not known because the edges of the screen may
not be visible through the lens. Assuming the lens characteristics and the physical size and

Eye

Im
age of Screen

Screen

Lens

Figure 32.4

An ideal lens magnifies the physical screen and produces a virtual image of the screen that
appears to be much further from the eye. An ideal lens produces a flat, undistorted screen.

578 32.  Virtual Reality System Concepts Illustrated Using OSVR

location of the screen with respect to the lens are known, the location of the image can be
computed. If not, calibration is needed.

32.2.5.1 � Adjustable Lenses

Some head-mounted displays, such as the OSVR HDK 1.2, let the user adjust the location
of the lenses to make room to insert eyeglasses into the display and to adjust the width so
that their pupils stay within the exit pupil of the lens (the region where it behaves like an
ideal lens, sometimes referred to as the eye box).

For an HMD where the lenses can be moved with respect to the screens, the position
and size of the image of the screen move with respect to the eye. As the lens is moved closer
to the screen (further from the eye), the image of the screen appears to get larger, produc-
ing a larger field of view. As the lens is moved to the left, the image of the screen appears
to move to the right. When the lens remains stationary and the eye is moved within the
exit pupil of the lens, the image of the screen appears to remain the same. (When the eye
is moved outside the lens’ exit pupil, additional distortion is seen.)

So long as the viewer’s pupil remains in the exit pupil of the lens, the projection and
viewing transformations should be based on the actual center of projection of the eye
(based on the IPD) rather than based on the nominal center of the exit pupil for the lens
and based on the virtual image of the screen. If the viewer’s pupil goes beyond the exit
pupil of the lens, causing distortion, then the HMD lens locations should be adjusted and
the system recalibrated.

32.2.5.2 � Specification of the Screen

The following describes a compact general description of a screen, for a description of how
to specify these parameters in OSVR configuration files, see the Specifying the screen
subsection of the Distortion Correction section below.

Fixed Rectangular Screen: The specification of a rectangular fixed-screen systems
can be done by specifying the room-space coordinates of the lower-left, lower-right, and
upper-left corners in meters. Because this allows a non-rectangular result, in the case
where the vectors from the lower-left corner to the lower-right and upper-left corners are
not orthogonal, the projection of the upper-left coordinate onto the plane perpendicular
to the vector from the lower-left to lower-right corner will be used as the upper-left corner
(which will reduce the screen height).

Head-Mounted Displays (HMDs): The screens in a head-mounted display may be
mounted at any angle with respect to each other and with respect to the device and the
viewer’s relative eye positions. The lack of a standard for fiducials on head-mounted
displays and the fact that some can be individually adjusted means that no coordi-
nate system can be defined with respect to the HMD itself that will be correct in all
circumstances.

A general solution describes the location of the corners of the image of the screen with
respect to Head space, which has its origin halfway between the center of rotation of the
eyes, its X axis pointing towards the right eye, its Y axis pointing up, and its Z axis point-
ing towards the back of the head. There is a separate definition for each screen. Although
the viewing and projection matrices will depend on the viewer’s IPD, the screen loca-
tion depends only on the lens locations (presuming that the viewer’s eyes lie within the
exit pupils for each lens). As with the fixed rectangular screen each screen is specified

57932.2  Projection and Viewing Transformations

by providing three sets of 3D coordinates: the image of the screen’s lower-left corner, its
lower-right corner, and its upper-left corner. These corners are the locations of the image
of the screen even if those locations are not visible to the viewer through the lenses (this
can make calibration challenging). As for fixed rectangular screens, in the case where the
vectors from the lower-left corner to the lower-right and upper-left corners are not orthog-
onal, the projection of the upper-left coordinate onto the plane perpendicular to the vector
from the lower-left to lower-right corner will be used as the upper-left corner (Figure 32.5).

Specification for HMDs whose lenses introduce distortion, along with fixed curved
screens is described in the Distortion Correction section below. The basic approach is for
the distortion correction to map pixels from the physical display onto an appropriately-
defined rectangular screen that this chapter will refer to a “canonical screen” and then to
specify three corners of this canonical screen (whose corners may or may not be visible)
as described above.

A note on field of view (FOV) calculations: As seen in Figure 32.6, the viewport width
is proportional to the tangent of half of the horizontal field of view, and the height to half
that of the vertical field of view. This means that for non-square aspect ratios, the ratio of
the window width/height is not directly proportional to the ratio of the HFOV/VFOV.
This means that you cannot multiply the horizontal field of view by the ratio of the display
size in pixels to compute the vertical field of view.

For example, the horizontal field of view on the OSVR HDK 1.2 is 90° and it cov-
ers half of the screen (1920/2). It is incorrect to compute the vertical field of view using
90 / ((1920/2) / 1080) = 101.25°. The correct calculation is atanDegrees((tanDegrees(90/2) /
((1920/2) / 1080))) * 2 = 96.73°. The diagonal field of view uses the screen diagonal size in
pixels (1,445) rather than 1920/2 to get a diagonal field of view of 112.8°.

Left Eye

Image of Left Screen

Screen

Lens

Image of Right Screen

Right Eye

Screen

Lens

Origin of Head Space

Head-Space Coordinates

+X
+Z

Head-Space Coordinates

Figure 32.5

The corners of the screens are specified in Head space, whose origin is halfway between the
two eyes with the −Z axis facing forward and the +X axis pointing from the left eye towards
the right.

580 32.  Virtual Reality System Concepts Illustrated Using OSVR

32.3 � Distortion Correction

This section adapts [OSVRDistort 2016] and describes how to remove the effects of distor-
tion caused by curved screens and lenses. Although it is possible to construct lens systems
that do not introduce distortion, weight and cost constraints on HMDs often lead to the
use of lenses that do cause distortion. Removing this distortion can be handled as part of
rendering.

The basic function of distortion correction is to map locations from a rectangular, pla-
nar so-called canonical screen that is defined by the distortion-correction algorithm onto
coordinates within a physical display being viewed through a lens that causes distortion.
This same approach can be used to undistort pixels that are presented on a non-rectangular
or non-planar display (such as a curved TV or a projection that includes keystone or that
is onto a non-planar surface). Note that this transformation can be specified in fractional
screen coordinates in a similar manner to texture coordinates and does not depend on
display resolution—the distortion remains the same even when the number of pixels being
displayed changes.

In the overall rendering process, the projection and viewing transformations take
points in 3D model space and project them onto the rectangular and planar canonical
screen, and then distortion correction adjusts the resulting image to undo the nonlinear
effects of lenses or curved screens used to view it, mapping each point from its canonical
location back into its physical location.

32.3.1 � Approach
The distortion correction is free to select any rectangle as the canonical screen to be
projected on, so long as it properly undistorts images rendered onto that rectangle. We
shall see that the canonical screen should lie in depth within the range of the virtual
image of the real screen to reduce shift in distortion as the eye rotates to look in differ-
ent directions.

Two special cases of distortion correction are presented and then a more general
solution is described.

Half FOV

FOV

Tan(FOV/2)

Figure 32.6

The relationship between the field of view and the display size or pixel count involves twice
the tangent of the half angle. This must be taken into account when converting from
horizontal to vertical or diagonal fields of view.

58132.3  Distortion Correction

32.3.1.1 � Case 1: Curved Screen

Figure 32.7 shows an example of a curved display (like the currently-available OLED TVs)
viewed without a lens from a viewpoint in the middle of the screen along the screen’s
normal at that location. The center of the figure shows a top-down 1D view of the scene
and a first-person view of the screen from the eye’s point of view. Note that the distortion
correction for a curved screen depends on the viewer’s eye position. The more curved the
screen, then more pronounced the effect. This is also true for other forms of distortion.

In Figure 32.7a, the blue screen is the (distorted) screen that would be seen and the
green rectangle is one possible choice for an undistorted canonical screen. We are free to
choose any depth for the canonical screen so long as we adjust its projected size to match
the extents seen in the 2D view—it could be brought closer and scaled down or pushed
back further and scaled up. This particular canonical screen is smaller than the physical
screen—there are locations on the physical screen that are outside the canonical screen.

32.3.1.1.1  Overfill  There are some locations on the physical screen shown in Figure 32.7a
that do not correspond to any location on the chosen canonical screen. This means
that there is no image to be moved to that location. To avoid this, the canonical screen
(green) can be selected so that it completely includes the physical screen, which will pro-
vide a mapping for every point on the physical display (but will also necessarily provide
“wasted” mappings for some points outside the physical display). This example is shown
in Figure 32.7b.

Top view of curved screen

Eye

(a) (b)
Front view of curved screen

Eye

Canonical Screen

Eye

Canonical Screen

Figure 32.7

Two potential canonical screens for a curved-screen display viewed straight on. (a) The
canonical screen is tangent to the physical screen and covers only a subset of the screen’s
surface (it misses the corner regions). (b) The canonical screen is behind the physical
screen and covers the entire screen and a region beyond it.

582 32.  Virtual Reality System Concepts Illustrated Using OSVR

This overfill is also required for other distortions, including radially-symmetric distor-
tions. This is because any non-linear distortion will turn the rectangular boundary of the
screen into a set of curves.

(In Figure 32.7b, the canonical screen is behind the real screen, which will cause the
distortion correction to depend more strongly on eye position. A better solution would
place the canonical screen somewhere within the depths covered by the physical screen,
rendering into offscreen regions as in Figure 32.7b.)

32.3.1.1.2  Correcting the Distortion  Figure 32.8 shows two potential approaches to
undistorting cylindrical projection and describes some reasons that might lead to choos-
ing one over the other.

Pre-distortion and its deficits: Figure 32.8(b) shows an approach that might be taken,
which is to pre-distort the original scene geometry by the inverse of the optical distortion
that will be done by the cylindrical projection so that the resulting rendered image can
be directly drawn on the (blue) physical screen and have the correct projected image. This
requires applying an arbitrary nonlinear mapping to the geometry, which is not easily
done and which the graphics hardware would piecewise-linearly interpolate across tri-
angles. Another way to do this same pre-distortion is to do a standard rendering pass and
then do a second pass where the original (green) canonical texture generated in the first
pass is rendered onto distorted geometry that projects onto the appropriate location on the
(blue) screen. Either approach produces an image that includes a non-linear warping of
the geometry, resulting in an image that cannot be translated or rotated to handle tempo-
ral corrections because of head rotation (see the Time Warp section below).

Post-undistortion: Figure 32.8(a) shows another approach, which is to determine
which point on the canonical screen (green) corresponds to each point on the distorted
real screen (blue). This makes use of the fact that the graphics system can render into a
texture that is handed to the VR system for presentation. During the final render pass,
the texture coordinates for each point are adjusted to read each visible pixel from its cor-
responding location in the green texture. This undistortion can be done in the graphics
library’s vertex shader by producing a dense mesh that has adjusted texture coordinates
per color or in the pixel shader either by applying a function to the texture coordinates
or using a texture map to provide the new texture coordinate per color to map to the
proper location on the screen. This approach has the benefit that the image sent to the

Pre-distortPost-undistort √(a) (b)

Figure 32.8

Two approaches to distortion correction. (a) Construct a map from every point in the real
screen (blue) to corresponding locations within the canonical (green) texture and use this
to pull the correct pixel in the shader. (b) Render pre-distorted geometry texture mapped
with the canonical (green) image into the display (blue), pushing each pixel to its correct
location.

58332.3  Distortion Correction

final rendering pass is still a linear projection, enabling it to work with other techniques
described later, such as time warping.

32.3.1.2 � Case 2: Per-color Radial Distortion

Many lenses have chromatic aberration (a different magnification for each wavelength of
light), resulting in three different distorted images, one per primary color. This distortion
happens in addition to the desired behavior of the lens, which is to magnify the physical
display and to move its virtual image further from the eye so that the viewer can focus on
it. It is possible to make lens systems that are achromatic and produce the same per-color
distortion, but it is also possible to correct for this chromatic distortion within the render-
ing system.

Although the position of the virtual image of the screen for an ideal lens does not
depend on the position of the user’s eye (so long as the eye is in the exit pupil for the lens),
radial distortion does depend on the location of the viewer’s eye. This means that com-
pletely correcting for radial distortion requires accounting for the location of each of the
viewer’s eyes relative to its lens as well as knowing the location of each lens with respect
to its screen.

The following parameterization provides one approach (the one used by OSVR) to
specifying this type of distortion:

•• Center of projection: This provides the coordinates for the location on the virtual
image of the screen where the ray from the center of the viewer’s eye through the
center of projection of the lens intersects it. This is a fractional coordinate from
0-1 in each axis, with the lower-left corner of the screen being (0,0) and the upper-
right being (1,1).

•• Distance scales: Because distortion correction depends on both the lens geom-
etry and the screen geometry and may not be directly related to the viewport size
or aspect ratio (for lenses that expand more in one direction than the other), one
must specify not only the radial distortion polynomial coefficients (which scale
powers of the distance from the center of projection to the point), but also the
space in which this is measured. This is specified as the number of unit radii in
the space the parameters are defined in that span the texture coordinates, which
range from 0 to 1. This can be different for X and Y, as the viewport may be non-
square and the lens system may make yet a different aspect ratio. There are sepa-
rate D components for width (DX) and height (DY).

•• Per-color coefficients: A set of polynomial coefficients can be provided for each
color. The coefficients can specify the new radial displacement from the center of
projection as a function that scales the original displacement. The first coefficient
in each polynomial is a constant factor (multiplied by offset^0, or 1), the second is
the linear factor, the third is quadratic, and so forth. There can be as many coef-
ficients as desired.

•• The coefficients for R, G, and B; the Distances for X and Y; and the center of pro-
jection (COP) may be specified in any consistent space that is desired (scaling all
of them linearly will have no impact on the result), but the lower-left corner of the
space (as viewed on the canonical screen) must be at (0,0) and upper-right must
be at (DX,DY).

584 32.  Virtual Reality System Concepts Illustrated Using OSVR

The parameters for each color specify the new radial displacement from the center of pro-
jection as a function of the original displacement. Listing 32.3 shows how to calculate the
distorted location based on an original location and the above parameterization:

Examples: (1) For a display 10 pixels wide by 8 pixels high that has square pixels whose
center of projection is in the middle of the image, we would get: D = (10, 8); COP = (0.5,
0.5); parameters specified in pixel-unit offsets. (2) For a display that is 6 units wide by 12
units high, but whose optics stretch the view horizontally to produce a square viewing
image with pixels that are stretched in X, we could have: D = (12, 12); COP = (0.5, 0.5);
parameters specified in vertical pixel-sized units or D = (6,6); COP = (0.5, 0.5); parameters
specified in horizontal pixel-sized units.

32.3.1.3 � More General Solution: Using a Screen-Point-to-Angles Table

Suppose that either through direct measurement with a camera or through ray-tracing in
the optical design for a head-mounted display, you produce a mapping between physical
points on the display screen and angles from the center of the eye, for a given IPD. This
mapping can be arbitrary, so long as it is a mathematical function (does not contain folds)
and it may be an unordered set of points. Assume that angles are specified in degrees
from views looking along the -Z axis in head space (straight forward) and the positions
on the display are specified as distances in millimeters from the point on the display that
corresponds to the point that would be see at angle (0,0). Further, assume that the focal
distance to the virtual image of the real screen is around 2 m (some portions being closer,
and some further). An example of this is shown in Figure 32.9.

32.3.1.3.1  Step 1: Determine a Canonical Screen that Spans the Physical Screen  The eye-
space location of each point is computing using polar coordinates, using the 2-m focus
estimate as the radius. The longitudinal angle is assumed to have positive spin around the
Y axis with 0 facing forward along the –Z axis and the latitudinal angle is assumed to be
positive when rotating up towards the +Y axis.

The X screen-space extents are defined by the lines perpendicular to the Y axis passing
through:

•• Left: the point location whose reprojection into the Y = 0 plane has the most-
positive angle (note that this may not be the point with the largest longitudinal
coordinate, because of the impact of changing latitude on X-Z position).

Listing 32.3.  Calculating radial distortion.

 // Orig is the (x,y) coordinate specified with X in (0..Dx) and Y in (0..Dy)
 // COP is the center of projection specified in normalized screen coordinates (0..1) for X and Y
 // D is (Dx,Dy) as described above
 // Final is the radially-distorted coordinate
 Offset = Orig – COP*D; // Vector, component-wise multiplication
 OffsetMag = sqrt(Offset.length() * Offset.length());	 // Scalar
 NormOffset = Offset / OffsetMag; 	 // Vector
 Final = COP*D + (a0 + a1*OffsetMag + a2*OffsetMag*OffsetMag + ...) * NormOffset; // Location

58532.3  Distortion Correction

•• Right: the point location whose reprojection into the Y = 0 plane has the most-
negative angle (note that this may not be the point with the smallest longitudinal
coordinate, because of the impact of changing latitude on X-Z position).

The Y screen-space extents are assumed to be symmetric and correspond to the lines paral-
lel to the screen X axis that are within the plane of the X line specifying the axis extents
at the largest magnitude angle up or down from the horizontal. This is the point with the
largest-magnitude Y value when it is projected into the plane of the screen as determined
by the X screen-space extents.

Because the projections of all points in the set will lie within these screen-space extents,
no points from outside this region correspond to any point on the physical screen. If the
mapping provides angles for each point on the physical screen, there will be a point on the
canonical screen to map to. If not all points on the physical screen have mappings, it may be
necessary to overfill the render region to provide them (see the Overfill section below).

Figure 32.9

A mapping from real-world angles to physical-display locations drawn on top of a rectan-
gular physical display on which is drawn an image distorted by its inverse so that it will look
correct when viewed through the lens. Each blue dot represents one sample of the map-
ping. Dots that lie outside the rectangle will not be visible on the display. Black areas in the
display are outside the mapped region so either are not visible through the lenses or must
have their distortions extrapolated from dots within the region.

586 32.  Virtual Reality System Concepts Illustrated Using OSVR

Note: The approach described above will only work for displays whose fields of view do
not extend 90° from forward in either the nasal or distal orientation. (Planar projection in
general will only work for displays whose monocular horizontal field of view is less than
180°. Displays with larger fields of views will need to be rendered using multiple projections
that are stitched together.) For displays that have fields of views less than 180° but which
extend beyond 90° distal, the reprojection must be done not on the Y = 0 plane but on a
plane rotated away from the nose such that all displayed angles pass through it. A similar
rotation vertically could be used to handle displays that are asymmetric about the X axis.

32.3.1.3.2  Step 2: Mapping from Physical Screen Coordinates  Given points in the physi-
cal screen, the distortion map provides the coordinates of the corresponding point on the
canonical screen. This determines the appropriate point to display at this location on the
screen. This is calculated in two steps:

•• Step 2A: Map from physical-display coordinate to angle using the provided table.
•• Step 2B: Map from angle to canonical-screen coordinate by projecting the ray

from the eye onto the plane of the canonical screen. Then determine the screen-
space X and Y coordinates (X = 0 at left and 1 at the right, Y = 0 at the bottom and
1 at the top).

Doing this mapping for points other than those specified in the table requires interpola-
tion for display points between those specified and extrapolation for points outside their
convex hull.

32.3.1.3.3  Implementation of Distortion Calibration within OSVR  The above proce-
dure is implemented in the angles_to_config program in the OSVR Distortionizer project
[OSVRAngles 2017]. Additional details (described below) are needed to describe the gen-
eral results above in a manner usable by OSVR.

Specifying the screen in the server configuration file  The current OSVR display
description includes the specification of a horizontal field of view, a vertical field of view, a
center of projection (which is the normalized location on the screen where the line through
the eye point perpendicular to the screen pierces the screen) and a percent overlap (which
is related to the rotation of the screens around the Y axis).

Figure 32.10 shows some of the relevant parameters. Following it, the entries in the
OSVR server configuration file are specified, along with a description of how to compute
each of their values.

•• display/hmd/field_of_view/monocular_horizontal: This value is computed as if
the screen is being viewed by an eyepoint located along the line perpendicular
to the center of the screen. We determine it using the half-screen width and the
perpendicular distance from the origin to the plane of the screen.

•• display/hmd/field_of_view/monocular_vertical: This value is computed as if the
screen is being viewed by an eyepoint located along the line perpendicular to the
center of the screen. We determine it using the half-screen height and the perpen-
dicular distance from the origin to the plane of the screen.

58732.3  Distortion Correction

•• display/hmd/field_of_view/overlap_percent: This percentage is computed as if
the screen is being viewed by an eyepoint located along the line perpendicular
to the center of the screen and as if both eyes were co-located (IPD = 0). (Note;
the resulting viewing transform does not make this assumption, just the current
algorithm to map from overlap_percent to angle.)

•• display/hmd/eyes[0]/center_proj_x: This location is computed as the fraction of
the distance from the left side of the screen to the right side where the line through
the eye perpendicular to the screen crosses the screen. This value subtracted from
1 is used in eyes[1]/center_proj_x.

•• display/hmd/eyes[0]/center_proj_y: Because there is currently no way to specify
screens that are tilted up and down with respect to the Y = 0 plane, this value is
always 0. The value of eyes[1]/center_proj_y is also 0.

Producing the distortion map in the server configuration file  The configuration file for-
mat allows the specification of a variety of distortions, identified by the display/hmd/distor-
tion/type variable. If the red, green, and blue components of the distortion are all the same, the
type mono_point_samples can be used. This means that we need to specify just one distortion
mesh, which maps from normalized (X,Y) coordinates in a the physical display ([0,0] at the
lower-left corner, [1,1] at the upper right) into normalized coordinates in the canonical screen.

We compute the input normalized coordinates for the mesh by normalizing the table’s
display coordinates to convert them from millimeters to screen fractions, subtracting the
coordinates of the lower-left corner of the screen and dividing each axis by the screen
dimension. We compute the output coordinates as described in Step 2.

We then store the unordered set of points into the display/hmd/distortion/mono_point_
samples array, which has a vector of elements, each of which has two elements, the first of
which is the 2D coordinates in normalized physical-screen coordinates and the second of
which is the 2D coordinates in the canonical-screen coordinates.

Eye

St
ra

ig
ht

-a
he

ad
 v

ie
w

Center of projection (perpendicular to canonical
screen)

Figure 32.10

Configuration of an HMD with a curved screen that is rotated to provide a larger distal field
of view. The eye location is not in the center of the screen, resulting in an off-center pro-
jection. The angle between the projection and the straight-ahead view is specified in the
overlap_percent parameter in the OSVR configuration file.

588 32.  Virtual Reality System Concepts Illustrated Using OSVR

An example output, which is a partial description of an HMD, is shown in Listing 32.4.
It provides the identity mapping.

The OSVR RenderManager uses this set of unordered point samples to compute a
mesh by using a bilinear fit to the nearest 3 non-colinear points to determine each of
the coordinates for each point in space that must be sampled to produce a mesh with the
specified number of points.

32.3.1.3.4  Implementation of Distortion Correction within OSVR  As shown
in Figure 32.11, distortion correction is implemented within the Sensics OSVR-
RenderManager component [OSVRRenderManager 2017] by storing a set of texture
coordinates for each color with each vertex in the mesh that describes the virtual screen
rectangle as shown in Listing 32.5:

Listing 32.4.  HMD general distortion configuration file example.

 {
 "display": {
 "hmd": {
 "distortion": {
 "type": "mono_point_samples",
 "mono_point_samples": [
 [[0,0], [0,0]],
 [[1,0], [1,0]],
 [[0,1], [0,1]],
 [[1,1], [1,1]]
]
 }
 }
 }
 }

(-1,-1)

(1,1)

Normalized Physical screen

Border of green distortion

Canonical screen

(0,0)

(1,1)

O
ve

rf
ill

 re
qu

ire
d

to
re

nd
er

 th
is

po
rt

io
n

Figure 32.11

OSVR uses a regular mesh to describe the mapping from normalized physical-screen coor-
dinates to texture coordinates within or beyond the Canonical screen. The green map is
shown here; there are separate maps for red and blue. The green arrows show the mapping
from original (base) to distorted (arrow end) for a subset of the points on a mesh; the curved
line shows the mapping for the border of the mesh.

58932.3  Distortion Correction

The (X,Y) coordinates describe the normalized physical-screen-space location of ver-
tices that span the range −1 to 1 in X and Y; four vertices are sufficient to describe a linear
transformation but more are needed to describe distortion. The (U,V) texture coordinates
describe the relative location within or beyond the canonical screen to look up the color
associated with that vertex location in the physical screen and they are linearly interpo-
lated by the graphics library between the vertices. The lower-left corner of the canonical
screen is at (0,0) and the upper-right is at (1,1). See the Overfill section for how points
outside this range are handled.

Each rendering library (OpenGL, Direct3D, etc.) implemented in OSVR passes these
coordinates to its vertex shader, where they are used to look up the location within the
texture map associated with each eye. The OpenGL GLSL vertex shader program to per-
form this lookup (along with the projections used to handle projection, viewing, and time
warp) as shown in Listing 32.6:

Listing 32.5.  Distortion mesh structure.

 /// 2D float data, like a texture coordinate for example.
 using Float2 = std::array<float, 2>;
 /// Describes a vertex 2D position plus three 2D texture coordinates.
 class DistortionMeshVertex {
 public:
 DistortionMeshVertex(Float2 const& pos,
 Float2 const& texRed,
 Float2 const& texGreen,
 Float2 const& texBlue)
 : m_pos(pos), m_texRed(texRed), m_texGreen(texGreen), m_texBlue(texBlue) {}

 // Flips a texture coordinate that is in the range 0..1 so that
 // it is inverted about 0.5 to be in the range 1..0. Useful for
 // flipping OpenGL Y coordinates into Direct3D ones.
 static float flipTexCoord(float c) { return 1.0f - c; }

 Float2 m_pos; //< X,Y
 Float2 m_texRed; //< U,V
 Float2 m_texGreen; //< U,V
 Float2 m_texBlue; //< U,V
 };

 class DistortionMesh {
 public:
 std::vector<DistortionMeshVertex> vertices;
 std::vector<uint16_t> indices;
 };

Listing 32.6.  GLSL Vertex Shader implementing distortion correction and timewarp.

#version 100
attribute vec4 position;	 //< Homogeneous coordinates for a canonical screen vertex
attribute vec2 textureCoordinateR;	 //< Distorted red texture coordinates for this vertex
attribute vec2 textureCoordinateG;	 //< Distorted green texture coordinates for this vertex
attribute vec2 textureCoordinateB;	 //< Distorted blue texture coordinates for this vertex
uniform mat4 projectionMatrix;	 //< Used to correct for overfill
uniform mat4 modelViewMatrix;	 //< Used to handle display scan-out orientation, Y inversion

590 32.  Virtual Reality System Concepts Illustrated Using OSVR

The corresponding fragment shader is shown in Listing 32.7:

The tex sampler is the texture passed by the application that represents the eye being
rendered. The red, green, and blue coordinates are independently warped by their respec-
tive distortion meshes and then reassembled into the fragment color.

32.4 � Handling Latency and Jitter

Many system latencies combine to produce “motion to photon” delay: tracker sensor
delays, tracker finite sampling rates, transmission delays, and synchronization delays on
the input side; finite rendering time, O/S and driver buffering delays, reformatting delays,
and scan-out delays on the output side. Because of these delays, the poses available to
construct the projection and viewing transforms when initiating rendering for a frame
differ from the poses that each eye will have when display scan-out happens for that frame.
Additionally, for some displays (e.g., HMDs that scan out in portrait mode), the delay for
the right eye is different from that for the left eye.

Holloway showed in [Holloway 1995] that for normal head motions when observing an
object of interest at a distance of around 1 m, each 1ms of total system delay produces about
1mm of offset error in physical space—in a calibrated system errors caused by latency far out-
weigh all other sources of alignment error. Furthermore, this delay causes motion-dependent
“swimming” of the world, which is a major source of discomfort for viewers. During the
~16 ms scan out of a screen at 60 Hz, objects move approximately 1.6 cm; typical graphics
pipelines not designed for VR add up to two additional frames of latency, causing objects to
move considerably, and the world to swim uncomfortably, when this is not dealt with.

Listing 32.7.  GLSL Fragment Shader implementing distortion correction and timewarp.

#version 100
precision mediump float;	 //< Sets floating-point precision used
uniform sampler2D tex;	 //< Texture map with image from canonical screen
varying vec2 warpedCoordinateR;	 //< Warped texture coordinate for red channel
varying vec2 warpedCoordinateG;	 //< Warped texture coordinate for green channel
varying vec2 warpedCoordinateB;	 //< Warped texture coordinate for blue channel
void main()
{
 gl_FragColor.r = texture2D(tex, warpedCoordinateR).r;
 gl_FragColor.g = texture2D(tex, warpedCoordinateG).g;
 gl_FragColor.b = texture2D(tex, warpedCoordinateB).b;
}

uniform mat4 textureMatrix;	 //< Used to implement time warp
varying vec2 warpedCoordinateR;	 //< Transformed red texture coordinate for fragement shader
varying vec2 warpedCoordinateG;	 //< Transformed green texture coordinate for fragement shader
varying vec2 warpedCoordinateB;	 //< Transformed blue texture coordinate for fragement shader
void main()
{
 gl_Position = projectionMatrix * modelViewMatrix * position;
 warpedCoordinateR = vec2(textureMatrix * vec4(textureCoordinateR,0,1));
 warpedCoordinateG = vec2(textureMatrix * vec4(textureCoordinateG,0,1));
 warpedCoordinateB = vec2(textureMatrix * vec4(textureCoordinateB,0,1));
}

59132.5  Frame Sync

Furthermore, this delay is not constant: unless steps are taken to synchronize the
tracker sampling and rendering to the actual image scan-out, the delays shift over time
and cause the scene to appear to jitter back and forth. An extreme form of jitter is when the
graphics update rate does not keep up with the display refresh rate. All jitter is perceived
as doubled images, which is quite distracting.

VR systems employ several techniques to deal with this latency and jitter, including
Frame Sync, Predictive Tracking, Time Warp (synchronous and asynchronous), and
Direct Rendering. Each of these is described below. Not all techniques are employed in
every system, but they can be combined to provide a superior experience.

32.5 � Frame Sync

The underlying rendering and display scan-out circuitry usually runs at a fixed refresh
rate, somewhere between 60 and 90 Hz. The currently available frame is scanned out
whether or not there is a new image to be displayed, and independent of the rendering
initiation or completion time. Thus, for long renders an old image may be repeatedly dis-
played. This section describes how to synchronize rendering with scan-out.

In the case of a single shared buffer between the rendering and scan-out circuitry,
so-called single buffering, this can result in tearing artifacts when the rendering system
clears and then updates the shared buffer while scan-out is occurring—causing neighbor-
ing scan lines to be rendered from different frames (a temporal discontinuity—or tear
between scanlines). To avoid this tearing in single-buffered mode one must ensure that
all buffer clearing and rendering take place during the vertical blanking time at the end
of each frame.

A more robust approach to avoiding tearing is to used double buffering (or triple buff-
ering), in which case the rendering system is drawing to one buffer while the previously-
rendered buffer is being scanned out. Once the renderer completes a frame, it swaps which
buffer is to be displayed at the next scan-out and then gets to work rendering the next
frame. Double buffering greatly increases the amount of time available for rendering a
frame; rather than the small fraction of a frame within the vertical blanking, it can now
take an entire frame (or more) to render an image without causing tearing. It also enables
seamless decoupling between the rendering loop and the display loop—so long as the
rendering does not get more than one frame ahead it will never cause tearing because
the frames are swapped out during vertical retrace. The frame-display portions of graph-
ics libraries often provide a way for the application to stall when it would be two frames
ahead, waiting until the current frame has finished scanning out before swapping the
buffers and returning.

To remove the jitter caused by a variation in the relative timing of render start and the
next display scan-out, the application or VR library needs to know when the next scan-
out is coming. One approach is to always render ahead so that the graphics library always
stalls before returning a new buffer. This approach has the deficit that it starts the new
rendering a whole frame before that frame will be scanned out, rendering it with pose
information that will be a whole frame behind when scan-out starts. It also does not apply
in cases where the application’s frame rate cannot keep up with the display frame rate.

Another approach is to use an operating-system-dependent barrier or timing-request
function to find out when the next vertical retrace is going to happen, or to find out when the

592 32.  Virtual Reality System Concepts Illustrated Using OSVR

last one has happened (and with the knowledge of the refresh rate compute when the next
scan will happen). The application can thus schedule rendering onset such that it will com-
plete just before the next frame is ready to scan out. In this case, double buffering does not
add latency because the buffers are being swapped immediately before being scanned out.

There is a subtle remaining issue that is discussed further in the section on Time Warp;
different parts of the display scan out at different times. To support intra-frame time warp,
the time that the line in the center of the display scans out should be chosen for each eye.

32.5.1 � Implementation in OSVR
Frame sync behavior is implemented in the Sensics OSVR-RenderManager
[OSVRRenderManager 2017] using different approaches for different situations. The
OpenGL and Direct3D11 native code paths are currently implemented using the Simple
Directmedia Library (SDL) [SDL 2017] to obtain windows, and it calls SDL_GL_
SetSwapInterval(1) to enable vertical sync, which causes frame presentation to block
until vertical sync before returning. (The user can also supply their own windowing
library in place of SDL2, and an example using Qt is provided in the source code.)

On its direct rendering display paths, OSVR uses either vendor-provided routines or
observes when vertical syncs happen using OS hardware queries and informs the applica-
tion of this timing information by providing a timing function that returns the structure
shown in Listing 32.8:

The application can then busy-wait on this value until it has sufficient time to complete
rendering before querying the current tracking pose and initiating the render. At least
under the Windows 10 operating system, busy waiting must be performed rather than
sleeping because the operating system does not reliably return with a granularity of less
than 10 milliseconds. Because each eye may have different timing, the query includes a
parameter telling which eye is being rendered. Listing 32.11 in the time warp discussion
shows the implementation for waiting for render completion.

32.6 � Predictive Tracking

The inertial measurement units included in many VR tracking systems provide direct
measurements of positional and (acceleration and rate of rotation). The Kalman and other

Listing 32.8.  Render timing information structure.

 typedef struct {
 /// Time between refresh of display device
 OSVR_TimeValue hardwareDisplayInterval;

 /// Time since the last retrace ended (the last presentation)
 OSVR_TimeValue timeSincelastVerticalRetrace;

 /// How long until the app must send images to RenderManager
 /// to display before the next frame is presented.
 OSVR_TimeValue timeUntilNextPresentRequired;
 } RenderTimingInfo;

59332.6  Predictive Tracking

optimal estimation filters used to perform sensor fusion on the tracking systems can also
estimate these derivative estimates along with the location and orientation. The resulting
state vector can be used to estimate a pose (location and orientation) at points in time other
than the present, such as the expected future time when the next frame to be rendered will
be displayed. Ron Azuma showed that such predictions can improve tracking for delays of
up to about 80 ms [Azuma 1995]. This section describes how to harness predictive track-
ing to reduce perceived latency.

This estimation is done by standard physics-based double integration of acceleration
and single integration of orientation changes over the time difference between the start
of rendering and the expected scan-out. This estimation should be done separately for
each eye because scan-out often does not start at the same time for each. Because of finite
display scan-out time, it is advisable to calculate the delay to the center of the scanned-out
image rather than to its beginning.

The prediction interval can be made very accurate with respect to the system input
latencies when all data is properly time-stamped from a consistent, system-wide (cross-
component), frame of reference for time. If the system is using frame sync, either by que-
rying for the upcoming scan out time or by always commencing rendering just after a scan
out, then the prediction interval can also be made very accurate with respect to the output
latencies. (Because the rendering latencies usually dominate the end-to-end system laten-
cies, and because only the rendering system has access to up-to-date frame sync informa-
tion, predictive tracking should be done in the rendering portion of the VR system using
state vectors passed from earlier stages when frame sync is being used.)

Because portrait-mode display scan-out (where both eyes are on the same display)
sequentially scans one eye out and then the other, the prediction time for the right eye
may be half a frame time ahead or behind the left eye.

32.6.1 � Implementation of Predictive Tracking within OSVR
OSVR implements predictive tracking inside the code that provides the application with
rendering state information (viewport, modelview & projection matrix). It bases this pre-
diction on the sum of three quantities: (1) the time since the most-recent state vector was
constructed (the previous tracker report time) (2) the time until the next vertical retrace;
and (3) a per-eye value that depends on the hardware being used and includes the sum
of the uncompensated tracker latency with the fixed rendering latencies (O/S and driver
buffering delays, reformatting delays, and scan-out delays). See [RMPredictFuturePose
2017;RMPredictiveTracking 2017] for the complete implementation. This code (shown in
Listing 32.9) makes use of the Eigen library:

Listing 32.9.  Predictive Tracking.

 // Function called below that performs dead-reckoning orientation estimation.
 inline Eigen::Quaterniond applyQuatDeadReckoning(
 Eigen::Quaterniond const& initialOrientation, double angVelDt,
 Eigen::Quaterniond const& velocityDeltaQuat, double predictionDistance) {
 Eigen::Quaterniond ret = initialOrientation;
 // Determine the number of integer multiples of our deltaquat needed.
 int multiples = static_cast<int>(predictionDistance / angVelDt);

594 32.  Virtual Reality System Concepts Illustrated Using OSVR

 // Determine the fractional (slerp) portion to apply after that.
 auto predictionRemainder = predictionDistance - (multiples * angVelDt);
 auto remainderAsFractionOfDt = predictionRemainder / angVelDt;

 Eigen::Quaterniond fractionalDeltaQuat =
 Eigen::Quaterniond::Identity().slerp(remainderAsFractionOfDt, velocityDeltaQuat);

 // Actually perform the application of the prediction.
 for (int i = 0; i < multiples; ++i) {
 ret = velocityDeltaQuat * ret;
 }
 ret = fractionalDeltaQuat * ret;
 return ret;
 }

 // Function called below that predicts a future position and orientation.
 static void PredictFuturePose(
 const OSVR_PoseState &poseIn,
 const OSVR_VelocityState &vel,
 double predictionIntervalSec,
 OSVR_PoseState &poseOut) {

 // Make a copy of the pose state so that we can handle the
 // case where the out and in pose are the same.
 OSVR_PoseState out = poseIn;

 // If we have a change in orientation, make it.
 if (vel.angularVelocityValid) {
 Eigen::Quaterniond newRotation =
 osvr::util::applyQuatDeadReckoning(
 osvr::util::eigen_interop::map(poseIn.rotation), vel.angularVelocity.dt,
 osvr::util::eigen_interop::map(vel.angularVelocity.incrementalRotation),
 predictionIntervalSec);
 osvr::util::eigen_interop::map(out.rotation) = newRotation;
 }

 // If we have a linear velocity, apply it.
 if (vel.linearVelocityValid) {
 out.translation.data[0] += vel.linearVelocity.data[0] * predictionIntervalSec;
 out.translation.data[1] += vel.linearVelocity.data[1] * predictionIntervalSec;
 out.translation.data[2] += vel.linearVelocity.data[2] * predictionIntervalSec;
 }

 // Copy the resulting pose.
 poseOut = out;
 }

 ///===
 /// Inline code starts here, calling the above functions.
 /// Use the state interface to read the most-recent
 /// location of the head. It will have been updated
 /// by the most-recent call to update() on the context.
 /// DO NOT update the client here, so that we're using the
 /// same state for all eyes.
 OSVR_TimeValue timestamp;
 if (!m_headPoseCache || !m_headPoseCache​->getLastReport(timestamp, m_roomFromHead)) {
 // This is not an error -- they may have put in an invalid
 // state name for the head; we just ignore that case.
 }

 // Do prediction of where this eye will be when it is presented

59532.7  Time Warp

32.7 � Time Warp

Because rendering a scene takes time, and because there can be a delay between the end of
rendering and the start of display scan-out, the image produced using the head pose that
was available when rendering began is not perfectly matched to the pose when that image
is presented to the viewer. A solution is to reproject—warp—the original image based on
the inverse difference between the original pose and the new pose calculated for the newly
estimated time of presentation. The rendered image is thus adjusted to more closely match
what should have been rendered had the future pose been known a priori. This section

 // if client-side prediction is enabled.
 if (m_params.m_clientPredictionEnabled) {
 // Get information about how long we have until the next present.
 // If we can't get timing info, we just set its offset to 0.
 float msUntilPresent = 0;
 RenderTimingInfo timing;
 if (GetTimingInfo(whichEye, timing)) {
 msUntilPresent +=
 (timing.timeUntilNextPresentRequired.seconds * 1e3f) +
 (timing.timeUntilNextPresentRequired.microseconds / 1e3f);
 }

 // Find out how long ago this tracker info was found.
 float msSinceTrackerReport = 0;
 OSVR_TimeValue now;
 osvrTimeValueGetNow(&now);
 msSinceTrackerReport = static_cast<float>(
 osvrTimeValueDurationSeconds(&now, ×tamp) * 1e3f);

 // The delay before rendering for each eye will be different because
 // they are at different delays past the next vsync.
 // The static delay common to both eyes has already been added into their offset.
 float predictionIntervalms = msSinceTrackerReport + msUntilPresent;
 if (whichEye < m_params.m_eyeDelaysMS.size()) {
 predictionIntervalms += m_params.m_eyeDelaysMS[whichEye];
 }
 float predictionIntervalSec = predictionIntervalms / 1e3f;

 // Find out the pose velocity information, if available.
 // Set the valid flags to false so that if to call to get
 // velocity fails, we will not try and use the info.
 OSVR_VelocityState vel;
 vel.linearVelocityValid = false;
 vel.angularVelocityValid = false;
 if (osvrGetVelocityState(m_roomFromHeadInterface, ×tamp, &vel) !=
 OSVR_RETURN_SUCCESS) {
 // We're okay with failure here, we just use a zero velocity to predict.
 // Using normal get state calls here because we're effectively
 // throwing away the returned timestamp for this data.
 }

 // Predict the future pose of the head based on the velocity
 // information and how long we should predict. Check the
 // linear and angular velocity terms to see if we should be
 // using each. Replace the pose with the predicted pose.
 PredictFuturePose(m_roomFromHead, vel, predictionIntervalSec, m_roomFromHead);
 }

596 32.  Virtual Reality System Concepts Illustrated Using OSVR

describes how to reduce the impact by re-warping the temporally out-of-date images—
time warping (Figure 32.12).

Fully accurate reprojection of each pixel in the image requires knowledge of its depth
because the relative locations of pixels change as the center of projection translates and
as the orientation of the projection surface changes. However, much of the viewer’s rapid
head motion only involves rotation around the center of projection, so a good approxima-
tion can be made by projecting the rendered image onto a rectangle in space and then
altering that rectangle.

For rotations around the viewing direction, this reprojection is exactly correct. For
other rotations and for translations, the quality of the reprojection depends on the dis-
tance between the projection plane and the objects in the scene. Reprojections of planar
objects aligned with the screen at the same distance used for reprojection will be exactly
correct, and objects with other orientations and distances will exhibit some variability;
this variability is typically less than the error of the original image, so is still an improve-
ment over using the original, unwarped image. Of course, the less time between rendering
start and presentation the less distortion.

To avoid an extra rendering pass, this reprojection can be done by adjusting the
transformation used during the distortion correction rendering pass.

32.7.1 � Implementation of Time Warp within OSVR
OSVR adjusts the texture transformation within its vertex shader to enable time warping
to be done in the same rendering pass used for the distortion correction (this the reason

Figure 32.12

(a) Unity Sun Temple demo frame drawn for the canonical screen pose at start of rendering
and outline of where the canonical screen pose is after head rotation during rendering.
(b) Canonical screen shown from the viewer’s perspective (its motion follows the head, so
remains axis aligned) and the rendered image after being time warped by the inverse rela-
tive transformation to remain stable in the 3D world.

59732.7  Time Warp

for inclusion of the separate textureMatrix variable in that shader). OSVR keeps track of
the rendering poses used to generate each image and reprojects them for each eye using an
oversized (see Overfill and Oversampling below) screen-aligned rectangle projected 2 m
in front of that eye. This transformation is suitable for direct use within OpenGL; for D3D,
OSVR adjusts the resulting transformation by inverting Y in two places and transposing
the matrix.

The reprojection calculation assumes that it is starting in a texture-coordinate space that
has (0,0) at the lower left corner of the image and (1,1) at the upper-right corner of the image,
with +Z pointing out of the image. It constructs a transformation from the space used to
render into the current-pose space. Next, it moves the points from texture space into world
space by scaling and translating them to match a viewport at a given distance in Z from the
eyepoint. The points are now in projection space.

The ModelView matrix is then inverted from the last position and applied, moving the
points back into world space. The process is then reversed, using the ModelView matrix
from the current location (all other matrices are the same) to bring the points back into
texture space. It is up to the caller to bring the texture coordinates to and from the space
described above (see the Overfill and Oversampling section for how this is done).

The following code relies on the Eigen library [Eigen 2017] to do its processing (some
error checking has been removed for readability; see [RMATW 2017] for the complete
implementation) as shown in Listing 32.10. This code includes the “ just-in-timewarp”
described below.

Listing 32.10.  Computing Time Warps for each eye.

 /// @param [in] usedRenderInfo Rendering info used to construct the
 /// textures we're going to present.
 /// @param [in] currentRenderInfo Rendering info to warp to.
 /// @param [in] assumedDepth Depth at which the virtual projected
 /// window should be location (defaults to 2 meters)
 /// Note that this function is used to compute both synchronous and
 /// asynchronous time warps, only the currentRenderInfo changes.
 bool RenderManager::ComputeAsynchronousTimeWarps(
 std::vector<RenderInfo> usedRenderInfo,
 std::vector<RenderInfo> currentRenderInfo, float assumedDepth) {

 // See if we're using a D3D11 rendering library. If so, we need
 // to scale some Y values by -1 and transpose the result. The standard
 // approach works for OpenGL.
 float flipYScale = 1.0f;
 bool doTranspose = false;
 if (dynamic_cast<RenderManagerD3D11Base*>(this)) {
 flipYScale = -1.0f;
 doTranspose = true;
 }

 // Empty out the time warp vector until we fill it again below.
 m_asynchronousTimeWarps.clear();

 size_t numEyes = GetNumEyes();
 if (assumedDepth <= 0) {
 return false;
 }

598 32.  Virtual Reality System Concepts Illustrated Using OSVR

 if ((currentRenderInfo.size() < numEyes) ||
 (usedRenderInfo.size() < numEyes)) {
 return false;
 }

 for (size_t eye = 0; eye < numEyes; eye++) {
 // Compute the scale to use during forward transform.
 // Scale the coordinates in X and Y so that they match the width and
 // height of a window at the specified distance from the origin.
 // We divide by the near clip distance to make the result match that
 // at a unit distance and then multiply by the assumed depth.
 float xScale = static_cast<float>(
 (usedRenderInfo[eye].projection.right -
 usedRenderInfo[eye].projection.left) /
 usedRenderInfo[eye].projection.nearClip * assumedDepth);
 float yScale = static_cast<float>(
 (usedRenderInfo[eye].projection.top -
 usedRenderInfo[eye].projection.bottom) /
 usedRenderInfo[eye].projection.nearClip * assumedDepth);

 // Compute the translation to use during forward transform.
 // Translate the points so that their center lies in the middle of
 // the view frustum pushed out to the specified distance from the origin.
 // We take the mean coordinate of the two edges as the center that
 // is to be moved to, and we move the space origin to there.
 // We divide by the near clip distance to make the result match that
 // at a unit distance and then multiply by the assumed depth.
 // This assumes the default r texture coordinate of 0.
 float xTrans = static_cast<float>(
 (usedRenderInfo[eye].projection.right +
 usedRenderInfo[eye].projection.left) /
 2.0 / usedRenderInfo[eye].projection.nearClip * assumedDepth);
 float yTrans = static_cast<float>(
 (usedRenderInfo[eye].projection.top +
 usedRenderInfo[eye].projection.bottom) /
 2.0 / usedRenderInfo[eye].projection.nearClip * assumedDepth);
 float zTrans = static_cast<float>(-assumedDepth);

 // NOTE: These operations occur from the right to the left, so later
 // actions on the list actually occur first because we're post-multiplying.

 // Translate the points back to a coordinate system with the center at (0,0);
 const Eigen::Isometry3f postTranslation(Eigen::Translation3f(0.5f, 0.5f, 0.0f));

 // Determine the impact of just-in-timewarp in the coordinate system
 // with the center of the screen at the origin and unit width and
 // height. We only do this if just-in-timewarp is enabled; otherwise,
 // we set this to the identity matrix.
 Eigen::Matrix<float, 4, 4> justInTimeWarp;
 justInTimeWarp.setIdentity();
 if (m_params.m_justInTimeWarp) {
 std::array<float, 4> coeffs = ComputeJustInTimeWarp();
 const float &xScale = coeffs[0];
 const float &yScale = coeffs[1];
 const float &xShearWithY = coeffs[2];
 const float &yShearWithX = coeffs[3];
 justInTimeWarp(0, 0) = xScale;
 justInTimeWarp(1, 1) = yScale;
 justInTimeWarp(0, 1) = xShearWithY;
 justInTimeWarp(1, 0) = yShearWithX * flipYScale;
 }

59932.7  Time Warp

32.7.2 � Asynchronous Time Warp (ATW)
Due to scene complexity, O/S interrupts, or other causes the rendering process sometimes
takes more time than a single scan out interval. For non-immersive displays, this can
introduce jerkiness in playback; in immersive VR it also introduces a doubled image when
the viewer’s head pose is changing. To avoid these artifacts, the VR system can re-warp
and re-display the previously presented image based on updated tracking information at
the time the next frame needs to be displayed.

 /// Scale the points so that they will fit into the range (-0.5,-0.5)
 /// to (0.5,0.5) (the inverse of the scale below).
 const Eigen::Affine3f postScale(
 Eigen::Scaling(1.0f / xScale, flipYScale / yScale, 1.0f));

 /// Translate the points so that the projection center will lie on
 /// the -Z axis (inverse of the translation below).
 const Eigen::Isometry3f postProjectionTranslate(
 Eigen::Translation3f(-xTrans, -yTrans, -zTrans));

 /// Compute the forward last ModelView matrix.
 const Eigen::Isometry3f lastModelView = osvr::util::eigen_interop::map(
 usedRenderInfo[eye].pose).transform().cast<float>();
 Eigen::Isometry3f lastModelViewTransform(lastModelView);

 /// Compute the inverse of the current ModelView matrix.
 const Eigen::Isometry3f currentModelViewInverseTransform =
 osvr::util::eigen_interop::map(
 currentRenderInfo[eye].pose).transform().cast<float>().inverse();

 /// Translate the origin to the center of the projected rectangle
 Eigen::Isometry3f preProjectionTranslate(
 Eigen::Translation3f(xTrans, yTrans, zTrans));

 /// Scale from (-0.5,-0.5)/(0.5,0.5) to the actual frustum size
 Eigen::Affine3f preScale(Eigen::Scaling(xScale, flipYScale * yScale, 1.0f));

 // Translate the points from a coordinate system that has (0.5,0.5)
 // as the origin to one that has (0,0) as the origin.
 Eigen::Isometry3f preTranslation(Eigen::Translation3f(-0.5f, -0.5f, 0.0f));

 /// Compute the full matrix by multiplying the parts.
 Eigen::Projective3f full =
 postTranslation * justInTimeWarp * postScale * postProjectionTranslate *
 lastModelViewTransform * currentModelViewInverseTransform *
 preProjectionTranslate * preScale * preTranslation;

 // Store the result, transposing if we're using D3D.
 matrix16 timeWarp;
 if (doTranspose) {
 Eigen::Matrix4f::Map(timeWarp.data) = full.matrix().transpose();
 } else {
 Eigen::Matrix4f::Map(timeWarp.data) = full.matrix();
 }
 m_asynchronousTimeWarps.push_back(timeWarp);
 }
 return true;
 }

600 32.  Virtual Reality System Concepts Illustrated Using OSVR

The warping function is the same as for standard time warp and does the same adjust-
ment based on the difference between the viewer’s pose at the time the image began ren-
dering and the current pose.

To ensure that a new warped image is available each frame, asynchronous time warp
must use frame sync and it must launch a separate rewarping thread that keeps the most
recently presented image and use that to warp and present just ahead of display scan-out.
This thread should have real-time priority in both the operating system and on the GPU.
(To enable interruption of long-running renders, it must make use of vendor-specific APIs
to enable pre-emptive rendering.) On operating systems such as Windows 10 with coarse
sleep-return temporal granularity (e.g., 10ms or more), it may be necessary to busy-wait
on the time before refresh to avoid missing updates.

To ensure that basic scene rendering has fully completed prior to attempting the last-
millisecond final rendering pass, the application thread must use a rendering-library-
specific call to ensure that all operations are complete and the texture is ready for use
before handing it to the rewarping thread.

Because the rewarping thread must always have a texture containing the basic
scene ready, it must either make a copy of the texture presented by the application or
the application must use double buffering and not modify the texture that was most
recently presented; it must only modify a texture after presenting a different texture
for display.

(Note that asynchronous time warp is only correct for non-moving objects in the scene.
Moving objects will have shifted positions between the beginning and end of rendering,
and applying this time warp to them will produce artifacts like those produced by jitter
to those objects, similar to how this happens to the entire scene when rendered without
frame sync.)

32.7.3 � Implementation of Asynchronous Time Warp within OSVR
Asynchronous time warp is implemented in the Sensics OSVR-RenderManager’s ATW
renderer [OSVRRenderManager 2017]. As of March 2018, it is implemented only for direct
mode interfaces using the Direct 3D graphics library because these are the only ones that
currently support frame sync but it on Windows it is wrapped using the OpenGL Interop
libraries to provide ATW for OpenGL as well.

OSVR constructs a completion-query event when the renderer is opened and uses
it to ensure that rendering to the texture completes before passing it to the rewarping
thread (see [OSVRRMD3Dbase 2017] for the complete implementation) as shown in
Listing 32.11:

Listing 32.11. Ensuring rendering completion.

 // Constructed during initialization and re-used during rendering
 D3D11_QUERY_DESC desc = {};
 desc.Query = D3D11_QUERY_EVENT;
 m_D3D11device->CreateQuery(&desc, &m_completionQuery);

 // Using the query each time through the rendering loop

60132.7  Time Warp

A rewarping thread in the ATW RenderManager class uses a second RenderManager
to do the actual rendering. It internally keeps track of either copying buffers or locking
shared buffers before handing them to the rendering thread.

As of March 2018, pre-emptive GPU scheduling is only available within OSVR on
nVidia Pascal-series cards (eg. GeForce 1080), and only with GeForce driver version
372.54 or later. In other cases, ATW cannot pre-empt a long-running render thread. This
means that a long-running rendering thread will block access to the GPU and prevent the
rendering thread from gaining access, causing it to miss frames.

32.7.4 � Just In Time Warp (AKA Beam Racing, Just-
In-Time Pixels, Intra-Frame Warp)

Many head-mounted displays scan the visible pixels from one end of the display to the
other, thus pixels at the bottom line are rendered almost a full cycle behind the pixels at
the top. Because the images produced by the application are rendered at a single point in
time, head motion during the frame causes spatial misalignment between what should be
seen and the rendered scene. For example, the image of a cube rendered in a frame where
the viewer’s head is rapidly rotating from the left to the right should show the lower por-
tions of the cube to the left of the higher portions because the head has moved since the
upper pixels were displayed, yet with standard rendering are directly below them. This
makes the perceived object seem to be slanted towards the left.

Noting that “The ideal way to generate an image […] would be to recalculate for each
pixel the position and orientation of the camera and the position and orientation of the
scene’s objects, based upon the time of display of that pixel” Olano et al. propose “Just-in-
time-pixels” [Olano et al. 1995]. Because of the expense of re-rendering each scene, they
propose an approximation of determining the correct transformation for the first and last
scan lines in an image and using linear interpolation for object locations in the scan lines
between them. Figure 32.13 shows this implementation in action on a simple test scene.

32.7.5 � Implementation of Intra-frame Time Warp within OSVR
Observing that the largest distortion due to head motion is often caused by rotation of
the head in the vertical or horizontal planes and further noting that affine transforma-
tions can be readily applied during the rendering pass (the time warp implementation
already includes a general 4 × 4 matrix multiplication), OSVR-RenderManager can easily
approximate the impact of these transformations at negligible increased rendering cost
by adding anisotropic scaling and shearing to the time-warp texture reprojection matrix.
OSVR predicts the viewing time for each eye in the center of the viewing area and distorts
other image regions based on linear horizontal and vertical rotational velocity estimates.
As is the case with regular time warp of planar-projected images, these transformations
are approximations that work better for small temporal differences.

 m_D3D11Context->End(m_completionQuery);
 m_D3D11Context->Flush();
 while (S_FALSE == m_D3D11Context->GetData(m_completionQuery, nullptr, 0, 0)) {
 // We don't want to miss the completion because Windows has
 // swapped us out, so we busy-wait here on the completion event.
 }

602 32.  Virtual Reality System Concepts Illustrated Using OSVR

The case where the display scans out from top to bottom and the viewer’s head is rotat-
ing from right to left and slightly downwards matches the case shown in Figure 32.13,
where the lower portion of the square must be offset to the right with respect to the center
of the image so that it will be drawn at a location in physical space that is directly below its
top (it is drawn later, and the head has rotated to the left). The distortion is compensated
for by adding shearing to the texture reprojection matrix which causes it to sample texture
locations increasingly to the right as the image is scanned out from top to bottom. The
amount of shear is selected that causes a vertical line drawn at the center of the image to
appear to remain vertical in the presence of the estimated rotational speed.

Figure 32.13 also shows the case where the display scans out from top to bottom and
the viewer’s head is rotating downward causes the bottom of the cube to appear to be
drawn lower in physical space, causing it to appear to stretch vertically. To offset this, an
anisotropic scaling is performed in the vertical direction, where X coordinates are left
unchanged but Y coordinates are adjusted to compensate for the perceived stretching by
shrinking the cube vertically. For upwards head rotation, the Y coordinates are stretched.
The scaling factor is selected that results in no vertical stretching or squashing for a pixel
located at the center of the image.

The two transformations are orthogonal for small motions, so can be safely applied
independently of one another.

Figure 32.13

(a) An image of a small dark blue cube within a colored cube room taken with the head
held still shows the cube to be square. (b) A just-in-time rendering of this same scene with
the head rapidly moving shows shearing in X and a scale reduction in Y to compensate for
changes in location of the scan lines during scan-out. Note that the still image is deceiving
because when you look at it on paper it’s entirely “rendered” at the same time and your
head isn’t moving—when viewed from within the moving HMD, the scene appears normal;
without just-in-time rendering, the cube appears to be stretched in Y and sheared in the
opposite direction. (As for the black regions, see the section on Overfill and Oversampling
below.)

60332.7  Time Warp

For an HMD whose screen is mounted upside down (at a display rotation of 180°),
the distortions described above are inverted—downward head motion causes apparent
squashing and upward motion causes apparent stretching. This case can be handled by
inverting the change in X and Y positions. For the case of displays that scan out from
right to left and left to right, the shearing and stretching operations are swapped. The
general case can be treated as a rotation about the +Z axis (which comes out of the
image), transforming from the (X,Y) coordinate system to a (shear, scale) coordinate
system with the signs of the scaling and shearing factors determined by the rotation.
Because the display orientation in the operating system and the display scan-out may
not be related, a configuration-file entry declares from which border of the HMD screen
scan-out commences.

Listing 32.10 included the construction of the shearing and stretching transformations,
which rely on the function shown in Listing 32.12 to compute the appropriate amount and
orientation of the shear and anisotropic scaling.

Listing 32.12.  Determining Just In Time Warp coefficients.

 /// This function computes the coefficients of nonuniform scaling
 /// and shearing required to implement just-in-timewarp in a space
 /// where (0,0) is the center of the screen and the screen width and
 /// height are both 1 (dimensions go from -0.5 to 0.5 in each axis).
 /// It first computes the velocity, then based on that and the rotation
 /// of the scan-out with respect to the image produces the four values.
 /// It does not check to see whether just-in-timewarp is enabled.
 /// @return Four doubles, indicating:
 /// 0th = the scaling of the image in the X direction,
 /// 1st = the scaling of the image in the Y direction,
 /// 2nd = the shear in X coordinate as Y varies,
 /// 3rd = the shear in the Y coordinate as X varies.
 /// At most one of the scalings and
 /// at most one of the shear transformations will be active
 /// at a time; which ones are active depends on the orientation.
 std::array<float, 4> RenderManager::ComputeJustInTimeWarp() {
 // We initialize the values with ones that won't cause any
 // change. We will override them as we find reason.
 std::array<float, 4> ret = { 1, 1, 0, 0 };

 // Figure out which edge of the display scan-out starts at based
 // on the just-in-time rotation. This describes which edge will
 // be rotated to point "up" when the display is rotated about the
 // +Z axis (out of the screen) and it starts at the canonical orientation
 // with X to the right and Y up. The four results are 0 = top, 1 = right,
 // 2 = bottom, 3 = left. The code rounds to the nearest one.
 int edgeUp = static_cast<int>(
 floor((m_params.m_justInTimeWarpRotation + 44.9999) / 90));
 if (edgeUp < 0) { edgeUp += 4 * static_cast<int>(1 - edgeUp / 4); }
 edgeUp = edgeUp % 4;

 // Find out the timing information, which will let us know the
 // duration of a full-screen scan-out. If we are scanning out
 // from left to right or right to left, divide this by the number
 // of eyes per display to find the per-eye scan-out duration.
 RenderTimingInfo timing;
 if (!GetTimingInfo(0, timing)) {
 // If we have no timing information, then we have nothing to use

604 32.  Virtual Reality System Concepts Illustrated Using OSVR

 // to predict so we return the do-nothing result.
 return ret;
 }
 double screenScanTime = (timing.hardwareDisplayInterval.seconds +
 timing.hardwareDisplayInterval.microseconds / 1e6);
 if (edgeUp % 2 == 1) {
 screenScanTime /= GetNumEyesPerDisplay();
 }

 // Find out the pose velocity information, if available.
 // Set the valid flags to false so that if to call to get
 // velocity fails, we will not try and use the info.
 OSVR_TimeValue timestamp;
 OSVR_VelocityState vel;
 vel.linearVelocityValid = false;
 vel.angularVelocityValid = false;
 if (osvrGetVelocityState(m_roomFromHeadInterface,×tamp,&vel)!=OSVR_RETURN_SUCCESS) {
 // No velocity information available, so we return the do-nothing result.
 return ret;
 }

 // Convert the incremental orientation change in world space back
 // into (local) head space by transforming it by the inverse of the
 // current head pose.
 // Handle a non-Identity room-from-world transform in the OSVR-Core
 // room-to-world transform (as opposed to the RenderManager one, which is
 // already handled because we apply that transformation ourselves). We
 // do this by getting and applying the room-to-world transform from Core
 // here. Again, we can ignore the RenderManager room-to-world that was
 // passed in as RenderParam because all of our differential transform
 // work here takes place below it.
 OSVR_PoseState pose;
 if (osvrGetPoseState(m_roomFromHeadInterface,×tamp, &pose) != OSVR_RETURN_SUCCESS) {
 // No pose information available, so we return the do-nothing result.
 return ret;
 }
 osvr::common::Transform xform(ei::map(pose).matrix(), ei::map(pose).matrix().inverse());
 xform.transform(m_context->getRoomToWorldTransform());
 Eigen::Quaterniond localRot = xform.transformDerivative(
 ei::map(vel.angularVelocity.incrementalRotation));
 // Turn incremental rotation into Euler rotation rates in radians/second.
 // Do this by converting the Quaternion into Euler and then dividing by the
 // delta time. We do this twice, once with the X axis being defined as the
 // last axis to be rotated around and once with the Y axis as the last. (The
 // last axis is the first listed in right-to-left multiplication.) If we
 // use the same Euler set for more than one angle, sometimes we get flips by
 // Pi around the axes.
 const double &dt = vel.angularVelocity.dt;
 Eigen::Vector3d euler = localRot.toRotationMatrix().eulerAngles(0, 1, 2);
 if (euler[0] > boost::math::double_constants::pi / 2) {
 // Rotation around first axis is always positive when returned from eulerAngles; switch
 // the second quadrant into the fourth so that we get symmetry around 0.
 euler[0] -= boost::math::double_constants::pi;
 }
 double rX = euler[0] / dt;
 euler = localRot.toRotationMatrix().eulerAngles(1, 2, 0);
 if (euler[0] > boost::math::double_constants::pi / 2) {
 // Rotation around first axis is always positive when returned from eulerAngles; switch
 // the second quadrant into the fourth so that we get symmetry around 0.
 euler[0] -= boost::math::double_constants::pi;
 }

60532.7  Time Warp

 double rY = euler[0] / dt;

 // Determine the amount of rotation around the X axis in degrees that takes
 // place during the eye scan-out time. Do the same for Y.
 double xRotationDegrees = screenScanTime * osvr::common::radiansToDegrees(rX);
 double yRotationDegrees = screenScanTime * osvr::common::radiansToDegrees(rY);

 /// Determine the fraction of the display width in angles in X that will be
 /// covered by this rotation around Y over the course of the frame. Do the same
 /// for the fraction of the height in angles in Y that will be covered by rotation
 /// about X. Leave these signed, so that we know whether to rotate in the positive
 /// or negative direction.
 float xRotationNormalized = static_cast<float>(xRotationDegrees /

osvr::util::getDegrees(m_params.m_displayConfiguration->getHorizontalFOV())
);
 float yRotationNormalized = static_cast<float>(yRotationDegrees /

osvr::util::getDegrees(m_params.m_displayConfiguration->getVerticalFOV())
);

 // Based on the scan-out direction, adjust the relevant output parameters to
 // indicate the amount of scaling and shearing that will take place over
 // an eye scan-out time.
 switch (edgeUp) {
 case 0: // Top up.
 // As the head rotates around +X, we get stretching in Y.
 // To compensate, we need to scale Y down when rotating in +X.
 ret[1] = 1 - xRotationNormalized;

 // As the head rotates around +Y, we get shearing in +X with increasing Y.
 // To compensate, we need to shear in X based on -Y.
 ret[2] = -yRotationNormalized;
 break;

 case 1: // Right up
 // As the head rotates around -Y, we get stretching in X.
 // To compensate, we need to scale X down when rotating in +Y.
 ret[0] = 1 + yRotationNormalized;

 // As the head rotates around +X, we get shearing in -Y with increasing X.
 // To compensate, we need to shear in Y based on X.
 ret[3] = xRotationNormalized;
 break;

 case 2: // Bottom up
 // As the head rotates around +X, we get compression in Y.
 // To compensate, we need to scale Y up when rotating in +X.
 ret[1] = 1 + xRotationNormalized;

 // As the head rotates around +Y, we get shearing in -X with increasing Y.
 // To compensate, we need to shear in X based on Y.
 ret[2] = yRotationNormalized;
 break;

 case 3: // Left up
 // As the head rotates around Y, we get stretching in X.
 // To compensate, we need to scale X up when rotating in +Y.
 ret[0] = 1 - yRotationNormalized;

 // As the head rotates around +X, we get shearing in Y with increasing X.
 // To compensate, we need to shear in Y based on -X.
 ret[3] = -xRotationNormalized;
 break;

606 32.  Virtual Reality System Concepts Illustrated Using OSVR

32.8 � Direct Rendering (aka Direct Mode, Direct-to-Display)

To support transparent borders and other user-interface effects, some operating sys-
tems store each rendered frame before compositing it onto the display, which adds
a frame of latency. To improve throughput, some graphics-card drivers keep two or
more frames in the pipeline, with CPU rendering completing more than a frame sooner
than the image will be presented to the display. Both approaches add to the end-to-end
latency for VR systems. This section describes how to avoid these delays using direct
rendering.

Vendor-specific APIs have been provided by nVidia and AMD to bypass the operating
system and render directly to the display device. (A vendor-independent approach is being
implemented within a new Microsoft API as well.) Each of these approaches also offers
control over the number of buffers and their presentation to the display surface, enabling
either frame asynchronous or frame synchronous swapping of buffers and determina-
tion of the time at which vertical retrace happens. This enables front-buffer rendering, but
also double-buffer rendering where the buffers are swapped just before vertical retrace,
thus providing the combined benefit of extended render times together with low-latency
presentation.

32.8.1 � Within-Display Buffering
A similar effect can happen inside the display devices themselves. Many devices will sup-
port taking images in either landscape or portrait mode and support flipping the scan-out
upside down in either mode. Of course, these displays natively scan out in only one par-
ticular direction (often portrait mode, starting at the right side of the display as mounted
in an HMD) so to flip the image they must first internally buffer a whole frame before
starting scan out.

Determining which orientation is preferred requires reading manufacturer specifica-
tions or careful testing with a sensitive latency meter. Once determined, best performance
is achieved by driving the display in the native mode and doing any required frame flip-
ping within the VR system’s final rendering pass.

32.8.2 � Graphics-Language Interoperability
On Windows 10, Direct Rendering is only available for the Direct3D graphics library
and not for OpenGL. On upcoming Linux interfaces, it may be available only on
Vulkan. Accessing these capabilities from OpenGL or other languages requires
sharing image buffers between graphics libraries, either using the nVidia NV_DX_
interop interface [nVidia 2010], using shared handles or using Khronos EGL buffers
[Khronos 2017].

 }

 return ret;
 }

60732.9  Overfill and Oversampling

In these cases, rendering is performed in one rendering library and then the buf-
fers are shared with the Direct-Rendering-capable library and it presents them to the
display. These approaches require an additional flushing of the graphics commands to
GPU before passing control of the buffers between libraries to ensure that all rendering
dependencies are met.

Note that different graphics libraries have different coordinate systems (or differ-
ent defaults that are used by their communities). For example, OpenGL and Direct3D
use different origins for texture coordinates, with OpenGL using the lower left corner
and Direct3D the upper left. This requires adjustments to be made when sharing buffers
between libraries.

32.8.3 � Implementation of Direct Rendering within OSVR
Because the individual vendor APIs are only available under nondisclosure agreements,
the Sensics OSVR-RenderManager library implements RenderManager interfaces for them
and distributes them with OSVR-built DLLs but cannot release the source code for these
drivers. To maximize the portion of the code using open source, all techniques using
DirectMode: Asynchronous Time Warp, OpenGL Interoperability, Frame Sync, and even
the interface that applications use to control Direct Rendering are implemented by either
harnessing a Direct Rendering RenderManager or are implemented within it using the
same RenderManager interface used by the open-source drivers.

OSVR-RenderManager uses OpenGL Interop to share buffers between an applica-
tion OpenGL context (Legacy or Core) and the Direct3D context used for display. It
handles the buffer flipping and coordinate transformations needed to translate images,
distortion correction, and time warps between the systems. It does this by providing a
RenderManagerD3DOpenGL class [RMD3DOpenGL 2016].

OSVR-RenderManager also handles the image flipping required to avoid Within-
Display Buffering, as well as providing the option to drive portrait or landscape displays
mounted at any orientation. It provides transformations to the application so that it can
render the images as if they were right-side-up (enabling text, sprites, and other pixel-
aligned techniques to work properly) and then re-orienting the image as needed to meet
display needs [RMRotateViewport 2017; RMConstructModelView 2017].

32.9 � Overfill and Oversampling

Time warp reprojects an image from a different viewpoint. Normally, the original image
could be rendered to exactly cover the canonical screen; however, reprojection causes the
new viewpoint to see past those original borders. This produces black borders creeping
in from the edges. Distortion correction can produce a similar effect when the canonical
screen does not completely fill the display, resulting in similar borders. Both issues can
be addressed using Overfill—i.e. rendering an image that goes beyond the edges of the
canonical screen. This section describes how to use these approaches to remove rendering
artifacts (Figure 32.14).

Overfill requires adjustment of both the projection transformation (making the pro-
jection region wider) and the graphics viewport size in pixels (providing a place to store
the extra pixels); the viewing transformation remains the same. The size of overfill needed

608 32.  Virtual Reality System Concepts Illustrated Using OSVR

to hide the borders depends on the distortion correction being done, on the length of time
between rendering and warping, and on the speed of rotation of the viewer’s head: faster
rotation reveals more border per unit time.

Distortion correction will, by definition, increase the visible size of some regions on
the canonical screen and decrease the size of others. If the rendered image has as many
texture elements as there are pixels on the display, then some regions will be expanded
such that there are more physical display pixels than available texture elements, producing
images that sacrifice the potential sharpness of the display. This can be addressed using
Oversampling—i.e., rendering an image that has more texture elements than the display
has pixels.

Oversampling requires adjustment of only the pixel size of the graphics viewport; the
viewing and projection transformations remain the same. The amount of oversampling
required depends on the largest magnification caused by distortion correction.

Oversampling can also be used in the opposite direction, reducing the number of tex-
ture elements compared to the number of display pixels, to increase the rendering rate for
applications that have large amount of per-pixel processing. This trades off reduced image
resolution for increased rendering speed.

32.9.1 � Implementation of Overfill and Oversampling within OSVR
The Sensics OSVR-RenderManager library implements both overfill and oversampling,
taking them into account when generating the projection transformation and when gen-
erating the viewport description. Overfill is handled in the projection transformation by
specifying a fractional increase in size, which is then used to expand the projection as
shown in Listing 32.13:

Figure 32.14

(a) Time-warped frame from Unity Sun Temple demo reveals borders around the image that
were not rendered. (b) By rendering past the borders of the canonical screen, there is now
enough image to cover the entire new viewport.

60932.9  Overfill and Oversampling

This expansion must be inverted in the code that renders to the graphics library so that
only the correct fraction of the image is visible within the resulting displayed frame. This
is handled in the OpenGL code path by adjusting the projectionMatrix entry in the vertex
shader shown in Listing 32.14:

Along with oversampling, overfill is used to expand the viewport size as shown in
Listing 32.15:

The expansion in viewport must be taken into account in the code that handles time warp
and distortion correction so that it maps the standard texture coordinate range (0,0)–(1,1)
into the portion of the texture that represents the canonical screen. This approach sup-
ports the expansion of the range within the overfilled viewport [RMCorrectCoord 2017]
as shown in Listing 32.16:

Listing 32.13.  Overfill handling in projection transformation calculation.

 double xMargin = width / 2 * (m_params.m_renderOverfillFactor - 1);
 double yMargin = height / 2 * (m_params.m_renderOverfillFactor - 1);
 left -= xMargin;
 right += xMargin;
 top += yMargin;
 bottom -= yMargin;

Listing 32.14.  Overfill handling in vertex shader projection.

 m_projectionUniformId = glGetUniformLocation(m_programId, "projectionMatrix");

 GLfloat myScale = m_params.m_renderOverfillFactor;
 GLfloat scaleProj[16] = { myScale,0,0,0, 0,myScale,0,0, 0,0,1,0, 0,0,0,1 };
 glUniformMatrix4fv(m_projectionUniformId, 1, GL_FALSE, scaleProj);

Listing 32.15.  Overfill handling in viewport calculation.

 viewport.width = xFactor * m_displayWidth * m_params.m_renderOverfillFactor
 * m_params.m_renderOversampleFactor;
 viewport.height = yFactor * m_displayHeight * m_params.m_renderOverfillFactor
 * m_params.m_renderOversampleFactor;

Listing 32.16.  Overfill support in Distortion Correction.

 /// Takes a texture coordinate that is specified in the coordinate system of
 /// a Presented texture for a given eye, which has (0,0) at the lower left
 /// and (1,1) at the upper right. The lower left and upper right are at the
 /// boundaries specified by the overfill rectangle, which are not visible

610 32.  Virtual Reality System Concepts Illustrated Using OSVR

32.10 � Rendering State

VR systems take time-varying, linear, and nonlinear geometric descriptions of the relative
locations and orientations of objects in space and produce descriptions suitable for imple-
mentation in the linear geometric operations available in graphics libraries. This section
describes how to manage this state across graphics libraries.

The resulting linear operations can be implemented in various rendering systems,
including basic graphics libraries (OpenGL, Direct3D, GLES, Vulkan, etc.), game engines
(Unreal, Unity, Blender, etc.), and others (VTK, OpenCV, etc.). These systems have a
variety of distance units (meters, mm, pixels, etc.) and coordinate systems (right-handed
vs. left-handed, screen lower-left vs. upper-left, etc.). This means that no single internal
representation can be used within a VR system that is to be implemented across multiple
rendering systems. It also means that all aspects of the coordinate system must be care-
fully described because they will be unfamiliar to users of some of the rendering systems.

 /// for overfill factors > 1.
 /// @param eye eye to get coordinates for
 /// @param inCoords coordinates to modify
 /// @param distort distortion parameters
 /// @param color red=0, green=1, blue=2
 /// @param overfillFactor scaling factor to allow for timewarp
 /// @param interpolators list of unstructured mesh interpolators
 using Float2 = std::array<float, 2>;
 inline Float2 OSVR_RENDERMANAGER_EXPORT DistortionCorrectTextureCoordinate(
 const size_t eye, Float2 const& inCoords,
 const DistortionParameters& distort, const size_t color,
 const float overfillFactor,
 const std::vector< std::unique_ptr<UnstructuredMeshInterpolator> >& interpolators) {
 // Check for invalid parameters
 if (color > 2) {
 return inCoords;
 }

 // Convert from coordinates in the overfilled texture to coordinates
 // that will cover the range (0,0) to (1,1) on the screen. This is
 // done by scaling around (0.5,0.5) to push the edges of the screen
 // out to the (0,0) and (1,1) boundaries.
 using Eigen::Vector2f;
 using Eigen::Map;
 const auto inMap = Map<const Vector2f>(inCoords.data());

 Vector2f xyN = (inMap - Vector2f::Constant(0.5f)) * overfillFactor
 + Vector2f::Constant(0.5f);
 const float xN = xyN.x();
 const float yN = xyN.y();

 const auto normalized_inCoords = Float2{xN, yN};

 Float2 ret = DistortionCorrectNormalizedTextureCoordinate(
 eye, normalized_inCoords, distort, color, interpolators);
 // Convert from unit (normalized) space back into overfill space.
 ret[0] = (ret[0] - 0.5f) / overfillFactor + 0.5f;
 ret[1] = (ret[1] - 0.5f) / overfillFactor + 0.5f;

 return ret;
 }

61132.10  Rendering State

The variety of coordinate systems requires that for a VR system to be easily adapted
between rendering systems it must either provide adapters for each rendering system or
use conditional compilation or wrappers to behave differently when used with different
systems.

32.10.1 � Time
The proper spatial alignment of rendered viewpoints with objects that remain station-
ary in the real world is required to prevent “swimming” of the virtual world around the
viewer. This is even more important in augmented reality systems, where overlaid virtual
objects must remain aligned with their real-world counterparts.

This alignment requires a level of timing accuracy that is beyond the needs of most
non-immersive 3D graphics displays. Combining multiple devices, and sometimes mul-
tiple computers, in the collection of tracking data (and sometimes video data to integrate
the real world) can make accurate timing difficult. The Network Time Protocol (NTP)
[NTP 2017] can be tuned to achieve submillisecond agreement among a small number of
computers on the same network. Properly aligned, submillisecond-precise clocks between
processes have recently become common on some operating systems and compilers.

USB interfaces, video cameras, network drivers, and other drivers within an operat-
ing system often enable high throughput and offload work from the CPU by providing
buffering and a separation of fast kernel-level drivers from slower user-level drivers. This
can introduce both latency and jitter in the time between a physical measurement on a
device and the presentation of that measurement to the system. Reducing this can require
adjustment of system scheduling intervals, tuning parameters on network connections,
raising the priority of processes that handle devices, and busy-waiting on inputs rather
than letting the operating system release data to the system at its usual intervals [Taylor
et al. 2001]. It can also require back-dating the time associated with measurements based
on the known capture and transmission time [Taylor et al. 2001].

To enable consistency between all portions of a VR system, each event and measure-
ment should be time stamped. This enables comparison and proper relative dating of all
measurements within the system, producing a common frame of reference.

32.10.2 � Implementation of Rendering State within OSVR
OSVR-Core associates timing information with all system events and measurements
and uses busy-waiting on actively-used devices to ensure low-latency measurement and
data transport. Its internal end-to-end latencies for device measurement, estimation, and
reporting are considerably submillisecond. When compiled using Visual Studio 2015
or higher on Windows, and on all other operating systems, it provides submillisecond-
accurate consistent clocks across processes on a single computer; it relies on NTP to main-
tain accuracy between computers.

The Sensics OSVR-RenderManager provides graphics-language-specific (OpenGL,
Direct3D, Unity, Unreal) conversion functions to describe the number and size of required
textures, viewports, projection and ModelView matrices needed to configure rendering
for scenes [RMGLD3D 2016; RMGLGL 2016]. The RenderManager receives all viewports
and textures in their canonical (viewer up is texture up) orientation and internally maps
everything to the correct orientation, enabling the use of bitmap fonts and other render-
ing effects that require canonical orientation. An optional, callback-based rendering path

612 32.  Virtual Reality System Concepts Illustrated Using OSVR

provides these transformations for arbitrary OSVR spaces (head space, hand space, room
space, etc.).

The Sensics OSVR-RenderManager manages the display-orientation remapping using
Modelview matrices within the vertex shaders for each of its rendering paths. It internally
keeps track of any rotation required by the display and any flipping required by the ren-
dering library compared to the OSVR internal coordinate system. The following routine
uses this information to produce a generic matrix that each rendering path then copies
into the matrix used by its shader as shown in Listing 32.17:

32.11 � Conclusion

The geometry-critical and time-critical rendering needs in virtual reality require the
concerted use of a suite of techniques beyond those applied in non-immersive interac-
tive computer graphics systems. This chapter describes each of those needs and provides
example code to implement them based on the OSVR system, which itself is an open-
source solution that implements all of them working together.

References

[Azuma 1995]

Azuma, Ronald Tadao (1995). Predictive tracking for augmented reality. PhD thesis,
Computer Science. Chapel Hill, The University of North Carolina. http://cs.unc.edu/
techreports/95-007.pdf

Listing 32.17.  Display-Orientation remapping.

 bool RenderManager::ComputeDisplayOrientationMatrix(
 float rotateDegrees, //< Rotation in degrees around Z
 bool flipInY, //< Flip in Y after rotating?
 matrix16& outMatrix //< Matrix to use.
) {

 /// Scale the points to flip the Y axis if that is called for.
 float yScale = 1;
 if (flipInY) { yScale = -1; }
 Eigen::Affine3f preScale(Eigen::Scaling(1.0f, yScale, 1.0f));

 // Rotate by the specified number of degrees.
 Eigen::Vector3f zAxis(0, 0, 1);
 float rotateRadians = static_cast<float>(rotateDegrees * M_PI / 180.0f);
 Eigen::Affine3f rotate(Eigen::AngleAxisf(rotateRadians, zAxis));

 /// Compute the full matrix by multiplying the parts.
 Eigen::Projective3f full = rotate * preScale;

 // Store the result.
 memcpy(outMatrix.data, full.matrix().data(), sizeof(outMatrix.data));

 return true;
 }

http://cs.unc.edu
http://cs.unc.edu

613References

[Eigen 2017]

Eigen C++ template library for linear algebra (2017). http://eigen.tuxfamily.org

[Holloway 1995]

Holloway, Richard Lee (1995). Registration errors in augmented reality systems. PhD thesis,
Computer Science. Chapel Hill, The University of North Carolina. http://cs.unc.edu/
techreports/95-016.pdf

[Kooima 2019]

Kooima, Robert (2019). Perspective projection for VR. In Sherman, W. R. editor, VR
Developer Gems, Chapter 33. Boca Raton, FL: CRC Press.

[Khronos 2017]

Khronos EGL (nee Embedded-System Graphics Library) specification (2017). https://
khronos.org/egl/

[NTP 2017]

NTP Network Time Foundation (2017). http://ntp.org/

[nVidia 2010]

nVidia OpenGL-DirectX interoperability extension (2010). http://developer.download.
nvidia.com/opengl/specs/WGL_NV_DX_interop.txt

[Olano et al. 1995]

Olano, Marc, Jon Cohen, Mark Mine, and Gary Bishop (1995). Combatting rendering
latency, Proceedings of the 1995 Symposium on Interactive 3D Graphics (I3D’95),
Monterey, California. pp. 19–24.

[OSVRAngles 2017]

OSVR Distortion Calibration Angles (2017). https://github.com/OSVR/distortionizer/
tree/master/angles_to_config

[OSVRDistort 2016]

OSVR Distortion Correction (2016). https://github.com/OSVR/OSVR-Docs/blob/master/
Configuring/distortion.md

http://eigen.tuxfamily.org
http://cs.unc.edu
http://cs.unc.edu
https://khronos.org
https://khronos.org
http://ntp.org
http://developer.download.nvidia.com
http://developer.download.nvidia.com
https://github.com
https://github.com
https://github.com
https://github.com

614 32.  Virtual Reality System Concepts Illustrated Using OSVR

[OSVRRenderManager 2017]

OSVR RenderManager (2017). https://github.com/ReliaSolve/OSVR-RenderManager

[OSVRRMD3Dbase 2017]

OSVR Rendering completeness check source code (2017). https://github.com/ReliaSolve/
OSVR-RenderManager/blob/master/osvr/RenderKit/RenderManagerD3DBase.cpp

[OSVRView 2016]

OSVR Viewing transformations (2016). https://github.com/OSVR/OSVR-Docs/blob/
master/Configuring/projectionAndViewMatrices.md

[RMATW 2017]

OSVR Asycrhonous Time Warp computation source code (2017). https://github.com/
ReliaSolve/OSVR-RenderManager/blob/3458fb7ac8948215026ac416a3aa6cec4320e
6af/osvr/RenderKit/RenderManagerBase.cpp#L1630

[RMConstructModelView 2017]

OSVR RenderManager ConstructModelView souce code (2017). https://github.com/
sensics/OSVR-RenderManager/blob/397e4374ca7a04f7113edef680b39241bb3e0101/
osvr/RenderKit/RenderManager.h#L975

[RMCorrectCoord 2017]

OSVR Texture coordinates distortion correction source code (2017). https://github.com/
ReliaSolve/OSVR-RenderManager/blob/75318eabd698bf1c42f64fd5ded77587215e
1eb0/osvr/RenderKit/DistortionCorrectTextureCoordinate.h

[RMD3DOpenGL 2016]

OSVR OpenGL over Direct3D rendering interface source code (2016). https://
github.com/ReliaSolve/OSVR-RenderManager/blob/master/osvr/RenderKit/
RenderManagerD3DOpenGL.cpp

[RMGLD3D 2016]

OSVR Direct3D callback interface source code (2016). https://github.com/ReliaSolve/
OSVR-RenderManager/blob/75318eabd698bf1c42f64fd5ded77587215e1eb0/osvr/
RenderKit/GraphicsLibraryD3D11.h

https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com

615References

[RMGLGL 2016]

OSVR OpenGL callback interface source code (2016). https://github.com/ReliaSolve/
OSVR-RenderManager/blob/75318eabd698bf1c42f64fd5ded77587215e1eb0/osvr/
RenderKit/GraphicsLibraryOpenGL.h

[RMPredictFuturePose 2017]

OSVR Velocity-based pose prediction source code (2017). https://github.com/ReliaSolve/
OSVR-RenderManager/blob/3458fb7ac8948215026ac416a3aa6cec4320e6af/osvr/
RenderKit/RenderManagerBase.cpp#L118

[RMPredictiveTracking 2017]

OSVR source code to acquire more recent tracking pose (2017). https://github.com/
ReliaSolve/OSVR-RenderManager/blob/3458fb7ac8948215026ac416a3aa6cec4320e
6af/osvr/RenderKit/RenderManagerBase.cpp#L1503

[RMRotateViewport 2017]

OSVR source code for altering the viewport based on new head rotation (2017). https://
github.com/ReliaSolve/OSVR-RenderManager/blob/3458fb7ac8948215026ac416a3a
a6cec4320e6af/osvr/RenderKit/RenderManagerBase.cpp#L1317

[Robinett and Holloway 1992]

Robinett, Warren, and Richard Holloway (1992). Implementation of flying, scaling, and
grabbing in virtual worlds. Proceedings of the ACM Symposium on Interactive 3D
Graphics, Cambridge, MA, ACM SIGGRAPH.

[SDL 2017]

Simple DirectMedia Layer cross-platform development library (2017). https://libsdl.org

[Taylor et al. 1993]

Taylor II, Russell M., Warren Robinett, Vernon L. Chi, Frederick P. Brooks Jr., William
V. Wright, R. Stanley Williams, and Erik J. Snyder (1993). The Nanomanipulator: A
virtual-reality interface for a scanning tunneling microscope, Computer Graphics:
Proceedings of SIGGRAPH’ 93, Anaheim, CA, pp. 127–134.

[Taylor et al. 2001]

Taylor II, Russell M., Thomas C. Hudson, Adam Seeger, Hans Weber, Jeffrey Juliano,
and Aron T. Helser (2001). VRPN: A device-independent, network-transparent VR
peripheral system. Proceedings of the ACM Symposium on Virtual Reality Software &
Technology, VRST, Banff Centre, Canada.

https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://libsdl.org
https://github.com

http://www.taylorandfrancis.com

617

33
Perspective Projection for VR
Robert Kooima
Chicago, IL, USA

33.1 � Introduction

Perspective projection is a well-understood aspect of 3D graphics. It is not something that
3D programmers spend much time thinking about. Most OpenGL applications simply
select a field of view, specify near and far clipping plane distances, and call gluPer-
spective or glFrustum. These functions suffice in the vast majority of cases.

But there are a few assumptions implicit in these. gluPerspective assumes that the
user is positioned directly in front of the screen, facing perpendicular to it, and looking at
the center of it. glFrustum generalizes the position of the view point, but still assumes a
perspective rooted at the origin and a screen lying in the XY plane.

The configuration of the user and the screen seldom satisfy these criteria, but per-
spective projection remains believable in spite of this. Leonardo’s The Last Supper uses
perspective, but still appears to be a painting of a room full of people regardless of the
position from which you view it. Likewise, one can still enjoy a movie even when sitting
off to the side of the theater.

33.2 � Motivation

The field of Virtual Reality (VR) introduces circumstances under which these assumptions
fail and the resulting inaccuracy is not tolerable. VR involves a number of complicating

33.1	 �Introduction
33.2	 �Motivation
33.3	 �Formulation
33.4	 �Implementation

33.5	 �Example
33.6	 �Extended Capabilities
33.7	 �Conclusion

618 33.  Perspective Projection for VR

aspects: first-person motion-tracked perspective, stereoscopic viewing, and multi-screen,
non-planar display surfaces. For example, Figure 33.1 shows the VarrierTM [Sandin et al.
2005].

This technology was invented at the Electronic Visualization Laboratory (EVL) at the
University of Illinois at Chicago. The Varrier installation pictured here was created at
Calit2 on the campus of the University of California at San Diego. It is a 12 5× array of
LCD screens arranged in a 180° arc, 10 ft in diameter. Each LCD displays 1,600 1,200×
pixels, with a parallax barrier affixed to the front, giving autostereoscopic viewing—3D
stereo viewing without specialized 3D glasses. The display as a whole is driven by a cluster
of 16 Linux PCs, each with two GPUs, driving four displays connected to each cluster
node.

As is common in VR systems, a motion tracking system senses the position and ori-
entation of the user’s head. This allows the 3D spatial position of each eye to be computed
relative to the position of the display, which leads to the first-person tracked perspective
aspect of VR. Figure 33.2 shows a top-down view of the 60-panel Varrier indicating the
coordinate system of the motion tracker.

In the case of the Varrier, the origin of the tracker coordinate system is on the floor at
the center of the arc, the X axis points to the right, Y points up (out of the figure), and Z

Figure 33.1

The Varrier autostereoscopic virtual reality display.

Figure 33.2

The user coordinate system, with the Y. off-axis pointing up
(out of the page).Z

X

61933.3  Formulation

points back. In Figure 33.1, I’m standing a bit right of center, and I’m 5 10′ ′′, so my tracked
head position is around 2.0,5.8,0.0().

To display a single coherent virtual environment, all 60 screens must define their pro-
jections in a common frame of reference. For convenience, we simply reuse the motion
tracker’s coordinate system for this purpose, and the positions of the corners of all 60
screens have been measured or calculated in this space. Given these positions, plus the
tracked position and orientation of the user’s head, we can compute the positions of the
user’s eyes, and thus the 120 distinct perspective projections necessary to render one scene
consistently across the entire cluster. We call this common coordinate system the user
coordinate system.

Now, because the user is free to move about the space, the view position does not
remain centered upon any of the screens and the gluPerspective function fails.
Because the display wraps around the user, most screens do not lie in the XY plane and
the glFrustum function fails. We must therefore formulate a more generalized perspec-
tive projection.

In the coming sections we will build up such a formulation from basic principles, math-
ematically, in stages. Our ultimate degree of generality will surpass even the needs of the
Varrier. Following that, we will see the implementation of this more general approach
to perspective projection in C using OpenGL. Finally, we will play with a very simple
example which uses the generalized projection to render crossed-eye stereo pairs suitable
for viewing on a normal 2D display.

33.3 � Formulation

The perspective projection is determined separately for each screen-eye pair, so we need
only consider a single screen being viewed by a single eye. In Figure 33.3 we see one display
screen. The important characteristics are the screen corners pa at the lower left, pb at the
lower right, and pc at the upper left. Together, these points encode the size of the screen, its
aspect ratio, and its position and orientation relative to the user.

We can use these three points to compute an orthonormal basis for the screen’s local
coordinate system. Recall from linear algebra class that an orthonormal basis for a 3D
coordinate system is a set of three vectors, each of which is perpendicular to the others,
and all of which have a length of one. In screen space, we refer to these vectors as vr, the
vector toward the right, vu, the vector pointing up, and vn, the vector normal to the screen
(pointing directly out of it.) See Figure 33.4.

Just as the standard axes X, Y, and Z give us an orthonormal basis for describing points
relative to the origin of 3D Cartesian space, the screen-local axes vr, vu, and vn give us a

Figure 33.3

The measured or calculated positions of the corners of the
screen, in the user coordinate system.

pc

pb
pa

620 33.  Perspective Projection for VR

basis for describing points relative to the screen. We compute these from the screen cor-
ners as follows:

	 v p p
p p

v p p
p p

v v v
v vr

b a

b a
u

c a

c a
n

r u

r u
= −

−
= −

−
= ×

×

33.3.1 � On-axis Perspective
Now we begin to consider the position (specifically, the 3D location) of the user’s eye,
pe, relative to the screen, as in Figure 33.5.

In this specific example, the eye is centered on the screen. The line drawn perpendicu-
lar to the screen along vn strikes it directly in the middle. We refer that point of intersec-
tion as the screen-space origin. This coincides with the origin of the screen-space vector
basis depicted above.

Also in this example, the pyramid-shaped volume, or “frustum,” having the screen as
its base and the eye as its apex is perfectly symmetric. This is exactly the type of perspec-
tive projection producted by gluPerspective.

33.3.2 � Off-axis Perspective
If we move the eye position away from the center of the screen, then we find ourselves
in a situation like Figure 33.6. The frustum is no longer symmetric, and the line from
the eye drawn along vn no longer strikes the screen in the middle. We defined the screen-
space origin to be this point of intersection, and we continue to do so, thus we see that
when the user moves then the screen-space origin moves with him.

Figure 33.4

The screen space orthonormal basis. The origin is located at the
center of the front plane of the screen.

vn

vu

vr

Figure 33.5

Eye position (location) for on-axis perspective
projection. pe

Figure 33.6

Eye position for off-axis perspective projection. pe

62133.3  Formulation

This is where glFrustum comes in. As documented in the OpenGL specification
(versions 1 and 2) this function takes parameters giving the left, right, bottom, and top
frustum extents, plus distances to the near and far clipping planes. We will refer to these
as variables l, r, b, t, n, and f respectively. The first four frustum extent variables may be
understood as user-space distances from the screen-space origin to the respective edges of
the screen, as in Figure 33.7.

In this example, l and b are negative numbers, while r and t are positive numbers, but
this need not be the case. If the user moves far to the side of the screen, then the screen
space origin may not fall within the screen at all, and any of these parameters may be
positive or negative. In the opposite extreme, an on-axis perspective like Figure 33.5 will
have l = r and b = t.

33.3.3 � Determining Frustum Extents
Before we may use these values, we must compute them. As an intermediate step, we
will need to know the vectors from the eye position pe to the screen corners, shown in
Figure 33.8. These vectors are trivially computed as follows.

	 v p p v p p v p pa a e b b e c c e= − = − = −

It is also useful to know a bit more about the screen-space origin. In particular, let d be the
distance from the eye position pe to the screen-space origin. This also happens to be the
length of the shortest path from the eye to the plane of the screen. This value may be com-
puted by taking the dot product of the screen normal vn with any of the screen vectors.
Because these vectors point in opposite directions, the value must be negated.

	 d v vn a()= − ⋅

Given this, frustum extents may be computed. Take the frustum right extent r for example.
When we take the dot product of the unit vector vr (which points from the screen origin
toward the right) with the non-unit vector vb (which points from the eye to the right-most
point on the screen) the result is a scalar value telling us how far to the right of the screen
origin the right-most point on the screen is.

Figure 33.7

The parameters of the off-axis perspective function
glFrustum.

r

b

l

t

Figure 33.8

The screen corner vectors.

vc

vb
va

622 33.  Perspective Projection for VR

Because frustum extents are specified at the near plane, we use similar triangles to scale
this distance back from its value at the screen, d units away, to its value at the near clipping
plane, n units away.

	
/ /

/ /

l v v n d r v v n d

b v v n d t v v n d
r a r b

u a u c

() ()
() ()

= ⋅ = ⋅

= ⋅ = ⋅

The OpenGL function glFrustum inserts these values into the standard 3D perspective
projection matrix using this definition:

	 =

−
+
−

−
+
−

− +
−

−
−

−





























2 0 0

0 2 0

0 0 2

0 0 1 0

P

n
r l

r l
r l

n
t b

t b
t b
f n
f n

fn
f n

This matrix is clever, and it is worth examining in order to form an intuitive understand-
ing of its function. Perspective projection involves foreshortening. The greater the dis-
tance to an object, the smaller that object must be scaled. To accomplish this, the x and y
components of a vertex are divided by its z component.

This division is implemented using homogeneous coordinates. A homogeneous 3D
vector has four components, (x, y, z, w), where w defaults to 1. This implicitly defines
the 3D vector (x/w, y/w, z/w). Notice the third component of the bottom row of P is −1.
When P is multiplied by a homogeneous vector, this −1 has the effect of moving the vec-
tor’s (negated) z value into the resulting homogeneous vector’s w component. Later, when
this homogeneous vector is collapsed down to its equivalent 3D vector, the division by z
implicitly occurs. This trick is the very basis of 3D computer graphics, and its importance
cannot be overstated.

Unfortunately, this formulation means that the foreshortening effect, and thus per-
spective projection, only works when the view position is at the origin, looking down the
negative Z axis, with the view plane aligned with the XY plane. The foreshortening scal-
ing occurs radially about the Z axis. It is useful to understand these limitations and their
source, as we’ll need to work past all three.

33.3.4 � Take a Deep Breath
Let’s take a step back and see where we are. We’ve started with basic constants defining
the position of a screen in space pa , pb, and pc along with the position of an eye in space pe.
We’ve developed formulas allowing us to use them to compute the parameters of a stan-
dard 3D perspective projection matrix l, r, b, and t.

It’s a good start, and it’s useful when developing single-screen applications with user-
centered perspective. But we haven’t seen anything more powerful than glFrustum yet.

62333.3  Formulation

While we have the ability to create a frustum for an arbitrary screen viewed by an arbi-
trary eye, the base of that frustum still lies in the XY plane. If we applied this amount of
knowledge to the Varrier, then all 60 screens would display nearly the same limited view
of the virtual scene. We need two more capabilities: first, we need to rotate the screen to
orient it in the motion tracker’s coordinate system, and second, we need to correctly posi-
tion it relative to the user.

33.3.5 � Projection Plane Orientation
We would like to rotate our XY-aligned frustum within the user coordinate system. We
may do this with a simple matrix multiplication. It is more intuitive if we consider happen-
ing backwards—rotating the user space to be aligned with the XY plane.

Let’s review a bit more linear algebra. Define a 4 × 4 linear transformation matrix M
using the screen space basis vectors vr, vu, and vn as columns, like so:

	

0
0
0

0 0 0 1

M

v v v
v v v
v v v

rx ux nx

ry uy ny

rz uz nz

=





















This is the transformation matrix for screen-local coordinates. It maps the Cartesian coor-
dinate system onto the screen space coordinate system, transforming the standard axes X,
Y, and Z into the basis vectors vr, vu, and vn. If something is lying in the XY plane, then this
transformation matrix M will realign it to lie in the plane of the screen.

	
= ⋅



















= ⋅



















= ⋅



















1
0
0
0

0
1
0
0

0
0
1
0

v M v M v Mr u n

This is extremely useful in 3D graphics. A 3D model is created by an artist in its own coor-
dinate system, with its own local orientation. To position such an object in a scene, a trans-
formation such as this M is used. The column basis construction allows the programmer
to orient the object in terms of the concepts “to the right,” “up,” and “backward” instead
of fumbling with Euler angles, pitch, roll, and yaw.

Unfortunately, this is the exact opposite of what we want. We want something lying
in the plane of the screen to be realigned to lie in the XY plane, so that we may apply the
standard perspective projection to it. We need this mapping:

	


















= ⋅



















= ⋅



















= ⋅

1
0
0
0

0
1
0
0

0
0
1
0

M v M v M vr u n

624 33.  Perspective Projection for VR

This mapping is produced by the inverse of M. Fortunately, M is an orthogonal rotation,
so its inverse is simply its transpose, and we can produce the desired transform simply by
loading the screen space basis vectors into M as rows instead of as columns.

	

0
0
0

0 0 0 1

M

v v v
v v v
v v v

T

rx ry rz

ux uy uz

nx ny nz

=





















We compose the perspective projection matrix P defined above with this matrix MT and
we finally have something more powerful than glFrustum. We have a perspective pro-
jection that relaxes the projection plane alignment requirement. But we’re not quite fin-
ished yet.

33.3.6 � View Point Offset
The nature of the camera is one of the fundamentally confusing aspects of 3D computer
graphics. Consider camera motion. While we would like to imagine that we are free to
move the camera freely about 3D space, the mathematics of perspective projection as
defined by matrix P disallow this. (Recall, above, the nature of the foreshortening division
by z.)

The camera is forever trapped at the origin. If we wish to move the camera five units to
the left, we must instead move the entire world five units to the right. If we wish to rotate
the camera clockwise, we must instead rotate the world counterclockwise.

Above, when we wanted to rotate our frustum to align it within our user space, we
instead rotated our user space backwards to align it with our frustum. Similarly now, we
want to move our frustum to position the apex upon the motion-tracked eye position, so
we instead must translate our tracked eye position to the apex of the frustum. The apex
of the perspective frustum is necessarily at zero, thus we translate along the vector from
the eye.

This can be accomplished using the OpenGL function glTranslatef, which applies
the standard 3D transformation matrix:

	

1 0 0
0 1 0
0 0 1
0 0 0 1

T

p
p
p

ex

ey

ez

=

−
−
−





















33.3.7 � The Composition of Everything
That covers everything we need. We can compose these three matrices giving a single
projection matrix, sufficiently general to accomplish all of our goals.

	 P PM TT′ =

62533.4  Implementation

Beginning with constant screen corners pa , pb, pc, and varying eye position pe, we can
straightforwardly produce a projection matrix that will work under all circumstances.
Most significantly, an arbitrary number of arbitrarily-oriented screens may be defined
together in a common coordinate system, and the resulting projection matrices will pres-
ent these disjointed screens as a single, coherent view into a virtual environment.

33.4 � Implementation

The following C function (Listing 33.1) computes this perspective matrix and applies it
to the OpenGL projection matrix stack. It takes four float vectors, pa , pb, pc, pe, which
are the screen corner positions and the eye position as defined above, plus n and f which
are the near and far plane distances, identical to those passed to gluPerspective or
glFrustum.

This function uses four vector operations: subtract, dotProduct, crossProd-
uct, and normalize, which are not listed here. In all likelihood, you already have a
library containing functions performing the same tasks.

All variables defined in this function have the same names as in the description above.
Note that this function is not optimized. The screen space basis vectors, vr, vu, and vn may
be precomputed and stored per screen, as may be the screen-space basis matrix M which
uses them.

Listing 33.1.  Perspective matrix calculation.

void projection(const float *pa, // Lower-left screen corner
 const float *pb, // Lower-right screen corner
 const float *pc, // Upper-left screen corner
 const float *pe, // Eye position
 float n, float f) �// Near and far clipping distances
{
 float va[3], vb[3], vc[3];
 float vr[3], vu[3], vn[3];

 float l, r, b, t, d, M[16];
 // Compute an orthonormal basis for the screen.
 subtract(vr, pb, pa);
 subtract(vu, pc, pa);

 normalize(vr);
 normalize(vu);
 crossProduct(vn, vr, vu);
 normalize(vn);

 // Compute the screen corner vectors.
 subtract(va, pa, pe);
 subtract(vb, pb, pe);
 subtract(vc, pc, pe);

 // Find the distance from the eye to screen plane.
 d = -dotProduct(va, vn);

 // Find the extent of the perpendicular projection.
 l = dotProduct(vr, va) * n / d;
 r = dotProduct(vr, vb) * n / d;

626 33.  Perspective Projection for VR

Some may wonder why I’ve applied the glMultMatrixf and glTranslatef to
the OpenGL projection matrix rather than the model-view matrix. It would work either
way. I feel the use of the projection matrix lends the implementation better encapsula-
tion. Applications may use it as a drop-in replacement for the standard perspective
functions without worrying about smashing a valuable model-view stack with a later
glLoadIdentity, as is a very common practice.

This distinction is even wider when you consider the OpenGL 3.0 forward compatible
and OpenGL ES 2.0 programming models. Both of these APIs do away with the matrix
stacks entirely. Applications that use them must construct their projection matrices on the
CPU and upload them to vertex shader uniforms on the GPU. By composing the screen-
space orientation and eye position translation matrices with the perspective projection on
the CPU, the vertex shader need not concern itself with the nature of the projection.

33.5 � Example

To make this discussion as concrete as possible, we look at a specific example. A full-
fledged multi-screen implementation like the Varrier would be beyond the scope of this
document, given that a great deal of supporting software is necessary before we can even
begin. For this reason, we consider a simple stereo pair renderer.

Figure 33.9 shows the example output. To view this image properly, cross your eyes
such that your right eye focuses upon the left image, and your left eye focuses upon the
right image. If the image is scaled so that each of the two rectangles is 3′′ wide, and viewed
from a distance of 18′′, then the image of the teapot should appear to hover 2′′ in front of
the paper.

Stereo rendering is an excellent application of this projection function, because
many stereo application implementors do it wrong. Some applications offset the eyes

 b = dotProduct(vu, va) * n / d;
 t = dotProduct(vu, vc) * n / d;

 // Load the perpendicular projection.
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 glFrustum(l, r, b, t, n, f);

 // Rotate the projection to be non-perpendicular.
 memset(M, 0, 16 * sizeof(float));

 M[0] = vr[0]; M[4] = vr[1]; M[8] = vr[2];
 M[1] = vu[0]; M[5] = vu[1]; M[9] = vu[2];
 M[2] = vn[0]; M[6] = vn[1]; M[10] = vn[2];

 M[15] = 1.0f;

 glMultMatrixf(M);

 // Move the apex of the frustum to the origin.
 glTranslatef(-pe[0], -pe[1], -pe[2]);

 glMatrixMode(GL_MODELVIEW);
}

62733.5  Example

horizontally but leave the view axes parallel. Some introduce a simple “toe-in” rotation
without accounting for the off-axis perspectives. Both of these approaches cause the left-
eye and right-eye viewports to differ in user space, which results in edge violation, a con-
dition which is uncomfortable (and potentially nauseating) for the viewer, and leads to
image discontinuities in tiled stereoscopic display systems.

The generalized perspective projection formulation allows you to do it correctly and
automatically. You need only select one set of screen corners and a pair of eye positions,
and the projection function produces a correctly skewed projection matrix.

Figure 33.10 shows a top-down view of the virtual scene depicted by the Figure 33.9.
The eyes are positioned near the origin, offset using an average interocular distance of
2.5′′. The teapot model is positioned at 16z = − ′′, and the screen is at 18z = − ′′. The image
plane is defined to be ′′3 wide and ′′1.5 high. In summary, the screen corners are

	 =
−
−
−

















= −
−

















=
−

−

















1.5
0.75
18.0

1.5
0.75
18.0

1.5
0.75
18.0

p p pa b c

The left and right eye positions are

	 =
−















=
















1.25
0.0
0.0

1.25
0.0
0.0

p pL R

Figure 33.9

A crossed-eye stereoscopic rendering of a teapot.

im
ag

e
pl

an
e

Figure 33.10

An overhead view of the teapot scene, its viewer, and its display.

628 33.  Perspective Projection for VR

33.6 � Extended Capabilities

As suggested in the motivation, this perspective function has generality beyond what is
commonly needed. In particular, screens may have arbitrary orientation. They may even
be rotated, installed upside down, laid flat on the floor, or hung from the ceiling. This
makes the approach applicable to CAVE-like projector-based installations [Cruz-Neira
et al. 1993]. The only requirement is that because screens can be rotated in non-standard
directions, pa should contain the position of the screen’s logical lower left corner, i.e., the
first pixel of the last row of pixels, rather its spatially measured lowest, leftmost corner.
(And so with pb and pc.)

Also note that the ostensibly rectangular screen is configured using only three points.
The position of the fourth point is implicit. The formulation discussion refers to the screen-
space basis (vr, vu, vn) as ”orthonormal,” and the implementation does normalize it, but
does not orthonormalize it. Thus, the configuration is free to introduce a skew transform,
in addition to the screen-orientating rotation transform. I have never seen a circumstance
where this is useful. If you ever find a rhombic display, let me know!

33.7 � Conclusion

This has been a rather lengthy description of a fairly brief bit of code. By discussing it in
detail, I hope to convey a thorough understanding of its function, correctness, and useful-
ness. This code has found use in several virtual reality research projects at the Electronic
Visualization Lab (EVL) at the University of Illinois at Chicago, where the Varrier and
CAVE systems were invented, and elsewhere. Its value to us has been great. I hope you
find it useful as well.

References

[Sandin et al. 2005]

Sandin, Daniel J., Todd Margolis, Jinghua Ge, Javier Girado, Tom Peterka, and Thomas A.
DeFanti. The Varrier™ autostereoscopic virtual reality display. ACM Transactions on
Graphics (TOG), 24(3): 894–903, 2005. ACM.

[Cruz-Neira et al. 1993]

Cruz-Neira, Carolina, Daniel J. Sandin, and Thomas A. DeFanti. Surround-screen
projection-based virtual reality: the design and implementation of the CAVE. In
Proceedings of the 20th Annual Conference on Computer Graphics and Interactive
Techniques, pp. 135–142. ACM, 1993.

629

34
Fast and Easy Collision Detection
for Rigid and Deformable Objects
Rene Weller and Gabriel Zachmann
University of Bremen

In this chapter, we present two methods for collision detection in virtual environments.
The first method relies on a data structure called the Inner Sphere Tree (IST). ISTs are
suitable for rigid objects and they are the first data structure that is able to compute the
penetration volume between a pair of colliding objects at haptic rendering rates. This new
contact information guarantees physically-plausible and continuous forces and torques
for the collision responses that are essential for stable physically-based simulations and
haptic rendering. ISTs do rely on a bounding volume hierarchy that requires a time-
consuming pre-processing that becomes invalid in case of deformations. Consequently,
for deformable objects, we propose another algorithm (we call it kDet) that does not need
any pre-processing. kDet works completely on the GPU and has a constant running time
for practically all relevant objects.

34.1 � Introduction

An immersive experience in interactive virtual environments requires not only realistic
sounds, graphics, and interaction metaphors, but also a plausible behavior of the objects
with which we interact. For instance, if objects in the real world interact, i.e., if they col-
lide, they may, depending on properties such as rigidity, (1) bounce off each other or

34.1	 �Introduction
34.2	 �Inner Sphere Trees
34.3	 �kDet: Deformable

Collision Detection

with Hierarchical Grids on
the GPU

34.4	 �Conclusions and Future
Works

630 34.  Fast and Easy Collision Detection for Rigid and Deformable Objects

(2) possibly break into pieces or (3) deform. Naturally, we expect a similar behavior in
computer simulated environments.

However, in a computer-generated world, objects are usually represented as an abstract
geometric model. Commonly, we approximate their surfaces with polygons. Such abstract
representations have no physical properties per se. In fact, they would simply float through
each other. Therefore, we have to algorithmically add an appropriate handling of contacts.

In detail, we first have to find contacts between moving objects. This process is called
collision detection. In a second step, we have to resolve these collisions in a physically plau-
sible manner. We call this the collision response.

In order to compute physically plausible collision responses, some kind of contact data is
required that must be delivered by the collision detection algorithm. Basically, there exist four
different kinds of contact information that can be used by different collision response solv-
ers: we can either (1) track the minimum distances between pairs of objects, (2) determine the
exact time of impact, (3) define a minimum translational vector to separate the objects, the
so-called penetration depth, or (4) compute the penetration volume (see Figure 34.1).

According to [Fisher and Lin, 2001, Section 5.1], the penetration volume is “the most
complicated yet accurate method” to define the extent of intersection. In Section 34.2
we present the first data structure, the so-called Inner Sphere Trees (ISTs), that yields an
approximation of the penetration volume for objects consisting of hundreds of thousands
of polygons.

However, ISTs are not an all-in-one solution suitable for every purpose. They also have
drawbacks; e.g., they are, thus far, restricted to watertight objects. Moreover, they rely on

Figure 34.1

Different penetration measures (a) Minimum distance, (b) Penetration depth, (c) Penetration
volume, (d) Time of Impact.

63134.2  Inner Sphere Trees

a clever data structure, a special kind of bounding volume hierarchy, that quickly culls
non-colliding parts of the object. This data structure is built in a time-consuming pre-
processing step. Unfortunately, if the objects are not rigid, i.e., they deform over time, then
this pre-computed data structure becomes invalid and must be re-computed or updated.

Hence, for deformable objects, we propose another collision detection algorithm we
call kDet. This algorithm does not require a pre-processing step and is suitable for deform-
able and even fracturing simulations. Moreover, it supports adding or removing polygons
during runtime. kDet runs completely on the GPU and it has a constant parallel running
time for almost all relevant objects.

34.2 � Inner Sphere Trees

Here, we introduce our Inner Sphere Tree data structure that:

•• provides hierarchical bounding volumes from the inside of an object;
•• utilizes a proposed clustering algorithm to construct a sphere hierarchy;
•• uses a unified algorithm based on the ISTs of a pair of objects computing both an

approximate minimal distance and the approximate penetration volume; without
the application knowing in advance the current relationship between the pair of
objects; and

•• has a collision response scheme based on the penetration volume to compute sta-
ble and continuous forces and torques, in both direction and value.

The ISTs and, consequently, the collision detection algorithm are independent of geomet-
ric complexity; they depend only on the approximation error.

34.2.1 � Basic Idea
The main idea of the ISTs is that we do not build an (outer) hierarchy based on the poly-
gons on the boundary of an object. Instead, we fill the interior of the model with a set
of non-overlapping simple volumes that closely approximate the object’s volume. In our
implementation, we use spheres for the sake of simplicity, but the idea of using inner
bounding volumes (BVs) for lower bounds instead of outer BVs for upper bounds can be
extended analogously to all kinds of sub-volumes. On top of these inner BVs, we build a
hierarchy for fast computation to approximate proximity and penetration volume [Weller
and Zachmann, 2009a, b].

The “penetration volume” corresponds to the (virtual) water displacement of the over-
lapping portions of the objects and, thus, leads to a physically motivated and continuous
repulsion force and torques.

Our data structure can support a variety of object representations, such as polygon
meshes or NURBS surfaces. The only precondition is that they be watertight. In order to
build the hierarchy on the inner spheres, we utilize a recently proposed clustering algo-
rithm. A parallel version of this clustering algorithm runs completely on modern GPUs.

34.2.2 � Sphere Packing
In this section, we present the Protosphere algorithm, which computes space-filling poly-
disperse sphere-packings for arbitrary objects [Weller and Zachmann, 2010].

632 34.  Fast and Easy Collision Detection for Rigid and Deformable Objects

The basic idea is simple and related to prototype-based approaches known from
machine learning. Furthermore, this prototype-based approach directly leads to the par-
allel version of our algorithm. It is independent of the object’s representation (polygonal,
NURBS, CSG, etc.); the only precondition is that it must be possible to compute the dis-
tance from any point to the surface of the object. Moreover, our algorithm is not restricted
to 3D but can be easily extended to higher dimensions.

34.2.2.1 � Apollonian Sphere Packings for Arbitrary Objects

A simple algorithm to fill an object with a set of non-overlapping spheres is the following
greedy method. For a given object we start with the largest sphere that fits into the object.
Iteratively, we insert new spheres, under the constraints that:

	 1.	 they must not intersect the already existing spheres; and
	 2.	 that they have to be completely contained inside the object.

The resulting sphere packing is called an “Apollonian sphere packing” [Borkovec et al.,
1994]. One important property of Apollonian packings is that they are known to be space
filling. There exist efficient algorithms to compute Apollonian diagrams for very simple
geometrical shapes like cubes or spheres, but they are very difficult to generalize to arbi-
trary objects, let alone their computation time. Hence, in order to transfer the idea of
Apollonian sphere packings to arbitrary objects, we have to make further considerations.

We start with a classic 3D Voronoi diagram. Let P denote the surface of a closed,
simple object in 3D. Consider the largest sphere s inside P. Obviously, s touches at least
four points of P (otherwise, it would not be the largest sphere), and there are no points of
P inside s (see Figure 34.2). This implies that the center of s is a Voronoi node (VN) of P.

Figure 34.2

The largest sphere that fits into an object, touches at least three points in 2D, and four points
in 3D, respectively.

63334.2  Inner Sphere Trees

Consequently, it is possible to formulate the greedy space filling as an iterative computa-
tion of a generalized Voronoi diagram (VD) of P plus the set of all spheres existing so far
(see Figure 34.3).

This basic idea has a major drawback: many algorithms have been devised for the cal-
culation of the classic VD and for its many generalizations. However, there are relatively
few methods dedicated to the construction of VDs for spheres in 3D and, to our knowl-
edge, there is no algorithm available that supports the computation of VDs for a mixed set
of triangles and spheres, let alone a fast and stable implementation.

Fortunately, a closer look at the simple algorithm we proposed above shows that we do
not need the whole Voronoi diagram, but only the Voronoi nodes. Hence the core idea of

Figure 34.3

The basic idea of our Protosphere algorithm: (a) compute a Voronoi diagram for the object,
(b) place the largest sphere, i.e. we use the Voronoi node with the largest distance to the
surface as the center and the radius is defined by the respective length of the edges,
(c) re-compute Voronoi diagram for the object and the new sphere, and (d) place largest
sphere in the new Voronoi diagram etc.

634 34.  Fast and Easy Collision Detection for Rigid and Deformable Objects

our novel algorithm is to find the VNs directly and approximately. Again, the basic algo-
rithm is very simple: we let a single point, the prototype, iteratively move towards one of
the VNs (see Algorithm 1).

Algorithm 1: Prototype p convergePrototype(object O)

place point p randomly inside object O
while p has not converged do

// set qc as that point on the surface with minimum distance from p
qc = arg min  { }− ∈surface of O: p q q
choose 0,1tε []() ∈
p p t p qcε ()()= + ⋅ −

return p

The last line of the loop in Algorithm 1 guarantees that, after each single step, p is still
inside the object, because the entire sphere around p with radius p qc − is inside the
object.

Moreover, moving p away from the border into the direction p qc()− leads potentially
to bigger spheres in the next iteration (see Figure 34.4 for a visualization of our algorithm).
Usually, tε () is not a constant or chosen randomly, but a cooling function that allows large
movements in early iterations and only small changes in the later steps. A cooling func-
tion allows large movements of the prototypes in the first iterations in order to move very
quickly towards the maximum. In the later iterations, when we have almost arrived at the
maximum, the function slows down to small movements for a fine tuning.

The accuracy of the approximated VN depends on the choice of the cooling function
and on the number of iterations. We choose, as our cooling function, the following varia-
tion of a Gaussian function to meet these requirements:

	 1
0.5

0.5
max

maxt e
t t

t

c

ε () = −
− ⋅

−



 	 (34.1)

where t is a counter for the iterations and maxt denotes the maximum number of iterations.
The cooling factor c controls the steepness of the cooling function.

The overall sphere packing algorithm is described in Algorithm 2.

Algorithm 2: spherePacking(object O)

while user-defined number of spheres is not met do
p = convergePrototype(O)
s = new sphere at position p

O O s=

63534.2  Inner Sphere Trees

34.2.2.2 � Parallelization

Performing these algorithms on a single prototype does not guarantee finding the global
optimum (which is the sought-after VN), because the algorithms presented in the previ-
ous section depend on the starting position of the prototype and can end up in a local
maximum (see Figure 34.5). Hence, we use a set of independently moving prototypes
instead of only a single one. This can be easily parallelized, if the prototypes are allowed
to move independently. However, a naïve implementation has its drawbacks: many pro-
totypes converge to the same end position (see Figure 34.5). Consequently, we get a lot of
similar and thus redundant computations. Obviously, this is not very efficient, even in
parallel computing.

Figure 34.4

The prototype convergence algorithm: (a) Place prototype P randomly inside the object.
(b) Compute minimum distance d from the prototype P to the surface. (c) Move prototype
P into the opposite direction, away from the surface P. (d) Continue until the prototype
converges.

636 34.  Fast and Easy Collision Detection for Rigid and Deformable Objects

Therefore, we use a slightly different approach based on a uniform distribution of the
prototypes. Actually, we compute a uniform grid and start with a prototype in each cell
within the object. During the movement step of Algorithm 1 the prototypes are confined
to their cells. This results in a uniform density of the prototypes, and moreover, the grid
can be used to speed up the distance computations. For the latter we additionally compute
the discrete distance from each cell to the surface (the distance field). For further accelera-
tion, we remove those prototypes from the computation that show the same closest point
in two consecutive iterations and thus are clamped twice to the same position. Obviously,
those prototypes cannot be Voronoi nodes.

Algorithm 3 shows the pseudo-code of the complete parallelized version. Figure 34.6
shows a visualization of the main steps.

Algorithm 3: parallelSpherePacking(object O)

In parallel: Initialize discrete distance field
while user-defined number of spheres is not met do

In parallel: Place pi randomly inside grid cell ci

In parallel: pi = convergePrototype(O  inserted spheres)
In parallel: Find VN p pm i{ }∈ with max distance dm

Insert sphere at position pm with radius dm

In parallel: Update discrete distance field

Figure 34.5

Depending on the prototype’s start position, it can run into a local maximum instead of
finding the global maximum: in the left image, a much larger sphere would fit, e.g. into the
head of of bunny but due to the start position, the prototype converged to the green encir-
cled position (a). If we start with several prototypes simultaneously to avoid local maxima,
some of these prototypes converge to the same end position that is encircled in green (b).

63734.2  Inner Sphere Trees

Our algorithm extends Apollonian sphere packings to arbitrary objects. This is the
reason for the space filling property of our algorithm.

34.2.3 � Hierarchy Creation
Based on the sphere packing, we create an inner bounding volume hierarchy. Bounding
Volume Hierarchies (BVHs) are widely used to accelerate geometric intersection que-
ries like ray tracing, visibility computations, or collision detection. The basic idea is
simple: instead of calculating slow and complex geometric intersection tests between
all geometric primitives, we wrap them recursively into simple bounding volumes (BVs)

Figure 34.6

The parallel Protosphere algorithm: using a discrete distance field. (a) The discrete distance
to the surface is colour coded. (b) We place a prototype (Pi) in each cell (ci) of the distance
field. (c) We use the discrete distance only to define a region in which we have to look for
closest objects for each prototype. (d) During the convergence step we clamp the proto-
types to their cells.

638 34.  Fast and Easy Collision Detection for Rigid and Deformable Objects

that allow faster intersection tests. This generates a tree data structure with a single,
large BV at the root position that encloses all geometric primitives. Obviously, the geo-
metric primitives are the leaves of such a BVH. We use a top-down wrapped hierarchy
approach according to the notion of [Agarwal et al., 2004], where inner nodes are tight
bounding volumes for all their leaves, but they do not necessarily bound their direct
children (see Figure 34.7). Compared to layered hierarchies, the big advantage is that
the inner BVs are tighter. We use a top-down approach to create our hierarchy, i.e.,
we start at the root node that covers all inner spheres and divide these into several
subsets.

The partitioning of the inner spheres has significant influence on the performance dur-
ing runtime. Previous methods for constructing BVHs, like the surface area heuristic,
produce hierarchies that can accelerate ray-tracing dramatically. However, for penetra-
tion computations, taking the objects’ volume into account produces much better BVHs
[Weller et al., 2006]. Algorithms for building the classical outer sphere trees work well if
the spheres constitute a covering of the object and have similar size, but in our scenario,
we use disjoint inner spheres that exhibit a large variation in size.

34.2.4 � Batch Neural Gas Hierarchy Clustering
For the clustering of the spheres, we chose the batch neural gas algorithm (BNG), which
is popular in machine learning research [Cottrell et al., 2006]. BNG is a robust cluster-
ing algorithm which can be formulated as stochastic gradient descent with a cost func-
tion closely connected to quantization error. Like k-means, the cost function minimizes
the mean squared Euclidean distance of each data point to its nearest center. But unlike
k-means, BNG exhibits very robust behavior with respect to the initial cluster center posi-
tions (the prototypes): they can be chosen arbitrarily without affecting the convergence.
Moreover, BNG can be extended to allow the specification of the importance of each data
point; here, we describe how this can be used to increase the quality of the ISTs [Weller
et al., 2014].

Figure 34.7

In a wrapped hierarchy, the parent sphere covers all its leaf nodes, but not necessarily its
direct children.

63934.2  Inner Sphere Trees

In the following, we give a quick recap of the basic batch neural gas followed by a
description of our extensions and application to build the inner sphere tree.

Given points , 0, ,x j mj
d∈ = … and prototypes , 0, ,w i ni

d∈ = … initialized randomly,
we set the rank for every prototype wi with respect to every data point x j as

	 : : , , 0, ,k w d x w d x w nij k j k j i{ }() () { }= < ∈ … 	 (34.2)

In other words, we sort the prototypes with respect to every data point. After the computa-
tion of the ranks, we compute the new positions for the prototypes:

	 : 0

0

w
h k x

h k
i

j

m

ij j

j

m

ij

∑
∑

()
()

=
λ

λ

=

=

	 (34.3)

These two steps are repeated until a stop criterion is met. In the original publication
by [Cottrell et al., 2006], a fixed number of iterations is proposed. Indeed, after a cer-
tain number of iteration steps, which depends on the number of data points, there is
no further improvement. We propose to use an adaptive version and stop the iteration
if the movement of the prototypes is smaller than some ε . In our examples, we choose

10 BoundingBoxSize5ε ≈ ×− , without any differences in the hierarchy compared to the
non-adaptive, exhaustive approach. This improvement speeds up the creation of the hier-
archy significantly.

The convergence rate is controlled by a monotonically decreasing “neighborhood”
function 0h k() >λ that decreases with the number of iterations t, with λ specifying the
“neighborhood range.” We use the function proposed in the original publication [Cottrell

et al., 2006]: h k e
k

() =λ
λ

−
 with initial value

20
nλ = , and reduction 0.01

0
0

max
t

t
t

λ λ
λ

() = 





,

where maxt is the maximum number of iterations. These values are taken according to
[Martinetz et al., 1993].

Obviously, the number of prototypes defines the arity of the tree. If it is too big,
then the resulting trees are very inefficient. On the other hand, if it is too small,
the trees become overly deep and with many levels containing big spheres that do
not approximate the object very well. Experiments with our data structure have shown
that a branching factor of four produces the best results. Additionally, this has the
benefit that we can use the full capacity of SIMD units in modern CPUs during the
traversal.

34.2.4.1 � Magnification Control

In our experience, the regular BNG as presented so far already produces much better
results than other, simpler heuristics, such as greedily choosing the biggest spheres or
the spheres with the largest number of neighbors. However, it only utilizes the location

640 34.  Fast and Easy Collision Detection for Rigid and Deformable Objects

of the centers of the spheres; it does not yet take the size of the spheres into account. This
is because neural gas uses only the number of data points and not their importance. As
a consequence, the prototypes tend to avoid regions that are covered with a very large
sphere, i.e., centers of big spheres are treated as outliers and they are thus placed on deep
levels in the hierarchy. Indeed, it is better to place big spheres at higher levels of the hier-
archy in order to get early lower bounds during distance traversal (see Section 34.2.5.1 for
details).

Therefore, we use an extended version of the classical batch neural gas that takes the
size of the spheres into account. Our extension is based on an idea of [Hammer et al.,
2006], where magnification control is introduced. The idea is to add weighting factors in
order to “artificially” increase the density of the space in some areas.

With weighting factors v x j(), Equation 34.3 becomes:

	 : 0

0

w
h k v x x

h k v x
i

j

m

ij j j

j

m

ij j

∑
∑

() ()
() ()

=
λ

λ

=

=

	 (34.4)

Where v x j() identifies a control parameter to address the importance. In [Hammer et al.,
2006], a function of density is used to control the magnification. In our scenario, we
already know the density, because our spheres are disjoint. Thus, we can directly use the
volumes of our spheres to let 4

3
3v x rj() = π .

Summing up the hierarchy creation algorithm: we first compute a bounding sphere for all
inner spheres (at the leaves), which becomes the root node of the hierarchy. To do so, we use
the fast and stable smallest enclosing sphere algorithm proposed in [Gärtner, 1999]. Then,
we divide the set of inner spheres into subsets in order to create the children. To do that, we
apply the extended version of batch neural gas with magnification control mentioned above.
We repeat this scheme recursively (see Figure 34.8 for some clustering results).

In the following, we will call the spheres in the hierarchy that are not leaves hierarchy
spheres. Spheres at the leaves, which were computed by one of the sphere packing algo-
rithms from Section 34.2.2, will be called inner spheres. Note that hierarchy spheres are
not necessarily contained completely within the object.

34.2.4.2 � Parallel Hierarchical Batch Neural Gas

The Batch Neural Gas algorithm produces a very good partitioning of the inner spheres,
but as a drawback, it is very time-consuming. Specifically, it executes n () BNG calls –
one for each hierarchy sphere—where n denotes the number of inner spheres. In case of
a balanced tree with height log n (), we have an overall running-time of logn n (), but
with a relatively high hidden constant factor that results from the number of iteration
steps.

However, BNG in its pure form, as well as the hierarchical BNG calls of our BVH cre-
ation, are perfectly suited for parallelization. Assuming n () processors, we are able to
reduce the asymptotic running-time to log2n (). In the following, we will sketch the
details of this parallel hierarchical BNG implementation using the GPU.

64134.2  Inner Sphere Trees

Obviously, on the first level of our hierarchy, the ordering kij and, consequently, also
h k v x xij j j() ()λ can be computed independently for each sphere x j. Summing up all those
values can be implemented in parallel too, by using a parallel scan algorithm [Sengupta
et al., 2008]. Also; the parallel assignment of spheres to prototypes is straight forward: we
simply have to compute the distances of each sphere to the prototypes. Please note, that
each sphere is assigned to exactly one prototype.

In the next level of the BVH creation, we have to add four new prototypes for each pro-
totype from the previous level (in case of a branching factor of four). However, triggering
an own parallel process for each sub-set of spheres would forgo the advantages of parallel
computing, especially on the deeper hierarchy levels. Therefore, we chose an alternative.
In the following we will describe its technical details.

First, we sort the spheres with respect to the prototype that the spheres were assigned
to (see Figure 34.9). This can be done in parallel by using a parallel sorting algorithm
[Satish et al., 2009]. This technical detail allows us later to use fast parallel prefix-sum
computations. However, after the sorting we virtually insert four new prototypes for
each prototype from the previous hierarchy level. The fact that each sphere has been
assigned to exactly one prototype in the previous level allows us to compute the values
that are required for BNG (in particular, kij and h_lambda) in parallel for each sphere.
We simply have to ensure that these values are computed for the right new prototypes
(see Figure 34.10).

Finally, we have to sum the individual values to get the new prototype positions; this

means we have to compute
0
h k v x xij j j

j

m∑ () ()λ
=

 and
0
h k v xij j

j

m∑ () ()λ
=

. Surprisingly,

we can directly re-use the parallel prefix-sum from above [Sengupta et al., 2008], even if

we now need the sums for each new prototype individually: we simply have to subtract the
values at the borders of our sorted prototype array (see Figure 34.11).

Algorithm 4 summarizes our complete parallel hierarchical BNG implementation.

Figure 34.8

This figure shows the results of our hierarchy building algorithm based on batch neural gas
clustering with magnification control. All of those inner spheres that share the same color
are assigned to the same bounding sphere. The left image shows the clustering result of the
root sphere, the right images the partitioning of its four children.

642 34.  Fast and Easy Collision Detection for Rigid and Deformable Objects

Figure 34.9

The top array stores the indices of the prototype to which the sphere in the array below has
been assigned after the initial BNG clustering. In a first step, we sort the spheres with respect
to their prototype index (the two lower arrays). Note, that each sphere is assigned to exactly
one prototype.

Figure 34.10

An example for the second level of the hierarchical BNG. According to Figure 34.9, each
sphere has been assigned to a prototype. We insert 16 new prototypes,

(), ,1,1 4,4w w , four for
each prototype (), ,1 4w w from the previous level and compute the values that are required
by BNG, e.g., () ()λh k v xij j . Please note that we need not allocate new memory or copy any
values from CPU to GPU. We can simply re-use the memory from the previous level because
each sphere was assigned to exactly one prototype. Consequently, we get a constant
memory consumption for each level.

Figure 34.11

In order to compute the new position of the prototypes for the next iteration, we must deter-

mine ∑ () ()λh k v x xij j j . Therefore, we compute the prefix sum (brown array) for each of the

four prototype arrays from Figure 34.10. The differences between the values at the borders
directly deliver us the individual sum for each prototype.

64334.2  Inner Sphere Trees

Algorithm 4: Parallel hierarchical BNG

while Not on inner sphere level do
iteration = 0
while iteration < maxNumberIterations do

iteration++
In parallel Sort prototype array
In parallel forall Spheres do

compute h k v x xij j j() ()λ

and h k v xij j() ()λ

In parallel Compute prefix sum
In parallel forall Prototypes in level do

Compute new position
read back prototype positions

The prefix sum and the sorting of the prototypes for n inner spheres can be com-
puted in parallel using n () processors in logn (). Basically, both algorithms are based
on an implicit balanced binary tree structure (see [Satish et al., 2009] and [Sengupta
et al., 2008] for more details). The “per sphere” steps of Algorithm 4 have a complex-
ity of 1 (), obviously. If the tree is balanced, the outer while-loop is called log n ()
times. Overall, we get a parallel time complexity of log2 n (). The memory consump-
tion is n ().

In practice, it is essential that there is not too much traffic between the memories of
the CPU and the GPU. In our implementation there is almost no traffic required. We
only have to save the positions of the prototypes from the last iteration in the outer loop
of Algorithm 4*. We only need to allocate memory for the prototypes once. This memory
can be re-used for all iterations. In our prototypical naïve implementation using CUDA
without further optimizations, we get an overall speed-up by a factor of ten compared to
the sequential hierarchy computation.

34.2.5 � Traversal Algorithms
Our data structure supports almost all kinds of collision queries; namely, (1) proximity
queries, which report the separation distance between a pair of objects, (2) penetration
volume queries, which report the common volume covered by both objects and, more-
over, it supports (3) continuous collision detection queries, which report the exact time
of impact when two objects collide. Obviously, the traversal can be easily modified in
order to also provide boolean answers that simply report whether the objects collide
or not.

As a by-product, the proximity query can return a witness realizing the distance, the
penetration volume algorithm can return a partial list of intersecting polygons, and the
continuous collision detection query can return the first pair of colliding spheres.

*	 However, even this is not really necessary. In the future, we plan to also move the smallest enclosing sphere
computation to the GPU. Then, we only have to read back the whole hierarchy once.

644 34.  Fast and Easy Collision Detection for Rigid and Deformable Objects

We start with a separate discussion of the distance and penetration volume queries
in order to point out their specific requirements. In Section 34.2.5.4, we describe how to
combine these traversal schemes to a unified algorithm that is able to provide distance
and penetration volume information, without the user needing to know in advance,
whether the objects overlap or not. Furthermore, we will describe a time-critical exten-
sion of both algorithms that allows an approximation of the appropriate contact informa-
tion, distance and penetration volume, respectively, when a pre-defined time-budget is
not exceeded.

Finally, we will describe an algorithm that uses our new data structure to compute
the time of impact. In fact, the main focus during the design of our ISTs was the com-
putation of a continuous penetration measure, the penetration volume, at haptic rates.
But it turns out that ISTs also have some nice implications on continuous collision
detection.

34.2.5.1 � Distances

Our proximity query algorithm works like most other classical BVH traversal algo-
rithms: we check whether two bounding volumes overlap or not. If this is the case, then
we recursively step through their children. In order to compute lower bounds for the
distance, we simply have to add an appropriate distance test at the right place. This has to
be done when we reach a pair of inner spheres (i.e., the leaves of the ISTs) during traversal
(see Algorithm 5). These inner spheres are located completely inside the object and thus,
provide a lower bound on the sought-after distance. During traversal there is no need to
visit branches of the bounding volume test tree that are farther apart than the current
minimum distance because of the bounding property. This guarantees a high culling
efficiency.

Algorithm 5: checkDistance(A, B, minDist)

input : A, B = spheres in the inner sphere tree
in/out : minDist = overall minimum distance seen so far
if A and B are leaves then

// end of recursion
{ }()=minDist min distance A, B , minDist

else
// recursion step
forall children a[i] of A do

forall children b[j] of B do
if distance a i , b j minDist()[]   < then

checkDistance(a[i], b[j], minDist)

34.2.5.2 � Penetration Volume

In addition to proximity queries, our data structure also supports a new kind of penetra-
tion query, namely the penetration volume. This is the volume of the intersection of the

64534.2  Inner Sphere Trees

two objects, which can be interpreted directly as the amount of the repulsion force if it is
considered as the amount of water being displaced.

The algorithm that computes the penetration volume (see Algorithm 6) does not dif-
fer very much from the proximity query: we simply have to replace the distance test by
an overlap test and maintain an accumulated overlap volume during the traversal. The
overlap volume of a pair of spheres can be easily derived by adding the volumes of the
spherical caps.

Due to the non-overlapping constraint of the inner spheres, the accumulated overlap
volumes provide a lower bound on the real overlap volume of the objects.

Algorithm 6: computeVolume (A, B, totalOverlap)

input : A, B = spheres in the inner sphere tree
in/out : totalOverlap = overall volume of intersection
if A and B are leaves then

// end of recursion
totalOverlap += overlapVolume(A, B)

else
// recursion step
forall children a[i] of A do

forall children b[j] of B do
if overlap a i , b j 0()[]   > then

computeVolume(a[i], b[j], totalOverlap)

34.2.5.3 � Intersection Volume of Spheres

The main challenge during the traversal is the computation of the penetration volume
between a pair of spheres. According to [Weisstein, 2012], this can be expressed in a closed
formula. Basically, the intersection volume of two intersecting spheres is a lens built of
two spherical caps. Without loss of generality we assume that one sphere is centered at the
origin and the second sphere is displaced by a distance d on the x-axis (see Figure 34.12 for
the setting). The equations of the spheres can be expressed as

	 2 2 2
1
2x y z r+ + = 	 (34.5)

and

	 ,respectively2 2 2
2
2x d y z r()− + + = 	 (34.6)

Consequently, the intersection is:

	 2 2
2
2

1
2x d x r r()− − = − 	 (34.7)

646 34.  Fast and Easy Collision Detection for Rigid and Deformable Objects

In order to compute the intersection volume, we can simply add the volumes of the two
spherical caps with distances 1d x= for the first sphere and 2d x d= − for the second sphere.
The heights of the spherical caps are:

	
21 1 1

2 1 2 1h r d
r r d r r d

d
()()= − =

− + + −
	 (34.8)

and

	
22 2 2

1 2 1 2h r d
r r d r r d

d
()()= − =

− + + −
	 (34.9)

In common, the volume of a spherical cap of height h for a sphere with radius r can be
expressed by (see e.g., [Weisstein, 2012] for more details.):

	 , 1
3

32V R h h r h() ()= π − 	 (34.10)

Consequently, we get for the total intersection volume V for two spheres:

	

, ,

2 3 2 6 3
12

1 1 2 2

1 2
2 2

2 2
2

1 1 2 1
2

V V r h V r h

r r d d dr r dr r r r
d

()
() ()

()

= +

=
π + − + − + + − 	 (34.11)

Summarizing, Equation 34.11 allows us to compute the overlap between a pair of spheres
efficiently during the traversal.

Figure 34.12

Penetration volume of two spheres with radius 1r and 2r , respectively. a denotes the radius of
the circle of the two spherical caps that build the intersection volume.

64734.2  Inner Sphere Trees

34.2.5.4 � Unified Algorithm for Distance and Volume Queries

In the previous sections, we introduced the proximity and the penetration volume
computation separately. However, it is quite easy to combine both algorithms. This
yields a unified algorithm that can compute both the distance and the penetration
volume, without the user having to know in advance whether the objects overlap or
not.

We start with the distance traversal. If we find the first pair of intersecting inner
spheres, then we simply switch to the penetration volume computation.

The correctness is based on the fact that all pairs of inner spheres we visited so far
during distance traversal do not overlap and thus do not extend the penetration volume.
Thus, we do not have to visit them again and can continue with the traversal of the rest
of the hierarchies using the penetration volume algorithm. If we do not meet an inter-
secting pair of inner spheres, the unified algorithm still reports the minimal separating
distance.

34.2.6 � Continuous Volumetric Collision Response
To maintain stable 6-DOF haptic rendering from a physically based rigid body simula-
tion, we explore how to use the penetration volume to compute continuous forces and
torques.

Mainly, there are three different approaches to resolve collisions: (1) the penalty-
based method, (2) the constraint-based method and (3) the impulse-based method. The
constraint-based approach computes constraint forces that are designed to cancel any
external acceleration that would result in interpenetrations. Unfortunately, this method
has at least quadratic complexity in the number of contact points. The impulse-based
method resolves contacts between objects by a series of impulses in order to prevent inter-
penetrations. It is applicable to real-time simulations but the forces may not be valid for
bodies in resting contact.

So, we decided to use the penalty-based method, that computes penalty forces based on
the interpenetration of a pair of objects. The main advantages are its computational sim-
plicity, which makes it applicable for haptic rendering and its ability to simulate a variety
of surface characteristics. Moreover, the use of the penetration volume eliminates incon-
sistent states that may occur when only a penetration depth (i.e., a minimum translational
vector) is used.

Obviously, the amount of overlap can be directly used to define the amount of repel-
ling forces. However, in order to apply such penalty forces in haptic environments or
physically-based simulations, the direction of the force is required in addition to its
amount.

A simple heuristic would be to consider all overlapping pairs of spheres ,R Si j() sepa-
rately. Let ,c ci j be their sphere centers and n c cij i j= − . Then, we compute the overall direc-

tion of the penalty force as the weighted sum Vol
,

R Si j
i j∑ ()= ∩n . nij (see Figure 34.13).

Obviously, this direction is continuous, provided the path of the objects is continuous.
However, this simple heuristic also has its drawbacks: in case of deep penetrations it is
possible that some internal intersections point into the false direction. As a result, the

648 34.  Fast and Easy Collision Detection for Rigid and Deformable Objects

objects will be sucked up into each other. Therefore, it can be necessary to flip some of the
directions ijn .

In the following, we will present an extension based on normal cones for all spheres
throughout the hierarchy that can help to identify these pairs. Moreover, we will show
how our ISTs can also provide continuous torques.

34.2.6.1 � Contact Forces

Algorithm 6 and its time-critical derivative return a set of overlapping spheres or poten-
tially overlapping spheres, respectively. We compute a force for each of these pairs of
spheres (Ri, Sj) by:

	 VolR k R Si c i j Ri()() = ∩ ()f n 	 (34.12)

where kc is the contact stiffness, Vol R Si j()∩ is the overlap volume, and n()Ri is the contact
normal.

Figure 34.13

The direction of the penalty force can be derived from the weighted average of all vectors
between the centers of colliding pairs of spheres, weighted by their overlap.

64934.2  Inner Sphere Trees

Summing up all pairwise forces gives the total penalty force:

	 f() f()R Ri

R Si i

∑=
∩ ≠∅

	 (34.13)

In order to compute normals for each pair of spheres, we augment the construction process
of the ISTs: in addition to storing the distance to the object’s surface, we store a pointer
to the triangle that realizes this minimum distance. While creating the inner spheres by
merging several voxels, we accumulate a list of triangles for every inner sphere. We use the
normals of these triangles to compute normal cones which are defined by an axis and an
angle. They tightly enclose the normals of the triangles that are stored in the list of each
inner sphere.

During force computation, the axes of the normal cones CR and CS are used as the direc-
tions of the force since they will bring the penetrating spheres outside the other object in
the direction of the surface normals (see Figure 34.14). Note that f(Ri) ≠ f(Sj).

If the cone angle is too large (i. e. α ≈ π), we simply use the vector between the two cen-
ters of the spheres as in the naive approach.

Obviously, this force is continuous in both cases, because the movement of the axes of
the normal cones as well as the movement of the centers of the spheres are continuous,
provided the path of the objects is continuous.

Figure 34.14

(a) we compute a normal cone for each inner sphere. The cone a list of triangles that is
associated with the sphere. Note that the spread angle of the normal cone can be 0 if the
sphere is closest to a single triangle. (b) the axis of the normal cones CR and CS are used for
the force direction. The center ,PR S of the spherical cap defines the contact point.

650 34.  Fast and Easy Collision Detection for Rigid and Deformable Objects

34.2.6.2 � Torques

In rigid body simulation, the torque τ is usually computed as τ = (Pc − Cm) × f, where Pc is
the point of collision, Cm is the center of mass of the object and f is the force acting at Pc.
Like in the section before, we compute the torque separately for each pair (Ri, Sj) of inter-
secting inner spheres:

	 τ = − × f() () ()(,)R P C Ri R S m ii j 	 (34.14)

Again, we accumulate all pairwise torques to get the total torque:

	 R R
R S

i

i j

∑τ τ() ()=
∩ ≠∅

	 (34.15)

We define the point of collision ,P R Si j() simply as the center of the intersection volume of
the two spheres (see Figure 34.14). Obviously, this point moves continuously if the objects
move continuously. In combination with the continuous forces ()Rf i , this results in a con-
tinuous torque.

34.3 � kDet: Deformable Collision Detection with
Hierarchical Grids on the GPU

ISTs work perfectly for watertight rigid objects. However, in case of deformations, the
BVH becomes invalid. A complete rebuild would take too long, and until now it is an
open question how to quickly update the hierarchy. Hence, for deformable objects we pro-
pose a polygon-based algorithm called kDet that additionally has the advantage that it
runs completely on the GPU. kDet computes all intersecting pairs of polygons for a pair
of polygonal objects. Consequently, traditional all-pairs collision response methods can
be easily applied. It is possible to prove a worst-case running time for kDet that is inde-
pendent of the number of polygons. Our algorithm is very well suited for deformable and
even topology-changing objects, because it does not require any complex data structures
or pre-processing.

34.3.1 � Basic Idea
The main idea behind our kDet algorithm is based on a simple observation: when we
want to check two objects A and B for collisions, we do not have to consider all polygon
pairs; rather, it is sufficient to simply check each polygon of A against larger polygons
of B and vice versa. Obviously, a naive implementation would result in a quadratic run-
ning time. The challenge is to reduce the number of potentially colliding triangles to a
constant number for each polygon. In other words, we have to identify polygons in a
certain neighborhood and we have to show that there are not overly many polygons in
this neighborhood.

A widely used approach for neighbor searching are uniform grids. However, choos-
ing an appropriate cell size is challenging: if the cell size is too large, there may be many

65134.3  kDet: Deformable Collision Detection with Hierarchical Grids on the GPU

polygons assigned to the same cell. On the other hand, if the cell size is chosen too small,
large polygons occupy a large number of cells. Fortunately, in our case, we are not inter-
ested in finding all neighbors; we only need to find larger polygons. This means we can use
a hierarchy of grids with different cell sizes and assign each polygon to the specific level in
this hierarchy where it does not occupy too many cells.

34.3.2 � Populating the Hierarchical Grid
Before performing a collision query, we must assign the polygons to their particular grid
cells. To do that, we apply a simple rule: let A be a set of polygons. For each polygon p Ai ∈
let di be the diameter of the circumcircle and let min{ }d di=min .We set the cell size of the
finest grid in our hierarchy to mind . Coarser levels are derived by successively doubling the
cell size. The hierarchy level li of each polygon pi can be computed by

	 2 2min min
1d d dl

i
li i⋅ ≤ < ⋅+

In other words, each polygon is assigned to the level so that the cell size is at most the
diameter of the circumcircle. Then we simply add the polygon to all cells in the level li that
are intersected by that polygon (see Figure 34.15).

34.3.3 � Collision Queries
If we want to check two objects A and B for collision, we simply test all polygons p Ai

A ∈
against all larger polygons p Bj

B ∈ and vice versa. In detail, for each p Ai
A ∈ we compute its

level li and all cells in B’s hierarchical grid that are intersected by bi at this level. For each
of these cells we test all included polygons Pj

B with at least the size of the circumcircle, i.e.

Figure 34.15

Three consecutive levels of the hierarchical grid with distributed polygons based on their
circumcircle.

652 34.  Fast and Easy Collision Detection for Rigid and Deformable Objects

c ci
A

j
B≤ . In order to check also larger triangles, we ascend in the hierarchy until we reach

the maximum level and again, test Pi
A against all included polygons of B for an intersec-

tion (see Algorithms 7 and 8).

Algorithm 7: checkCollisions(object A, object B)

forall polygons p Ai ∈ do
checkCollisions(, p Bi)

forall polygons p Bj ∈ do
checkCollisions(pj, A)

This algorithm guarantees that we find for each polygon p Ai ∈ all intersecting poly-
gons p Bj ∈ with at least the same diameter of the circumcircle.

Overall, we will find all colliding pairs of polygons if we test A against B and vice versa,
because either of the polygons has a larger circumcircle, assuming general position of the
polygons. Obviously, for real-world tests we cannot assume general positions. Here, we
avoid double checking polygon pairs by simply testing only strictly larger polygons in one
direction.

Algorithm 8: checkCollisions(polygon pi, object B)

Get hierarchy level li for pi

forall hierarchy levels: maxl li do
forall cells c tk i∩ ≠ ∅ do

forall polygons p cj k∈ do
polygonIntersection (pi, pj)

34.3.3.1 � Parallelization

This algorithm can be easily parallelized. For the population of the hierarchical grid, we
assign all polygons independently to their particular cells. Simple atomic operations avoid
race conditions if two polygons are assigned to the same cell. During the queries, we can
also check all polygons for each object in parallel. Algorithm 9 shows the complete parallel
algorithm. It uses Algorithm 8 that will be executed as the kernel for the collision check
per polygon.

Algorithm 9: checkCollisionsParallel(object A, object B)

In Parallel forall polygons p Ai ∈ do
assignPolygonToGridcell(pi)

In Parallel forall polygons p Bj ∈ do
checkCollisions(pj, A)

65334.3  kDet: Deformable Collision Detection with Hierarchical Grids on the GPU

In Parallel forall polygons p Bj ∈ do
assignPolygonToGridcell(pj)

In Parallel forall polygons p Aj ∈ do
checkCollisions(pi, B)

In case of rigid objects, the assignment to the grid cells does not have to be computed
before each collision check, but it can be done once at the beginning of the simulation as
a pre-processing step. However, even if the assignment is computed before each collision
check, as it would be required for deformable objects, it does not affect the theoretical
complexity of our algorithm.

34.3.4 � Analysis
The construction of our hierarchical grid can be done in linear time in case of sequential
processing and constant time in the parallel case: computing the level of each triangle
takes (1) time. Due to the choice of the level—the cell size is at least the diameter of the
circumcircle of each polygon—the polygon can intersect only a constant number of cells
on its level. Hence, it has to be inserted into at most a constant number of cells. More pre-
cisely, each polygon can intersect at most eight cells on its level. Overall, we get a linear
time for the construction of the hierarchical grid.

The query time consists mainly of two factors: the height of the hierarchy and the maxi-
mum number of polygons in a cell.

First, we show that the height of the hierarchy is independent of the number of poly-
gons. Actually, the height of the hierarchy depends only on the ratio between the largest
and the smallest polygon of each individual object. Let min{ }mind di= and max{ }maxd di=
where p Ai ∈ are the polygons of a set of polygons A and di is the diameter of the circumcir-

cle of each polygon pi. Then the height h of the hierarchy is log max

min
h d

d
= 





. Obviously, h is

independent of the number of polygons in A, and it only depends on their size distribution.
It still remains to be shown that the number of polygons per cell is constant. Obviously,

for specially constructed worst cases like the Chazelle polyhedron, this is not true (see
Figure 34.16). The main reason is, that a polygon can be infinitesimally small: this might
generate polygons with an infinite number of other polygons in their neighborhood.
However, we can easily define a geometric predicate that limits the number of neighbors:

Definition 3.1

Let A be a polygon set and k > 0 some constant. We call A k-free if for each sphere s with
diameter d there are at most k larger polygons , 1, ,p A i ki ∈ = … intersecting s. Larger
means that the diameter di of the minimum enclosing sphere of pi is larger than d.

For such k-free polygon sets, it is easy to prove a constant number of polygons per cell:
Due to the construction of the hierarchy, the minimum diameter d of the circumcircle
of any polygon inside a cell with length c is at most

2
c . We can cover the complete cell

654 34.  Fast and Easy Collision Detection for Rigid and Deformable Objects

with spheres of diameter
4
c , for instance by overlaying two regular sphere packings (see

Figure 34.17 for a 2D example). Obviously, the number of spheres is constant and inde-
pendent of the particular cellsize, because the diameter of the spheres is a fraction of the
length of the cell. This number can be improved by using a better sphere covering. If we
have such a sphere covering and if the object is k-free, there can be at most k polygons
intersecting such a sphere of diameter

4
c by definition. Summarizing, we have a constant

number of spheres that are required to cover a cell and we have at most a constant number
of polygons intersecting each of these spheres; consequently, the total number of polygons
inside a cell is constant.

This restriction to k-free polygonal objects seems to limit the viability of our algorithm.
In fact, we analyzed a large object database of more than 10,000 real-world 3D objects and
the results show that our definition holds for all but a handful of pathological cases. For
more details we refer the interested reader to [Weller et al., 2017].

Figure 34.16

Specially constructed objects like Chazelle polyhedra (left) realize a quadratic number of
intersecting pairs of polygons in the worst case.

Figure 34.17

Covering of a cell in the uniform grid with two shifted regular circle lattices.

65534.3  kDet: Deformable Collision Detection with Hierarchical Grids on the GPU

To summarize: in case of k-free sets of polygons, we get at most a constant number of
polygons in each cell of the hierarchy, each polygon intersects at most a constant number
of cells and the number of levels in the hierarchy is independent of the number of poly-

gons. Overall, we get a running time of log max

min

d
d

n












 for a collision query which is

almost linear in the number of polygons.
In the parallel case, we process all polygons at the same time for both the hierarchy

construction and the collision queries. The construction requires an atomic operation
when inserting several polygons into the same cell. However, the number of polygons per
cell is constant, and consequently, the number of atomic operations is also constant per
cell. This means we get a constant running time for the construction. In the query algo-
rithm, all steps are constant per polygon except the height of the hierarchy. Hence, we get a

parallel running time of log max

min

d
d














 for the query which is independent of the polygon

count and thus, almost constant. For both algorithms we need only a linear number of
parallel processors.

The factor log max

min

d
d







 somewhat blemishes the analysis, and it is easy to construct arti-

ficial worst-case objects that would produce a linear height of the hierarchy. However,
objects with such a wide spread in polygon sizes can be easily identified, in contrast to
objects that produce a quadratic number of polygon intersections, and moreover, they are
typically avoided in real-world scenarios.

In case of deformable (or fracturing) objects, max

min

d
d

 could change due to the deforma-

tions. In our experiments, we did not observe such a behavior. We are positive that most

deformation methods will not change max

min

d
d

 much, because an extremely varying polygon

size is usually unwanted, if only for reason of numerical stability and high-quality render-
ing. However, the theoretical proof of a constant max

min

d
d

 for existing deformation schemes or

the development of novel deformation schemes that keep this within certain bounds is an
interesting question for future works.

34.3.5 � Implementation Details
The high-level description of our algorithm from the previous section is useful to under-
stand the underlying concepts and for the theoretical analysis. An actual implementation
should also consider details of current computer architectures like memory consumption
or the memory access of current massively parallel processors like GPUs.

34.3.5.1 � Spatial Hashing

A major drawback of the naive algorithm is the high memory consumption that is required
to maintain a hierarchy of uniform grids. Usually, most of the cells remain empty, even if
we restrict the grids’ extents to the bounding boxes. In order to overcome this drawback,
we use hash tables instead of real grids.

656 34.  Fast and Easy Collision Detection for Rigid and Deformable Objects

Hash tables are a widely used data structure that already have been applied successfully
to represent uniform grids in the past [Turk, 1989]. Hash tables achieve almost constant
insertion and query time while reducing the memory overhead. The main challenge when
using hash tables is to find an appropriate hash function. We investigated different hash-
ing functions, such as DJB2 hashing [Eitz and Lixu, 2007], which spreads the triangles
relatively uniformly in the hash table and, thus, minimizes hash collisions. Additionally,
we tested 3D Morton codes [Morton, 1966] that generate locality-preserving hash val-
ues of the triangles that should help to maximize coalesced memory access in our GPU
implementation. In order to further improve the memory access, we initially pre-sort the
triangles with respect to the Morton codes and the hierarchy levels (for instance, one of
the readily available sorting algorithms in the Thrust library can be used). However, we
do this only once at the beginning of the simulation, rather than before each individual
collision check. Consequently, this pre-processing heuristic does not affect the constant
running time.

Another question that arises when using hash tables is the resolution of hash collisions
that appear when several polygons have the same hash value. Closed hashing would result
in extremely non-coalesced memory access. Open hashing, on the other hand, would
require dynamic memory allocation if we would use lists for instance. Fortunately for our
algorithm, we already know the maximum number of polygons per cell, which we could
use to pre-allocate memory for the hash buckets, at least as long as there is only one grid
cell assigned to each hash value. However, this constant factor is only an upper bound that
is rarely met in real applications and, hence, simply using such a large number of entries
for each bucket would result in an overly large memory footprint of the hash table. To
overcome these drawbacks, we decided to use a hybrid hashing strategy: we reserve a cer-
tain, relatively small, number of entries for each bucket and in case of a bucket overflow,
we simply search for an empty bucket and link it to the overflown bucket.

34.3.5.2 � Further Improvements

It is possible to prove a parallel constant running time for kDet assuming a perfect PRAM
machine, however, this requires a linear number of processors. Even if a linear number of
processors is relatively small compared to a quadratic number of processors that a naive
collision detection would need for a constant running time, the actual number of proces-
sors of current GPUs is limited to, at most, a few thousand. On the other hand, recent 3D
scenes consist normally of hundreds of thousands of polygons. Hence, the polygons have
to be processed in batches whose size depends on the number of processors. So, a reduc-
tion of the potential polygons is still useful.

Such a reduction can be easily integrated into our approach without affecting the con-
stant running time. To do that, we rely on the simple observation that usually, only very
small parts of the objects collide. Consequently, it is not necessary to insert all polygons
into the hash table and to check all for collisions, but only those that are in potentially col-
liding areas. These areas can be easily identified: They have to be inside the overlap of the
objects’ bounding boxes. Hence, it is sufficient to compute the overlapping region of the
bounding boxes, check which polygons are inside this area, and restrict our tests to this
smaller number of polygons. The bounding boxes can be computed in parallel in constant
time using atomic operations. Additionally, testing whether a polygon is inside the over-
lapping region can be performed in parallel constant time.

65734.4  Conclusions and Future Works

This heuristic can be easily applied whenever a collision detection between a pair of
different objects is performed. However, in case of deformable objects, we can additionally
use our algorithm to compute self-collisions between polygons of the same objects effi-
ciently: We simply have to insert all polygons of the deformable object into the hash map
and check it against itself. Our experiments have shown that in this case, the aforemen-
tioned pre-test usually requires more time than simply checking all polygons. Moreover,
in practice, it turns out to be more efficient to simply add all polygons of all objects to the
same hash map hierarchy, instead of keeping an individual hash map hierarchy for each
object, and treat the inter- and intra- collision checks as a single self-collision check.

34.4 � Conclusions and Future Works

We have presented a hierarchical data structure, the Inner Sphere Trees. The ISTs support
different kinds of collision detection queries, including proximity queries and penetration
volume computations with one unified algorithm. Distance and volume queries can be
answered at rates of about 1 kHz (which makes the algorithm suitable for haptic render-
ing) even for very complex objects with several hundreds of thousands of polygons.

Another big advantage of our penetration volume algorithm, when utilized for penalty-
based simulations, is that it yields continuous directions and magnitudes of the force and
the torque, even in cases of deep penetrations. Moreover, our inner sphere trees are per-
fectly suited for SIMD acceleration techniques and allow algorithms to make heavy use of
temporal and spatial coherence.

Last but not least, we have presented a method for partitioning geometric primitives
into a hierarchical data structure based on the Batch Neural Gas clustering. Our approach
considers the object’s volume instead of restricting the partitioning to the surface, as most
other algorithms do.

Additionally, we have presented a new algorithm, kDet, that is able to find all intersect-
ing polygons in almost linear sequential time for all practically relevant objects. A parallel
version can even achieve a constant worst-case running time. kDet is suitable for all kinds
of polygon soups and can be applied to deformable and even topology-changing objects
at no extra costs, because no complicated pre-processing steps or acceleration data struc-
tures are necessary.

34.4.1 � Future Work
However, our approaches also open up several avenues for future work, starting with the
partitioning of the geometric primitives: it would be interesting to apply our clustering
approach also to classical outer BVHs. For the ISTs there is also room for improving the
hierarchy. For example, in particular cases, false positives can be reduced in object to
object intersection when the spheres of inner nodes are actually increased in size. Such
cases occur when the curvature of the larger sphere better conforms to the actual shape
of the object and thus reduces the excess volume that protrudes outside the volume of the
actual object—the greater overall volume of the node is harmless as the rest resides within
the object, and thus generates no false positives.

Another option could be investigation of inner volumes other than spheres. This could
improve the quality of the volume covering because spheres do not fit well into some
objects, especially if they have many sharp corners or thin ridges.

658 34.  Fast and Easy Collision Detection for Rigid and Deformable Objects

Moreover, we would like to explore other uses of inner bounding volume hierarchies,
such as ray tracing or occlusion culling. Note that the type of bounding volume chosen for
the “inner hierarchy” probably depends on its use.

A major drawback of the ISTs is their restriction to watertight objects. This is mainly,
because we have to compute a sphere packing of the objects’ interior. In real word applica-
tions, e.g., in virtual prototyping tasks in the automotive industry, thin sheets are widely
modelled as a single polygon layer.

In the future we plan to extend our ISTs to such open geometries by defining a quasi-
volumetric penetration measure for thin or non-closed objects. The basic idea is very sim-
ple. Instead of filling the object’s interior with spheres, we fill the free space, or at least a
certain region surrounding an object. At the edges we break these sphere packings into
several connected components. During the traversal we just have to select the correct con-
nected component to be checked.

kDet also opens up a lot of interesting avenues for future work: a natural next step
would be the development of an algorithm that optimizes the constant factor for real-
world objects by improving the meshing. Obviously, the height of the hash map hierarchy
should also be considered for this optimization. We believe, our definition of -freedom
could be also used to improve existing approaches. For instance, it can lead to new con-
struction methods for optimized bounding volume hierarchies. The development of
simulation methods that maintain the constant and the height of the hierarchy during
deformations is another challenge.

References

[Agarwal et al., 2004]

Agarwal, Pankaj, Leonidas Guibas, An Nguyen, Daniel Russel, and Li Zhang (2004).
Collision detection for deforming necklaces. Computational Geometry: Theory and
Applications, 28: 137–163.

[Batcher, 1968]

Batcher, Kenneth E. (1968). Sorting networks and their applications. In Proceedings of
the April 30–May 2, 1968, Spring Joint Computer Conference, AFIPS ’68 (Spring),
pp. 307–314. ACM, New York.

[Borkovec et al., 1994]

Borkovec, Micha, Walter De Paris, and Ronald Peikert (1994). The fractal dimension of
the Apollonian sphere packing. Fractals an Interdisciplinary Journal on the Complex
Geometry of Nature, 2(4): 521–526.

[Cottrell et al., 2006]

Cottrell, Marie, Barbara Hammer, Alexander Hasenfuss, and Thomas Villmann (2006).
Batch and median neural gas. Neural Networks, 19: 762–771.

659References

[Eitz and Lixu, 2007]

Eitz, Mathias, and Gu Lixu (2007). Hierarchical spatial hashing for real-time collision
detection. In IEEE International Conference on Shape Modeling and Applications,
2007, SMI ’07, Lyon, France, pp. 61–70.

[Fisher and Lin, 2001]

Fisher, Susan, and Ming C. Lin (2001). Fast penetration depth estimation for elastic bod-
ies using deformed distance fields. In Proceedings of the International Conference on
Intelligent Robots and Systems (IROS), Maui, HI, USA, pp. 330–336.

[Gärtner, 1999]

Gärtner, Bernd (1999). Fast and robust smallest enclosing balls. In Nesetril, J., ed., ESA.
Lecture Notes in Computer Science, vol. 1643, pp. 325–338. Springer, Berlin.

[Hammer et al., 2006]

Hammer, Barbara, Alexander Hasenfuss, and Thomas Villmann (2006). Magnification
control for batch neural gas. In ESANN, pp. 7–12.

[Martinetz et al., 1993]

Martinetz, Thomas M., Stanislav G. Berkovich, and Klaus J. Schulten (1993). ‘Neural-gas’
network for vector quantization and its application to time-series prediction. IEEE
Transactions on Neural Networks, 4(4): 558–569.

[Morton, 1966]

Morton, Guy M. (1966). A computer oriented geodetic data base; and a new technique in
file sequencing. Technical report, IBM Ltd.

[Satish et al., 2009]

Satish, Nadathur, Mark Harris, and Michael Garland (2009). Designing efficient sort-
ing algorithms for manycore GPUs. In Proceedings of the 23rd IEEE International
Parallel and Distributed Processing Symposium, Rome, Italy.

[Sengupta et al., 2008]

Sengupta, Shubhabrata, Mark Harris, and Michael Garland (2008). Efficient parallel scan
algorithms for GPUs. Technical report NVR-2008-003, NVIDIA Corporation.

[Turk, 1989]

Turk, Greg (1989). Interactive collision detection for molecular graphics. Technical report.

660 34.  Fast and Easy Collision Detection for Rigid and Deformable Objects

[Weisstein, 2012]

Weisstein, Eric W. (2012). Sphere-sphere intersection. Wolfram Research, Inc. URL: http://
mathworld.wolfram.com/Sphere-SphereIntersection.html.

[Weller and Zachmann, 2009a]

Weller, René, and Gabriel Zachmann (2009). Inner sphere trees for proximity and pene-
tration queries. In Robotics: Science and Systems Conference (RSS), Seattle, WA, USA.

[Weller and Zachmann, 2009b]

Weller, René, and Gabriel Zachmann (2009). A unified approach for physically-based
simulations and haptic rendering. In Sandbox 2009: ACM SIGGRAPH Video Game
Proceedings, New Orleans, LA, USA. ACM Press.

[Weller and Zachmann, 2010]

Weller, René, and Gabriel Zachmann (2010). Protosphere: A GPU-assisted prototype
guided sphere packing algorithm for arbitrary objects. In ACM SIGGRAPH ASIA
2010 Sketches, pp. 8:1–8:2. ACM, New York.

[Weller et al., 2006]

Weller, René, Jan Klein, and Gabriel Zachmann (2006). A Model for the Expected Running
Time of Collision Detection using AABB Trees. In 12th Eurographics Symposium on
Virtual Environments (EGVE), Lisbon, Portugal, May 8–10.

[Weller et al., 2014]

Weller, René, David Mainzer, Abhishek Srinivas, Matthias Teschner, and Gabriel
Zachmann (2014). Massively parallel batch neural gas for bounding volume hierar-
chy construction. In Virtual Reality Interactions and Physical Simulations (VRIPhys),
Bremen, Germany. Eurographics Association.

[Weller et al., 2017]

Weller, René, Nicole Debowski, and Gabriel Zachmann (2017). kDet: Parallel constant
time collision detection for polygonal objects. Computer Graphics Forum, 36(2):
131–141.

http://mathworld.wolfram.com
http://mathworld.wolfram.com

661

Index

#

2:1-Turn reset for RDW, 501
2D Debug mode in SteamVR Unity package,

46, 47
2D network topology visualization, 395
3D Bubble Cursor selection technique, 214
3 Degree of Freedom (3-DOF), 112, 519
3D Modular Kit Unity asset package, 294
3-DOF orientation, 109
3D painting user interface, 248–253
3D printing tips, 547–548
3D selection technique

common problems in, 212–215
Double Bubble, 222–224
Flexible Rapid Incremental Zoom, 219–222
progressive refinement, 215–216
sphere-casting refined by quad-menu

selection, 216–219
techniques, 216–222

3D-to-2D projection, 576
4D effects, see Environmental (4D) effects
6-degree of freedom (6-DOF), 61, 63, 112, 229,

304

A

Action-based distance perception, 468
Activity name for Android project, 194–197
ADC, see Analog to Digital Converter (ADC)
aesthetic experience, 408–410
Attachments, 545–547
A-Frame, 107–109

Agent control interaction method, 17
Algorithmic behavior measurements, 460
Analog actuators, 516, 517
Analog sensors, 109, 516, 517
Analog to Digital Converter (ADC), 517–519,

521, 523
Android

CloseBy notification (Samsung), 104
nearby notification, 104
Programming, 193199, 207
Studio, 193

Angular resolution of a visual display, 533–534
Animation system for avatars, see Avatar

animation system
Animation targets, avatars as, 322–323
Animator Controller Unity asset, 279, 280, 282
Anscombe’s quartet, 384–385, 389
Apollonian sphere packing, 632–637
AppCache-implied behaviors, 110
Arduino

AnalogReference() method/function, 523
ecosystem, 519
I/O Communications Program, 521–523,

524–527
program examples, 521, 524
Uno Board, 517–519, 521, 523

Artifact-free compression, 428
Assent VR experience—Oscar Raby, 418
Asymmetric Perspective Projection, 62–64, 67,

see also off-axis perspective
Asymptotic running-time, 640
Asynchronous time warp (ATW), 597–601, 607

662 Index

Attraction, media of
characteristics, 24–26
cross-historical category, 24
design approach, 36
design practice, 35–36
information landscapes, 32–33
and panoramania, 27–31

ATW, see Asynchronous time warp (ATW)
AudioSource Unity component, 283,

314–316
Autodesk Character Generator, 275–278, 323
Avatar animation system, 275–285, 327,

329–331, 350–351
Avatar embodiment, 322–324, 332, 336–337
Avatar Objects, 96, 305–309, 327
Awake() Unity method/function, 94–95,

311–312, 316

B

BabylonJS, 107–108
Backward-stereo images, 426–427, 432
Barker, Robert, 27–31
Basic SteamVR scene, 45
Batch Neural Gas algorithm, 640–643
Behavioral measures, 457, 459–460
Bent Pick-Ray technique, 214
Beyond-pointing interfaces, 244–245, 247–248,

251, 261–263
BimanualControllerTravel script, 190–191
Bi-manual (two handed) interaction, 161

rotation using two hands, 174–175
scaling with two hands, 172–174
for travel control, 186–189

Biovision Hierarchy (BVH), 350–351
Blaché, Alice Guy, 31–34
Blindness VR experience—Arnaud Colinart, 419
BodyFrame Kinect class, 73
Body motion, 323–325
Body movement, position tracking of, see

Position tracking
Body object in Kinect SDK, 73, 80–82
Body skeleton, see Skeleton
Boundary limit cues, 500–501
Bounding Volume Hierarchies (BVHs), 637
Bounding volumes (BVs), 631
Bravemind program, 10
Brownboxing

benefits, 152–154
description of, 151–152
limitations of, 154–155

playtesting, 159–160
practical process, 156–158

Browser, virtual reality in, 101–102
Butler, Judith, 32
BVHs, see Bounding Volume Hierarchies (BVHs)

C

Callback methods/functions, 64, 89–92, 94, 97,
317, 326, 354, 611

Camera director behavior, 364
Camera parameter/transformation values,

62–64, 74–77, 79, 620–625
Camera properties, 332–334
[Camera Rig] SteamVR Unity prefab, 45–46,

235–237, 294–295, 561
Canonical screens, 580, 581, 584
Cardboard, see Google Cardboard- and

Daydream-based devices
CavePainting VR system—Keefe, 257
CAVE (and CAVE-style) VR systems, xv, 7,

13–14, 59–61, 67, 134, 147, 230–232,
241, 246, 385–387, 407–409, 428,
572–575, 628

Center-based translation redirection strategy,
496

Center of projection (COP), 426, 575–576, 583,
596

CFD, see Computational fluid dynamics (CFD)
Character Designs window, 276–277
Character scaling, 330–331
CheckButtonPressed() method/function,

183–184
Chromatic aberration, 430, 571, 583
Cinema of Attraction, 21–24, 31
Cinematic techniques

camera director, 364
orbit camera, 366–367
shoulder camera, 367
smooth follow camera, 365–366

Cineorama panorama ride, 28
CircularDrive VRTK interaction, 50
Circular stereoscopic projection, 426
Cluster-based immersive display systems, 60,

63, 65–66, 618–619
Cognitive processing, 273–275
Coherence, 461

definition of, 455
sensorimotor, 324

Collider Unity components, 47–48, 54, 92,
175–177, 238–239, 294

663Index

Collision detection methods
analysis, 653–655
hierarchy creation, 637–650
implementation details, 655–657
inner sphere trees, 631–637
kDet, 650–653

Color inversion (magic) lens, 439–441
Comma-separated value (CSV), 350
Commercial success of VR, 10–12
Component-based design, 542–545
Computational fluid dynamics (CFD), 391
Computer simulations, 3–4
Consumer/commercial virtual reality (VR)

hardware, 9–10, 67, 87, 133, 556
Container, notion of, 235–239, 333–334
Contemporaneous measurement, 456–457,

460
Context-based user interface, 247
Contextual constraints to improve control,

261, 263
Continuous volumetric collision response

contact forces, 648–650
torques, 650

Continuous Zoom technique, 219–220
Cooper, Muriel, 34–35
Coordinate systems, 75–77, 80, 83, 188,

245–246, 316, 323–325, 439, 444, 486,
490, 494, 573–574, 576, 598–599, 603,
609–612, 618–619, 623

Creating avatars, 301–303
Cross Reality (XR), 101–102, see also OpenXR;

WebXR
C# Unity scripting, 52, 167, 168, 171, 181
Cubic projections, 425–426, 428
Curvature gain for redirected walking,

486–488, 494–496
Custom environmental (4D) feedback effects,

28, 565–567
Cyberity, 403, 407, 409
Cyborg’s dilemma, 323
cy.PIPES™ EFD control system integration,

556–560

D

Data collection methodology, 160
Data, receiving, 325–327
Daydream-compatible devices, 105, see also

Google Cardboard and Daydream-
based devices

Dead reckoning, 311, 593–594

Degrees-of-freedom (DOF), 109, 112, 153, 189,
192, 229, 241, 244–249, 263, 323, 393

Delivery platform, 105
Design choices

CAVE vs. HMD, 13
for hardware, 13–14
interface to the world, 15–17
with modern software, 14
object interaction, 17–18
virtual world, 14–15

Design considerations, 535–536, 541–542
Determining (self) motions, 465, 466
Determining screen edges, 567
Dickson Experimental Sound Film (Edison), 23
Digital multiplex (DMX) protocol, 553
Digital sensors and actuators, 518
Digital to analog converter (DAC), 518
Direct-Rendering-capable library, 607
Direct rendering, OSVR

graphics-language interoperability,
606–607

implementation of, 607
within-display buffering, 606

Direct user control interaction method, 17
Discrete Zoom selection technique, 219–220
Display-orientation remapping, 603, 612
Display panels

design considerations, 535–536
estimating angular resolution, 533–534
resolution, 533
screen door effect, 534–535

Distance scales in lens distortion, 583
DistanceTo() Unity method/function, 171
Distortion calibration, OSVR implementation

of, 586–590
Distortion-correction algorithm, 574, 578–579,

580–590, 609–610
DIVE VR software, 88, 96–97
DOF, see Degrees-of-freedom (DOF)
DOM (Document Object Model), 103
DoTouchStart() method/function, 91–93
Double Bubble selection technique

description of, 222–223
implementation of, 223–224
selection task scenarios, 224

E

Economic optimization model, 396
Electrical current, 516
Electrical power, 517

664 Index

Electrical resistance, 517
Electrical voltage, 516–517
Electronic Visualization Laboratory (EVL),

231, 618, 628
Embodiment, 271–272, 384–385, 418–420, see

also Avatar embodiment
Embodied montage, 416–417

case studies, 417–420
Assent VR experience—Oscar Raby, 418
Blindness VR experience—Arnaud

Colinart, 419
Maquette VR experience—Rachel

Rossin, 418–419
Project Syria VR experience—Nonny de

la Pena, 419–420
Orpheus, myth of, 415–416
VR systems and perception, 416

Emotables, 403, 404, 406–407, 409–411
Entity-Component design pattern, 107
Environmental (4D) effects

background of, 551–552
custom environmental (4D) feedback

effects, 28, 565–567
cy.PIPES™ EFD control system integration,

556–560
safety considerations, 560–561
traditional approach, 552–554
updated approach, 554–556
VR software integration, 561–565

Environmental feedback devices (EFDs), 553
Environment-specific interaction, 88–89, 96
Equirectangular projection mapping, 424–426,

428, 430–433
Estimating angular resolution, 533–534
Ethics, 35, 337, 460
Event delegates, 90–92
EVL, see Electronic Visualization Laboratory

(EVL)
External Visualization, 135, 137–140, 144–146
Eye position/coordinate space, 62–64, 74–78,

332, 335–337, 373–377, 426–427,
431–432, 438, 443, 446–447, 470–471,
573, 575–580, 582–587, 618–627

Eye separation, see Interocular distance (IOD)
Eye strain/fatigue, 218, 230, 372, 459, 541–542
Eye tracking, 318, 335–337, 459, 572, 575, 577

F

Face-center redirected walking reset, 501–503
Face-to-face interaction, 285, 461

Facial detection, 428
Facial expression, 72, 272–273, 275–278,

334–335, 411
Facial skeleton, 334
False Results Due to Level of Polish, 155
Field of view (FOV) calculations, 470–471, 534,

579, 600, 605
Figuratively Speaking VR experience—

Margaret Dolinsky, 404, 410–411
Film institutionalizing process, 22
First-person locomotion controller, 93, 118
First-person-shooter style interface, 230–232,

234–235, 241
Fixed rectangular screen, 578–579
Fixed screen display, 575, see also CAVE

(and CAVE-style) VR systems; Fixed
rectangular screen

FixedUpdate() Unity method/function,
168–171, 173

Flat (magic) lenses, in 3D, 437–438, 444–446
Flexible Rapid Incremental Zoom (FRIZ)

selection technique
description of, 219–220
implementation of, 220–222
progressive refinement techniques, 222

Flight simulation, 10
Frame sync, 591–593, 600, 606–607
FreeVR VR integration library, xv, 13, 388
Full-body markerless motion tracking, 324
Fundamental electronics

charge, 516
current, 516
power, 517
resistance, 517
voltage, 516–517

G

Gain detection thresholds, 488, 495, 496,
504–505, 507

Galvanic skin response (GSR), 460
Game Controller, 109, 178–193, 200–201, 244,

519–520
GameObject Unity hierarchy node usage,

48–49, 62, 73, 78–83, 88–95, 177–178,
186–188, 200–202, 235–236, 239–240,
295–297, 303–304, 306–309, 372–374,
446, 490–492, 563

Gamepad inputs, 109–110, see also Game
Controller

Games vs. Worlds, 290–291

665Index

Gaze-based travel, 188
General convex polyhedral (magic) lenses,

442–446
Geometry Transfer Buffer, 137, 138
Gertie the Dinosaur Animation (McKay), 24
Gesture-based state changes, 259–261
Global coordinate system, 323
Global lighting techniques, 147
GluPerspective/glFrustum OpenGL helper

methods/functions, 617, 619–620, 625
Go-Go interaction technique, 213, 215
Google Cardboard- and Daydream-based

devices, 91, 103, 105, 109, 112, 178,
209, 293, 423, 519

GrabStart/GrabEnd event delegates, 90–95
Graphics-language interoperability, 606–607,

611
Graphics processing units (GPUs), 68, 386–387,

426, 429, 600–601, 607, 626, 631, 640,
642–643, 650–657

GSR, see Galvanic skin response (GSR)
Guest expectations, 159–160
GuriVR web-based VR scene editor, 106–107

H

Hand-held controllers, 88, 212, 207, 244, see
also Game Controller

Hand Pool (Leap Motion Script), 164
Hand VRTK script, 46–48, 52–53
Head-mounted display (HMD), 5, 46, 59, 87, 89,

330, 332, 333, 371, 385, 386, 408, 416,
468, 530–531, 535, 578

Heads-up display (HUD), 431, 500
Head-tracking, see Position tracking
Hidden world (magic) lens effect, 441–447
Higher-dimensional visualization constructs,

393–394
High-level (VR) toolkits, 88
HMD, see Head-mounted display (HMD)
Hook selection technique, 215
HTC Vive™ HMD VR system, 44, 59, 67, 89,

117, 175, 291, 355, 385, 418, 552,
558–559

HTC Vive Lighthouse Trackers, 331, 553
Human gaze, 335–337, 359, 416, 418, 468
Humanoid characters, 302, 323, 327–328,

330, 332
Human participant in VR, 4
Human perceptual system, 427, 469,

485–486

I

IBM Bluemix account, 282
Ideal lenses, 577–578
Idle animation, 278–279, 282–285
IK, see Inverse Kinematics
Image-based computations, 263
Image processing techniques, 335
“Immediate selection” techniques, 215
Immersion, 454

level of, 385
and perceptual awareness, 406–408

Immersive environments, 5, see also Immersive
virtual environments (IVEs)

Immersive virtual environments (IVEs), 386,
387, 465

Immersive Web Community Group, 102–103
Immersive Web specification, 102–103
Implementing dynamic widgets, 260–262
Implicit mechanisms of inter-connectedness,

88–89, 93
Implicit “this” in Unity C3 scripts, xi, 168
Independent Television Commission (ITC), 459
Inertial measurement unit (IMU), 332, 592
Information Landscapes project, 34
Inner sphere trees (IST)

basic idea, 631
batch neural gas hierarchy clustering,

638–643
continuous volumetric collision response,

647–650
hierarchy creation, 537–638
sphere packing

arbitrary objects, 632–635
parallelization, 635–637

traversal algorithms, 643–647
In/out magic lens test function, 440, 444, 445
InputManager Unity system, 178–180, 189
Instantiating objects in Unity, 306–309
Interactable object (VRTK), 47–48, 299
Interaction Manager Leap Motion prefab,

164–165, 172
Interdisciplinary media, 35
Interpupulary distance (IPD), see Interocular

distance (IOD)
Interocular distance (IOD) (eye separation),

78–79, 431, 536
Inter-pupillary distance (IPD), 577
Inter-stimulus interval (ISI), 472–473
Intra-frame time warp, 601–606

666 Index

Inverse kinematics (IK), 309, 331–332
ISI, see Inter-stimulus interval (ISI)
isTrigger Unity collider component setting,

176–177
ITC, see Independent Television Commission

(ITC)
ITC sense of presence inventory (ITC-SOPI), 459
ItemPackage VRTK prefabs, 50–51

J

JavaScript API, 102, 106, 553
Javascript Object Notation (JSON), 359, 560
The Jazz Singer motion picture, 24
JSON, see Javascript Object Notation (JSON)

K

Kinect SDK
body object, 73
components, 73
JointType, 73, 80–84
Windows SDK 2.0, 72

Kinect sensor, 71–72
KinectView scene, in Microsoft’s Unity

package, 78
Kinematic model, 325, see also Inverse

Kinematics (IK)
Kinematographic Views book—Méliès, 27

L

La glu motion picture—Blaché, 32
Large-scale systems, 32, 383, 387, 395, see also

CAVE VR Systems
Large-scale tracking systems, 323
LateUpdate() Unity method/function, 77,

365–367
LeapHandController Leap Motion Unity

prefab, 163–164
Leap Motion Controller Script, 169–170
Leap Motion Hand Tracker and Unity, 161
Leap Motion Interaction Engine Unity asset

package, 163
Leap Motion (finger) Tracker, 162, 175
Legend Quest VR experience, 11
Lens

adjustable, 578
distortion, 430, 537
glass vs. plastic, 537–538
ideal, 577–578
magic, see Magic lens
mounting, 536

optics, see Optics
professional-grade, 539

Lens-space position/coordinates, 339–440, 442,
448

Lift-Off painting interface, 258–264
Likert-type data, statistical analysis of,

457–458
LinearDrive VRTK interaction, 48–50
Lipsync, 276, 278, 315–316
LogitechTM joystick, 387
Lossy (image/video) compression, 427–428
Low-cost stationary VR display, 71–85
Luminance-chrominance colorspace, 427

M

Magic window, 104–105, 112
Magic lens

color inversion, 439–441
hidden world, 441–447
volume vs. flat lens, 437–438

MainCamera Unity game object, 45–46, 93,
163, 187–188, 191–192, 294

Manipulating visual motions, 472–473
Maquette VR experience—Rachel Rossin, 418
Mareorama panorama ride, 28
MD, see Molecular dynamics (MD)
Medium of VR, 3–5

evolving medium, 405–406
as a medium of attraction, 35–36
rise of VR, 404–405

Méliès, Georges, 31
Mental immersion, 5
Microsoft Kinect sensor V2, 71, 324
Misperception, 465–476
MIT Media Lab, 34
Mixed-reality headsets, 292
Mobile devices, travel using

manipulation control, 204–206
receive input from, 200–203
second mobile devices, adding, 203–204
set-up two mobile devices, 193–200
travel control, 207–208

ModelView matrix, 220, 589–590, 593, 597–599
Modulation, 426–427, 431–433
Molecular dynamics (MD), 7, 389
MonoDevelop IDE, 161, 167
Mono/.NET 4.0 programming framework, 167
Monoscopic, 371, 426, 531
Motion(s)

definition of, 466

667Index

motion data, 327–330
range of, 323

Motion capture (MoCap) systems, 323
Motion-Controller Gamepad, 519–521
Motion Picture Patents Company (MPPC), 22
Motion tracking systems, 324, see also Position

tracking
MPPC, see Motion Picture Patents Company

(MPPC)
Multi-cursor input infrastructure, 244
Multi-threaded environment, 137

N

Narrative paradox, 415
National Renewable Energy Laboratory

(NREL)
collaboration, 395–396
high-dimensional data, 393–395
spatial judgments, 388–390
system, 387–388
3D interaction, 390–392

N-bit digital value, 518
Networking, 63–66, 292–294, 303–318, 359
Network serialization, 317
Network Time Protocol (NTP), 611
Neurological Exam Rehearsal Virtual

Environment project, 271
Non-homogeneous hardware, 13
Non-intrusive unnoticeable RDW mechanism,

489
Non-linear mapping, 213
NREL, see National Renewable Energy

Laboratory (NREL)
NTP, see Network Time Protocol (NTP)
Nyquist-Shannon Sampling Theorem, 518

O

Object.Instantiate() Unity method/function, 306
Object manipulation

rotation using two hands, 174–175
scaling with two hands, 172–174
transformation matrix, 439
translation and scaling, 169–171

Object ownership, 311–314
Object replacement (visibility/magic) lens,

441–442
Oculus Rift

CV1 HMD, 44, 59, 67, 291, 408, 437, 558
DK2 HMD, 467, 475
Touch hand controllers, 44, 551, 558

Off-axis perspective, 620–621
Ohm’s Law, 521
Omnidirectional stereoscopic projections (OSPs)

equirectangular projection sample code,
431–433

left-and right-eye stereoscopic images, 429
methods, 425–428
omnidirectional rendering and display,

428–431
Omni-navigator

adding constraints, 237
Knobs (Script Settings), 239–240
travel scheme, 234–235
unity, script in, 238–239

On-axis perspective, 620
onCreate() Android Java method/function,

196, 197
One-to-one mapping, 473
onFling() Android Java method/function, 207
OnPreRender() Unity method/function, 447
OnRenderImage() Unity method/function,

378
onSensorChanged() Android Java

method/function, 199
OnSerializePhotonView() Photon

Engine method/function, 304, 317
OnTriggerEnter() Unity method/function,

90, 92
OpenGL and DirectX builds, 68
OpenGL, 62, 67–68, 136, 388, 424, 430, 574, 576,

597, 600, 609–611, 621–622, 624–626
OpenGL ES 2.0 programming models, 626
Opening and closing avatar hands, 316–318
Open-Source VR system (OSVR), 87

common space, 572–573
distortion correction, approach, 580–590
Frame sync, 591–592
going to 3D, 576
handling latency and jitter, 590–591
implementation

adjustable lenses, 578
determining screen edges, 577
finding eye space, 576–577
with ideal lenses, 577–578
screen, specification of, 578–580

overfill and oversampling, 608–610
overview of, 575
predictive tracking, 592–593
projection and viewing transformations,

574–575

668 Index

Open-Source VR system (OSVR) (cont.)
rendering state

implementation of, 611–612
time, 611

spaces, implementation of, 574
time warp

asynchronous, implementation of,
600–601

asynchronous time warp, 599–560
head-mounted displays scan, 601
implementation of, 596–599
intra-frame time warp, 601–605

without lenses, 575–576
OpenXR, 87
Optics

design considerations, 541–542
flow manipulations, 473–474
focal length, 538–541

OptiTrack passive marker system, 330
OPV, see Organic photovoltaic (OPV)
Orbit camera behavior, 366–367
Organic photovoltaic (OPV), 388, 389
OSVR, see Open Source VR system (OSVR)
Out-the-window simulation, 10
Overfill, 581–582, 585, 588–589, 602, 607–610
Oversampling, 426, 602, 607–610

P

Panoramania, 27–31
Parallel hierarchical BNG, 643
Parallelization, 635–637
ParaView-Unreal execution model, 137, 143, 146
ParaView visualization pipeline, 135–137
Participatory media, 36
Passive-marker system, 324
Patches visual programming tool, 107
Penetration volume, 630, 631
Per-color coefficients, 583
Per-color radial distortion, 583
Performance metric, 507–508
Per-object shader approach, 438
Perspective matrix calculation, 74–77, 620–626
Perspective projection motivation, 617–619
Photon.MonoBehaviour Unity Asset package,

317
Photon Unity Networking (PUN) toolkit, 289,

292–294, 303–314, 317–319
AppID, 306
PhotonTransformView, 304, 309
PhotonView component, 304, 311–314

Photon Voice, 293, 314–317
PhotonVoiceRecorder component, 314
PhotonVoiceSpeaker, 315

Physical control interaction method, 17
Physical immersion, xi, 3–5, 408–409
Physical screen, 575–577, 581–589

coordinates, 586
screen-space location, 589

Physical Space, 154–155, 229, 235, 245,
458–459, 486, 498, 590, 602

Physical “web beacon,” 103
Physiological measures, 456–457, 460
pinMode() Arduino method/function, 523
Place Illusion, 454, 458
Platform, 291–292
Plausibility Illusion, 454
PlayCanvas open source WebGL engine, 108
Player SteamVR Unity prefab, 46
Playtesting, 159–160
PLCs, see Programmable Logic Controllers

(PLCs)
Pointing-based travel, 188
Pointing selection technique, 212, 213
Points of subjective equality (PSEs), 473
Point-teleport travel method, 16
Polyfill WebXR platform for desktop browsers,

106
Polygon-based algorithm

basic idea, 650–651
collision queries, 651–652
hierarchical grid, 651
parallelization, 652–653

Porter, Edwin S., 31
Position tracking, 4, 80, 112, 153, 323, 408
Post-experience interviews, 461
Post Traumatic Stress Disorder (PTSD), 10
Post-undistortion, 582–583
Predictive tracking, 592–595
Pre-distortion and deficits, 582
Pre-production, 119–200
Presence

definition of, 453–455
measuring, 456–457

Programmable Logic Controllers (PLCs), 553
Progressive A-Painter VR painting tool, 112
Progressive refinement, 212
Progressive refinement techniques, 215–216,

222, 224
Progressive Web Apps, 110
Projection

669Index

center of, 583
direction, 576
matrix, 75
plane orientation, 623–624
transformation calculation, 575–576, 609

Projection-based systems, 230, 572, see also
CAVE VR Systems

Psychometrics, 456
Psychophysical measures, 460–461
PTSD, see Post Traumatic Stress Disorder

(PTSD)
Pulse width modulation (PWM), 561
PUN, see Photon Unity Networking (PUN)
PWM, see Pulse width modulation (PWM)

Q

Quad-buffered stereo, 67
Quad-menu selection refinement, 217, 218
Questionnaires, 457–458

R

Radial distortion, 584
Random number generation for networking,

65–66
Ray-casting selection approach, 218
Ray casting/ray tracing rendering methods,

424, 430
React VR Javascript VR world building tool, 107
Real physical movement, 492–494
Recording and replaying

design, 350–355
discussion, 358–359
example of, 355–357
objects, recording movement of, 350
overview of, 349–350
virtual environment, 349

Redirected User, 492
Redirected walking

applying gains, 494–495
curvature gain, 487–488
decoupling real and virtual motions, 486
gain detection thresholds, 488, 495, 496,

504–505, 507
implementation options

static real world, 490–491
static virtual world, 491

implementing resets
prompting reset task with cues, 499–501
reset trigger and reaction time, 498–499
reset variations, 501–504

manipulating perception, 486
practical considerations

reset prompt choices and UI options,
505–507

restricting reset gains, 505
setting detection thresholds, 504–505
tracked space requirements, 507–508

real physical movement, 492–494
redirected walking system, 489–490
redirection gains, 486
redirection strategies, 495–497

Center-based translation, 496
Steer-to-center, 495–496
Steer-to-orbit, 516
Zigzag redirection, 496–497

reorientation, 488–489
rotation gain, 487
scene graph, setting up, 491
translation gain, 486–487

Redirection gains
curvature gain, 487–488
rotation gain, 487
translation gain, 486–487

Reinfurt, David, 34
Reorientation redirection technique, 488
Reset options in redirected walking, 489,

498–504
Reset prompt choices for RDW, 505–507
Restricting reset gains in RDW, 505
RFCOMM channel, 196
RGB-depth (RGBD) camera sensor, 325
Robert Barker, 27–31
Rome Reborn VR application, 7
Rotation gain in RDW, 487, 494–495

S

Safety distance in RDW, 498
Satellite Tobacco Mosaic Virus (STMV), 424
Scaffolding design, 389–390
Scaffolding for HMD, 531, 542–548

open vs. enclosed scaffolding, 542–545
Scene graph, 187, 354–356, 388, 491–492
Scientific visualization, 7, 9, 14–15, 133–135

background, 386–387
NREL VR use cases

collaboration, 395–396
high-dimensional data, 393–391
spatial judgments, 388–390
system, 387–388
3D interaction, 390–392

670 Index

Screen door effect, 534–535
Screen resolution, 533
Screen-space extents, 584–585
VRTK SDK configuration and testing, 300–301
Seamed media, 35
Self-motion estimation, 467, 468
Self-motion illusions, 473
Self-motion misperception

compensation of
manipulating visual motions, 472–473
optic flow manipulations, 473–474

distance and size misperception, 470–472
time perception, manipulation of, 475–476

Semi-structured interview, 461
Sensics OSVR-RenderManager library, 607, 608,

611
Sensing and controls tasks

description of, 515–516
fundamental electronics

analog-digital conversion, 517–518
analog sensors and actuators, 517
digital sensors and actuators, 518

low-level interfacing method, 518–519
motion-controller gamepad with vibration,

519–521
software, 521–524
VR program, 521–527

Serialization mechanisms, 359
Serious applications of VR, 13
Servers and rooms in networked worlds,

306–311
Service Workers, 105, 111
Setting detection thresholds for RDW,

504–505
Shader programming, 372–377, 438–448, 582,

589–590, 596–597, 609, 612
Shakey cam camera, 366
Shared state in networked worlds, 304–306
Shoulder camera, 367
Side-by-side stereoscopic image layout, 78, 429
Simulation engines interfacing, 325
Simulator sickness questionnaire (SSQ), 459
Singleton design pattern, 89–90
Skeleton model, 275–276, 310, 322–331, 333
Slater-Usoh-Steed (SUS) Presence

Questionnaire, 458
Slerp() Unity method/function, 378
SmoothDamp() Unity method/function, 367
Smooth follow camera, 365–366
Social presence, definition of, 455

Social Presence Illusion, 455, 459
Social VR environment, 291
Sort-First data parallelism scheme, 60
Sound in the virtual world, 7, 22-24, 28, 31, 113,

153, 158, 406, 409, 411, 419, 500, 554
‘Sound-on disc’ recording technologies, 24
Souvenir programs, 29
Space-partitioning data structure, 261
Speech-to-Text Processing, 283
Speed perception, 468
Sphere-casting refined by quad-menu selection

(SQUAD) technique
description of, 216–217
implementation of, 217–219
quad-menu refinements, 219

Sphere packing
arbitrary objects, 632–635
parallelization, 635–637

Start() Unity method/function, 181,185, 191,
308 317, 375

State design pattern, 247–248, 252
SteamVR Developer Hardware Community

Forums, 56
SteamVR Interaction System code, 54
SteamVR_Introduction, 45–46
SteamVR Unity Plugin

interaction system, 46–51
overview of, 44
SteamVR package, 45
Teleporting, 54–56
from Unity Asset Store, 44
Vive vehicle, 92

Steer-to-Center redirection strategy, 495–495
Steer-to-Orbit redirection strategy, 496
Stereoscopic circular projection, 426
Stereoscopic rendering, 372–373, 433, 531

flat lens rendering, 446–447
interlace shader, 376–377
left & right camera view, 375
stereo spectator view script, 373–379

STMV, see Satellite Tobacco Mosaic Virus
(STMV)

Structured interviews, 461
Unreal Surface Properties submmenu, 123

T

Tele-Hop travel, 231–232
Telekinetic reach style, 17
TeleportArea SteamVR Unity asset package

script, 54–56

671Index

Teleporting prefab in SteamVR Unity asset
package, 54

TeleportPlane SteamVR Unity asset package
script, 56

TeleportPoint SteamVR Unity asset package
prefab, 54

Telepresence, definition of, 453, 457
Therapist-controlled exposure therapy

sessions, 272
Three-dimensional visualization technique,

394
Three.js WebGL API, 108
Thresholds

Above null, 335–336
Gain detection, 488, 495, 496, 504–505, 507
Proximity, 255–256, 260–264
Setting detection, 504–505

Throwable VRTK behavior, 53
Time control interface, 418
Time perception, 469–470
timeScale equation, 65
Time warp coefficients, 601–606
Time warp, OSVR, 595–596

asynchronous, implementation of, 600
asynchronous time warp, 599–600
head-mounted displays scan, 601
implementation of, 596–599
intra-frame time warp, 601–606

Tinkerer’s perspective, 529–531
Titatnic VR VR Experience, 18
Tourne une Phonoscène motion picture—

Blaché, 23
Tracked Space, 386, 485–486, 488–492,

495–499, 501–503, 552–554, 556,
560–563, 573

Tracked space requirements, 507–508
Tracked User, 82, 308, 326, 491–492
Translation gain in RDW, 486–487, 494
Travel components, mapping of

control steering, 190–191
directional control, 191–192
increase/decrease speed, 190–191
6-degrees-of-freedom control, 192–193

Travel scheme, 295–297
common virtual reality schemes, 241
first-person-shooter-style, 230–231
Omni-navigator, 234–235
Tele-Hop, 231–233
waypoints, 233–234

Travel + Wayfinding, 15–16

Traversal algorithms
distance and volume queries, 647
distances, 644
penetration volume, 644–645
spheres, intersection volume of, 645–646

U

UI, see User interface (UI)
“The Ultimate Display,” 8
UML class diagram for CavePainting state

machine, 251
Unassimilated media, 35
UniCAVE unitypackage, 61
Unity and hand tracking

adding virtual hands, 163–164
import LEAP assets, 163
setting-up physics for, 164–165
supporting interaction with objects,

165–166
Unity Assets for Leap Motion, 163
Unity Asset Store, 44, 56, 163, 229, 273,

292–293
Unity developer documentation, 75–72
Unity Game Object, see GameObject Unity

hierarchy node usage
Universally unique identifier (UUID), 196
Unreal Editor, 119–120, 123, 141–142
Unreal Engine application, 135, 138, 140
Unreal Engine in virtual reality, 117–118
Unreal-ParaView Workflow, 141–143, 146
Unreal’s Starter Content package, 127
Unseen Diplomacy VR Experience, 16
Update() Unity method/function, 77, 168,

182, 184, 191, 202, 308, 351
User experience (UX), 106
User interface (UI), 106, 193, 244–245,

247–253, 263, 291, 358, 431, 469, 606
UUID, see Universally unique identifier

(UUID)
UX, see User experience (UX)

V

Valve’s Steam software platform, 118
VD, see Voronoi diagram (VD)
Vehicle and Zone design pattern, 89
VehicleMaster. Instance, 90
VehicleMaster Singleton, 89–90
Vehicle Pattern, 355

constraints and limitations, 95–96
demonstrations, 93–95

672 Index

Vehicle Pattern (cont.)
design, 88–89
event delegates, 90–92
overview of, 87–88
Vehicle and Zone, 89
vehicle implementations

mouse and keyboard vehicle, 93
Vive vehicle, 92–93

VehicleMaster Singleton, 89–90
Verbal recordings for virtual humans: 273–275
Vertex shader projection, 609
ViconTM tracking system, 387
Video compression

algorithms, 427
terminology, 428

VIEW, see VIrtual Environment Workstation
(VIEW)

Virtual control interaction method, 17
Virtual environment, 5, 162, 218, 233, 247,

271–273, 349, 359, 371, 383, 405–406,
410, 453, 458–461, 485–486, 496–497,
505, 531, 629

VIrtual Environment Workstation (VIEW), 9
Virtual humans system

cognitive processing, 273–275
components of, 272–276
future of, 285–286
inputs, 273
outputs of, 275–276
overview of, 271–272
step by step tutorial, 276–285

Virtual Human Toolkit from USC, 274
Virtuality arcade-VR system, 10
Virtually Better Inc., 10
Virtual Reality template, 117–118
Virtual Windtunnel (VWT) VR experience, 9
Virtual world (VW), 3–5, 8, 11, 14–17, 291,

306, 385, 407, 466, 485–492, 505, 535,
552–554, 561, 572–573

Visible Language Workshop (VLW), 34
Visualization of Science, see Scientific

Visualization
Visual motion perception, 468
Vizor.io WebVR tool for 360 degree tours, 107
VLW, see Visible Language Workshop (VLW)
VMD molecular visualization tool, 7, 147,

388, 424
VN, see Voronoi node (VN)
Voice Chat: 314–315
Voice Input: 283

Voice of virtual humans, see Verbal recordings
for virtual humans

Volume (magic) lenses
color inversion lens, 439–441
vs. flat lenses in 3D, 437–438
general convex polyhedral lenses, 442–446
main rendering concept, 438
object replacement (visibility) lens, 441–442
stereoscopic flat lens rendering, 446–447
unity implementation details, 438

Volumetric selection and manipulation,
175–178

Voronoi diagram (VD), 633
Voronoi node (VN), 632
VRPN, 62, 65–66, 325, 388
VRPNTrack.cs UniCAVE interface, 65
VR role-playing style game, 11
VR software integration, 561–565
VRTK_BodyPhysics, 295
VRTK_InteractableObject component, 311, 313
VRTK Interaction system, 44

add behavior on button presses, 52–54
components of

CircularDrive VRTK interaction, 50
Hand, 46–47
Interactable, 47–48, 299
ItemPackages, 50–51
LinearDrive VRTK interaction, 48–50
Player prefab, 46
Throwable, 48

demonstration scene, 51–52
example scene, 51

VRTK_SlideObjectControlAction, 295
VRTK_TouchpadControl, 295
VRUI VR integration library, 13, 88
VTK Visualiation Toolkit, 69, 135, 139, 146, 610
VW, see Virtual world (VW)

W

Walt Disney companies, 11
W3C Standard, 103
W3C WebVR Community Group, 102
Web Audio API, 108
web browser

commoditization of, 102
frameworks and tools, 113
particular models of, 96
physical object, 104
virtual reality, implementation of, 103
WebXR, 102

http://Vizor.io

673Index

WebVR 1.1 applications, 105, 109
WebVR Polyfill, 106
WebXR

browser, virtual reality, 101–102
content accessible offline, 109–112
content made easy

magic window, 104–105
transcend virtual barriers, 103–104

devices API, 102–103
fast and easy VR creation tools

A-Frame, 107
BabylonJS, 107
GuriVR, 106–107
PlayCanvas, 108
React VR, 107
Three.js, 108
Vizor.io, 107

Immersive web specification, 102–103
progressive enhancement of, 112

recommendations, 113
Web APIs

add gamepads to your experience, 109
play with positional audio, 108–109

Whiteboxing, 155
Wiesenberger, Robert, 34
Wi-Fi network, 197, 200
Windjammer large-format motion picture, 30
Windows SDK 2.0, 72
Within-display buffering, 606, 607
Witmer-Singer presence questionnaire

(WS PQ), 458–459
Wizard of Oz virtual human control, 274

Y

Yther vehicle pattern implementation, 96

Z

Zigzag redirection strategy, 497, 507

http://Vizor.io

REQUEST A FREE TRIAL
support@taylorfrancis.com

Taylor & Francis eBooks
www.taylorfrancis.com

A single destination for eBooks from Taylor & Francis
with increased functionality and an improved user
experience to meet the needs of our customers.

90,000+ eBooks of award-winning academic content in
Humanities, Social Science, Science, Technology, Engineering,

and Medical written by a global network of editors and authors.

TAYLOR & FRANCIS EBOOKS OFFERS:

A streamlined
experience for

our library
customers

A single point
of discovery
for all of our

eBook content

Improved
search and
discovery of

content at both
book and

chapter level

mailto:support@taylorfrancis.com
http://www.taylorfrancis.com

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Preface
	Editor
	List of Contributors
	Section I: The Medium of VR
	1 VR as a Medium
	2 VR and Media of Attraction: Design Lessons from History

	Section II: VR with Game Engines
	3 Getting Started with SteamVR and Unity
	4 UniCAVE: A Distributed Rendering System for Unity3D
	5 Using the Kinect for Head-Tracked Perspective and Pointing in Stationary VR Displays
	6 The Vehicle Pattern for Simplifying Cross-Platform Virtual Reality Development
	7 WebXR: Virtual Reality… in the Browser
	8 Greyhouse: Building the Neighborhood Coffee Shop in Unreal Engine for VR
	9 Bridging Scientific Visualization and Unreal VR

	Section III: Interaction
	10 Brownboxing: The Secret to Rapid VR Prototyping
	11 Bi-Manual Interaction for Manipulation, Volume Selection, and Travel: Using the Leap Motion, Game Controllers and Mobile Devices
	12 Effortless 3D Selection through Progressive Refinement
	13 Travel in Virtual Reality
	14 From Painting to Widgets, 6-DOF and Bimanual Input Beyond Pointing

	Section IV: Agents & Avatars
	15 Making Virtual Reality Social: Getting Virtual Humans into Your Virtual Environment
	16 Building a Social VR App
	17 Avatar Embodiment, Behavior Replication, and Kinematics in Virtual Reality

	Section V: Third Person POV Cameras
	18 Recording and Replaying Virtual Environments for Development and Diagnosis
	19 Capturing Cinematic Shots of Virtual Reality Scenes in Unity
	20 A Stereoscopic 3D View for Virtual Reality Spectators

	Section VI: Virtual Worlds
	21 The Utility of Virtual Reality for Science and Engineering
	22 Immersion and Visualizing Artistic Spaces in Virtual Reality
	23 Embodied Montage: Constructing Meaning in Virtual Reality

	Section VII: Advanced Rendering for VR
	24 Omnidirectional Stereoscopic Projections for VR
	25 Volume Lenses for VR

	Section VIII: Perception for Immersion
	26 Check Your Work: Evaluating VE Effectiveness Using Presence
	27 Misperception of Self-motion and Its Compensation in Virtual Reality
	28 Exploring Large Environments with Redirected Walking

	Section IX: DIY VR Hardware
	29 Building and Interfacing Input and Output Devices
	30 A Tinkerer’s Perspective on VR Displays
	31 Environmental Feedback for VR Systems

	Section X: Building the Infrastructure of VR
	32 Virtual Reality System Concepts Illustrated Using OSVR
	33 Perspective Projection for VR
	34 Fast and Easy Collision Detection for Rigid and Deformable Objects

	Index

