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Mathematics

1.1 INTRODUCTION

Physics is largely written in the language of mathematics, which generally makes it inaccessible to those
who don’t have the opportunity to learn the language. In this book, it is assumed that a middle-level high-
school level of mathematics is known to the reader. You should be familiar with the basic methods of
differentiation and integration. In Part 1 of this book, we venture beyond that into what might be called
first-year college-level mathematics. In Part 2, we go a little further. As we go on, the apparent com-
plexity arises more from the numerous conventions of notation rather than new mathematical theorems.
Familiarity with the notation will make things easier to understand.

But, in order to begin, we need to know the language. The aim is to go deep enough to be intellectu-
ally satisfying, but not so deep as to be impenetrable.

1.2 COMPLEX NUMBERS

1.2.1 Complex Numbers

Real numbers are the set of all the numbers, positive and negative, integers and fractions, from negative
infinity to positive infinity, including zero, including rational and irrational numbers. These are the num-
bers we are usually familiar with.

Imaginary numbers are a duplicate set of all these numbers but are kept separated from the set of real
numbers. There is nothing “imaginary” about imaginary numbers, this is just a label that distinguishes
them from the set of “ordinary” real numbers.

Complex numbers consist of a vector combination of real and imaginary numbers. A complex num-
ber can be thought of as a two-dimensional number which contains a real component (say along the
x axis), and an imaginary component (say along the y axis). This is shown in Figure 1.1.

Imaginary

FIGURE 1.1 Real and imaginary b _?:

|
coordinate axes and a complex 0
number z. a
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A complex number has the form:
z=a+ib (1.1

where a is the real part and b is the imaginary part of the number. The symbol i is used to identify the
imaginary part of a complex number.

A complex number is represented by a single point z(a, b) on the complex plane. The magnitude, or
amplitude, A, of a complex number is given by:

7 =Va* +b? (1.2)

and is the distance from the origin to the point z. The symbol i has mathematical significance. It is equal
to the square root of —1. Of course, the square root of a negative number is not defined, and it is in this
sense that we use the term “imaginary” because we can imagine that if there were such a number, then this
number, when squared, would equal —1. Most often, it is the quantity i> = —1 that is used in our calculations
rather than i itself.

If a + ib represents a complex number, then a — ib is called the complex conjugate of the number.
Therefore, it can be seen that:

(a +ib)(a —ib) =a® —iab+iab+b*
=a’+b’ (1.3)
=l

That is, the product of a complex number and its conjugate is the square of the magnitude of the complex
number.
It is readily seen that a complex number can be expressed in trigonometric terms:

a=|zcos®

b=|g|sin®

z=(|¢/cos6)+i(|<[sin6)
=|z|(cos@+isin)

The symbol i is present to remind us that we cannot just add the quantity cos 0 to sin 6 directly. The two
components of a complex number must be kept separated.

Complex numbers may be added and subtracted by adding and subtracting the real and imaginary
parts separately:

(a+ib)+(c+id)=(a+c)+i(b+d) "
(a+ib)—(c+id)=(a—c)+i(b-d) '

Complex numbers may be multiplied by multiplying the terms as in a normal multiplication of factors as
shown (where 2 = —1):

(a +ib)(c+ id) = ac+iad +ibc +i*bd
(1.5)
= (ac—bd)+i(ad+bc)
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or, in trigonometric terms:
2 =|z|(cos®, +isin®, )
2 =|2,|(cos®, +isin®,)
212 =|21]|22](cos @, +isin®; ) (cosO, +isin®, ) (1.6)
= 21[|z2|(cos 6, cos®, —sin®; sin 6, +i(cos B, sin @, +sin 6, cos6, )

A% = ‘Z]HZz‘(COS(el +0,)+isin(0, + (-)2))

by making use of:

sin(aib) =sinacosbtcosasinb
(1.7)
cos(aib) =cosacosbFsinasinb

Complex numbers may be divided by making use of the complex conjugate to transfer the imaginary part
from the denominator to the numerator. This makes it easier to deal with the complex number, especially
when it is desired to perform algebraic operations on them:

(a+ib) (a+ib) (c—id)
(c+id) (c+id) (c—id)

(1.8)
B (a + ib)(c —id)
- (02 + dz)
or, in trigonometric terms:
a @(cos(el —92)+isin(61 —92)) (1.9)
2 ‘Zz‘

Complex numbers may be raised to a power. In trigonometric terms, this is known as de Moivre’s theorem:
(cose+isin9)" = cosnB +isinnd (1.10)
Euler’s formula expresses a complex number in terms of an exponential function:

T = ¢ (cos bx+isin bx) (L.11)

The addition of two particular exponential functions can be written:

Ce“™" 1 Cyel ™" = ¢ (Acos bx + iBsin bx) (1.12)
where:
A = Cl + Cz
(L13)
B = C] - C2

which we shall see has an application in quantum mechanics.
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1.2.2 Complex Quantities

A common example of a complex number is the resistance and reactance in a series AC circuit consisting
of an inductor and a resistor.
The resistance of the circuit R is given by Ohm’s law (where we ignore the resistance of the inductor):

Vi
R=—" 1.14
] (1.14)
The inductive reactance of the capacitor, X, is represented by:
X =%=0)L (1.15)

where V and I are the peak values of voltage and current respectively. The inductive reactance is a measure
of the inductor’s resistance to AC, where it can be seen that, unlike the case of a resistor, the reactance
increases as the frequency of the AC increases.

Even though X, and R have the same units (Ohms), we cannot just add them together directly because
the current flowing through the inductor is out of phase with the voltage across it by 90°. The maximum
current in the inductor occurs when the rate of change of voltage across it is a maximum — and this occurs
when the voltage across the inductor passes through zero. On the other hand, the voltage across the resis-
tor is in phase with the current flowing through it. In a series circuit, the current has to be the same in
all components in the circuit, and so in this case, the voltage across the resistor is not in phase with the
voltage across the inductor.

As far as the resistance to current flow is concerned, the total impedance Z of the circuit, as seen
by the AC voltage generator, is therefore a vector combination of the inductive reactance Z and the
resistance R.

That is, Z is a complex number with the real part being R and the imaginary part being X, . This can
be seen graphically in Figure 1.2.

Z=R+iXc (1.16)

FIGURE 1.2 Complex impedance Z X, Z
comprising inductive reactance X
and resistance R.

The magnitude of the impedance Z is found from:

z|=JR*+X,} (1.17)

The angle between the Z vector and the R axis is called the phase angle and is found from:

X, oL
1 (‘) =] —|=— 1.18
o [R} R (118)
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1.2.3 Complex Functions

A function is a formula or an equation in which one number, y, depends in a particular way upon the value
of the other number, x. When y is a function of x, we say that y is the dependent variable and x is the inde-
pendent variable. The value of y at a particular value of x is written:

y=f(x) (1.19)

The symbol f can be thought of as an operator which acts upon x to give y.
Examples of functions are:

y=5
y=mx+b (1.20)
y=ax*+bx+c

The last example above is a quadratic function. When y is plotted as a function of x, the shape of the graph
is a parabola. A quadratic equation arises when we wish to find where the function crosses the x axis, that
is, values of x when y = 0. These values of x are called the roots of the equation.

ax*+bx+c=0 1.21)

A quadratic equation can have no roots (the graph of the function lies completely above or below the x
axis), one root (touches the x axis) or two roots but no more than two, since it can cross the x axis (y = 0)
no more than twice.

The roots of a quadratic equation can be obtained from the quadratic formula:

_ —b++b* —4ac

2a

x (1.22)

The quantity b*> — 4ac has special significance and is called the discriminant. When the discriminant
> 0, the function crosses x axis at two points, thus, two roots. When the discriminant = 0, the function
touches the x axis at a single point. When the discriminant < 0 the function lies completely above or
below the x axis.

For the case of the discriminant being less than zero, the quadratic equation has no roots. However,
this does not mean to say that the equation cannot be solved. The function may have complex roots.

For example, consider the function:

flz)=2"-2z+2 (1.23)
and its associated quadratic equation:
72 -2z+2=0 (1.24)

This function is concave upwards and lies completely above the z axis. It does not cross the vertical, or
f(z), axis for any real values of z.
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However, using the quadratic formula, the roots of the equation can be expressed in terms of the
imaginary number i:

_ (1.25)

=1t

What this is telling us is that the original function f(z) might represent some quantity whose value depends
on z, but can only have a zero value when z is expressed as a complex number at z =1 + i and also at z =
1 — i. The magnitude of z for these zero values of f(z) in this example would be:

=1 +12 =2 (1.26)

We might refer to f{(z) as a complex function.

1.3 SCALARS AND VECTORS

1.3.1 Scalars

In many situations, a physical quantity has a direction associated with it. That is, the physical quantity is
described not only by its value but also by what direction is associated with that value. Say, for example,
the concept of velocity. This quantity describes the rate of change of position with respect to time in a
certain direction. We are familiar with the concept of velocity being associated with a vector. A vector
is an example of a general class of mathematical objects called a tensor, in this case, a tensor of rank 1.
The rank indicates the number of directions associated with that quantity. On the other hand, a quantity
such as the temperature at a point in a room has no direction associated with it. It is a tensor of rank 0 and
is called a scalar. In the case of stresses acting throughout a solid, there is the possibility of the material
supporting a stress which is the force acting over an area parallel to a surface (i.e. shear stress), as well
as the force acting perpendicular to the surface (i.e. tension or compression). There are two directions
involved, the direction of the force and the orientation over which the force acts. Stress is a tensor of the
second rank.

Scalars are described by a single quantity called the magnitude. For example, the term speed is a
scalar and is the magnitude of the velocity vector. Other familiar scalars are energy, mass and time.

1.3.2 Vectors

A physical quantity which depends on a direction is called a vector. Familiar examples are velocity, force
and momentum. A vector consists of two parts, a magnitude and a direction.

As shown in Figure 1.3(a), if a vector a extends from point P, to point P, then we write this as: ﬁ
or simply a.
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(a) (b)

3]

a P ) S--o
p— " \\\a/’:‘a FIGURE 1.3 (a) Vector a joining points P, to P,.

-l (b) Components of the vector a,, a,, a,.

The magnitude of the vector is written: ‘POP]‘ or lal.
The components of the vector with respect to the x, y, z coordinate axes are written:

ﬁ =a= <al,a2,a3>
(1.27)
= <xl X0y Y17 Yos X1 _Z0>

These are shown in Figure 1.3(b). The magnitude of a vector is in effect the distance formula:

al=Vai +a} +a}
The special vectors:
i=(10,0)
j=10,1,0) (1.28)
k=(0,0,1)

are unit vectors in the direction of the x, y and z coordinate axes.
Thus

a=ai+aj+ak (1.29)

This expression is a vector sum, where it is understood that the resultant is a vector formed by the addition
of the components separately. So, if we have two vectors to be added, then:

a=aji+taj+ak
b = bi+b,j+ bk (1.30)
a+b=(a+b)i+(a+b)j+(as+bs)k

Much the same thing is done for the subtraction of one vector from another.
We might ask about the product of two vectors. To answer this question, let’s go back a moment to
two dimensions. Does it make sense to write:

ab = (@i + a,j)(bi+bj) (1.31)

The answer is no, this is not defined. However, we shall see that when two vectors are to be multiplied,
there are two possible ways to perform the calculation.
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What about a vector squared? Surely, we are used to something like the square of the velocitys; it is
used all the time — for example, the kinetic energy is Y2mv?. A commonly used equation of motion is v? =
u? + 2ax. But what do we actually mean by the square of a vector? The square of the vector is the magni-
tude of the vector all squared, and is a scalar.

2

af =d’ =a +dl (1.32)

Much like a complex number, the magnitude is given by the complex conjugate, and so we may write:
‘a‘z = (a,i + azj)(ali - azj)
=a’ +—aia, + ara, + a2 (1.33)
=a’+a;
Or, in the three-dimensional case:
‘a‘z =d’=al+a3+ a§ (1.34)

We shall see that this special kind of multiplication is called the dot product of two vectors.
A unit vector u in the direction of a is given by:

u:a:<“',“2,"3> (1.35)
al [ ’fa

As seen in Figure 1.4, a vector drawn from the origin to a point P(x, y, z) is called the position vector r of
that point.

FIGURE 1.4 Position vector r . P(x,y, 2)
on the coordinate axes.

Thus, the vector r and its magnitude are:

r=xi+yj+zk

r|=yx*+y* +2

A vector function or vector field describes a vector in terms of components whose magnitudes are func-
tions of x, y and z. That is, for each point P(x, y, z) there is a corresponding vector F:

(1.36)

F:f(x,y,z)i+g(x,y,z)j+h(x,y,z)k

= FRi+Fj+Fk

(1.37)
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1.3.3 Dot and Cross Product

As mentioned previously, there are two ways to multiply vectors.
If two vectors are:

a= <a1,a2,a3>

(1.38)
b= <b17b2’b3>
then the dot product of them is defined as:
a-b= albl + azbz + a3b3
(1.39)

= ‘aHb‘ cosO

But the quantity ‘a‘cose is the component of a in the direction of b. This is shown in Figure 1.5. Thus,
the dot product is a scalar and represents the magnitude of the component of a in the direction of b mul-
tiplied by the magnitude of b or the magnitude of the component of b in the direction of a multiplied by
the magnitude of a.

FIGURE 1.5 Dot product of two vectors.

‘a‘ cosl

To find the component of a in b’s direction, we form the dot product of a with a unit vector in the
direction of b.

acos9=a~:=a-u (1.40)
The magnitude of a vector is given by the square root of the dot product of it and itself:

la|=+va-a=\al+d}+a3 (1.41)
In matrix form, the dot product of two vectors can be expressed:

by
[al a) 613] b2 = [Cllbl + azbz + Cl3b3] (142)
bs
The result is a single element matrix, a scalar.

Consider now two vectors a and b that lie in a plane as shown in Figure 1.6(a).
The vector cross product of the two vectors is defined as:

axb=(a; —ab,)i—(abs —ash) j+ (ab, —asb; )k (1.43)
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(a) (b)

FIGURE 1.6 (a) Cross product of two vectors. (b) Magnitude of the cross product.

We shall see later that this is the result of a determinant of a matrix, whereby:

i j k
axb= a; a, az| = (azb3 —agbz)i—(a|b3 —a3b1)j+(a|b2 —azb])k (144)
b, b, b

The resultant vector R is perpendicular to the plane of the two vectors a and b. The magnitude of the
resultant vector is:

R|=|a|b|sin® (145)

But the quantity ‘b‘sine is the height of a parallelogram formed by the two vectors. This is shown in
Figure 1.6(b). The magnitude of the resultant R is therefore the area of the parallelogram formed by the
two vectors a and b.

1.3.4 Vector Differentiation

The position vector of a point in space is given by:
r=uxi+yj+zk (1.46)

A curve C in space may be represented by a series of points, each with its own position vector.
For any two points on the curve, the length of the chord joining P, and P, is Ar. It is often of interest
to determine the rate of change of the vector r with respect to the arc length s along the curve:

ﬂ _ llm I‘(S() + AS)_r(S())
ds A—0 As a 47)
. Ar
= lim —
As—0 Ag

As As — 0, IAr| becomes equal to As and so: dr/ds =1
That is, the vector dr/ds is a unit vector with a direction tangent to the curve at any point P.
The position vector may also be expressed in terms of time (f) such that:

r=x(t)i+y(t)j+z(t)k (1.48)
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Differentiating with respect to ¢ gives:

dr_ r(ty+At)—r(to)
dt -0 At (1.49)
. Ar
= lim —
At—0 At

As At — 0, evaluated at = £, is a vector whose direction is tangent to the curve at P and represents the
instantaneous velocity of a body which may be at point P.
In general, a vector function is said to be differentiable if the limit:

. r(t+At)-r(t)

A (1.50)

exists. Whereupon:

ar_dxg Ay, 92y (1.51)
dt dt dt dt

And the magnitude of the resulting vector is given by:

2 2 2
\Ndr dt dt dt dt
That is, the derivative of a vector gives a new vector whose components have magnitudes which are the
derivatives of the original vector’s components.

dr
dt

1.4 DIFFERENTIAL EQUATIONS

1.4.1 Differential Equations

A differential equation is an equation that contains derivatives. Some examples of differential equations
are:

2 3
dy d’y . dy d’y dy Y ,, 02 0z
= x4 S +3=+5y=0;| =5 | +| = | +4y=x}S+—=x"+ 1.53
dx * dx* T dx Y dx? dx =4 ox* 9y vy (1.53)

The first three equations above are ordinary differential equations because they involve one independent
variable x. The last example is a partial differential equation because the equation has two independent
variables, x and y. That is, part of the equation involves derivatives with respect to one variable x, while
another part involves a derivative with respect to another variable y.

When we find a solution to an equation, say y = f(x), we find values of x that provide the required
quantity y. When we deal with differential equations, the solution to such an equation is a function rather
than a specific quantity x. That is, we find a function whose derivative, or second or third derivative, satis-
fies the differential equation.
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1.4.2 Solutions to Differential Equations

The general solution to a differential equation is a function of the form y = f(x). The function f(x) will usu-
ally have a number of arbitrary constants. A particular solution to the differential equation is found from
the general solution for particular values of the constants. The constants are usually determined from the
stated initial conditions referred to as the boundary conditions.

There are various methods available to find the solution to differential equations. The most common
is a technique called the separation of variables.

Consider the differential equation:

D iis (1.54)
dx

We are looking for a function, y = f(x), whose derivative is x + 5. The first step is to separate the variables
x and y so that they on opposite sides of the = sign.

dy = (x+5)dx (1.55)
Then, we take the integral of both sides:

de = Jx+5dx

2
X
=—+5x+C
Y70

(1.56)

We have one arbitrary constant C. The function y = f(x) above is the general solution to the differential
equation. The value of C can be obtained if we know the boundary, or initial conditions. For example, if
it is known that y = 1 when x = 0, then C must be = 1. We call:

2

y=%+5x+1 (1.57)

a particular solution to the differential equation. A different boundary condition leads to a different par-
ticular solution (i.e. a different value of C).

In general, there may be many general solutions to a differential equation each differing by a multi-
plicative constant.

The collection of functions f(x) that are general solutions to the differential equations are called
eigenfunctions. For example, a general solution to a differential equation might be:

v, (x) = A, cosk,x where n=1,3,5,7... (1.58)

That is, y,(x) are the eigenfunctions, and they differ from each other depending on the value of 7.

Differential equations may be complex equations whose solutions may be complex functions (that is,
containing complex numbers). We shall see later that the Schrodinger equation is a complex partial dif-
ferential equation.

1.4.3 Differential Operators

We will find in our study of quantum mechanics that the equations involved are often differential equa-
tions. A short-hand way of writing differential equations is to write the equation using what are called
differential operators.
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For example, consider the familiar equation often encountered in kinematics that relates the distance
travelled s for a body to its initial velocity u, the acceleration a and the time taken ¢. We will assume here
that u and a are constants, and so s is a function of ¢ alone:

s=ut+lat (1.59)
2
Now to get velocity v as a function of 7, we take the derivative with respect to ¢:
é =u+at (1.60)
dt
Instead of writing ds/dt, we can define d/dt as a differential operator D, so that:

D=— 161
” (L.61)

When the differential operator D acts on the displacement variable s, then, in this case, we get the veloc-
ity v.

Ds=v (1.62)

As is often the case, a quantity like s may be a function of more than one variable. Differential operators
are then expressed as partial derivatives.

Operators obey the laws of algebra for the operations of addition and multiplication. For example,
consider three differential operators A, B and C, then:

A+B=B+A
(A+B)+C=A+(B+C)
(1.63)
(AB)C = A(BC)
A(B+C)=AB+AC

and, if the operators have constant coefficients:

AB = BA (1.64)
Also, for m and n being positive integers:

D"D" = prth
A consequence of this last condition is that:

DD = D? (1.65)

That is, an alternate way of writing the second derivative which we will come to use later.
Operators are sometimes written using a hat symbol to identify them as operators rather than vari-

ables, e.g. D.
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1.5 PARTIAL DERIVATIVES

In many physical situations, a dependent variable is a function of two independent variables. This type of
relationship is expressed as a surface in a three-dimensional coordinate system. To determine the rate of
change of z as x and y vary, we hold one variable constant and differentiate with respect to the other. This
is called partial differentiation. For example, if z = f(x, y), then the partial derivative of z with respect to
X is written:

oz imn f(x,yo)_f(xo,)’o)

0x  1ox X=X,

(1.66)

If we wish to know the rate of change of z with respect to x at x = x,, then we hold y constant at y, and take:

dz
ox
This gives the slope of the tangent to the surface in the x direction at (x;, y,).
If we wish to know the rate of change of z with respect to y at y = y,, then we hold x constant at x,
and take:

(1.67)

%z
dy

This gives the slope of the tangent to the surface in the y direction at (x,, y,).
Higher order derivatives are written as:

e b (0) Fc (o) o (oc) B _a i 16
oxdy ox{dy) oyox 9ylox) ox* ox\ox/) 9y* aylay '

The first two equations in the above are equal.

(1.68)

1.6 MATRICES

A matrix is a rectangular array of numbers with m rows and n columns. When m = n, the matrix is square.
Numbers in the matrix are called elements and are written a; where the subscripts refer to the row and
column, respectively.

A=|ay (55) [255] (1.70)

Addition and subtraction of matrices:
A+B=(a; +by) (1.71)

Multiplication by a number:

kA = (kaj ) (1.72)



1 e Mathematics 15

Multiplication of two matrices: if A is an m X p matrix and B is a p X n matrix, then the product C of A
and B is given by:

n

Cik = z aj,-b,-k (173)

i=1

The number of columns in A must be the same as the number of rows in B. The result matrix C has dimen-
sions m X n. That is, C has rows equal to the number of rows in A and columns equal to the number of
columns in B.

For example, for the product of a 1 X 3 matrix A with a 3 X 1 matrix B, we have:

by
AB = [a1 a, as ] b2 =[a1b1 + azbz + asbg,] (174)
bs
Or:
by by,
ay  ap  ap anbyy + apbs + agsbs, ayby, + anby + agsbs,
by by |= (1.75)
Gy Aap 4y Qyibyy + anbyy + axbyy  anbi t axby, t+ aybs,
by by
The transpose of a matrix is when the rows and columns are interchanged:
A=(ay), A" =(ay) (1.76)

The diagonal elements of a square matrix are called the principal or main diagonal, and the sum of these
is called the trace of the matrix. A square matrix in which the main diagonal elements are all 1 and all
other elements are 0 is called a unit matrix L

1 0 O
I=|0 1 O 1.77)
0 1

For a square matrix A, if there exists a matrix B such that AB =1, then B is the inverse of A and is written
A-'. Not every square matrix has an inverse. If a matrix has an inverse, then there is only one inverse. If
the matrix is a singular matrix, then the inverse does not exist.

If two square matrices A and B are multiplied so that the product AB = BA, then the two matri-
ces are said to commute. If the product is such that AB = —BA then the two matrices are said to
anti-commute.

A matrix A is orthogonal if ATA = I. Two column matrices, or vectors, are orthogonal if ATB = 0.

Just as we saw that there was the conjugate of a complex number, we can also have the conjugate of
a matrix. That is, if the elements of the matrix are complex numbers, then the conjugate of the matrix
comprises the complex conjugates of its elements.

For example, if A is the matrix of complex numbers:

a + ibll ap + iblz ap; + ib13
A =\ dn + ib21 ay + ib22 a3 + ib23 (1.78)

as; + ib31 as + ib32 asz + ib33
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Then the complex conjugate of A is written:

ayy —iby ap, —ibyy a3 —ibyg;
* . . .
A =|dyy — lb21 ay — lb22 ayyz — lb23 (179)
az; —ibs; az, —ibsy, az3 — ibs

The conjugate of the product of two matrices is the product of their conjugate matrices written in the same
order.

(AB) =A™ B (1.80)

The Hermitian conjugate of a matrix A* is found from the complex conjugate of the transpose of the
matrix:

A =(AT) =(a") (1.81)
A linear system of equations is an ordered set of coefficients and unknowns.

apXx;t+apx, +...a,x, = V1

anX;+anx, +...d,x, = Y2

(1.82)
A1 Xy + A2 Xo +... ApynXn = Yn
The linear system can be written in matrix form:
an apn i || % b
A an Qon || X2 | | )2 (1.83)
Ay (2% A Xn Yn
AX=Y
The determinant of a square matrix is denoted:
det A = AA =|A] (1.84)
The determinant of a second order matrix is given by:
an ap
= Ayl — dypdy (1.85)
ay Ay
The determinant of a third order matrix is given by:
a ap a
N %] as a3 ) an
y Gy Ay =dy B g —dp B a +a; g B
32 33 31 33 31 32 1.86
asy s ds3 ( )

=an (022033 - 023032) —dap (61216133 —axds) ) +a; (a21a32 - a22a31)

Determinants are only defined for square matrices.
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The determinant components of the determinant are called minors of the determinant. For example,
using the above third order square matrix, we have the minors M,,, M}, and M,;:

Ay A3 ay A3 ay [(25%]
M, = ; My = ; Mz = (1.87)
as asz as, asz as, az
When the sign is included, such that:
(-1)™ M; (1.88)
then the minors are called the cofactors o; of the determinant:
2 Ay [25%)
Oy =(_1) My=M, =
asp as;s
3 ay Aa3
(x12 = (_1) M12 = _M12 = - (189)
as) ass
4 ay Ay
O3 = (—1) M=M=
asy asp

A matrix of cofactors of a square matrix is called the adjoint of the matrix. For the above example, the
adjoint of A is:

ad_] A = K =| Oy Olyo 0532 (190)
O3 Ooz O3

Note the ordering of the elements of the cofactor matrix is that of the transpose of A.
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Waves

2.1 INTRODUCTION

The concept of a wave is absolutely essential for the understanding of quantum mechanics. The periodic
motion of a particle undergoing a harmonic oscillation is the basis for just about everything in particle
physics. The wave—particle duality of existence arises because at the macro-scale, we perceive these
things to be very different, but on the micro-scale, they merge into an unfamiliar reality that sometimes
can only be described in mathematical terms.

2.2 PERIODIC MOTION

Consider the motion of a mass attached to a spring as shown in Figure 2.1.

Plot of displacement vs time

Equilibrium__|
position

Period

FIGURE 2.1 Simple harmonic motion of a mass suspended by a spring.

Periodic motion of the mass consists of displacements y around an equilibrium position. When y is
plotted against time, we find the relationship is sinusoidal. The motion of the mass would be the same as
if it were attached to the rim of a rotating wheel and viewed edge on. That is, the angle 0 (called the phase)
would be the angular displacement of the wheel.

The displacement y of the mass as a function of 0 is:

y=Asin0 2.1

where A is the amplitude of the motion. In units of angular measure, the angular displacement 0 is given
by the angular velocity ® times the time.

0=t 2.2)

19
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Thus, the displacement y from the equilibrium position as a function of time is expressed:
y= Asin ot 2.3)
The general expression for position (i.e. displacement from the equilibrium position) for the mass is thus:
y = Asin(of +¢) 2.4

where ¢ is the initial phase, or phase advance, that is added to the angle 0 to account for the case when
the time r=0 does not correspond to y=0.
The velocity of the mass is given by dy/dt:

v=%=A0)cos((0t+(p) 2.5

The acceleration of the mass is given by dv/dt:
dv
Q=

=" —Aw’sin(wt + ) (2.6)

2.3 SIMPLE HARMONIC MOTION

Consider the force applied to a body moving with an oscillatory motion. Now:

F = ma = -mA®’ sin(ot + ) Q2.7)
But:

y = Asin(or +¢) 2.8)
And so:

F =-mo’y 2.9)

However, the product m? is actually a constant “k” for a fixed frequency w. Thus:
F=-ky (2.10)

The minus sign indicates that the force acting on the mass is in a direction opposite to the displacement
and acts so as to bring the mass back to the equilibrium position. The magnitude of this restoring force is
a function of the displacement of the mass from the equilibrium position. k is often called the spring or
force constant.

The combination of periodic motion and a restoring force whose magnitude depends on the displace-
ment from the equilibrium position is called simple harmonic motion.

Now:

mz\/?:anzzn 2.11)
m T
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where T is the period of the motion.
Since:

T="" .12)
()

then:

m
T= 211:\/; 2.13)

Note that the period of oscillation only depends on the mass and the spring (or force) constant and not on
the amplitude.

In general, at any instant, the mass has both kinetic and potential energy.

The potential energy E, is the sum of the force times the displacement in the y direction, but the
force is a function of the displacement, and so we must integrate between 0 and some value of y(7):

¥()
Epp = J.de: J‘ —kydy

0

1 2
=—k
) ¥(t) (2.14)

= %kA2 sin’ (o)t + (p)
= %mcozA2 sin’ (o)t + (p)

In terms of position, the integral is simply Y2ky?.
The kinetic energy E,, depends upon the velocity v, which in turn is a function of the angular dis-
placement wt:

Epe = %mvz _ %mszz cos* (1 +) 2.15)

The total energy E;, possessed by the mass m at a time ¢ is thus:

E; = %mo)zA2 sinz(wt+(p)+%mm2A2 cos”(or +¢) (2.16)
But:

sin” (@t + @)+ cos” (wr +¢) =1 (2.17)
Therefore:

E; = %m(DZAZ (2.18)

As the sin? term increases, the cos? term decreases. In other words, for a constant m, ® and A, the total
energy is a constant.
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Note that the frequency of oscillation depends on the square root of the spring constant and the mass.
These are usually fixed for a given mechanical system, and so the energy stored within the system is, in
practice, proportional to the amplitude.*

In simple harmonic motion, energy is continually being transferred between potential and kinetic
energies.

2.4 WAVE FUNCTION

Consider a transverse wave in a string. A wave is a disturbance which travels from place to place, say in
the x direction. The particles in the string that carry the wave move up and down with simple harmonic
motion in the y direction. The particles themselves do not move in the x direction; it is the disturbance that
travels in the x direction.

Figure 2.2 shows a snapshot of the wave at some time ¢ where the shape of the wave indicates the
displacement of the particles in the y direction along the direction of travel of the wave in the x direction.
The plot has been drawn for three different times to show that the shape of the wave is travelling from left
to right, while the particles within the wave travel up and down.

A DAL N
AVAREE Vi VAR RV Y

2} 15} 5]

FIGURE 2.2 Snapshot view of a wave at time T showing displacement of particles in the y direction as a function
of x, the direction of travel of the wave.

We note the following:

* The shape of the wave is a repeating pattern.

e Ais called the wavelength and is the length of one complete cycle.

* The wave travels along the x axis with a velocity v.

* The time for a particle to complete one complete cycle of vertical movement is the period 7.

* There is a subtlety here that requires some discussion. We might wonder why the energy content of a harmonic oscillator depends
upon the frequency. Say we have two oscillators, each with the same mass but having a different spring constant. They are set
into motion with the same amplitude. They are therefore vibrating with different frequencies. The one with the larger spring
constant, the “stiffer spring”, has a higher frequency of vibration compared to the one with the lower spring constant, the “softer”
spring. Each system is converting a certain amount of energy from kinetic to potential energy. Is it not true that the one with the
higher frequency of oscillation is just making the transfer from kinetic to potential energy more rapidly than the other? Surely
the rate at which this happens should not affect the energy content? Why then is the total energy different in each system? It is
because for the same amplitude, we had to put in more energy for the case of the system with the stiffer spring in the first place.
That is, F = ky and so for a larger value of k, the force applied through the distance y = A for the stiffer spring had to be more
compared to the case of the softer spring to get things going. That is, more work is done by the external force. Thus, the system
with the softer spring might indeed be oscillating with the same amplitude, but it is alternately converting a lower amount of
energy at each oscillation. The rate of oscillation doesn’t matter.
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One complete wavelength passes a given point in the x direction in a time 7, the period. Thus, since the
velocity is d/t, where d is the distance in the x direction, the velocity of the wave is:

v= T (2.19)

Now, the frequency f of the oscillations, in cycles per second, is the reciprocal of the period:

1
I=r
And so:
v=fA (2.20)

That is, the velocity of the wave, the disturbance, is expressed as the frequency of the vertical oscillations
times the wavelength.

We wish to calculate the displacement y of any point P located at some distance x on the string as a
function of time ¢.

Let’s consider the motion of the point located at x=0. If the points on the string are moving up and
down with simple harmonic motion, then:

y = Asin(or +¢) (2.21)

If y=0at r=0, then ¢p=0.

The disturbance, or wave, travels from left to right with velocity v=x/t. Thus, the disturbance travels
from O to a point x in time x/v.

Now, let us consider the motion of a point P located at position x. As shown in Figure 2.3, the dis-
placement of point P located at x at time 7 is the same as that of point P” located at x=0 at time ( — x/v).

y
- P'@t
\ P@t
FIGURE 2.3 Displacement of a point P located = / x
at x at time ¢ compared with the displacement of 0/ *
the same point at ¢ — x/v.
P'@(1—x/v) Shape of
wave at ¢
Shape of
wave at
(t=x/v)

Thus, to get the displacement of the point P at (x, 1) we use the same formula for the motion of point
P’ located at x=0 but put in the time #=(t—x/v):

y:Asin(cot+(p)=Asin((o(t—x)+(p) 2.22)
y
Now, it is convenient to let:

k="% (2.23)
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Where k is called the wave number (different from the spring constant k used previously).

Since:
v=fA (2.24)
Then:
_
Uk
(2.25)
-
k
Thus:
. k
y=As1n(o)(t—x)+(p) (2.26)
[0
or:
y(x,t)=Asin(wr —kx+9) (2.27)

This equation gives displacement of the point P from its equilibrium position as a function of x and ¢. It is
called the wave function.

When viewed as a plot against time, the coordinate x gives us a place from which to view the wave.
Or, we could think of x as the particle whose movement in the y direction we are plotting. When viewed
as a snapshot at a particular time, the plot shows all the positions of all the particles at some instant. Thus,
we can hold x or ¢ constant in the above equation and plot the y coordinate as a function of the quantity
that is left free to vary.

A wave that can be represented by either a sine or cosine function is called a sinusoidal wave or a
harmonic wave.

The argument to the sine function (of—kx+ ¢) is often called the phase of the wave — not to be con-
fused with ¢, which is the initial phase. The initial phase ¢ is an offset, or a constant which may exist at
t=0 and so makes a constant contribution to the phase independent of x and 7.

The velocity and acceleration of the particles in the string are found by differentiating y with respect
to time while holding x constant:

v, = @Acos(orf —kx+9) (2.28)

a, = -0’ Asin(of —kx+¢) (2.29)
These equations give the velocity and acceleration of the particles within the medium of the wave, not the
velocity of the wave itself.

Although we have described a transverse wave on a string, the same principles apply to any wave
motion.

2.5 WAVE EQUATION

In the above equations, we differentiated y with respect to # while holding x a constant. Let us now dif-
ferentiate with respect to x while holding ¢ a constant. Setting ¢ =0 for convenience, we obtain:
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y:Asin(u)t—kx)

%: —kA cos(wr — kx) (2.30)
Py —k* Asin(of — kx)
ox?
but:
o = vk (2.31)

where v is the velocity of the wave. And so:

Py w

i —V—zAsin((ot —kx) (2.32)
or:

d’y 1 9%

W o 239

This is called the (one-dimensional) wave equation and gives information about all aspects of the wave by
tying together the motion of the particles within the medium and the wave (the disturbance which travels
through the medium).

Note that on the left-hand side of this equation, we have the positional information of the particle in
the y direction as a function of x, while on the right-hand side, we have the time dependence of the position
in the y direction as a function of 7.

The equation is a second order partial differential equation. The solution to this equation is a func-
tion. That is, the solution to the wave equation is the original wave function:

y = Asin(or —kx) (2.34)

This wave function satisfies the wave equation. That is, when we take the second partial derivative of y
with respect to x, this equals to 1/v? times the second derivative of y with respect to 7.

The collection of equations which satisfy the wave equation are the eigenfunctions, sometimes
referred to as eigenvectors. They may differ according to the value of A. Two different solutions of the
wave equation (having different values of the constant A) may be added to yield a third solution — this is
the principle of superposition.

We could have just as easily equated the first derivatives of y with respect to x and ¢, and we would
have obtained a first order differential equation involving v instead of v2. However, in many cases, we deal
with the superposition of two waves travelling in opposite directions to form standing waves in which case
we need two constants to completely specify the resultant wave. In such a situation, with two arbitrary
constants, the second order differential equation is therefore the most general expression of a wave.

It has been shown that the wave function is written:

y(x,¢)= Asin(ot —kx +¢) (2.35)

A very important assumption in the above is that we were dealing with the transverse motion of a particle
in a two-dimensional situation. That is, the particle was moving up and down along the y axis, and the
wave, or shape of the disturbance, moved towards the right along the x axis as shown in Figure 2.2 (a). As
the wave moves to the right, the particle at x=0 moves upwards.
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However, in some physical situations, the wave itself may not represent the motion of a particle in the
xy plane. For example, in quantum physics, the matter wave associated with a particle, such as an electron,
has a connection with the probability of finding that particle at some place x at a time 7.

In cases such as those, it is convenient to reverse the signs in the phase terms such that:

y(x,t) = Asin(kx — ot + 9) (2.36)

Note, both representations of the wave are correct, but not equivalent — their phases differ by a factor of .

2.6 COMPLEX REPRESENTATION OF A WAVE

Representation of waves using sine and cosine functions can become unwieldy. An often more convenient

method is to use complex numbers.
Imagine a point that is represented by the complex number z=a+ib on the complex plane. z is rotat-

ing about the origin. As shown in Figure 2.4, viewed from side-on, z would be moving up and down with

simple harmonic motion.

Imaginary
”/_1,—_ _,—;j, “ z=a+ib
FIGURE 2.4 Complex number representation > \\\
of simple harmonic motion. Q ; 0+ | Real
\ a
\ A= zl
'S
Now, in polar coordinates, we have:
a=AcosH
2.37)
b= Asin6
Let:
z=a+ib (2.38)
And:

A=~d>+b> (2.39)

Therefore:
z=AcosO+iAsind
(2.40)
= A(cose + isinﬂ)
Using Euler’s formula, where:
(2.41)

e = (cose +isin 9)
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We can write:
7= Ae® (2.42)

The amplitude A of the motion is given by the magnitude of z.

A=ld=zz 2.43)

where 7" is the complex conjugate: 7" =a — ib.

At first sight, we might wonder why complex numbers involving real and imaginary quantities would
have any connection at all with wave motion. Previously, we were concerned with the motion of the par-
ticle in the y direction and in fact, often made the point that the particles themselves in the medium carry-
ing the wave did not move in the x direction at all, but only up and down in the y direction. So, we might
ask, why bother with complex numbers?

The reason is that in many situations, the mathematics associated with the exponential expression of
a wave, even though it might contain what appear to be inconvenient quantities such as e and i, are easier
to deal with than the trigonometric form of the wave function. The cyclic nature of the wave is carried by
the simple harmonic motion of the particles at any point. This in turn is embodied in a smoothly vary-
ing value of the b (or the a) coordinate in the complex plane as if a complex number z were being rotated
around the origin in this plane and viewed edge-on.

You will find that it is never necessary to evaluate “” on its own. In equations involving i, it is usually
paired with another i and cancels out or is squared, and the product i=-1 used.

It can be seen from the above, that the cosine function is associated with the real part of the motion,
and the sine function is associated with the imaginary part. Either cosine or sine can be used to represent
a wave. It doesn’t matter which is used.

Thus, a travelling wave can be represented by the real (or the complex) part of:

[
l

z= A(cose+isin9) (2.44)
Or, in exponential form:
7= Ae® (2.45)

Note that the trigonometric functions and the exponential give the function z its periodic character. These
provide the “phase”, which is a value between —1 and +1. This is multiplied with the amplitude A to give
the value of z as a function of 6.

Note that z is a complex number. If the wave it represents has a constant amplitude, then of course the
amplitude of z is a constant, but the angle, or phase, of z varies in time since 6= wt.

We saw before that in the xy plane, y(x, 7) gives the y axis position of a particle in the medium of the
wave at x and 7. How can we relate this to the exponential expression for a wave?

In the complex case, we note that 0=z, and so we might write, for a particular value of x, say x=0:

y(t) = Ae™ (2.46)

At some time ¢, say =0, we wish to know the value of y at some point x, which is the same as that of the
point located at x=0 but with the time #=(t—x/v):

y(x)= A (2.47)
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ol
k

but v=—, and so:

—A io(—kx/o)
y(x)=Ae (2.48)

— Ae—ikx

Generally speaking, the wave function in exponential terms is therefore written:

y(x1) = A (2.49)
As is often the case, the sign of the phase term is reversed, and we write:

y(x,t)= Ae'k=e) (2.50)

As before, we can hold either x or # constant and plot the wave as a function of time or distance along the
X axis.

2.7 ENERGY CARRIED BY A WAVE

A wave transfers energy between two locations. Consider the example of a transverse wave on a stretched
string. In the case of a stretched string, the potential energy is stored as the elastic strain energy. That
is, the string is initially straight and stretched between two supports which are fixed. A wave motion is
imparted, say at one end of the string. The resulting displacement of that portion of the string means that
the string is deformed away from its initial straight profile. Elastic strain energy is thus stored within the
stretched bonds holding the particles of the string together. Elastic strain energy (potential energy) is a
maximum when the displacement of a particle is a maximum (at the amplitude) and a minimum as it
passes through its zero or initial position. The kinetic energy of motion is a maximum at the zero position
and a zero at the maximum displacement.

The external source performs work on the first particle in the string. The particle moves with simple
harmonic motion. The energy of the particle is converted from potential to kinetic energy in a cyclic man-
ner. The total energy of the particle is unchanged in time. However, because the particle is connected to its
neighbouring particle, the first particle loses energy to the next particle at the same rate it receives energy
from the external source. Although the total energy of the particle remains unchanged, energy from the
source gets passed on from one particle to the next until it arrives at the target location. Thus, energy from
the external source travels along the string with velocity v.

The total energy of each particle is the sum of the potential and kinetic energies of the particle:

Ey = %mmzA2 sin’ (o +¢)+ %mw2A2 cos” (o +¢)

(2.51)
= lm(n)zA2
2
The total energy for all the oscillating particles in a segment of string one wavelength long is:
E; = L o2a (p1) (2.52)

2
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m=ph (2.53)

where p is the mass per unit length of the string.
In one time period 7, the energy contained in one wavelength segment of string will have moved on
to the next wavelength segment. The power transmitted during is thus:

P:E”‘
T
=—°A”(pA)— 2.54
L O°AT(pA) (2.54)
—lmzAzpv
2
since:
1
=—A 2.55
V=7 (2.55)

Expressed in terms of frequency f, this is:
P =2pn*vA*f? (2.56)

For a stretched string, the tension T in the string is related to the velocity of the wave and mass per unit
length as:

v=|T 2.57)
p

And so, we have:

p=1p \/7(,32 A2 (2.58)
2°\p

The power transmitted by a wave on a stretched string of tension T and mass per unit length p oscillating
with frequency o and amplitude A, is therefore:

P= %\/Fp ®*A> (2.59)

The important observation to be made here is that the energy and power transmitted are proportional to
the amplitude squared and also to the square of the angular frequency.

In the case of a stretched string, the energy is alternately transferred between potential and kinetic
energy; the total energy of any particle within the string is a constant. The rate of propagation of energy
is proportional to both w? and A2.

In the case of an electromagnetic wave, the electric and magnetic fields travel together, in step, and
each sinusoidal time-varying field carries half the energy being transmitted. The instantaneous value of
energy carried by the electric and magnetic fields at any point in space is not constant in time. In this case,
much like in AC circuits in electricity, it is more useful to talk about the average energy, or average power
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being transmitted rather than the instantaneous values. When the power is integrated over a full cycle (0
to 2m) to obtain this average, the frequency term drops out, and we find that the average power transmitted
is a function of the amplitude of the square of the E (or the B) field only.

2.8 SUPERPOSITION

Consider two waves on a stretched string that are travelling in opposite directions as shown in Figure 2.5.
For simplicity, let the waves have the same amplitude, wavelength and frequency.

hg
FIGURE 2.5 Two waves travelling in
opposite directions on a stretched string.
he)
The wave travelling to the right is represented by:
y = Asin (ot — kx) (2.60)
and the wave travelling to the left by:
y> = Asin(of + kx) (2.61)
The resultant wave, the superposition of the two, is thus:
V= Asin((ot - kx)
V= Asin((ot+kx)
. (or —kx)+ (ot + kx)
yi+y, =A| 2sin 5 (2.62)
ot —kx)—(ot + kx
- (or—k)( ))
2
=2Acoskxsin ot
Since:
27
k=— 2.63
A (2.63)
And:
. . . A-B
smA+smB=251n(A+B)cos( 5 ) (2.64)

Thus:
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ity = 2A[cos 2;:)6] sin @t (2.65)

This equation shows that the amplitude of the superposed or resultant wave is not a constant but varies
between 0 and 2A as x varies. The motion of the particles within the string is still simple harmonic motion
but the amplitude varies according to the value of x.

The resulting displacement of the particles is always zero when:

ZT’“:ng where n=1,3,5... (2.66)
These values of x are called nodes and occur when:
x=2 3 Sk 2.67)
4 4 4
The resultant displacements of the particles are a maximum when:
2mx
o mm where m =0,1,2... (2.68)
These positions are called antinodes and occur when:
xzo,&,k,ﬁ... (2.69)
2 2

The positions of the nodes are shown in Figure 2.6.

Antinode
Node l

FIGURE 2.6 Position of nodes and
antinodes of two superimposed waves
in a stretched string.

All particles in the medium undergo simple harmonic motion. It just so happens that the particles at
the nodes always have an amplitude of zero and hence are stationary. The other particles usually oscillate
very rapidly, and the eye only sees the envelope of the waveform, hence the term standing wave.

2.9 STANDING WAVES

A very common example of standing waves appears in a stretched string. If the string is fixed at both ends,
then there must be at least a node at each end because y=0 at the ends always.

For a standing wave to be produced, the length of the string must be equal to an integral number of
half-wavelengths.
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L:n%wheren:1,2,3,... (2.70)

The frequency of the mode of vibration when n=1 is called the fundamental frequency. The shape of this
mode of vibration is shown in Figure 2.7(a).

Now:
v=fA
/- v 2.71)
A
For a stretched string:
y= L 2.72)
p
where T is the tension in the string and p is the mass per unit length. And so:
1 |T
=— = 2.73
f W 2.73)
But:
ni
L=—"— 274
> (2.74)
Thus:
n |T
=— |— 275
/ 2L\ p 2.75)

Where n=1, 2, 3... These are the allowable frequencies for standing waves (or normal modes) for a string
length L. The shape of the standing wave for n=2 is shown in Figure 2.7(b).

In a standing wave, the particles are still moving with periodic motion in the vertical direction, but
the disturbance, the wave, is stationary."

(@ (b)

n=1 1st harmonic n=2 2nd harmonic

L=\
L=2\2

FIGURE 2.7 (a) Fundamental mode of vibration on a stretched string. (b) Second mode of vibration.

*

The frequency of the motion depends on which mode of vibration is excited. In practice, frequency modes of vibration, that is,
different harmonics, are excited depending on the way the string is set into motion. A violin bow drawn across a string produces
a different set of harmonics compared to that same string being plucked. When there are multiple modes of vibration present,
the particles themselves may no longer be oscillating in simple harmonic motion, but the motion is a superposition of a series of
simple harmonic motions. Generally speaking, a “bright” sound may contain a high amplitude of high frequency components,
whereas a mellow sound contains a high amplitude of lower frequency components, or harmonics.
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2.10 BEATS

Consider two sound waves travelling in the same direction, with the same amplitude A, but with different
frequencies ®, and m,. The wave functions are:

V= Asin((olt — kx)

(2.76)
y,=A sin((ozt - kx)
Figure 2.8 shows the displacement plotted as a function of time (keeping x fixed).
4 ¥ ¥
FIGURE 2.8 Two travelling waves \/\\ -
with slightly different wavelengths. 0 \ / ot
-AJ \
The resultant superimposed wave yy is:
YR=EYit )
= Asin(o,f — kx)+ Asin (@, — kx) 2.77)

=2Acos Ml sin mt
2 2

Since sinA+sinB=2sin(A;B)cos(AgB)

The cosine term in the equation for y, represents the amplitude of the resultant wave; the sine term
characterises the frequency. That is, the frequency of the resultant is the average of the two component
frequencies. The amplitude term itself oscillates with a frequency of:

W, — M,
2

However, the ear hears two pulses or beats in this one cycle since our ears don’t distinguish between posi-
tive and negative values for y,. The shape of the superposition is shown in Figure 2.9.

BN AN
FIGURE 2.9 Superposition of two travelling
waves with slightly different wavelengths. \/

The beat frequency (rad s™') actually heard is therefore:

(2.78)

2% — 0 -, (2.79)
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2.11 SUPERPOSITION IN COMPLEX FORM

The solution to certain types of differential equations often takes the form of a superposition of two waves,
one travelling in the +x direction and the other in the —x direction, each with different amplitudes C, and
C,. For the example here, we will consider the superposition of two waves at some point x (i.e. y(x) only).

For a wave travelling to the right, we might write:
e™ = coskx +isin kx

And for a wave travelling to the left, we have:
e = cos(—kx)+isin(—kx)

= coskx —isinkx
The superposition of these waves gives:

y(x) = Cle”‘x + Cze"”"‘

=C (coskx+ isinkx)+ C, (coskx—isinkx)

Let:
Cl =a+bi
C2=a_bi
C1+C2 =2a
C] —C2 :2bl

Thus, the superimposed wave is:

Cie™ +Cre™ = (a+bi)(coskx+isinkx)+(a—bi)(coskx —isin kx)
= acoskx + aisinkx + bicos kx — bsin kx + acos kx
—aisinkx —bicoskx —bsin kx
=2acoskx —2bsinkx

Cie™ + Cre™ = Acoskx — Bsin kx

where:
A=2a
B=2b

(2.80)

(2.81)

2.82)

(2.83)

(2.84)

(2.85)

In this example, we have carefully chosen the values of C, and C, so that the resulting superimposed wave
is represented by a real function. This need not necessarily be the case. It depends on the physical situation
being modelled. For example, for superimposed waves on a stretched string, the waves are real. For matter

waves in quantum physics, the waves are complex.



Electromagnetic
Waves

3.1 ELECTROMAGNETISM

In 1830, Michael Faraday was experimenting with electricity and magnetism at the Royal Institution in
London. A connection between the two had been earlier demonstrated by Hans C. Oersted in Denmark
in 1820. It was Faraday’s thought to represent the effect of one electric charge on another in terms of a
field. The field could be represented by lines drawn coming radially outwards from a positive charge and
pointing inwards towards a negative charge. The number of lines depended upon the strength of the field.

If the field is created by the presence of an isolated electric charge ¢, then the strength of the field at
some radius r from the charge (in free space, or a vacuum), is given by:

I g

4me, r*

3.1

where £,=8.85 x 1072 Fm™' is called the permittivity of free space.

The total number of lines (not that we ever actually see or count them) is proportional to a quantity
called the electric flux ¢. The field strength E is the electric f lux per unit area through which the lines
pass. For the case of an isolated charge, with the field lines directed radially outwards (or inwards for the
case of a negative charge), the area A at some radius r is simply A=n2, and so the electric field is:

=% 3.2)

and so the electric flux, for this case, is calculated from:

o= (3.3)
&

The direction of the field lines indicates the direction of the force which would be applied to a positive
“test” charge if it were placed in the field. This is shown in Figure 3.1(a).

(a) (b) ()

q E + v

O %

B

FIGURE 3.1 (a) Direction of force applied to a positive test charge in an electric field. (b) Direction of magnetic
field lines for a moving charge. (c) Direction of force on a positive test charge moving in a magnetic field.

35
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The magnitude of the force due to the electric field was shown by Coulomb to be:
F=qE 3.4

where ¢ is the magnitude of the charge, and E is the magnitude of the field.

There are various ways of creating an electric field. As we shall see, it is not always necessary to have
an actual electric charge present.

A magnetic field B can be created by the steady movement of an electric charge (i.e. an electric cur-
rent). The charge ¢ moves with a constant velocity v.

As shown in Figure 3.1(b), the magnitude of B at some distance r from the charge is found to be
dependent on the magnitude of the charge ¢ and the velocity of the charge v and inversely proportional to
the perpendicular distance r squared.

Ho gv
B=—+ 3.5
4m r? (3.3)

where py=4nx 107 Wb A~ m! is called the permeability of free space.
If there is already a magnetic field present, as seen in Figure 3.1(c), when a test charge moves in this
field, it experiences a force which is perpendicular to the direction of motion of the charge and the field.
The magnitude of the force is found to be dependent on the magnitude of the charge, the velocity and
the strength of the field.

F=qvB (3.6)

In a similar way to the electric field, Faraday envisioned that magnetism could be expressed in terms of
magnetic field lines.
Expressed in terms of a magnetic flux, we have:

5=? (37)

where the magnetic flux can be calculated from:
D = lygv (3.8)

Faraday discovered that, as well as being produced by a moving charge, a steady or constant magnetic
field B could also be created by a changing electric flux. The magnitude of the B field was dependent on
the rate of change of the electric flux ¢. James C. Maxwell expressed this mathematically as*:

e 40
<_[>B 1= e, ! (39
This integral is a special kind of integral called a line integral around a closed curve. For our present
purposes, we don’t have to worry about what this curve might be, since in the example below, it will just
be a straight-line segment much like when we take the integral along the x axis.

Consider an electric field of magnitude E that is moving through free space with a velocity v as shown
in Figure 3.2(a). The field is just about to enter a cross-sectional area A. In a time interval dt, the field has
travelled a distance vdt. The electric flux through the area A has changed. Initially it was zero, and at the
end of time dt, there is a field on the right-hand edge of the area.

* This is also called Ampere’s law.
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By Ampere’s law, a changing electric flux is one of the conditions that produce a magnetic field B.
That is, because there is a change in electric flux over the area A, then we obtain a steady magnetic field
B also passing through the area A but pointing at right angles to E and the direction of motion of E. This
is shown in Figure 3.2(b).

(a) v (b) (©

E—

E
77 7 [
/47/ A = yv(dt) / v

FIGURE 3.2 (a) Moving electric field entering area A. (b) Moving electric field leaving area A and associated mag-
netic field. (c) Change in magnetic field for area A.

The change in electric flux d¢ is during time df over the area dA:

do=FEdA
(3.10)
= Eyvdt
and so:
e
—=E 3.11
g B (.11)
Thus, the resulting magnetic field can be obtained from:
iB dl = Koo di(p
dt (3.12)

= Wo€oEyv

In this case, the line integral is the product of B and the length y (since y lies along the same direction as
B, and after time df, B now exists only on the right-hand edge of the area), and so:

= Uo€oEYyv
(3.13)
B= p.()S()EV
E= ! B
Ho€oV

In this example, the change in electric flux has been brought about by the passage of a field E across an
area dA. We can also have an area A through which the field changes dE. Both represent a change in flux
which in turn produces a magnetic field B. The strength of the B field depends upon the strength of the E
field and the velocity (i.e. the rate of change of electric flux) of the E field.
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Another way of looking at this is to use Faraday’s law, where a changing magnetic field creates a
changing electric field. Maxwell formulated Faraday’s law as:

CJ‘)E.dl __d® (3.14)
dt

Now consider the upright area A which is perpendicular to the area in the previous example. This is shown
in Figure 3.2(c). In the simple case here, the area A, in which there was initially no magnetic field, experi-
ences a magnetic field B passing through it.

From this perspective, this is a change in magnetic flux d® through that area. Thus:

d® = BdA
= Byvdt (3.15)
do
= _B
dt Y

And so, Faraday’s law gives:

Ey=Bw (3.16)
E=1B '

The strength of the E field depends upon the strength of the B field and the velocity of the B field.
It was the great discovery of Maxwell to realise that if the velocity of the B field were to be the same
as the velocity of the F field, the two fields would be self-sustaining and self-propagating. That is,

1

Ho€oV

ulevzv 3.17)
0€o

E= B=vB

E_
B

MHo€o

By measuring the strength of the electric field £ and the accompanying magnetic field B, Maxwell was
able to calculate this velocity, and to his great surprise, the value came out to be the velocity of light — a
quantity with which he was familiar and so recognised immediately. Up until then, no one had any idea
what light actually was. Maxwell showed that light consisted of a changing electric field accompanied by
a changing magnetic field — an electromagnetic wave.

The velocity of light is usually given the symbol ¢, and so:

2 1

=

oo (3.18)
¢ =2.99792458 x 10° ms™'

Maxwell showed that:

E(xr) _ (3.19)
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That is, a self-sustaining electromagnetic wave can only travel at velocity c in free space and is indepen-
dent of the frequency of the wave.

The most common type of travelling electromagnetic fields are those which vary continuously with
time in a smooth periodic manner. In terms of the electric field, at a particular point in space, this might
be represented as:

E(t)= E,sin(ot) (3.20)

where E|, is the amplitude of the field.

A changing electric field travelling through space is accompanied by a changing magnetic field with
a direction normal to the field and the velocity. This is the electromagnetic wave. Figure 3.3 shows a snap-
shot view of the wave travelling in the z direction.

FIGURE 3.3 Time-varying electric and
magnetic fields at some time 7.

In this case, in terms of x and t:

E(x,t) =E, sin(kx - cot)

(3.21)
B(x, t) =B, sin(kx — 0)t)
In exponential form, we can express the waves as:
E(x,t) = Eoei(kx_w’)
(3.22)

B (x,t) = Boe"(kkw)

Note, the fields in Figure 3.3 have been drawn in accordance with the right-hand rule. Depending on
how the axes are labelled, the E and B fields may have opposite signs. For example, if as shown in
Figure 3.3 the positive x direction was into the page, the fields have the same sign. If the positive x direc-
tion is out of the page, then E and B have opposite signs and the positive z direction would be into the page.

These “field” waves have all the properties of mechanical waves, displaying diffraction, interference,
reflection and refraction. The range of frequencies most commonly encountered is termed the electromag-
netic spectrum.

Maxwell’s prediction about the existence of electromagnetic waves, although begun as a mathematical
treatment of Faraday’s lines of force, was theoretical in nature. The existence of electromagnetic waves had
only been demonstrated in so far as their velocity was predicted to be the same as that of light. The actual exis-
tence of oscillating, propagating electric and magnetic waves was not so easily accepted. In 1888, Heinrich
Hertz verified their existence by showing that a spark generated between the electrodes of an induction coil
would produce a spark in the gap of a nearby coil. Hertz deduced that electromagnetic waves travelled from
the generator coil to the receiver coil. He measured the velocity of these waves, which were in the microwave
region, to be that of the speed of light, and that this speed did not depend upon the frequency of the waves.
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3.2 ENERGY IN ELECTROMAGNETIC WAVES

Consider the energy required to charge a capacitor which consists of two parallel plates as shown in

Figure 3.4.
1
FIGURE 3.4 Electric field between

two parallel plates. +0

When a voltage V is applied across the plates of a capacitor, energy U, is stored within the field £
between the plates of the capacitor.

U, = % cv? (3.23)

Now, the capacitance C of a parallel plate capacitor is:

C= 803 (3.24)
and the voltage across the plates is:
V=Ed (3.25)
Thus:
U = %80 315%12
(3.26)
= %aOEQ (Ad)

The energy density u, is the energy contained within the electric field per unit volume (J m3 in SI units).
Here, the volume occupied by the field E is the product Ad. Thus:

U _ leE"’ (3.27)

Ur = =
FTAd 2
This formula says that the energy density of an electric field is proportional to the square of the magnitude

of the E field.
Turning now to an inductor, the energy required to “charge” an inductor of length /, cross-sectional

area A and N number of turns is:

1, N?
Up = ELI where L = quT (3.28)
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The energy is stored with the magnetic field B:

B= W% (3.29)

And so, the energy stored is:

2
1 N’ || B I

Up=—|pA— || ——

’ 2[”0 l}[HoN}

:LBZAZ (3.30)

21,
:LBZ

2,

Up

where 1, is the energy density of a magnetic field.
If these steady state electric and magnetic fields appear together, the total energy density of the com-
bined fields is thus:

u=ug + Up
1 (3.31)
=¢gyE* or —B?
Ho
If, during time Az, these steady state E and B fields pass a particular point in space, then the length of the
“volume” containing the field is /=cAt. If we consider a 1 m? area perpendicular to the direction of travel,

then in terms of the energy density u, the intensity of the field (power per unit cross-sectional area A) is
obtained from:

=F
A
_u,n
At A
u 1
A (3.32)
At A
= cht
At
=uc

Since E and B are vectors, and it is the cross-sectional, or perpendicular, area through which the intensity
is being calculated, the intensity / will be a vector also and will involve a cross-product.
Substituting p=g,E?, we have:

I =¢,E*
1

€ollo

_ e EB (3.33)

- Lpp

Ho
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In vector form, this is written:

s= L ExsB (3.34)

Mo

where S is called the Poynting vector and has units of W m=2.
Now, for the case where E=E(f) and B=B(f) are functions of time, we have:

E=Bc (3.35)

where here, E and B are the instantaneous values. Thus:

1
up = —gyB*c*

2
— e 2 (3.36)
= gloc’up
But:
ozl (3.37)
v €ollo
therefore:
Ug =g (3.38)

That is, the energy carried by the fields is divided equally between the electric and magnetic fields.
If the electric and magnetic fields both vary sinusoidally with time (an electromagnetic wave), and E,
and B, are the amplitudes, then:

E(t) =E, sin(mt)

(3.39)
B(t) = Bysin(wt)
and so, the intensity (W m~2 in SI units) as a function of time is:
1 .
1(t)=— E,B,sin*(ot) (3.40)

0

In this case, the energy is being carried along by the wave, but the energy density at some particular point
is changing sinusoidally with time as the wave passes through. If we were to take a snapshot of the wave
at some time ¢, at some point in space, the energy density would be zero. A short time later, the energy
density at that same point would be a maximum, the value being dependent on the amplitude of the wave.
This does not mean that energy is being alternately created and destroyed at that point. It means that the
energy is being transferred from that point to the next. The energy in the field at one point is being trans-
ferred over to the next point in space. At any point in space, the energy density, no matter what it might
be — somewhere between zero and a maximum — is divided equally between the electric and magnetic
fields. This is different from the case of a transverse wave on a stretched string or a swinging pendulum.
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In the case of a pendulum, at points of zero velocity at the extremities of the motion, all the kinetic energy
of the pendulum has been transferred to potential energy. The energy is not divided equally between
kinetic and potential energy but continually converted from one to the other. Unlike the electromagnetic
wave, the total energy at some point in the motion of the pendulum is a constant.

To find the average power and the average intensity of an electromagnetic wave, we integrate the sin?
function over 2m:

2n
j 1,49 3
L= =iE§B°Jsinzede
T Mo el (3.41)
ZLEoBo
210

where E, and B, are the amplitudes of the fields. Note that the integral in the above evaluates to .
Or, working in terms of the E field only:

I, =€ [; Eoz] (3.42)

Note that here, the average intensity of an electromagnetic field is proportional to the amplitude of the E
field squared and does not depend upon the frequency of the wave.

Just as we define the root mean square (rms) values of voltage and current, which, when multiplied
give the average power dissipation in a resistive AC circuit, we can express the average value of the inten-
sity of an electromagnetic wave in terms of the rms value of the E (or B) field. Letting:

L
V2

where E|, is the amplitude of the field, we have:

E. = E, (3.43)

I, =¢€,cE%, (3.44)
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Kinetic Theory
of Gases

4.1 INTRODUCTION

Consider N molecules of an ideal gas inside a container of volume V at an absolute temperature 7.
We recognise that in normal circumstances, there are a great many molecules, too small to be seen
individually, moving with great velocity and undergoing collisions with the walls of the container
and each other. Indeed, in a typical macroscopic system, the number of gas molecules is of the order
of Avogadro’s number, 6 X 10>* molecules — far too many to calculate the individual velocities and
displacements. The average velocity of such molecules is of the order of 1000 m s~!. The typical
distance a gas molecule might move before colliding with another, or the container walls, is of the
order of 100 pm — far greater than the size of the molecule itself. These figures set the scale of what
we are about to study.

Unlike the motion of planets in the solar system, of which there are only a few easily seen bodies,
the study of gases cannot be done on an individual basis. As such, any macroscopic properties that are
required to be measured in the laboratory, like pressure and temperature, can only be described in terms
of the average motion of a large number of individual molecules making up the gas.

The kinetic theory of gases uses the statistical average of individual motions to describe macroscopic
quantities. In order to do this, several basic assumptions must be made to begin with:

* The molecules are negligibly small in comparison to the size of the container and the distance
between them.

* The molecules collide elastically with each other and the walls of the container.

* The molecules do not otherwise interact (e.g. no attractive forces between them — such as there
would be in a solid or liquid).

* The molecules have an initial random motion.

Because there are such large numbers involved, statistical treatments lead to great certainty in the
predictions of macroscopic quantities, and this is the power of statistical mechanics. Unlike classical
thermodynamics, which deals with experimentally derived equations of state to describe the relation-
ship between macroscopic properties of gases, statistical mechanics seeks to derive these macroscopic
relationships from microscopic properties which, in some circumstances, involve the quantum aspects
of matter. Since the analysis of single molecules in these circumstances is not feasible, we gain access
to these microscopic quantities by considering the statistics of the properties of large numbers of indi-
vidual molecules.

45
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4.2 PRESSURE AND TEMPERATURE

4.2.1 Pressure

Pressure is the result of the total average force acting on the walls of the container. Consider the collision
of one molecule with the container wall as shown in Figure 4.1(a). During the collision, the velocity com-
ponent v, of the molecule is unchanged but v, changes in direction but not in magnitude.

The change in velocity of a molecule during a time interval A is:

(a) (b)
VAL

s

AV

FIGURE 4.1 (a) Gas molecule bouncing off container wall showing velocity components. (b) Volume element that
contributes to pressure on the wall.

Ve — =V, =2V,

@.1)
Av =2v,
Thus, the force imparted to the wall by the molecule is:
_ mAv _ 2mv, @2)

At At

During a time At, molecules a distance less than or equal to v, At away from the wall will strike the wall.
Thus, the number of collisions will be the number of molecules within the volume element AV=Av At.
This is shown in Figure 4.1(b).

If there are N molecules in the total volume V, then the number within the volume element AV is:

AV
N— 4.3
\% “.3)

The number of collisions is thus:

1  Av.At

N=—N 44
2 14 @9
The total force on the wall at any instant during time At is thus:
Eolal = mzvx lﬁAvat
At {2V
@.5)
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The first bracketed term in the above is the force due to each collision. The second term is the total number
of collisions.

But, so far, we have assumed that v, is the same for each molecule. The molecules in the container
actually have a range of speeds. The average value of v.> components leads to the average force (and hence
pressure) on the wall. The average value of the square of the velocities is:

_ 2 2 2
2 Viatveotvat...
x

vy = 4.6
N (4.6)
And so, the average force per unit area is:
Fo N7 @7
AV

It would be more convenient to have an expression which included the total velocity v rather than the x
component v,. The average squares of the velocity in each direction are equal:

V=vi=
— = 4.8)
yi=—?
3
And so
V=22
— 1= 4.9
vi=
3
Thus, the pressure p becomes:
Fy N
=—mv;
AV
IN —
=——my 4.10
P=3v 10
2N(1 —
=——| —mv
3VvI2
Thus:
2N(1 —
== “my 4.11
P 3V(2 J @D

The significance of the above is that a macroscopic quantity, pressure, has been expressed in terms of
microscopic quantities: the mass and velocity of the individual molecules within the gas.

So, thus far, the only “statistics” that have been involved is the average value of the square of all the
velocities as would be calculated (if this were possible) from each individual velocity for all the N mol-
ecules. We can see that pressure is a consequence of , V and the average translational kinetic energy of
a molecule, E. That is, p=f(N,V,E).
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4.2.2 Temperature

The macroscopic property temperature can also be related to the average kinetic energy of a single
molecule.
Now, the pressure p is given by:

2N(1 —
A 4.12
p=2(5m) 41

Bringing V across to the left-hand side and making use of the general gas equation pV=nRT, we have:

pV = iN(;mvz)

=nRT
_ 4.13)
nRT = zN lmv2
3 2
= gnNA 1 m?
3 2
since:
N=nN, 4.14)

Where N, is Avogadro’s Number. But R and N, are both constants. The ratio of them is a new constant,
Boltzmann’s constant k=1.38 x 1023 J K.

Sur=Lme @.15)
2 2

or:
Spr=t Vi 4.16)
2 2

where:

Vems = NS @.17)

The square root of the average of all the velocity squared is called the root mean square velocity, or the
rms velocity. The rms velocity does not equal the average velocity; it is a little less.

The quantity 3/2kT is therefore the average translational kinetic energy of a molecule. The average
translational kinetic energy of a single molecule depends only on the temperature 7.

The equation of state thus becomes:

2 3
V==N|—kT
PR3 (2 )

= NkT

4.18)

or:
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=PV
Nk 4.19)

= f(p.V.N)

The equation of state describes the state of a system in terms of macroscopic quantities N, p, V and 7. We
have seen that for the case of translational kinetic energy, 7' is essentially a measurement of E, the energy
in the system.

4.2.3 Degrees of Freedom

Molecules in a gas are capable of independent motion. Consider a diatomic gas molecule (one with two
molecules, such as H,):

e The molecule itself can travel as a whole from one place to another. This is a translational
motion.

* The molecule can spin around on its axis. This is a rotational motion.

e The atoms within the molecule can vibrate backwards and forwards. This can happen when
the molecule consists of more than one atom. This type of motion is more applicable to solids.

For a monatomic gas molecule, (e.g. He) only three translational velocity components are required to
describe the motion before and after any collisions. These components are called degrees of freedom.
For a diatomic gas molecule, three translational and two rotational velocity components are required
to describe the motion before and after any collisions. This represents five degrees of freedom.
One way to determine if a rotation actually counts as a degree of freedom is to look along the axis
of rotation. If the outline of the shape of the molecule changes during a rotation, then it is counted. If one
cannot see any difference in the orientation of the molecule, then it doesn’t count.

4.2.4 Equipartition of Energy

The average translational kinetic energy of a gas molecule depends upon the temperature. This is true for
a mixture of gases as well as just a single gas. For example, if there is a mixture of two monatomic gases
present, one a heavy molecule and one a light molecule, then the average velocity of the heavy molecules
adjusts downwards so as to keep the average kinetic energy (1/2 mv?) equal to that of the lighter ones.
Although each molecule undergoes frequent changes of kinetic energy during collisions, the average
kinetic energy is equally distributed amongst all the molecules present.

The average translational kinetic energy of a gas molecule is:

%kT = %mvfms (4.20)

There is also kinetic energy of rotation to consider for gases with two or more atoms per molecule. For a
diatomic molecule, there are two additional degrees of freedom (i.e. the two rotational ones). The average
total kinetic energy will be equally distributed amongst the available degrees of freedom.

The average translational kinetic energy of molecules is evenly distributed amongst the gas molecules
present. It is this component of the total kinetic energy that gives rise to pressure. The average transla-
tional kinetic energy depends only on the temperature 7 and not on the mass or velocity of the molecules.
For a given set of molecules, the average velocities adjust for each species so that they all have the same
average translational kinetic energy.
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The total kinetic energy of the molecules (often called the internal energy) is equally distributed
amongst the available degrees of freedom. This is why the specific heat of different gas species are all
different. When a diatomic gas is heated, the input energy has to be evenly spread amongst five degrees of
freedom. It is only the translational components that give rise to temperature. So, we have to put in more
energy for a diatomic gas to get the same rise in temperature compared to a monatomic gas.

Molecules in solids do not have translational or rotational kinetic energy components in the same
sense as gases (otherwise they would not be solid). Instead, in the simplest sense, internal energy is
distributed through vibrations of atoms about their equilibrium positions. This vibration takes the form
of simple harmonic motion, whereby energy is alternately stored (as strain potential energy) and then
released (as kinetic energy). The emission of radiation from solids in general is a complicated affair,
but for metals, it is more easily understood. Metals are characterised by a large number of conduction
electrons which are free to move about within the solid. These electrons are in many ways similar to
the molecules in a gas, and so their modes of vibration can encompass different energy levels. As a
consequence, as the temperature rises, the frequency distribution of the radiant energy from the solid
changes, with high frequencies gaining more amplitude — the solid begins to emit visible light and
might become “red hot”.

4.2.5 Internal Energy

Consider the heating of N molecules of a gas a constant volume V from 7| to 7, by an electric element
as shown in Figure 4.2. The element is switched on for a certain time and then switched off. A certain

amount of energy Q is fed into the system.
[ J
[ )
FIGURE 4.2 Heating of a constant

volume of gas. Y

During the time the element is switched on, the atoms in the heating element are vibrating according
to the flow of current and the resistance of the element. These vibrations are imparted to any molecules
which strike the heating element, and so the molecules acquire additional kinetic energy. These molecules
then go off and make collisions with other molecules, and the overall temperature of the gas increases
with time.

When the element is switched off, and the system allowed to settle, the temperature and pressure
reach new steady-state values. Thus, we have an initial state (p,, V; and 7)) and a final state (p,, V,, T,)
where here, V,=V,.

During the process (i.e. the transition from the initial state to the final state), the hot molecules near
the element gradually give up some of their energy to surrounding cooler molecules until such time as
the average kinetic energy of molecules in a representative volume anywhere in the container is the same.
This is a condition of thermal equilibrium.

At thermal equilibrium, an equation of state can be used to relate macroscopic quantities. For exam-
ple, the macroscopic quantity pressure can be expressed:

p=$=f(N,V,T) @21)
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Alternately, the macroscopic quantity temperature can be described by:

pV

T Ve f(N.p.V) 4.22)
The quantity kT has physical significance: it is the kinetic energy of one degree of freedom of a molecule.
For diatomic molecules, the internal kinetic energy is a combination of translational and rotational com-
ponents — but due to the equipartition of energy, these components all depend equally on 7. So, a measure
of E (the total kinetic energy) is really a measure of T (we just multiply 7 by Boltzmann’s constant k to
get E). The actual relationship between E and T depends on the nature of the gas (i.e. the specific heat). In
general terms, E=E(T) (energy is some function of temperature).

4.3 STATISTICAL MECHANICS

4.3.1 Statistical Weight

At any instant, a thermodynamic system may have particular values of volume, pressure, temperature,
etc., which we call its macrostate. There are usually very many different microstates (molecular velocities
and individual kinetic energies) that correspond to one particular macrostate.

Consider a macrostate with a certain total energy E. One possible microstate corresponding to this
macrostate might be if all the energy E was concentrated in one molecule and the rest had E,=0. It is
very unlikely that we would encounter this particular microstate, especially if we had a large number of
molecules.

Let’s examine the case of a volume V consisting of N=4 molecules that can each have one of two
distinct energy levels, O or E,. There is only one degree of freedom. Molecules can move up or down
from O to E, but not side to side or back to front. The model is a one-dimensional “gas”. The value of the
total energy we shall arbitrarily set (for the sake of example) at E=2E,. The possible microstates for the
four molecules m, to m, are shown in Figure 4.3. Because molecules are identical, all these microstates
represent the same macrostate £=2F,. The selection of E=2E, as the total energy is equivalent to setting
the temperature of the gas.

m, m, m; my

E E 0 0

E=2E,| E, 0 E 0

Q=6 E, 0 0 E FIGURE 4.3 Microstates for two energy levels 0 and E, for
0 E E 0 four gas molecules with total energy 2F,.
0 E 0 E

0 0 E E

The number of possible microstates for a particular macrostate is given the symbol Q(n) where 7 is
the number of molecules with energy £ > 0. From statistics:

N!

Note, when N is large, Stirling’s formula may be used:

Inx!=xIn(x)—x 4.24)
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Q is called the statistical weight of the macrostate. In this example, n=2, N=4 and so Q=6.

What if the temperature of the system were lowered so that E=1E,? Table 4.1 shows the values of Q
for different values of total energy (i.e. different macrostates) E from zero to 4E,. Note that the value of Q
is low for highly ordered macrostates (E=0 or E=4FE,) and high for macrostates where the energy is more
evenly shared by each molecule. When a system is at equilibrium, it has a particular macrostate specified
by N, Vand E. This macrostate can be represented by a number of different possible microstates. For our
two-level system with four molecules, for the macrostate E=2FE, there are six possible microstates. The
system will cycle through these six possible states (in random order) continually as collisions occur. Note,
it is advantageous to treat systems in terms of their total energy rather than their temperature since this
makes the method applicable to many other physical systems.

Let us now imagine that there exist many more available levels: E,=3E,, 4E,, 5E,, etc. For a total
energy of 2FE, three of our molecules could have an energy 0 and the remaining one exist at the 2E, level
(n=1, Q=4), or we could have two molecules at 0 and two at the 1E| level (n=2, Q=6). The total number
of possible microstates is 6 + 4=10. Note that there are more disordered states (2=6) than ordered states
(Q=4). The possibilities are shown in Figure 4.4(a).

Note, here we have a set of two groups of macrostates of different statistical weights corresponding
to the same total energy 2E,.

For a total energy of 3E,, as shown in Figure 4.4(b), three of our molecules could have an energy zero
and the remaining one exist at the 3F, level (n=1, Q=4), or we could have one molecule at O and three at

TABLE 4.1 Statistical weight vs
number of macrostates

n Q(n)
0 1
1 4
2 6
3 4
4 1
(@) (b)
E=2E, m m, m; my E=3E, m m, m; m,
2000 0 0 3,0 0 0
0 2,0 0 Q=4 0 3E,0 0
Q=4 ! ! =
0 0 2E 0 o o0 3g 0 "7
0 0 0 2 0 0 0 3E
1E, 1E,0 0 1E, 1E, 1E, 0
1E, 0 1E, 0 0—4 1E, 1E, 0 1E,
Q-4 E 0 0 1E 1E, 0 1E, 1E, n=3
0 1E, 1E 0 0 1E, 1E, 1E,
0 0 1E, 1E (" 2E, 1E, 0 0
0 1E,0 1E 28, 0 1E, 0
2E, 0 0 1E,
0 2E 1E, 0
0 0 2E IE
Q=124 0 25 0 1E

1E, 2E, 0 0
1E, 0 2E 0
1E, 0 0 2E
0 1E, 2E 0
0 1E, 2E,
1E, 0 2E,

FIGURE 4.4 (a) Microstates for three energy levels 9, E|, 2E, for total energy 2E,. (b) Total energy 3E,.
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the 1E, level (n=3, Q=4). Or we could have two at OE, and one at 1E, and one at 2E,. In Figure 4.4(b),
Q=12 corresponds to two degenerate versions of n=2, and so the total statistical weight is Q=2 X 6=12.

We have here three groups of macrostates corresponding to the same total energy 3E,. Each group
might contain an additional external macroscopic variable.

4.3.2 Boltzmann Distribution

It is evident that as both N and total energy increase, the greatest statistical weight increases. For E=2E,,
the greatest statistical weight was 6, whereas for E=3E|, the greatest statistical weight was 12. That is, the
higher the temperature, the more disorder there is in the system.

Let’s focus on the system at total energy E=3E,. There are three macrostates representing this energy
which have statistical weights of 4, 4 and 12. The total number of possible microstates is 20. The prob-
ability of each of these three macrostates occurring is 4/20, 4/20 and 12/20, respectively.

* For the first state (4/20), we have three molecules with OF, and one with 3E,.

» For the second state (4/20), we have one molecule with OE, and three with 1E,.

* For the third state (12/20), we have two molecules at energy OE,, one molecule at 1E, and one
at 2E,.

To find the most likely number of molecules at any one of the available energy levels, we add up the num-
bers in each of the three states and weight the sum by the probability of that state. For example, for the
case of E=3E,, to determine the most likely number of molecules at the OF, level, we see that we have:

3x(4/20)=0.6

1x(4/20)=0.2

(4.25)
2x(12/20)=1.2

0.6+02+12=2

The most likely number of molecules at OF, is therefore two.

Repeating for the other energy levels, we obtain the data shown in Table 4.2.

Plotting the most likely number of molecules n(E,) against the energy levels E;, we obtain a graph as
shown in Figure 4.5(a).

This number distribution is the most likely number of molecules at each energy level n(E)). It shows
how the number of molecules is distributed over the energy levels.

When the number of molecules becomes very large, we find that the distribution is in the form of an
exponential. This is shown in Figure 4.5(b).

n (E,) =Ce Hi'A (4.26)

TABLE 4.2 Number of molecules vs energy level

ENERGY LEVEL CALCULATION NO. MOLECULES
0E, 3% (4/20) + 1x(4/20) + 2x 12/20) = 2.0
1E, 0x(4/20) + 3% (4/20) + 1x(12/20) = 1.2
2E, 0x(4/20)+0x(4/20)+ 1x(12/20) = 0.6
3E, 1%(4/20)+0x(4/20)+0x(12/20) = 0.2
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(@) (b)

n(E;)

2 C—»
n(k;) °
1
L]
L]
0 0 1 2 3 0 1 2 3
E; E

FIGURE 4.5 (a) Most likely number of molecules n(E;) against the energy levels E,. (b) Exponential distribution
of n(E,) vs E..

If a large proportion of the total energy of a system is stored in a higher energy level (say E,), then we don’t
need as many molecules at that level to hold the energy, so n(E,) is very much less than n(E)).

A and C in the exponential function are constants. The constant C gives the value of n(E,) at i=0, that
is: E,=0 in our example system. The constant A sets the scale of the energies and is the average energy E
over all the levels and is the product k7. The Boltzmann distribution is thus expressed:

n(E,) = n(O)e_E"/kT 4.27)

The Boltzmann distribution gives the number of molecules at a certain energy level in terms of the num-
ber of molecules that exist at the zero energy level. The zero energy level (i=0) is usually taken to be E=0.
It is a number distribution.

The relative number of molecules in two different energy levels E, and E, can be found from the ratio:

n e BT _

é - e—EW = o AENKT @.28)
If the energy interval AE is made vanishingly small, then the distribution is a continuous distribution. For
continuous distributions, the chances of finding a molecule at a particular value of E; is zero. In much the
same way, it would be impossible to find a physics student of height exactly 1.6328 metres in a population
of students. It is more meaningful to determine the number of molecules with an energy between two
limits, E; and E;+dE.

In this sense, the gas molecules we are considering here are “classical” in the sense that we have not
imposed any quantisation of energy levels. Energies can take on any values between 0 and infinity.

4.3.3 Velocity Distribution

We wish to know how to compute the fraction, or proportion, of molecules that have a velocity in the range
v to v + dv. This will be given by the product of some function f(v) evaluated at v times the width dv. The
function and the velocity range of interest are shown in Figure 4.6.

Jv)

dA
FIGURE 4.6 The fraction of molecules
which have a velocity in the range v + dv.

"
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The total area under the distribution curve represents all molecules and so has an area=1. That is:

J f(v)av=1 4.29)

Can we now determine the form of f(v)?

Since the energies we are talking about are kinetic energies, it is not surprising to find that the
velocity distribution of gas molecules follows a similar distribution to the Boltzmann distribution (since
E=1/2mv?).

We can thus write:

f(v)=Ce ™" (4.30)

where C is a constant.
Or even better:

dA = f(v)dv=Ce™ >y @.31)

which gives the area dA under the curve, or the fraction of molecules with velocity in the range v to v + dv.
Since the sum over all velocities must equal 1, we have:

j f(v)dv= J Ce™™ Mgy =1 @.32)

Using a standard integral:

oo

J e dx=+n 4.33)

—oo

we find:

C= / m (4.34)
2nkT

and so, the one-dimensional Maxwell velocity distribution is:

12 my
| _m T2kT
fv)= (anT) e 4.35)
It should be stressed that this computation is for our sample “gas” in one dimension, i.e. one degree of
freedom.

In Fig. 4.6, it is shown that the most probable velocity of a selected molecule is therefore O for one
degree of freedom.

The complete velocity distribution for molecules of gas in a volume V has to include velocities for
other degrees of freedom (side to side and back and forwards). In this case, we need to consider the veloc-
ity intervals v, to v, +dv,, v, to v +dv, and v_to v, +dv..

2 2 2
- 2kT —mvy 12kT  —mv= [2kT
f(vx,vy,vz)dvx dv, dv, = Ale ™2 T omm R gy dy dy. 4.36)
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This can be more easily understood if we work with a three-dimensional velocity vector v. We draw
a sphere of radius v which represents the vector sum of the velocities dv,, dv,, dv,. This is drawn in
Figure 4.7. We wish to compute the fraction of molecules with a velocity in the range v+dv. The sphere is
a representation of “velocity space”. The fraction we seek is the product of f(v) times the volume enclosed
by v and v+dv.

FIGURE 4.7 Fraction of molecules with velocity
in the range v + dv within a volume dv.

The volume of the sphere is:

4
V=—m’ @.37)
3
and so, an increment of volume expressed in terms of an increment of velocity is dV/dv:
dv = 4m’dv 4.38)

The fraction (volume) of molecules having velocity v in the range v to v + dv is thus:

f(v)av = Ae™™ P amyay 4.39)

Since the sum over all velocities must equal 1, we have:

oo

J f(v)av = J.Ae"”vz/z"unvzdv =1 (4.40)
0

0

Using a standard integral, we find:

m 32
A= ( ) 4.41)
2nkT

Note that these integrals are taken from O to oco. In spherical coordinates, we do not have negative
“volumes”.
The Maxwell velocity distribution for three degrees of freedom is thus:

2

32 w?
J Ve T (4.42)

Plotting f(v) against v, we obtain the curve shown in Figure 4.8.

In the one-dimensional case, the maximum in the distribution occurred at v=0 because the one-
dimensional distribution is based directly on the Boltzmann distribution — which is a probability density
function. Here, the factor v> modifies the exponential, and so even though the probability density may be
a maximum at 0, the most probable velocity is not.
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Jv)

FIGURE 4.8 Maxwell velocity distribution.

4.3.4 Partition Function

In our model system of four gas molecules, we saw how those molecules could be arranged at different
energy levels.

Over time, if the macroscopic quantities N, V and E are not changing, the system will cycle through
every one of those possible microstates. But the probability of encountering a microstate within those of
the greatest statistical weight is far greater (especially for large values of V) than the probability of finding
a microstate not included in the macrostate of the greatest statistical weight — the latter being so small as
to be negligible.

To find the most likely number of molecules at any one of the available energy levels, we add up the
numbers in each of the microstates and weight the sum by the probability of that state. The Boltzmann
distribution is the most likely number of molecules at each energy level n(E)).

n(E,) = n(O)e_Ei/kT 4.43)

We should be clear about the difference between an energy level and an energy state. An energy level is
just that, a particular value of E. For example, E=2E,. Let’s say that there are multiple ways that molecules
can arrange themselves at a particular energy level. (For example, in an atom, electrons can occupy the
same energy level if they have different spins.) For a “two-fold” degeneracy, we say that there are two
states in which molecules can occupy a particular energy level. This is depicted in Figure 4.9.

Energy Energy states

level
\ 4
E, —O0O0—— FIGURE 4.9 Energy states within an energy level.

In our model system, an individual molecule can have a range of energies over time. The total energy
E,=FE,+E, +... may be a constant, but the energy level occupied by an individual molecule may change
considerably with time.

For our one-dimensional model, the Boltzmann distribution shows how the most likely number of
molecules at a certain energy level E; at any instant can be calculated in terms of the number of molecules
at the zero energy level.

If we normalise this to the total number of molecules, we can calculate the probability of encounter-
ing one molecule at energy level E; when selected at random. The total number of molecules N is:

N=n1+n2+n3+... (444)

We may have n, molecules at E|, n, molecules at E, and n; molecules at E, etc.

n(El) = n(O)e’E‘”{T 4.45)
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n(Ez) = n(O)e"Ez/kT
Thus, the total number of molecules can be found from the sum of the individual molecules:

oo

N=no+l’l1+n2+l’l3+...=l’l(0)zei£"/kr 4.46)

i=0

The probability we seek is thus:

n(O)e’E"/l‘T 4.47)

n (O) Z o EilkT
i=0

Where the denominator here is the total number N. Eliminating n(0), we obtain:

e—E,‘/kT
P(E)=——— (4.48)
e—E,'/kT

i=0

The normalising factor, the denominator in this expression, is called the partition function Z.

Note that the sum in the partition function is not just a count of the energy levels, but a weighted sum
according to how these energy levels are likely to be occupied according to the prevailing temperature.
The probability that a selected molecule has an energy E; is thus:

o EilkT

P(E)= ~ (4.49)

But it is possible for a given energy level to have more than one state. That is, energy levels may have
degeneracy g(E)).
Thus, to include degenerate states, we write:

N:no+nl+n2+n3+...=n(O)Zg(E,«)e_Ei/kT (4.50)
i=0
The probability of selecting a molecule with energy E; is thus:

P(E)=- " @.51)

Where the partition function is:

z=Y) g(E)e 4.52)
i=0
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So, in general, the probability that a selected molecule has an energy E; where degeneracy is accounted
for is thus:

4.53)

The partition function tells us, on average, how many energy states over which the molecules are going
to be distributed at a given temperature 7. It is a powerful function. It says something about the actual
occupation of energy states, not just the existence of them.

The exponential form of the partition function comes from the number of ways in which molecules
can arrange themselves amongst the available energy levels in different combinations.

4.3.5 Properties of the Partition Function

Consider a one-dimensional, two-level system. The energy levels are 0 and E with no degeneracy. We can
express E in terms of the product k7T for convenience. Here, E is essentially the energy gap between the
two levels. At AE=kT=150k (a modest energy gap), we can write the probability of finding a molecule at,
say, the upper energy level 150k as:

~150k/kT o 1507
P(150k): 7 = o UT | 1507 (4.54)
where:
7 = o VT 4 o150 4.55)

Let’s calculate the probability P(0) (a selected molecule being at the zero energy level) at T=200K. In this
example, there is no degeneracy.

~0/200 | ~150/200
Z=e /

+e
(4.56)

=1.4724

The value of Z tells us, on average, how many energy levels of the two available are occupied when the
temperature is 200 K.

64)/200
P(0)=
1.4724

1
1.4724

=0.679

4.57)

The value of P(0) tells us the number of molecules in the zero energy level expressed as a fraction of the
total number of molecules.

If we repeat the calculation for different values of 7 (keeping AE=150k) we find P(0) approaches
100% as T approaches 0 K and P(0) approaches 50% as T >> 150k. This is shown in Figure 4.10(a).

At low temperature, the value of Z says that all the molecules tend to be distributed over one
energy level. Z approaches 1. At low temperature, the value of P(0) says that there is a high prob-
ability of selecting a molecule at the zero energy level. At high temperature, the value of Z says that
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all the molecules tend to be distributed evenly over both energy levels (Z approaches 2). At high
temperature, the value of P(0) says that there is about a 50% chance of selecting a molecule at the
zero energy level.

There may be millions of molecules. For our simple two-level system, at high temperature, about half
of them will be at the zero level state, and the other half in the upper energy state. Z tells us how many
states are occupied; P tells us how many molecules will be in a particular state.

It is interesting to compute the partition function and probabilities for the case of a widely spaced
energy interval: AE=1000k. This is plotted in Figure 4.10(b). In that figure, Z tells us, on average, how
many states of the two available are occupied when the temperature is 1000 K. P(0) tells us the number of
molecules in the zero state expressed as a fraction of the total number of molecules.

We can see that at a widely spaced energy level, the temperature has to be raised much further (com-
pared to the lower spaced energy level case) for molecules to enter the higher energy state.

The partition function tells us, on average, how many of the available energy levels are being used to
accommodate the energy of the molecules. It doesn’t tell us how many molecules may be in those levels. It
just tells us how many of the available levels are being used. If we want to know the number of molecules
that are in a particular energy level, we can determine this by calculating the probability (that is, we find
the number of molecules at a particular level as a fraction of the total number of molecules present).

The value of Z depends on the temperature and the energy level spacing. If the temperature is high,
the partition function increases because the molecules can be spread out over more states to accommo-
date the energy to be stored by the molecules. That is, the number of combinations of the ways in which
molecules can be distributed increases.

In the above, we computed the partition function on the basis of no degeneracy — or single-state levels.
For each energy level, there may be one or more states available for filling. When degeneracy is included,
the two curves shown in Figure 4.10 for P(0) and Z move apart from each other leaving a gap at the 7=0
coordinate which depends upon the level of degeneracy.
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FIGURE 4.10 (a) Number of occupied energy levels Z, and the fractional number of molecules at the zero energy
level P(0) as a function of temperature for an energy gap of 150k. (b) Same as (a) but with an energy gap of 1000k.

The partition function tells us, on average, how many of the available states may be occupied. The
value of Z depends on the temperature and the energy level spacing. If the temperature is high, then mol-
ecules are able to occupy higher levels, and so the partition function increases. If the spacing is high, then
the energy levels may be beyond reach, and so the partition function decreases — unless the temperature
is made higher to compensate.

Since we are dealing with the partition function with respect to energy levels (and not individual
molecules) it is not beyond our capability to compute the partition function and probabilities for a modest
range of levels. Let T=200K and energy spacing AE=150k, with 15 energy levels and no degeneracy.
What then is the value of the partition function?
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14
7= Z ~150i/200
i=0 4.58)

=1.895

If we were to plot Z vs the level, we observe that the sum for the partition function converges rather rapidly
after about five terms when kT is of the same order as kE.

The partition function varies with the energy spacing and the temperature. Figure 4.11(a) shows the
value of Z against T for different values of AE; and shows how as the temperature rises, the partition func-
tion rises more steeply for lower values of AE..
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FIGURE 4.11 (a) Values for the partition function Z vs temperature for different energy spacings. (b) Probability of

a molecule being at a particular energy level for an energy spacing of 150k for different temperatures.

As the spacing increases, a lower number of states are needed to accommodate the energy of the
molecules, but as the temperature increases, more states are needed. At a small energy gap, at high tem-
peratures, Z is high, indicating that nearly all of the 15 available states are required to hold the energy of
the molecules.

The probability of a molecule being in a particular energy level is calculated from:

—E; /kT
P(E)=" 4.59)
z
with no degeneracy, g(E,) =1

As the temperature increases, there are a decreasing number of molecules in the zero energy level,
and the molecules become more spread out over the higher levels.

As the temperature approaches infinity, the molecules become evenly spread over all the 15 energy
levels, including E=0, and the probability of selecting a molecule at any energy is 1/15. These relation-
ships are drawn in Figure 4.11(b).

The partition function shows how energy is distributed throughout a system. For a given energy
spacing, as the temperature increases, molecules acquire more kinetic energy, and so a greater number of
energy states are now accessible to them. The partition function increases. For a given temperature, as
the spacing between the energy levels is reduced, more energy states become accessible for the molecules
present, and so the partition function increases.
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Generally speaking, the more states available and accessible to the molecules, the greater the parti-
tion function. As the partition function increases, the probability of being in the ground state decreases
while the probability of being in higher energy states increases.

The partition function allows us to normalise the statistical weights of microstates to obtain prob-
abilities of occupation of energy levels. It is a weighted sum of the total number of possible states for
given values of 7'and AE. The partition function Z is a constant for a particular value of 7 and energy
spacings.

We have used the partition function here as applied to discrete systems, although we originally derived
the Boltzmann and Maxwell distributions in a classical sense (as continuous distributions). Dividing up a
continuous (classical) situation into a number of infinitely small (quantum) steps is an extremely power-
ful method of analysis. It is important to appreciate that at the time this was developed by Maxwell and
Boltzmann, the idea of quantisation of energy as applied to quantum physics was in the distant future.

4.3.6 Energy Density of States

In our one-dimensional model, there are equally spaced energy levels E,=0E, 1E, 2E, 3E, 4E, etc. The
energy states are equally spaced an amount AE, and so E;=iAE. The number of states per unit of energy
is called the density of states D, and for this case, would be:

D= (4.60)

The units of D are J-..
The spacing of the energy levels is shown in Figure 4.12(a).
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FIGURE 4.12 (a) Evenly spaced energy levels, fixed density of states. (b) Non-evenly spaced energy levels showing
variable density of states.

At some energy E,, the number of states that exist below this energy would be:

E, _iAE _.

n(E;)= DE, = P I

4.61)
For example, say the energy states are spaced 10 J apart. The density of states would be 1/10=0.1 states
per J. For an energy of say £,=20 J, the number of states below this would be 20x 0.1 =2 states.

For some interval dE, we might ask how many states dn are within this interval? Note, it doesn’t mat-
ter where dF is because in this case, the states are uniformly spaced. That is, D is a constant.

dn=DdE =\ dE 4.62)
AE

Or, as we pass from E=0 to E=E,, the number of states below E, increases at a fixed rate. dn/dE=1/AE
states per unit of energy.
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For example, say we want to know how many states dn are within an interval of say dE=25 J where
D=0.1J"1dn=01x25=2.5.

In many cases, the density of states may not be a constant but a function of E. As shown in
Figure 4.12(b), the rate of change of n with respect to E is now some function D(E).

dn
—=D(E 4.63
dE (£) (4.63)
Somewhat confusingly, we term the number of states within an interval dE as the degeneracy of the inter-
val g(E).
¢(E)=D(E)dE (4.64)

Previously, we said that the partition function is given by:

Z=Y g(B)e 4.65)
i=0

However, for a continuous distribution of energy levels, summing over all energy levels, the partition
function, in the limit of small dE, becomes:

)

Z= _[ D(E)e™*M dE (4.66)

0

Note, when we deal with a discrete sum, we identify each energy level as E,, but when we deal with an
integral, we just write the continuous variable E.

4.3.7 Energy in a Harmonic Oscillator System

Let us consider the special case of a continuum of energy levels and where the density of states D(E)=D
is a constant.

The fraction, or proportion, of molecules that have an energy in the range E to E + dE will be given
by the product o