

Applied SOA

Service-Oriented Architecture
and Design Strategies

Mike Rosen
Boris Lublinsky
Kevin T. Smith

Marc J. Balcer

Wiley Publishing, Inc.

Applied SOA

Applied SOA

Service-Oriented Architecture
and Design Strategies

Mike Rosen
Boris Lublinsky
Kevin T. Smith

Marc J. Balcer

Wiley Publishing, Inc.

Applied SOA: Service-Oriented Architecture and Design Strategies

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright 2008 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-22365-9

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978)
646-8600. Requests to the Publisher for permission should be addressed to the Legal Department, Wiley
Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or
online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or
warranties with respect to the accuracy or completeness of the contents of this work and specifically
disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No
warranty may be created or extended by sales or promotional materials. The advice and strategies
contained herein may not be suitable for every situation. This work is sold with the understanding
that the publisher is not engaged in rendering legal, accounting, or other professional services. If
professional assistance is required, the services of a competent professional person should be sought.
Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an
organization or Website is referred to in this work as a citation and/or a potential source of further
information does not mean that the author or the publisher endorses the information the organization
or Website may provide or recommendations it may make. Further, readers should be aware that
Internet Websites listed in this work may have changed or disappeared between when this work was
written and when it is read.

For general information on our other products and services or to obtain technical support, please
contact our Customer Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317)
572-3993 or fax (317) 572-4002.

Library of Congress Cataloging-in-Publication Data:

Applied SOA : service-oriented architecture and design strategies / Mike
Rosen . . . [et al.].

p. cm.
Includes index.
ISBN 978-0-470-22365-9 (paper/website)

1. Web services. 2. Software architecture. 3. Computer network
architecture. 4. Information resources management. I. Rosen, Michael,
1956-

TK5105.88813.A69 2008
006.7′8 — dc22

2008015109

Trademarks: Wiley, the Wiley logo, and related trade dress are trademarks or registered trademarks
of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not
be used without written permission. All other trademarks are the property of their respective owners.
Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic books.

www.wiley.com

About the Authors

Mike Rosen is chief scientist at Wilton Consulting Group, which provides
expert consulting on software architecture, SOA, and enterprise architecture.
He is also director of enterprise architecture for the Cutter Consortium and
editorial director of the SOA Institute. He frequently speaks at industry
symposia and contributes to industry journals.

Boris Lublinsky is lead architect at Navteq, where he is responsible for
SOA and BPM implementations. He is a frequent contributor to technology
magazines and a speaker at industry conferences. Boris is also an SOA news
editor for InfoQ.

Kevin T. Smith is a technical director at ManTech MBI (formally McDonald
Bradley, Inc.), where he builds highly secure and data-driven SOA solutions
for the U.S. government. He is the author of many SOA technology articles
in industry magazines, such as the SOA/Web Services Journal, and has
coauthored several technology books, including The Semantic Web (Wiley,
2003), Professional Portal Development with Open Source Tools (Wrox, 2004), More
Java Pitfalls (Wiley, 2003), and Essential XUL Programming (Wiley, 2001), in
addition to the books where he has written chapters as a contributing author.
Kevin has led SOA workshops and has presented at numerous industry
conferences, such as the RSA Security Conference, JavaOne, the Semantic
Technology Conference, the Apache Open Source Conference, Net-Centric
Warfare, the Object Management Group, and the Association for Enterprise
Integration.

Marc J. Balcer is the founder of ModelCompilers.com, a provider of
tools and services for realizing the power of model-based development,
and the coauthor of Executable UML: A Foundation for Model-Driven Archi-
tecture (Addison-Wesley, 2002). He has over 15 years of experience in

v

vi About the Authors

developing, deploying, and managing projects based upon executable models
and model-driven development techniques.

As a party to many enterprise development projects, Marc has witnessed
firsthand how the precision of application and architecture models can make
the difference between spectacular success and miserable failure. He has
applied Executable UML to projects in such diverse areas as medical instru-
mentation, transportation logistics, telecommunications, and financial services.

Credits

Executive Editor
Robert Elliott

Development Editor
Sydney Jones

Technical Editor
Jim Amsden

Production Editor
Laurel Ibey

Copy Editor
Foxxe Editorial Services

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive
Group Publisher
Richard Swadley

Vice President and Executive
Publisher
Joseph B. Wikert

Project Coordinator, Cover
Lynsey Stanford

Proofreaders
Nancy Carrasco, Kathryn Duggan

Indexer
Jack Lewis

Cover Image
Paul Cooklin/Jupiterimages
Corporation

vii

Acknowledgments

Well, who to thank for all the help? First, thanks to all the people who supported
me throughout this process. There were many, but a few stand out for special
mention: all my friends and clients who cut me a little slack when I might
have been slightly unresponsive during the final push to finish everything;
my friends in the travel industry who inspired the case study; everyone at
Cutter Consortium for constant encouragement; SOAInstitute for providing a
forum to teach and discuss all things SOA; Robert Elliott at Wiley, who had
the uncanny timing to call me during a lull in my consulting practice and ask if
I wanted to be involved in an SOA book; and Sydney Jones, our project editor,
for putting up with our changes and delays. I hope she wasn’t just being nice
when she said we weren’t the worst group of authors ever. Thanks to Jim
Amsden, a friend and colleague, who also turned out to be the best technical
editor you could imagine; Jeroen van Tyn and Laura O’Brian for the great
Business Use Cases in Chapters 6 and 7 and Appendix A; my good friend Ken
Orr for teaching me about business architecture, processes, and semantics over
the years; my coauthors, for contributing to a collaborative project where we
all learned from each other and everyone’s chapters, and the book, benefited;
and most importantly, to my awesome wife, Tamar Krichevsky, who not only
put up with it all, but who also read every single chapter of the book and
compiled and wrote the fantastic Evaluating SOA Services appendix. Thanks.

— Mike Rosen

I would like to thank Mike for calling me out of the blue and asking whether I
would like to participate in this exciting project. I really enjoyed collaborating
with Mike, Kevin, and Marc. It allowed me to learn more about SOA and
significantly improved the quality of my chapters. Many thanks to the people
whom I used to work with over the years, especially Didier Le Tien, Dmitry

ix

x Acknowledgments

Tyomkin, and Deborah Shaddon, for always challenging me with tough archi-
tecture questions and pointing at deficiencies in my solutions; Jay Davidson
and Edward Kuffert for explaining to me the importance of business architec-
ture and the way the insurance industry works; and Jerry Daus, Matt O’Neal,
and Maria Mernandez for helping me to understand how IBM software works
and the best ways to use it. I am also thankful for all of the failed and successful
projects that I worked on, which taught me what is important and what is not,
and why things fail or succeed. Most importantly, to my wonderful wife, Lilia,
for patiently putting up with me spending more time with my computer than
with her. Thanks.

— Boris Lublinsky

I would like to thank my three talented coauthors, Mike, Boris, and Marc — it
has been a pleasure working with you on this exciting and challenging project.
Mike, you did a great job of guiding us in this process, and I would especially
like to thank Boris for his additions to the chapters on Composing Services
(Chapter 8) and SOA Governance (Chapter 12). I would like to thank Vaughn
Bullard for his suggestions on Chapter 12 and Layer7’s Toufic Boubez for his
support of my discussion on dynamic policy adaptation (‘‘Policy Application
Points’’) in Chapters 11 and 12. Special thanks to Ken and Myrtle Ruth
Stockman for allowing me to use their nicknames in one of my examples, and
thanks to my ‘‘readability editors,’’ Helen G. Smith and Lois G. Schermerhorn.

I would like to thank my company, ManTech MBI (formerly McDonald
Bradley, Inc.) in Herndon, VA, with special and sincere thanks to those who
encouraged my writing of this book on my own time — specifically, thanks to
Danny Proko, Bill Pulsipher, Waymond Edwards, John Sutton, Gail Rissler,
Mark Day, and Ken Bartee. I would like to give my thanks (and apologies)
to my wonderful wife, Gwen, and my sweet daughters, Isabella and Emma!
Thank you for putting up with me as I went into isolation for countless nights
and weekends while writing this book. I would like to thank Ashland Coffee
and Tea, who once again didn’t kick me out when I camped out there for days
at a time for writing, research, and of course, caffeine.

Thanks to the Washington Redskins, who thoughtfully did not have a
good enough football season that it would distract me from writing on
Sundays. Thanks to other people, places, and things that most likely affected
my writing in a positive way (in no particular order): Gavin Sutcliffe; Eric
Monk; Nick Duan; Sue Lee; Joanie Barr; John Medlock; Kyle Hendrickson;
Tom Diepenbrock; Scooby-Doo; Jeff Phelps; Ruben Wise; Kim Gumabay; Mike
Hoops, the AMC Pacer, Ralph Perko, Kathleen Ferris, Brad Giaccio, Kevin
Moran; Mike Daconta; Leo Obrst; Fox; my community group (Russ and Debi
Garber, Ed and Lori Buchanan, Steve and Ani Tetrault, Ed Hoppe); Kyle
Rice; Thai Gourmet in Kings Charter; the Apostle Paul; Sean, Jen, Garrett, and
Parker Cullinan; Daniel Buckley; Ken Pratt; Adam Dean; Mike Rohan; Carl and

Acknowledgments xi

Sharon Smith, Emma when she sleeps past 4:00 a.m., Bill, Farron, Casey, and
Will Smith, New Hanover Church, Grace Community Presbyterian Church,
Mungo, and T3. Finally, all glory, laud, and honor to the one who was, who is,
and who is to come.

— Kevin T. Smith

Many ideas emerge from the everyday work of developing real solutions.
In addition to my coauthors, I would like to acknowledge the contributions,
criticism, and insights from current and former colleagues, including Steve
Dowse of International Asset Systems, and Brian Itow, Gary Marcos, Julio
Roque, and Matt Samsonoff of AZORA Technologies. Most importantly, I
would like to thank my partner, Canares (‘‘Chicho’’) Aban, for his dedication
and support during this project.

— Marc J. Balcer

Contents at a Glance

Part One Understanding SOA

Chapter 1 Realizing the Promise of SOA 3

Chapter 2 SOA — Architecture Fundamentals 27

Chapter 3 Getting Started with SOA 77

Part Two Designing SOA

Chapter 4 Starting with the Business 119

Chapter 5 Service Context and Common Semantics 159

Chapter 6 Designing Service Interfaces 203

Chapter 7 Designing Service Implementations 253

Chapter 8 Composing Services 273

Chapter 9 Using Services to Build Enterprise Solutions 311

Chapter 10 Designing and Using Integration in SOA Solutions 353

Chapter 11 SOA Security 391

Chapter 12 SOA Governance 449

Part Three Case Studies

Chapter 13 Case Study — Travel Insurance 495

Chapter 14 Case Study — Service-Based Integration in Insurance 541

xiii

xiv Contents at a Glance

Appendix A Business Use Cases 579

Appendix B Evaluating SOA Services 589

Appendix C Additional Reading 621

Index 631

Contents

Acknowledgments ix

Introduction xxvii

Part One Understanding SOA

Chapter 1 Realizing the Promise of SOA 3
Once Upon a Time . . . 4
Learning from History 7

What Went Wrong? 8
What Went Right? 9
What Can You Learn? 10

The Promise of SOA 10
The Challenges of SOA 11

Reuse 11
Efficiency in Development 14
Integration of Applications and Data 15
Agility, Flexibility, and Alignment 16
Meeting the Challenge 18

Reference Architecture 19
Common Semantics 19
Governance 20
Business Process Modeling 22
Design-Time Service Discovery 22
Model-Based Development 23

Best Practices in SOA Analysis and Design 24
Summary 25

Chapter 2 SOA — Architecture Fundamentals 27
What Is Architecture? 28

xv

xvi Contents

Architectural Styles 29
Architectural Principles and Practices 30

What Is Service-Oriented Architecture? 33
1. Defining a Service 37
2. Defining How Services Are Built and Used 38
3. Integrating Packaged and Legacy Systems into the Service

Environment 39
4. Combining Services into Enterprise Processes 39
5. Specifying the Technology Infrastructure 39

Specifying the Technology Infrastructure 39
Specifying the Application Infrastructure Required to

Support Services 40
6. Defining Common Semantics and Data 40
7. Aligning Services with the Business 40
8. Determining How to Use the Architecture 41

Determining the Development Environment, Frameworks,
Infrastructure, and Tools 41

Defining Metrics for Measuring Success 41
Business-Driven SOA 41
SOA and Other Architectures 44

Enterprise Architecture 44
Software Architecture 46
EA, 4+1, and Services 49

What Is a Service? 50
A Word about Information Architecture 52
Service Characteristics 53

Service Granularity 56
Service Dimensions 60

Loose Coupling Is King 64
Location Transparency 65
Interface and Implementation 66
Data 66
Versioning 67
Interoperability and Platform Independence 67
Usage, Assumptions, and Knowledge 68

Common Service Patterns 68
Service Types and Purpose 70

SOA Reference Architecture 73
Summary 75

Chapter 3 Getting Started with SOA 77
Overview of SOA Implementation Methodology 78
SOA Reference Architecture 82

Minimum Architecture 83
9-Month Checkpoint 84
18-Month Checkpoint 84
Long Term 85

Contents xvii

Business Architecture 85
Business Processes 86
Information Design 88
Service Identification 90
Service Specification 94

Service Expectations 96
Interaction Model 97
Service Constraints 97
Service Location 98

Services Realization 98
Buying Services 99
Outsourcing Services 99
Building Services 102
Summary of Service Identification and Realization Concerns 102

Service Life Cycle 104
The Service Design Process 106

Top-Down Approaches 106
Enterprise System Analysis 107
Business Process Model 107

Bottom-Up Approaches 108
Utility Services 108
Service Enabling 108

Middle-Out: The Best of Both 109
Process Summary 109

Activities 110
Artifacts 111
Repositories 111
Governance 111

Process Phases 111
Architectural Context 111
Business 112
Design 112
Implementation 112
Test 112

Practical steps 113
Summary 115

Part Two Designing SOA

Chapter 4 Starting with the Business 119
Business Architecture 121

Enterprise Business Architecture 124
Project Business Architecture 124
Value Chain 125
Business Context 126

Understanding the Business Motivation Model 132
Ends 134

xviii Contents

Vision 134
Desired Results 134

Means 134
Mission 134
Course of Action 135
Directives 135

Influencers 136
Alignment and Traceability 136

Business Process Management and Modeling 137
Basic Business Process Model Components 139
Executable Models 140
Business Process Models in an SOA World 142

How to Create Business Process Models 143
Use Cases 143

Use Cases and Business Process Models 144
One Use Case, Multiple Scenarios 144
Step Reuse 146

Documents 146
Conditional Business Process Models 148

Conditional Flows 148
Conditional Operation Outputs 148

Recap: Processes and Services 149
Organizing Services 151

Domains 152
Types of Domains 154

The Service Inventory 155
Summary 156

Chapter 5 Service Context and Common Semantics 159
The Importance of Semantics in SOA 160
Core Information Modeling 163

Objects and Attributes 163
Classes, Attributes, and Instances 164
Attributes and Instances 165
Associations 166
Association Multiplicities 166
Finding Classes 167

Defining Types 167
Simple Types 168

Numeric Types 168
Symbolic Types 169
Enumeration Types 169

Composite Types 170
Implementing Types 170

Beyond the Basics 170
Identifiers and Uniqueness Constraints 170

Identifier and Identity 171

Contents xix

Contrived Identifiers 171
Multiple Population Identifiers 171
Subpopulation Identifiers 172

Specializations 172
Derived Attributes 174
Value Constraints 176

Structuring Information Models 176
Documents 177

Defining Documents 178
Adapting the Information Model 179
Multiple Documents 180

Documents and XML 181
XML Schema 184
Types in Schemas 185
Document Variations in Schemas 187
Designing for Change 188

XML Patterns 190
Derivation Using Abstract Classes 192
Derivation by Extension 193
Derivation by Restriction 194
Disallowing Derivations 195

Russian Doll 195
Salami Slice 196
Venetian Blind 197

Best Practices for the SOA Architect 198
Using Abstraction to Avoid ‘‘SOA Stovepipes’’ 199
Reuse Standards to Avoid Reinventing the Wheel 200
Develop Information Models Based on Use Cases 201
With Change, Crawl, Walk, Then Run 201

Summary 202

Chapter 6 Designing Service Interfaces 203
Services Revisited 204

Service Characteristics 204
Granularity 205
Scope 205
Visibility 206

Interaction Styles 207
Parameter Passing 208
Document Passing 208
Data Passing 209
Request/Reply 210
Events 211
Mixed Style 212

Design Guidelines 213
Isolating Responsibilities 213
Understanding Overall Context 215

xx Contents

Identifying Granularity 217
Stateless Interfaces 218
Exceptions 220
Designing Documents 221

Interface Design Illustrated 222
Overview of Models and Diagrams 223
ACME Insurance Example 224
Conceptual Architecture 225
Problem Space Model 227

Use Case Diagrams 227
Actors 228
Initial Scenario Diagrams 229
Purchase Insurance Scenario 230
Enterprise Service Context and Inventory 232
Detailed Scenario Diagrams 234
Information Model 239
Service Specification 239

Solution Model 241
Service Model 241

Service Definition Diagrams 243
Operations Procedures 246
More Information Model 246
Document Model 248

Summary 249

Chapter 7 Designing Service Implementations 253
Basic Service Architecture 254

Layer Responsibilities 256
Using Activity Diagrams for Modeling Operational Logic 257
Implementation Components 259

Implementing the Interface Layer 260
Document Receipt 261

Syntactic Validation 261
Transformations 262

Implementing the Business Layer 263
Semantic Input Validation 263
Performing the Business Logic of the Operation 264
Computing and Returning Results 267

Implementing the Resource Layer 267
Implementation Design Illustrated 268

Business Layer 268
Create Quote Operation (Quoting Service — Request

Quote Scenario) 269
Price for Quote Operation (Automobile LOB Pricing) 269

Summary 272

Contents xxi

Chapter 8 Composing Services 273
Understanding Service Composition 274

Separation into Service Layers 275
Orchestration and Choreography 276
The Relationship between BPM and Composition 278

Architectural Models in Service Composition 279
Hierarchical and Conversational Composition 279
Conductor-Based and Peer-to-Peer Composition 280

Service Composition Implementation 281
Programmatic Composition 281
Service Component Architecture Composition 282
Event-Based Composition 285
Orchestration Engine–Based Composition 286
Centralized and Decentralized Orchestration Approaches 290

Service Composition and Business Rules 292
Service Composition and Transactions 295
Incorporating Human Activities into Service Composition 297
Orchestration with BPEL 299
Composition Example — Case Study 301

The Problem 301
High-Level Design Decisions 302
Process Modeling 303

Dos and Don’ts in Service Composition 307
Avoid Static, Programmatic Orchestration 307
Use a Layered Service Approach 308
When Using BPEL, Use Abstract Processes 308

Summary 309

Chapter 9 Using Services to Build Enterprise Solutions 311
Enterprise Solutions versus Applications 312
Service-Based Enterprise Solutions 313
Layered SOA Architecture and Multitiered Application

Architecture 317
Locating Services 321

Example: Implementing Service Access for Policy Issuance 325
Versioning: Dealing with Service Changes 325

Version Deployment and Access Approaches 327
Example: Coping with Changes in Policy Issuance Solutions 329

Architecting Security for Service-Based Solutions 330
Using a Security Gateway 330
Using an Interceptor in Security Implementations 331
Example: Architecting Security for Policy Issuance Solutions 333

Exception Handling and Logging in Enterprise Solutions 333
Monitoring and Managing Enterprise Solutions 337

xxii Contents

Business Activity Monitoring 338
Technical Monitoring and Management of SOA Solutions 340

Enterprise Service Bus-Unified Infrastructure for Enterprise
Solutions 343

Defining ESB 344
ESB Architecture 346

Stand-alone ESB 348
ESB as a Service Container 348
ESB as a Framework 349

Choosing an ESB 350
Summary 351

Chapter 10 Designing and Using Integration in SOA Solutions 353
Challenges of Integration in SOA 354

Characteristics of Islands of Data 354
Characteristics of Islands of Automation 355
Characteristics of Islands of Security 355

Integration in SOA Defined 358
Integration Services 360
Integration Access Implementations 364

Using Messaging Infrastructure to Implement Integration
Access 365

Using a Message Broker to Implement Integration 367
Using Existing Web Services to Implement Integration 369
Using JCA/J2C Adapters to Implement Integration 372
Using Web Service Wrappers to Implement Integration 374
Using Direct Database Access to Implement Integration 375
Using an Enterprise Service Bus to Implement Integration 376

Special Considerations for Implementing of Integration 377
Data Mapping in Integration 378
Security Support for Integration 380
Transactional Support in Integration 381
Versioning Integration 383
Dealing with Large Messages 384

Data Virtualization and Enterprise Data Bus 386
Summary 389

Chapter 11 SOA Security 391
SOA Security Goals and Fundamentals 392

Authentication 392
Authorization and Access Control 395
Two Types of Access Control — DAC and MAC 396
Federated Identity and Cross-Enterprise Access 397
Confidentiality 400
Integrity 401
Non-Repudiation 404

Contents xxiii

Web Service Security Standards and Specifications 405
WS-Security SOAP Messaging 405
WS-Trust 406
WS-Federation 409
WS-SecureConversation 410
WS-SecurityPolicy and the WS-Policy Framework 410
SAML 411
XACML 413
XML Signature 415
XML Encryption 415

SOA Security Blueprints 416
Separation of Security into Components and Services 416
Authentication and Identity Blueprints 419

Identity Propagation for SSO Solutions 420
Point-to-Point Authentication 425

Access Control Blueprints 427
Controlling Access to Data, Not Just Services 427
Access Control Policy Enforcement Approaches 428

Auditing and Troubleshooting 435
Flexibility with Dynamic WS-SecurityPolicy Adaptation 436
Complete Architecture Analysis 437

Applying Concepts from This Chapter — A Simple Case
Study 437

Establishing Enterprise Security Services 440
Defining Identity Propagation and Access Control 441

The Security Game Plan for the SOA Architect 443
Plan from the Beginning, Focusing on Requirements 443
Crawl and Walk before Running 444
Use Accepted Standards (in a Standard Way) 444
Understand the Details of the Standards 445
Understand the Impact of Security on Performance 446
Try to Keep It Simple 446

Summary 447

Chapter 12 SOA Governance 449
SOA Management and Governance Defined 450
The Case for SOA Governance 453

The Reality of Change in Real-World Deployments 453
The Need for an Enterprise Big Picture 455
The Need for Explicit Run-Time Service Policies 456
The Need to Separate Policy Logic from Business Logic 457

SOA Governance and the Service Life Cycle 459
Design-Time Governance 462

The Service Identification Process 464
The Service Design and Specification Process 465
The Service Implementation Process 467

xxiv Contents

Deploy-Time Governance 469
Run-Time Governance 471

Practical SOA Governance 475
Structuring Your Organization for Governance 475
Developing Enterprise Policy 477
Using the Service Repository 481

Cataloging and Discovery 483
Validation 483
Dependency Management 484
Service Evolution and Versioning 484
Artifacts Publishing Governance 484
Support for Multiple Artifact Types 484

Developing and Registering Run-Time Policies 486
Run-Time Policy Enforcement and Adaptation 488

Summary 490

Part Three Case Studies

Chapter 13 Case Study — Travel Insurance 495
Travel Insurance 496

The Scenario 496
Conceptual Architecture 497
Business Concerns 498

Business Value Chain 499
Business Motivation 500

Brief Review 502
Business Analysis 506
Business Process Model 509
Service Conceptual Architecture 510
Use Cases 512
Enterprise Context 517

Solutions Architecture 518
Authentication 519
Authorization 521
Confidentiality 522
Integrity and Non-Repudiation 522
The Big Security Picture 523
Service Inventory 524
Entity Diagram 525

Information Model 527
Document Model 529

Service Interface Design 530
Service Interactions 532

Document Design 533
Service Implementation Design 534

Contents xxv

Service Specification 534
Implementation Layers 535
Operation Procedure 536

Summary 538

Chapter 14 Case Study — Service-Based Integration in Insurance 541
ACME Insurance 542
High-Level Integration Design 547

Establishing Policy Submission 548
Rate Insurance Policy 551
Assess Insured Location 552
Get Driver’s Information 553
Generate Policy Notice Documents 554
Collect Policy Financials 555
Work with Documents 556
Integration Requirements for the ACME Implementation 556

Integration with Existing CICS Transactions 557
Integration Approaches 558
ACME’s Implementation of a CICS-Based Integration 562

Integration with the Existing COM Components 565
ACME’s Implementation of Integration with COM

Components 567
Integration Based on the Existing Java APIs 568

ACME’s Implementation of Integration Based on Java APIs 569
Integration with the Existing J2EE Applications 570

ACME’s Implementation of Integration for J2EE-Based
Applications 572

Integration with Existing Databases 573
ACME’s Implementation of Database Integrations 575

Integration Based on the Vendor’s Web Services 576
ACME’s Implementation of Integration Using the Vendor’s

Web Services 577
Summary 578

Appendix A Business Use Cases 579
Business Use Case BU01 — Quote Insurance 579

Basic Workflow 580
Alternative Workflow: Unacceptable Risk 582
Performance Goals 582

Business Use Case BU02 — Process Application 582
Basic Workflow 583
Alternative Workflow: Unacceptable Risk 585
Performance Goals 585

xxvi Contents

Business Use Case BU03 — Change Policy 585
Basic Workflow 585
Alternative Workflow: Unacceptable Risk 587
Extension Points 588

Appendix B Evaluating SOA Services 589
How Do I Assess Services? 590

Alignment Characteristics 597
Business Alignment 598
Specification 599
Fit for Purpose 601
Security 602
Semantic Alignment 603

Design Characteristics 605
Isolation of Responsibilities 605
Abstraction 606
Coupling 607
Granularity 609
Stateless 610
Composable 611
Governance 612

Technical Characteristics 613
Specification 613
Service Level Agreement 615
Extensibility 616
Variability and Configurability 617
Autonomy 618

Housekeeping Characteristics 619

Appendix C Additional Reading 621

Index 631

Introduction

Welcome to Applied SOA: Service-Oriented Architecture and Design Strategies.
This book is designed to fill a gap that we see in available SOA information.
The current collection of SOA books and articles is rich on high-level theory
but light on practical advice. At the other end of the spectrum are the Web
Services books that concentrate on APIs and programming, but gloss over the
architecture. This book focuses on an area that most other books ignore, offering
the reader a practical guide for applying design strategies to service-oriented
solutions. It targets the practical application of SOA and appeals to architects,
analysts, designers, and CTO/CIOs, as they roll out concrete strategies and
designs for their organizations and projects.

The book starts by discussing the expected benefits of SOA and the archi-
tectural principles needed to realize them, which lead to successful solutions.
Then, it provides an overview of the process for designing services and
service-oriented solutions. Each major step of the process is followed by a
chapter that describes the detailed practices and principles for that step, with
handy tips and techniques for applying them. Of course, no SOA solution
would be complete without integrating legacy systems and applications, pro-
viding security, or having appropriate governance, so these topics are also
covered in depth. Throughout the book, the principles are demonstrated with
relevant examples. Finally, the book concludes with two different extensive
case studies that illustrate the architecture and design strategies.

Why This Book Was Written

Service-Oriented Architecture (SOA) is the current state of the art in IT
application architecture. As a result, platforms and tools that support SOA are

xxvii

xxviii Introduction

hitting the market every week. Every major software vendor, including IBM,
Microsoft, Oracle, and SAP has embraced SOA and is investing billions of
dollars to service-enable their product sets. SOA is here to stay, and it is likely
to be the predominant architectural style for the next decade.

Most SOA implementations are based on Web Service technologies, which
have matured to the point where there are many mission-critical implemen-
tations in production. In addition, the training industry has ramped up to
provide considerable variety and opportunity for education in SOA and Web
Services. Yet, real service-oriented applications have not followed suit and
the promised benefits of SOA have not been realized for most organizations.
Generally, the available literature and education fall short of providing what
companies really need to be successful.

As we work with companies that are starting with SOA, or struggling with
their current approach, we see several common areas of confusion:

First, what is SOA? In particular, what are the architectural aspects of
SOA compared to just Web Services or other distributed technologies?
And beyond that, how should the architecture influence design?

Second, what is the relationship between business and SOA? What is
hype and what is real? How does functional decomposition at the busi-
ness process level translate into requirements and design for business
services?

Third, how do you design a good service? This seems to be the most
misunderstood aspect of SOA. A meeting rarely goes by where someone
doesn’t ask, ‘‘How big should a service be?’’

Fourth, how do you effectively integrate existing applications and re-
sources into a service-oriented solution? How can this be done while
avoiding the pitfalls of traditional EAI approaches? What does a good
integration service look like?

And finally, how do services fit into overall enterprise solutions? What
is the layered and tiered structure of an SOA application architecture?
Where do security, transactions, naming, and the other aspects of dis-
tributed enterprise solutions fit in?

Anybody can build a service; that’s not the challenge facing IT professionals
today. In fact, the tools make it incredibly easy (often too easy) to build services,
especially poorly designed ones. The first challenge is to build a good service,
based on solid design principles. But still this is not enough. The services
must also fit into an overall architecture that results in services that can be
combined into larger business processes within the enterprise. In other words,
the architecture and the design process must provide an enterprise context
that influences the design and implementation of services.

Introduction xxix

The next decade will be filled with winners and also-rans. Those companies
on top will have learned how to use IT as a strategic differentiator that
provides them with a sustainable competitive advantage. This will be built on
a foundation of SOA that exposes the fundamental business capabilities and
information as flexible, reusable services. These services will support a layer
of business processes that can be easily changed to provide new products and
services to keep ahead of the competition. But this is easier to show in a Visio
diagram than to actually achieve. The good news is that this book starts to
show you how. The bad news is that it’s still hard.

The goal of Applied SOA: Service-Oriented Architecture and Design Strategies
is to provide the architecture and design principles and methodology that
address these challenges and empower the reader to develop successful
implementations that deliver the expected benefits of SOA.

Who This Book Is For

This is primarily a technical book, focused on architects, designers, business
analysts, IT managers, and executives. It is not a book about writing code; in
fact, there is no code in the book. It is about architecture and design, what the
important principles of SOA are, and how they should be applied. It delves into
each of the important aspects of architecture, including business, information,
application, and technology, as they relate to service-oriented solutions:

Architects will learn the relationships between architectural concerns,
enterprise context, and the SOA design process. This is particularly
important in making architecture actionable. As architects, you should
always remember that creating architecture itself provides little value.
The value comes from using the architecture to help projects meet imme-
diate needs, but in a way that also meets the needs and longer-term goals
of the overall enterprise. This is critical to realizing the promise of SOA.

Designers will learn a step-by-step process for the analysis and design
of services, and what the different types and styles of services are. They
will come to understand what information is required from the business
for complete service design, how that relates to process and information
models, and how it shows up in the different design artifacts. But most
importantly, they will learn how to start thinking in terms of SOA; in
other words, how to shift their design paradigm.

Business analysts will learn the relationship between business strate-
gies, goals, and objectives, and the capabilities and information that are
used to achieve them. The direct link between capabilities, business ser-
vices, and business processes will be illustrated. Analysts will learn how

xxx Introduction

to use business process models as the link between business architecture
and IT design, specifically SOA.

Managers and executives will get an understanding of the SOA archi-
tecture and design process that will enable them to understand, govern,
plan, and manage SOA projects that deliver value to both their immedi-
ate project and to the enterprise.

What This Book Covers

This book provides architects, designers, and analysts with the principles and
techniques necessary to create superior-quality service-oriented architectures
and solutions. It enables them to go beyond building services to actually
deliver on SOA’s promises of agility and flexibility by providing practical and
actionable advice that leads directly to better architecture and design.

Thus, the book is about the architecture and design of service-oriented
solutions and systems. It is not a high-level overview of the benefits of
SOA, nor is it a user’s manual for the technologies and standards of SOA
implementation (i.e., Web Services). Instead, it focuses on the difficult area
in between, to provide a methodology for designing not only simple services
but also service-oriented solutions that incorporate legacy integration and
security.

The book is technical in that it provides detailed, step-by-step procedures
and examples of architecture and design. However, it generally does not delve
into APIs and code, except to illustrate the design implications of certain
technologies and standards. In addition, this book contains two detailed case
studies that illustrate the concepts and techniques presented throughout.

How This Book Is Structured

This book is structured in three sections: an overview of the architecture,
service and solution design, and case studies:

Part I: Understanding SOA — This section provides the motivation for
SOA and the architectural requirements needed to meet them, then describes
SOA architecture structure and principles, and finally describes the process
for getting started with SOA in the enterprise.

Chapter 1: ‘‘Realizing the Promise of SOA’’ describes the primary moti-
vations for SOA in the industry, such as improved flexibility, reduced
costs, and competitive advantage. Given these motivations and expec-
tations, what is really required from IT to deliver on that promise? This

Introduction xxxi

question is explored in depth and the answer presented as the require-
ments that SOA architecture must meet to achieve the promise.

Chapter 2: ‘‘SOA — Architecture Fundamentals’’ describes the SOA ref-
erence architecture and how that meets the challenges and requirements
laid out in Chapter 1. It describes the overall enterprise context, the
architectural layers and tiers, the domain-specific concepts and abstrac-
tions, and specifically what a service is and the important architectural
characteristics of a service.

Chapter 3: ‘‘Getting Started with SOA’’ describes the overall process for
initiation of SOA activities, aligning SOA with the business, identifying
and specifying services, designing service interfaces and implementa-
tions, and creating solutions

Part II: Designing SOA — This section explores the details of each step in
the design process. It is roughly divided into two main areas: Chapters 4–7
cover the design of services and Chapters 8–12 focus on building enterprise
SOA solutions.

Chapter 4: ‘‘Starting with the Business’’ describes a business architec-
ture approach for SOA and how to use business architecture and busi-
ness process modeling to define services.

Chapter 5: ‘‘Service Context and Common Semantics’’ focuses on the
overall enterprise context for SOA, specifically the common semantic
model and the service inventory. It describes how to discover the com-
mon semantic model, tips and techniques for developing it, how to cre-
ate and use a service inventory, and how it fits with the semantic model.

Chapter 6: ‘‘Designing Service Interfaces’’ digs into the details of ser-
vice interface design. It shows how to use the business and enterprise
contexts established in Chapters 4 and 5 in the service interface design
and discusses issues of interaction and usage style in terms of design.
Then, it presents an in-depth example of the design of an interface for an
automobile insurance solution.

Chapter 7: ‘‘Designing Service Implementations’’ continues with details
on the design of the service implementation. It describes the techniques
for defining the technology independent design of service operations
and the specification of schema for the documents that are the inputs and
outputs for those operations. It extends the example from Chapter 6 to
illustrate the design of the service operations.

Chapter 8: ‘‘Composing Services’’ goes into detail about the important
techniques of service composition. It describes the tradeoffs and advan-
tages of a variety of different approaches, addresses the role of Business

xxxii Introduction

Process Execution Languages (BPEL) and Service Component Archi-
tecture (SCA) in composition, provides some useful do’s and don’ts,
and finishes with an example of a service composition using BPEL.

Chapter 9: ‘‘Using Services to Build Enterprise Solutions’’ describes
the role services play in an overall enterprise solution. It describes how
services fit into the classical n-tier architecture, discusses issues of service
location and discovery, exception handling, management and monitor-
ing, service evolution, and the use of Enterprise Service Buses (ESBs) to
implement SOA solutions.

Chapter 10: ‘‘Designing and Using Integration in SOA Solutions’’
focuses on the difficult problem of creating services that integrate exist-
ing applications and data. It starts with the architectural issues of service-
based integration and then goes into details about the design and imple-
mentation of integration services, providing a toolbag of techniques and
tradeoffs for different integration scenarios.

Chapter 11: ‘‘SOA Security’’ addresses the thorny questions of security.
Again, it starts with an architectural overview of the different types of
security and the type of threats and challenges they address. Then, it
provides an overview of the most common security standards in SOA.
Next, it presents a set of ‘‘security blueprints’’ or guidelines for deter-
mining the right security solution, and the patterns for applying them.
The chapter finishes with suggestions and a game plan for the security
architect.

Chapter 12: ‘‘SOA Governance’’ takes up the issues of keeping your
SOA solutions and architecture running and on track. It describes the
life cycle of services, and the issues of management and governance
throughout the different phases of the life cycle. This includes tips and
techniques for practical SOA governance.

Part III: Case Studies — This section illustrates architecture and design
principles and strategies by exploring two different case studies in depth. The
first focuses on designing business services to support business processes.
The second focuses on integrating existing applications into a service-oriented
solution.

Chapter 13: ‘‘Case Study — Travel Insurance’’ provides a case study of
an SOA implementation from the travel industry. The case study starts
with the business architecture and works through to the design of the
service interface and implementation, highlighting the architectural con-
cerns and design strategies presented in Part II.

Chapter 14: ‘‘Case Study — Service-Based Integration in Insurance’’
provides a case study of the implementation of integration services in

Introduction xxxiii

the insurance industry. The example illustrates the design and imple-
mentation of multiple different integration services based on existing
customer information control (CICS), commercial off-the-shelf (COTS),
Java, database, and other systems and shows how they can be used in an
enterprise solution.

Appendix A: ‘‘Business Use Cases’’ provides the detailed use cases for
the example used in Chapters 6 and 7.

Appendix B: ‘‘Evaluating SOA Services’’ provides a handy list for eval-
uating services against the important architectural and design criteria
presented in this book.

Appendix C: ‘‘Additional Reading’’ provides a list of resources on
SOA and all of the references used while researching the book.

What You Need to Use This Book

Beyond a basic desire to learn about architecture and design, there are no other
requirements for the book. Many of the design and implementation examples
use UML models, so a basic ability to read these models will help, but it is not
necessary. We have tried to steer clear of complex models.

Final Thoughts

This book is meant to lay out the important aspects and strategies of architec-
ture and design for SOA solutions. Our challenge was not deciding what to
put into the book but deciding what to cut out. As it is, we went way over our
original estimate for length. It is not possible to cover every possible aspect of
design and architecture for SOA solutions in a single text. We have provided
a lengthy list of references and other readings in Appendix C to supplement
the material here.

But we do think that we’ve covered material that is not well served by most
other SOA books, and that is critical to SOA success. We sincerely hope that
you find it useful and are able to incorporate it into your SOA solutions.

P a r t

I
Understanding SOA

In This Part

Chapter 1: Realizing the Promise of SOA
Chapter 2: SOA — Architecture Fundamentals
Chapter 3: Getting Started with SOA

C H A P T E R

1

Realizing the Promise of SOA
Those who do not remember the past are condemned to repeat it.

— George Santayana

Everyone has heard the many promises and benefits of Service-Oriented Archi-
tecture (SOA), and you’ve all probably heard a dozen different definitions of
what SOA is or isn’t. We’re going to take a different approach. We want
to paint a picture of what SOA can deliver and the promise of SOA, and
then describe the challenges that organizations face in realizing that promise.
Together, the vision and the challenges provide a set of requirements that
the architecture must meet to make your implementation of SOA successful
at delivering the promised benefits. Throughout the book, we’ll describe the
detailed architecture, design principles, and techniques that meet those archi-
tectural requirements, make the architecture actionable, and deliver results. In
this chapter, you look at:

What did and didn’t work in the past

The promise of SOA to the enterprise

The challenges of delivering on that promise

How to meet the challenge (the subject of this book)

But first, let’s start with a little story. The scenario is true although the names
have been changed.

3

4 Part I ■ Understanding SOA

Once Upon a Time . . .

Back in 1994, a major U.S. bank was trying to resolve a problem with customer
service. Like pretty much every bank at that time, all of the different products
(i.e., different types of accounts) were implemented on different mainframe
systems. When you telephoned the customer service representative, you spoke
to a beleaguered person with numerous green screen terminals on his or her
desktop.

If you wanted information about your checking account, the customer ser-
vice representative went to one terminal and entered your account number. If
you wanted information about your savings account, the representative had to
get a different account number from you and enter that in a different terminal.
Each account system had a different interface. Together, they provided a con-
fusing mix of commands and interaction that necessitated expensive training
and was error prone. Customer satisfaction with problem resolution was low,
employee satisfaction was low, and retention of both was problematic.

So what’s a bank to do? First, they set about rationalizing the interface to
all of the systems into a consistent interface, on a single terminal. Solutions
such as 3270 emulators and PCs were tossed around but discarded because
they only reduced the number of terminals, not the complexity of multiple
interfaces. Instead, the bank took a gamble on a relatively new, distributed
technology, Common Object Request Broker Architecture (CORBA).

The specific technology they chose is less important than the approach. The
first thing they did was to create distributed objects to represent the different
types of accounts. These objects provided an abstraction layer between the user
interface and the mainframe systems that actually implemented the accounts.
Next, they wrote a new user interface, using Visual Basic (VB), that provided
account information to the customer service representatives by accessing the
different systems via the CORBA objects.

It took about 6 months to get the basic functions in place — a new user
interface, VB/CORBA bridging, and simple account objects — and then they
were able to start replacing some of the green screen terminals. At this point,
they began to understand the potential of the approach. They had essentially
implemented the beginnings of a 3-tiered application architecture by separat-
ing the presentation, business logic, and operational systems. Figure 1-1 shows
a simplified view of their solutions.

The next enhancement was to implement a customer relationship object in
the logic tier. What this did was to take any account number or customer name,
find all of the accounts that belonged to that customer, and provide that infor-
mation to the customer service representative. Now, the customers didn’t need
to keep track of all their different account numbers in order to do business with
the bank. The next incremental improvement was to automatically look up

Chapter 1 ■ Realizing the Promise of SOA 5

Service Layer

Check Account
Object

Account x
Object

Save Account
Object

Customer
Relationship

Call Center
Services

Internet
Services

Presentation

Logic

Operational
systems

Customer
Service

Internet
Banking

Figure 1-1 Bank customer service solution

information about each account and display a summary on the customer ser-
vice representative’s terminal. Now, without any additional effort on their part,
the representatives had a broader view of the customers and a better under-
standing of their relationship to the bank. This allowed them to better serve
the customers requests and at the same time offer additional value or services
(i.e., turn a customer support scenario into a sales opportunity). Customer and
employee satisfaction started to go up as the new approach started to pay off.

Over the next 2 years, the bank continued to provide more business objects
in the logic tier and better features in the interface. The bank built up a library
of about 250 objects (services) that served the needs of multiple channels,
including the initial customer service representatives as well as ATMs and
touch-tone dial-in systems. Things were going along smoothly in 1997 until
a disruptive technology had a huge impact on banking, and everything
else for that matter. All of a sudden, everybody wanted to do Internet
banking.

Again, what’s a bank to do? Well, while most of their competitors pondered
the problem and scrambled to look at solutions like screen scraping, this bank
didn’t have to. They had invested in building up an architectural approach
to the problem, namely separation of presentation from logic and logic from
operational systems, and they had invested in building up an effective library
of services in the logic layer. Therefore, all they had to do was implement a
new Internet presentation. Of course, some minor changes to services were
required as well as some new services to support security and other Internet
specifics, but the bank’s challenges were comparatively simple and they were

6 Part I ■ Understanding SOA

up on the Internet in less than 6 months. This was a full 6–12 months faster
than their competitors, who struggled to catch up. And it was a real imple-
mentation that built toward the future, not a quick-and-dirty hack that needed
to be replaced later. Many of the bank’s competitors have never caught up.

Two years later, the bank merged with another major bank. This time the
problem was how to integrate the new bank’s systems into the other bank’s
Internet operations. Imagine the challenges involved, and imagine the surprise
when 100% of the combined customers were able to access their accounts via
the Internet on the first official day of merged operations! Okay, in reality, a
few months were spent making this possible before the official opening day,
but again the architectural investment paid off. Instead of adding a new pre-
sentation, the bank added new systems to the operational layer and enhanced
the logic layer so that it was possible to access the new types of accounts and
systems. Only very minor changes were required in the presentation layer.

Since the initial introduction of their Internet banking capability, the imple-
mentation and infrastructure has been enhanced to support tens of millions
of transactions per day. And, since the merger, hundreds of other banks have
been acquired and merged into the architecture. They were the competitors
that never caught up, that never invested in architecturally sound IT solutions.

But of course, all of this didn’t just happen by accident. The bank was for-
tunate to have a perceptive, skilled, and forward-thinking architect involved
in the project. The architect quickly realized both the potential and the chal-
lenges and set about making changes to address them. First and foremost was
the adoption of an architecture that distributed responsibilities across layers
and tiers.

Second, the bank understood the challenge of creating the right kind of
services in the logic tier and of having developers reuse them. To accomplish
this, the bank created a new position, a reuse manager, for fostering and
managing reuse. This person was responsible for helping developers create
the right services with the right interfaces, helping presentation applications
find and reuse services, and setting out an overall vision and roadmap of what
services would be needed over time.

Finally, the bank realized that the existing organizational structure was not
conducive to creating or using services. Instead of having monolithic applica-
tion groups, they divided IT into groups that built the business services, and
into other groups that used the services in their presentations and applications.
After some obvious learning curves and attitude adjustments, the bank was
able to drop the time to enhance or develop new user applications from 6
months under the monolithic model to 4–6 weeks under the service model.
And, the more services that were added to the service library, under the careful
direction of the reuse manager, the shorter this timeframe became.

So, with a successful implementation of SOA, the bank was able to improve
customer retention and satisfaction, reduce costs and time to market, take

Chapter 1 ■ Realizing the Promise of SOA 7

advantage of disruptive technologies, quickly absorb acquisitions, and keep
ahead of their competitors. No wonder businesses are interested in SOA.
From a more technical point of view, the bank was able to integrate multiple
systems, support multiple channels and devices, scale horizontally to support
very large-scale and highly reliable requirements, incrementally add new
functionality, manage reuse, and converge on a common service infrastructure.

The moral of the story is this: SOA isn’t about technology, and SOA
doesn’t just happen. SOA is an architectural approach to building systems that
requires an investment in architecture and IT, a strategic and business vision,
engineering discipline and governance, and a supporting organizational struc-
ture. Ignore these things and you end up with another broken promise. Put
them together well, and you can deliver the promise and potential of agility,
flexibility, and competitive advantage.

Learning from History

As can be seen from this story, SOA is not new. It has been around for years,
well before the term was coined, by most accounts, in 1996. Forward-thinking
companies like the bank whose story was told earlier, and many other finance
and telecom companies were able to implement service layers using a variety
of distributed technologies, including CORBA and the Distributed Common
Object Model (DCOM). Other technologies, like Tuxedo, were inherently
service-oriented and stateless, and formed the basis of some of the largest,
high-performance, distributed applications of their day.

So while it is not difficult to find companies that were successful in imple-
menting SOA, it’s much easier to find companies that failed in their SOA.
IT graveyards are filled with failed projects and sometimes the vendors of
the technologies that promised the elusive, and ultimately ineffective, silver
bullet. Figure 1-2 shows a brief timeline of SOA activity.

1990

Tuxedo
Apps

Distributed
Objects

(CORBA/COM)

1996

Term SOA
Coined Web Services

2002 2008

Te
ch

no
lo

gy
 C

om
pl

ex
ity

SO
A

Su
cc

es
s

Ra
te

Figure 1-2 SOA timeline

8 Part I ■ Understanding SOA

What Went Wrong?
You might ask why some projects succeeded while others failed. Luckily, you
have the opportunity to look back and examine both the successes and failures
to discover patterns, and to then plan a path forward that avoids the failed
behavior and embraces the successful activities.

Looking at the failures uncovers two main patterns. First, the technologies
that we mentioned were too difficult for the average programmer to master.
Distributed computing with CORBA or DCOM was just too difficult for the
masses. Sophisticated IT departments had the system programmers and archi-
tects to manage these technologies, but most organizations did not. Visual Basic
(VB) programmers and other client/server Rapid Application Development
(RAD) application programmers didn’t cut it, and the underlying platforms did
not have enough of the complexities of distributed applications built into them.

The other problem was that, as an industry, we had not yet figured out what
a good service was. No one knew what the right characteristics of a service or
its interface or interaction style were. And if you could figure these things out,
you then had to describe them in a service abstraction, and finally implement
the service abstraction on top of the object abstraction naturally provided
by the distributed technology. Again, some sophisticated people figured all
this out, but most didn’t. The hurdles to create any service were so great that
most attempts failed well before the developers had to worry about whether
they were building good services or what SOA meant, how to build it, or how
to use it.

The situation today is much better. Web Services are much easier to use
than previous technologies. This is not because the technologies are really any
simpler (see the sidebar ‘‘It’s Not So Simple’’), but mostly because the tools
and environments have advanced greatly. It is now possible to develop
services without really knowing what a service is or anything much about
distributed technologies (we can debate whether this is good or bad later . . .).

Instead, the implicit knowledge of distribution and services is built into the
platform, whether it is based on Java, .NET, or something else. And the service
abstraction layer is built into the Web Service technologies.

IT’S NOT SO SIMPLE

Distributed technologies have had a long history, a history that tends to repeat
itself. In the early days, we came up with the Distributed Computing
Environment (DCE). Originally, this was a Remote Procedure Call (RPC)
mechanism aimed at allowing different UNIX systems to communicate. Once
the basics were worked out, people tried to use it for real enterprise
applications and realized that it needed more capabilities such as security,
transactions, reliability, and so on.

Chapter 1 ■ Realizing the Promise of SOA 9

Next was CORBA, a mechanism for distributing objects. Initially, it was pretty
simple, until people tried to use it to create real enterprise applications. Soon
they realized that it needed security, transactions, reliable delivery, and so on,
and it became complicated.

So a simpler technology was invented, Java. And all was well and good until
people tried to use it to build real enterprise applications. All of a sudden it
needed to have security, transactions, messaging, and so on.

Finally, Web Services came along, invented by developers so ignorant of
history that they actually had the audacity to call the protocol SOAP, Simple
Object Access Protocol. And all was fine until people tried to build real
applications with it and discovered that they needed security, transactions,
reliable messaging, and so on. You know the rest.

Hmm. What will be next?

What Went Right?
If you look at what worked, you get a broader picture. Not every company
that mastered the technology managed to succeed with SOA. As has always
been true with IT, technology alone is not enough to solve business problems.

The first thing that successful companies had was an understanding of not
only how to use the technology but also what to do with it. These companies
had an architectural vision that described the construction of applications in
terms of a logical distribution of responsibility across tiers. The architecture
went on to describe how services fit into that mix, what services were, how to
build them, and how to use them.

The next, and equally important, aspect shared by successful companies
was a business vision that described what business the company was in, what
information and processes were necessary to run the business, what capabilities
were needed to support those processes, and what services were needed to
provide those capabilities. In addition, the vision included a roadmap that
allowed for a prioritization and ordering of service implementations.

The vision and roadmap were combined with processes that helped the
organization implement them. Two major aspects of this were: first, to help
applications use existing services and, second, to help service providers create
the right services, ones that didn’t overlap with existing services or leave gaps
in the roadmap.

Another aspect of successful SOA implementations was a structure that
supported the consumer-and-provider nature of services. In addition to an
organizational structure that separated these roles, the underlying architec-
ture and infrastructure supported the discovery and publishing functions of
consumers and providers.

10 Part I ■ Understanding SOA

Finally, the architecture and process were tied into an implementation
methodology that supported the use and creation of services within applica-
tions and was informed by the overall enterprise context, business vision, and
roadmap.

What Can You Learn?
So, what can you learn from this? First, success is not based on the technology.
Technology can cause you to fail, but it doesn’t make you succeed. Although
previous technologies were too hard for most organizations, and the current
technologies and tools are much better, there is more to it. You need to know
how to use the technologies to build enterprise applications, not just isolated
services. This requires architecture, vision, reuse, process, and organization,
as illustrated in Figure 1-3.

Successful
SOA

Technology
Mastery

Service
Abstraction

Architectural
Approach

Business
Vision

Reuse
Initiative

Organizational
Structure

Methodology
Can get

from
Web Services

The rest
of the
story

Figure 1-3 Ingredients of historically successful SOA

The Promise of SOA

Another way to assess the promise of SOA is to look at the motivations and
expectations of the people who are engaged in SOA activities. In a 2006 survey
conducted by the Cutter Consortium, the motivations for SOA included a
range of technical and business reasons. The most common motivations were:
agility, flexibility, reuse, data rationalization, integration, and reduced costs.
Some of the more telling specific responses included:

‘‘Strategic reuse of assets across multiple department’s applications’’

‘‘Need to provide more agile support to business processes, and to han-
dle change management impacts more efficiently and effectively’’

Chapter 1 ■ Realizing the Promise of SOA 11

‘‘Master Data Management’’

‘‘Speed and ease of project deployment, concerns with duplication of
work between projects’’

‘‘Support external collaborators’’

‘‘Efficiency in terms of time to market and development cost’’

‘‘Bring together diverse lines of business across many geographies with
faster speed to market’’

‘‘Integrate legacy systems’’

Not surprisingly, the motivations for adopting SOA echo the concerns that
most enterprise IT organizations are struggling with.

The Challenges of SOA

If we examine the history and look at the goals or motivations for SOA, we can
determine the challenges that organizations face in delivering on its promise.
Let’s restate the expectations, history, and goals in terms of four questions
and then look at the issues they raise and the corresponding architectural
requirements.

What is required to provide agility, flexibility, and the strategic reuse of
assets across multiple departments?

What is required to bring more efficiency in terms of time to market and
development costs, while delivering new capabilities to the organization?

How will the integration of existing applications or enterprise data help
to bring together diverse lines of business across geographies with faster
time to market?

How will SOA’s agility and flexibility improve relationships and provide
better alignment of business and IT?

Figure 1-4 illustrates the four major challenges facing SOA adoption today.

Reuse
Reuse seems to have been the holy grail of software for decades. But the
objects and components failed to live up to the promise of the marketeers.
Now, services are the next great hope for reuse. If we’re smart enough to learn
from the past, we can be more successful with services. SOA will march on
either way (see the sidebar ‘‘Does SOA Need Reuse?’’).

12 Part I ■ Understanding SOA

SOA
Challenges

Require
Architecture

Reuse
Consistency

Efficiency
Time-to-market

Lower Cost

Agility
Flexibility

Application
and Data

Integration

Figure 1-4 SOA challenges

DOES SOA NEED REUSE?

The object revolution of the late 1980s promised great increases in productivity
and reductions in cost based on reuse. However, the reuse didn’t really happen,
except in some limited situations. But, it turns out that object orientation
provides a better paradigm for development of complex software systems and
that it is the prominent model supported by development tools. Every time you
use a web page, you see object reuse. Thus, it has been widely adopted in spite
of not attaining the promise of custom object reuse.

Components came along in the 1990s, promising to solve the reuse problem
that objects hadn’t. The advantage of components was that they provided a
way to package functionality that matched the distributed, web-based systems
that were being built. Once again, reuse was not achieved on a large scale. Yet,
components are entrenched in modern systems because they bring with them
all of the advantages of application servers such as distribution, scalability, and
redundancy.

Now, the 2000s bring back the promise of reuse with services. Services
provide a larger-granularity, run-time unit of functionality and reuse. Will
enterprises be any more successful in achieving reuse with services than with
previous technologies? At one level, services may not make that much
difference. The march toward service orientation is well underway. Product
vendors are structuring everything from infrastructure to software applications
to development tools to support a service-oriented approach. Similar to
objects, the advantages of services as a construction paradigm for enterprise
applications will make SOA a reality regardless of how much the independently
developed services actually get reused. So, services will probably be the future
architectural and development paradigm, if for no other reason than because
they are better for the software providers that provide infrastructure, tools,
applications, Independent Software Vendors (ISVs), and so on.

Chapter 1 ■ Realizing the Promise of SOA 13

However, many of the benefits that organizations hope to achieve with SOA
require that services be reused within their environment. Those enterprises
that achieve reuse will reap more of the benefits, be more agile, and be more
competitive. Therefore, it behooves us to look at what did and didn’t work
in terms of reuse, and apply those lessons to services. Guess what? In every
instance, technology was not the issue when it came to reuse. It’s true that
services have some technical features that make them better for reuse than
components, just as components had technical features that were superior to
those of objects. But the main roadblocks to reuse have, and will continue to
be, organizational, methodological, and political.

Let’s look at these issues from the perspective of the service consumer.
When an application or process wants to use a service, it first needs a way to
find and evaluate candidate services. Then, once it decides to use the service,
it has dependencies on that service. Therefore, the service consumer needs to
be guaranteed that the service will operate reliably, that bugs will be fixed in
a timely manner, that requests for enhancements will be considered, that it
will continue to operate and be supported for a reasonable amount of time,
and, most importantly, that new versions of a service won’t cause existing
consumer applications to stop working. To make things more complicated, in
an enterprise, the service consumer often needs to rely on another organization
for that guarantee.

The following list discusses the architectural requirements for effective
reuse:

The ability to publish, search for, evaluate, and register as a consumer of
a service

Sufficient variability in service function to meet consumers’ needs

Capabilities for managing and maintaining a service life cycle across
organizational boundaries

The ability to guarantee the availability and lifetime of a service version

Mechanisms for decoupling the consumer’s life cycle from the provider’s

CONSISTENCY, CONSISTENCY, CONSISTENCY

We often promote reuse as a way to reduce development costs or time to
market. Although you can achieve improvements in both these areas, often it is
consistency that is the most important value of reuse. SOA allows you to
separate access to functions or data such that every application that needs to
make use of the function or data can use the same service to get it.

(continued)

14 Part I ■ Understanding SOA

CONSISTENCY, CONSISTENCY, CONSISTENCY (continued)

How many enterprises suffer from redundant data or applications? (All of
them, probably.) What is the result? Users get different results depending on
how they go about doing something. When the users are customers, this results
in dissatisfaction and lost customers. You’ve all heard of problems such as a
customer having to call multiple different departments to correctly change his
or her address, or an item being available through one system, but not another.

Imagine an enterprise-wide customer service that manages the shared
customer information (such as addresses) for all systems and only needs to be
changed once. Or, a single inventory service used by all order-management
processes where they get consistent results about availability. SOA provides an
approach for consistency of processes and data for both internal and external
customers. This is something that the business sponsors understand and are
often more willing to pay for than the promise of reduced costs and reuse.

Efficiency in Development
Making development more efficient means building more functionality, in less
time, at less cost. Doing so depends on a variety of factors, including the reuse
of services and the ability to quickly compose applications from those services.
This in turn requires a different approach to service and solution development
than the approach that was used in the past.

Developers of services can no longer create services in isolation, but rather,
the services must fit into the overall architecture and conform to the enterprise
business and information models. However, the initial version of a service
cannot be expected to meet the requirements of all possible, future users.
There has to be a managed process for deciding on, funding, and implement-
ing enhancements to accommodate those additional users. But at the same
time, enhancements to services need to be done in a controlled fashion that
maintains the integrity of the service architecture and design, and conforms to
versioning and compatibility requirements.

Developers of solutions that will consume services need to be able to
easily find existing services and to evaluate them, determine what they
do, and request enhancements. Furthermore, methods and tools for modeling
and composing business processes from existing services need to be estab-
lished. When projects are implementing business processes, a system design
methodology is needed that focuses on composing business processes from

Chapter 1 ■ Realizing the Promise of SOA 15

the existing services. And, there has to be a variety of different kinds of services
available, at different levels of organizational scope and granularity, to fully
support the composition of business processes.

There also has to be an analysis and design methodology for the services
themselves that describes the characteristics of the different types of services
and explains the interaction, interface, and implementation design decisions.

Finally, there have to be organizational changes to support service devel-
opment and use across the enterprise that match the consumer and provider
nature of services.

The following architectural requirements are necessary for effective devel-
opment productivity:

Have a reference architecture that guides the development of services.

Use Business Process Management (BPM) to define business processes,
based on service composition and a layered set of services. Use BPM to
drive the discovery and design of required services.

Have efficient processes that manage the integrity of the total set of ser-
vices for both providers and consumers in accordance with the overall
vision and the business and information models.

Integration of Applications and Data
The integration of existing applications and data is perhaps the most perplexing
challenge facing enterprise IT organizations. Billions have been spent over the
past decades on enterprise application integration (EAI) to implement applica-
tion integration, but results are mixed. Too often, fragile and unmaintainable
solutions have been put in place that created a rat’s nest of point-to-point
connections over a variety of different technologies and protocols.

SOA, based on Web Services, promises to simplify integration by providing
universal connectivity to existing systems and data. But, as with everything
else, technology is only a small part of the solution. Again, you can look at
what did and didn’t work with EAI to craft a strategy for moving forward. And
when you do, you see that an overall, enterprise-wide, architectural solution is
required. You should no longer be connecting individual applications directly
with point-to-point connections, but rather, providing services that connect
individual applications into the overall enterprise.

The really hard part, however, is getting the new interfaces to the existing
system right. Here, the tools are often our own worst enemy. The vendors

16 Part I ■ Understanding SOA

trumpet their wiz-bang Web Services Description Language (WSDL)
generators that can take an existing schema or application programming
interface (API) and generate a service interface. Although this is seductive, it
is wrong. You should not be exposing the data models or APIs of 20-year-old
applications directly as services. The chances that these old APIs represent
what your enterprise needs today are slim at best. Instead, you should trans-
form them into new interfaces that meet the strategy, goals, and requirements
of the enterprise today and in the future.

A similar situation exists for data integration. How many millions were
spent on failed projects to implement a global enterprise data model? Too
often, applications could not be retrofitted to the model, the cost of change
was too high, or business units wouldn’t go along with the changes. Yet, for
services to fit together into a business process or to be composed together in
a meaningful way, they have to share a common data model and semantics.
Here’s the difference, however: They do not have to agree on every single item
and field of data. They have to agree only on what the shared, enterprise-wide
data should be. Then, each application can translate between its own, internal
version of the data and the shared, enterprise (external) representation of
the data.

The following architectural requirements are necessary for integration:

Have an enterprise, common semantic model for the shared information.

Have a reference architecture that differentiates between business ser-
vices and integration services.

Have a reference architecture that describes common patterns for
integration.

Have infrastructure capabilities that enable semantic transformation
between existing systems and the enterprise model.

Agility, Flexibility, and Alignment
Agility and flexibility occur when new processes can quickly and efficiently
be created from the existing set of services. Achieving agility and flexibility
requires an easily searchable catalog that lists the functions and data provided
by the available services. In addition, an efficient way to assemble the business
processes from the services needs to be available.

The services that compose the catalog must support a variety of different
processes, at a variety of different levels, and have minimal gaps or overlaps
in functionality. At the same time, the services must share and conform to a

Chapter 1 ■ Realizing the Promise of SOA 17

common enterprise semantic model. This doesn’t just happen by itself, or by
accident. The SOA architectural approach needs:

A business architecture that lays out a roadmap for the processes and
services of the enterprise now and over time, and identifies the func-
tional and application capabilities to support those services. In addition,
the business architecture needs to specify the desired outcomes so that
business processes can be measured against achieving them.

An information architecture that lays out a roadmap for the shared enter-
prise semantics and data model.

An application architecture that defines a hierarchy of service types,
how to compose processes from services, how to produce and consume
services, and how to measure services contributions toward business
outcomes.

A technology architecture that defines what the technologies are and
how they are used to support processes, services, integration, data access
and transformations, and so on.

Obviously, business needs to be involved in the development of the enter-
prise business and information architecture and roadmaps. But, that alone does
not achieve alignment of business intentions with implemented IT systems.
There has to be a process that directly integrates the enterprise architecture
(business, information, application, and technology) into the development
process. In addition, there needs to be an organizational and governance
structure in place to support and enforce it.

The following list defines requirements of SOA for alignment:

Have a reference architecture that defines the business and information
aspects of SOA and their relationship to the enterprise.

Have an enterprise, common semantic model that is used to inform the
service interface design.

Use model-based development techniques to ensure traceability between
the business models and the implemented systems.

Have processes that enable and validate conformance.

Table 1-1 summarizes the overall architectural requirements needed. Obvi-
ously, there is some overlap between the architectural requirements for the
different challenges. This is a good thing. It indicates that a holistic architec-
tural approach can not only meet the different challenges but also integrate
the solutions.

18 Part I ■ Understanding SOA

Table 1-1 Summary of architectural requirements

CHALLENGE ARCHITECTURAL REQUIREMENT

Reuse Ability to publish, search for, evaluate, and register as a
consumer of a service.

Capabilities for managing and maintaining a service life cycle
across organizational boundaries.

Ability to guarantee availability and lifetime of a service version.

Mechanisms for decoupling the consumer’s life cycle from the
provider’s.

Efficient Development Have a reference architecture that guides the development of
services.

Use BPM to define business processes, based on service
composition and a layered set of services.

Have efficient processes that manage the integrity of the total
set of services for both providers and consumers in accordance
with the overall vision and business and information models.

Integration of
Applications and Data

Have an enterprise, common semantic model for the shared
information.

Have a reference architecture that differentiates between
business services and integration services.

Have a reference architecture that describes common patterns
for integration.

Have infrastructure capabilities that enable semantic
transformation between existing systems and the enterprise
model.

Agility, Flexibility, and
Alignment

Have a reference architecture that defines the business and
information aspects of SOA and their relationship to the
enterprise.

Have an enterprise, common semantic model that is used to
inform the service interface design.

Use model-based development techniques to ensure the
traceability between the business models and the
implemented systems.

Have processes that enable and validate conformance.

Meeting the Challenge
Examining the promise of SOA and the goals of the organizations that adopt
it leads to a set of requirements for meeting the challenges laid out in this
chapter. Let’s summarize the requirements for SOA.

Chapter 1 ■ Realizing the Promise of SOA 19

Reference Architecture

Creating and maintaining a reference architecture is one of the more important
but difficult best practices for SOA and is an important critical success factor
in achieving SOA goals. Yet, often, organizations will have only an informal
architecture, or none at all. Figure 1-5 shows the major components of an
SOA reference architecture. The reference architecture represents a more
formal architectural definition, one that can be used for objective validation of
services and applications. For SOA, the reference architecture should:

Support enterprise concepts, particularly the subarchitectures of busi-
ness, information, application, and technology

Specify a hierarchy and taxonomy of services and service types

Define how services fit into an overall enterprise application, such as a
portal

Provide a separation between business, application, and technology
concepts

Be integrated into the development process

Chapter 2 covers the reference architecture in detail.

Service
Taxonomy

Service
Design

Methodology

Service-
Oriented
Solutions

Technology

SOA Reference Architecture

Business

Domain

Utility

Integration
Enterprise
Concerns

Technology

Application

Information

Business

Figure 1-5 Aspects of an enterprise SOA reference architecture

Common Semantics

Defining a common, enterprise semantic and information model is key to
achieving agility and flexibility. Without it services cannot be easily combined
to form meaningful business processes. For example, imagine a process that
combines different travel activities, such as air, hotel, and rental car into a trip
based on a customer and their companions. The customer wants to see all of the
related activities and only wants to provide the information once. The airlines

20 Part I ■ Understanding SOA

require the names of all passengers; the rental car agency needs to know
if additional travelers are over age 25 and their relationship to the primary
traveler; and the hotel needs a different set of information. If the services
don’t have some common understanding of what a customer is, and what a
travel companion is, it won’t be very easy to automate the combined processes
or provide a single view or interface to the customer. Without common
understanding, rather than agility and flexibility, each process requires special
case code to combine the data. The common semantics should:

Identify information that must be shared across the enterprise and
between services

Define the meaning and context of that information

Identify techniques for mapping enterprise semantics to existing applica-
tion data models

Chapter 5 describes the development of the common semantic model, and
Chapter 6 shows how it is used in the design of service interfaces.

Governance

Governance has been defined as the art and discipline of managing
outcomes through structured relationships, procedures, and policies. Gov-
ernance enforces compliance with the architecture and common semantics
and facilitates managing the enterprise-wide development, use, and evolution
of services. Governance consists of a set of policies that service providers and
consumers (and their developers) must conform to, a set of practices for imple-
menting those policies, and a set of processes for ensuring that the policies
are implemented correctly. There is typically an organizational structure in
place to define and implement governance policies and often a repository to
automate and enforce them. Governance of SOA should include:

Policies regulating service definition and enhancements, including own-
ership, roles, criteria, review guidelines, and so on.

Identification of roles, responsibilities, and owners.

Policy enforcement that is integrated directly into the service repository
(where appropriate).

Guidelines, templates, checklists, and examples that make it easy to con-
form to governance requirements.

Review of service interface definitions for new services and enhance-
ments to existing services. The review ensures that the service definition
conforms to standards and aligns with the business and information

Chapter 1 ■ Realizing the Promise of SOA 21

models. The review is typically done by a service review board or the
unit responsible for the service.

Architectural review of solutions and services to ensure that they con-
form to the SOA and enterprise architecture. This review is typically
done by an architecture review board.

Warning! Governance should not be primarily a review activity. If architec-
ture is nothing more than extra steps in the process or a burden to developers,
they will just ignore it. Effective governance follows a carrot-and-stick
approach with an emphasis on enabling developers to build conforming
applications (the carrot) and automating governance activities and policies.
Reviews (the stick) should be a final check where process is minimal and
exceptions are actually the exception.

We’ve seen countless articles and presentations (surprisingly by vendors)
that talk about governance as a required activity from day 1. But we don’t
agree. There are enough challenges and barriers to get over for SOA to work,
that you don’t need another one to start with. When you have only a few
services, you don’t need a lot of processes to govern them. Figure out how
to build and use services first, and then add governance. If you have to go
back and correct things, fine. Certainly make sure that you have governance
before you have 100 services, but don’t put it in place when you have only one
service. Chapter 12 discusses governance.

TYPES OF GOVERNANCE

We often discuss governance in terms of four different aspects of a service’s
life cycle:

◆ Design-time governance — Policies and procedures to ensure that the right
services are built and used

◆ Deploy-time governance — Policies that affect the deployment of services
into production

◆ Run-time governance — Policies that affect the binding of consumers and
providers

◆ Change-time governance — Policies and procedures that affect the
design, versioning, and provisioning of service enhancements

We have primarily discussed design-time and change-time governance as
architectural requirements. Obviously, deploy-time governance is important for
operational quality. Although automated run-time governance functions can
provide benefits and sophistication to a SOA implementation, we don’t think
that it is a critical factor in achieving overall SOA success and value. Of course,
it is important to specify policies regarding security and the authorization of

(continued)

22 Part I ■ Understanding SOA

TYPES OF GOVERNANCE (continued)

service consumers and providers. However, many successful SOA
implementations today use very simple mechanisms to implement this rather
than a sophisticated registry to automatically apply the policies during binding.
On the other hand, governance of service interface design is necessary to
achieve a consistent overall set of services, which is critical to achieving SOA
success.

Business Process Modeling

Business processes need to change relatively frequently yet be based on stable
underlying capabilities. The flexibility to do this comes from being able to
quickly construct new business processes from business services, which are
relatively stable. Business processes should:

Be specified using Business Process Models and executed in a business
process management system

Be composed of activities that are implemented by business services
(provided by the SOA)

Pass information into, out of, and within the processes in the form of
documents, which are built on top of the common information model

Chapter 4 describes the use of BPM in addressing business requirements
and influencing service design.

Design-Time Service Discovery

To reuse services, you have to be able to find the services that exist, and
you have to be able to examine them to see if they perform the functions
required, provide the appropriate qualities of service, are reliable, and so on.
It is important to understand the distinction between a run-time registry and
a design-time repository, even though both functions may be implemented by
the same software. A registry is used at run time to identify a service endpoint
for a requested service interface. This is where run-time governance policies
may be enforced. A repository is used at design time to find existing services
for inclusion in processes during the design of that process. This is critical to
enabling service reuse. Service discovery does not necessarily have to be based
on a repository (although repositories do a good job of it) but should provide
the following functions:

Chapter 1 ■ Realizing the Promise of SOA 23

A catalog of available services.

Sophisticated search capabilities for identifying potential services.

Capabilities for examining a service, its interface and implementation,
and design and testing to determine if it is appropriate for the desired
usage. This will often be through links to documents, models, code,
reports, and the like that are stored in other systems.

Metrics on service usage.

Notification to interested parties about upgrades to services or other
events.

Automation of certain governance policies.

Direct integration into the development environment.

In subsequent chapters, we provide methods for describing and categorizing
services to assist you in locating them during development. Chapter 5 describes
the creation and use of the service inventory in the discovery and design of
service interfaces.

Model-Based Development

Model-based development is a best practice in software engineering in general
and in SOA as well. Models provide a way to conceptualize and describe a
system without getting bogged down in details, and to describe the major parts
of a system and their relationships. A model-based development approach for
SOA should incorporate the following:

A higher level of abstraction for software development and the ability to
visualize software and service designs

Support for a domain-specific language (DSL) for the implementation
of SOA

Automatic integration of SOA reference architecture into the design
environment and DSL

Separation of business, services, and technology concerns

The design methodologies throughout this book use a model-based approach
to SOA design, based on a set of SOA domain concepts and abstractions that
make up a domain-specific language for SOA. Although it is helpful to be
able to generate development artifacts directly from design models, and in
fact many tools do exactly that, it is not strictly required. The proper design
of services is critical to achieving SOA goals, and models are the lingua
franca of design. What is required is the design of service interfaces and

24 Part I ■ Understanding SOA

implementations, and a way to pass those design models to development as
specifications for construction. Of course, the more you can generate, the
easier and less error prone that hand-off will be. Chapter 7 focuses on the
technology-independent design of service implementations that lead to a
model-based approach.

Best Practices in SOA Analysis and Design

There’s a clever saying that goes ‘‘In theory, there’s no difference between
theory and practice, but in practice there is.’’ This difference is most often seen
in the clash between architecture and development.

The architecture team is responsible for understanding the big picture.
They must answer questions such as: How will SOA support the overall
enterprise goals? How will it fit with other initiatives such as Single Sign-On
(SSO)? What standards and technologies are important? How do they fit in
with the enterprise technology roadmap? What strategy and tactics should be
employed to introduce and phase in SOA? How will it be sold to management
and the business? All of these are important and difficult questions that must
be answered, and the architecture team or steering committee is the right place
for this. We often call this a top-down approach.

The development team is responsible for implementing and deploying
individual services. They have a different set of questions to answer: How will
an individual service be implemented? How will the master data definition be
translated to the individual systems of record that contain the data? How will
the service be deployed? How will the service be managed? How will new
versions be implemented and deployed? How will services be registered and
discovered at run time? How will services be discovered and reused at design
time? How will dependencies be minimized and managed? Again, these are
very important and difficult questions that must be answered. We might call
this a bottom-up approach.

With these questions and concerns, the architecture team is trying to max-
imize the value that SOA can provide in the delivery of enterprise solutions.
Value comes from enabling and creating an enterprise service layer that
supports the flexible creation of business processes. Value comes from being
able to quickly modify these business processes without having to make diffi-
cult and expensive modifications to existing operational systems. Value comes
from having consistent behavior across the enterprise for the same business
function (i.e., having the business function implemented in a single service).
Value comes from having modular business capabilities that can be outsourced

Chapter 1 ■ Realizing the Promise of SOA 25

or sold as a service. To support this, the SOA has to describe how the different
organizations in the enterprise can contribute to the overall SOA, and at the
same time, meet their immediate business requirements.

Meanwhile, the technical team is trying to provide value by implementing
specific business functionality in the best, most efficient, and most cost-effective
manner — not just in the short term, but with an eye toward the total cost of
ownership of IT systems. The manager of a technical team we worked with
put it best. He sees SOA as a way to minimize and manage the collateral
damage caused by changes. We’ve all heard the horror stories, such as the case
of adding two digits to a part number that required $25 million and 1 year
to implement (but added no business value), because it touched on almost
every system in the enterprise. By applying a separation of concerns, having a
Master Data Schema, and a set of services to manage the fundamental business
entities, the required changes could have been isolated and minimized.

The theory naturally leads toward a top-down approach in which processes
and services are driven by an overall enterprise model. These projects are often
started with a high-level business process model or an overall enterprise system
analysis activity. The practice leads us to a bottom-up approach in which
services are implemented to meet a specific, immediate business requirement
or project. These projects often start by service-enabling legacy systems or
incorporating simple external services. Yet neither of these approaches is very
effective. In order to meet both the enterprise goals and the immediate project
goals, these organizations and concerns have to meet in the middle. Chapter
3 describes the overall process of initiating SOA and designing services based
on a middle-out approach.

Summary

Effective SOA (and architecture in general) is the careful balance and blending
of the big picture and the immediate requirements. It is the practical applica-
tion of theory to meet a set of goals, now and in the future. In this middle-out
approach, the architecture team provides an overall SOA that offers the guid-
ance and context necessary to support the implementation and reuse of ser-
vices. This is provided as a set of guidelines, patterns, frameworks, examples,
and reference implementations. The technical teams use these to incorporate
the requirements (business and information context) into their designs so that
the services they implement provide the necessary business functions that are
needed immediately, but can easily be extended to support other processes

26 Part I ■ Understanding SOA

and services in the future. These are the roles of the reference architecture,
the architecture-driven design process, and the domain-specific modeling
approach.

Chapter 2 describes the SOA reference architecture and how it meets
the challenges and requirements introduced in this chapter. It describes the
overall enterprise context, the architectural layers and tiers, the domain-specific
concepts and abstractions, and specifically what a service is and the important
architectural characteristics of a service.

C H A P T E R

2
SOA — Architecture

Fundamentals
Any problem in computer science can be solved by another layer of abstraction.

— Butler Lampson

Chapter 1 discussed the expectations for Service-Oriented Architecture (SOA)
and the requirements for delivering on those expectations. At one level, the
extent to which expectations are met will depend on how successful an
organization is at creating and reusing services. To be more specific, success
will not depend on any individual service, but on the overall collection of
services and how well they support the ability to modify existing solutions
and build new ones faster to meet changing requirements. We went on to
describe the SOA reference architecture as the foundation that allows reusable
and composable services to be created with a scope that is larger than any
single project. So, just what is architecture, and what are the components of
the SOA reference architecture? This chapter describes:

The general principles of architecture

The basics of SOA

Business-driven SOA

The relationship of SOA to other architectures

What a service is and the characteristics of a service

Service types and purposes

The SOA reference architecture

27

28 Part I ■ Understanding SOA

What Is Architecture?

Software architecture is a description of a software system in terms of its major
components, their relationships, and the information that passes among them.
In essence, architecture is a plan for building systems that meet well-defined
requirements and, by extension, systems that possess the characteristics needed
to meet those requirements now and in the future.

A fundamental purpose of software architecture is to help manage the
complexity of software systems and the modifications that systems inevitably
undergo in response to external changes in the business, organizational, and
technical environments.

There is no single, industry-wide definition of software architecture. The
Software Engineering Institute (SEI) web site includes a long list of defini-
tions for the term ‘‘software architecture’’ at www.sei.cmu.edu/architecture/
definitions.html. Some definitions provide details and context to the abs-
tract definition given above, and expand on the notions of a system
description, requirement specification, and planning. Others are just as abstract
but provide a different viewpoint for thinking about architecture. It is instruc-
tive to read them all, if only on the chance that one of them will make you
think ‘‘Aha!’’

Here is a definition of software architecture from The Rational Unified
Process — An Introduction by Booch and Kruchten (1999).

Software Architecture encompasses the significant decisions about:

The organization of a software system,

the selection of the structural elements and their interfaces by which the system
is composed, together with their behavior as specified in the collaboration among
those elements,

the composition of these elements into progressively larger subsystems,

the architectural style that guides this organization, these elements and their
interfaces, their collaborations, and their composition.

Software architecture is not only concerned with structure and behavior but
also with usage, functionality, performance, resilience, reuse, comprehensibility,
economic and technological constraints and tradeoffs, and aesthetics.

Most definitions agree that software architecture describes the composition
of systems, but differ in the perspective of what a system is and what
composition implies. We like this definition because it is detailed but broad
enough to cover many perspectives and scopes.

While traditional software architecture is focused on the construction of
software applications, SOA is focused on the construction of solutions with

Chapter 2 ■ SOA — Architecture Fundamentals 29

an enterprise or cross-organizational scope, based on the interactions between
consumers with needs (often business processes) and providers with capabili-
ties (services).

We like to describe architecture as having to answer three main questions:

1. What are the important concepts?

2. What are the relationships among them? How do these relationships
describe the behavior of the system?

3. How do the concepts and relationships provide value higher up? How
do they serve the purpose of the overall system rather than the pur-
pose of the individual parts?

So, a typical software architecture might describe the structure of classes (a
key concept) or components, their relationships, and their value in the software
product. Similarly, SOA describes the structure of services (a key concept),
their relationships, and the value they bring to enterprise-wide processes and
solutions.

Architectural Styles

Most products, applications, and enterprises have unique architectures,
although many of them may be very similar. For example, the architec-
ture for an e-commerce application at one company probably resembles that
of an e-commerce application at another company of like size and business
function. This implies that there is a difference between a specific architecture
and the type of solution it defines. The common industry term for the latter is
architectural style.

In terms of the architectural questions presented previously, the architectural
style is the vocabulary of concepts and relationships, and a set of constraints
on how they can be combined to meet the higher-level goals and to form
a particular architecture. An architectural style is a family of architectures
related by common principles and attributes. In other words, an architectural
style contains a well-defined set of patterns that constitute a common way
for enterprise solution components to interact with one another. For example,
we consider client/server, 3-tier, n-tier, and enterprise application integration
(EAI) approaches all to be architectural styles.

A useful metaphor to describe styles is the construction of a cathedral. All
cathedrals have certain underlying construction principles. For example, the
basic floor plan is that of a cross. And while there is also wide variation among
cathedrals, a few common characteristics emerge such as Romanesque and
Gothic. These two architectural styles define a specific set of patterns that
transform the basic cathedral into an easily identifiable style.

30 Part I ■ Understanding SOA

The choice of an architectural style for enterprise solutions is typically
made as a result of engineering tradeoffs in response to a specific set
of requirements. For example, an n-tier architectural style is designed to
meet requirements of distribution, scalability, interface flexibility, device
independence, business service reuse, application integration, and so on.
Specifically, the n-tier architecture is designed to provide web-based and
other types of client access to information and services that reside within the
enterprise, which might in fact be implemented in a legacy application.

SOA can be defined as an architectural style promoting the concept of
a business-aligned enterprise service as the fundamental unit of designing,
building, and composing enterprise business solutions. Multiple patterns
describing definitions, implementations, and deployment of the SOA solu-
tions complete this style. Throughout this chapter, we define the concepts,
relationships, constraints, and patterns that make up the SOA architectural
style.

Architectural Principles and Practices
Before diving into the specifics of SOA, let’s review some important architec-
tural principles and practices that we apply throughout the chapter:

Separation of concerns

Architectural views

Accommodation of change

Abstraction

Consistency

Business derivation

Patterns

Facilitation

Communications

The separation of concerns is the most fundamental principle of archi-
tecture. Concerns are kept separate so that independent elements remain
independent. The benefit is that a change in one part of the system does
not adversely affect other parts. In other words, they can change indepen-
dently. A familiar example of this principle is the separation of interface from
implementation.

Architectural views provide another important separation of concerns by the
inclusion or exclusion of specific details and the presentation of information
to different stakeholders. Architectural views or perspectives are designed to
address specific concerns of software development or the important enterprise

Chapter 2 ■ SOA — Architecture Fundamentals 31

groups and organizations that play a part in the full life cycle of enter-
prise solutions. Typical software views are logical, deployment, process, and
network. Typical enterprise architectural views (concerns) are business, infor-
mation, application, technology, and implementation. Coincidentally, SOA
implementation and design map well to these sets of architectural concerns.

Accommodation of change refers to the fact that the architecture should provide
flexibility, so that future application requirements can be more easily satisfied.
A flexible architecture identifies both future application requirements and
areas that are likely to change. Tracking industry trends helps identify some
areas of potential change. These areas must be addressed explicitly in architec-
ture. If the specifics of flexibility and independence are not included in the orig-
inal design it is very likely that the architecture will contain implicit couplings,
which are much more difficult to deal with when change inevitably occurs.

Abstraction is a key architectural tool used in decoupling, accommodating
change, and separating concerns. There is a saying in the industry that ‘‘any
problem in computer science can be solved by adding a layer of abstraction.’’
An abstraction layer provides indirection between two layers, allowing for
increased flexibility. Typically, the abstraction also provides a higher level of
interaction. For example, rather than writing directly to a database, you write
SQL, which provides a higher-level interaction model, as well as an abstraction
and indirection layer above the lower-level database interfaces. The abstraction
provides higher productivity (in the sense that one SQL statement corresponds
to many invocations of the lower-level database interfaces) and also supports
multiple different datastores.

One of the main goals of architecture is the promotion of consistency and
reuse. Thus, one difference between software architecture and Service-Oriented
Architecture is that of scope. SOA is concerned with providing consistent ser-
vices throughout the entire enterprise, so that they can be used by many
different families of solutions. SOA must promote the development of busi-
ness capabilities in such a way that they are easily reused by the different
business processes.

Business derivation is perhaps the most important architectural principle,
which acknowledges that an architecture’s raison d’etre (and that of IT itself)
is to support the enterprise’s business — that is, the strategies and goals of the
organization.

A pattern is a template for a solution to a specific set of requirements,
and as such it is a tool for describing architecture. The father of the pattern
movement is generally acknowledged to be Christopher Alexander, a professor
of architecture (as in buildings, not software) at Berkeley. He put it this way
‘‘Each pattern describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem, in
such a way that you can use the same solution a million times over, without
ever doing it the same way twice.’’

32 Part I ■ Understanding SOA

Facilitation means that an architecture should make it easy to build solutions
that conform to the architecture. Thus architecture is not only about describing
what the system does; it must also provide the means to construct the system
and its components.

Communications has to do with the fact that an architecture provides the
mechanism for people to communicate about, and reach a common under-
standing of, IT systems. These architectural principles allow you to describe
architecture unambiguously, at different levels of abstraction, and in a context
understandable to each stakeholder.

DEATH BY ARCHITECTURE

Perhaps nothing is more drawn out and aggravating for an IT organization than
what we call death by architecture. This classic story happens all too often. The
high priests and architects depart for the ivory tower and return some months
or years later with ‘‘The Revealed Truth’’ in the form of 1000 pages of
architecture documents. In the meantime, new applications have been
developed and requirements have changed, and the architecture is out of date
on delivery. Other reasons may contribute to its being dead on arrival. It may be
irrelevant to the development organization or might not have enough buy-in to
be accepted. It may be hard to understand its value or how it achieves business
goals, or dozens of other reasons.

Obviously, we believe in the value and importance of architecture, and we
hope to convince you as well. But don’t confuse belief in the importance of
architecture with support for ivory-tower architecture projects. There are right
ways and wrong ways to do everything, and SOA architecture has more than its
share of wrong ways. So don’t give up on the idea of architecture, even if your
experience with architecture thus far has been painful. We have seen very
successful architecture projects, and they are a joy to behold. The world’s most
successful applications are based on solid architectures and solid
implementations.

However, architecture is hard to do well. It fails most frequently because IT
does not have the will to implement the associated organizational changes
required to make it work. Other common reasons are poor project
management, changes in leadership or sponsorship, and changes in priorities.
Sometimes, the architecture group itself is to blame. But there is no doubt that
it is a primary responsibility of the chief architect to avoid death by
architecture. Here are some suggestions:

◆ Quickly create an architectural vision and strategy. It should take about
1 month to develop this ‘‘high-level architecture.’’ Use this to prioritize and
guide the implementation of the architecture.

Chapter 2 ■ SOA — Architecture Fundamentals 33

◆ Pick an appropriate project to start implementing the first pieces of archi-
tecture, one that is important enough to get noticed, but not so critical
that outside pressures will make it impossible to do the right thing.

◆ Implement a small portion of the architecture at one time, as part of a
project that is delivering real business value to the organization. Use your
architectural vision to help pick areas that demonstrate architectural val-
ues, such as reuse and consistency. Services and frameworks are often
good candidates. Continue to incrementally implement more of the archi-
tecture as part of subsequent projects.

◆ After every project, integrate the lessons learned into the next iteration of
the architecture. Keep it current. Constantly solicit feedback from develop-
ment. Get their buy-in by demonstrating that architecture makes their job
easier.

◆ Implement, collect, and report metrics to prove the value in terms of cost,
time, and quality.

◆ Know the difference between great and good enough. It will never be per-
fect. A good-enough project delivered on time beats a late-but-great one
every time.

◆ Don’t try a big bang approach. It never works. SOA should be business
driven and based on a vision of what processes, capabilities, and services
you’ll need over time. However, you don’t have to have the entire enter-
prise business model complete before you can get started on the first few
services.

What Is Service-Oriented Architecture?

SOA is an architectural style for building enterprise solutions based on
services. More specifically, SOA is concerned with the independent con-
struction of business-aligned services that can be combined into meaningful,
higher-level business processes and solutions within the context of the enter-
prise. Anybody can create a service; that is not the challenge of SOA. The
real value of SOA comes when reusable services are combined to create agile,
flexible, business processes. Unfortunately, that does not just happen by itself.
Achieving it might be easier to manage if a single organization is creating all
of the services, but that is not the case at most large organizations. So, part of
the architecture of SOA is responsible for creating the environment necessary
to create and use composable services across the enterprise.

In other words, architecture enables different organizations to indepen-
dently implement services that meet their immediate needs, yet can also be

34 Part I ■ Understanding SOA

combined into higher-level business processes and enterprise solutions. This
requires that services:

Have similar size, shape, form, function, and other characteristics

Conform to enterprise standards

Communicate at a technical level

Communicate at a semantic level

Don’t have gaps and overlaps in responsibilities

As mentioned earlier, architecture has to answer these three questions: What
are the important parts? What is the relationship among the parts? How do
they combine to provide value to the level above them?

In terms of SOA, the important parts are:

Processes — High-level business functions, often spanning applications
or LOBs

Services — Modular units of business functionality

Integration — Connection to and exposure of existing applications
and/or data as services

Existing systems — Existing legacy systems, commercial off-the-shelf
(COTS) applications, and data that the enterprise wants to leverage

Documents — High-level units of business information, such as a pur-
chase order, or an EDI document

Semantics — The underlying meaning of information that is exchanged
in processes

Transformation — The conversion of information from one format or
semantic to another

Communications — The ability of services to communicate with each
other

Figure 2-1 illustrates a layered SOA architecture, including two important
concepts for each layer. On the left are the functional concepts that you
use to construct systems and processes. On the right are the informational
concepts that you use to pass, describe, or manipulate data at those different
functional levels. In other words, you are explicitly recognizing the fact
that enterprises are a combination of process and information. Each layer
needs both abstractions. Yet, too often, SOA only focuses on the functional
aspects, ignoring the important data concepts. Instead, you should present
the functional and data abstractions together. The connections between layers
represent the relationships between the functions.

Chapter 2 ■ SOA — Architecture Fundamentals 35

Operational Data

Functional Informational

Integration Services

Business Services

Business Processes

Enterprise
Resources SORSOR

Semantic
Objects

Documents

TransformationIS IS IS ISIS IS IS IS

Data Data

Mainframes

Enterprise Data

Consolidated Data

Integration Data

Figure 2-1 Architectural elements of SOA

From bottom to top, the layers are:

Enterprise resources and operational systems — This layer consists of
existing applications, legacy, and COTS systems, including Customer
Relationship Management (CRM) and Enterprise Resource Planning
(ERP) packaged applications, and older object-oriented implementa-
tions. These applications provide business operations — transactions
that represent single logical units of work in the enterprise’s opera-
tional systems. The execution of an operation will typically cause one or
more persistent data records to be read, written, or modified in a System
of Record (SOR). Operations have a specific, structured interface, and
return structured responses. Data at this layer resides in existing applica-
tions or databases.
Integration services — Integration services provide integration between
and access to existing applications. The separation between the integra-
tion services and the business services is critical to maintaining a flexible
enterprise environment. This often involves the transformation of data
and functions from what’s desired at the business service level to what is
actually possible in the existing systems.
Business services — Business services provide high-level business func-
tionality throughout the enterprise. This layer provides a service inter-
face abstraction and integration of the layer below, breaking the direct
dependence between processes and existing systems. Services are man-
aged, governed sets of enterprise assets responsible for ensuring con-
formance to service level agreements (SLAs). Business services pro-
vide business capabilities through logical groupings of operations. For
example, if you view CustomerProfiling as a service, then the logical

36 Part I ■ Understanding SOA

group of operations it contains might be: Lookup Customer by Tele-
phone Number, List Customers by Name, and Save New Customer
Data. Note that all operations will not necessarily come from the same
operational systems, or in some cases, the operations will be replicated
across multiple similar systems. Thus, the business services provide a
virtual implementation of related business operations. Business services
operate on semantic data objects, virtual data that describes the informa-
tion that must be shared or passed between services. It is often aggre-
gated from multiple existing systems. Note that the business service
layer will be composed of many different types of services, discussed
later in the chapter.

Business processes — A business process consists of a series of
operations that are executed in an ordered sequence according to a set
of business rules. Often, the business process is described in a Business
Process Model, such as those conforming to Business Process Modeling
Notation (BPMN), and executed by a specialized business
process management system (BPMS). The sequencing, selection, and
execution of operations is termed orchestration. Business processes pro-
vide long-running sets of actions or activities. They are composed of
business services and typically encompass multiple service invocations.
Business processes operate on business documents. The processes and
documents are composed from the services and objects of the layer
below, according to a Business Process Model and a common seman-
tic data model. The scope of these processes is often the entire enterprise.
Examples of business processes are: Initiate New Employee, Sell Prod-
ucts or Services, and Fulfill Order.

Completing the answer to the third architectural question, these concepts
and relationships provide value to the enterprise by:

Providing a single, consistent place to access data or perform business
functions

Isolating and exposing existing application data and functions

Creating reusable, combinable building blocks for the construction of
business processes

Figure 2-1 shows a typical layered perspective of SOA that addresses the
composition and integration requirements of SOA and business processes,
but not so much the run-time, governance, organizational, or enterprise
requirements. We will expand on these layers in Chapters 9 and 10 when we
discuss implementing enterprise solutions. Figure 2-2 illustrates a different
perspective on SOA.

Chapter 2 ■ SOA — Architecture Fundamentals 37

Integration
Service

Business
Model

Define

Service Bus

Processes,
Guidelines,
and Tools

Specifies
definition and
requirements
of a service

Defines communications technology
for application integration

Specifies service
wrapping
techniques

Defines common
semantics and data

Defines tools, processes,
and technology for combining
services into EBP

Service

1, 2

3

5

8

7

Common
Semantics
and Data

Enterprise
Business
Process

4

6

Figure 2-2 Enterprise perspective of SOA

SOA needs to describe the following aspects of services within an enterprise:

1. A definition of services, the granularity, and types of services

2. How services are constructed and used

3. How existing packaged and legacy systems are integrated into the
service environment

4. How services are combined into processes

5. How services communicate at a technical level (i.e., how they connect to
each other and pass information)

6. How services interoperate at a semantic level (i.e., how they share com-
mon meanings for that information)

7. How services align with the businesses strategy and goals

8. How to use the architecture

The numbered circles in the figure correspond to the numbered list. Let’s
look at these in more detail.

1. Defining a Service
First, you have to determine what a service is and means. An SOA should
define the different types and granularities of services, such as domain ser-
vices, business services, and enterprise business processes. The characteristics
(and differences) of each should be clearly specified. At the same time, not

38 Part I ■ Understanding SOA

everything should be a service. The SOA should also specify what kinds of
software constructs should not be services. For example, the logic that dis-
plays data on a web page based on a user’s profile should not be a service,
whereas the logic that retrieves the user’s profile and authorization information
should be.

2. Defining How Services Are Built and Used
Services are intended to operate within the larger enterprise context (semantic
and behavioral environment). The SOA must be clear about how services
should be used in an enterprise solution (e.g., what standard features they
have, what required interactions there are, how they support management
capabilities, etc.).

The architecture must define the structure of a service and how to build one.
We will discuss the details of different types of services in the next section. For
each type of service, the architecture should specify:

Granularity — The appropriate size of the service.

Type or style of interface — Guidelines for interface design. For
example, business services should be large-grained services that pass
data through documents, whereas utility services provide discrete com-
mon functions where the input is often a single simple parameter.

Configuration mechanisms — Standard mechanisms for configuring
services should be defined. This allows for the use of a common configu-
ration service, and more importantly, for common configuration data to
be shared between services. For example, several different services may
require the specification of a customer authorization file. Rather than
repeating that information for each service, a better approach would be
to allow the services to share the information. SOA enables the mecha-
nisms required for sharing.

Other artifacts — The set of artifacts that are required to support a ser-
vice, such as design models and specifications, documentation, test
plans, and so on.

Associated information — Additional information that should be part
of a service to support run-time and design-time inspection, such as
the version, author, date, keywords, and so on. Note the two different
and important types of service information: design time and run time.
Although these have some overlap, they are largely different. Design-
time information is used to search for and locate services, to determine if
they are appropriate for the desired usage, and to describe what they do
and how they are used. Run-time information is used more for manage-
ment operations to track what is running at any give time.

Chapter 2 ■ SOA — Architecture Fundamentals 39

Dependency management and other patterns — Specific design pat-
terns that should be followed to keep services independent and reusable.

In addition, the architecture must describe the complete life cycle of services,
including maintenance, evolution, versioning, and backward-compatibility
requirements.

3. Integrating Packaged and Legacy Systems
into the Service Environment
The reality is that much of the business functionality in an enterprise today is
not in the form of a service. An essential part of an SOA is how this functionality
can be exposed as services and connected to the service bus. The SOA must
specify the general mechanism for defining these services, wrapping them,
and connecting them to the bus, with specific implementations for the most
common type of system.

4. Combining Services into Enterprise Processes
An important goal of an SOA is to enable the reuse of services throughout
the enterprise to support a variety of different applications. The SOA must
describe the methods, tools, and infrastructure for combining services into
larger business processes.

5. Specifying the Technology Infrastructure
A technical infrastructure must be in place to enable integration, service
composition, and communication among services. However, there are many
different types of infrastructures, and even within the same type, there are
many different options. For example, if the infrastructure is Web Services, then
the architecture might specify that WS-I Basic Profile v1.1 and Security Profile
v1.0 be used. All aspects of interaction with the technical infrastructure such
as protocol versions, security, and application utilities must be addressed to
ensure integration at the business process level.

Specifying the Technology Infrastructure

The technical infrastructure to enable services to communicate must be com-
pletely specified, along with the guidelines for using that infrastructure. This
includes:

The communications mechanism — How messages, requests, and data
are transported

40 Part I ■ Understanding SOA

Failover mechanisms — How communication failures are handled,
including failover and recovery

Discovery and location transparency — How services are advertised
and discovered in a location-transparent manner

Note that the architecture does not imply any specific technology for this
bus. It could be implemented by Web Services, an Enterprise Service Bus, an
application server platform, or other middleware. However, it is important
that the architecture specifies a solution for communications issues, and that
the chosen solution addresses these issues.

Specifying the Application Infrastructure Required
to Support Services

A service is less valuable in isolation. Rather, its value lies in its ability
to be combined with other services to create an agile enterprise. To do
this, it must be designed to fit into a specific environment. In addition to the
communications infrastructure, this solution environment (infrastructure) and
the services it provides must be described by the architecture. For example,
how do services cooperate in a Single Sign-On (SSO) security framework?
What are the defined security policies required between consumers and
producers (security messaging, access control policies, etc.)? In addition, if all
services support specific management interfaces, logging, or configuration, the
infrastructure should define services to utilize and manipulate the information
provided through them.

6. Defining Common Semantics and Data
The SOA must define the common semantic environment in which the services
operate. For example: What data schema must be common throughout the
enterprise for consistency and interoperability? What must be common to
achieve enterprise goals and enable consistent business processes?

Note that the common enterprise information model is not trying to define
every detail of every piece of data in the enterprise. Rather, it is trying to
define the subset of information that is passed between services, and that must
have a common meaning within an enterprise process.

7. Aligning Services with the Business
A business model is key to understanding the requirements for a common
environment and creating information and services to support it. The business
model should answer certain basic questions: What business is the enterprise
in? What outcomes are required to meet the enterprise goals? What processes

Chapter 2 ■ SOA — Architecture Fundamentals 41

and services are necessary to achieve those outcomes? What capabilities are
needed to implement the processes, and what services will be used to expose
those capabilities? The SOA does not necessarily define the business model,
but it must define how the business model is used to design domain, business,
and enterprise business processes, and how it drives SOA requirements.

8. Determining How to Use the Architecture
Finally, the cleverest architecture in the world will not be successful if it can’t
be used. An architecture is not complete until it defines how it will be used
to support the development of solutions that conform to it. The following
sections discuss the elements of this process.

Determining the Development Environment, Frameworks,
Infrastructure, and Tools

These are all required to support the SOA program. It is not enough to
describe what services are; the architecture must enable the easy and efficient
creation of those services. Even more, it must specify how the architecture
fits with and supports the development process to add value rather than
overhead. We are not proposing that SOA should mandate any particular
development environment at an enterprise level. Our experience is that that
kind of centralization is not effective. What is important, however, is that the
architecture understands the aspects of services that must be consistent across
the range of development environments, and creates standards, guidelines,
examples, frameworks, plug-ins, or the like that support these development
environments and processes. This ensures that architecture becomes a normal
consideration during design and development, rather than an additional step
in the process.

Defining Metrics for Measuring Success

An SOA is only effective if it meets the business goals that drive the SOA
program. The architecture must choose metrics to demonstrate those goals
and a method for collecting and reporting the metrics.

Business-Driven SOA
SOA is not new. There are prominent examples of enterprises that have
successfully implemented them and have realized numerous advantages,
including reduced costs and improved competitiveness. Unfortunately, these
examples are few and far between because implementing a successful SOA is
hard. In the past, few organizations had the skill to overcome the architectural,

42 Part I ■ Understanding SOA

technical, business, and organizational challenges required for successful
implementations. And while many of those challenges still exist, several
technologies are converging to make SOA more obtainable to enterprises
staffed by mere mortals.

Web Services provide a convenient technology for the infrastructure of
services. However, the nature of distributed systems dictates that those ser-
vices be defined at a higher level. Business services designed to exchange
business documents written in Extensible Markup Language (XML) take this
into account, but present new challenges in terms of creating business com-
positions and processing business documents. Business Process Management
(BPM) provides a perfect solution and complement to the implementation of
services and SOA. BPM provides the development and execution environ-
ment for combining services into larger enterprise processes. Business Process
Execution Language (BPEL) is designed to work explicitly with Web Services
and provide coordination and integration of Web Services into higher-level
business services.

Of course, if we have learned anything from the IT industry, we should have
learned that technology alone doesn’t solve business problems; at best it can
act as an enabler. Some combination of technology, business, and organization
is always required to meet business goals. This is even truer with SOA. An SOA
can enable an agile enterprise, where higher-level processes are quickly and
inexpensively composed from an inventory of more fundamental business
services. But alone, it is not enough. It must be accompanied by business
design (i.e., a business model). The business model is critical to creating a
set of services that can actually work together to provide higher-level value.
You can implement an SOA without an overall business model, but you will
end up with only a pile of incompatible services, rather than an inventory of
services that lead to an agile, flexible enterprise.

The business principle behind SOA is to build up a collection of independent
services that can be quickly and easily combined in a variety of ways into
different, higher-level business services and business processes. Chapter 8
addresses service composition. This is what gives an enterprise the agility to
offer new capabilities and respond to competitive pressures. Businesses want
to use SOA to create value and help achieve a business strategy. Doing this,
however, requires an understanding of what the strategy is and making sure
that the right processes and services (building blocks) are being created to
achieve that strategy.

The ‘‘LEGO’’ analogy is often used to describe the service-oriented enter-
prise. Imagine that the LEGO blocks represent different services. You can even
think of the different sized and shaped blocks as different types of services
in the enterprise. Using a combination of blocks, you can assemble many
different things like houses, hotels, and garages. This is fine if you want to
create buildings, but what if you want to assemble a car or a plane? Then,

Chapter 2 ■ SOA — Architecture Fundamentals 43

you need a set of LEGOs that includes wheels, nose cones, and so on. In other
words, you need to plan ahead and know what kind of things you’re trying to
construct in order to have the necessary building blocks on hand. In business
terms, you need to know what business you’re in and where you’re headed in
order to have the right services in the inventory to meet business needs. The
more you know about your strategy and requirements, the more capable you
are of creating the right services to get you where you want to go.

Furthermore, it is not enough to simply have services; you need the right
kind of service to meet your needs now and in the future. For example, a
security service that provides authentication may be enough for a simple
application, but it wouldn’t suffice enterprise-wide. However, enterprise
security services that provide authentication, authorization, security policy
retrieval, security policy enforcement, security credential discovery, and
auditing would work for all applications in the enterprise, including the small
ones. In other words, you need to know enough about where your business is
headed, and how services might be used in multiple environments, to accom-
modate present and future scenarios. Without this knowledge, many of the
services that are built will be headed in the wrong direction, causing either
unnecessary rework, or worse yet, replication of services and inconsistencies
in business processing.

A business model is the place where you define these things. At a high
level, the business architecture describes the goals and value chain of the
enterprise and the processes required to support them. At a more detailed
level, it describes the business services, workers, policies, rules, activities, and
information necessary to implement the business processes. Enterprises that
have taken the steps to create a business model will vouch for its value, and
you won’t find a really successful example of an SOA that doesn’t include
some form of business-driven planning. In summary, the business architecture
defines the business processes that drive what capabilities and services are
needed, and then BPM can be used to exploit these capabilities to create agile
business solutions. The key is to not forget architecture and go directly from
business processes to BPM solutions. Although this is not a book on business
architecture, Chapter 4 addresses some of the important aspects of the business
domain with respect to services.

EASY DOES IT

We’ve discussed the necessity of having a vision of the future enterprise needs,
and creating the right kind of services. But don’t confuse that for a waterfall
approach. For SOA to work, you need to balance two different forces
simultaneously. One is the need to think ahead, and the other is the need to

(continued)

44 Part I ■ Understanding SOA

EASY DOES IT (continued)

deliver things. Luckily, SOA supports both goals with an incremental approach.
Let’s look at the security service example again. Do you provide a simple
service that only does authentication, or do you provide a more
enterprise-strength service that supports authentication, policy, authorization,
and auditing? The answer is yes. You do both. You plan for a service that will
support the enterprise, but you implement only the authentication part first.
However, because you have planned ahead, the structure of the service will
enable it to be easily extended, and the authentication capabilities will
naturally integrate with the policy, authorization, and auditing functions when
you implement those features in future versions of the service.

SOA and Other Architectures
To put SOA into perspective, let’s see how it compares to two other important
and related architectural disciplines: Enterprise Architecture and software
architecture.

Enterprise Architecture

Enterprise Architecture (EA) is another area of IT that is experiencing
rapid adoption and development. EA is supported by a conceptual frame-
work that subdivides the overall subject of Enterprise Architecture into
manageable, digestible pieces. These divisions are called architectural per-
spectives, views, domains, or subarchitectures. Common approaches break
EA into business architecture, information architecture, application architec-
ture, and technology architecture. Let’s use these same perspectives to look
at SOA.

To achieve reuse of services by multiple business processes, the SOA must
also describe how the different services fit together within the context of
business processes. This requires a business architecture that defines the overall
service landscape. The business model is often divided into service groups, and
perhaps individual services within those groups. For each group, it defines the
roles and responsibilities of the services or groups, their relationships to each
other, and their place in the overall enterprise. Chapter 4 describes business
architecture in more detail.

Services must also share a common set of semantics. This requires an
enterprise information architecture that defines what information must be
common and shared among services in order to use them together in a
meaningful way. Chapter 5 describes the common information model in more
detail.

Chapter 2 ■ SOA — Architecture Fundamentals 45

In order to be able to use different services in different processes in a
plug-and-play manner, the services need to have a similar structure, and the
services must play relatively equivalent roles within the overall structure of
solutions. This requires an application architecture that describes the structure
of enterprise solutions, the architectural elements that make up that struc-
ture, the rules for using elements and the relationships among them, and
the roles and responsibilities of the individual elements. This is covered in
Chapter 9.

Finally, the technical architecture provides a detailed definition of the infras-
tructure for supporting services and SOA. In addition, the architecture defines
what a service is and exactly how the service uses the SOA infrastructure.

Similar Structure Is No Coincidence

Both EA and SOA are concerned with an enterprise scope (or at least a
scope beyond a single application) and with aligning IT systems to support
business requirements, strategies, and processes. It’s no coincidence that the
architectural structure of SOA is similar to that of EA. Of course, EA includes
all of the different architectures and application styles in an enterprise, not
just SOA. But a successful SOA requires that the same set of EA concepts be
incorporated into the architecture. Figure 2-3 extends the earlier version of
SOA to illustrate this relationship.

On the right side of Figure 2-3 is a simplified version of Figure 2-2, providing
a representation of the major components of SOA. On the left side of Figure 2-3
is a representation of the main perspectives of EA. The arrows show the
following relationships between EA and SOA:

Enterprise
Architecture

Technology
Architecture

Service

Enterprise
Business
Process

Service Bus

Application
Architecture

Business
Architecture

Common
Semantics
and DataInformation

Architecture

Integration Service

Business
Model

Data

Service-Oriented Architecture

Figure 2-3 EA and SOA

46 Part I ■ Understanding SOA

The business architecture includes the SOA business model and
describes how the services and service groups defined by that model
relate to and support business processes and the outcomes that tie them
to business goals and strategy.

The information architecture includes the SOA common semantics and
describes what the common semantics are, how they are defined,
and how they relate to other operational and analytic data.

The technology architecture includes the SOA service bus and describes
how the service infrastructure supports services, distribution, binding,
security, performance, and so on, and how it integrates with the rest of
the enterprise infrastructure.

The application architecture includes all SOA-related solutions and
describes how services are constructed, how existing applications are
exposed as services, how business processes are composed from ser-
vices, and how services support and relate to other applications styles
such as portals, business-to-business (B2B) applications, and so on.

The similarities in composition suggest that SOA should be structured along
the lines of EA. This does not mean that an organization has to have EA in
order to be successful with SOA. But it does mean that if an organization does
have EA, that EA should be integrated with and help formulate the SOA.

Software Architecture

Earlier, we defined software architecture as encompassing the significant
decisions about the organization of a system, the structural elements that
make up the system, the system composition from those elements, and
how the systems are deployed to provide run-time capabilities. There are
many different aspects to building software, and once again, architectural
perspectives provide a mechanism for dividing the problem into individual
concerns. The most common approach to software perspectives comes from the
‘‘4+1 Views,’’ originally developed in 1987 by Phillipe Kruchen of Rational
Software and now part of the Unified Process. Figure 2-4 shows an illustration
of the views.

Each view represents a different set of important and related concepts that
can be understood separately and that often have their own sets of expertise.
This means that each view can be modeled (i.e., each view can be represented
by a distinct set of models) and that these models can be assembled to create a
complete system.

Chapter 2 ■ SOA — Architecture Fundamentals 47

Logical View
Object Model

• Collaboration Diagrams
• Class Diagrams

• Sequence Diagrams

Process View
Processes
Threads
• Deployment Diagrams

Component View
Files
Dependencies
• Component Diagrams

Physical View
Network Topology

Use

Cases

Figure 2-4 4 + 1 Software architectural views

Logical View

The logical view describes the problem from an abstract, platform, and
technology-independent perspective. It is the one that most often comes to
mind when you think of the ideas of ‘‘analysis,’’ ‘‘design,’’ or ‘‘modeling.’’ The
concepts in the logical view are expressed as a set of structural, behavioral,
and information models. The logical view describes the software elements
that meet the system’s functional requirements. In SOA, you use the logical
view to describe the design of individual services, their interfaces, and their
operations.

Component View

Once the structural elements have been identified, you need to decide how
to group or package them, and how different packages interact. This is the
concern of the component view. In SOA, packages are often organized around
services or service groups. Services are organized in a variety of ways, such
as by their subject matter. For example, business and domain services deal
with issues of the business, whereas foundation services deal with generic
and reusable supporting subject matter such as authentication, authoriza-
tion, and logging. The service inventory, introduced in Chapter 4, divides a
system into its distinct subject areas. The component view also describes how
different subject areas interact.

48 Part I ■ Understanding SOA

Process View

The process view describes the kinds of components — code and other exe-
cutable artifacts — that need to be built in order to realize a system, and
how those artifacts are assigned to executable processes. While the logical
view is about the problem, the process view is about the implementation. But
it is not an elaboration of the logical view; it is a completely independent
(but related) view that describes a specific implementation. There can be more
than one process view to support a given logical view. In SOA, the process
view describes the executable artifacts needed to support services and how
they are organized into processes. These implementation-specific aspects are
not covered in this book.

Physical View

The physical view defines the different real and logical systems (machines,
programs, network nodes, hosts, etc.) that compose and are necessary to realize
a solution. In a very simple system, there may be only one machine containing
the services, their logic, and their data.

More complex solutions will generally contain separate and redundant
machines and nodes for the services, databases, existing systems, and so
on. Additionally, the different services may be supported by different sys-
tems, and these systems may exist inside and outside corporate and divisional
boundaries. In SOA, the physical view describes the configuration and systems
that host the consumers and providers of services to meet specific nonfunc-
tional and quality of service (QoS) requirements. Again, these implementation
specific aspects are not covered in this book.

Use Case View

The use case (or scenario view) presents the system as the capabilities are
envisioned by the end consumer. It models a system in terms of business
scenarios, organized by use cases. This view is shown as overlapping the
others, because the contents of these models generally incorporate elements
of each other’s views. For example, a use case contains not only the functional
requirements (the logical view) but may also include utility-level issues such
as authorization and logging, and nonfunctional requirements that lead to
platform design decisions and system organization decisions. In addition, the
use case view is what ties all of the other views together to provide traceability
across the views in relation to specific use cases.

In SOA, the use case view describes use cases and scenarios. A single use
case will often involve several different services, and a single service will often
be used by many different use cases. Chapter 6 shows you how to look across
multiple use cases to provide a broader perspective during service design.

Chapter 2 ■ SOA — Architecture Fundamentals 49

A WORD ABOUT TECHNOLOGY INDEPENDENCE

Another important separation of concern (yes, there are many) is the difference
between the logical design and the technology implementation. The concept of
technology independence means that you want to completely design the logic
of your system without introducing technology-specific details. Then, you make
an explicit mapping step to translate the technology-independent logic to a
technology-specific implementation.

For example, Web Services are a popular technology for the implementation
of SOA solutions. But, Web Services are not required to implement SOA. So, at
the analysis and design level (the logical view), you work with generic,
technology-independent concepts such as services, interfaces, and documents
rather than specific concepts such as WSDL and SOAP. Then, when you
implement a service interface, you map it to WSDL (hopefully, with a nice tool).

But perhaps you say: ‘‘I’ve already selected Web Services, so why do I care?’’
A perfectly good question, with a perfectly good answer. Web Services are a
rapidly evolving technology. Suppose that you design your service interfaces
explicitly with WSDL v1.1. What happens when you need to upgrade to WSDL
2.0? You will have to change both your design and your implementation. The
changes will be more or less extensive depending on the extent that you
assumed WSDL v1.1 specifics in your design. If, however, your design follows
good SOA architecture and design principles, independent of WSDL, and then
your implementation process does a mapping to WSDL, the upgrade to WSDL
2.0 (or SOAP or UDDI or XSD) will not require any design changes. Experience
has shown that platform-independent designs provide more flexibility, better
extensibility, and better longevity, and can reduce the cost of upgrading by as
much as 90%. We follow a platform-independent approach in this book.

EA, 4+1, and Services

Both EA and software architecture use the concepts of views. And, in fact the
views have reasonable overlap. Primarily, the difference is a matter of scope
and intent. EA is intended to span all the solutions and applications in an
enterprise, and to tie business and IT concerns together. Software architecture
is intended to describe the implementation of a single solution and to tie
design to implementation to deployment.

The primary areas of overlap are in the application and technology views
of EA. The EA application view describes how solutions are constructed of
services and the types of services that exist. The 4+1 logical view describes
the design of individual services, and the 4+1 component view describes the
interaction between them. The EA technology view describes how solu-
tions are implemented on specific technologies to provide commonality
across technologies, implementations, and infrastructures. The 4+1 process

50 Part I ■ Understanding SOA

and physical views show how service designs are implemented on specific
technologies and deployed on specific infrastructures.

Conveniently, all of these different architectural concepts and techniques
are consistent and complementary. Architecture uses a variety of approaches,
concepts, techniques, and tools to solve any given problem. Good architecture
ties all of these together according to fundamental principles and common
underlying concepts and abstractions. So, let’s get back to the important
concepts of SOA.

What Is a Service?

The fundamental concept in SOA is a service, so what exactly is a service?
We define a service as a discrete unit of business functionality that is made
available through a service contract.

The service contract specifies all interactions between the service consumer
and service provider. This includes:

Service interface

Interface documents

Service policies

Quality of service (QoS)

Performance

One of the main differences between a service and other software constructs
(such as components or objects) is that a service is explicitly managed. The QoS
and performance are managed through a service level agreement (SLA). In
addition, the entire service life cycle is managed — from design, to deployment,
to enhancements, to maintenance.

Figure 2-5 shows the major parts of a service.
There are two main aspects to the service itself. In the diagram, the top

part of the service is the service interface, and the bottom of the service is
the service implementation. A service specifically separates the interface from
the implementation.

The service interface specifies the service operations, that is, what the service
does, the parameters that are passed into and out of the operation, and the
protocols for how those capabilities are used and provided. A service typically
contains several different, but related, operations. The service implementation
is how the service provides the capabilities of its interface. The implementation
may be based on existing applications, on orchestrating other services to
combine their capabilities, on code written specifically for the service, or all
of the above. What is important here is that consumers of the service should

Chapter 2 ■ SOA — Architecture Fundamentals 51

see only what the service does, not how it’s implemented. The producer of a
service is free to change the implementation of a service, as long as he or she
doesn’t change the interface or the behavior. For example, a new service might
be completely based on existing functionality in a legacy application. Once
the interface contract is finalized, consumers can start to use the service. In
the meantime, the producer may create a new, modern implementation, and
retire the old legacy application, which runs on a platform that is no longer
supported. Users (consumers) of the service may never notice the difference
as long as the behavior and contract do not change.

In other words, you can think of the service interface as the point through
which consumers (with needs) interact with providers (with capabilities). The
interface defines the style and details of the interactions. The implementation
defines how a particular provider offers its capabilities. This concept of a
connection point allows you to better factor decoupling into the design of your
solutions.

There are also two different aspects to both the interface and the implemen-
tation. These are the functions that are performed and the information that
they are performed on. In other words, a service is a combination of a set of
functional service operations and the corresponding virtual business data that
is passed into and out of the operations. Virtual business data is an abstraction
of business entities (tied to an enterprise schema) that are independent of
data storage or implementation. The service operation signature describes the
parameters that are passed in and out of an operation. The information model
(or enterprise schema) describes the structure and meaning of the virtual
business data passed in and out.

Service
Level

Agreement

Service

Interface

Implementation

Internal
Data

Internal
Functionality

Semantic
Business
Objects

Service
Operations

Service
Contract

Service
Policies

Figure 2-5 Components of a service

52 Part I ■ Understanding SOA

The distinction between the virtual information in the service interface and
the logical and physical data in the service implementation is critical. At
the service interface level, what is important is the information that must be
passed between services to enable and complete the business process. This
is information that must be agreed to and must be common to all the
services that participate in the process. However, internally, many of these
services have a different superset of the information, potentially in a different
format. Luckily, you do not have to know or agree on all of the different
details of the internal data models of all the services involved (which would be
impractical if not impossible). Instead, the separation of the interface from the
implementation (with regard to the information model) allows you to easily
translate between the common (virtual) definition and the internal (physical)
implementation.

A Word about Information Architecture
Now is a good time to clarify an important aspect of information architecture as
it relates to services. You can describe the different types of information in terms
of three layers: physical data (sources), domain (service) data, and semantic
data. Physical data is the persistent enterprise data, usually preexisting.
Domain data is the classes that encapsulate information needed to implement
services. This uses the classic object/relational mapping. Semantic data is
the information exchanged between service consumers and providers and is
often a non-normalized view on domain data or data sources. The mappings
between these three represent the mining of data for different purposes. The
separation of concerns isolates the service consumers, service providers, and
persistent sources to provide more reusable, maintainable, agile solutions.

Figure 2-6 shows these relationships among the various types of data.

Physical data — This is the data that is actually stored on disk. The
details of how it is stored are described in a database schema. The
schema is optimized for the performance characteristics and require-
ments of the particular datastore.

Domain data — This is the data that is used in the service implemen-
tation. It is described in a standard data model and describes all of the
information that is used in the implementation of a service. It represents
the private knowledge of the data. A subset of the data is the service’s
view of the common information. Service data is a view of the phys-
ical data and may come from one or more physical datastores.

Semantic data — This is the data that describes the common under-
standing of business entities and information that must be shared
between services. It is described in the shared information model and
is closely aligned to the business model. It is used to describe informa-
tion that is exchanged through service interfaces. Semantic data is a
normalized view of the common data from all the different services.

Chapter 2 ■ SOA — Architecture Fundamentals 53

Semantic
Business

Data

Physical Data:
• Described by a database
 schema.
• Used for persistence.

Domain Data:
• Described by an internal
 data model.
• A view of the physical
 data.
• Used for implementation.

Semantic Data:
• Described by a common/shared
 information model.
• A view of the common aspects
 of services.
• Used for information exchange
 through interfaces.

Common

Specific

Common

Specific

Figure 2-6 Types of information

The last important aspect of the service interface is the service level agree-
ment. This specifies two important performance criteria about the service: the
technical performance in terms of response time, throughput, availability, and
reliability, and the business performance in terms of business units of work
performed within a certain timeframe and to a specific quality level.

Chapter 5 deals with the design of the common semantics, and Chapter 6
addresses the design of the service interface.

Service Characteristics
In addition to the specific structure of a service shown in Figure 2-5, good
services have the following specific characteristics:

Modularity and granularity — In SOA, business processes are decom-
posed into modular services that are self-contained. Services themselves
can be composed from other modular services, and can be mixed and
matched as needed to create new composite services.

Granularity is a quality of functional richness for a service — the more
coarse-grained a service is, the richer or larger the function offered by
the service. Coarse-grained services provide a greater level of functional-
ity within a single service operation. This helps to reduce complexity and
network overhead by reducing the steps necessary to fulfill a given busi-
ness activity. Often this is accomplished by composing smaller tasks into
a single coarse-grained operation. Fine-grained service operations pro-
vide the exchange of small amounts of information to complete a specific
discrete task. An example of a coarse-grained service is one used to price

54 Part I ■ Understanding SOA

an insurance quote. A fine-grained service (which would be used by the
pricing service, among others) might return risk information based on
the zip code of the applicant.

Encapsulation — Services exhibit a strict separation of the service inter-
face (what a service does) from the service implementation (how it is
done). Encapsulation hides the service’s internal implementation details
and data structures from the published interface operations and seman-
tic model.

Loose coupling — Coupling describes the number of dependencies
between a service consumer and provider. Loosely coupled services
have few, well-known and -managed dependencies. Tightly coupled
services have many known and, more importantly, unknown dependen-
cies. The degree of coupling directly affects the flexibility and extensi-
bility of a system. We discuss coupling in detail later in the chapter.

Isolation of responsibilities — Services are responsible for discrete
tasks or the management of specific resources. A key characteristic of
service design is the isolation of responsibility for specific functions or
information into a single service. This provides one (and only one) place
for each function to be performed, providing consistency and reducing
redundancy.

Autonomy — Autonomy is the characteristic that allows services to be
deployed, modified, and maintained independently from each other and
the solutions that use them. An autonomous service’s life cycle is inde-
pendent of other services.

Reuse — Together, modularity, encapsulation, loose coupling, isolation
of responsibilities, and autonomy enable services to be combined into
multiple business processes or accessed by multiple service consumers
from multiple locations and in multiple contexts. In other words, ser-
vices are shared and reused as building blocks in the construction of pro-
cesses or composite services.

Dynamic discovery and binding — Services can be discovered at
design time through the use of a design-time service repository.
Although it is theoretically possible to dynamically discover services
at run time, we have yet to see this work in practice. See the sidebar
‘‘Dynamic Discovery and Binding.’’

However, service consumers can be dynamically bound to providers
during run time. In this scenario, the consumer asks the registry for a
specific service and is routed and bound dynamically to the appropriate
service provider. The dynamic binding of a service consumer to the ser-
vice provider enhances loose coupling and enables additional capabili-
ties such as mediation.

Chapter 2 ■ SOA — Architecture Fundamentals 55

Stateless — Service operations are stateless. This means that they neither
remember the last thing they were asked to do nor care what the next is.
Services are not dependent on the context or state of other services —
only on their functionality. Stateless services provide better flexibility,
scalability, and reliability.

Note that this is typically a design goal, but it isn’t always practical (for
long-running service interactions, for example).

Self-describing — The service contract provides a complete description
of the service interface, its operations, the input and output parameters,
and schema. The contract may also contain pre- and postconditions and
constraints about the operations.

Composable — Services can be composed from other services and, in
turn, can be combined with other services to compose new services or
business processes.

Governed by policy — Relationships between service consumers and
providers (and between services and service domains) are governed
by policies and service level agreements (SLAs). Policies describe how
different consumers are allowed to interact with the service — in other
words, what they are allowed to do.

Independent of location, language, and protocol — Services are
designed to be location-transparent and protocol/platform-independent.
In other words, they are accessible to any authorized user, on any plat-
form, from any location (within reason).

DYNAMIC DISCOVERY AND BINDING

One of the overpromised characteristics of services is the concept of dynamic
discovery and binding. Let’s take a look at each of these.

Dynamic discovery means that a consumer of a service can go to some cent-
ral location to discover that a service exists and get all the information necess-
ary to start using the service. This is a useful concept at development time. The
story goes like this: You know that you need a service that does such and such,
so you go some place and look for services that might do what you need. Once
you find one, then you can figure out how to use it. In most enterprises, this is
done through some combination of a service repository and word of mouth.

Now think of the way a computer program is structured. You know that you
have to accomplish specific goals by doing certain things with certain
information. So, your program goes about collecting the information and then
applying the algorithms to it to achieve the desired result. But you don’t write
programs that don’t know what they’re trying to accomplish and that go out

(continued)

56 Part I ■ Understanding SOA

DYNAMIC DISCOVERY AND BINDING (continued)

looking for random functionality that they can somehow utilize to accomplish
unknown goals. The idea that a program would dynamically discover services at
run time, figure out how to use them, and reconstruct itself flies in the face of
how you build, test, or deploy systems. Although it might be theoretically
possible (only after the semantic web is a reality), we don’t see it affecting
enterprise SOA for a while.

Let’s look at another touted aspect — dynamic binding. Here, the idea is that
a program is going to read the description of a service interface and
dynamically construct the request and response handling in order to use the
service. If the user of the service is going to be a person interacting though a
user interface, it would be possible to write a program that dynamically
constructs a form to ask the user for the service’s inputs, constructs and sends
the requests, and then displays the results. However, if the user of a service is
another program, which is often the case with SOA, then this doesn’t make
sense. If you’re writing a program to use a service, then you need to know what
parameters to pass to the service request and how to process the service
response. Generally, you do not want or need this to be dynamic, nor can you
justify the cost of writing a program smart enough to do it. So, while it is
theoretically possible, and there may be a few examples where dynamic
interface discovery makes sense, in our experience it is not practical. However,
the other aspects of dynamic binding, and the dynamic connection of the
consumer to the provider endpoint, are useful.

Service Granularity

Granularity describes the size of a service. This doesn’t mean size in terms of
kilobytes of code. It means the amount of business function that is performed
in a single request/response exchange of messages.

One of the most common questions asked about SOA is: ‘‘How big should
a service be?’’ We’re often told that services should be coarse-grained, but
of course it’s not that simple. There is no, single, correct granularity for a
service. Rather, the right granularity depends on a variety of factors such as:
Who are the intended users of the service (partners, business processes, other
services)? What are the topology and performance requirements (LAN, WAN,
etc.)? What is the intended scope of the service?

In any complex system or environment, you should expect to see a wide
range of service granularities. Figure 2-7 shows a hierarchy of the following
service types and granularity:

Enterprise business processes — These business processes span the
entire enterprise and can make use of the underlying services.

Chapter 2 ■ SOA — Architecture Fundamentals 57

Business services — Business services are the most coarse-grained ser-
vices. Business services expose high-level, composite business functions
to the enterprise. The functions and information match closely to the
semantics and syntax required of business processes. Data integration
services at this level support the consolidated data required by enter-
prise processes. Business services can be either of the following:

Line-of-business services — Specific LOB functionality that is exposed
externally to the rest of the enterprise

Common business services — Allow all applications to share basic
business functionality and exhibit common behavior (e.g., Structured
Information Management)

Domain services — Domain services are medium-grained. They pro-
vide business-related services that are specific to a business domain and
are used by many different business services in that domain (e.g., mem-
bership validation) but may not be exposed outside of the domain.

Utility services — Utility services are the least coarse-grained. They pro-
vide lower-level services that provide common functionality across the
enterprise (e.g., address book or part number validation).

Integration services — These expose existing applications as services
for use by the rest of the enterprise, and provide consistent consoli-
dated access to enterprise data that is spread across many different data
sources. The granularity of integration services will be partially depen-
dent on the existing systems that they expose. Integration services typi-
cally involve a transformation between the enterprise model and appli-
cation model, both at a functional and informational level.

External services — These provide access to systems and applications
provided by suppliers or partners external to the enterprise (e.g., credit
card validation or shipment tracking). The granularity of external ser-
vices will depend on the particular service provider. Although tradi-
tionally these were relatively fine-grained, new software-as-a-service
providers are creating a wide variety of services in all areas.

Foundation services — These provide fine-grained capabilities that are
used in the construction of higher-level services, independent of any
business domain (e.g., security, logging, and orchestration). These are
the capabilities traditionally called services that supported infrastruc-
tures such as CORBA or COM. Unfortunately, we can’t just stop calling
them services, but we do need to distinguish between them and the
business-related services listed here. These are sometimes also called
technical or infrastructure services.

58 Part I ■ Understanding SOA

Foundation Service Layer
(May be used by all other services)

Domain
Service

External
Service

Integration
Service

Utility
Service

Enterprise
Business
Process

Business
Service

Business
Service

Domain
Service

Figure 2-7 Service hierarchy

Let’s look at an example. Suppose that you want to create a new busi-
ness process to provide quotes for automobile insurance policies. The steps
involved in the quoting process are to collect information, validate the request,
underwrite the request, price the policy, create the quote, and send it to the
customer. These major steps, or tasks of the business process, are implemented
by business services. Figure 2-8 shows a modified service hierarchy specifically
to illustrate this business process.

In order to establish a price, the insurance company needs to:

Determine the driver’s history with the state motor vehicle department

Determine the driver’s history with the independent insurance bureau

Determine the risk associated with the driver’s residence location

Determine the make and model of the vehicle

Use the existing pricing application that is running on the company’s
mainframe

The company has implemented a ‘‘driver history’’ service within the
automobile LOB. This domain service uses two external services: one from
the department of motor vehicles to get the driver license record and one
from the insurance bureau to get a driver claim history. The company has
also implemented a VIN (vehicle identification number) domain service to get
make and model information. Both of these services are medium-sized and

Chapter 2 ■ SOA — Architecture Fundamentals 59

generally useful within the Auto line-of-business (LOB). A Location utility
service is used to get information related to the driver’s residence. This service
takes the postal code as input and returns risk information. This is a small,
discrete function that is useful across the entire enterprise. Finally, the com-
pany has written a Pricing integration service as a wrapper around its existing
mainframe pricing transaction.

The Pricing business service acts as a coordinator for all the rest of the
services. When its pricing operation is called by the business process,
the pricing operation in turn calls operations on each of the other services
(namely Driver History, VIN, and Location), collates the returned informa-
tion, calls the Pricing integration service, formats the response, and passes it
back to the business process, which moves on to next step in the process, the
Quoting Service.

One of the ways to determine how big a service should be is to say
that a service’s modularity should correspond to the expectations of the
service’s user. For example, we described the relationship between business
processes and business services by saying that a process is decomposed into
tasks, and the tasks are implemented by operations of business services. So,
the correct granularity of a business service corresponds to the size of a task
within a business process. Likewise, you build larger services by assembling
smaller ones together. Similar to how a business process can be thought of
as an assembly of business services, a business service can be constructed by
combining other small and medium-sized services. So, the correct granularity
of a domain service is the normal decomposition of a business service, and so
on. Obviously, this is not a specific measurement, but a rough guideline.

VIN
Domain Service

Driver History
Domain Service

DMV
External Service

Pricing
Integration Service

Location
Utility Service

Quoting
Business Service

Underwriting
Business Service

Insurance Bureau
External Service

Pricing
Business Service

Quote Insurance
Business
Process

Figure 2-8 Service hierarchy example

60 Part I ■ Understanding SOA

Service Dimensions

As the previous discussion suggests, size is not the only important and
distinguishing characteristic that determines how a service is used. Figure
2-9 shows four dimensions of a service: Scope, Ownership, Granularity, and
Construction. Every service has some aspect of each dimension.

Scope — Scope defines the organizational boundaries that a service is
expected to operate in. For example, a service with an enterprise scope
is expected to be used by processes or other services across the entire
enterprise (i.e., other LOBs). At the opposite end of the scale is a service
that is used by only a single application or organizational group. ‘‘So,
who cares?’’ you might ask. Shouldn’t all services be available across the
entire enterprise? It turns out that there is a direct correlation between
the scope of a service and the responsibilities and costs of managing,
maintaining, and enhancing it. On a simple level, this seems fairly obvi-
ous. The larger the user base, the more the support costs. So, for practical
reasons, you may want to limit the scope of services in order to limit the
liability of particular service providers and encourage participation in
the overall enterprise SOA.

Ownership — Ownership defines the organizational unit that is respon-
sible for support of a service. In an SOA, this extends well beyond simple
maintenance and operations to the overall life cycle of the service. Some
of the thorny ownership questions are: How are the different requests for
new enhancements managed and prioritized across the many different
users? How many versions of the service will be supported simultane-
ously? What kind of backward compatibility will be required? How long
will previous versions be supported?

A common organizational approach is to have a central service group
that is responsible for ownership of shared services across the enterprise.
In addition, each LOB (or smaller organizational unit) may have some
services that they individually own. Any of the possible combinations
of ownership and scope could exist for services within a given organiza-
tion.

Note that services are often used to cross ownership boundaries and
establish value exchange across corporations.

Granularity — Granularity describes the size of a service in terms of the
amount of business function that is performed in a single request/res-
ponse exchange of messages. This was covered extensively in the
previous section. Note that a service designer runs into the issue of gran-
ularity very quickly (well before he or she understands the other dimen-
sions), which is why it is usually the first question asked about services.

Chapter 2 ■ SOA — Architecture Fundamentals 61

Construction — Construction refers to how the service has been imple-
mented. For example, it may be implemented directly as code such as a
small granularity service or it may be composed of other services such as
a business service. But there are also some other very different options
that warrant careful consideration. The service may essentially be a ser-
vice wrapper around some existing function or data in a legacy or COTS
application. We call this an integration service. Or, the service may be
provided (as is) by a business partner, such as the ability to locate a ship-
ment with FedEx based on its tracking number. We call this an external
service.

Granularity

Large

Small

Ownership

Central

Individual
organization

Scope

Enterprise

Application

Construction

Composite

Wrapper

Service

Figure 2-9 Service dimensions

It turns out to be important to differentiate integration and external ser-
vices from other services. The tools and techniques that you use to construct
integration services are sufficiently different that you need to treat their
creation differently. External services require a different mechanism for dis-
covery. Once you find them, however, you have no control or influence over
them. Another important distinction occurs in the use of the service. Both
integration and external services generally require translation between the
semantics and syntax of their interfaces and that of the enterprise business
processes they will support.

SERVICE DEFINITIONS

Keep the following service definitions in mind:

◆ Service — A specific style used to provide functionality based on a
service contract. The interaction of the services is specified in the service

(continued)

62 Part I ■ Understanding SOA

SERVICE DEFINITIONS (continued)

interface. The service acts as a connection for consumers who need to inter-
act with providers with specific capabilities. Normally, a service is further
characterized by loose coupling and offers a process-centric rather than
data-centric interaction style.

◆ Interface — An interface defines the interaction with a service. It groups
related capabilities via a set of related operations. The interface defines
the inputs and outputs of the service operations and any preconditions,
postconditions, and constraints of those operations. The interface may be
specified in terms of an interface definition language (such as WSDL or
COM IDL), or as an interface class (as in Java).

◆ Process — A business process is a set of coordinated tasks and activities
that lead to accomplishing a specific organizational goal. In terms of SOA, a
process can be used to coordinate business services.

◆ Granularity — Refers to the size or amount of functionality in a given inter-
action. For example, a very fine-grained interaction would be to set or get a
single attribute value of an object. A very coarse-grained interaction would
be to get all of the values of a collection of objects in a single interaction.
These are examples of interface granularity. Granularity also refers to the
value of a given interaction. For example, Add Member is a higher-grained
service than Validate Address. The appropriate granularity of a service and
interface is based on the intended usage and applies to the type of service.

◆ Composite service — A service with an implementation that is a composite
of other services.

◆ Atomic service — A service with an implementation that does not require
or use any other services. This is the lowest level of service composition.

◆ Foundation service — A foundation service is a utility that aids in the con-
struction of other services, such as a business rules engine, data-routing
service, or workflow system. These services do not provide any specific
business functionality but instead provide higher-level technical capabil-
ities for the construction of services. (The terms infrastructure service and
foundation service are used synonymously.)

◆ Business service — A business service is a specific kind of service that
offers a higher granularity of business value (such as Evaluate Escrow, or
Recalculate Payments). It is typically composed of several lower-level
or finer-grained services.

◆ Domain service — A domain service is a lower-level service that provides
business functionality within a specific business domain. It provides impor-
tant, shared capabilities within a domain, but it is not intended to be
exposed outside of the domain. For example, validating the correctness of

Chapter 2 ■ SOA — Architecture Fundamentals 63

payee data is a function (service) that is shared by several
different aspects of claims processing but is not intended to be used by
other domains. Domain services provide common functionality that is used
in the composition of business services.

◆ Utility service — Utility services are the smallest, or least coarse-
grained. They provide lower-level services that provide common function-
ality across the enterprise (e.g., address book functionality or part number
validation).

◆ Integration service — An integration service exposes existing applications
as services for use by the rest of the enterprise, and provides
consistent consolidated access to enterprise data that is spread across
many different data sources. The granularity of integration services will be
partially dependent on the existing systems that they expose. Integration
services typically involve transformation between the enterprise model and
application model.

◆ External service — An external service provides access to systems and
applications provided by suppliers or partners external to the enterprise
(e.g., credit card validation or shipment tracking). The granularity of exter-
nal services will depend on the particular service provider. Although tra-
ditionally these were relatively fine-grained, new software-as-a-service
providers are creating a wide variety of services in all areas.

◆ Enterprise business process — An enterprise business process is a
specific kind of business process that spans business domains within (or
outside) the enterprise.

◆ Workflow — Workflow is a style of computing in which a process is
decomposed into a series of steps, activities, conditions, and the like. Work
activities flow from one step to the next based on conditional evaluation.
Workflow is typically executed by a workflow management system that
supports developing workflows, dispatching work to queues, process man-
agement, and so on. Frequently, workflow systems include activities that
are carried out by humans, where the work items are placed in a person’s
inbox and completed items are placed in his or her outbox.

◆ Orchestration — Orchestration is a specific type of workflow that is
generally applied to the construction of business processes from busi-
ness services or of composite services from smaller services, and does not
include human-performed activities. Orchestration often includes a
conductor or controller that is managing, controlling, or directing the inter-
action between other parts so that they do not have direct dependencies on
each other.

(continued)

64 Part I ■ Understanding SOA

SERVICE DEFINITIONS (continued)

◆ Business Process Management (BPM) — Wikipedia defines this as ‘‘an
emerging field of knowledge and research at the intersection between
management and information technology, encompassing methods, tech-
niques and tools to design, enact, control, and analyze operational
business processes involving humans, organizations, applications, docu-
ments and other sources of information.’’ You can think of it as a type of
process construction that emphasizes the management of business pro-
cesses in addition to the technology of orchestration. A key function of BPM
systems is monitoring to ensure processes are meeting the intended busi-
ness objectives. In addition, they may include auditing, reporting, and other
functions.

◆ Business Process Model — A model used to define the execution and
composition of higher-level processes from lower-level services. Process
models are executed by orchestration or BPM tools. Both business services
and enterprise business processes can be defined by Business Process
Models.

Loose Coupling Is King
A principle characteristic of a service is loose coupling. Coupling refers to
the extent of dependency between modules, components, or services con-
sumers and providers. Loosely coupled services (it’s actually the consumer
and provider that are loosely coupled) have few well-known dependencies,
whereas tightly coupled services have many known and, more importantly,
unknown dependencies. A system’s degree of coupling directly affects its
overall flexibility. The more tightly coupled a system, the more a change in
one service will require changes in other services or service consumers.

There are many dimensions to coupling. In distributed systems, tradition-
ally coupling was thought of with respect to time, and discussion about it was
framed in terms of synchronous versus asynchronous communications mech-
anisms. However, in service-based systems, the more important dimension of
coupling is the �used� and �used by� relationship between consumers
(those with needs, who use capabilities) and providers (those with capabilities
that are used by consumers).

SOA is about organizing functional capabilities into services and limiting
the coupling between consumers and providers to specific service interfaces.
That way, changes to a function only effect the consumers connected to the
service providing that function. All other consumers who are interacting with
the same provider, but through different service interfaces, are unaffected.

Chapter 2 ■ SOA — Architecture Fundamentals 65

Object-based analysis and design are concerned with low coupling and high
cohesion. In other words, you want to design the responsibility of a class
or subsystem so that it’s as independent as possible from other classes (low
coupling), giving it the highest potential for reuse in multiple scenarios. At the
same time, however, you want to group related responsibilities in the same
class (high cohesion) to centralize related business rules and access to common
data, and to minimize unnecessary messaging or interactions.

These principles of coupling and cohesion apply to services, but a service-
oriented architecture takes loose coupling much further. This is important for
several reasons. In an enterprise, the producer and consumer of services are
frequently decoupled in terms of organization, schedules, and priorities. In
other words, the application that is consuming a service has a different life
cycle than the service itself. What happens when the group that develops
and maintains the service decides to upgrade? One option is to demand
that consumers of the service upgrade at the same time. Although that may
sound reasonable to some (producers mostly), it is not reasonable to service
consumers. The ultimate result of such a policy is that other groups will not
use the service and instead will develop something themselves that they have
control over. If service providers want to promote use of their services, they
must understand that the users of the service will be different organizational
units, with different schedules, priorities, and business drivers. Given this, it
is important to enable the independent evolution of both the service consumer
and provider (for example, loose coupling). This is done through a variety of
techniques, technologies, and policies.

In an SOA, you want to achieve loose coupling in terms of the following:

Location transparency

Interface and implementation

Data

Versioning

Interoperability and platform independence

Usage, assumptions, and knowledge

These are discussed in the following sections.

Location Transparency

Location transparency relieves the service consumer of the need to know
anything about the location of the service. Instead, the consumer goes to
a well-known service registry to dynamically look up location information.
The service registry (as an intermediary) can provide many other important
system attributes in terms of availability and performance. For example, a

66 Part I ■ Understanding SOA

load-balancing mechanism can be used to distribute requests across multiple
service instances for increased availability. New service instances can be added
to increase throughput without any change (or knowledge) to the client. Service
locations can be moved as systems are migrated, or for redundancy and failover
purposes.

Location transparency is not new. It has been used since the early implemen-
tations of DCE (Distributed Computing Environment, from the Open Software
Foundation) in the mid-1980s. However, SOA extends the service directory
(the fundamental building block of location transparency) to a service registry,
where not only the location of the service is determined, but also the service
interface contract. A service consumer can locate an appropriate service at
run time by providing a set of selection criteria to the registry. The registry
will then return a pointer to the most appropriate service based on both the
consumer’s and system’s criteria. The use of the registry in enterprise solutions
is discussed in Chapter 9.

Interface and Implementation

Another fundamental concept of distributed applications is the decoupling
of the interface from the implementation (also known as encapsulation in
object-based systems, or information hiding in data systems). This allows a
service implementation to change (such as changing internal data represen-
tation, or migrating from a legacy system to a new implementation) without
requiring changes of the service consumers. SOA reduces coupling and depen-
dency between service providers and consumers by ensuring that the interface
contract is their only means of interaction. Chapter 6 describes loose coupling
in service interface design.

Data

You can also think of decoupling in terms of the definition of data. The concept
of information hiding directs you to define a public view of the data (the
semantic data) and then map it to the internal view (the domain data) or
implementation. A service should never expose its internal data structures.
Even the smallest amount of internal information that is exposed outside
the service will result in unnecessary dependencies. Only the information
available in the semantic model is exposed through the interface. In the
service implementation, that information is transformed between the semantic
information model and the internal schema to isolate the two. In other words,
the internal data definitions are mapped into the semantics of the external
contract. The contract depends only on the service’s problem domain, not on
the internal implementation details.

Chapter 2 ■ SOA — Architecture Fundamentals 67

This allows the internal view to evolve without affecting clients, and pre-
vents clients from making assumptions about the implementation. Chapter 7
describes the transformation between semantic and domain data in the service
implementation.

Versioning

Services will inevitably evolve to meet new requirements. However, as services
are used beyond organizational or enterprise boundaries, the producer of a
service cannot control when the consumer of a service will update his or
her implementation. Additionally, as more and more consumers come to
depend on a specific service, it becomes more difficult logistically to manage a
forced version migration. At a business level, if the service consumers cannot
maintain control of their own application life cycle and release schedules,
they are unlikely to make use of that service. An SOA must take these
issues into account through a combination of infrastructure, interface design,
data definition, dynamic binding, and versioning policy. For example, the
infrastructure for the service definition, lookup, and invocation must support
version numbers and multiple simultaneous versions.

Service providers must conform to a versioning policy. A typical policy
would describe two classes of upgrade: minor enhancements and major
enhancements. Minor enhancements are bug fixes and other small changes that
do not change behavior or interfaces (although they may enhance capabilities
in simple ways). Major enhancements change interfaces and/or behavior. A
typical policy would require backward compatibility between minor version
updates. In addition, it would require two major versions to be supported
continuously, or a minimum period (1 to 2 years) for a previous version to be
supported. Versioning is discussed in more detail in Chapter 9.

Interoperability and Platform Independence

The requirement for services to support multiple consumers has implications
in terms of communications, interoperability, and platform independence.
You cannot assume that all of the consumers of a service will be using the
same platform. This is especially true for large enterprises or consumers that
are outside the enterprise boundaries. Therefore, you need a communications
mechanism that is compatible across platforms. This allows any client to
be able to access a service, and gives service providers flexibility in terms of
platform implementation. (For example, because of acquisition, they may need
to implement services now on an existing platform, while planning to migrate
to the different, enterprise-standard platform over time.)

Web Services can help provide this interoperability, but it is not so simple.
As mentioned earlier, Web Services are rapidly evolving. Consumers and

68 Part I ■ Understanding SOA

providers should maintain as much independence from specific mechanisms
as possible (see the sidebar ‘‘A Word about Technology Independence’’). As
an alternative, interface compatibility can be defined based on conforming
operation signatures rather than type compatibility.

Usage, Assumptions, and Knowledge

SOA is a loosely coupled system of services and service consumers. At design
time, loose coupling requires that services be designed with little or no
assumptions or knowledge of any particular service consumer. The service
implementation should make no assumptions as to the purpose, or technical
or business characteristics, of the service consumer. A fundamental quality of
a service is its ability to be reused in new or different contexts.

Common Service Patterns
They say ‘‘Parts is parts,’’ but not all parts are the same and not all services are
created equal. Given the wide range of values across the different dimensions
mentioned so far, there could be a staggeringly complex variety of services.
But it turns out that we can simplify things considerably by describing a set
of common service types to be used in service design and then mapping those
types to their specific values across the service dimensions at implementation.
It also turns out that these common service types correspond to patterns
of services commonly seen in successful SOA applications. A hierarchy of
common service types was previously shown in Figure 2-7. Let’s take a further
look at the business service and business process.

Figure 2-10, which represents a business service, illustrates these concepts.
The higher-level business service is constructed of lower-level, domain, utility,
and foundation services. Orchestration is used to define how these different
services are combined to form the business service. The business service is
exposed by the service interface.

BA

Business Components

Service
Interface

Utility Service

Domain Services

Business
Service

Orchestration

Foundation Services

Figure 2-10 Construction of business services

Chapter 2 ■ SOA — Architecture Fundamentals 69

As an example, a business service to determine insurance claim eligibility
would first use foundation services to verify that the consumer has the
authority to execute the service. Next, it would use domain services to perform
claim format validation and utility services to validate addresses. Finally, it
would use custom business logic (business components) or rules to determine
whether the claim is within the coverage of the member’s policy.

Of course, SOA frequently has a larger scope than a single business service.
It may also have an LOB or enterprise scope that defines how business
processes can be constructed at the enterprise level, combining capabilities
from multiple LOBs. Figure 2-11 illustrates how an enterprise business process
is constructed from business services, as well as from services offered by
packaged applications, legacy systems, or COTS applications. In the latter two
cases, the systems do not already conveniently provide their functionality as
services, so they are wrapped by an integration service. But notice that the
business process accesses the integration service through a business service.
This is an important constraint of the architecture. The architecture, design, and
implementation of integration services is covered in Chapter 10. A business
process management system is used to define the sequence and interaction
(orchestration) of the composed services.

Enterprise Business Process

Business Process Orchestration

Integration
Service

Packaged Application

BA

Service
Interface

Utility Service

Orchestration

Domain Service

Foundation Services

Business
Service

Business
Service

Business
Service

Business
Components

Figure 2-11 Enterprise business process

So let’s look at the business service in more detail in the context of business
processes and service dimensions.

The scope of the business service must be sufficient to support the scope
of the business process, which is typically at an LOB or enterprise level.

70 Part I ■ Understanding SOA

The ownership of the business service must support the business
process and the required cooperation among organizations or units.
The right model for ownership will depend on the organization,
politics, funding, trust, and so on of a particular enterprise. What is
important here is that for the business process to use and depend on a
business service, some trusted organization must own the service
and must provide a level of guarantee to the business process
owner.

The granularity of the business service should match well to the
granularity of function that is performed in a typical activity within
the business process. This is generally a large or medium service.

The construction of a business service is based on the composition of
other services. Some benefits of this approach are that it allows the large
granularity of business services to be created by combining smaller units;
it allows business functions of limited scope to be exposed beyond that
scope in an indirect, limited, and controlled fashion; and it allows the
semantic and functional mismatch of business processes and existing
systems to be bridged.

Service Types and Purpose

Another important consideration is separate from the size, scope, ownership,
or construction of a service. That is the intended purpose of the service.
To understand these different service types, you can apply the architectural
principle of separation of concern. Designers have long applied the separation
of data from logic as an important concept in constructing applications. This
not only provides the opportunity for decoupling the different concerns but
also allows for specialized environments in which to implement them.

BPM is an example of separating the workflow or schema of a business
process from the rest of the logic so that the workflow can be executed
and managed in a specialized environment, and so that the business can
rapidly respond to changes by quickly modeling new processes. SOA facili-
tates this by providing business services as the basic building block of business
processes.

Similarly, Business Rules Management (BRM) is an example of separating
business rules or decisions from the rest of the application logic so that the
rules can be executed and managed in a specialized environment and can
easily be changed to support new business requirements. Again, SOA facili-
tates this by providing services that expose business rules and decisions (see
Figure 2-12).

Chapter 2 ■ SOA — Architecture Fundamentals 71

Task

EntityDecision

Task Task Decision

Entity Entity

Figure 2-12 Service usage and dependency pattern

Typically, you construct the service layers with three broad categories of
service:

Task services — Services that implement a business function, such as
a service that calculates the price of an insurance quote or validates the
format of an address. Task services come in all different sizes, ranging
from discrete utility services to large business services. Smaller services
tend to be more general in purpose and provide a higher potential for
reuse. Business services are often large compositions of smaller services
and may be designed to support one or more specific process. As such,
they have less potential for broad reuse across processes (but this is
okay, because they have been composed from other reusable parts).

Entity services — Services that primarily manage access to business enti-
ties. Examples of business entities are customers, policies, claims, and so
on. They correspond to major business information concepts. Entities
are usually medium to large in size. Entities tend to be independent of
any particular business process and instead are part of multiple different
business processes. Entity services provide a high level of potential for
reuse. Note that we are talking about business entities here, not low-level
data schema elements.

In general, task services are active and do something to deliver value.
Entity services support task services by adapting and providing informa-
tion needed to implement the tasks. Care must be taken when
designing entity services to avoid exposing internal data rather than
business semantics.

Decision services — Services that execute business rules to provide
business decisions. An example of a decision service is Approve
Creditworthiness. Decision services generally provide yes/no answers
to complex questions, or support frequently changing externalized rules
such as tax regulations. Decision services are usually composed into
other services and are small to medium in size.

72 Part I ■ Understanding SOA

You combine these different service types to provide flexible business
capabilities that support the activities of a business process. Best practices
provide a variety of patterns, techniques, and tools for service composition
that help you reduce dependencies, limit coupling, and maximize flexibility.
Figure 2-12 provides a high-level illustration of a typical pattern designed to
reduce dependency and increase reuse of entity services. The pattern shows a
task-level process service orchestrating the combination of multiple processes.
Each lower process provides access to one or more entity services. A process
service might also make use of a decision service as part of its composition.
However, an entity service is prohibited from directly invoking another entity
service.

Figure 2-13 expands the service layer of Figure 2-1 to include these addi-
tional concepts. As before, the tasks of the business processes are implemented
by services (most often task-focused services). High-level, task-focused busi-
ness services are composed of other, smaller services. Now, you can create
new and different compositions of services using the richer set of process,
entity, and decision service types. In this way, you can combine the benefits of
flexible, changeable rules with the benefits of modularity, flexibility, and reuse
promised by SOA.

Enterprise
Resources Data Data

Mainframes

Business
Processes

Services

Integration
Services

Entity
Services

Process
Services

Decision
Services

IS IS IS IS

Figure 2-13 Service types and layers

Chapter 2 ■ SOA — Architecture Fundamentals 73

SOA Reference Architecture

In Chapter 1, we described the requirements of SOA and introduced its
reference architecture. Throughout this chapter, we have described the overall
architecture of SOA. The reference architecture is the formal representation of
these concepts.

The term reference architecture has as many different meanings as it has
uses and thus can be a great source of confusion. Wikipedia says, ‘‘A reference
architecture provides a proven template solution for an architecture for a
particular domain. It also provides a common vocabulary with which to
discuss implementations, often with the aim to stress commonality.’’

SOA reference architecture goes beyond this definition to support the
following goals:

Provide a common language for services and SOA

Provide consistency of implementation, business purpose, and semantics
across services

Provide an architectural-based design methodology

Support SOA governance

Support EA

Define how the reference architecture is used

Figure 2-14 illustrates the conceptual contents of the SOA reference archi-
tecture, including:

Service Metamodel — This defines the concepts, characteristics, and
details of a service and how services relate to other parts of the architec-
ture. Specifically, this defines the service types (business, domain, utility,
integration, external, and foundation), the service dimensions, and how
these concepts are represented and manifest themselves in a service defi-
nition.

EA Perspectives — Comprise the following standard EA domains:

Business Metamodel — This defines the concepts used to describe
the business architecture. Defines the relationship of traditional busi-
ness architecture concepts (strategy, goals, outcomes, organization,
value chain, contexts, and processes) to service-oriented systems.

Information Metamodel — This defines the concepts used to char-
acterize the information architecture such as semantic, domain, and
physical data. It defines the relationship between traditional informa-
tion architecture concepts and service-oriented systems.

74 Part I ■ Understanding SOA

Application Metamodel — This defines the concepts used to charac-
terize the application architecture. It defines the relationship between
traditional application architecture concepts and service-oriented
systems. For example, it describes how services are used in an n-tier
architecture.

Technology Metamodel — This defines the concepts used to charac-
terize the technical architecture. It defines the relationship between
technical architecture concepts and service-oriented systems. For
example, how specific platforms and networks support service SLAs
for quality of service.

MBD Perspectives — These support model-based development
approaches with specific profiles. MBD profiles are related to architec-
tural metamodels, but provide a mechanism to embed the metamodel
into a standard modeling and generation tool.

Business Profile — This defines the concepts used to describe the
business problem in nontechnical terms. Furthermore, it defines
the relationships among concepts, rules, and constraints.

Application Profile — This defines the logical structure of applica-
tions, typically in terms of layers, tiers, and architectural elements. It
defines where and how services fit into the overall application
structure.

Platform Profiles — A platform profile defines the details of the tech-
nology platform that will be used for implementation. There will typ-
ically be multiple different platform metamodels to support different
technologies, such as .NET, Java, ESB, and so on.

Transformations — This defines how concepts in one model are trans-
formed into concepts in another model and the traceability
between model elements.

Process Metamodel — This defines a process for the design and imple-
mentation of services, starting at the business level, moving through
service design, to platform-specific implementation. It defines the overall
workflow, the goals and concerns of each step in the process, the inputs,
the metamodel elements involved in each step, the work products pro-
duced, and the metrics.

Governance Metamodel — This defines the fundamental concepts of
governance, what metamodel elements they apply to, relationships and
constraints, and the interaction of governance with the rest of the refer-
ence architecture at design and run time.

Chapter 2 ■ SOA — Architecture Fundamentals 75

Architectural Relationships Model — This defines the relationships
among all the different aspects of the reference architecture, and the rela-
tionships with other common architectural frameworks such as EA and
software architecture.

Architectural Usage Model — This describes how to use the reference
architecture.

Process Metamodel

Architectural Relationships Model

SOA Reference Architecture

Governance Metamodel

Architectural Usage Model

EA Perspectives

Business
Metamodel

Information
Metamodel

Application
Metamodel

Technology
Metamodel

MBD Perspectives

Business
Profile

Application
Profile

Platform
Profiles Transformations

Service Metamodel

Figure 2-14 Reference architecture for SOA

This may seem like a lot, but all of these issues need to be addressed at one
time or another in the development of enterprise SOA solutions. The reference
architecture provides a mechanism for making sure that they all work together
and support the overall goals of the organization, rather than working at
cross-purposes. In addition, the architecture optimizes the relationships among
the different aspects so that the right questions are answered at the appropriate
times in the development cycle, by the appropriate roles.

Summary

Service-Oriented Architecture (SOA) is an approach to building systems that
focuses on constructing applications from a combination of business and other
services. This approach provides the potential to create agile enterprises that
have maximum flexibility and minimum reaction time. In order to build up
the inventory of services necessary to reach this level of flexibility, the SOA
must enable the independent construction of services. However, although the

76 Part I ■ Understanding SOA

services need to be developed independently in response to specific business
requirements, they cannot be developed in a vacuum. They must be developed
within the context and shared semantics of the enterprise.

In addition, care must be taken to limit the coupling between services or
even well-designed, business-driven services will not provide the expected
flexibility. Thus, you can think about SOA as defining:

The capabilities necessary to meet business needs

How those capabilities are organized (into interfaces)

What participants provide and consume the capabilities

How the consumers and providers connect via interfaces

As more and more solutions make use of services, managing dependencies
between consumers and providers becomes a major concern. Therefore, one
of the fundamental principles of SOA is loose coupling, which manifests
itself in many forms, including the communications mechanism, separation of
implementation and interface, data design, and versioning.

Achieving these difficult goals cannot be left to chance. A well-defined
architecture provides the guidance, principles, and practices for achieving
enterprise, business, and technical requirements. At the enterprise level, SOA
corresponds to the principles and practices of EA. At the design level, under-
standing the relationship of BPM and SOA and applying the principles of
cohesion and coupling lead to reusable, flexible services. At the implementa-
tion level, software architecture allows you to provide technology-independent
designs and then to map them to specific technologies and configurations.

The remainder of the book is about applying the architecture to the analysis,
design, and implementation of services and service-based solutions. In the
next chapter, we provide an overview of the process that is elaborated on
throughout the book.

C H A P T E R

3

Getting Started with SOA
The secret of getting ahead is getting started. The secret of getting started is

breaking your complex overwhelming tasks into small manageable tasks,
and then starting on the first one.

— Mark Twain

We defined SOA as an architectural style promoting the concept of business-
aligned enterprise services as the fundamental unit of designing, building, and
composing enterprise business solutions. So how do you go about designing
and building solutions and the services that support them? This chapter covers
the role of the SOA methodology in the creation of enterprise SOA solutions
and the methodology’s major steps. For each step, a high level overview of its
goals, requirements, and activities is provided.

The details of these steps are the topic of the rest of the book. In general,
each major step in service design is covered in a chapter later on. Specifically,
in this chapter, we cover:

An overview of SOA methodology

Defining the reference architecture

Defining the business architecture

Information design

Identifying services

Specifying services

77

78 Part I ■ Understanding SOA

Implementing services

Service design process

Finally, we end with some practical suggestions for getting started.

Overview of SOA Implementation Methodology

Enterprise SOA defines a set of business-aligned IT services (available to par-
ticipants throughout the enterprise across multiple lines of business or even
outside of the enterprise) that collectively address an organization’s business
processes and goals. These services can be combined in a variety of differ-
ent ways to support enterprise business processes and business solutions.
By ensuring that there is a business focus of its main constituents (business
services and business processes), the SOA architectural style promotes align-
ment of business requirements and technology solutions. Both processes and
services are driven by the business architecture and can be traced back to the
business outcomes that they help to realize. The major forces shaping the SOA
architecture and its major elements are shown in Figure 3-1 and discussed in
the following list:

The forces that drive the business and SOA — the enterprise business
drivers — are at the top. These are things like strategy, competition,
market forces, regulatory forces, and so on. They all combine to drive the
business architecture (model) and to shape the measurement and feed-
back for enterprise-wide performance management.

The business model is the representation of the business resources and
processes that are required to meet enterprise operational, tactical,
and strategic business goals. Having a business model is critical to the
successful alignment of services with business goals and objectives,
and consequently to the overall SOA implementation’s success.

The semantic information model defines the common business informa-
tion for a given enterprise (such as customer, agreement, etc.). These
objects effectively create an ontology of the enterprise data by defin-
ing common concepts (and their content) that describe the operations
of the enterprise. Using the semantic information model to define busi-
ness service interfaces leads to the creation of semantically interoperable
services — a semantic SOA.

Other aspects that enable SOA to provide value are: key performance
indicators (KPIs) and portfolio rationalization. The KPIs enable quantita-
tive assessment of the impact of SOA and allow business processes and
services to be measured and optimized. Portfolio rationalization enables

Chapter 3 ■ Getting Started with SOA 79

drives

drives

SOA
drivers

SOA
enablers

Enterprise Business
Model

Business Performance
Optimization

defines

Portfolio
Rationalization

Enterprise Semantics
Definition

Key Performance
Indicators

defines
measurements

uses defines

SOA
implementation

Business Services Business Processess

Integration Service

orchestrates

implemented as
composed fromsupports

utilizes

Semantic Messaging

Existing Applications

SOA
support

Enterprise Business
Drivers

Enterprise Content
Repositories

Figure 3-1 Major elements of enterprise SOA

the enterprise to simplify and consolidate infrastructure, applications,
and data, where SOA plays a leading role in the implementation of the
consolidation activities.

In terms of implementation, the primary aspects are business processes
and services. The business processes orchestrate the execution of busi-
ness services to implement enterprise capabilities as specified in the
business model — for example, order processing or claims processing.
Business processes are usually associated with operational objectives
and business goals (such as insurance claims processing or engineer-
ing development processing) in the form of specific outcomes that can
be measured against KPIs. These KPIs are collected as part of the pro-
cess implementation and are usually used to evaluate organizational
performance.

The services implement specific enterprise business functions and access
the business data and resources. Well-defined, business-aligned services
are a critical ingredient of a flexible, extensible enterprise SOA imple-
mentation. The structure of services allows them to be independently
developed and deployed. Correctly defining and aligning services with

80 Part I ■ Understanding SOA

the business and semantic models results in plug-and-play implemen-
tations that can effectively be combined into different enterprise-wide
business processes and/or solutions.

Information represents the data resources of the organization. Data
resides in a variety of different stores, applications, and formats. Dif-
ferent levels of data are used by different levels of SOA constructs. The
semantic information model defines the data for business processes and
services. The information passed in business processes in the form of
documents is based on the semantic information model. The documents
provide a form of semantic message between processes and services. The
SOA defines the mechanisms for transforming data from its native oper-
ational format to the semantic data required for the business processes.

Documents can represent legal entities (such as financial documents,
insurance policies and claims, and government regulations) that define
the obligations of the enterprise and its partners. Documents are a vital
part of modern enterprises and have to be included in the SOA imple-
mentations (along with the rest of the enterprise information) as first-
class citizens.

Information from existing systems and applications is made available to
processes and services through a data virtualization layer.

Functions from existing systems and applications are made available to
services through integration services that expose the existing functional-
ity through new service interfaces.

The effective implementation of service-oriented solutions is a complex
undertaking that must take all of these different aspects into account. This
requires cooperation among many groups within an enterprise, including
management, business leaders, architecture, development organization, oper-
ations, and so forth. At an enterprise level, this would not be possible without
a well-defined methodology, describing the major steps and work products,
and the roles and responsibilities of each participating group. In the remain-
der of this chapter, we lay out a high-level methodology for enterprise SOA
solutions. This methodology is shown in Figure 3-2.

The methodology consists of the following major activities:

SOA reference architecture — Define the important aspects of the SOA
reference architecture, in particular what a service is, the types of ser-
vices and their relationships, design and implementation concepts and
processes, and relationships to other architectures and communications.

Business architecture definition — The first step is to define the enter-
prise business architecture. This influences the processes, services,
information, and enterprise solutions that will be built.

Chapter 3 ■ Getting Started with SOA 81

Business Architecture Service Identification
(Enterprise Context)

Service Specification

Service Realization

Implementing
Service-Oriented SolutionsApplication Architecture

Information Architecture Semantic
Information Design

Start

End

SOA Reference
Architecture

Figure 3-2 SOA methodology

Service identification — Define a set of services within the enterprise
context that supports the business architecture. The overall set of ser-
vices makes up the service inventory.

Semantic information model definition — Create an enterprise infor-
mation model that defines the shared semantics of processes and
services. This activity is often done in parallel with service identification.
Note that the semantic model is influenced both by the business archi-
tecture and by the information architecture.

Service specification — Create service contracts that can be used at
design time for the selection of appropriate services in solutions. The
service specification includes the service interface as well as other usage
and dependency information.

Service realization — Design and implement services.

Implementation of service-oriented solutions — Build enterprise solu-
tions from services. Also notice that the service-oriented solutions are
influenced by the application architecture. It is important to note that
this is not a linear, waterfall process. You do not need to have a com-
plete business architecture or a completely specified service inventory
before you can start designing and implementing services. The process
is iterative and incremental. You start by creating a high-level business
architecture and service inventory. Then you go about implementing the
first set of services to support specific business goals. As you learn from
this process, you update your SOA architecture, business architecture,
service inventory, standards, governance, and the like. Then, you start
building your next set of services.

Also notice that the structure of this book mirrors this process:

The SOA reference architecture is covered in Chapter 2.

Business architecture is covered in Chapter 4.

82 Part I ■ Understanding SOA

Service identification is covered in Chapters 4 and 5.

The semantic information model is covered in Chapter 5.

Service specification and interface design are covered in Chapter 6.

Service realization is covered in Chapters 7 and 8. Chapter 7 describes
service implementation design, and Chapter 8 covers service
composition.

Service-oriented solutions are covered in chapters 9–12. Chapter 9 cov-
ers the overall issues and architecture related to enterprise solutions.
Chapter 10 covers integration. Chapter 11 is on security, and Chapter 12
is on governance.

SOA Reference Architecture

One of the first things that needs to be done before embarking on enterprise
SOA solutions is to initiate the SOA reference architecture as described in
Chapter 2 and detailed in Figure 2-14. In reality, it takes some time to complete
the reference architecture (if architecture is ever really finished). That is to be
expected. It is not important to have everything worked out before you start or
to have complete models, documentations, standards, and governance in place
before allowing the first service to be designed and built. But, it is important to
have an idea of what you’re doing. It is important to have a high-level vision of
the architecture and the context that the architecture provides in terms of the
service hierarchy, service inventory, and semantic information model, before
you create very many services.

We recommend creating what we call a minimum architecture. The mini-
mum architecture determines the few things that absolutely must be standard-
ized in order to meet the enterprise goals and clearly specifies them. Then,
it puts an architectural vision in place for how the rest of the architecture
might be defined, and a process for continual, incremental enhancement and
improvement of the architecture. For enterprise SOA, those crucial things are
the service definitions, service inventory, and semantic information model.
We provided our vision of the SOA reference architecture in the previous
chapter. It is based on our extensive experience with proven implementa-
tions, and we encourage you to adopt it. It is up to you to define the inventory
and information models for your particular business, but we do explain the
techniques for creating them.

In the next few sections, we describe a sample architectural roadmap. Your
particular roadmap depends on your own requirements and circumstances,
but this example illustrates the basic concepts and contents of a roadmap for
an SOA architecture.

Chapter 3 ■ Getting Started with SOA 83

Minimum Architecture

The minimum architecture should specify:

What a service is — The types and granularities of services. For
example, business, domain, utility, integration, external, and foundation
services.

Required interfaces and functions — Interfaces or other functions that
services are required to use or support. For example, all services must
support the management interface and use the logging service.

Technical infrastructure — What technology services use to commu-
nicate. For example, Web Services conforming to the WS-I Basic Profile
v1.1 and Security Profile v1.0.

High-level semantic information model — Identify the major enter-
prise business entities and documents. What information do they need in
common to meet enterprise goals? What information needs to be shared
between services? For example, a consolidated customer entity supports
the business goal of having a single customer view. The high-level model
should identify 20–40 business entities and documents.

Initial service inventory — Identify the major service groups and ser-
vices needed to support enterprise goals and processes. Determine an
organizational structure (such as line-of-business or functional domain).
Integrate appropriate industry standards or patterns. The initial inven-
tory should identify 30–50 services and service groups.

High-level business model — Identify the major enterprise business
processes and the common processes that occur across enterprise
domains. Identify the underlying capabilities needed to support
those processes. The high-level business model should identify 10–20
major processes and 20–40 capabilities.

Service identification, specification, and design process — This de-
scribes how the architecture and enterprise context fit into and support
the development process.

Architecture life cycle process — This is a feedback mechanism for the
constant updating and enhancement of the architecture.

Roadmap — The roadmap addresses at least two areas. The first is a
rough priority order of service implementation based on dependencies,
commonality, and usefulness. This doesn’t specify a timeline, nor take
into account other business drivers, but it provides an initial vision for
building out the service inventory. The second is a high-level plan for
building out the architecture.

84 Part I ■ Understanding SOA

The minimum architecture should take between 4 and 8 weeks to produce,
depending on the size and complexity of the enterprise, and the experience,
capability and number of architects.

9-Month Checkpoint
Once the architectural vision (minimum architecture) is in place, you can start
to implement services and use them in enterprise solutions. Often, this begins
with a small-scale or pilot project to really figure out how to do it, and then
expand from there. The architecture and process needs to be updated based
on the knowledge gained from this process. After 6–9 months, the following
additional architecture aspects should have been developed:

Governance — Processes for design-time and deploy-time governance
are put in place.

Metrics — Measurements to demonstrate the usage and value of SOA
are defined. Implementation of metrics is started.

Services metamodel — A formalized service definition is created in the
form of a metamodel.

Integration services — Patterns and techniques for how to implement
integration services are in place.

Updated business and information models — The models are updated
to include prior implementations.

Updated service inventory and roadmap — The service inventory and
roadmap are updated to include existing services and to factor in new
business models and other forces.

18-Month Checkpoint
Typically around the next checkpoint, the architecture and the organization are
ready for a larger-scale rollout of SOA. For this to be effective, the architecture
and processes need to be complete and clear enough for a broader audience of
developers. At this point, the following aspects should have been introduced:

Updated architecture — The architecture is updated based on past expe-
rience and projects. It is also documented more completely.

Formalized process — Governance and development processes are
enhanced, formalized, documented, and measured.

Design-time repository — A design-time repository is introduced and
integrated with the service inventory.

Versioning — Versioning policies, procedures, and infrastructure are
in place.

Chapter 3 ■ Getting Started with SOA 85

BPM — Business processes are constructed using services to implement
process tasks. The rules and constraints are clearly defined.

SaaS — Services provided by external vendors or software-as-a-service
providers make up a portion of the overall service inventory. Integration
techniques, rules, and constraints are clearly defined.

Reporting — Information from metrics is collected and reported on. Pro-
cess and architectural improvements can be identified and measured.
The SOA’s value can be measured and demonstrated.

Integration with enterprise architecture — SOA and EA activities are
well coordinated.

Updated business and information models — The models are updated
to include prior implementations.

Updated service inventory and roadmap — The service inventory and
roadmap are updated to include existing services and to factor in new
business models and other forces.

Long Term
Long term, there are many things you can do to continue to enhance the value
of the architecture and improve organizational effectiveness and business
agility. These are the more advanced aspects of the reference architecture. The
ability to implement them and benefit from them depends on the maturity and
capability of business and IT. Many organizations do not get as far as this with
their architecture program, but we have seen the benefits of these activities
when they are implemented and believe it is important to at least mention the
possibilities:

Model-based development (MBD) — Integrate the architecture into a
model-based development process and tool.

Formal metamodels and perspectives — Formalize the architecture in
terms of metamodels and perspectives that support both MBD
and EA.

Tool and framework integration — Create tools and frameworks to
automate compliance and implementation.

Business Architecture

The foundation of a business-aligned SOA implementation is an enter-
prise business model, containing the primary representation of the resources
(business, IT, data, etc.) and processes involved in meeting the enterprise’s

86 Part I ■ Understanding SOA

operational, tactical, and strategic business goals. Business architecture (BA)
is an essential component of a successful service-oriented implementation,
providing consistency and flexibility of services across the enterprise.

We go into some length to define business architecture in the next chapter, so
we’re not going to try to define it here. Instead, we’ll describe what aspects of
BA we’re concerned with when implementing an SOA or enterprise solution.
BA must answer the following questions:

What business are you in?

What are the goals and objectives of this particular business?

What outcomes are needed to achieve those goals?

What is the strategy for achieving them?

How will they be measured?

What capabilities and information are needed to achieve those outcomes?

What processes, services, entities, and rules are needed to implement
those capabilities?

What existing applications provide basic capabilities and information?

How are the applications, processes, and so on, aligned with the business
strategies and goals?

All very good questions. Business architecture helps you to understand and
answer these questions, and it describes how to provide traceability, from
the operational concepts of processes and services, through to the concepts of
tactics and objectives, all the way up to business goals and strategy.

Business Processes

Business tactics and objectives are typically defined for particular business
processes. A business process is a group of logically related (and typically
sequenced) activities that use the resources of the organization to provide
defined results. Business processes deliver value in the form of products or
services, often to an external party such as a customer or partner.

In order to accommodate the needs of both executive management and
business process owners, business processes are typically defined at two
levels of detail: ‘‘One model, for the executives, contains a set of high-level
business scenarios that show the intent and purpose of the organization.
The other model, for the business process owners, contains a detailed set of
use cases that define how the organization needs to function internally. For
each high-level business scenario, you could define one, or several, detailed
business use cases representing the same activities in the organization. . . .’’

Chapter 3 ■ Getting Started with SOA 87

(IBM’s Rational Unified Process [RUP] for SOMA). This kind of analysis can
be thought of as a type of process decomposition.

The high-level scenarios are the high-level descriptions of what business
systems do. This level of processes defines only the highest-level enterprise
scenarios and is rarely detailed beyond the narrative. Processes, such as Order
to Payment, fit this level. These descriptions typically serve as the input (start-
ing point) for process decomposition. Such decomposition defines business
processes (sometimes called level 2 processes), which are the foundation of
the enterprise business model. Receive Purchase Order is an example of a
process that supports the order to payment scenario. Level 2 processes are
also a foundation for the definition of the process activities (steps that make
up the processes), which are used for definition of the high-level business
services. For example, the Receive Purchase Order process might be composed
of Purchase Order, Customer, Inventory, Credit Checking, and other business
services. In other words, business process decomposition provides three levels
of hierarchy — top-level scenarios, made up of (level 2) processes, composed
from business services.

The goal of SOA is to expose an organization’s computing assets as reusable
business services, implementing basic business capabilities, which can be
(re)used and integrated more readily using business processes. The relation-
ship between business services and business processes (shown in Figure 3-3)
paves the way to a truly flexible enterprise:

Implement
process
activities

Inform
service

identification

Use formal service definitions based
on the enterprise semantics.
Service changes should not impact
processes.
Process changes reuse
various services as needed.

Business Processes. Orchestrate business
services to achieve enterprise goals.
Change as economic requirements change.

Business Services. Expose existing
enterprise functionality. Change as
enterprise changes.

Figure 3-3 Relationship between business services and processes in SOA

Business services support stable business artifacts, incorporating pro-
cessing and rules whose interfaces change fairly rarely. (Note though
that the service implementations can and typically do change frequently.)

Business processes support fairly fluid business procedures and rules,
which can change every few months or even weeks.

88 Part I ■ Understanding SOA

The interaction between business processes and business services is
based on the enterprise semantics, which minimizes the impact of ser-
vice changes on the business processes and simplifies building processes
from business services.

This separation of responsibilities enables business analysts and IT architects
to reuse IT capabilities, encapsulated in business services, through the compo-
sition of business processes. This simplifies the creation of new processes and
optimization of the existing ones. More importantly, once designed, processes
can be quickly modified in response to market conditions. All this translates
into increased business flexibility and competitiveness, while reducing the
incremental costs of making frequent process changes.

Information Design

The next step in the process definition is creation of the enterprise semantics
(semantic information model) — a definition of the standard business entities
for the enterprise; for example, insurance policy, claim, and so on. A common
semantic definition ensures that:

Each term throughout the enterprise has a clear and concise definition.

All enterprise terms are used consistently (mean the same thing and use
the same definitions) throughout the enterprise.

Each term is used in at least one process/activity definition.

Only terms defined in the enterprise semantic information model are
used by process/activity definitions.

The semantic information model is influenced by both the business architec-
ture and the information architecture. The business architecture identifies the
processes required to support the business goals and objectives. The seman-
tic information model defines the information, concepts, and meanings that
must be common throughout those processes to effectively pass information
between the process steps. This corresponds to the information architecture
concepts of semantic data as illustrated in Figure 2-6.

The semantic data is not the same as the domain data. It does not define
all of the details of the information needed within each step of a process.
Rather, it defines the information that must be common between then. Each
individual process’s step (implemented by a business service) provides any
transformation required between the semantic information model and its own
internal domain model.

Chapter 3 ■ Getting Started with SOA 89

N O T E In this context, objects and entities refer to business ‘‘things.’’ We are
using these terms without the connotations associated with object-oriented or
entity-relationship modeling. In other words, business semantics described here
are used only as a foundation for service interactions (messaging model), not for
service implementation.

Although the semantic information model seems similar to a standardized
enterprise data model, the two are radically different and should not be con-
fused with each other. The semantic information model defines the messages
exchanged by services. The messages implement interservice communication.
Thus, they are transient and do not reside in a data store (at least not explic-
itly). In contrast, the enterprise data model defines the data structure and the
relationships between data in the database. Because in practice implementa-
tion of the SOA involves service enabling of existing enterprise applications,
changing the underlying data model is an extremely expensive proposition
that often requires the complete rewriting of applications. In other words, it’s
probably not happening, so a system that provides interoperability without
changing existing models is going to be better.

An SOA implemented, based on the semantic information model, provides
a semantically interoperable SOA. Such an implementation offers enhanced
interoperability between services. At the interface level, all of them work with
the same objects. In effect, this eliminates the need for message transformations
between services. Because service interfaces are created according to the
standard enterprise semantic information model, it is guaranteed that every
service can understand and correctly interpret any message, regardless of who
the service consumer is.

THE FUTURE OF THE SEMANTIC INTERFACES

The introduction of semantic data for service contracts also allows for
rethinking the design of service interfaces. It is no longer necessary to send
specific request/response message pairs between the consumer and provider
for each service operation. Because the interface data models for all services
are driven by the same semantics, it is possible to introduce the notion of
passing the service execution context around as part of the service invocation
‘‘thread.’’ In this case, the service interface operations are massively
polymorphic and expressed as:

Service.method (XML context in, XML context out)

The context in this case is a service execution context, expressed as an XML
document supporting enterprise semantics. In this implementation, any
particular service can extract data that it is interested in from the context.

This solution reverses responsibilities: Instead of the service consumer
building a specific interface for a participating service, the service itself is

(continued)

90 Part I ■ Understanding SOA

THE FUTURE OF THE SEMANTIC INTERFACES (continued)

responsible for accessing the required information from the execution context
and updating the context with the results of its execution. Such an approach
minimizes the impact of service interface changes, as long as the required puts
data is available in the execution context. This approach, of course, puts an
additional burden on the service implementations, but it may be negligible
compared to the expenses of realigning of the service consumers with the
services interface changes.

This approach, however, can lead to significant control and data coupling
between consumers and providers where the semantics of the service are
hidden in the interpretation of data. This can make services more difficult to
reuse, compromises encapsulation, and can make change management more
difficult. (A provider interprets the data differently, changing the service, and
consumers don’t see this as a change in the service interface.)

There are plenty of industry (and cross-industry) consortiums today, defin-
ing data semantics for a particular industry, such as ACORD for insurance,
or HL7 for healthcare. Their semantic dictionaries (if they exist) should be
considered a starting point for the creation of enterprise semantic information
models.

Service Identification

One of the most important tasks during implementation of a solution based
on service-oriented principles is the proper definition of business services,
based on the decomposition of the problem domain (see the sidebar ‘‘SOA and
Decomposition’’).

SOA AND DECOMPOSITION

Decomposition is a well-known (and widely adopted) technique for dealing
with complexity. The first software decomposition approach (introduced in the
early 1960s) was splitting applications into separate jobs, each implemented by
a separate program. Later, as more insight into program internals was gained,
each program itself was split into modules or subroutines, according to its
various functions.

The object-oriented (OO) paradigm introduced by Simula and Smalltalk in the
1970s strengthened the adoption of decomposition by introducing objects:
modules of code, each of which implemented a model of a real thing. The idea

Chapter 3 ■ Getting Started with SOA 91

was to represent in software the ‘‘things of the problem domain,’’ for example
customer, order, or trade. However the abstractions provided by objects turned
out to be too fine-grained and intertwined with technical concepts to have a
meaning on the business level. For various reasons, many object-oriented
developers wound up spending most of their time dealing with technical
constructs such as collections, graphical widgets, and so on. As a result, in most
cases the objects of the problem domain disappeared inside amorphous
modules, which no longer represented anything recognizable by domain
experts. An additional problem with OO was the fact that although objects are
an important decomposition approach during design and implementation time,
they are not visible at either deployment or run times and consequently do not
directly support either deployment- or run-time decomposition.

In the continued search for a better design paradigm, a different approach to
decomposition was introduced in the late 1990s — components. The idea was
to fix the problems of object orientation by raising the level of abstraction,
increasing granularity, and creating a tighter linkage with the business ‘‘things.’’

Introduction of software components improved the creation of flexible,
better structured, and more manageable software applications. Part of the
improvement came from removing the object-reference-based coupling that
was common in distributed object systems (there’s that loose coupling thing
again). However it did not solve the main enterprise IT problem: its
application-centric nature. Both objects and components provide better design
and development approaches for individual applications.

SOA brings decomposition to a higher level, as shown in the following figure.
Instead of attempting to decompose applications, it decomposes the entire
enterprise IT functionality.

1960s 1970s 1980s 1990s 2000s
Time

Service
orientation

Component-
based
development

Object
orientation

Subroutines
and functions

Multiple
jobs

Decomposition
approaches

Enterprise IT
decomposition

Applications
decomposition

Evolution of Decomposition Approaches

92 Part I ■ Understanding SOA

It seems like the simplest approach to decomposition (and consequently
service definition), is to directly expose the existing application’s function-
ality as a set of services (decomposition based on the existing application
portfolio) — similar to the traditional enterprise application integration (EAI)
practice. Unfortunately, such an approach rarely works. It ‘‘is in essence
technology first approach and is a recipe for disaster and/or serious over-
engineering’’ (Gary Booch, ‘‘SOA Best Practices,’’ Software architecture, soft-
ware engineering, and Renaissance Jazz blog [March 11, 2006]). A better
decomposition approach is based on the decomposition of the enterprise-wide
business model: designing a set of services that define the enterprise archi-
tecture blueprint supporting the current business goals of the enterprise and
providing capabilities for future changes. It requires you ‘‘to start with the
scenarios/business needs, play those out against the existing/new systems,
zero in on the points of tangency, and there plant a flag for harvesting a
meaningful service’’ (ibid.).

Such an approach leads to the creation of a set of business-aligned IT
services (available to participants throughout the enterprise across multiple
lines-of-business or even outside of the enterprise) that collectively fulfill an
organization’s business processes and goals. The resulting business services
are independent from the current enterprise application portfolio and support
the ‘‘ideal’’ enterprise architecture.

Hierarchical decomposition, based on the enterprise business model is
typically not sufficient for proper service identification. Although it provides
an alignment between business and IT, it does not guarantee that resulting
services will adhere to the basic service tenets. The service characteristics
defined in Chapter 2 need to be considered in the design process.

But still this is not enough. The services need to be defined within the context
of the overall enterprise. To do this, you need two things. First, you need
to think about the way you design systems and decomposition differently.
To overuse a phrase, you need a paradigm shift in design practice. Then, to
support the new paradigm, you need an easy way to find the existing services.

For example, a typical approach to SOA design might incorporate this
sequence:

For each business domain, identify and analyze the processes.

Break the processes down into tasks that are implemented by services.

Look for existing services that perform the specified tasks.

Use existing services when possible.

Design and implement new services.

Chapter 3 ■ Getting Started with SOA 93

This probably seems like a pretty reasonable approach, but let’s look at an
SOA-focused sequence and compare:

For each business domain, identify and analyze the processes.

Understand what services currently exist (or are planned) and their
responsibilities.

Use existing services to frame the design, and break the process down
into tasks that are implemented by services.

Use existing services when possible.

Design and implement new services where necessary.

The difference comes at the breakdown of processes into tasks and services.
The difference may seem subtle, but the effect is huge. In the first approach,
you are free to come up with almost any reasonable sequence of tasks to
implement your process. There could be dozens of possibilities. Then, you
look for existing services that do things your way, but probably don’t find
very many. Instead, you implement new services, but ones that overlap with
existing services. In the SOA approach, you factor in the existing services first
and then design around them. They provide a design constraint that limits the
possible solutions to a few, instead of dozens. Now, when you use existing
services, they’ve already been designed in, and they work with your new
solutions and support your enterprise. Instead of promoting new services, you
facilitated reusing existing ones.

The crux is this. You are not designing a solution or process from scratch.
Instead, you are starting with an existing base and building your solution
on top of it. You are extending and reusing, adding value to what exists, not
duplicating responsibilities and adding inconsistencies. But to make this work,
you need to be able to find the existing services. This requires an easy way
to search for and find services at design time, and an organization of services
that makes it easy to understand the overall set of services. We call the overall
set of services the service inventory.

The service inventory lays out the overall set of services and their rela-
tionships to each other and the overall enterprise goals. You can think of the
service inventory as a responsibility map of service interfaces. It should clearly
describe the overall set of services, and what responsibilities the different
service groups perform, and don’t perform. The service inventory helps you
in two important service design activities.

First, the inventory allows you to quickly scan the overall set of services at a
high level and then to dig deeper into groups of services within a given area.
This helps you to locate the services to support your look-first, design-later
approach.

94 Part I ■ Understanding SOA

But at least as important, the inventory helps you to make decisions about
what functions to include within your service implementations, and what
functions you should expect to be performed by another service. If you need
to implement a new service, you have to make sure that it doesn’t duplicate
functions that are already (or plan to be) implemented by other services. This
is where the responsibility map aspect of the inventory is important. It must
clearly define the boundaries of responsibility for services and service groups.

Service Specification

Once services and their corresponding semantic models are identified, they
need to be described (specified) correctly. The complexity of proper service
specification stems from the fact that there are two very distinct groups of
service users that require information about services: business users (business
analysts), who need to decide whether a particular service can be used in the
solution that they are designing, and technical users (developers), who need
to know how to write the code, invoking a particular service.

Business users need to understand what a service does in business terms,
which requires answers to the following questions:

What does the service provide for prospective clients? This includes a
description of what is accomplished by the service, limitations on service
applicability and quality of service (QoS), and requirements that the ser-
vice requester must satisfy to use the service successfully.

How is the service used? This includes a detailed definition of the con-
tent of service requests and responses, the conditions under which par-
ticular outcomes occur, and, when necessary, a step-by-step description
of processes leading to those outcomes.

Technical users need to know how to implement service operations that
require answering the following questions:

How to interact with services? This specifies a communication protocol,
message formats, including serialization techniques and service loca-
tions, for example, the service endpoint URL.

What are the service invocation policies? This defines specific require-
ments for service invocation, for example, security requirements,
required SOAP headers, and so on.

What are service QoS guarantees? This specifies the quality-of-service
characteristics that the service provides, including response time,
throughput, availability, planned maintenance, and the like.

Chapter 3 ■ Getting Started with SOA 95

CURRENT PRACTICES FOR SERVICE SPECIFICATIONS

The notion of the service specification is widely recognized as one of the
prerequisites for successful service usage. The problem is usually not the fact
that a specification does not exist, but rather what the specification contains.
Based on experience with object-oriented and component-based development,
many architects and developers consider the service interface to be equivalent
to the service contract. In the best cases, the service interface is supplemented
by a free-form text document that captures some additional service
information. Although this approach can significantly help, free-form
documents are imprecise, hard to validate for completeness, and virtually
impossible to process automatically.

For example, the popular web site www.webservicex.net provides a
LloydsRiskCodeService service1 with the following contract:

Textual description of the functionality — ‘‘This service returns Lloyds risk
code details for a given risk code or description.’’

Textual definition — ‘‘The following operations are supported:

■ GetLloydsRiskCodeDetailsByRiskCode— This method returns
Lloyds Risk Code details for a given risk code.

■ GetLloydsRiskCodeDetailByRiskCodeDescription— This
method returns Lloyds Risk Code details for a given risk code
description.’’

The formal definition is in the form of the service WSDL and sample XML
payloads (not shown here for brevity).

At first glance, the information seems sufficient to successfully use the
service. However, let’s take a closer look at how this contract can be used by
different people.

On the business side, in order to decide whether the service is appropriate
for solving a problem, the following questions must be answered:

◆ What functionality does the service provide? In our example, the informa-
tion is supposed to be provided by the textual description of the functional-
ity, but unless the user is acquainted with risk codes’ definitions
(www.lloyds.com/Lloyds Market/Tools and reference/Risk

codes.htm) and can figure out which ones are really supported by the ser-
vice, he or she can’t decide whether it is appropriate.

◆ What are the limitations of the service? The textual definition does not pro-
vide any information about this. Examination of the service WSDL answers
this question to some degree, but it’s rare that business users ever look
at it.

◆ Which SLAs does the service support? This is not specified in the service
definition.

(continued)

96 Part I ■ Understanding SOA

CURRENT PRACTICES FOR SERVICE SPECIFICATIONS (continued)

◆ What are the requirements that the service requester must satisfy to invoke
the service successfully? The service definition does not specify any require-
ments on the input parameters.

◆ What are the detailed definitions of the content of service requests and
responses? Some of this information is provided by the formal definition in
the form of WSDL and XML samples. This definition assumes that the busi-
ness analyst can understand XML, and that WSDL correctly represents the
data semantics.

Similarly, on the technical side, the following questions must be answered:

◆ What are the communication protocols, message formats, including seri-
alization techniques, and service location? This information is provided by
the formal definition in the WSDL.

◆ What are the errors that service invocation can produce? This information is
provided by the formal definition in the WSDL.

◆ What are the service invocation policies such as security requirements,
required SOAP headers, and so on? Some of this information (SOAP head-
ers) is provided by the formal definition in the WSDL. Other characteris-
tics such as invocation policies theoretically could be added to WSDL, but
they rarely are.

◆ Which SLAs does the service support? This is not specified in the definition
above.

So, you can see from this example (which is comparatively good) that much
information needs to be provided in security specifications.

The service specification should define all of the relevant aspects of a service
required by potential service consumers, including the service expectations,
interaction model, service constraints, and the service location.

Service Expectations
The expectations define the result desired by the consumer who is using
the service. This is also known as the real-world effect of using a service.
For example, invoking the claims-processing service allows customers to get
insurance payments. When potential customers invoke the service, they are
not interested in a response indicating that their insurance company has
merely recorded an application. Rather, they are interested in whether it will
reimburse their losses.

Of course, the service provides encapsulation: The insurance company’s
internal systems record the claim without exposing this fact to the consumer.
However, minimizing the client’s assumptions about how the insurance com-
pany processes their claim increases the potential for smooth interaction.

Chapter 3 ■ Getting Started with SOA 97

Expectations associated with a service interaction are usually described in
terms of the message traffic exchanged with the service. In some sense, similar
to a service interface, it is possible to define expectations in terms of the kind
of information that is provided by a service, as opposed to the information
that is required for a current interaction.

Interaction Model
The interaction model defines the interaction between service consumer and
provider through the service interface. Three key concepts are important in
understanding what it is involved in interacting with services: information
model, process model, and execution context.

The information model defines the information that is exchanged with
service consumers. This model should conform to the enterprise seman-
tic information model. The scope of the information model includes the
message semantics and their format (encoding). The message format
defines the structure of the messages used for service invocation and
response.

The process (behavioral) model of the service defines the actions that
consumers can execute on a service, the responses to these actions, and
temporal dependencies between them. Temporal dependencies are
mostly applicable to a conversational composite service, where inter-
actions between the service consumer and provider can involve multiple
service invocations.

The service execution model defines the behavior resulting from inter-
actions with the service. Some of this behavior can be private, and some
public. The publicly visible portion of the service behavior is defined by
the service execution model. The private behavior should never be made
visible to service consumers.

Service Constraints
Service constraints describe rules, limitations, and facts about a service and
its operations. Service constraints are usually expressed as policies. A policy
is a statement of the obligations, constraints, or other conditions that either
define service characteristics or have to be fulfilled by service consumers when
invoking the service. There are two major types of policies that can be defined
for a service:

Business-oriented policies such as hours of operation, return poli-
cies, and so on — Business-oriented policies usually apply to the service
operations, regardless of where and how these operations are deployed.
For example, in order to invoke the claim processing service, a consumer
must have a valid insurance policy.

98 Part I ■ Understanding SOA

Infrastructure-oriented policies such as security, privacy, manage-
ability, performance, and the like — These policies are defined for a
particular service endpoint address. This means that there can be mul-
tiple service deployments, adhering to different infrastructure policies.
For example, an appraisal service can be exposed through two different
URIs. One guarantees a two-business-day appraisal response time, while
the second guarantees fulfillment in five business days. Typically, the
service provider charges differently for using these different endpoints.

Service Location
Invocation of a service requires its location, that is, the endpoint address.
The same service can have several endpoint addresses. Multiple endpoint
addresses may be employed for several reasons. As in the dual-URI appraisal
service example, each endpoint address could support different policies. Often,
multiple endpoint addresses are also required for different service methods.
For example, withdrawal and inquiry methods on a bank account service
expose completely different QoS requirements. On the one hand, the with-
drawal operation requires guaranteed (once and only once) service delivery,
reliability, and transactionality. These involve fairly expensive infrastructure
support. On the other hand, the inquiry operation has less strict requirements.
In case of failure, its execution can be retried. Since the frequency of inquiry is,
on average, 5–10 times higher than that of withdrawal, it is not cost-effective
to use the same expensive infrastructure for both methods. Such situations
require that the service specification support different endpoint addresses for
different service methods. Additionally multiple endpoint addresses can be
used to support multiple versions and different infrastructure constraints that
a given service can have.

To summarize, a service specification should provide information about
the service’s behavior, interface, and policies. This information covers service
expectations, the interaction model, service constraints, and the service loca-
tion. It provides the basis for implementing service consumers, as well as for
dynamically binding consumers to the service provider(s).

Services Realization

Once services are identified and their specifications are created, it is necessary
to decide on the service realization. SOA solutions provide several options for
realizing (implementing) services.

Buy — Purchase a complete implementation of a service that may be
deployed and hosted internally.

Chapter 3 ■ Getting Started with SOA 99

Outsource (rent) — Use a service provided by an external vendor. As
Web Services and business-to-business integration become more preva-
lent, this option will be considered by more enterprises.

Build — Provide an internal implementation of a service. With a build
decision, there are multiple options:

New implementation — An implementation of a service is created
from scratch. Of course, the new service can be a composition of other
existing services. Not all of it is necessarily from scratch.

Integrate or wrap legacy applications (systems) to expose the
required service functionality — This approach uses the existing
capabilities directly but exposes them through new service interfaces.

Modernization — the repurposing of existing applications. This uses
a combination of techniques. One common technique for services is
business rules/processes extraction to pull out a segment of capability
so that it can be used independently and exposed as a service.

Buying Services
Buying services might seem very similar to traditional buying decisions for
software, but there is a big difference. Unlike a stand-alone application, a
service has to fit seamlessly into the enterprise service infrastructure, which
means that it has to support the following:

Functional alignment with the overall business model, service decompo-
sition, and service inventory.

Usage of the enterprise semantic information model for service interface
definitions.

Support for the enterprise service infrastructure, including security, log-
ging, exception handling, and so on.

These requirements are rarely met unless a service is custom designed
and built for a given enterprise. As a result, services themselves are rarely
bought. A more common scenario is buying packaged applications that pro-
vide the required capabilities and then doing an in-house service-wrapping
implementation, exposing it as an integration service.

Outsourcing Services
Outsourcing assumes that an enterprise wants to concentrate only on the core
business capabilities, while outsourcing (partially) other business functions.
Such an approach allows the enterprise to focus its energy, money, and
people on only the areas that are critical for a particular business or provide
competitive advantage.

100 Part I ■ Understanding SOA

Outsourced services, or on-demand services, also called software as a
service (SaaS), is an application delivery model in which a service
provider hosts and operates a software application for use by its customers
over the Internet. Customers use the application through an API accessible
over the web. On-demand services provide a low-cost way for businesses
to obtain the same benefits of commercially licensed software without the
associated complexity and costs of development, ownership, or operations.
The key characteristics of on-demand services include:

Designed for use by customers through the Internet

Hosted off-premises, not on the customer’s premises

Governed by a service contract

The service contract consists of a publicly availably interface, API, and
a run-time service policy, which may include an SLA. At a basic level,
the on-demand service is a software construct that happens to be hosted
off-premise and that encapsulates a unit of work, which is made available
through a service contract. Like any business contract, there is someone
who provides the service and someone who consumes the service, only here,
the provider and consumer are computer systems accessible over the Internet.
The service has a public view, which is available to the consumer of the service
via the contract, and a private implementation view, which is available only
to the service provider.

When it comes to incorporating outsourced services, the range of issues
is very similar to the issues an enterprise has to deal with when buying a
service — the service has to seamlessly fit into the enterprise service infra-
structure, which means it has to support functional alignment with the overall
business model and support enterprise semantics. However, since the service
is hosted off-site, there are a different set of issue concerning the enterprise
service infrastructure, including security, logging, exception handling, and the
like. Figure 3-4 shows two common approaches to incorporating SaaS into an
overall SOA.

The first approach (left) uses the on-demand service directly. In this case,
the interface API and semantic model defined by the service provider are used
directly by the enterprise. The ability of an enterprise to use this approach
depends on a variety of factors, including the flexibility and customization
of the service (particularly its data model), the need and complexity of
integration with other services, and the extent and flexibility of the existing
SOA infrastructure.

The second approach delegates only the implementation to the on-demand
service. In this case, the interface and semantics are defined by the enterprise,
and the service implementation does whatever translation is necessary before
invoking the on-demand service through its standard API. This approach

Chapter 3 ■ Getting Started with SOA 101

Hosted Multi-Tenant Service

On-Demand Service

Interface

Implementation

Internal
Functionality

Semantic
Model

(Implementation)

Proxy

Functional
Syntax

Interface defined by Enterprise

Internal
Data

On-Demand Service

Run-Time Service Policy Run-Time Service Policy

Implementation

Internal
Functionality

Interface

Semantic
Model

Functional
Syntax

Interface defined by Service

Proxy

Internal
Data

(Interface)

Figure 3-4 Integration of on-demand services

provides for better integration at the enterprise, especially of the semantic
model, but it is more complex and obscures some of the benefits of service
hosting.

Both models work well, but the issues of service operations can be a
challenge for SOA, and a potential benefit of service hosting. The issues are
twofold: the availability, reliability, scalability, and security of the operational
infrastructure itself, and the versioning, maintenance, enhancements, and
business performance of the service.

Many large enterprises have the experience and capacity in their data centers
to support the required scalability and reliability, but in general, this capability
has been out of reach of small and medium-sized businesses. However, when
the service is hosted by the on-demand provider, the operational challenges are
passed on to them. Of course, this means that it is important to choose a service
provider who can meet these requirements. However, significant cost savings
can be realized by doing so. Perhaps more important than the cost savings,
are the scalability and reliability that can be obtained through the on-demand
model. The same can be said for the service life cycle and SLA management.
Maintenance, versioning, service enhancements, and monitoring of business
performance can also be passed on to the on-demand service provider.

102 Part I ■ Understanding SOA

Because the service implementation (and maintenance, including modifi-
cations) is conducted by an external vendor, additional factors should be
considered:

The ability to swap service providers because of financial, technical,
organizational, or any other issues

The ability to shield an enterprise’s business processes from inevitable
changes in services that are out of the enterprise’s control

Building Services
Earlier in this chapter we outlined three major approaches to in-house building
of services. In reality, service implementation is virtually always a combina-
tion of all three approaches. It is rare that required service functionality does
not exist in some shape or form in the present enterprise systems. It is also rare
that existing functionality completely implements the required capabilities
and interfaces.

One common approach to service implementation is component-based,
where some components are new implementations, some are ‘‘wrappers’’
around existing enterprise systems, and some are created using a transfor-
mation of the existing applications. A component-based implementation of
services requires defining two things: a way to create components and a
mechanism for describing how those components work together.

Service Component Architecture (SCA) defines a general approach to doing
both of these things. SCA specifies how to create components, combine them,
and expose the component assembly as a service. Based on the SCA-defined
programming models, components can be built with Java or other program-
ming languages, or technologies. Whatever component technology is used,
SCA defines a common assembly mechanism to specify how those components
are combined and exposed as a set of services.

Each component implements some business logic that is effectively exposed
as an interface by the component. A component can also indicate the services it
relies on. In addition, a component can define properties that allow customiza-
tion of the component’s behavior. All of these aspects simplify the reuse and
assembly of components into services.

Summary of Service Identification and Realization
Concerns
Service concerns range from the ones exposed to the service designer (such as
business alignment and reuse of existing IT functionality) to the ones that are
visible to the service consumer (such as service specification, service interface,
and access policies). Figure 3-5 illustrates these elements and the relationships
between them.

Chapter 3 ■ Getting Started with SOA 103

Service

Business
capabilities

Business
goals

Service
orchestration

Reuses existing
enterprise IT
functionality

Service
interface

Granularity

provides supports

implemented
through

attributed
by

accessed
through combined

by

Service
contract exposesdefined

by

Access
policies controlled

by

Loose
couplingattributed

 by
defined

by

defined
by

define

defined
by

Common
semantics

Service
endpoint
address

Figure 3-5 Service implementation concerns

A service business capability is defined by the enterprise business model,
which includes the enterprise’s business goals, business capabilities, and
semantic information.

The service specification defines the business capability of the service,
how to interact with it, and its interface, constraints, and service end-
point addresses.

The semantic information model defines the shared information that is
passed into and out of service interfaces.

The service interface describes (in the technical terms) the capabilities
of the service provided to potential consumers. The interface is defined
as a service name and a set of operations supported by the service. The
description of every operation includes definitions of the set of parame-
ters required for service invocation (request) and, if applicable, the result
returned by the service (reply). The description also covers the opera-
tion’s functionality and it’s pre- and postconditions.

Each service operation can be accessed through an endpoint address —
usually defined as an address’s network location. Every endpoint
address is governed by a set of access policies. These policies define the
communication protocol used for data transfer, actual service invocation,
and QoS.

Granularity and loose coupling represent important service design
attributes.

The service implementation strives for reuse of the existing enterprise IT
functionality.

Service orchestration represents the prevalent mechanism for compos-
ing services into larger ones and building enterprise solutions out of
services.

104 Part I ■ Understanding SOA

Service Life Cycle

Of course, a service is just beginning its life after it has been implemented.
Then, it must go into production, be updated, and so on, until eventually it is
retired (like that ever happens). Figure 3-6 illustrates the high-level service life
cycle.

1. Service identification — Service identification is the first major step in
the life of a service. It is driven off of the business model, process def-
inition, and semantic information model. This results in the proposal
for a new service.

2. Service design and specification — These are the steps where the ser-
vice proposal is designed and specified, again in accordance with the
functional business model and the semantic information model. Other
nonfunctional requirements are also taken into account. After both the
identification and specification phases, the functional and semantic
models should be updated.

3. Service implementation — Next, the service is implemented using one
of the techniques described earlier. Again, the implementation is in
accordance with enterprise standards, security requirements, opera-
tional requirements, and so on.

4. Service deployment — After validation and testing of the implemented
service, it is ready to be deployed — again, in accordance with policy
and procedure for putting software into production.

5. Service usage and enhancement — Once the service is in use, it will
inevitably requires enhancements and modifications. New users may
require a more generalized or flexible implementation. New and existing
users will have requests for new features. All of this has to be managed.
A new version of the service has to go through the design and imple-
mentation phase again, with all that entails.

6. Service retirement — Eventually, the service will be retired. Perhaps
this will only be the retirement of older versions of the service, or it
could eventually be the entire service. Again, processes and procedures
should be in place to manage this.

All of these steps of the service life cycle have constraints, processes,
and procedures that need to be followed. It is the role of SOA governance
to ensure that they are followed. Governance has been defined as: ‘‘the
art and discipline of managing outcomes through structured relationships,
procedures and policies.’’ Infravio, ‘‘The Definitive Guide to SOA Gover-
nance and Lifecycle Management’’ (2006). Governance enforces compliance
with the architecture and common semantics, and facilitates managing the

Chapter 3 ■ Getting Started with SOA 105

Functional
model

Process
definitions

Semantic
model

Service Identification
Model updates

Model updates

Service proposal in
service repository

Service specification
in service repository

Service implementation
in service repository

Service deployment
in service repository

Functional and
semantic model

Nonfunctional
requirements

Service Design and
Specification

Service
Implementation

Service Deployment

Service Utilization

Service utilization in
service repository

Service Retirement

SLAs and
access policies

Enterprise
standards

Se
rv

ic
e

ut
ili

za
tio

n
st

at
is

tic
s

Figure 3-6 Service life cycle

enterprise-wide development, use, and evolution of services. Governance
consists of a set of policies that service providers and consumers (and their
developers) must conform to, a set of practices for implementing those policies,
and a set of processes for ensuring that the policies are implemented correctly.
There is typically an organizational structure in place to define and implement
governance policies and often a repository to automate and enforce them.
Governance of SOA should include:

Policies regulating service definition and enhancements, including own-
ership, roles, criteria, review guidelines, and the like.

Identification of roles, responsibilities, and owners.

Policy enforcement that is integrated directly into the service repository
(where appropriate).

106 Part I ■ Understanding SOA

Guidelines, templates, checklists, and examples that make it easy to
conform to governance requirements.

Review of service interface definitions for new services and enhance-
ments to existing services. The review ensures that the service definition
conforms to standards and aligns with the business and information
models. The review is typically done by a service review board or the
unit responsible for the service.

Architectural review of applications and services to ensure that they
conform to the SOA and EA. This review is typically done by an archi-
tecture review board.

Governance should not be primarily a review activity, however. It is
most effective if it follows a carrot-and-stick approach with an emphasis
on enabling developers to build conforming applications and automat-
ing governance activities and policies. Governance is covered in detail in
Chapter 12.

The Service Design Process

A friend says that homonyms are the root of most misunderstandings. In
other words, you say the same thing, but actually mean something different.
More than a few heated discussions about what SOA is or what’s important
have been caused by the participants having a different perspective of SOA
or an SOA project. One of the most common clashes of perspective occurs
between those looking to SOA as an enabler for BPM and those trying to kick
off SOA from a grassroots effort. If we can clear up the confusion about what
we’re trying to say, we might not necessarily agree about everything, but at
least we’ll be arguing about the right things. Figure 3-7 shows five common
perspectives for initiating SOA projects.

Top-Down Approaches
You’ve heard of top-down and bottom-up approaches to SOA, but what do
these really mean? It is often as much a difference in scope and timeframe as
anything else. A top-down approach takes a broader, more enterprise-based
perspective and a more strategic point of view. This means that the top-down
approach considers enterprise issues. It is concerned with the overall set of
enterprise requirements, now and over time. It is as concerned with how the
specific solution fits into the overall enterprise, its strategy, and its roadmap
as it is with a particular project and its tactical requirements. Figure 3-7 shows
two common top-down approaches:

Chapter 3 ■ Getting Started with SOA 107

Business
Process
Model

Service
Enabling

Legacy Systems

Discover
Existing or

External Services

Enterprise
System
Analysis

Bo
tto

m
 U

p

Project

Create Services
with SOA

Reference Architecture

Top Dow
n

Enterprise

M
iddle Out

Figure 3-7 SOA project approaches

Enterprise System Analysis

Enterprise System Analysis strives to understand and account for the overall
enterprise requirements. Typically starting with business goals and drivers,
the analysis looks at the overall business architecture and information model.
This sets the context for a service inventory and roadmap that identify
the major entities, services, and service groups that are necessary to sup-
port the business goals over the next few years. The roadmap should also
prioritize an order for implementing services so that the most important or
widely usable ones are addressed first. The enterprise analysis should take
into account a standard SOA platform, technologies, and standards. It should
create a roadmap for their introduction concurrently with the business service
roadmap, while maintaining the separation of concerns between the business
design and technology.

Business Process Model

Another starting point for SOA is to develop business process models as
a set of detailed business requirements (top-right box of Figure 3-7). In
this approach, the tasks of the business process model are implemented by
business services. The business process model may be an extension of the over-
all Enterprise System Analysis approach, providing the next level of detail
(level 2) of the business architecture (which is, of course, better from an archi-
tectural perspective). But often, it is done on a project basis that is being driven
by BPM-oriented project sponsors. To the extent that the enterprise context is
ignored, the project misses opportunities to improve reuse, integration, and
flexibility. In this case, it behooves the SOA team to understand the enterprise
context on behalf of the business sponsor.

108 Part I ■ Understanding SOA

The crux of the top-down approach is an understanding of the enterprise con-
text and roadmap, and integration of that into a project-based service design.
This is often in contrast to the pressure to create immediate deliverables felt
by project teams and their lack of understanding of enterprise requirements.
The result is a conflict between enterprise architects or designers, who are
concerned with understanding common semantics and creating extensible ser-
vices; and technicians, who just want to do the most expedient thing. It should
be pointed out that many times, architects are their own worst enemy in these
discussions because they get hung up on the long term and fail to demonstrate
how it can be achieved with minimal impact to immediate deliverables.

Bottom-Up Approaches
Bottom-up SOA starts from a perspective of existing systems, technology, or
common services. The scope of bottom-up approaches is typically a specific
project with immediate requirements. Generally, the project team doesn’t feel
that it has the luxury to consider a broader enterprise scope or longer-term
timeframe, or it doesn’t understand the value of that approach. Again,
Figure 3-7 shows two common bottom-up approaches to SOA:

Utility Services

SOA is often introduced into an organization as a grassroots effort by a
technology team that thinks it is the right technology and/or wants to be on
the leading edge. When this occurs, there is no real business driver motivating
SOA, only the ethereal benefits of reuse, lower cost, better quality, and faster
time-to-market (all of which are achievable with SOA, if done right, but which
are technology drivers, not business drivers). The team struggles to look for
things that make sense as services and comes up with a set of common
enterprise utilities (such as address checking or part number validation, etc.).
These indeed make good utility services, but without projects identified to use
them, and without business sponsors to fund them, they can go awry. And,
because there is no organizational infrastructure to support them, they are
undiscovered and underutilized.

Service Enabling

SOA has been touted as a replacement for EAI and the next best way to do
integration. As such, SOA is often embarked on as a way to integrate data
or functions from legacy systems. Here, the technology vendors are actually
the worst enemy of the enterprise because they promote (and provide tools
for) a simple-minded approach to service wrapping that exposes the existing
data or function directly as a service interface. In fact, this is almost never the

Chapter 3 ■ Getting Started with SOA 109

right interface to meet enterprise requirements, be flexible, or be extensible,
but it is the easiest and fastest. Even when the designers are not taking short
cuts, they are often thinking in a limited, point-to-point integration view of
services, instead of exposing the existing system in the granularity, syntax,
and semantics to meet the needs of the current and future enterprise.

The problem with a bottom-up approach is the narrow scope and lack of
consideration of a broader context. History has repeatedly shown that projects
done this way create long-term costs rather than provide long-term value.
This is often not a conscience tradeoff, but rather a failure to understand
the complete requirements. As often as not, it takes no more time and effort
to design and implement good services than it does to design bad ones. But,
convincing team members of this under a time pressure is a challenge. Conflicts
arise when an architect tries to discuss enterprise processes, business models,
semantics, and so on, with a developer, who has never even considered these
aspects of services, can’t understand their importance, and only sees them as
a distraction.

Middle-Out: The Best of Both

There is general acceptance that a compromise approach is needed. The
top-down approach is perceived as impractical, unnecessary, or not providing
value. The bottom-up approach creates isolated services that aren’t reused
across the enterprise and don’t deliver the benefits of SOA. A middle-out
approach is frequently cited as being better, but what does it mean, and what
is the key ingredient that actually makes it work?

What it means is that when a project team is engaged in an SOA design, it
has to both push up into the enterprise scope and, at the same time, push down
into immediate deliverables. In other words, the approach produces both a
higher-level business and information architecture and design artifacts, and
working and deployed services. And the secret sauce that makes this actually
work is the SOA reference architecture. The reference architecture ensures
that the enterprise context is present in the concerns, activities, and artifacts of
everyday project development.

Process Summary
Figure 3-8 shows an overall middle-out process and its constituent parts
for designing and implementing services. The process is structured around
the activities, artifacts, roles, and repository required for each major area.
Although the drawing is divided into discrete rows, in practice, they are all
tightly related to each other. Note that this is only a representative drawing.
The specific process and artifacts that you need for your organization may

110 Part I ■ Understanding SOA

vary. First, let’s look at what the different parts of the drawing indicate, then
we will look at each individual process area.

Activities

Each activity focuses on a specific goal, such as modeling the business con-
text or enabling services for use in solutions. The activities are constrained
by the concerns appropriate to that goal. For example, the goals of the
business analysis activity concentrate on understanding the business context
and requirements from a business perspective. The business analysis activity
should not address or be influenced by technical or infrastructure concerns.
The activities describe how to meet the goal of the activity, including:

The inputs to the activity — what artifacts to use

The outputs from the activity — what artifacts are produced

The architecture(s) that defines the framework and standards

Despite the implication of Figure 3-8, service analysis, design, and imple-
mentation is not a linear process. Iterations take place within and between
each activity. The number of iterations and the path they take depend on
whether you are creating new business capabilities or enabling the use of
existing capabilities.

Service
Repository

Service
Registry

Business

Model
Repository

Document
Repository Source Control

Implementation TestDesign

Re
po

si
to

rie
s

Ar
tif

ac
ts

Ac
tiv

iti
es

Architectural
Context

Business

Standards

Reference
Architecture

Information

Requirements
Specification

Analysis

Design

WSDL

XSD

Design
Spececification

Test
PlanSource

Code
Test
Code

Ro
le

Service Identification

Design Implementation

Test

Business Modeling

Reference
Architecture

Architects Business Analysts System Analysts TestersDevelopers

Business
Process

Figure 3-8 Processes and artifacts in service design

Chapter 3 ■ Getting Started with SOA 111

Artifacts

Every activity has inputs and outputs, whether it is a manufacturing process,
a business process, or a software development activity. The general term for
inputs to and outputs from the activity is artifacts. Artifacts may take many
forms from specifications to models to executable code or test plans. The
architecture, guidelines, and governance specify which artifact to use as input
for a particular step of the process, and what artifact is produced or modified
as an output from the step.

Repositories

The repositories indicate where specific artifacts are stored and managed. Notice
that the overall process requires a variety of different repository technologies.
Integration of these repositories represents a challenge to most tools and
organizations.

Governance

Governance is an important aspect of the management of the overall process.
The governance policies and procedures determine what artifacts are required
at what point in the process. Governance also provides mechanisms to compare
specific artifacts against standards to determine if a project is ready to enter
the next phase. In each phase, the governance consists of a set of guidelines,
examples, and standards to encourage compliance, and a review process to
validate it.

Process Phases
The top of Figure 3-8 lists the high-level process phases involved in the overall
development of services and SOA solutions.

Architectural Context

This is the early stage of SOA, where the organization is developing the
reference architecture. Typically, this is done by the architecture team, who
is responsible for producing a variety of architectural artifacts, including:
the reference architecture, standards, business model, and semantic informa-
tion model. The artifacts produced during this phase are at an enterprise
scope and not limited to a specific project. Typically, this phase is done once
for the enterprise, while subsequent phases of the process are done once for
each project. There is however a feedback loop that continually updates the
architecture and keeps it current. A model repository may be used to store and
coordinate all the models.

112 Part I ■ Understanding SOA

Business

This is where you do the bulk of the business analysis and business process
design. Typically, the activities of this phase are performed by a business
analyst. The design phase overlaps with the architecture phase around the
development of the business and information models. Often the architects
create the initial, high-level models, and the business analysts fill them out with
the next level of detail while working on a specific project. The primary artifact
of this phase is business process models. In addition, some organizations may
produce requirement specifications. The business phase provides the initial
input for service identification.

Design

During design, you complete the service identification and service specifica-
tion. These activities are usually carried out by a system analyst, who creates
analysis and design models that describe the details of the service interface
and implementation design, including the documents that are part of their
interfaces. A design document or service specification document may option-
ally be produced. Service interfaces may be described in WSDL, and interface
document schemas may be described in XSDs. A design-time service reposi-
tory may be used to support searching for services according to information
from their specifications.

Implementation

This is where the actual service implementation is done. Developers write
source code to implement the service. This may include business components,
integration access, SCA, and BPEL. A source code repository should be used
to manage the source code. The run-time registry may also begin to be used to
register the executable instance of the services.

Test

You should not forget testing and other preparations before a service can be
put into production. This stage is usually carried out by test developers or all
developers (depending on the testing strategy). Often, a test plan is written to
guide the testing activities, or an agile approach may be followed. Artifacts
produced are tests that are managed from a testing framework and stored in
a source code repository.

No lines have been drawn between phases because the boundary between
activities, and what role produces what artifacts, is naturally fuzzy. The
important thing is to come up with a process that works for your organization
and meets your goals. Experience has shown that the process at more mature
organizations contains most of the elements of Figure 3-8.

Chapter 3 ■ Getting Started with SOA 113

Practical steps

As we have described in this chapter, there are a lot things that need to be con-
sidered for practical SOA implementations, including business, organizational,
and technical changes. So when you decide to embark on an SOA implemen-
tation, the typical question is where to start. On the one hand, the linkage of
SOA to the enterprise business model implies that an enterprise-wide SOA
implementation is the most beneficial, providing the majority of SOA benefits.
On the other hand, the sheer complexity of such an approach typically makes
it impractical; it requires a lot of things to be in place and creates too much
risk.

A common approach, advocated by many authors, is to start small and then
organically grow SOA. Although it seems very attractive from the point of
view of containing the risks and providing a good learning experience for
the enterprise, such an undertaking too often provides very few benefits. The
issue here is not that the choice is always wrong, but the fact that the projects
are more concerned with the delivery speed than with setting up a foundation
for future SOA growth. In fact, many of these projects are more concerned
with creating Web Services, than SOA experience. They are often treated as
technology, not the first steps in establishing SOA. Typical mistakes that occur
in technology-driven implementations are:

No attempt is made to align the implementation to the enterprise busi-
ness model. This usually manifests itself where analysis is only con-
cerned with the scope of the project, not the broader enterprise. (This
is exactly the same as the good old application-centric approach, using
a new technology: Web Services.) As a result, service definitions and
implementation are application-specific, and their use (and reuse) on the
enterprise level is extremely limited.

As a result of skipping the business-model-based design, and the limited
scope of analysis, business semantics are rarely introduced.

Service definitions become significantly less important. Implementa-
tion involves a limited set of developers and business analysts, who deal
with ambiguities through day-to-day discussions. Moreover, because
services are limited in scope to a particular application, precise service
contract definitions are not considered important. The absence of precise
service definitions often leads to the absence of service registries. On this
smaller scale, a repository is often considered as a waste of money and
resources.

Buy versus build versus outsource issues are rarely discussed. Because
they are often not based on the enterprise business strategy, they typi-
cally come as predetermined requirements to the project implementation.

114 Part I ■ Understanding SOA

Because of the limited scope of the project, which is often run by one
or two project managers, the role of service governance is often viewed
as an unnecessary overhead — a smaller scope requires significantly less
coordination.

This does not necessarily mean that an approach that starts enterprise SOA
implementations from small contained projects is wrong. In fact, we think it
can be a practical approach. But, it only works when an enterprise SOA context
and vision (the minimum architecture described earlier) is established first.
In addition, common pitfalls just described should be avoided, and common
factors in the following list considered, when choosing and planning a project:

SOA is an architecture. It is a set of best practices, not a technology.

SOA is not a panacea. It’s especially useful for increasing asset reuse,
providing better business visibility, and most importantly, increasing
business agility in an environment of heterogeneity. But if your problem
isn’t one of these, SOA may not be the right approach.

The biggest challenges with SOA are organizational, cultural, and polit-
ical. People are resistant to change, to sharing assets, and to funding
each other’s projects. Compared to these challenges, technology is the
easy part.

The core SOA challenges are governance, quality, and management.
Without governance, SOA is limited to project scope. Enterprise SOA
efforts are doomed to failure. Quality in the SOA context becomes an
ongoing, full life-cycle battle.

The business side of the house doesn’t want SOA. They want solutions
to business problems. The most successful SOA initiatives aren’t called
SOA, but are closely tied to the problem they are looking to
solve. SOA is more of the secret weapon IT brings to bear to solve busi-
ness problems.

Based on these lists and the methodology presented in this chapter, we
recommend that the initial SOA project decision and implementation consider
the following:

SOA implementations are not optimal for organizations with an
ill-defined business architecture. Make sure that business architecture
is defined, at least on the level of enterprise business processes and busi-
ness semantics.

Do not try to sell SOA to business leaders, but make sure that you choose
a project that is sufficiently important to them. The project’s success can
ensure traction for SOA’s adoption and business leaders’ support.

Chapter 3 ■ Getting Started with SOA 115

Ensure proper SOA organizational support. Ensure that governance
includes both the organizational structure and technical support,
and includes a service repository.

Continue enhancing the enterprise business model. Make sure that:

Service identification directly supports (traceable to) the business
model and is not derived directly from existing applications’
functionality.

Service interfaces are based on the enterprise semantics information
model.

Business processes allow for direct support and measurements of out-
comes and KPIs.

Set up standards and practices for the definition and description of ser-
vice contracts.

Ensure that attention is paid to the SOA infrastructure and appropriate
foundation services are designed and put in place to support implemen-
tation and operations.

Use existing application capabilities in your service implementation
through proper componentization and integration services.

Read the rest of the book for more details.

Summary

This chapter has defined the basic activities that an enterprise must engage
in to create SOA solutions. First, the SOA reference architecture is the formal
specification of services, their types and characteristics, how they support
business processes, and how they relate to architecture and development
processes. Put a minimum architecture in place to establish the SOA vision
before doing anything else, then continue to build it out over time.

Business architecture is key to creating flexible, reusable services, and to
aligning processes and services with enterprise strategy and goals. Common
semantics are key to enabling services to work together. Both of these need to
be created and continually updated.

Service identification uses the business and information models to drive
service design. In addition, the overall enterprise context, as described in
the service inventory, helps in identification of existing services, and in the
allocation of responsibilities to new services. Service specifications describe
what a service does and how to use it. They support discovery of services
during service identification and business process design, and the specification
of service details for implementation.

116 Part I ■ Understanding SOA

Service realization provides the implementation of services. We described
three major approaches to implementing services: buy, outsource, and build.
When building services, we described a middle-out approach to service design
that has been proven to be more practical and effective than the traditional
top-down and bottom-up approaches.

All of these aspects are part of an overall SOA life cycle. The life cycle is
supported by the SOA methodology and enforced by SOA governance.

P a r t

II
Designing SOA

In This Part

Chapter 4: Starting with the Business
Chapter 5: Service Context and Common Semantics
Chapter 6: Designing Service Interfaces
Chapter 7: Designing Service Implementations
Chapter 8: Composing Services
Chapter 9: Using Services to Build Enterprise Solutions
Chapter 10: Designing and Using Integration in SOA Solutions
Chapter 11: SOA Security
Chapter 12: SOA Governance

C H A P T E R

4

Starting with the Business
The measure of success is not whether you have a tough problem to deal with, but

whether it’s the same problem you had last year.

— John Foster Dulles

The ever-elusive goal of corporations, large or small, East or West, is to align the
business with IT. The burden often falls on IT to demonstrate how technology
and systems provide value and help move the business forward. But what is
it that IT is supposed to align with? How is it determined and specified? And
who is responsible for it? All too often, business strategy and goals are too high-
level, vague, or not well articulated. So, how can IT demonstrate alignment?

Business architecture (BA) is the key to achieving alignment. First, it pro-
vides a way to clearly determine and specify a business strategy, goals, and
objectives. Then, it provides a way to measure outcomes against those objec-
tives, and finally, it provides a way to specify business processes that achieve
those outcomes. An effective architecture also provides traceability from the
processes to the outcomes to the objectives to the strategy. It is this traceability
that demonstrates alignment.

There are two different, but important, sets of questions that must be
answered by business architecture. One set of questions applies at the enter-
prise level. What are the goals and strategies of the business? How will they be
measured? This is the domain of enterprise business architecture. A different
set of questions applies to individual projects. What are the processes, activi-
ties, services, and information needed for a specific project or solution? This is
the domain of project business architecture.

In this chapter, we introduce both areas of business architecture. The
enterprise business architecture determines the overall context that individual

119

120 Part II ■ Designing SOA

projects must work within, so this is addressed first. The project business archi-
tecture determines the business details of individual projects, in particular, the
design of business processes, and this is addressed second.

Business processes need to change relatively frequently, yet be based on
stable underlying capabilities. The flexibility to do this comes from being
able to quickly construct business processes from stable and precise business
building blocks. These building blocks need to be expressed in business
terms, be usable without detailed knowledge of their implementation, and
be sufficiently interoperable and variable so that they can be combined and
recombined as the needs of the business change.

The promise of SOA to the businessperson is this very ability to create
and modify business processes from business services — software components
that are realizations of the basic business building blocks. It is essentially a
manufacturing paradigm in which you create new systems by assembling
existing components.

SOA may be a relatively recent phenomenon, but the concept of building
new systems using existing components is as old as engineering itself. The
challenge in successful component-based engineering (and SOA) is twofold:
creating the right components (services) and having a foundation for reliably
using those components. Unfortunately, too many IT efforts focus on the
foundation, without paying adequate attention to the former, the business
aspects of SOA. Without the right building blocks, even the best foundation is
not that useful.

So, to effectively deliver business agility with SOA, you need to find and
create the right business services. To do that, you need to find the business
capabilities (operations and data) that form the basis for the services. You
can approach this by business process modeling, a classic way of identifying
business activities and the role of the project business architecture. But,
for those services to be flexible and reusable across processes, to deliver on
the promise of SOA, they also have to be identified within the context of the
enterprise. This is the role of enterprise business architecture in SOA design.

This chapter introduces the basics of business architecture and business
process modeling — not a detailed course, just enough to show how to under-
stand the business motivation and to derive good business services from
real-world business processes. It provides techniques for getting started with
the models, explains the individual elements, and relates them to their realiza-
tion as services. Finally, we introduce techniques for organizing these services
by business organization, structure, and subject matter. We call this approach
starting from the business, including:

Business architecture

Value chains and context diagrams

Business Motivation Model (BMM)

Chapter 4 ■ Starting with the Business 121

Business Process Models (BPMs)

BPM and SOA

Organizing services

Business Architecture

What is business architecture? Although there are many available definitions,
here are a few that we found useful:

A rather wordy, but descriptive definition comes from the USDA:

The business architecture represents the functions and processes that support the
business, the organizations that perform the business, the locations where the
business is performed, and the factors that could cause the business to change.
In other words, the business architecture addresses how the mission-critical
functions of the organization are accomplished. It is a portrayal of how the orga-
nization actually accomplishes its mission rather than how it is organizationally
structured to manage its mission. The business architecture also encompasses
a strategic direction that an organization strives to attain. Major influences on
the business architecture are laws and regulations, external and internal poli-
cies, organizational structures, organizational culture, business change, people,
budgets, and technology drivers. This layer ignores any physical constraints and
contains no element of system design.

The Open Group describes the business architecture view as:

Addressing the concerns of the users including consideration of the following:

People — the human resource aspects of the system. It examines the human
actors involved in the system.

Process — deals with the user processes involved in the system.

Function — deals with the functions required to support the processes.

Business Information — deals with the information required to flow in sup-
port of the processes.

Usability — considers the usability aspects of the system and its
environment.

Performance — considers the performance aspects of the system and its envi-
ronment.

The business architecture view is derived from business scenarios, where
each scenario is defined by describing the problem, environment, objective,
human actors, system actors, and roles and responsibilities.

Finally, for a more succinct definition, you can turn to the recent article
‘‘Business Architecture: Aligning Strategy and Deployment’’ by William Ulrich

122 Part II ■ Designing SOA

(BPMInstitute, June 2, 2006), which describes business architecture as
‘‘Conceptual views & physical instantiations of business strategy, governance
structures, and processes — across the extended value chain.’’

What all of these definitions have in common are the concepts of strategy,
organization, and business processes. In other words, the business architecture
translates the business strategy into actionable processes. When you look into
some details of this, you see that it involves people and systems (the actors and
their organizations), information and information flow, and business processes
and activities.

Not surprisingly, you see these same elements if you examine some of the
standard ways of representing business architecture. For example, a business
context diagram (see Figure 4-3) illustrates users, organizations, boundaries
and information flows between them. A value chain diagram (see Figure 4-2)
shows organizations and the chain of processes and information that provide
business value. A business process diagram (see Figure 4-6) shows the sequence
of processes executed by different organizational units, and the information
flow between them.

Business architecture allows an organization to envision and articulate the
essence of their organization while creating tangible ways to align business
architecture with IT architecture. Business architecture enables a business to
visualize, analyze, redefine, and reengineer the way it functions and commu-
nicates internally, with business partners, and with IT.

In other words, business architecture focuses on aligning business strategy
with IT implementation, by:

Identifying goals and strategy

Identifying organizational structures and governance and their impact
on strategy

Applying the strategy across the entire enterprise

Aligning with external entities

Identifying quantifiable outcomes to measure the strategy

Identifying the processes, rules, and information necessary to support
the outcomes

Managing and synchronizing the process model, business rules model,
and information models:

Applying business architecture context to individual projects

Acting as a bridge between enterprise context and individual project
requirements

Chapter 4 ■ Starting with the Business 123

Working with business analysts and project teams in the design of
business models to ensure that enterprise requirements and concerns
are correctly incorporated

When we tie these definitions together, we come up with Figure 4-1, which
illustrates the important concepts of business architecture and the relationships
between them. It also shows that the overall business architecture can be
divided into two main parts based on the scope of the architectural concerns.
The top part of the drawing shows the enterprise business architecture. This
is the part of business architecture at the enterprise level and that deals
with the goals, strategies, outcomes, and common information, rules, and
processes. The enterprise business architecture sets the overall context for
individual projects.

The bottom part of the drawing shows the project business architecture. This
is the part of business architecture that deals with individual applications,
processes, and systems. Typically, an enterprise has one enterprise business
architecture, and many (one for each major project) project business archi-
tectures. Ideally, there is an area of overlap where the enterprise business
architecture drives common processes, rules, and information and affects the
project business architecture and the solutions themselves. Unfortunately, in
many (perhaps most) enterprises, there is a distinct gap between enterprise
concerns and IT systems, rather than an overlap. It is this gap that effective busi-
ness architecture addresses in order to align strategy with implementations,
align processes with services, and enable an agile enterprise IT environment.

Project Business Architecture

Enterprise Business Architecture

Systems ApplicationsData

Outcomes

Strategy Roadmap

Initiatives

Goals

Organizations

InformationProcesses

Ev
en

ts

Rules Projects

Figure 4-1 Aspects of business architecture

124 Part II ■ Designing SOA

In addition to differences in scope, there are some other important differences
between enterprise and project architectures, including levels of abstraction,
types of models, and roles. At the enterprise level, business architecture is
more abstract, dealing with the big picture and broad concepts. (Note that
abstract does not mean that it is imprecise. See the ‘‘BMM’’ section later in
this chapter.) A set of models that target these big picture concepts are used
to express the details for the enterprise. In general, this work is done by an
enterprise business architect.

At the project level, business architecture is more specific, dealing with
concepts such as business processes, rules, services, and information. Different
types of models, such as a Business Process Model are used to express these
details for the project. In general, this work is done by a project architect or
business analyst.

Although these two architectures are often handled by different people, they
are not unrelated. Both are necessary, and both are complementary. It is the
traceability between these two architectures that tie them together and provide
the alignment between the business and IT. If you apply these architectures
to the enterprise and project concerns of SOA, you can use the same traceability
mechanisms to establish the alignment of SOA with the business.

Enterprise Business Architecture
The enterprise business architecture applies to the enterprise scope. Its area of
concern spans individual applications, often identifying commonalities. The
enterprise business architecture is concerned with:

Formalizing business strategy into goals and outcomes

Identifying common enterprise business semantics

Identifying common enterprise processes and rules

Identifying enterprise opportunities and value

Developing strategic roadmaps

Providing alignment and innovation

Considering competitive forces and competitive strategies

Aligning with external organizations (the virtual enterprise)

Project Business Architecture
The project business architecture acts as a bridge between the enterprise
context (as expressed in the enterprise business architecture) and the project
specific business model. The project architecture typically includes:

Chapter 4 ■ Starting with the Business 125

Context diagrams

Process models

Information models

Integration of enterprise semantics into project models

Integration of enterprise semantics, common processes, and services into
the project design

Value Chain
One way to get started with the business is to create a business value chain.
The value chain was first developed by Michael Porter and described in
his 1985 book Competitive Advantage. Figure 4-2 illustrates a sample extended
value chain. (Note that this format of the value chain has evolved from Porter’s
original. The format we use is called an extended value chain.)

The value chain is divided into two main sets of activities. The activities
on the bottom are called supporting activities. These are things like HR and
finance that must be in place to keep the company operating, but that do not
add value to the products or services. (Note that in Porter’s version of the
value chain, he lists the supporting activities on the top. We have moved them
to the bottom because they are not the focus of the corporation.)

Project/Process Management

Channels

Shopping
and

Content

Inventory
Management

Add-On
Marketing
and Sales

Pricing
and Yield

Optimization
Reservations

Primary
Activities

Core
Business
Process

Process
Management

Payment
Management

Product
Information

“. . . to provide premium
travel content and
reservation services”

Planning
and
Reservations

Goal

Supporting (Financial, HR, IT, . . .) Assets

HR Management

Financial Management

IT Management

Administration Management

Supporting
Activities

Support Asset
Info

Supporting
Processes

Billing and Payment

Figure 4-2 Extended value chain

126 Part II ■ Designing SOA

The top part of the diagram describes the primary activities. The main
business that our example company is involved in is Trip Planning and
Reservations. This is composed of five main value adding activities: Shopping
and Content, Inventory Management, Add-on Marketing and Sales, Price and
Yield Optimization, and Reservations. These make up the primary activity, as
identified by the arrow which connects the steps and ties them to the goals.
(This is the traditional value chain.)

In addition, the primary activities consist of management functions such as
Process/Project Management, Channel Management, Billing and Payments,
and Information Management. These are all necessary to keep the primary value
chain going, but do not provide specific value added services to the product.

We find that the value chain is useful for identifying the different functional
areas of the company and focusing attention on the most important of them.
It is a good mechanism for bringing out the goals and objectives. As well,
it starts to identify areas of services. For example, each different step or
primary activity in the value chain is likely to have one or more service groups
associated with it. This provides a first step in creating a service inventory.

Business Context
The value chain provides one enterprise-level perspective on the operations
of the business. You also know that business operations inside and outside of
the enterprise are made up of interactions and exchanges of information
between parties. To describe the overall set of interactions, you use a business
context diagram, as illustrated in Figure 4-3. The context diagram includes the
major parties, represented by the rounded rectangles, and the messages that
they exchange, represented by the arrows. You create the context diagram by
talking with the business analysts and walking through all of the different
interactions required for end-to-end capabilities.

The context diagram is made up of the following semantic elements:

Actors — The main parties of the interactions, (the rounded rectangles).
Typical actors are people, organizations, or systems.

Messages — Information exchanged between actors (the arrows). Mes-
sages are typically documents, packages, electronic communications,
and the like.

Subjects — The business matters that the messages are about. The sub-
jects are not explicit in the drawing, but are implied by the interactions
and messages. Subjects are typically things like products and services.

You can think of a shipping package (such as a box from a bookseller) as a
metaphor for these elements of the context model. The package has a shipping
label with From and To addresses. These are the actors. The package box itself
(to which the labels are attached) is like the message. It moves between the

Chapter 4 ■ Starting with the Business 127

From actor and the To actor. The contexts of the box are the subject. It is what
the message is about.

For example, in Figure 4-3 the customer and bookshop storefront are actors.
The customer places an order, which is a message. The subject of the message
(and hence the order) is books that the customer wishes to purchase.

Notice what a business context diagram provides:

Overall interaction — The context model represents the overall inter-
action of all aspects of the system. It is purposely kept at a high level
and includes only business concepts, no technology. It is a combina-
tion of all the different business scenarios and transactions. Any single
scenario represents one path through the overall diagram (a subset of
functional areas and messages). The context diagram is the first place
that you can start to identify commonality in function and information.

Shared information — The messages describe the information that must
be shared and exchanged between parties to complete the different trans-
actions. It does not describe the details of any information within the
different functional areas, but only the information exchanged, that is,
shared. Remember that this is exactly the information that you need for
the semantic information model and to design the service interfaces.

Shop
Selection

Confirmation
Order

Add Item to Cart

Check Credit

Charge Approval or Denial

Shipping
Request

Tracking
Number

Ge
t P

re
fe

re
nc

es Profile

Cu
st

om
er

 A
ct

io
n

Cart

Purchase
Order

Inventory Check Av
ai

la
bi

lit
y

Process Charge
Charge Confirmation

Packing Request Tr
ac

ki
ng

 N
um

be
r

Customer

Credit Card
Networks

Shipping
CompaniesOrdering

Storefront

Inventory Shipping

Customer Profile

Figure 4-3 Sample business context diagram

128 Part II ■ Designing SOA

You use business context diagrams because they provide an excellent com-
munication mechanism with the business. They are intuitively understandable
and nontechnical. They focus on business concepts. The process of creating
them helps to bring a common understanding to the different parts of the
business. And, they provide the first step in identifying common functions
and data that are required for service design.

So, how does this relate to SOA? The business model and the semantic
information model have been identified as key components of SOA. These
two aspects are critical to moving an enterprise from simply building services
(which at best may incidentally work together), to having an architectural
approach that systematically leads to an organized collection (inventory) of
related, non-overlapping and composable services.

The SOA service and information models are directly related to the business
architecture. They intersect at the business process, as defined in the business
architecture, and are translated into service concepts in the service model,
where they are extended to the next level of detail. The information flow of
the business processes becomes the basis of the semantic information model
and the document definitions of the service interfaces. These relationships are
illustrated in Figure 4-4.

The left side of Figure 4-4 shows the business architecture aspects. Here, you
start with business strategy and goals as input to the business value chain.

Business Architecture SOA Business Model

GoalsStrategy

Information

Business Process

Customer Quoting Underwriting

QuoteRequest

RiskQuote

UW Requtes

Domain
Services

Utility
Services

Foundation
Services

Service Model/Inventory

Information Model

Business
Services

Documents

Shared
Information

Quote

Business Service

DomainnDomain2Domain1

Utility1 Utilityn

Quote

Quote

Customer Usage & Quality

Project/Process Management

Network Research & Quality

Network Infrastructure Assets

Forecasting
Network/
Product
Planning

Capital
Equipment
Acquisition

Constructio
Network

Monitoring

Customer
Order

Service
Provisionin

Customer
Service

Customer
Billing

Real-time
Operations

“…to provide a
premium
communications
network and
customer services”

telecom
network
customer
service

Goal

Supporting (Financial, HR, IT, . . .) Assets

HR Management
Financial Management

IT Management
Administration Management

1

2

4

3

6

5

Request
Quote

Underwrite
Request

Create Risk
Profile

Create Quote

Insured Party
Name: String
PrimaryAddress: A
HomePhone:
WorkPhone
MobilePhone: Phone...
DoB: Date: Phone...
MaritalStatus: Marit..
Gender

DriverIdentification

State: String
LicenseNumber: String

CoInsured

Relationship: Relation...

Product

ProductIdentifier: Prod…

ProductType: Product:

InsuredItem

Vehicle
VIN: VIN
Make: String
Model: String
Year: String
Style: VehicleStyleCode

VehicleUsage

Usage: VehicleUsageCO...
YearlyMiles: Int
Business: Boolean

Coverage
Coverage: CoverageT...
Detail: CoverageDesc...
Name: String

Limit

LimitAmount: C...

Deductable

Deductable: A...

R11 1

R110

related by

R1

0..*

Product

0..*

0..*

R1

1

1..*

R1

1

1

R1

1

1. . *

R1

1

1
R1

1

1

R1

1

1

Primary
Driver

Customer

BillingAddres: Addre...
CustomerID: Custom...

Figure 4-4 Business architecture and SOA design

Chapter 4 ■ Starting with the Business 129

The value chain helps you to identify the major areas of business activities,
and to prioritize them in terms of importance and value creation. For each of
these major areas, you need to specify the next level of details.

You use the business context model to identify the major parties, major areas
of business capability, and the interactions between them. The context model
leads directly to identification of the information model and specific Business
Process Models.

The steps are fairly straightforward. (The numbers in the following list
correspond to the numbers in Figure 4-4.) First, you establish the overall
context:

1. The overall set of processes, as identified by the value chain, and the set
of all context models provides the enterprise SOA context that is repre-
sented in the service inventory.

2. The enterprise information model describes the superset of information
that is needed to be shared between services. This becomes the basis for
the more detailed semantic information model.

Next, you refine context models into process models or scenarios:

3. Parties or functional areas in the context model become actors in the
Business Process Models.

4. Messages in the context model become data that is passed into and out
of the business processes.

Finally, you focus on the specific business processes:

5. Activities in the business processes are implemented by operations on
services. The services fit within an overall service hierarchy, but at this
level you are primarily identifying business services.

6. Inputs and outputs of the business processes become documents that are
passed through service interfaces. The documents are derived from the
semantic information model.

Note that the business architecture is purposely devoid of IT specifics, and
that the business services are the realization of those business requirements in
IT terms. Clearly, these are related (they better be), but they are not exactly the
same.

We have described the relationship for a single process, but of course the
business architecture and the service model are concerned with the totality of
processes, services and information. They are concerned with the present, the
near term, and the long term. Thus, the business model must identify all of
the processes and information that exist today, those that are currently
planned or being implemented, and the processes and information that are
needed over time to realize the business strategy and goals.

130 Part II ■ Designing SOA

Likewise, the SOA business model must describe today’s services, doc-
uments, and information (those currently being implemented) and future
services and information (those that provide the business capabilities required
of the future business processes). In other words, the SOA service model
is directly influenced by the business strategy and must identify services to
provide all the capabilities required of that strategy. And, the SOA information
model is directly influenced by the business information and must identify all
of the information required for the future processes.

Of course, the level of detail, in which current processes, services, and
information are described, is much greater than for the future. In your mod-
els, you do not need to (nor can you) identify every detail of the future.
But, you must identify enough about your future needs to set the right
direction now.

The SOA business model has some other important goals. It has to manage
the sharing of services and information across processes. In other words, it
needs to eliminate redundancy, overlap, and gaps between services. That
ensures that each business capability is implemented once, by the organiza-
tional unit that is responsible for that capability, and that those services are
used by all the different processes needing those capabilities. In addition, all
of the information shared between services must be identified in the semantic
information model. In other words, all services that are related to the same
business concepts must use the same information to describe the same con-
cepts. Finally, the SOA business model must ensure that all of the information
passed into and out of the business services (mostly in the form of documents)
is defined in the semantic information model.

You have looked at several different definitions of business architecture
and identified some common components of strategy, processes, and infor-
mation. Then, you looked at how these aspects of the business architecture
are related to SOA. At the business architecture level, you need to ensure
that your business architecture is internally consistent. That strategy, goals,
organization, and so on are realized as processes and information. Then, you
need to make sure that the business architecture is consistent externally with
the SOA model, that it drives the long-term vision, and that you have complete
and consistent traceability from strategy to process to task to implementation
as a business service. For this, you use a Business Motivation Model.

THE TECHNOLOGY OF BUSINESS ARCHITECTURE

Okay . . . hold on . . . what the heck are they talking about now, you ask? Well,
it’s not exactly technology, but we want to talk about the formal architectural
underpinnings of BA.

Chapter 4 ■ Starting with the Business 131

We say that service design should be driven by the business, or to be more
precise, we say that BA must answer the following questions: What business
are you in? What are the goals and objectives of this particular business? What
outcomes are needed to achieve those goals? What is the strategy for achieving
them? How will they be measured? What capabilities and information are
needed to achieve those outcomes? What processes, services, entities, and
rules are needed to implement those capabilities? What existing applications
provide basic capabilities and information? Although this is where we usually
stop, others might add: What organizational structure do you need to support
them? What initiative, programs, and projects do you need to create, enhance
and maintain them?

All good questions, so, how do you describe all of these things? Architecture
should have two complementary views: a conceptual view, usually as a Visio
diagram, designed to communicate concepts to a particular audience; and a
formal view, usually as a formal model, designed to be a precise specification
of the architecture that can be implemented and validated. If you use a
standard notation, the formal model will use standard definitions and
nomenclature that allow for common/shared understanding among architects
who are conversant in the notation. For example, if the modeling notation
formally defines what strategy means, then you have removed ambiguity about
the meaning of strategy. Rather than debate what strategy means, you can
instead focus on the contents of a particular strategy.

The Business Motivation Model (BMM) specification, published by the Object
Management Group (OMG) provides the underlying architectural metamodel
for describing much of the concepts mentioned previously. Tying it to our
example, the BMM explicitly defines the following concepts: goals, objectives,
strategy, tactics, policies, rules, and assessments.

You might ask why bother with the value chain at all? Can’t you do everything
it does in the BMM? Well yes, but there’s a catch. Business people and execu-
tives are familiar with the value chain. It is easily recognizable and intuitive to
the business. And who is the audience for this part of the business architecture?
Although the BMM is more precise, often, it is considered too technical by the
intended audience and simply dismissed. Is it fair? No. Is it reality? Yes. Anyone
who has tried to show a UML model to a businessperson knows what I’m
talking about.

The next question is how do you define the business processes? There are
lots of proprietary versions of Business Process Models, and you could use
one of them if you’ve already invested in a tool set, or you could use the
emerging standard, Business Process Modeling Notation (BPMN). The notation
itself is a standard way to represent and diagram business processes in visual
models. It is based on an underlying metamodel called the Business Process

(continued)

132 Part II ■ Designing SOA

THE TECHNOLOGY OF BUSINESS ARCHITECTURE (continued)

Definition Metamodel (BPDM). (Both BPMN and BPDM are described on the
OMG page listed previously.) So, why have two separate specifications? To
quote the OMG:

BPDM provides the capability to represent and model business processes
independent of notation or methodology, thus bringing these different
approaches together into a cohesive capability. This is done using a meta
model — a model of how to describe business processes — a kind of shared
vocabulary of process with well defined connections between terms and
concepts. This meta model captures the meaning behind the notations and
technologies in a way that can help integrate them and leverage existing
assets and new designs.

Earlier, it was stated that architecture must answer three important
questions: 1) What are the important concepts? 2) What are the relationships
between them, and how do those relationships describe the behavior of the
system? 3) How does the system provide value (beyond the value of any single
part)? This is essentially what these modeling specifications do. They define the
important concepts, and they define the relationships between them. But, they
do it in a standard way, so that people don’t have to reinvent those concepts.
Thus, the meaning is clear to everyone who knows the notation, and tools can
implement and exchange standard models.

Just one word of advice, when talking to the business about business
architecture, it’s probably best to leave all these metamodel details out of the
conversation.

Understanding the Business Motivation Model

The Business Motivation Model (BMM), published by the Business Rules
Group and the Object Management Group (OMG) provides the underly-
ing architectural metamodel for describing many of the concepts mentioned
earlier. Version 1.3, the current version of the specification, was released in
September 2007 (www.omg.org/technology/documents/br pm spec catalog

.htm). (Note: Some of the description of the model’s concepts in this section
are paraphrased from the specification.)

There are two major areas of the BMM:

The Ends and Means of business plans — Among the Ends are things
that the enterprise wishes to achieve — for example, Goals and Objec-
tives. Among the Means are things the enterprise uses to achieve those
Ends — for example, Strategies and Tactics.

Chapter 4 ■ Starting with the Business 133

The Influencers — These are the things that shape the elements of
the business plans, and the Directives and Assessments made about the
impacts of Influencers on the Ends and Means.

Together, the Ends, Means, and Influencers answer the following funda-
mental business questions:

What is necessary to achieve what the enterprise wishes to achieve?
This is answered by describing the Means needed to achieve the desired
Ends.

Why does each aspect of the business plan exist? This is answered by
identifying the Ends that each of the Means serves. This is what is meant
by business motivation.

Notice that the Ends, Means, Directives, and Assessments correspond to the
age-old questions of who?, what?, how?, and why?

A key to addressing business motivation is understanding the enterprise’s
aspirations — its Vision — and its plans for achieving that vision — its Mis-
sion. Refining these concepts to the next level of detail yields additional
important concepts. Vision is amplified by Goals and quantified by Objectives.
Mission is defined by Strategies (for approaching Goals) and carried out by
Tactics (for achieving Objectives). The BMM uses the general terms Ends to
refer to the aspiration concepts (Vision, Goal, Objective) and the term Means
to refer to the action plan concepts (Mission, Strategy, Tactic). Figure 4-5 shows
the main concepts and relationships of the BMM.

Means Ends

Course of Action

Directive

Desired Result

Strategy

Tactic Objective

Goal

Rule

Policy

VisionMission

supported
by

focus
efforts

implement quantify

plan

govern

specify

operationalize

enforce

amplfy

support

achieve

Influencers

Assessment
motivate

Potential
Impact

identify

Figure 4-5 Business Motivation Model

134 Part II ■ Designing SOA

Ends
An End is something the enterprise desires to accomplish. Note that an End
describes what will be accomplished, but not how. A Means is any device,
capability, technique, restriction, agency, or method that may be called upon,
activated, or enforced to achieve the Ends.

Vision

Vision is an overall image of what the organization wants to be or become. It
usually encompasses the entire organization and is long term in perspective.
A Vision describes the future state of the enterprise, without regard to how
it is to be achieved. A Vision is amplified by Goals. A Vision is supported or
operationalized by Missions.

Desired Results

There are two types of Desired Results that the enterprise intends to achieve
in order to meet its Vision: Goals and Objectives.

A Goal is a statement about a state or condition of the enterprise to be
brought about or sustained through appropriate Means. A Goal amplifies a
Vision — that is, it indicates what must be satisfied on a continuing basis to
effectively attain the Vision.

An Objective is a statement of an attainable, time-specific, and measurable
target that the enterprise seeks to achieve its Goals. An Objective quanti-
fies a Goal. Objectives should be SMART — specific, measurable, achievable,
realistic, and time-bound.

Goals and Objectives are somewhat fuzzy concepts, but you can generally
say that a Goal tends to be longer term, qualitative (rather than quantitative),
general (rather than specific), and ongoing. An Objective tends to be short
term, quantitative, and specific, and does not continue beyond its timeframe.

Desired Results (the specific Ends) are supported by Courses of Action
(specific Means), which can be either Strategies or Tactics. Generally, Goals
are supported by Strategies, and Objectives are achieved by Tactics.

Means
The Means are the operational part of the BMM. They provide a mechanism
to specify how the Vision is realized in terms of operational concepts.

Mission

A Mission indicates the ongoing operational activity of the enterprise. The
Mission describes what the business is or will be doing on a day-to-day basis.
A Mission is planned by Strategies.

Chapter 4 ■ Starting with the Business 135

Course of Action

A Course of Action is an approach or plan for configuring some aspect of the
enterprise involving things, processes, locations, people, timing, or motivation,
undertaken to achieve Desired Results. In other words, a Course of Action
focuses efforts towards Desired Results. There are two types of Courses of Action:
Strategies and Tactics.

A Strategy is one major aspect of the plan for the Mission. A Strat-
egy represents the essential courses of action to achieve Ends — Goals in
particular. A Strategy usually focuses efforts toward those Goals. A Strategy
is more than a resource, skill, or competency that the enterprise can use. A
Strategy is accepted by the enterprise as the right approach to achieve its
Goals given the constraints and risks that the enterprise operates with. A
Tactic represents the detailing of Strategies. In other words, Tactics implement
Strategies.

Again, Strategies and Tactics are somewhat fuzzy, but generally you can
say that Strategies tend to be longer term and broader than Tactics. Strategies
are implemented by Tactics. Strategies usually support Goals and focus efforts on
Objectives. Compared to a Strategy, a Tactic tends to be shorter term and
narrower; they are Courses of Action that generally achieve Objectives.

In and of themselves, however, Courses of Action tend to be limited. They
require Directives to be successfully applied in the business.

Directives

Directives describe the Policies and Rules for applying the Strategies and
Objectives. In other words, Directives govern Courses of Action. Specifically, a
Directive defines or constrains some aspect of an enterprise. It is intended to
assert business structure or to control or influence the behavior of the business.

A Directive always has to do with constraints, governance or guidance. A
Course of Action, in contrast, identifies an active approach in moving toward
the Ends.

A Business Policy is a non-actionable Directive whose purpose is to govern
or guide the enterprise. Policies sharpen Tactics because they make Courses
of Action concrete at the operational level. In general, Business Policies exist
to govern — that is, control, guide, and shape — Strategies and Tactics. A
Business Policy provides the basis for Business Rules.

A Business Rule is a Directive, intended to guide or influence business
behavior, in support of Business Policy. In other words, Rules specify the
Policies. Business Rules sharpen the Business Tactics because they make
Courses of Action concrete at the operational level. Business Rules enforce
Tactics.

To compare the two Directives, a Business Policy tends to be less structured,
less discrete, and usually not atomic — that is, not focused on a single aspect

136 Part II ■ Designing SOA

of governance or guidance. Also, a Business Policy tends to be less compliant
with standard business vocabulary, and less formally articulated. In contrast,
a Business Rule is highly structured and is carefully expressed in terms of
standard vocabulary. A Business Rule should be discrete and atomic (that is,
represent only a single aspect of governance or guidance).

Influencers
Of course, the enterprise does not exist in a vacuum. You can go merrily on your
way toward implementing your objectives, but if you ignore the other forces
(Influencers), you’re in for a disappointment. An Influencer can be anything
that has the ability to affect the business, often without direct exercise of
command, deliberate effort, or intent. Influencers can be external or internal to
the enterprise. Typical examples of Influencers are: a competitor, a customer, a
supplier, a regulation, technology, corporate infrastructure, and management
initiatives. Specifically, the business is concerned with the Influencers that can
impact the employment of Means or achievement of Ends.

So, what are you to do about these Influencers? How do you differentiate
between important ones and trivial ones? This impact of an Influencer is
judged in an Assessment. Influencers, the ‘‘who’’ in business requirements, are
neutral — they are more or less just there until someone makes an assessment
of them as they relate to Ends and/or Means. An assessment indicates which
Influencers are relevant to which Ends and/or Means and identifies the
Potential Impact that they can have. Potential impact can be either a risk
or a reward; it provides the ‘‘why’’ of business requirements — quantifying
the value proposition. Assessments often take the form of a SWOT analysis:
strength, weakness, opportunity, and threat.

Armed with this information, the enterprise can take action to address the
potential impact. Often, a Directive is specifically motivated by the potential
impact of an Influencer.

Alignment and Traceability
One of the key expectations of business architecture is that it helps to
align IT with the business. You’ve all heard this statement so much that it is
often treated as little more than a cliché. But, it need not be. The BMM
provides a formal way to trace the tactics back to goals and objectives. Now,
you need to take it one step further and tie IT systems to the tactics that
they implement. For example, in SOA, business processes and services are
the IT constructs that should implement tactics. So, you can create formal
traceability between the services (IT) and the business by modeling a for-
mal relationship between a service and the tactic it is intended to implement.

Chapter 4 ■ Starting with the Business 137

But why go to all of this trouble? Isn’t it the business’s job? Well yes, but it
is our job as well. The business should have an idea of their strategy, goals,
objectives, and tactics, but in general they will not be clear or precise enough
to trace back to. As architects, you are equipped to help the business express
the enterprise context in terms of a formal model, which will then enable IT to
both achieve and demonstrate alignment.

N O T E There are many different ways to create and represent a business
architecture. What we have (very) briefly described here is only one of many
possible approaches. We find it works particularly well for determining the
business information necessary for SOA. Hopefully, this glimpse into business
architecture illustrates the value it can bring and encourages you to learn more
about it from one of the books in our references section.

So far we have looked at the enterprise business architecture as a way
to establish and specify the overall enterprise context. Now, we turn to the
project business architecture, and specifically business processes, which use
the enterprise context and other requirements to drive to the next level of detail.

Business Process Management and Modeling

Business Process Management (BPM) empowers a business analyst to align
IT systems with strategic goals by creating well-defined enterprise business
processes, monitoring their performance, and optimizing them for greater
operational efficiencies. Each business process is modeled as a set of individual
processing tasks. These tasks are typically implemented as business services
within the enterprise. The BPM system provides a tool set that allows the
business analyst to create process models using a notation system, such as
BPMN, and then performs the business process automation, or execution of
the model, by invoking the services.

BPM provides a wonderful abstraction for building business systems. But
all too often in the past, it was used to build higher-level, more efficient, but
nonetheless siloed applications, rather than contributing to an overall flexible,
agile enterprise. This is where SOA comes in. SOA provides the platform of
underlying capabilities that bridge between the business processes and the
operational resources (as shown in Chapter 2, Figure 2-1). At the business
process level, SOA provides interfaces that directly support executing process
tasks. But it defines those interfaces within an enterprise context to support
consistency and reuse. At the operational resource level, SOA exposes existing
capabilities as integration services.

Together, BPM and SOA provide a perfect combination for enterprise
computing. BPM provides the higher-level abstraction for defining business

138 Part II ■ Designing SOA

processes, as well as other important capabilities for monitoring and managing
those processes. Services provide the functions that support those processes.
SOA provides the capabilities for services to be combined and to support and
create an agile, flexible enterprise. BPM without SOA is useful for building
applications, but it is difficult to extend to the enterprise. SOA without BPM is
useful for creating reusable and consistent services, but it lacks the ability to
turn those services into an agile, competitive enterprise.

BUSINESS PROCESS MANAGEMENT OR BUSINESS PROCESS MODELING?

Wikipedia defines BPM as:

an emerging field of knowledge and research at the intersection between
management and information technology, encompassing methods, tech-
niques and tools to design, enact, control, and analyze operational business
processes involving humans, organizations, applications, documents and
other sources of information.

You can think of it as a type of process construction that emphasizes the
management of business processes in addition to their execution. In other
words, the focus of BPM is twofold: design and execute business processes,
and manage and monitor those processes. A key benefit of BPM systems is
monitoring to ensure processes are meeting the intended business objectives
and performing auditing, reporting, and other functions.

First, a BPM system must provide for the creation of business processes. This
is typically done through the use of a graphical tool that enables the drawing of
the process. In other words, to create a Business Process Model. To complete
the story, BPM provides a means to execute the process, as described by the
model.

Sometimes the acronym BPM is confused with that for Business Process
Model or modeling (the act of creating the model). We have tried to consis-
tently mean management when we use the BPM acronym, and to spell out
modeling.

Business process modeling is a technique for formalizing the steps of a
business process, the people, organizations, or systems responsible for those
steps, and the data associated with each step. BPM is particularly interesting
in the context of SOA because it provides a language for utilizing reusable
business services. This section of the chapter focuses on business process
modeling.

Figure 4-6 shows a simple Business Process Model (using Business Process
Modeling Notation (BPMN)) of the process by which a customer orders books
from an online bookstore.

Chapter 4 ■ Starting with the Business 139

St
or

e

«P
oo

l»

Bo
ok

st
or

e

«L
an

e»
Sh

ip
pi

ng
 C

om
pa

ny

«L
an

e»

Sh
ip

pi
ng

 D
ep

ar
tm

en
t

«L
an

e»

Cr
ed

it
Ca

rd
 C

o.

«L
an

e»
Cu

st
om

er

«L
an

e»

Place
Order

Process
Charge

Charge Approved

Pack Order

Pickup Request

Order
Picked Up

Shipping Details

Delivery
Report

Pick Up
Order

Order

Request
Charge

Approval

Credit Card Charge

Charge
Result

Notify
Customer

Order
Shipped

Notify Customer
Approved

Request
Pickup

Deliver
Order

Notify
Customer

Order
Delivered

Delivery Report

Request
ShipmentApproved?

Shipping Order

Notify
Customer
Declined

Charge Declined

Resubmit
Charge

New Charge

Yes

Figure 4-6 Business Process Model for ordering books

The process goes like this: Once a customer places an order, the customer’s
payment is processed by the credit card company. After the charge is approved,
a shipping clerk packs the order and requests a shipment pickup from the
shipping company. The shipping company picks up the order and then delivers
it to the customer.

Basic Business Process Model Components

A basic Business Process Model consists of a few main components:

Process steps are the rounded rectangles that define what is done. The
names of the process steps should represent what is being done from
the perspective of the business itself.

Gateways divide and combine process flows, either by combining par-
allel flows or by dividing flows based upon some decision criteria.

Documents represent cohesive sets of business data such as an Order or a
Payment.

Process Flows connect process steps and gateways, showing and enforc-
ing specific ordering to the processes.

Data Flows show how processes produce and/or consume specific data.

140 Part II ■ Designing SOA

Lanes, labeled with the names of actors, organize the steps by who does
what. For example, the customer places the order. Lanes also provide
points for the origin and destination of data flows, for example, showing
how the shipping company is notified of the request to ship a package.

Executable Models
A Business Process Model is not just a way to graphically represent business
processes. The model is a formal specification of that process. With the proper
tooling and automation in place, these models can themselves be programs.
When the models are expressed in a formal modeling language, such as BPMN
(which we use in this book), the models can be interpreted by the BPM system
and executed. Often, there is an intermediate step in the process. First, the
BPMN model (which is a visual representation) is compiled into an executable
language, such as BPEL (the Business Process Execution Language). BPEL is
a standard execution language supported by many BPM and SOA systems
and is a complementary technology that adds execution semantics to Business
Process Models. BPMN, BPEL, and composition are covered extensively in
Chapter 8. Skipping the details here, the point is that Business Process Models
are not just pretty pictures. They are also the input to the BPM system that
directs the execution of the business process.

A consequence of this is a scenario like the one illustrated in Figure 4-7. A
business analyst is responsible for designing a business process in response to
business objectives and other requirements. She goes to her BPM environment
and draws a Business Process Model. To build the model, she chooses from
palettes of existing process steps, documents, gateway conditions, and actors
available in her business. The items in the palettes are realized by existing
business service capabilities.

When all the capabilities that she needs already exist, she is able to com-
pletely specify and execute the new process without needing IT to build
something for her. This concept is one of the great appeals of BPM. But some-
times the analyst cannot find the capability that she needs. In this case, she can
define a new one to support one or more tasks in the business process. This
then becomes the specification of requirements for a new business service. The
system analyst in the development team uses that specification to create new
business services or to modify existing services to meet the specified needs. In
many cases, these services do not need to be built from scratch but instead can
be composed from other services or can integrate capabilities already found in
existing legacy systems.

Once all the services are in place, a BPM tool can then execute the new
business process by running each of the individual business services in
accordance with the flows defined in the model.

Chapter 4 ■ Starting with the Business 141

Business
Analyst

System
Analyst

BPMN Order Books

Bo
ok

st
or

e
«L

an
e»

Sh
ip

pi
ng

 C
om

pa
ny

«L
an

e»
Sh

ip
pi

ng
 D

ep
ar

tm
en

t
«L

an
e»

Cr
ed

it
Ca

rd
 C

o.
«L

an
e»

Cu
st

om
er

«L
an

e» Place
Order

Process
Charge

Charge Approve

Pack and
Ship Order

Pickup Request

Order
Picked Up

Shipping Details

Delivery
Report

Pick Up
Order

Order

Request
Charge

Approval

Credit Card Charge

Charge
Result

Notify
Customer

Order
Shipped

Notify Customer
Approved

Request
Pickup

Deliver
Order

Notify
Customer

Order
Delivered

Delivery Report

Request
ShipmentApproved?

Shipping Order

Notify
Customer
Declined

Charge Declined

Resubmit
Charge

New Charge

Yes

composite structure Business Process M. . .

«domain»
Credit Card
Processing

Process Charge

Process Credit

Reconcile Transactions

Void Transactions

Service
Requirements

Business Process Model

Business
Requirements
and Objectives

Business Service

Figure 4-7 BPM and SOA

HYPE OR REALITY?

Clearly, the marketing hype around BPM is related to the ability of the business
to create and execute Business Process Models without the need to interact
with the evil IT department.

In reality, this rarely works. To start with, what business allows a new system
to be put into production without testing, qualification, operational procedures,
and so on? So, even if the business could create new business processes
completely independently, there would still be some annoying IT details, such
as quality, reliability, and security to deal with.

More often than not, pure business analysts are not enamored of modeling
tools. It often takes an IT person, working with the business analyst, to create
the detailed, formal, and executable versions of the process models. Then,
there is the question of finding and using existing services. Perhaps if tools
were better integrated, and development processes better defined and
followed, it would be easy for business analysts to just drag and drop
business services into their models. But it rarely is. Again, IT intervention is
often required to make the right business services available to the business
analyst.

Finally, there is the task of identifying and specifying new services. Because
you want to insulate the process designers from the details of services,
designers often don’t understand what makes a good service and how to
encapsulate those characteristics into the service design and interface
(actually, many IT designers don’t understand this either). So, all too often, the

(continued)

142 Part II ■ Designing SOA

HYPE OR REALITY? (continued)

services specified by business analysts are the wrong granularity, too tightly
coupled, have too many dependencies, and you name it, to be good services.

So, is all this BPM stuff a pile of bunk? Absolutely not! The benefits of
BPM in the design of flexible business processes, and the ability to provide a
business focused execution environment that complements SOA, are real. But,
it’s not quite as simple as drag and drop. There still needs to be a partnership
between the business and IT. And, that partnership is enabled by Business
Process Models, which provide a good common vocabulary for both sides
to use.

Want to know what we think (in case you couldn’t tell already)? It’s not that
simple, as explained in this chapter. . . . Read on.

Business Process Models in an SOA World
Plain business process modeling does not define where the processes, or
documents, or gateway criteria come from; it just assumes that the business
analyst will create these elements as necessary in order to properly define the
business processes. Following a traditional software development paradigm,
each of these elements becomes the specification of some component that
will be built and then woven together following the structure of the Business
Process Model.

But when used in an SOA context, the steps that make up the model
should be implemented by well-designed business services. New business
processes should use existing services as much as possible, balanced with
the opportunities for identifying new services, as needed, to create the new
processes. Here, governance plays an important role by setting up procedures
to help find the appropriate services and to verify that new services are
identified in accordance with enterprise goals and policies. Approaches to
governance are explored in Chapter 12.

Furthermore, the Business Process Models should uniformly represent the
problem and not a specific implementation of that problem. This ensures that
the models, and the definitions of the business services that emerge from these
models, are independent of particular technology and software architecture
choices.

There are other concerns as well. The functional decomposition of processes
into services can lead to tight coupling between processes and business
services. This is often the case when processes are designed in isolation. Many
business processes are quite goal-oriented; they are the steps to get a specific
thing done. They are often more observed or anticipated scenarios, rather than

Chapter 4 ■ Starting with the Business 143

reusable solutions made of reusable parts. Services come from looking across
many processes to find commonality variability, reuse, separation of concerns,
overlapping capabilities, and common information. Business analysts don’t
often do this, and many BPM tools don’t have the capability to easily support
it. This is where business architecture comes in for SOA and where the system
analyst has the responsibility to understand the enterprise context when
designing services to meet business process requirements.

How to Create Business Process Models

SOA presents several interesting challenges in creating Business Process
Models and the business services that result from those models. How do you
get the right level of processes? How do you avoid repeating the same thing
over and over again while exploiting opportunities for reuse? How do you
define steps that will ultimately lead to good business service design?

Business Process Models are formalizations of the required function, control,
and data in a set of business processes. Properly designed, a business’s set of
activities can be completely described in Business Process Models. However,
as with any design activity, you need criteria for grouping related Business
Process Models, and criteria for ensuring uniformity among models created
by different people at different times within the same organization.

This section introduces Business Process Models and the Business Process
Modeling Notation in only enough detail to show how Business Process
Models are a useful foundation for identifying business services. It is not
intended as a detailed tutorial; there are lots of other resources available
for that.

Use Cases
Many software design efforts begin by identifying use cases — the different
capabilities to be provided to users of a system.

A use case diagram, such as that shown in Figure 4-8, can be thought of
as a table of contents that says, ‘‘here’s who is going to be doing what in our
problem.’’ The stick figures represent actors — the entities that can initiate and
participate in the use cases. The ovals represent the use cases that the actors
can participate in.

In some practice, the term use case is little more than modern software-speak
for ‘‘informal requirements document.’’ But they should be more than that.
The techniques presented in this section help to create use cases and scenarios
that are conducive to producing good and useful models, and that lead to
good service design.

144 Part II ■ Designing SOA

Customer

Order
Merchandise

Search
Catalog

Check Order
Status

Cancel
Order

Publisher

Propose Title

Marketing

Add Title to
Catalog

Remove Title
from Catalog

Change
Product

Price

Change
Product InfoAdministrator

Add Shipping
Company

Remove
Shipping
Company

Figure 4-8 Use Cases for the online bookstore

Use Cases and Business Process Models

For each use case, create a Business Process Model that defines the sequence of
steps that takes place in that particular use case, also called a use case scenario.
For example, the model in Figure 4-6 represents the sequence of processing for
the ‘‘Customer Orders Merchandise’’ use case. These Business Process Models
effectively replace the dense textual form of the ‘‘Flow of Events’’ section in the
typical use case document. If you insist on writing a textual ‘‘Flow of Events’’
section, treat it as a descriptive narration of the Business Process Models.
Remember a picture can be worth a thousand words! And, remember that
the Business Process Model should provide a complete, correct, and precise
specification of the use case.

Defining the right level for use cases is a challenge for many modelers.
A useful guideline is: Use cases should not be so small that their scenarios
are only a single step. However, use cases should not be so grand that their
process models are so large and complex that their purpose is no longer clear.
A happy medium of a dozen or so steps is pretty typical.

One Use Case, Multiple Scenarios

Use cases define both a main flow and a set of alternate flows. The alternate
flows describe processing differences that arise from different, less common,
or unusual situations encountered during the flow of the use case.

For example, Figure 4-6 shows a customer ordering books in a best-case
scenario when the customer’s first credit card is charged and all books are in
stock. However, if the customer’s credit card is declined, he may provide a
second account number, cancel the order, or place the order on hold. Likewise,

Chapter 4 ■ Starting with the Business 145

if some books are not in stock, some of the order is shipped immediately, but
the rest of the items are left back-ordered and shipped only when they are
available.

Traditionally, these alternate flows are written as text in separate sections of
a use case document. How can you represent these options on your Business
Process Models? One option is to create individual models for each of the
alternate flows. Although initially easy to do, the many combinations of
outcomes (credit card approved or declined, sufficient stock present or not
present, shipment deliverable or undeliverable) make it difficult to create and
to maintain a set of coordinated diagrams.

A different approach is to draw a single BPM that uses gateways (decision
points) to illustrate all possible situations and then to illustrate one scenario
by coloring its path atop the model. Figure 4-9 shows this coloring technique
applied to the process model in Figure 4-6. The highlighted path illustrates the
‘‘customer charge rejected’’ flow.

The coloring approach has the advantage of consolidating all options onto
a single diagram so that changes to the flow caused by changes to the design
of one scenario (or the addition of other scenarios) can be addressed by other
scenarios. The problem with the approach is that it isn’t supported by most
tools, so in essence you have to print the diagram on paper and mark it with
a highlighter. This can be a useful approach for thinking about the design
because it keeps all of the related steps together, but it can be difficult to
maintain and keep current.

St
or

e

«P
oo

l»

Bo
ok

st
or

e

«L
an

e»

Sh
ip

pi
ng

 C
om

pa
ny

«L
an

e»

Sh
ip

pi
ng

 D
ep

ar
tm

en
t

«L
an

e»

Cr
ed

it
Ca

rd
 C

o.

«L
an

e»

Cu
st

om
er

«L
an

e»

Place
Order

Process
Charge

Charge Approved

Pack Order

Pickup Request

Order
Picked Up

Shipping Details

Delivery
Report

Pick Up
Order

Order

Request
Charge

Approval

Credit Card Charge

Charge
Result

Notify
Customer

Order
Shipped

Notify Customer
Approved

Request
Pickup

Deliver
Order

Notify
Customer

Order
Delivered

Delivery Report

Request
ShipmentApproved?

Shipping Order

Notify
Customer
Declined

Charge Declined

Resubmit
Charge

New Charge

Yes

Figure 4-9 Scenario marked atop a Business Process Model

146 Part II ■ Designing SOA

Regardless of how you address creating the model, it is important to
understand that a given use case can have many scenarios, that those scenarios
share common steps, and that they can affect each other.

Step Reuse

Scenario coloring consolidates a number of distinct use case flows onto a
single diagram, thus ensuring greater consistency and reuse of steps across the
different flows. Additionally, several models may share common processing
steps, gateways, states, and documents. For example, the step of canceling an
order is both part of a Cancel Order use case and the Order Merchandise use
case.

The modeling environment used to create Business Process Models should
provide palettes of existing process elements, preferably tied directly to repos-
itories of existing business services, in order to facilitate this reuse. If this is
not possible, manual processes should be implemented to facilitate discovery
of reusable processing elements.

If not done properly, reuse can have a dark side: If a service is not sufficiently
flexible, it will be largely reinvented in a slightly different form each time the
capability is needed. When a business process modeler finds a service that’s
similar to what he needs, but it does not match it exactly, there is an opportunity
to either extend the existing service or to create a new service. The default
mindset should be to reuse and extend first, and to create new as a last resort.
Service governance policies should address how extensions to a service are
requested, designed, implemented, and deployed.

Documents
Documents are the means by which information is passed between steps in
a process. They represent cohesive sets of business data, such as an Order
or a Payment. This is the data that has to be shared (and have a common
semantic definition) across multiple steps of the process. Documents are
used as the inputs and outputs of business process steps. For example, in
Figure 4-6, Request Charge Approval accepts an Order document. Often,
the same document is used in multiple steps of the process. For example,
the Request Shipment step produces a Shipping Order. This same shipment
document is then the input to and the output of the Process Shipping Order
and Pack Order steps, as illustrated in the model segment in Figure 4-10.

Identification of documents is an important aspect of tying BPM to SOA. The
documents identified in the process model are used to specify the documents
passed in service interfaces. In business processes, the documents should
relate to real-world documents whenever they exist (things like purchase
order, shipping manifest, binder, etc.). In services, the document schema must

Chapter 4 ■ Starting with the Business 147

BPMN Document State

Request
Shipment

Shipment [New]

Pack Order

Shipment [Packed]

Prepare
Airbill

Shipment [Accepted]

Figure 4-10 Document state

be based on the semantic information model. So, identification of documents
during business process design needs to be coordinated with the information
model.

Documents are often passed through several steps in a process. Referring
back to Figure 4-10, Pack Order doesn’t just look at the Shipment; it transforms
it by adding the contents of the order to the shipment. The Pack Order
transforms the state of the Shipment document. In the diagram, the state of the
document is shown in brackets next to the document name. So in our example,
Shipment is transformed from the [New] state to the [Packed] state. This is a
common design practice for documents within business processes, and is most
appropriate where it mirrors what is going on with real-world documents.

Let’s put this into the perspective of the different types of data. The
document specifies the information passed between process steps. It is at
the semantic information level, conforming to the enterprise semantic infor-
mation model. Each step of the process is implemented by a service, which
receives the document in its interface, and transforms the semantic information
into the internal domain data of that service. The service implementation is
responsible for changing the state of the business entity and reflecting the new
state in the output document. It is a subtle, but important, distinction. The docu-
ment is a representation of state change. Services implement the state change.

Note that the use cases, and the Business Process Models and documents
that realize them use only the vocabulary of the business problem and do not
assume any particular implementation choices. For example, the processes in
Figure 4-6 are ‘‘process charge’’ and ‘‘request pickup’’, not ‘‘transmit charge
record to First National Bank’’ and ‘‘FTP an EDI 9090 to the post office.’’

148 Part II ■ Designing SOA

The steps in a Business Process Model should represent single business activ-
ities. This is more than mere style; good Business Process Models should
define elements that are independent of any particular implementation or
technology.

Conditional Business Process Models

Let’s look at some of the other important elements of Business Process Models.

Conditional Flows
Business processes often need to do different things based on the outcome of
a particular step, evaluation of information, or execution of a business rule.
Flows between steps can be labeled with conditions that route execution along
one path or another depending upon an outcome, evaluation, or rule. The
simplest pattern is a gateway with data input and one of several conditional
outputs, as shown in Figure 4-11.

Gateways vary in complexity ranging from simple comparisons (that is,
was the previous step successful?) to more involved comparisons of data or
evaluations (that is, was the charge request over the credit limit?). Still others
are complicated decisions that may ultimately be executed in a business rules’
system.

Not surprisingly, the implementation of gateways also varies with the
complexity. Simple comparisons are typically done within the business process
execution itself. Complex decisions should be implemented by a decision
service (which may call a rules engine) in the service layer. Evaluations
will fall somewhere in between, depending on how often the criteria are
likely to change, how reusable the evaluation is in other processes, and how
complicated it is. Again, notice that we are always looking for commonality
across processes that can be implemented as services and used to help realize
multiple use cases. In this particular discussion, we’re looking for common
decisions. Chapter 8 covers the relationships of business processes and rules
in more detail.

Conditional Operation Outputs
Some activities themselves may have conditional outputs. For example, after
the Process Charge activity submits the charge to the credit card company, it
returns a result indicating whether the charge has been approved or declined,
as illustrated in Figure 4-12.

In this case, the decision function is implicit in the implementation of the
step itself. Again, the actual implementation varies, depending on the business

Chapter 4 ■ Starting with the Business 149

BPMN Conditional Flow

Receive Charge
Over Credit Limit?

Process Charge

Reject Charge

No

Yes

Figure 4-11 Gateway with multiple conditional outputs

BPMN Conditional Flow

Process Charge Approve Purchase

Decline Purchase

Charge Approved

Charge Declined

Figure 4-12 Activity with conditional outputs

service that implements the step. One common approach is to compose the
business service from other services, including a decision service.

Care must be taken if choosing to model process steps with conditional
outputs. Most service implementation technologies will not allow condi-
tional outputs from a service operation, so this can make the implementation
of the step more complex.

Recap: Processes and Services

Business process models provide the business analyst with a powerful tool
for meeting business requirements and objectives. The models take a func-
tional decomposition based approach to breaking down processes into steps,
decisions, and documents. This is often the first step in the identification of
business services.

150 Part II ■ Designing SOA

However, in the design process, you will likely encounter situations in which
the processes are rather trivial and the use cases are little more than ‘‘manage
X,’’ ‘‘create Y,’’ or ‘‘edit Z.’’ Such data management problems — sometimes
referred to as CRUD (create, read, update, delete) systems — can and do have
interesting and useful business services. Finding them, however, requires
examining the information model itself and defining services to manage
instances of the enterprise information. Chapter 6 covers this approach to
finding services in more detail.

In the analysis of the business, during the business architecture activities,
you generally can identify what are called fundamental business entities.
These are things like customer, product, payment, and so on that represent
an important business concept. Or, they may correspond to physical or legal
documents such as application, binder, and policy. In general, they should be
common across the enterprise and be part of the semantic information model.
We typically define entity services to manage the CRUD behavior of these
business entities.

But care must be taken to define appropriate services. Process steps that
perform data management (as implemented by entity services in the service
layer) should only act on semantic data, not on internal domain data.

Whereas the business process identifies the steps, decisions, and information,
the implementation of these steps, decisions, and information is left to the
service layer. Table 4-1 shows the relationship between Business Process
Model elements and services. For each model element (left), the corresponding
implementation in terms of services is identified (right).

Services are implemented with the goal of supporting business processes,
but not just a single process, multiple processes. So, the design of the business
process and the design of the services also have to take the big picture into
account. Processes should be designed starting from the assumption that a
service already exists that can implement a given step. Then, the process
should be designed around using the existing service. If no service does exist,
the process designer should think about how the step or decision could apply
to other potential processes.

Table 4-1 How Business Process Model elements are realized by services

PROCESS ELEMENT SERVICE CONCEPT

Step Operation on a Business Service (Task)

Gateway Operation on a Decision Service

Document Input or Output Document

Entity Entity Service

Chapter 4 ■ Starting with the Business 151

The Business Process Model provides the specification of requirements for
the service. Then, it is the responsibility of the service designer to put the
specific requirements of the requesting process into context with the rest of
the enterprise and to create a reusable service with minimum coupling and
dependencies and maximum flexibility. Let’s look at some techniques for
organizing the overall service space.

Organizing Services

Looking back to the example, how should the service operations for the
bookstore be organized? Obviously, a single Bookstore service with dozens of
documents and operations is a bit unwieldy. Not only is it rather large, but
you may not want to expose all of the services to all potential users. Different
divisions of the business should have responsibility for different services and
be able to control the services that provide their divisions’ capabilities. This
helps isolate responsibilities and makes the services more usable across a set
of processes.

Business process models are written in terms of the business. In an online
bookseller, for example, the Business Process Models deal with steps involved
with shopping, ordering, and shipping books. In other domains, the vocabulary
is different; it is about different things.

This idea of ‘‘keep the models focused on the business’’ is intuitively easy to
appreciate. Real systems are layered. An online bookstore is built using more
generic concepts (subject matters) such as inventory, shipping, and credit card
processing. These generic capabilities can also be found in other businesses:
For example, both insurance and telecommunications need to make use of
credit card capabilities.

Services can therefore be organized, or partitioned, along a variety of
dimensions, for example, according to who is responsible for the service
(organizations or providers).

Whenever the business is organized into multiple divisions, you can use a
Business Organization Model such as the one shown in Figure 4-13 to structure
the organization of services.

This model shows how the online bookseller is divided into distinct orga-
nizational units that support shipping, ordering, inventory, and customer
support. The Business Process Models, their steps, decisions, and the docu-
ments can be assigned to different divisions based on which division should
be responsible.

Yet another way to organize services is by business competencies and
responsibilities (which does not always map to organizations). This helps
organize the services around functional cohesion, which can yield more
flexible and reusable services.

152 Part II ■ Designing SOA

pkg Organization Units

«organization»
Shipping

«organization»
Ordering

«organization»
Customer Support

«organization»
Inventory

«use»

«use»

«use»

«use»

Figure 4-13 Business Organization Model

Or, perhaps the most common approach is to organize services along subject
matter domains.

Domains
A domain is a separate real or hypothetical world inhabited by a dis-
tinct set of objects and subject to its own set or rules and policies (Shlaer
and Mellor, Object-Oriented Systems Analysis [1988]; Mellor and Balcer, Exe-
cutable UML [2002]). Figure 4-14 is a domain chart showing the different subject
matters used to conduct an online bookselling business.

Each of the folder-like shapes is a domain represented by a UML package
with the <<domain>> stereotype. Domain partitioning is sometimes referred
to as aspect partitioning, whereby each of the different concerns, or aspects, in
a system is separately identified and modeled.

The arrows between domains represent how one domain makes use of
the capabilities provided by another. The Bookstore requires capabilities of
Authentication (to make sure that participants are who they say they are),
Logging (to record transactions), Inventory (to keep track of stock and reorder
as necessary, Credit Card Processing (to get paid), and Package Shipping (to
send orders to customers). The direction of the arrows represents the ‘‘uses’’
relationship.

Chapter 4 ■ Starting with the Business 153

pkg Bookstore
«domain»
Bookstore

«use»

«use»
«use»

«use» «use»

«use»

«domain»
Inventory

«domain»
Package Shipping

«domain»
Credit Card Processing

«foundation»
Authentication

«foundation»
Logging

Figure 4-14 Bookstore business domain chart

WHAT IS A DOMAIN?

Like many things, the term domain is used in different ways in different places.
In general, a domain is an area of focus around a single subject matter. The
confusion comes in understanding the scope and context of that focus.

For example, if we look at insurance as an example, we might refer to an
‘‘insurance domain model’’ that defines overall insurance concepts across the
industry. Such models might include ObjX available from the ACORD industry
consortium, or the widely used IAA (Insurance Application Architecture from
IBM). Here, the scope of domain is industry wide.

For a particular insurance company, such as ACME, their business domain is
auto and property insurance. It is related (hopefully) to the industry domain
models, but it is smaller and different. So, the domain can be described from an
enterprise point of view. We call this the primary domain in our domain chart.

ACME is made up of many different functions, such as billing, underwriting,
and claims processing. Each of these can be thought of as a domain, where
each is focused on a specific subject area within the business. But each is also
part of the larger insurance domain. So, domain can also be described from a
functional or line-of-business point of view. When a particular service is limited
to this scope, we call it a domain service.

In all cases, domain means a focused and related subject matter area. But
sometimes, you need to understand the scope that this is being applied to.

The structure of the domain chart shows how one domain is based upon
capabilities provided by other domains. Credit Card Processing, for example,
provides services required to realize the Bookstore. This is more than merely
a statement of software structure and who does what (Bookstore services call
Credit Card Processing services), it is also a statement of who does not do

154 Part II ■ Designing SOA

something, that the Bookstore services do not directly process payments and
instead assume that some other domain will carry out the payment processing.

Such organization provides two distinct advantages: First, higher-level
services can be constructed without regard for the details of how more generic
business and utility capabilities are provided. Second, the capabilities required
of the lower-level domains can be discerned from the requirements placed on
them by the higher-level domains.

Note that the domain chart is different from the business organization
diagram. The packages in the domain chart are not divisions of the business;
they are distinct subject matters that can be understood independently of
one other. For example, the problem of maintaining and tracking inventory
is generic and, by implication, reusable in contexts other than the online
bookstore.

Many businesses also share common industry standards. The domain chart
can be extended to show how two different booksellers make use of some
common industry standard items, such as ISBN numbering. Each company
can start with a common base and then specialize it to meet its own particular
needs.

Types of Domains

A domain chart is drawn with respect to the business being modeled. The
package at the top of the chart — and there is always only one — is the
principal domain representing the subject matter of the business itself. Other
domains provide capabilities that are used to realize the principal domain.
Generic domains are generic business subject matters, such as Billing, Inventory,
and Shipping. Foundation domains, in contrast, provide computer-technology-
related capabilities such as Authentication and Messaging.

A domain’s capabilities are abstracted as service interfaces. Consider the
Credit Card Processing domain. It provides a capability to process a charge
that accepts a credit card number, expiration date, the account holder’s name,
and the amount of the charge. This capability returns a code either approving
or declining the charge. The capability is made available as an operation on
a service interface. In other words, domains interact with each other through
services. The interface provides the connection points between the capabilities
offered by the domain (the provider) and the needs of the consumer. Sound
familiar?

The complete definition of the domain’s capabilities is expressed in the
service specifications. These define the provided and required capabilities and
the rules or protocol for using them. However, they do not specify (or even
provide the least little clue to) the implementation of the service. The service
specification does tell providers what they must do to implement the service.

Chapter 4 ■ Starting with the Business 155

More than coincidentally, there is a relationship between domain types and
service types. Principle domains are implemented by business and domain
services. Generic domains may be implemented by business, domain or
utility services. Foundation domains are implemented by foundation services.

The Service Inventory

The service inventory provides a mechanism for organizing all of the services
across the enterprise. It lays out the overall set of services and their relationships
to each other. The service inventory provides the next level of detail of the
capabilities of the business domains.

You can think of the service inventory as a ‘‘responsibility map’’ of domain
capabilities and service interfaces. It should clearly describe the overall set
of services, and what responsibilities the different service groups within a
domain perform, and don’t perform.

The service inventory provides a two-dimensional way of organizing ser-
vices. One dimension relates to the type of service, specifically business,
domain, utility, or foundation. The other dimension relates to the business
domain partitioning described in the previous section.

Figure 4-15 shows a sample service inventory. At the bottom are the foun-
dation services, the non-business-focused services that are used to construct
applications. The middle layers are the different types of business related
services. The top layer is the enterprise business processes. Notice how these
layers correspond exactly to the service hierarchy presented in Chapter 2
Figure 2-7.

Services

Enterprise Business Processes

Purpose
Utility Utility

Foundation Services

Business Rules Authorization

Orchestration Logging

Scheduling

Configuration

Personalization Authentication

Transaction

Auditing

Monitoring/BAM/BI

Business
Dom

ain
Process ProcessProcessProcessProcess

Utility Utility Utility Utility

Organization

Domain

Business Domain

Business

Business BusinessBusinessBusiness

Domain

Business

Business

Business Business

Business

Business

BusinessBusiness

Business Domain
Domain

Domain Domain Domain

Domain

Domain

Domain

Domain

Business Business

BusinessBusiness

Domain Domain

Utility

Figure 4-15 Service inventory

156 Part II ■ Designing SOA

The middle layers are really the main focus of the service inventory. They
are made up (from bottom to top) of utility services, domain services, and
business services. Going from bottom to top of the drawing describes the
service type dimension.

Going from left to right is the business domain dimension. Services,
particularly the business and domain services, are organized according to
different domains. As we mentioned earlier, there are a variety of approaches
to domain partitioning, and any or all of them can be used to organize the
service inventory.

Notice that some services are enterprise-wide, both at the business service
and utility service layers. These apply to the principle domain and are not
included in an individual subdomain.

The inventory helps answer two important questions:

What services exist? At design time, you need to know what services
exist, what they do, and how they relate to other services. The inventory
provides a convenient structure and visualization for taking the first step
in locating and qualifying services.

What should a new service do? This is perhaps the more important
function. When a requirement for a service has been identified, you need
to determine how that service fits into the overall set of services. Specif-
ically, what capabilities are the responsibility of the new service, and
what capabilities should you expect to be performed by another service.
The answers to this question are crucial in eliminating gaps and overlaps
in service functions.

Of course, there are many ways to organize the service inventory. The best
way for any given enterprise is related to its own goals, structure, organization,
maturity, and so on. The specific structure of the inventory is not important
as long as it provides a mechanism to easily answer the two questions above.
Ideally, the service inventory is integrated directly with the service repository
and the overall governance approach.

Summary

A fundamental requirement for technology is to align the business with IT.
This is perhaps even truer for SOA-based solutions, but just wishing it doesn’t
make it so. Business architecture is the key to the alignment.

First, you must define what ‘‘the business’’ means. What are the goals
and objectives of the business? What are its primary value adding activities?
How do they relate and interact with each other, the customers, and partners.
You use a variety of techniques including value chains and business context

Chapter 4 ■ Starting with the Business 157

diagrams to answer these questions. In addition, you can use a formal Business
Motivation Model to precisely define the goals, objectives, and strategies and
tactics for meeting them. This is business architecture at the enterprise level.

Next, you turn to business architecture at the project level. Here, the primary
activity is the creation of Business Process Models. Business process modeling
is a useful analysis technique enabling you to find and create business ser-
vices by enumerating business capabilities and information. Business Process
Models describe the steps, decisions, information, and flow of the business
processes. The steps and decisions are implemented by business services
provided by SOA. The information is passed in documents.

But process design done in isolation does not lead to good services. You also
need a way to understand and organize the big picture. Domain partitioning
organizes a problem space by subject matter in order to break the problem
into manageable chunks and to identify cohesive sets of responsibilities and
minimize coupling. The service inventory provides another important way
of organizing and categorizing the overall set of services to aid in service
identification and implementation. Ultimately, the capabilities of each domain
will be implemented by services, well organized in the inventory, and that can
be traced back to specific tactics in the business model and provide the link to
aligning business objectives with IT systems.

C H A P T E R

5
Service Context and Common

Semantics
SOA is useless without good data.

— Joe McIndrick

Chapter 4 showed how to use techniques of business process modeling and
subject matter partitioning to identify business services that conform to a
uniform business architecture. In this architecture, individual services do not
exist in isolation — they should be usable in multiple contexts. In other words,
these services should be interoperable. Uniform messaging semantics is one
of the most important requirements for service interoperability. This ensures
that service consumers and providers exchange data in a consistent way that
enables their mutual understanding of the information they are intended to
process.

This chapter starts by revisiting the importance of uniform messaging
semantics and a semantic information model, and then introduces modeling
techniques for creating that model based upon information modeling and
object-oriented analysis principles. You learn how to synthesize a model by
exposing details about a problem based upon the things in the domain. This
technique has been shown, in practice, to provide a cohesive foundation for
ensuring common semantics.

In constructing an information model, you learn how to model the world
of a domain in terms of objects, attributes, and associations and extend these
basics by using techniques of specialization and constraint modeling to achieve
better model accuracy. We also show you how to partition large models, both
to manage the modeling problem and to reflect the real complexities in large
enterprises. Finally, the chapter covers usage of XML for representing these
models.

159

160 Part II ■ Designing SOA

In this chapter, you learn:

The importance of semantics in SOA

Components of core information modeling

Information-modeling techniques beyond simple data modeling

How to structure information models to fit and to reveal a service
organization

How to define documents based on the information model

How to apply the common information model to define XML and to map
data into existing services

Best practices and pitfalls to avoid

The Importance of Semantics in SOA

Achieving real service interoperability can be harder than some SOA evange-
lists would have you believe. This is because a majority of SOA publications
focus almost exclusively on the mechanics of constructing and combining
services. Such syntactic coupling certainly achieves much, but it solves just one
part of the problem. Many Web Service standards revolve around rules for
addressing and binding to services, and they focus on the clear definition of
syntactic contracts for service interfaces. Minimizing coupling at the syntactic
level is critical, and SOA (especially with the help of the OASIS and W3 C
standards bodies and the WS-I organization) has made enormous progress.

Unfortunately, syntactic interoperability alone is not sufficient. For a
real-world example, consider telephone systems; they are syntactically inter-
operable worldwide. Someone in the United States can use a phone to call
someone in Mexico, and the other person can pick up the phone, hear the
caller, and begin talking. However, just because they are connected does not
necessarily mean that the two parties can successfully communicate or under-
stand each other. If the caller only speaks and understands English, and the
person on the other end of the phone only speaks and understands Spanish,
the fact that they are connected does not help them communicate. In the same
way, service consumers and service providers need to be able to ‘‘speak the
same language’’ in order to effectively communicate.

There is more to semantic interoperability than just speaking the same
language, however. In Web Services, Extensible Markup Language (XML)
is used for carrying the payload of messages because it is an agreed-upon
format and therefore an interoperability mechanism, but just knowing that
data is marked up in XML isn’t enough to have an understanding of what
the XML-marked data means. Continuing the same telephone analogy, even
if the two parties on the phone speak the same language, they still need a
common understanding of the words of the language they are speaking. If an

Chapter 5 ■ Service Context and Common Semantics 161

astronomer and a Hollywood socialite are talking, the phrase ‘‘star sighting’’
has a different meaning for both of them; both have a different understanding of
the word ‘‘star.’’ So their conversation is going to be confused at best. Semantic
interoperability, therefore, involves having a common understanding of what
the data actually means.

Semantic interoperability is an essential aspect of SOA because service
consumers and service providers need to exchange information that both
understand and that can be used to achieve a specific capability. Data that
is not understandable is obviously not useful, and without semantics, data
would simply consist of garbage strings of zeroes and ones that have no
meaning. Without understanding the meaning of the data, service consumers
and providers could misinterpret the data and ultimately bring undesirable
effects to the business. Semantic interoperability between services and for your
particular business domain increases your chances for success.

There are many levels of maturity for semantic interoperability, from the
very simple to the very complex. Michael C. Daconta, Leo Obrst, and Kevin
T. Smith, in their book The Semantic Web, (2003), refer to levels of data
interoperability as the ‘‘smart data continuum,’’ where data at the low-
est level of interoperability has relevance to only certain applications, and
where data at the highest level of interoperability can be discoverable
and understandable between applications in different business domains. You
can apply this concept to SOA by looking at three levels of interoperability
maturity:

Project-specific interoperability — The lowest level of interoperability
involves creating data formats specific to a particular SOA project. In
this case, schemas are typically created by looking at the functionality
of specific services. Because the data in these projects is only relevant to
the specific services in the project, interoperability with other projects
is usually only achieved by transformations between similar messages
from services and consumers in different projects (once other projects
understand the meaning of your data formats). This interoperability
approach is therefore doable, but is often short-sighted if existing data
standards are not used.

Business domain-specific interoperability — A higher level of interop-
erability revolves around the reuse of data standards within a business
domain. By using accepted standard schemas for such a domain, data
used in SOA projects can reuse message formats and can, therefore,
interoperate with other services and consumers within that business
domain. An example is services that utilize XML standards within the
healthcare, insurance, or the military industries. As businesses have
grasped the importance of semantic interoperability, many consortiums
and industries have collaborated to build standard data formats, data
models, and taxonomies related to their domains. Therefore, using such

162 Part II ■ Designing SOA

standards is good practice, as similar projects may need to interoperate
with other systems in the same domain.

Business domain-independent interoperability — In the highest level
of interoperability, data formats use standards from multiple business
domains. In this approach, service messages may include elements from
schemas from several business domains, they may reference taxonomic
classifications from different domains, and elements of the data may
refer to elements in an ontology. By using semantic web technologies,
services and clients from different domains can consume the data, and
in many cases, they can use rule-based systems to infer new knowl-
edge by the analysis of data. The bottom line is that the highest level of
interoperability includes the maximum reuse of data standards and data
definitions.

As you can see, semantics are important and dictate how interoperable your
SOA will be. Without semantics, the network connectivity between consumers
and services mean nothing. The more mature your project is on the maturity
scale, the more flexible and interoperable your services are. For example, if
your SOA revolves around data formats that you explicitly defined only for
your project, then future interoperability between other applications may be
difficult because you would have to explain to someone what ‘‘your’’ data
standard means, and you have to understand the data standards of the other
application. Therefore, the more you reuse accepted semantic data standards,
the better off you are.

At the same time, if you are new to data standards, we’re not advising you to
jump into the highest level of interoperability maturity, focusing on ontology
design and expert systems. A little semantics can go a long way. Your SOA
governance should define guidance, policies, best practices, and procedures
related to how you define your data formats for SOA. We talk more about this
in Chapter 12.

HOW DOES THE SEMANTIC WEB RELATE TO SOA?

Tim Berners-Lee, James Hendler, and Ora Lassila, in their May 2001 Scientific
American article ‘‘The Semantic Web,’’ which coined the phrase with the same
name, unveiled a vision of the future web. ‘‘The Semantic Web’’, they wrote,
‘‘is an extension of the current Web in which information is given well-defined
meaning, better enabling computers and people to work in cooperation’’.
The Semantic Web is a vision, and much progress has been made in semantic
technologies since that initial vision was proposed. The Semantic Web, like Web
Services, builds on XML as a foundation. Languages such as XML Schema, the
Web Ontology Language (OWL), and the Resource Description Framework (RDF)
have come a long way in making the vision of the Semantic Web seem attainable.

Chapter 5 ■ Service Context and Common Semantics 163

SOA relates to the Semantic Web in that it needs to be data-centric in its
messaging. The use of XML as an interchange format, the use of schemas to
define and reference common vocabularies, the use of ontologies, and the use
of registries for associating services with taxonomic classification is probably
just putting us on the cusp of the Semantic Web vision.

So, is the Semantic Web ‘‘there yet’’ for SOA? Not quite — there is ‘‘Semantic
Web’’ the utopian vision that we strive for, and there are useful semantic
technologies that are currently reaching for the vision. Much progress is being
made in academia, government, and the commercial space in semantic
technologies. We expect that further developments in these semantic tech-
nologies will have a positive impact on SOA. For more information about the
vision and how it relates to SOA, we recommend the book The Semantic Web:
A Guide to the Future of XML, Web Services, and Knowledge Management
(2003) by Daconta, Obrst, and Smith.

Core Information Modeling

The foundation of semantic interoperability is core information modeling. The
information model defines the data and domain concepts that must be shared
between services. Similar to domain partitioning (see Chapter 4) for identify-
ing business services, core information modeling partitions the information
domain to define information objects used for service communications.

To understand a domain, you need to understand the things in the domain
(the objects) and their semantics (their meaning, rules, and policies). Informa-
tion modeling provides the foundations for this understanding. In constructing
an information model, you learn how to model the world of a domain in terms
of objects, attributes, and associations.

Objects and Attributes
In order to understand a world — a domain — you begin by characterizing
the things in it. This process is called abstraction. It involves sorting the
unimportant things from the important things (e.g., fire hydrants are part of a
dog’s world, but they’re not relevant to the problem of issuing and tracking
dog licenses) and categorizing those important things according to concepts
and perceptions of ‘‘likeness’’ and ‘‘difference.’’

Our notion of an object is based upon this notion of likeness. An object is
defined as an abstraction of a set of things in a domain such that:

All the things in the set — the instances — have the same
characteristics

164 Part II ■ Designing SOA

All the instances are subject to and conform to the same behavior, rules,
and policies.

The common characteristics are abstracted as the attributes of an object. The
common behavior is abstracted as operations and events.

WHAT’S OOA DOING IN SOA?

Just because we’re using techniques of object-oriented analysis (OOA) does not
mean that object-oriented and service-oriented techniques are the same.

Object-oriented techniques — primarily those of object-oriented
programming — have very different treatments of issues like granularity and
association than those of SOA. They also have significant life cycle differences,
and their usage adheres to two very different programming models.

Our use of OOA is purely for the purpose of defining the information in a
domain in order to arrive at a uniform semantic model.

Classes, Attributes, and Instances
Figure 5-1 shows a simple information model for an online store expressed
as a UML class diagram. Each of the boxes represents a class — one of the
things with common characteristics and common behavior. Each of the names
below the class name (such as the SKU, UnitPrice, Name, and so on for the

Product

SKU
UPC
Title
UnitPrice
Description

Order

OrderNumber
Date
ProductTotal
SalesTax
OrderTotal
CurrentState

CreditCardCharge

ChargeDate
ChargeAmount
CurrentState

Customer

CustomerID
Name
BillingAddress
ShippingAddress
Email
Telephone
Fax

Shipment

ShipmentNumber
DateShipped
DateDelivered
CurrentState

CreditCardAccount

AccountNumber
ExpirationDate
CardValidationNumber
CurrentState

Selection

UnitPrice
Quantity
SelectionTotal

ShippedItem

Quantity

payment 0..1

1

0..*

11..*

1..*

0..*

1

attempt 0..*

11..*

1

1..*

1..* 0..*

class SimpleStore

Figure 5-1 This simple information model is shown as a UML class diagram

Chapter 5 ■ Service Context and Common Semantics 165

Product) represents an attribute — one of the common characteristics of the
class (compare to the data model definition). The lines between the classes
represent the associations between the classes.

DOMAINS AS A POINT OF VIEW

The things that you see depend upon the domain that you are modeling. For
example, consider this object:

Is it a Flying Aircraft? Or is it a Shipping Vehicle? That depends upon the
domain you are modeling. If your domain is Air Traffic Control, you see the
thing as a Flying Aircraft with an altitude, an airspeed, a heading, pilots, and so
forth. On the other hand, if your domain is Freight Shipping, then that very
same thing is a Shipping Vehicle with a pallet capacity, a tare weight, and
onboard shipments.

Services need to represent cohesive capabilities, while at the same time
being decoupled from ideas that are not relevant. Cohesion means that objects
do not exist in isolation: An Aircraft in an Air Traffic Control domain makes
little sense without control towers and flight plans; a Shipping Vehicle does not
make sense without shipments and pallets.

However, good services are also loosely coupled from that which is not
relevant to the domain. Altitude and airspeed are not as relevant to package
shipping as they are to air traffic control. A single service that mixes the
concepts of shipping and air traffic control is going to be far less useful than
services that separate the two concepts.

When modeling, it’s important to understand the context or point of view of
the domain you’re modeling in order to determine which characteristics of the
airplane to model and which ones to ignore. This idea is important
to developing a consistent semantic model because the model needs to
incorporate all of the perspectives relevant to the domain, while excluding that
which is not relevant.

Attributes and Instances
Attributes abstract the common characteristics of a class. Each attribute is
intended to be relevant for every instance of the class, and each attribute is
expected to have at most one value per instance. These rules are not just an
academic nicety; they are important to ensuring a solid abstraction.

In Figure 5-1, a Customer can have multiple credit card accounts. Conse-
quently, the account number and expiration date are attributes of a separate
related object.

166 Part II ■ Designing SOA

Each attribute also has a type that defines the legal values for that attribute.
Techniques for defining types are covered in a later section.

Associations
The world is also full of relationships between things. In fact, these relation-
ships are often more interesting than the things themselves! These meaningful
relationships are formalized as associations.

REFERENTIAL ATTRIBUTES

Associations can be thought of as data. In traditional relational data modeling,
attributes are added to one of the objects to answer the ‘‘which one’’ question.
Although they may be present in implementations, such as relational
databases, foreign keys or referential attributes are unnecessary (and, in fact,
redundant) in an information model.

Pairs of classes may have more than one association between them. The
different associations may have very different meaning, such as the separate
owner, driver, and passenger of an automobile, as shown in Figure 5-2.

Multiple associations may be related in meaning, such as the attempted and
payment charges in Figure 5-1. Role names (attempted, and payment) are used
to distinguish between the related instances.

Association Multiplicities
Whenever two classes are related, you need to know for a given instance
of one class how many related instances of the other class can exist. This is
called the association multiplicity. In modeling different forms of relationships,
you are concerned with only three numbers: zero, one, and many. Of course,
although there’s nothing to prevent you from using multiplicities such as 2 or

Person
owner

driver

passenger

class AutomobileIdent

Car

Figure 5-2 Multiple associations between classes

Chapter 5 ■ Service Context and Common Semantics 167

1.8, in practice, such fixed multiplicities can either hide real abstractions, such
as the difference between the owner and driver of a car, or they can represent
less-relevant implementation limitations.

The multiplicity of an association carries substantial meaning. Consider the
relationship between the Order and the Customer in Figure 5-1. The fact that
an Order requires one Customer, and a Customer has one or more Orders,
means that a Customer does not exist until there is a corresponding Order.

Finding Classes
Classes do not represent just tangible things such as cars, airplanes, and books.
Although these kinds of things provide a good starting point for information
modeling, they are not the only classes that can be modeled. Classes can
also represent roles played by people or things, interactions between things,
incidents that happen at a point in time, and specifications.

Defining Types

Every value produced or consumed by a service — whether as an operation
parameter or as part of a document — has a set of legal values. These sets
of legal values are formalized as data types (and sometimes values valid
for a particular data type). By formally defining data types, you ensure
the overall accuracy and consistency of the information model. Data types
typically represent core concepts of a particular domain and as such are
often called domain-specific data types. Their names, their semantics, and their
implementations are meaningful to the problem domain. Two data types
defined for two different domains might have the same name, but they are
different data types. For example, in a shipping domain, a customer definition
has to include its shipping address and can omit any other attributes, while
in the billing domain, a customer’s billing information is the most important
characteristic of the customer.

Domain-specific types are generally representable across several different
technologies. Their value may be represented as an XML document (messag-
ing), Java or C# class (processing), and/or a relational database (persistence).

Using domain-specific types helps you to be able to define one name for a
type and then to have as many different implementations as necessary for the
different technologies. Many kinds of subtle errors can be detected if your
implementation technologies support strong typing (enforcement of rules
defining which kinds of values are acceptable function inputs and outputs).

The domain-specific types provide a coordinated, platform-agnostic way to
name each of the different kinds of data that will be input to, processed by,
and output from each service.

168 Part II ■ Designing SOA

Domain-specific types fall into three basic categories: simple types that
represent only a single value, composite types that represent a single value
that can be meaningfully subdivided into component values, and document
types that represent sophisticated business data, built by combining simple
and composite types, typically into a hierarchical organization.

Simple Types
Simple data types that represent single atomic values can be classified as either
numeric, symbolic, or enumeration, depending upon the kind of information
represented by the type.

Numeric Types

Numeric types represent quantities and measurements. Generally, these can
be expressed in terms of a range and a precision. Some examples are:

Type A is 10..20 by 1

Type B is 0..max by 1

Type C is 32..212 by 0.01

Type D is -100..100 by 10

Numeric types may also be defined in terms of a unit of measure. Such
dimensioned numbers are not just for physical quantities (feet, inches, meters)
but can be used for money/currency values as well. Dimensioned numbers
consist of both the dimension (length, money) and the unit in which the
number is represented.

A numeric type does not only have to be represented as a traditional numeric
value. Times and dates are also instances of numeric values, even though their
display representations (10:35 p.m.) are more complex than simple integer
numbers.

All numeric types share one basic characteristic: Arithmetic operations make
sense. Two measurements can be added to form another measurement; a clock
time can be subtracted from another clock time to yield a duration, and so forth.

The definition of a type includes both the structure of the type and the
sets of operations that are permitted between values of that type and other
types. As an example, consider services for managing intermodal shipping
containers. Weight, linear dimensions, and volume dimensions are key prop-
erties of a shipping container. Weights can be added and subtracted; linear
measurements can be added and subtracted, but a weight cannot be added to a
linear measurement. Dimensioning also allows you to deal with both imperial
(feet, pounds) and metric measurements: You know that your service needs to
support operations to convert between different units.

Chapter 5 ■ Service Context and Common Semantics 169

Symbolic Types

While numeric types represent physical quantities and counts and support
a wide variety of arithmetic operations, symbolic types represent labels,
monikers, and other similar kinds of descriptive text. Like numeric types, they
are defined in terms of their sets of legal values. But in the case of symbolic
types, these values are described in terms of patterns of legal values.

These patterns can be very simple, specified in terms of a length, or specified
in terms of a pattern (shown here as a regular expression):

// Very simple type

NameString is any text

// Symbolic types specified as a length

ZipCode is exactly 5 characters

PostalCode is between 3 and 12 characters

Password is at least 10 characters

ContainerCode is up to 6 characters

CommentString is up to 200 characters and can be null

// Symbolic type as a pattern

["+" digit+] ["(" digit+ ")"] digit+ [space digit+]*

Typical operations supported for symbolic types include combining (con-
catenation), splitting (substring), and parsing (splitting according to patterns
or grammars).

Enumeration Types

Enumerations represent discrete values taken from some defined set. Some
examples are:

ContainerCondition is (Clean, Dirty, Damaged)

OrderState is (New, Unpaid, Paid, Packed, Shipped, Delivered)

Enumerations are a third kind of type because they are not really numbers
(even though they may be represented by discrete integer values behind the
scenes) and are not really symbolic types either. A ContainerCondition cannot
be concatenated to an OrderState.

Not every programming language and few database technologies sup-
port strongly typed enumerations. (XML, the .NET languages, and Java do
support them.) However, enumerations provide a much more accurate and
satisfying way to represent discrete values where the value is truly distinct
from its implementation representations.

170 Part II ■ Designing SOA

Composite Types
Many values encountered in real business problems have a dual personality:
In some contexts, they are single atomic values. At the same time, they contain
several individual components that can be meaningful on their own. The
ubiquitous ‘‘Address’’ is an outstanding example of such a composite type:

Type Address is

Street: string

City: string

State: UNSubdivisionCode

PostalCode: PostalCode

Country: ISOCountryCode

End Type

Composite types may themselves consist of other composite types.

Implementing Types
In reading this rather detailed definition of types, you’re likely to be thinking,
‘‘but my language or database or middleware doesn’t support this concept.’’
And that’s exactly the purpose of this extensive section. SOA generally requires
you to represent the same real-world values in several different technologies;
therefore, it is important that you start with a complete but platform-agnostic
definition.

Beyond the Basics

The last section presented a basic introduction to information modeling. In
order to create models that expose detail and help you to create a complete
semantic model of a domain, you need to apply several more sophisticated
techniques.

Identifiers and Uniqueness Constraints
To use the objects defined in the information model, you need to be able
to refer to individual and collective instances of those objects. An identifier
is a collection of attributes that by themselves, or in the context of some
association, uniquely identifies an instance of an object (similar to the primary
keys, defined in the entity/relational modeling).

The real world is full of identifiers. This book, for example, has an ISBN
(International Standard Book Number) and a UPC (Universal Product Code). It
is likely that the store from which you bought it gave it an SKU (Stock Keeping

Chapter 5 ■ Service Context and Common Semantics 171

class AutomobileIdent

Automobile

VIN
State
TitleNumber
LicenseNumber

Constraints
{unique VIN}
{unique State + TitleNumber}
{unique State + LicenseNumber}

Figure 5-3 Identifiers of an automobile

Unit) code. Your car has a VIN (vehicle identification number). Your insurance
policies and bank accounts have numbers. Business problems are full of such
natural identifiers — ones that are designated by and used by the business.

Identifiers are modeled as uniqueness constraints. Figure 5-3 shows the three
different identifiers of an automobile, listed as distinct uniqueness constraints.

Identifier and Identity

A class is not required to have an identifier in the information model. This
distinguishes the concept of an identifier from the data-modeling concepts of
keys or the programming concepts of pointers and handles. In this sense, the
concept of identifier is distinct from the concept of object identity. While it is
not necessary for a class to have an identifier in all cases, identifiers serve the
purpose of providing a means to refer to an object.

Contrived Identifiers

Other objects do not have natural identifiers, but it is still important to be able
to identify instances. In those cases, add a contrived identifier to the object. An
attribute such as the ChargeID (on the CreditCardCharge) is an example of a
contrived identifier.

Sometimes the business itself invents identifiers. Attributes such as an
OrderNumber (on the Order) and the ShipmentNumber (on the Shipment) are
needed by the business in order to uniquely identify instances of Orders and
Shipments.

Multiple Population Identifiers

When unifying data across parallel systems, such as the unification of accounts
across multiple banks, some techniques may be needed in order to create one

172 Part II ■ Designing SOA

Airline

Airline

Code
Name

Constraints
{Unique Code}

Flight

FlightNumber
ScheduledDeparture
ScheduledArrival

Constraints
{Unique FlightNumber by Airline}

1 1..*

Figure 5-4 Subpopulation identifier

single population of Accounts. Solutions range from creating all new account
numbers to creating compound identifiers by combining a unique code for
each of the original banks with the original account numbers.

Subpopulation Identifiers

Finally, some attributes are unique but only in the context of an association
to another class. A Flight number is only unique within the context of its
related Airline. Figure 5-4 shows how the identifier of a Flight — the Flight

Number — is marked as being relative to the association with the Airline.

Specializations
The basic definition of an object requires that all instances have the same
attributes and that all instances conform to the same rules and policies.
However, in the real world, there are many situations in which some attributes
are meaningful in some cases but not in all cases. In the store, for example,
some products are kept in stock, but others are only ordered when a customer
requests them, as shown in Figure 5-5.

Specialization allows you to model the common attributes, associations,
and behaviors in a superclass and then to model the different attributes,
associations, and behaviors in separate subclasses. In Figure 5-5, a Productmay
be either Stocked or Special Order, each with attributes that are appropriate
to the subclass.

Specializations may be quite complex. The following example in Figure 5-6
models the many complexities of bank deposit accounts.

Specializations may be complete or incomplete. A complete specialization,
denoted by the {complete} tag, means that every instance of the superclass
is an instance of one of the subclasses. In the bank example, every deposit
account must be either a Checking, Savings, or Retirement account. There
are no instances of deposit accounts that are neither Checking, Savings, nor
Retirement accounts.

Chapter 5 ■ Service Context and Common Semantics 173

class ProductSpecialization - Simple

SKU
UPC
Title
UnitPrice
Description

ReorderLevel
QuantityOnHand
ReorderInstructions

LeadTime
OrderingInstructions
ShipsDirectly

SpecialOrderProduct StockedProduct

Product

Figure 5-5 Simple specialization

class BankExample

Account

AccountNumber
Balance

CheckingAccount SavingsAccount RetirementAccount

RegularCheckingAccount InterestCheckingAccount

InterestBearingAccount

InterestRate

{complete, disjoint}

{complete, disjoint}

Figure 5-6 Illustration of complex specialization/generalization

174 Part II ■ Designing SOA

class Employee example

Employee

Name
Number

supervises

1

1..*

Supervisor

Figure 5-7 Simple Employee-Supervisor model

Incomplete specializations are useful for defining roles. In Figure 5-7, some
Employees are Supervisors; every Supervisor is an Employee, but not every
Employee is a Supervisor.

A superclass may be specialized in multiple dimensions. In Figure 5-8, a
Product is not only a Book, Recording, or Software; it is also either Stocked or
Special Order.

Derived Attributes
Each attribute represents an individual fact about an object. Some facts are
basic information, but others can be computed from other facts about that
object or related objects. Attributes of this sort are called derived attributes
because their values are derived from the values of other attributes in the
model.

A single-object derived attribute represents a fact that can be computed
solely from attributes of that same object. (See Figure 5-9.)

Figure 5-9 shows a class with derived attributes. The volume of the container
can be calculated from its height and depth. Gross weight is more compli-
cated requiring the TareWeight and the ContentNetWeight of the associated
Shipment. The derivation formulas may make use of computations provided

Chapter 5 ■ Service Context and Common Semantics 175

class Product Specialization - Compound

SpecialOrderProduct

LeadTime
OrderingInstructions
ShipsDirectly

StockedProduct

ReorderLevel
QuantityOnHand
ReorderInstructions

Product

SKU
UPC
Title
UnitPrice
Description

Book Recording

RunningTime
Format

Software

Figure 5-8 Specialization in multiple dimensions

class DerivedAttribute

ShippingContainer

Height: int
Width: int
Depth: int
Volume: int
TareWeight: int
GrossWeight: int

Shipment

BillOfLadingNumber
ContentsNetWeight: int1 1

Figure 5-9 Illustration of derived attributes

by services inside or outside of the domain. For example, the total cost of an
Order may include sales tax computed on that order using a Taxation Service.
Note that in the semantic information model, we are defining the information,
including derived attributes, but not the rules or formulas that calculate them.

176 Part II ■ Designing SOA

Value Constraints

The information model defines the concepts of a domain in terms of data. Iden-
tifiers, derived attributes, and association multiplicities all formalize specific
domain rules. An identifier states which attribute values must be unique for
all instances or for subsets of instances defined by associations and other
attribute values. Derived attribute formulas express the rules by which
other values relate to one another. Association multiplicities express whether
objects can have related instances and if so, how many. All of these are
examples of constraints that formalize the rules of the domain information.

Structuring Information Models

When you have a domain whose model consists of several hundred objects, the
model can become too big to be manageable, maintainable, or understandable.
At this point, you need to partition the model. Not only is it very difficult
to print such a class diagram on a single sheet of paper, but it is also dif-
ficult to comprehend all those objects at once. Moreover, different parts of the
model may correspond to different lines of business, different areas of respon-
sibility, or different areas of expertise within the enterprise. These reasons
match very closely the kinds of criteria used for identifying distinct domain
services.

A simple approach to dividing a large information model is to split it into
clusters of closely related objects. Intuitively, think of cutting the model apart
in places where the cuts would divide the fewest association lines, as shown in
Figure 5-10.

Figure 5-10 A model divided into clusters

Chapter 5 ■ Service Context and Common Semantics 177

Damage Report
(from Maintenance and Repair)

ReportDate
InspectionDate
DamageAmount

EquipmentType
(from Rentals)

SizeTypeCode
CommonName
Height
Width
Length

Tariff

TariffNumber
EffectiveDate
ExpirationDate

0..* 1

applies to

priced according to

1

0..*

Figure 5-11 Referenced classes

Such a scheme organizes an information model into distinct packages. When
a model is divided into packages, the cut-through associations still need to be
shown in one of the clusters. Because every class belongs to one and only one
cluster, the cut-through associations must be assigned to one of the clusters.
The class that belongs to the other cluster is shown as a referenced class where
the ‘‘from nnn’’ notation indicates the cluster to which the class actually
belongs. (See Figure 5-11.)

Documents

A fundamental difference between service operations and object methods is
that service operations are much larger granularity. Rather than many simple
operations with simple parameters, services produce and consume big chunks
of information known as documents (domain object containers). The concept
of a document (things like a customer order, a shipping manifest, an invoice,
and so forth) should be familiar from the analysis of the business problem.
Business process models such as those in Chapter 4 show activities consuming
and producing documents.

Documents can be thought of as hierarchical data structures with a main
part and several, often nested, repeating parts. They often contain references to
other business objects not contained directly within that document. A sample
Order might contain the following data:

Order

OrderNumber 2217843

Date 12/15/2007

178 Part II ■ Designing SOA

ProductTotal $ 684.85

SalesTax $ 56.50

OrderTotal $ 741.35

Selection

UPC 0785357834163

UnitPrice $45.99

Quantity 2

Selection

UPC 9780201748048

UnitPrice $44.99

Quantity 5

Customer

Name Samuel L. Clemens

BillingAddress 1234 Tom Sawyer Drive, Hannibal, MO, 63401

CreditCardAccount

AccountNumber 9823-2132-7983

ExpirationDate 2/2004

CardValidationNumber 999

Defining Documents

Although domain objects (data types) define basic things within a given
domain and are fairly stable, documents are typically containers of information,
specific for a given service (or group of services). They are created by bringing
together multiple domain objects to provide input/output for a given service
operation. The other usage of documents is combining multiple domain objects
that are typically used together; for example, header/detail information on the
purchase order. Documents can be combined further to define a higher-level
document.

Service consumers and providers exchange information — service data —
when they interact. A document is a view of the semantic information model
representing the part of that model needed for a particular service interac-
tion. In order to maintain the relationship of the documents to the semantic
information model, you use a document marking technique, as illustrated in
Figure 5-12. To define a document, draw the structure of the document on top
of the information model. Figure 5-12 shows how a Purchase Order is defined
for a Store.

Start by selecting a root class, in this case the Order. The root class is shown
with a double line. Then draw arrows along the association lines to other classes
related as subelements. (Yes, that term is borrowed from XML.) Finally, draw
dotted arrows to other classes that are not to be included in the document
but instead are merely to be referenced by the content of the document. A
useful technique is to try traversing the loop in different directions and seeing
if the same objects can be reached. If so, it’s a dependent loop, and one of the
associations should be derived.

Chapter 5 ■ Service Context and Common Semantics 179

Product

SKU
UPC
Title
UnitPrice
Description

Order

OrderNumber
Date
ProductTotal
SalesTax
OrderTotal
CurrentState

CreditCardCharge

ChargeDate
ChargeAmount
CurrentState

Customer

CustomerID
Name
BillingAddress
ShippingAddress
Email
Telephone
Fax

Shipment

ShipmentNumber
DateShipped
DateDelivered
CurrentState

CreditCardAccount

AccountNumber
ExpirationDate
CardValidationNumber
CurrentState

Selection

UnitPrice
Quantity
SelectionTotal

ShippedItem

Quantity

payment 0..1

1
0..*

11..*

1..*

0..*

1

attempt 0..*

11..*

1

1..*

0..*

class SimpleStore

Figure 5-12 Purchase Order document definition

The result of this example is an Order document with multiple selections,
each of which references a Product. The Order also includes the details of the
Customer and the customer’s credit card account.

Adapting the Information Model
The sample Order listed in the previous section has sections that match the
classes in the document marking. However, you may notice that some of
the attributes are missing. There is no CurrentState on the Order; several
of the attributes on the Customer, such as the ShippingAddress, are not present.
If your intent is for these attributes to be optional, then the information model
needs to be modified so that the attributes are declared to be optional, as
shown in Figure 5-13.

When building documents, you may also discover that you are missing
some associations in the information model. The model in Figure 5-12 looks
correct — but suppose that you want to have a variation of the Order that
only refers to an existing customer and account. You do not want to have to
respecify all of the Customer and Account data. Although you can have the
Order reference the Customer (rather than include as a subelement), because the
association between the CreditCardAccount and the Customer is one-to-many,
there is no way to specify a single CreditCardAccount.

To solve this problem, modify the information model by adding an asso-
ciation between the Order and the CreditCardAccount. This now enables

180 Part II ■ Designing SOA

class SimpleStore

Customer

CustomerID
Name
BillingAddress
ShippingAddress [0..1]
Email [0..1]
Telephone [0..1]
Fax [0..1]

Figure 5-13 A class with optional attributes

Product

SKU
UPC
Title
UnitPrice
Description

Order

OrderNumber
Date
ProductTotal
SalesTax
OrderTotal
CurrentState

CreditCardCharge

ChargeDate
ChargeAmount
CurrentState

Customer

CustomerID
Name
BillingAddress
ShippingAddress[0..1]
Email [0..1]
Telephone [0..1]
Fax [0..1]

Shipment

ShipmentNumber
DateShipped
DateDelivered
CurrentState

CreditCardAccount

AccountNumber
ExpirationDate
CardValidationNumber
CurrentState

Selection

UnitPrice
Quantity
SelectionTotal

ShippedItem

Quantity

payment 0..1

1
0..*

11..*

1..*

0..*

1

attempt 0..*

11..*

1

1..*

1..* 0..*

class SimpleStore

Figure 5-14 Order that refers (by reference) to an existing CreditCardAccount

you to specify a different form of the Order that refers to an existing
CreditCardAccount and, by implication, to an existing Customer, as shown in
Figure 5-14.

Multiple Documents
As we defined earlier, a document is a container of the multiple domain
objects, designed to combine them in order to increase granularity of ser-
vice operations. As a result, because of the requirements of the different

Chapter 5 ■ Service Context and Common Semantics 181

Product

SKU
UPC
Title
UnitPrice
Description

Order

OrderNumber
Date
ProductTotal
SalesTax
OrderTotal
CurrentState

CreditCardCharge

ChargeDate
ChargeAmount
CurrentState

Shipment

ShipmentNumber
DateShipped
DateDelivered
CurrentState

CreditCardAccount

AccountNumber
ExpirationDate
CardValidationNumber
CurrentState

Selection

UnitPrice
Quantity
SelectionTotal

ShippedItem

Quantity

payment 0..1

1
0..*

11..*

1..*

0..*

1

attempt 0..*

11..*

1

1..*

1..* 0..*

class SimpleStore

Customer

CustomerID
Name
BillingAddress
ShippingAddress[0..1]
Email [0..1]
Telephone [0..1]
Fax [0..1]

Figure 5-15 Order that contains a new CreditCardAccount for an existing Customer

service operations, there can be many versions of the same document. The two
versions of the Order might be used for different scenarios: one in which a new
customer places an order, and another in which an existing customer places
an order with the same account. A third variation, shown in Figure 5-15, has a
CreditCardAccount subelement that refers to an existing Customer.

The different forms of the Orderdocument represent different order creation
semantics: new customer, existing customer and new account, and existing
customer and account. An Order Service can have one operation that accepts
all three forms of the Order document where the specific behavior of the
operation is determined by the different forms of the document.

Documents and XML

Domain data objects and documents represent a very useful design technique.
However, in a majority of SOA implementations, these objects and documents
are passed around in XML, the de facto standard for data messaging in service
implementations. Because it is an agreed-upon standard, it is the building
block of data interoperability. Jon Bosak, who led the effort to create XML
in the W3 C, was once quoted as saying ‘‘XML just clears away some of the
syntactical distractions so that we can get down to the big problem: how
we arrive at common understandings about knowledge representation.’’ That

182 Part II ■ Designing SOA

says it all. XML is the agreed-upon low-level format with which you can define
vocabularies.

The main reasons for the use of XML are:

It has a standard syntax for metadata and a standard structure for
documents.

It is independent of programming languages and operating environment
and can be effectively used to pass information between them.

Virtually any programming language/operating environment provides
good support for marshaling/unmarshaling XML payloads.

It is, by its very definition, extensible, and its extensibility makes it easier
to support changes, which are inevitable in SOA implementations.

Because it is an open standard, and more importantly, because it is
accepted by the industry and the major vendors as the standard, it is the
key to low-level interoperability. (When Microsoft, IBM, Sun, and Oracle
actually agree on something, you can usually count on its longevity.) The
following shows the Order data from Figure 5-12 as an XML document:

<Order>

<OrderNumber>2217843</OrderNumber>

<Date>12/15/2007</Date>

<ProductTotal>684.85</ProductTotal>

<SalesTax>56.50</SalesTax>

<OrderTotal>741.35</OrderTotal>

<Selection>

<UPC>0785357834163</UPC>

<UnitPrice>45.99</UnitPrice>

<Quantity>2</Quantity>

</Selection>

<Selection>

<UPC>9780201748048</UPC>

<UnitPrice>44.99</UnitPrice>

<Quantity>5</Quantity>

</Selection>

<Customer>

<Name>

<FirstName>Samuel</FirstName>

<MiddleInitial>L</MiddleInitial>

<LastName>Clemens</LastName>

</Name>

<BillingAddress>

<Street>1234 Tom Sawyer Drive</Street>

<City>Hannibal</City>

Chapter 5 ■ Service Context and Common Semantics 183

<State>MO</State>

<Zip>63401</Zip>

</BillingAddress>

<CreditCardAccount>

<AccountNumber>9823-2132-7983</AccountNumber>

<ExpirationDate>2/2004</ExpirationDate>

<CardValidationNumber>999</CardValidationNumber>

</CreditCardAccount>

</Customer>

</Order>

Note how the structure of the order is immediately evident in the text
of the document. The tags follow the structure of the document: elements,
subelements, references, and attributes. However, there are some significant
issues in the relationship of the model and the XML document that describes
it. When designing XML documents, the following should be considered:

XML uses a hierarchical data model. The hierarchical model differs sig-
nificantly from OO representations and data models used in traditional
databases, like the normalized relational data model, which aims for fast
updates and retrievals; or the dimensional data model which aims to
slice information in various dimensions; or pointers, which provide fast
data traversal. As a result, common database design techniques (e.g.,
normalization, joins, foreign keys, etc.) or OO design (described in the
preceding sections on classes, attributes, etc.) are rarely applicable to
XML. They usually lead to an overly complex XML implementation.
XML design typically requires significant denormalization of data to
minimize cross-references between XML objects.

As XML payloads are subject to marshaling/unmarshaling when
crossing each service boundary, the use of ‘‘small’’ types in XML incurs
significant serialization overhead, which in turn has a negative impact
on performance. Every XML type is marshaled/unmarshaled into a sep-
arate object. This means that usage of ‘‘small’’ XML types leads to the
creation and deletion of a large number of objects during execution.
Therefore, it is recommended that you increase the size of XML objects
during semantic information model design.

Excessive nesting of XML types can lead to a significantly more complex
XML processing of the payloads. It usually leads to creation of additional
language objects during marshaling/unmarshaling and requires a more
complex notation to access the data. Therefore, it is advantageous to
minimize the amount of nesting in the XML payload’s definition.

We talk more about best practices later in this chapter.

184 Part II ■ Designing SOA

XML Schema
XML schema is a definition language that enables you to constrain XML
documents to a specific vocabulary and hierarchical structure. XML documents
can be validated against a schema, and this validation process can catch many
structural and semantic errors in the document. The following code shows the
XML schema for the Order XML document:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="Order">

<xs:complexType>

<xs:sequence>

<xs:element name="OrderNumber" type="xs:int"/>

<xs:element name="Date" type="xs:date"/>

<xs:element name="ProductTotal" type="xs:decimal"/>

<xs:element name="SalesTax" type="xs:decimal"/>

<xs:element name="OrderTotal" type="xs:decimal"/>

<xs:element name="Selection" maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:element name="UPC" type="xs:long"/>

<xs:element name="UnitPrice" type="xs:decimal"/>

<xs:element name="Quantity" type="xs:positiveInteger"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="Customer">

<xs:complexType>

<xs:sequence>

<xs:element name="Name">

<xs:complexType>

<xs:sequence>

<xs:element name="FirstName" type="xs:string"/>

<xs:element name="MiddleInitial" type="xs:string"/>

<xs:element name="LastName" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="BillingAddress">

<xs:complexType>

<xs:sequence>

<xs:element name="Street" type="xs:string"/>

<xs:element name="City" type="xs:string"/>

<xs:element name="State" type="xs:string"/>

<xs:element name="Zip" type="xs:int"/>

</xs:sequence>

</xs:complexType>

</xs:element>

Chapter 5 ■ Service Context and Common Semantics 185

<xs:element name="CreditCardAccount">

<xs:complexType>

<xs:sequence>

<xs:element name="AccountNumber" type="xs:string"/>

<xs:element name="ExpirationDate"

type="xs:gYearMonth"/>

<xs:element name="CardValidationNumber"

type="xs:short"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

Service designs and specifications often include XML schemas in order to
provide validation of the service input (and output) documents. The schemas
are also useful for tools that help to design and implement services. However,
as you can see by looking at the schema in the previous code, a schema isn’t the
sort of thing that you would really want to edit directly. Rather, you would like
to model the schema and have it generated. Fortunately, there are a number of
tools that provide simpler, often graphical, representations of XML schemas.
Figure 5-16 shows the Order schema in graphical form.

Types in Schemas
Each element in a schema has a type. In the Order schema shown in Figure 5-17
the elements use standard XML schema types (denoted by the xs: namespace).
However, the real power comes in defining the domain-specific types in the
schema such that the schema can actually validate the values in the document.

For example, a legal U.S. zip code (postal code) consists of either five digits
or nine digits in a pattern of five digits, hyphen, four digits. This can be defined
in XML schema as a simple type as follows:

<xs:simpleType name="ZipCode">

<xs:restriction base="xs:string">

<xs:pattern value="[0-9]{5}"/>

<xs:pattern value="[0-9]{5}-[0-9]{4}"/>

</xs:restriction>

</xs:simpleType>

186 Part II ■ Designing SOA

OrderNumber
type xs:int

Date
type xs:date

SalesTax
type xs:decimal

OrderTotal

Order
Selection

type xs:decimal

1..∞

UPC
type xs:long

UnitPrice
type xs:decimal

Quantity
type xs:positiveInteger

FirstName
type xs:string

MiddleInitial
Name

Customer BillingAddress

CreditCardAccount

type xs:string

LastName
type xs:string

Street
type xs:string

City
type xs:string

State
type xs:string

Zip
type xs:int

AccountNumber
type xs:string

ExpirationDate
type xs:gYearMonth

CardValidationNumber
type xs:short

ProductTotal
type xs:decimal

Figure 5-16 XML schema in graphical form (produced using XML Spy by Altova)

Then the ZipCode type can be used to define the Zip attribute in the schema.
Complex types can be defined to represent structured data, such as the

components of a Mailing Address:

<xs:complexType name="MailingAddress">

<xs:sequence>

<xs:element name="Street" type="xs:string"/>

<xs:element name="City" type="xs:string"/>

<xs:element name="State" type="xs:string"/>

<xs:element name="Zip" type="ZipCode"/>

</xs:sequence>

</xs:complexType>

Chapter 5 ■ Service Context and Common Semantics 187

OrderNumber
type xs:int

Date
type xs:date

SalesTax
type xs:decimal

OrderTotal

Order

Selection

type xs:decimal

1..∞

UPC
type xs:long

UnitPrice
type xs:decimal

Quantity
type xs:positiveInteger

Name

Customer

CreditCardAccount

NewAccount

Street
type xs:string

CustomerID
type xs:string

ExistingAccount
type xs:string

BillingAddress
type MailingAddress

City
type xs:string

State
type xs:string

Zip

pattern [0-9]{5} [0-9]{5}-[0-9]{4}
type ZipCode

AccountNumber
type xs:string

ExpirationDate
type xs:gYearMonth

CardValidationNumber
type xs:short

CreditCardAccount

AccountNumber
type xs:string

ExpirationDate
type xs:gYearMonth

CardValidationNumber
type xs:short

ProductTotal
type xs:decimal

MailingAddress

Figure 5-17 An XML schema with alternate representations

The value in defining domain-specific types in the information model and
then using these to create schema types should be apparent: Documents can be
validated before being delivered for processing, greatly reducing the amount
of development work needed in order to implement document-processing
service operations.

Document Variations in Schemas
A schema can also capture the different variations in the design of a docu-
ment. Using these graphical forms, it is relatively straightforward to design

188 Part II ■ Designing SOA

documents with variations such as the several forms of the Order mentioned
earlier and shown in Figure 5-17.

Designing for Change

One of the important requirements for designing an XML document for ser-
vice interfaces is support for versioning (see Chapter 9 for more on the service
versioning). Using XML schemas to define potential document changes allows
an alignment with XML schema-versioning techniques (see the ‘‘Versioning
Support in XML Schemas’’ sidebar), thus allowing for direct representation of
versioning in the documents. Changes in schemas can be broadly divided into
three major categories:

Revisions represent document changes with no semantic meaning. For
example, a change in white space, formatting, non-normative documen-
tation, comments, and so on. A revision of an already published version
must not affect the functionality of either service implementations or
consumers.

Additionally, the initial incremental revisions during development of
a semantic schema, before it is published for production, can also be
treated as revisions of the same version.

Minor changes are backward-compatible changes to the document
schema. Examples of minor changes to the schema include:

Changing the optionality of a local element or element reference from
required to optional.

Adding a global element or type.

Adding optional elements to the existing type.

Changing the type of a global or local element to the type derived
from the original type, by adding/restricting optional elements.

Major changes are non-backward-compatible changes to the document
schema.

Examples of major changes to the schema include:

Changing the type of a local or global element by adding required
elements or attributes.

Changing the optionality of a local element or element reference from
optional to required.

Adding or removing an enumeration value.

Removing or renaming a global type or element.

Chapter 5 ■ Service Context and Common Semantics 189

VERSIONING SUPPORT IN XML SCHEMAS

The simplest way to denote versions in XML Schema is to use an (optional)
attribute at the xs:schema element — version. The content model permits
Dewey notation of major.minor version numbers.

Bacause XML parsers are not required to validate instances using version, it
is possible to implement a custom representation of version, enabling the
parser to include it in the validation process. Using this technique typically
requires introduction of a versioning attribute as a fixed, required value for
identifying a specific schema version. Although theoretically this is a good
approach for schema versioning, it is not very practical. There are several
disadvantages to this approach:

◆ An XML instance is unable to use multiple versions of a schema representa-
tion because versioning occurs at the schema’s root.

◆ XML schema validation tools are not required to validate instances using
the version attribute. The attribute is provided purely for documentation
purposes and is not enforceable by XML parsers.

◆ Because XML parsers are not required to validate the use of the version
attribute, additional custom processing (over and above parsing and valida-
tion) is required to ensure that the expected schema version(s) is being ref-
erenced by the instance.

◆ Marshaling/unmarshaling of XML documents is very rarely done using
direct manipulation of the Document Object Model (DOM) tree. The most
prevalent approach to marshaling is the generation of classes that support
‘‘automatic’’ marshaling, using tools like WSDL2Java, Castor, Eclipse Model-
ing Framework (EMF), Service Data Objects (SDO), XML Schema Definition
(XSD), XSDObjectGenerator, and the like. In this case, classes are gener-
ated in the packages in Java or namespaces in C#, based on the schema
namespaces, not the schema version.

Another option for denoting the schema version is XML namespaces. In
this approach a new XML namespace is used for all major version releases. This
approach is well aligned with the generation of marshaling/unmarshaling code.
It allows code to be generated in different packages (namespaces), thus
enabling a single-service consumer to work with several major releases of
schema simultaneously.

The final option is to keep XML namespace values constant and add a special
element for grouping custom extensions. This approach wraps extensions to
the underlying vocabulary within a special extension element. This technique is
favored by several industry-standard schemas. For example, the Open
Application Group’s Business Object Documents (OAG BODs) include a
<userarea> element defining custom information that may not be part of the
base vocabulary. This approach provides maximum extensibility of the schema

(continued)

190 Part II ■ Designing SOA

VERSIONING SUPPORT IN XML SCHEMAS (continued)

constructs (schemas can be both forward and backward compatible) without
the introduction of new namespaces. There are two disadvantages to this
approach:

◆ It introduces significantly higher levels of complexity into the schema.

◆ It does not allow the implementation of multiple extensions across differ-
ent portions of the XML instance, because all extensions must be grouped
within the extension ‘‘wrapper.’’

◆ The most scalable approach to versioning of schemas is:

■ Componentization of the overall schema into logical partitions, using
multiple namespaces, thus allowing each to contain changes.

■ Defining a new namespace (reflecting the major version information) for
every major version of each schema.

■ Denoting every minor version as a schema version in a major version
namespace. Because minor versions are backward-compatible, gener-
ated marshaling/unmarshaling code is backward-compatible as well.

XML Patterns

With the multiplicity of tools that allow for the generation of XML documents,
creation of documents might seem very straightforward. Once a UML model
of semantic information is created, the appropriate tooling can be used to
generate both the schema and XML instances. This approach does not require
knowledge or a good understanding of XML and seems so simple that a lot of
people have rushed into using it without thinking about the consequences. As
a result, many implementations are stuck with ‘‘bad,’’ hard-to-maintain XML
schemas. We have seen a lot of cases where this approach leads to significant
performance degradation, requirements for massive implementation changes,
and so on. Here, we discuss some approaches that allow you to produce
better, more maintainable XML documents. Some of the recommendations
described here can be achieved through modification of the models, whereas
others may require tweaking an XML schema produced as a result of the
generation.

One of the things to keep in mind is that XML uses a hierarchical data model,
which differs significantly from OO representations. This model is very well
suited for implementing containment relationships, but the implementation of
references (although possible through usage of IDs/IDREFs XML support) can
lead to significant performance degradation during XML processing. The usage

Chapter 5 ■ Service Context and Common Semantics 191

of direct references also often leads to hard-to-read XML documents. Let’s take,
for example, a multicustomer invoice. When modeling this document, we know
that there are three types of relationships: customers to invoice, line items to
invoice, and line items to customers. A straightforward implementation of a
document like this looks like the following document:

<invoice>

<customer> ...

<Item IDREF=1>

<Item IDREF=3>

</customer>.

<customer> ...

<Item IDREF=2>

<Item IDREF=3>

</customer>.

<lineitem ID=1> ... </lineitem>

<lineitem ID=2> ... </lineitem>

<lineitem ID=3> ... </lineitem>

</invoice>

Here, both Customers and Invoices are direct children of the Invoice
document, and relationships between them are defined using line items IDs.
Although this XML document is perfectly valid, as the number of customers
and line items grows, it becomes less readable and harder to process. A
different implementation is shown in the following document:

<invoice>

<customer> ...

<lineitem> ... </lineitem>

<lineitem> ... </lineitem>

</customer>.

<customer> ...

<lineitem> ... </lineitem>

<lineitem> ... </lineitem>

</customer>.

</invoice>

Here, we changed relationships between customers and line items from
references to containment. The resulting document contains more information
(some line items can be repeated multiple times for different customers), but
the overall document is cleaner and more readable. Based on these examples,
we recommend using containment references as much as possible in the
common semantic information design.

XML provides a very powerful mechanism for optional elements. Using
these elements provides a simple extensibility approach to XML document
design. This approach is not easily mapped to OO modeling, but we strongly
recommend using it as much as possible. Typically, this is done by introducing

192 Part II ■ Designing SOA

additional attributes into the designed classes and then marking them as
optional in a resulting document.

XML documents are used as the technical format for passing information
between services. When these documents enter the service implementation,
they have to be converted (marshaled) into language classes. If a document
creates many small language classes, the marshaling becomes very expensive,
because of the massive memory allocation required. A typical side effect
of using small classes in XML is excessive nesting. In addition to entailing
expensive marshaling, highly nested XML documents are typically hard to
read and understand. This means that when you create the semantic infor-
mation model, we recommend that you try to increase the granularity of
semantic objects.

Inheritance is a very powerful mechanism for defining semantic data types.
Whereas UML modeling supports only derivation by extension, XML provides
a significantly richer set of derivation mechanisms, including the examples
discussed in the following sections.

Derivation Using Abstract Classes
Abstract classes cannot be used in instance documents; they simply provide
a placeholder for their derived types. In the following example, Magazine
is an abstract type that has a Title and an Editor. A sports magazine
(SportsMagazine) is derived from an abstract Magazine type, and therefore
inherits both Title and Editor. This can be achieved by using the code
extension base="Magazine"under a definition of SportsMagazine. In addition,
the sports magazine will also have car advertisements, so you can add
CarsAdvertizement to the inherited base type:

<xs:complexType name="Magazine" abstract="true">

<xs:sequence>

<xs:element name="Title" type="xs:string"/>

<xs:element name="Editor" type="xs:string"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="SportsMagazine">

<xs:complexContent>

<xs:extension base="Magazine">

<xs:sequence maxOccurs="unbounded">

<xs:element name="CarsAdvertizement"

type="xs:string"/>

</xs:sequence>

Chapter 5 ■ Service Context and Common Semantics 193

</xs:extension>

</xs:complexContent>

</xs:complexType>

As shown in the next listing, the instance document built using the
schema above contains all the base class characteristics and the added
CarsAdvertizement component:

<?xml version="1.0" encoding="UTF-8"?>

<Product xmlns="http://www.cna.com"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.Bond.com Product.xsd">

<Magazines>

<SportsMagazine>

<Title>Around NFL</Title>

<Editor>John Strong</Editor>

<CarsAdvertizement>Buick</CarsAdvertizement>

<CarsAdvertizement>Audi</CarsAdvertizement>

</SportsMagazine>

</Magazines>

</Product>

Derivation by Extension
Another approach to derivation is to use an extension without an abstract
type. A BookSales type contains information about a book, and includes the
number of books sold and the price at which they were sold. It is possible
to extend the Book type to create a BookSales type using the extension base
keyword. The following snippet of the DataTypes schema shows how this
is done:

<xs:complexType name="Book">

<xs:sequence>

<xs:element name="Author" type="xs:string"/>

<xs:element name="Title" type="xs:string"/>

<xs:element name="ISBN" type="xs:string"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="BookSales">

<xs:complexContent>

<xs:extension base="Book">

<xs:sequence>

<xs:element name="Number" type="xs:integer"/>

<xs:element name="Price" type="xs:double"/>

194 Part II ■ Designing SOA

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

This means that whenever the element BookSales is referenced, the XML
instance document will include number and price information with the title,
the author, and the ISBN as shown here:

<Sales xmlns="http://www.Bond.com"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.Bond.com Sales.xsd">>

<Books>

<BookSales>

<Author>Shakespeare</Author>

<Title>Complete Works</Title>

<ISBN>0517053616</ISBN>

<Number>234</Number>

<Price>14.50</Price>

</BookSales>

</Books>

</Sales>

Derivation by Restriction
Derivation by restriction is useful in cases where it is necessary to create a
subset of the base type. One example is restricting the range of values in the
initial definition. For example, a Pamphlet is similar to a Book in every way,
except that it has no author. Instead of creating a base definition of Pamphlet
and then extending it with the author (as we did in the derivation by restriction
above), it is possible to use the code restriction base="Book" when creating the
pamphlet, as shown here:

<xs:complexType name= "Pamphlet">

<xs:complexContent>

<xs:restriction base="Book">

<xs:sequence>

<xs:element name="Title" type="xs:string"/>

<xs:element name="ISBN" type="xs:integer"/>

</xs:sequence>

</xs:restriction>

</xs:complexContent>

</xs:complexType>

Chapter 5 ■ Service Context and Common Semantics 195

Disallowing Derivations

In programming, it is possible to declare some interfaces and classes final so
that they are never subclassed. The same goal can be achieved in schemas by
making some components final, as follows:

<xsd:complexType name="BondDefinition" final="#all">

<xsd:complexType name="BondDefinition" final="extension">

<xsd:complexType name="BondDefinition" final="restriction">

When the keyword, #all is used, the component can be neither extended nor
restricted. In the other two cases, the final blocks either extension or restriction.

Unfortunately, using these inheritance mechanisms requires direct design
of the XML documents.

There are also well-defined XML design patterns addressing decoupling and
cohesion in XML schemas. They mainly address different levels of granularity
of data types. These design patterns allow for simplification of refactoring
in cases of semantic models changes. There are three design patterns that
represent three levels of granularity when creating components:

Russian Doll

Salami Slice

Venetian Blind

Russian Doll

When using this design pattern, components contain all the relevant compo-
nents within themselves (like a Russian doll). In the following example the
type Book is composed of the components Title, Author, and ISBN. These
components are defined locally within the Book component:

<xs:element name="Book">

<xs:complexType>

<xs:sequence>

<xs:element name="Title" type="xs:string"/>

<xs:element name="Author" type="xs:string"/>

<xs:element name="ISBN" type="xs:integer"/>

</xs:sequence>

</xs:complexType>

</xs:element>

196 Part II ■ Designing SOA

Characteristics of this design pattern include:

Opaque content — The content of Book is opaque to other schemas and
to other parts of the same schema. The impact of this is that none of the
types or elements within Book are reusable.

Localized scope — The region of the schema where the Title and
Author element declarations are applicable is localized to within the Book
element. The impact of this is such, that, if the schema has set
elementFormDefault="unqualified", then the namespaces of Title and
Author are hidden (localized) within the schema.

Compact — Everything is bundled together into a tidy, single unit.

Decoupled — With this design approach, each component is
self-contained (i.e., they don’t interact with other components).
Consequently, changes to the components have limited impact.
For example, if the components are within Book change, it will have a
limited impact because they are not coupled to components outside
of Book.

Cohesive — With this design approach, all the related data is grouped
together into self-contained components, that is, the components are
cohesive.

This design pattern provides the best encapsulation (all of the internal data
types are defined inside the schema itself) but has the most limited reuse
capabilities.

Salami Slice

In this approach, components are put together or aggregated by referencing
different types. Thus, Book, Title, Author, and ISBN are all global elements.
The Book type then references the other three as part of its definition as
shown here:

<xs:element name="Title" type="string"/>

<xs:element name="Author" type="string"/>

<xs:element name="ISBN" type="integer"/>

<xs:element name="Book">

<xs:complexType>

<xs:sequence>

<xs:element ref="Title"/>

<xs:element ref="Author"/>

<xs:element ref="ISBN"/>

</xs:sequence>

</xs:complexType>

</xs:element>

Chapter 5 ■ Service Context and Common Semantics 197

This design pattern is referred to as Salami Slice because each component or
type represents one slice. Characteristics of this design pattern are:

Transparent content — The components that make up Book are visible to
other schemas and to other parts of the same schema. The impact of this
is that the types and elements within Book are reusable.

Global scope — All components have global scope. The impact of this is
that, regardless of the value of elementFormDefault, the namespaces of
Title and Author are exposed in instance documents.

Verbose — Everything is laid out and clearly visible.

Coupled — In the example, you saw that the Book element depends
on the Title and Author elements. If those elements were to change, it
would have an impact on the Book element. Thus, this design produces a
set of interconnected (coupled) components.

Cohesive — In this design approach, all the related data is also
grouped together into self-contained components. Thus, the compo-
nents are cohesive.

The two design approaches differ in a couple of important ways:

The Russian Doll design facilitates hiding (localizing) namespace com-
plexities. The Salami Slice design does not.

The Salami Slice design facilitates component reuse. The Russian Doll
design does not.

Venetian Blind

In this pattern, all elements and components are defined as types. This means
that when the component called Title is defined, it has to be referenced by the
type Title, even though it is a simple type defined as a string. This illustrates
the highest level of factoring components into their most atomic stage.

Because each component is a type, each can be qualified by a namespace
if elementFormDefault="qualified". The ability to show or hide namespaces
like opening or closing a Venetian blind lends this design pattern its name:

<xs:simpleType name="Title">

<xs:restriction base="xs:string"/>

</xs:simpleType>

<xs:simpleType name="Name">

<xs:restriction base="xs:string">

<xs:minLength value="1"/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name="Book">

198 Part II ■ Designing SOA

<xs:sequence>

<xs:element name="Title" type="Title"/>

<xs:element name="Author" type="Name"/>

</xs:sequence>

</xs:complexType>

This design has:

Maximum reuse — The primary components of reuse are type
definitions.

Maximum namespace hiding — Element declarations are nested within
types, thus maximizing the potential for namespace hiding.

Easy exposure switching — Whether namespaces are hidden (localized)
in the schema or exposed in instance documents is controlled by the
elementFormDefault switch.

Coupled — This design generates a set of components that are intercon-
nected (i.e., dependent).

Cohesive — As with the other designs, the components group
together related data. Thus, the components are cohesive.

The choice of a particular design patterns is driven by your requirements:

The Venetian Blind design is the one to choose when your schemas
require the flexibility to turn namespace exposure on or off with a simple
switch, and when component reuse is important.

When your task requires that you use element substitution, which is
available to instance document authors, then use the Salami Slice pattern.

When minimizing size and coupling of components is of utmost concern,
then use the Russian Doll design.

Consistent use of these XML design patterns typically requires manual
refactoring of the generated XML schemas. When deciding whether to use
a particular pattern, it is necessary to weigh the amount of manual XML
refactoring against the quality of resulting XML.

Best Practices for the SOA Architect

We have covered a lot of ground in this chapter, but it is also important to
understand the ‘‘big picture,’’ the common pitfalls and best practices related
to semantic interoperability. This section provides information on the pitfalls
to avoid and guidance on how to avoid them.

Chapter 5 ■ Service Context and Common Semantics 199

Using Abstraction to Avoid ‘‘SOA Stovepipes’’
Earlier in this chapter, we talked about the basic level of semantic interop-
erability, which is developing data definitions and schemas that are specific
to your project. Unfortunately, adopting such a methodology is sometimes
short-sighted. When you do this, the data is tightly coupled to each service or
application. This short-sighted technique is commonly referred to as building
an ‘‘SOA stovepipe!’’ A service that communicates using messages that are
only understood by the people who built it is not very interoperable at all.
Unfortunately, this is a trap that is very easy to fall into, because of the
following:

Point-and-click object–to–WSDL generation — Many enterprise devel-
opment tools allow automatic Web Service Description Language
(WSDL) generation, where objects from previously developed programs
can turn into services with the click of a button. Certainly, this is tempt-
ing when time is a factor in the development schedule (as it usually is),
but have you ever looked at the WSDL results? The parameter objects
that are passed into each service do not translate to intuitive messages,
and the result is that understanding the XML payloads is dependent
on understanding the initial application API. The resulting data is very
tightly coupled to the application, and therefore, changes in the appli-
cation result in having to change the WSDL, leading to chaos in oper-
ational deployments.

Database-to-schema conversion — Sometimes developers create a one-
to-one translation of database tables to XML schemas, either because
there are ‘‘database-to-ML’’ tools that easily allow this to happen or
because they are very familiar with the database. What happens is
that the understanding of the resulting XML revolves around under-
standing the implementation of the underlying database, which means
that your messages are tightly coupled to your database. If you ever
change your database schema, you most likely have to change your XML
messages, resulting in chaos.

Direct API–to–service bindings — Similar to point-and-click WSDL
generation, this pitfall happens when a developer creates a one-to-one
relationship to the original API (whether it be new or legacy) to the
service interface, disregarding the definition of data standards for
the payloads being passed in service messages. Once again, the one-to-
one relationship leads to tight coupling and chaos.

It is important to avoid these traps at all costs. All of these roads lead to
semantic chaos. Mergers and acquisitions, regulation, market competition, and
customer demands bring constant changes that are difficult enough without

200 Part II ■ Designing SOA

worrying about the constant changes that you have to make to keep up with
services that are tightly coupled and inflexible. If you start with services that
are too tightly coupled to your applications, you have no chance of keeping
up.

The key to avoiding this trap is abstraction. Your SOA governance (see
Chapter 12) should define processes and procedures for service design, and you
should spend time on abstracting the underlying details of legacy applications
and your databases.

TIP FOR THE ‘‘TOO LATE’’ SOA FIREFIGHTER

If you are brought in to try to solve the chaos related to SOA stovepipes, you
can use a centralized, or hub-and-spoke, approach to data transformation with
message brokers, where each service’s proprietary semantic meaning is
mapped to a logical data model. Semantic interoperability is achieved via a
hub-and-spoke topology, which reduces the redundancy and maintenance cost
of point-to-point integration. For more information, see the article, ‘‘Achieve
semantic interoperability in a SOA’’ by Mei Selvage, Dan Wolfson, Bob Zurek,
and Ed Kahan (June 2006).

Reuse Standards to Avoid Reinventing the Wheel
It is easy to invent your own data standards. You are in a time crunch; you
need to develop something fast, and so you do, at the cost of reinventing
what already exists. The result is that your shortcut is a barrier to future
interoperability. Imagine, for example, that each doctor’s office and hospital
in the United States have a different schema for ‘‘Patient Record.’’ Imagine
how difficult it could be when a patient transfers from doctor’s office to
doctor’s office, or from hospital to hospital. In the same way, even if you are
not planning on initially integrating with other organizations, such situations
always happen.

Make sure to look for standards that your SOA governance recommends.
Certain approaches may include all or some of the following:

Using enterprise semantics — In many successful SOA implementa-
tions, all of the services communicate based on the enterprise
semantics. These semantics usually include a common vocabulary,
a semantic information model, and common schemas. What is helpful is
that such an approach does not require data transformations throughout
the enterprise. Rather it is the responsibility of service consumers and
providers to implement the abstractions from their internal data models
to enterprise semantics.

Chapter 5 ■ Service Context and Common Semantics 201

Using business-domain semantics — Look for industry standards that
you can reuse that are relevant to your business domain. In order to
encourage interoperability within industries, many vertical industry
standardization groups develop industry-specific information models,
which often include XML messages and message schemas. For instance,
the Association of Retail Technology Standards (ARTS) develops such
standards for the retail industry, and the Agency Company Organiza-
tion for Research and Development (ACORD) develops standards for
the insurance industry. These models provide a greater level of seman-
tic interoperability and encourage asset reuse. Some organizations even
adopt the industry standard models as their internal enterprise logical
models and semantic message models.

Typically, SOA governance initially looks for standards that apply to the
business domain. Where those standards are not relevant, a team can focus
on creating enterprise data standards. In many cases, a successful solution
consists of the combination of the above.

Develop Information Models Based on Use Cases

A common pitfall involves ‘‘analysis paralysis’’ for data modeling. Here’s a
tip: Don’t model the universe down to the level of DNA when you already
have an idea of what your messages will be, and what your use cases are for
your services. The last thing you need is for another data-modeling team to
spend a year developing another schema or ontology starting with ‘‘person,’’
‘‘place,’’ and ‘‘thing.’’ Use cases are driven by your project’s requirements
and, therefore, must have a good requirements analysis phase. Based on that
phase, look only at the entities required in the messaging of your SOA. Start
from there. If no other enterprise standards or industry standards for those
entities exist, start modeling for those entities and those entities only.

With Change, Crawl, Walk, Then Run

Many overzealous architects attempt to take on too much of the data problem
at once. Especially when services are already deployed, they try to change
semantics in all enterprise applications simultaneously. This requires too many
changes in too many applications, it is unrealistically complex, it is expensive,
and it becomes chaotic. An SOA team needs to provide initial guidance.
Once you have that guidance (or if you don’t have that team), take a look at
the big picture, and see what changes will be the most important. Take an
iterative approach with such changes. For more information on what a mature
governance life cycle looks like that accommodates change, see Chapter 12.

202 Part II ■ Designing SOA

Summary

Good service design should yield cohesive, interoperable services that are
loosely coupled in their implementation and use. The process needs to be
precise and detailed — after all, the goal is real working services — but must
be agile enough to accommodate changes as the business and understanding
of the business evolves over time.

A common semantic information model is a key tool for ensuring consistent
shared information across services. Rather than approaching a domain from the
perspective of business processes, it uses the business data to define semantics.
Information models can be structured along the lines of the business in order
to partition concepts specific to certain parts of the business, while capturing
common elements, such as the concept of a Customer, for consistent use across
the entire enterprise.

The common information model also provides the foundation for defining
all of the documents that make up the inputs and outputs of services. Docu-
ment definition using an information model can expose multiple reasonable
variations on the business data, while ensuring consistency with a common
model. These practices also make the process of designing documents, using
technologies such as XML, far more straightforward and consistent than
merely creating isolated schemas.

However, simple approaches to XML generation can result in overly sim-
plistic schemas that result in tightly coupled data, maintenance issues, and
performance problems. Understanding the issues related to creating XML
schemas from information models is important to developing successful SOA
solutions. Common design patterns help to address the issue and create better
schemas and solutions.

C H A P T E R

6

Designing Service Interfaces
Parts Is Parts

— Wendy’s

In previous chapters, we discussed the architectural implications of SOA, the
issues related to composing larger services from a collection of smaller ones,
and the issues involved in designing common information and semantics to
span many different service interfaces. In this chapter, we tie these concepts
together around the design of service interfaces. First, we review some of the
important service concepts and look at the important characteristics of service
interfaces. Then, we introduce a process for interface design and illustrate it
with a detailed example. In this chapter, we cover:

The service characteristics of granularity, scope, and visibility

Service interaction styles, including parameter passing, document
passing, and data passing

Service invocation styles, including request/response, events, and
mixed

Service design guidelines

The interface design process

Sample problem space models

Sample solution models

203

204 Part II ■ Designing SOA

Services Revisited

Let’s review the important aspects of services. A service provides capabilities
that are accessed through its interface. The interface describes how those
capabilities are presented and the rules and protocols for using them. The
service is implemented through a variety of mechanisms, such as components,
composition, and integration. So, we think of a service as a combination of
its interface — the public view of the service, and its implementation — the
private view of the service. In addition, both the interface and the implemen-
tation are a combination of functional and informational aspects. Figure 6-1
highlights these aspects of a service.

In terms of service interface design, this means:

The service interface hides the details of the implementation.

The service interface expresses the service’s functions. This is done
through the operations that the service interface provides.

The service operates on information. The schema of the information is
described in the parameters of the service operations. The schema is
derived from a common semantic model.

This last observation leads to a very important point about services in an
SOA. There is a difference between building services and having an SOA. It is
not enough to simply build random services. Instead, an SOA demands that
the services be part of an overall collection (or inventory) of services that are
designed to work together and to be composed into business processes. For
this to happen, you need to understand two critical aspects of the overall SOA
context in order to design an effective service interface. These are:

The specific responsibilities of the service operations and how these
responsibilities relate to other services, that is, the relationship of the ser-
vice to others

The information that must be common and shared between this service
and other services to enable those relationships and service composition

We cover these two points more extensively later in this chapter. In addition
to the anatomy of the service, there are several different sizes, types, and other
aspects that are important to interface design. We review these as well.

Service Characteristics

Three characteristics of services are particularly important in the design of
service interfaces. These are: granularity, scope, and visibility.

Chapter 6 ■ Designing Service Interfaces 205

Service

Interface

Implementation

Internal
Data

Internal
Functionality

Common
Business
Semantic

Service
Operations

Figure 6-1 The anatomy of a service

Granularity

Service granularity describes the amount of business functionality performed
by a single interaction (message exchange) with a service operation. We
are often told that services should be coarse-grained. This is because larger
granularity services are expected to be invoked less frequently, and the fre-
quency of invocation is critical in distributed environments. There are also
implications about the amount of data interchanged in service granularity.
Fine-grained services are often called a lot and don’t exchange a lot of data.
Although all of this is true in most cases, it’s not that simple. Rather than
give strict definitions of granularity, it is better to describe a range from
small utility services to large business services. There is not a single correct
size for all services. Often, larger services are created by combining multiple
smaller services. In addition to distribution and data, it is important that the
granularity of a service interface match the functional modularity of the
expected service consumers. For example, a business process expects to
call services with granularity that corresponds to that of a process activity.
Figure 6-2 illustrates the granularity of services.

Scope

Scope describes the intended range of users of a service. The largest scope
is enterprise-wide, meaning that the service is intended to be used across
the enterprise or across organizational boundaries. A smaller scope, such
as a single solution, means that the service is intended to support only a
specific solution. The importance of scope is that it provides the context within
which the service interface must be defined, specifically regarding the scope
of responsibilities and information.

206 Part II ■ Designing SOA

Enterprise
Business
Process

Granularity

Small

Large ...Business
Service

Business
Service

Domain
Service

Utility
Service

Utility
Service

Domain
Service

...

Figure 6-2 Service granularity varies according to intended usage

INTERNET SCOPE

Of course, there is a larger scope than the enterprise, that of extra-enterprise or
Internet. For example, here are two different scenarios:

◆ B2B exchange between business partners (such as a supply chain) — In
this case, the interface may be dictated by an industry standard
organization or by a cooperative agreement. Semantics conform to
industry standards where they exist. Sometimes a new interface is devel-
oped specifically for this service when no external context exists. General
SOA principles should be followed, but there may be few requirements to
compose these services into broader business processes.

◆ Generally available services — In this case, the service offers a function
to the general public or customer base (such as package tracking or book
information lookup). Again, the question of scope becomes one of what
context must be applied to the service interface design. Sometimes, the
interface must be designed to conform to a real or de facto standard (such
as GIS coordinates). In other cases, the interface can be dictated by the
service provider (such as Amazon book information). In either case, the
individual service should be designed to fit within the overall set of ser-
vices. (For example, all Amazon services should use the same definition of a
book.)

Visibility

Visibility describes the range of users that are allowed to see the existence of a
service, and subsequently to use it. Visibility is often described as either public

Chapter 6 ■ Designing Service Interfaces 207

or private. Public visibility means that all users within the intended scope are
able to see the service. Private means that the service is not discoverable, but
rather must be known about a priori.

Note that there is a difference between visibility and entitlement. Not
everyone who is able to see that a service exists is necessarily allowed to use
the service. Visibility provides a very broad approach that impacts how a
service is (or is not) discovered, and affects the relationship between consumer
and provider at design time. Entitlement provides a fine-grained approach
based on the consumer’s individual identity or role.

Table 6-1 shows how these different characteristics relate to the various
types of service.

Interaction Styles
Another important concern in the design of service interfaces is the style of
interaction between the service consumer and provider. The interaction style
describes the pattern of the service’s operation signatures, specifically how
information is passed into and out of the service. The interaction style also
describes the type and synchronization of request messages and response
messages.

Table 6-1 Service types and characteristics

TYPE VISIBILITY SCOPE GRANULARITY RESPONSIBILITY

Business
Service

Public Enterprise Medium to
Large

Implements discrete business
function across lines of business.

Public Line-of-
Business
(LOB)

Medium to
Large

Implements discrete business
function.
Represents a logical group of
related functions.

Domain
Service

Private Domain Small to
Medium

A domain-specific subunit of
processing.
General purpose, reusable.

Utility
Service

Public Enterprise Small to
Medium

A common subunit of
processing.
Supports semantic business
objects.
Applicable across multiple LOBs.

Integration
Service

Private Solution Small to Large Exposes business operations.
Groups related transactions.
Provides a single point of
contact.

208 Part II ■ Designing SOA

Sometimes, the interaction style is described in what is also called a
Message Exchange Pattern (MEP). For example, the W3 C SOAP V1.2 specifi-
cation describes two different patterns: the Request/Response MEP and the
Request/SOAP Response MEP. The Request/Response MEP describes the
details of how a SOAP request is sent to a service and how a SOAP response
is returned. The other pattern describes how a non-SOAP request is sent and
a SOAP response returned.

There are two separate concerns for MEPs. One is how the information is
passed, and the second is the type of message and synchronization. Let’s look
at the information first.

Parameter Passing

In this style, the operation signature contains one or more individual parame-
ters. An example service signature might something look like:

Response = service operation (parameter1, parameter2, ...);

In this operation, the inputs are passed as parameters, which are typed
by standard or custom data types. The response might be a single value or a
complex type (such as a document). Figure 6-3 illustrates the simple parameter-
passing style:

This is the simplest of the different interaction styles and works well where
the operation has well-defined and constrained inputs. This interaction style
works well with small granularity services and is most often the interface
style seen on utility services.

Document Passing

In this style, the operation signature contains one request (input) document
and one response (output) document. An example of a service signature is:

Response document = service operation (request document);

Requestor Service

Response

(Parameter1, . . .)

Figure 6-3 Parameter-passing style

Chapter 6 ■ Designing Service Interfaces 209

Requestor Service

Response

Request Decompose
Message

Assemble
Message

Figure 6-4 Document-passing style

In this operation, the inputs and outputs are passed as documents, which
are typed by schema. Both the request and reply may be simple or compound
documents. Figure 6-4 illustrates the document-passing style.

This interaction styles and works well with larger granularity services where
the input and output may contain a lot of data. This is the interface style most
often used with business services.

Where the service is more complex, the request and response may be
compound documents. In other words, the document itself is composed
of subdocuments. Figure 6-4 also illustrates how the business service might
decompose the request into individual documents that are passed separately to
the services that make up the business service. Likewise, the business service
might need to reassemble the individual responses into the final response
document.

Note that the document passing pattern is actually a special case of parameter
passing, where the parameters are documents rather than some other data
type. But in this case, the documents are based on the semantic information
model and act as a type of Data Transfer Object or value object (a common
pattern used in distributed systems, and that eliminates the use of reference
passing).

Data Passing

This style of interaction supports services that are primarily designed to
provide data access. In this style, the operation signature contains one or
more request parameters and one response (output) document or dataset. An
example of a service signature is:

Response data = get operation (entityID);

To avoid ‘‘chatty’’ interfaces, it is important to discourage access to single
attributes. Therefore, the service signature may be optimized to support one
or more specific (sub)sets of information, such as the following:

Response dataset Y = getY (entityID);

Response dataset Z = getZ (entityID);

Response dataset All = getAll (entityID);

210 Part II ■ Designing SOA

In addition to specific subsets, the service usually supports an operation
that returns the entire data set about a specific entity ID. For example,
if the service provides Customer data, the getY operation might return name,
address, contact info, and the like. The getZ operation might return account
information about the customer, and the getAll operation might return all
of the information about the customer that the requestor is authorized to
see, including address and contact. Figure 6-5 illustrates the data passing
style.

Another common variation on the data-passing interface allows the
requestor to pass in a specific query or to ask for a customized subset of
information. There is one caution however with the use of customized subsets.
Extreme care must be exercised to ensure that the separation of interface
and implementation (e.g., data hiding) is not broken by exposing the internal
structure of data to the requestor.

Finally, this interface style often supports getting information for a set
of entities, rather than for a single ID; for example, it might be used to
return dataset Y for all customers in New Hampshire. Again, caution must
be exercised so that an unduly large result set is not returned, at least in
a single message. (See the Megadata Pattern in Building Business Objects by
Peter Eeles and Oliver Sims [1998] for a solution to this scenario, if it is to be
supported.)

This interaction style is most often used with entity type domain and
business services.

The previous styles describe how the information exchange between a
service consumer and provider is formatted. Now, let’s look at some of the
ways that messages can be passed between them.

Request/Reply

This is the most common service invocation style. In the simplest, synchronous
case, the requestor sends a request to a service and waits. When the service
has processed the request, it sends a reply. The requestor receives the reply
and resumes processing. Figure 6-6 illustrates the request/reply style.

Requestor Service

Response

(ID, Subset, . . .)

Assemble
Dataset

Query

Figure 6-5 Data-passing style

Chapter 6 ■ Designing Service Interfaces 211

Requestor Service

Response

Request

Figure 6-6 Request/reply invocation style

There are asynchronous variations on the request/reply style sometimes
called store-and-forward. Often, the requestor does not want to block progress
waiting for a reply. Instead, an asynchronous request is sent to the service and
the requestor continues processing other tasks. Sometime later, the requestor
looks for and processes the reply. This is essentially the model used when
exchangingemail. Icansendyouamessageandthengoaboutmyotherbusiness.
Later, I can check my inbox for your response and continue with that particular
task. Obviously, this works great for a lot of things. Of course, there are some
complications. What if you never respond? Or, how do I correlate a specific
email message in my inbox with a specific email request that I sent out earlier?

Often, a correlation identifier is added to the message to allow the requestor
to correlate replies. But this generally has to be implemented by the partic-
ipants, not automatically by the system. This is the mechanism that Google
Mail uses to associate requests with replies.

If you choose the simpler synchronous model, these complications are
handled for you by the messaging system. If you choose an asynchronous
approach, you must address them yourself.

In some scenarios, you send a message to a service but don’t expect any
response. For example, a Radio Frequency Identification (RFID) reader might
send a message to an inventory service every time an RFID is read. In this case,
you can send what is called a one-way message. The use of a one-way message
is often associated with a guaranteed delivery messaging infrastructure.

Events

An alternative to request/reply messaging is an event-based approach. A
common approach is a publish/subscribe style, as illustrated in Figure 6-7.
Event-driven architectures rely on an intermediary, or an ‘‘event broker’’
to receive notification from event sources (publish) and inform (invoke) all
interested parties (subscribers). The event paradigm is not only evident at
the technology or messaging level. It must also be present in the design of
business processes and interactions. Refer to Chapter 8 for a description of the
publish/subscribe style for services composition.

212 Part II ■ Designing SOA

Service Response
RequestReceive

Event
Publish
Event

Figure 6-7 Event-based invocation style

In this style, the service is a subscriber to specific events, such as ‘‘Mort-
gage application received.’’ The mortgage application–processing service is
invoked by the event broker to process the new application. The new appli-
cation could have come from a single channel or perhaps from a variety of
different channels. The ‘‘publish’’ paradigm allows for a loosely coupled
many-to-one relationship between sources of mortgage applications and the
service responsible for processing them. When the processing is complete,
the service publishes a new event, such as ‘‘Application Processed.’’ The
event broker then passes the event on to any processes that have expressed
interest (subscribed) to the event. It might be the submitter of the appli-
cation. Or, it might also be an auditing service, and a compliance service.
Again, the subscribe paradigm allows for a loosely coupled one-to-many
relationship.

Although there are many excellent examples of event-driven architectures,
the current crop of BPM tools are not well-suited to building business processes
supported by event-based services. Although the same set of principles and
practices that we describe in the book still applies to these services, we have
focused our examples on the more common request/response style.

Mixed Style

Some scenarios are best served by a combination of invocation styles. The
most common of these is a data provider service, as illustrated in Figure 6-8.
In this scenario, the data provider publishes data change events. Processes
that are concerned about data changes subscribe to these events. However,
most processes are concerned with only a subset of all the data changes
and ignore most events. When the event is about data they are concerned
with, the requestor (subscriber) then makes a request/response invocation to
the data provider to get the specific data that they care about, and that was
changed.

Any of the invocation styles (request/response, event, or mixed) can apply
to any of the different service styles (business, domain, utility, or integration).

Chapter 6 ■ Designing Service Interfaces 213

Requestor
Data

Provider
Service

Response

Query

Data Change Event

Figure 6-8 Mixed invocation style

Design Guidelines

Now that you have reviewed some important characteristics of services, it is
time to address the primary design principles for services.

Isolating Responsibilities
One of the keys to achieving SOA success is creating a collection of services
that can be composed to support a variety of different business processes and
scenarios. We often talk about having ‘‘loosely coupled’’ services, but how
does that help achieve these goals? Loose coupling is important in reducing
dependencies between services so that they can be used in different scenarios
or to isolate the effects of changes. Two types of coupling are especially
important in service interface design: data and functional dependencies.

Let’s take a look at a simple example to illustrate these dependencies. Say
that you have an order-processing service. To process an order, the service
must update information about the customer, determine the inventory status
of the requested items, bill the customer, and so on, as illustrated in Figure 6-9.

Order
Processing

Service

Customer
Service

Inventory
Service

Billing
Service

Figure 6-9 Order-processing example

214 Part II ■ Designing SOA

The order-processing service coordinates all of these activities and then
uses other services to help accomplish the order processing. So, obviously, the
order-processing service is dependent on (coupled to) the customer service,
inventory service, and billing service. This is normal. So, why don’t you just
implement all of these capabilities directly in the order services and be done
with it? For two reasons: The first is that you want to be able to reuse the
underlying capabilities in other high-level processes or services. The second
is that order processing is not responsible for managing the customer, or for
billing, or for inventory.

The customer service is used to manage access to customer information.
It has the sole responsibility for providing, maintaining, and updating that
information. You do this so that you can reuse the customer service in every
place that needs to access customer data. But more important than the reuse of
code is the isolation/centralization of access to customer information. Because
there is only one way to access the data, the data is always consistent. So,
although there are many services (order processing, billing, etc.) that need (are
dependent on) the customer service, you understand and manage this kind of
dependency through the use of patterns.

The same is true for the inventory service and the billing service. You isolate
these functions in their own services because you want to be able to use the
inventory or billing from more than just order processing. Again, it is not just
the reuse of the services that you’re interested in. Good service design also
provides consistency. By creating services to perform the inventory and billing
functions, you can perform those functions consistently wherever they are
needed. (Nothing is more annoying to customers than inconsistent results.)

The next logical question is how do you decide what the services are? You
use a combination of functional decomposition and information isolation.
Back to the example: A functional decomposition of order processing led
you to identify the inventory and billing steps. Information isolation led you
to identify a customer as shared information across the order-processing
activities.

Of course, order processing is just one of dozens or hundreds of processes
that need to be performed to run the business. So, the problem of service
design within an SOA spans many (or all) of these processes. In particular,
you want to:

Avoid overlaps in functions between services.

Avoid gaps in functions between services.

Avoid duplication of data.

Coordinate access to data.

Have a single, consistent way to perform a given function.

Chapter 6 ■ Designing Service Interfaces 215

A key to achieving these goals is to keep the following questions in mind
during the design of a service:

Who is responsible for a given function? Where is that function used?

Who is responsible for management of specific data?

Who is responsible for defining and implementing specific rules?

What step in the process owns the specific knowledge needed to perform
a given task?

The answer to these questions helps to identify what the service should do
and is responsible for. Just as importantly, it identifies what the service should
not do, but rather what it should depend on other services for.

Understanding Overall Context
To achieve these goals within the intended scope of the SOA you must
understand more than a single process, scenario, or use case. You must under-
stand the overall context to which the SOA applies. The overall set of services
within this context is referred to as the service inventory. This is where the
business and domain model come into play.

The SOA business model asks and answers the following questions:

What business are you in (e.g., what is the domain model)?

What are the goals and objectives of this particular business?

What outcomes are needed to achieve those goals?

How will they be measured?

What capabilities and information are needed to achieve those
outcomes?

What processes, services, entities, and rules are needed to implement
those capabilities?

What existing applications provide basic capabilities and information
that can support these?

The first four questions describe the businesses requirements, while the rest
describe the overall SOA context and provide the requirements for the service
inventory. In other words, the service inventory describes the overall set of
services necessary to support SOA within a context. In doing so, the inventory
must identify:

The overall scope

Areas of service responsibilities

Groupings of related services

216 Part II ■ Designing SOA

Entity (information management) services

Functional and rule services

The service inventory supports two major design-time goals:

It provides a mechanism for understanding the overall service context
to aid in the selection of services for reuse. Specifically, what responsibil-
ities does the service implement and how is it related to other
services?

It provides a mechanism for identifying the boundaries of responsibil-
ity of a particular service as a guideline for implementation of the ser-
vice. This is critical to avoiding duplication of data and function across
services.

Figure 6-10 shows a sample template for a service inventory. This sample
shows how services might be organized according to service type. However,
there are many different ways to organize the inventory, as discussed in
Chapter 4. For example, it could also be organized by organizational structure,
business domain, or line-of-business. Of course, the template is just one way
of visually presenting the information contained in the inventory. The same
inventory could be presented in more than one view. Figure 6-17 gives another
example of an inventory related to the design example later in this chapter.

Enterprise Business Processes

Utility ServicesUtility 1 Utility 2 Utility 3

Business Services
Business
Domain 1

Business
Domain 2

Information
Management

Enterprise
Concern 1

Enterprise
Concern 2

Domain Services

Domain 1 Domain 3Domain 2 Domain 4

Utility 4

Foundation Services

Business Rules

Authorization

Orchestration

Choreography SchedulingConfiguration

Personalization Authentication

Transaction

Auditing

Monitoring/BAM/BI BPM

Transformation

Logging

Figure 6-10 Service inventory template

Chapter 6 ■ Designing Service Interfaces 217

Identifying Granularity
During design, as you narrow down the responsibilities of a service, you
need to decide on the granularity of the service operations. In other words,
how much of that responsibility is performed in a single interaction with the
service? Should it be broken into smaller units to promote reuse, consistency,
and loose coupling?

Let’s review the basic premise of service granularity. A service operation
should match the functional modularity of the expected service consumer.
In other words, for each service interface, you need to answer the following
questions:

What is the intended usage of the service?

What is the general (not business) functional responsibility of the
service?

What is the intended scope of the service?

With the answers to these questions, you can then use Table 6-2 to get
guidance on the appropriate service granularity. For example, assume that
you want to design a service that is intended to support the construction of
processes that span lines-of-business across the enterprise. The service should
expose a specific business function that is provided by that line of business
and be publicly available to any process that needs (and is authorized to use)
it. Summarizing, the scope of the service is enterprise or LOB, the visibility is
public, the responsibility is to implement a specific business function. Table 6-2
demonstrates that this is most likely to be a business service, and this should
support a fairly large granularity of operation. Some typical combinations of
service types, interface styles, and granularity are shown in Table 6-2.

Table 6-2 Typical interface combinations

TYPE STYLE SCOPE GRANULARITY

Business
Service

Document Passing Enterprise Medium to Large

Domain
Service

Document or
Parameter Passing

LOB, Domain Small to Medium

Utility
Service

Parameter Passing Enterprise Small to Medium

Integration
Service

Document or
Parameter Passing

Solution Small to Large

218 Part II ■ Designing SOA

Stateless Interfaces
An important characteristic of service interfaces is to be as stateless as possible.
This means that a service does not maintain state on behalf of its consumer
between requests. Any given request can act on the state of particular infor-
mation, but a subsequent request does not rely on the service maintaining the
state from a previous request.

EXECUTION STATE VERSUS INVOCATION STATE

There is a profound difference between the notions of execution and
invocation state: Execution state represents the state of the service during its
execution. It always exists and includes internal variables created during
service execution. It is used for keeping track of which part of the service
execution has been completed, storing the results of partial service execution,
and passing parameters between multiple components of a service implemen-
tation. This state is typically encapsulated in the service implementation and is
invisible to the service consumers.

Invocation state is a shared context between the service consumer and
service provider in a particular conversation. In this case, a consumer invokes
different operations of the same service, assuming that the information that
was passed to the service during an earlier operation invocation is available to
the service during all consecutive invocations.

A service may participate in multiple conversations with different consumers
and must keep track of each conversation separately. The notion of invocation
state is used, for example in the session variables, or stateful session beans in
J2EE. A better term describing this type of state is ‘‘conversation state.’’

Throughout this book when we talk about stateful versus stateless invocation
of services, we are referring only to the invocation state.

Why is this important? Stateless interactions are important in terms of
scalability, reliability, failover, and so on. For example, consider the following
two pseudo-code segments below for checking the balance of your savings
account:

myAccount = account service.getAccount (myD);

myBalance = myAccount.getBalance ();

myTransactionHistory = myAccount.getTransactionHistory ();

myBalance = account service.getAccountBalance (myID);

myTransactionHistory = account service.getTransactionHistory (myID);

The first example is the classical object-oriented approach to the problem.
Create an account object and then perform operations on the account. What
this means is that the account service creates an instance of myAccount, and

Chapter 6 ■ Designing Service Interfaces 219

each subsequent call to the account object must go to the exact same instance
of the account service. In other words, the first call to get an account creates
the account instance. The second and third calls (to the account object) get
information about the account, namely the balance and transaction history.
Because the account object is maintained by the first service, it does not have
to be created for each call.

The second example is the stateless service approach. The first call gets
the balance. The second call gets the transaction history. Each time the
account service is called, it needs to retrieve the requested information,
which may require some duplicated access to the database. However, there
is no dependency between the caller and any particular service instance.
The first request can go to server 1 while the second request could go to
server 19. The tradeoff is one of flexibility and reliability versus processing
overhead.

But what happens in the first scenario if the server fails for some reason
between retrieving the balance and the history? The server state is lost, and
the client needs to find a new server, recreate the account instance, and then
request the transaction history. This is a much more complicated failover sce-
nario than the stateless case. In that case, because no state is being maintained
by the server, the history request can be sent to any available server. Hence,
nothing different is required to handle the failover.

What happens when the processing of account information becomes a
bottleneck? In the stateless example, you can simply add more servers and
requests automatically get routed to them. But in the stateful example, even
though you add new servers, all existing requests are still restricted to the
already overloaded servers because that is where the state is being maintained.
Only new accounts’ conversations are routed to the new servers.

There are many other scenarios where stateless services provide better
nonfunctional characteristics. However, not all service interactions lend them-
selves to stateless interfaces. Sometimes, the added complexity of making
something stateless is not worth the effort. For example, if accessing the infor-
mation is very complex, you might want to do it once and get on with other
things. Consider that getting the account balance might require accessing
five or more different systems to collect information, which then has to be
aggregated. In that case, the added flexibility of stateless services might well
be outweighed by the overhead of accessing multiple systems to assemble the
account information.

From another perspective, it’s not so much that the service’s interactions
are stateless as it is how that state is handled. For example, a service could
be implemented by saving all its state in a persistent data source between
consumer invocations and reconstruct the state on the next service request;
or the service could hand all the state information back to the consumer in

220 Part II ■ Designing SOA

message data and expect the consumer to return it on the next invocation.
These are stateless services from the standpoint of the implementation of the
service provider, but the service’s interactions are stateful.

Ultimately, it is a design choice that needs to be made by weighing the
various tradeoffs. However, the overwhelming preference should be for
the creation of stateless service interfaces.

Exceptions

Unfortunately, not everything always goes right (oh darn). This is undoubtedly
true with computers, and even more so with service-oriented solutions. In his
classic text on distributed computing, Professor Andrew Tannenbaum said
something like ‘‘a distributed system is one where a problem that occurs on
a computer you didn’t even know existed can cause your computer to fail.’’
Computer Networks (1985).

Exceptions are an integral part of service interface design. We’ll discuss
three key aspects of exception design here. First, all exceptions have to be
defined at the interface level. Second, like data, common exceptions should
be defined the same across all services. And third, exceptions need to report
correlation information.

To explain these first two points, we need to mention the two main types of
exceptions: application exceptions, and system exceptions. Application excep-
tions are application-specific errors that occur, such as ‘‘insufficient funds’’
when a customer tries to withdraw more money than they have in their
account. Each operation has a set of application errors. The interface needs to
collect and declare the complete set of possible application exceptions for all
operations.

System exceptions are those that occur because of system issues such as
‘‘access denied’’, ‘‘system unavailable’’, or a communications error. In general,
these errors are common across most services and operations. They should
be defined once in a common format. Then, every service should use the
same exception definition for the same event. Usually there is a central system
exception file that is used by all services.

When an exception occurs, it is reported to two important stakeholders.
Obviously, the consumer of a service needs to have exception information
about their request reported to them so that they can act appropriately.
In addition, exception information needs to be logged for future analysis,
either to address a specific problem or to analyze trends. Typically, in addition
to the application or system error information, this includes information
identifying the server where the exception occurred and a value that identifies
the end-to-end transaction that is involved. Chapter 9 describes a logging
architecture for collecting these errors in a central location.

Chapter 6 ■ Designing Service Interfaces 221

Designing Documents

Chapter 5 described the development of a semantic information model.
To summarize, the information model answers the following questions:

What information is shared between services?

What information must be passed into and out of each service?

What information needs to be common across services?

Recall that a service separates the interface from implementation. In terms
of data, this means that the interface describes the data that must be input to
and output from the service. This is the information that is represented in the
information model. It does not define the details of the domain data model
needed by the service implementation.

One goal of the information model is to identify information that must
be common and shared among services. It follows then that the information
passed through the service interface should conform to the information model.
So, how is this accomplished? The concept is actually fairly simple. If you use
the document-passing style interface (which is what you generally use for
business and domain services), that implies that a document contains the
shared information that is passed between services, and that the definition
of that document is described in a document schema. You impose a strict
relationship between the information model and the document schema. The
schema must be based on the shared information model (in fact, it is a subset of
the model). Every element of the schema must exist in the information model.
Figure 6-11 illustrates these relationships.

Shared
Information

Model

Interface
Document

Constraints

Overall
Context

Informs

Specific
Interface

Requirements

Figure 6-11 Documents are derived from the shared information model

222 Part II ■ Designing SOA

The overall context of the SOA environment identifies the information that
must be shared and common between services. This information informs the
creation of the shared information model. The input and output of a specific
service provide the requirements for the contents of the interface document,
as described by the schema. The requirement for consistency between the
information model and the document constrains the schema to contain only
the elements that exist in the shared information model.

In fact, the same relationships and constraints should apply to data passed in
operation parameters for the parameter-passing interface style. The primary
requirement is that the data that is passed through the service interface is
semantic data, or data defined by the semantic information model.

This requirement introduces a corollary requirement for the service design
process. As you work through the design process, you inevitably discover more
and more data that is required. How do you evolve the interface document
to support this discovery, while also meeting the previous requirement? The
answer is that you don’t modify the document; you evolve the information
model first and then redraw the schema and document based on the new
information model. Later in this chapter, Figure 6-23 illustrates how to derive
a schema from the information model.

Interface Design Illustrated

In this section, we describe the interface design process by using an example
of an automobile insurance–quoting process. First, you’ll look at the overall
process and the models that can be created, as illustrated in Figure 6-12. You
divide the overall process into two distinct parts: the problem model, which
describes the problem in detail in business terms, independent of the potential
IT systems, and the solution model, which describes the design of the solution
in terms of SOA concepts. Each model consists of a set of related drawings,
with traceability between the business model and the solution model.

IT’S OUR PROCESS . . . WHICH IS OURS . . .

There’s more than one way to skin a cat, and more than one way to design
services. The method that we present here is the way we have found to be the
most effective with our clients. It’s not the only way. What is important is to get
the fundamental service design concepts from our approach so that you can
apply whatever makes the most sense in your own environment. So
chill . . . this example illustrates our approach. We hope you find it useful and
adopt and adapt it to fit your needs. In any case, please look past any
methodology specifics that you disagree with and get to the heart of the design
decisions. Or, adopt it all. It works great for us.

Chapter 6 ■ Designing Service Interfaces 223

Solution ModelBusiness Model

Business Process Scenario

Shipper Estimator

Identify repair
and maintenance

needs

Calculate
Costs

Apply
Discount

Send Estimate

Repair Slip

Price

Estimate w
St

GetCustomer
Information

GetVehicle
Information

GetLocation
Information

GetDriver
Information

Calculate
Price

Options
CreatePrice

QuoteRequest
Customer

VehicalInfo

LocationInfo

DriverInformation

VIN

Address

Customer

Operation Procedure

Document Model/Marking
Agent

Business
Analyst

Data
Analyst

Agent

Agent

System
Analyst

Information Model

Request Quote

Purchase
Insurance

Change Policy

Cancel Policy

Customer

Agent

Use Case Model

Service Definition

Status

PolicyId

Policy

Policy
Change
Request

Policy
Create

Request

Create
Policy

Change
Policy

Cancel
Policy

Get Policy
Information

Insured Party

Name: String
PrimaryAddress: A
HomePhone:
WorkPhone
MobilePhone: Phone...
DoB: Date: Phone...
MaritalStatus: Marit..
Gender

DriverIdentification

State: String
LicenseNumber: String

Customer

BillingAddres: Addre...
CustomerID: Custom...

CoInsured

Relationship: Relation...

Product

ProductIdentifier: Prod…

ProductType: Product:

InsuredItem

Vehicle

VIN: VIN
Make: String
Model: String
Year: String
Style: VehicleStyleCode

VehicleUsage

Usage: VehicleUsageCO...
YearlyMiles: Int
Business: Boolean

Coverage

Coverage: CoverageT...
Detail: CoverageDesc...
Name: String

Limit

LimitAmount: C...

Deductable

Deductable: A...

R11 1

R110

related by

R1

0..*

Product

0..*

0..*

R1

1

1..*

R1

1

1

R1

1

1. . *

R1

1

1
R1

1

1

R1

1

1

Primary
Driver

Insured Party

Name: String
PrimaryAddress: A
HomePhone:
WorkPhone
MobilePhone: Phone...
DoB: Date: Phone...
MaritalStatus: Marit..
Gender

DriverIdentification

State: String
LicenseNumber: String

Customer

BillingAddres: Addre...
CustomerID: Custom...

CoInsured

Relationship: Relation...

Product

ProductIdentifier: Prod…

ProductType: Product:

InsuredItem

Vehicle

VIN: VIN
Make: String
Model: String
Year: String
Style: VehicleStyleCode

VehicleUsage

Usage: VehicleUsageCO...
YearlyMiles: Int
Business: Boolean

Coverage

Coverage: CoverageT...
Detail: CoverageDesc...
Name: String

Limit

LimitAmount: C...

Deductable

Deductable: A...

R11 1

R110

related by

R1

0..*

Product

0..*

0..*

R1

1

1..*

R1

1

1

R1

1

1. . *

R1

1

1
R1

1

1

R1

1

1

Primary
Driver

Figure 6-12 SOA design model relationships

Overview of Models and Diagrams
Before the analysis and design process, you should first have collected and
understood the business requirements and created a business model, as
described in Chapter 4. Now, you’re ready to get into the analysis and design
of the services to support those business requirements.

The first step in analysis is to identify the scope and features of the project.
This is done by identifying the use cases that make up the project and defining
scenarios (or processes) for each use case. Once this is done, there are two
common approaches to system design: process-centric and data-centric. In
the process-centric approach processes are described first, and the required
data is derived from them. In the data-centric approach, the first thing to be
defined is the data, and the processing is driven from that. Neither approach
is right or wrong or better or worse; they are just different, and mostly
correspond to the background and experience of the designer. Obviously, it
is impossible to accurately define one without the other. For example, when
defining the data, you must understand the functional dependencies needed to
define the associations and normalize the data schema. Remember that services
are a combination of both data and process. Arriving at the right interfaces
that address both is what’s important. Arguing over the right approach (can
you say religious debate?) is not.

So, describing the business model can start with either the business process
scenario or the information model (or both). The business process scenarios

224 Part II ■ Designing SOA

describe the activities that constitute the use cases and the information flow
within scenarios in terms of business documents. The information model
describes the main information that is part of the business problem domain
space. In the example, later in the chapter, we take a process-centric approach,
using scenarios to dig out the information requirements.

Together, the use case diagrams, scenario diagrams, information model,
and document model make up the problem space model. As you develop
the solution and continue to identify more detail, this detail will be added
to the information model and document markings; thus, these two models
span both the problem and solution models of your SOA design process.

The solution model follows from the problem model. Again, the solution
model can start from either a process or data perspective, with either the infor-
mation model or the definition of services. In one approach, you perform a func-
tional decomposition of the processes and then identify the information needed
to support the functions. In the other approach, you identify the information
needs and then assign services to process the information. Neither approach
is necessarily better than the other, and in reality, you generally identify both
the information and functions together in an iterative fashion. One difference
might be that a process-(or behavior-) centered approach is more goal-oriented,
providing a better link to the business requirements and processes. Again, in
the example later in the chapter, we take the process (functional) approach.

Each activity that is identified in a use case scenario is a candidate for a service
operation. Each service is described by an interface and an implementation.
The interface is described in the service definition diagram, which shows
the collection of service operations and their inputs and outputs in terms of
documents and parameters.

Finally, the implementation of each service operation is described in an
operation procedure diagram (discussed in Chapter 7),which defines the
internal steps of the operation, the data flow, and the data transformation of
each step. Each step in the procedure may in turn invoke another service to
implement that step. The overall procedure must match the input and output
defined in the service definition.

Now, let’s look at developing these models based on an example from the
insurance industry, using the fictitious ‘‘ACME Insurance Company,’’ which
has recently acquired another company in order to add automobile insurance
to their existing lines-of-business, such as property and casualty, life, and their
unique line of roadrunner-confounding products.

ACME Insurance Example
Introduction — ACME Insurance Company sells multiple types of insurance
to individuals and businesses (e.g. auto, homeowners, life, etc.). Like many
companies, its internal IT landscape is a hodge-podge of existing applications
and systems, many of which provide redundant or overlapping functions and

Chapter 6 ■ Designing Service Interfaces 225

that don’t integrate with each other effectively. To stay competitive, ACME
must upgrade its systems. A driving factor is to provide a single customer
view across multiple lines of business. In order to achieve its immediate and
longer term business goals, ACME is looking to Service-Oriented Architecture
(SOA) to provide the agility, flexibility, and speed that it needs.

Business problem — Implement new insurance-quoting and -issuing pro-
cesses that improve the customer experience. A customer’s initial contact with
ACME is through its own or independent insurance agents. Both web-based
interactive sessions with the agents and automated Single Entry Multiple
Carrier Interface (SEMCI) quote requests must be supported. After a policy
has been issued, a customer can interact directly with ACME via self-service
web applications to make policy changes and pay bills.

Enterprise context — This is the first of many initiatives that can be aimed
at modernizing ACME so that it becomes a service-oriented enterprise. The
development process must consider the overall enterprise context, which, of
course, is just emerging. An initial version of the application architecture
describes the high-level concepts for building an SOA, and the technical
architecture describes the platform details on which it will be implemented.
Together, these answer many of the typical ‘‘system requirement’’ questions.

Project context — For this project, we create services to support four use
cases: Create a Quote (BU01), Purchase Insurance (BU02), Change Policy
(BU03), and Cancel Policy (BU04).

PROCESS DOCUMENTATION STRUCTURE

Each step in the process is described in detail and then followed with a
summary of the process that includes:

Goals — The goals of this stage of the process and associated set of activi-
ties

Concerns — The enterprise concerns that are introduced at this stage of the
process

Concepts — The SOA concepts that are used to express the analysis or
design during this stage

In addition, occasional ‘‘Notes’’ provide tips and techniques for carrying out
the step.

Conceptual Architecture
Often, the first step in a project is to create a conceptual architecture. This is
an informal architecture overview with the purpose of conveying the overall
project concept, goals, and approach to a nontechnical audience.

226 Part II ■ Designing SOA

The conceptual architecture is intended to communicate the main concepts
of the project, its scope, and its interactions. It is often structured in three
parts, as shown in Figure 6-13. On the left are the ‘‘channels’’ or front ends
that the new system has to interact with. On the right are the back ends, the
internal, legacy, and external systems that the new system must also interact
with. Together, these frame the scope of the interactions of the new system. In
the center of the conceptual architecture is the high-level structure of the new
system.

The ACME system is structured in terms of four major areas:

Enterprise business processes — These high-level business processes
interact directly with the channels and correspond to the high-level busi-
ness use cases (quote insurance, process application) as well as future
processes (portfolio management, risk management) that serve to show
the future direction and potential of the approach.

Common services — These are service groups that serve multiple lines
of business. For example, to have a common customer across the many
different insurance products requires a central ‘‘customer’’ service. Each
service group has some representative higher-level business services and
some lower-level domain services.

Line-of-business services — These are service groups specific to a line
of business. Notice that we have specifically called out a differentia-
tion between centralized services and those owned by the lines of busi-
ness to correspond to the organizational realities of the enterprise.

Common ServicesLine-of-Business Services

Billing

Product

Auto

VIN

Customer

Party

AddMember Bill

Payment

Pricing

Pricing

Cust. Info

Policy
Administration

Issue Binder

Issue Policy

Policy Maint

Application

Record

Portfolio

Underwriting

Enterprise Business Processes

Application
Processing

Risk
Management

Portfolio
ManagementQuoting

Homeowners

Pricing

Front-End
Channels

Back-End
Systems

Customer

Agent

SEMCI

State
Motor Vehicle

Legacy
Pricing

Insurance
Bureau

Foundation Services

Services

SecurityAuthentication Audit LoggingManagement

Figure 6-13 ACME Insurance conceptual architecture

Chapter 6 ■ Designing Service Interfaces 227

Foundation services — These services support the overall construction
of the system (but do not implement business functionality). Because this
type of service has been common in enterprise systems for a long time,
we include the foundation services in the conceptual architecture to dif-
ferentiate them from the business related services.

Goal — Convey the overall concept, structure, and direction of the
project to sponsors and nontechnical viewers.

Concerns — Scope of the project, internal, and external interactions,
and the structure of the system.

Concepts — Channels, external systems, processes, service groups,
and services.

Problem Space Model
With the overall concepts laid out, it is time to start describing the problem in
business terms to verify that all the requirements are understood and framed
in the appropriate context.

Use Case Diagrams

The problem model is derived from the use cases and knowledge about the
problem domain. For this example, we are using four business use cases:
request a quote for insurance (BU01), purchase an insurance policy (BU02),
change the coverage on a policy (BU03), and cancel insurance (BU04). The
detailed use cases are included in Appendix A. Figure 6-14 shows the use
cases and primary actors.

Each business use case becomes a use case in our use case diagram. In
addition, we include the actors that have been identified from the business
use cases. Often, we find that use cases are overdone and can result in
analysis paralysis. We try to use the use case diagram as a ‘‘table of con-
tents’’ of the overall set of use cases, and to help identify any relationships
between them. But, we try not to make then too complicated and tend to
avoid using <<extends>> and <<includes>> relationships. Instead, we
prefer to specify the use case details in scenario diagrams or business pro-
cess models.

Goals — Provide a table of contents of the major functions and users of the
system.

Concerns — Interaction of business use cases with each other and external
users and systems.

Concepts — Use cases, actors.

228 Part II ■ Designing SOA

Request Quote

Purchase Insurance

Change Policy

Cancel

Customer

Agent

Figure 6-14 ACME Insurance use cases

Actors

Actors represent the system’s interaction/interface with users and/or other
systems and are involved in the value exchange that happens in the use case.
But, you will identify two types of actors in the problem model. Actors also
identify roles or areas of responsibility that are carried out in the use case.
This second category of actors, which represents business workers, does not
necessarily appear in the use case diagram, but will appear in the scenario
diagrams.

External actors — The actors in the use case diagram represent the external
interface to the system functionality.

Business workers — Primary business workers are the internal systems
that are responsible for performing a function within a use case. A busi-
ness worker collaborates with other business workers and manipulates
business entities to perform its responsibilities. The primary business
workers are often identified as secondary actors in the use cases. In our
example, Underwriting, Pricing, and Billing were identified in BU01,
BU02, and BU03. We also identified a primary business worker as respon-
sible for each use case, hence we have created three additional actors:
Quoting, Purchasing, and Policy.

Secondary business workers are often identified as you iteratively develop
the scenarios. In our example, we identify three additional actors as secondary
business workers, Correspondence Manager, Customer Manager, and Policy
Manager. These secondary business workers are often identified based on the

Chapter 6 ■ Designing Service Interfaces 229

enterprise service inventory or experience, and may relate to existing services
or be obvious candidates for supporting services.

Initial Scenario Diagrams

Each use case has one or more scenarios, which are described in a scenario
diagram. In UML terms, the scenario diagram is a partitioned activity diagram.
Partitions are assigned to actors.

The scenario diagram is a visual representation of the use case processing
details. It is derived from the use case documentation. The initial scenario
should contain the actors identified in the use case as well as the primary
business worker for that use case.

Note that Business Process Modeling Notation (BPMN) business process
diagrams could also be used for the same purpose. We have chosen activities’
diagrams because not all UML tools support BPMN, but most are moving in
that direction.

Request Quote Scenario

Figure 6-15 shows the initial scenario for BU01, Request Quote. Notice that
the first two partitions are associated with the primary actors of the use case,
Customer and Agent. The next partition is assigned to the primary business
worker for the use case, Quoting. This is an example of an actor appearing in
the scenario but not the use case diagram. The last partition is assigned to a
secondary actor of the use case, Underwriting.

N O T E We chose not to have a separate partition for Pricing for the purpose of
illustrating the thought process.

The scenario follows the use case description. Referring to the use case
document, Step one of the basic workflow is for the Agent to collect information

Initial Request Quote

Customer

Quote

Alternate Proposal

Agent Quoting Underwriting

Within Range

Request Quote

Yes

No

Price Request

Create Quote

UnderwriteCollect Information
Start

End

Create Alternate
Proposal

QuoteRequest QuoteRequest UnderwritingRequest

Figure 6-15 Initial Request Quote scenario

230 Part II ■ Designing SOA

from the Customer about the requested insurance. Notice that this step
will probably not become automated. But, at this level of design, you must
specify the scenario independently of technology concerns. Obviously, later on
in the process you need to be able to distinguish between automated and
non-automated steps. Step 2 in the business use case is to underwrite the
quote. From experience, you know that requests need to be validated for
correction, so you insert that as the next step of the scenario, performed by
the Quoting business worker even though it is not explicitly called out in the
document. Next, the quote is underwritten. Because of its simplicity, we have
chosen to incorporate the alternate flow into the initial scenario and indicate
that a decision is made during the underwriting step to determine whether
the quote is within acceptable risk limits. If so, the basic workflow continues,
if not, the alternate workflow is followed, and an alternate proposal is made
and presented to the Customer.

Back to the basic flow, Step 3 is to price the quote request, so we add a
price request activity to the scenario. Step 4 of the business use case is to
present the quote to the Customer. Obviously, you need to create it first, so
you add an activity to create the quote and return the quote to the Customer
for evaluation.

The last task in outlining the scenario is to identify the information flow
between activities in the scenario. Each flow line can be adorned with one or
more documents that facilitate the information flow. Some of the documents
may have already been identified in the document model, but probably not all
of them. For example, in Figure 6-15 we identified a QuoteRequest document
that is passed to the agent, who collects additional information and sends the
Quote Request on to the next step. An Underwriting Request document is
used to pass the necessary information to Underwriting. This document was
not identified in the use case, but you know you will need to pass something
along, so you create the document definition as you’re developing the scenario.
Finally, either a quote or an alternate proposal is returned to the customer, as
described in the use case document.

N O T E Remember that this is an iterative process. Don’t worry about getting
everything right the first time. You can go back to correct and improve the actors,
scenarios, documents, and so on, several times during analysis as you work
through other use cases. The important thing is to get the information down first.
At this point, it’s more important to be clear than it is to be correct. Reviewers will
tell you if it’s wrong, as long as they can understand it.

Purchase Insurance Scenario
Figure 6-16 shows the scenario diagram for the Purchase Insurance scenario
based on business use case BU02. The process of creating this scenario is pretty
much the same as for the Request Quote scenario, so we won’t repeat all of the
descriptions. However, we describe some aspects that are different.

Chapter 6 ■ Designing Service Interfaces 231

Initial Purchase Insurance

Customer Agent Purchasing Underwriting Pricing

Start
Get Additional
Information Validate Request

Purchase
Request

Underwrite
Request

Rejection Letter

Set Up Biling

Create Binder

Send to Customer

Binder

Correspondence

End

Letter

Price

No
Yes

Policy

Price

Underwrite

Within Range

Figure 6-16 Initial Purchase Insurance scenario

Like before, you have included the primary business worker, Purchasing,
as an actor in the scenario. Also, this time you have included Pricing in
the scenario. As you begin to work through the scenario, you begin to
recognize things that are common between the scenarios. This is the first step
in identifying candidates for business services. Pricing is common to all three
use cases and, therefore, is a likely candidate for a business service. If you have
not already identified a business worker to be responsible for the behavior,
you would add it now to the set of actors. Of course, Pricing was already
identified as a secondary actor in the use case. This is also an indication that it
is a good candidate for a business service.

ABOUT THE INITIAL SCENARIOS

We won’t bore you with the scenario diagrams for Change Policy or Cancel
Policy, which don’t really introduce any new concepts. At this point in the
process, you have created an initial scenario diagram for each use case
identified in the use case diagram. For each use case, all actors identified in the
business use case are present in the scenario, as well as the primary business
worker for the use case. All steps identified in the business use case
description are represented by activities in the scenario, and the responsibility
for them has been assigned to one of the actors (by placing the activity into the
partition). Simple alternative flows are included, as are other obvious activities
(such as validation) that were left out of the use case description. Well-defined
information flow for the scenario is represented by documents that are passed
between the activities.

232 Part II ■ Designing SOA

Goals — Formally describe the interactions, activities, and information for
each use case as an activity diagram. Keep it simple enough to validate
with the business users.

Concerns — Information flow, control flow, activities, and common
activities.

Concepts — Actors, activities, control flow, and documents.

Enterprise Service Context and Inventory

Now that you have worked through the initial scenarios, you need to under-
stand how they fit into the overall enterprise context. In an ideal world, you
would have created such a context, which we call the service inventory, as part of
the enterprise business architecture. Basically, the business goals and strategy
lead you to a set of business processes needed to achieve those goals. Each
business process is supported by a set of enterprise capabilities. These capa-
bilities either already exist in current systems, or will in the future (perhaps
identified in a roadmap). In the service-oriented approach, these capabilities
are going to be implemented as business services. Alternately, if you don’t
have a service inventory to start with, you should create and populate it as
you implement or use services on projects. You also have other sources to
help us identify services, such as industry standard models. For example, the
ACORD standards were used to help identify services that would be required
for ACME.

The service inventory provides a way of organizing those services into sets
of related services, called service groups.

Figure 6-17 illustrates a sample service inventory for ACME insurance. The
inventory has the following attributes:

Enterprise process layer — Identifies the enterprise processes that are
enabled by the underlying set of services.

Business services layer — The business services layer is where high-
level business services are implemented. The business service layer is
broken down into three layers of services: business, domain, and utility
and further divided by line-of-business. For example, the Underwriting
Service is an enterprise-wide business service, while the Billing Service
is provided by the Billing line-of-business. Although we do not go into
the details here, the organizational ownership of a service becomes an
important consideration in its overall visibility and life cycle. This has a
major organizational (not technical) impact on its reusability. As well,
a consistent approach to service granularity across the enterprise enables
reuse of services at different levels. Within each line-of-business, there
are also lower-level domain services that provide common functionality

Chapter 6 ■ Designing Service Interfaces 233

Services

Enterprise Business Processes

Billing

Phone Book Info. Mgmt.

En
te

rp
ris

e
Bu

si
ne

ss

Do
m

ai
n

Ut
ilit

y

Application
Processing Risk ManagementMarketingPortfolio

ManagementQuoting

Area

Product

Risk Term Code List

Auto

VIN

Customer

Party

Customer

Policy
Administration

Issue Binder

Issue Policy Billing

Payment ….
Other domains.
Homeowners,

Claims
Underwriting

Pricing

Pricing

Policy Maint.

Agreement Provision

Member

Application

Sales TrackingComplianceFraud Detection

Record

Portfolio

Underwriting

Pricing

Correspondence

Foundation Services
Business Rules

Authorization

Orchestration

Choreography SchedulingConfiguration

Personalization Authentication

Transaction

Auditing

Monitoring/BAM/BI BPM

Transformation

Logging

Figure 6-17 ACME Insurance service inventory

within the line-of-business. Finally, there are lower-level utility services
that provide enterprise-wide common utility functions (i.e., used by all
the different lines-of-business). For example, the ‘‘Area Service’’ pro-
vides geographically-based risk information that is useful to many dif-
ferent lines-of-business.

Foundation services — These provide common capabilities that are
used in the construction of business services, independent of any busi-
ness domain. Examples are Security, Logging, and Orchestration.

The inventory has another important attribute. It is essentially a respon-
sibility map of the service domain. The division of services into service
groups and into individual services within a group is done based on speci-
fying the roles and responsibilities of the services. The purpose of this is to
minimize redundancy (overlap) and gaps between services. Before a new
service is implemented, the service designer must consult the inventory to
understand where that new service fits into the overall taxonomy. From this,
the responsibility of the new service becomes clear; that is, what capabilities
it is responsible for implementing, and, just as important, what capabilities it
should not implement but instead get from other services. In other words, the
inventory acts as a kind of roadmap that is used to create services over time.

Finally, the service inventory is used to help identify existing services for
reuse.

Goals — Identify current and future services as a roadmap to enable the
creation of services that meet enterprise goals, reduce service overlap,
and encourage service reuse.

234 Part II ■ Designing SOA

Concerns — Role, responsibilities, organization, scope, and visibility.

Concepts — Processes, business services, domain services, utility service,
and foundation service.

Detailed Scenario Diagrams

Now that you have worked through the initial scenarios and put them into
the overall enterprise SOA context, you want to go back and refine them with
more detail. You will create a second, ‘‘detailed scenario’’ for each of the use
cases. In the detailed scenarios, you factor in some additional information
from the use cases and the service inventory. In addition, you apply common
patterns, and assign responsibility for shared information and fundamental
business entities identified in the information model.

Entity Managers

During the design process, you identify certain types of information in two
ways. First, in the information model, you identify fundamental business
entities, such as Customer or Policy. Second, you identify information that is
shared across scenarios, or by multiple activities in a scenario, such as a Quote.
The management of shared information needs to be coordinated, and you can
create entity manager actors with that responsibility.

Request Quote Detailed Scenario

Figure 6-18 shows the detailed scenario for Request Quote. In the discussion,
we compare the detailed scenario to the initial scenario in Figure 6-15. First,
let’s examine the actors. Because the customer had no participation in the
scenario other than to initiate the request, we have omitted the customer actor
from the detailed scenario. Next, we added pricing into the scenario because
we earlier identified it as a shared responsibility. Also, we added the secondary
business worker, Customer Manager, to the scenario.

The first few steps of the detailed scenario are the same as in the initial
scenario, namely Collect Information and Validate Request. The next activity,
Create Quote, is also taken from the initial scenario. However, as you define
the service interface and implementation, you must take into account the more
detailed scenario.

BU01 contains some important text. ‘‘ACME also offers a multi-policy
discount of 5% for Customers already holding another policy with ACME,
assuming the quoted policy would not replace an existing policy.’’ This
implies that you need to know if the requestor is an existing Customer or
not. So, the next activity in the scenario is to ask the Customer Manager to
return information about the Customer, including whether or not they already
exist. Notice that the input to the Get Customer Info activities is a Customer

Chapter 6 ■ Designing Service Interfaces 235

Information Document, and that the output is the same document. Here, you
employ a common interface design pattern of passing partial information in
and getting completed information back; recall the document-passing and
state discussion from Chapter 5.

The next step is to request Underwriting. You have two options for how to
model this. One option would be to go directly from the Retrieve Information
activity of the Customer Manager to the Underwrite activity. Another option
(the one you chose) is to have a new activity in the Quoting partition that
makes the request. This choice is based on your questions about responsibility.
Notice that the Customer Manager only has information about the Customer,
not about the quote request, nor should the Customer Manager understand
what information is required for Underwriting. Only the Quoting process
understands why the Customer Manager is being called. As well, some addi-
tional information, and perhaps processing of the Customer Information may
be required before Underwriting can be called. Since this is the responsibility
of the Quoting process, you created the Request Underwriting activity to
handle it. Another consideration is that you don’t want to introduce an unnec-
essary dependency between the Customer Manager and Underwriting. These
are examples of the questions you need to ask as you flesh out the detailed
scenarios: How do you minimize dependencies? Who has responsibility for
an action? Who has access to specific information?

Detailed Request Quote

Agent Quoting Customer Manager Underwriting Pricing
Start

Price Quote

Yes
No

Price Request

Underwrite Report

More
LOBS

Existing

Within
Range

<<Manual>>
Collect

Information

Get Customer Information

Customer
Id

Create Potential Customer

Request Quote
Quote

Request

Validate Request

<<Manual>>
Present

Alternate Proposal

<<Manual>>
Present
Quote Quote

Request Underwriting

 Price Request

Format Quote Create Price

Create Alternate
Proposal

End

Apply Discount

LOB Pricing

Assign Risk

Underwrite

Pricing

Alternate
Proposal

No

Underwrite Request

No

Yes

Customer Info

Figure 6-18 Detailed Request Quote scenario

236 Part II ■ Designing SOA

The next activity is to price the quote. Again, rather than go directly from
Underwriting to Pricing, you return to the quoting process for additional
processing and information.

Now it is time to implement the pricing discount for multiple policies.
To do so, you make use of the Enterprise Strategy pattern (see sidebar
‘‘Enterprise Strategy Pattern’’). The Pricing activity calls all of the appropriate
line-of-business (LOB) pricing mechanisms to get the base price, and then it
applies the enterprise discount policy to get the final price. Notice how this
assigns the responsibility for enterprise pricing to an enterprise pricing service,
requires no change to existing pricing mechanisms or knowledge of discount
policies at the LOBs, and isolates the pricing policy in a single location.

The last step is for the pricing information to be sent back to the quoting
process when the actual quote is formatted and sent to the Agent to present to
the Customer. But you are not done yet. You must also identify the information
flow for the scenario. Although you were less strict in the initial scenario, all
information that flows across partitions must be identified in the detailed
scenario. Notice that this information is exactly the information that must be
shared between services for them to be composed into the business process.
Sound familiar? It is exactly the information that you need in the service
interfaces, and that should be described in the semantic information model. In
the process of identifying the information flow, you can discover numerous
documents that were not identified in the original document model, and that
need to be created and organized into the document model structure.

Finally, in this scenario, you have included some alternative path infor-
mation. For example, if Underwriting does not approve a particular request,
ACME has decided that rather than just reject the request, it should make an
alternative proposal that would be within their risk boundaries (very nice of
them). You include the Alternate Proposal activity in this scenario to show how
it relates, but you need to create another scenario to define the complicated
details of the alternate path.

We don’t include the detailed scenarios for Purchase Insurance or Change
Policy here, because again, there is not enough difference between the detailed
scenarios to justify including all of them.

Goals — Describe each business use case as a detailed scenario. Identify
commonalities between use cases. Identify data flows. Introduce man-
agers for entities and other utilities.

Chapter 6 ■ Designing Service Interfaces 237

Concerns — Information flow, control flow, activities, common activities,
and entities.

Concepts — Actors, activities, control flow, and documents.

ENTERPRISE STRATEGY PATTERN

Name — Enterprise Strategy.

Intent — To provide an enterprise-wide solution that is based on both line-of-
business policies and enterprise policies.

Problem — Policies need to be applied depending on scope. Only processes
within a scope are aware of that scope’s policies. In addition, processes
are not aware of policies outside their own scope.

Forces:

■ Enterprise policies are defined at the enterprise level, based on
common (cross line-of-business) information and enterprise
semantics.

■ Enterprise polices require information from multiple lines-of-business.

■ Individual line-of-business policies are defined within the lines of
business.

■ Different lines-of-business have different implementations, platforms,
and data.

Solution — The enterprise strategy solution provides a mediator between
the different lines of business. Each line of business is invoked to apply
its own policy. Then, the enterprise policy is applied to the results.

Implementation —

1. Define the input and output, based on the common enterprise seman-
tics.

2. Determine the context. This provides information on:

Which lines-of-business to call.

What enterprise policy to apply.

(continued)

238 Part II ■ Designing SOA

ENTERPRISE STRATEGY PATTERN (continued)

Start

End

LOB Input

LOB Output

Apply Enterprise Policy

LOB 2 Process

Determine Context

LOB 1 Process LOB n Process

Enterprise Strategy Pattern

Enterprise Strategy pattern

3. Define extraction/transformation of the data from the enterprise input
into that for each line-of-business.

4. Determine the concrete lines of business. Determine if calls should be
parallel or serial. Create <<call>> associations for each.

5. Define transformations from line-of-business to enterprise informa-
tion as required.

6. Collect/combine information.

7. Define/apply enterprise policy.

Variants — The line-of-business inputs/output may be defined to be the
same as the enterprise input/output. In this case, the transformations
take place within the line-of-business services.

Lines-of-business can be called serially or in parallel.

Chapter 6 ■ Designing Service Interfaces 239

Information Model

Like the scenarios, the high-level information model is constructed from
information provided in the use case descriptions and from basic information
that you know about the business domain. From reading through the use
cases, you identify several major business entities such as agency, customer,
application, policy, binder, and quote. The very high-level information model
in Figure 6-19 shows the entities and the relationships between them. You
develop both the information model and the scenarios iteratively and make
sure that all of the entities in the information model are represented as actors,
documents, or subjects in the scenarios.

Goals — Describe the fundamental business entities and the relationships
between them.

Concerns — Information, documents, entities, and actors.

Concepts — Classes and relationships.

Service Specification

A service specification specifies everything that a consumer of the service
needs to know to decide if they are interested in using the service, as well as
exactly how to use it if they are. It also specifies everything a service provider
needs to know to implement the service.

The service specification includes:

Service name

Provided and required interfaces

Agency

Policy QuoteBinder

CustomerApplication

represent

receive

guarantee

submit

Figure 6-19 ACME high-level information model

240 Part II ■ Designing SOA

Protocol (rules for how the functions are used and in what order)

Constraints that reflect what successful use of the service accomplishes

Qualities that service consumers should expect such as cost, availability,
performance, and the like

Policies for using the service, such as security and transaction scopes

The Service specification of the Quoting Service is shown below:

Service Name — AutoQuoting.

Description — The AutoQuoting Service provides quotes for automobile
insurance. It accepts a quote request as input. ACME underwriting and
pricing rules are applied to determine the acceptability of risks and insur-
ance premium options, and a variety of different quotes with different
coverages and deductibles are returned. The service implements business
use case BU01.

Provided interfaces — AutoQuoting provides the quoting interface with
the following operations:

quote createQuote (quoteRequest);

quote getQuote (quoteID);

quote quotePolicyChange (quoteRequest);

alternateQuoteProposal createAlternateProposal

(riskAssessment);

Required interfaces — AutoQuoting requires the use of the Pricing and
CustomerManager interfaces.

Protocol — AutoQuoting follows a standard request/reply protocol. There
are no callbacks.

Constraints — AutoQuoting must be called on behalf of an agency that is
authorized to see insurance in the requested state.

Qualities of service — AutoQuoting has 99.9% availability, except
between 02:00 and 03:00 EST when maintenance may be performed. A
reply will be returned within 15 seconds 95% of the time. The service can
handle up to 10 requests per second.

Policies — Requests for quotes can be submitted by company representa-
tives or independent agents. For details see the run-time policy
UserIsAgent.

N O T E This service specification provides textual information about the service.
It’s enough to help a potential consumer determine if the service is right for them
but probably not enough for a developer to implement from. In Chapter 13, a
formal UML service specification will be illustrated.

Chapter 6 ■ Designing Service Interfaces 241

FORMAL VERSUS INFORMAL SPECIFICATIONS

To be or not to be formal? That is the question. Like many things in
architecture, the answer is ‘‘that depends.’’ There is a place for both informal
specifications that are meant to communicate to a nontechnical audience, and
formal specifications, which are intended to be complete and precise. Our
position is that you need both to be effective architects.

One of the primary responsibilities of an architect is to communicate. If the
communication medium is impenetrable, then it doesn’t matter how correct it
is, because some percentage of the audience won’t touch it, and the architect
has failed.

In this chapter, we present an informal software specification. In our case
study example, we use a formal UML specification. You decide what you’d use
with business process designers, and what you’d use with system analysts. We
know what we’d do.

Solution Model

The solution model picks up where the problem model leaves off. It refines
the business concepts (processes, activities, entities, and documents) into
SOA technology concepts of services, interfaces, operations, documents, and
information. Note however, that it does this in a way that is independent of
the underlying platform (such as an ESB or .NET).

In this section, we look at the development of the service model that specifies
the overall set of service, and for each service, the service interface definition,
and how it relates to the enterprise context and semantics.

Service Model
The first part of the solution model is the service model. It contains a collection
of related services, and shows the services and their relationships. Service
models act as an organizing mechanism for grouping related services. In
the problem model, we identified service candidates by looking for common
behavior and shared information. The service inventory provided a roadmap
for new and existing services and their responsibilities. Common behaviors
were identified as scenario activities. We also identified some shared infor-
mation and resources that are controlled by manager actors (and hence entity
service). Now, we refine these into services.

The basic process is to work through each of the detailed business scenarios
and evaluate every activity in the scenario as being implemented by a service.
For each activity, there are three possible options:

Define it as a manual task.

Assign it to a service operation. This is done either by creating a new ser-
vice for it, or assigning it to an existing service.

242 Part II ■ Designing SOA

Defer it as an internal task of another service. This often represents a
lower-level service that is part of the composition of the business service.

For example, we address the Request Quote scenario as follows:

Collect Information: This is a manual process.

Validate Request: This is internal to another service.

Underwrite for Quote: For this, we create the Underwriting Service.

Price Request: For this, we create the Pricing Service.

Create Quote: For this, we create the Quoting Service.

Create Alternate Proposal: This is done by the Quoting Service.

WOULDN’T IT BE NICE . . .

Wouldn’t it be nice if the information that the business provided to use is nice
and uniform? Okay, pinch yourself and wake up to reality. This is rarely the
case. More likely, you’re happy to get any level of detail at all. And, when you
do translate that business detail into something more IT-like, you need to verify
that you did it accurately.

So, a scenario diagram has to accurately reflect the information provided
by your business partners, and communicate to them that you have accurately
accounted for all requirements. That’s one of the most important aspects of a
scenario diagram (especially the initial diagrams). So, the facts of life are that
the details that are specified to you are at differing levels. Some are service
operations; others are implementation details . . . hey, deal with it!

At this stage in the process, you need to deal with these different levels.
Sorry if reality is messy. That’s why they pay you the big bucks.

At the beginning of this task (assigning activities to services), you often
need to create new services for the activities. Near the end of the task, many
services have already been created, and you are adding new operations to
them. As you create new services, you want to think about how to orga-
nize them into service groups (or packages) and make sure that those ser-
vices align with the service taxonomy. You have chosen to group the Quot-
ing and Pricing related services together into the Pricing group because of
functional cohesion.

Another common principle is to group services by organizational unit
or scope. For example, you might have groupings for each line-of-business
or application group. The goal is to group cohesive services in the same service
model so that it is easy to understand the responsibilities associated with those
services.

Chapter 6 ■ Designing Service Interfaces 243

<<Service>>
Quoting

CreateAlternate ()
CreateQuote ()

<<Service>>
CustomerMgr
GetInformation ()
CreateCustomer ()

<<Service>>
Underwriting

UnderwritePolicy ()
UnderwriteQuote ()

<<Service>>
Pricing

PriceforPolicy ()
PriceforQuote ()

<<Service>>
Purchasing

PurchaserPolicy ()

<<Service>>
Policy

GetPolicyInfo ()
CreatePolicy ()

Figure 6-20 Quoting Services model

Figure 6-20 shows the diagram for the Quoting Services model. The white
services are the ones that belong to this package. The gray services are
related services in other packages. Another function of the service model is to
illustrate the relationships between services. This helps in identifying cohesion,
dependencies, and tight coupling and provides an opportunity to apply some
dependency management patterns (e.g., Mediator) where appropriate.

Goals — Describe the services that are associated with a set of use cases,
and their relationships. Identify coupling and dependency problems.

Concerns — Service relationships, coupling, and shared information.

Concepts — Service, relationships, and documents.

Service Definition Diagrams

Now that you have identified the services and their associated documents,
it is time to define the specific service interfaces. The service definition diagram
is a visual representation of the service’s interface. Figure 6-21 contains five
types of drawing elements represented as stereotypes on classes.

Operations

Documents

Data types

Exceptions

Associations

244 Part II ■ Designing SOA

The left-center column of classes are the service operations. The operations
are the functions that the services perform. Each operation is defined as having
a set of input (left), output parameters (right), and exceptions (far right).
The parameters may either be documents or data types (depending on the
interaction style chosen for the service). The associations connect the inputs
and outputs with the operations.

A single service typically has several operations. We try to group operations
according to the fundamental principles of cohesion and coupling. We want
the operations to be cohesive, that is, have a similar business domain, similar
information model, and so on. And, we want to minimize coupling between
services and operations. There are no strict rules for how many operations a
service should have. As an approximation, 4–7 seems to be a reasonable rule
of thumb. If you have created much more than that, it is often an indication
that the granularity of the service operations is too fine, or that the service is
doing too many different things and should be refactored.

To identify the service operations, work through each of the detailed use
case scenarios and evaluate each activity in the scenario, this time looking for
those that are implemented by service operations.

As you include an activity in a service definition diagram, you should
include the associated documents with it. Remember that the documents were
identified on the flows between activities in the scenarios. Now, you need
to assign them as inputs or outputs to the operations that implement those
activities.

This provides an immediate visual clue to any incompleteness. All
operations must have at least one input and output. When an operation
is missing one or the other, you have to understand why, and perhaps go back
and correct the scenario diagram if you forgot to identify an information flow
in it.

Figure 6-21 is the service definition diagram for the Quoting Service. In
the center left of the diagram is the Quote Request operation. Notice that it
takes a Quote Request document as input and produces either a Quote or an
Alternate Quote Proposal as the output. In addition, it can signal a ‘‘out of
range’’ exception. In the detailed scenario, you identified that Create Alternate
Proposal would be a separate operation, internal to the Quoting Service.
Now, you need to include it in the service interface as well. So, at least for
now, the service definition also contains an operation for it. Later, as you work
out the alternate scenario for it, you will probably come back and revisit that
decision. This is part of the normal, iterative design process.

Chapter 6 ■ Designing Service Interfaces 245

<<Document>>
PolicyInformation

<<Operation>>
QuotePolicychange

<<Operation>>
CreateQuote

<<Document>>
QuoteRequest

<<Document>>
RiskAssesment

<<DataType>>
QuoteId<D>

<<Operation>>
GetQuote

<<Operation>>
CreateAlternateProposal

<<Document>>
Quote

<<Document>>
AlternateQuoteProposal

<<Exception>>
IllegalChange

<<Exception>>
OutofRange

<<Exception>>
InvaliID

System Exceptiions

Figure 6-21 Quoting Service definition

In Figure 6-21, CreateQuote, is the QuotePolicyChange operation, which
you defined in the Change Policy scenario. Finishing off the operations is Get
Quote. Notice that the input to Get Quote is a type, not a document. There are
some other important things to notice about the overall service definition.

Operations can have more than one input and output. Also notice that
several different operations use the same document (QuoteRequest) as input.
Also notice that several operation use the same document (Quote) as output.
This is both normal and good. One of the fundamental principles of SOA is
that services need to share common information, based on a common semantic
information model. Documents are one representation of that semantic infor-
mation that are used as input and output to operations. You want the same
documents (representing the same information) to be shared across similar
operations.

But alas, there is another mismatch between reality and what you’d like.
For example, WSDL-based service definitions require single input, output,
and/or fault messages. So, the implementation either requires the service to
introduce coupled data items to package the inputs and outputs or to use
WSDL-wrapped doc-literal parameter passing, which can do this automati-
cally. At this stage in the process, the focus is on getting the right level of
cohesion and coupling. You can deal with the implementation details later.

At the end of this task, you have worked through all of the scenarios and
assigned all of the activities to services. Then, you will have made sure that all
operations have inputs and outputs, and any similar or shared information is
based on the common semantic information model and represented in related
or the same documents. As with all aspects of an iterative development process,
you may have to go back and update some of the scenario and document
definitions with the new information you learned or discovered along the way.

246 Part II ■ Designing SOA

Goals — Identify the service operations and their inputs and outputs.

Concerns — Service interaction and interface style, shared information,
cohesion, and coupling.

Concepts — Services, operations, exceptions, types, and documents.

N O T E When a service definition is complete, all operations have inputs, outputs,
and exceptions defined. Similar inputs should use similar or the same documents,
based on the common information model.

Operations Procedures

Now that you have defined the service interfaces, the next step is to define
the service implementations, or specifically, the procedures that implement
the service operations. This is the subject of the next chapter.

More Information Model

You started to develop a high-level information model as part of the problem
space analysis. The semantic information model is derived from a variety of
sources as described in Chapter 5. First, from industry standards and domain
and business knowledge of the business and data analysis. The result of this
is the high-level business information model containing business entities and
documents as shown in Figure 6-19. The second source is from the use cases.
For ACME, the use cases specify a lot of the information that is used for
insurance quoting. The third source is emerging requirements as the services
and operations are designed.

DATA MODEL REUSE

An initial step that is always important is to take a look at relevant industry
standards that can be utilized. Luckily for us, The Agency Company
Organization for Research and Development (ACORD) develops standards for
the insurance industry, and you should look there first. In this case, they define
XML schemas for all of our use cases — requests and responses for quotes, as
well as requests and responses for adding, updating, replacing, reissuing,
reinstating, and canceling all different types of insurance policies. In this case,
you can stand on the shoulders of this standards body and build directly to the
spec. Usually, things aren’t this easy — but this shows how reusing data
standards makes a lot of sense!

However, in this example we do not use these documents because we want
to illustrate the process of discovering the information requirements and
representing them in documents.

Chapter 6 ■ Designing Service Interfaces 247

Driving Record
Rating: String
Incidents: Int
Violations: Int

Incident ReportLookBackPeriod

LegalLimit: Int

InsuranceHistory

QuoteRequest
Date: Date
Agent: String

R1 0..1

0..*

Current
R1

1Previous

R1
1

0..*

R11

1

0..*

Request for
11..*

Insured Party

Name: String
PrimaryAddress: A
HomePhone:
WorkPhone
MobilePhone: Phone...
DoB: Date: Phone...
MaritalStatus: Marit..
Gender

DriverIdentification
State: String
LicenseNumber: String
ExpirationDate: Date

Customer
BillingAddres: Addre...
CustomerID: Custom...

CoInsured

Relationship: Relation...

Product

ProductIdentifier: Prod..
ProductType: Product:

InsuredItem

Vehicle
VIN: VIN
Make: String
Model: String
Year: String
Style: VehicleStyleCode

YearlyMiles: Int
Business: Boolean

VehicleUsage

Usage: VehicleUsageCO...

Coverage
Coverage: CoverageT...
Detail: CoverageDesc...
Name: String

Limit

LimitAmount: C...

Deductable

Deductable: A...

1

R1

1

related by

R1

0..*

Product

0..*

0..*

R1

1

1..*

R1

1

1

R1

1

1.*.

R1

1

1
R1

1

1

R1

1

1

Primary
Driver

R1

Figure 6-22 Quoting and pricing request information class diagram

Quoting and Pricing Request Information

Using the information from Steps 1 and 2 of use cases BU01, BU02, and BU03,
you develop the information model shown in Figure 6-22. You represent the
information model as a class model and identify attributes for each class and
relationships between classes. On the associations, you specify multiplicities,
and can add role names and end names where appropriate.

For the example, notice that an InsuredParty has two associations to
DriverIdentification. One association is for the current information; the
second is for previous information.

You must base the use case–specific information model on your high-level
business or domain models. Here, notice that Customer, which is what is
specified in the use case, is based on the industry domain object of Insured
Party.

The use cases define the set of information that is required to request a quote,
purchase insurance, or change the policy, but do not give much guidance on
what information should be returned. This is something you have to figure

248 Part II ■ Designing SOA

out yourself as you walk through the scenarios and operations procedures.
We have chosen to create a separate class model for the Reply Information as a
way to organize the information into models, and for this example, to simplify
the document markings.

Goals — Define the details of the information that is required for input and
output of all operations. Shared information should be described in the
semantic information model.

Concerns — Inputs, outputs, and shared information.

Concepts — Classes, relationships, multiplicities.

Document Model

Now, you need to create documents based on the information model.
Figure 6-23 shows the document marking for the QuoteRequest document.
Notice that the underlying information model is the same as that in Figure 6-22
and that the documents are super-imposed on top of that. This is one of the
ways to enforce the requirements for the common information model.

There are three important concepts in the document marking:

Root Node

Subelements

References

Notice that the QuoteRequest class is surrounded by a double border.
This is the indication that it is the root of the document. When constructing
the document, you start here in the information model and then follow
the arrows from there.

The solid arrows and solid outline classes represent subelements. So, starting
from the root, the quote request will contain one or more products. Each
product will have one or more insured items, and so on.

Coming out of VehicleUsage is a dashed arrow leading to InsuredParty.
This is a reference marking, indicating that the document does not contain
the entire information about a VehicleUsage customer, only a reference to the
customer. In this case, it also contains a reference to the co-insured.

Goals — Define the details of the documents based on the shared informa-
tion model.

Concerns — Enterprise shared information model.

Concepts — Root, subelements, and references.

Chapter 6 ■ Designing Service Interfaces 249

Driving Record
Rating: String
Incidents: Int
Violations: Int

Incident ReportLookBackPeriod

LegalLimit: Int

InsuranceHistory

QuoteRequest
Date: Date
Agent: String

R1 0..1

Current
R1

1Previous

R1
1

0..*

R11

1

0..*

Request for

1
1..*

Insured Party

Name: String
PrimaryAddress: A
HomePhone:
WorkPhone
MobilePhone: Phone...
DoB: Date: Phone...
MaritalStatus: Marit..
Gender

DriverIdentification
State: String
LicenseNumber: String
ExpirationDate: Date

Customer
BillingAddres: Addre...
CustomerID: Custom...

CoInsured

Relationship: Relation...

Product

ProductIdentifier: Prod..
ProductType: Product:

InsuredItem

Vehicle
VIN: VIN
Make: String
Model: String
Year: String
Style: VehicleStyleCode

YearlyMiles: Int
Business: Boolean

VehicleUsage

Usage: VehicleUsageCO...

Coverage
Coverage: CoverageT...
Detail: CoverageDesc...
Name: String

Limit

LimitAmount: C...

Deductable

Deductable: A...

1

R1
related by

R1

0..*

Product

0..*

0..*

R1
1

1..*

R1
1

1

R1
1

1.*.

R1

1

1 R1

1

1

R1

1

1

Primary Driver

R1 0..*

Figure 6-23 Quote request document marking

Summary
SOA solutions, like other IT solutions, deserve a systematic approach that
aligns the implemented solution, with the initial business drivers and require-
ments. But, SOA introduces additional requirements. SOA solutions are not
built in isolation. Rather, they are expected to be part of a larger, enterprise
solution and to contribute to a growing catalog (inventory) of business-related
services. This requires identification of shared behavior, coordination in
the development of service interfaces, and a common information model
at the service interface level. An SOA development methodology must address
these requirements in addition to the other requirements of IT development.

In this chapter, we started by separating two primary concerns, that of the
business requirements or problem space, and that of the IT solution. The busi-
ness requirements are addressed in the Problem model and expressed in terms
of business concepts, specifically those of: actors, business workers, scenarios,

250 Part II ■ Designing SOA

activities, documents, and information entities. Use cases are used to collect
and organize requirements, and then to provide a high-level organization for
the problem model itself.

The solution model addresses how the business requirements can be
implemented in IT systems. It expresses the solution in terms of platform
independent IT application concepts, specifically those of services, operations,
procedures, interfaces, implementations, transformations, information, and
documents.

Services are the fundamental concept in an SOA. A service is made up of
its interface, which specifies the operations, inputs and outputs; and its imple-
mentation, which specifies how the operations are performed. A document is a
fundamental concept in the specification of a service interface. It is a structured
collection of information. In SOA, it is critical that the same information be
used to represent the same concepts, across different services. The semantic
information model is used to facilitate this, and the documents are constructed
as collections of information from the semantic model.

The implementations of service operations are specified in terms of proce-
dure definitions, which define a set of steps and transformations that together
implement the operation. Services are often constructed, or composed, of other
services, which may themselves be composed from other services, and so on.
In other words, the procedures that implement a service operation invoke
other services as part of the operation’s implementation.

The design methodology is iterative and incremental. You do not complete
one step for the entire model and then go on to the next step for the entire
model, and so on. Rather, you divide the solution space into small increments,
such as the definition and implementation of a specific service, and work
through all of the steps for that service. Then, you incorporate what you
learned back into the high-level design and start with another increment.

Within each increment, you work iteratively to do some information model-
ing, some interface design, some procedure specification, and so forth. In each
step, you learn additional information that has to be folded back into the other
areas of the design.

You start at a high-level, addressing the main steps outlined in the use
cases and cover a set of related use cases. At this level, you are trying to
identify behavior that is common across use cases and factor it out into
shared behavior. These are the first candidates for business services. You also
identify information that is shared across these use cases and include that
in our information model. Fundamental business entities and other shared
information may also be candidates for entity or resource manager services.

Next, you dig into the use cases in more detail, using what you’ve identified
as common from the high-level scenario analysis along with additional details
from the use cases themselves, your service inventory, and domain knowl-
edge and experience. This identifies additional areas of responsibility and

Chapter 6 ■ Designing Service Interfaces 251

activities. You also specify the flow of information between the activities
in terms of documents. Now, you have effectively represented the business
requirements in terms of the Problem model.

The solution model translates these business concepts into SOA applica-
tion concepts. One primary translation is from the activities in the business
scenarios. Activities are either done manually, or, if automated, become oper-
ations on business services, or internal steps (composed services) within the
implementation of an operation procedure. You work through the model,
addressing each activity to determine its likely outcome and begin to define
the services and their operations. The service model organizes services into
cohesive collections of services. In addition to providing a table of contents
for the services, the models illustrate the relationships between services. Here,
you examine the relationships between services to reduce dependencies and
coupling and to increase cohesion. This may result in a refactoring of some of
the service definitions.

Next, you work out the details of the service interfaces. Initially, activities
from the business scenarios can identify the service operations and data flows
between those activities, and can define the documents that are used as
inputs and output. As you elaborate on the operations, you identify additional
internal operations that may become part of the service definition, as well as
additional information that is needed in the interfaces.

For each operation, you define the procedure that implements the operation.
Again, this is accomplished by iteratively working through the input and
outputs, internal information requirements, and internal processing steps. As
you work through these details, you also identify changes or additions to the
service interfaces and information.

Whenever you identify additional information requirements at the interface
level, you incorporate that new information into the semantic information
model. As you create the detailed specifications of the documents, based on
the information model, you will likely discover and implement more changes
to the information model as well. Finally, when a service definition is complete,
all operations will have inputs and outputs defined, and all document schema
will be defined. Similar inputs should use similar, or the same, documents
based on the common information model.

This chapter has focused on the design of the service interface. The next
chapter goes into detail on the design of the service implementation.

C H A P T E R

7
Designing Service
Implementations

Out of intense complexities, intense simplicities emerge.

— Winston Churchill

In the last three chapters we focused on identifying business services
(Chapter 4), defining the business data using information models (Chapter 5),
and defining service interfaces (Chapter 6). Therefore, most of our focus has
been external — how to define services based on high-level goals and require-
ments, and their interfaces based on semantically rich data resulting from
information modeling. Information modeling is a key aspect, as it places
service behavior in the context of the life cycles of enterprise information,
providing a more complete view that is sometimes left out by simple func-
tional analysis and decomposition alone. This is useful for the creation of all
types of services (business services, domain services, utility services, and so
on), and once you have gone through that process and have defined your
interfaces and messaging, you have reduced complexity to the point where
you can now focus on the internals, or the implementation design of your
services. In this chapter, you learn how to define what is inside each ser-
vice in order to create the service implementations. This is more than just a
development or programming task, and it is more than just elaborating on a
design. Good service implementation design ensures that the overall archi-
tecture is maintained by following the principles established in the enterprise
architecture.

253

254 Part II ■ Designing SOA

This chapter presents a strategy for constructing services that divides the
problem into several key parts:

Designing the implementation of a service interface

Designing the implementation of the business logic (the logic of the
domain itself)

Designing the resource access layer of a service

The strategy presented in this chapter does not presume any particular
implementation or platform technology. The approach is platform-indepen-
dent, although a few examples are illustrated with particular technologies. The
chapter presents the following information:

Basic service architecture

Using activity diagrams to describe operations

Implementing the interface layer

Implementing the business logic layer

Implementing the resource access layer

Example of implementation design

Basic Service Architecture

Before we get started with the service design, it is important to address some
common misconceptions about the implementations of services. Although
there is an abundance of ‘‘Hello World’’ example services in many program-
ming languages, a service is not one simple class that implements a service
interface. Certainly, a service could consist of one class (although this is typi-
cally a very bad design), but it is important to understand that a service should
be looked at as an application with all the characteristics thereof. Therefore, it
must include architectural focus for its implementation. Service design should
use a layered architecture just like application design. The basic service archi-
tecture, presented in Figure 7-1, is composed of the following major layers: a
service interface layer, a service business layer, and a resource access layer. This
three-layered architecture is often referred to as a service implementation model.

The service interface layer implements the service contract (or interface) — the
operations provided by the service (interaction patterns supported by these
operations), the documents associated with each operation, and the data
types composing these documents. The service business layer is responsible
for implementing the business logic, rules, and state transitions. The resource
access layer contains the logic necessary to access enterprise resources, which
are utilized by the service’s implementation. The resources used by the service
may include data (databases used directly by a service), existing enterprise

Chapter 7 ■ Designing Service Implementations 255

Service Interface Layer

Service
Consumer

Service
Consumer

DocumentsDocuments

Service Business Layer

Resource Access Layer

Enterprise
Resource

Enterprise
Resource

Enterprise
Resource

Figure 7-1 Basic service architecture — the service implementation model

applications (through integration services, more on this is in Chapter 10), and
other business, domain, and utility services.

The service interface layer typically operates on data that is semantically
tied to the enterprise (usually the messaging payload sent to the service,
defined in accordance with the semantic information model). The interface
layer’s responsibility is to receive the input documents and make any neces-
sary translations required to invoke business entities (business objects with
business data) in the business layer in order to implement the functionality
of the service’s operation. Although it is technically possible to use the same
semantic data types directly in the business layer, the more common case is
to use business entities for the business layer implementation. As discussed in
Chapter 5, semantic data types are often designed to optimize the information
transport between services. Because of that, this type of data is not well suited
for business processing, which often requires a different data model altogether.

The responsibility of the business layer is to do the business processing
required to implement the service contract.

As stated earlier, no service is an island. Its implementation always lever-
ages other existing enterprise resources, including databases, existing legacy
applications, and other services. Interacting with these resources is a responsi-
bility of the resource access layer. Business entities used by the business layer
for business processing can be used here for accessing resources. However,

256 Part II ■ Designing SOA

this resource layer often introduces its own data model, called the resource
access data model. In this case, the implementation of the resource layer first
converts business entities into the resource data model, and then executes the
actual accessing of resources.

Although a three-layered architecture for service implementations might
appear complex, it provides the most flexible and maintainable service imple-
mentation. The separation of responsibilities and the separation of data support
the architectural principle of separation of concerns and contribute to local-
ization of potential changes. For example, changes to input data validation
rules are completely encapsulated in the business layer. Therefore, they can be
made without affecting the interface and resource layers.

Layer Responsibilities
Figure 7-2 illustrates an example of distribution of function and responsibility
between layers for a typical operation. The interface layer receives the operation
invocation and performs the syntactical validation of the input document.
Then, any transformation between the semantic information model and the
domain model is performed. Next, the business layer performs whatever

Service Implementation Responsibilities

Interface

Invocation

Domain Data

Business Resource

Response

Syntactic validation

Data Transformation

Semantic validation

Business Logic Data Transformation

Resource Access

Data TransformationMore business LogicData Transformation

Resource Data

Input Document

Output Document

Figure 7-2 Responsibilities of service implementation layers

Chapter 7 ■ Designing Service Implementations 257

business logic or functions are required. This typically requires a call to the
resource layer to access data, services, or other resources. The resource layer
performs a required translation to and from the resource data model, before
and after the resource access. Any additional business logic is carried out
before the interface layer takes over again to transform the data back from the
domain model to the semantic information model, format the document, and
send the response.

The service implementation model presented here is gaining adoption in
the industry. Many companies are using it as a foundation for designing and
implementing services, and tooling is beginning to appear that enforces such
a three-layered architecture. For example, the latest version of Microsoft’s
patterns & practices Web Service software factory is based exactly on this
model and allows the generation of a solution layout (‘‘solution’’ is a Micro-
soft’s Visual Studio term, defining a set of interrelated projects that are
developed and compiled together) adhering to the service implementation
model outlined in Figure 7-1.

First, we discuss the general modeling techniques and diagrams used in
implementation design. Then, we outline implementation approaches for these
service layers.

Using Activity Diagrams for Modeling Operational Logic
Activity diagrams can be helpful in designing the implementation of services
at all layers. Although they represent mostly execution in the business layer,
they, nevertheless, outline responsibilities of both interface and resource layers,
required for their implementation. Therefore, it is often helpful to diagram the
logic of your services.

This section walks you through the process by looking at a simple example.
(See Figure 7-3.) As discussed in the previous chapter, services provide their
capabilities through the exposed operations in their interfaces. Operational
logic can be stated in terms of code such as Java, C#, or BPEL (yes, operational
logic can be purely a composition of other, lower-level services). However,
in order to show the true technology-independent nature of these operations,
it is helpful to illustrate the operational flow using UML activity diagrams,
such as the one in Figure 7-3 where we have diagrammed the process of
the creation of a simple purchase order. Not only do activity diagrams allow
operations to be illustrated in a technology-independent manner, but each of
the action bubbles can then be named and mapped to specific implementation
concepts — a feature we use later in this chapter.

An activity diagram consists of input and output parameters, actions, and
datastores. The input parameters to the operation are shown on the arrow
out of the initial pseudostate (the black bubble labeled ‘‘Start’’), and output
parameters are shown on the arrow pointing to the final state (labeled ‘‘End’’).

258 Part II ■ Designing SOA

act Place Order

Start

Create the
Order

«datastore»
Order

«datastore»
Selection

Find or
Create

Customer

«datastore»
Customer

Request
Charge

Approval

«datastore»
Credit Card

Charge

Approved?

Request
Shipment

Notify
Customer

Charge
Rejected

End

End

OrderID

Customer

Order ChargeResult

[Yes]
[No]

Order

Order

Figure 7-3 An activity diagram illustrating the creation of an order

These parameters may be simple types, complex types, or whole documents.
Rounded rectangles represent actions, which can do calculations, access data (to
and from datastores), and invoke other services. Finally, Squared-off rectangles
with the �datastore� stereotype are datastores representing domain data.
A datastore represents one class in the domain’s information model, which
encapsulates resource (database, additional services, or enterprise application)
access. Arrows between datastores and actions may be labeled with the content
that is written (with an arrow pointing to the datastore) or read (with an arrow
pointing out of the datastore). Activity diagrams are helpful because they
make it easy to visually understand the process of the operation. For example,
the Place Order operation in Figure 7-3 does the following:

1. Receives an Order document.

2. Finds a Customer matching the Customer in the Order. If none exists, it
creates a new Customer.

3. Creates the Order itself along with Selections and a Credit Card Charge.

4. Sends the credit card charge to the credit card company for approval.

5. If the charge is approved, notifies the customer and sends the order to be
packed and shipped.

So why go through all the work to draw the activity diagram when text
seems to be just as capable of expressing the operation? The value is not
necessarily in the pictures; it is in the individual actions that make up the
diagram. By dividing an operation into such basic actions, you can allocate
these actions among existing services and define additional services that need
to be built. Diagrams also introduce an additional rigor; omissions that might
not be obvious in the textual representation are often immediately apparent
by looking at the diagram.

Chapter 7 ■ Designing Service Implementations 259

Implementation Components

The activity diagram is used to illustrate the flow of an operation from input,
through intermediate actions, to output. (Note that the flow traverses the
different implementation layers of the service architecture, but this is not
shown in the diagram.) Each activity in the diagram is implemented by some
type of ‘‘implementation’’ component. Figure 7-4 shows the most common
types of implementation components, organized by layers.

Interface — The interface exposes the operations of the service to the
rest of the SOA. The implementation of the interface must support the
required protocols.

Transformation — Transformation components change data from one
format, schema, or semantic model to another. Transformations occur
between the enterprise semantic information model used by the interface
and the domain information model used in the business layer. Transfor-
mations also take place between the business and resource layers. The
transformation may be hard-coded or make use of a platform-provided
transformation service.

Logic implementation — The business logic components implement the
specific logical functions of the service operation.

Resource Access Layer

Service Interface Layer

Service Business Layer

<<component>>
Transformation

<<component>>
Transformation

<<component>>
ResourceAccess

<<component>>
Integration

<<component>>
LogicImplementation

<<interface>>
Interface<I>

<<service>>
TaskService

<<service>>
DecisisonService

<<service>>
FoundationService

<<service>>
EntityService

Figure 7-4 Implementation components by layer

260 Part II ■ Designing SOA

Task Service — Services may be composed of other services. Task
services implement business or logical tasks, such as common domain
functions or business utilities.

Decision Service — Decision services implement (complex) business
rules and provide an external mechanism for specifying and maintain-
ing the rules.

Foundation Service — Foundation services provide traditional plat-
form distributed services such as authentication, logging, configura-
tion, and the like.

Integration Component — Integration components expose integra-
tion services and make their legacy functions and data available to the
service operation.

Resource Access Component — Resource access components encapsu-
late the access to resources, such as datastores.

Entity Service — Entity services provide common service-based access
to common business entities.

Implementing the Interface Layer

The service interface layer provides the interaction point between external
service consumers and the capabilities provided by the service implementation.
The main responsibilities of a service interface layer are to:

Implement the service contract — This layer exposes the service opera-
tions to the outside world. In many cases, it is necessary to expose these
operations via multiple transports (in order to provide different quali-
ties of service or just support for many different consumer types), which
means that one responsibility of the interface layer is to act as a listener
on several required transports.

Support interactions with the business layer responsible for the exe-
cution of the service functionality — The business layer often operates
on domain entities, which are different from the semantic data objects
passed into/out of the interface layer. The interface layer is also respon-
sible for data transformation between these two information models.

Perform syntactic data validation — It must perform this validation to
ensure that the service input parameters are of the required type and
conform to a set of legal values defined by the enterprise semantic infor-
mation model. Some may argue that this function belongs in the business
layer, but our take is that it does not complicate the implementation

Chapter 7 ■ Designing Service Implementations 261

and is required anyway for data transformation in the interface layer.
This is why we recommend keeping syntactic data validation here.

Implementation of the interface layer is typically based on a programmatic
implementation of semantic data objects and documents.

Document Receipt
Implementation of a service interface starts with receiving an input
document — the service request. The basic semantics of receiving a document
are, ‘‘Make the contents of the objects (semantic data type implementations)
match what’s in the document.’’ This means that the whole document and
every subelement in the document needs a way to be identified so that in
processing the document you can correctly populate appropriate semantic
data types. With XML becoming a de facto standard of the ‘‘on-the-wire’’
representation of the document, this operation is typically carried out by XML
parsers. In many cases, this operation is delegated to the underlying Web
Service technologies, implementing both the actual document receipt and
population of the semantic data types based on the WSDL definitions of the
document. This works well when the structure of the documents is not very
complex. As the complexity of the documents grows, especially if the docu-
ment is using a lot of cross-references, leveraging these technologies becomes
more problematic.

For example, the ACORD specification (defining very complex schemas
for semantic messaging in insurance) does not rely on these technologies
and passes XML documents as attachments, forcing users to process input
documents programmatically. Newer XML implementations, for example,
JAX-B, can be used for processing the input XML documents in these cases.

Syntactic Validation

Any operation that accepts input parameter data needs to be sure that the
values are meaningful and correct for the operation. Such input validation is
of two forms: syntactic validation, which determines whether the parameters
are correctly formed, and semantic validation, which determines if the values
themselves are correct and meaningful. Syntactic validation is the responsi-
bility of the interface layer, whereas the responsibility for semantic validation
falls on the business layer.

For simple parameters, syntactic validation generally answers the questions:
Does the actual parameter meet the requirements of the type? Are numbers
composed of numeric values, and do they fit within the ranges defined for the
type? Do symbolic values fit the patterns defined for them? Do enumeration
values fit the set of values for their type?

262 Part II ■ Designing SOA

Document parameter validations need to look at the overall structure of the
document as well as the individual attribute values. Is the document formed
correctly? Do elements have the right attributes (required and optional)? Do
elements have the right number and types of subelements? Are attribute values
correct for their type?

Again, technologies such as Web Services make structural validations rela-
tively straightforward to implement: The parameter structures can be specified
directly in the schema files. The Web Service run times reject actual parame-
ters that do not meet the structural requirements. Although this seems like a
viable approach, many of the real-world implementations are trying to avoid
it. The issue here (as with any distributed strongly typed implementation)
is that validations are done by the run time before reaching implementa-
tion code. As a result, there is no place for the service implementation to
execute any processing logic in the event of failures. The service consumer
still receives an error reply, but this reply is produced by the run time, not
the service itself. These exceptions can vary significantly from very explicit
and easy to understand in some run times to very cumbersome in others.
Our recommendation is to avoid run-time validation (easily done by pass-
ing all parameters as strings) and do syntactic validation in code. In this
case, all validation errors can be collected and properly reported to a service
consumer. As we have discussed, syntactic validations, depending on their
complexity, can be implemented either in an interface layer or a business
layer.

Transformations
Finally, it is the responsibility of the interface layer to transform semantic data
types to business entities for use in the business layer. Typically, semantic
data types and business entities are well aligned through design; these trans-
formations are fairly straightforward and can be directly implemented using
general-purpose programming languages. We recommend that you separate
these transformations into specialized classes or components to improve the
overall maintainability of the code.

In the case where transformation is more complex, the use of specialized
transformation (foundation) services can be used. Typically, these are provided
by the underlying SOA or Web Service platform. The transformation service
consists of a design-time editor to define the transformation map between
schemas, and a run-time component that executes the transformation on the
specified input data.

Chapter 7 ■ Designing Service Implementations 263

Implementing the Business Layer

The business layer is the foundation of the service implementation, containing
the implementation of the service’s business logic and business entities that
are used by the business logic. This can include the following:

Semantic validation of incoming parameters.

Sequence calls to other business logic, data access logic, other services or
existing enterprise applications.

Transaction initiation and control. All of the two-phase transactions are
encapsulated in service implementations (see Chapters 8 and 10 for more
information on transactions between services). The business layer is
responsible for transaction demarcation.

Conditional logic and business rule implementation.

Greatly simplified, the business implementation of an operation consists of
three parts:

1. Semantic validation of the input parameters

2. Performing the business logic of the operation

3. Returning a result

This section covers each of these steps.

Semantic Input Validation

Operation logic needs to be sure that the input values are meaningful and
correct. Semantic validation, the determination of correctness of specific input
values (according to business rules) occurs here in the business logic layer.

Semantic validation differs from syntactic validation in that it requires
information beyond just the type declaration. Generally, semantic validations
require examining the data in the context of the service’s overall environment,
ensuring that all of the information for the service invocation is complete. For
example, validation can ensure that the account used in the service invocation
exists. In most development scenarios, semantic validations need to be coded,
not just declared.

264 Part II ■ Designing SOA

Table 7-1 Semantic validations on an Order

FIELD TEST

Order.OrderNumber Must be unique and must be a valid
number for the store

Order.Date Must be today or later

Selection.Product.SKU Must identify an existing product

Selection.SelectionTotal Must be a quantity greater than zero

CreditCardAccount.AccountNumber Must be a properly formatted
number according to the rules of
the credit card company

CreditCardAccount.ExpirationDate Must be later than today

CreditCardAccount.CardValidationNumber Must be legal for the credit card
type and account number

Table 7-1 shows a sample semantic validation for an Order. Each field in the
order that requires validation is listed along with the rules that it must pass.
All tests must pass for the Order to be processed.

Some semantic validations are simply constraints between parameter values
and as such do not require any more information than just the parameter values
themselves.

Some validation steps require calls to other services outside of the domain.
For example, the credit card account number and card validation number in
the Order example can only be checked by calling a service provided by the
credit card company.

Other semantic validations require the domain’s information model. Vali-
dations of this form include:

Does an object already exist?

Can a new object be created?

Do references actually refer to existing objects?

Performing the Business Logic of the Operation
After semantic validation, the business layer must perform the logic of the
operation itself. Often, the business logic required for a particular operation
can be discovered by following the data flow through the operation’s activities.
Figure 7-5 illustrates this concept.

Chapter 7 ■ Designing Service Implementations 265

DataFlow
Start

End

Output document

Intermediate Data 1

Intermediate Data 2

Input document

A

A

B

C

Activity 1

Activity 2

Activity 3

Figure 7-5 Discovering business logic by following the data

The start state of the activity diagram represents the initial request. You
know what the data is at this point because it is exactly what’s in the input
document. If you know what the information required for Activity 1 is, then
you can determine what, if any, data transformation is required between the
start and Activity 1.

Likewise, if you know what information is required for Activity 2, you can
design Activity 1 to return that data. Alternately, if it is already implemented as
a component or service, then you can determine the required transformation.
In the drawing, both the output of Activity 1 and the input of Activity 2 are in
data format A, so nothing is required.

The case where an activity is implemented by a service provides an inter-
esting opportunity. You know exactly what information is required and will
be returned from a service (because it’s defined in the interface). For example,
assume that Activity 3 is implemented by a utility service. Referring to
Figure 7-5 again, notice that the output of Activity 2 is in data format B, but
the input to Activity 3 is in data format C. So, what can you do about this
mismatch?

When implementing Activity 2, you can ask some simple questions:

1. Do you have all the information that you need to invoke the service
(Activity 3)?

If yes, continue.

If no, then how do you get that information? Is there a service or data
source that provides it? Do you have the information that you need to

266 Part II ■ Designing SOA

call that service? Or, do you have to change the operation’s input
document definition to get the required information?

2. Does the output of Activity 2 match the input of Activity 3? (Note that it
doesn’t have to match exactly, but all the information required for Activ-
ity 3 must be present.)

If yes, continue.

If no, then what transformation is required?

As you can see, you can follow the data flow from activity to activity in the
diagram determining what, if any, additional information or transformations
are required and implementing them through a combination of components,
services, and transformations, until the final return document is completed.
Alternatively, you can start with the output document and work backward
through the service to the input determining the implementation design.

In following the data flow of your activity diagram, you may determine that
you are actually building a composite service, where the logic of your service
may be simply to combine services based on a logical business process. If this
is the case, your business layer contains the process for orchestrating services.
In this case, we refer you to Chapter 8, where we focus on various service com-
position strategies ranging from BPEL-based orchestration, and composition
using such frameworks as Service Component Architecture (SCA).

Finally, as you prepare to build the implementation of the service, you must
develop or adhere to a strategy for exception handling, typically established
by your SOA governance policies (see Chapter 12). In Chapter 6, we discussed
exceptions as part of the service interface definition, but the actual handling
of these exceptions is typically implemented in the business layer, and their
results are then propagated to the interface layer to report them to the service
consumers. The typical implementation is based on the ability of application
designers and developers to anticipate the possible exception conditions,
appropriately instrument them in the code, and handle them at run time.
From this point of view, exception handling in service implementations is no
different from the exception handling in ordinary applications.

What makes exception handling different in SOA is the dynamic nature of
services, which can be combined in a multitude of different ways (through
choreography and service composition). It is necessary to propagate all of
the exceptions to the interface layer to report the exceptions to the service
consumer. This is usually done by executing all of the business logic in a
single try/catch block defined in the interface layer. Such an approach allows
the interface layer to catch, appropriately map, and report all of the service
execution exceptions. Centralized error-handling techniques, as described in

Chapter 7 ■ Designing Service Implementations 267

Chapter 9, allow all of the service exceptions to be intercepted and delivered
to the centralized location for complete system analysis.

Computing and Returning Results
Often the business logic requires the computation of specific results based on
the input data. Computations can be implemented by custom code, compo-
nents, or by invoking other existing services.

Depending on the type of computation, typically either task-oriented or
decision services would be used to perform the calculation. When a service
is constructed primarily from other services, service orchestration may be the
appropriate implementation technique.

Returning results is almost the opposite of receiving the initial input docu-
ment, except that no validation needs to occur. The activity involves collecting
the data, calculations, and so on, from the business logic, doing any necessary
translations, and formatting the return document.

As with the request document, with XML becoming a standard for docu-
ments, this activity is typically carried out by XML parsers or Web Service
technologies.

Implementing the Resource Layer

The resource access layer is the layer between the business layer and a
database, external services, or enterprise applications. The data access logic
is responsible for persisting business entities to a database and retrieving
individual business entities or sets of business entities on behalf of the business
layer. The resource access layer may also contain invocation of other services
(business, domain, utility, or integration) to retrieve resources, required for
business logic implementation. This layer should encapsulate all the code that
deals with external resources (such as databases or other services), without
exposing any of these implementation details to higher layers. This includes
transformation between business services and data required for resource
invocation and the actual invocation of resources.

As mentioned in the previous section, many times, your service imple-
mentation may actually be a composite service, where business logic dictates
the use of several other services combined with additional logical process
to provide the functionality of your service. In this case, the business layer
includes the definition of that process, and orchestrates the calling of the other

268 Part II ■ Designing SOA

services by invoking components in the resource layer. The business logic for
orchestration occurs in the business layer, and the resource layer typically
involves the utilization of frameworks such as SCA. We refer you to Chapter
8, which covers design techniques for composing services.

A typical implementation of resource access is through integration/resource
components (see Chapter 10 for more details). Each component exposes
an interface expressed in terms of business entities and is responsible for
implementation of the access to a particular resource. From the point of view
of the rest of service implementation, resource functionality is implemented
by a resource component, hiding the details of integration and resource access.
Invocation of these resource components is orchestrated by the business
logic layer.

Implementation Design Illustrated

In this section of the chapter, we illustrate the implementation design process
by continuing the automobile insurance–quoting example from Chapter 6. In
that part of the example, the process of service interface design was illustrated.
As a brief review, use cases to describe the problem space were identified
along with detailed scenarios for the use cases and an information model to
support them. The steps in the scenarios (specifically, the actions in activity
diagrams used to specify them) were assigned to operations on business
services and were organized into service interfaces based on cohesion and
coupling principles. The information passing into and out of service interfaces
was defined in terms of documents, which were based on the semantic
information model. Now, it is time to define the specific service operations.
This part of the example focuses on the implementation business layer.

Business Layer
With so many service operations, where should you start? We like to start with
the ‘‘primary use cases operations’’ first. For example, for the Create Quote
Scenario, the Create Quote operation corresponds to the primary use case.

The reason to start with the primary use case operations is to finish working
through all the use case scenario actions. You can now make your final pass
through the scenarios. Recall that for each scenario action, you have three
possible assignments: Define it as a manual task, assign it to a service, or
include it as an internal step of a service operation (possibly implemented by
a lower-level service).

You should have completed the first two already. The remaining scenario
activities (those still unassigned) should become internal steps within an

Chapter 7 ■ Designing Service Implementations 269

operation procedure. We start with the primary use case because very often,
the primary use case operation is part of a composite operation of a business
service. In other words, the operation is composed of calls to other services
as part of the procedure. These services come from a variety of sources. Some
are defined and implemented as part of the current project, some come from
packages imported from the same enterprise (from the service inventory), and
some come from external providers.

Create Quote Operation (Quoting Service — Request
Quote Scenario)

To develop the Create Quote operation procedure, refer to the Detailed
Request Quote Scenario (see Figure 6-18) and specifically the partition for
Quoting. Remember the meaning of a partition in an activity diagram. The
actions within that partition are the responsibility of that actor. In this case,
the actor is the ‘‘Quoting Business Worker,’’ whose responsibilities are being
implemented by the Quoting Service. More specifically, the responsibilities for
this scenario are being implemented by the Create Quote operation.

In the partition, there are six activities: create quote, validate request, request
underwriting, create alternate proposal, price request, and format quote. In an
earlier step when the interface operations were being assigned, the create quote
action was assigned to this operation. In other words, it is the external entry
into the operation. The rest of the actions in the partition are still unaccounted
for and are internal to the operation. Figure 7-6 shows an activity diagram
detailing the operation’s procedure.

Because the QuoteRequest document is defined as the input to the operation
in the interface, it is automatically the first data flow. So, the first step
that is performed is to validate the request. The output of this step is a
validated QuoteRequestdocument. The next action in the partition is to request
Underwriting. However, there is a problem. From the complete scenario, you
can see that customer information is required for the underwriting, but that
you haven’t gotten it yet. So, a GetCustomer step is inserted in the procedure
before the underwriting action. Next, the outcome of the underwriting has to
be determined based on the status returned. If the underwriting is rejected, an
alternate proposal is created. Otherwise, a price is requested, and the quote is
formatted and returned. A decision action is used for this.

Once the control flow of the procedure is designed, the information flow
between each action is defined, and then each action is associated with the
component that implements it.

Price for Quote Operation (Automobile LOB Pricing)

Now, let’s look at the Automobile LOB Pricing Service and the PriceforQuote

operation procedure, as shown in Figure 7-7. The operation is initiated with

270 Part II ■ Designing SOA

a PriceRequest document. After validating the request, you need to get
information about the vehicles and drivers that will be insured. There are
two sources for this information. One is provided by the state based on
getVehicleInfo and getDriverRecord operations. These are external services,
whose definitions (contracts) have previously been imported into the model.
The second source of information is from the Insurance Bureau, which has
historical information about the vehicle’s and driver’s past insurance activities.
Finally, location information is also needed. All of the actions to get this
information can be performed in parallel, so a fork/join pattern is used to
perform all five data collection operations in parallel.

CreateQuote

QuoteRequest

validateRequest

getCustomer

requestUnderwriting

createAlternateProposal

AlternateProposal

Within Range?
No

formatQuote

Quote

RequestQuote

requestPrice

Figure 7-6 Create Quote operation diagram

Chapter 7 ■ Designing Service Implementations 271

PriceforQuote PriceforQuote

validateRequest

ACME2State xform

getVehicleInfo getDriverRecord getLocationInfo getVehicleHistory getDriverHistory

ACORD2ACME xform

calculatePrice

State2ACME xform

ACME2ACORD

Figure 7-7 Automobile LOB Price for Quote procedure

But look at the information requirements of the external services. The infor-
mation provided in the PriceRequest is not the same format as that required
by either the state provided, or Insurance Bureau provided services. So, trans-
formations that are needed for each source of information are inserted before
and after the actions that call to the services. The ACME2State and State2ACME

transformations convert the vehicle and driver information to/from ACME’s
format and the state’s format. Similarly, the ACME2ACORD and ACORD2ACME trans-
formations convert insurance history from ACME’s format to/from ACORD’s
format.

It is common for there to be two transformations for each kind of information
in a process flow corresponding to each direction of transformation. Notice
that some transformations can apply to more than one specific piece of
information. For example, the same ACME2ACORD transformation can convert all
of the data types between the two formats. Also notice that if ACME had used
the industry standard definitions to define its own domains, no conversions
would be necessary.

Once all of the data is returned, it is collated for the calculation of pricing.
In this case, pricing is done on the existing mainframe application, and an
integration component has been implemented that will be invoked to make
the call into the existing application.

272 Part II ■ Designing SOA

All of the data collection actions are performed by other services, so we
have modeled them as ‘‘call actions’’ in the activity diagram. But notice that
we have purposely kept the activity diagram simple for illustration purposes
of the example. We could have included the data flow and other details in
the model (and in a real model we would have), but that would start to make
things busy and difficult to illustrate. There are tradeoffs in everything, and
this is not a book on UML, so we have chosen to keep the models more
illustrative and less complete in order to get the design principles across.

Goals — Define the control and data flow of implementation details for
each service operation.

Concerns — Inputs, outputs, control flow, and data flow.

Concepts — Documents, procedures, actions, transformations, and other
services.

Summary

This chapter has continued with the design issues of services, specifically
the design of the service implementation. A basic service architecture was
introduced that separates the responsibilities of a service implementation into
three layers.

The interface layer is responsible for receiving the service requests. The
interface layer operates at the enterprise semantic level (regarding data), so it
is responsible for transformation between the input documents that conform
to the semantic information model and the internal domain objects.

The business layer is responsible for the logic that provides the service
capabilities. This may be custom code, reusable business components, or calls
to existing services.

When resources are required, the final layer, the resource access layer, is
used to access the resources and insulate the business logic from the vagaries
of data access.

The use of activity diagrams as a way to illustrate the control and data flow
in operation was introduced as well as a technique for discovering the logic
requirements by following the data through the actions of the activity.

C H A P T E R

8

Composing Services
One LEGO block by itself is no fun at all.

— Jason Bloomberg

The return on investment (ROI) of SOA is achieved by providing business
value and solving real-world problems, and you can solve these problems only
if your business processes drive the technology — not the other way around.
As discussed in Chapter 4, BPM provides the business process workflow that
drives how you define business-level services and how you can compose
existing services to form new applications and services. Services are reusable
components and are meant to be combined to meet business needs for enter-
prise applications. Service composition is the practice of how this objective is
achieved.

Good service composition is an art form, building on sound architectural
principles and successful design patterns. Certain strategies are successful,
other strategies are flawed from the beginning, and the success of many
strategies depends on specific use cases and a number of different factors.
This chapter provides a practical guide for composing services, applying
concepts addressed in previous chapters. Earlier in this book, in Chapter 2,
we introduced you to SOA fundamentals, and in Chapter 4, we provided an
in-depth discussion on Business Process Management (BPM). This chapter
builds on those two chapters, and it focuses on the following:

Service layer interaction, orchestration, choreography, the role of busi-
ness rules, and business processes in composition

273

274 Part II ■ Designing SOA

Business composition and transactions, human activities, and
orchestration languages, including the Business Process Execution
Language (BPEL)

Strategies in service composition, providing the pros and cons of each
strategy

A case study that you can use as a reference guide

Understanding Service Composition

A funny quote heard at a recent technology conference was ‘‘the most loosely
coupled service is one that doesn’t communicate with anything.’’ This is
an interesting statement — obviously, a service that doesn’t talk to anything
else doesn’t provide any business value, but the statement is a good one
in that it identifies that when services begin to interact, there can certainly
be collaboration dependencies between them. Conversation rules between
services, semantics, and business-processing rules regarding how these ser-
vices are used can certainly affect coupling. It is our goal to minimize such
dependencies.

In keeping with the LEGO analogy of SOA from Chapter 2, when you
start combining LEGO pieces to form other things, the toys begin to take on
different properties and become, quite literally, tightly coupled to the new
creation. Tight coupling in SOA composition is not the goal, but unfortunately
it could certainly happen if service composition is not done correctly. Service
composition builds on the use of loosely coupled services, but it also involves
a focus on having loosely coupled interaction processes between services. You
do this initially by separating services into a service hierarchy based on
functionality, by abstracting the layers, and by defining business processes
that can be separated from the makeup of the services themselves.

In service composition, the result of combining services is referred to as a
composite service. When you use services together to achieve new functionality
in a business process, the composition process itself that dictates that the order
and interactions between the lower-level services is exposed as this composite
service. This section discusses service composition, focusing on some of the
fundamental prerequisites that are best practices — separation of services into
layers and separating the business processes from the services. It also defines
and discusses orchestration and choreography, two different approaches to
service composition.

IS THIS CHAPTER ABOUT ‘‘MASHUPS’’?

A Web 2.0 buzzword that is prevalent in software industry literature today is
the ‘‘mashup,’’ which refers to combining sources of various data into one

Chapter 8 ■ Composing Services 275

application. From that high-level definition, you could certainly say that this
chapter is all about service-based mashups.

Usually, when the term is used, however, a mashup is a more user-facing and
user-directed process, where an end user directs an application to combine and
aggregate data from various sources (RSS feeds, Atom feeds, web pages, etc.)
and combines the data with a presentation to provide a comprehensive view of
the aggregation. Such a mashup provides great value to the end user —
however, it is a little different from what we call service composition because it
typically combines presentation and content. Because the web mashup
combines presentation and content, the mashup itself is hard to reuse in
another application.

SOA compositions, on the other hand, are not user-facing. Like user-facing
mashups, they aggregate other components. They combine lower-level services
with business processes to provide a higher level of functionality, and the
compositions themselves are exposed as services that can be called and reused
with other higher-level services. So in that sense, they could be called service
‘‘mashups.’’ User-facing mashups could certainly call these composite services
in order to aggregate content for the end user, but we prefer the term ‘‘SOA
composition’’ to the term ‘‘mashup,’’ because mashup is not really a
well-defined term.

Separation into Service Layers

In Chapter 2, we defined a service hierarchy that shows how enterprise
business processes can make use of underlying services in SOA. This hierar-
chy is again shown in Figure 8-1. The higher-level services make use of the
underlying services to perform business functionality in the enterprise. As
a review, business services abstract high-level business functionality that are
driven by enterprise business processes. This gives the benefits of SOA (decou-
pling, separation of concerns, dependency and complexity management, etc.)
to the business as well as the service domains. It allows a single architectural
style to be used at all levels of abstraction as well as across domains. Domain
services provide mid-level business functionality specific to a certain domain,
utility services provide low-level business functionality across the enterprise,
integration services abstract existing applications with a service layer, exter-
nal services are services provided by third-party providers, and foundational
services provide infrastructure-type functionality for the entire enterprise. Each
higher-level service aggregates lower-level services, according to the business
process. As Chapter 2 defines this hierarchy and service types in depth, we
will refer you to that chapter, as we will be referencing this hierarchy with the
types of services throughout this chapter.

276 Part II ■ Designing SOA

Foundation Service Layer
(May be used by all other services)

Domain
Service

External
Service

Integration
Service

Utility
Service

Enterprise
Business
Process

Business
Service

Business
Service

Domain
Service

Figure 8-1 Service hierarchy

The key point here is that it is important to purposefully create such a service
hierarchy, because it is important for service composition. This is not a new
concept, and should be a no-brainer: Adopting a multilayered service architec-
ture is helpful for decomposing functionality into reusable components, and
having such components at various levels allows for flexibility as processes
change and as new requirements come about. When you have an architecture
in place where these layers are defined, new processes can use lower-level
services together to achieve new functionality.

Orchestration and Choreography
Rules for service interactions in service composition can be defined in two
different ways: orchestration and choreography. The differences between the
two are:

Orchestration describes the workflow of how services interact, including
the business logic and order of interactions. The point of reference for
orchestration is a single controller. Web Services Business Process Exe-
cution Language (WS-BPEL) is an orchestration language that is used to
compose Web Services. Languages for orchestration can be used to build
‘‘orchestration scripts’’ that can be executed at run time by an orchestra-
tion controller (or an orchestration engine) based on rules and sequences.

Chapter 8 ■ Composing Services 277

Choreography describes the sequence of messages between services, focus-
ing on the public exchange of messages and conversational state. Unlike
orchestration, which is shown from the perspective of a main coordina-
tor, choreography focuses on the exchange of messages from the per-
spective of a third party observer. Intended for multi-party collabora-
tions, each service involved in the choreography must be aware of the
business process, when to execute its operations, and how to interact.
Web service choreography languages, such as Web Services Choreogra-
phy Language (WS-CDL) describe such peer-to-peer collaborations.

A pictorial view of the difference between orchestration and choreography
is shown in Figure 8-2. The big difference is that orchestration is based on
an executable business process from the perspective of one controller, and
choreography is based on the messaging interactions, from the perspective of
a third party, and is meant for multi-party collaboration. In practice, orchestra-
tion takes place with a central engine controlling an execution flow, whereas
choreography allows for multiple parties, permitting a more peer-to-peer
approach.

Messaging and Rules/
Conversational State

Focused

Executable Business
Process/

Process Flow Focused

ORCHESTRATION CHOREOGRAPHY

Figure 8-2 Orchestration versus choreography

278 Part II ■ Designing SOA

As you can see, orchestration and choreography approach two different
methodologies of service composition. There are passionate debates between
these two camps, and there are many strong opinions on both sides. It
seems that at this point, the orchestration community has the most traction
in the standards bodies and in technology adoption. WS-BPEL is a unifying
orchestration standard from OASIS; it was adopted in 2007 and has been
in the standards process since 2003. WS-BPEL evolved from the BPEL4WS
specification (2003), which had roots in Microsoft’s XLang (2000) and IBM’s
WSFL (2001). WS-CDL, a choreography language, has been a W3 C working
draft since 2004. Because WS-BPEL is a standard with widespread adoption,
we focus primarily on that orchestration standard later in this chapter.

The Relationship between BPM and Composition
Business processes and good service design come together in composition.
Business services are process-oriented, orchestrating lower-level services
according to business processes. Because business processes change often, it
is important when creating a composite service to separate the business pro-
cesses and rules for combining them from the implementation of the service.
Many frameworks for building composite services (for example, orchestra-
tion servers and service composition with SCA) provide the means to have
configurable compositions that can change as the business processes change.
This is an important aspect of composing services. If you hard-code rules and
business process logic into the logic of services that aggregate other services,
changes in requirements involve code changes. Real business processes are
seldom simple, so separating them from your service logic allows you to end
up with a simpler implementation of services.

One common area of confusion with service composition revolves around
BPM. Obviously, business goals drive all aspects of a Service-Oriented Archi-
tecture, and one way of composing business services is based on the modeled
business processes. Chapter 4 discussed how businesses can use a BPM-focused
approach to take a more service-oriented approach to business analysis, and
one typical way to express modeled business processes is by using Business
Process Modeling Notation (BPMN). Obviously, modeling business processes
is different from the actual service composition. The confusion lies in composi-
tion software tools, which commonly use BPMN-like graphical user interfaces
for composing services, creating new services directly based on the business
processes.

Certainly, the modeling done by business analysts can lead to the logic
that is used in the composition phase for developing business-oriented com-
posite services. Software developers and integrators can use the models
created in that modeling phase in creating the composite services. We feel
that it is important, however, to distinguish the difference between modeling

Chapter 8 ■ Composing Services 279

and business process-oriented composition. Typically, those with the func-
tional business knowledge, who create the models, are not the same people
who develop and integrate composite services. This certainly is the vision
presented to us by the tool vendors, but it is not quite reality! The important
thing to understand here is that modeling of the business processes occurs
earlier in the life cycle than composition does. Much as implementation always
follows analysis and design in the waterfall model of software development,
composition can be based on the business process model, but it occurs later
and requires another skill set.

N O T E Composition can be based on BPM, but composition is not BPM.

Architectural Models in Service Composition

This section provides an overview of a few common architectural models used
for service composition. Later in the chapter, we refer to these approaches as
they are implemented in SOA.

Hierarchical and Conversational Composition
Figure 8-3 shows a diagram illustrating two common approaches to building
a service composition that abstracts the details from lower-level services. The
two most common design approaches are called hierarchical and conversational
composition. In the case of hierarchical composition, the implementation of the
composition is completely hidden from its consumer. Thus, it is sometimes
called ‘‘black box’’ composition. A consumer who invokes this type of solution
waits until its execution is completed and uses the results (either directly or in
the form of side effects) of its execution.

Although the hierarchical composition approach is a very powerful way
of dealing with the complexities, sometimes a consumer needs to control the
execution of the solution based on the intermediate results of its execution.
Such implementations are supported by conversational composition, as shown
in Figure 8-3. In this case, the implementation of the composite service is also
completely hidden from the service consumer, but selected intermediate
execution results are exposed. Thus, conversational composition is sometimes
called ‘‘gray box’’ composition.

The hierarchical composition approach is a natural fit for implementing
solutions that do not require human or any other interaction from the solution
invoker. Such an example might be a Truck Engine Manufacturing Service. If
the service receives a message that says ‘‘Build me a Chevrolet 350 V8 Engine,’’
no further communication with the requester is usually necessary. The Truck

280 Part II ■ Designing SOA

“Black Box” Composite Service

Conversational Composite Service

Figure 8-3 Hierarchical and conversational composite services

Engine Manufacturing Service is composed of low-level atomic services, such
as creation services for pistons, crankshafts, camshafts, and timing chains. The
service would also contain a utility service for various other aspects of engine
assembly once all the parts are created, as well as the logic for combining all
the parts to form the engine.

A conversational composition approach is typically used when an appropriate
path of composition execution cannot be determined without an additional
input from a service consumer, based on intermediate execution results. Such
an example might be a Car Purchasing Service. This is a more complex example
than the Truck Engine Manufacturing Service, because there is usually much
negotiation (or haggling) involved in car purchasing. The Car Purchasing
Service is a business service, most likely composed of domain services, such
as a Car Loan Application Service, a Price Negotiation Service, and a Vehicle
Finder Service. Any communication with the Car Purchasing Service would
involve further interactions with some of these contained services. When
someone goes to purchase a car, a series of interactions takes place between
the consumer and the service. Such a composition strategy is helpful in
modeling real-world interactions.

Conductor-Based and Peer-to-Peer Composition
There are two basic types of composition implementation strategies: conductor-
based and peer-to-peer. In a conductor-based approach, a specialized service,
sometimes called a mediator, interacts with a consumer and controls the

Chapter 8 ■ Composing Services 281

execution of the other component services participating in the solution. In
the case of conductor-based hierarchical solutions, the conductor implements
an orchestration-invocation sequence of component services to achieve a
solution. Different approaches to conductor-based composition can include
the user of orchestration language/engines, OWL-S compositions, and Petri
nets. Conductor-based conversational solutions implement their states and
states’ transitions according to the consumer inputs, typically based on the
transition systems or finite state machines.

In a peer-to-peer approach, each participating service is responsible for partial
orchestration (invoking a next step in the orchestration sequence), based on
its individual rules without a central coordinator. A solution, in this case, is
defined as a messaging template, and component services can be plugged into
it. The target behavior is specified as a family of permitted message exchange
sequences, which should be realized by the system. Typically, this topology is
used only for the implementation of the hierarchical solutions because of the
lack of mechanisms required for support of the conversational state. Later in
this chapter, we look at these strategies as they relate to orchestration server
solutions.

Service Composition Implementation

There are many techniques used to compose services. This section focuses on
some of the common ways used in service composition and discusses the pros
and cons of each.

Programmatic Composition
At first glance, it would seem that the simplest way to implement a service
composition is to use a general-purpose programming language (such as Java,
or C#, for example) to write the orchestration logic for composing services,
as shown in creating a mediator in Figure 8-4. In such a programmatic
approach, the logic for combining services is statically written and compiled
in a programming language. Although such an implementation is technically
doable, there are dangers of using this strategy.

This approach suffers from multiple drawbacks. First of all, it creates a
fairly rigid implementation by hard-coding the orchestration aspects of the
solution. Any change to the solution requires explicit reprogramming, and
this obviously reduces flexibility to your architecture, tightly coupling your
services based on interaction and the business processing logic that will most
likely change. A change in the process will lead to reprogramming of your
composing services. Over time, hard-coding turns into spaghetti code, making
the services a nightmare to maintain and difficult to understand.

282 Part II ■ Designing SOA

Mediator

Service
Provider

Service
Provider

Service
Provider

Figure 8-4 Programmatic implementation of mediator-based composite solution

It is important to understand that simple orchestrations may be easy to
hard-code (although not always easy to maintain), but there are much more
complex conversational composition scenarios with asynchronous services
that require threading support. Programmatically, doing this in your ser-
vice implementation can be problematic, especially when process engines
are available. Synchronization of asynchronously invoked services and sup-
port for service contexts required for conversational solutions can make the
implementation significantly more complex, and can require the creation of a
specialized database and support of hydration/rehydration of the state data.
Finally, the solution’s implementation requires some form of transactional
support to ensure correct behavior in the case of failures of participating ser-
vices. To summarize, major drawbacks of the programmatic implementation
of composition are:

Hard-coding of composition logic, which makes it harder to modify and
maintain

Tight coupling with the services participating in composition, but
directly accessing the services

Potential introduction of a significant amount of infrastructure code into
the service composition implementation

Having said this, programmatic composition is certainly doable. Well-
designed code for orchestrations has been written before, with a certain
amount of success. Because of the potential pitfalls, however, we feel that there
are benefits to using some of the other techniques described in this section.

Service Component Architecture Composition
Some of the drawbacks of programmatic composition implementation,
described in the previous section, can be alleviated through usage of a
higher-level, executable programming model such as Service Component

Chapter 8 ■ Composing Services 283

Architecture (SCA). SCA is a language-neutral, technology-neutral set of
specifications aimed at simplifying the composition of services by hiding (and
implementing internally) many of the infrastructure elements of the service
invocation. SCA is in the standardization process in OASIS in the Open
Composite Services Architecture (OpenCSA), which is bringing together ven-
dors and users, to unify the building of language-neutral components, in
six technical committees (SCA-Assembly, SCA-Bindings, SCA-Policy, SCA-J,
SCA-C–C++, and SCA-BPEL).

SCA specifies how to create components, combine them, and expose the
component assembly as a service. Based on the SCA-defined programming
models, components can be built with Java or another programming language
(such as C++, Java, BPEL, or PHP) or they can be built using other technologies
(for example, the Spring Framework). With SCA, communication itself is
actually technology-neutral; a composite can consist of services using SOAP,
Java Message Service (JMS), Representational State Transfer (REST), or other
communication mechanisms. Each component has configurable properties
(using deployment descriptors), and services in the same composite share a
common context for many settings (such as logging and security). Whatever
component technology is used, SCA defines a common assembly mechanism
to specify how components are combined and exposed as a set of enterprise
services.

SCA defines a component as an instance of an implementation that has been
appropriately configured. (See Figure 8-5.) What makes such an implementa-
tion a SCA component is its reliance on a common set of abstractions, including
services, references, properties, and bindings, to specify its interactions with
the world outside itself.

Each SCA component contains fundamental parts, shown in Figure 8-5.
Each component implements some business logic, exposed as one or more
services. (In SCA, ‘‘services’’ are effectively interfaces, exposed by the com-
ponent, which can be used by other components to access the component’s
functionality. They are very different from ‘‘services’’ defined earlier in the
book.) An SCA service provides one or more operations that can be accessed
by the component’s client. How services are described depends on the

Business Logic
Implementation

Configurable Properties

Services References

Figure 8-5 SCA component

284 Part II ■ Designing SOA

technology that’s used to implement the component and the way that
consumers are planning to access it. A local component (used for the imple-
mentation of the service), implemented in Java, for example, might describe
its services using ordinary Java or EJB interfaces, while an interface exposing a
functionality of a component’s assembly (a set of cooperating components, col-
lectively providing service implementation) would likely describe its services
using the Web Services Description Language (WSDL). Along with providing
services to its own clients, a component might also rely on services provided
by other components. To describe this, a component can indicate the services
it relies on by using references (see the sidebar ‘‘Service Autonomy and SCA
References’’). Each reference defines an interface containing operations that
this component needs to invoke. Finally, a component can also define one or
more properties. Each property contains a value that can customize a compo-
nent’s behavior based on its usage requirements. The usage of properties is an
effective mechanism for simplifying an SCA component’s reuse.

SERVICE AUTONOMY AND SCA REFERENCES

Earlier in this book we defined service autonomy as being one of the
fundamental characteristics of SOA. In light of this, SCA references might seem
irrelevant. In reality, an explicit definition of references is extremely important:

◆ Components composing services are typically significantly more strongly
coupled than the services themselves and typically have dependencies.

◆ Service composition is about the building of higher-level services from the
lower-level ones. Consequently, composition always references participat-
ing services.

Explicitly defining references offers several advantages. Formally expressing
dependencies can help make relationships clearer. This also directly supports
the dependency injection pattern: A composition’s implementation depends on
interfaces of participating components (services), while their actual
implementation can be inserted (dynamically) at run time. SCA allows you to
simplify the implementation of this pattern: Instead of requiring a developer to
write code that locates the service an implementation depends on, the SCA run
time can locate that service, based on the dependency definition.

This simple model provides support for both assembling components into
service implementations and assembling services themselves into enterprise
solutions through composites (see Figure 8-6). Just as components expose
services, a composite (business services) can also expose one or more services.
These services are actually implemented by components within the composite.

Chapter 8 ■ Composing Services 285

Business Logic
Implementation

Business Logic
Implementation

Business Logic
Implementation

Business Logic
Implementation

Business Logic
Implementation

Business
Service

Business Service

Business
Service

Figure 8-6 Building services from components and connecting services with SCA

Components within a composite and the composites themselves are
connected to each other using wires. A wire is an abstract representation
of the relationship between a reference and some service that meets the needs
of that reference. Exactly what kind of communication a wire provides can
vary depending on the bindings specified. Such a separation between the
specification of each component’s connections and the mechanism actually
used for communication allows you to simplify deployments of components.
Adjusting a wire’s binding allows you to easily change a component’s deploy-
ment model from a single process, to across processes on a single machine, or
spread across processes on different machines.

SCA can be used for bottom-up composition — selecting a set of deployed
components (services), configuring them, connecting them, and deploy-
ing the resulting composite service. SCA can also be used for top-down
composition — creating a composite service from scratch and performing
functional decomposition to break the composite into lower-level services.

SCA has much promise. A programming language and communications-
neutral executable programming model, it provides a common composition
methodology that can be used to build flexible and configurable SOA-based
compositions.

Event-Based Composition

Another possible approach to the implementation of composition for SOA-
based solutions is founded on event-based service interactions. In this model,
service consumers publish events to a publish/subscribe intermediary, which
delivers them to the actual service providers, as can be seen in Figure 8-7.
Using a Publish/Subscribe (‘‘Pub/Sub’’) engine as an intermediary provides,
in this case, a decoupling layer between service consumers and the service
provider. This allows for an extremely flexible implementation of composite
solutions.

286 Part II ■ Designing SOA

Consumer Pub/Sub
Engine

Provider

Provider

Provider

Consumer

Consumer

Pub/Sub
Engine

subscribe
Providerreceipt

Pub/Sub
Engine

Consumer
subscribe

receipt

Pub/Sub
Engine

Consumer AProvider A
Provider B
Provider . . .

Consumer B
Consumer . . .

notifications

notifications

Engine Subscribes
To Providers

Consumers Subscribe
To Engine

Engine
Manages
Events

Figure 8-7 Publish and Subscribe composite service

In this approach, the consumer sends the initiating event that is delivered
(through the pub/sub engine) to a set of services subscribing to this event.
Every service can, in turn, send another message that will invoke (through the
same pub/sub engine) yet another set of services. This sequence of events effec-
tively creates a composite solution. By changing a set of services subscribed
to a particular topic, it is possible to completely change an implementation.
Alternatively, the same thing can be achieved by changing the topic to which
a consumer sends an original event. However, a negative of this approach is
that it does not provide the notion of the composite solution instance, which
makes it very difficult to coordinate events. It also makes it very difficult to
implement any form of transactional support to ensure corrective behavior
if participating services fail. Further improvement of a composite solution’s
implementation can be achieved by using an orchestration engine, discussed
in the next section.

Orchestration Engine–Based Composition
A common approach that can be successful is to use an orchestration engine
(sometimes called a ‘‘BPM engine’’) to control the execution flow of a process
expressed in an orchestration language, such as WS-BPEL. An orchestration
engine, as shown in Figure 8-8, can be used to centralize process implemen-
tation and execution, and consequently it improves process maintainability.

Chapter 8 ■ Composing Services 287

Orchestration
Engine

WS 1 WS 2 WS 3

WS-BPEL
Business
Process

Composite
Service

Executing the Process

WS 5WS 4

Figure 8-8 Executable business process orchestration

Using an orchestration engine approach, ‘‘orchestration scripts’’ can be exe-
cuted, combining services based on the business requirements of a system,
expressed in an orchestration language. The benefit of this strategy is that
the executable process itself specifies the details and rules of the business
process, abstracting the details from the services involved. Indeed, the services
don’t even ‘‘need to know’’ that they are being involved in an orchestration
process. This model is extremely effective, because the business processes
and workflow needed for service interactions are completely independent
of the services involved. Such solutions are centralized processes and can
accommodate many of the types of composition described so far (hierarchical,
conversational, and event-based).

The emergence of the orchestration language resembles the adoption of
database management systems, which started in the 1960s, or that of appli-
cation servers in the 1990s. Those specialized platforms encapsulate data or
web application management, introducing abstractions that free the devel-
opers from dealing with many low-level issues. (For example, developers of
systems that employ application servers are not concerned with decoding and
dispatching HTTP requests, thread management, or the implementation of a
two-phase commit.) These specialized platforms allow developers to focus on
their business problems rather than on commoditized infrastructure level func-
tionality. Similarly, orchestration engines encapsulate concerns orthogonal to
service orchestration, such as:

Asynchronous service invocation and the use of correlation tokens for
matching between messages

Management of concurrent execution of process instances, including the
routing of messages to the appropriate process instance

288 Part II ■ Designing SOA

Management of the execution context containing the information that
determines the state of the business process: what activities have com-
pleted and what activity is currently executing

Management of the data flow, including data flowing into services (i.e.,
invocation arguments), as well as out of services (i.e., return values)

Management of the long-running actions, transactions, and semantic
compensation

Support for manual activities

Collection and processing of business events and key performance indi-
cators (KPIs), defining both the health of the engine itself and that of the
processes it executes

Support for achieving critical enterprise architecture goals such as scala-
bility and availability

In engine-based orchestration, a business process server engine processes
an orchestration script, and generates a composite service for executing inter-
actions between the Web Services involved in the business process, as shown
in Figure 8-6. Orchestration engines provide recursive aggregation, meaning
that a composite service can be created to compose a new process involving
interactions with services, and the resulting composite service can itself be
used by other processes to create new composite services. Composite services
can even instantiate and call themselves.

Further simplification of the use of orchestration engines is achieved
through the use of orchestration languages — domain-specific languages
(DSLs) — specialized for expressing and supporting concepts required for
implementation of service compositions (see the sidebar ‘‘About Domain-
Specific Languages’’). Using such a language, supported by an orchestra-
tion engine (instead of using a general programming language) improves and
simplifies an orchestration’s implementation. It allows you to program
and maintain composition logic using visual editors, allowing you to define
all the major aspects of orchestration graphically.

ABOUT DOMAIN-SPECIFIC LANGUAGES

A common strategy for building executable processes for orchestrations
involves the use of domain-specific languages (DSLs). DSLs are specialized for
expressing and supporting domain-specific concepts. A DSL precisely captures
a domain’s semantics — a vertical DSL is industry-specific, whereas a horizontal
DSL is meant for a specific problem domain. DSLs are helpful for building
scripts that run in orchestration engines.

Chapter 8 ■ Composing Services 289

DSLs are highly declarative and describe what needs to happen, rather then
the specifics of how the functionality is done. Because of this, DSLs are
considered specifications (executable) and not programming languages. The
key advantages of specific DSLs are that they are domain-specific abstractions
and notations, and have more expressive power, focused on the specific
domain involved. Orchestration languages, such as WS-BPEL, Microsoft’s ODX
(Orchestration Designer XML), and XLang are DSLs, languages focused on the
specific domain of orchestration.

There are several reasons that DSLs are more attractive than general-purpose
languages (GPLs) for some classes of applications:

◆ Easier programming — Abstractions and notations aligned with the partic-
ular domain and coupled with declarative formulations make a DSL pro-
gram more concise and readable than its GPL counterpart. It allows closer
interactions between developers and domain experts, that can understand,
validate, modify, and often develop DSL programs. They also allow short-
ened development and improved maintenance of a DSL-based implemen-
tation.

◆ Systematic reuse — By capturing domain expertise, a DSL program pro-
motes reuse either implicitly by hiding common program patterns in the
DSL implementation, or explicitly by exposing appropriate parameteriza-
tion to the DSL programmer.

◆ Easier verification — With advances in software engineering, formal code
verification is playing an important role in successful development. In the
case of GPLs, such verification only ensures that the code will execute.
However, in the case of DSLs, because of their compactness and domain
alignment, validation can often ensure that the code will produce correct
results.

◆ Increased cooperation — The use of the same business-related semantics
across the organization facilitates the sharing of information and reduces
the risk of a mismatch between the actual implementation of the business
logic and the business users’ expectations.

Orchestration languages are DSLs because they apply to the problem set
(domain) of business orchestration. At the same time, DSLs that apply to
specific business domains can also be used for generating orchestration scripts
written in orchestration languages. (For example, a higher-level tax-domain
process language could be used to generate the BPEL that is interpreted by the
orchestration engine.) Regardless, DSLs provide a level of abstraction that
makes building composite services simple.

In addition to simplifying the composition process, the use of an orches-
tration language also allows you to leverage the inherent benefits of the

290 Part II ■ Designing SOA

orchestration engines, which provide built-in functionality that includes
capabilities such as asynchronous invocations, state management, and com-
pensation support. The use of orchestration engines for composite solution
implementation provides the following advantages:

Orchestration languages directly support the majority of orchestration
concepts, which usually simplifies composite service implementation.

Additional programming can be simplified through use of a visual
editor.

The orchestration engine natively supports orchestration instances and
contexts that are required for implementing of SOA-based solutions.

Compensation support, implemented in the orchestration languages,
makes transactional support implementation significantly simpler.

Orchestration languages, such as WS-BPEL, are portable from any pro-
gramming language platform, and they can be run on an orchestration server
regardless of whether it is J2EE-based, .NET-based, or any other implemen-
tation. This is important because different business partners use different
platforms. WS-BPEL separates interaction and business process functionality
from the services themselves, and orchestration servers process the executable
processes. This separation makes the implementation of your business services
very straightforward.

Centralized and Decentralized Orchestration Approaches
Using an orchestration engine has a major advantage over creating hard-coded
business routing decisions at design time or even routing decisions at compile
time. It provides abstraction between services and the way that services are
used. This increases the reusability of your services and the agility of your
architecture. Later in this chapter, we discuss WS-BPEL, the executable process
language used to describe Web Service compositions in these engines.

The most common approach to an orchestration server is to use a centralized
server (sometimes called a ‘‘BPM server’’) for an enterprise or a business unit.
This approach is effective because it is simple for management and event
auditing, and it is sometimes easier to store your business processes in one
place. In practice, however, centralized composition can scale only so far,
because there is a danger of creating a processing bottleneck, leading to issues
with performance and availability, and a potential for a single point of failure.

Distributed strategies (such as using multiple orchestration servers) promise
scalability. Because of scalability concerns related to centralized orchestration,
many organizations are investigating a deployment architecture in which an
initial orchestration engine breaks up tasks into other composite service parti-
tions and passes these on to other orchestration engines to process. (For more

Chapter 8 ■ Composing Services 291

on this see Weihai Yu, ‘‘Peer to Peer Execution of BPEL Processes’’ [June
2007].) Implementations are usually home-grown, and developers integrate
mini-coordination engines within each node, providing them with the capa-
bility to do orchestration and break up composition tasks. This methodology
is the most scalable, but it is also the most complex. In order to build such a
system, you may need to roll your own implementation.

Because of the potential scalability issues with a centralized approach, a
hybrid model commonly uses multiple centralized coordinators, where tasks
are, in advanced, planned to be distributed across orchestration servers, as
seen in Figure 8-9. This is not a very dynamic solution — instead, based on
the usage and the number of services that you are deploying, engineers decide
how to split up services between orchestration services in a deployment.

 Business Service

Coordinator
Executing

Business Processes

Business
Service

Domain
Service

Utility
Service

Utility
Service

Domain
Service

Domain
Service

Domain
ServiceDomain

Service

Utility
Service

Coordinator
Executing

Business Service
 Processes

Figure 8-9 Combining centralized coordinators for scalability

292 Part II ■ Designing SOA

As an architect, it is important that you treat a centralized orchestration
solution like you would any central server — make certain that you under-
stand the load and performance requirements, and investigate replication and
duplication solutions that meet the demands of your enterprise. BPM servers
that offer central orchestration based on executable processes all approach
scalability differently, so if you are considering using them, you will want to
ask the vendor how they approach enterprise scalability.

Service Composition and Business Rules

As mentioned throughout this chapter, service composition is driven
by business rules, defining an invocation sequence of particular services
participating in a process. This leads many practitioners to consider business
rules as part of the broader BPM picture and consider business rules and
business processes together. As a result, many consider business rules engines
and business process engines as two competing technologies for business pro-
cesses/business rules implementation. This is based on the following popular
misconceptions:

Business rules and business processes share the same design and
implementation model.

Business rules and business processes deliver the same artifacts and can
be used the same way.

In reality, business rules and business processes are quite different. Accord-
ing to Wikipedia, ‘‘Business rules describe the operations, definitions and
constraints that apply to an organization in achieving its goals. These rules
are used to help the organization to better achieve goals, communicate among
principals and agents, communicate between the organization and interested
third parties, demonstrate fulfillment of legal obligations, operate more effi-
ciently, automate operations, perform analysis on current practices, etc.’’ Busi-
ness rules can be viewed as a collection of business practices, defining the
actual implementations or business logic. The implementation of such logic can
often be simplified through the use of specialized tools — business rule lan-
guages and business rule engines. Declarative programming (i.e., prescribing
the what) represents the paradigm of choice for rules: Something is triggered
(i.e., an action) based on whether a rule evaluates to true or false. The control
flow (i.e., the sequencing of these invocations) is implicit and emerges as the
rules fire.

A business process definition, on the other hand, can be viewed as a recipe
for achieving a specific goal. Imperative programming (i.e., prescribing the how)
represents the paradigm of choice for business processes implementation:

Chapter 8 ■ Composing Services 293

Something is invoked after something else because the business process
definition prescribes their sequence. The control flow is explicit.

Determining the right technology becomes critical when it comes to best
supporting business requirements and achieving the optimal architectural
qualities. At the end of the day, assuming that the appropriate DSL and engine
are used, the implementation choice between business rules and business
process paradigms depends on the two major factors: the capabilities of the
engine and decomposition of the overall system.

When it comes to the capabilities of the rules versus business process
engines, the following should be considered:

Synchronicity — Rule evaluation is synchronous, and rules engines are
designed to evaluate business rules as quickly as possible. Processes, on
another hand, are typically long running and asynchronous in nature.
The strength of a process engine is the ability to support long-running
processes, where actions can take a long time to complete. As a result,
they provide the mechanism required to deal with asynchronous invoca-
tions, such as request/response correlation, compensations, and so on.

Statefulness — Rules engines are stateless — when a rule fires, an
engine typically pulls its inputs either from the input parameters or the
knowledge base. It evaluates it, and then it either updates the knowledge
base or propagates results to output. Business process engines are specif-
ically designed to hold the state of each active process instance, hydrate
and store it between activities invocations, and rehydrate it for the exe-
cution of the next activity.

Determinism — The rules engine fires rules whose conditions evaluate
simultaneously. However, their ordering is nondeterministic. Business
processes are, for the most part, deterministic (with the exception of par-
allel activities), and people typically add checks and balances to ensure
determinism.

Granularity — Although the business rules themselves can be used
at the company level, they are usually considered to be components.
As such, they provide a smaller granularity and offer a higher level of
flexibility from maintenance and deployment perspectives. Business
processes, on the other hand, can be viewed more as stable assets that are
less likely to go through drastic changes over time.

Based on the previous comparison of business processes/business rules
engines’ capabilities and SOA decomposition (described in Chapters 2,
3, and 4), the following recommendations can be made for choosing a technol-
ogy that supports business rules:

Service orchestration — Service orchestration typically deals with long-
running and asynchronous invocation of external activities/services.

294 Part II ■ Designing SOA

Today’s business rules engines do not support these capabilities. Busi-
ness process language/engines, designed specifically to define and exe-
cute long-running coordinations with asynchronous invocations are the
most appropriate paradigm for the service orchestration.

Business service implementations — Business service implementa-
tions are typically short-lived transactional implementations with only
synchronous interactions. In this case, the line between business rules
and business processes becomes blurry. Often the same problem can be
defined, and consequently solved, with either technology. As a result,
based on the design-time paradigm, one might consider using either a
rule set or a business process approach for solving the same problem.

The advantage of using a business process approach, in this case, is
simplified support for invocation of external activities (services).

The advantages of using a business rules approach, in this case, are
the ability to change rules without recompiling and redeploying the
business rule components, and the ability to reuse the implemented
business logic at the component level (as opposed to the service level
when dealing with business processes).

Implementation of business rules controlling business process
execution — When rules define the execution of the business process
itself, it is necessary to consider their complexity and change frequency.
Modern business process engines usually provide capabilities for eval-
uating simple rules, either built into the business process language or
available by invocation of general-purpose languages. Thus, it is entirely
feasible to implement ‘‘simple’’ business rules in the business process
engine. In this case, however, any change in the rules requires a full test-
ing and deployment of the business process. As for complex business
rules, they typically need to be extracted from the process and imple-
mented as a separate service, using a rules engine.

Rules engines fit in at the service layer in the implementation of decision
services, while business process (BPM) engines are better for the larger process
implementations of service orchestration capabilities. Figure 8-10 shows this
typical usage of business process and rules engines in the SOA implementation.
In cases where rules control activities whose coordination is very complex (or
that change much faster the process itself so that they require usage of the rules
engines), these rules are usually externalized as a special rules service, invoked
by the business process engine. Because this type of service invocation can be
potentially expensive (network calls), some of the business process engines,
for example, Biztalk from Microsoft, WebSphere Process Server from IBM,
Smart BPM Suite from PegaSystems, and others, incorporate both a business
process engine and a rules engine in a single application.

Chapter 8 ■ Composing Services 295

Business Process EngineBusiness Process

Rules EngineComplex Rules
evaluates

executes

Simple Rules

Service

Business Rules

externalized

evaluates

evaluates

«uses»

«uses»

Figure 8-10 Typical usage of business process and rules engines in SOA

Service Composition and Transactions

The design and implementation of fault handling in software applications is as
important as the implementation of the normal processing, and often requires
an equal amount of care, time, and effort to build robust and reliable applica-
tions. Transactionality, in particular the atomicity, consistency, isolation, and
durability (ACID) properties represent a prevalent approach for solving these
types of problems. Financial applications employ this approach for funds
transfers, e-commerce systems use it for payment processing, manufacturing
applications use it for inventory control, telecommunications billing systems
use it for call rating, and so on.

In these systems, a transactional boundary identifies a group of operations
that execute as single units of work, that is, they all succeed or fail as a
group (atomicity), and the partial results of the execution are not visible
outside of the unit of work until it finishes (isolation). If any operation
within the transactional boundary fails, the whole unit of work is rolled back,
and the system is returned to the state it was in prior to starting the transaction
(consistency). If all of the operations succeed, the new state becomes available
to the rest of the system (durability).

Traditionally, systems that require atomic multi-party transactions employ
the Two-Phase Commit (2PC) protocol. 2PC requires transactional support
in all participants as well as a transaction coordinator that controls their
execution. These requirements conflict with the loose coupling characteris-
tics of service-oriented computing. In addition, isolation — which usually
is implemented through resource locking (where after responding to the
preparation phase each participant returning a commit response remains

296 Part II ■ Designing SOA

locked until it receives the coordinator’s commit) — is particularly problematic
with long-running business processes. In general, the traditional transac-
tional architectures are not a good fit for long-running processes coordinating
autonomous services for the following reasons:

The requirements of the 2PC protocol conflict with the loosely coupled
nature services. First, the participating services do not always support
transactional behavior. Second, the introduction of a single transactional
coordinator supporting transactional semantics of service execution is
not always feasible, especially when service location crosses organiza-
tional boundaries. Finally, the locking nature of isolation makes it a poor
choice for long-running processes.

Silent rollback implemented by 2PC is not always applicable to SOA
implementations, especially in the cases of economic transactions, where
both commit and rollback imply agreement. In these situations, both
transaction commitment and transaction aborting have to be explicitly
confirmed by all participating parties.

Well-designed services provide large-grained functionality, implemen-
ted as a business process or as collaboration between applications
and/or business components. A single undo action (as in the Com-
mand pattern) is likely too fined-grained to cancel the effects of service
invocation.

Undo actions often depend not only on the results of the last service
invocation but also on the overall state of the (process) execution.
Loosely coupled services do not share state, which means that they are
not always capable of ‘‘undoing’’ each other’s actions.

An alternative to a true 2PC, supported by the majority of BPM engines,
is compensation — invocation of business logic that can be called in case of a
failure. Service compensation uses a set of compensating activities (i.e., service
invocations) that, when executed, cancel out the effects of the ‘‘forward’’
execution. Although compensation does not provide the ACID properties of
the 2PC protocol, it suffices in many practical situations.

The use of compensation instead of the true 2PC removes the requirements
that make 2PC unsuitable for SOA — most notably temporal coupling through
a transaction coordinator and resource locking for isolation. In addition, ser-
vice compensation works well with both transactional and nontransactional
service implementations. In both cases, the results of the ‘‘forward’’ invoca-
tion(s) can be rolled back through an additional invocation(s) that reverses
their effects. Since there is no waiting for commit or rollback commands, no
resource locking is required in this case. The tradeoff of this approach is an
absence of isolation.

Chapter 8 ■ Composing Services 297

In effect, compensation extends the process definition. Defining an
orchestration goes beyond composing the services participating in the
business process (‘‘happy path’’). It must incorporate additional elements,
namely the definitions of the compensation scopes (i.e., fault detection
boundaries), the mechanisms for signaling faults, and definitions of the
compensating actions.

Using orchestrations/processes as a mechanism for both invoking and
implementing compensations has an additional advantage. Service compen-
sation (unlike normal transactions) may depend on the state of the process
and be stateful by itself. Because the orchestration engine implements service
compensation as part of the orchestration, any state information required for
compensation is available from the execution context, supported by an BPM
server.

Incorporating Human Activities into Service
Composition

In many cases business processes implemented through a service orchestration
involve human activities. This typically happens when particular activities of
the process are too expensive (not cost-effective) or too complex to automate.

Dealing with human activities poses the following problems:

Humans interact with computers through interfaces very different than
the ones of software systems. Their implementation requires dealing
with presentation, a typical aspect of human-computer interaction.

Besides working exclusively in an asynchronous manner, human work-
ers also have slow response times, low throughput, and poor availabil-
ity. Many organizations deal with the low availability by defining roles
(rather than a specific individual) for each activity and defining several
workers for each role. Roles address the low availability issues through
delaying the binding of human workers to the activity until run time.
However, they introduce an additional problem that doesn’t exist in the
context of automated activities — definition and synchronization of cre-
dentials.

Orchestration execution environments are well equipped to handle asyn-
chronous interactions and long-running activities. However, the other
characteristics of human interactions, including long response times, poor
availability, and specialized interaction mechanisms make their execution
radically different from automated process activities.

A typical approach to support human activities is the introduction of
a specialized component human activities manager, collaborating with the
orchestration engine to support human interactions, as shown in Figure 8-11.

298 Part II ■ Designing SOA

Orchestration Engine

Human Activities Manager

Work Item
Database

Query APIs

Activities APIs Stuff Resolution

Users
Repository

User
Interactions

Figure 8-11 Human activity manager

Upon encountering a manual activity, the orchestration engine passes the
relevant information to the human interaction manager. This creates the
corresponding work item. The manager must ensure that the newly created
work item is available until a human worker picks it up. To deal with the slow
response times, the human interaction manager stores the work item into a
dedicated database.

Staff resolution determines the workers that should be assigned to the
task, based on roles and other criteria. The criteria are context-specific and
typically translate into a query placed against a directory that holds information
about the capabilities and qualifications of the human workers. In effect,
staff resolution binds human workers to orchestration instances rather than
orchestration.

Once the subset of potential workers is assembled, the work assignment
policies determine how the work item is assigned. The manager could use
the ‘‘push’’ model, selecting the target worker among the eligible ones based
on factors such as current work load (thus, in effect, load balancing among the
human workers). Alternatively, it could employ the ‘‘pull’’ model, where the
work item is available to all eligible workers until one of them claims it.

A set of specialized interfaces supports the human interaction manager’s
interactions with human workers. Because the presentation details are context-
dependent, graphical interfaces are usually supplemented with programmatic
interfaces. Typically, these APIs provide queries that retrieve information from
the work item database.

Chapter 8 ■ Composing Services 299

Orchestration with BPEL

BPEL stands for Business Process Execution Language and is the common term
used to denote the WS-BPEL business process execution language that has
evolved over the last seven years under different names. As mentioned earlier,
the latest OASIS standard released in 2007 is WS-BPEL 2.0, an XML-based
grammar used to describe logic to orchestrate the interaction between Web
Services in a business process. WS-BPEL 2.0 evolved from BPEL4WS 1.0, which
was a 2003 specification from OASIS that converged WSFL and XLANG.
Although WS-BPEL is the standard, people still call it BPEL (and many
people even pronounce it differently). Whether you pronounce it ‘‘Bipple’’ or
‘‘Bee-pell,’’ architects agree, it is an important standard for use in an SOA.
Because it provides a very expressive grammar for defining real-world business
processes, and because it is a standard that has matured over the course of
many years, and because there is so much vendor acceptance and support, it
is a language that every service-oriented enterprise should consider using.
It is also a very detailed standard. For this reason, this section provides only a
bird’s-eye view, not focusing on syntax, but on the big picture.

WHAT ABOUT A WS-BPEL REFERENCE GUIDE?

As mentioned at the beginning of this book, we want to make sure that you, as
an architect, understand how to apply technologies, but we are not going to
provide a primer on every standard we discuss. This is not that type of book,
and frankly, such a book would be too heavy for you to carry around (it’s heavy
enough as it is!). We do, however, give you a big picture of what WS-BPEL
provides, and we give you an overview of how architects use design tools that
write WS-BPEL for use on orchestration engines and servers. Later, we provide
a case study that applies these concepts.

There are many books that act as reference guides on all aspects of WS-BPEL
and its earlier variant, BPEL4WS. At the point of writing, we noticed that many
of these books were out of date already! We recommend, therefore, that you go
to the web page for the OASIS WSBPEL Technical Committee
(oasis-open.org/committees/wsbpel). This page provides the latest
versions of the standard and links to reference guides and detailed examples.

BPEL grew out of the need to model and execute complex interactions
between Web Services. WSDL-defined Web Services have a stateless interaction
model, but real-world processes are usually very complex and require a
robust interaction model. BPEL provides the means for expressing stateful,
long-running interactions between services. As we have described in the
last section, processes written in WS-BPEL allow you to separate business

300 Part II ■ Designing SOA

process interaction from the services themselves, providing independence and
flexibility.

BPEL revolves around the definitions of two types of processes:

An executable process, which contains internal process business logic
that can be executed as a composite service on an orchestration server

An abstract process, which is used to describe observable message
exchange behavior between services, but cannot be executed as a
composite service

Executable business processes are simple to understand, as we covered in
the previous section. The concept of an abstract process is new and, therefore,
requires more explanation. Abstract processes are useful for a number of
reasons:

First of all, they can provide a ‘‘public’’ view of an internal business pro-
cess. This is helpful for interaction with business partners who don’t
need to know (and shouldn’t know) internal decision-making processes
but still need to know how to interact (semantically and syntactically).
Abstract profiles specify constraints on message exchange, specifying
the order in which messages need to be consumed and produced.

Second, abstract processes allow you the freedom to change internal
decision-making processes (in executable processes) without affecting
observable behavior.

Finally, an abstract process is useful because it can define a process
template for domain-specific best practices. They can serve as a guide
for creating the detailed executable processes. Common activities, data
structure, and high-level control flow can be done at the beginning of the
project, as a guide.

WS-BPEL is layered on top of and extends WSDL. WSDL defines the opera-
tions allowed, and WS-BPEL defines how WSDL operations are orchestrated
in order to satisfy a business process. WS-BPEL also extends WSDL to support
long-running asynchronous business processes. As a business process lan-
guage, it is a very expressive and rich XML-based language, with constructs
very similar to those of high-level programming languages. For executable
processes you can declare and modify variables, define fault handlers and
throw exceptions, invoke services, and use case statements, while statements,
and loops. XPath and XSLT provide support for data manipulation in BPEL.
You can specify actions to occur in a synchronous sequence or in an asyn-
chronous parallel flow. The result is that this language can express almost
any business process, the process can be executed on a server to compose
services, and the executable process itself becomes a composite service that
can be called and reused by other services. Finally, because it is a standard
XML-based language, it is portable and can be run in any orchestration server.

Chapter 8 ■ Composing Services 301

In practice, constructing processes is done visually with various design
tools, and many are free, including the BPEL Visual Designer for Eclipse,
and the BPEL plug-in for NetBeans. There are also commercial BPEL designer
tools from companies such as Oracle, IBM, Active Endpoints, and BEA. These
tools allow you to create visual flows and generate BPEL that can be executed
on an orchestration server. Most tools have their own look and feel, and are
‘‘BPMN-like’’ in their visual notations, but they all export to BPEL. Once a
design tool exports the model to BPEL, an orchestration engine is able to
execute the process.

BPEL-based solutions, like those of other orchestration languages, follow
what Martin Fowler, in his book Patterns of Enterprise Application Architecture,
(2002), calls ‘‘the transaction script’’ pattern. Solutions using this pattern
organize business logic into procedural ‘‘transaction scripts.’’ Much like other
implementations of the transaction script pattern, BPEL solutions are powerful
and are easy to use. However, it should be mentioned that they are not a ‘‘silver
bullet’’ for composition — they have the potential to suffer certain drawbacks
related to code complexity, sometimes leading to ‘‘procedural code spaghetti,’’
which affects maintainability. However, as many tools progress to the point
of allowing the designer to work purely with the user interface that generates
BPEL, there is certainly the promise of the user interface providing that buffer
between visual composition and the generated code, making maintainability
easier. In the next section, we walk you through a composition example, and
through the construction of a simple BPEL process.

Composition Example — Case Study

This section illustrates a simple example of composing services based on a
company’s business processes, applying the techniques of this chapter. Here,
we are focused on identification of services and interactions for a business
process. Based on modeling the process, we can create executable composite
services.

The Problem

The scenario revolves around an auto body shop with a technology head-
ache. This body shop often needs to order parts from suppliers. They work
with many suppliers of vehicle parts, and for the longest time, all of their
orders for automobile parts were done by negotiating over the phone with
many vendors. The industry recently moved to a Web Service environment,
and all purchasing can now be done electronically between businesses. For
each type of vehicle, there is a different business process, where the body

302 Part II ■ Designing SOA

shop requests quotes for parts from a variety of different partners, chooses
the cheapest quote, and orders the part. There are four separate business
processes for cars, trucks, buses, and construction vehicles. Each process is
different enough to be separated, but each process has many things in common;
they request price quotes from partners, and they choose the lowest price.

The company made a bad decision. They hired a summer intern who
was not a software architect or a seasoned developer, and the intern built
a stand-alone application to manage all of these processes, with all of this
process logic hard-coded in a single application. This worked great for a while
(while the intern was employed during the summer). When the processes
changed, nobody could understand the spaghetti code in the program. The
application was full of complex, nested if-then-else statements corresponding
to the logic of all of the processes. Now, the company has abandoned the
stand-alone application, reverting to the old business style, using the telephone.
Unfortunately, the company is having a hard time doing business now. They
can’t get the parts vendors on the phone, because most of the transactions for
those vendors are done electronically (with little phone support!).

This auto shop company badly needs help. They need a solution that meets
today’s requirements and business processes, but more importantly, they
need a solution that is flexible enough to accommodate changing business
processes.

High-Level Design Decisions
You know from the problem statement that there are complex and different
processes for ordering different types of vehicle parts. By applying the concepts
from earlier in this chapter, you can look at those processes involved (car parts
buying, truck parts buying, bus parts buying, and construction parts buying)
as composite services that could be used together to build the main system
process for ordering vehicle parts.

Following that logic, you would break up the task into a hierarchy of services.
You can define a high-level business process for auto parts purchasing that
uses domain-level services that correspond to the different processes involved
in purchasing parts for different vehicle types. The solution shown here defines
the business processes for Truck Parts Ordering, Car Parts Ordering, Bus Parts
Ordering, and Construction Vehicle Parts Ordering, and those are executable
composite services that the main process can use.

You want to create domain-level services that abstract the purchasing
processes for each type of vehicle, and the higher-level business service
can abstract these. An overview of the composition, shown in Figure 8-12,
uses black box composition. Based on the type of vehicle, The Vehicle Parts
Ordering Process simply propagates the request to the lower-level processes,
and returns the purchase response to its consumer. The front-end application’s

Chapter 8 ■ Composing Services 303

interaction with the system will be simple. It must simply call the Vehicle Parts
Ordering Service; all process logic is abstracted from the application (which is
very different from before). The business service, the Vehicle Parts Ordering
Service, does not have to manage the complex business processes associated
with each lower-level service. It works as a mediator, simply propagates the
request to the right service, depending on the vehicle type. You need to
make the purchase request descriptive enough that the Vehicle Parts Ordering
Service understands the vehicle type, and that request (defined in an XML
schema) can be propagated directly to the lower-level services so that they
understand it.

We model this high-level process in the next section, but first let’s explore
the processes of some of the lower-level services. (See Figure 8-12.)

Process Modeling
Now you must think about modeling the lower-level processes, of which
there are four: ordering processes for car parts, truck parts, bus parts, and
construction vehicle parts. As we mentioned before, a good modeling strategy
is often to build a process for one aspect, and to try to reuse much of it as an
abstract process. So to tackle the Truck Ordering Process, you can model it
using a BPEL designer. Once you do that, model the very simple higher-level
process that was discussed in the previous section.

Because BPEL designs can get pretty large, and large diagrams are often
difficult to see when shrunk down to ‘‘book size,’’ we make the truck parts
ordering process pretty simple for the purpose of this example. In this case,
there are only two competing vendors, ‘‘Redneck Ken’s Truck Parts’’ and
‘‘Computer Mom’s Trucks.’’ Looking externally from the service consumer’s
perspective, you want to create a composite service that accepts a purchase
request for a truck part and returns a response that shows the status of the
transaction (whether the part was ordered, and if so, the specifics of the order).

App

Purchase
Request

Vehicle Parts Ordering Process

Truck
Parts

Ordering

Purchase
Response

Car
Parts

Ordering

Bus
Parts

Ordering

Constr.
Parts

Ordering

Selector

Figure 8-12 Managing complexity with black box composition

304 Part II ■ Designing SOA

The internal flow of the simple process is as follows:

1. You must get information about the purchaser before you make the
request.

2. You request a price quote from both vendors (Redneck Ken’s Truck
Parts and Computer Mom’s Trucks) for a certain part.

3. You purchase the part from the vendor with the lowest price.

This Truck Parts Purchasing Process that is being created is shown in the
BPEL diagram in Figure 8-13, and we now walk you through building this
process. We are choosing not to walk you step-by-step through building this
example in a specific BPEL designer tool because tools change, and each tool is
different. The diagrams the tools create, however, look more or less the same,
and the most important thing is that those tools output WS-BPEL that can be
executed on a BPEL processing engine, creating a composite process.

As you look at the diagram in Figure 8-13, the main process for Truck
Parts Purchasing is in the middle of the diagram, with the flow working
from top to bottom. The sides of the figure include ‘‘partner links,’’ which
denote communication with partners in a BPEL process. The arrows between
the process and its partners specify the detailed interaction and reference
components of the WSDL for those services. For example, looking at the
Customer Account Service on the right, the partner link specifies WSDL
information (CustomerAcctPT port type and the customerInfo operation) of
the specific service, and identifies the messages with which the main process
must interact (customerRecordRequest and customerRecordResponse).

Starting at the beginning, you respond to the Purchaser’s request, which ini-
tiates this process. Next, you make a synchronous invocation to the Customer
Account service, where you get important information about the purchaser
that can be used in the transaction. After that is done, in an asynchronous
flow, you make two parallel calls to the quote services of Redneck Ken’s Truck
Parts and Computer Mom’s Truck Parts, sending requests for quotes for a
certain truck part. You then wait to receive a callback operation. (You could
have made synchronous calls here. However, it is important to know that, in a
more complex example, you may want a process to call 100 different vendors,
and you may want certain timeout restrictions, so it is important for you know
that calls can be made in parallel.)

Once you receive responses from each service, you are ready to make
a calculation. You determine which price is cheaper. In the XML of the
WS-BPEL, this is usually done in a conditional case statement, but chances
are, you won’t have to even look at the XML — whatever BPEL design tool
you use will have a good graphical representation of a conditional statement,

Chapter 8 ■ Composing Services 305

<<invoke (sync) >>
Retrieve Client Account Information

<<invoke (async) >>
Get price for Truck Part from

Redneck Ken’s’ Truck
Parts

<<invoke (async) >>
Get price for Truck Part
 from ComputerMom’s

Truck Parts

Redneck Ken’s
Truck Parts

Service

Client
(Purchaser)

Redneck
.pric

e <

Computer
Mom.pric

e

ComputerMom.price <=

Redneck.price

<<assign>>
Select Redneck Quote

<<assign>>
Select Computrmom Quote

<<invoke (sync) >>
Purchase part from Redneck

Ken’s Truck Parts

<<invoke (sync) >>
Purchase part

from ComputerMom’s Truck
Parts

<<reply (sync) >>
Return Purchase Confirmation

TruckPartPT:
requestPart
operation

BPEL Process for Ordering
Truck Parts

QuoteCallbackPT:
QuoteCallback

operation

callBack

quoteRequest

quoteResponse

Customer
Account
Service

ComputerMom’s
Truck Parts

Service

purchaseRequest

purchaseResponse

QuoteCallbackPT:
QuoteCallback

operation

rDadQuotePT
getQuote
operation

rDadOrderPT
purchase
operation

Partner Links Partner Links

cMomQuotePT
getQuote
operation

CustomerAcctPT:
customerInfo

Operation

cMomOrderPT
purchase
operation

PartResponse

PartRequest

callBack

quoteResponse

purchaseResponse

purchaseRequest

customerRecordRequest

customerRecordResponse

quoteRequest

Figure 8-13 BPEL process for Truck Parts Purchasing

and it will write the WS-BPEL out for you. Based on the result of the conditional
selection, you invoke the order service from either Redneck Ken’s company or
Computer Mom’s company, and return the response to the purchaser.

Finally, you are ready to use this process as a template for the other
processes. As we mentioned before, executable processes can be turned into

306 Part II ■ Designing SOA

abstract processes by hiding some internal process logic. Before this is done,
however, it is important to look at the external interfaces and interactions of this
process to make sure that it is indeed reusable. Conversational compositions
can get more complex, but this one is more straightforward because you used
black box composition — the external view of the process from the consumer
is really the initial call to the service, focused on the interfaces and message
types for request and response. Originally, when authoring this process,
we used incoming and outgoing messages such as TruckPartRequest and
TruckPartResponse between the purchaser and the truck parts service. Once
we saw that we could use this as a template, where executable purchasing
processes for other parts types could be created, we made sure to modify
the message types to be more generic, using the messages PartRequest and
PartResponse that could be used by other similar parts ordering services. In
doing so, the payload of those messages would be more descriptive, defining
the vehicle type. Using such a strategy makes it easier to define abstract
processes that can be reusable by other services (for example, ‘‘car parts
ordering,’’ ‘‘bus parts ordering,’’ and so on). By doing that, the interfaces to
the services for all parts ordering can be the same, but the payload is more
descriptive, allowing each implementation to process the incoming message
differently.

We skip the modeling of the domain-level services, however, and instead
we model the higher-level process that uses them all together. Figure 8-14
is a good example of how composite services can be used in new com-
positions. In this example, we used the abstract process we created as a
template for the other vehicle purchasing services. In this case, this trans-
lates to all of the services in this example using the same incoming and
outgoing messages. We used the PartRequest and PartResponse messages
coming into each service, including the higher-level Vehicle Parts Ordering
Service.

As you can see, the logic of the higher-level service was pretty simple. The
process must inspect the payload of the PartRequest message, and depending
on the vehicle type, simply passes the request through to the correct ordering
service. The higher-level business service is a BPEL-based composite service,
as are the domain-level services for ordering from vendors from the vehicle
taxonomy.

Obviously, this was a high-level example that didn’t actually expose any
WS-BPEL or WSDL, but the point is this: BPEL design tools allow you to focus
on the processes, not the technology. As an architect, it is important to be
able to define these processes, where you focus on the interactions between
partners and services in order to create an executable process.

Chapter 8 ■ Composing Services 307

Client
(Purchaser)

Ve
hi

cle
Ty

pe
=T

ru
ck

?

Ve
hi

cl
eT

yp
e=

Ca
r?

<<invoke(sync)>>
Call

BusPartOrderService

<<invoke (sync) >>
Call

TruckPartOrderService

<<reply (sync) >>
Return Purchase Confirmation

VehiclePartPT:
requestPart
operation

BPEL Process for Ordering
Vehicle Parts

Partner Links Partner Links

VehicleType=Bus?
<<invoke (sync) >>

Call
CarPartOrderService

<<invoke(sync)>>
Call

ConstPartOrderService

TruckPart
Order

Service
(Composite)

CarPart
Order

Service
(Composite)

PartRequest

PartResponse

PartRequest

PartResponse

PartRequest

TruckPartPT:
requestPart
operation

CarPartPT:
requestPart
operation

BusPartPT:
requestPart
operation

constPartPT:
requestPart
operation

ConstPart
Order

Service
(Composite)

BusPart
Order

Service
(Composite)

PartRequest

PartResponse

PartResponse

PartRequest

PartResponse

VehicleType=Construction?

Figure 8-14 Using the BPEL process as a composite service in another process

Dos and Don’ts in Service Composition

This section brings together key factors in service composition, placing them
into actionable items for you to use on your software architecture and design
teams.

Avoid Static, Programmatic Orchestration
Since you have read this far in the chapter, it should be no surprise when
we tell you that a pitfall for service composition is hard-coded, programmatic

308 Part II ■ Designing SOA

composition, where you use a programming language like Java, Perl, or C#
to statically write your orchestration logic. As we mentioned earlier in this
chapter, your orchestration logic will probably change over time. Using a
configurable framework (such as SCA) or by using an orchestration engine
that uses an orchestration language, you can provide more flexibility.

Use a Layered Service Approach
As we have already discussed at length in this book, services should be
separated into layers that run the gamut from high-level, coarse-grained
business processes to low-level fine-grained atomic services. This is not a new
idea that came with Web Services. The ‘‘Gang of Four’’ Mediator design pattern
and the Session Façade J2EE design pattern are two design solutions used to
allow higher-level business services to centralize, control, and coordinate
complex interactions with lower-level services.

You can also organize your team of designers and developers according to
this layered approach. We recommend this, because sometimes teams simply
focus on end-to-end functionality, with team members duplicating efforts.
Once you establish your service hierarchy, you can assign designers and
developers to services at each layer. The services they design and develop
may be fine-grained utility services or higher-level business services. Business
process engineers and architects can do process modeling and the designing of
high-level business services and domain services during the service definition
stage of the project in a ‘‘top-down’’ approach. Developers who focus more on
discrete functionality can focus on building utility services.

When Using BPEL, Use Abstract Processes
In the last section, we gave reasons for BPEL-based abstract processes — they
provide the ‘‘interaction process contract’’ to partners without giving them too
much information, and they are useful to use as templates for other services in
your enterprise. Abstract processes may also be useful for describing protocols
for services that involve more than one operation; callbacks are a simple
example, but there are many more. You can use abstract processes in either
a top-down approach, where you first build the abstract process before you
refine the executable process; or in a bottom-up approach, where you create
the executable process first. Much like designing interfaces in object-oriented
design, make sure that the abstract process is final and won’t be changed
before you give it to a partner.

In the example in this chapter, we created the executable process (for Truck
Parts Purchasing) before we created the abstract process that was used for
building the other processes. That approach has advantages, because it forces
us to work through a concrete scenario before thinking about how the process

Chapter 8 ■ Composing Services 309

would be used in related scenarios — this allows the architect to refine the pro-
cess before he distributes the template. Fred Brooks in the Mythical Man-Month
(1995) mentioned that a good software construction technique is ‘‘build one
to throw away,’’ because when you work through the process of designing
and then developing a piece of software, you are most likely to understand
the problem better after you have finished. In the case of business process
modeling, building a process and changing it is remarkably easy. Once you
work your way through building an executable process and think about how
it may be used as a template, throwing it away or even ‘‘massively refining it’’
isn’t difficult — the good thing is that you don’t have to change and compile
code. Instead, you use a BPEL designer, you press a button, and you create a
new executable process.

Summary

Service composition is one of the great benefits of using SOA. This chapter
focused on service composition, providing a detailed look at different
approaches, fundamental issues, and best practices. We provided a case
study and a simple example of composing services using a BPEL designer.
Finally, we provided a list of best practices in service composition.

C H A P T E R

9
Using Services to Build

Enterprise Solutions
While it’s easy to grasp the theory of SOA, implementing well-designed, practical

SOA systems can be a difficult challenge.

— Arnon Rotem-Gal-Oz

So far in this book, we have been concentrating on the approaches to design-
ing and building individual services. Although each individual service is
important, its functionality is limited to supporting a very specific capability.
Building enterprise solutions typically requires leveraging existing enterprise
applications for service implementations and combining multiple existing
services into enterprise solutions.

This chapter discusses practical approaches to building enterprise solutions
using existing enterprise business services (leveraging existing enterprise
applications for building business services are covered in the next chapter).
We start by defining the overall architecture of the service-based enterprise
solutions and a discussion of its constituent parts. We then describe approaches
to resolving issues arising during building service-based solutions, including
locating and versioning services, and service security, monitoring, and man-
agement. We end this chapter with the description of the enterprise service
bus — an SOA infrastructure pattern — simplifying the implementation of
solutions to the previously mentioned concerns.

This chapter covers the following topic:

Differences between typical applications and SOA-based enterprise
solutions

Overall high-level architecture for service-based enterprise solutions

311

312 Part II ■ Designing SOA

Integrating the layered SOA architecture with an n-tiered Applications
architecture

Implementing late binding using the service registry

Implementing service versioning

Architecting security in SOA-based solutions

Architecting exception handling in SOA-based solutions

Monitoring and managing SOA-based solutions

Using an Enterprise Service Bus as a unified infrastructure for building
SOA solutions

Enterprise Solutions versus Applications

Today’s Enterprise IT Architecture is often viewed as a collection of appli-
cations. Design, development, enhancements, and maintenance of software
systems revolve around applications. It comes as no surprise that many prac-
titioners keep talking (and writing) about using SOA to build applications.

In our mind, SOA (especially Enterprise SOA) and applications are very
different. Each application is traditionally built for a single purpose (e.g.,
loan origination, claim management, etc.), with its own datastore(s) and for a
single set of users. A particular application implements only a subset of the
enterprise functionality, using and producing only a subset of the enterprise
data, typically without concerns about other processing within the enterprise.
As a result, in our opinion, applications are a root cause of today’s siloed
nature of enterprise IT. The use of SOA for applications does not improve the
situation. It provides a better approach for building applications, preserving
all of the drawbacks of today’s application-centric culture.

Table 9-1 Applications versus SOA Enterprise solutions

APPLICATION-CENTRIC SOA ENTERPRISE
CHARACTERISTIC ARCHITECTURE SOLUTIONS

Design and
implementation

Function-oriented
Built to static requirements
Long development cycles

Coordination-oriented
Built to change
Built and deployed incrementally

Resulting system Application silos
Tightly coupled
Object-oriented interactions

Enterprise solutions
Loosely coupled
Semantic message-oriented
interactions

Chapter 9 ■ Using Services to Build Enterprise Solutions 313

Get QuoteRate PolicyMail Policy and
Document

Create QuoteSet Up CustomerIssue a Policy

Create and
Archive Policy

Document

Capture Terms
and ConditionsAccept Quote

Figure 9-1 ACME’s enterprise services

Instead this book (and this chapter in particular) concentrates on enterprise
solutions. These solutions are dynamic (easily modifiable) compositions of
enterprise services, which can be built, just in time, to adhere to changing
enterprise requirements. Table 9-1 summarizes the key differences between
applications and Enterprise SOA-based solutions.

Let’s take a look at such a solution. Throughout this chapter we use a
simple SOA-based example to illustrate the main concepts. ACME insurance
company already has a set of enterprise services in place and now needs to
assemble them into an enterprise solution for issuing insurance policies. (See
Figure 9-1.) We frequently refer back to this set of services as we address the
different aspects of enterprise solutions.

Service-Based Enterprise Solutions

At the core of SOA is the ability to compose and recompose existing services
to quickly and cost-effectively build enterprise solutions, based on new or
changing business requirements.

The basic architecture for building enterprise solutions using existing enter-
prise services is an adaptation of the Model-View-Controller (MVC) pattern
presented in Figure 9-2.

The foundation of this architecture is an interaction controller (request
router) that processes service requests submitted by multiple consumers.
These consumers can be human users utilizing portals or external consumers
utilizing B2B interactions. The interaction controller itself can be implemented
in several ways, ranging from a pure logical concept, based on the enterprise
registry, to routing to an intermediary (mediator), to a specialized controller
service. The following issues should be considered when deciding on the
specific interaction controller implementation:

The controller can be used as a centralized enforcement point for enter-
prise security policies, enterprise semantic data, and so on. In the case

314 Part II ■ Designing SOA

Model

Portal

Query
Engine

Task
Engine

Interaction
Controller Business

Process
Controller

Se
rv

ic
e

Custom Service

Se
rv

ic
e

Service

Legacy
Application

Service

Se
rv

ic
e

Service
Request

Service Requests

Se
rv

ic
e

Re
qu

es
ts

B2B interface
View

Controller

Legacy
Application

Service
Se

rv
ic

e

Figure 9-2 Conceptual architecture for building enterprise solutions

of B2B interaction, the controller is implemented as a specialized service
that allows for centralization of these functions.

The controller can be used as a decoupling layer between the view and
service layers. In this case it is implemented either as a mediator, or as a
specialized service.

In some scenarios, especially ones involving human interactions, service
invocation performance is often an important consideration. In these
cases, both mediator and true service-based implementations of the con-
troller can require additional network hops, marshaling/unmarshaling
of request/response data, and so on. This inevitably leads to perfor-
mance degradation of the service invocations. As a result, implementa-
tion of a controller as a pure logical construct may be a more appropriate
approach.

N O T E The performance degradation can be significantly reduced by using
network appliances (for example, IBM’s DataPower) as an intermediary. There will
still be performance degradation but it is typically negligible.

The interaction controller supports invocation of two major types of services:

Entity services — This type of service provides access to the enterprise
data, which can be useful to both human users and business-to-business
(B2B) interactions. This information can be used for better decision mak-
ing. In addition, query services often include support for visibility into

Chapter 9 ■ Using Services to Build Enterprise Solutions 315

operations of the enterprise — for example, results of business activity
monitoring, service usage statistics, and the like. In the ACME case, an
example of a data service is the Get Quote Service. A customer can use
this service to get the content of the current quote to decide whether he
wants to accept it.

Task services — This type of service allows you to start business pro-
cesses (service compositions) and interact with those processes (human
activity tasks). In the case of ACME insurance, Capture Terms and Con-
ditions and Accept Quote are examples of such services. Capture Terms
and Conditions allows customers to (re)enter insurance information,
which causes regeneration of the quote, whereas Accept Quote signals
the solution implementation to issue the policy.

N O T E As defined in Chapter 2, there are other types of services, but these two
are the ones used by the interaction controller. Other service types are typically
used for implementation of entity and task services.

Another core component of this architecture is a business process controller
(typically a process engine), that orchestrates the execution of services par-
ticipating in a given solution. This solution effectively brings together two of
today’s mainstream technologies — SOA and Business Process Management
(BPM). Business services and business processes provide an ideal combination
for implementing flexible enterprise solutions:

Business services provide a foundation for the creation of business pro-
cesses by supporting stable business artifacts, which incorporate busi-
ness capabilities and rules that change relatively infrequently.

Business processes support a quick time to market for enterprise solu-
tions through easy implementation of fairly fluid business processing
and rules, which can change every few months or even weeks.

N O T E For approaches to business process composition, refer to Chapter 8.

Finally, portals and B2B interfaces support the use of these solutions inside
and outside the enterprise by human users and automated systems.

Human interaction with the SOA solutions is typically based on portals,
providing ‘‘on-the-glass’’ integration of data from many disparate sources
(services in this case). Using portals in SOA implementations allows for
simultaneous execution of multiple enterprise solutions (and/or multiple
services from the given solution). For example, a portal allows for simultaneous
viewing of the process state, contents of the human task, and additional
solution-specific data provided through data services. Combining all of this

316 Part II ■ Designing SOA

information in one place can significantly simplify enterprise decision making
and leads to the improved quality of enterprise operations.

Modern portals provide these capabilities through componentization of the
presentation using cooperating portlets (pluggable user interface components
that are managed and displayed in a web portal) based on industry standards
like Java Specification Request (JSR) 167, which define the implementation
and integration of portlets and Web Services Remote Portlets (WSRP). These
portlets can be either custom built (using Java Server Faces and Web Services)
or can support web clipping to aggregate existing user interfaces from other
applications (for example, the presentation of human activities provided by a
process server).

Interactions between multiple enterprise solutions (whether inside the enter-
prise or across enterprise boundaries) is typically done through business
processes; the business process implementing one solution invokes the busi-
ness process of another solution. In the case of B2B interactions, it is typically
a public cross-enterprise process, invoking one or more enterprise-internal
solutions as private processes. (For further discussion on public and pri-
vate processes, see Boris Lublinsky, ‘‘Approaches to Implementation of
Business-to-Business Integration (B2Bi).’’)

In order to support the proposed enterprise solution architecture (see
Figure 9-2), the following layered SOA architecture (see Figure 9-3) has to be
in place. This architecture contains the following layers:

The access layer (top) implements both human and machine access to
business processes and individual services. Typically, only a subset of
enterprise services is exposed to this layer.

The process layer (middle) supports the implementation of enterprise
business processes (enterprise solutions).

Customer facing
applications view
into enterprise
processes

Business Process
Driven Enterprise

Enterprise
Business Services

Figure 9-3 Layered SOA architecture

Chapter 9 ■ Using Services to Build Enterprise Solutions 317

The enterprise business services layer (bottom) provides high-level busi-
ness capability throughout the enterprise. Business services represent
logical groupings of enterprise-wide functionality.

N O T E Notice that Figure 9-3 presents only a subset of the SOA layers defined in
Chapter 2. Here, we are showing only the layers that are relevant to this chapter.
Further elaboration of these layers is presented in the next chapter, where we talk
about integration in SOA.

Layered SOA Architecture and Multitiered
Application Architecture

The layered SOA architecture, presented in Figure 9-3, looks similar to the
classic layered application architecture familiar to every application architect.
But to underscore the difference, let’s look more closely at the classic 3-tiered
application architecture, shown in Figure 9-4.

The 3-tiered architecture applies the important architectural concept of
separation of concerns, specifically separating presentation from logic, and
logic from data. In this architecture, the presentation tier does not access
databases directly. Access occurs only through the business tier, which is
responsible for the execution of business logic. The 3-tiered architecture
introduced many improvements into application design, including:

Improved application flexibility through a better separation between
presentation and business logic. With this architecture, the presentation

Application
Data

Database Server

Business
Logic

Business
Logic

Presentation
Logic

Presentation
Logic

Presentation
Logic

Presentation
Logic

Resource
Tier

Business
Tier

Presentation
Tier

Figure 9-4 The 3-tiered application architecture

318 Part II ■ Designing SOA

can change without impacting the existing application logic. Addition-
ally, the same business logic can be (re)used by multiple applications
(presentations).

Through the introduction of a separate business tier, this architecture
simplifies the incorporation of multiple databases into an application.

It introduced additional application deployment and scalability options.

The 3-tiered architecture was the predominant style for early web applica-
tions, but it quickly ran into problems with the need for better scalability and
support of multiple devices. The problem was that the architecture did not sep-
arate the logic used by a single user during his or her interactive session from
the shared logic used to implement business functions and manage resources.
Today, the more advanced architectural style for web-based applications is
the n-tiered architecture, shown in Figure 9-5.

Tiers have the general responsibility for mediating the flow of data into and
out of the system and the components that make it up. However, each tier has
a specific set of roles and responsibilities, and the boundaries between the tiers
are carefully constructed to achieve the architectural goals. The responsibilities
of these tiers are:

The user tier is where the system interacts with a single use of the system
through a specific presentation. The user tier is responsible for device-
specific presentation such as that needed for a web browser. The bound-
ary between the user and workspace tier provides device independence,
allowing the application to support multiple devices, such as a Web

User

Workspace

Enterprise

Resource

Presentation Presentation

User
Session

Application
Logic

Business
Logic

Business
Logic

Database
Server

Legacy
System

Presentation
and device
independence

User session
and application
data manipulation

Business process
and capabilities

Shared enterprise
resources

Figure 9-5 An n-tiered application architecture

Chapter 9 ■ Using Services to Build Enterprise Solutions 319

browser and a mobile telephone, each of which would have its own user
tier. The user tier:

Manages user interface details for a single presentation.

The workspace tier is where the system supports multiple interactions
with a single user. It is responsible for coordinating and maintaining a
user session, for manipulating the user data associated with that session,
and for interactions with the enterprise tier. The workspace tier:

Coordinates and maintains the integrity of multiple, concurrent activi-
ties for the same user.

Maintains the user session.

Executes processes that do not require access to enterprise resources.

Puts and gets data to and from the enterprise.

The boundary between the user tier and workspace tier provides another
advantage. It allows the same processing to be used with multiple different
devices. In other words, by moving device specifics into a separate tier, you
can achieve both reuse of processes and, just as important, consistency of
operation across multiple devices.

Together, the user and workspace tiers support all interaction between the
system and a single user (or other external partner). There is one instance of
the user tier and the workspace tier for each user of the system. In contrast,
the enterprise and resource tiers together provide resources and services to all
users of the system. There is only one instance of the enterprise and resource
tiers, which is shared by all users:

The enterprise tier is responsible for implementing business processes
and entities, and for making their functions available via service-oriented
interfaces. The enterprise tier:

Maintains the integrity of enterprise resources.

Enforces system-level business rules.

Provides the scope and control for two-phase commit transactions.

Provides enterprise services to requestors.

The boundary between the workspace and enterprise tier provides a clear
separation between the resources of the enterprise and the resources required
to support a single user. This break allows enterprise resources to be better
managed and protected. It also provides a clear access point for all enterprise
services, so that they can be shared and reused by multiple applications and
users.

The resource tier is responsible for the management and access of shared
enterprise resources. The resource tier:

320 Part II ■ Designing SOA

Provides access to shared resources of the enterprise.

Provides access to enterprise data and databases.

Provides access to legacy systems.

The boundary between the resource and enterprise tier provides a separation
between the technology specifics of the resources and the enterprise’s use (as
well as the service’s representation) of them. This allows changes in the
resource or enterprise tiers to occur independently, without disruption to the
other.

Services can be present in most of the tiers of the n-tier architecture (other
than presentation). However, a common mistake is to misunderstand the
relationship between service type and the roles and responsibilities of the
tiers; the result is much like the 3-tier architecture that did not separate
the responsibilities of different types of logic. Figure 9-6 illustrates how the
different types of services line up with the tiers of an n-tiered architecture.

Let’s look at each tier, its responsibility, and the types of services that
are used to implement them. Starting at the top, the presentation tier is not
implemented with services. Next is the workspace tier. This tier is responsible
for coordinating and maintaining all activities for a single user, and being
the intermediary between the presentation channel and the enterprise. In
other words, the tier is responsible for coordinating and presenting business
capabilities though a delivery channel. It fulfills a user request in the most
effective manner based on presentation device, user role, user context, and
user preferences. This requires a variety of different functions, many of which
can be implemented as services. Some typical services at this tier are profile,

User

Workspace

Enterprise

Resource

Presentation

Domain
Service

Business
Service

Presentation

Coordinate and
present business
capabilities through a
delivery channel using
presentation services

Implement business
process and
capabilities composed
from business, domain,
and utility services

Expose shared
enterprise resources
as integration services

Distribution
Service

Application
Service

Utility
Service

Presentation
Service

Integration
Service

Integration
Service

Integration
Service

Utility
Service

Business
Process

Presentation

Figure 9-6 Service types and tiers

Chapter 9 ■ Using Services to Build Enterprise Solutions 321

presentation, navigation, session state management, and so on. The tier is
also responsible for the user specific ‘‘application’’ logic. So, you often see
application services and utility services used in this tier.

The enterprise tier is where you traditionally think of SOA capabilities. It
is responsible for the implementation of enterprise capabilities and processes,
and for the enforcement of enterprise rules and policy. This is where the
business processes are executed, and where the services that compose them
are located. So here, you see business, domain, and utility services supporting
the task, entity, and decision service types.

Finally, the resource tier is responsible for the shared resources, and for
presenting those resources to the enterprise tier. In SOA, you want those
resources presented as services, so this is where integration services are
generally implemented.

Enterprise solutions span from the user or partner presentation through
all the intermediate functions to the enterprise resources. When designing an
enterprise service–oriented solution, it is important to understand both the
architecture of enterprise solutions and the architecture of SOA. In this section,
we have shown the intersection of enterprise tiers and services types. Now we
move on to architectural considerations for using those services.

Locating Services

Typical enterprise SOA solutions rely on a variety of services. Invoking
these services requires knowledge of their location (i.e., the service endpoint
address). In the simplest case, it is possible to hard-code endpoint addresses
in the solution’s implementations. This approach, shown in Figure 9-7,

Service
Consumer

Service
Consumer

Service
Consumer

Service
Consumer

Service
Consumer

Service
Consumer

Service
Consumer

Service
Consumer

Service
Provider

Service
Provider

Service
Provider

Figure 9-7 Direct invocation of services by consumers

322 Part II ■ Designing SOA

introduces tight coupling between the solution’s implementations and the
service’s location (location coupling).

N O T E Both Java and .NET tooling generate Web Service consumers with
endpoint addresses encoded directly in the implementation. As a result, it comes
as no surprise that many current systems resemble Figure 9-7.

Accommodating service endpoint address changes in the implementation
requires modifications to the solution’s implementations. This process is
prone to error and scales poorly as the number of services and solutions
grows. Accounting for multiple deployment environments (e.g., development,
testing, quality assurance, production) only compounds the problem.

Externalizing the endpoint addresses into configuration files offers a poten-
tial improvement. This approach is more flexible because it removes endpoint
addresses from the solution’s code and externalizes them in configuration
files. This allows the solution to accommodate address changes without any
code modifications. However, this option also runs into scalability problems
as the numbers of consumers and services (and consequently of configuration
files) grow.

Using an intermediary that dynamically resolves service queries into end-
point addresses and invocation policies — a service registry — provides the
most flexible and maintainable solution for this problem. The service registry
contains all the information about service deployments, their locations, and
the policies associated with invocation at each location.

ROLE OF THE SERVICE REGISTRY

Steve Vinoski, in his article ‘‘The social side of services,’’ (January 2006), points
out that the usefulness of the service registry increases with the number of
services:

‘‘The technical line of reasoning for reaching and managing this critical mass
typically goes like this:

1. For services to operate as a collective, they have to know about each other.

2. For services to know about each other, they must either be hardwired
together or be able to dynamically find one another.

3. Hardwiring would be bad, as it implies high coupling and potential diffi-
culties in replacing one service implementation with another somewhere
down the line.

4. To facilitate dynamic discovery, then, services need a place that they can
advertise themselves and meet other services.

5. Of course, a registry!’’

Chapter 9 ■ Using Services to Build Enterprise Solutions 323

The notion of the service registry was initially introduced by the Web Ser-
vices architecture group; which defined the Universal Description, Discovery
and Integration (UDDI) registry as a ‘‘matchmaker’’ (broker) between services,
consumers, and providers. The responsibility of UDDI was viewed as provid-
ing a dynamic choice of service producer based on the functionality required
by the consumer. Its role is similar to that of the Yellow Pages. But, despite
support from multiple vendors and standards bodies, UDDI use as the service
matchmaker never took off. The majority of today’s UDDI usage is limited to
storage of the service WSDL files, which are used by a service consumer at
design time.

A more practical use of the service registry is for run-time lookup of the
service endpoint based on the service name and policies. Typical examples of
such policies can be quality of service requirements, security requirements,
preferred communication protocol, service version (see the next section), and
so on. In this case, service definitions (interfaces) are available to consumers
at development time through other means, and registry use is limited to the
run-time resolution of the services endpoint addresses and dynamic binding.
(See Figure 9-8.)

The late binding of the service endpoint address lessens location coupling
by eliminating hard-coding service endpoint addresses. The registry allows for
the centralized management of the service endpoint addresses and associated
invocation policies.

Typical service registry implementations support one of two possible end-
point address resolution and routing models.

Direct routing — In this model the information required to query the
registry resides in the consumer. This information includes the set of
supported and required policies. Once the registry finds the match-
ing services the consumer decides which service to use and routes the
requests directly to it. (See Figure 9-9.).

Service
Registry Population,

Modification,
Viewing, etc.

Registry
Management UI

Service
Invoke

Configured

Service
Consumer

Supported/
required
policies

Resolve endpoint
address, based
on the service
and supported/
required policies

Figure 9-8 Basic service registry architecture

324 Part II ■ Designing SOA

Service
Consumer

Consumer
Configuration

File

Configured Accessed

Routed

Endpoint Address

Endpoint Address

Service
Registry

Service (Service
Operation)

Deployment

Endpoint Address

Endpoint Address
Service (Service

Operation)
Deployment

Endpoint Address

Endpoint Address
Service (Service

Operation)
Deployment

Figure 9-9 Direct routing using a service registry

Intermediary-based routing — An alternative model relies on an inter-
mediary to handle the routing. In this model, the service consumer
doesn’t have direct interaction with the service. Instead, all service re-
quests are directed to an intermediary that queries the registry (with
consumer-specific information), decides which service to use, invokes
the service, and routes the reply to the consumer. (See Figure 9-10.)

Table 9-2 compares these two approaches.
The service registry is an important component in an enterprise solution

because it decouples the service consumers from the actual service endpoint
address. It is a foundation for late binding, providing the flexibility to change
the address of the service provider without changing the service consumer.
This provides a more dynamic, reconfigurable SOA-based solution.

Service
Consumer

Consumer
Configuration

File

Service
Registry

Configured
Accessed

Routed
Invoked Intermediary

Endpoint Address

Endpoint Address
Service (Service

Operation)
Deployment

Endpoint Address

Endpoint Address
Service (Service

Operation)
Deployment

Endpoint Address

Endpoint Address
Service (Service

Operation)
Deployment

Figure 9-10 Intermediary-based routing using a service registry

Chapter 9 ■ Using Services to Build Enterprise Solutions 325

Table 9-2 Comparison of routing approaches

INTERMEDIARY-BASED
DIRECT ROUTING ROUTING

Advantages Provides the best
invocation performance.
Provides minimal
infrastructure overhead,
especially in the case
where Message Oriented
Middleware (MOM) is
used as a transport.

Provides a centralized point for deciding
how to select between potential services,
thus relieving the service consumer from
storing and processing invocation
information.

Disadvantages Depending on the
consumer
implementation,
changing the consumer
policy file may require
restarting/rebuilding the
consumer.

Where different SLAs are required for
different consumers/services, the
intermediary has to be able to support
the strictest SLA.
Overall, invocation performance can suffer
because of the additional network hop.
The intermediary represents an additional
(sometimes single) point of failure.
Introduction of an intermediary usually
requires additional infrastructure.

Example: Implementing Service Access for Policy
Issuance
The example policy issuance solution at ACME employs only a handful
of services and consequently could use a simplistic hardwiring of service
locations. On the other hand, some of the services used in this solution
(for example, archiving or mailing) can be used for far more than policy
issuance. They can have multiple consumers, and, as a result, changes in
their endpoint addresses can require a massive amount of changes in existing
clients. Therefore, ACME decided to implement a full-fledged service registry
as a foundation of a robust SOA infrastructure. Based on their comparison
of different options for the overall registry implementation and topology (as
shown in Table 9-2) and the fact that performance is the main requirement for
them, they have chosen a direct routing topology for registry implementation.
(Refer to Figure 9-9.)

Versioning: Dealing with Service Changes

A lot of internal and external factors lead to service changes. For example, at
ACME:

326 Part II ■ Designing SOA

New insurance products are introduced with new terms and conditions.

New rating rules are introduced.

The format of the policy document has changed.

In typical SOA implementations (refer to Figure 9-3), every service is used
simultaneously in multiple enterprise solutions. As a result, a change in an
enterprise service (for example, creating and archiving a document) can have a
significant impact on many existing solutions and, consequently, could require
changes in each one of them. In the case of ACME, for example, the service is
used in policy issuance (the creation and archiving of a policy document) and
claims processing (the creation and archiving of a damage appraisal).

The implementation of these changes is not only extremely expensive
(requiring a lot of coordination between development and testing, ensuring
that none of the multiple enterprise solutions are impacted) but also goes
against one of the fundamental SOA tenets, service autonomy.

Autonomy (see Chapter 2) is the fundamental concept behind service orien-
tation that requires that services can be deployed, modified, and maintained
independent of each other and the solutions that use them.

One of the most popular ways of coping with changes is versioning.
Versioning assumes the simultaneous existence of multiple (different) imple-
mentations of the same thing, with every implementation distinguishable and
individually addressable. In the case of SOA, service versioning equates to
the coexistence of multiple versions of the same service, which allows each
consumer to use the version that it is designed and tested for. (See Figure 9-11.)

A new version of a service is created based on the requirements of one
or more consumers, who can start using this new version immediately. The
other consumers of the service do not need to switch to the latest version
immediately, but can continue to use the versions of the service they were

Service
Provider
Version

Service
Provider

Version n + 1

Invokes Invokes

Invokes

Invokes

Invokes

Invokes

Changed

Service
Consumer

Service
Consumer

Service
Consumer

Service
Consumer

Service
Consumer

Service
Consumer

Figure 9-11 The coexistence of multiple service versions

Chapter 9 ■ Using Services to Build Enterprise Solutions 327

designed for and tested with. They can switch to the latest version of the
service when the need arises based on their own development and testing
schedule. The introduction of multiple coexisting versions of the same service
in the system allows for an independent life cycle of service providers and
their consumers and minimizes the overall impact of changes. Although the
necessity of a versioning mechanism is fairly obvious to anyone who has ever
dealt with services, this topic still has not made it into the mainstream of SOA
publications and implementations.

N O T E During several SOA conferences, which we attended, the absence of a
well-defined and well-understood service versioning approach was quoted as one
of the major obstacles to successful SOA adoption.

Although the basic idea of service versioning (refer to Figure 9-11) is
fairly simple and straightforward, its implementation requires defining the
following:

Units of versioning

Service changes, constituting a new version

Service version life-cycle considerations

Version deployment and access approaches

Here, we discuss only version deployment approaches. For more infor-
mation on the other service versioning considerations, see Boris Lublinsky’s
article ‘‘Versioning in SOA.’’

Version Deployment and Access Approaches
There are two common approaches to the deployment of service versions:
covenant or version parameter, and multiple endpoint addresses.

A covenant is an if-then-else agreement (‘‘if you do this then I will do
that’’). In this case, there is a single endpoint address for all versions of the
service. (See Figure 9-12.)

The covenant effectively implements context-based routing (the foundation
of routing in EAI Message Brokers), taking an incoming message and routing
it (based on a version parameter embedded in the invocation message) to the
appropriate service version. The benefit of this approach is that it simplifies
service addressing from the consumer’s point of view. The consumer uses a
single endpoint address to access all versions of a given service and encodes the
required version in the invocation message. An endpoint address implements
routing support, invoking the required version of the service implementation.

Although the covenant approach minimizes the impact of new versions
on the service consumers, it introduces the complexity of packaging multiple

328 Part II ■ Designing SOA

Invoke
Service/
Operation/
Version with
Appropriate
Payload Version n

Implementation

Service
Consumer

Service
Operation
Endpoint
Address

Version 1
Implementation

Version 2
Implementation

Figure 9-12 Implementation of versioning using a covenant

versions of a service together. This can lead to class name collisions, database
name collisions, and so on.

N O T E This approach effectively requires a versioning strategy not only for
services themselves but also for the components used to implement the services.
Considering the tighter coupling between components, this problem can be even
more complex than service versioning.

Further improvement can be achieved by replacing the local router dispatch-
ing between the service versions with an external broker (mediator). In this
case, all versions can be deployed independently, and it is the responsibility of
a mediator to dynamically resolve the endpoint address of the desired service
version and dispatch all messages accordingly.

N O T E Although intermediaries (mediations) are often touted by ESB-related
publications as a cure for most routing/transformation problems encountered in
SOA, there are costs associated with them. Typically, they lower performance. They
must also support the most stringent SLA of all the services accessed through it,
which could be a very strong and expensive requirement.

The other approach to version deployment is to use multiple endpoint
addresses. Every version of a given service is deployed at its own endpoint
address(es) that is directly exposed to a service consumer. (See Figure 9-13.)

Multiple endpoint addresses assume that a service consumer can resolve
endpoint addresses (typically using the service registry) for a required version,
based on the service/version information. The advantage of this scheme is a
complete separation of multiple service version deployments. The drawback

Chapter 9 ■ Using Services to Build Enterprise Solutions 329

Consumer 1
(uses

Service 1
Version 1)

Consumer 2
(uses

Service 1
Version 2)

Invokes

Invokes

Service 1
Version 1

Service 1
Version 2

Service 1
Version n

Figure 9-13 Implementing versions using directly exposed endpoint addresses

is a more complex addressing paradigm, requiring service registry support to
resolve endpoint addresses, based on the service version.

The multiple endpoint address approach typically provides better scalability
(one less network hop) and lowers the coupling between multiple versions of
the same service.

Correct implementation of service versioning leads to the creation of much
more loosely coupled enterprise solutions. The introduction of simultaneously
deployed service versions allows both service consumers (enterprise solutions)
and providers to evolve independently, with their own development and
deployment schedules. As services evolve (not necessarily in an upward
compatible fashion), old versions remain available for the consumers that are
not ready to update.

Example: Coping with Changes in Policy Issuance
Solutions
Considering the tight insurance market, which requires rapid implementa-
tion changes in order to stay competitive, ACME architects are designing
policy issuance solutions to be as adaptable to changes as possible. A big
factor in this future adaptability and the solution’s overall agility is the ability
of ACME to introduce new implementations of enterprise services without
breaking currently deployed solutions. This requires architecting the over-
all SOA infrastructure to support policy issuance with service versioning in
mind. After evaluating service versioning approaches and considering that
performance is their main requirement, ACME decided to implement version-
ing support by exposing service versions’ endpoint addresses directly to the
service consumers (refer to Figure 9-13).

330 Part II ■ Designing SOA

Architecting Security for Service-Based Solutions

Organizations have existing security infrastructures in place. These infrastruc-
tures protect enterprise resources on diverse platforms and often implement
different security solutions for different applications.

The service invocation chain, typical for service-oriented solutions, accesses
services that wrap different systems and applications. This model breaks
not only the application boundaries but also the application-centric security
model. The service implementation bridges multiple disparate applications
into one service environment (more on this in Chapter 10). This shift requires
a new security approach, above and beyond the existing application security.

In addition, outsourcing services makes security even more challenging.
The ability to mix and match services from different providers, some of which
reside outside the traditional trust boundaries (e.g., enterprise firewall) adds
new security threats. Dealing with these new challenges requires extending
the security model to support external services in addition to the internal ones.

The key goal of a security implementation is enabling the existing security
infrastructures (both inside and outside of the enterprise) to interoperate. The
foundation of the solution is the introduction of a security layer spanning
existing security infrastructures.

N O T E This chapter outlines only architectural approaches to security in SOA
solutions. For details on service security, refer to Chapter 11.

The responsibilities of this layer are:

Accommodation of heterogeneity (i.e., multiple application platforms)

Provide security management and identity propagation/management
across multiple security domains (internal, external, business unit silos)

Support multiple security credentials (Kerberos, SAML, various Token
Profiles, Pass Tickets)

Support multiple transport protocols (HTTP/S, JMS, MQ)

Maintain the ‘‘thread of identity’’ across the service boundaries

There are two broad architectural options for implementing security in
the context of SOA-based enterprise solutions: the security gateway and the
interceptor.

Using a Security Gateway
A security gateway (sometimes called XML firewall or XML proxy) is a
software package or hardware appliance that filters service traffic upstream of
a service and blocks unauthorized traffic before it can reach a protected service
(see Figure 9-14).

Chapter 9 ■ Using Services to Build Enterprise Solutions 331

Security
Gateway

Enterprise
Service

Enterprise
Service

Trusted
TrafficUntrusted

Traffic

Figure 9-14 Security gateway

The security gateway enforces access control rules by processing security
tokens contained within incoming messages, and by ensuring that the XML
format and content are appropriate for the target service/solution. It may use
a variety of techniques ranging from user/password to specialized tokens to
SAML (see Chapter 11 for more details on the identity propagation techniques)
to authentication of an end user or a particular company.

Security gateways strive to reuse the existing security infrastructure, includ-
ing preconfigured users, groups, and roles, otherwise, the overhead of rekeying
rules and user profiles into a security gateway would be cost prohibitive. To
do so, they typically contain security adapters to existing security technologies
such as LDAP directories, traditional firewalls, and PKI infrastructures.

The drawback of this architecture is that it leaves the actual service endpoint
addresses unprotected (i.e., the ‘‘last mile’’ problem). If the incoming traffic
bypasses the gateway and gets directly to the service endpoint, it also bypasses
the security implemented by the gateway. Some of the approaches of dealing
with this issue are:

Restricting access to the service endpoint to a limited number of physical
nodes

Mutual authentication between the gateway and the service endpoint

In practice, a security gateway is typically used as a perimeter defense
mechanism, preventing unauthorized access to the enterprise solutions from
B2B consumers or other enterprise solutions, and as such it is not directly
applicable to the implementation of ACME’s policy issuance solution. It can
be used, however, to protect the solution if it is directly exposed outside the
enterprise, for example, to insurance brokers.

The prevalent architecture for securing individual services participating in
enterprise solutions are interceptors.

Using an Interceptor in Security Implementations
The interceptor brings the security implementation directly to the service
endpoint through the use of platform-specific hooks such as Internet Server
Application Programming Interface (ISAPI) filters, Java API for XML-Based

332 Part II ■ Designing SOA

Service
ImplementationInterceptor

Untrusted
Traffic Physical Machine

Figure 9-15 Security interceptor

RPC (JAX-RPC) handlers, Java API for XML-Based Web Services (JAX-WS)
handlers, MQ exits, and the like. When a request arrives at the service endpoint,
it is first processed by the interceptor (sometimes called an ‘‘agent’’), which
evaluates the security rules before passing the request to the service (see
Figure 9-15).

Policy-aware environments such as Microsoft’s Web Services Extensions
(WSE) (2.0 and above), Window’s Communications Foundation (WCF), or
IBM’s WebSphere Application server (WAS) (5.1 or above) provide implemen-
tations of an interceptor that can be configured using either WS-Policy files
(WSE, WCF) or custom configurations (WAS) built directly into the run-time
environment.

Although this architecture solves the ‘‘last mile’’ problem, it requires security
configurations for every interceptor (i.e., service endpoint). This requirement
can cause significant management overhead when the security policy changes.
A modified interceptor architecture that alleviates this problem by combining
an interceptor with a centralized security service is presented in Figure 9-16.

In this architecture, the interceptor still processes all incoming service
requests, but it uses a specialized security service, which performs the actual
processing of security rules. It effectively combines the advantages of the
interceptor with the security gateway by centralizing security processing.

Security Service

Service
Implementation Interceptor

Untrusted
Traffic

Service
Implementation Interceptor

Untrusted
Traffic

Physical Machine

Physical Machine

Figure 9-16 Security interceptor with centralized security service

Chapter 9 ■ Using Services to Build Enterprise Solutions 333

Centralization allows the computationally intensive functions such as cryptog-
raphy to be implemented in dedicated hosts (appliances). This minimizes the
impact on invocation performance and provides a central point of management
and reporting for service security processing.

Example: Architecting Security for Policy Issuance
Solutions
Services participating in a policy issuance solution exchange a significant
amount of sensitive information. As a result, a proper security implementation
is paramount for this solution.

Using an interceptor is the most appropriate approach for the security
implementation of the policy issuance solution. Every participating service
(refer to Figure 9-1) should contain an interceptor supporting (and enforcing)
the service’s security policy. For more on policy enforcement, see Chapters 11
and 12.

For ACME’s services implemented in Java, this interceptor can be imple-
mented as a JAX-WS handler, invoked as part of the service invocation. For
services implemented using WCF, programmatic WCF security can be used as
a security interceptor.

Exception Handling and Logging in Enterprise
Solutions

In the ideal world nothing ever fails, service invocations always complete
successfully and return the required results. Unfortunately, in reality, services
and solutions built using services may and do fail.

Let’s consider a rate policy service, for example. A wide variety of problems
can cause the execution of this service to fail, including failures of the service
itself; for example, because of the validation of the incoming parameters, or
just an implementation bug, or a communication problem, where the service
cannot be reached, or the implementation cannot reach an underlying database.

A widely adopted mechanism for dealing with failures is exception han-
dling, encompassing capturing and logging errors and choosing an alternative
execution path in case of failures. It has become a standard mechanism in
application development, where it is typically based on the ability of applica-
tion designers and developers to anticipate the possible exception conditions
and appropriately instrument code to handle them at run time.

N O T E The implementation of exceptions is usually based on try/catch blocks
(supported by the majority of today’s programming languages, for example, Java or
C#), allowing you to determine the exception and use logging mechanisms to store
exceptions for follow-up analysis.

334 Part II ■ Designing SOA

This approach relies on the following assumptions:

The application is designed as a whole in all of its completeness, includ-
ing all of the possible exception situations. This means that all of the
execution paths of applications can be fully defined and, as a result, com-
pletely tested by an application team.

The application is executed on a single machine (limited set of machines)
and reports all of the exceptions in the local log files using standardized
exceptions reporting schemas.

Changes in the application are administered centrally, thus providing
a single application development team with complete control over all
changes.

Implementing these exception-handling approaches becomes significantly
more complex in the case of distributed systems due to the following:

Exceptions can be caused not only by the application code itself but also
by the infrastructure malfunctioning, which makes it harder to analyze
all possible exception scenarios.

Exception logs are spread between multiple physical machines, which
make their reconciliation significantly more complex.

In the context of SOA, characteristics like loose coupling (both organizational
and technological), autonomy, and reliance on existing applications for the
implementation of the business capabilities complicate exception handling
even more.

Every service is designed, implemented, and maintained by itself and can
be used in multiple enterprise solutions, which might not be known at the
time of the service design. As a result, the exception-handling implementation
for a given service usually revolves around processing and logging exceptions
that are local to the service implementation and, when they cannot be resolved
locally, reporting them to the service consumer. If special measures are not
taken, this results in ‘‘islands of exception handling’’ (see Figure 9-17).

As defined in Sean Fitts’s September 2005 article ‘‘When exceptions are
the rule: Achieving reliable and traceable service oriented architectures,’’
exception processing in SOA introduces the following unique challenges:

The distributed and heterogeneous nature of SOA makes it particularly
prone to failures, causing exceptions at multiple levels. System-level
exceptions result from the messaging, communications, and other infra-
structure failures. Application-level exceptions result from incorrect
message semantics or logical errors within the application. Business-level
exceptions result in violation of best practices, compliance laws, regula-
tions, or business policies mandated by business managers.

Chapter 9 ■ Using Services to Build Enterprise Solutions 335

Service Service Service Service

Logging
Data Store

Logging
Data Store

Logging
Data Store

Logging
Data Store

Proprietary
Exception
Reporting

Proprietary
Exception
Reporting

Proprietary
Exception
Reporting

Logger
APIs

Logger
APIs

Logger
APIs

Logger
APIs

Figure 9-17 Islands of exception handling

Exceptional conditions that are related to a particular enterprise solu-
tion spanning one or more services across different business processes
cannot always be detected by exception handling localized within one
of the participating services. Exception processing, in this case, has to
be done on the solution level, which might require aggregation of the
exception information from multiple participants. On the other hand,
the same services can be used in multiple solutions requiring segregation
of the service’s exception information from solutions using this service.
Additional requirements for this type of segregation can be reinforced by
privacy, HIPAA, and other compliance requirements.

Individual services provide no visibility into the entire solution, which
makes it hard to make appropriate corrective actions in the case of error.

Loosely coupled, heterogeneous services often discover and process
exceptions differently. Some may use specialized components such as
log4j, log4net, and so on. Others employ proprietary solutions. Addition-
ally, wrapping the functionality of existing applications currently repre-
sents the prevalent approach to service implementation. These legacy
applications can detect, log, and communicate exceptions in different
ways.

An elegant solution to exception handling in SOA is to apply SOA principles
to an exception-handling implementation — ‘‘servicizing’’ all of the major
elements of exception management (i.e., logging, exception resolution, and
notifications). Figure 9-18 shows the overall architecture for exception logging,
resolution, and notifications.

N O T E Also see Chapter 12 on the role of centralized exception handling and
logging in SOA governance.

336 Part II ■ Designing SOA

Service
Management

Solution

Exceptions
Notification

Service

Exceptions
Resolution

Service

Logging
Service

Exceptions/
Logging
Portal

Service
Consumer

Service
Consumer

Service Service

Logger
APIs

Logger
APIs

Logger
APIs

Logger
APIs

Logging
Data Store

Figure 9-18 Unified architecture for exceptions logging, resolution, and notifications

Instrumentation code within the service implementation detects and logs
system- and application-level exceptions. Logging takes place through
common-purpose APIs exposed by standard logging components such as
log4j, log4net, and so on. The implementation of logging within the service
translates invocation requests into service calls to the exception-logging ser-
vice. To lower the performance impact of exception logging, asynchronous
invocations are typically used for the service invocation. Although this imple-
mentation revolves around the logging service, exception handling relies on
several additional elements:

The Logging Service accepts all logging requests, stores them in the log-
ging database, and forwards them to the Exception Resolution Service.

The Exceptions Resolution Service processes each log message using
exception resolution rules. These rules specify whether the message
should be ignored (e.g., information messages), resolved automatically,
or whether human intervention is required.

The Notification Service receives notification requests and uses a set of
rules to dispatch the notification (e.g., email gateway, pager gateway,
enterprise management solution).

The Exceptions/Logging Portal allows people to view and browse the
logged exception information.

Chapter 9 ■ Using Services to Build Enterprise Solutions 337

Service Management monitors service traffic to determine business-level
exceptions and reports them to the logging service, which treats them the
same way as any other exceptions in the system.

This partitioning of responsibility ensures that exception logging and resolu-
tion take place in a consistent fashion. This allows you to formalize enterprise
best practices (‘‘common knowledge’’) and improves auditing, monitoring,
and the control of exceptions. This represents a big step toward regulatory
compliance.

The centralized exception resolution service allows for faster implementa-
tion of changes in the handling of specific exception types. The most common
approaches to exception resolution are:

Automatic resolution that resolves the problem without the need for
human intervention

Semi-automatic resolution that evaluates a rule set and suggests possible
resolutions

Fallback to humans for manual resolution

The solution presented in Figure 9-18 has the following prerequisites:

All logging and messages, including information, warning, exceptions,
and so on must follow a standard format, for example, Common Base
Events (see www.ibm.com/developerworks/autonomic/books/fpy0mst

.htm#HDRAPPA for more information).

All participants (i.e., service consumers and providers, logging, excep-
tions resolution, and notification services) should be able to interpret the
exceptions/logging information, which should conform to the enterprise
semantic model (refer to service exceptions definitions in Chapter 6).

Analyzing and understanding failure entails linking log messages across
service boundaries. This requires a unique correlation ID, spanning the
scope of business transactions.

The logging and exception-handling architecture described here applies
SOA principles to provide the foundation for the effective management of
exceptions. It promotes the use of specialized infrastructure services to build
flexible, extensible exception-handling solutions, which are easily integratable
into SOA-based enterprise solutions.

Monitoring and Managing Enterprise Solutions

To compete in today’s economic climate, it is not sufficient to automate a
solution itself. Business intelligence, especially when it is actionable, provides

338 Part II ■ Designing SOA

the foundation of business competitiveness. Tuning the enterprise operation
requires knowledge about customers, products, processes, sales, expenses, and
so on. For example, in the case of policy issuance, it is important to know the
following:

The number of setup customers, rated quotes, and issued policies —
This measures the attractiveness of ACME’s offerings and the effective-
ness of their advertising campaigns.

The ratio of rated quotes and issued policies, most common terms and
conditions used by customers and premium amounts — This addi-
tionally quantifies the effectiveness of the current offerings, providing
insight into their improvement.

The average and peak processing times for policy issuance — In addi-
tion to indicating the turnaround time of the process, these metrics can
also drive increasing capacity of the IT systems.

While many SOA practitioners are trying to rush SOA solutions to the
market, considering solutions monitoring and management as nice to have,
in our opinion it is an integral part of the solution itself. There are two major
aspects to monitoring and management of enterprise solutions — business
activity monitoring and technical service monitoring. Although both of them
are about monitoring, they cater to two very different audiences:

Business activity monitoring supports evaluation of the business impact
of the enterprise solution by business people and consequently is con-
cerned with collecting and calculating the solution’s key performance
indicators (KPI), business measures, including historical trends, and
so on.

Technical monitoring of SOA solutions aids IT personnel in day-to-day
support of SOA-based solutions, including service utilization statistics,
service level agreement (SLA) evaluation, resource and capacity plan-
ning, problem resolutions, and so on.

The rest of this section covers details of both business activity and tech-
nical monitoring of service-based enterprise solutions and outlines the main
considerations of their implementation.

Business Activity Monitoring
An ideal BAM solution intercepts any significant business events in the
enterprise, examines the content of the event’s information, and decides how
this information has to be interpreted and ultimately processed. The outcome
of the BAM solution can range from simple reporting to personnel notification
to real-time changes to the solution execution.

Chapter 9 ■ Using Services to Build Enterprise Solutions 339

John Medicke, Feng-Wei Chen, and Margie Mago, in their article ‘‘Creating
an intelligent and flexible solution with BPM, Business Rules, and Business
Intelligence,’’ (October 2003), define BAM in terms of the ‘‘Five Rs’’ of business
activity monitoring and decision making:

Recognition of particular situations

Response to particular situations

Resolution of a particular situation

Review of the resolution actions

Delivering return on investment (ROI)

At the foundation of BAM are several key business improvement concepts,
which are becoming increasingly important to business executives. Inciden-
tally, these concepts are in close alignment with the principles of the SOA-based
solutions architecture (refer to Figure 9-2).

Putting business process management at the core of business solutions.
The explicit implementation of business processes provides the ability to
quickly adapt to changes in the business environment. The introduction
of the business process controller as one of the key components of enter-
prise solutions fully supports this concept.

Driving business processes by actionable intelligence and improving
them through analysis of key performance indicators captured during
their execution. The use of semantic messaging models in SOA-based
solutions simplifies the acquisition of business intelligence.

Replacing thousands of pages of business intelligence reports with a
smaller number of KPIs that reveal the critical characteristics of opera-
tional success. The introduction of specialized services dedicated to cal-
culations of KPI promotes centralized, flexible KPI calculations.

Driving business process execution by real-time actionable business
events representing the current state of the enterprise. This requires busi-
ness events to be produced and evaluated not after the completion of the
business process but rather during its execution. The usage of services
aligned with real business activities makes SOA-based solutions ideally
suited for such implementations.

From the solution design point of view, at least the following need to be
determined:

What business measures and KPIs are applicable for a given solution?
Typically, those are derived from the enterprise’s business vision, goals,
and objectives (see Chapter 4 for more details). For example, the number
of policy ratings and issuances, the ratio of ratings to issuances, and the
average and overall premium amounts, in the ACME example.

340 Part II ■ Designing SOA

How can these measures and KPI be calculated, based on the data con-
tained in the solution? For example, the amounts of ratings and issuances
can be measured through direct capturing of corresponding events; a
ratio of ratings to issuances can be calculated by dividing two values;
premiums amounts can be calculated based on the issuance information
and so on.

Which parts of the solution (including the solution’s business process,
participating services, UI, etc.) should be instrumented with business
events, emitting the data required for business measures and KPI calcu-
lations? For example, the BAM implementation for the issuance example
requires instrumentation of the issuance process with the events reflect-
ing current terms and quote calculation, rating, and issuance. These
events should contain enough information for the calculation of business
measures.

How should these business events be correlated (for example, solution-
wise, solution-instance-wise, etc.) to provide a full picture of solution
execution? For example, correlation in the case of issuance should be per-
formed on the issuance process instance level.

Additional considerations can include such topics as alarming, in cases
when KPIs are going out of the predefined range, alarm notifications, and
so on.

Technical Monitoring and Management of SOA Solutions
BAM provides enough information to business personnel for the man-
agement and monitoring enterprise solutions. However, its information
typically does not address requirements of the IT support personnel who
use enterprise-monitoring tools that report on the health of hardware, oper-
ating systems, applications servers, and applications. These tools also do not
solve the problem, because they provide information about the underlying
applications, not services using these applications’ capabilities. The proper
functioning of all of the participating applications does not ensure support
for required SLAs by the services utilizing these applications (for example, a
problem in the integration service would not be noticed by monitoring the
underlying application). Additionally, due to the potential sharing of appli-
cation capabilities by multiple services, a single faulty application can impact
several services simultaneously.

In the policy issuance example, different stakeholders within ACME are
interested in various pieces of information about service execution. SOA
governance and portfolio architects need to know which services are in
place and how they are utilized, so they can improve the accuracy of the
information about the enterprise services’ asset repository and adjust service

Chapter 9 ■ Using Services to Build Enterprise Solutions 341

functionality and sizing, based on usage scenarios. Infrastructure support staff
wants access to information about resource utilization so that they can optimize
deployment topologies, scope additional hardware requirements, and find the
best time for scheduled upgrades and patches. Finally, the IT support group
requires information about any abnormalities in the service execution so that
they can proactively manage IT functioning and more quickly determine and
correct operational problems.

As a result, the implementation of SOA-based solutions typically requires
creation of an additional layer of service monitoring and management on top of
the existing application monitoring and management. This service-monitoring
and management layer is not a substitute for traditional application monitoring
and management solutions but rather supplements them by adding additional
monitoring and management points and data. In our experience, the design of
these points and associated data is an essential part of the business governance
capabilities, which should often be designed and modeled as part of the
business processes and services.

Responsibilities of this layer include capturing execution characteristics of a
service as a whole (in the context of a specific business solution), including its
performance, throughput, utilization, and so on. It does not, however, monitor
and manage either execution of the JVMs, containers, and the like, which are
hosting the service implementations, or of underlying applications used by
the service implementation. Existing enterprise management systems are used
for these purposes. In effect, service monitoring provides the big picture of
the enterprise processes and their execution, which is supplemented by the
information provided by application monitoring and management, allowing
for drilling down into applications in order to perform root cause analysis of
abnormal behavior.

A typical service management and monitoring solution architecture (see
Figure 9-19) includes the following components:

Service management agents — These agents collect information about
service traffic and control service access, based on the service state
(active, in which case all messages are delivered to the service, or suspen-
ded, in which case service traffic is not delivered) defined in the agent.

Service manager application — The service manager collects infor-
mation from service management agents and stores it in the service
monitoring and management database. Additional service manager
functionality usually includes:

Historical trends calculation.

Alerting functionality, evaluating SLAs, and sending alerts if they are
not met. Alerting implementations can range significantly, from visual
(color-coded) alerts in a service management console to storing alerts

342 Part II ■ Designing SOA

Service
monitoring/

management
agent

Service
monitoring/
management

agent
Service

monitoring/
management

agentService
monitoring/
management

agent

Service monitoring/
management data

Service
Management

Console

Application monitoring
and management

systems

Enterprise IT
management

system

Service
Repository

Service
Manager

Figure 9-19 Typical service monitoring and management architecture

in the database to email notifications to integration with enterprise
monitoring systems. The ability to provide real-time alerts allows you
to use monitoring and management systems to alert support personal,
not only in the case of service failures, but also, more importantly,
when services are just starting to expose abnormal behavior. This
often allows you to mitigate issues before they lead to catastrophic
service failures.

Providing data to more powerful business-management systems to
assess the impact of service execution on the overall business (see
BAM, above, for more details).

Integration with a service repository to capture information about ser-
vice utilization.

Service management database — Stores information collected by ser-
vice monitoring and management agents and current system settings,
including service state (active/suspended), service objectives, and so on.

Service management console — A presentation for managed service
information and for providing information used by the system, includ-
ing the desired service state, service objectives, and so on.

The implementation of enterprise solutions requires appropriate monitor-
ing and management tools. Understanding the SOA service monitoring and
management architecture (refer to Figure 9-19) is critical to the proper use of
these monitoring tools. This includes the following:

Choice and placement of monitoring agents. The three most popular
options for monitoring agents are:

Chapter 9 ■ Using Services to Build Enterprise Solutions 343

Proxy agent — An agent, injected in the service traffic. The service
consumer, talks to the agent, which passes the request to the service
implementation. This is the least invasive approach to monitoring and
management, requiring no changes to the existing service consumer
and provider. On the other hand, this type of agent can lead to signifi-
cant performance degradation, especially in the case of large messages
and the use of SSL.

Interceptor agent — An agent is deployed in the same process space
as either the service consumer or provider (HTTP handler or JAX-RPC
handler are the prevalent deployment options in this case). This
option alleviates some of the problems of a proxy agent — for exam-
ple, performance degradation. On the other hand, this option usually
requires a significantly larger number of agents (one for every ser-
vice provider and often for every consumer), which makes the overall
solution implementation more expensive.

Callable agent — An agent is outside of the service traffic, with access
from the service consumer and provider. This architecture requires
modification to both service consumer and provider. An advantage
of this type of agent is a fixed size of communications between service
consumer and provider, which eliminates performance degradation in
the case of large service requests.

Design of the service SLAs (objectives). The choices for the SLA defi-
nitions supported by different monitoring solutions vary significantly
ranging from predefined SLA options to sophisticated SLA design
toolkits.

Design and implementation of integration and alerting options.

Implementation of service monitoring and management provides visibility
into service traffic and consequently service deployment and utilization. It
is a required element of an SOA implementation, allowing for proactive
management of service resources.

Enterprise Service Bus-Unified Infrastructure
for Enterprise Solutions

As we have shown in the previous sections of this chapter, there is a large
and ever-growing number of techniques for delivering flexibility and agility
to SOA-based solutions in a realistic and incrementally realizable manner. The
majority of these techniques are based on intercepting service communications
traffic and inserting additional processing of the service messages transpar-
ently to the service consumers and providers (compare this to the service

344 Part II ■ Designing SOA

communications layer, defined in Chapter 2). A common approach to sup-
porting such architectures is an Enterprise Service Bus (ESB). In this section,
we explain what an ESB is, and describe an overall ESB architecture and
considerations for choosing an appropriate ESB for a given implementation.

Defining ESB
With so many conflicting definitions (see the sidebar ‘‘ESB Definitions’’)
many practitioners consider an ESB to be a product. And in reality, there
are more and more products labeled ESB on the market. Starting with an
early implementation by Sonic Software (the company that actually coined the
name), the number of ESB products has constantly grown. There are already
open source ESB implementations (for example, MULE and Tuscany), and
some companies have several ESB products (for example, IBM has three); it is
not just Java anymore (Microsoft recently announced its own ESB).

ESB DEFINITIONS

Adding to the confusion around the Enterprise Service Bus is the multiplicity of
definitions:

◆ ‘‘A Web-services-capable infrastructure that supports intelligently directed
communication and mediated relationships among loosely coupled and
decoupled biz components.’’ — Gartner Group

◆ ‘‘The ESB label simply implies that a product is some type of integration
middleware product that supports both MOM and Web services protocols.’’
— Burton Group

◆ ‘‘A standards-based integration backbone, combining messaging, Web
services, transformation, and intelligent routing.’’ — Sonic Software

◆ ‘‘An enterprise platform that implements standardized interfaces for com-
munication, connectivity, transformation, and security.’’ — Fiorano Software

◆ ‘‘To put it bluntly: If you have WebSphere MQ and other WebSphere brokers
and integration servers, you have an ESB.’’ — Bob Sutor, IBM

◆ ‘‘The Enterprise Service Bus is a uniform service integration architecture of
infrastructure services that provides consistent support to business services
across a defined ecosystem. The ESB is implemented as a service oriented
architecture using Web Service interfaces.’’ — CBDI

◆ ‘‘ESB is an open standards–based distributed synchronous or asynchronous
messaging middleware that provides secure interoperability between
enterprise applications via XML, Web services interfaces and standardized
rules-based routing of documents.’’ — Webopedia

Chapter 9 ■ Using Services to Build Enterprise Solutions 345

◆ ‘‘An ESB refers to a software architecture construct, implemented by tech-
nologies found in a category of middleware infrastructure products usually
based on standards, that provides foundational services for more complex
architectures via an event-driven and standards-based messaging engine
(the bus).’’ — Wikipedia

Other practitioners consider ESB to be an architectural pattern and exist-
ing products to be implementations of this pattern. We belong to this latter
camp. In our mind, an ESB is an enterprise-wide extendable middleware
infrastructure providing virtualization and management of service interac-
tions, including support for the communication, mediation, transformation,
and integration technologies required by services. The foundation of the ESB
pattern is a universal intermediary. (This intermediary does not have to be
remote. We consider any abstraction layer, whether local or remote, used as an
intermediary to be a service bus.) Rather than interacting directly, participants
in a service interaction communicate through a bus, which can be implemented
using a variety of middleware technologies and programming models.

VIRTUALIZATION

Virtualization is a commonly used approach for simplification of the IT
infrastructure through unification of access to resources and the management
of those resources. According to Wikipedia:

Virtualization is the process of presenting a logical grouping or subset of
computing resources so that they can be accessed in ways that give bene-
fits over the original configuration. This new virtual view of the resources
is not restricted by the implementation, geographic location or the physical
configuration of underlying resources.

Resource virtualization enables hiding many proprietary infrastructure
components that are required for the proper functioning of particular
resources, and minimizes the impact of IT infrastructure changes on the
resource consumers.

A service implementation is a type of virtualization of IT resources hidden
behind the service interface. An ESB adds an additional level of virtualization to
the service through vitalizing the service infrastructure (access). In effect, SOA
with ESB is virtualization squared.

The roots of the ESB can be traced to a common approach used in application
integration architectures — hub and spoke (Message Broker), which support

346 Part II ■ Designing SOA

virtualization and decoupling in EAI implementations. In this architecture,
invocations and routing rules are separated from implementations. The draw-
back of this architecture is the fact that a central hub becomes both a single
point of failure and a potential bottleneck for communications.

In order to avoid these drawbacks, hubs can be joined together to form what
is logically a single entity — bus — that provides a single point of control
but is implemented as a collection of physically distributed components. A
bus lowers coupling between service consumers and providers by serving as
a communication intermediary supporting mediation between required and
provided capabilities. This provides a clean separation between the business
aspects of the solution supported by the service consumers and providers, and
the technical aspects (for example, security, or dynamic routing) supported by
the bus. Furthermore, in a bus architecture, the implementation of this technical
aspect can change transparently to the service consumers and providers. For
example, the introduction of a new security approach could be limited to
changes in the bus mediation.

The ability of a bus to support communications between consumers and
providers is based on the explicit declaration of capabilities and requirements
of interactions — metadata describing domain models (set of services) and a set
of policies governing access to these services. This metadata allows the bus to
validate the request, map it to the location of the actual service implementation
(supporting the required invocation policies), and invoke services on behalf of
consumers.

ESB Architecture
The basic architecture of an ESB is presented in Figure 9-20 and usually
contains the following:

Distributed ESB engine, (run-time engine) responsible for communica-
tions between service consumers and providers. This engine is usually
multi-transport and supports message delivery and service invocation,
along with quality of service support for these operations. It often sup-
ports events and the publish/subscribe paradigm.

Distributed ESB infrastructure services, including:

Service location/routing directory — Service registry containing
service endpoint addresses and policies governing access to the end-
points.

Transactional support — An ESB usually implements multiple trans-
actional models — business transactions, required for business
service interactions and variations of two-phase commit transactions
for integration services.

Chapter 9 ■ Using Services to Build Enterprise Solutions 347

Provider

Interface

Provider

Interface

Provider

Interface

Consumer

Interface

Consumer

Interface

Consumer

Interface

Consumer

Interface

Service
locator/
routing

directory

Security
support

Mediation Transfor-
mation

Distributed Infrastructure

Run-time
engine

Run-time
Configuration

Administration and Control

ESB

Distribution

Transactional
support

Adapter
(as required)

Adapter
(as required)

Adapter
(as required)

Monitoring

Run-time
engine

Run-time
engine

Run-time
engine

Figure 9-20 Basic ESB architecture

Mediation — Framework, allowing for the injection of intermediate
processing to ‘‘in-flight’’ messages.

Specialized engines — For example, rules and orchestration engines.

Monitoring — Including infrastructure monitoring of the ESB com-
ponents, service traffic monitoring, and business level monitoring —
BAM.

Service security support — Including authentication, authorization,
confidentiality, non-repudiation, and so on.

Additional ESB services can include exception processing, logging,
and so on.

Run-time configuration — ESB metadata defining the configuration and
distribution of ESB components (engines and services). This functional-
ity allows you to add additional nodes to the ESB, and configure the
location of the service registry, security policies, and so on.

Centralized administration and control — Interface for viewing and
modifying the ESB metadata. It also allows for viewing the service moni-
toring results and creating alarms in the case of missing service SLAs (for
example, performance characteristics).

348 Part II ■ Designing SOA

Service providers and consumers connect to the ESB either directly (through
the ESB interfaces) or by using custom adapters.

There are three popular approaches to an ESB implementation:

Stand-alone ESB

ESB as a service container

ESB as a framework

Stand-alone ESB

The stand-alone ESB architecture (see Figure 9-21), which was implemented
by the majority of the initial ESB implementations, resembles a classical
hub-and-spoke architecture. In this case, all of the service consumers and
providers are communicating with the bus, which is responsible for mediating
service traffic.

The important characteristic of this ESB architecture is its minimal impact
on service consumers and providers. This is both a strength and weakness of
this approach. On one hand, it minimizes vendor ‘‘lock-in’’ through the ability
to change bus implementation (as long as the capabilities of the bus do not
change). On the other hand, it limits the capabilities provided by the bus for
things like service creation, deployment, and so on.

ESB as a Service Container

A new option for an ESB implementation, introduced by application server
vendors, is the ESB as a container. This implementation (shown in Figure 9-22)
is an extension of the application server, which hosts the service implementa-
tion and provides intermediary support and communications at the container
level.

The advantage of this approach is the very rich container support for service
design and implementation that comes from the existing application servers,

Service

Bus

Service Service

Service

Figure 9-21 Stand-alone ESB

Chapter 9 ■ Using Services to Build Enterprise Solutions 349

Service

Service Container

Service Service

Service

Service Container

Figure 9-22 ESB as a service container

including tooling, container services, and so on. On the other hand, because of
vendor’s lock-in, which is significantly more pervasive in this case, changes to
the ESB can require modifications to the service consumers and providers.

ESB as a Framework

The ESB as a framework approach (shown in Figure 9-23) is typically a
‘‘home-grown’’ implementation created by companies that have decided not
to buy an ESB product, but rather to ‘‘wrap’’ their existing middleware
capabilities (including existing application servers and EAI solutions) in a way
that provides an ESB pattern.

The main strength of this approach is its complete vendor independence.
Once designed and implemented, the framework can run transparently on any
middleware platform providing a unified programming model and capability
support. It also isolates service providers and consumers from middleware
changes, version compatibility issues, and so on. On the other hand, such
an implementation requires a potentially large investment in time and a vast
amount of code to be implemented and supported by companies.

Service Service

Framework Framework

Service Service

Framework FrameworkBus

Figure 9-23 ESB as a framework

350 Part II ■ Designing SOA

Choosing an ESB
With all the vendors’ hype and different ESB architectures, choosing an
appropriate ESB for a solution becomes a complex decision, which includes
the following considerations:

Support for most of the required functionality

Extensibility of the product for additional functionality

Adherence to a standards-based approach versus a proprietary
implementation

Vendor versus in-house support

The most important ESB capabilities can be defined as follows:

Communications, including support for message routing; addressing
schemas; supported middleware, protocols, and standards (for example,
JMS, HTTP, and HTTPS); message encoding, (for example, SOAP;
supported interaction styles request/response, fire-and-forget, asynchro-
nous messaging, events, and publish/subscribe); and so on

Service definitions, including support for service interface definition (for
example, WSDL), service versioning support, support for service discov-
ery (for example, service registry), and so on

Integration, including support for accessing databases, legacy and pack-
aged application adapters, connectivity to EAI middleware protocol
transformation language interfaces for service invocation (for example,
Java, C, C++, and C#), and so on

Quality of service, including support for transactions (for example,
atomic transactions, compensation, WS-Transaction) and assured mes-
sage delivery paradigms (for example, WS-ReliableMessaging or sup-
port for persistent queuing), and so on

Security, including support for authentication, authorization, non-
repudiation, confidentiality, security standards support (for example,
Kerberos and WS-Security), and so on

Service level agreements, including capabilities for message delivery as
performance, throughput, availability, other continuous measures that
might form the basis of contracts or agreements, and so on

Message processing, including support for encoded logic, content-based
logic, message and data transformation, message validation, data enrich-
ment, and so on

Management, including support for service provisioning and regis-
tration; logging, metering, and monitoring; integration with systems

Chapter 9 ■ Using Services to Build Enterprise Solutions 351

management and administration tooling; self-monitoring and self-
management; alerting; and so on

Modeling, including support for common business objects models, data
format libraries, development and deployment tooling; and so on

Infrastructure intelligence, including support for business rules; policy-
driven behavior, particularly for service level, security, and quality of
service capabilities (for example, WS-Policy); service orchestration; pat-
tern recognition; and so on

N O T E For a full list of ESB capabilities, refer to the series of articles by Rick
Robinson, ‘‘Understand enterprise service bus scenarios and solutions in
service-oriented architecture, Part 1–3,’’ (June 2004).

Although some of these capabilities are quite basic, others, such as intelligent
routing capabilities, are quite advanced. It is important to recognize that a
particular SOA implementation requires only a subset of the capabilities within
a subset of these categories.

An ESB provides a unified service support infrastructure, supporting both
business-focused and integration services (refer to Figure 9-3). This infra-
structure supports service invocations over multiple transports with different
QoS, usually governed by policies. An ESB also provides built-in support
for the majority of the service’s run-time patterns, including the service
registry, service management and monitoring, and facilities for the centralized
management of deployed services.

Although many practitioners, especially software vendors, would like you
to believe that the use of an ESB product is a prerequisite for a successful SOA
implementation, this is not true. We have seen and successfully implemented
SOA solutions without them. On the other hand, an ESB (at least on the
pattern level) is very powerful middleware, which often simplifies SOA-based
implementations.

Summary

This chapter has defined a layered architecture for SOA-based enterprise
solutions. It then discussed some of the key components that have to be taken
into consideration when building solutions including:

Service locations — Defining the ways to make endpoint addresses of
services available throughout the enterprise, based on the service reg-
istry, which can be used as a universal service locator

352 Part II ■ Designing SOA

Service versioning — Defining the ways to evolve services and service-
based solutions independently with minimal or no impact on each other

Service security — Defining architectural approaches to securing
service-based enterprise solutions

Exception handling and logging in the SOA world — Defining the role
of basic exception and logging architecture, which can be easily incorpo-
rated in any SOA-based implementation

Service monitoring and management — Defining the role, place, and
two important types of monitoring and management: BAM and techni-
cal management

Finally, we introduced the Enterprise Service Bus pattern, which provides
virtualization of service communications and serves as a foundation for the
implementation of the majority of the architectural components described in
this chapter.

C H A P T E R

10
Designing and Using Integration

in SOA Solutions
Existing software assets are essential to your business. Application systems contain

a reservoir of business rules vital to operational continuity, yet remain
undocumented outside the source code. These software assets and the

accompanying business data are difficult to decipher and almost impossible to
replicate using ‘‘green-field’’ approaches.

–William Ulrich

With all the advances in SOA that provide the best hope for efficient, flexible,
and cost-effective implementations, the bulk of the business processing today
is still carried out by legacy systems and packaged applications, like Enterprise
Resource Planning (ERP), Customer Relationship Management (CRM), and so
on. If there is a big bang conversion from existing applications to new systems,
architecture will not work. Instead, IT organizations should bridge the gap
via a carefully planned transition and migration process. This means that
SOA solutions cannot be built in a vacuum — the only cost-effective approach
is to base new solutions on the existing application portfolio and leverage
integration as a mechanism for accessing the existing capabilities. But, it is not
as simple as just Web- Service-enabling existing applications and data. Instead,
the existing functions and data need to be transformed into new capabilities
and information that can move the enterprise forward toward its current goals
and strategies, and not keep it tied to the 20-year-old strategies associated with
the 20-year-old systems.

This chapter discusses the role that integration plays in SOA and introduces
more specific definitions of integration services and their implementation
challenges.

353

354 Part II ■ Designing SOA

The chapter covers the following topics:

The role of integration and what makes its implementation complex

The history of attempts to bridge SOA and integration

Choosing integration implementation approaches

Cross-cutting concerns for implementing integration, including data
mapping, security, transactional support, versioning and support for
large messages

Supporting data access in SOA

The Enterprise Data Bus as a pattern for virtualization of data access to
services throughout the enterprise

Challenges of Integration in SOA

Integration is not new. It has been around for at least 10-15 years and is
well understood and widely adopted. In today’s reality, integration projects
consume a lion’s share of the IT budget, often impeding new developments.
The need for integration is caused by the siloed nature of existing enterprise
applications, which manifest themselves as islands of data, automation, and
security.

Characteristics of Islands of Data
Each island of data has its own meaning and/or definition of enterprise objects.
For example, in one application ‘‘insured party’’ defines an insured individual;
in another application, the same term might refer to a company. Even if an
object, for example, ‘‘address’’ has the same meaning in two applications, one
application can define it as a set of address lines, while another might treat
it as street address, city, state, zip, and country. Both cases create semantic
dissonance between applications.

Each island of data has information that overlaps with the contents of another
island. For example, applications dealing with the management of health
and dental claims also store the demographics information for the insured.
At the same time the CRM application contains both insured addresses and
demographics. This duplication creates integrity issues.

No one can provide a complete picture of the enterprise data. For example, a
personal auto Policy and Product Administration application doesn’t contain
information about the insured policies from other lines of business. Creating
a unified view of the enterprise data requires integrating information from
multiple sources.

Chapter 10 ■ Designing and Using Integration in SOA Solutions 355

Characteristics of Islands of Automation
Each island of automation focuses on a limited set of activities within the
enterprise. For example, a health claim management application deals only
with the processing of health claims without considering the role and place of
these activities in the overall enterprise business process. This requires users
to engage in ‘‘application hopping’’ to perform their work, thus affecting their
productivity.

There is a duplication of functionality between multiple applications. For
example, multiple applications that process insurance applications for different
lines of business all implement address cleansing functionality. As a result,
when changing address cleansing rules, these changes have to be coordinated
between all applications.

There is duplication of business processes contained within different islands.
For example, as a result of a merger or acquisition an insurance company
can have several claim-processing systems. This requires synchronization of
changes among multiple applications, ensuring consistency of the processes
and business rules that support these processes.

Characteristics of Islands of Security
Different enterprise applications often use different authentication mechanisms.
This makes it difficult to propagate user identity among multiple applica-
tions. For example, existing solutions such as Single Sign-On (SSO) cater to
web-facing applications and employ browser sessions and cookies associated
with them. Therefore, they are usually not applicable to application inte-
gration. Various applications also use application-specific identities, not tied
into the global enterprise, which creates further integration difficulties. Addi-
tionally, different authorization mechanisms (roles versus security attributes
versus individual authorization) employed by different applications often rely
on incompatible representations for user identity. Complicating the matter
further, individual enterprise applications may use application-specific autho-
rization credentials and tightly coupled, deeply embedded security logic,
making security integration very difficult.

Requirements for the implementation of invocation privacy can vary signifi-
cantly between enterprise applications. Popular choices include implementing
privacy at the transport level (e.g., HTTPS or SSL) or at the message level (e.g.,
S/MIME, WS-Security).

Different applications can provide radically different mechanisms and locations
for security audit trails. Bringing together and correlating these trails for multiple
integration activities can be a difficult task. In addition, the heterogeneity of
storage mechanisms and formats often makes them virtually unusable. The
necessity to create maintainable and manageable IT infrastructure positioned to

356 Part II ■ Designing SOA

better respond to the business needs requires a massive amount of integration
work, aimed at bridging these islands.

Despite the fact that integration has been around for many years, a large
portion of integration projects fail. The major reasons for these failures are:

Although many integration vendors try to convince you otherwise, the
complexity and cost of integration is not due to the complexity and cost
of a particular tool but rather due to the complexity and cost of architect-
ing interactions between heterogeneous applications that often were not
designed to work together.

In many of today’s enterprises, each business unit is autonomous and
has its own set of technologies, applications, and budgets. Cross-unit
integration requires both technical (infrastructure and applications) and
financial (sharing integration costs) cooperation between business units,
which typically requires centralized IT governance.

Defining the overall integration approach and implementation archi-
tecture is still as much art (based on the experience of the integration
teams) as science. There is no well-established methodology for topics
such as how to analyze overall data and process flow, when to choose
simple data synchronization versus service-oriented architecture, and
how to determine data and service interfaces. Standardized architectures
should be in place when defining applicable EAI topologies, includ-
ing the choice of the integration transports, definitions of routing rules,
placement of the data transformation, security, failover, and load balanc-
ing. Considerations for each are important.

Integration spans multiple existing applications and usually involves
comparatively little development work but a lot of research and design
activity. This requires teams, project management, and implementation
approaches that differ significantly from those of traditional application
development.

As the size of the integration grows, so does the complexity. Unfor-
tunately, unlike traditional applications, this growth is not linear, but
rather exponential.

Integration is considered by many companies to be a technical, rather
than a business undertaking. This leads to the business impact of inte-
gration being ignored until deployment to production, at which time it is
already too late.

Data model mismatches between applications severely complicate inte-
gration. (This topic is covered in more detail later in the ‘‘Data Mapping
in Integration’’ section of this chapter.)

Chapter 10 ■ Designing and Using Integration in SOA Solutions 357

Implementing integration as part of SOA makes integration even more
complex. First, SOA is often an enterprise-wide undertaking, which makes the
requirement for business unit cooperation and centralized governance even
more stringent. Second, there is an architectural design mismatch between
SOA and existing enterprise applications. SOA design defines business services
based on the decomposition of the enterprise business model with the interfaces
defined according to the enterprise semantic model. In contrast, existing
enterprise applications have been created and/or acquired over time in order
to fulfill specific tasks. The differences between these two approaches make
it challenging to use existing applications to implement business services.
In SOA, the role of integration is not only to bridge the islands described
previously, but also to deal with the following:

Information fidelity — The redundancy of business data between appli-
cations creates an inaccurate representation of enterprise data, even
when periodic synchronization occurs. The representations themselves
are difficult to reconcile, or at worst contradictory. As the individual
applications evolve independently, the complexity of the problem
increases. The role of integration in SOA is to rationalize data from mul-
tiple existing applications in order to provide accurate information to
the business services. Furthermore, it requires data updates, executed on
the business service level to be correctly propagated to all participating
enterprise applications.

Business processes fragmentation — Individual applications provide
a limited, often duplicated, piece of enterprise functionality. The role
of integration in SOA is not only to pick the most appropriate imple-
mentation of the existing functionality but also to ensure that it won’t
break existing applications.

Security fragmentation — Different enterprise applications rely on
users’ identity/group membership for programmatic/declarative
authorization implementation. These applications often use different
authentication approaches, which can be based on different users’ repre-
sentations located in different users’ identity stores. Therefore,
integration in SOA is required to correctly convert a user’s identity rep-
resentation in order to satisfy each of the enterprise applications used.

All of the previous points require careful architecture and implementation
of integration in SOA environments. In the rest of this chapter, we discuss
different integration approaches and show how these problems can be solved.
Also refer to Chapter 14 for a case study of building an integration solution
for a fictitious insurance company.

358 Part II ■ Designing SOA

Integration in SOA Defined

The first attempt to extend SOA to standardize integration implementation —
Service-Oriented Integration (SOI) — was suggested by several authors in
the early 2000s. SOI is defined by Anna Liu and Ian Gorton in their paper,
‘‘Process and Criteria for Evaluating Services-Based Integration Technologies,’’
(July 2005):

The services-based approach to doing integration is about integrating computing
entities using service interactions. The services-based approach to integration
addresses problems with integrating legacy and inflexible heterogeneous sys-
tems by enabling IT organizations to offer the functionality locked in existing
applications as reusable services.

In contrast to traditional enterprise application, integration (EAI), the significant
characteristics of the services-based approach to integration are:

Well-defined, standardized interfaces — Consumers are provided with eas-
ily understood and consistent access to the underlying service.

Opaqueness — The technology and location of the application providing the
functionality are hidden behind the service interface. In fact, there is no need for
a fixed services provider.

Flexibility — Both the providers of services and consumers of services can
change — the service description is the only constant. As long as both the
provider and consumer continue to adhere to the service description, the applica-
tions will continue to work.

The original SOI approach was to simply replace any proprietary mid-
dleware with SOAP over HTTP as a ubiquitous middleware platform guar-
anteeing interoperability between service consumers and providers (see the
sidebar ‘‘Service-Oriented Integration,’’ which follows the approach described
in ‘‘Integration Patterns’’ by David Trowbridge, et al. [June 2004]).

SERVICE-ORIENTED INTEGRATION

It is necessary to integrate information systems that were not originally
designed to work together. These systems are built using different
technologies, languages, and architecture.

Problem

How do you integrate applications at the business logic layer?

Chapter 10 ■ Designing and Using Integration in SOA Solutions 359

Forces

Integrating systems at the business logic layer involves balancing the following
forces:

Explicit Machine Boundaries
Attempt to minimize coupling to improve interoperability.

Solution

Integrate applications at the business logic layer, through the use of Web
Services Description Language (WSDL) contracts to describe the interfaces to
these systems. Ensure interoperability by making the implementation
compliant with the Web Services family of specifications (including Web
Services Interoperability [WS-I]).

Note: The term service is used in many different ways in the context of
software engineering. In this pattern, the term service is used to mean XML
Web Services.

Resolving the Forces
Basing service invocation (messages) on XML and XML Schema Definition
language (XSD) results in a highly portable type system that dramatically
reduces type-system coupling, which is a major impediment to cross-platform
integration.

Benefits
The key benefit of using Service-Oriented Integration is interoperability
between disparate technical architectures, which helps to decouple an
enterprise’s business architecture from its information technology. This
decoupling gives an enterprise a great deal of flexibility in terms of how it
implements specific business capabilities.

Liabilities
The key liability of using Service-Oriented Integration is the use of XML
for marshaling data. Not only can marshaling/unmarshaling be very expensive,
but it also leads to increased message size, which increases network
traffic.

360 Part II ■ Designing SOA

Although, using SOI provides for bringing SOA and integration together,
it is a simplistic and not very practical approach because it treats integration
the same way as business services. As a result, business services created using
the SOI approach are aligned not with the enterprise business model, but
rather with the existing functionality of a particular application, with all of the
drawbacks of that approach:

This approach goes against one of the most important SOA principles —
services are the rationalization layer, hiding existing application portfo-
lios and supporting the ideal enterprise business model.

Services built using the SOI approach expose existing application
functionality rather than the functionality defined by the enterprise
model, and this might complicate reuse later on.

The SOI approach creates a tight coupling between the existing appli-
cation portfolio and the service interfaces. If one or more enterprise
applications change, an undesirable ripple effect may be created in
the existing service model.

Services in SOI expose the underlying application’s data model, rather
than the enterprise semantic information model (detailed in Chapter 5),
and this typically complicates interoperability.

The granularity of a service is aligned with the existing application,
resulting in a potential increase in network traffic.

Integration Services
This book takes a different approach. We treat integration as a specialized
type of service — an integration service. The role of integration services is to
provide access to the existing enterprise applications and data, so that they can
be utilized by business and utility. Scott Simmons in his article ‘‘Introducing
the WebSphere Integration Reference Architecture,’’ (August 2005), defines
integration services as ‘‘the bridging capabilities between legacy applications,
pre-packaged applications, enterprise data stores (including relational, hier-
archical, and nontraditional, unstructured sources, such as XML, text and
content management systems), and the business services implementation.’’

With such integration services in place, a typical implementation of a
business/utility service is an assembly of business components, the majority
of which are implemented as wrappers using integration access to the exist-
ing legacy applications. See Figure 10-1. An integration service, as defined in
Chapter 2, is represented here as a combination of integration access (a mech-
anism used to expose existing legacy functionality and business components)
and an abstraction layer hiding details of the interaction with the integration
access.

Chapter 10 ■ Designing and Using Integration in SOA Solutions 361

Service Facade

Component

Component

Component

Component

Service
Implementation

In
te

gr
at

io
n

Se
rv

ic
e

In
te

gr
at

io
n

Se
rv

ic
e

Legacy
Application

Legacy
Application

Service Interface

Figure 10-1 Business service implementation

Such an implementation has the following advantages:

Full utilization of the functionality of existing enterprise applications

The ability to extend the legacy system’s functionality, through addi-
tional components, without extending or modifying existing legacy
systems

Increased granularity of business services through combining the func-
tionality of multiple legacy systems (or multiple interfaces of the same
legacy system accessed using business components) and implementing
additional functionality to rationalize this data and functionality

Rationalization of legacy applications and data and their alignment with
the enterprise business and data models

The implementation presented in Figure 10-1 introduces an additional ele-
ment to the overall business service implementation — a business component.
Business components are not only building blocks for the business service
but also a layer of abstractions for integration access. Integration access is not
exposed as a service, but rather as business components encapsulating the
access.

Regardless of the interface exposed by the existing legacy application,
business components always support the interface that is aligned with the
requirements of the business/domain/utility service. This means that busi-
ness component interfaces are always designed on the basis of enterprise
semantic (domain) data. Such a design simplifies the use of business com-
ponents by business service implementers (we refer to ‘‘business services’’
throughout the chapter, but it could be any of the business-oriented services

362 Part II ■ Designing SOA

of our hierarchy, business, domain, or utility). Consequently, data exposed
by existing applications has to be transformed (mapped) to the domain
data representation. We discuss implementation and placement of the data
transformation later in this chapter in the ‘‘Data Mapping in Integration’’
section.

The business components layer provides a simple, consistent programming
model for the business service implementation, which hides idiosyncrasies (see
‘‘Integration Access Implementations’’ later in this chapter) of the integration
access. For example, a single synchronous call to a business component can
result in conversational invocation of the integration access. Furthermore, if an
integration access does not expose an invocable interface directly (for example,
it is implemented as a message exchange with an existing application), a
business component can implement such an interface on its behalf.

In the majority of cases, one business component is created for every inte-
gration access. A notable exception to this rule is when integration access
supports conversational interactions that require multiple interactions with
more than one access to achieve the required result. For example, rating an
insurance policy might require two invocations. One to send policy informa-
tion, which returns a handle, and the other one that accepts the handle and
returns the amount. These two integration access points represent a functional
split within the legacy implementation, which is irrelevant to the business
service implementation. A typical implementation of a business component
combines these two integrations.

This approach is well aligned with the latest SOA programming model —
Service Component Architecture (SCA). (Refer to Chapter 8 and Appendix C
for more information.)

Introduction of the business components also has an impact on the integra-
tion reuse policy. In this case, reuse is at the level of the business component,
which encapsulates the knowledge of the invocation of the integration access.

This separation between integration, business services, and business com-
ponents leads to the following extension of the layered enterprise architectures
for SOA presented in Chapter 9. (See Figure 10-2.)

Figure 10-2 presents a simplified, high-level view of the layered SOA
architecture. In reality, integration exists within the existing IT applications
layer as well, because the transition to SOA happens over time. As a result, the
use of existing applications will have to coexist with the use of the new SOA
implementation. This means that integration that has been put into place (for
example, for propagating updates from one application to another) needs to
be preserved during the transition to SOA. After the transition is completed,
such integration can be moved to the business components layer. Additional
layers introduced in Figure 10-2 are:

Enterprise Resources and Operational Systems — This layer consists
of existing applications, legacy and COTS systems, including CRM and

Chapter 10 ■ Designing and Using Integration in SOA Solutions 363

DataData DataServers Servers

WorkstationsMainframe Mainframe

Customer-Facing
 Applications’ View
 into Enterprise
 Processes

Business Process
 Driven Enterprise

Services-
 Rationalization of
 Enterprise Systems
 Against Business
 Meaningful Services

Business Components
 Encapsulation of
 Integration and
 Additional Functionality

Integration
 Exposing Existing
 Enterprise Systems

Existing IT
 Hardware/Software
 Topology

Figure 10-2 Layered Enterprise Architecture for service implementation

ERP packaged applications, and older object-oriented implementations.
These applications provide business operation: transactions that repre-
sent single logical units of work in the enterprise’s operational systems.
Execution of an operation typically causes one or more persistent data
records to be read, written, or modified in a System of Record (SOR).
Operations have a specific, structured interface, and return structured
responses.

Integration Access — Integration access provides access to an exist-
ing application’s functionality. This separation between the business
services and integration is critical to maintaining a flexible enterprise
environment. Although integration directly exposes the functionality
of existing applications and is tightly coupled with the existing appli-
cation, business services expose functionality that is aligned with the
enterprise business model and, therefore, is completely decoupled from
the existing application’s portfolio.

Business components — Business components are deployable units
of software that provide the (integration) functionality required by the

364 Part II ■ Designing SOA

business services. Components can either be implemented directly or
wrap existing operational systems using integration services. Compo-
nent implementations usually use container-based technologies such
as application servers to provide workload management, availability,
and load balancing. The components, acting as integration service con-
sumers, provide a single point of access to the integration services. This
prevents a proliferation of hard-to-manage cut-and-paste code for access-
ing the integration services.

This layering promotes architectural differences between integration ser-
vices and business services:

Unlike business services, integration services don’t have to be coarse-
grained. The granularity of the integration is defined by the granularity
of the existing functionality, exposed by the application. It is generally
advantageous to increase this granularity when possible.

Synchronous invocations are a prevalent invocation pattern for integra-
tion services (with some exceptions for the data integration).

ACID transactions are often a required property of the integration ser-
vices, especially when their functionality is to update application data.

Legacy integration often requires conversational interactions;
consequently, integration services often have to be implemented as
conversational.

Defining integration services as an implementation technique for business
services is also well aligned with the service design approach described in
Chapter 3.

Integration Access Implementations
Given the broad definition of integration access as a way to expose existing
legacy functionality and data to business services, a wide variety of integra-
tion access implementations are possible. Specific implementation approaches
depend on the following major factors:

Enterprise maturity in the EAI/integration space — If a company
already has either a robust EAI implementation (Message Broker) or a
widely used messaging infrastructure that supports integration of the
major enterprise applications, existing middleware can be leveraged for
implementing integration services.

Composition of the existing application portfolio — If the majority of
the existing application portfolio is composed of packaged applications
from major software vendors, and these applications are kept relatively

Chapter 10 ■ Designing and Using Integration in SOA Solutions 365

current, there is a high probability that these applications expose their
functionality by using Web Services. In this case, the implementation
of integration services should leverage the Web Services supported by
the packaged applications.

Business service implementation platform — If the majority of busi-
ness services are implementated using J2EE applications servers, which
provide prepackaged adapters (based on JCA/J2C) to the majority of
existing application platforms, these adapters can be used as a basis for
implementing access within integration services. An additional advan-
tage of this approach is the ability to support two-phase commit (2PC)
transactions if integrated applications also support them.

Integrated application implementation — If the integrated application
is component-based with well-documented component functionality
and interfaces, and the implementation platform supports the easy gen-
eration of Web Service wrappers, generated Web Services should be
used as a basis for implementing integration services.

Type of integration — If integration is for the most part data integration
and the majority of data is available in relational databases, database-
specific middleware, for example JDBC, should be used for implement-
ing integration services.

In this section, we discuss the architecture and implementation details for
each of these approaches.

Using Messaging Infrastructure to Implement Integration Access

When the majority of enterprise applications are connected to a messaging
infrastructure (for example WebSphere MQ, Tibco Rendezvous, etc.), this
middleware can be used as a basis for implementing integration access.

In this case, the business component sends a request message to the request
queue — a queue that the existing enterprise application is listening on. Once
an application is done executing the request, it sends the reply to the reply
queue that the business component is listening on. (See Figure 10-3.)

Service
Provider

Service
Consumer

Request
Queue

Reply
Queue

Figure 10-3 Implementing integration using MOM

366 Part II ■ Designing SOA

The following should be considered when using MOM (Message Oriented
Middleware) to implement integration access.

Both the business component and enterprise application have to be able
to connect to the messaging system. This typically requires some MOM
client software to be installed with the business component and enter-
prise application.

MOM is an asynchronous middleware, which means that it supports
only one way messaging. Therefore, sending a request results in an
immediate return of execution control to the business component, allow-
ing for parallel execution of both business component and enterprise
application. When synchronous communications with the enterprise
applications are required, the business component should explicitly wait
for the reply message to arrive.

Existing MOM-based integration can use a wide variety of message
formats, ranging from proprietary XML representations to position-
oriented strings; for example, COBOL copybooks. The business com-
ponent implementation has to be able to support the format used by
the existing application. In doing so, it might be required to do EBS-
DIC/ASCII conversions, data transformation, and so on.

The majority of MOM implementations are transactional; a message is
not delivered to the request queue until a transaction-initiated mes-
sage send is committed. This might pose a problem in the case of syn-
chronous communications using MOM. If an attempt is made to receive
a reply message in the same transaction in which the request message
is sent, a deadlock occurs. As a result, synchronous invocation of inte-
gration over MOM should be done outside of the business component’s
transaction.

Typical MOM implementations provide both persistent and nonpersis-
tent messaging. Persistent messaging is slower (messages are written to
a hard drive or database) but provides guaranteed message delivery. In
the case of asynchronous invocations, when guaranteed messaging is a
main requirement, it is necessary to use persistent messaging. In the case
of synchronous invocations, when performance is the main requirement,
nonpersistent messaging is a better fit.

Many of the modern MOM implementations support security. This secu-
rity only controls access to MOM, not access to the enterprise applica-
tion. The only way to implement security for the enterprise application,
in this case, is to add the consumer’s credential to the message content.
Security is discussed later in this chapter in the section titled, ‘‘Security
Support for Integration.’’

Chapter 10 ■ Designing and Using Integration in SOA Solutions 367

When the majority of existing enterprise applications are MOM-enabled
(support request and reply messages sent to and from these applications),
implementing integration using existing messaging middleware is usually
straightforward.

Using a Message Broker to Implement Integration
A Message Broker introduces an additional layer on top of traditional mes-
saging systems — sometimes called a messaging hub. In this architecture, all
messages are routed between consumers and providers indirectly through the
hub, providing a centralized processing layer for control of the message flows.
This allows integration architects or developers to reformat and route infor-
mation moving from one system to another programmatically. Centralized
processing capabilities reduce the impact of changes on both source and target
systems, thus reducing the coupling between them and the cost of integration.

Message brokers are a robust and well-established integration technology,
providing the following features:

Message (message format) transformation using sophisticated mapping
tools, including support for industry standards, for example Electronic
Data Interchange (EDI), Financial Information Exchange (FIXML), and
so on

Context-based message routing

Data enrichment through additional integration points

Management of complex application interactions

Monitoring and auditing of transactions and/or data flows

A wide range of adapters for connecting applications to the broker, for
example databases, flat files, SAP, and the like

CONTEXT-BASED ROUTING AND BUSINESS RULES

Context-based routing is a very powerful approach for routing messages based
on their context. It is applicable to solving infrastructure issues, for example,
versioning (see Chapter 9), quality of service support, and the like.

Unfortunately, many practitioners overuse it and tend to use it for the
implementation of business logic (rules). Although this might seem like an
easy-to-implement solution initially, maintenance often turns out to be very
costly. The business logic implementation is scattered among multiple routing
rules and becomes hard to understand and follow. As a result, the overall
implementation becomes very fragile.

We strongly recommend that you separate solutions for infrastructure
concerns, using context-based routing, from the implementation of business
logic by using business rules and specialized decision services (see Chapter 8).

368 Part II ■ Designing SOA

Existing
Enterprise
Application

Existing
Enterprise
Application

Existing
Enterprise
Application

Existing
Enterprise
Application

Message
Broker

Integration
Service

Consumer

Figure 10-4 Implementing an integration service using a message broker

Implementation of integration access based on existing, message-broker-
based integration, as shown in Figure 10-4, is fairly straightforward. The
business component connects to the broker, allowing the reuse of integration
access that is already in place.

The following should be considered when using Message Brokers to imple-
ment integration:

All of the Message Brokers support some form of MOM connection
to the broker, allowing for a MOM-based implementation of the busi-
ness component. See the considerations for such an implementation
in the previous section. In addition, many Message Broker implemen-
tations (for example, WebSphere Message Broker) provide Web Ser-
vice support, which can also be leveraged to access existing integration.
The choice of the particular access mechanism depends on the imple-
mentation platform and integration requirements. Although Web Ser-
vice access typically does not require any additional software to imple-
ment connectivity, it lacks support for guaranteed delivery and asyn-
chronous invocations. MOM-based access, on the other hand, requires
additional software on the client side, but provides richer communica-
tion options.

Because the Message Broker comes with built-in support for format and
data transformation, its facilities should be used for transforming data
between the formats used by the business component and the existing
applications. A canonical data format, widely adopted by Message Bro-
ker implementations, is a good starting point for such transformations.

Chapter 10 ■ Designing and Using Integration in SOA Solutions 369

See more on data transformation later in this chapter in the section titled
‘‘Data Mapping in Integration.’’

Existing EAI implementations are created for reuse and often provide
granularity that is too low for SOA. Integration designers should con-
sider combining (where possible) several existing related integration ser-
vices as a basis for a business component, leveraging it as an orchestrator
or an additional mediator for existing integration services.

If a message-broker-based implementation is already in place, it is typically
a good starting point for implementating integration services.

Using Existing Web Services to Implement Integration

With the growing popularity of Web Services, the majority of application
vendors are starting to expose their functionality as Web Services. These Web
Services can be used as a foundation for implementing integration. Web Service
support today is pervasive. They are supported by virtually all execution
platforms. There are also plenty of tools on the market that provide generation
of a service consumer skeleton based on the service provider’s WSDL file,
which makes implementation of the service consumer even simpler.

Implementing integrations based on Web Services that are exposed by
existing applications is fairly straightforward. (See Figure 10-5.) The business
component simply invokes a Web Service provided by the existing enterprise
applications.

Service
Consumer

Legacy/
Packaged

Applications

Existing
Web

Service

Figure 10-5 Implementing an integration service using existing Web Service

The following should be considered when using existing Web Services to
implement integration:

There are a vast number of Web Service standards today. On one hand,
this simplifies the use of Web Services — these standards provide a lot of
capabilities. But it also makes implementation more complex because it
requires a user to understand these standards and causes compatibility
issues between different Web Service implementations, especially in the
areas of attachments, security, and transactions.

370 Part II ■ Designing SOA

Many vendors rushed into Web Service support purely because of its
popularity, resulting in numerous implementations that are not
integration-friendly. In some cases, object-oriented interfaces were
directly exposed as Web Services, resulting in hundreds of inappropriate
Web Services, each with tens of methods. In many cases, the granularity
of the service operations is so low that it is not even applicable for inte-
gration, and it is necessary to combine several exposed Web Services in
the business component implementation. Often these Web Services are
modeled after UI interactions and require passing around ‘‘session ID’’
in the form of a proprietary SOAP header. Another approach (illustrated
by the sidebar example of the useless WSDL file) is to use name/value
pairs wrapped in a WSDL file for passing interaction parameters to
and from the exposed Web Services. In this case, in addition to a WSDL
file, a deep knowledge of the parameters and structure of invocation is
required. Yet another approach (in response to the limitations of
WSDL2Java support for complex XML schemas) is passing complex
XML payloads as attachments. In this case, the WSDL file describes only
‘‘commands,’’ although the payloads themselves are passed around as
attachments that contain XML documents. In these cases, custom XML
processing is required to implement integration services.

THE USELESS WSDL FILE

An example of ‘‘useless’’ WSDL is presented in the following listing (this is a
real example encountered by the authors). In this WSDL file both input and
output are defined as sequences of parameters, where every parameter is
defined as a name/value pair. Although it is possible to generate the service
consumer based on this WSDL file, it is impossible to use this consumer
without complete knowledge of the service functionality, breaking the
principles of loose coupling.

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:tns="http://www.example.org/useless/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema" name="useless"

targetNamespace="http://www.example.org/useless/">

<wsdl:types>

<xsd:schema targetNamespace=http://www.example.org/useless/

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:complexType name="parameter">

<xsd:element name="name" type="xsd:string"/>

<xsd:element name="value" type="xsd:string"/>

</xsd:complexType>

<xsd:element name="OperationRequest">

Chapter 10 ■ Designing and Using Integration in SOA Solutions 371

<xsd:complexType>

<xsd:sequence>

<xsd:element name="parameter" type="tns:parameter"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="OperationResponse">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="parameter" type="tns:parameter"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

</wsdl:types>

<wsdl:message name="OperationRequest">

<wsdl:part element="tns:OperationRequest" name="parameters"/>

</wsdl:message>

<wsdl:message name="OperationResponse">

<wsdl:part element="tns:OperationResponse" name="parameters"/>

</wsdl:message>

<wsdl:portType name="useless">

<wsdl:operation name="Operation">

<wsdl:input message="tns:OperationRequest"/>

<wsdl:output message="tns:OperationResponse"/>

</wsdl:operation>

</wsdl:portType>

<wsdl:binding name="uselessSOAP" type="tns:useless">

<soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>

<wsdl:operation name="Operation">

<soap:operation

soapAction="http://www.example.org/useless/

Operation"/>

<wsdl:input>

<soap:body use="literal"/>

</wsdl:input>

<wsdl:output>

<soap:body use="literal"/>

</wsdl:output>

</wsdl:operation>

</wsdl:binding>

<wsdl:service name="useless">

<wsdl:port binding="tns:uselessSOAP" name="uselessSOAP">

<soap:address location="http://www.example.org/"/>

</wsdl:port>

</wsdl:service>

</wsdl:definitions>

372 Part II ■ Designing SOA

Using JCA/J2C Adapters to Implement Integration

J2EE Connector Architecture (J2C), formally Java Connector Architecture
(JCA), is a standardized Java-based solution for integration. (For more infor-
mation see ‘‘J2EE Connector Architecture’’ at http://java.sun.com/j2ee/

connector.) The J2C specification defines three key functions: the Common
Client Interface (CCI), which provides a uniform client API across multiple
enterprise information systems; the Service Provider Interface (SPI), which
defines system-level contracts for connection management, transaction man-
agement, and security between an application server and the adapter for a
specific enterprise application; and a deployment and packaging protocol. The
advantages of J2C are:

It provides a uniform client programming model for accessing any appli-
cation supported by the adapter.

It tightly integrates with the application server in terms of security,
transaction management, and connection pooling. The J2C SPI stan-
dardizes the following:

Connection management, standardizing the way that application
servers establish and manage connections to an enterprise system,
including support for connection pooling

Transaction management, specifying the way the application server’s
transaction manager can manage transactions across applications
through connected applications

Security management allowing, J2C adapters to either propagate
the current user, or impersonate another one for the application
invocation

It increases the number of adapters on the market and lowers their price
by standardizing on implementations.

Enterprise systems for which J2C adapters are available today include Enter-
prise Resource Planning Systems (PeopleSoft, Baan, JD Edwards, and SAP),
Transactions Monitors (CICS), Database Management Systems (Oracle, DB2,
SQL server), and messaging systems (WebSphere MQ, Tibco Rendezvous).

Because a majority of J2EE application servers support J2C, it appears to be
a very powerful mechanism for implementing integration when the business
service implementation is based on a J2EE application server. In Figure 10-6,
an adapter implements access to a legacy application, messaging middleware,
or database. The business component is implemented as a set of the adapter
API calls.

Chapter 10 ■ Designing and Using Integration in SOA Solutions 373

J2C Adapter J2C Adapter J2C Adapter

Messaging
Middleware Databases

J2EE Application Server
Business

Component

Legacy
Applications

Figure 10-6 Implementing an integration service using J2C adapters

The following should be considered when using J2C adapters for imple-
menting integration:

Business components are limited to the J2EE platform. If the same
integration is required from other platforms, J2C might be the wrong
approach.

Many adapters provide low-level APIs with granularity that is too small.
A typical business component must use multiple adapter API calls in
its implementation. For example, J2C adapters are often used to invoke
CICS transactions on a mainframe. In this case, the size of the invoca-
tion/reply data is limited to 32k bytes (the CICS limitation). A typi-
cal J2C-based implementation includes data ‘‘chunking’’ and multiple
adapter invocations.

Many legacy applications support several different APIs, providing dif-
ferent access to their functionality. For example, with SAP R/3, there is
the widely used high-level business API (BAPI), a lower-level (and no
longer strategic) Remote Function Call (RFC) interface, as well as the
intermediate document (IDoc) scheme for EDI-oriented interactions.
When evaluating a J2C adapter for integration, it is necessary to make
sure that it supports the required APIs.

J2C adapters support only synchronous invocations. Although the use
of bidirectional adapters allows for emulation of asynchronous invoca-
tions, in general, J2C adapters are not appropriate technology in these
cases.

J2C adapters are a very powerful approach for implementing integration,
allowing you to expose functionality and data from legacy applications in

374 Part II ■ Designing SOA

a ‘‘standard’’ programming model. The fact that there are widely available
adapters for many applications makes this option even more attractive.

Using Web Service Wrappers to Implement Integration

Although this approach seems similar to using existing Web Services, there
is a profound difference between the two. This one requires slightly more
work because the actual Web Service has to be built, based on the existing
implementations. However, this process provides significantly more flexibility;
because you are building Web Services yourself, you can build them to suit
your needs. This approach assumes that existing legacy applications are built
using platforms that provide easy Web Service support; for example, J2EE
application servers, the .NET environment, CICS v3.1, and so on, and the
implementation is well componentized (for example, EJB-based, COM/.NET
classes–based, or CICS transactions-based).

The overall implementation of integration is fairly straightforward. Com-
ponents that need to be exposed are wrapped in the Web Service interface
(usually using generation tools provided by a given platform). Business com-
ponents can then be built based on the generated WSDL files. Figure 10-7
shows an example.

Legacy Application

Component

Component

Component

Web Service
Wrapper

Service
Consumer

Figure 10-7 Implementing an integration service using Web Service wrappers

The following should be considered when using Web Service wrappers to
implement integration:

Existing component interfaces can be built using language classes with
fairly complex structures; using collections makes them even more com-
plex. When these classes are used for direct Web Service generation, this

Chapter 10 ■ Designing and Using Integration in SOA Solutions 375

can lead to very complex WSDL files. Always try to simplify interface
classes even if this requires some additional data mappings in the Web
Service implementation

Although WSDL supports multiple data types that can be used to
support strongly typed interfaces, conversion between stringified
representation of these parameters (XML representation) and typed rep-
resentation is done in generated code, before the service implementation
is invoked. As a result, such implementations are typically more fragile
(e.g., service implementation code has no access to the data conversion
errors and can’t implement custom validation). One of the common
practices to avoid this situation is to define the service interface (WSDL
file) in terms of string variables and move type conversion to the service
implementation.

The fact that every component of the legacy application exposes its own
interface does not necessarily mean that a method of a component can
be invoked by itself. In a majority of cases, exposing the legacy appli-
cation’s components as Web Services requires the implementation of
custom classes (within legacy application), to coordinate the invocation
of the legacy components and expose the class as a stateless Web Service.
An additional advantage of these custom classes is the ability to align the
required granularity of the integration with the granularity of existing
components.

The pervasive nature of Web Services today and the constant advances in
their implementation makes this approach to integrations a very attractive
option.

Using Direct Database Access to Implement Integration

In a lot of cases, the major purpose of integration services is to provide business
services with data from the existing enterprise applications. In these cases,
the simplest way to build an integration service is to read this data directly
from the application’s databases. With standardization of database access
programming, for example using JDBC, this implementation becomes even
simpler. (See ‘‘Java Database Connectivity’’ at http://java.sun.com/javase/
technologies/database for more information.)

The implementation of integration in Figure 10-8 is similar to the J2C case.
(JDBC implementations today are typically built on J2C.) Database access
middleware provides access to the database to submit an appropriate query
and returns results. Business components can orchestrate multiple database
requests to achieve the required functionality.

376 Part II ■ Designing SOA

J2EE Application Server

Business
Component

Database
Middleware

Database

Figure 10-8 Implementing an integration service using direct database access

The following should be considered when using direct database access for
integration implementations:

Using stored procedures for database access is not recommended
because of its poor portability. However, in the case of integration ser-
vices, it might be a valuable option for reducing the number of database
calls and improving database querying performance. Additionally, the
use of stored procedures minimizes the impact of database changes on
the business component.

A variation of this implementation is to access multiple disparate
databases from a single business component. This can be very useful for
aggregating data among multiple legacy applications. This is one of the
exceptions from the one-to-one correlation rule between business com-
ponents and integration services.

If business components that use direct database connectivity are widely
used to implement business service, this could cause saturation of the
database connections. A common solution to this problem is to com-
bine this integration approach with the Web Service wrapping approach
described previously. In this combined approach, database access is
implemented inside a specialized integration service, which is exposed
by using Web Services.

Using direct database access is a very powerful approach to implementing
integration services when legacy applications expose mostly data, which is
available in existing relational databases.

Using an Enterprise Service Bus to Implement Integration

In the typical large organization, there is always a mixture of the previously
described approaches to integration. They require support for the different
middleware platforms utilized for the different implementation approaches.

Chapter 10 ■ Designing and Using Integration in SOA Solutions 377

Fortunately, the ESB products described in Chapter 9 support the majority
of the communication mechanisms discussed here, in a single product. This
makes ESBs a very attractive platform for implementing integration.

A typical ESB implementation, as shown in Figure 10-9, supports multiple
middleware options to connect to the bus, including popular MOM systems,
J2C adapters, database connectivity, Web Services, and so on.

Enterprise Service Bus

J2C Adapter

Legacy
Applications

Database
Middleware

Database

MOM
Communications

Web Service
Communications

Figure 10-9 Using ESBs to connect to integration services

This approach combines the benefits of the standards introduced by Web
Services with the features of traditional EAI products, while often avoiding
their proprietary nature, implementation complexity, inflexibility, and vendor
lock-in. ESBs are popular because:

Their open architecture is based on the current and emerging standards
(mostly Web Services) and technology.

They are lightweight compared to Message Brokers or hubs.

They support an incremental approach to integration rather than ‘‘big
bang’’ investment in proprietary products.

They support independent deployment of ‘‘services’’ based on the need
of the particular solution.

They provide built-in transformation capabilities.

Special Considerations for Implementing of Integration
According to Peter Cousins and Ivan Casanova, implementation of integration
services requires the following special considerations (for more information
see ‘‘Service-Oriented Integration: A Strategy Brief’’ [January 2004]):

Data mapping

Security

378 Part II ■ Designing SOA

Transactional support

Versioning

Large messages

We discuss these concerns and their typical implementation architec-
tures here. Keep in mind that these concerns are common to all of the
integration implementation approaches described in this chapter. Although
solutions might be slightly different, depending on the implementation, these
approaches have enough in common to describe them together.

Data Mapping in Integration

Because of the data fidelity issues in existing enterprise applications, data
mapping was traditionally one of the main concerns of EAI implementations.
This problem is still relevant for implementations of integration in SOA.
Although enterprise business services are based on the enterprise semantic
model (see Chapter 6 for more details), each legacy system is based on its own
data model, which is typically different from the enterprise data model and
from other data models. At some point, these proprietary data models have to
be mapped to the enterprise data model.

Picking the appropriate place for this transformation is one of the main
issues during integration service design and implementation. Based on the
architecture of the business service implementation (refer to Figure 10-1),
the following solutions are possible:

Implementing data mapping as part of the integration access
implementation — This solution works well when the Message Bro-
ker is used to implement the integration access. The Message Broker’s
data-mapping capabilities typically provide good support for these
implementations. It also might be an option when using Web Service
wrappers or direct database access (when it is implemented using stored
procedures). In other integration access approaches, such a solution
requires changes to the existing legacy implementation, which is never a
desirable option.

Implementing data mapping as part of the message delivery — This
solution is possible for all of the integration service implementation
approaches except J2C and direct database access (there is no message
delivery per se in this case). A variation of this solution, especially in the
case of an Enterprise Service Bus, is to use mediation for the data trans-
formation, as shown in Figure 10-10.

Implementing data mapping as part of a business component
that wraps the integration service invocation — This is the most generic

Chapter 10 ■ Designing and Using Integration in SOA Solutions 379

solution, applicable for any implementation of integration
services.

Service
Consumer

Mediation
(Data

Transformation)

Service
Implementation

Figure 10-10 Using mediations for service invocation

Regardless of exactly where you implement data mapping, there is the
issue of how you implement the data mapping itself. Today, approaches to
data transformation range from numerous visual mapping editors (included
with many ESB implementations) to general-purpose programming languages
(Java, C#, ESQL, etc.) supplementing these editors in the case of complex
structural transformations.

Regardless of the actual implementation approach, transformations are
typically coded by developers. There are multiple issues with this approach:

The knowledge of the data, both enterprise semantic models and appli-
cation data models, usually resides with business analysts, not develop-
ers. As a result, it is necessary for business analysts to somehow convey
transformation definitions (requirements) to developers. This is tradi-
tionally done using Excel spreadsheets, which are far from ideal for
requirements specification. As a result every company introduces their
own, Excel-compatible notation for this purpose.

Ambiguity in Excel notation often leads to the misinterpretation of trans-
formation rules, resulting in prolonged development and testing cycles
for transformation implementations.

Because Excel-based definitions are not directly translated into code,
but rather are interpreted by a person, it is extremely difficult to keep
the two in synch. As a result, any transformation defect requires poten-
tially lengthy investigation to determine whether it is a definition error,
interpretation error (misunderstanding on the developer’s part), or a
code defect.

It becomes extremely difficult to make changes in the transformation.
Because transformation definitions are owned by the business analysts,
they tend to make changes in the original spreadsheets, which go back to
developers. Depending on the organization of the transformation code,
the most ‘‘seemingly trivial’’ transformation changes can require signifi-
cant modifications in the implementation code.

All of the above issues make implementation of data transformations (com-
plex by themselves) even more difficult.

380 Part II ■ Designing SOA

A better approach for implementing data transformation is to use a
specialized tool that provides a clear separation between transformation design
(that can be done directly by business analysts) and run-time execution (that
is implemented as a standard library, available on the majority of execution
platforms). In this case, the majority of data transformation/mapping changes
can be made (and tested) directly in the transformation tool with minimal
or no impact on the execution code. Additionally, such an approach pro-
vides maximum deployment flexibility. The integration architect can pick an
appropriate place to run the transformation based on the overall architectural
requirements.

Security Support for Integration

One of the characteristics of current enterprise application portfolios in the
majority of enterprises is islands of security. The key goal of security for
integration is to enable existing security infrastructures to interoperate. The
solution to this problem lies in introducing a security layer that spans existing
security infrastructures. Not surprisingly, this resembles the introduction of
services as a rationalization layer on top of existing applications, to create a
‘‘standardized’’ enterprise business model. To achieve this goal, the enterprise
needs a single identity management (federated identity management) and
security policy infrastructure that governs the access to all participating enter-
prise applications. This means that security support for integration services
should include the following:

N O T E This chapter covers only a thin slice of services security. For an overall
approach to SOA security refer to Chapter 11.

Accommodate heterogeneity (i.e., multiple application platforms)

Provide security management and identity propagation/management
across multiple security domains (internal, external, and business unit
silos)

Support multiple security credentials that can identify subjects (and
optionally, their authorization credentials [for example, Kerberos, SAML,
etc.])

Support multiple transport protocols (HTTP/S, JMS, MQ)

Provide a mechanism for maintaining the ‘‘thread of identity’’ across
the integration services invocations

Implementation of security support for integration typically consists of two
main parts:

Propagating the user identity as a part of the invocation of integration
services

Chapter 10 ■ Designing and Using Integration in SOA Solutions 381

Converting the user identity (or its representation) into a form required
by a specific legacy application

The implementation of identity propagation depends on the integration
access and can vary significantly. For example, J2C adapters provide direct
support for the user identity in the form of either configuration or direct API
calls. In the case of direct database connections, on the other hand, specific user
identity is rarely used (in order to enable connection pooling), and security has
to be applied at the business component layer. Finally, in the case of MOM and
Web Services–based implementations, user identity propagation is typically
implemented on the message level (using, for example WS-Security and its
various token profiles to extend the SOAP header of Web Service messages).
There are several strategies for identity propagation for messaging security
discussed in Chapter 11.

Conversion of user identity requires a centralized infrastructure for manag-
ing user identity (including identity conversion support) across the enterprise;
for example, Tivoli Federated Identity Manager (TFIM). In Figure 10-11, the
overall implementation of integration includes converting the current user’s
identity into a format required by the target enterprise application and passing
this information as part of the invocation request. When user identity can’t
be directly propagated through the integration access (for example, a direct
database connection), the business component can validate that the user is
entitled to access a specific system/resource.

User identity (representation) conversion requests are usually done using
‘‘standard’’ Web Service requests (based on WS-Trust standard) and conse-
quently can be implemented on virtually any platform.

Transactional Support in Integration

Transaction processing is a cornerstone of today’s software technology, which
makes distributed computing reliable and manageable. A transaction is

Business
Component

Convert
Current Identity
to Source
System
Representation

Identity Federation
and Conversion

Integration
Access

Invoke with
Appropriate Identity
Representation

Figure 10-11 Centralized identity management

382 Part II ■ Designing SOA

a consistent change of application(s) state that is governed by ACID (atomic,
consistent, isolated, and durable) properties:

Atomic — The transaction executes completely or not at all. Atomicity of
transaction ensures that either all of the updates are performed or none
is performed. Atomicity also ensures that underlying data returns to a
known valid state following the failure, thus reducing the requirements
for manual intervention during failures and restarts.

Consistent — The transaction preserves the internal consistency of
underlying data. This means that if a transaction is executed by itself on
the underlying resources, which are initially consistent, at the end of the
transaction these resources will be consistent again.

Isolated — The transaction executes as if it were running alone, with no
other transactions. An execution is isolated if its effect is the same as run-
ning transactions serially, one after another, with no overlap of execution
of any of them.

Durable — The transaction results are not lost in the case of software
or hardware failures. So once a transaction is committed, its results are
durably stored and can be used for automatic system recovery.

ACID transactions are usually implemented using transaction monitors
(for example, Tuxedo, CICS, or Encina) or component platforms (for example,
a J2EE application server or MTS). This means that support for ACID transac-
tions requires coupling through the transactional environment, thus limiting
interoperability and flexibility. In addition, some of the legacy applications
do not support transactions at all. Finally, a requirement for ACID transac-
tion implementations is resource locking for the duration of the transaction,
which requires a guaranteed short execution time of services. Longer trans-
action times usually lead to worsening overall throughput of transactional
resources.

ACID transactions, although perfectly appropriate for objects and compo-
nents, are usually too restrictive for services.

In an attempt to overcome the limitations of the traditional two-phase
commit protocol, several standards defining business transactions have been
proposed and implemented.

Unfortunately, business transactions are supported only for Web
Services and require SOAP enveloping, which is not always possible for inte-
gration and often requires specific support from the existing enterprise
applications (which is also not a simple sell).

The most generic approach to the implementation of transactional support
for integration is to use compensations, also called compensating transactions.
This means creating appropriate ‘‘undo’’ methods as part of integration

Chapter 10 ■ Designing and Using Integration in SOA Solutions 383

Service
Implementation

Service
Implementation

Service
Implementation

Undo

Do

Undo

Do

Undo

Do

Business
Service

Implementation

Try

Catch

Consumer

Consumer

Consumer

Consumer

Consumer

Consumer

Figure 10-12 Implementing compensation for integration services

access and using try/catch blocks around individual or related groups of
integration invocations. (See Figure 10-12.)

In this implementation, during normal functioning (try block), ‘‘do meth-
ods’’ on integration access are invoked to implement the desired functionality
or access the desired data. If an error occurs (whether in the business com-
ponent implementation or invocation of an integration access), control is
transferred to the catch block to invoke the undo method, compensating for
actions that have been executed so far.

The compensations described here do not really provide ACID properties (in
particular isolation) but are easy to implement and are often ‘‘good enough’’
to solve specific business problems.

Versioning Integration

Versioning has always been an Achilles’ heel of distributed systems, and
services are no exception. A possible solution for service versioning, discussed
in Chapter 9, is not applicable in the case of integration. The issue here is that
integration relies on the existing enterprise applications that do not adhere to
the versioning policies and practices. It is rarely possible to have more than
one version of the existing application running simultaneously. The typical
approach is to replace the older version of the application with a newer one.
As a result, it is rarely possible to have multiple versions of an integration
deployed simultaneously.

384 Part II ■ Designing SOA

Because the implementation of a business service never uses the integration
access directly, but rather does so through the business component, this
business component is a natural unit of versioning. If the integration access
changes, these changes can be encapsulated within the implementation of the
business component, assuming that its interface and characteristics do not
change.

Dealing with Large Messages

When integration is based on Web Services or MOM middleware, the size
of the invocation payload can have a significant impact on both invocation
performance and the scalability of the business service implementation. The
issue here is twofold:

N O T E When we say large we mean several megabytes. For example, we have
seen an integration service retrieve an insurance policy from the legacy system,
which can return up to 20 megabytes of data.

Large size messages create additional strain on the network and under-
lying middleware. For example, in the case of MQ, the limit of the
supported message size must be increased explicitly, which increases the
toll on the resources used by the MQ infrastructure. In the case of HTTP
transport, middleware splits messages into 4 Kb ‘‘chunks’’ for delivery,
with the ‘‘Ack’’ message, accompanying every ‘‘chunk.’’ As a result,
there is severe (nonlinear) degradation in the message delivery perfor-
mance as the message size grows. Message encryption can worsen the
situation by adding additional CPU load and performance degradation
due to encryption/decryption operations.

Large message size is also one of the reasons for peak memory
utilization on the service consumer. There are typically several
representations of the same payload, for example, XML string, OO
representation, and so on, which have to be present in memory simul-
taneously. As the size of the message grows, the load on the garbage
collector (Java and/or C#) and memory paging increases, thus slowing
down the implementations.

One of the possible solutions to this problem is ‘‘chunking’’ of the service
payload, replacing, for example, a single inquiry method that returns the whole
insurance policy with the multiple partial inquiry methods each returning
parts of the policy. Although this solution seems like a good one, it does not
always work. It can contradict the way the enterprise system that provides
this functionality works.

Chapter 10 ■ Designing and Using Integration in SOA Solutions 385

Service
Consumer

Message
Storage Area

Service
Provider

1

2

3

4

5

6

Figure 10-13 Store-and-forward pattern for large messages

A different approach to solving this problem is a variation of a store-and-
forward pattern shown in Figure 10-13.

This pattern introduces an intermediate storage area for passing around
large payloads. It allows the message sender (consumer and/or provider) to
control whether to send corresponding data as part of the message, or through
the storage, or a combination of both. A request/response interaction between
a consumer and a provider looks as follows:

1. (Optional) The consumer stores a complete or partial data payload in the
message storage area.

2. The consumer sends a request to the service provider, including a
complete, partial, or no data payload. In these two cases, the consumer
provides a reference to the message storage area location, where actual
data exists.

3. (Optional) If the request contains a reference to the message storage area,
the service provider picks up all of the required data from the message
storage area.

4. (Optional) The provider stores a complete or partial data payload in the
message storage area.

5. The provider sends a reply to the service consumer, including a com-
plete, partial, or no data payload. In these two cases, the consumer
provides a reference to the message storage area location, where actual
data exists.

6. (Optional) If the reply contains a reference to the message storage area,
the service consumer picks up all of the required data from the message
storage area.

This pattern effectively combines a Web Service or MOM-based integration
with the power and flexibility of the direct data access approach. Its use
allows for piecemeal processing of both request and response data (in the

386 Part II ■ Designing SOA

message storage area), combined with the existing services’ granularity, and
typically requires significantly fewer changes in the existing legacy applica-
tions compared to chunking.

Data Virtualization and Enterprise Data Bus
In typical SOA implementations, a large portion of the integration supports
access to existing enterprise data. Aligning this data integration with the
business services is often a challenge for large-scale SOA implementations.

Although typical SOA implementations hide enterprise data behind service
interfaces, the following data access issues must still be resolved:

Consolidation of data among multiple applications — Today’s enter-
prise data is typically scattered across multiple siloed applications. This
means that enterprise data access from business services requires the
invocation of multiple data integration services, and then the correct
alignment and consolidation of data from them. It is also necessary to
ensure the propagation of data changes to all applications that rely on
this data.

Ownership of enterprise data by services — The foundation of the
modern service definition technique — functional decomposition — is
not easily mapped to enterprise data. For example, the notion of the
customer (and corresponding data) is usually shared between multiple
functional services. The problem is that functional and data decomposi-
tions are driven by completely different rules. Functional decomposition
is defined based on enterprise business processes, whereas data decom-
position is defined based on the enterprise domain data taxonomy. As
a result, aligning the enterprise data with enterprise services becomes a
daunting task.

Business service interface definitions — Because business service invo-
cations are always remote, their design strives toward large-granularity
interfaces, aiming at minimizing the amount of network traffic. Data
access, on the other side, can require both high and fine granularity of
interfaces, depending on the data access requirements. Finally, data
access typically implements pure CRUD (create, read, update, delete),
whereas enterprise services implement meaningful business interfaces,
such as rate policy, and so on.

N O T E Although this is true in general, there are plenty of exceptions. There are
situations where CRUD-type business services are well aligned with the business
functionality; for example, GetPoliciesForACustomer(customer), is an example
of a business meaningful CRUD service.

Chapter 10 ■ Designing and Using Integration in SOA Solutions 387

A possible solution to this problem is a complete separation of data access
from service access through a logical Enterprise Data Bus.

Similarly to the way that the Enterprise Service Bus ‘‘virtualizes’’ access
to business services, the Enterprise Data Bus allows for virtualization of access to
enterprise data (refer to Chapter 2 for a discussion of data access virtualization).
The role of the Enterprise Data Bus is to provide direct access from any service
to any piece of enterprise data (see Figure 10-14.)

The origins of the Enterprise Data Bus can be traced back to federated
database technology — virtualization of access to disparate databases in the
enterprise. Unfortunately, this technology is rarely applicable to SOA imple-
mentations. The issue here is that existing applications effectively control
enterprise data access through the implementation of their data access and
validation logic. Bypassing these applications and going directly to databases
requires reimplementation of this logic, which is typically not cost-effective.
As a result, data virtualization is typically implemented using an integration
layer. (Refer to Figure 10-2.)

Effective implementation of the Enterprise Data Bus requires separation
between integration that provides enterprise data access and integration that
provides enterprise functional capabilities. Considering that both data and
functional integration get and return enterprise data, the most straightforward
approach is to consider all of the integrations as data access integration.
For example, integration to the legacy rate policy implementation provides a
typical case of functional integration. On the other hand, it can be viewed as a
consumer of policy information and a producer of rate information.

Service Data

Service Service Service

Service Data Service Data

Enterprise Data

Enterprise Data Bus

Enterprise Data Access

Enterprise Service Reference

Enterprise Service Bus

Figure 10-14 Enterprise Data Bus

388 Part II ■ Designing SOA

N O T E Additional rationale for this approach is that regardless of the type of
integration, data or functional, both input and output data needs to be
transformed between the domain data model and the legacy data representation.
Treating any integration as a data access allows for consolidation of this
transformation, in addition to the consolidation of the data access.

This leads to extension of the layered enterprise architecture for SOA
presented at Figure 10-2 with an additional layer added, as shown in
Figure 10-15.

DataData DataServers Servers

WorkstationsMainframe Mainframe

Customer-Facing
Applications’ View
into Enterprise
Processes

Business Process-
Driven Enterprise

Services-
 Rationalization of
 Enterprise Systems
 Against Business
 Meaningful Services

Business Components
 Implementation of
 Service Functionality

Enterprise data bus
 Virtualization of
 Enterprise Data Access
 for Service
 Implementation

Integration
 Exposing Existing
 Enterprise Systems

Existing IT
 Hardware/Software
 Topology

Figure 10-15 Layered Enterprise Architecture with data virtualization

Chapter 10 ■ Designing and Using Integration in SOA Solutions 389

The additional layer — data virtualization — provides access to the
enterprise data contained in either enterprise applications or their subor-
dinated databases. It also modifies implementation of the business component
layer; in this implementation, it no longer contains ‘‘wrapper’’ components.
Business components are composed only of the components that implement
service functionality based on existing application functionality, and data that
is accessible through the Enterprise Data Bus. The advantages of such an
architecture are:

Explicit separation of concerns between implementation of the business
service functionality (business logic) and enterprise data support logic
effectively creates an abstraction layer, shielding the business functional-
ity from details of enterprise data/functionality access.

By encapsulating all of the access to enterprise data/functionality, the
Enterprise Data Bus provides a single place for all of the transforma-
tions between the domain data model and the data models of enterprise
applications.

Because any service implementation can have access to any of the enter-
prise data it requires, you can significantly reduce coupling between
services — service invocations contain only data references (key), which
change extremely rarely, while the actual data access is implemented by
the service itself. This means that if the service implementation requires
additional data for its processing, it can access it directly without affect-
ing its consumers.

Two possible approaches to the Enterprise Data Bus implementations are:

Specialized servers, for example, the IBM Information Server

Providing support for both direct database access and integration, and
distributed data caching, for example IBM’s Object Grid

Summary

This chapter defined integration as a foundation of successful SOA imple-
mentation. It described general integration challenges and showed different
approaches for bringing integration and SOA together.

It then introduced a precise definition of integration, the relationship to
business services, and the role in business service implementation, includ-
ing different approaches to implementing integration, among them: MOM,

390 Part II ■ Designing SOA

Message Broker, J2C, data access, and two different Web Service solutions.
It also discussed the main implementation considerations for each approach.
It highlighted the role of the ESB as a universal connectivity middleware
solution, which simplifies the implementation of integration.

Next, it discussed major architectural concerns for implementing integration
services, including data mapping, security, transactional support, versioning,
and large message impact, and presented possible solutions for each problem.

Finally, it introduced the concept of the Enterprise Data Bus, to unify and
encapsulate different approaches to implementing integration.

C H A P T E R

11

SOA Security
If you think technology can solve your security problems, then you don’t understand

the problems, and you don’t understand the technology.

— Bruce Schneier

In the very brief history of SOA architecture and design, security is one aspect
that is sometimes overlooked. A vital piece of the SOA puzzle, security consists
of a series of requirements that demands a well-thought-out plan, design, and
implementation. No specific technology is a silver bullet — a successful SOA
security solution can only be accomplished by understanding the foundational
principles of information security and mastering SOA architecture and design.
Anyone who has such knowledge can understand that it is essential to
adopt a security strategy for SOA and a security architecture roadmap early
on. A smart SOA security strategy allows business applications to meet
the needs of organizations and their business partners by incorporating the
classic security goals of authentication, authorization, integrity, confidentiality,
non-repudiation, auditing, and availability.

The security challenges in SOA are complicated by the state of today’s
business practices. This is the age of dynamic business partners, whereby
organizations share information on a short- and long-term basis with other
enterprises, and as a result, networks have become porous, blurring the lines
of the definition between ‘‘internal’’ and ‘‘external’’ networks. Gone are the
days of monolithic applications protected only by corporate firewalls. Instead,
organizations are moving toward a policy-centric SOA model enforced at the
application and service levels, providing security between clients and services
in a multi-domain environment. As a result, an organization must adopt

391

392 Part II ■ Designing SOA

an agile SOA security strategy that fits this model, and architectures must be
adaptable enough to change as policies and relationships change.

This chapter is aimed at the SOA architect and designer; it provides a focus
on security fundamentals and key standards, and offers practical strategies
and blueprints for securing the components of an enterprise SOA. It is divided
into five sections, and each section builds on the foundation of the preceding
ones to provide a clear understanding of SOA security principles, standards,
and practical tips:

Key security terminology, common security goals found in SOA-based
projects, and the security challenges related to achieving these goals

Major standards that can help you achieve SOA security goals

Guidance for using standards and different security methodologies in
various SOA security scenarios

A case study providing an example of how to use the concepts in this
book

A roadmap and common-sense practical advice for achieving success in
SOA-based projects

SOA Security Goals and Fundamentals

To plan a sound SOA security strategy, SOA architects must have an under-
standing of information security fundamentals and how they can be applied
to build SOA solutions. Many security goals require some explanation, and
understanding SOA security standards and best practices is dependent on
understanding security terminology. This section defines an information secu-
rity vocabulary, giving examples, scenarios, and challenges from real-world
SOA deployments. Because there are entire books dedicated to these concepts,
this section is simply meant to be a ‘‘bird’s-eye view’’ introduction, focusing on
the scope of what the SOA architect needs to know. The terms defined in this
section are important for the discussions of SOA security in the subsequent
sections of this chapter.

Authentication
Authentication means validating the identity of a subject. A subject can be a user,
a Web Service, a computer, or an application. Authentication is the first step in
access control. To enforce an access control policy, a system needs to initially
identify the subject with some level of assurance. Mutual authentication is
two-way authentication, and proves the identity of both parties involved in
communication, providing both sides with identity assurance.

Chapter 11 ■ SOA Security 393

Several mechanisms are used for authentication: Some common ones are
username/password login, digital certificate authentication, and the use
of a biometric device. User-facing solutions commonly use cryptographic
protocols, such as SSL/TLS with its built-in authentication mechanisms
(digital certificate authentication or username/password), and REST-based
point-to-point SOA security solutions also build on that model. SSL is a fine
protocol, but it is not the silver bullet for every problem. From an SOA perspec-
tive, it is important to realize that the authentication capabilities of SSL/TLS
can be used for mutual or one-way authentication between two points only,
but they do nothing to provide assurance of identities beyond two points.
Figure 11-1 illustrates this point.

In Figure 11-1, a user authenticates him- or herself to a portal via digital
certificate authentication over SSL and then clicks on a portal application.
Based on the user’s request, the portal then authenticates itself to a Web
Service, using digital certificate authentication over SSL, and sends a request
for a resource. Each point in the solution has strong assurance of the identity of
each party with which it communicates. However, these strong authentication
mechanisms between each point provide no assurance of the identity of the
initial user to the final Web Service in Figure 11-1. This is a simple example with
only three points, and the point we are making may seem subtle. An important
concept to understand is that there are commonly many intermediary services
between a user’s front-end application and the final service in the life cycle
of a message request, and in such requests it is often important to provide
some level of assurance of the end user’s identity. Point-to-point security
protocols such as SSL may be a piece of a security solution for SOA, but such
protocols must be complemented by other security mechanisms for end-to-end
solutions.

The last example makes an important point: in end-to-end SOA-based
messaging solutions, it is important to realize that there are multiple parties

User Portal

Mutually
Authenticated

SSL

Web Service

User:
Strong Assurance of Portal Identity

Portal:
Strong Assurance of User Identity

Portal:
Strong Assurance of Web Service Identity

(and User Identity from Previous Connection)

Web Service:
Strong Assurance of Portal Identity

No Assurance of User Identity

Mutually
Authenticated

SSL

Figure 11-1 Identity establishment in point-to-point security

394 Part II ■ Designing SOA

that may need to be authenticated in message requests. For every message that
is sent, there are usually two parties involved with the request: the message
sender and the ultimate end user. The message sender (the service consumer)
works on behalf of the ultimate end user, sending requests to services. It is
important to understand that in most situations, services may need a high
level of assurance of the identities of both of these parties. To enforce its
access control policy, the service may need a level of trust for the sender of
the message (trusting the sender not to manipulate the data in the request, for
example), and the service needs a high level of assurance of who the ultimate
end user is. We demonstrate this concept by walking you through an example
in Figure 11-2.

Figure 11-2, shows a very simple example of a user ‘‘Alice’’ authenticating
herself to a portal that sends a request to a service. In this situation, a
‘‘sender-vouches’’ approach is used, meaning that the portal ‘‘vouches for’’
the identity of the end user that it authenticates in its requests to services.
This is one method of identity propagation used in some of the WS-Security
token profiles, where the identity of a subject is propagated to services and
applications in the enterprise to achieve Single Sign-On (SSO). For the service
to trust the identity of that vouched-for end user in Figure 11-2, it must have
a high degree of trust in the portal that vouches for the end user. Therefore,
the service must not only be able to authenticate the portal in this situation,
but it must trust the portal to accurately vouch for its end users. These two
types of trust (trust of message sender identity and trust of message sender
to vouch) should be treated differently and separately. Obviously, this is a
simple example of identity propagation, and it demonstrates the importance
of understanding that in some scenarios both the message sender and the
ultimate end user may need to be authenticated. As you might imagine,
identity propagation can get even more challenging as more intermediaries
are added between the end user’s application and the final service in the

Trust me—I authenticated
Alice!

Portal, based on our
trust relationship, I trust
your assertion that it is
Alice. . . I will treat this as
Alice’s Request.

Alice

Portal

Portal

Authentication
and

Request

Web Service

Authentication
and

Request

Figure 11-2 Simple example of identity propagation

Chapter 11 ■ SOA Security 395

message chain. Other approaches and challenges in identity propagation are
discussed in detail in the ‘‘SOA Security Blueprints’’ section of this chapter.

Providing a solution for authentication in your SOA typically means pro-
viding or integrating with identity management infrastructure that supports
authentication, and utilizing a messaging solution that adequately provides
proof of identity. Authentication is one of the most important aspects of pro-
viding security — the mechanisms you choose dictate how flexible your SOA
is. It is important that you stay away from proprietary implementations and
adopt accepted and broadly used standards that allow you to integrate with
the systems and products that your organization has now — and the ones they
will have in the future.

Authorization and Access Control
Authorization means determining what a subject has permission to do, and this
is the second step in access control. After the subject’s identity is validated
(which was covered in the previous section), systems must determine the
subject’s authorization credentials and must compare them with expressed
authorization policy for enterprise resources. Because authorization is the
foundation of access control, and as there are so many authorization strategies
and mechanisms that can be used in SOA solutions, this section covers much
ground.

Architectural flexibility for authorization in a Service-Oriented Architecture
is usually achieved by logically separating duties into Policy Decision Points
(PDPs) and Policy Enforcement Points (PEPs). A PDP is the point at which
access control decisions are made, based on an expressed access control policy
and a subject’s authorization credentials. The enforcement of the decision is
delegated to a PEP, as shown in Figure 11-3. Some standards, such as the
eXtensible Access Control Markup Language (XACML), discussed later in
this chapter, decompose the policy model further into Policy Administration
Points (PAPs) that create policy and the Policy Information Points (PIPs) that
query attributes for subjects requesting access to resources. There are many

Attribute
Service

Enterprise
Policy
Store

Server
Make Decision

Based on Security Policy
and Authorization

Credentials of User

User

Web Server
or Web Service

Authentication
and

Request
for

Resource A

PDPPEP

Request
Yes/No Decision

for User
Requesting
Resource A

Returned
Decision
To Be

Enforced by PEP

Lookup
Authorization
Credentials
for User

Lookup
Security
Policy

for
Resource A

Figure 11-3 Example of PDP/PEP interaction for access control

396 Part II ■ Designing SOA

architectural strategies for how PDPs and PEPs can work together, which are
covered in the ‘‘SOA Security Blueprints’’ section of this chapter.

Two Types of Access Control—DAC and MAC
Authorization can be separated into two types of access control: Discretionary
Access Control (DAC) and Mandatory Access Control (MAC). Discretionary
Access Control restricts access based on permissions, roles, attributes, and
groups to which subjects belong. This type of access control is common in
commercial-based SOA systems. Mandatory Access Control is more commonly
found in government-based systems and is an access control mechanism that
restricts access based on the security clearances and formal accesses of subjects
and the security labels on the resources. To enforce MAC, the data itself must
be labeled with security markings containing security labels and dissemination
controls, and the enforcement points must be able to determine the clearances
and formal access controls of the subjects requesting the resources.

In SOA solutions that enforce DAC, system resource policies are expressed
referencing global enterprise authorization credentials, and PDPs determine
the authorization credentials of subjects when they request access to resources.
Figure 11-3 showed one simple example, where a central PDP looked up the
authorization credentials of a subject and the policy of the requested resource,
returning the decision to a PEP, which enforced the discretionary access control
policy.

In SOA-based systems that enforce MAC, standard XML markup in the
payload of SOAP messages is used to express the security label of the data.
Figure 11-4 shows a simple example: A request is sent to a service that queries
data that is labeled with a security classification and dissemination controls.
Inspecting the response, the service’s PDP determines the user’s formal access

Data
Store

Request
Formal Access Controls

for User

Compares to
Labeled Data

Filters Data
Based on

Decision and
MAC Policy

PDP/PEP

Web Service
Security Subsystem

Security
Classification

Dissem
Controls

QUERY RESULTS
Filtered

Response

Web
Service

Authentication
and

Request
for

Resource A

Query

User and
Portal Application

Formal Access
Attribute Store

Figure 11-4 Example of Mandatory Access Control filtering

Chapter 11 ■ SOA Security 397

authorization credentials, compares it to data’s security label, and the PDP
then makes an authorization decision, resulting in the PEP filtering the results
into data that only the end user has permission to see.

Role-Based Access Control (RBAC) is a common credentialing strategy used
in DAC enforcement. Using RBAC, security roles are defined and assigned
to subjects, resource access control policies are expressed using security roles,
and PDPs make decisions based on the roles of subjects and the policies of
resources.

Attribute-Based Access Control (ABAC) is a strategy similar to RBAC, but
it utilizes security attributes rather than security roles. Many systems have
moved to the ABAC model because of the desire to separate a user’s duties
(roles) from other types of credentials that could be used in access control
systems. An ABAC credentialing strategy enables both Mandatory and Discre-
tionary Access Control in SOA. In such a solution, a trusted enterprise attribute
service may store and expose subject authorization credentials such as role,
group, security clearance, and citizenship as attributes. In many ABAC-based
SOA systems, RBAC roles are included as authorization attributes.

Predetermined Authorization Decision-Based Access Control (PADBAC) is
an access control strategy defined in this book where access control policy
(either DAC or MAC) is used in making an authorization decision for a subject
accessing a resource, and where those digitally signed authorization decisions
are distributed to the subjects as ‘‘tickets’’ for future access. For example, a
laundry service may issue an authorization decision to a user when the user
drops off his or her laundry; for instance, ‘‘Parker Cullinan is authorized
to pick up his laundry (bin #228).’’ Later, that signed authorization decision
would be presented by Parker Cullinan to the laundry service in order to pick
up his laundry. PADBAC can be used to model such real-world situations and
is discussed later in this chapter (in ‘‘SOA Security Blueprints’’).

Many service security standards revolve around authorization — Security
Assertion Markup Language (SAML), XACML, and WS-Trust are just a few
examples of standards that provide many of the fundamentals of authorization
in an SOA. Both standards and authorization strategies are discussed at length
throughout this chapter.

Federated Identity and Cross-Enterprise Access
Federated identity is a security goal where a policy arrangement is made among
multiple security domains that allows users to use the same identification
data to access resources in partner security domains. The collection of part-
ner enterprises is called a federation, and this security goal provides users of
this federation the capability of SSO to applications throughout the feder-
ation. In an effective federated identity solution, partners share an explicit
mutual trust pertaining to the way the identity of users is validated and

398 Part II ■ Designing SOA

how authorization of resources occur. A key point is that in such solutions,
a resource provider in a partner enterprise relies on an externally managed
identity, rather than creating another locally managed identity for the subject
requesting access. This reliance relieves the burden of cost and management
complexity.

The success of federated identity is dependent upon the ability to share a
rich and commonly understood set of claims between an identity provider (the
organization vouching for the identity) and a relying party (the organization
providing access to resources). The notion of identity federation is broad
and evolving, and as a result, there are certain situations where information
besides identity is federated. In practice, access control in a federation can
occur in multiple ways: Partners can grant certain accesses to users from one
enterprise, based on their identity in their host organization (true identity
federation); partners can assign everyone from a host organization certain
authorization credentials (enterprise-based policy and not really federated
identity); or access can be granted based on authorization credentials of the
user, and the federation arrangement can include a translation of mappings of
authorization credentials between the two organizations (federated authoriza-
tion). In practice, there are protocols for both browser-based SSO, where browser
clients and web applications use standard HTTP extensions and redirections
for identity federation, and service-based SSO, intended for identity federation
between services.

One important concept for the SOA architect to understand is the dynamic
nature of relationships in a federation. Although it is common for federated
identity partnerships to be long-lived, it is important to realize that the new
age of dynamic business partners requires a more fluid model. The way
organizations do business is complex, and if you are going to be able to
share information successfully, your architecture must adapt to these business
processes. In sharing information in these partnerships, it is vital that each
organization protects its information assets. A flexible SOA, therefore, can
utilize federated identity technology to allow dynamic communities of interest
to share data. Figure 11-5 shows such a model, where enterprises may join
multiple federations at any given time. To meet the authentication and autho-
rization needs of partners in this dynamic environment, organizations must
adapt cross-enterprise access policies, and they must adopt a policy-centric
model for enforcing access control, utilizing open standards that maximize
interoperability.

Standards related to federated identity have been evolving. There are
currently two specifications in OASIS revolving around federated identity.
In 2005, OASIS finalized the SAML 2.0 standard, which unified previous
specifications of identity federation, such as Shibboleth and the Liberty Alliance
Identity Federation Framework (ID-FF). The Liberty Alliance also released
the Identity Web Services Framework (ID-WSF), which relies heavily on

Chapter 11 ■ SOA Security 399

A

B
C

ED

F G

G A

CF

ED

B

Figure 11-5 Identity federation between dynamic communities of interest

SAML 2.0 for Web Services-based SSO. In 2007, OASIS created a committee to
drive the direction of WS-Federation, a proposed standard that relies on other
WS-* standards, such as WS-Policy and WS-Trust. Although WS-Federation
and SAML had different design goals, there are some overlaps, and it remains
to be seen how the two federation standards merge or interact. For now, many
vendors have adopted both models in their products. These standards are
discussed later in this chapter.

SECURITY TERMINOLOGY AT A GLANCE

This section covers a lot of ground, focusing on the fundamental goals of
information security, applying them to the SOA enterprise. Each of the
subsections (Authentication, Authorization and Access Control, Federated
Identity and Cross-Enterprise Access, Confidentiality, Integrity, and
Non-Repudiation) not only define these terms in depth, but also provide the
context for how these goals are achieved in SOA. For convenience, we have
decided to also list some of the key terms and acronyms defined in this section,
with abbreviated, simple-to-read definitions for your reference.

◆ ABAC — Attribute-Based Access Control

◆ Access Control — Providing control to a resource, based on a subject’s
proven identity, the subject’s authorization credentials, and the resource’s
access policy

(continued)

400 Part II ■ Designing SOA

SECURITY TERMINOLOGY AT A GLANCE (continued)

◆ Authentication — Validating the identity of a subject

◆ Authorization — Determining if a subject has permission to do something

◆ Confidentiality — The security goal aimed at hiding sensitive information,
done with encryption

◆ DAC — Discretionary Access Control

◆ Federated identity — A security goal where a policy arrangement is made
among multiple security domains that allows users to use the same identifi-
cation data to access resources in partner security domains.

◆ Integrity — The assurance that data has not been altered in transit or at
rest, usually achieved by message digests, hash codes, or as a side effect of
a digital signature.

◆ MAC — Mandatory Access Control

◆ Non-repudiation — Strong assurance that a subject signed a message (legal
proof that can be validated by a third party) achieved through a digital
signature.

◆ PADBAC — Predetermined Authorization Decision-Based Access Control

◆ RBAC — Role-Based Access Control

Confidentiality
When sensitive information is transmitted between authorized parties, it is
important that this information not be seen in transit by eavesdroppers.
Confidentiality is the security goal aimed at hiding sensitive information, and
this is done with encryption. In the encryption process, a plaintext message is
scrambled with a cryptographic algorithm to produce a ciphertext message.
Using a key (or shared secret), the intended recipient can decrypt the data.
There are many different cryptographic algorithms, symmetric (secret key)
and asymmetric (public key) algorithms that can be used to provide different
levels of protection for data.

In an enterprise SOA solution, there may be certain elements of messages
that are confidential and require a level of encryption. Many higher-level
protocols, such as SSL/TLS, provide bulk encryption (and data integrity)
between two points. If bulk encryption satisfies your security requirements,
this may be sufficient. However, there are scenarios in SOA solutions where
bulk encryption protocols do not offer the correct solution, as shown in
Figure 11-6.

In Figure 11-6, the bulk encryption protocol provides confidentiality between
every point in the solution. However, if there is one element of the original

Chapter 11 ■ SOA Security 401

Encrypted
Connection

Web Service A

C’s Eyes Only!

Web Service
Request

User and
Portal Application

Encrypted
Connection

Web Service B

Encrypted
Connection

Web Service C

Figure 11-6 When end-to-end confidentiality is needed

message that is only intended for Web Service C in this example, the bulk
encryption protocol does nothing to satisfy this security requirement. It cer-
tainly ensures that only Web Service A, B, and C can see the message, but
it does not cryptographically prevent Web Services A and B from inspecting
the part of the message only intended for Web Service C. Luckily, the W3C
XML Encryption standard can be used in XML-based messaging for achieving
this level of confidentiality, and it can be used with both WS-Security SOAP
messaging and REST-based Web Services.

In creating a solution to satisfy confidentiality requirements, there are many
other things to consider: key management for distributing keys, ciphers to
use, cryptographic protocols that provide these services, and the amount of
encryption necessary to achieve enterprise security requirements. A major chal-
lenge involves the establishment of secret keys used for encrypted exchanges.
Because public key cryptography is slow and computationally expensive, it
is often used for key negotiation (the establishment of secret keys used for
data encryption), rather than for the data encryption itself. Standards such
as SSL provide this functionality by establishing session keys for long-lived
HTTPS sessions, where many message exchanges may use the session key for
the confidentiality of the conversation between two parties. Standards such
as WS-Security SOAP messaging, however, have no concept of ‘‘sessions,’’
and this is problematic when there is a requirement for long-lived exchanges
between parties, because slow secret key negotiation with public key encryp-
tion typically has to occur for each message (for example, between a portal
and an enterprise service that are constantly communicating). As a result,
many implementers can achieve success by combining WS-Security SOAP
messaging with SSL between two points. WS-SecureConversation, an OASIS
standard in 2007, is also used to establish keys for long-lived sessions using
the WS-Trust model.

Integrity
It is sometimes important to make sure that data (especially for service
transactions) has not been tampered with in transit or at rest. Validating

402 Part II ■ Designing SOA

a message’s integrity means using techniques that prove that the message has
not been altered. Because it is possible that message injection, IP spoofing,
and packet tampering can occur on TCP/IP networks, many applications may
require the use of digital signatures, Message Authentication Codes, or hash
algorithms to validate the integrity of the data.

In SOA enterprises, there may be integrity concerns between every service
consumer and provider. The recipient of every message should have a high
level of assurance that the message has not been altered by a malicious third
party. In addition, the recipient of each message needs to have assurance that
a valid message with integrity is not being replayed by a malicious third party.
In a replay attack, an attacker captures valid messages between two parties,
and resends these messages to the recipient at a later time, pretending to be the
message sender. A message requesting ‘‘Please withdraw $100 out of my bank
account’’ may be digitally signed by the owner of the bank account, providing
integrity (and non-repudiation), but unless there are mechanisms that prevent
it from being replayed, an attacker could replay that message until the user’s
bank account is empty! For this reason, successful secure messaging protocols
use integrity mechanisms to combine messages with a time stamp and message
identifier, guaranteeing the integrity of the date and time the message was
sent, the message ID, and the message itself. If an integrity check of the time
stamp or message ID fails, if the time stamp has expired, if a message with the
same message identifier has already been received, or if the message itself has
been altered, the message is rejected by the recipient. The mechanisms in the
WS-Security SOAP messaging specification provide integrity mechanisms, in
addition to preventing replay attacks.

The SSL/TLS protocol can provide the necessary message integrity between
any two points in your enterprise, as it combines integrity mechanisms with
confidentiality and authentication. This may satisfy security requirements
between two points in your SOA, but there may be some scenarios where this
is not sufficient. As discussed in the ‘‘Authentication’’ section of this chapter,
SSL is a point-to-point security solution; it does not provide assurance beyond
two points. This is an issue regarding authentication, but it is also a very
important issue to understand regarding data integrity. Figure 11-7 shows the
dilemma, where SSL protects the integrity (and confidentiality) of the data
between each point, but does not ensure that the intermediary services do not
manipulate the data before passing it on.

Figure 11-7 shows a business scenario where there is a company’s busi-
ness transaction service that brokers transactions to the correct services, such
as accounting, contracts, and human resources. In the case of payroll trans-
actions, the company’s business transaction service routes requests to an
accounting service that updates records, and that then forwards requests to a
payroll service. In this case, Bob from Accounting issues a request via a web

Chapter 11 ■ SOA Security 403

SSL
Connection

Business
Transaction

Service

Web Service
Request

"Bob says deposit
$100 into Bill

Lumberg's Acct"

Altered
Request

"Bob says deposit
$100 into Milton
Waddum's Acct"

Bob
From Accounting

SSL
Connection

Payroll
Service

SSL
Connection

Accounting
Service

Figure 11-7 When end-to-end integrity is needed

portal to deposit $100 into the account of an employee, Bill Lumberg. Between
the user’s client application and the business transaction service is a mutually
authenticated SSL connection, ensuring confidentiality, data integrity, and
identification of the identities of each party. In fact, between every point in
Figure 11-7 there are mutually authenticated SSL connections, ensuring this
level of security between each point. As you can see from Figure 11-7, however,
the security provided by SSL doesn’t prevent one of the Web Services from
altering the user’s original request — even though SSL protects data
from being altered in transit, it does not prevent one of the nodes in the
solution from modifying the request before propagating the request on to
the next service. Indeed, Figure 11-7 shows that the compromised business
transaction service alters the user’s original request, resulting in the wrong
employee getting a payroll deposit.

The W3C XML Signature standard can be used as part of the data integrity
solution for solving the problem demonstrated in Figure 11-7, because a
by-product of a digital signature is a hash code used to validate integrity.
If the user’s original request is digitally signed, and that signed request is
propagated to all of the nodes in the solution, this ensures the integrity of the
original request. If any Web Service attempts to alter the message, it fails an
integrity check. At the same time, mechanisms must also be used with XML
Signature to prevent the replay of the request, and there are some potential
pitfalls with signatures that are covered in the next section. XML Signature
can be used in XML-based messaging, and can therefore be used with both
WS-Security SOAP messaging and REST-based Web Services.

Much about providing integrity is straightforward, but some of the cases
addressed in this section (related to message replay and integrity in end-to-end
solutions) are more subtle. It is important, therefore, for architects to look at
SOA usage scenarios and security requirements ahead of time in order to
prevent these attacks.

Integrity is usually a key requirement in business, commercial, and govern-
ment SOA initiatives, and is therefore very important to understand.

404 Part II ■ Designing SOA

Non-Repudiation
Non-repudiation is the side effect of digitally signing a message, and it is legal
proof that a subject signed a message. A digital signature cryptographically
ties the identity of the signer to the contents of the data being signed, which
is an important concept in SOA-based messaging. Because digital signatures
are based on public key cryptography, the sender of the signed message can
not successfully deny the fact that he signed the message. Using public key
cryptography, the signature can be mathematically proven to be done by the
signer of the message, because of the nature of the cryptographic operation
performed with the sender’s private key. Because of the size of the keys
involved, digital signature validation produces a very high level of assurance
that a message signer indeed signed the message.

The W3C XML Signature standard is a W3C standard used for providing
integrity and non-repudiation, and it is used to sign XML documents and
elements of XML documents. It can be used in REST-based Web Services as
well as WS-Security SOAP Messaging. Often, digital signatures are used in
establishing trust in challenge-response scenarios for authenticating service
consumers for Web Service requests. A message sender may send a digitally
signed message to a service, providing strong assurance of the sender’s
identity, strong assurance that the data was not altered in transit (data
integrity), and cryptographically tying the sender to the data.

Due to the strong level of assurance provided by digital signatures, it is
important that anyone implementing SOA messaging solutions realize the
potential dangers in the way that signatures can be applied and used. If
an XML element is signed without stating its conditions of use or without
being bound to a specific request, this could be very dangerous. For example, a
voting authority could sign an assertion that says ‘‘This is Joey Bush’’ for a user
named Joey Bush to use for voting purposes in the 2008 election. If, however,
the authority doesn’t include an expiration date on that assertion (2008) and an
explicit condition of use (voting), anyone could use that signed assertion in a
way for which it was not intended. Without specific constraints, the assertion
in this example meant to be used in a voting application could be used to empty
Joey’s bank account or run up Joey’s credit card purchases. For this reason,
it is common practice in SOA messaging to explicitly state constraints and
conditions of use in signed data, and when identity assertions are involved,
the constrained assertion should be cryptographically bound with the request
by a digital signature, making sure that the assertion is not used for another
purpose. It is important, therefore, to use digital signatures wisely.

There are many other subtleties and potential pitfalls related to the use of
digital signatures in SOA environments. SOAP-based messaging standards,
such as WS-Security SOAP Messaging, SAML, and others, document these risk
areas well and provide a framework for avoiding such issues, but it is often easy

Chapter 11 ■ SOA Security 405

for the errant software developer to introduce something potentially harmful.
Obviously, developers creating XML messaging solutions for REST-based ser-
vices need to be extremely careful with digital signatures, and should carefully
look at warnings and trouble areas documented in SOAP-based messaging
protocols such as the OASIS WS-Security SOAP Messaging standard.

Web Service Security Standards and Specifications

There are a large number of Web Service security standards, and we have
chosen to focus on the major standards that we feel are most important for
the SOA architect to understand. Most of the specifications in this section are
accepted and well-established standards that are used throughout industry. A
few other specifications were included because they are well on their way to
standardization and are already being adopted by major SOA vendors. This
section is intended to provide enough background to prepare SOA architects
for the ‘‘SOA Security Blueprints’’ section of this chapter; thus, we do not spend
this section regurgitating the specs. Instead, this chapter briefly describes what
the standards are, why they are important, where the full specifications are,
and a little about the architecture(s) involved, if applicable. Although many
of these standards are based on SOAP messaging, many of these (specifically
SAML, XML Signature, XML Encryption, and XACML) can also apply to
REST-based security solutions.

WS-Security SOAP Messaging
WS-Security SOAP messaging is a widely used and accepted OASIS standard,
and it provides the capability to supply integrity, non-repudiation, confi-
dentiality, and token passing in Web Service–focused SOA environments.
WS-Security provides much flexibility, marrying SOAP messaging with mul-
tiple security standards and technologies: The standard extends the SOAP
Header to provide security information for secure messaging, it leverages
lower-level standards such as XML Signature and XML Encryption, it is
extensible to support multiple token formats for identity and authorization,
and it supports multiple trust models for sharing security contexts. By itself,
WS-Security does not provide a complete security solution for SOAP-based
Web Services. It is a building block for secure messaging, accommodating
many technologies and messaging models, and it can be used with higher-level
complementary standards and other protocols to build a solid SOA security
solution.

Many standards build on the foundation of WS-Security SOAP messaging.
WS-Trust and WS-SecureConversation, discussed later in this chapter, can be

406 Part II ■ Designing SOA

used together to create security contexts used in WS-Security SOAP messag-
ing. There are other related standards, such as the WS-Security SOAP with
Attachments Specification, and there are notable higher-level OASIS standards
for passing tokens for identity, authorization, and rights using WS-Security
SOAP messaging:

The WS-Security Security Assertion Markup Language (SAML) Token
Profile specifies how SAML tokens can be used in WS-Security SOAP
messaging for identifying subjects, identifying authorization credentials
of subjects, propagating identity and attributes in end-to-end solutions,
and expressing authorization decisions.

The WS-Security X.509 Certificate Token Profile specifies how X.509 Cer-
tificates representing a subject’s identity can be passed in WS-Security
SOAP messaging.

The WS-Security Kerberos Token Profile utilizes Kerberos tickets with
WS-Security SOAP Messaging, accommodating enterprises that use
Kerberos for authentication and trust.

The WS-Security Username Token Profile shows how usernames, and,
optionally, passwords, can be passed in WS-Security SOAP Messaging.

WS-Security REL (Rights Expression Language) Token Profile specifies
how the Rights Expression Language can be used to achieve authoriza-
tion in an SOA by using attribute licenses and authorization tokens.

Every one of the WS-Security token profile standards comes with different
strategies, guidance, and scenarios for their use in SOA environments. The use
of some of these token profiles are referenced in the ‘‘SOA Security Blueprints’’
section of this chapter.

WS-Security is the standard to use in any SOAP-based SOA, and most
products support it. Because it is independent of security infrastructure, and
because it can be used with so many other standards and token formats, it
provides a flexible mechanism for secure messaging in any SOA solution.
The OASIS WS-Security SOAP Messaging family of standards is available at
OASIS at http://oasis-open.org/committees/wss.

WS-Trust
The OASIS WS-Trust standard, a part of the WS-Security family of specifica-
tions, defines a Security Token Service (STS), and a protocol for requesting
and issuing security tokens used by WS-Security SOAP Messaging for estab-
lishing trust. Figure 11-8 illustrates the WS-Trust STS model. In the figure,
the STS is a trusted identity provider, providing claims about requestors
of services. Providers of resources rely on tokens issued by the STS for

Chapter 11 ■ SOA Security 407

Requestor

Resource
Provider

Policy

Security
Token

Claims

Policy

Security
Token

Claims

Policy

Security
Token

Claims

Security Token Service
(STS)

Figure 11-8 The STS model defined by WS-Trust

determining the trust of all requests. In SOA enterprises that utilize WS-Trust,
each service provider and service consumer in the model has its own policies,
which combine to determine security tokens and associated claims required to
communicate.

In Figure 11-8, a requestor wanting to make a connection with a resource
provider queries the resource provider for its policies to determine its secu-
rity requirements, usually defined in a WS-SecurityPolicy expression. This
policy lists the tokens needed for communication with the service, and option-
ally lists the appropriate STS that can issues the necessary tokens it trusts.
If the requestor does not have an appropriate token, it can request one from the
STS, which authenticates the requestor and issues a token identifying
the requestor (and possibly asserting claims about the requestor, such as the
requestor’s authorization credentials). Finally, the requestor connects to
the resource provider with the token from the STS, and the resource provider
provides access based on the contents of the token. The resource provid-
er may, if necessary, use the STS to validate tokens presented to it.

The WS-Trust model is flexible to accommodate standard token formats,
including SAML, and its protocol processing is designed to be agnostic of the
type of token being transmitted. What is positive about WS-Trust is that it
allows services to rely on trusted identity providers for explicit trust (instead
of having to determine out of-band trust for every message sender). This

408 Part II ■ Designing SOA

provides a model that scales well for identity federation, as an STS identity
provider may act on behalf of a partner organization in a federation. WS-Trust
is used with the WS-Federation specification for identity federation, and it is
used with WS-SecureConversation for the purpose of establishing security
contexts in WS-Security SOAP Messaging. The WS-Trust standard is governed
by the Web Services Secure Exchange (WS-SX) Technical Committee, and can
be found at http://oasis-open.org/committees/ws-sx.

SECURITY STANDARDS AT A GLANCE

This section covers many standards — as a result, we felt that it would be
helpful to list them here and briefly define them, and the subsections.

◆ WS-Security — A family of Web Services (WS-*) security specifications from
OASIS, ‘‘WS-Security’’ usually refers to Web Services Security (WSS) SOAP
Messaging, a unifying standard for securing SOAP messaging security.

◆ WS-Trust — An OASIS standard that defines an STS, and a protocol for
requesting and issuing security tokens used by
WS-Security SOAP Messaging for establishing trust.

◆ WS-Federation — An OASIS specification that extends the WS-Trust
STS model and protocol for federating identity across organizational
boundaries.

◆ WS-SecureConversation — An OASIS standard that specifies mechanisms
for establishing and sharing security contexts and deriving session keys
from those contexts; it can be used to exchange multiple messages for
long-lived relationships (‘‘conversations’’) beyond a typical one
message request/response.

◆ WS-Policy — An OASIS standard, WS-Policy is an assertion framework and a
model for expressing policies that refer to capabilities and requirements for
Web Services. Other languages, such as WS-SecurityPolicy.

◆ WS-SecurityPolicy — A WS-Policy language, this OASIS standard is used
to convey policy assertions for use by WSS: SOAP Messaging Security, WS-
Trust, and WS-SecureConversation, the security messaging requirements of
a Web Service.

◆ SAML — The Security Assertion Markup Language is a standard from OASIS,
and it is an XML-based framework that is used for communicating user
authentication, entitlement, and attribute information as assertions. It
defines an XML format and a protocol for specifying and exchanging asser-
tions between parties.

◆ XACML — The eXtensible Access Control Markup Language is an expressive
and flexible XML-based language for conveying access control policies for
resources. An OASIS standard, XACML not only provides an XML format for

Chapter 11 ■ SOA Security 409

conveying access control policy but includes a request/response protocol
for querying for policy decisions to be made.

◆ XML Signature — A W3C Standard, it is used for digitally signing elements
of XML documents. It is a lower-level standard used in both SOAP and REST
implementations for providing non-repudiation and message integrity for
XML-based messaging.

◆ XML Encryption — A W3C Standard, it is used for encrypting elements of
XML documents. It is a lower-level standard used in both SOAP and REST
implementations to provide confidentiality and information hiding in
XML-based messaging.

WS-Federation
WS-Federation, a specification introduced into OASIS in 2007, is in the
WS-Security family of specifications, and utilizes and extends the WS-Trust
STS model and protocol for federating identity across organizational bound-
aries. By defining a variety of federation services, including authentication,
authorization, attribute, and pseudonym services, for the purpose of federat-
ing access across multiple domains, and by providing a federation metadata
model describing such services, participants in a federation can discover
how to access and use services for the purpose of cross-domain Web Service
communication.

WS-Federation offers the capability of a new STS called an authorization
service which provides decision brokering services (PDP/PEPs) for partici-
pants in a federation. WS-Federation also defines a model for parties to access
attribute services based upon the security token service concept and reliant
on the token issuance protocol defined in WS-Trust. Pseudonym services are
provided in that a Resource Provider can describe the set of attributes required
to access a resource, and an Identity Provider (an STS) can assert that a partic-
ular subject possesses those attributes, without divulging the actual identity
of the subject. WS-Federation also includes extensions to the Security Token
Request protocol of WS-Trust to allow a requestor to list privacy require-
ments, ensuring that sensitive and confidential data is not conveyed in token
transmission.

WS-Federation can be used in both browser-based and Web Service–based
identity federation, and as such, there is some overlap between SAML 2.0
browser HTTP federation capabilities and the capabilities of WS-Federation.
As WS-Federation is now moving to standardization in OASIS, hopefully
WS-Federation and SAML 2.0 can complement (and not compete with) each
other. The WS-Federation documentation is at the OASIS Web Services

410 Part II ■ Designing SOA

Federation Technical Committee at the following URL: oasis-open.org/

committees/wsfed.

WS-SecureConversation
WS-SecureConversation is built on top of WS-Security to provide secure
communication between services. An OASIS standard that specifies mecha-
nisms for establishing and sharing security contexts and deriving session keys
from those contexts, WS-SecureConversation can be used to exchange multi-
ple messages for long-lived relationships (‘‘conversations’’) beyond a typical
one message request/response. In situations where constant communication
between services is expected (between a portal and an enterprise Web Service,
for example), this is helpful in that performance greatly increases by utilizing
derived session keys for encryption communications, instead of having to do
slow key negotiation with each message.

The WS-SecureConversation standard complements WS-Security SOAP
messaging. WS-SecureConversation defines a new WS-Security token type
that is a security context obtained by using a binding of WS-Trust. This
security context can be used to derive a ‘‘shared secret’’ for encrypted commu-
nications. In the WS-SecureConversation standard, a security context token
may be created by an STS, it may be created by one of the communicating
parties and propagated with a message, or it may be created by negotiation
between parties. WS-Security alone has no capability of deriving this context,
so WS-SecureConversation provides needed functionality for WS-Security
SOAP Messaging.

An OASIS standard since 2007, WS-SecureConversation is beginning to
be adopted by many vendors and toolkits. For more information, visit
the OASIS Web Services Secure Exchange (WS-SX) Technical Committee at
http://oasis-open.org/committees/ws-sx.

WS-SecurityPolicy and the WS-Policy Framework
WS-Policy (or Web Services Policy Framework) is an XML language that
is used to represent the capabilities, constraints, and requirements of Web
Services, and these capabilities and requirements are expressed as policy asser-
tions. Because the Web Service Definition Language (WSDL) is not expressive
enough to define Web Service capabilities and requirements such as quality of
service (QoS) and messaging security, WS-Policy complements WSDL, and is
used for many aspects of SOA governance that are discussed in Chapter 12.
WS-SecurityPolicy is a subset of WS-Policy, and provides a set of WS-Policy
security policy assertions describing the messaging security policy require-
ments involved in communicating with Web Services, and these are used with
WS-Security SOAP Messaging, WS-Trust, and WS-SecureConversation.

Chapter 11 ■ SOA Security 411

The WS-Policy Framework has been a W3C recommendation since Septem-
ber 2007, and WS-SecurityPolicy is an OASIS committee standard, which has
seen acceptance and is being used by major SOA vendors. Used for expressing
messaging security requirements, WS-SecurityPolicy describes the granular
details required for secure messaging for SOAP messages. For example, if a
Web Service requires a WS-Security Header containing a signed BinarySe-
curityToken (WS-Security X.509 Certificate Token Profile), WS-SecurityPolicy
would be used to express that policy. If certain elements in a Web Service
operation are required to be signed or encrypted, WS-SecurityPolicy is used
to express this policy. WS-SecurityPolicy supports a wide variety of token
types used to provide authentication and authorization information, and is
very helpful in a dynamic SOA environment, where interactions and security
policies of business partners are dynamic, and where a complement to WSDL
is needed to achieve this security collaboration.

The use of WS-SecurityPolicy is discussed more in the Blueprints section
of this chapter and is also discussed in Chapter 12. The WS-Policy proposed
recommendation is found at the W3C at w3.org/TR/ws-policy, and the OASIS
WS-SecurityPolicy specification is found at http://docs.oasis-open.org/

ws-sx/ws-securitypolicy.

SAML
The Security Assertion Markup Language (SAML) is an XML-based frame-
work that is used for communicating subject authentication, entitlement, and
attribute information. There are many uses of SAML, and it is commonly used
with many other standards and specifications, including WS-Security SOAP
Messaging, WS-Trust, WS-Federation, XACML, and the Liberty Identity Web
Services Framework (ID-WSF). An OASIS standard since 2002, SAML revolves
around the concept of an assertion, which is simply a declaration about a sub-
ject. An assertion may be a declaration about a subject’s authentication (and
therefore its identity), a list of a subject’s authorization credentials, or an
expression of an authorization decision granting a subject to access a resource.
The trust of a SAML assertion is based upon the trust of the entity issuing an
assertion, usually referred to as an Asserting Party or a SAML authority. Since
the specification was adopted in 2002, it has gained significant momentum
and its 2.0 version includes federated identity capabilities, in addition to its
use as an XML-based token and a protocol for exchanging assertions.

Figure 11-9 provides a snapshot of a few of the many capabilities of SAML.
The figure provides a high-level view of the format of a SAML assertion. The
figure shows an example of SAML being used as a request/response protocol
for requesting assertions for access control decisions; it shows the use of SAML
tokens in WS-Security and shows a conceptual use case of SAML assertions
being utilized in browser-based SSO.

412 Part II ■ Designing SOA

Relying Party
(Requesting Party) Asserting Party

(Issuing Party)

SAML
Assertion
Request

User
Portal

Portal

Identity Provider and
SAML Issuer

Portal

Portal

Issuer

Conditions

Attribute Statement

Attribute–Values

Statement(s)

Subject

Attribute–Values

Authentication Statement

Authentication Method

Name Identifier

Confirmation Method

. . .

Authorization Decision
Statement

Action

Decision

Evidence

Subject

Subject

Advice

Resource

Assertion

Assertion Format
Protocol

 In Browser-Based SSO

SAML
Assertion
Response

User

Portal

In WS-Security SOAP Messaging

Web Service

WS-Security
SAML Token Profile

Messaging

Figure 11-9 Uses of SAML in SOA enterprises

There are three types of statements in assertions: An authentication state-
ment conveying a subject’s authentication information (how the subject
authenticated, when the subject authenticated, and by whom the subject
was authenticated), an attribute statement that lists attributes associated with
a subject, and an authorization decision statement, which is used to assert a
subject’s right to access a particular resource. SAML tokens, by themselves, can
be used in token based messaging in SOA enterprises, and they are commonly
used with WS-Security and other messaging protocols. The OASIS WS-Security
SAML Token Profile standard specifies ways in which SAML tokens can be
used to assert information about subjects in WS-Security SOAP Messaging,
and a WS-Trust STS can be used to issue SAML tokens in this model.

SAML also defines a request/response protocol for requesting assertions
from an SAML Issuing Authority, and this protocol is commonly used in SOA
authorization scenarios. SAML protocols allow providers to request assertions
from a SAML authority about certain subjects. For example, the following
can be requests: ‘‘Return an authorization decision about User X accessing
Resource Y’’ and ‘‘Give me the security attributes of User X.’’ The SAML
protocol can also be used to request that an identity provider authenticate
a subject and return an assertion. The SAML protocol is sometimes used to
request a logout of a collection of sessions (single logout), and it is also used
to carry XACML policies, policy queries, policy responses, authorization
decision queries and responses.

Chapter 11 ■ SOA Security 413

SAML 2.0 provides support for SSO. Some of the types of SSO supported
are: Identity SSO, where the user identity is registered in both security
domains, and Attribute SSO, where access control to resources in a domain
is controlled by authorization attributes. Anonymous SSO can be accom-
plished by only passing SAML attribute statements, and SAML also has
the capability for using pseudonym-based SSO for privacy concerns. The
SAML Web browser SSO profile specifies how SAML authentication asser-
tions are communicated between an identity provider and a service provider
to enable SSO for a browser user, and this is significant because this model
brokers trust relationships between the user’s browser and services in the
enterprise.

SAML is used as one of the ‘‘building blocks’’ for federated identity. The
SAML profiles lend themselves to federation beyond the host organization.
The Liberty Alliance, a consortium focused on federated identity and SSO, was
instrumental in adding federation capabilities (from ID-FF) into SAML 2.0 for
browser-based SSO, and now utilizes SAML 2.0 in the ID-WSF (the Identity
Web Services Framework), a framework focused on Web Service SSO.

As there is some overlap between SAML and WS-Federation in the federated
identity arena, it remains to be seen how the identity federation capabilities
of SAML and WS-Federation play together in the future. As noted earlier,
WS-Federation is able to use SAML tokens in its architecture, but uses the
WS-Trust STS architecture and protocols for exchanging information.

SAML has been widely adopted as a token format for conveying authentica-
tion and authorization information, and many products (such as policy servers
and federated identity management systems) have adopted the SAML proto-
col and federation capabilities of SAML. Documents on SAML are at the OASIS
Security Services Technical Committee online at http://oasis-open.org/

committees/security.

XACML

The eXtensible Access Control Markup Language (XACML) is an expressive
and flexible XML-based language for conveying access control policies for
resources. An OASIS standard since 2003, XACML provides not only an XML
format for conveying access control policy, but includes a request/response
protocol for querying for policy decisions to be made. XACML as an XML
policy language is used to describe general access control requirements, and
is extensible in that you can define new functions, data types, and combing
logic. The request/response language allows components to form a query
to ask whether or not a given action should be allowed, and interprets the
result.

414 Part II ■ Designing SOA

A data flow diagram view of the XACML architecture is shown in Fig-
ure 11-10.

In the XACML data flow shown in Figure 11-10, a PAP creates XACML
policies for resources and makes them available to a PDP. When a subject
requests access to a resource, a PEP sends the access request to a context
handler, which propagates that request to a PDP. The PDP then requests
access to attributes (about the subject, resource, and environment) in order to
make an access control decision. The attribute requests are sent to a PIP, which
returns the requested attributes, and when the PDP receives this information, it
returns an authorization decision, which is returned through a context handler
to the PEP, which makes the decisions, based on obligations returned from an
obligation service.

Although XACML does provide a request/response protocol for many
of the interactions in Figure 11-10, much of the information passed in the
data flows could be SAML tokens, and many of the exchanges could use
the SAML protocol. Although SAML addresses provide a mechanism for
transferring attribute statements, authorization statements, and authorization
decisions between cooperating entities, XACML focuses on the mechanism
for arriving at those authorization decisions. Many SOA-based systems use
XACML policies for access control, while utilizing the SAML request/response
protocol or using SAML tokens for identifying subject information. The SAML
profile of the XACML standard defines a profile for the use of SAML to carry

Access Requestor PEP Obligations
Service

Context
Handler ResourcePDP

PIP

Subjects EnvironmentPAP

1. Policy

3. Request
Decision

6. Attribute
Query

7a. Subject
Attributes

7b. Environment Attributes

8. Attributes

7c. Resource Attributes

10. Attributes

11.Response
Context

12. Response

2.
Access
Request

4. Request
Decision

5. Attribute
Query 9. Resource

Content

13.
Obligations

Figure 11-10 Data flow diagram of XACML use

Chapter 11 ■ SOA Security 415

XACML policies, policy queries and responses, and authorization decisions
and responses.

In practice, XACML is used primarily for its expression language, and policy
servers use XACML for the expression and storage of policies in the enterprise.
The future of the success of the XACML protocol remains to be seen.

XACML is a platform-independent policy language and continues to be
refined in the OASIS XACML Technical Committee. Documents, news, and
current progress can be found at http://oasis-open.org/committees/xacml.

XML Signature
XML Signature is a W3C standard that is a way to provide message integrity
and non-repudiation of XML documents and elements of XML documents.
XML Signature, sometimes called XML-SIG or XML-DSIG, relies on public key
technology in which the hash (or message digest) of an element or a set of XML
elements is signed by the signer’s private key and, therefore, can be validated
by third parties by performing a cryptographic operation on the hash of the
data with the sender’s public key.

A message may have elements that are digitally signed by many different
parties, and a signature of a message may cryptographically tie elements
together. For example, identity, authorization, and time information from the
WS-Security header and the SOAP request in the SOAP body are often cryp-
tographically bound together by the digital signature, preventing an attacker
from reusing security information with other requests, providing proof that
the message was not altered in transit, and providing proof that the signer
sent the message. XML Signature is heavily utilized by WS-Security SOAP mes-
saging for providing integrity and non-repudiation, but it can be used in any
XML messaging solution where those security goals need to be met. The XML
Signature standard can be found online at http://w3.org/TR/xmldsig-core.

XML Encryption
XML encryption is a W3C standard that provides confidentiality of XML
documents and elements of XML documents. XML encryption is used with
various encryption ciphers to encrypt data to different parties. As discussed
in an earlier section on confidentiality in this chapter, XML encryption can
be used at the element level, providing confidentiality of sensitive XML
elements intended for only certain parties, safely protecting encrypted data
through intermediary Web Services, until the intended recipient is able to
decrypt the element. Like the XML Signature standard, XML encryption is
heavily utilized by WS-Security SOAP Messaging, as well as other XML-based

416 Part II ■ Designing SOA

messaging protocols. The XML encryption standard can be found online at
http://w3.org/TR/xmlenc-core.

SOA Security Blueprints

This section of the chapter builds on the first two. Now that you have an un-
derstanding of the classical information security goals, and a high-level
understanding of some of the most important SOA security standards, this
section provides practical advice, tips, and methodologies to use in different
scenarios used to satisfy security requirements in your SOA.

As you read this section, please note that the Web Service security landscape
(relating to standards) is continuing to mature and evolve. For this reason, we
focus more on architectural principles than on the usage of the key standards
in the last section. Where applicable and where it is deemed necessary, we
refer to the standards, but most of the concepts and strategies discussed in
this section for achieving your security goals can be implementation- and
standard-agnostic. It is our goal in this section to have these blueprints be in
use as standards evolve and change, regardless of the technologies used.

Separation of Security into Components and Services
Some of the fundamental architectural principles, as we have discussed in
Chapter 2 and throughout this book, revolve around abstraction and accommo-
dation of change. To accommodate change, it is important for your architecture
to be loosely coupled. For this reason, it is important to separate security from
the business logic of your service consumers and providers As architectures
moved to client/server in the 1990s, many adopted a more loosely coupled
model with the Model-View-Controller (MVC) design pattern, separating pre-
sentation, business logic, and data into three components. In SOA, we separate
functionality even further, and one of the ways that we do this for security is
by abstracting enterprise security into a service layer and into local security
components for service consumers and producers. Such an abstraction is nec-
essary because it is otherwise easy for the presentation, data, and business logic
to be tightly coupled to security, which provides performance and manage-
ment problems — in the case study section of this chapter, we show you such
an example.

It is important that you realize that creating a security service layer is not
tantamount to creating a set of ‘‘central’’ security processing services that act
as performance bottlenecks and single point of failures in your enterprise. As
we address later in the ‘‘Access Control Blueprints’’ section, there are many
strategies for using enterprise services for access control, addressed by the

Chapter 11 ■ SOA Security 417

type of services used and the amount of security delegation/federation to local
security components used. Figure 11-11 shows the separation of security into
a security layer of enterprise security services and local security components. In
practice, security components, sometimes called ‘‘security interceptors’’ (with
various implementations discussed in Chapter 9), are often implemented in
security handlers or security plug-ins to application servers — these separate
much of the security processing and the interaction with security services from
the business logic of the services.

Figure 11-11 shows a high-level diagram of abstracting security from a
user-facing service consumer and a service provider. Both the service con-
sumer and service producer have a local security component that performs
security functionality and integrates with enterprise security services. These
local security components abstract security from the other components of
the services and perform functionality such as message validation, policy
enforcement, and various levels of access control. In Figure 11-11, because the
service consumer is a user-facing client application with presentation, its local
security component may perform PKI authentication with the user and then
call enterprise security services to validate the revocation status of the user’s
certificate and to request the user’s security roles. Based on the security roles
of the user, the application’s presentation component can provide a filtered
view of the data at the presentation layer. The local security component for the
service consumer may also be responsible for constructing messaging security
for a request to the service provider, propagating the identity and attributes
of the authenticated user, and validating the security of the response of the
message from the service provider. The service provider, on the other hand,

Business
Logic

Presentation View

Data

Local
Security

Component

request

Local Security Component

Service Interface

response

Authentication
Authorization

Validation
Auditing

Policy Management
Policy Enforcement

Policy Retrieval

Service Consumer

Service Provider

Enterprise
Security
Services

Figure 11-11 Abstraction of security into services and security integration components

418 Part II ■ Designing SOA

has a local security component that may validate the security of the incoming
message, and may act as a PEP, calling enterprise security services to make
access control decisions.

To accommodate flexibility in your security architecture, it is important to
establish an array of security services that meet the current and future security
needs of your enterprise. Many common services are the following:

Identification and Authentication Services — These types of services
are used for identification of subjects in the enterprise. Depending on the
type of authentication used, a specific ‘‘authentication service’’ may not
be needed, but other services, such as certificate validation and certificate
revocation status verification services, would certainly fall under this
category.

Attribute Service — This service is typically used for retrieving attribute
credentials (security roles and other credentials used for authorization)
for subjects in the enterprise.

Access Control Policy Management Service — This service is typically
used for storing the access control policy for resources in the enterprise.

Policy Retrieval Service — This service is used for retrieving the stored
policy for resources in the enterprise, for the purpose of making access
control decisions.

Authorization Decision Service — This service is usually used to make
authorization decisions about a subject’s request for a resource, acting
as a PDP based on access control policy and attributes about subjects.

Identity Transformation Services — Although such services would not
exist in a ‘‘perfect world’’ network, where each subject has one identity
credential, it is sometimes helpful to provide services that aid in trans-
formation of identities between multiple enterprise applications and
support different authentication credentials for the same user. Such a
service can be helpful with identity propagation.

Security Token Service (STS) — This service is used for issuing trusted
assertions of identity, security attributes, and authorization decisions in
the enterprise.

Auditing Services — These types of services are used for providing a
centralized view of logs and alerts in the enterprise.

Providing all of these services allows options and flexibility for security,
especially for access control. Later on in this section, you can see several
blueprints for various mechanisms of access control that use a combination
of these enterprise security services and local security components in the
enterprise.

Chapter 11 ■ SOA Security 419

SELECTING PRODUCTS FOR ENTERPRISE SECURITY SERVICES

It is sometimes a temptation to pick a vendor’s commercial off-the-shelf (COTS)
product that supplies all of your security services and components, thinking
that this can solve all of the problems for your enterprise. The key to selecting
products revolves around standards compliance. Look for supported standards
that we discussed in the ‘‘Web Service Security Standards and Specifications’’
section of this chapter. Make sure to do your research. If you hear or read
phrases like ‘‘Our supported messaging is based on WS-Security,’’ or ‘‘Our
security tokens are SAML-like,’’ this should throw up a few red flags. Either
products are standards-compliant or they are not.

In the same way, be warned that many vendors attempt to lock you in to
their product by both supporting standard security mechanisms and supporting
very easy-to-use proprietary mechanisms for security. (For example, some
application servers support JAX-WS or JAX-RPC security handlers but urge you
to only use their proprietary plug-ins for security.) It is easy for the
well-intentioned developer to go down the proprietary road, because the
proprietary road usually offers very easy integration. As the security architect,
make certain that you warn your developers not to do this.

If you use a product and make sure to only use services that use standard
protocols and standard security components, you can reduce your dependence
on that vendor. This way, if the product becomes unsupported in the future or
becomes unreliable or unusable, you can have a much easier time replacing it
with another product!

Separating security functionality into enterprise security services and local
security components is essential. The next few sections of blueprints show
various options that the SOA architect has when using these enterprise
security components. Later in this chapter, we provide a simple case study,
where enterprise security services and local security components are used in
an example enterprise.

Authentication and Identity Blueprints
This section contains blueprints and best practices related to authentication
and identity. As we discussed in the first section of this chapter, there is
usually a requirement to identify both the message sender and the identity of the
end user in each service request. Initially, the message sender and the end user
are the same when the user authenticates to a front-end application. Beyond
that, the architect has options related to identifying users. Every SOA security
architect should understand the issues related to SSO, trust propagation, and
authentication in an SOA, and this section focuses on these issues and offers
practical solutions based on security policy and infrastructure.

420 Part II ■ Designing SOA

Identity Propagation for SSO Solutions

There are usually two models of trust of user authentication: direct trust, where
the service provider has first-hand knowledge of the user’s authentication,
or transitive trust, where the service provider must trust the identity of the
user based on an assertion of another party. Figure 11-12 shows examples of
direct and transitive trust, and the next sections show successful blueprints for
achieving different mechanisms of trust.

The transitive trust model exists because of the desire for SSO in SOA.
Instead of forcing a user to authenticate to every service, there are mechanisms
of propagating a user’s credentials through multiple nodes, and this is known
in some circles as deep authentication. Transitive trust is based on a strong
trust of every Web Service client and every Web Service in a request chain.
The bottom two examples in Figure 11-12 show transitive trust, where a
portal vouches for the end user it authenticates. If the next Web Service
authenticates the portal and trusts the portal to make an assertion about
the end user; then this level of assurance may be adequate, depending on the
security requirements — the important issue is the chain of trust. Transitive
trust can be acceptable when there are only a few entities trusted to assert
identity in the Web Service pipeline.

Tokens provide the ability for trust propagation in Web Service messaging,
and token profiles, such as the WS-Security SAML Token Profile, are used

Trust me—I
authenticated Alice!

Alice

Trusted Portal

Trusted Web
Service

The trusted portal
sent me an
assertion that it
authenticated Alice.

Okay, I trust that,
because I trust the
web service (and
the portal).

3 Hop Transitive Trust:
Some Assurance

Kevin
Bacon

Trusted Portal
I am six degrees of
separation from
Kevin Bacon!

6 Hop Transitive Trust:
Low Assurance

Alice

Portal

Direct Trust:
High Assurance

Authentication
and

Request

Authentication
and

Request
Authentication

and
Request

Authentication
and

Request

Figure 11-12 Direct and transitive trust

Chapter 11 ■ SOA Security 421

in WS-Security SOAP messaging. Because WS-Security SAML Token Profile
is common in deployed SOAs, we use this standard as an example in this
section. It has one option called a ‘‘sender-vouches’’ confirmation method
that provides a formal method of propagating identity, where the sender
vouches for the identity of a user in an assertion. The standard mandates
that the message sender (or attesting entity) must cryptographically bind the
assertion with the body of the message so that the assertion (or the main
message) cannot be altered, and that the receiving entity must have an existing
trust relationship with the sender. WS-Security SAML Token Profile is not
alone in offering this option; there are many other standards that use identity
propagation mechanisms.

Where transitive trust usually goes wrong is when every node in a particular
SOA enterprise is trusted to assert identity, or when there are large numbers
of services in between the end user’s authenticating client and the final Web
Service. Using the transitive trust model, trust of the end user’s identity goes
down as the distance to the user increases. The final example of transitive
trust in Figure 11-12 (six hop transitive trust) provides little assurance of the
identity of the user, regardless of the trust between each node in the chain.
When the distance between the user and the final Web Service is so large, trust
degrades.

To have a higher degree of assurance of the identity of a propagated user,
you can either trust fewer nodes to propagate identity or minimize the amount
of transitive trust hops. This section uses these strategies to provide a few
blueprints for propagating identity with a high-level of assurance.

Identity Propagation within an Application Server or ESB

One blueprint that can be effective in certain situations is to use an application
server or Enterprise Service Bus (ESB) product to share security information
among all services within, collapsing the number of hops for identity prop-
agation. Because all of the services on an application server can have access
to security information about the end user, every Web Service hosted on that
server in the message chain has access to the user’s authentication credentials.
In practice, if all of the Web Services share a container, no special messaging
security is needed between the services in the message pipeline, and usually
calls are in-memory object invocations. In addition to limiting the hops of
transitive trust, this has a positive performance impact.

Figure 11-13 shows two usage examples where a portal and an ESB share
the same container. In one scenario, User A authenticates directly to the portal,
and this authentication information is shared by all of the services hosted in
the ESB, reducing the number of trust hops to one (between the user and the
portal/ESB container), and maximizing the assurance of the user’s identity.
The second scenario in Figure 11-13 is where User B authenticates to a trusted
application, and that trusted application authenticates to the first service in

422 Part II ■ Designing SOA

User A Trusted Portal
with ESB Container

User B
Trusted Application

Strong
Authentication

Authentication, Assertion
of User Identity,

and Request

ESB Container with Services Sharing All Information about the Authenticated User

Strong
Authentication

Figure 11-13 Using an ESB to share trust between services

the ESB, and sends a token vouching for the end user. Based on the ESBs
trust of the trusted application, the propagated identity information is trusted
and shared with the rest of the services in the container. The assurance of the
identity of User A is higher in the first scenario, because the container has
direct trust of the user’s identity, and the assurance of the identity of User B is
dependent on the ESBs trust of the trusted application. In both examples, we
have limited the number of trust hops.

A word of warning on this blueprint — such a strategy can only be used in sit-
uations where services are co-located, and it is, most likely, only a short-term
solution for identity propagation. Chances are, all of your services are not
deployed on the same container, and in some cases, load-balancing mech-
anisms may separate co-located services between servers, and this requires
another strategy. However, it can be effective in the right situations. If you
deploy services on the same container that must communicate with each
other, it makes sense to make internal invocations between them instead of the
services sending cryptographically protected on-the-wire network messages
to each other, bringing performance to a crawl.

Such a strategy may also not be an end-to-end solution — instead, it can be a
performance-enhancing complement to another identity propagation solution
we discuss in this section. For an SOA enterprise, it makes sense to choose
a secure messaging ‘‘on-the-wire’’ mechanism for identity propagation, but
when the services are deployed, it may be wise to factor in service co-location
using this strategy.

Assigning Attesting Trust to a Limited Number of Entities

If you have a situation where there are only a few authenticating applications
in your enterprise, and only a few services that do service composition and
orchestration, you may be able to get by with setting up a small number of
trust relationships between the enterprise and the applications and services
that are trusted to attest to the identity. An example is shown in the ‘‘3-Hop

Chapter 11 ■ SOA Security 423

Transitive Trust’’ scenario in Figure 11-12, where there is one trusted portal
and one trusted Web Service doing orchestration. It should be pointed out,
however, that trust of any assertion of identity is based on the trust of the
attester, so if there is a large number of entities trusted to attest identities (for
example, the ‘‘Kevin Bacon Game’’ chain situation shown at the bottom of
Figure 11-12), this strategy is not very successful.

This strategy can be a successful solution, but it must be closely managed.
In many cases, the solution may be a short-term solution. Because services are
reusable components, there may be other services and applications that can
build orchestration solutions, and this may require adding more and more
entities to the ‘‘trust list.’’ The longer the message chains get in this solution,
and the more entities allowed to attest identity, the lower the assurance of
this model. However, if you are absolutely certain that the number of trusted
entities can be limited, this can be a successful strategy.

Using a Trusted Token Service

A more promising trust strategy used in identity propagation involves a
situation where there is one trusted token service that vouches for the identities
of end users. This model is commonly used in both Browser-Based SSO
and Web-Service-based SSO. Both models rely on the assurance of a single
identity provider that may act as a token issuer. This identity provider has
the responsibility of authenticating end users and issuing short-lived signed
assertions that can be used in transactions. Figure 11-14 shows a conceptual
diagram, based on a few of the SSO standards in use today. (This is conceptually
similar to the WS-Federation/WS-Trust model, as well as a combination of the

Resource
Provider

Alice

Identity Provider/
Security Token Service

2. Outsource
of Authentication

3. Signed
Token

5.T
ok

en
 Valid

ati
on6. Return

Resource

1. Authentication
and

Request

4. Request for

Resource

(w/ token)

Figure 11-14 Using a trusted identity provider and token issuer

424 Part II ■ Designing SOA

SAML Browser SSO Profile and the Liberty ID-WSF model.) In the example,
a user authenticates to a portal, which has a strong trust relationship with
an identity provider. The portal ‘‘outsources’’ or redirects authentication to the
identity provider, so that it directly authenticates the user. Based on a user’s
valid authentication, the identity provider returns a signed SAML assertion,
which is returned to the user’s browser for subsequent portal interactions, but
this can also be used by the portal to propagate identity to other Web Services
in the enterprise.

The trust of the identity of the user in this model is based on the trust of the
identity provider issuing the token, with a bit of trust placed on the portal that
is integrated with the identity provider/token service. This limits the amount
of trusted entities (eliminating the ‘‘Kevin Bacon Game’’ problem), providing
a high degree of assurance.

Identity Propagation with REST Using Browser SSO

The introduction of the SAML Browser SSO Profile in 2005 makes identity
propagation for Representational State Transfer (REST) possible. Because
REST does not differentiate between a service call and a click from the
user’s browser, distance is minimized between the user’s browser and the
Web Services using browser-specific profiles, such as the SAML Browser
SSO Profile, and we anticipate that when WS-Federation is standardized, its
Browser SSO capabilities can bring similar success to REST-based services.

Figure 11-15 shows a high-level sequence diagram of the Browser SSO model
provided by the Profiles for OASIS SAML Standard. Each service provider
redirects authentication to an identity provider that issues tokens (similar to
the browser-portal interaction in the last section). For an initial browser-based
request, HTTP redirections or other mechanisms initiate a login sequence with
an identity provider, and the identity provider’s response (in the form of a
SAML token) is returned to the user’s browser, which is delivered to the
service provider, which then grants access based on the token and the trust of
the identity provider. If the service provider makes a call to another service
provider on behalf of the user, the same sequence can be used.

The beauty of this approach compared to the previous one is that one
standard is used, instead of multiple standards. Because the user’s browser
is able to have token information, standard HTTP redirects allow direct
connection between the user’s browser and each service. Because each service
trusts one identity provider that issues assertions to the user’s browser, there
is trust of one entity, not several. It not only works in an organizational SSO
model, but it is used in federation scenarios as well.

Because this model embraces HTTP and open standards, implementers using
REST-based services should consider using this standard when organizational
SSO or service federation to multiple enterprises is needed.

Chapter 11 ■ SOA Security 425

User Agent (Browser) Service Provider (SP) Identity Provider (IP) Service Provider 2 (SP2)

1. User Agent attempts to Access Resource

Do I have a security
context for this
User Agent? If not,
I will establish one!

2. Determine Identity
Provider to use

5. Response sent to Service Provider

6. Returning Results, including URL to SP2

8. <AuthnRequest> message from SP2 to Identity Provider

10. SP2 Returns Results

3. <AuthnRequest> message from Service Provider to Identity Provider

4. Identity Provider Authenticates User

9. Identity Provider Authenticates User or Reuses Session

7. User attempts to retrieve URL in XML results from SP

Figure 11-15 Browser-Based SSO that can be used for REST

Decision Diagram for Propagation and Trust — How Do You Decide?

This section has covered many potential solutions related to identity propaga-
tion — we provided a blueprint for successful identity propagation in an ESB,
we discussed techniques for limiting trust to specific services in the enterprise,
we discussed the STS approach, and we discussed a Browser-Based SSO model
for REST-based services. Figure 11-16 provides a decision flow diagram for
choosing the type of propagation trust model used. There are five end states
and potential solutions in this decision flow diagram, based on the content of
this section, and each end state (labeled solutions A–F) references a figure and
a section in this chapter.

Point-to-Point Authentication

Throughout the beginning of this book, we repeatedly made the point that
SSL does not solve many of the security requirements needed in end-to-end
messaging solutions. It is, however, a wonderful standard that can be used
for authentication and mutual authentication between any two points in your
SOA. Because SSL provides authentication, confidentiality and integrity, it is a
complement for many scenarios, especially when you need to provide mutual
authentication between a user and a front-end application. Another scenario
where SSL is useful is when you may need to provide mutual authentication
and a long-lived security session between two points in your SOA that
constantly communicate. Allowing a long-lived SSL connection between two

426 Part II ■ Designing SOA

No

1.
Are any services required

to control access based on
the identity or

authorization credentials
of end-users?

Solution A -
No identity or attribute
propagation necessary

Solution B -
Have the authenticating application outsource authentication to an STS, and pass that token to the Service
Bus—this will make it more flexible if other non-ESB services are added to the enterprise (Combination of

Figure 11-13 and 11-14; See Sections “Identity Propagation with an Enterprise Service Bus" and
"Using a Trusted Token Service”)

No

No

Yes
Yes

NoNo

Yes
Yes

Yes

Yes

No

Yes

Solution C -
Do direct trust between the Authenticating Application

and the Service Bus (Figure 11-13 and Section
“Identity Propagation with an Enterprise Service Bus”)

5.
Are you willing to use

an STS
(Security Token

Service)?

4.
Are all services within one

Enterprise Service Bus
product?

3.
Got

REST?(There are
many!)

2.
Is there a LIMITED

number
of orchestrating or chaining

services
needing access control

credentials?

6.
Are you willing to use

an STS
(Security Token Service)?

Re-evaluate.
It sounds like you

need trusted services for
vouching for identity.

Solution F -
Use an STS for issuing signed assertions
about users for the enterprise—propagate

these Assertions in secure messaging
(Figure 11-14 and Section “Using a

Trusted Token Service”)

Solution D-
Apply a Browser-Based SSO solution For REST

services (Figure 11-15 and Section “Identity
Propagation with REST using Browser SSO”)8.

Can you accept risk, and
allow these services to

be trusted?

Solution E -
Establish trust list of propagating services and

distribute to consumers and producers (Figure 11-12
and Section “Assigning Vouching Trust to

a LImited Number of Entities”)

Yes

7.
Can you accept risk, and
allow these services to

be trusted?

No

Figure 11-16 Decision flow for choosing a propagation trust solution

points provides a large performance advantage over repeated key agreement
and encryption for every request. SSL can even be coupled with many identity
propagation scenarios discussed in the previous section, but it depends on
your project’s security requirements.

There are other mechanisms for point-to-point authentication that provide
additional benefits. For example, a digitally signed message (with a refer-
ence to the sender’s X.509 certificate) combines sender authentication with
non-repudiation, in addition to integrity of the data, and this mechanism can
be accomplished with WS-Security using XML Signature. Based on the trust
of the issuer of the certificate, and based on the validation of the signature of
the message with the sender’s public key included in the certificate, the
receiver has strong assurance of the sender’s identity. One benefit of having
requests digitally signed is that these messages can be saved and a third party
can validate them later, whereas SSL session statistics are typically lost and
records do not show the non-repudiation. Certain WS-Security token profiles,
such as WS-Security X.509 Certificate Profile, allow a message sender to sign
a message with its own X.509 Certificate in the header, providing that level of
proof. REST-based messaging can simply use XML Signature to provide this
mechanism.

Chapter 11 ■ SOA Security 427

Access Control Blueprints
Building on the authentication-based blueprints of the last section, this section
focuses on practical solutions for access control. Once a user is identified,
it is important to determine what that user can do (authorization). Access
control can be done by expressing and enforcing access control policy based
on the identity of the user and the user’s authorization credentials. This section
focuses on key aspects of access control in SOA-based solutions, providing
approaches and best practices.

Controlling Access to Data, Not Just Services

One important thing to remember when providing access control to service
resources is that, although you can provide authorization at the service level for
incoming requests, you can also secure access to the data itself by labeling the
data itself with access control policy information and allowing your PDP/PEP
to enforce authorization policy based on the label of your data. This is often
used in both commercial and government systems where data may be labeled
with sensitivity levels, such as ‘‘FOR INTERNAL USE ONLY.’’ A security
classification example dealing with Mandatory Access Control was shown in
Figure 11-4.

In providing access control to data, security handlers or security components
are most likely to constrain requests based on the data labels, or they can filter
service results before they are returned to the user (sometimes called ‘‘response
filtering’’ or ‘‘response pipeline filtering’’). For those enterprises that need this
level of security, security metadata tagging on messages is quite important for
controlling access to the data. Some approaches involved security metadata
tagging at the message level, where each message is labeled with security
metadata — this is helpful, because the label of the entire message can be
placed in the SOAP header with other security information. Other approaches
involve tagging at the XML element level directly (right along with the data).
The positive aspect of that particular approach is that, in the message response
pipeline, the response message would actually be filtered on the way back
from the service, whereas providing response security using the message-level
labeling alternative simply would either accept or drop the response. The
benefit of labeling at the element level is that potentially more information
would be returned to the user. On the other hand, the benefit of labeling at the
message level is that the security data (in the header) can be separated from
the business data (in the body).

Certainly, there are other database-centric solutions that do not necessarily
use security tagging. In such approaches, a service queries a database with
constraints of access (for example, ‘‘give me these search results, except for
records labeled ‘FOR INTERNAL USE ONLY’’’), and the database does the

428 Part II ■ Designing SOA

access control filtering. Where the database-centric approach can get somewhat
complex is in orchestration solutions, where results of many services, and thus
data with many sensitivity levels, are combined. It is, therefore, helpful to
combine a database-filtering approach with a message tagging approach.

The next section discusses many approaches for controlling access to services
and data.

Access Control Policy Enforcement Approaches

There are many different models for managing and enforcing access control
information in SOA. The conceptual model of XACML (shown earlier in
Figure 11-10) uses widely accepted security terminology that can be applied to
any architecture, regardless of whether or not XACML itself is used. For this
reason, we discuss access control architecture in terms of a PEP and a PDP.
We do, however, attempt to stay technology neutral.

Because there are so many options for propagation of assertions (identity,
attribute, and authorization decision assertions), the SOA architect has many
options for where these access control policy points should exist in the enter-
prise. This section provides strategies that can be used based on different goals
and security requirements, and for each strategy, we offer pros, cons, and
implementation tips. For each strategy, we illustrate the concept, and it should
be noted that for the purpose of simplicity, we have combined the user and
his/her front-end application (for example, the user’s portal) — in all interac-
tions, the front-end application, not the user, is doing the communicating with
the back-end Web Services.

The Purely Centralized PDP Model with Global Policy

The first approach to policy enforcement, shown in Figure 11-17, is a purely
centralized approach. Common to many SOAs, a centralized policy server
is called to make a yes or no decision for a subject request for resource. In
this model, all policy is globally managed, and services in the SOA request
authorization decisions from the policy server. The policy server acts as a
PDP, retrieving security attributes about subjects requesting resources, and
making decisions based on a subject’s credentials and enterprise policy for the

Attribute
Service

Enterprise
Policy
Store

Policy Server

User and
Front-End Application

Web Service

Portal

Authentication and
Assertion of

Identity
PDPPEP

Request
Yes/No Decision

for User
Requesting
Resource A
Returned
Decision
To Be

Enforced by PEP

Lookup
Authorization
Credentials
for User

Network
Lookup

for
Policy

PIP

Figure 11-17 Centralized policy management and enforcement

Chapter 11 ■ SOA Security 429

requested resource. In this model, the policy server PDP returns a ‘‘yes’’ or
‘‘no’’ authorization decision and enforces the decision.

A positive aspect of the solution shown in Figure 11-17 is information hiding.
None of the services that request authorization decisions know exactly why
decisions are made, and at no point in the life cycle of the message are user
authorization credentials revealed. This can be positive from an information
security standpoint. Because applications and services may not have a need
to know about authorization credentials of the user or the specific policy of a
resource, this model protects that information in cases where this information
may be sensitive or confidential.

Potential negatives about this model, however, relate to performance and
availability. If all services in your SOA enterprise need to connect to a central
authorization server for every request, it is a no-brainer that the server must
always be available. If the authorization server ever goes down, you have
two grim choices that you want to avoid at all costs: Allow all access for all
subjects or deny all access to all subjects. Complicating the issue is that calls
to such a service are usually cryptographically protected in order to have high
assurance of the integrity and identity of the policy server. That cryptography,
combined with network latency of each request, slows down the response time
of all services and applications that are forced to call the policy server. Using
such a centralized model has the potential of bringing the performance of your
network to a crawl.

Regardless of the negatives, a centralized policy server can still be effective,
and some of the risks can be mitigated. Centralization can be a ‘‘virtual’’
concept, meaning that various mechanisms for load-balancing and failover
for many authorization servers can be used when using the centralized pol-
icy management and enforcement model. Because of the performance and
availability concerns, it may be prudent for service PEPs to cache policy
decisions for a certain period of time for repeated requests to resources by
the same subjects. To reduce the overhead of cryptography, PEPs should
consider establishing long-lived sessions with the policy server using SSL
or WS-SecureConversation, and the use of hardware cryptography accelera-
tion technology should be investigated for further accelerating cryptography
performance.

The Purely Decentralized PDP/PEP Model with Attribute Propagation

The second approach, shown in Figure 11-18, is another common model used
in SOA access control systems. In this approach, the authenticating application
retrieves attribute credentials from a Security Token Service and propagates
that trusted assertion about the user to a Web Service, which has a local PDP
and PEP. The Web Service PDP refers to locally expressed policy, and therefore,
its PDP can inspect the policy, combined with the attributes propagated in, in
order to make an access control decision.

430 Part II ■ Designing SOA

Web Service

Application

Requests

Security

Attributes

Attribute
Service

Local
WS

Policy

PIP
PEP/PDP

User and
Front-End Application

Local
Policy

Lookup
Authentication and

Assertion of Identity and
Assertion of Attributes

Figure 11-18 Decentralized model with attribute propagation

This model is effective and alleviates the performance concerns of the purely
central model. Because all authorization credentials are propagated in a trusted
assertion, the Web Service does not have to use a network call to look up the
user’s security attributes. Because the policy is locally expressed, the Web Ser-
vice does not have to cryptographically call a PDP over the network — instead,
all of the policy is local, and all policy decisions are local, based on global
attribute credentials. Because all of the policy is declared locally, there is no
longer concern about the availability of a central policy server.

There are two potential concerns with this model, however. One concern
is that there is no information hiding in this model. Because a user’s security
attributes are propagated in to the Web Service, the Web Service has full read
access to the security credentials of the user, which may be sensitive. The
second concern revolves around policy management. In situations where an
organization may want to have control over policy, this purely decentralized
model does not allow it, as it gives Web Services full control over policy and
policy enforcement. Regardless, this model, combined with a good propagation
strategy, is effective and works.

Decentralized PDP/PEP with Identity Propagation

This model of access control, shown in Figure 11-19, is similar to the last model,
but it alleviates one information-hiding concern of attribute propagation. The
knowledge of the user’s security attributes is removed from the authenticating
application and is placed on the Web Service. This is a common model used in

User and
Front-End Application

Authentication and
Assertion of

Identity

Web Service

Portal

PEP/PDP

Attribute
Service

Local
WS

Policy

Application

Requests

Security Attributes

Local
Policy Lookup

Figure 11-19 Decentralized model with identity propagation

Chapter 11 ■ SOA Security 431

approaches to access control management, when the service container assumes
responsibility of all back-end security processing. In practice, it may be wise
for the logic of the security component of the service to cache user security
attributes for a certain period of time so that subsequent calls from the same
subject do not result in repeated queries to an attribute service.

Combining Local and Global Enterprise Policy

There are two common methods that provide a ‘‘happy medium’’ between
local control of policy (where services express all policy) and central control of
policy (where a central policy server expresses all policy). These methods are
shown in Figure 11-20, and occur regardless of where attributes are queried
in the solution. In these models, each Web Service expresses local policy but
combines this with global organizational policy in order to make decisions.
This alleviates policy control concerns related to the purely decentralized
model.

In these approaches, a Web Service’s PDP must get access to global policy
and combine it with its locally expressed policy in order to make a decision.
It is usually important that a conflict-resolution mechanism be in place (for
example, where global policy trumps local policy). Two SOA approaches that
use this strategy are the method where the Web Service’s PDP retrieves global
policy from a central policy server (a policy retrieval method) and caches it for a
period of time for access control decisions, and an approach where the policy
server syndicates global policy to the Web Service PDP (a policy push method).
Both are illustrated in Figure 11-20.

Similar to the purely centralized model, there may be performance and
availability issues related to all services using the policy retrieval method.
However, the difference is that the global policy is only downloaded on a
periodic basis (on container instantiation) as opposed to the strategy of doing
so for every request, which makes this approach better from a performance
perspective. A potential issue arises related to the frequency of global policy
changes: There may be a time window between the time that policy changes
are made and the retrieval of the policy by the Web Services.

The policy push method alleviates performance and availability concerns,
as the policy is pushed immediately to the Web Service PDPs as the policy

Policy Retrieval Method

Web Service

Local
WS

Policy

Enterprise
Policy
StorePEP/PDP

Local
Policy

Lookup

Periodically
Retrieves

and Caches
Enterprise

Policy

Policy Push Method

Web Service

Local
WS

Policy

Enterprise
Policy
StorePEP/PDP

Local
Policy

Lookup

Syndicated
Policy

Figure 11-20 Combining local and global enterprise policies

432 Part II ■ Designing SOA

changes are created. This alleviates the time window concern, because as the
policy is changed, it is immediately sent to the Web Service PDPs. The security
of syndication in this model does need to be addressed. The security model
needs to protect against entities ‘‘spoofing’’ the syndication server, replaying
syndication policy update messages, tampering with messages in transit, and
denial of service attacks that would prevent syndicated policy messages from
being received by all PDPs.

Both methods discussed in this section are effective for access control
in an SOA. Which you choose depends on your security and performance
requirements.

Predetermined Decision-Based Models

One unique approach to access control is a methodology that we call PADBAC
(Predetermined Authorization Decision-Based Access Control). Such a model
of access control revolves around services issuing authorization decisions for
resource access in advance, before these resources are requested. In this model,
the services issue authorization decisions to the appropriate subjects, who later
use them to gain authorized access to resources. These decisions are digitally
signed by the service and tied to the identity of the subject who can later
request access. When it is time for the subject to request access, the subject
signs a request for the resource, including the previously issued assertion in
the message.

Such solutions model real-world, day-to-day scenarios. When you drop
your clothes off at a dry cleaner, the clerk typically gives you a receipt with
a number, listing the day that you can pick them up. Later, you bring that
receipt back and the cleaner finds your dry-cleaned clothes and gives them
back to you. This process is simple; you don’t have to pull out your ID card,
or show the cleaner any authorization credentials in order to get your dry
cleaning. In the same way, a PADBAC-based approach requires no identity or
attribute propagation in the service transaction. Once a subject gets a signed
authorization decision to do something, the subject simply signs the request
to do it, attaching the signed authorization decision along with the request.

A service-based example of using the PADBAC model can be demon-
strated in an example implementation of an airline ticket service, illustrated
in Figure 11-21. An airline ticket booking Web Service needs to provide access
control to allow only the ticket-booking agents of the airline to book tickets for
airline flights. Instead of using one of the access control policy models we have
discussed before, the SOA architect has chosen to use a model that utilizes
pre-issued authorization decisions for access control. In the example, Gwen,
Emma, and Isabella are agents who book flights for customers, so the airline
ticket booking service issues signed authorization decision assertions to Gwen,
Emma, and Isabella, expressing the purpose of the privilege (booking seats on
flights) and a timeframe of validity. When one of the agents needs to later book

Chapter 11 ■ SOA Security 433

Gwen

Airline Ticket Booking Web Service

Isabella

Emma

Gwen (cn=Gwen,
o=Maui Airlines, c=US)
is authorized to book

tickets on flights
From Jan 2008–July 2008

Isabella (cn=Bella,
o=Maui Airlines, c=US)
is authorized to book

tickets on flights
From Jan 2008–July 2008

Emma (cn=Emma,
o=Maui Airlines, c=US)
is authorized to book

tickets on flights
From Jan 2008–July 2008

Signed Request to Book a Flight
Including Previously Issued

Authorization Decision Assertion

Web Service
Issues
Signed

Authorization Decision
Assertions

Figure 11-21 Example of using pre-issued authorization decisions

a customer’s seat on a flight, the agent must send this request to the airline
ticket booking service in a secure message, digitally signing the request and
including with it the original signed authorization decision that granted her
access. Because the Web Service receiving the assertion is the one that issued
it, there is no question of the trustworthiness of the assertion. As long as the
sender is proven to be the signer of the message and the subject of the original
assertion, as long as the original assertion is valid for this purpose, and as long
as the sender’s certificate has not been revoked, this model works well and
effectively. In order for this model to work, a PKI needs to be in place, and all
services need to make sure to check Certificate Revocation Lists (CRLs).

One variant of PADBAC involves delegated assertions. For example, the
airline ticket booking service may issue the assertion only to the flight-booking
manager, who would have permission to delegate that decision to others. In
order for this to be accomplished, the flight booking manager would create a
new assertion that delegates the permission to use the original assertion to his
or her subordinates. The subordinate, in turn, would digitally sign a request,
attaching the two signed assertions (the assertion issued by the airline ticket
booking service, and the assertion made by the booking manager that gives
the subordinate permission to use the original assertion). By allowing this

434 Part II ■ Designing SOA

type of delegation, message chaining can be achieved in SOAs, where each
service link in the chain can delegate authority, until the final service in the
chain is reached. In such a delegation scenario, a chain of signed authorization
decisions is visible for service requests at each point, providing end-to-end
non-repudiation and integrity.

Another variant of PADBAC is similar to the ‘‘beer ticket’’ system used at
concert events. For those of you who are not familiar, people must wait in
one line to buy tickets for alcoholic beverages, and then wait in another line
to exchange the ticket for the actual beverage. The beer ticket counter enforces
authentication, authorization, and minimum drink policies, and the tent that
sells beer simply ensures the integrity of the ticket — making the actual beer
transaction simple and quick. In the same way, in the SOA world, there can
be a trusted authorization decision issuer that enterprise services trust, and in
order to communicate with services, the users of the services must apply for
such a ‘‘ticket,’’ or these tickets may be issued to the users in advance.

Such a model can be successful because it does not focus on propagating
identity and run-time decision making in the service transaction. Instead, it
focuses on decision making in advance, validating those decisions at run time.
From a performance perspective, this means that services do not have to do
lookups (to a central server or locally), and from a messaging perspective, it
means that no identity (or attribute) propagation has to happen at all in the
business transaction, simplifying messaging. It is important to know that this
model is not appropriate for every use case. It only works when requests are
anticipated and where authorization decisions can be made before the actual
authorization request.

Decision Flow Chart for Access Control — How Do You Decide?

Obviously, this section has many options for access control. For this reason, we
have included a decision flow chart, shown in Figure 11-22. The end state of
the decision flow chart contains six potential solutions for not only the access
control model, but also provides what type of propagation (identity, attribute,
or authorization decision) you should use between the service consumer and
the Web Service. Each solution references a section and a figure in this chapter
referencing the chosen implementation.

Certainly, any type of standards-based messaging security can be used
between service consumers and service providers to propagate identity,
attribute, or authorization decisions, but we do have some recommendations:

Where identity or attribute propagation is utilized (Solutions A, B, D,
E, and F), we recommend using the WS-Security SAML Token Profile
(either using the sender-vouches confirmation method, or by using a
signed token from an STS).

Chapter 11 ■ SOA Security 435

1.
Information hiding—

Should reasons
for access control

decisions be hidden
from WS?

Solution A-
Use Identity Propagation Only

Solution C-

Solution F-

2.
Is there a

mandate for centralized
access control

policy management?

Use centralized PDP policy service
(See FIg 11-17 and Section

“The Purely Centralized PDP Model
with Global Policy”)

Have WS itself issue signed authorization decisions to users;
No identity or attribute propagation needed;

Request messages should propagate Authorization decisions
(See Figure 11-19 and Section “Pre-Determined Decision-based Models”)

Allow WS handler or security subsystem to enforce decision
(See Fig 11-18 and Section “Decentralized Model with Attribure Propagation”)

Propagate Identity and all Security
Attributes

Solution D-
Decentralized Model with

Identity Propagation and Using
Hybrid Model

Only propagate identity,
WS queries attribute services

(Solution B) but combine this with
Hybrid Model (Solution E)_

Solution E-
Propagate all Identity and

Security Attributes
Use hybrid model for combining

local and global access control policy
(See Figure 11-20 and

Section “Combining Local
and Global Enterprise Policy”)

Solution B-
Decentralized

Model With Identity
Propagation

Propagate identity,
Only allow WS handler
or security subsystem

to query for user
attributes from

attribute services,
Make and

enforce decision.
(See Fig 11-19

and Section
“Decentralized PDP/PEP

With Identity
Propagation”)

4.1
Can WS issue

pre-determined
decisions?

5.
Are there

requirements to enforce
SOME enterprise access

control policy
(centralized access

control policy)?

3.
WS unable to enforce
access control based

security attributes

4.
Should final WS
query attribute

services for user security
attributes (enables

least privilege)?

5.
Are there

requirements to
enforce SOME

enterprise access
control policy

(centralized access
control policy)?

No No No No

Yes

Yes

Yes

YesYes

Yes

Yes

No No

No

Figure 11-22 Decision flow for access control

In the one instance where propagation is not used (Solution C), we
recommend having the Web Service issue signed SAML assertions con-
taining a SAML AuthorizationStatement that can be used for a certain
period of time by the recipient in WS-Security SAML Token Profile
messaging, where the issued assertion is sent to the Web Service. Each
SAML assertion states conditions of use and period of validity. When a
request to that Web Service is sent, the signer of the WS-Security mes-
sage is the one to whom the SAML assertion was issued. Thus, the Web
Service is easily able to validate that the service consumer has authorized
access.

Auditing and Troubleshooting
Enterprise management is one subject that we have not addressed in this
chapter, but there are some aspects that relate to information security in an
SOA. As discussed in Chapter 9, many SOA architects make the mistake of
not focusing on enterprise management requirements, and when auditing and
logging is involved, write logs only at the local file system level. Because of
the dynamic nature of SOA and the possibility of orchestration and message
chaining where the life cycle of a service request may go through many ‘‘hops,’’

436 Part II ■ Designing SOA

it is often difficult to troubleshoot security incidents and errors if every service
logs information to its local machine. It is prudent, therefore, to use either
a centralized logging capability or an SOA enterprise management COTS
package, which integrates with your Web Service consumers and producers,
providing not only ‘‘the big picture’’ of your SOA but also the big security
picture. Chapter 9, the section ‘‘Exception Handling and Logging in Enterprise
Solutions’’ provides detailed strategies for auditing and logging that apply to
both security and enterprise management.

Flexibility with Dynamic WS-SecurityPolicy Adaptation
The introduction of WS-SecurityPolicy allows SOA security solutions to use
dynamic run-time mechanisms for discovering and adhering to security policy.
Similar to the way that applications can download WSDL and dynamically
create stubs to access services, Web Service consumers and producers can now
dynamically discover messaging security requirements and adapt at run time.

The following is a good example: Suppose that a Web Service that once
required a token of a user’s authentication (an Authentication Assertion) in
WS-Security SOAP messaging now requires a token of the user’s attributes (an
Attribute Assertion). If that Web Service modifies its expressed WS-Security-
Policy, which can be referred to in the service’s WSDL, the calling application
initially calls the Web Service. When it receives an error notification that the
security policy is changed, it can download the new policy, discover that
changes have been made, and adapt by retrieving a new type of assertion from
an Asserting Provider or an STS in its enterprise. It can then call the service
correctly.

Expressing the security messaging requirements in a discoverable way using
WS-SecurityPolicy gives service consumers the capability to be more loosely
coupled to the security messaging of services. If the security messaging is
hard-coded in your service’s clients, any change in security messaging would
break the client’s interactions with the service. Dynamic policy adaption,
therefore, provides a very flexible model. Although developers can write
software to accomplish this in security interceptors and security handlers, it
should be mentioned that many COTS vendors are building these dynamic
policy adaptation capabilities (sometimes called ‘‘Policy Application Points’’)
into their products, supporting many messaging formats and token formats
in order to support SOA security flexibility in enterprise deployments. This
approach is also used beyond WS-SecurityPolicy to adapt to other WS-Policy
requirements of services in the enterprise.

N O T E This strategy is discussed in more depth in Chapter 12, in a section called
‘‘Run-Time Policy Enforcement and Adaptation.’’ There we discuss how a service
client’s ‘‘Policy Application Point’’ can be used to adapt to adhere to many types of

Chapter 11 ■ SOA Security 437

governance policies (including security) at run time. Chapter 9 also focuses on
adaptation and the role of the registry in SOA.

Complete Architecture Analysis
Now that we near the end of this section, you can see that as an SOA security
architect, you have many options related to achieving security goals. It is
important, therefore, to make certain that your chosen solution is reviewed by
a security authority early on in your project. Security authorities are able to
identify risks and vulnerabilities of your proposed security architecture and
allow you to mitigate them before your project begins.

Applying Concepts from This Chapter — A Simple
Case Study

Throughout this chapter, we have tried to give examples of various techniques
and examples that can be used to achieve certain security objectives. In this
section, we provide a case study, utilizing the techniques discussed in this
chapter.

Our case study revolves around a fictional travel agency. This agency has
been in business for over 50 years, and over the years, it has acquired many
companies and legacy systems. Travel agents have accounts on 20 legacy
systems, which allow them to book hotels, airfare, and ground transportation.
A few years ago, a fly-by-night (excuse the pun) dot-com company sold the
travel agency on a solution overhaul of all of their systems that would fix
their problems. Unfortunately, the result of ‘‘project overhaul’’ is that the
travel agency now has the same old problems exhibited by new technology.
Figure 11-23 shows the current state of the travel agency enterprise, with three
of the twenty systems being used.

Because travel agents have to keep track of 20 front-end applications and
username/password combinations, they are constantly having trouble. Travel
agents have the database administrators of 20 different systems on speed dial
because of forgotten passwords and access control privilege updates. When
a travel agent is promoted to a higher level of access, all 20 databases must
be updated. The users of the system are fed up, and so are the database
administrators.

After a little study of the current design and historical documentation,
you see that the engineering that was done a few years ago was not com-
pletely bad. The developers rewrote 20 monolithic applications to make them
client/server based, separating the presentation from the business logic using
the Model-View-Controller design pattern. The designers of the Web Services

438 Part II ■ Designing SOA

Bus
Reservation

System
Application

Airline
Reservation

 System
Application

Hotel
Reservation

System
Application

Reservation
WS

Reservation
WS

Reservation
WS

Travel Agent
Username/Password
for Airline Database

Travel Agent

Username/Password

for Hotel Database

Bus
Reservation

System
Database

Airline
Reservation

System
Database

Hotel
Reservation

System
Database

Travel Agent

Username/Password

for Bus Database

Travel Agent
Username/Pwd

for Bus Database

Travel Agent
Username/Pwd

for Airline Database

Travel Agent
Username/Pwd

for Hotel Database

Figure 11-23 Three of the twenty systems in current travel agency enterprise

also created a well-designed schema for reservations that could be used for all
of the applications, independent of the type of reservation used. Each back-end
database is fronted by the same Reservation Web Service interface, and each
implementation abstracts the details of each database.

Unfortunately, the attempted overhaul was not complete. The design-
ers had originally intended to create a portal-based user interface that
allowed the travel agents to do all of their reservations from one application.
Because the designers of this system did not account for security until the end
of the project, they were unable to tie the systems together because they ran
out of time and made poor decisions about username/password propagation
between every tier in the system. For each system, the front-end application
passes on the user’s security credentials to the Web Service, which passes
them on to the database. As a result, every travel agent must log in separately
for each system, and the original developers finally abandoned the idea of
one front-end interface. You recognize this pattern as something that you
have seen often: This was a case of thinking about security requirements
too late in the game. Any design improvements that were made during the
project overhaul are unseen, because the system is still difficult to use and
manage.

Because you are well into this book, you understand the design problem that
is the root of the travel agency’s woes. The problem is tight coupling: Security
in the travel agency enterprise is tied specifically to each of the 20 individual
databases. This not only tightly couples the database data to access control
security policy, but its effect is that each front-end application continues to
be coupled to its back-end database because of the separate authentication
credentials. This is frustrating to the users because of the lack of SSO and
frustrating to the database administrators as well.

Chapter 11 ■ SOA Security 439

Applying the concepts of this chapter, you realize that two major enhance-
ments must be made. First of all, the project is in need of enterprise security
services containing global user credentials for travel agents using the system.
This removes the burden of security logic from each individual database and
enables SSO in the enterprise. Second, some sort of identity propagation must
be used because of the multiple ‘‘hops’’ between the tiers in this solution; the
current system propagates specific usernames and passwords based on the
application. This certainly can be done here, but this type of messaging would
be dependent on the type of authentication. It would be a much more flexible
solution if some sort of identity token were used for identity propagation. This
can be used, regardless of the authentication type. If the system ever needed
to support digital certificate (or even biometric) authentication, a token-based
solution would never need to be changed.

After considerable thought, you provide a high-level sketch of a new
architecture that provides desired functionality for the travel agency enterprise.
This is mainly achieved by placing core enterprise security services in the
enterprise for enabling SSO. You can do this by creating a portal-based front
end that can host multiple portlets for back-end reservation systems and
by creating a reservation aggregator service that performs all reservation
transactions for a travel agent in one request. A token representing the travel
agent’s identity is propagated through each tier. A high-level diagram of this
functionality is shown in Figure 11-24.

Bus
Reservation

System
Portlet

Airline
Reservation

System
Portlet

Airline
Reservation

System
Database

Hotel
Reservation

System
Portlet Hotel

Reservation
System

Database

Reservation
WS

Reservation
WS

Reservation
WS

17 Other
System Portlets

Reservation
Aggregator

Travel Agency
Enterprise Security Services

Authentication and
Authorization

Validation

Travel Agency
Reservation System

Portal

Travel
Agent
Token

Travel
Agent
Token

Travel
Agent
Token

Travel
Agent
Token

Bus
Reservation

System
Database

Travel Agent
Username/
Password

Figure 11-24 High-level view of desired functionality in the travel agency enterprise

440 Part II ■ Designing SOA

Figure 11-24 shows that a travel agent logs in to the portal, and each portal
has portlets associated with each back-end system. Once the travel agent enters
all travel requirements and reservation information for the customer, the portal
system sends a bulk request, along with the user’s token. The enterprise reuses
the well-designed abstract Reservation Web Service interfaces that abstract the
details of each system.

Establishing Enterprise Security Services
At this point in the case study, more decisions need to be made. Specifically,
it is important to define the enterprise security services. After having read
the concepts and security solution blueprints in this chapter, you know that
there are many options for access control, depending on the security services
available. Architectural flexibility is provided when you provide the security
services needed for all of the alternatives for access control policy enforce-
ment. This allows different future applications with different requirements the
ability to use multiple options. For this reason, you create the following:

An Authentication Service, which identifies the user (and/or applica-
tions in the enterprise).

An Attribute Service, which exposes authorization credentials of users
in the enterprise. In the travel agency, the current security roles are
reservation approver, travel reserver, and purchasing approver.
Such an attribute service accommodates those roles and also accommo-
dates growth and flexibility.

A Policy Management Service, which is used by policy administrators to
create, update, and manage security policy.

A Policy Retrieval Service, which exposes the policies of resources in
the enterprise. Policies can be expressed in XACML for resources in the
enterprise, regardless of the resource. In the travel agency enterprise,
policy logic can be taken out of each individual database and instead be
expressed by these policies.

An Authorization Decision Service, which acts as the service that makes
access control decisions based on enterprise policy for a subject’s access
to a resource. In order for the Authorization Decision Service to make a
decision, it must know the identity of the subject requesting the resource
(via an identity token), the authorization credentials of the user (via
the Attribute Service), and the policy of the resource and the enterprise
policy (via the Policy Retrieval Service).

An STS, which issues tokens related to the identity and security
attributes of users, as well as authorization decisions. This token service
identifies users, and in doing so, communicates with the other services.

Chapter 11 ■ SOA Security 441

In creating an identity token, the STS would communicate with the
Authentication Service in order to authenticate the user. In creating a
token containing identity AND attributes, the STS would communicate
with both the Authentication Service and the Attribute Service. In creat-
ing an Authorization Decision token, the STS may need to talk to all
services.

These services accommodate the blueprints referenced in Figure 11-22,
where we provided a decision flow chart for access control, with six potential
methods of enforcing enterprise access control. By separating security func-
tionality into these services, you provide a great deal of architectural flexibility,
with many options for the enterprise, which accommodates changes in security
requirements over time. In many cases, a centralized policy decision-making
service (with the Central PDP) may be required. In other cases, the final tier
may be able to make ‘‘local’’ decisions based on a token issued from the
STS, and various combinations to calls to other services (see all the options in
Figure 11-22).

Defining Identity Propagation and Access Control
You decided earlier to use token-based propagation for the travel agency,
because this alleviates a dependence on any particular authentication type.
At this point, it is important to look at the decision flows for both identity
propagation (see Figure 11-16) and access control (see Figure 11-22) to make
decisions for propagation, because the type of access control dictates what type
of token to propagate (identity, attribute, or both). Because you have decided to
establish an STS, and because the only intermediate service between the portal
and the reservation Web Services is a trusted aggregation service, you decide
to adopt the STS approach in identity propagation (Solution F in Figure 11-16).
Because of the security requirements in the enterprise, it is important that
access control be managed centrally but remotely enforced, combining a local
and central policy (Solution D in Figure 11-22). For this reason, you propagate
identity tokens in the solution and have the security handler for each Web
Service retrieve the central policy and look up the local policy and the user’s
security attributes to make access control decisions.

Figure 11-25 shows a picture of the security architecture, based on the deci-
sions made. Looking at the services that you have defined, the user’s front-end
application (the portal) can authenticate the user, initiating communication
with the STS, which retrieves a token that asserts the user’s identity. Because
SAML is a standard and has much support in various products, you decide to
use SAML tokens in the STS, and WS-Security SAML Token Profile for secure
messaging. Based on a user’s successful authentication, and based on autho-
rization credentials and the access control policy, which can be retrieved from

442 Part II ■ Designing SOA

WS-Security
SAML
Token
Profile

WS-Security
SAML
Token
Profile

WS-Security
SAML
Token
Profile

Travel Agent
Username/
Password

Bus
Reservation

 System
Portlet

Travel Agency
Reservation System

Portal Bus
Reservation

System
Database

Airline
Reservation

System
Portlet

Airline
Reservation

System
Database

Hotel
Reservation

System
Portlet

Hotel
Reservation

System
Database

Reservation
WS

Reservation
WS

Reservation
WS

17 Other
System Portlets

Trusted
Reservation
Aggregator

WS-
Security
SAML
Token
Profile

(with User
Token)

Authentication and
Authorization

Validation

Authentication
Service

Access Control Services

Authorization
Decision
Service

Attribute Service Policy Mgmt
Service

Security
Token

Service

Validation

Signed SAML Token
Of User Identity and

Authorization
Credentials

Handler:
PDP/PEP

Query
Filter

Generator

Handler:
PDP/PEP

Query
Filter

Generator

Handler:
PDP/PEP

Query
Filter

Generator

Policy Retrieval
Service

Local Security Component

Figure 11-25 Architecture using security services

enterprise security services, each Web Service can perform filtered queries
across each database.

Figure 11-25 shows how security functionality is further abstracted from each
implementation of the Reservation Web Service for each back-end database.
Security logic is separated into a local security component, which in this
case is labeled PDP/PEP Query Filter Generator. This component may be a
plug-in or security handler that inspects and validates the SAML token that
is propagated into the Web Service, queries global enterprise policy from the
Policy Retrieval Service, queries the Attribute Service for the user’s credentials,
and based on that information, creates a filtered transaction on the database.
For performance reasons, the query for global enterprise policy can occur on
an infrequent basis, and user attributes can be cached for a certain amount
of time.

Finally, security requirements dictate other aspects of messaging in the
solution. If non-repudiation of the results of each transaction is needed, each
Web Service security component would also have the responsibility of digitally
signing the Web Service response, providing a receipt of the transaction with
high assurance. If confidentiality in transit is also needed, XML Encryption
could be used to encrypt the response of the transaction to the Travel Agency
Reservation System portal application.

This use case provides one example of how to use some of the strategies
discussed in this chapter. The next section provides a common sense guide to
security, with practical steps that an architect can take in any project.

Chapter 11 ■ SOA Security 443

The Security Game Plan for the SOA Architect

If you are new to information security principles or to some of the standards
discussed in this chapter, you may be overwhelmed at this point. The learning
curve related to understanding the security fundamentals alone is quite steep,
and there is quite an ‘‘alphabet soup’’ of security standards that overlap
or compete with each other in many areas. Because each of the security
standards has multiple options, it is easy to see that there is not one clear usage
scenario — there are many! It is also important to note that there is never ‘‘one
answer’’ for every SOA security solution. Every SOA is unique and, therefore,
has its own individual security requirements. Providing all of this security
background information necessitated going ‘‘into the weeds’’ in some areas
of this chapter. Now, however, we would like you to sit back and focus on
the ‘‘big picture.’’ This section provides a high-level game plan for providing
SOA security solutions in your projects.

Plan from the Beginning, Focusing on Requirements
The big picture is that focusing on security from the beginning is essential, and
the plan needs to be based on the requirements of the organization(s) involved.
When SOA architects wait until the last minute to plan for security, disaster
awaits. In too many projects, the initial emphasis is solely on developing the
core functionality of services, and adding security is postponed until the end of
projects. As you can imagine, adding the security capabilities discussed earlier
in this chapter not only requires a steep learning curve, but also retrofitting
security at the last minute leads to a brittle architecture and probably leads to
burned-out developers! For this reason, security architecture planning needs
to be at the beginning of your roadmap.

In order to plan for security, however, it is important to understand your
security requirements. Regardless of the technologies used, you cannot achieve
your goals if you do not understand what your goals are. A requirements
analysis phase is critical for this understanding. Because most customers are
focused on functionality, they may not think about security until right before
deployment when their security officer mandates certain requirements. When
asked, most stakeholders say ‘‘Yes, I would like you to make everything
secure. Thanks!’’ At the beginning of each project, you need to determine
what requirements exist for authentication, authorization, confidentiality,
integrity, non-repudiation, auditing, and availability. Find out who is levying
security requirements, ask them specific questions, and determine the true
requirements together. Once you discover the true requirements of your SOA,
you can then begin planning and you can determine the approaches that you
can take in order to satisfy your security goals.

444 Part II ■ Designing SOA

In doing requirements analysis, it is also important that you understand the
current enterprise architecture with which your SOA needs to interoperate.
Your SOA may need to integrate with LDAP directories, policy servers,
Attribute Services, and a PKI. It is important that your planning includes this
infrastructure so that you don’t architect in a vacuum.

Crawl and Walk before Running
It is certainly a temptation at the beginning of SOA-based projects to attempt
to achieve too much and ‘‘boil the ocean’’ in an unrealistic period of time.
To satisfy security requirements, it is paramount that methods of achieving
security goals be rigorously tested against your requirements and against
potential threats and vulnerabilities. If the security requirements for your SOA
require much to be achieved, it is preferable to create a phased approach
to separate complexity and to make certain that each individual goal is
successfully achieved. Moving from an SOA with no security to an SOA
with high-levels of access control and dynamic, federated access to partners
can be done over time, but stampeding toward this goal too quickly causes
disappointment and could cause disaster. A phased, incremental approach,
where additional security requirements can be rigorously tested in each phase,
is more likely to succeed.

Use Accepted Standards (in a Standard Way)
The second part of this chapter focused on accepted standards and specifi-
cations used in SOA security solutions. They were chosen to be included in
this chapter because they are produced by standards bodies, and they are
accepted and used by major vendors. It is certainly possible to use proprietary
technologies to achieve your security goals, but doing so flies in the face of
interoperability, one of the main reasons for using SOA in the first place. Trust
us, tying yourself to a proprietary solution is painful in the long run, and may
necessitate a total rewrite or redesign in order to be interoperable with other
systems, tools, and technologies. It is therefore important to use standards.

It is also important to use standards in a standard way. In the early days of
SOA, when standards such as WS-Security and SAML were in their infancy,
security architects had to create XML-based messaging security themselves,
acting as ‘‘amateur cryptographers.’’ Even when WS-Security SOAP Messag-
ing became a higher-level standard that combined lower-level standards such
as XML, SOAP, XML Encryption, and XML Signature, it alone did not specify
how it would be used with security tokens such as SAML, X.509 Certificates,
or Kerberos Tickets. Security architects had to meet security requirements
by determining how to use the standards together in a secure way. The
results during this period of time introduced security vulnerabilities, as SOA

Chapter 11 ■ SOA Security 445

architects aren’t expected to be cryptographers. Just as important, the results
were standards-based but proprietary, non-interoperable messaging solutions
that used standards in a nonstandard way.

Thankfully, over the years, the standards have evolved, and higher-level
standards specify how to use standards together (such as the various WS-
Security Token Profiles). As a result, there is no reason to create new messaging
protocols! Instead, it is important to choose those standards that achieve your
requirements, looking to standards that are accepted and adopted by many
commercial vendors, so that your SOA is interoperable with other systems as
your enterprise evolves in the future.

Understand the Details of the Standards
Unfortunately, understanding the standards at a high level are not enough
when you are creating security solutions for your SOA enterprise. These
standards provide many options and each option can be used in different ways
in order to achieve different security requirements. The standards therefore
need to be fully understood by the security architects involved in your SOA
projects, which means you need to read the specifications involved.

Each standard lists security considerations related to their use in operational
SOA deployments, and they need to be fully understood. For many of the
standards, advice is given related to the threat of message replay, denial of
service attacks, and other attacks and countermeasures. In each standard, there
may be options that provide different security capabilities that are important
to understand. For example, WS-Security SAML Token Profile has multiple
confirmation methods — holder of key and sender-vouches; understanding
the requirements and security goals of each method could have an impact
on the trust models (and the infrastructure) of your SOA. This is just one
example, but the key point here is that the security architect needs to under-
stand the ramifications of the use of all options in your standards.

Finally, it is important (and probably fairly obvious at this point) that
most standards in SOA security do not stand alone. Many have depen-
dencies and other interactions with standards and infrastructure provided by
other standards. For example, WS-SecureConversation and WS-Federation rely
on the specifications and infrastructure (the STS) of WS-Trust. WS-Security
and various token profiles are used together, and these interactions are
documented in the various WS-Security Token Profile standards. SAML
and XACML can be used together, and as a result, there is a standard
called ‘‘The SAML 2.0 Profile of the XACML 2.0 Standard.’’ The list goes
on. In most cases, the interactions and dependencies of standards are docu-
mented in each standard but refer to other standards.

Vendor toolkits and containers sometimes provide default capabilities for
using specific standards, but these default capabilities may not be sufficient.

446 Part II ■ Designing SOA

In order to satisfy your security requirements, you need to understand the
details of the security mechanisms of your SOA. The bottom line? Spend some
time reading the standards! If you don’t understand them, you should hire an
SOA security architect on your project who does.

Understand the Impact of Security on Performance
When developing the security architecture for your SOA, remember that
security always has an impact on the performance of service consumers and
providers in your enterprise. Network calls made to authenticate subjects,
retrieve authorization credentials, and obtain policy information have an
effect on bandwidth as well as performance. The file I/O and bandwidth
associated with auditing to local and remote file systems can have an impact on
system performance. When cryptography is used in secure messaging, there is
always an impact on performance, because cryptography uses computationally
expensive operations.

Cryptography is a ‘‘double-edged sword,’’ meaning that cryptography can
certainly be used to achieve security goals, but it always has a negative impact
on performance. It is important for the SOA architect to realize that more
cryptography does not mean more security. It is indeed possible to create a
very slow solution that does not achieve your security goals. For this reason,
it is important to understand the security requirements for SOA. If encryption
is not needed, then don’t use it! If there is no requirement for integrity or
non-repudiation, don’t use digital signatures! Be intentional in your use of
cryptography and understand its potential performance impact.

From a performance perspective, it is important to look at technology
solutions and architectural solutions focused on maximizing performance and
availability, and some strategies related to access control were discussed in
the ‘‘SOA Security Blueprints’’ section of this chapter. Finally, depending
on your performance requirements, it may be wise to investigate XML and
security appliances that offload XML processing and cryptographic operations
to hardware. If you do this, determine the impact at the beginning of your
projects, just in case a large amount of integration needs to be written.

Try to Keep It Simple
The most elegant and secure solutions are usually the most simple. The more
complex a solution is, the greater the possibility of introducing bugs and
vulnerabilities. Therefore, try not to over-engineer your solution, and try to
use standard practices and blueprints for securing your SOA. Try to apply
security mechanisms to all of your clients and services in the same way,
reusing security components. Treat services as ‘‘black boxes,’’ and make sure
that all inputs, outputs, and side effects of calling them are documented,

Chapter 11 ■ SOA Security 447

intuitive, and well understood. Finally, try to anticipate use cases in your SOA,
and always expect and plan for message-chaining scenarios and Web Service
orchestration in your security design.

Summary

This chapter has provided a brief but in-depth look at SOA security. Building
on a security vocabulary and discussing SOA security goals in the first section,
we provided a look at the major standards in Web Services that are accepted
and are being adopted by industry in the second section. In the third section
of this chapter, we focused on SOA Security ‘‘blueprints’’ that can be used
for you to make practical decisions about your security architecture. In the
fourth section, we provided an example case study putting the blueprints
and concepts of this chapter into action. Finally, in the last section, we have
provided some common-sense guidance and a game plan for achieving your
SOA security goals. Use this guidance and blueprints to achieve success in
your SOA-based projects.

C H A P T E R

12

SOA Governance
With the widespread adoption of SOA, the challenges associated with SOA projects
are emerging. SOA governance isn’t optional — it’s imperative. Without it, return on
investment will be low and every SOA project out of the pilot phase will be at risk.

–Paolo Malinverno

SOA governance is essential to a successful SOA. Without it, well-intended
SOA pilot projects spiral into chaos when they go operational. We have seen
it before — an organization spends a lot of money developing services, it
declares success when everything works well in the lab, but because they
didn’t plan ahead for every aspect of the project for real-time operations, there
is constant pain at all levels of the organization when the project goes ‘‘live.’’ In
cases like these, where governance is largely ignored, the isolated technology
benefits of SOA adoption are outweighed by the hassle of managing chaos.
Managers, architects, and developers get burnt out as they make necessary
massive ‘‘Band-Aid’’ solutions to real-time deployed systems. There are many
people (like us) who have the battle scars from the early days of SOA, and
by reading this chapter, you can benefit from the lessons we have learned.
This chapter provides an introduction to SOA governance. It defines and
describes the SOA governance life cycle, and it provides a practical guide for
implementing it in your organization.

Specifically, this chapter covers the following topics:

Important terminology, principles, and goals related to SOA governance

The case for SOA governance, where we explain why every organization
needs to focus on these processes

449

450 Part II ■ Designing SOA

The SOA governance life cycle as it applies to the life cycle of services,
with each process and the roles of stakeholders explained at every step

Practical actionable steps and key processes that can be used in setting
up SOA governance in your organization

SOA Management and Governance Defined

The terms SOA management and SOA governance are terms whose definitions
intersect with each other. For this reason, we feel that it is important to formally
define them in this section.

SOA governance is the creation, communication, enforcement, and adaptation
of policies used to direct and control the creation and implementation of the life
cycle of services. It is a run-time and design-time administrative capability that
no organization should be without. Jean Jacques Dubray, in his October 2007
InfoQ article ‘‘Establishing a Service Governance Organization,’’ provides a
well-written objective of service governance:

The main objective of Service governance is to achieve the benefits of a Service
Oriented Architecture by fostering the creation of reusable, enterprise class
services. As a cross functional organization, service governance ensures the
timely resolution of issues and conflicts due to the necessary tradeoffs that are
made when shared requirements are defined.

An organization’s governance process is policy-centric, and these policies
involve enterprise standards, capabilities, and constraints for use of specific
services in run-time service policies and best practices. Simply put, governance
sets policies in place, and provides the mechanism to enforce them. Governance
itself is not a process that is unique to SOA — it can be applied to any
business domain used to accomplish business objectives. SOA governance does
have some unique characteristics, different from those of general governance,
as it applies to the service life cycle, and this chapter focuses on these
characteristics. SOA management establishes control of the Service-Oriented
Enterprise (SOE) — first, by creating a holistic view of the entire enterprise,
and then by providing the capabilities to control, monitor, and measure
information about services and other enterprise components. By having access
to a ‘‘big picture’’ view of your SOA, you are able to understand real-time
requirements by comprehending how the services are being used, and you
are able to make changes in order to accommodate those requirements.
Sometimes called Enterprise Service Management (ESM), SOA management

Chapter 12 ■ SOA Governance 451

involves the real-time control and collection of data about services in the
enterprise.

While SOA management provides the big picture, its definition collides
with governance when it involves measuring and monitoring the adherence
to SOA governance policies. Information collected in the SOA management
process may directly affect governance. For example, response time guarantees
for service level agreements (SLAs) may be refined over time, based on the
metrics collected as the services are used. The SOA governance life cycle is
commonly referred to in four different phases — design time, deploy time,
run time, and change time:

Design-Time Governance refers to the defining and controlling of
enterprise services to be created in the enterprise, and the creation of
policies used to direct and control the implementation of the enterprise
service life cycle. Key aspects of design-time governance are the
creation of enterprise policies used to direct and control the implementation
of the life cycle of enterprise services, and the creation of run-time service
policies that specify constraints and capabilities for specific enterprise
services. In this phase, an SOA architect is responsible for defining and
authoring policies for standards compliance, privacy requirements,
access control, reliability, performance, messaging, and develop-
ing SLAs.

Deploy-Time Governance involves the process of testing and controlling
compliance to enterprise policies in order for services to be deployed in
an SOA. It involves deployment options and topologies, and adherence
to policy should dictate whether or not a service can be deployed on a
network.

Run-Time Governance refers to the process of enforcing the adherence to
run-time service policies at run time. In addition to policy enforcement, this
term is often used to include aspects of SOA management as it relates
to these policies and to include real-time policy compliance monitoring,
auditing, and measuring and collecting result statistics.

Change-Time Governance involves managing services through the cycle
of change. In a service life cycle, interfaces, service policies, and agree-
ments may be modified many times. Change-time governance focuses
on such issues as service versioning, deprecation, and run-time policy
adaptation. Governance tools can be used to achieve such strategies as
adding service intermediaries to intercept messages and route them to
the appropriate previous versions of services.

452 Part II ■ Designing SOA

As you can see, governance revolves around policy. Policies are created,
edited, and refined throughout the life cycle of a project. The following are
common types of policies used in SOA governance:

Messaging Security — What are the policies related to confidentiality,
integrity, and non-repudiation for each service? What kind of authen-
tication is used? Are tokens, such as Kerberos, username/password, or
SAML used to convey the identity of the end user? What standards to
support these mechanisms are used?

Access Control Policy — What are the access control policies used for
the services?

Conformance to Enterprise Vocabulary and Schema — What schemas
need to be supported for a service to deploy? Is there a common enter-
prise vocabulary that needs to be used? Is there a reference data model?

Conformance to Technical Standards (WS-I, WSDL, WS-Security,
WS-ReliableMessaging) — What are the standards to which a service
must conform in order to deploy?

Deployment Process — What is the process for deploying new services?
Related to standards conformance, are there run-time tests that enable a
service to be deployed on the network?

Versioning Policies — What are the policies related to service version-
ing and deprecation of existing services?

Discovery Policy — What is the process of discovering a service and
determining its access policies?

Privacy Regulations — What privacy regulations must be enforced,
and how can they be enforced?

Quality of Service (QoS) — Are there guaranteed response times for
each service? Are there levels of service responsiveness and priorities
for each classification of user? (For example, employees, customers, and
partners may each get a different guarantee of responsiveness and be put
in a priority queue for the same service implementation.) Are there ser-
vice levels (for example, gold, silver, bronze) for each type of customer,
or are they individualized? Can service levels be negotiated at run time
according to the requestor’s requirements?

Reliability — Are there policies related to in-order delivery, at least once
delivery, and at most once delivery?

Auditing and Reporting Requirements — What type of auditing and
reporting needs to be supported by each service?

Service Level Agreements (SLAs) — Are there formal agreements
between service consumers and providers related to QoS response times,

Chapter 12 ■ SOA Governance 453

business units of work, and action guarantees based on met conditions?
Are there service load conditions related to guarantees?

Certainly, this is not an exhaustive list. These examples of governance
policies involve standards conformance for service deployment, changing
service interfaces, agreements between parties, domain-specific requirements
and regulations, and enterprise best practices. SOA governance policies for
standards compliance can usually be run in automated service testing scripts,
determining whether or not a service can be deployed. SOA governance
policies used at run time should be easily discoverable and be written in
a declarative, configurable, and machine-understandable language (such as
WS-Policy), allowing services and clients to adapt to changing policies at
run time.

All of the types of policies mentioned in this section do not apply to every
SOA; each enterprise may have different requirements. It is also important
to know that SOA governance policies do not have to be exhaustive and
overwhelming — a little bit of policy and guidance often goes a long way. The
key thing to understand is that there needs to be some level of governance;
enterprise requirements dictate exactly how much.

SOA governance is necessary for providing guidance and keeping things
in order, increasing the chance of success. Policies developed for services
govern how services and their consumers interoperate, providing a contract
more expressive and descriptive than interface bindings. In many cases, SOA
governance solutions are legally necessary; there are costly penalties for not
conforming to laws such as Sarbanes-Oxley (SOX), HIPAA (Health Insurance
Portability and Accountability Act), and other domain-specific regulations
which include the management, control, monitoring, and auditing of events.
Finally, adopting a successful SOA governance strategy means that your
enterprise architecture can evolve by design, not by accident!

The Case for SOA Governance

Many engineers new to SOA (or those who have not had to be involved in
an operational SOA) question the need for governance. They design, develop,
and deploy their services, and they feel that this is enough. In this section, we
demonstrate to you why SOA governance is indeed important.

The Reality of Change in Real-World Deployments
The stories of ill-fated SOA pilot projects are not always the same. Certainly, in
many cases, projects fail because of a poor architecture or poor service designs,
when architects and designers ignore much of what we’ve talked about in

454 Part II ■ Designing SOA

this book. Sadly, however, the most unfortunate projects are those with good
architectures and elegant designs that fail because of a lack of planning for
change and what goes on in real-world operations.

The stories of these cases are often the same. The designs were initially solid,
everything went well in the development lab, and services were rigorously
tested. There may have been some inherent governance involved related to
the architectural process. When they were initially deployed in operations,
everything went okay until something needed to be changed. Because there was
no process for service versioning and deprecation, changes temporarily broke
the connections between clients and services, requiring changes in client
applications. And that was only the beginning.

In this true story, lack of governance had a downward spiral effect on
the project. Security changes broke connections, requiring client upgrades.
When services needed to support specific functionality for different classifica-
tions of users, service code got larger. As requirements changed, overworked
developers quickly modified the service interfaces to support the require-
ments. The larger the enterprise and customer base, the more intense the
chaos. To keep up with the constant change and the deadlines, enterprise
schemas were abandoned or hastily changed without thinking. Over time, the
Band-Aid fixes evolved into spaghetti code and spaghetti WSDL written by
overworked developers trying to keep up with constant change. With every
change, there were irate customers who needed to understand and rebind to
the new service interface. Sadly, such a project with initially nicely designed
and adequately developed services became an operations and maintenance
nightmare. Finally, because it took too much time, money, and effort for the
system to adapt to the changing requirements, the project was abandoned,
or the scope of the project was reduced to the point where it was effecti-
vely ‘‘dead.’’

If that story is familiar to you, we feel your pain. Change is inevitable. If you
have an organization focused on governance that defines processes in your
service life cycle, you are ready for change. Service governance mechanisms
allow you to plan for change, putting run-time service policies in place, and
allowing you to adapt to these policies at design time and run time. Certain
enterprise policies, as simple as service versioning and service deprecation,
can happen at design time (or policy authoring time). Policies related to SLAs
and messaging security should not have to change the service interfaces. If
the run-time service policies are written in a declarative, software-readable
format (WS-Policy, for example), client applications can dynamically adjust to
such agreements at run time. The result of good service governance is a project
and an organization that is prepared for change, increasing its chances for
success.

Chapter 12 ■ SOA Governance 455

The Need for an Enterprise Big Picture
An enterprise has many moving parts. One of the greatest benefits of
Service-Oriented Architecture is that services are reusable components that
are combined with other services to build enterprise applications. As a result,
there are many permutations of the ways services can be used together. There
are lots of things that can go wrong, and there is a need to have a centralized,
big picture view of your SOA. Based on this operational big picture, you can
detect and fix problems, and adapt aspects of your services to meet the needs
of what goes on in real-time operations.

As we also discussed in Chapter 9, a simple example of this need involves
troubleshooting errors. When a service throws an exception, the error message
may not be descriptive or intuitive enough for troubleshooters to understand
the problem, and looking at detailed logging may be necessary in order to
understand the problem. Figure 12-1 shows a scenario that demonstrates
this example. A client sends a SOAP request to Service A, and the resulting
service transactions involve message routing all the way to Service F, which
throws a SOAP fault (or exception) because Service E created the request
incorrectly. In this example, each service returns the SOAP fault to its caller.
In such an environment, where there is no centralized view of your SOA,
determining what went wrong is only accomplished by inspecting the logs of
the services in the life cycle of the request. If each service logs information
locally, troubleshooting sometimes involves the painful process of calling the
systems’ administrators who manage each service — one at a time.

N O T E Chapter 9 focuses in depth on solutions used for solving these types of
problems. You can refer to such solutions as blueprints and recommendations
when developing enterprise governance policies for your organization.

Client Service A Service B

Service C

Service E

Service D

Service F

Fault:
XML Schema

Validation
Error!

Why did
Service A
throw that

fault?
XML looked
valid to me!

Figure 12-1 Example scenario showing the need for a central SOA view

456 Part II ■ Designing SOA

Certainly, such an example underscores the need for SOA governance. In
design-time governance, architects provide enterprise policy guidance related
to detailed messaging and error handling. This example also demonstrates the
need for SOA management, where software tools can provide monitoring, a
centralized view of audit logs, and the mechanisms necessary to have the big
picture of the enterprise. Based on analysis of statistics gathered in service
monitoring, governance policies may be edited and refined over time, and
decisions related to availability and performance may be made. Having a
high-level, operational view of how clients and services interact increases the
probability of success in real-time operations.

The Need for Explicit Run-Time Service Policies
Ever since the advent of Web Services, books and magazine articles have shown
a picture similar to Figure 12-2. This famous ‘‘publish-find-bind’’ triangle has
been used in literature to show how Web Services can dynamically work with
UDDI and other service registries. In practice, the service provider usually
registers its WSDL with a service broker, who stores the service provider’s
information in a registry. A service consumer registers with the broker to
discover the Web Service, and finally, the service consumer downloads the
service’s WSDL and dynamically binds to the Web Service. As we discussed
in Chapter 2 (see sidebar ‘‘Dynamic Discovery and Binding’’), the ‘‘publish
WSDL, find, and bind’’ model is a fallacy because it is woefully incomplete in
practice.

Conceptually, this abstract publish-find-bind model is solid. The typical
WSDL use case, however, is sufficient for your operational SOA only if you
are still living in the Garden of Eden. In the real world, there is a lot more to
connecting with a service than just knowing the syntax of its interface. In an
operational environment, you are more than likely to have different policies
for security, transport, authorization, and service level guarantees based on
different customers, partners, suppliers, and employees that interact with your

Service
Provider

Service
Broker

Service
Consumer

3. Bind

2. Find

1.
Pu

bli
sh

Figure 12-2 The famous publish-find-bind triangle

Chapter 12 ■ SOA Governance 457

services. Service clients (or agents or intermediaries who work on behalf of the
clients) have to understand these policies, and they also have to understand
the semantics of what is in the payload of the services. The service providers
have to enforce these policies at run time. Due to certain legal requirements
(for example, SOX, HIPAA, and other similar policies), service providers have
to monitor and audit interactions, policy enforcement, and compliance at
run time.

What does this all mean? First, it means that in order for services to
operate in the real world, there must be policies in place that account for all
of these requirements (capabilities and constraints) beyond interface binding.
Services have to enforce these policies, and both service consumers and service
providers have to adapt to policy change. Second, it means that projects without
design-time governance evolve into chaotic systems that never scale. Third, it
means that projects without run-time and change-time governance are never
able to adapt to the rigors of policy compliance and change. Finally, our
experience is that a huge percentage of pilot projects that did not begin with
SOA governance ended up failing.

Applying design-time governance with discoverable run-time service poli-
cies that express the constraints and capabilities of services can help realize
the vision of the conceptual publish-find-bind triangle. In a policy-driven
enterprise, expressed and exposed policies provide more information in dis-
covery of services for how clients can connect. We talk about this later in this
chapter.

The Need to Separate Policy Logic from Business Logic

Some who are new to SOA agree with governance in principle. They believe
that certain policies need to be in place (design-time governance), but they
argue that run-time and change-time governance can be accomplished by
hard-coding compliance logic in the business logic of the services involved.
This assumption is another example of theory versus practice. It sounds doable
in theory but becomes quite complicated and unmanageable in practice.

First of all, policies change over time, and although changing service code
to adapt to the policy changes is theoretically doable, it introduces very
tight coupling. It is laborious for anyone to change the code of their services
for every policy change, and every service change may require changes to
service clients. Complicating the matter is the fact that real-world services
undoubtedly have different policies in place for every partner. Figure 12-3
shows an example of how a simple service may have different policies,
depending on the types of consumers using the service. In the figure, a book
store has a service called the Book Ordering Service, which allows customers,
business partners, and employees to order books.

458 Part II ■ Designing SOA

Book Store
Ordering Service

Book Store Customer

Employee

Business Partner

SOAP over SSL
(Username/Passwd),

Second Priority Service

WS-Security
X.509 Cert Profile

Messaging,
Lowest Priority Service

WS-Security
SAML Token Profile

Messaging
Guaranteed QoS,

First Priority Service

Figure 12-3 Different policies for different consumers

In Figure 12-3, each consumer of the service has different messaging security
requirements and receives a different service priority. Business partners of
the book store have guaranteed quality of service, they have first priority
over all active requests, and they use WS-Security SAML Token Profile
messaging for authentication. Customers, however, simply use SOAP with
username/password-based SSL, and have secondary priority. Employees of
the book store use WS-Security X.509 Certificate Profile messaging over SSL
and have the lowest priority. Each has separate auditing requirements. When
receiving a queue of requests, a service must answer requests based on priority,
and the service (or the service container or handler) has to enforce the security
requirements for each case. This is an extremely simple and common case; a
service may have to enforce many other different types of policies based on
who the consumer is.

Although this is a simple example, hopefully you can see that hard-coding
such policy logic in the business logic of this service for these three con-
sumers is more complex than if the policy logic was separate. Without even
mentioning the code for the actual functionality of the service, there would
need to be consumer identification, code for three different styles of mes-
saging security, and service queuing based on the consumer’s priority. The
problem with embedding policy with a service’s business logic is tight cou-
pling. In doing so, no matter how your service is otherwise designed, you
are tightly coupling your services based on policy, and in this case, you are

Chapter 12 ■ SOA Governance 459

tightly coupling your service’s business logic to your service consumers. More
importantly, your service client has to understand this policy and may have to
write different code for the different messaging mechanisms required. If any
of these policies ever change, you have to rewrite your service (or the code in
your interceptor or handler if you componentize this policy logic), and chang-
ing this messaging implementation breaks the interactions with your clients.
Your clients, in turn, have to rewrite the interaction with the service if the
messaging security implementation changes. In practice, adapting to policy
changes without run-time governance involves pandemonium, weeping, and
gnashing of teeth. Unfortunately, this a common problem.

An effective way to avoid this predicament is by explicitly declaring your
policies in a discoverable and software-readable format, by using run-time
governance mechanisms to enforce the policies on the service side, and by
discovering and adhering to the policies on the client side. In the ‘‘Practical
SOA Governance’’ section later in this chapter, we explore how this can be
achieved.

SOA Governance and the Service Life Cycle

The SOA governance life cycle, as we define it, is shown in Figure 12-4. We
have overlaid it with the Service Life Cycle from Chapter 3 in order to provide
context, since the governance drives all aspects of the service life cycle, from
cradle to grave. This section walks you through every phase of the service
life cycle, focusing on the processes that occur in each phase, as well as the
stakeholders involved.

An organization’s SOA governance team dictates the processes that occur
throughout the service life cycle, as well as the roles and responsibilities of
the stakeholders. Therefore, processes and stakeholders may be different from
organization to organization. However, this section defines typical successful
processes, as well as stakeholders and their roles and responsibilities. SOA
governance affects the entire organization, and one person often fills multiple
roles. Throughout the following sections, we refer to the following stakeholder
roles:

Solution Lead — A business architect tasked with solving a particu-
lar business problem. This stakeholder’s responsibilities mostly revolve
around the translation of business requirements into a service proposal.

Functional Architect — An architect who maintains and enhances an
enterprise functional model. He or she maintains a messaging dictionary
(semantic messaging) that ensures interoperability between enterprise
services, and he or she ensures service alignment with the functional
model.

460 Part II ■ Designing SOA

DESIGN TIME
GOVERNANCE

DEPLOY TIME
GOVERNANCE

RUN-TIME
GOVERNANCE

Service
Creation
Policies

Service Identification

Service Design and
Specification

Functional
Model

Process
Definitions

Semantic
Model

Model
Updates

Model
Updates

Functional and
Semantic Models

Nonfunctional
Requirements

Service Proposal in
Service Repository

Service SpecificationIn
Service Repository

Service Implementation Service Deployment
Service Implementation

in Service Repository

Service Utilization Service
Retirement

Service Deployment
in Service Repository

Service Utilization in
Service Repository

Service Utilization Statistics

Checkpoint
Policy

Compliance
Testing

Governance
Policy Authoring

Deployment
Policy

Run-Time
Service
Policies

Run-Time Policy Discovery

Run-Time Policy Adaptation

Run-Time Policy Enforcement

Run-Time
Standards,
SLAs, and

Access
Policies

SERVICE LIFE CYCLE

Enterprise
Standards

Figure 12-4 SOA governance in the service life cycle

Portfolio Architect — An architect managing an application portfolio
that includes services, this stakeholder ensures that services are aligned
with the directions for a particular portfolio. He or she also maintains the
business relationships with business units, as well as other portfolios.
Finally, he or she serves as a Subject Matter Expert on the existing func-
tionality of the applications within the portfolio.

Enterprise Architect — This stakeholder plays a pivotal role in ser-
vice identification and design. He or she is responsible for making sure
that each service fits into the overall enterprise context. In addition,
the architect is responsible for the integration approaches and adapter
designs. The architect chooses appropriate implementation platforms
for services and is responsible for nonfunctional requirements for ser-
vices and their implementation.

Business Process Architect — An architect managing enterprise busi-
ness processes and their evolution, he or she works closely with the
functional architect, ensuring the alignment of services with the current
and future business processes.

Chapter 12 ■ SOA Governance 461

Services Librarian — A person responsible for maintenance of the ser-
vice registry, a backbone of service governance. This stakeholder works
to ensure that all of the service information is in a standardized form,
accurate, up-to-date, and properly classified.

SOA Run-Time Architect — An architect responsible for maintenance
of and enhancements to the service run time, including standardization
of service APIs, and service run-time support — registry, monitoring,
and so on.

Application Developer — This stakeholder is a developer building and
maintaining business functionality for base services.

Service Assembler — The developer building and maintaining business
functionality for composite service (business processes).

Service Tester — A quality assurance (QA) representative responsible
for testing of the services.

Service Infrastructure Specialist — An infrastructure engineer respon-
sible for the creation of the service deployment diagrams and topologies,
and maintenance of the service registry and service management solu-
tion. He or she also monitors service usage and SLA adherence.

SOA governance directly affects people from different parts of organization.
The policies, processes, and procedures that are developed in SOA governance
need to be comprehensive, and must cover all of these stages of the service
life cycle. The next sections of this chapter provide an overview of each aspect
of governance, focusing on design time, deploy time, and run time. Each
section refers to the life cycle in Figure 12-4. Although we don’t specifically
call out ‘‘change-time governance’’ as an explicit phase, accommodation of
change is built-in based on service utilization statistics and metrics collected in
run-time governance and, therefore, is addressed in that section. This section
focuses on all phases of governance and walks you through the service life
cycle.

N O T E Remember as you go through the next few sections that the SOA
governance activities throughout the service life cycle can vary from organization
to organization, and they depend on many things, including the makeup and
culture of your organization. It is important to know that this section covers the
‘‘whole nine yards’’ of SOA governance, and its elements are representative of
the processes, roles, and stakeholders of a very mature organization. If your
organization is new to SOA (or new to governance processes), you probably want
to start small, evolving to the mature process that we discuss (see the
‘‘Governance from Day 3’’ sidebar later in this chapter). Finally, the mature
processes and activities that we define serve as a model that should be tailored to
fit your organization.

462 Part II ■ Designing SOA

Design-Time Governance

Design-time governance involves legislation (policy creation) that affects
processes throughout the service life cycle. Initial policies are typically
enterprise-wide policies focused on technical standards compliance, adherence
to an enterprise vocabulary, and service creation policies. In an organization
with a mature process, such policies already exist, and new projects usually
inherit or customize the policies, according to their requirements.

It is important that clear ownership of SOA issues be established, providing
efficient resolution of SOA-specific issues, defining SOA funding approaches,
enabling maturity tracking, aligning the organization’s SOA strategy with
other enterprise strategies, ensuring infrastructure readiness, creating policies
and processes, and ensuring adherence to them. This is typically done by
establishing a team responsible for SOA governance in an organization. At
the beginning of SOA projects, service creation policies dictate the service
proposal, design, and implementation processes. Adherence to compliance
policies is regulated by the SOA governance group, and this group determines
whether or not the services can be deployed (deploy-time governance).

Run-time service policies defining capabilities and constraints of spe-
cific services are also defined during the design-time governance phase
in the service life cycle. Unlike enterprise-wide policies, these policies are
related to the services themselves and are based on business requirements,
domain-specific rules, and specific regulations. These run-time policies revolve
around constraints and capabilities (security, reliability, and quality of ser-
vice), and are policies that act as contracts between the service and the service
consumer.

SLAs are typically part of the run-time service policy. An SLA relates
to guarantees of benchmarks related to performance and availability, and
includes acceptable performance parameters, the duration of the agreement,
procedures for monitoring the service levels, exceptions to the agreement, and
problem resolution procedures. Metrics such as messages per hour, service
response time, uptime, throughput, number of errors, units of business work
completed, different roles for the parties involved, and other factors are used
when creating SLAs. Classes of customers may have different SLAs for the
same service — a ‘‘Gold’’ customer may be promised a better priority of service
than a ‘‘Silver’’ or ‘‘Bronze’’ customer, and each may have different connection
requirements.

Run-time policies are authored in the design-time phase and are typically
defined by a declarative language such as WS-Policy. Typically, run-time
service policies are refined over time, based on the collection of metrics and
use cases in the operational environment.

Chapter 12 ■ SOA Governance 463

DIFFERENTIATING SERVICE POLICIES AND BUSINESS PROCESSES

A point of confusion for some relates to the difference between Business
Process Management (BPM) rules and run-time service policies for services.
Policies that affect run-time decisions are usually discoverable through a
registry. Some vendors offer both BPM and Governance using the same
framework. A service’s policy contract can also be seen as ‘‘rules.’’ So what is
the difference between BPM rules and service policies?

Most business processes are based on business rules and workflow (see
Chapters 4 and 5), where most run-time governance policies for services are
sets of constraints and capabilities that describe how a service and a client
interact. For this reason, we refer to such policies in this book as ‘‘run-time
service policies,’’ because the term ‘‘policy’’ is an overloaded term. The
following may be rules for a fictional service; some of these rules involve BPM,
and some involve the service policy:

1. The Book Store Order Service requires WS-Security X.509 Certificate Pro-
file Messaging, and only recognizes certificates issued by ‘‘Trumantruck
.com.’’

2. Users with ‘‘Gold Status’’ get 10% off all orders.

3. The Book Store Order Service accepts requests for its last two deprecated
versions until December 5, 2008.

4. The Book Store Order Service has equal to or better than a 5 second re-
sponse time.

5. Once the Book Store receives an order, orders must be checked and
approved by the corporate VISA and MasterCard representative.

6. If a book is not available, the customer’s request is routed to a partner
business service, and the Book Store Order Service facilitates this commu-
nication.

The rules (1), (3), and (4) relate to governance, because they relate to how
clients interact with the service. Rules (2), (5), and (6) relate to the internal
business process logic of the service itself. You would declare your gover-
nance policies for the service (1, 3, and 4) in a standard language that is dis-
coverable through a registry. The other rules are internal to the service, and
they are best delegated to a business rules engine or workflow solution for
the implementation of that service.

Design-time governance processes impact every area of the service life cycle.
In this section, we focus on the three parts of the service life cycle that occur
during the design-time governance phase for a project: service identification,
service design and specification, and service implementation.

464 Part II ■ Designing SOA

The Service Identification Process

The first step in the service life cycle, shown earlier in Figure 12-4, is service
identification. This process is dictated by the SOA governance group, and it is
driven off of the functional (business) model, process definition, and semantic
information model, resulting in a proposal for a new service. These artifacts
are usually located in a service repository (we discuss the role of the service
repository in detail later in this chapter). The service identification process
should include multiple activities, as shown in Figure 12-5.

Part of the
model?

Map to the functional model, business process, and
semantic information model

Yes

Implementation
exists?

No

Change
service?Yes

Enhance
relevant
model(s)

Can it be
used?

Yes

Yes

Create service
proposal

No

Create service
version proposal

End

Start

No

Create entry in
repository and
add proposal

Reuse existing
implementation

Update repository
with version

proposal

Figure 12-5 The Service Identification Process

Since the resulting proposal relies on the functional and semantic informa-
tion models, step changes can be introduced to those models to ensure that
they always reflect the current state of the enterprise. Stakeholders during this
phase include the Enterprise Architect, the Solutions Lead, the Portfolio Archi-
tect, Functional Architect, Business Process Architect, and Services Librarian,
and the duties that they perform are shown in Figure 12-6.

As a result of this process, a service proposal is created, and it is typically
a free-form document (depending on the organization’s policy on service
proposals), containing the following:

Description of the service functionality

The mapping of the proposed service to the functional architecture
model

Chapter 12 ■ SOA Governance 465

Service Design

Solutions Lead Portfolio Architect

Enterprise
Architect

Functional
Architect

Business Process
Architect

Leads translation of business
requirements into service
proposal. Uses service registry
to find information about existing
services and decides whether a
new service/version is required.

Manages the direction of the
service for the portfolio. Maintains
business relationships with business
units, as well as other portfolios to
address cross portfolio concerns.

Services Librarian

Captures service
proposals in the
repository.
Implements required
service taxonomies
and search support.

Assists with service
proposal.

Ensures service alignment with
the functional and semantic
models. Enhances the model(s) as
necessary to accommodate new
functionality. Maintains cross
reference between service and the
model.

Collaborates with functional
architecture to ensure alignment
between services and business
process. Defines additional
service requirements, based on the
enterprise business processes.

Figure 12-6 Stakeholders of the Service Identification Process

The mapping of the proposed service to the semantic information model

The mapping of the proposed service to the relevant processes that may
use it as an activity

The service interface, outlining business entities used as a service input
and output

A statement conforming to the plan to adhere to relevant enterprise poli-
cies established by the SOA governance group

This service proposal is then stored in the service repository. Storing it in
the service repository before the actual design and implementation allows for
a better tracking of services and improving the service reuse.

The Service Design and Specification Process

After the service proposal phase, the service design and specification process
is the next step in the service life cycle. Enterprise service creation policies
developed by the SOA governance group dictate the service design process
and the way that stakeholders work together in order to achieve the goals of
the process. A typical design process is shown in Figure 12-7. Similar to the
service proposal process, a key aspect of the design process involves the use
of the service repository, reviewing and updating the semantic information
model and functional model, and placing the resulting design in the repository.
The design itself includes the interface as well as run-time service policies.

466 Part II ■ Designing SOA

Start

Designing
adapter

Integration or
Business/Utility?

Designing
semantic
interface

Business/UtilityIntegration

Designing
interface

End

Update repository
with design
information

Composite
service?

Yes

Componentizing
service

Reuse
component

No

No

Design
integration

service

Yes

Yes

For every
component

Design
component

More
components?

Yes
No

Designing
business
process

Part of the
model?

Enhance
relevant model

Yes

No

Existing
functionality

Exists

Figure 12-7 The service design and specification process

This process typically involves the Enterprise Architect, Solutions Lead,
Portfolio Architect, Functional Architect, Business Process Architect, and Ser-
vices librarian. These stakeholders, and their roles associated with service
design, are shown in Figure 12-8.

Service design artifacts created in this process include:

Service invocation pre- and postconditions

Interface design

Informal run-time policies for service invocation that can be refined in
the implementation process

A list of components and their interactions for service implementation

Design of lower-level components that comprise the service

Chapter 12 ■ SOA Governance 467

Service Design

Solutions Lead Portfolio Architect

Enterprise
Architect

Functional
Architect

Business Process
Architect

Assists with componentization
of the service. Maps partial
service functionality onto existing
applications.

Acts as an SME for the existing
portfolio applications, their future
and support.

Services Librarian

Captures service
design in the
repository.

Leads service
design. Responsible
for the integration
approaches and
adapters design.
Chooses appropriate
implementation
platforms for
services.

Defines semantic service
interface. Identifies major service
components, based on the
functional model. Enhances
functional model as necessary to
accommodate new
functionality.

Designs services, implemented as
business processes.

Figure 12-8 Stakeholders of the service design and specification

Interface design

Updates of the relevant model(s)

All of the service design artifacts are added to the service’s proposals
in the repository, thus ensuring that it is always current with the service’s
development.

The Service Implementation Process

After design is the service implementation phase. Service implementation process
guidance is defined by the SOA governance team, with a typical process shown
in Figure 12-9. Certainly, each service implementation differs, depending on
what type of service it is. An enterprise’s policies and procedures, established
by the governance team, provide such a process, including standards, guid-
ance, blueprints, and best practices for implementing services. Much like the
other processes in design-time governance, all of the service implementation
artifacts are captured and maintained in the service repository.

Stakeholders in the implementation process involve the Application Devel-
oper, the Services Assembler, the Enterprise Architect, the Service Tester, the
SOA Run-Time Architect, and the Services Librarian, as shown in Figure 12-10.
The role of the Enterprise Architect typically focuses on the governance issues
adherence to enterprise policies and procedures, and refining informal service
run-time policy from the design phase into formal service run-time policy
used to express constraints, usage, and the capabilities of the service.

468 Part II ■ Designing SOA

Start

Integration or
Business/Utility?

Business/UtilityIntegration

Implementing
adapter

Yes

Composite
service?

Implementing
service, using
frameworks

End

Testing Service

For every
component

Implement
component

More
components?

No

Yes

No

Implement
business
process

Update repository with
implementation

information

Figure 12-9 Typical Service Implementation process

As a result of this process, service implementation artifacts are created. They
include:

Detailed design

Actual implementation code

Formal run-time service policy (usually expressed in WS-Policy)

Build scripts

Test scripts

Chapter 12 ■ SOA Governance 469

Service
Implementation

Application
Developer

Enterprise
Architect

Service Tester

Services
Assembler

SOA Run-Time
Architect

Builds and maintains business
functionality of base services.

Ensures adherence of the
implementation to enterprise
standards and the non-functional
requirements, security, SLA, etc.

Services Librarian

Captures service
implementation
artifacts in the
repository.

Responsible for
testing of services.

Builds and maintains composite
services (business processes).

Maintains and enhances service
run-time including standardization of
service APIs and service run-time
support (registry, monitoring, etc.)

Figure 12-10 Stakeholders of the service implementation process

All of the service implementation artifacts are added to the service’s infor-
mation in the repository, thus ensuring that it is always current with the
service’s development.

Deploy-Time Governance
Deploy-time policies are defined during the design-time governance phase,
and they establish the process for deploying services in the enterprise. Based
on these policies, tests can be created that test adherence to the enterprise-wide
policies and specific service policies, and compliance testing happens in the
deploy-time governance phase.

The service deployment process of the service life cycle, defined by the SOA
governance team, includes multiple activities, with a typical process shown in
Figure 12-11. Service deployment includes the configuration of the deployment
of the individual service instance and the topology for multiple instance
design, where multiple instances of services are deployed simultaneously to
support multiple run-time service policies. The service deployment process
also includes definitions of service access transports (e.g., MQ versus HTTP)
and interaction styles supported by different deployment instances. This
information is used for updating the service registry and the service monitoring
solution with the information about a new service and its deployment. Finally,
prior to deployment, compliance checking is done to ensure that the service
adheres to the enterprise service policy.

470 Part II ■ Designing SOA

Start

Design deployment
topologies

Map deployment topologies to
registry

Map deployment topologies to
monitoring

Deploy services

End

Update repository with
deployment information

Checkpoint
policy compliance

checking

Figure 12-11 Typical service deployment process

This process involves the stakeholders shown in Figure 12-12, which shows
the roles of the Enterprise Architect, the SOA Run-Time Architect, the Service
Infrastructure Specialist, and the Services Librarian.

As a result of this process, service deployment artifacts are created and are
added to the service’s information in the service repository. They typically
include:

Logical and physical deployment diagram for the service

Physical topology for service deployment, including all endpoint
addresses and their mappings to service policies and interaction styles

Chapter 12 ■ SOA Governance 471

SOA Run-Time
Architect

Service Deployment

Enterprise
Architect

Service
Infrastructure

Specialist
Services Librarian

Creates logical service
deployment. Defines service
management requirements.
Ensures that service passes
compliance testing.

Supports service deployment,
monitoring, and management.

Captures service deployment
artifacts in the repository.

Defines service’s physical
deployment and management.
Updates service registry with the
service deployment information.

Figure 12-12 Stakeholders involved in service deployment

Mapping of this topology to service registry and update of the registry
with the service’s deployment information

Service monitoring and management points

Mapping of the points to the monitoring solution and configuring solu-
tion to support monitoring and management

The deploy-time governance phase establishes this service deployment
process, as we have defined in this section. Policy compliance is tested
prior to the deployment, ensuring that services meet the enterprise policy
requirements.

Run-Time Governance

During the run-time governance phase, explicit run-time service policies are
discovered by service clients. Run-time service policies, as we have discussed
earlier in the chapter, express the constraints, capabilities, and requirements
for using a service, and such a policy acts as a formal contract between
a service and its consumer. Based on the run-time policy and connection
requirements discovered at run time, clients adhere to those policies, which
are then enforced by Policy Enforcement Points (PEPs) for the services.
SOA governance processes involve mechanisms for service policy discovery,
adaptation, and enforcement (we cover these mechanisms later in this chapter).

In addition to run-time service policy enforcement, the other main gover-
nance activities in this phase relate to monitoring and management, as shown
in the service utilization process of the service life cycle in Figure 12-13. All ser-
vices are monitored and statistics are gathered so that results can be analyzed

472 Part II ■ Designing SOA

Collect service
usage statistics,

store them in
repository

Start

Do

End

Function
properly?

Implement fixes

Still in use?

No

Yes

SLAs
satisfied?

Adjust
deployment

No

Yes

Figure 12-13 Service utilization process

for troubleshooting, policy enhancement, and other potential enhancements
and changes. In this aspect, the run-time governance phase applies to what is
referred to as change-time governance. In many cases, run-time governance
engines provide ‘‘run-time scorecards’’ related to reliability, response time,
and policy adherence. During this phase, all activity, exceptions, and errors
are logged in such a way that the enterprise managers can have a big picture
view of the SOA for real-time network tracking and alerts. For discovered
problems related to service deployment or run-time service policies, services
can be taken offline and put back into the deployment process of the life
cycle. For more serious issues revolving around software bugs, design errors,
or implementation issues, the service should be sent back to the design or
implementation process.

Chapter 12 ■ SOA Governance 473

MONITORING YOUR SOA

SOA management tools (also called run-time governance tools), provide
capabilities that allow you to monitor, measure, and analyze service
interactions. Based on understanding the way that enterprise services are used,
you are able to refine aspects of service design and run-time service policies, as
we discuss in this section.

Most SOA governance products offer the automatic discovery of services in
the enterprise, an analysis of how these services interact with other service
consumers and providers in the enterprise, and visibility into the end-to-end
service messaging flows. Such tools collect customized metrics at run time.
Based on these metrics, they provide a centralized view of service performance,
audit logging, actions, errors and error root-cause analysis, business
transaction monitoring (providing business-level visibility in message content),
run-time analysis of enterprise bottlenecks, latency, and unauthorized access.
All of these are important for traceability, auditing requirements, and refining
policy — specifically related to refining quality of service in SLAs.

Many management tools provide the capability to specify automated actions,
usually related to adapting services for failover (message routing and service
instantiation for continuous availability). If a particular metric is not being met,
alarms can be raised and real-time alerts can be sent to administrators. This
information provides a much needed big picture of your SOA in order to
support decision making related to refining policy, design changes, and
planning for availability.

The activities in the service utilization process involve the stakeholders
shown in Figure 12-14. This figure shows these organization roles and their
responsibilities during the run-time governance phase. Artifacts during this
phase include:

Utilization of statistics of a service as a whole and the deployment end-
point address(es) if instantiated multiple times

Information about consumers using the service

Information about service SLA support, run-time policy enforcement,
and adherence

All of the service usage artifacts are added to the service repository, to allow
analyzing service utilization.

Finally, the last phase of the service life cycle as it relates to run-time gov-
ernance is service retirement, which includes activities as shown in Figure 12-15.

474 Part II ■ Designing SOA

Supports existing
implementation, fixes bugs,
supports system upgrades.

Service run-time upgrades.

Captures service
usage in the
repository.

Adjusts service’s
physical deployment
and management
based on the
run-time service
policy.

Supports existing implementation,
fixing bugs, supporting system
upgrades.

Maintains registry and
management platforms from
infrastructure perspective. Runs
reports about general health of the
SOA production environment.

Service Usage

Application
Developer

SOA Run-Time
Architect

Services
Assembler

Service
Infrastructure

Specialist

Service
Infrastructure

Specialist

Services Librarian

Figure 12-14 Stakeholders in the service utilization process

Start

Undeploy
services

Remove
service from
the registry

Remove
service from
monitoring

Update repository
with service

deletion

End

Figure 12-15 Service retirement process

Chapter 12 ■ SOA Governance 475

Main activities during service retirement include undeployment of the
service, which encompasses not only the undeployment of the service run-time
instance, but also removal of the service information from the registry (thus
ensuring that it is never invoked). It also includes removal of the service
information from the service’s monitoring and management solution.

Finally, these activities typically involve two stakeholders — the service
infrastructure specialist, who removes the service, and the SOA librarian, who
captures the service deletion in the service repository. These stakeholders are
shown in Figure 12-16.

Service RetirementSOA Librarian
Service

Infrastructure
Specialist

Captures service deletion in the
repository.

Undeploys service. Removes service
information from service registry
and management solution

Figure 12-16 Stakeholders in the service retirement process

This section has walked you through governance in the service life cycle. In
the next section, we provide a practical guide for addressing SOA governance
in your organization.

Practical SOA Governance

This section provides a practical guide for setting up a model for SOA
governance in your organization, following the SOA Governance Life Cycle
in the last section. Throughout this section, we provide practical tips as
‘‘anti-patterns’’ that you should watch out for.

Structuring Your Organization for Governance
SOA governance needs to establish chains of responsibilities, decision-making
rights, authority, and communication, which usually requires the creation of
the SOA governance group. Responsibilities of such a governance group are
as follows:

Position SOA as a critical element of IT tool set and align it with the
Enterprise Business strategy. Define business opportunities for SOA
adoption and implementation.

476 Part II ■ Designing SOA

Create clear ownership, supervision, and escalation of SOA specific
issues, thus providing quick and efficient resolution of SOA-related
issues.

Define SOA funding approaches, including reuse charge backs, and so
on.

Enable SOA maturity tracking and its controlled evolution based on the
metrics for SOA adoption benefits, services reuse,
and so on.

Align SOA strategy with other enterprise strategies, including security,
presentation, portfolio management, and so on.

Ensure adherence to service definition and implementation policies
and processes.

Ensure infrastructure readiness for SOA (see Chapter 10 for an expanded
discussion of this).

Maintain and advertise major SOA artifacts — services, business pro-
cesses, and so on.

Out of all these tasks, establishing processes and procedures is the most
important functions of the SOA group. These policies, processes and proce-
dures have to be comprehensive and need to cover all of the stages of the
service life cycle, as we discussed in the last section.

There are a few different ways to establish authority for adherence to policy.
One of the best ways is to establish a team-based policy authoring model, where
the team is led by an energetic and persuasive leader, and where everyone
feels that they have a ‘‘say’’ in the process. In such a collaborative approach,
the team feels ownership in the process, leaders step up, and it increases
the likelihood of success. It is important that governance has management
support — adherence to policy needs to be mandated from the top. For this
reason, a centralized SOA group reporting to the CTO, CIO, or chief architect
of the organization with ‘‘built-in’’ management support is usually the best
option. Because SOA impacts business as much as IT, this group must also
have representation from the business staff as well as the technology staff.
Although it is theoretically possible to create a decentralized SOA group
comprised of the representatives from multiple departments, in reality it
rarely works. It is important that the group govern effectively without being
too heavy-handed. A few anti-patterns in governance discipline are illustrated
in the ‘‘The Powerless Committee and the Ivory Tower Dictator’’ sidebar.

Chapter 12 ■ SOA Governance 477

THE POWERLESS COMMITTEE AND THE IVORY TOWER DICTATOR

There are two extremes of the SOA governance discipline that are common but
are also ineffective. The first extreme is the establishment of a powerless
committee, where a committee is appointed to develop policies for the SOA
project, but it is set up to have no control because management does not
mandate the control. The second extreme is an anti-pattern we call the ivory
tower dictator. The ivory tower dictator is the architect who has the power,
authors all the policies from on high, and shoves it in the designers’ and
developers’ faces without their input. The ivory tower dictator rules with an
iron fist and is despised. As a result, the rest of the team can find ways around
the policies or can rebel and try to sabotage the process. Both of these models
are well intentioned but wrong. Neither the powerless committee nor the ivory
tower dictator is ever successful. One model has no power to discipline, and
the other has all the power but the dictator lords it over the project. The
effective alternative is a collaborative, team-based approach, led by a
persuasive leader who has management support.

As you can see from the SOA stakeholders and their roles in the last
section, SOA governance brings together people from different parts of the
organization. It does not mean, however, that all of the participants have
to be administratively in the SOA group that establishes the policies for the
organization. The SOA governance group usually employs:

The group leader (the SOA group ‘‘champion’’)

A Services Librarian

An SOA Run-Time Architect and development group

A Functional Architect (optional)

A Service Infrastructure Specialist (optional)

This group also maintains the service repository and best practices for
different steps in the SOA process. It facilitates conversations during different
steps of the SOA process and ensures quality of deliverables on every step. The
rest of the participants supplement the SOA group during specific projects.

Developing Enterprise Policy
After the SOA governance group is formed for an organization, the first
step in governance involves the establishment of enterprise-wide policies for
building services. Policies developed in this stage revolve around compliance

478 Part II ■ Designing SOA

with technical standards, the use of common vocabularies, service versioning
policies, common namespaces for services, and guidance for best practices and
reuse. Such enterprise policies affect the entire organization, applying to all
services and their consumers.

In our experience, it is best to start small, borrowing experiences from
other projects. Although too little governance is an unacceptable extreme,
going overboard, and setting up too many rules, checklists, and policies from
the beginning can be overwhelming. Enterprise policies should be sufficient
to provide order but should not be stifling. The following are some basic
guidelines that are usually effective in most projects but obviously should be
tailored to your organization:

Standards compliance — It is important to use accepted standards in
order to ensure both current and future interoperability. Organizations
that create their own standards for SOA, instead of using accepted stan-
dards, are essentially creating ‘‘SOA stove pipes’’ that lead to inflexibil-
ity and integration difficulties. At the bare minimum, common best prac-
tices for messaging for SOAP-based services involve compliance related
to WS-I and WS-Security. Every organization is different and may sup-
port other standards.

Common vocabulary — As we have discussed throughout this book
(specifically, in Chapters 2, 3, and 6), it is a best practice for your services
to adopt a common vocabulary. Policies for using a common vocabulary
involve the reuse of existing organizational schemas, a data reference
model, or referencing an organizational ontology. The reuse of common
vocabularies is key to semantic interoperability.

Naming conventions — Certain fundamental standards, such as defin-
ing the organizational namespaces, are determined at this stage.

Error handling and auditing — Much of this involves your choice of
auditing tools, but common best practices involve the standardization
of SOAP fault message descriptions to include the IP address and the
Service Name where the fault occurred, as well as streaming audit logs
to a centralized location. Many times, the implementation of this pol-
icy involves the integration of run-time governance software. For more
information, see the ‘‘Exception handling and logging in enterprise solu-
tions’’ section in Chapter 9.

Run-time service policy authoring — A typical best practice involves
the establishment of how a service policy is described (usually in
WS-Policy) and stored in a central registry. If a project has chosen a pol-
icy authoring tool, this is stated at this point.

General best practices and blueprints — It is good at this stage to
establish a repository of best practices for the SOA project. They should

Chapter 12 ■ SOA Governance 479

include coding guidelines, design patterns, and typical use cases for
achieving repeatable solutions.

Service versioning — Enterprise policy should be written that dictates
how the versioning and deprecation process works, and the commu-
nication plan associated with changing versions. The implementation
of this policy should be addressed and may depend on the run-time
governance and management software tools that are available for man-
aging this process. A simple policy for service versioning may be: ‘‘After
deployment of a new version of a service, the earlier version of the ser-
vice can be supported and available for six months, and users of the
original service are notified. The corporate registry is updated with the
new version of the service.’’ For an in-depth look at service version-
ing, see the ‘‘Dealing with service changes’’ section in Chapter 9.

For most development organizations, many of these policies (especially
related to standards and best practices) were already in place before anyone
started using the word governance. Governance brings a little more formality
to the mix, because it involves making sure that all services are compliant. It
is important that adherence to these policies is checked before deploying new
services on the network (deploy-time governance). Many SOA governance
tools have automated compliance testing software that allows you to test
adherence to these policies.

One potential pitfall that you can run into during this process is ‘‘analysis
paralysis’’ on authoring specific policies. For example, Data Architects could
(and will if you let them) spend three years building a huge data model that
would be used in the common vocabulary of all services. As admirable as that
is, it is better to start small and build for ‘‘evolveability.’’ Remember that the
SOA governance life cycle is a continuing spiral, where policies can be refined
over time. Start small and simple so that projects can get started quickly
with some policies and guidance in place. Build for today, while planning for
incremental change tomorrow.

GOVERNANCE FROM DAY 3

We’ve seen many articles that espouse ‘‘Governance from Day 1.’’ Depending on
your organization, this may or may not be the right step for you. It all depends
on the maturity of the organization and the type of project that you’re doing.

If you have an established architecture or SOA program, and you don’t have
governance, that’s a big problem. Many times, however, the scenario with SOA
is that you’re trying to introduce architecture to an organization. This may
involve a change to processes, techniques, tools, technologies, or
organizational structure. To have a fighting chance, you need to remove every

(continued)

480 Part II ■ Designing SOA

GOVERNANCE FROM DAY 3 (continued)

unnecessary obstacle from the path of the transition. At this phase of the game,
architecture needs to demonstrate value, not add additional steps.

Let’s look at an SOA introduction as an example. First, you need to introduce
the concepts of service orientation and demonstrate where they are useful. This
is often done by implementing a single service as a proof point. But, at the
same time, you want to make sure that the service follows architectural
principles, patterns, standards, and so on. The problem is that you don’t have
those well articulated yet, nor have you really figured out what processes and
tools work for implementing services in the organization. One approach to this
dilemma is to assemble an initial service team, staffed from the architecture
group, to assist the project in implementing and deploying the service. The
team has several goals. First and foremost is to implement a service that meets
the requirements of the project and provides value to the business. The second
goal is to demonstrate how the architectural approach provided a better service
than you would have gotten if you had just followed the same old process. And
the third goal is to figure out what process, patterns, techniques, and standards
can work in this particular organization for implementing SOA within the
context of the architecture.

The next step of the initiative is to take what was learned on the first project
and expand that to a few more projects. The original service team can be
broken up and each member assigned to lead an additional project team, so
instead of a single service being implemented, four or five services can be
developed in the second round. Again, the primary goal is to implement
services that meet project requirements and provide value to the business. The
second goal is to implement services that can work together to start to
demonstrate the power of service composition, and also to find a project that
can reuse the initial service. This allows the team to learn how to accomplish
the important requirements of reuse and versioning. The third goal is to refine
the process and architecture so that it is well articulated and mature enough to
be rolled out to teams throughout the organization.

By this point, the SOA initiative should have delivered value by helping
projects to create services that meet their need and at the same time,
demonstrated some of the values of an SOA approach. It should have, a fairly
well defined architecture and process, and a good understanding of what can
and won’t work in this organization (every organization is different). There
should also be a small handful of services. Now is the time to flesh out
governance. If you think about it, you really don’t need much governance yet,
especially development governance, when you only have a few services, and
it’s too early to introduce it before you really understand the processes,
organization, and architecture.

Chapter 12 ■ SOA Governance 481

It’s true that you might have to go back and update some of the initial
services once you get the governance model in place, but that’s okay. That’s
what versioning is all about. But at least architecture will have gotten a
foothold and gained momentum before governance can be perceived to slow it
down. Remember that architecture is a delicate balance. It must specify enough
context and process to achieve important enterprise goals. If it specifies too
little, then the goals cannot be achieved. If it specifies too much, it will just be
ignored (and the goals won’t be achieved either). Getting it just right is a
constant challenge for architecture.

One point to remember: Do not confuse ‘‘Governance from Day 3’’ with the
procrastination slogan ‘‘Governance Tomorrow,’’ where you never end up
adding governance, and it only becomes important when you experience things
going wrong in an operational SOA. This is not what we are advocating — once
things go wrong, it is probably too late! Going operational without any
governance is just stupid. By the time you are operational, the cost of having to
retrofit governance once things go wrong is so much higher than if you started
from the beginning.

But, if you’re in a situation where you need to introduce architecture to the
organization, the Day 3 approach often works. Introduce architectural ideas
and apply them to a small selection of projects on Day 1. On Day 2, refine what
works, prove value, and expand your scope. If you are successful, you actually
get the chance to get to Day 3, where you can finally add governance. This can
be a successful model for new adopters of SOA.

Using the Service Repository
Implementation of the processes and procedures established by SOA gover-
nance is based on a service repository providing a foundation for collaboration
between people involved in service design and implementation. Such a ser-
vice repository integrates all of the sources of service related information,
including design artifacts, run-time topologies, information collected by your
service monitoring and management solution, and more. It provides a unified
representation of all of this information allowing all of the SOA stakeholders
to centrally access it, based on their job functions, as shown in Figure 12-17.

A service repository provides information required to support the complete
service life cycle starting from its inception, through design, implementation,
deployment, usage, and maintenance.

During service identification, business analysts identify the requirements
for new services. These requirements are evaluated against the functionality

482 Part II ■ Designing SOA

Service
Registry

Service Designer

<<uses>>

<<uses>> <<uses>>

<<uses>>

Service Developer

Other Users

Functional Architect

Infrastracture Specialist

Information about service
utilization, current
consumers, etc.

Information about service
endpoint addresses

Service
Monitoring and
Management

Service
Repository

<<uses>>

Figure 12-17 Basic service repository architecture

of the existing ones and the new services are inserted in the repository. As
these services get approved, appropriate run-time service policies are created
and stored in the repository as well. At this point, the service moves into
implementation. The development team becomes responsible for the creation
and maintenance of service implementation artifacts and storing them in the
repository. Once the implementation is completed and tested to adhere to
deploy-time governance rules, the service is deployed in production, and the
repository information is enhanced with the deployment information.

During normal service usage, a service’s utilization metrics, including infor-
mation about service consumers and their location is periodically imported into
the repository from service management and monitoring systems. Over time,
service usage defects and additional requirements are created and captured
in the repository. After appropriate approval, they are translated into service
enhancements or new service versions that are captured in the repository
as well.

Essential capabilities of the service repository include service cataloging
and discovery, validation, dependency management, service evolution and

Chapter 12 ■ SOA Governance 483

versioning, artifact publishing governance, and support for multiple artifact
types. The next sections address these capabilities.

Cataloging and Discovery

The main purpose of the service repository is to provide the ability to find
artifacts, based on the artifact-specific metadata. This metadata is typically
contained in the artifacts themselves. Consequently, the service repository
should automatically extract this metadata (based on the cataloging policies)
whenever new artifacts are published to the repository. An example of such
a policy can be the automatic generation of the following information during
service definition cataloging:

Links to the auxiliary documents imported by the service definition
document, such as XML schema documents, messaging semantics def-
initions, and so on

The XML namespaces used by the service contract documents

The name and description of the interfaces, and the XML types used by
the service contract

Links to the policies governing service invocation and execution

The implementation of cataloging requires defining the metadata for every
artifact placed in the repository. The metadata must be rich and flexible enough
to support different types of service artifacts stored in the repository, as well
as their evolution.

The collection of the metadata stored in the service repository encompasses
the information that business analysts and service designers can use to discover
existing services and decide on their applicability for a given solution. Thus,
the repository should provide discovery capabilities that are extensible and
can accommodate a wide range of domain-specific discovery queries. This
requirement typically translates into the repository’s ability to support multiple
business-related taxonomies.

Validation

Finding artifacts that are not valid does not do the enterprise any good. As the
point of access to service-related information, the service repository should
enforce organizational and domain-specific business rules, ensuring confor-
mance of these artifacts to the enterprise policies and standards. This ability to
enforce validation rules makes the repository a focal part of Service-Oriented
Architecture governance.

484 Part II ■ Designing SOA

Dependency Management

Service-related information typically includes multiple interrelated artifacts,
such as service interfaces, message schemas, implementation code, usage
profiles, and so on. Because the services themselves can be reused by other
services or business processes, understanding the relationships and depen-
dencies between services is quite important. As the number of services grows,
tracking all these dependencies and evaluating the impacts of changes becomes
a difficult task.

The service repository can simplify this task by supporting the management
of relationships between service artifacts. The repository should provide
standard relationship types. It should also allow the organization to extend
these types with additional ones based on their additional requirements.

Service Evolution and Versioning

Once created, services typically evolve over time. This evolution can be caused
by changes in the service functionality, semantic messaging, implementation,
and so on. Many of these changes require creation and deployment of a new
version of the service. In order to track all of this versioning information,
the service repository should provide versioning capabilities for all service
artifacts, regardless of their type.

Additionally, the service repository should provide change/versioning noti-
fication capabilities, allowing interested parties to be notified about upcoming
and current changes. This allows you to provide change information to all
interested parties such as the service consumer’s development teams. Such a
subscription mechanism should allow specifying the types of events that are
of interest, thus preventing the flooding of the subscriber with notifications.

Artifacts Publishing Governance

As the service repository becomes a centralized collection of all of the infor-
mation about service-related assets, it requires the same governance as any
other enterprise assets repository. This type of governance typically includes
permissions for publishing service-related artifacts and an artifacts-publishing
approval process.

Support for Multiple Artifact Types

One of the main challenges in the creation of a service repository is the great
diversity of service-related artifacts, which run the gamut of XML documents,

Chapter 12 ■ SOA Governance 485

service interfaces, messaging schemas, implementation code, UML diagrams,
and text documents. The use of a generic representation for the different
asset types can significantly simplify the repository implementation (see the
‘‘Reusable Asset Specification’’ sidebar.)

REUSABLE ASSET SPECIFICATION

OMG’s Reusable Assets Specification (RAS) covers the generalized
representation of different asset types. RAS defines an asset as a collection of
related artifacts that provide a solution to a problem.

An asset may represent a complete solution, including requirements, use
cases, design models, component specifications, components, test cases, test
drivers, and test data, or it may be just a set of use cases and their models and
the rules for extending the use cases.

A good asset has the following characteristics:

◆ It should be easy to use, customize, and apply to another context.

◆ It should possess the characteristics of good software engineering: tight
cohesion, loose coupling, and sufficient capabilities.

◆ Its purpose and intent should be easy to understand.

◆ It should be easy to conduct fit analysis on, to determine the asset’s match
to a particular context.

To achieve these goals, an asset needs to be more than just a collection of
run-time artifacts (e.g., code and components). It should also include artifacts
that explain goals, purpose, motivation, and assumptions. In many cases, these
are best captured as subsets of the original requirements and the vision-related
artifacts used in the creation of the asset’s run-time elements.

RAS describes assets using metadata captured in a form of XML manifest
provided as part of the asset’s packaging, as shown in the following RAS
Metadata Format figure. The manifest contains at least the asset specification,
including attributes such as name, version, and description. An asset
specification can be extended through classifications expressed as a set of
simple name and value descriptors and through the declaration of contexts
such as a specific development or deployment context. The asset’s payload is
composed of a collection of artifacts addressing a particular problem. The
usage section provides guidance on applying and customizing the asset. Finally,
the related assets’ section defines the asset’s relationships to other assets and
helps to create collections or families of assets to form larger-grained
solutions.

(continued)

486 Part II ■ Designing SOA

REUSABLE ASSET SPECIFICATION (continued)

Asset: Name, Description, State,
Version, Profile

Classification
Descriptors: Name/Value Pairs
Domain: Development, Test,

Productions, etc.

Solution
Artifacts: Documents, Diagrams, Test

Scripts, Code, etc.

Usage

Usage Instructions

Related Assets

Associations, Aggregations, Dependency

RAS Metadata Format

There are many types of assets, each represented by a different RAS
profile. The asset’s types are extensible to support customization for particular
needs. The asset customization is accomplished through profiles which
preserve the core structure of RAS but specify profile specific extensions.

Search engines and repositories can use the manifest file to discover the
contents of an asset, its classification, its related assets, and so on.

Developing and Registering Run-Time Policies
Whereas many enterprise policies are general policies that affect the design
process of services, run-time service policies always affect the run-time interac-
tion between the client and the service. Such policies are contracts for service
interaction that are exposed for discovery by service consumers, and include
rules for access, messaging security, and SLAs that are in place.

There are a few different languages that are used by SOA governance tools,
but the most well-supported standard is the Web Services Policy Framework
(WS-Policy), discussed in Chapter 11. Initially drafted in 2002, it has been

Chapter 12 ■ SOA Governance 487

a W3C recommendation since September 2007. WS-Policy was discussed
in the last chapter in the context of security (as WS-SecurityPolicy is a
child specification that uses WS-Policy). WS-Policy is an assertion framework
and a model for expressing policies that refer to constraints, capabilities, and
requirements for Web Services. WS-Policy is extensible and is currently heav-
ily used for expressing messaging security policies (WS-SecurityPolicy) and
expressing policies for reliable messaging (WS-ReliableMessagingPolicy).

The following code from the W3C WS-Policy Primer, shows an example
contract for a Web Service, utilizing WS-SecurityPolicy. The plain English
translation of this policy says ‘‘you need to either sign or encrypt the message
body for this service.’’ This is a simple example of a policy that complements
WSDL. Based on policies like these, a service client knows what is necessary
for interacting with the service.

<wsp:Policy

xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"

xmlns:wsp="http://www.w3.org/ns/ws-policy" >

<wsp:ExactlyOne>

<wsp:All>

<sp:SignedParts>

<sp:Body/>

</sp:SignedParts>

</wsp:All>

<wsp:All>

<sp:EncryptedParts>

<sp:Body/>

</sp:EncryptedParts>

</wsp:All>

</wsp:ExactlyOne>

</wsp:Policy>

Many tools in the SOA governance market support WS-Policy, but some
products use their own proprietary languages or extensions to WS-Policy to
bridge the current gap in WS-Policy support; this is usually the case for SLAs.
SLAs are typically authored by architects using SOA governance tools, and
the process is usually software vendor-specific. A best practice for develop-
ing SLAs involves a ‘‘spiral model,’’ where requirements are refined over
time after run-time metrics are analyzed. Typically, SLAs are not finalized at
the beginning of a project. Instead, an SOA management tool is used at the
beginning to collect and analyze performance statistics. Based on these metrics
collected at run-time, policies for SLAs can be refined over time, based on
understanding the use of services in real-time operations.

Finally, run-time service policies are published in a registry. In the SOA
design-time life cycle, the registry points to services and their supporting
artifacts (WSDL, run-time service policies) for consumption. Run-time service

488 Part II ■ Designing SOA

policies defining capabilities and constraints of services need to be discoverable
to be used. A centralized view of policy is necessary for actualizing the
publish-find-bind vision of services.

Run-Time Policy Enforcement and Adaptation
Once run-time service policies are authored and published, software needs
to be in place to enforce the service policy. This is done with a service’s
Policy Enforcement Point (PEP). In Chapter 11, we talked at length about
PEPs in the context of security and access control. In this chapter, we take
a much broader view of policy enforcement, which includes enforcing all of
the connection constraints used between service consumers and providers.
Much of the discussion of PEPs in Chapter 11 certainly does apply, as these
policies typically do involve security constraints, but it is also important to
understand that run-time service policies extend beyond security and include
reliability constraints and different options for connecting. There are a number
of governance software tools and hardware appliances providing the capa-
bility of policy enforcement, and of course it is also technically possible to
write your own.

Figure 12-18 shows a revised publish-find-bind triangle discussed earlier,
where the service’s container registers its artifacts with a corporate registry.
The service client searches for a service and retrieves all artifacts about the
service necessary for connecting. At this point, the client must understand
the bindings (WSDL) and must also understand the connection policies and
messaging security before binding. As a policy can be quite sophisticated, a
policy application point, working on behalf of the client, interprets the service’s
policy, dynamically conforms to policy, and works on behalf of the client
application to bind to the service. In practice, such an adaptation point can
be created in a few different ways: Some software vendors provide this
functionality as an agent or local component that works on behalf of the client,
some run-time governance tools use intermediary services to apply the policy
between clients and services, and some organizations choose to author their
own as client handlers which do policy lookups and dynamic adaptation.

N O T E The term ‘‘policy application point’’ has been used in Web Services
literature since 2004, first introduced in an article authored by Toufic Boubez,
Scott Morrison, and MaryAnn Hondo, ‘‘Policy — It’s More than Just Security — from
Just-In-Time Integration to Web Services,’’ and is also used in many white papers
from Layer7 technologies focusing on dynamic policy adaptation. It is important to
understand that this ‘‘policy application point’’ is not to be confused with XACML’s
Policy Administration Point (PAP) discussed in Chapter 11. We have therefore tried
to be careful to not refer to the ‘‘policy application point’’ as an acronym in this
section.

Chapter 12 ■ SOA Governance 489

Service
v 1.0

Service
v 1.01

Service
v 1.02

Service Policy Enforcement Point
(Enforces Service Policy)

SOA Management Engine

1. Publish
WSDL and Policy Registry

Client Policy Application Point
(Adapts to and Adheres to Service Policy)

Service
Client

2.
 Fi

nd
 S

er
vic

e
3.

 R
et

ur
ns

W

SD
L

an
d

Po
lic

y4. Bind to Service

Figure 12-18 Policy-enhanced publish-find-bind triangle

The concept of client-based dynamic policy adaptation is an innovative
concept that allows client applications to dynamically react and adapt to policy
changes without modifying code, and we briefly talked about this concept in
the ‘‘blueprints’’ section of Chapter 11. Take the simple example of a messaging
security change. If a popular service on your network changes its requirements
from WS-Security X.509 Certificate Profile messaging (WS-Security passing
X.509 tokens for identity) to WS-Security SAML token profile, there is no
reason that your client cannot dynamically adapt to that policy change.
Although many disagree on the nomenclature (some call it a Client PEP,
and some call it a Policy Application Point), the concept of having policy
negotiation and compliance handled by a local component is powerful. Such a
component realizes the vision of loose coupling, where such a simple change
no longer breaks the interaction between clients and services.

Figure 12-19 shows an example of dynamic policy adaptation using this
model. In the figure, a new policy of a service is registered, and a client,
conforming to the old policy, sends a message. The service’s PEP inspects the
message and returns a message to the client describing the noncompliance.
The next steps happen one of two ways: The service itself may return the

490 Part II ■ Designing SOA

Service
v 1.0

Service
v 1.01

Service
v 1.02

Service Policy Enforcement Point
(Enforces Policy)

SOA Management Engine

1. Publish NEW
WSDL and Policy Registry

Client Policy Application Point
(Adheres to and Adapts to Service Policy)

Service
Client

4.
 R

eq
ue

st
 P

ol
icy

5.
 R

et
ur

ns
 P

ol
icy

2. Bind
to Service

3. Policy
Exception

(New Policy)

6. Rebind
After
Policy

Adaptation

Figure 12-19 Dynamic policy adaptation using a policy application point

signed new policy in the response, or the client’s policy application point can
query the registry for the new policy, dynamically adapt to the new policy,
and resend the message. Because policy is meant to be descriptive enough,
clients can adapt to changing policies.

Utilizing a process that allows you to dynamically adapt to run-time service
policies provides the great benefit of flexibility. Most of the pain associated with
deployments revolves around change. If your policies and the enforcement of
your policy logic can be decoupled from your services and consumers, and if
you utilize a flexible architecture where run-time policies can be discovered
and dynamically adhered to, this makes SOA change management easier as
run-time policies inevitably change.

Summary

This chapter has provided an introduction to SOA governance, and it has
provided a comprehensive and practical guide for setting up these processes
in your organization and managing your SOA. Specifically, this chapter

Chapter 12 ■ SOA Governance 491

has provided insight into structuring your organization for governance;
establishing enterprise policies and procedures; defining the process for the
phases in a service life cycle; and using solutions that express, dynamically
adapt to, and enforce run-time service policies. Following the processes and
examples in this chapter as a model can provide you with a methodology that
you can use to effectively govern your enterprise.

P a r t

III
Case Studies

In This Part

Chapter 13: Case Study — Travel Insurance
Chapter 14: Case Study — Service-Based Integration in Insurance

C H A P T E R

13

Case Study — Travel Insurance
A journey of a thousand miles begins with a single step.

— Loa Tzu

In the previous chapters, we presented the general architecture of SOA
and an overall process for approaching SOA projects. We then presented a
chapter for each major step of the process, including business/domain analysis,
information modeling, service interface design, service implementation design,
service composition, security, and solution design. In this chapter, we provide
a case study that incorporates all of these aspects.

In the example, we cover:

Case study scenario

Conceptual architecture

Solution architecture

Security design

Business concerns

Analysis and design review

Business analysis

Process and service models

Use cases

Information model

Service interface design

Document design

Service implementation design

495

496 Part III ■ Case Studies

Travel Insurance

This chapter presents a fictitious scenario related to selling travel insurance as
part of an overall, travel-related, customer interaction. Although the scenario
is based on real-world travel industry practices, the services provided and
company names have been invented for the book.

The Scenario
Hollis, Inc. is a travel information and reservation provider, sometimes gener-
ically known in the travel business as a Global Distribution Service (GDS).
Hollis has relationships with major airlines, hotels, and the like on the supplier
(vendor) side, and with travel agencies, web sites and consolidators on the
sell (customer) side. Hollis wants to upgrade their systems to support selling
travel insurance and other trip add-ons in a uniform and consistent manner.
Travel insurance is an emerging and lucrative product. Hollis want to facilitate
the sale of add-on travel insurance as a natural part of the travel shopping
experience, and to get their cut of the transaction in the process. To maximize
profitability, Hollis wants to create the best volume and wholesale relation-
ships with the insurance companies and the most flexible retail relationship
with the agencies and travel web sites.

Hollis, and other GDSs, are essentially brokers between the buyer and seller
of travel products. However, the relationship is not so simple. The ultimate
end user, for example you or me, does not deal directly with Hollis but instead
goes through an intermediary agency or web site. There are two primary types
of end users, business travelers and leisure travelers. Figure 13-1 illustrates the
different relationships in the scenario.

Each intermediary channel (agency, web site, etc.) and each vendor can have
specific contractual relationships with Hollis. These relationships can specify
the type of insurance products that are offered, the insurance vendors, and the
pricing, commission, and markup. In the past, dedicated and inconsistent solu-
tions were implemented for selling insurance, depending on the relationship

Hollis
GDS

Business

Leisure

Vendor

Vendor

Vendor

Agencies

Web Sites

Custom

Figure 13-1 Hollis GDS insurance relationships

Chapter 13 ■ Case Study — Travel Insurance 497

between the buyer and seller and Hollis. The goal of the project is to replace
all the different one-off solutions with a unified and extensible solution.

The solution has to support the evolving SOA efforts and plans going on
at Hollis, utilize and augment the existing services, and fit into the overall
business architecture.

Conceptual Architecture
The first things to understand are the scope of the project and its interactions.
Figure 13-2 illustrates the high-level conceptual architecture for the project.
On the left of the figure are the different channels through which insurance
might be sold. These include:

Hollis.com — Hollis has its own travel web site.

Agencies — Travel agencies.

Web sites — Third-party web sites, such as Expedia, including confirma-
tion emails.

Branded GUIs — Private-branded GUIs provided by Hollis for specific
clients.

On the right side of the figure are a variety of insurance vendors. The
middle of the drawing shows the set of services that are needed to provide an
end-to-end transaction that includes insurance. The services are divided into
two main categories: Insurance Services and Common Services. The common
services show only the service groups that are needed. They are out of the scope
of this project. The insurance services show the insurance-specific functions as

Common Services

Front-End
Channels

Back-End
Vendors

Web Sites

Branded
GUIs

Insurance
Vendor 1

Agencies

Insurance
Vendor n

Insurance
Vendor 2

Foundation Services

TransformRules SecurityOrchestration Logging

Insurance
Services

Product

Shop

Price

Quote/Sell

Services

Hollis.com

Modify/
Cancel

Customer
Trip

Payment

Add-On

Content

Policy

Vendor Mgmt

Channel Mgmt

Rules

Figure 13-2 Conceptual architecture

498 Part III ■ Case Studies

either business or domain services. This set of services comprises the scope of
the project.

Insurance services include:

Shop — Supports shopping for different insurance products and options

Quote and Sell — Supports validating a request and providing a price
quote; also supports purchasing insurance based on the quote

Modify — Supports changing an insurance policy or trip, including can-
cellation

Content — Supports vendors providing insurance products and other
content

Policy — Supports insurance policy creation and modification with
vendors

Common services include:

Trip — The set of services associated with the creation and maintenance
of a trip; a trip is the primary entity in travel that all other transactions
interact with.

Add-on — Suggest and sell trip add-ons such as ground transportation,
tickets, events, and so on.

Customer — Manage customers and partners, including itineraries, his-
tories, and preferences.

Payment — Manage payments to and from channels and vendors,
including commission and markups.

Channel Management — Manage the relationship and rules for the dif-
ferent channels.

Vendor Management — Manage the relationships, rules, and contracts
for the different insurance vendors.

Business Concerns
Now that you have the high-level service-oriented vision, it is time to take
a look at the business issues. It is always a goal, and a challenge for IT
organizations, to build systems that ‘‘align with the business.’’ You’ve heard
this refrain so often that it is hard to consider it more than a cliché. But at the
same time, it is an important aspect of an SOA project. If the services don’t
align with the business, they don’t stand much of a chance of being usable
across a variety of applications.

More often than not, the business hasn’t really thought about how the
business is structured, what is important, or what the goals and strategy are.

Chapter 13 ■ Case Study — Travel Insurance 499

The bad news is that it makes it more difficult to align with. But the good
news is that it provides an opportunity for IT to engage the business in the
development of some business architecture.

Business Value Chain

One way to get started with the business is to create a business value chain as
described in Chapter 4. Figure 13-3 illustrates a sample extended value chain
for Hollis.

The value chain is divided into two main sets of activities. The activities
on the bottom are called ‘‘supporting activities.’’ These are things like Human
Resources and Finance that must be in place to keep the company operating,
but that do not add value to the products or services.

The top part of the diagram describes the ‘‘primary activities.’’ The main
business that Hollis is in is trip planning and reservations. This is composed
of five main value-adding activities: Shopping and Content; Inventory Man-
agement; Add-On Marketing and Sales; Pricing and Yield Optimization; and
Reservations. This is the primary activity of Hollis, as identified by the arrow
that connects the steps and ties them to the goals.

Channels, Vendors, and Customers need to be interacted with, managed,
and maintained across all of these steps in the value chain, so you list them
as primary activities as well. However, they are not part of the primary value
chain but rather are primary activities that span all of the individual activities
of the chain.

In addition, the primary activities consist of management functions, such as
process and project management, monitoring and business intelligence, billing

Billing and Payment

Project/Process Management

Customers

Inventory and Content

Shopping
and

Content

Inventory
Management

Add-On
Marketing
and Sales

Pricing
and Yield

Optimization Reservations

Primary
Activities

Core
Business
Process

Process
Management

Payment
Management

Product
Information

“…to provide premium
travel content and
reservation services”

Planning
and
Reservations

Goal

Supporting (Financial, HR, IT, . . .) Assets

HR Management
Financial Management

IT Management
Administration Management

Supporting
Activities

Support Asset
Info

Supporting
Processes

Vendors

Channels

Figure 13-3 Hollis extended value chain

500 Part III ■ Case Studies

and payments, and information management. These are all necessary to keep
the primary value chain going.

The value chain is useful for identifying the different functional areas of the
company and focusing attention on the most important. It is a good mechanism
for bringing out the goals and objectives. As well, it starts to identify areas of
services. For example, each different step or primary activity is likely to have
one or more service groups associated with it. This provides a first step in
creating a service inventory.

The primary business goal of Hollis is ‘‘to provide premium travel content
and reservation services.’’ Some secondary goals are shown in the following
list:

Be the primary travel content provider in the industry.

Provide integration with all types of travel content.

Support a customer-centric approach to travel reservations (to optimize
customer experience) and product marketing and sales, across multiple
channels where possible.

Provide the best price and inventory optimization and management on
behalf of partner providers.

Business Motivation

So, if the objective is to align your SOA solution with the business goals, how
do you go about doing that? First, you need to ask the right questions. For
SOA, you must answer the following questions:

What business are you in?

What are the goals and objectives of this particular business?

What outcomes are needed to achieve those goals?

What is the strategy for achieving them?

How will they be measured?

What capabilities and information are needed to achieve those out-
comes?

What processes, services, entities, and rules are needed to implement
those capabilities?

What existing applications provide basic capabilities and information?

How are the applications, processes, and so on aligned with the business
strategies and goals?

Business architecture helps you understand and answer these questions,
but how do you describe all the different concepts? And how do you tie the

Chapter 13 ■ Case Study — Travel Insurance 501

operational concepts (processes, services, etc.) back to the business goals and
establish traceability?

Let’s not forgot that although it is focused on the business, BA is still
architecture. It should not be any less precise or formal just because it is
about business concepts. Architecture needs to have two complementary
views, a conceptual (informal) view, usually as a Visio diagram, designed to
communicate concepts to a particular audience (such as those in Figures 13-2
and 13-3); and a formal view, usually as a formal model, designed to be a
precise specification of the architecture that can be implemented and validated.
You use the Business Motivation Model (BMM) for this.

A key expectation of business architecture is that it helps to align IT with
the business. The BMM provides a formal way to trace the tactics back to
goals and objectives and tie IT systems to the tactics that they implement. For
example, in an SOA, business processes and services are the IT constructs that
should implement tactics. So, you can create formal traceability between the
services (IT) and the business by modeling a formal relationship between
the service and the tactic it is intended to implement. Let’s apply these
concepts of business motivation and traceability to Hollis. Figure 13-4 shows
an extract of the Business Motivation Model that addresses this business
scenario.

Figure 13-4 expresses the main concepts of the BMM, specifically:

Vision — Be the travel (and associated) content provider of choice for
agents and end users.

<<Strategy>>

<<Tactic>>

<<Rule>>

<<Policy>>

<<Mission>>

implement

plan

specify

support

High-performance,
up-to-date,

comprehensive
travel content

Maximize
relationships

quantify

amplify

<<Vision>>

Travel content
provider of choice

<<Goal>>
Most comprehensive,

timely, and cost
effective content

<<Objective>>

Three new partnerships
by end of year

Product
optimization

Partner product
has priority

First product is from
partner

<<Business Service>>
Insurance
products

<<realize>>

operationalize

achieve

enforce

Figure 13-4 Hollis Business Motivation Model

502 Part III ■ Case Studies

Goals — Provide the best, most comprehensive, timely, and cost-
effective travel content (including insurance) in the industry. Remember
that goals are long term and more broadly defined.

Objectives — Create three new partnerships with insurance providers
by end of year. Objectives are specific, actionable, measurable, and time-
bound.

Mission — Provide high-performance, up-to-date, and comprehensive
travel related content to travel consumers.

Strategy — Maximize relationships with travel insurance providers.
Remember that strategy is broad and typically supports goals.

Tactics — Provide product optimization capabilities to partnered insur-
ance providers. Tactics are the more specific realization of strategy,
directed at achieving specific objectives.

Policies — Partnered insurance is given priority over other products.
Policies provide a set of directives.

Rules — The first product offered in any given request comes from a
partnered provider. Rules specify actions to achieve policies in support
of enforcing tactics.

The vision of being the travel content provider of choice for agents and end
users is operationalized by the mission, which is to provide high-performance,
up-to-date, and comprehensive content. The vision is amplified by the goal
of providing the best and most comprehensive insurance content, and the
goal is quantified by the objective of signing three new insurance partners
this year. The goal is supported by the strategy of maximizing relationships
with travel insurance providers. The objective is achieved by the tactic of
providing product optimization capabilities for partners as an enticement to
get new partners to sign. The strategy and tactics are governed by the policy
of providing priority to partners’ insurance products, which are enforced by
the rule of offering the partners’ products first.

Finally, the business service InsProduct realizes the tactic, providing trace-
ability from the service to the tactic that it implements and to the objective that
the tactic achieves.

Brief Review
Before you dive into the case study any further, let’s review the analysis and
design steps (from Chapter 4) that are followed in the example. These are:

Identify business goals, objectives and requirements.

Understand business context and interactions.

Chapter 13 ■ Case Study — Travel Insurance 503

Understand use cases and scenarios.

Put them into an overall context.

Design or align the information model.

Identify service interfaces.

Define documents.

Define service implementation.

Figure 13-5 provides a high-level overview of the process.
The left side of Figure 13-5 shows the business architecture aspects. Here,

you start with business strategy and goals as input to the business motivation
model and business value chain.

The BMM helps you formalize the business concepts and provides trace-
ability and alignment. The value chain helps you to identify the major areas of
business activities, and to prioritize them in terms of importance and value cre-
ation. For each of these major areas, you need to specify the next level of details.

You use the business context model (described next) to identify the major
parties and areas of business capability and the interactions between them.
The context model leads directly to identification of the information model
and specific business process models.

The steps are fairly straightforward. (The numbers in the following list
correspond to the numbers in Figure 13-5.) First, you establish the overall
context.

Business Architecture SOA Business Model

GoalsStrategy

Information

Business Process

Customer Quoting Underwriting

QuoteRequest

RiskQuote

UW Requtes

Domain
Services

Utility
Services

Foundation
Services

Service Model /Inventory

Information Model

Business
Services

Documents

Shared
Information

Quote

Business Service

DomainnDomain2Domain1

Utility1 Utilityn

Quote

Quote

Customer Usage & Quality

Project/Process Management

Network Research & Quality

Network Infrastructure Assets

Forecasting
Network/
Product
Planning

Capital
Equipment
Acquisition

Constructio
Network

Monitoring

Customer
Order

Service
Provisionin

Customer
Service

Customer
Billing

Real-time
Operations

“…to provide a premium
communications
network and
customer services”

telecom
network
customer
service

Goal

Supporting (Financial, HR, IT, …) Assets

HR Management
Financial Management

IT Management
Administration Management

1

2

4

3

6

5

Request
Quote

Underwrite
request

Create Risk
Profile

Create Quote

Insured Party
Name: String
PrimaryAddress: A
HomePhone:
WorkPhone
MobilePhone: Phone...
DoB: Date: Phone...
MaritalStatus: Marit..
Gender

DriverIdentification

State: String
LicenseNumber: String

CoInsured

Relationship: Relation...

Product

ProductIdentifier: Prod…
ProductType: Product:

InsuredItem

Vehicle
VIN: VIN
Make: String
Model: String
Year: String
Style: VehicleStyleCode

VehicleUsage

Usage: VehicleUsageCO...
YearlyMiles: Int
Business: Boolean

Coverage
Coverage: CoverageT...
Detail: CoverageDesc...
Name: String

Limit

LimitAmount: C...

Deductable

Deductable: A...

R11 1

R110

related by

R1

0..*

Product

0..*

0..*

R1

1

1..*

R1

1

1

R1

1

1. . *

R1

1

1
R1

1

1

R1

1

1

Primary
Driver

Customer

BillingAddres: Addre...
CustomerID: Custom...

<<Strategy>>

<<Tactic>>

<<Rule>>

<<Policy>>

<<Mission>>

implement

plan

specify

support

High-performance,
up-to-date,

comprehensive
travel content

Maximize
relationships

quantify

amplify

<<Vision>>

Travel content
provider of choice

<<Goal>>
Most comprehensive

timely, and cost
effective content

<<Objective>>

Three new partnerships
by end of year

Product
optimization

Partner product
have priority

First product is from
partner

<<Business Service>>
Insurance
products

<<realize>>

operationalize

achieve

enforce

Figure 13-5 Analysis and design process

504 Part III ■ Case Studies

1. The overall set of processes, as identified by the value chain and the set
of all context models provides the enterprise SOA with a context that can
be represented in the service inventory.

2. The enterprise information model describes the superset of information
that is needed to be shared between services. This becomes the basis for
the more detailed service information model.

Next, you refine context models into process models or scenarios.

3. Parties or functional areas in the context model become actors in the
business process models.

4. Messages in the context model become data that are passed into and out
of the business processes.

Finally, you focus on the specific business processes.

5. Activities in the business processes become operations on services. The
services fit within an overall service hierarchy, but at this level you are
primarily identifying business services.

6. Inputs and outputs of the business processes become documents that are
passed through service interfaces. The documents are derived from the
information model.

Figure 13-5 shows the relationship between the business and SOA in terms
of models and transformations. Figure 13-6 provides a more detailed view of
the service design and implementation aspects.

EVERYTHING IS CONNECTED

In an SOA solution, you are not designing an application or process from
scratch. Instead, you are starting with an existing context, based on your
business and information architectures, and building on top of it. You are
extending and reusing, adding value to what exists, not duplicating
responsibilities and adding inconsistencies.

But to make this actually work, you need to make sure that the architecture
and design processes support each other. The artifacts that you produce with
business architecture have to directly support the design of processes and
services. The mechanisms for business processes need to produce artifacts that
directly lead to the development of appropriate services. Any time that the
output of one step is not the input to the next step, you introduce an
opportunity for errors and disconnect. More importantly, however,
an additional step in the process encourages developers to ignore the outputs
of the previous step, creating extra work rather than providing value.

Chapter 13 ■ Case Study — Travel Insurance 505

Tying all of this together is traceability. Because all aspects share a common
root and are part of a continuous development process, you can follow one to
the other. Starting from your strategic outcomes, you can trace down to the
processes required to implement them, and then to the capabilities necessary
for those processes, and then to the services that implement those capabilities,
and all along to the business entities and information involved. Or, if you’re
going to make changes to a service, you can trace back up to see what
processes might be affected and what impact that may have on business
outcomes.

Solution ModelBusiness Model

Business Process Scenario

Shipper Estimator

Identify repair
and maintenance

needs

Calculate
Costs

Apply
Discount

Send Estimate

Repair Slip

Price

Estimate

Should be a
branch here to
loop through

list of vehicles

w
St

GetCustomer
Information

GetVehicle
Information

GetLocation
Information

GetDriver
Information

Calculate
Price

Options
CreatePrice

QuoteRequest
Customer

VehicalInfo

LocationInfo

DriverInformation

VIN

Address

Customer

Operation Procedure

Document Model/Marking

Agent

Business
Analyst

Data
Analyst

Agent

Agent

System
Analyst

Information Model

Request Quote

Purchase
Insurance

Change Policy

Cancel Policy

Customer

Agent

Use Case Model

Service Definition

Status

PolicyId

Policy

Policy
Change
Request

Policy
Create

Request

Create
Policy

Change
Policy

Cancel
Policy

Get Policy
Information

1

2

43

Insured Party

Name: String
PrimaryAddress: A
HomePhone:
WorkPhone
MobilePhone: Phone...
DoB: Date: Phone...
MaritalStatus: Marit..
Gender

DriverIdentification

State: String
LicenseNumber: String

Customer

BillingAddres: Addre...
CustomerID: Custom...

CoInsured

Relationship: Relation...

Product

ProductIdentifier: Prod…

ProductType: Product:

InsuredItem

Vehicle

VIN: VIN
Make: String
Model: String
Year: String
Style: VehicleStyleCode

VehicleUsage

Usage: VehicleUsageCO...
YearlyMiles: Int
Business: Boolean

Coverage

Coverage: CoverageT...
Detail: CoverageDesc...
Name: String

Limit

LimitAmount: C...

Deductable

Deductable: A...

R11 1

R110

related by

R1

0..*

Product

0..*

0..*

R1

1

1..*

R1

1

1

R1

1

1. . *

R1

1

1
R1

1

1

R1

1

1

Primary
Driver

Insured Party

Name: String
PrimaryAddress: A
HomePhone:
WorkPhone
MobilePhone: Phone...
DoB: Date: Phone...
MaritalStatus: Marit..
Gender

DriverIdentification

State: String
LicenseNumber: String

Customer

BillingAddres: Addre...
CustomerID: Custom...

CoInsured

Relationship: Relation...

Product

ProductIdentifier: Prod…

ProductType: Product:

InsuredItem

Vehicle

VIN: VIN
Make: String
Model: String
Year: String
Style: VehicleStyleCode

VehicleUsage

Usage: VehicleUsageCO...
YearlyMiles: Int
Business: Boolean

Coverage

Coverage: CoverageT...
Detail: CoverageDesc...
Name: String

Limit

LimitAmount: C...

Deductable

Deductable: A...

R11 1

R110

related by

R1

0..*

Product

0..*

0..*

R1

1

1..*

R1

1

1

R1

1

1. . *

R1

1

1
R1

1

1

R1

1

1

Primary
Driver

Figure 13-6 Service design process

In the service design model, you often start with use cases. There should be
a direct relationship between the use cases and the business strategy, goals,
and objectives. In fact, the use cases should describe the tactics used to meet
those objectives. Use cases are a well established and understood mechanism
for collecting and stating requirements and seem to be a good place to start.
One major goal of the use case diagrams is to provide a table of contents for the
project. Because you are specifically expecting to discover common behavior
and information across the use cases, it is important to have a view of the total
set. (Note that shared behavior and information translate directly to services.)

Next, you use scenario (activity) diagrams to specify the details of the use
cases in terms of activities, information flow, and control flow. The scenario

506 Part III ■ Case Studies

diagrams serve the same purpose as the Business Process Models. The main
difference is that they are the type of model supported by UML tools, which is
what you use for the design process.

The information model is derived from the overall enterprise model and
additional details from the use case models. Once the scenarios and use cases
are in place, you’re ready to start with service interface design. Again, the
numbers in the following list correspond to the numbers in Figure 13-6.

1. Activities in a scenario diagram become operations on a service inter-
face. You include the operations in a service interface diagram.

2. The information passed into and out of operations become documents.
The documents are defined by deriving the specific information for each
operation from the overall information model.

3. You also include the documents in the service diagram. This gives you
an overall view of the service from which you can evaluate the cohesion,
coupling, and complexity.

4. The implementation of each operation is described in procedure dia-
grams, including activity and class models.

Of course, this is an iterative process. You constantly discover new oper-
ations and new information as you work through the details of the service
design. In addition, you constantly need to refactor the models to accommo-
date shared behavior, shared information, and variability. This may require
you to go back and update use case scenarios, information models, service
inventory, and so on. It is best to keep things up-to-date as you go.

At the same time, you don’t want to get bogged down in analysis paralysis.
An agile approach to development is often best. You first want to get a big
picture view in place; for example, an overall service inventory or an overall
understanding of the service interface. But this should not take too long and
does not require a complete model. Then, you can completely implement
and test one operation at a time and one service at a time. As you build the
services, you continue to evolve the models and to refactor them based on
what you learned and new or changed requirements.

Now, let’s get back to the business analysis of the case study.

Business Analysis
The first step in the business analysis is to understand the overall business
interactions that take place regarding insurance. The conceptual architecture
has identified the main parties in this interaction, namely the channels, the
insurance and common services, and the vendors. Now, you want to under-
stand exactly what interactions these parties have and what information they
need to exchange. For this, you use a business context diagram, as illustrated in

Chapter 13 ■ Case Study — Travel Insurance 507

Create Relationship
Establish Contract

Provide Summary Plan Code

Request Product Descriptions
Provide Product Set

Update Product Table

Request Quote
Provide Quote

Purchase
Provide Policy

Cancel Request
Cancel Reponse

TCancel

Pay Commission

Request Trip Package

Provide Trip Package

Provide
Insurance

for
Package

Remove
Insurance

from
Package

Request
Package
Add-Ons

Provide
Package
Add-Ons

Request Package
Specific Insurance

Provide Quote for
Insurance

Select Products

Provide Package Quote

Purchase Insurance

Policy Number

Request to Cancel

Remove Insurance

Cancel Approval

Refund Insurance

Invoice for Commissions

Invoice for Insurance Sales

Provide
Billing

Information

Request
Billing

Information

Pay for Commissions

Pay for Insurance Sales

Cancel
Insurance

Cancel Insurance

Agency
Distribution (POS)

Sale Opportunity
GenerationTrip Packaging

Insurance Service

Billing

Insurance Provider

Request
Package
Specific

Insurance

Figure 13-7 Insurance business context diagram

Figure 13-7. The context diagram includes the major parties, represented by the
rounded rectangles, and the messages that they exchange, represented by
the arrows. You create the context diagram by talking with the business ana-
lysts and walking through all of the different interactions (use cases) required
for end-to-end insurance capabilities.

Central to this context diagram is insurance (the large rounded rectangle in
the middle). It interacts with the channels (on the left) and the vendors (on the
right). Initially it addresses only the agency channel. Other channels can be
added in the next iteration of the model. To complete the interaction, you also
need the trip creation systems, add-on sale opportunity functions, and billing
and payment systems.

The interactions between the channel and insurance support: shopping
for an insurance product, getting a quote for the trip insurance, purchasing
insurance and getting a policy, and modifying and canceling the policy.
Typically, each interaction involves a request and response message.

The interactions between the vendors and insurance support setting up a
relationship, providing prepackaged insurance products, providing dynamic
insurance products, purchasing a policy, and modifying the policy.

508 Part III ■ Case Studies

In addition, there are interactions between the channels, insurance service,
vendors, and payments to support billing, payments, and settlements.

Remember what a context model, such as the one in Figure 13-7, provides:

Overall interaction — The context model represents the overall interac-
tion of all aspects of the system related to insurance. It is purposely kept
at a high level and includes only business concepts, no technology. It is
a combination of all the different use cases. Any single use case repre-
sents one path through the overall diagram (a subset of functional areas
and messages). The context diagram is the first place that you can start to
identify commonality between use cases.

Shared information — The messages describe the information that must
be shared and exchanged between parties to complete the different
insurance-related transactions. It does not describe the details of any
information within the different functional areas, only the information
exchanged — that is, shared. Remember that this is exactly the informa-
tion that you need for your semantic information model and to design
your service interfaces.

THE FIRST RULES OF MODELING . . .

1. The first model is always wrong!

Modeling is an iterative activity. You constantly learn more about the prob-
lem as you progress. New details emerge and cause you to rethink and
change what you’ve done before, until you’ve iterated through the model
and reached a point of completeness and correctness.

2. It’s more important to be clear, than correct!

Because you know that the first few models won’t be complete or correct,
you need to facilitate the steps of getting them there. In order to do that,
you need to get feedback and input on the model. The most important thing
(initially) is that the model is easy to understand. That allows the experts to
tell you what about it is wrong.

3. Good enough is good enough!

You could easily iterate the model 10 or 20 times trying to get it perfect and
complete. In general, assume that the model can never be 100% complete.
It needs to be good enough for your purposes. If the purpose is to under-
stand the problem and identify requirements, you should usually be able to
get there in 3–5 iterations. The remaining details emerge during detailed
design. The one exception to this rule is if the model is intended to be exe-
cutable. In that case, being good enough for your purposes requires it to be
complete.

Chapter 13 ■ Case Study — Travel Insurance 509

Business Process Model
Now that you have an overall understanding of the interactions involved in
travel insurance, let’s start to look at the processes involved. For this, you use
a Business Process Model. Figure 13-8 illustrates a very high-level process for
insurance. The process involves two actors, the agency that is selling the trip
and the insurance services that provide the insurance capabilities.

At this level, the process is fairly straightforward.

The travel agent, working with their customer, creates a trip.

The agent shops for insurance products that are available for this trip. A
set of products and prices is returned.

The agent or customer picks the product he or she wants and sends a
request to purchase the insurance. The first step is to get a price quote.
The quote implies that the insurance request has been validated and
that the price is correct. The agent or customer then asks to purchase the
insurance.

The insurance is sold, and a policy number is returned.

This is added to the overall trip, and the sale is completed.

InsuranceService

Agency

Shop for
Insurance

Select
Insurance

Sell
Insurance

Complete
Sale

Create
Trip

Figure 13-8 High-level insurance process

Of course, it’s not really that simple. Each step of the process at this level
can be broken down into another level of detail. Let’s look at the activities
involved in shopping for an insurance product, as illustrated in Figure 13-9.
Note that this is not a ‘‘subprocess,’’ which is really no more than a notational
convenience supported by some tools. Often, a subprocess has no formal
interface and can’t be effectively reused. It is better to use separate processes
so that they can be reused and it is clear who is responsible for them.

Shopping for insurance involves the following activities:

Shop — The initial invocation of the insurance service. This is
responsible for orchestrating the rest of the activities.

Get Channel Preferences — Determine if the channel has a preferred
vendor or preferred product type and any other contractual require-
ments for selling insurance through this channel.

Calculate Trip Value — Determine the overall value of the trip, which
will influence the type of insurance available and the cost.

510 Part III ■ Case Studies

Insurance Service

Agency

Shop for
Insurance

Select
Insurance

Sell
Insurance

Complete
Sale

Create
Trip

Level 2 Process Detail

Insurance Service

Products

Pricing

Trip

Channel Management

Shop for
Insurance

Calculate Trip
Value

Determine
Best

Products

Get
Products

Calculate
Price

Create
Product

List

Get Channel
Preferences

Figure 13-9 Insurance shopping process

Determine Best Product — Compare preferences and determine the best
fit vendor or product if any.

Get Products — Get a product set and vendor price quotes. The prod-
ucts may be preconfigured, or dynamic depending on the capabilities of
the vendor.

Calculate Price — Create the quoted price of insurance by calculating
discounts, markups, commissions, and so on.

Create a List of Products — Format and return a list of the available
insurance products.

This is just one of many different use cases. You need to model the complete
set of business processes, at both the high level and the detail level for all of
the different scenarios involving insurance to identify all the opportunities for
shared function and information (services).

Service Conceptual Architecture
To further illustrate the service concepts, you can represent the insurance
service group somewhat differently. Figure 13-10 shows the insurance service
group at the top center. The services that support the channel are listed on the
left (next to the channels) and the services that support the vendors are shown

Chapter 13 ■ Case Study — Travel Insurance 511

Channels Vendors

Web Sites

Branded
GUIs

Insurance
Vendor 1

Agencies

Insurance
Vendor n

Insurance
Vendor 2

Insurance
Services

Product

Shop

Price

Quote/Sell

Hollis.com

Modify/
Cancel

Customer Trips

Payment

Content

Policy

Vendor Mgmt

Channel Mgmt

Rules

Profile

Preferences

Contracts

Payments Billing Settlements

Create View

Figure 13-10 Conceptual view of service interactions

on the right (near the vendors). The common services that are used in the
process are shown below insurance. To keep things simple for the example,
we have not shown all the different services or possible interactions.

Finally, to complete the illustration, you map the process view to the service
view. Figure 13-11 shows how the quoting process is implemented by the
different services:

Shop — This is the insurance service that we are demonstrating.

Get Channel Preferences — Uses the ChannelManagement Profile
Service.

Calculate Trip Value — Uses the Trip Value Service.

Determine Best Product — Uses the internal Rules Service (Domain
Service).

Get Products — Uses the internal Product Service (Domain Service).

Calculate Price of Products — Uses the internal Pricing Service (Domain
Service).

Create Product List — Done within the Shop Service itself.

The service decomposition can be continued. For example, each of the
previous services can be broken down into their internal steps and the services
that they call to perform them. We do not go into this level of detail now.

But you might ask, why bother with these drawings in the first place?
When doing an SOA project, there are several things that you potentially
need to accomplish. First, you need to collect and understand the business
requirements. The business context model is one tool that you use for that.
Next, you need to communicate what you’re doing to the business and to

512 Part III ■ Case Studies

Insurance
Services

Price

Shop

Rules

Quote/Sell

Content

Policy

Product

Insurance Service

Product

Pricing

Trips

Channel Management

Shop for
Insurance

Calculate
Trip Value

Determine
Best

Products

Get
Products

Calculate
Price

Create
Product

List

Get Channel
Preferences

Trips

Payments Settlements

Create View

Channel Mgmt Payment

Vendor Mgmt
Profile Contracts

Profile Billing

Customer

Modify

Figure 13-11 Service composition of shopping process

IT. In many cases, these groups are not familiar with SOA concepts and may
have difficulty understanding or imagining the solution. We find that these
conceptual diagrams are very effective in helping to communicate the concepts
and to get everyone on board and on the same page. Finally, you need to design
the services themselves. For that, you need a more formal approach.

Use Cases
You start the formal definition of your problem with use cases. Figure 13-12
shows the use cases involved in selecting and purchasing travel insurance.
Figure 13-13 shows the use cases associated with the insurance vendor. For
brevity we have not included all of the use cases associated with establishing
the different channels.

The use cases of interest for this example are:

Shop — Shop for insurance. This can either be associated with an entire
trip or specific insurance associated with the details of a trip.

Sell — Sell the insurance and return a policy number.

Chapter 13 ■ Case Study — Travel Insurance 513

View — View the policy, quote, payment, or trip.

Modify — Modify the policy, including canceling it, which may involve
some refund.

Agent

Web Site

OTA

Email

Select
Vendor

Shop

Sell

View

Modify

Cancel Refund

View Payment

View Quote

View Trip

View Policy

Shop by Trip

Shop by Item

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

Figure 13-12 Travel insurance use cases

Quote

Sell

Modify

Establish
Contract

Provide Content

Dynamic Product

Payment

Settlement

Vendor

Figure 13-13 Vendor use cases

514 Part III ■ Case Studies

Following the method described in Chapter 6, you create a detailed scenario
diagram for each use case. Figure 13-14 shows the initial scenario diagram for
the Shop by Trip use case. The scenario works as follows:

1. The customer or agent is purchasing a trip. They combine the set of
products, such as airfare, hotel, and auto into an overall trip. Each item
that is selected is added into the trip by calling the Trip
Service.

2. After the trip has been created, the customer or agent wants to get insur-
ance for the trip. They call the ShopByTrip operation of the Insurance
Service. (See Figure 13-14.)

3. ShopByTrip sells what is called ‘‘price banded’’ insurance. In other
words, the cost of the insurance is based on the total cost of the trip. So,
the insurance service must determine the cost. Although it is not imme-
diately obvious, this is much more complicated than you might imag-
ine. The Insurance Service does not want to have to understand all the

Shop by Trip

Agent Trip Service Insurance Service Product Service Price Service
Start

Select Trip Item Add Item to Trip

Request Insurance

Get Trip Value

Trip

Trip

Trip

Shop by Trip

Get Value of Trip

Value Value
Search Products

Determine Price

Get Product
Information

Product List

Product List Calculate Price

<<documents>>
Productlist [formatted]Product List (Formatted)

Create Product List

View Products

End

<<documents>>
Productlist [priced]

Figure 13-14 Initial ShopByTrip Scenario

Chapter 13 ■ Case Study — Travel Insurance 515

complexities of trip pricing. The knowledge lies with the Trip Service.
So, you design the interaction for insurance to call the trip service to
determine the price of the trip.

4. Now, you need to find insurance products that support that price range.
The price banded products are preconfigured. The Insurance Service
calls the Product Service to find acceptable products.

5. Almost done. You still have to determine the final price of each poten-
tial product. This is done based on relationships with the vendor and the
channel. Again, the main insurance service does not want to be respon-
sible for knowing these things. Instead, it calls the Pricing Service whose
purpose is to isolate this responsibility.

6. Finally, a list of potential products and their price is returned to the
agent requesting it.

The initial scenario diagram should walk through the use case descriptions
and describe the sequence of events that take place. First you create an initial
scenario for all of the related use cases (shop, sell, view, and modify). Then,
you look for commonality between them, factor that out, and add an additional
level of detail that emerges as you work through the use cases.

Working through the initial scenarios, reveals that some important infor-
mation is missing. You don’t know enough about the channel to calculate
the price. You also don’t know anything about the customer, missing the
opportunity to meet the business goal of improving customer experience. You
address these new found requirements in the detailed scenario diagram.

Note that Figure 13-14 uses object flows between actions to model the
exchange of documents between the processing steps. Furthermore, in
the case of the ProductList, a datastore node is introduced in order to
indicate that the state of the document has been changed by the action. These
are the requirements for proper UML2 design; however, they do add a bit
of complexity to the diagram. Figure 13-15 shows the detailed ShopByItem
scenario where we have taken some liberties with UML and labeled the control
flow with the information that is exchanged, for illustration purposes only, to
reduce clutter of an already busy diagram. The ShopByItem scenario works as
follows:

1. The scenario starts at the call to ShopByItem. We have removed the cus-
tomer actor from the diagram because it did not add anything.

2. The first step in the process is to determine the preferences (if any) of
the customer and to determine the preferences and requirements of the
channel. These activities can be performed either sequentially or in par-
allel as we have illustrated them.

516 Part III ■ Case Studies

Customer Profile

Channel Profile

Channel ID

Shop by Item

Shop by Item

Trip

Determine preferences

Insurance Service Customer Service Channel Management Product Service Price ServiceVendor

Process Trip

Get Products

Exists
Yes

No

Yes

Add to Insurance

Insurance Item List

Price Items

Describe Product

End

Start

Get Profile

Get Profile

Get Profile

Calculate Price

No

Yes
Trip Item

Trip ItemInsurance product

Insurance product

Insurable?

Exists? Get Profile

Customer
ID

Insurance Item List

Insurance Item List (priced)

Figure 13-15 Detailed ShopByItem scenario

3. Now, the insurance service processes the trip. A trip is a collection of
related trip items. For each item, such as airfare, hotel, and so on, the
service determines whether the item is subject to additional insurance.
If not, you move on to the next item in the trip. If it is, you go to the
next step.

N O T E There is an important design decision made in Step 3. We allowed the
insurance service to understand the format of a trip object and to be able to divide
it into individual items. Because a trip is a fundamental entity of the business, we
decided to allow this. The other alternative would have been to call the trip service
and have it return a list of items.

4. For each insurable item, you first go to the insurance product service to
see if there are any preconfigured products that support it. If not, you go
to the next step.

Chapter 13 ■ Case Study — Travel Insurance 517

5. If there are no preconfigured items, you make a call directly to the insur-
ance vendors and see if they want to offer insurance for a particular
item. For example, to a traveler who is going to Florida in June, they may
choose to offer special ‘‘Hurricane Insurance.’’

N O T E The insurance service is responsible for deciding if an item is insurable.
This is a tradeoff between performance and flexibility. Calling out to an insurance
vendor for every item in a trip has performance implications. We reduced the
number of calls by filtering out items that we know can’t be insured, such as rental
cars (which have a different kind of insurance) or theatre tickets. The tradeoff is
that when a new kind of insurance is added (or deleted), the insurance service
must be updated by the vendor. In an ideal world, only the insurance vendors
would know what products they offer at any given time, and the insurance service
would call them to get the latest product information. The vendors could add or
remove products at any time. But the cost of this flexibility is performance, which
is a critical requirement for the travel industry. Because insurance products don’t
change very often, we chose a less dynamic method that has less overhead.

6. If a product exists, you add it to your list of potential insurance items.

7. If a product exists, you need to apply the pricing policy to it. Again, you
call the Pricing Service to do this.

N O T E Here is another design decision. You could call the Pricing Service after
each product is discovered, and then add the priced items to the list. Instead, we
built the list of unpriced items and passed the entire list to the Pricing Service in a
single method call. This is a common pattern for reducing service invocation
overhead.

8. Finally, a list of potential products and their price is returned to the
agent or customer. They can select from the list of items and purchase
those that they are interested in.

Enterprise Context
Before you get much further in the design, you need to understand the
enterprise context that the SOA architecture fits into. This context influences
the design of your solution, services, and documents. First, you need to look
at the overall solution in order to define service policies. Then, you need to
look at the context in terms of service responsibilities and the information that
is passed through service interfaces.

518 Part III ■ Case Studies

Solutions Architecture

The insurance services are intended to support overall enterprise solutions.
Those solutions should conform to an application architecture style, such as the
n-tier style described in Chapter 9. Figure 13-16 illustrates how the insurance
services fit into the n-tier architecture.

The scope of Hollis is delineated by the solid lines in the figure. The
boundary between tiers is delineated by the dashed lines. So immediately, it
is clear that Hollis does not provide any of the user-tier presentations.

In the workspace tier, Hollis provides a variety of services to support inter-
action with the channels. Application services are used to manage channel
preferences and provide user/channel specific logic such as document pre-
processing. Distribution services are used to manage session state, perform
authentication and authorization, and so on. Utility services provide com-
mon discrete business functions, such as airport code lookup. The user and
workspace tiers are not the focus of this example.

On the right of the figure are the external insurance vendors. Connectivity
to these vendors is achieved through the use of integration services in the
resource tier. Again, these are not the focus of this example.

The common services and insurance services described in the conceptual
architectures (see Figures 13-2 and 13-10) and that are the focus of this example
reside in the enterprise tier. Recall that the enterprise tier is responsible

Vendor

Vendor

Vendor

Agency
Presentations

Web Sites

Custom
Presentations

User Workspace Enterprise Resource

Distribution
Service

Application
Service

Utility
Service

Integration
Service

Common Services

Customer
Trips

Payment

Add-On
Vendor Mgmt

Channel Mgmt

Foundation Services

Insurance Services

Product

Shop

Price

Content Policy

Quote/Sell Modify/
Cancel

Rules

Integration
Service

Integration
Service

Transform SecurityOrchestration LoggingRules

Figure 13-16 n-tier solution architecture

Chapter 13 ■ Case Study — Travel Insurance 519

for maintaining the integrity of enterprise resources, enforcing system level
business rules, and providing enterprise services to requestors. So far, the
example has addressed the business requirements for those services and shown
how they fit into an overall solution architecture. Part of that architecture is
the responsibility for enterprise integrity, so now let’s look at the design of
security for this example.

In Chapter 11, we discussed many of the security goals that may need to be
addressed in an SOA implementation — authentication, authorization, confi-
dentiality, integrity, and non-repudiation. The requirements of each security
goal dictate a solution or set of solutions that can be used and that affect the
overall SOA design for this case study.

Authentication

In looking at authentication, you need to look at those parties who interact
with the services in the scenario. For each, you need to ask whether or not you
need assurance of identity, and if so, you need to determine how to do this.
It is helpful to write out all of the parties of the scenario that may need to be
authenticated. In this case, you need to identify the agent using the services,
the channel used to connect to the services, the insurance companies with which
the services communicate, and the services themselves. Specifically:

The agent using the system needs to be identified by the channel to deter-
mine if the agent has permission to use the services, and it must be iden-
tified to the travel services (Hollis) for auditing purposes. Since the agent
uses a particular channel (web site or application) that communicates
with Hollis, the agent must authenticate him- or herself with the channel.

The channel used to communicate with Hollis does the authentication
of the agent, and since it needs to vouch for the identity of the agent, it
needs to have a trust relationship with Hollis. In this relationship, the
channel needs to provide a strong assurance of its own identity.

The insurance companies with which Hollis interacts need to prove their
identity in order for Hollis to trust the transactions.

The services themselves (Hollis) need to prove their identity, in order to
be trusted by the channel (and therefore the agent) and insurance com-
panies with which they communicate.

Figure 13-17 shows a very high-level overview of this process. Keep in
mind that there may be many different channels and many different insurance
companies in this process. In drawing this diagram, you see that an agent needs
to authenticate to a channel, which must vouch for the agent’s identity over
a mutually authenticated connection to Hollis. At the same time, transactions

520 Part III ■ Case Studies

Channels
Authenticates to

Agent

Services

Mutual
Authentication

Vouches for Agent

Insurance
Companies

Mutual
Authentication

Figure 13-17 Authentication scenarios

that take place between Hollis and the insurance companies must occur over
a mutually authenticated connection.

In summary, there are several points of authentication:

Between the agent and the channel — The agent must authenticate
to the channel in order to use Hollis’s travel services. For many busi-
ness domains, there may be common authentication and authorization
services that can be used by all applications involved in the interac-
tions (for example, a PKI, a central LDAP directory, and/or a Security
Token Service (STS) trusted to issue tokens that vouch for identities).
Here, it is assumed that this may be the case sometime in the future
for these services. In the current situation, however, there is no such
environment, and each channel’s authentication process is specific to
its capabilities and individual security requirements. Therefore, Hol-
lis does not have control over the authentication process between the
agent and the channel, so how this is implemented is up to the par-
ticular channel. Hollis however, must trust the channel to authenti-
cate its users, and as the channel maintains ownership of its authen-
tication process, it is responsible for any security violations. In such a
scenario, the owner of the services should dictate minimum authentica-
tion requirements for its channels. In this case, Hollis requires that the
minimum security requirements are username/password over SSL.

Between the channels and Hollis — The channel must authenticate
itself to Hollis and vouch for the identity of its agents. Because a ‘‘global
identity’’ of the agent is not used by the travel industry, the channel-
specific identity of the agent is sufficient. The services, therefore, must
trust the channel to correctly vouch for the agent’s identity, so a trust
relationship must be in place. The agent’s identity needs to be known
by Hollis for auditing purposes. The authentication mechanism also
depends on performance requirements. In looking at the requirements,
there is heavy traffic between the channels and Hollis’s services. There-
fore, it is advisable to establish long-lived SSL connections between the
two points, allowing session key reuse for performance reasons. There is
also money in the budget for using cryptographic accelerators, and this
also helps with performance. Therefore, Hollis specifies the following
security requirements:

Chapter 13 ■ Case Study — Travel Insurance 521

Mutual authentication — All transactions must occur over a mutu-
ally authenticated SSL connection. This means that the channel’s
digital certificate must be trusted by the services, and vice versa. In
order for a new channel to use the services, that channel must obtain
a digital certificate and enter a process to put a trust relationship in
place with the services.

Vouching for agent identity — Because Hollis does not have control
over the method of authentication performed by the channel, a stan-
dard such as the Security Assertion Markup Language (SAML) can
be used, as it is authentication technology ‘‘agnostic.’’ Hollis, there-
fore, specifies that all messaging between the channel and the ser-
vices must be WS-Security SAML Token Profile Messaging (with the
sender-vouches confirmation method), since the services have explicit
trust of the channels involved. The SAML token propagated conveys
authentication and identity information about the user. Although you
may think that using this style of messaging (for mere auditing pur-
poses in the services) is overkill, such a strategy can better accommo-
date change when the insurance industry eventually provides global
authentication and authorization services. At that time, the channels
will use those services to identify agents, and Hollis’s services will
perform authorization checks on the agent.

Between Hollis and the insurance companies — Hollis must prove its
own identity to the companies, and vice versa. In this case, you can use
the same methodology that is used between the channels and Hollis:
mutually authenticated SSL. All transactions must occur over a mutually
authenticated SSL connection. This means that the insurance company’s
digital certificate must be trusted by Hollis, and vice versa. In order for
a new insurance company partner to participate in this process, it must
obtain a digital certificate and enter a process to put a trust relationship
in place with Hollis.

Authorization

For authorization, you follow similar steps to flesh out the requirements.
For example, you may need to know if the parties in the scenario have
authorization requirements. Specifically, do agents, channels, or insurance
companies have special privileges or security roles that allow them to do
certain things? In such a scenario, if this were the case, Hollis would typically
have an entitlement service containing attributes of subjects, or a policy server
or database conveying access control policies.

Some state governments require agents to be licensed to sell insurance, so
only certain agents are permitted to do so. Agencies typically have supervisors

522 Part III ■ Case Studies

who can see everything, whereas individual agents are limited to their own
sets of transactions or customers. It may be possible, in the next generation of
services, to create a security infrastructure for both authentication and autho-
rization, providing security services that allow the travel industry (channels
and service providers) to have a common methodology for authentication and
authorization, checking global identity, and licenses. In the current scenario,
however, this is the responsibility of the channel authenticating the agents.
Because each channel controls its own authentication methodology, it also
must validate the licenses of agents, according to the state’s laws.

Confidentiality

Because sensitive information is transferred between all points in the scenario,
it is important that some of the information be encrypted. In looking at
the requirements, you can see that the travel business is very data- and
transaction-intensive, with requirements for high transaction rates. For this
reason, the solution needs to be very performance conscious, so whatever
would be adequate for security with minimal impact on performance is the
best choice.

Since you are using mutually authenticated SSL between all of the points
in this solution, this covers confidentiality, but it is important to note that
there is a performance impact. As mentioned in the authentication section,
you can establish long-lived SSL connections between the nodes in the solu-
tion, eliminating the need for repeated computationally expensive public key
cryptography for session key negotiation each time. In addition, the budget
allows you to invest in cryptographic accelerators that offload the performance
burden.

Integrity and Non-Repudiation

It is important that there be assurance of integrity (that data has not been altered
in transit). Luckily, this is accomplished by the SSL connections between the
channels, Hollis, and the insurance companies. In addition, it is important that
you have a high level of assurance of the transactions, binding the message
senders to the transaction requests and responses. As discussed in Chapter 11,
non-repudiation, using digital signatures, accomplishes this goal of providing
legal proof of such a binding.

In this case, receipts of purchase requests need to be long-lived and digitally
signed, providing legal proof that can be validated by a third party. This means
that the insurance companies must digitally sign the responses to requests,
providing such a proof. These signed documents may be stored for archive
by Hollis, providing legal proof, and can be returned in the responses of
messages to the channels. In doing so, WS-Security SOAP Messaging is used

Chapter 13 ■ Case Study — Travel Insurance 523

between Hollis and insurance companies, with the insurance companies using
XML Signature to digitally sign purchase receipts (signed using an enveloped
signature, where the purchase request, complete with its signature, can be
returned to the channel). WS-Security SOAP Messaging is used between the
channels and the services, so the passing of these receipts is supported.

The Big Security Picture

Figure 13-18 shows the overall security design:

Agents authenticate themselves to channels, using an authentication
method determined by the individual channel, and the channel con-
firms that the agent is authorized to perform a transaction with the travel
services.

Each channel must establish a trust relationship with Hollis in order
to participate in transactions — Hollis must explicitly trust the digi-
tal certificate of each channel, and each channel must explicitly trust
the digital certificate of Hollis. The channel initiates a request over a
mutually authenticated SSL connection, propagating the identity of the
travel agent in WS-Security SAML Token Profile messaging. Responses
from Hollis to the channel also use WS-Security SOAP Messaging.

Hollis audits the channel-specific agent identities that were propagated
in requests.

Each insurance company must establish a trust relationship with Hol-
lis in order to participate in transactions — Hollis must explicitly trust
the digital certificate of each company, and each company must explic-
itly trust the digital certificate of Hollis. Hollis initiates a request over a
mutually authenticated SSL connection, participating in messaging with

Channels
Authenticates to

Agent

Services

SSL
Mutual

Authentication

SSL
Mutual

Authentication

WS-Security SAML Token
Profile, sender-vouches
confirmation method

Insurance
CompaniesAuthentication

Method
determined
by individual channel

Minimum Requirement—
Username/Passward over SSL

WS-Security SOAP Messaging

WS-Security SOAP Messaging
with signed transactions
digitally signed with XML
Signature

WS-Security SOAP Messaging
with signed transactions
digitally signed with XML
Signature

Pre-Established Trust
Relationship

Pre-Established Trust
Relationship

Figure 13-18 Security design

524 Part III ■ Case Studies

the insurance companies. When request confirmation receipts are cre-
ated by the companies, they are digitally signed using XML Signature in
the WS-Security payload.

Digitally signed receipts are stored by Hollis and copies are sent back,
through the channels, to individual agents.

SSL connections between each point are configured to be long-lived con-
nections, to support SSL session key reuse for performance reasons, and
all cryptography is offloaded onto hardware appliances.

This security design meets the current requirements, but more importantly, it
accommodates future enhancements. With the success of this system, it is antic-
ipated that a formal authentication and authorization infrastructure will be
established for partner channels, providing authentication services for clients
and allowing Hollis to provide specific authorization at the transaction level.
The messaging security accommodates such a change by utilizing WS-Security
SOAP Messaging and by propagating identity using the WS-Security SAML
Token Profile. Any changes to such an infrastructure does not change the mes-
saging security, but instead may require modifications to Hollis’s interceptors
providing the access control.

The next part of the enterprise context that needs to be considered is the
overall set of services.

Service Inventory

The service inventory lays out the overall set of services and their relationships
to each other and the overall enterprise goals. You can think of the service
inventory as a ‘‘responsibility map’’ of service interfaces. It should clearly
describe the overall set of services and what responsibilities the different
service groups perform and don’t perform. Figure 13-19 shows a partial ser-
vice inventory for the travel insurance project.

The inventory helps you make decisions about what capabilities to include
within your service implementations and what capabilities you should expect
to be performed by another service. For example, the Trip service group shows
that it is the responsibility of the trip service to add items to a trip. So, although
you have allowed the users of trip information to understand some details of
a trip (such as what the individual items are as discussed previously), you do
not allow them to modify the trip. If you want to add items to a trip, you must
call the trip service to perform that task.

Figure 13-19 expands on the services initially identified in the conceptual
architecture and includes additional utility and foundation services. However,
it is not a complete list of all the services or service groups. For example, it does
not include sales tracking, marketing, compliance, or similar services. Also
remember that it is just a visualization of much more detailed information

Chapter 13 ■ Case Study — Travel Insurance 525

Common Services

Foundation Services

Insurance
Services

Product

Shop

Price

Quote/Sell

Modify

Customer

Party

AddMember

Cust. Info

Profile

Trips

Add to Trip

Price

Trip Maint.

Shop

CRUD

Payment

Billing

Payment

Settlement

Invoice

Add-On

Suggest

Sell

Modify

Product

Price
Content

Policy

Vendor Mgmt

Regulation

Content

Contract

Accounting

Channel Mgmt

Agency

ProfileContract

Accounting

Web

Commission

Rules

Utility Services

Phone Book Info. Mgmt.Area Currency PCC Code List

Authentication Management AuditSecurity Logging

Transform ScheduleOrchestration Rules Configuration

Figure 13-19 Service inventory

about each service, as contained in the service specification and stored in the
repository.

Entity Diagram

The other important part of enterprise context is the information that is
shared between services. Here, you describe the main entities involved in the
business domain and their relationships. The model keeps things at a high
level and generally does not describe the details of each individual entity. The
model is constructed through a combination of internal domain knowledge,
reverse engineering of existing systems, and industry standards. For example,
standards from the Open Travel Alliance (OTA) define specific schema for
information exchange between travel-related companies. Entities identified in
those schema are factored into the information model. Figure 13-20 shows a
segment of the information model for Hollis.

Primarily, the model shows the relationship between the Trip, Traveler, and
Insurance Policy. For example, you can see that an InsurancePolicy is related

526 Part III ■ Case Studies

Name
Address
Nationality
PassportNumber
Language
BirthDate
Occupation
MaritalStatus

Additional TravelerPrimary Traveler

Customer

Package

Traveler

Name
Description
Character
Cost

Trip

Type
DepositDate
Total

Payment

Date
PCC

Origin

Activities
Risks

Location

Date
PCC

Destination

Operator

Beneficiary

InsuranceSegment

InsuranceItem

Transportation

Segments

Lodging AddOns

Group

Code
InceptionDate
ExpirationDate
NumberInsured

InsurancePolicy

Figure 13-20 Entity model

to a Trip in that a Trip can have an Insurance Policy. It is not possible (at least
in this model) to have a Policy without a Trip.

The diagram shows that a Trip is composed of Trip Segments (or Items), and
that each segment can be insured with an associated Insurance Segment. Seg-
ments contain Transportation, Lodging, and other Add-Ons (theatre, golf, etc.).
Each segment has an Origin, including the origin Date, and a Destination,
including the Destination Date. It is important that these dates correspond to
the Inception and Expiration Dates of the insurance segment.

A Trip has a Primary Traveler and zero or more Additional Travelers.
Each traveler is related to the Customer, who ‘‘owns’’ the trip but may or
may not be the same. The Insurance Policy has a Beneficiary who has a
‘‘beneficiary’’ relationship to the Primary Traveler. Again, the Beneficiary may
be the same person, or someone (or entity) completely different. Although
it is not shown in this model, Travelers, Customers, and Beneficiaries are all
different types of ‘‘Parties,’’ based on an industry standard Party model for
describing individuals, companies, and roles.

Chapter 13 ■ Case Study — Travel Insurance 527

Information Model
The semantic information model provides the next level of detail after the
entity model. In a sense, it is a refinement of the entity model. The model
can often be broken up into many different diagrams designed to focus on
a specific aspect of the information, as described in Chapter 5. It is mainly a
matter of style, but we like to keep the diagrams to about one or two pages.
When they get much larger that that, it is difficult to comprehend all the
different aspects (much less display or print it).

MODEL, DIAGRAM, METADATA

What is the difference between a model, a diagram, and metadata?

◆ Model — A model is a representation of a system. There are many different
kinds of models, for example Business Models, Business Process Models,
and Service Design Models. Each model describes some specific aspect or
set of aspects about a system or subsystem.

■ A Conceptual Model is an informal visualization intended to communi-
cate concepts. It is often rendered as a Visio diagram. It is important as
a means of communication to a variety of audiences, but it is not meant
to (nor is it detailed or precise enough) specify an architecture, design, or
implementation. Figure 13-2 (Conceptual architecture) is such a model.

■ A Specification Model is a formal model that is intended to precisely
define the system to the point that it can unambiguously be imple-
mented. A formal model is based on precise semantics, such as BPMN or
UML. A formal model is created in a modeling tool, such as Rational Soft-
ware Modeler. Figures 13-12 through 13-15, and 13-20 through 13-29 are
examples of formal models.

◆ Diagram — A diagram is a specific visualization of some aspect of a model.
A model usually contains many diagrams. For example, all the formal dia-
grams shown in this chapter are part of the same model. The model for the
insurance project contains about 50 different diagrams. One thing you may
notice is that the same model elements (such as Trip) often occur in more
than one diagram. This does not mean that the model element occurs mul-
tiple times in the model. Instead, it points out the important distinction
between model diagrams and model metadata.

◆ Metadata — The model is a combination of its metadata and its diagrams.
Metadata describes the general modeling concepts, rules, and relationships
but not the specific contents of a particular model. Metadata is an external
description of a resource. Common usages for metadata include providing
the context of a data resource, managing its life cycle, and extending it to
new uses.

(continued)

528 Part III ■ Case Studies

MODEL, DIAGRAM, METADATA (continued)

The specific details about every model element are stored in a repository
according to the specification of the modeling language. For example, Trip is
stored as a UML Class and all the information that is associated with it. The
diagrams are structured visualizations of the model elements and their
metadata. The same model elements can appear in many different diagrams.
For example, the same service often appears in a class diagram, a collaboration
diagram, and a sequence diagram. This is because the modeling language has
established certain relationships between these types of diagrams and
maintains those relationships (and traceability) for us.

People often refer to conceptual drawings, formal diagrams, and formal
models all as ‘‘models.’’ Perhaps trying to correct this would be an exercise in
frustration. But it is important to know the difference and be able to distinguish
among them when it really matters.

You create the information model from several sources.

Domain information — Detailed information from industry domain
sources (such as OTA).

Use case descriptions — Often the use cases describe specific details
about information that is collected, passed, or displayed.

Use cases scenarios — As you create the use case scenarios, you specify
the information that is passed into and out of the service interfaces. All
data that is passed in a scenario needs to be contained in the information
model.

Service design — Finally, as you work out the details of the service
interfaces, and especially the implementations, you discover many
details about the information that is needed. You follow an iterative
process in development, adding detail to the information model as you
discover it.

Figure 13-21 is an example from the information model showing the details
of the insurance policy. Remember that at this level you are still describing
the information that is passed between services and described in the service
interfaces, that is, the semantic information model. You are not yet identifying
the details of the internal implementation information.

In this diagram, you can see that an InsurancePolicy has Benefits,
Exclusions, and a Premium. The Premium is associated with a Payment, which
also includes Tax and Commission and can be paid by CreditCard or Voucher.
The policy is associated with a ProductPlan (remember that it is an instance of
a type of Product). The policy is offered by a specific Vendor. The Vendor might

Chapter 13 ■ Case Study — Travel Insurance 529

Code
Code
Name NameAddress
PCC ID
IATA

ProductPlan

Agency

Number
Name
ExpiryDate
PIN
Address
AuthorizationCodee

CreditCard

Code
InceptionDate
ExpirationDate
NumberInsured

InsurancePolicy

Agent

Number
Hyperlink

Vendor

Type
Description

Exclusion
Amount
CurrencyType

Premium

Type
Rate
Amount
Locality

Tax

Type
Minimum
Maximum

Benefit

Number
Voucher

Amount
Commision

Preferred Vendor

Payment Type

Type
DepositData
Total

Payment

Figure 13-21 Insurance Policy Information model

be a PreferredVendor. The Vendor has an association with specific Agencies,
and the specific Policy was sold by a specific Agent.

Document Model

Because you need to establish and maintain a link between the information
model and the documents (which are based on it), it is sometimes useful to
create a diagram that lists all of the different documents. Although this is an
optional diagram, we find it useful for a number of reasons:

It helps you keep track of all the documents that you need to specify.

By looking at the overall set of documents, you can identify potentially
redundant documents that perhaps can be merged or simplified.

Figure 13-22 is an early document model for the travel insurance. Essentially,
as you work through the use case scenarios and identify information flow and
documents, you add those documents to the model. The left and center columns
are the documents identified in the two scenario diagrams (see Figures 13-14
and 13-15).

The right column lists an additional set of documents. These are documents
designed by the OTA industry standards organization. These essentially
represent constraints on the design of the interfaces because you are required
to use them for interaction with the insurance vendors and channels.

530 Part III ■ Case Studies

<<Document>>
Trip

<<Document>>
CustomerProfile

<<OTA Document>>
InsurancePlanSearchRQ

<<OTA Document>>
InsuranceQuoteRQ

<<OTA Document>>
InsuranceBookRQ

<<OTA Document>>
InsuranceQuoteRS

InsurancePlanSearchRS

<<Document>>
ChannelProfile

<<Document>>
ProductList

<<Document>>
ItemList

<<Document>>
InsuranceItem

<<Document>>
InsuranceProduct

<<OTA Document>>
InsuranceBookRS

Figure 13-22 Document model

Service Interface Design
You now need to define the service interface by assigning the actions within
use case scenarios to service operations. You do this by walking through all
of the scenarios. Each action in a scenario either becomes a manual activity,
an operation on a business service, or an internal step within an operation
implementation (which can most likely be delegated to a domain, utility, or
integration service).

This results in two different diagrams. The first is a diagram of the insurance
service group, as shown in Figure 13-23. Again, this is a convenience diagram
(optional) that provides an overall view (table of contents) of the set of
insurance services. Notice that the services are using the naming convention
of Group-nameService-name. We keep the names simple and do not bother to
call them services because the stereotype already identifies them as that, and
the context that they are used in doesn’t require it.

Then, for each service in the group, you need to define the service interface,
specifically the operations that make up the interface, the parameters (docu-
ments) passed through them, and the exceptions that are returned. You do this
with a service interface diagram (Class diagram), as shown in Figure 13-24.

Chapter 13 ■ Case Study — Travel Insurance 531

<<service>>
InsShop

<<service>>
InsView

<<service>>
InsPricing

<<service>>
InsPolicy

<<service>>
InsRule

<<service>>
InsProduct

<<service>>
InsQuoteSell

<<service>>
InsContent

<<service>>
InsModifySvc

Insurance Service Group

Figure 13-23 Insurance Service Group

<<Document>>
Trip

<<OTA Document>>
InsurancePlanSearchRQ

<<Operation>>
 ShopByTrip

<<Document>>
 ProductList

SystemExceptions

<<Document>>
 ItemList

<<Operation>>
 ShopByItem

<<Operation>>
 OTAInsPlanSearch

<<OTADocument>>
InsurancePlanSearchRS

<<Document>>
 PriceOutofRange

<<exception>>
 NoAvailableProducts

OTAExceptions

Figure 13-24 Service interface diagram

The figure is basically a graphical representation of the service interface, with
inputs on the left, operations in the center left, outputs in the center right,
and exceptions on the right. It identifies three operations on the Shopping
Service as required by your use case scenarios earlier: the first two, ShopByTrip
and ShopByItem both take a Trip as the input document and return either a
ProductList or an ItemList. In addition, one of the use cases is the support
of an OTA-based channel. In this case, you need to support the standard
OTA interface for insurance shopping (even though it does not support much
of the new functionality yet). So, the diagram includes a third operation for
OTAInsurancePlanSearch, with its associated documents.

The service interface diagram gives you a graphical way to evaluate the
complexity of the service operation, and the cohesion. For example, it is normal
to see multiple operations that support the same input and/or outputs.

532 Part III ■ Case Studies

Notice that in this example, all of the inputs and outputs are documents. You
first define the documents in the document model (refer to Figure 13-22) and
then include them in the interface definition model. If you discover an interface
that doesn’t have a document defined for it, you don’t add the document to
the interface diagram. Instead, you add it to the document model, and then
include it in the interface diagram. This keeps your model organized and
prevents you from duplicating or forgetting about documents.

In the design of the service interface, we made a few design decisions.
Should there be one service that contains all of the Shop, Quote, Sell, and
Modify operations, or should each of these be a separate interface? We
decided on separate interfaces for a few reasons. First, the interface started to
get crowded when we added all the different variations of these operations
to it. We find between four and seven is a pretty good rule of thumb for the
number of operations on a service interface. Second, we wanted to align
the service capabilities with the OTA request and reply messages.

Service Interactions

There is one more thing to check about your service design. You need to
understand the dependencies (coupling) between this and other services. For
this, you use a service interaction diagram, as shown in Figure 13-25.

This shows the different services, both those within the Insurance Service
Group and the common services that are required to implement the Shop,
Quote, Sell, and Modify scenarios. We look at these scenarios together because
they are all related.

What you’re looking for is complexity. You want to keep the service
interaction simple and certain kinds of services, particularly entity services,
independent. The services in Figure 13-25 have a fairly low level of complexity
and a minimum of unnecessary dependencies, so we are happy with the
interface design and can now move on to the document design.

<<service>>
InsRule

<<service>>
InsProduct

<<service>>
InsShop

<<service>>
Customer

<<service>>
Trip

<<service>>
ChannelMgmt

<<service>>
InsQuoteSell

<<service>>
InsModify

<<service>>
VendorMgmt

<<service>>
PaymentMgmt

<<service>>
InsPricing

Figure 13-25 Service interaction diagram

Chapter 13 ■ Case Study — Travel Insurance 533

Document Design

It is critical that the documents be defined based on the semantic informa-
tion model. The best way to do this is to derive the documents definitions
directly from the semantic information model. Keep in mind that the infor-
mation exchanged between consumers and providers should be limited to the
minimum required. This keeps the interchanges short and avoids exposing
information that is not needed or should not be known.

You use a marking technique to illustrate how this is done. Figure 13-26
shows a simplified subset of the insurance policy information model that is
part of the InsurancePolicy document.

In this case, the InsurancePolicy is the root of the document (identified
by the double box surrounding it), and it contains three elements: Benefits,
Exclusions, and Premiums. It also contains a reference to another major entity,
the Vendor. During the layout of the document schema, a design decision was
made. You could have passed the vendor information either completely (by
value), or as an identifier (by reference). We choose to pass by reference to
both reduce the amount of data that needs to be passed, and to reduce the
coupling needed around vendor information. Note that this is not the same
as passing an object reference in object-oriented systems. In this case, the ID
can be used by the recipient to retrieve information about the vendor from

Insurance Policy Document

Code
Code
Name NameAddress
PCC ID
IATA

ProductPlan
Agency

Number
Name
ExpiryDate
PIN
Address
AuthorizationCode

CreditCard

Code
InceptionDate
ExpirationDate
NumberInsured
TripCancelDate

InsurancePolicy

Agent

Number
Hyperlink

Vendor

Type
Description

Exclusion
Amount
CurrencyType

Premium

Type
DepositData
Total

Payment

Type
Rate
Amount
Locality

Tax

Type
Minimum
Maximum

Benefit

Number
Voucher

Amount
Commission

Preferred Vendor

Figure 13-26 Insurance policy document

534 Part III ■ Case Studies

a vendor management service. There are no operations supported by the ID,
nor is there a transient state maintained by the system in association with it.

Service Implementation Design
Finally, you are ready to design the service implementation. The implementa-
tion design describes the details of each service operation. The implementation
should follow the layered architecture defined in Chapter 7. Often, as is the
case here, the implementation of a service operation requires the use of other
services. This should be described in the service specification created during
interface design.

Service Specification

The service specification may consist of a text document, such as the example
illustrated in Chapter 6 (but not shown here), which is generally intended for
the service consumer, and a formal model, as shown in Figure 13-27, which is
intended for the service implementer. The service specification is described in
terms of a UML collaboration for each service operation.

The model contains two parts. The main top box (labeled ShopByTrip) is
the collaboration. It indicates that the InsShop service implements the InsShop
interface (top-left component). In addition, it uses the Trip, InsProduct, and
InsPrice interfaces. These two different types of interfaces are known as
provided interfaces and required interfaces. In other words, the InsShop

service provides the InsShop interface and ShopByTrip operation, and requires
(uses) the Trip, InsProduct, and InsPrice interfaces. You may not know how
those interfaces are implemented (nor should you care), so they are illustrated
as components that realize the required interface roles.

Of course, there is more to it than that. There is a specific protocol associated
with the interaction of these interfaces within the collaboration. The protocol is
specified by an activity diagram (the bottom half of Figure 13-27). The diagram
illustrates the sequence of the interactions, the operations that InsShop calls
on each of the other services, and the input and output provided by each (note
that the output names have been suppressed, but they are part of the model
data). The activity diagram is associated with the collaboration. This is indi-
cated by the circle with the + inside of it on the bottom of the collaboration
box, and the line that attaches the collaboration to the activity diagram. This
notation indicates that the activity is an ‘‘owned behavior’’ of the collaboration.

Note also that we have simplified the collaboration and implementation
design to be able to fit it onto a reasonable sized drawing. The customer
profile and channel management services have been excluded for illustration
purposes.

Chapter 13 ■ Case Study — Travel Insurance 535

: insshop : trip : insproduct

ShopByTrip

insshop : InsShop

insshop : InsShop

: insprice

shopByTrip

trip Get trip value

Determine price

Search for products

Create product list

getValue

<<target>>
:Trip

trip

trip

product

<<target>>
:InsProduct

getProductinfo

<<target>>
:InsPrice

calculatePrice

trip : Trip

trip : Trip

insproduct : InsProduct

insproduct : InsProduct

inspricing : InsPrice

inspricing : InsPrice

Figure 13-27 Service specification

Implementation Layers

The implementation design should follow the layered approach containing
the interface layer, business logic layer, and resource access layer. Within
each layer, components are used as the basic unit of software construction.

536 Part III ■ Case Studies

<<component>>
Authorization

<<component>>
SyntacticValidation

authorize () validate ()

<<component>>
shopByTripMain

<<component>>
Logging

<<component>>
Trip

<<component>>
Product

<<interface>>
InsShop

InsShop
getTripValue () createList ()

getPrice ()
getProducts ()shopByTrip ()

shopByTrip ()

logDebug ()
logWarning ()
logError ()
logProductList ()

<I>

<I>

Interface Layer

Business Layer

Resource Access Layer

Figure 13-28 Implementation components

Figure 13-28 shows a diagram that lays out all of the implementation
components for the ShopByTrip operation. We have superimposed the imple-
mentation architecture layers on top of the UML.

The interface layer contains components for authorization and syntactic
validation. The business layer contains the main ShopByTrip component as
well as components that encapsulate the interaction with other services. The
Trip component is used to make a call to the Trip service. The Product

component is used to make calls to the InsProduct service to get the product
list, and the InsPrice service to calculate the price. It also performs the internal
function of formatting the priced productList for return. Finally, the resource
layer contains the logging component that is used to log error information
and to log a record of productLists that are returned by the service. No data
resources are used directly by this service operation.

Operation Procedure

The final step (for this operation at least) is to define the control and data
flow of the operation implementation. Again, an activity diagram is used
for this purpose, as shown in Figure 13-29. The diagram is broken into
three partitions to illustrate the layered architecture approach. These are for
illustration purposes and do not represent collaboration roles.

The operation starts in the interface layer when the ShopByTrip call is
accepted. The first step is to verify that the user is authorized to perform this

Chapter 13 ■ Case Study — Travel Insurance 537

ShopByTrip Operation

InterfaceLayer LogicLayer ResourceLayer

ShopByTrip

ShopByTrip

authorize

getTripValue

getProducts

logProductsListcreateList

getPricevalidate

SendReply

<<result>>
authorization

<<result>>
trip [validated]

<<result>>
trip [valued]

<<result>>
productList [initial]

<<result>>
productList [priced]

<<result>>
productList [formatted]

Figure 13-29 ShopByTrip operation procedure

operation according to the run-time service policy as specified in the security
design and service specification. Notice that the authorization component
encapsulates the security logic to allow for future (expected) changes. If
authorized, then syntactic validation is made to ensure that the request is
well formed and that all parameters conform to schema definitions. The result
of this operation is a validated Trip document, which is then passed as the
input to the getTripValue action in the logic layer. Notice that the names
of the action steps in the activity diagram conform exactly to the names of
the operations of the implementation components. This is not an accident. The
actions steps are created from the components, not independently of them,
and the actions are implemented by the operations of the components.

The output of this action is a valued Trip document which is them passed
(via an object flow) to the input of the next action getProducts, which
corresponds to the getProducts operation of the Product implementation
component. The flow continues through the getPrice action and on to the
createList action, which is the last step in the logic layer. Here, two steps are
performed in parallel. The formatted productList is passed to the interface

538 Part III ■ Case Studies

layer for return to the requestor (via the SendReply reply action). At the same
time, the productList is passed on to the logging component in the resource
layer for auditing purposes.

What remains is to define the operations’ procedures for the rest of the
InsShop service interface, and then to define the interface, documents, and
implementation for the rest of the insurance services. We leave that for
another day.

Summary

In this chapter, you looked at an actual service scenario from the travel industry
to illustrate the design concepts of the book. First, you start with the business.
In this case, we used several different business architecture artifacts, including
a value chain, a context diagram, and a business motivation model.

Next, you refine the business model into business process scenarios. You
looked at several related scenarios to maximize the opportunity for shared
behavior and information, which are first-class candidates for services.

But, services don’t exist in isolation. They are part of an overall solution and
must be seen within the larger enterprise context of all services. You use an
established architectural style, such as n-tier, to describe the overall solution
and to position the insurance services where they belong in the enterprise
tier. Then, you analyze the interaction between the parties to determine
the security implementation and policies for the application. Next, you use the
service inventory as a way to map responsibilities of services and service
groups and get an overall picture of all the enterprise services and their
relationships. You also use the common semantic information model as a way
to formally define the common information shared across these services.

Then you are ready to define individual service interfaces. Here, you rely on
use cases to express the requirements, and elaborate the use cases in scenarios.
First, for each use case, you create a high-level scenario, and in the process
of looking at all the use cases together, you identify additional requirements,
and common behavior and information. You factor this new information into
a more detailed set of scenarios.

Each of the actions in the detailed scenarios is implemented as an operation
on a service. The information flowing into and out of the actions is implemented
as documents. You set about organizing the operations and documents.
You combine operations into interfaces in accordance with cohesion and
coupling principles. Documents are the parameters passed into or out of those
interfaces.

Chapter 13 ■ Case Study — Travel Insurance 539

Finally, you provide the design for the implementation of each service oper-
ation in a technology-independent fashion that conforms to a three-layered
implementation architecture. The specification is created in terms of a collab-
oration showing provided and required interfaces and protocols, a diagram
showing the main implementation components, and activity diagrams describ-
ing the control and data flow of each operation. This should be clear, complete,
and specific enough to be the software specification given to the development
organization that is responsible for implementing the service. Now that’s
another book in itself.

C H A P T E R

14
Case Study — Service-Based

Integration in Insurance
Start where you are. Use what you have. Do what you can.

— Arthur Ashe

SOA has defined a new approach to the design and implementation of
enterprise IT systems. But using SOA does not, by any stretch of the imagi-
nation, mean that you should abandon the existing applications that are the
backbone of today’s enterprises or the best integration approaches developed
over the last 15–20 years. Furthermore, SOA does not mean automatically and
blindly turning everything into a service. It means defining and implementing
enterprise business services to support the primary enterprise capabilities.
When it comes to implementing these services using existing enterprise appli-
cations, integration approaches can vary widely. There is no hard and fast rule
that all integration has to be implemented as services. On the contrary, each
specific integration scenario has to be analyzed carefully and an appropriate
implementation chosen, based on the requirements of the higher-level business
services.

This chapter provides an example that demonstrates the implementation of
service-based integration in the insurance industry. It illustrates the approaches
defined in Chapter 10 as applied to a fictitious insurance company — ACME
Insurance — and its current IT applications. Then, it illustrates the implemen-
tation of enterprise services, focusing on the integration architecture aspects
of the implementation. Although the example in this chapter is fictitious, it is
based on real projects done by the authors.

541

542 Part III ■ Case Studies

The chapter and example are structured as follows:

An overview of ACME’s existing IT systems

A description of the new enterprise business service interfaces

For each interface, an examination of design approaches for mapping
existing capabilities to new interface operations

A summary of the different integration approaches required to support
these mappings

For each integration approach we provide:

Analysis of the integration approach and discussion of pros and cons

Details of how ACME implemented the particular approach

Additional enterprise concerns of location and the registry, security,
exception handling, and monitoring

ACME Insurance

ACME Insurance is an insurance company specializing in two lines-of-
business: commercial auto and commercial property. ACME deals with all
the issues associated with the full insurance life cycle, including rating, under-
writing, and servicing insurance policies. All of these capabilities currently
work fine and are implemented on existing but separate systems. Unfortu-
nately, it is difficult to share the capabilities across products, to add new
products, or to take advantage of marketing and sales opportunities across
lines-of-business. In order to improve flexibility and stay competitive, ACME
must improve the integration of and synergy between these legacy applications
and enable new, cross-line-of-business, and cross-product business processes.
To accomplish this, an SOA approach has been chosen. The strategy is to
expose existing business capabilities from the legacy systems as new business
services that can then be used in the business processes.

ACME’s architects and business analysts have been hard at work defining
the company’s goals, objectives, and outcomes and then designing business
processes to meet them. This has been taken to the next level of detail,
the specification of new business services (based on the enterprise analysis
and decomposition) that can support the requirements of the current and
future business processes. Now comes the tricky part: how to map the new
enterprise business service interfaces to the capabilities of the existing systems
and how to provide the technical connections to those systems. Answering
these questions is where we begin our case study.

To keep the complexity under control in the example, we are limiting the
scope and focus of the solution to a handful of enterprise underwriting services

Chapter 14 ■ Case Study — Service-Based Integration in Insurance 543

designed by ACME personnel and the existing applications relevant for those
service implementations. We also leave out details that, while necessary from
the insurance company’s perspective, would not add value to our discussion.

ACME’s existing applications and databases relevant to our example are
shown in Figure 14-1.

The implementation and functionality of these applications and databases
are described here:

Commercial Auto Policy and Products Administration is a mainframe
application built by ACME insurance in-house. This application sup-
ports all the functionality required for the development of new
commercial auto insurance products and the policy administration for
these products, including customer and policy information gathering,
policy rating integration, and so on. This application was originally cre-
ated as a ‘‘green screen’’ application but was later modified to provide
Customer Information Control System (CICS) transaction interfaces to
the majority of its functions.

Commercial Property Policy and Products Administration is also a main-
frame application acquired from a vendor and modified by ACME
Insurance personnel. Its functionality is similar to the functionality of
the Commercial Auto Policy and Products Administration application,
but it is used for a different aspect of the business. This application also
exposes its functionality in the form of CICS transactions.

Commercial
Auto Policy

and Products
Administration

(CICS,
mainframe)

Commercial

Property Policy
and Products

Administration (CICS,
mainframe)

Motor Vehicle
Report (J2EE)

Commercial
Auto Rating

(VB6,
Microsoft)

Commercial
Property

Rating (CICS,
mainframe)

Centrus
(stand-alone

Java)

ISO Public Protection
Codes Database

Insurance to Value
Amount for a

Location Calculator
(VB6, Microsoft)

 Generate
Policy Notice

(VB6,
Microsoft)

Policy Financials
Database

Document
Management

System
(FileNet)

Figure 14-1 ACME’s applications and databases

544 Part III ■ Case Studies

Commercial Property Rating and Commercial Auto Rating are two core
ACME applications, both developed in-house. They allow employees to
determine the risk associated with issuing an insurance policy. They
are based on the rules and risk factors associated with the particular
line-of-business and defined for a specific insurance product. The com-
mercial property rating engine is a mainframe application, exposed as
a CICS transaction; whereas Commercial Auto rating is a VB6 applica-
tion, componentized using Microsoft’s COM.

The Motor Vehicle Report is a B2B J2EE application that communicates
with the state’s Motor Vehicle facilities over a VPN and stores current
information about drivers in the local Oracle database. This application
exposes its functionality over a web interface, allowing a user to submit a
list of drivers and get back a report for each driver. The reply comes back
to the user only if the requested driver’s information already exists and
is current in the local application’s database. Otherwise, a request is sent
to the relevant state’s Motor Vehicle facility and the user is advised to
use the application at a later time. To avoid making multiple requests to
a Motor Vehicle facility, a local database keeps track of sent requests and
does not send a new request if there is an outstanding one.

The Insurance to Value Amount for a Location Calculator is a vendor’s
application that calculates insurance to value amount for a property in
a given location. It is a batch VB6 application, retrieving input from a
local file and returning the results of the execution to a different file. It
can be invoked from a command string with two parameters: input and
output filenames, or as a COM component.

Generate Policy Notice is another vendor application, which generates
policy documentation. This is a VB6, UI-based application that allows
users to interactively create and query policy information. Information
access is based on the details stored in the user’s session information.
Recently the vendor has added a Web Service interface that mimics the
UI functionality (screen scraping using Web Services).

Centrus is a vendor application that supports functions such as address
cleansing (converting addresses to the standard representation); geocod-
ing (assigning geographic designations, such as latitude and longitude,
to an address); catastrophe data for location, including terrorism, water-
way, floodZone, earthquakeZone, and windTier information. Centrus
is a stand-alone application, deployed by ACME on an AIX machine.
The vendor provides Java APIs, which can be used for accessing the
application.

The Document Management System is an IBM/FileNet content
management system used by the company. All content management

Chapter 14 ■ Case Study — Service-Based Integration in Insurance 545

functionality is exposed either via Web Service interfaces or Java APIs,
which are internally based on Web Services.

The ISO Public Protection Codes Database is a database that contains
public protection class and occupancy codes for a given property
location.

The Policy Financials Database is a database that contains the financial
history for a given policy, including pricing data and claims payoffs.

As a result of business analysis and service-oriented decomposition, ACME
defined enterprise services to support the majority of the company’s business
capabilities. A subset of these service interfaces (supporting underwriting) is
shown in Figures 14-2 through 14-5.

N O T E We are not showing complete services here, just the operations that are
relevant to our example.

This service contains the following operations:

EstablishPolicySubmission — This operation creates an account in
a policy administration system for a new customer and returns a
policy ID.

UpdateInsurancePolicy — This operation updates policy information in
the system of record (policy administration system) and returns a unique
ID (key) for the policy.

CancelInsurancePolicy — This operation updates the state of the policy
in the system of records (policy administration system) based on the
cancellation date, policy ID, and cancellation reason.

ReinstateInsurancePolicy — This operation updates the state of the
policy in the system of record (policy administration system) based
on the policy ID, reinstatement reasons, and, optionally, a new
amount due.

RetrieveInsurancePolicy — This operation retrieves complete policy
information based on a policy ID.

RateInsurancePolicy — This operation rates a policy based on the
policy ID and generates the required forms, based on the policy informa-
tion. It returns premium, rates, and associated forms.

GeneratePolicyNoticeDocuments — This operation creates legal docu-
ments for a given policy (pending cancellation, rescission, cancellation).

RetrievePolicyComplianceInformation — This operation retrieves the
termination effective date for a policy.

546 Part III ■ Case Studies

CalculatePolicyFinancials — This operation calculates policy and
claim financial summary information. (See Figure 14-2.)

«datatype»
InsurancePolicy

+establishInsuranceSubmission (in TransactionDate : Date, in InsurancePolicy : InsurancePolicy) : InsurancePolicy
+retrieveInsurancePolicy (in TransactionDate : Date, in PolicyID : string) : InsurancePolicy
+updateInsurancePolicy (in TransactionDate : Date, in InsurancePolicy : InsurancePolicy) : string
+rateInsurancePolicy (in TransactionDate : DataType1, in Policy : InsurancePolicy) : RateResults
+cancelInsurancePolicy (in CancelationDate : DataType1, in PolicyID : string, in Reason : string) : bool
+reinstateInsurancePolicy (in TransactionDate : DataType1, in PolicyID : string, in Reason : string, in AmountDue : double) : bool
+generatePolicyNoticeDocuments (in TransactionDate : DataType1, in PolicyID : string) : bool
+retrievePolicyComplainceInformation (in TransactionDate : DataType1, in InsurancePolicy : InsurancePolicy) : Date
+calculatePolicyFinancials (in TransactionDate : DataType1, in PolicyID : string) : InsurancePolicy

«interface»
PolicyManagement

«datatype»
InsuranceForm +Premium : double

+Rate : double
+InsuranceForm :InsuranceForm

RateResults

Figure 14-2 Policy Management Service

For this service, we discuss only one operation:

GetDriversInformation — This operation retrieves driver information
in the form of the standard state Motor Vehicle Report for commercial
auto insurance policies. (See Figure 14-3.)

+getDriversInformation (in DiverLicenseNumber : string) : MotorVehicleReport

«interface»
PartyManagement

«datatype»
MotorVehicleReport

Figure 14-3 Party Management Service

+assessInsuredLocation (in locationAddress : PostalAddress) : LocationInformation

«interface»
LocationManagement

«datatype»
PostalAddress -LocationScore : string

-GeoCode : string
-OcupancyCode : string
-InsuranceToValueRatio : double
-CatastrophicCode : string

LocationInformation

Figure 14-4 Location Management Service

Chapter 14 ■ Case Study — Service-Based Integration in Insurance 547

For this service, we also discuss a single operation, as shown in Figure 14-4:

AssessInsuredLocation — This operation calculates categorized loca-
tion information, including GeoCode, Occupancy codes, the Insurance to
Value Ratio, catastrophic data, and so on.

This service provides support for document management capabilities,
including creating, retrieving, updating, and searching documents, as shown
in Figure 14-5.

+storeDocument (in Document : Document) : string
+retrieveDocumen t(in documentID : string) : Document
+updateDocument (in Document : Document) : string
+findDocument (in SearchCriteria : SearchCriteria) : Document

«interface»
DocumentManagement

«datatype»
Document

«datatype»
SearchCriteria

Figure 14-5 Document Management Service

High-Level Integration Design

After performing a functional analysis, comparing the existing application
capabilities (see Figure 14-1) and the business service requirements (as
expressed by the interfaces in Figures 14-2 through 14-5), ACME architects
have defined the mapping and high-level integration architecture illustrated
in Figure 14-6. In the rest of this chapter, we explore the details of the business
component and integration access layers. But first, let’s review the overall
architecture.

The integration architecture is based on mapping requirements of the newly
defined enterprise business services to the capabilities of the existing enterprise
applications and deciding how they can be leveraged in the implementa-
tion of those business services, based on the layered architecture defined in
Chapter 10.

The bottom layer of the architecture consists of the existing systems whose
capabilities we leverage. The next layer up is the integration access layer. This
layer uses a variety of techniques and access methods to connect to the existing
systems and expose their functionality and data. The implementation of this
layer is the topic of the second part of the chapter.

Above the integration access is a layer of business components. These
components encapsulate the details of the integration layer and provide the

548 Part III ■ Case Studies

Party
Management

Service

Document
Management

Service

Motor Vehicle
Report (J2EE)

Document
Management

System
(FileNet)

Policy
Management

Service

Location
Management

Service

Commercial
Auto Policy

and Products
Administration

(CICS,
mainframe)

Commercial
Property Policy
and Products

Administration
(CICS,

mainframe)

Commercial
Property

Rating (CICS,
mainframe)

Centrus
(stand-alone

Java)

Insurance to Value
Amount for

a location Calculator
(VB6, Microsoft)

Policy Financials
Database

Existing Systems

Business Services

Commercial
Auto Rating

(VB6,
Microsoft)

Generate
Policy Notice

(VB6,
Microsoft)

Integration Access

Business Components

ISO Public
Protection Codes
Database

Figure 14-6 Overall integration architecture

building blocks for the implementation of the business services in the top layer.
The design of the mapping and components is the topic of the next section of
this chapter.

SOA implementation is very different from traditional object-oriented or
components-based development in the sense that a service is a logical (not
physical) grouping of participating operations (see Boris Lublinsky’s article,
‘‘Defining SOA as an architectural style’’ [January 2007]). As a result of the
logical grouping, in the majority of cases each operation can be designed
and implemented separately. In this chapter, we follow this approach. In
this section, we describe the design of the different integration services and
their operations. Because many of the operations require a similar technical
implementation, we cover the technical implementation aspects together in
the next section.

Establishing Policy Submission
This functionality already exists and is supported by policy administration
applications for auto and commercial property. Several additional assumptions
are made about this business method implementation:

ACME wants to continue using the existing mainframe GUI for
establishing policy submissions in the existing policy administration
applications. As a result, they want to use the existing account tables as a
‘‘golden copy’’ of information about existing policy accounts.

Chapter 14 ■ Case Study — Service-Based Integration in Insurance 549

Policy administration applications are using unique IDs that are mean-
ingless (in addition to the account numbers) to distinguish accounts.
These IDs are specific to each policy administration application and,
thus, should not be visible outside of them. Account numbers, on the
other hand, are made of information that is meaningful to the busi-
ness and should be used as a key for accessing accounts. To ensure the
uniqueness of the account numbers among multiple lines-of-business
(uniqueness for the same line-of-business is ensured by the applica-
tion itself) and to simplify the business operation implementation, a
letter, designating a specific line-of-business is added to the correspond-
ing account number. This does not require changes to the application
itself and can be handled (added/removed) by an integration access
implementation.

Operation execution returns a result code, denoting the success or failure
to establish a policy submission.

Two integrations need to be designed in this case:

Policy submission for a commercial auto policy needs to utilize the
existing CICS transactions exposed by the Commercial Auto Policy and
Products Administration application.

Policy submission for a commercial property policy needs to utilize
existing CICS transactions exposed by the Commercial Property
Policy and Products Administration application.

Additionally business components that wrap integration capabilities,
including access to the integration and, potentially, data mapping should be
implemented to simplify integration usage.

The overall implementation of this business operation is illustrated in
Figure 14-7.

From the point of view of the business service implementer, he is using two
local components, which implement the required capabilities, and is unaware
of the integration details performed by the components. This design approach
allows the component to completely encapsulate access to the existing legacy
applications and simplifies maintenance of the resulting system. If a decision is
made later on to reimplement all (or part of) the existing enterprise capability
(contained in the legacy application), the impact on the business service
implementation is minimal.

This means that the design of the business component’s interface should be
aligned with the requirements of the business service, not of the integration.
More specifically, the business component’s interface has to be designed based
on the domain model used by the business service (not the legacy data model).
The actual data mapping is then done either by the integration access piece
or the component itself.

550 Part III ■ Case Studies

Receive request

 Property or Auto?

Component: Establish Policy
Submission for Commercial

Auto

Component: Establish Policy
Submission for Commercial

Property

Service: Establish Policy
Submission for Commercial

Auto. Access CICS
Transaction

Service: Establish Policy
Submission for Commercial

Property. Access CICS
Transaction

Return result

AutoProperty

Figure 14-7 EstablishPolicySubmission operation

Both integrations for this operation are implemented through the access to
the CICS transactions on the mainframe. The technical implementation of the
integration is covered later in this chapter.

A similar design applies to several other operations that were identified
as part of ACME’s business analysis and service decomposition. These
operations are:

UpdateInsurancePolicy can be implemented based on two integrations
utilizing existing CICS transactions — update commercial auto policy
and update commercial property services. ACME has made a decision
to use existing policy administration applications as a ‘‘golden copy’’ of
the policy data. As a result this operation requires the complete insur-
ance policy, along with the policy identification information — policy
number and effective data — as its input. To ensure uniqueness of policy
numbers between lines-of-business and to simplify request routing, a let-
ter specifying a line-of-business is appended to the policy number. The
overall business operation implementation is similar to that depicted in
Figure 14-7. This operation returns back an ID for an updated policy.

CancelInsurancePolicy can be implemented based on two integra-
tions utilizing existing CICS transactions — cancel commercial auto

Chapter 14 ■ Case Study — Service-Based Integration in Insurance 551

policy and cancel commercial property services. Cancellation is done
using policy identification information as its input. The overall business
service implementation is similar to the one, depicted in Figure 14-7.
The status returned by the operation defines the success or failure of
execution.

ReinstateInsurancePolicy can be implemented based on two integra-
tions utilizing existing CICS transactions — reinstate commercial auto
policy and reinstate commercial property services. Reinstatement uses
policy identification information as its input. The overall business ser-
vice implementation is similar to the one, depicted in Figure 14-7. The
status returned by the operation defines the success or failure of service
execution.

RetrieveInsurancePolicy can be implemented based on two integra-
tions utilizing existing CICS transactions — retrieve commercial auto
policy and retrieve commercial property services. The policy is retrieved
based on the service identification information. The overall business
service implementation is similar to the one depicted in Figure 14-7.
The operation returns a complete insurance policy.

Rate Insurance Policy
The capability for this operation already exists in two applications —
commercial property rating and commercial auto rating. This operation is
purely a calculation; it executes a set of rules (that are different for different
lines-of-business and are contained in existing applications). The rules are
used for calculating premiums, rates, and forms. RateInsurancePolicy takes
an insurance policy, including the account information, terms and conditions,
as input and returns calculated premiums.

Two integrations have to be designed to support this operation:

The RateCommercialProperty integration can utilize existing CICS trans-
actions exposed by the Commercial property rating application.

The RateAutoPolicy integration can utilize existing COM components
exposed by the Auto policy rating application.

Business components that wrap the integration access further simplify
the business operation implementation. The overall implementation of this
business operation is presented in Figure 14-8.

We describe the technical implementation of integration with CICS transac-
tions and COM components later in this chapter.

552 Part III ■ Case Studies

Receive request

Property or Auto?

Component: Rate
Commerical Auto

Component: Rate
Commercial Property

Service: Rate Commercial
Auto. Access VB Component

Service: Rate Commercial
Property Access CICS

Transaction

Return result

AutoProperty

Figure 14-8 Rate Insurance Policy operation

Assess Insured Location

The AssessInsuredLocation operation is also based on the existing capability
of the existing ACME applications and databases, including the ISO Public
Protection Codes database, the Insurance to Value Calculator, and Centrus.
Based on the location of the property, this service collects a set of data required
for calculation of the insurance premiums for a commercial property at a given
location.

Implementation of this operation requires the design and implementation
of the following integrations:

GetPublicProtectionCode can utilize the existing ISO Public Protection
Codes Database.

GetInsurancetoValue can utilize the existing Insurance to Value amount
for a location calculator exposed as a COM component.

GetGeoCoding and GetCatastrophicInformation can utilize the existing
Centrus application exposed through vendor-provided Java APIs.

Unlike the previous implementations, this one does not choose which
integration to invoke. Instead, it invokes all supporting integrations to collect
the required information. In this implementation, the GetInsurancetoValue

Chapter 14 ■ Case Study — Service-Based Integration in Insurance 553

Receive request

Return result

Component: Get
Insurance to Value

Component: Get Public
Protection Code from

Database

Service: Get Insurance to
Value. Access VB

Component

Component: Get Location
Geo Coding

Component: Get Location
Catastrophic Information

Figure 14-9 Assess Insured Location operation

integration is wrapped by business components, simplifying its usage. The
rest of the integrations are implemented directly in business components.

The overall implementation of this business operation is shown in
Figure 14-9.

We discuss the technical implementation of integration with COM compo-
nents, existing databases, and exposed Java APIs later in this chapter.

Get Driver’s Information
This functionality already exists in the Motor Vehicle Report application.
Based on the list of drivers (driver license numbers), this operation allows
collection of data about recent violations, required for the calculation of the
auto insurance premiums for a given set of drivers.

At first glance, it might seem that it is not necessary to explicitly create
a GetDriversInformation operation; simply exposing the functionality of an
existing application seems to satisfy requirements. We do not recommend this
approach for the following reasons:

The application can change over time, while an enterprise service is
aligned to the overall Enterprise Architecture, specifically, the interface
capabilities and semantics of the enterprise service. Wrapping an appli-
cation’s capabilities in an operation of the enterprise service provides a
decoupling layer, shielding potential service consumers from application
changes.

Additional functionality might be required from the operation over
time. Introducing the enterprise service as a separate entity enhances
the application’s functionality directly in the operation’s implementation
without modifying the existing application.

Implementation of the enterprise service’s operation provides a logi-
cal place for transforming data between the enterprise-wide semantic

554 Part III ■ Case Studies

information and the application (Motor Vehicle report, in this case) data
models.

Implementation of this operation requires design and implementation of
integration access for GetDriversInformation, which can utilize the existing
J2EE Motor Vehicle Report application and a business component, wrapping
the integration and simplifying its usage. The overall implementation of this
business operation is shown in Figure 14-10.

We discuss the technical implementation of integration with existing J2EE
applications later in this chapter.

Generate Policy Notice Documents
The purpose of this operation is to generate a set of policy notice docu-
ments, based on the full information of the insurance policy. This functionality
already exists in the Generate Policy Notice operation. In this case, as in
the GetDriversInformation operation, there is a one-to-one correspondence
between the operation’s functionality and the existing application. Following
the same line of reasoning, ACME’s architects decided to explicitly implement
this operation based on the vendor provided Web Services. Unfortunately,
none of the vendor’s Web Services expose the exact functionality required
by ACME. Several Web Services have to be invoked to support business

Receive request

Return result

Component: Get
Driver’s Information

Service: Get
Driver’s Information.

Access J2EE
Component

Figure 14-10 Get Driver’s Information operation

Chapter 14 ■ Case Study — Service-Based Integration in Insurance 555

Receive request

Return result

Component:
Generate Policy

Notice

Service: Generate
Policy Notice.

Access Vendor’s
Web Service

Figure 14-11 Generate Policy Notice Document operation

requirements. These multiple invocations can be encapsulated in a business
component implementing the logic of sequential invocations of vendor’s
Web Services. A BPEL orchestration solution was examined, but it was con-
sidered too heavyweight for this simple integration problem. The overall
implementation of this business operation is shown in Figure 14-11.

We discuss the technical implementation of building integration services
based on the vendor’s exposed Web Services later in this chapter.

Collect Policy Financials
This operation calculates the policy and claim financial summary information,
based on the data that already exists in the Policy Financial database. Based
on the policy ID, this operation calculates a set of financial characteristics of
the policy. As recommended in Chapter 10, integration can be implemented
through direct database access and consequently requires only a business
component that encapsulates access to the existing database. (See Figure 14-12.)

Although technically it is possible to expose the database access directly
to the business service, the introduction of a specialized business component
to encapsulate this access reduces coupling between business, the service
implementation, and the existing enterprise database.

We discuss the technical implementation of integration based on the existing
databases later in this chapter.

556 Part III ■ Case Studies

Receive request

Return result

Component:
Generate Policy

Notice

Figure 14-12 Collect Policy Financials’ operation

Work with Documents
This functionality already exists in the company and is provided by an existing
FileNet application. The FileNet application provides a set of Web Services,
which can be directly used by the business services implementation. Although
this approach is technically feasible, it is not the optimal one. The FileNet Web
Services expose a set of (too) low-granularity services, allowing for fine-grained
operations on the documents. Using these services requires the business service
implementation to be aware of a lot of FileNet’s inner workings, thus creating
a tight coupling between the business services implementation and FileNet.
This would make switching to a different document management system very
difficult.

The implementation architecture, as shown in Figure 14-13, allows you
to hide these details through the introduction of specialized business compo-
nents, exposing only a set of business-level document operations and
orchestrating FileNet Web Services for these operations’ fulfillment.

We discuss the technical implementation of integrations based on the
vendor’s exposed Web Services later in this chapter.

Integration Requirements for the ACME Implementation
Based on the integration service designs in the previous section, the following
integrations are required to implement the integration services for ACME:

Integration with the existing CICS transactions — This type of
integration is required to implement EstablishPolicySubmission,
UpdateInsurancePolicy, CancelInsurancePolicy,
ReinstateInsurancePolicy, and RetrieveInsurancePolicy for both
commercial auto and property policies. In addition, it is needed for
RateCommercialProperty policy operations.

Chapter 14 ■ Case Study — Service-Based Integration in Insurance 557

Receive request

Return result

Component: Work
with Documents

Service: Work with
Documents.

Access Vendor’s
Web Service

Figure 14-13 Work with Documents operation

Integration with the existing COM components — This type of inte-
gration is required to implement the RateCommercialAutoPolicy and
GetInsuranceToValue operations.

Integration based on the existing Java APIs — This type of
integration is required to implement the GetGeoCoding and
GetCatastrophicInformation operations.

Integration with the existing J2EE applications — This type of integra-
tion is required to implement the GetDriversInformation operation.

Integration with the existing databases — This type of integration
is required to implement GetPublicProtectionCode and
GetPolicyFinancials business components.

Integration based on the vendor’s Web Services — This type of
integration is required to implement the GeneratePolicyNotice

and RetrievePolicyComplianceInformation operations and the
WorkWithDocuments service.

Integration with Existing CICS Transactions

Despite many promises made in the last 10–15 years, the mainframe, in
general, and CICS, in particular, is still very much alive and is often the
workhorse of existing enterprise IT systems. As a result, not surprisingly,

558 Part III ■ Case Studies

many vendors are offering approaches for exposing existing CICS transactions
to use throughout the enterprise.

Integration Approaches
The most popular approaches use a software/middleware abstraction layer,
‘‘standard’’ messaging middleware (for example, WebSphere MQ), and
standard-based Web Services, available in CICS 3.1 and higher.

Examples of software/middleware abstraction layers are JCA adapters in
Java or Host Integration servers in .NET. An abstraction layer simplifies the
integration’s implementation by providing a native API (for the environment it
supports) for accessing CICS transactions. In most cases, this layer comes with
tools, allowing the direct generation of a set of APIs, mapping one-to-one to
the set of CICS transactions that need to be invoked. The tool set also generates
data objects (in native languages) based on the copybooks used by CICS
transactions and provides marshaling support for conversion between these
objects and copybooks. This makes this approach a fairly simple integration
implementation option. The overall implementation of integration, in this case,
includes the following (see Figure 14-14):

An integration component encapsulating the mapping from the enter-
prise semantic information model to a set of objects that represent the
copybooks used by CICS transactions, and invoking of one or more APIs
representing existing CICS transactions

An abstraction layer that converts data objects into copybooks, and API
calls into CICS transactions invocations

A CICS region that executes transactions

It is rare that an existing CICS transaction directly corresponds to the
capability required of the integration, and typically it is necessary to combine
multiple existing CICS transactions to support the required functionality.
There are two places where these transactions can be orchestrated:

A new CICS transaction that is directly exposed to consumers can be cre-
ated on the mainframe to orchestrate multiple existing CICS transactions
together. This transaction, implementing orchestration (and any addi-
tional processing required for the orchestration), has to be developed

Integration
Component

Abstraction
Layer CICS Region

Invoke API,
Representing

CICS Transaction

Invoke CICS
Transaction

Figure 14-14 CICS integration using an abstraction layer

Chapter 14 ■ Case Study — Service-Based Integration in Insurance 559

on the mainframe, which, depending on the makeup of the enterprise
developers, is not always the preferred solution.

An integration component can orchestrate the invocation of multiple
existing CICS transactions, including all intermediate processing
required. Because an integration component is typically implemented
on the enterprise’s preferred platform, this is typically a better solution.

Usually, when abstraction software is used, orchestration is implemented in
the integration component. Although it typically leads to some performance
degradation (which is not significant for a small to medium number of CICS
transactions), it provides a solution that is easier to implement and maintain
than the creation of new CICS transactions.

The advantages of this integration approach are:

The provided tools typically do all the heavy lifting, providing user-
friendly APIs to the existing CICS transactions.

Most existing middleware products support the inclusion of CICS trans-
actions in the transactions that govern business service execution. This
is especially important when the business service updates multiple
databases, including mainframe databases that are updated using CICS
transactions.

Most existing middleware products support security integration
between service consumers and CICS-based service implementations.

The disadvantages of this approach are:

Limitations on the size of the input/output message (32KB size of the
CICS region). Some of the services (for example, those that retrieve or
rate insurance policies) require sending and receiving a full insurance
policy, which is significantly larger than 32KB. (We have seen policies of
the size of several MB.) In these cases, it is necessary to design a
set of cooperating CICS transactions that have to be invoked in a specific
sequence and require use of a mainframe database to keep an invoca-
tion state. Such a design is error prone, especially in the case of multiple
consumers.

Load balancing and failover are problematic with this approach. Typ-
ically, a middleware implementation is a single point of failure in the
overall system. All invocations from all consumers to all CICS trans-
actions are routed through a single middleware instance.

WebSphere MQ has been used for integration of mainframe systems for
a long time. The overall architecture for such integration is presented in
Figure 14-15.

560 Part III ■ Case Studies

Integration
Component

Request
queue

Reply
queue

CICS MQ Listener

Transaction
Orchestrator

CICS
Transaction

CICS
Transaction

CICS
Transaction

Request inner queue

Reply inner queue

Figure 14-15 CICS integration using MQ

CICS transactions are invoked by putting a request message on the MQ
queue that the mainframe is listening on. When the message is received,
a listener examines its content and based on it, invokes an appropriate
CICS transaction(s). The size of the MQ message is limited not by the size
of the CICS region but rather by the limitations of MQ infrastructure. A
typical listener reads the whole message into a mainframe input pipe and
then processes it piecemeal, using existing transactions. Transaction execution
results are stored to the output pipe. When all transactions are complete, the
listener sends the content of the output pipe to the output queue.

In this case, the contents of MQ messages are typically copybooks used
by CICS transactions, and it is the responsibility of the integration consumer
to implement the conversion between these copybooks and any objects used
by the integration consumer. There is no support for generation tooling (with
the exception of IBM’s copybook library), and this conversion should be done
‘‘manually.’’ Using the WebSphere Message Broker with built-in support for
XML/copybook conversion can simplify this transformation.

In the case of MQ integration, the orchestration of existing CICS transactions
are typically done on the CICS side, requiring additional coding on CICS.

The advantages of using MQ for mainframe integration are:

Support for both synchronous and asynchronous communications —
This can be extremely important in the case of long-running mainframe
transactions, or when the integration transaction execution has to coexist
with online processing on the mainframe. In this latter case, it is possible
to receive integration requests as they are posted but process them based
on the mainframe resource’s availability.

Support for a virtually unlimited size of input and output messages —
Using CICS internal queues on the mainframe allows the chunking of
input and output messages directly on the mainframe, which signifi-
cantly simplifies large message processing.

Chapter 14 ■ Case Study — Service-Based Integration in Insurance 561

Improved scalability and failover — This can be achieved with this
integration approach because of the scalability and failover of the under-
lying MQ middleware.

Disadvantages of this integration approach are:

Implementation is complex because of the requirements to programmati-
cally build, process a CICS request, and reply to copybook messages.

The lack of transactional integration between the service consumer and
the CICS transaction. A consumer’s transaction can include sending the
MQ message to the CICS transactions, but sending and receiving MQ
messages requires two different transactions. This can make consumer
implementation more complex, especially in the case of updates on the
mainframe.

There is no standard security support for this integration approach. It is
possible to secure access to MQ from both service consumer and CICS
but not propagate security credentials from the service consumer to the
CICS transaction.

Web Services have become a popular integration solution. IBM has added
Web Service support in CICS v2.1, and has significantly improved their
implementation in CICS v3.1. This latest version provides support for the
following: generation of WSDL files based on the CICS transaction interface,
SOAP over HTTP and SOAP over MQ, unlimited message size through
dynamically expanding pipelines, and WS-Security and WS-Transactions.
Additionally, this version of CICS introduced the Service Flow Runtime
and Service Flow Designer, allowing you to convert existing ‘‘green screen’’
applications to CICS transactions and to orchestrate the execution of these
transactions. The overall architecture for Web Service integration is shown in
Figure 14-16.

As illustrated, the integration component invokes a Web Service over
either HTTP or Java Messaging Service (JMS). A request is delivered to

Integration
Component

SOAP over HTTP

SOAP over JMS

CICS
Transaction

CICS
Transaction

CICS
Transaction

URI
Mapper

Output Pipeline

CICS v3.1
Input Pipeline

CICS
Service

Flow

Figure 14-16 CICS integration using Web Services

562 Part III ■ Case Studies

the URI mapper, which decides what type of transformation needs to be
applied to the incoming message (XML to copybook). The URI mapper
transforms the message and stores the incoming request in the input pipeline.
It then invokes an appropriate transaction — CICS Service Flow in this case.
Service Flow is responsible for invoking a set of existing CICS transactions,
required for a given integration implementation and passing to them chunks
of the invocation message (from the input pipeline). It is also responsible
for assembling the execution results (in the output pipeline) and combining
results of all participating CICS transactions. When execution is completed,
control is returned to the mapper, which converts the copybooks to XML and
sends replies back to the service consumer.

Advantages of using Web Services for mainframe integration are:

Generation support allows you to represent existing copybook-based
CICS transactions in a form of standard WSDL. The generation tools that
exist on most application development platforms, including J2EE and
.NET, allow the generation of native interfaces based on this WSDL.

Virtually unlimited input and output message sizes because the new
CICS pipelines automatically adjust to the size of the messages.

Support for the service flow, simplifying transaction composition and
consequently the implementation of composite transactions that are
aligned with the business requirements for the mainframe.

Security and transaction support through implementation of Web
Service standards, including WS-Security and WS-Transactions.

N O T E When considering WS-Transactions implementation with MQ as a Web
Service transport, keep in mind the transactional limitations of messaging.

A disadvantage of using Web Services on the mainframe is the requirement
that you upgrade to CICS v3.1, which might be problematic for some compa-
nies. Fortunately such an implementation does not require upgrading all CICS
code to version 3.1. An additional gateway region(s) running CICS v3.1 can be
introduced to provide access to existing transactions with lower versions of
CICS.

Comparison of CICS integration approaches is summarized in Table 14-1
(see Régis Coqueret and Marc Fiammante, ‘‘Choosing among JCA, JMS, and
Web Services for EAI,’’ [March 2003]).

ACME’s Implementation of a CICS-Based Integration
ACME decided to use CICS 3.1-based Web Services for their implementation
of CICS integrations.

Chapter 14 ■ Case Study — Service-Based Integration in Insurance 563

Table 14-1 Comparison of CICS Integration Approaches

INTEGRATION SPECIALIZED
CHARACTERISTIC MIDDLEWARE MQ WEB SERVICES

Interface coupling
(abstract service
definition)

Yes, generation
based

No Yes, using WSDL

Technical coupling
(protocol stack)

Yes Yes No, different
SOAP run times
can be used

Portability No, middleware
dependent

Yes, assuming
MQ support exists

Yes

Reliability No Yes Yes, using
WS-Reliable or
MQ

Load balancing and
failover

No Yes Yes

Transactional
Support

Yes, XA Only to the
queue entry point

Yes, through
WS-Transactions

Security Yes Do it yourself Yes, through
WS-Security

Invocation styles Synchronous Asynchronous,
synchronous can
be implemented
through code

Synchronous and
asynchronous

For their implementation they have allocated two new CICS 3.1 integration
regions, supporting Web Service access to the existing mainframe functional-
ity. These regions are load balanced for HTTP transport (using BIG-IP load
balancer from F5 Networks) and MQ transport (using an MQ cluster). In
their implementation, ACME uses two transports: HTTP for the short running
services, the results of which must be immediately available to the user (for
example, account setup and policy manipulation); and MQ for long-running
services (policy rating). ACME has also discovered that policy information
varies significantly and can be fairly large (up to tens of megabytes) for larger
accounts. During preliminary testing, ACME discovered that these sizes can
impact the performance and scalability of the solution. To solve this prob-
lem ACME’s architects decided to use an intermediate DB2 database on the
mainframe to store large (over 1MB) messages (see Chapter 10, dealing with
large messages for details) on both the integration consumer and the provider
sides.

564 Part III ■ Case Studies

CICS v3.1 Region

Commercial
Auto Policy

and Products
Administration

(CICS,
mainframe)

Commercial
Property Policy
and Products

Administration
(CICS,

mainframe)

Commercial
Property
Rating
(CICS,

mainframe)

CICS Transactions

CICS Service Flow

Establish Policy
Submission

Large Messages

Retrieve Insurance
Policy

Reinstate Insurance
Policy

Update Insurance
Policy

Cancel Insurance
Policy

Rate Insurance
Policy

Wrapper
Business

Component

Wrapper
Business

Component

Wrapper
Business

Component

Wrapper
Business

Component

Wrapper
Business

Component

Wrapper
Business

Component

Wrapper
Business

Component

Wrapper
Business

Component

Wrapper
Business

Component

Wrapper
Business

Component

Wrapper
Business

Component

Web Service Listener

Figure 14-17 Overview of CICS integrations

The overall implementation of ACME’s business services utilizing existing
mainframe transactions is illustrated in Figure 14-17.

Figure 14-17 shows only the basic topology of the integration. In addition to
the components shown there, ACME leverages the service registry, allowing
Web Service consumers to bind to the Web Service listener dynamically. This
allows ACME to relocate the listener to another IP address or MQ queue
without disrupting their systems. Although the addition of the registry allows
for deployment flexibility, ACME architects wanted to ensure that CICS-based
services are never accessed directly, only through the predefined Web Service
Listener, shown in Figure 14-17. They have achieved this by partitioning
their service registry into two areas, a business service registry available to
all service consumers throughout the enterprise, and an integration service
registry, accessible only by integration components wrapping these services.

This partitioning was done using registry access permissions. Access to the
integration service partition is allowed only to consumers with integration
component credentials. The current mainframe applications contain signifi-
cant amounts of sensitive data, which means that security is an important
consideration of the overall integration solution. One of the challenges is that
user credentials used by the service implementation are based on the corporate
LDAP, which is different from the mainframe user credentials which are stored
in a mainframe RACF system. This means that the security architecture for
this integration needs to support both securing messages used for exchanging
data with the mainframe, and user identity conversion between LDAP-based
identity and mainframe-based identity.

Chapter 14 ■ Case Study — Service-Based Integration in Insurance 565

Based on the SOA security techniques, described in Chapter 11, ACME
architects decided to use WS-Security support (provided by IBM’s Web Service
implementation for CICS) to do both message encryption and identity token
propagation. They also used Tivoli Federated Identity Manager (TFIM) to
implement identity conversion between Kerberos tokens (standardized by
ACME as an identity token) and the Passtickets used by the mainframe.

One of the biggest challenges for any integration implementation is error
handling and logging. In order to implement an overall exception-logging
architecture, described in Chapter 9, ACME architects did the following:

Designed integration service interfaces in a way that allowed them to
return any exception information to the Web Service consumers.

Designed and implemented a daemon (for the mainframe environment)
that periodically scans existing mainframe logs and submits their infor-
mation (appropriately converted) to a centralized logging service. Such
an approach allows them to keep the existing logging mechanism in
CICS transactions (minimize required changes), while centralizing their
processing through a centralized service.

Typically, integration services do not participate in the overall BAM solu-
tions, and the mainframe integrations designed by ACME are no exception.
Technical monitoring, on the other hand, is required for all services. Follow-
ing the overall architecture, described in Chapter 9, the decision was made
to instrument integration components with service monitoring/management
agents.

Integration with the Existing COM Components

The most popular approach for integration with COM components today is
to use a Web Service façade for the legacy applications. The basic design
guidelines and implementation considerations for this approach are outlined
in ‘‘Web Service Facade for Legacy Applications,’’ Microsoft Patterns and
Practice, June 2003.

The overall architecture for this integration type (which is shown in
Figure 14-18) relies heavily on two technologies from Microsoft. The .NET/
COM bridge, allowing automatic wrapper creation for existing COM compo-
nents (which results in the ability to treat them like an ordinary .NET class,
for example C# class), and Visual Studio with its ability to easily expose the
language (for example C#) class as a Web Service.

When implementing this type of integration, it is important to correctly map
existing COM components to the integration Web Services. Considering that
COM interfaces are local and create very little communications latency, while

566 Part III ■ Case Studies

Web Service invocations can be fairly expensive from the performance point
of view, you should design these integrations based on Web Service require-
ments. This minimizes the total number of the Web Service communications
and consequently improves overall system performance. Once the integration
Web Services are designed, a local C# controller (adapter) is typically imple-
mented, mapping Web Service interfaces to the existing COM components.
Additionally, this adapter is responsible for mapping data between the Web
Service interface and the existing legacy data model.

Because this type of integration requires an adapter supporting Web Service
implementations, it is often desirable to use the semantic information model
in the implementation of the integration services (Web Service interface). This
simplifies the implementation of the business component responsible for the
invocation of the integration services.

Additionally standards such as WS-Security, WS-Transactions, WS-
Reliability, and the like can be used to provide secure, reliable, transactional
access to these services.

An alternative approach to integration of COM components is using Java
Native Interface (JNI) or a specialized Java-COM bridge to expose existing
COM components as Java classes (similar to exposing them as C# classes) and
then using either Java Remote Method Invocation (RMI) or Java-based Web
Services for integration. This integration method was widely used about 5–10
years ago, but with the advances of Web Service support and COM bridge

Web Service

Exposed Interface

Adapter (data transformation,
methods aggregation)

.NET/COM Bridge

Existing COM
Component

Existing COM
Component

Figure 14-18 Web Service facade for COM components

Chapter 14 ■ Case Study — Service-Based Integration in Insurance 567

implementation in .NET ‘‘native,’’ this integration approach has become the
prevalent integration implementation for COM components.

ACME’s Implementation of Integration
with COM Components
ACME’s architects decided to use .NET-based Web Services for their imple-
mentation of integration services.

All existing COM-based applications (e.g., Commercial Auto Rating and
Insurance to Value amount for a location calculator) and the integration Web
Services exposed by these applications are deployed on two servers ensuring
load balancing and failover for the implementation. (The number of servers
can be increased in the future to support higher throughput/performance
requirements.) The actual load-balancing and failover implementation is based
on BIG-IP load-balancer from F5 Networks.

The overall implementation of ACME’s business services utilizing existing
COM components is presented in Figure 14-19.

To simplify the maintenance of COM integration services, ACME architects
decided to use the same integration registry here that is used for mainframe
integration. Web Service consumers are using late binding to connect to Web
Services, exposing integration.

Commercial Auto Rating
and Insurance to Value

Amount Calculation

Wrapper
Business

Component

Wrapper
Business

Component

Rate Insurance
Policy

Web Service

.NET/COM Bridge

COM
Component

COM
Component

Web Service

.NET/COM Bridge

COM
Component

COM
Component

Figure 14-19 Overall COM integrations

568 Part III ■ Case Studies

Implementation of security in this case is fairly straightforward. As we
mentioned above (see the mainframe integration implementation section),
ACME is using Kerberos tokens for identity propagation. These tokens can
be ‘‘natively’’ processed by Windows-based Web Services, thus simplifying
identity propagation to COM components. Additionally, the support for
WS-Security baked into .NET Web Service implementation allows for the
simple implementation of sensitive data encryption.

Implementation of exception handling, in this case, is similar to the case
of mainframe integration. Existing exception logs are left in place and a
specialized daemon is created to send the content of these logs to the centralized
logging service.

Technical monitoring implementation in this case is done through instru-
menting of integration components with the service monitoring/management
agents, similar to mainframe integration implementation.

Integration Based on the Existing Java APIs

Some of the application vendors provide their own remoting APIs. These
APIs can be implemented using the vendor’s communications mechanism of
choice — Web Services, Java RMI, straight TCP/IP, and so on. The advantage
of this approach, from the vendor’s point of view, is the ability to control (and
evolve) the distribution mechanism transparently to its users by encapsulating
it behind APIs they provide.

From the user’s point of view, remote APIs simplify integration. Users have
to implement only local invocations, while the vendor takes care of remoting
the invocations. On the other hand, integration implementers are limited
to the integration functionality and quality of service (security, transactionality,
etc.) provided by the vendor’s APIs. This means that any additions to the
integration capabilities have to be coordinated with the vendor and its release
schedule. Additionally, this approach to integration limits the choice of the
platforms for other service implementations; only platforms certified and
supported by the vendor can be used.

As a result, despite its simplicity, this integration approach is not always
the best fit for integration service implementation. Because existing Java
APIs provide all the required remoting capabilities, integration is usually
implemented as local business components that encapsulate invocations and
coordinate existing APIs. The overall integration architecture for this approach
is presented in Figure 14-20.

Chapter 14 ■ Case Study — Service-Based Integration in Insurance 569

Wrapper Business Component

Vendor
Java API

Vendor
Java API

Vendor Application

Figure 14-20 Building integration services using Java APIs

ACME’s Implementation of Integration Based
on Java APIs
The Centrus vendor provides remote Java APIs, which ACME has cho-
sen to use to access the application’s functionality. They have used these
APIs to build a business component that exposes the required Centrus func-
tionality. (See Figure 14-21.) This component can be used to implement
AssessInsuredLocation and/or any other services requiring geocoding or
catastrophic data information.

Security for this implementation requires both authentication and authoriza-
tion for invoking operations on the vendor’s Java components. Authentication

Component: Get Location
Geo Coding

Component: Get Location
Catastrophic Information

Centrus
Java API

Centrus
Java API

Centrus
Java API

Centrus
Java API

Centrus Application

Figure 14-21 Overall integrations using Java APIs

570 Part III ■ Case Studies

requires mapping the enterprise user’s identity to the identity understood by
the application (typically username and password), much like the mainframe
integration approach. ACME architects decided to use TFIM to support this
security goal. Authorization is achieved by implementing authorization at
the boundary of an integration component, allowing only users with spe-
cific roles to execute certain components. This authorization can be easily
implemented using the standard Java security model, where you configure
Role-Based Access Control (RBAC) security on operations of Java components,
and as such, this functionality does not require any approaches specific to Web
Services.

Exception handling is typically limited to the exception handling of remote
Java APIs. Although implementation of a specialized daemon pushing the
application’s log to the centralized logging service is possible, it’s rarely done
because of changes that can be introduced by the vendor in newer versions.

Technical monitoring for this implementation is done through instrumenting
the integration components with service monitoring/management agents,
similar to approaches described earlier.

Integration with the Existing J2EE Applications

The majority of J2EE application servers provide three basic mechanisms
for exposing server-based applications: JMS, Java RMI and Web Services.
Theoretically, all three mechanisms can be used for building integration
services that expose the capabilities of existing J2EE-based applications.

When building integration services, RMI seems like the most straightforward
approach due to its simplicity and other advantages. Java objects can be
exposed over RMI, and a different quality of services (transactionality, security,
etc.) is supported. However, it suffers from the following drawbacks:

RMI-based implementations are applicable only if the business com-
ponent that wraps the integration is implemented in Java. Access to
RMI-based services from non-Java implementations is possible but very
complex.

Although RMI is highly standardized, numerous interoperability issues
arise with RMI when the consumer and provider use Java virtual
machines (JVM) from different vendors or even different versions of a
JVM from the same vendor.

An RMI service exposes Java-based interfaces, which makes it very
sensitive to changes, thus increasing the coupling between service con-
sumers and providers.

Chapter 14 ■ Case Study — Service-Based Integration in Insurance 571

JMS seems like a good integration option because of its support for
asynchronous invocations, guaranteed delivery, and so on. But, it also suffers
from the following drawbacks:

Although JMS APIs are standardized, the on-the-wire format is not. This
means, that achieving interoperability between JMS implementations
from different vendors requires software bridges between these imple-
mentations. Unless a messaging provider is standardized throughout the
enterprise, JMS does not appear to be a viable integration option.

Use of a messaging provider as an integration transport typically
requires the installation of a messaging client on every machine that
utilizes messaging. This can require massive amounts of updates
throughout the enterprise to accommodate newer versions of a product.
Additionally, it is necessary to ensure that messaging software is sup-
ported on all hardware and software platforms throughout the
enterprise.

Effective use of JMS on the enterprise level requires standardization
of the messaging payload formats. The most widely accepted format
is XML with SOAP enveloping. This effectively means a Web Service
over JMS. We consider this a flavor of Web Services, rather than JMS
implementation.

Based on these issues, Web Services (using different transport, includ-
ing HTTP, messaging, etc.) are the most appropriate approach for building
integration that expose existing J2EE applications.

The overall implementation of Web Services–based integration (as shown
in Figure 14-22) is similar to the implementation for COM components. (Refer
to Figure 14-19.)

Web Service

Exposed Interface

Adapter (data transformation,
methods aggregation)

Existing Java Class Existing EJB

Figure 14-22 Implementing J2EE integration services

572 Part III ■ Case Studies

Access to existing functionality is implemented by the service adapter,
which can use a variety of mechanisms, including local Java class invocations,
Enterprise Java Beans (EJB), and so on to implement access. In addition to
accessing existing functionality, an adapter is responsible for coordinating the
access and for exposing the integration interface.

ACME’s Implementation of Integration for J2EE-Based
Applications
The Motor Vehicle Report application used by ACME is a J2EE application that
is implemented utilizing IBM’s WebSphere 6.1 application server, which pro-
vides advanced support for Web Service implementations. As a result, ACME
has chosen Web Services as an integration mechanism for this application.

Traditionally, Web Services, especially those using HTTP as a transport,
are synchronous. This is because HTTP communications are synchronous in
nature. However, this invocation style does not match well with the nature
of the Motor Vehicle Report application. Depending on whether the driver’s
information already exists locally (in the application’s database) or a request
has to be made to the Motor Vehicle facility of a given state, the duration
of this service execution can vary from milliseconds to several days. Asyn-
chronous invocations are a more appropriate implementation approach for
these potentially long-running service executions.

The asynchronous invocations can be implemented by using two syn-
chronous request/replies and Web Services addressing (WS-Addressing),
to provide an address for a second request (asynchronous reply). This is
illustrated in Figure 14-23.

In this implementation, the service consumer sends a request to a service
provider along with the address for the asynchronous reply (in case a request
can’t be fulfilled immediately). The service provider checks whether it can
provide a reply immediately, and if it can, it does so. When the response is
not readily available, the address of the reply is stored in the database and
a reply is returned to the service consumer stating that the actual reply will
be delivered later. When the execution is complete, the address of the reply is
retrieved from the database and is used for delivering the reply.

Service
Consumer

Service
Provider

Provider
Database

Initial request

Asynchronous
callback

Figure 14-23 Asynchronous invocation using Web Services

Chapter 14 ■ Case Study — Service-Based Integration in Insurance 573

Web Service

Motor Vehicle Report Application

Web Service Consumer

Get Motor Vehicle Report Component

Initial
requestAsyncronous

reply

Request Adapter (data
transformation, methods

aggregation)

Response Adapter (data
transformation, methods

aggregation)

Existing Java Class Existing EJB

Figure 14-24 Overall J2EE integrations

This approach is also used for the overall implementation of integration
with J2EE-based applications (Motor Vehicle Report application), presented in
Figure 14-24. Here, the integration component implements both Web Service
invocations and the reply sink. This component is inherently multithreaded
(the asynchronous reply is delivered on a separate thread) and requires a
callback class as its parameter.

Implementation of this J2EE integration uses the same set of technologies
and approaches as the mainframe and COM component integration described
earlier. As a result, the same approaches can be used for locating, securing,
monitoring, and exception handling.

Integration with Existing Databases

Databases provide their own remoting mechanisms such as database client,
Java APIs, JDBC, and so on (compare these to the Java APIs for integration
section earlier in this chapter). These remoting mechanisms can be used for
accessing data in the remote databases. (See Figure 14-25.)

574 Part III ■ Case Studies

Wrapper Business Component

Database
Access Database

Access

Data

Figure 14-25 Implementing database integration services

Although database-based integrations are very simple to implement, these
implementations often suffer from the following problems:

They often create tight coupling between service consumers and
providers. This coupling is location and implementation coupling.
Location coupling means that moving the database can break the ser-
vice consumer. This coupling can be overcome using multiple tech-
niques, the most common of which is externalization of the database
location. For example, if the wrapper business component is imple-
mented inside an application server, the database connection pooling
supports the externalization of the database location in a pool property,
thus making the implementation location–independent. Implementation
coupling means that the business component’s implementation is directly
dependent on the database layout and, consequently, any changes in the
database schema need to be reflected in the business component’s imple-
mentation. The way to deal with this type of coupling is to use stored
procedures, allowing you to hide the actual database layout behind a
stored procedure interface (a layout can change, without changing the
interface).

Having numerous business components pointing to the same database
can have a negative impact on database performance. Having numerous
components requires many database connections, which are expensive
and require a lot of resources on the database server. This situation is
similar to the issues that people were experiencing with two-tier sys-
tems. The traditional approach to minimizing the number of database
connections is connection pooling, which is done in the middle tier (typi-
cally in the application server). Similar approaches can be applied
to integration with existing databases: Business components, imple-
menting database integration, can be factored out into a specialized

Chapter 14 ■ Case Study — Service-Based Integration in Insurance 575

integration service available, for example, over Web Services. Although
such an approach decreases the load on the existing database, it increases
integration execution duration and creates more points of failure in the
overall system. As a result, such an approach is justified only in the case
of very large numbers (thousands) of required database connections.

ACME’s Implementation of Database Integrations
For integration with their existing databases — ISO Public Protection
Codes and Policy Financials — ACME has implemented two business com-
ponents to provide the integration and expose the required data. These
components can be used for the implementation of AssessInsuredLocation,
CollectPolicyFinancials, and/or any other services requiring this data. (See
Figure 14-26.)

ISO Public Protection
Codes Database

Policy Financials
Database

ISO Protection
Codes

Business
Component

Policy
Finacials
Business

Component

Figure 14-26 Overall database integrations

Because database integration is done through local components, rather then
services, usage of the service registry is not applicable. Increased deployment
flexibility for database integration is achieved through externalization of
the database connection information (compare to the configurations files for
service location in Chapter 9).

Although all the existing databases provide built-in security mechanisms,
these mechanisms are rarely used for integration. The majority of database
access mechanisms are based on connection pooling, which requires a standard
user name and password. As a result, authorization in this implementation is
done at the component boundary, similar to the Java APIs example.

N O T E Newer application servers allow you to utilize database security on top of
database connection pooling. This enables you to start utilizing database security
for integration.

Because integration component runs within business service implementa-
tions, exception handling is done using the exception handling of the business

576 Part III ■ Case Studies

services. Any database errors are intercepted in the form of JDBC exceptions
and can be reported to a central logging service.

Technical monitoring is done through instrumenting the integration
components with service monitoring/management agents, similar to other
implementations.

Integration Based on the Vendor’s Web Services

In the last several years, many vendors that used to provide different propri-
etary integration mechanisms (for example, Java APIs, COM interfaces, MQ
interfaces, and so on) have switched to supporting Web Services for accessing
their functionality. This switch, on one hand, provides more flexible integra-
tion capabilities because these Web Services can be accessed from virtually
any execution platform. On the other hand, this solution often suffers from
the same drawbacks, described in the ‘‘Integration Based on the Existing Java
APIs’’ section. The drawbacks are reiterated here:

Integration is limited to the functionality and quality of service (secu-
rity, transactionality, etc.) provided by the vendor’s APIs. This means
that any additions to the integration capabilities have to be coordinated
with the vendor and its release schedule.

Data models exposed by these Web Services are aligned with the ven-
dor’s data model, which typically is different from the semantic
information model use in the interface and implementation of the busi-
ness services.

The granularity of these services is typically designed to provide maxi-
mal flexibility of integration and as a result is usually much lower than
the granularity of business service operations defined based on the enter-
prise model.

In many cases, these vendor-supplied Web Services are defined in a
way that requires an intimate knowledge of the application’s internals.
This includes (but is not limited to) requirements to invoke the Web
Services in a particular order, invoke different services based on inter-
mediate execution results, and so on.

The majority of these shortcomings can be mitigated by implementing
a local business component to encapsulating integration invocations and
coordination. This local business component serves as a rationalization layer
between the functionality provided by a vendor and the requirements defined
during design of the business services. The overall integration architecture for
this approach is presented in Figure 14-27.

Chapter 14 ■ Case Study — Service-Based Integration in Insurance 577

Vendor Application

Vendor Web Services

Wrapper Business Component

Web
Service
Client

Web
Service
Client

Figure 14-27 Integration using vendor’s Web Services

ACME’s Implementation of Integration Using
the Vendor’s Web Services
For integration with the IBM/FileNet document management system, which
provides Web Service interfaces, ACME has implemented a business compo-
nent that provides the required integration and exposes the required FileNet
functionality. (See Figure 14-28.) This component can be used for implementa-
tion of Document Management and/or any other services that require access
to and manipulation of existing documents.

Security for this example requires both authentication and authorization for
invoking operations on the Web Services. This requires that the WS-Security
Policy for identity propagation be configured in the Web Service container,
specifying WS-Security Kerberos Token Profile messaging. This is done in
order for the service consumer to know how to adapt to policy (see the
policy adaptation information in Chapters 11 and 12) and for the container

IBM/FileNet

Component: Work with Documents

Web
Service API Web

Service API

Figure 14-28 Overall integrations using vendor’s Web Services

578 Part III ■ Case Studies

(and thus the Web Service) to identify the user. At the same time, authoriza-
tion is achieved by configuring the access control policy (using XACML or
a container-specific methodology) at the boundary of an integration compo-
nent, expressing the policy to the services’ Policy Enforcement Points (PEPs).
The PEPs enforce the policy, allowing only users with certain authorization
credentials to execute certain components.

Exception handling is limited to exception handling of the Web Service
invocations. Although implementing a specialized daemon for pushing the
application’s log to the centralized logging service is possible, it is not done
because of changes that can be introduced by the vendor in newer versions.

Technical monitoring is done by instrumenting the integration compo-
nents with service monitoring/management agents, similar to the approaches
described earlier.

Summary

This case study demonstrates the design and decision processes for the
creation of integration services that support an enterprise business service. We
have presented an example from an insurance company that illustrates the
variety and complexity of integration solutions that need to be implemented in
an enterprise. First, we described the functional requirements and how the new
enterprise business service interfaces are mapped to existing capabilities. Next,
we provided an analysis of the different integration scenarios and outlined a
thought process for picking an appropriate integration approach. As a result
of this analysis, some integration was implemented through integration access
mechanisms, while in other situations ‘‘local’’ integration components with no
special integration access turned out to be a better solution. We provided the
detailed integration solution for each scenario, and then described additional
enterprise aspects such as a registry, security, and exception handling.

Although your implementation will probably be different, we strongly
encourage SOA architects to go through a similar decision process every time
they need to incorporate existing functionality in their SOA implementation.

A P P E N D I X

A

Business Use Cases

This appendix contains the business use cases for the examples described
in Chapters 6 and 7 on service interface design and service implementation
design.

Business Use Case BU01 — Quote Insurance

This section provides an overview of the use case, goals, and actors.
Description — This is the process by which a quote for insurance is pro-

duced and presented to a Customer in response to a Customer request. ACME’s
underwriting and pricing rules are applied to determine the acceptability of
risks and insurance premium options.

Actors —

Primary Actors — Customer, Agency

Secondary Actors — Underwriting, Pricing

Business goal — To obtain new business by providing competitive insur-
ance offerings

Triggers — Customer requests an insurance quote

579

580 Appendix A ■ Business Use Cases

Basic Workflow

1. Gather information for quote — The Agency gets information from the
Customer about the insurance desired:

Customer information

Customer contact information: phone, address, and email address

Whether this is a new Customer

Auto insurance

Auto information

• Make, model, year, and body type

• VIN

• General condition

Customer information

• Driving record

• Age

• Gender

• Information on other drivers (same as above)

Auto usage

• Expected yearly commuter miles and total miles

• Whether the auto is used for business purposes

Coverage desired

• Liability

• Collision

• Comprehensive

• Towing

• Auto glass

Homeowner’s insurance

Property information

• Location (physical address)

• Year built

• Dwelling type (single family, duplex, condo, etc.)

• Type of construction (stick frame, balloon frame, stone, brick,
etc.)

• Whether located in a flood plain

Appendix A ■ Business Use Cases 581

• Whether smoke alarms are present

• The value of the property

Occupancy (owner-occupied, rental, or unoccupied)

Coverage desired

Liability

Replacement value versus actual value

Personal property

Property item information

• Type

• Value

• Serial number (if applicable)

Whether the item is used for business

Coverage desired

• Replacement versus actual value

• Damage

2. Underwrite the quote — Underwriting examines the information on the
quote to determine which risks can be accepted and which cannot, based
on the company’s underwriting guidelines. A risk factor score between
1 and 100 is assigned for each coverage on each covered item. Covered
items include:

Auto insurance

Liability

Physical damage to the auto from collisions

Physical damage to the auto that is not the result of collisions

Physical damage to other autos from a collision

Physical damage to other property from a collision

Injuries, from collisions, sustained by covered persons

Injuries, from collisions, sustained by other persons

Towing services

Auto glass replacement

Homeowner’s insurance

Personal property

3. Price the quote — For each quoted coverage, the Agency creates a set
of options to present to the Customer. Each option includes a coverage

582 Appendix A ■ Business Use Cases

limit, a deductible, and a premium. The premium is based on ACME’s
pricing rules, and is based on the coverage limit, deductible, and risk
factor.

ACME also offers a multipolicy discount of 5% for Customers already
holding another policy with ACME, assuming the quoted policy does
not replace an existing policy. ACME also offers a 7% employee discount
for all policies.

4. Present quote — The Agency presents the quote to the Customer.

Alternative Workflow: Unacceptable Risk
If in Step 2 above, Underwriting determines that the coverage requested by
the Customer falls outside of ACME’s underwriting guidelines, one of the
following actions may be taken:

The Agency suggests to the Customer alternative coverage options,
which are then quoted.

The Customer decides not to pursue further quoting.

Performance Goals
Quick quote turnaround — ACME has determined that a quick response to
a request for a quote plays a significant role in a Customer’s decision as to
whether to purchase insurance. For this reason, ACME has a goal of producing
quotes in 1 hour’s time, with an ultimate goal of producing quotes during an
actual Customer interaction.

Business Use Case BU02 — Process Application

Overview — This section provides an overview of the use case, goals, and
actors.

Description — This is the process by which a Customer obtains insurance
coverage. Based on a preexisting quote, the Customer submits an application
for insurance. The insurance is underwritten and priced to take into account
additional coverage details and information about the Customer and/or
covered items that were not included in the quoting process. Billing is set up,
and the Customer receives an insurance binder.

Actors —

Primary Actors — Customer, Agency

Secondary Actors — Underwriting, Pricing

Business goal — Agency goal: to book new business
Triggers — Customer asks to apply for insurance

Appendix A ■ Business Use Cases 583

Basic Workflow
1. Complete application — The Agency works with the Customer to fill

out an insurance application, based upon the Customer’s selection of
coverage options presented on a preexisting quote. The Agency works
with the Customer to obtain additional required information and/or
to update any information that may be different from what was on the
original quote. Additional information includes:

Driver’s license number, state, and expiration date for all drivers.

Similar information for prior driver’s licenses held within the
‘‘look-back’’ period allowed by state regulations for the state in which
the Customer resides. The look-back period is the number of years
back that a person’s driving record may be considered when under-
writing insurance.

2. Gather additional information for policy processing — The Agency
obtains additional information required for completing and underwrit-
ing the application. Some of this information is immediately available,
such as VIN verification, police reports, insurance history, and so on.
Some information takes longer to obtain, such as that derived from an
on-site dwelling inspection. The intent is that the information be as com-
plete as possible, while still processing the application within the stated
performance goal guidelines (see below under ‘‘Performance Goals’’).

Auto insurance

Auto information

• From Kelley Blue Book — Verification that the VIN number
matches the vehicle; incident history

• From local and state police — Verification that the vehicle is not
stolen

• From local and state police — Police reports involving the
vehicle

Customer information

• From state driver’s license bureaus — driving record(s) from
state(s) of previous residence (all drivers)

Insurance information

• From insurance industry consortium — Claim history

• From insurance industry consortium — History of denied or
canceled auto insurance

Homeowner’s insurance

584 Appendix A ■ Business Use Cases

Property information

• From on-site inspection — Condition of the property, existence
of smoke alarms

• From appraisal — Value of the property

• From state department of natural resources — Verification of
flood plain status

Personal property insurance

Property item information

• From appraisals or purchase receipts supplied by the
Customer — Item value

• From local and state police — For items that have a serial num-
ber and a stated value of over $5000, verification that the item
wasn’t stolen

All insurance lines — Fraud detection

From internal ACME information — Was the Customer a claimant
as an uninsured person on multiple claims against insurance poli-
cies underwritten by ACME?

3. Underwrite the policy — Based on information on the application,
underwriting performs the same process of evaluating and scoring risks
as is done in BU01 Quote Insurance.

4. Price the policy — The Agency sets the premium for each coverage,
with its Customer-selected limit(s) and deductible, in the policy. As in
BU01 Quote Insurance, each coverage premium is based on ACME pric-
ing rules and is based on the coverage limit, deductible, and risk
factor.

Also, as in BU01 Quote Insurance, multipolicy and employee discounts
apply.

5. Set up billing and payment method — Billing is notified of the new pol-
icy application.

6. Send insurance binder — The Agency creates an insurance binder,
which is effective when the Agency receives the completed applica-
tion. Continued coverage is contingent upon the Customer making an
initial payment within 5 business days of acceptance of the applica-
tion. The Agency also mails the Customer a hard copy of the insurance
binder.

Appendix A ■ Business Use Cases 585

Alternative Workflow: Unacceptable Risk
If in Step 2 above, Underwriting determines that the coverage requested by the
Customer falls outside of ACME’s underwriting guidelines, the application is
declined.

Performance Goals
Quick application processing — As part of its overall customer service strat-
egy, ACME has a goal of completing underwriting and final pricing within 10
business days of receipt of an insurance application. However, ACME has a
corporate policy of maintaining an open underwriting period of 20 business
days after receipt of an insurance application. This means that a policy may be
canceled because of underwriting activities even after the insurance binder or
the policy itself is sent out.

Business Use Case BU03 — Change Policy

Overview — This section provides an overview of the use case, goals, and
actors.

Description — This is the process by which an existing insurance policy is
changed per the Customer’s request. The changes are underwritten, priced,
and quoted. The policy is updated accordingly, necessary changes are made
to billing, and the Customer is sent an updated copy of the policy.

Actors —

Primary Actors — Customer, Agency

Secondary Actors — Underwriting, Pricing, Billing

Business goals — To meet the Customer’s needs by modifying an existing
policy, thereby retaining the Customer’s business

Triggers — Customer requests that the agency make one or more changes
to an existing policy

Basic Workflow
1. Gather information regarding requested changes — The Agency

obtains information from the Customer about the changes that the
Customer wishes to make to the policy. Changes may include:

Auto insurance

Auto information

• Add or drop an auto

586 Appendix A ■ Business Use Cases

• Add or drop coverage

• Change deductible

Customer information

• Contact information change (other than address)

• Address change

• Add or drop a driver

Homeowner’s insurance

Property information

• Add or drop coverage

• Change deductible

• Value of property changes

Personal property insurance

Property item information

• Add or drop an item

• Value of an item changes

• Change deductible

• Add or drop coverage

2. Gather additional information for processing policy changes — As
applicable, the Agency obtains additional information required for pro-
cessing and underwriting the policy changes. Some of this information
is immediately available, such as VIN verification, police reports, insur-
ance history, and so on. Some information takes longer to obtain, such
as that derived from an on-site dwelling inspection. The intent is that the
information be as complete as possible, while still processing the appli-
cation within the stated performance goal guidelines (see below under
‘‘Performance Goals’’).

Auto insurance

Auto information (for autos added)

• From Kelley Blue Book — Verification that the VIN number
matches the vehicle; incident history

• From local and state police — Verification that the vehicle is not
stolen

• From local and state police — Police reports involving the
vehicle

Customer information (for drivers added)

Appendix A ■ Business Use Cases 587

• From state driver’s license bureaus — Driving record(s) from
state(s) of previous residence (all drivers)

Insurance information (for drivers added)

• From insurance industry consortium — Claims history

• From insurance industry consortium — History of denied or
cancelled auto insurance

Homeowner’s insurance

Property information (for property value change)

• From appraisal — Value of the property

Personal property insurance

Property item information (for added items or for items whose
value has changed)

• From appraisals or purchase receipts supplied by the
Customer — Item value

• From local and state police — For items that have a serial num-
ber and a stated value of over $5000, verification of whether the
item was stolen

3. Underwrite the policy — The policy changes are underwritten using the
same process of evaluating and scoring risks as in BU01 Quote
Insurance.

4. Price the policy — The Agency reprices the policy based on the
requested changes, generates a new quote, and presents it to the Cus-
tomer, as in BU01 Quote Insurance.

5. Update billing — The Agency notifies Billing of any premium changes.

6. Update policy package — Document Processing makes necessary
changes to the hard-copy policy package.

7. Send copy of policy package to the Customer — Document Process-
ing sends a copy of the updated policy package to the Customer via sur-
face mail.

Alternative Workflow: Unacceptable Risk
In Step 2 above, if Underwriting determines that the requested policy change(s)
presents an unacceptable risk, the changes are denied and one of the following
may happen:

The Customer modifies the requested changes, and the Agency requotes
the policy.

588 Appendix A ■ Business Use Cases

The Customer retains the policy as is.

The Customer cancels the policy.

Extension Points
This section describes any extension points.

Billing change — Step 4 above may activate BU05 Adjust Premium.
Customer cancellation — Alternative Flow Underwriting Required may

activate BU04 Cancel Policy.

A P P E N D I X

B

Evaluating SOA Services

This book discusses the fundamentals of Service-Oriented Architecture,
including the design and technical concerns of building SOA services. As
stated in Chapter 2, simply having services is not enough; you need the right
kind of services, and you need well-designed and properly built services. How
do you know if you have the right kind of services or if the services will satisfy
the current or future requirements? Is there an objective way to assess services
and their alignment with business needs?

This appendix contains an evaluation matrix for assessing the design of
SOA services. It consists of four categories: Alignment Characteristics, Design
Characteristics, Technical Characteristics, and Housekeeping Characteristics. Within
each category, there are several characteristics pertaining to the category and
questions to ask about how well the service satisfies that characteristic. The
collected answers to the questions in the matrix indicate how well a service
fits into an SOA solution.

Categories group together service characteristics that address specific
architectural principles and practices.

Characteristics are the service dimensions that you evaluate. The goal
of the evaluation is to determine how well the service follows the SOA
principle or practices. Each characteristic has a brief description and is
followed by a list of the outcomes of the evaluation.

589

590 Appendix B ■ Evaluating SOA Services

Questions help you evaluate each characteristic. The matrix provides
a set of questions to use while assessing the service. For example, how
well the service aligns with the business drivers or the composability of
the service. Each question is followed by a list of possible answers.

We have tried to keep the table brief and manageable. Following the table
is a detailed explanation of each characteristic, the meanings of the associated
outcomes, motivation and elaboration of each question, and the meanings of
the associated answers.

You use the evaluation matrix throughout the process of service design
and implementation. The evaluation criteria allow you to rate the service in
an objective manner. The results provide insight into how well the service
satisfies the key requirements, such as reusability or alignment with business
goals and needs.

Throughout the design and implementation process, each perspective (role)
checks the services against the evaluation criteria that fit within their concern.
For example, there is no need for the business analyst to evaluate the Autonomy
characteristic or the interface style. In general:

The Business Perspective is concerned with the Alignment Character-
istics.

The Design Perspective is concerned with Alignment and Service Char-
acteristics, along with a selection of Technical and Housekeeping
Characteristics.

The Implementation Perspective is concerned with Alignment, Service,
Technical, and Housekeeping Characteristics — basically, the entire
matrix.

How Do I Assess Services?

The service evaluation matrix asks questions designed to help you evaluate
services both qualitatively and quantitatively. You use the matrix through-
out the service design and implementation process. Depending on your
perspective within the process — Business, Design, or Implementation — you
ask the questions in the categories that are appropriate for your concerns.
Once your answers are collected, you identify gaps in the service’s design or
implementation.

For the first three categories in the matrix, the assessments ask multiple-
choice questions. The list starts with the most desirable answers and ends with
the less desirable answers.

The fourth category of the matrix — Housekeeping Characteristics — is
different from the rest. Instead of assessing the quality of the service, it
focuses on the quantitative aspects of the services in your enterprise. The

Appendix B ■ Evaluating SOA Services 591

Housekeeping Characteristics describe the service’s attributes or dimensions.
The information listed in this category provides a basis for the monitoring,
measuring, and analysis of your service repository.

The following table contains the evaluation matrix.

Table B-1 SOA Service Evaluation Matrix

CHARACTERISTIC QUESTIONS

A
L
I
G
N
M
E
N
T

C
H
A
R
A
C
T
E
R
I
S
T
I
C
S

Business Alignment
Assess whether the service
aligns with and supports the
enterprise’s business needs.

* Aligned
* Partially aligned
* Misaligned
* Not aligned

Is there a clear link between one or more
business requirements and the service?
*Yes | No

Can you trace the service back to a business
outcome, objective, or goal?
* Yes | No | Don’t know

If the service provides rules or decisions, are
they associated with specific business rules or
policies?
* Yes | No | Don’t know

Do the service operations perform a specific
business process activity?
* Yes | Partially | No

Specification
Determine if the specification
tells both business users and
technical users what the
service does.

* Good
* Adequate
* Poor

Does the service have a specification?
* Yes | No

How well does the specification describe what
the service does from the business perspective?
Is it sufficient for a business analyst to decide
whether a service can be used in a solution?
* Good | Adequate | Poor

How well does the specification describe what
the service does from the technical perspective?
* Good | Adequate | Poor

Are the expected kinds of consumers of this
service clearly defined?
* Yes | No

Does the service conform to enterprise
standards for the type of service?
* Yes | No

Is the interaction style of the service appropriate
for this type of service?
* Yes | No

(continued)

592 Appendix B ■ Evaluating SOA Services

Table B-1 (continued)

CHARACTERISTIC QUESTIONS

Fit for Purpose
Assess how well the service
fits its intended use.

* Good
* Adequate
* Poor

Does this service provide a single, consistent
way to access data or perform a business
function?
* Yes | No

Is the usage type of this service appropriate for
the purpose?
* Yes | No

Is the scope, granularity, and interface style of
the service appropriate for its purpose?
* Yes | No

Security
Measure the extent with
which the service aligns with
the enterprise security goals
and requirements.

* Aligned
* Partially aligned
* Misaligned
* Not aligned

Does this service adhere to the security
requirements of the enterprise?
* Yes | No

Does the security of the service adhere to the
security standards established by SOA
governance in your project?
* Yes | No

Semantic Alignment
Measure the extent to which
the service aligns with the
enterprise and other shared
semantics.

* Semantic alignment
* Duplicate information
* Misaligned
* Not aligned

Does the service share common information
definitions with other services or processes? If
so, does the Semantic Information Model define
the shared information?
* Yes | No

Does the service interface adhere to the
Semantic Information Model?
* Yes | Partially | No

Does the service interface redefine common
information or duplicate information separate
from the Semantic Information Model?
* Yes | No

D
E
S
I
G
N

Isolation of
Responsibilities
Assess the degree to which
the service isolates discrete
responsibilities into one
place.

* Yes
* No

Is each service operation responsible for a
discrete task?
* Yes | No

Is this service the sole provider of these tasks or
resources?
* Yes | No

Appendix B ■ Evaluating SOA Services 593

CHARACTERISTIC QUESTIONS

C
H
A
R
A
C
T
E
R
I
S
T
I
C
S

Abstraction
Determine if the service
interface represents essential
concepts and hides private
behavior and information.

* Full
* Partial
* Low

Does the service express the essential concepts
and information?
* Yes | Partially | No

Does the interface hide the details of the
implementation? Is there a strict separation of
what the service does from how the service
does it? Are only the necessary details available
to the consumer?
* Yes | No

Is the level of abstraction appropriate for the
intended use?
* Yes | No

Coupling
Measure the dependencies
between a service consumer
and provider.

* Independent
* Minimal coupling
* Tight coupling

Does this service limit what the consumers
must know in order to invoke it to what is
described in the service specification?
* Yes | No

Does the service avoid making assumptions
about the purpose or business characteristics of
the consumer?
* Yes | No

Does this service have minimal, but well-known,
dependencies on the services it invokes?
* Yes | No

Is run-time policy logic expressed and
implemented separately from the business
logic? Is the policy logic configurable?
* Yes | No

Is the security logic separate from the business
logic of the service? Is the security logic
configurable?
* Yes | No

Does the service separate the public view of the
data from the private view?
* Yes | No

Granularity
Determine if the size and
complexity of the service, in
terms of the business
function, are appropriate.

Does the service use other services and
components in order to achieve the
functionality?
* Yes | No

(continued)

594 Appendix B ■ Evaluating SOA Services

Table B-1 (continued)

CHARACTERISTIC QUESTIONS

* Good
* Adequate
* Poor

Is the amount of functionality provided by this
service well understood?
* Yes | No

Is the service’s granularity appropriate for its
intended use?
* Yes | No

Stateless
Assess whether the
information or the other state
is retained between requests.

* Stateless
* Retains State

Does the service avoid keeping state
information between method calls?
* Yes | No

Can additional instances of the service be
created to support scale?
* Yes | No

Can subsequent client requests go to different
service instances?
* Yes | No

Composable
Determine the ease of
including the service in a
composition with other
services.

* Good
* Adequate
* Poor

Do you expect other services to use this service?
* Yes | No

Is the service granularity appropriate for
composition within the intended context?
* Yes | No

Is the combination of the service’s usage type
and output conducive to composition?
* Yes | No

Governance
Measure adherence to
policies throughout the
service life cycle.

* Good
* Adequate
* Poor

Does the service have a responsible owner?
* Yes | No

How well does the service adhere to the
design-time governance policies?
* Good | Adequate | Poor

How well does the service adhere to the
deploy-time governance policies?
* Good | Adequate | Poor

How well does the service adhere to the
run-time governance policies?
* Good | Adequate | Poor

How well does the service adhere to the
change-time governance policies?
* Good | Adequate | Poor

Appendix B ■ Evaluating SOA Services 595

CHARACTERISTIC QUESTIONS

T
E
C
H
N
I
C
A
L

C
H
A
R
A
C
T
E
R
I
S
T
I
C
S

Service Specification
How complete is the service
specification? How good is
the service specification?

* Good
* Adequate
* Poor

Does the service specification completely
describe the interface?
* Yes | No

Does the specification clearly describe the
behavior and interaction style of each of the
operations?
* Yes | No

Does the specification contain all constraints
and pre- and postconditions for the operations
described?
* Yes | No

Does the service specification describe all
exceptions?
* Yes | No

Does the service specification include one or
more independent run-time service policies?
* Yes | No

Do the run-time policies specify the run-time
constraints, messaging format related to
security, reliability/QoS, interaction styles, and
SLAs?
* Yes | No

Service Level Agreement
How complete is the service
level agreement (SLA) for this
service?

* Completely specified
* Partially specified
* Poorly specified

Does the service have at least one SLA, as
specified in the run-time policies?
* Yes | No

Is each SLA formally specified?
* Yes | No

Does the SLA provide a description of the
service’s technical performance, such as
availability, reliability, throughput, and response
time?
* Yes | No

Does it include business characteristics, such as
business units of work?
* Yes | No

Extensibility
Extensibility measures the
ability of the service design

Is the service designed to support the
implementation of future requirements?
* Yes | No

(continued)

596 Appendix B ■ Evaluating SOA Services

Table B-1 (continued)

CHARACTERISTIC QUESTIONS

and implementation to
support enhancements.

* High
* Medium
* Low

Have the appropriate patterns or abstractions
been used to facilitate future enhancements?
* Yes | No

Variability and
Configurability
These characteristics measure
the ability of the service to
support multiple users.

* Variable
* Partially variable
* Not sufficiently variable

Does the service support necessary variability
mechanism?
* Yes | No

Does the service use standard enterprise
mechanisms for configuration?
* Yes | No

Does the service use common data for
configuration?
* Yes | No

Autonomy
Autonomy is the characteristic
that allows services to be
deployed, modified, and
maintained independently
from each other and the
solutions that use them.

* Autonomous
* Not autonomous

Is this service loosely coupled, and are its
responsibilities well isolated?
* Yes | No

Is this service’s life cycle independent of that of
other services?
* Yes | No

Can the service be deployed independently
from other services?
* Yes | No

H
O
U
S
E
K
E
E
P
I
N
G

Scope The intended range of users of a service
* Enterprise | Line of Business (LOB) | Domain |
Solution

Visibility The range of users that are allowed to see the
existence of a service, and subsequently to use it
* Public | Private

Ownership Organizational unit responsible for the support
of a service
* Organization name

Granularity The size of a service in terms of the amount of
business function performed in a single
request/response exchange of messages
* Large | Medium | Small

Appendix B ■ Evaluating SOA Services 597

CHARACTERISTIC QUESTIONS

C
H
A
R
A
C
T
E
R
I
S
T
I
C
S

Type Derived from scope, visibility, granularity, and
responsibility
* Enterprise business | Business Service (LOB) |
Business Service (Common) | Domain | Utility |
Integration | External | Foundation

Interaction style Pattern of the service’s operation signatures,
specifically how information is passed into and
out of the service
* Parameter passing | Document passing | Data
Passing | Request/Reply | Event | Mixed

Usage type Indication of the primary purpose of the service
* Task | Entity | Decision

Composition Whether the service uses other services and
components in order to achieve the functionality
* Atomic | Composite

Run-Time Service Policy Run-time constraints and capabilities of a
service
* List run-time policy artifacts

Service Level Agreement
(SLA)

Formal agreement specifying QoS response
times, business units of work, and action
guarantees
* List SLAs artifacts

Specification Description of service functionality, how to use
it, and how to implement it
* List specification artifacts

Construction How the service was implemented
* Buy | Build | Integrate

Reuse Count of the uses of this service.
* Count of how many different solutions use
this service

Versions Versions under development, test, and deployed
* List of versions: Development, Test, Deployed

Alignment Characteristics
One of the key principles of SOA is that services are aligned with the
business goals, strategies, and operations of an enterprise. The Alignment
Characteristics allow you to assess how well the service will facilitate your

598 Appendix B ■ Evaluating SOA Services

enterprise’s business operations and future strategy. The questions in this
portion of the evaluation matrix help you determine the degree to which your
services are aligned with the enterprise’s needs.

Business Alignment

A good service aligns with the business’s needs and strategy. The effort to
design and implement a service, regardless of type, should only be expended
if the service satisfies one or more specific business requirements.

This collection of questions helps you to assess how well the service aligns
with the enterprise’s activities and objectives and supports its business needs.
The business alignment of all services should be evaluated. Be aware that,
because of their general or technical infrastructure focus, you may find it more
difficult to trace utility and foundation services back to business requirements.

The overall assessment of this characteristic is one of the following:

Aligned — This is what you are aiming for. The service is aligned with
the business strategy and goals.

Partially aligned — The service partially addresses a requirement, or the
requirement is ambiguous enough that there is potential for not satisfy-
ing the business goal. The gap between the requirements, service design,
and service implementation should be evaluated to resolve the differ-
ences.

Misaligned — The service performs functions that are contrary to the
business objectives.

Not aligned — The service does not meet any requirements. The enter-
prise has no need for this service. Evaluate if and why it is being
developed.

Business Alignment Questions

Is there a clear link between one or more business requirements and the
service? Services must be designed and developed in response to specific
business requirements. The resulting service implements specific enter-
prise business functions and accesses its data and resources. (Chapters 2,
3, 4, 12)

Yes — The service satisfies one or more business requirements.

No — The service is not related to a business requirement.

Can you trace the service back to a business outcome, objective, or
goal? — The same forces that drive the business, drive SOA; these forces
include strategy, competition, market forces, regulatory forces, and so
on. They all combine to drive the business’s strategy and the resulting

Appendix B ■ Evaluating SOA Services 599

business architecture (model). Because services are created in response
to business needs, you should be able to trace the purpose of the service
back to a specific business driver. (Chapters 2, 3, 4)

Yes — One or more business outcomes, objectives, or goals is
satisfied.

No — The service is not related to a business need.

Don’t know — It is not clear if the service is related to a business
need.

If the service provides rules or decisions, are they associated with
specific business rules or policies? — Services must support specific
business rules and decisions. Their behavior must be consistent with
the business operations. (Chapters 2, 3, 12)

Yes — The service is associated with a specific business policy or rule.

No — The service is not associated with any business policy or rule.

Don’t know — It is not clear whether the service is associated with a
specific business policy or rule.

Do the service operations perform a specific business process activ-
ity? — Now you are looking in more detail at the service. Specifically,
you want to determine if the service’s operations address activities of a
specific business process. The operations of business and domain ser-
vices should be traceable back to specific business activities. (Chapters 2,
4, 6, 12)

Yes — All of the operations within a service are associated with a
specific business activity.

Partially — Some of the operations execute specific business activities.

No — None of the operations is associated with a specific business
activity.

Specification
These questions help you ensure that the stakeholders, such as business
users and technical users, have an unambiguous description of the service, its
behavior and information, how to interact with it, usage constraints, and so on.
As stated in Chapter 3, business analysts need to decide whether a particular
service can be used in the solution that they are designing, and technical users,
or developers, need to know how to invoke the service.

This section has a different focus than the ‘‘Specification’’ section under
‘‘Technical Characteristics.’’ Here, we are assessing how well the specifi-
cation conveys the necessary information to its audiences. The ‘‘Technical
Characteristics’’ section focuses on the technical aspects of the specification
contents.

600 Appendix B ■ Evaluating SOA Services

The overall assessment of how well a service’s specification communicates
with its intended audience is one of the following:

Good — The specification clearly describes what the service does and
how to use it.

Adequate — The specification describes the service, but there may be
slight ambiguities or minor missing information.

Poor — The specification is nonexistent or insufficient to understand
what the service does and how to interact with it.

Specification Questions

Does the service have a specification? — A specification is required
for others to assess whether to use the service and how to use it.
(Chapter 3, 12)

Yes — A specification exists.

No — A specification does not exist.

How well does the specification clearly describe what the service does
from the business perspective? — Is it sufficient for a business analyst
to decide whether a service can be used in a solution? Does it include a
description of what the service accomplishes, appropriate use, limita-
tions of use, quality of service (QoS), and requirements for use? Is there a
detailed description of how the service is used? Is there at least one ser-
vice level agreement (SLA)? (Chapter 3)

Good — The service’s behavior is clearly described in business terms.

Adequate — The service’s behavior is described in business terms but
could use improvement.

Poor — The description of the service’s behavior is not sufficient to
communicate with the business analyst.

How well does the specification clearly describe what the service does
from the technical perspective? — Is it sufficient for an architect to do
adequate resource planning? Can the developer implement the ser-
vice? Does the specification describe how to use the service (invocation,
protocols, etc.), invocation policies, and quality of service guarantees?
(Chapter 3)

Good — The service’s behavior is clearly described in technical terms.

Adequate — The service’s behavior is described in technical terms,
but could use improvement.

Poor — The description of the service’s behavior is not sufficient to
communicate to the technical audience.

Appendix B ■ Evaluating SOA Services 601

Are the expected kinds of consumers of this service clear? Just as with
any other customer relationship, the service must know what kinds of
consumers it is serving. Even though loose coupling dictates that ser-
vices be designed with little or no assumptions or knowledge of any
particular service consumer, the design must take into consideration
what types of consumers will use it. This is because the consumers’
expectations influence granularity and interaction style. A consumer
could be a business process, enterprise, line-of-business, other service,
and so on. (Chapter 2, 3)

Yes — It is clear what kinds of consumer would use this service.

No — It is not clear what kinds of consumer would use this service.

Does the service conform to enterprise standards for the type of
service? — In any complex system or environment, you would expect
to see a range of service types. Given the common service patterns, does
this service meet the enterprise standards? If the service varies from
the standards, determine if the exception is acceptable. (Chapter 6)

Yes — The service is in conformance.

Partially — The service varies in some aspect from the standards.

No — The service does not conform to the standards.

Is the interaction style of the service appropriate for this type of
service? — An important concern in the design of service interfaces
is the style of interaction between the service consumer and provider.
Chapter 6 provides guidance on the typical kinds of interaction styles
for different service types and their appropriate use. See ‘‘Housekeeping
Characteristics’’ for a list of valid interaction types. (Chapters 2, 3, 6)

Yes — Each operation’s interaction is appropriate for this type of
service.

No — The interaction style is not appropriate.

Fit for Purpose

As stated in Chapter 2, the business principle behind SOA is to build up a
collection of independent services that can be quickly and easily combined in
a variety of ways into different, higher-level business services and business
processes. Because each service provides a discrete unit of business function-
ality, you want to be sure that the functionality is appropriate for its intended
purpose, according to its service type (Business, Domain, Utility, etc.) and its
usage style (task, entity, etc.).

The overall assessment of how well a service fits its purpose is one of the
following:

602 Appendix B ■ Evaluating SOA Services

Good — The service clearly fits its purpose without extraneous
functions.

Adequate — The service does a good job of accessing information or
performing a business function, but there is room for improvement.

Poor — The service is a poor fit for its intended purpose.

Fit for Purpose Questions

Does this service provide a single, consistent way to access data or
perform a business function? — When a service provides a single, con-
sistent way to access information or perform a business function, it is
clear what its responsibilities are. When the responsibilities are clear,
business analysts and technical users can easily combine the service with
others. (Chapters 2, 6)

Yes — There is a single, consistent way to access information or
perform tasks.

No — There are multiple ways to access information or perform tasks.

Is the usage type of this service appropriate for the purpose? — This
may seem like an obvious question, but you want to be sure that the
service focuses on its primary purpose and that a little extra process-
ing has not crept in at some point. For example, a decision service does
not do a task based on the results of the decision. The usage type
indicates, in a broad sense, the primary purpose of the service. See
‘‘Housekeeping Characteristics’’ for the list of usage types. (Chapter 2, 4)

Yes — The usage type is appropriate.

No — The usage type is not appropriate.

Is the scope, granularity, and interface style of the service appropriate
for its purpose? — Does this service do too much or do too little for the
service layer? The combination of scope, granularity, and interface style
indicate the enterprise context in which the service interface is expected
to operate. See ‘‘Housekeeping Characteristics’’ for valid measures of
scope and granularity. (Chapters 2, 6)

Yes — The scope, granularity, and interface are appropriate.

No — The scope, granularity, and the interface do not match the
service’s purpose.

Security

As we discussed in Chapter 11, a service’s security is dictated by the enterprise’s
security goals and requirements. From a business alignment perspective, it is
important that a service satisfies these goals and requirements; otherwise, they

Appendix B ■ Evaluating SOA Services 603

are not achieving what is required. It is important that the security require-
ments’ analysis at the beginning of a project determine such requirements. In
addition, security standards and practices established in SOA governance also
drive the mechanisms of service security.

This section of the evaluation matrix focuses on how a service adheres to
these requirements and standards. The overall assessment of this characteristic
is one of the following:

Aligned — This is what you are aiming for. The service is aligned with
the enterprise security requirements and goals.

Partially aligned — The service partially addresses the enterprise secu-
rity requirements and goals. The gap between the security requirements
and the service’s security capabilities should be evaluated to resolve the
differences.

Misaligned — The service’s security capabilities are contrary to the
enterprise’s goals and strategy.

Not aligned — The service does not meet any security requirements.

Security Questions

Does this service adhere to the security requirements of the enter-
prise? — Specifically, you want to know if the service aligns with secu-
rity goals such as authentication, authorization, confidentiality, integrity,
and non-repudiation. (Chapter 11)

Yes — The service does adhere to the security requirements.

No — The service does not adhere to the security requirements.

Does the security of your service adhere to the security standards
established by SOA governance in your project? — Does the service
provide security using the standard mechanisms? If not, is the variance
acceptable? (Chapter 11)

Yes — The service does adhere to the security governance standards.

No — The service does not adhere to the security governance stan-
dards.

Semantic Alignment

The Semantic Alignment characteristic is concerned with the extent to which
the service aligns with the Semantic Information Model. The information model
contains the common understanding of business entities and information
shared between services, and provides the definitive source for the messages
exchanged by services.

604 Appendix B ■ Evaluating SOA Services

The overall assessment of this alignment is one of the following:

Semantic Alignment — The service relies solely on the Semantic Infor-
mation Model to define the information exchanged between it and other
services.

Duplicate Information — The service duplicates information from the
Semantic Information Model, which may lead to ambiguity or differing
sets of information passed between services.

Partial alignment — The service relies on the Semantic Information
Model but defines some information on its own.

No Alignment — There is no alignment between the service and the
Semantic Information Model. The service does its own thing about infor-
mation.

Semantic Information Model Questions

Does the service share common information definitions with other
services or processes? If so, does the Semantic Information Model define
the shared information? The Semantic Information Model provides the
definitive source for the messages exchanged by services. Therefore, all
shared information should be contained in the model. If the information
is in the model, then the service must use it. If it is not in the model, then
it should be added. If the service does not share information with other
services, then it may not be a candidate for being a service. (Chapter 2)

Yes — The service shares information and its information is in the
Semantic Information Model.

No — The service does not share information or its information is not
in the Semantic Information Model.

Does the service interface adhere to the Semantic Information
Model? — Using the Semantic Information Model to define business
service interfaces leads to the creation of semantically interoperable
services. If a service interface varies from the semantic model, inter-
operability and composability may be at risk. (Chapter 3, 4, 5, 6)

Yes — The service adheres to the Semantic Information Model.

Partially — The service partially adheres to the Semantic Information
Model.

No — The service departs altogether from the Semantic Information
Model.

Does the service interface redefine common information or duplicate
information separate from the Semantic Information Model? — Best
practices for SOA state that the service interface uses the Semantic

Appendix B ■ Evaluating SOA Services 605

Information Model as the source for shared information. The service
should not define a one-off variation or duplicate the information.
(Chapters 2, 3, 4, 5, 6)

Yes — The service interface has redefined or duplicated information
from the Semantic Information Model.

No — The service interface does not redefine or duplicate information
from the Semantic Information Model.

Design Characteristics
One of the keys to achieving SOA success is creating a collection of services
that support a variety of different business processes and scenarios. The
characteristics and questions in this section of the evaluation matrix help you
to understand how well services adhere to the key design principles of SOA.

Isolation of Responsibilities

A key characteristic of service design is ensuring that the responsibility for
discrete tasks or the management of specific resources is the responsibility of
a single service. When responsibilities are isolated, there is one, and only one,
place for each function, providing consistency and reducing redundancy.

This collection of questions help you assess how well the service provides
consistency and reduces redundancy by isolating responsibilities.

The overall assessment of this characteristic is one of the following:

Yes — This service is the sole source of its responsibilities.

No — This service is not the sole source of its responsibilities.

Isolation of Responsibilities Questions

Is each service operation within this service responsible for a discrete
task? — Although a well-designed service is responsible for a cohesive
set of operations relating to the same resource, each operation within
that service performs a discrete task to manage the resource. If an oper-
ation provides functions for more than one discrete task or resource,
the operations may need to be separated into additional services.
(Chapters 2, 6)

Yes — Each service operation is responsible for a discrete task.

No — One or more service operations does too much.

Is this service the sole provider of these tasks or resources? — If more
than one service provides functions for specific tasks or resources, then
you have duplication and the potential for divergent behavior or infor-
mation. (Chapters 2, 6)

606 Appendix B ■ Evaluating SOA Services

Yes — This service is the sole provider for these tasks or resources.

No — Duplication of responsibility exists.

Abstraction

When designing and building services, good abstraction reduces coupling,
accommodates change, and facilitates separation of concerns. The abstraction
characteristic measures the extent to which the service interface and informa-
tion represent essential concepts and information separate from the internal
behavior and information.

The overall assessment of this characteristic is one of the following:

Full — The service is fully abstracted. It cleanly hides private implemen-
tation and information.

Partial — The service is partially abstracted. It could do a better job of
hiding private implementation and information.

Low — The service exposes its private implementation or information.

Abstraction Questions

Does the service express the essential functions and information? —
To determine whether the service expresses the essential functions and
information, you evaluate the service interface. This is where you find
what the service does and what information is involved. (Chapters 3, 6)

Yes — Only the necessary details are available to the consumers.

Partially — The service interface could do a better job of hiding the
service’s private implementation and information.

No — Internal implementation or information is made public.

Does the interface hide the details of the implementation? — Is there
a strict separation of what the service does from how the service does it?
Are only the necessary details available to the consumer? Well-designed
services keep their internal working opaque to the consumers. They
exhibit a strict separation of the service interface from the service imple-
mentation. (Chapters 2, 4, 6)

Yes — The service interface cleanly hides the service’s private imple-
mentation and information.

No — The private implementation or information is not hidden.

Is the level of abstraction appropriate for the intended use? — Abstrac-
tion is the suppression of irrelevant detail. Each layer of the service
hierarchy provides an abstraction and integration of the layer below,
breaking the direct dependence between processes and existing

Appendix B ■ Evaluating SOA Services 607

systems. Higher-level services hide all the complexity and details of the
underlying implementation behind a consistent business focused inter-
face that is appropriate for a business process. Lower-level services have
less abstract interfaces that expose smaller modularity of capabilities
and information. Therefore, the level of abstraction of a service should
support the intended use as related to the service type. (Chapters 2, 6)

Yes — The level of abstraction is appropriate for the service’s
intended use.

No — The level of abstraction is inappropriate for the service’s
intended use.

Coupling

Coupling describes the amount of dependencies between a service consumer
and service provider. The degree of coupling between services directly affects
the flexibility and extensibility of a system. The looser the coupling, the more
flexible the service. Loosely coupled services have few, but well-known and
well-managed, dependencies. Tightly coupled services have many known,
and more importantly unknown, dependencies. From the service’s perspective,
coupling is twofold. First, as a provider, the service is concerned with the
degree of coupling it requires of its consumers. How much beyond the service
interface should the consumer know to use the service? The less that the
consumer must know, the looser the coupling. Second, the service is concerned
with its dependencies on other required services (when it is a consumer of
other services).

The assessment of a service’s coupling with its consumers and providers is:

Independent — The service has no dependencies.

Minimal coupling — The service has a few, but well-known and well-
managed, dependencies.

Tightly coupled — The service’s dependencies are onerous or unknown.

Coupling Questions

Does this service limit what the consumers must know in order to
invoke it to what is described in the service specification? — It is
important to enable the independent evolution of both the service con-
sumer and provider. This is done through a variety of techniques,
technologies, and policies. A service increases the coupling when the
consumer must know details of internal things such as communications
protocols or location. (Chapter 2, 3, 9)

Yes — Nothing beyond the service interface is required of consumers.

608 Appendix B ■ Evaluating SOA Services

No — Consumers must know more than what is in the service
interface.

Does the service avoid making assumptions about the purpose or busi-
ness characteristics of the consumer? — The service implementation
should make no assumptions as to the purpose, technical, or business
characteristics of the service consumer. (Chapter 2)

Yes — The service makes no assumptions, or only necessary assump-
tions are made, about its typical consumers.

No — The service makes unnecessary assumptions about the
consumers.

Does this service have minimal, but well-known dependencies on the
services it invokes? — In this case, you are looking at the service as a
consumer of other services. You need to determine how tightly coupled
this service is to the services it invokes. (Chapter 2, 6)

Yes — The dependencies are few, well-known, and well-managed.

No — The dependencies are numerous or unknown. This directly
impacts flexibility and extensibility.

Is run-time policy logic separately expressed and implemented from
the business logic? — Is the policy logic configurable? Separating the
run-time policy logic from business logic makes your service more
loosely coupled. When service policies are separated from business logic
and are expressed in a discoverable way, the consumer can dynamically
adapt to future service policy changes. (Chapters 9, 12)

Yes — The service has decoupled its policy logic and business logic,
as well as its expression of run-time service policy.

No — The service’s run-time policy logic is implemented directly in
the service and/or run-time policies are not expressed.

Is the security logic separate from the business logic of the service? —
Is the security policy logic configurable? Best practices recommend loose
coupling between the implementation of security logic and the imple-
mentation of business logic. Standard security interceptor mechanisms
can be used, either embedded as functionality in your application server
or written with security handlers. (Chapters 9, 12)

Yes — The service has decoupled its security logic and business logic.

No — The service’s business layer implements security logic.

Does the service separate the public view of its data from its private
view? A service should never expose its internal data structures. Only
the information described in the semantic model should be exposed
through the interface. Even the smallest amount of internal information

Appendix B ■ Evaluating SOA Services 609

that is exposed outside the service will result in unnecessary dependen-
cies. (Chapters 2, 3, 4, 6, 7)

Yes — The only information exposed is from the Semantic Informa-
tion Model.

No — Private, internal data is exposed.

Granularity

In SOA, business processes are decomposed into modular ‘‘services’’ that
are self-contained. Services themselves can be composed from other modular
services, and can be mixed and matched as needed to create new composite ser-
vices. Granularity is a quality of functional richness for a service — the more
coarse-grained a service is, the richer the function offered by the service.

This characteristic measures whether the service’s granularity is well under-
stood. The possible assessments are:

Good — The granularity of the service is appropriate for its type and
purpose.

Adequate — The granularity may need refinement.

Poor — The granularity is inappropriate for its type and purpose.

Granularity Questions

Does the service use other services in order to achieve its function-
ality? — A composite service’s implementation invokes other services.
The implementation of an atomic service does not require or use any
other services. Atomic services are the lowest level of service compo-
sition. Whether a service is atomic or composite will affect its granu-
larity. Coarse-grained services provide a greater level of functional-
ity within a single service operation. Fine-grained service operations
provide the exchange of smaller amounts of information to complete a
specific discrete task. In general, the finest-grained services are more
likely to be atomic and the coarser-grained services will be composite.
(Chapter 2, 6)

Yes — The service is composite.

No — The service is atomic.

Is the amount of business functionality provided by this service well
understood? — Services may be course-grained (have lots of functional-
ity), medium-grained, or fine-grained (have little functionality). There is
not a single, correct size for all services. What is important is that the
functionality provided be consistent, modular, and understandable.
(Chapter 6)

610 Appendix B ■ Evaluating SOA Services

Yes — The amount of business functionality is well understood.

No — It is not clear how much business functionality is provided.

Is the service’s granularity appropriate for its intended use? — A ser-
vice’s granularity should match the functional modularity of its typical
consumer. For example, a business process expects to call services with
granularity that corresponds to that of a process activity. (Chapter 6)

Yes — The service’s granularity is appropriate for its use.

No — The service’s granularity is not appropriate for its use.

Stateless

An important characteristic of a service is to be as stateless as possible. This
means that services neither remember the last thing they were asked to do nor
care what the next is. More specifically, the service does not maintain state
on behalf of its consumer between requests. Any given request can act on the
state of particular information, but a subsequent request does not rely on
the service maintaining the state from a previous request. Stateless interactions
are important in terms of scalability, reliability, failover, and so on.

Assessment outcomes:

Stateless — The service is sufficiently stateless.

Retains state — The service retains too much state.

Stateless Questions

Does the service avoid keeping state information between method
calls? — If the service maintains a session, context, or data across invoca-
tions, then it retains state. This affects the ability to scale, load balance, or
fail over. (Chapters 2, 6)

Yes — State is not maintained between calls.

No — State is maintained between calls.

Can additional instances of the service be created to support scale? —
Adding services to improve performance or support scale is much easier
when those services do not maintain state. Maintaining state ties a ser-
vice instance to a particular datastore. (Chapters 2, 6)

Yes — Additional services may be added with predictable results.

No — State is maintained in a store tied directly to a service instance.

Can subsequent client requests go to different service instances? —
Relocating or duplicating services is much easier when those services do
not maintain state. (Chapters 2, 6)

Appendix B ■ Evaluating SOA Services 611

Yes — Client requests are not tied to a specific instance of a service.
They may be directed to different instances of the service.

No — The client is limited to a specific server instance.

Composable

SOA promotes the concept of a business-aligned enterprise service as the
fundamental unit for designing, building, and composing enterprise business
solutions. This means that services can be composed from other services — and,
in turn, they can be combined with other services to compose new services
or business processes. Several of the characteristics found throughout the
evaluation matrix, such as semantic alignment, isolation of responsibilities,
and coupling, are essential for creating services that lend themselves to
composability.

Assessment outcomes for composability are:

Good — The service is a good candidate for composition.

Adequate — The service is a candidate for composition, with limitations.

Poor — The service is not a candidate for composition.

Composable Questions

Do you expect other services to use this service? — Services are often
constructed, or composed, of other services, which may themselves be
composed from other services, and so on. If this service is expected to be
used in the construction of another service, it must adhere to the Seman-
tic Information Model, have loose coupling, and other characteristics
that increase composability. (Chapters 2, 3, 6)

Yes — This service expects to be part of a composition.

No — This service does not expect to be part of a composition.

Is the service granularity appropriate for composition within the
intended context? — Service granularity describes the amount of busi-
ness functionality performed by a single interaction with a service
operation. It is important that the granularity of a service interface match
the functional modularity of the expected service consumers. Otherwise,
the consumers are limited in how they can use the service in a composi-
tion. (Chapters 2, 6)

Yes — The granularity is appropriate for using this service in a com-
position.

No — The granularity is inappropriate.

Is the combination of the service’s usage type and output conducive to
composition? — The questions to ask here start with the usage type: If

612 Appendix B ■ Evaluating SOA Services

the service is an entity service, is the information it provides indepen-
dent of other entities? If the service is a task service, does it provide
discrete, reusable functions? If the service is a decision service, are the
decisions and rules adaptable to different contexts? (Chapters 2, 6)

Yes — The usage type and output are conducive to composition.

No — There is a mismatch between the usage type, output, and
intended use.

Governance

SOA governance is essential to a successful SOA. Governance enforces compli-
ance with the architecture and common semantics, and facilitates managing the
enterprise-wide development, use, and evolution of services. The questions
in this section determine the extent to which a service conforms to gover-
nance policies and guidelines. They are not intended to evaluate the gover-
nance policies.

Assessment outcomes for governance are:

Good — The service adheres well to governance policies.

Adequate — The service adheres to governance policies with exceptions.

Poor — The service does not sufficiently adhere to governance policies.

Governance Questions

Does the service have a responsible owner? — An owner may be a
group or an individual. Ownership defines which organizational unit
is responsible for the support of a service. In an SOA, this extends well
beyond simple maintenance and operations, to the overall life cycle of
the service. (Chapter 2)

Yes — An organization is identified as the owner of the service.

No — The service has no responsible owner.

How well does the service adhere to the design-time governance
policies? — Governance at design-time consists of a set of policies and
practices that developers use to ensure that the services are designed and
implemented correctly. (Chapters 3, 12)

Good — The service adheres to design-time governance policies with-
out exceptions.

Adequate — The service adheres to design-time governance policies
with necessary exceptions.

Poor — There are many exceptions to policies or no adherence.

Appendix B ■ Evaluating SOA Services 613

How well does the service adhere to the deploy-time governance
policies? — Deploy-time governance involves deployment options and
topologies, and adherence to policy should dictate whether a service can
be deployed on a network. (Chapter 12)

Good — The service adheres to deploy-time governance policies with-
out exceptions.

Adequate — The service adheres to deploy-time governance policies
with exceptions.

Poor — There are many exceptions to policies or no adherence.

How well does the service adhere to the run-time governance policies?
Run-time governance enforces adherence to run-time service policies.
(Chapter 12)

Good — The service adheres to run-time governance policies without
exceptions.

Adequate — The service adheres to run-time governance policies
with exceptions.

Poor — There are many exceptions to policies or no adherence.

How well does the service adhere to the change-time governance
policies? Change-time governance involves managing services through
the cycle of change. It focuses on such issues as service versioning, dep-
recation, and run-time policy adaptation. (Chapter 12)

Good — The service adheres to change-time governance policies
without exceptions.

Adequate — The service adheres to change-time governance policies
with exceptions.

Poor — There are many exceptions to policies or no adherence.

Technical Characteristics
The technical characteristics address the implementation concerns for a service.

Specification

The notion of the service specification is widely recognized as one of the
prerequisites for successful service use. Usually, the problem is not whether
a specification exists — it most likely does — but what it contains. A good
service specification clearly describes everything that a consumer of the service
needs to know to decide if they are interested in using the service, as well as
exactly how to use it if they are. It also specifies everything a service provider
needs to know to implement the service.

614 Appendix B ■ Evaluating SOA Services

This section has a different focus from the ‘‘Specification’’ section under
‘‘Alignment Characteristics.’’ Here, you are assessing the quality of the service
specification itself, as opposed to how well the specification conveys the
necessary information to its audience.

The overall assessment of the service specification is one of the following:

Good — The specification clearly describes what the service does, how
to use it, and who uses it.

Adequate — The specification describes the service, but there may be
slight ambiguities or minor missing information.

Poor — The specification is nonexistent or insufficient to understand
what the service does and how to interact with it.

Specification Questions

Does the service specification completely describe the interface? — The
service specification should include:

Service name

Provided and required interfaces

Exceptions

Protocol (rules for how the functions are used and in what order)

Pre- and postconditions

Constraints that reflect what successful use of the service accom-
plishes

Run-Time Service Policies for using the service (one or more) and that
contain each of (one or more) SLAs, QoS, and run-time constraints

Portions of Chapters 3, 6, and 12 describe the contents of a good service
specification,

Good — The specification is complete and easily understandable.

Adequate — The specification is complete.

Poor — The specification is lacking in some manner.

Does the specification clearly describe the behavior and interaction
style of each of the operations? — The service interface specifies the ser-
vice operations — that is, what the service does, the parameters that are
passed into and out of the operation, and the protocols for how those
capabilities are used and provided. A service typically contains several
different, but related, operations. (Chapters 2, 6)

Yes — The interaction styles are clearly defined for each operation.

Appendix B ■ Evaluating SOA Services 615

No — The interaction style is either not defined or is unclear for one
or more operations.

Does the specification contain all constraints and pre- and postcondi-
tions for the service operations? Along with the inputs and outputs of
the service operations, the service interface defines any preconditions,
postconditions, and constraints of those operations. Service constraints
describe rules, limitations, and facts about a service and its operations.
(Chapters 2, 3, 6, 12)

Yes — All constraints and conditions are specified.

No — Some constraints or conditions are not specified.

Does the specification describe all exceptions? Exceptions are an inte-
gral part of service interface design. All exceptions have to be defined in
the interface. (Chapters 6, 9, 12)

Yes — All exceptions are described.

No — Some exceptions are not described or are poorly described.

Does the service specification include one or more independent run-
time service policies? — One important aspect of the service interface is
the run-time service policy. A run-time service policy defines the charac-
teristics, constraints, and capabilities of a service that consumers of the
service can discover and use at run time. (Chapter 12)

Yes — Run-time service policies are included.

No — There are no run-time service policies in the service specifi-
cation.

Does each of the run-time policies specify the run-time constraints,
messaging format related to security, reliability/QoS, and SLAs? A
service policy contains one or more of the following: SLA, QoS state-
ments, messaging formats, and run-time constraints. (Chapters 3, 12)

Yes — The run-time service policies contain the necessary informa-
tion.

No — Information is missing from the run-time service policies.

Service Level Agreement

The service level agreement (SLA) specifies two important performance criteria
about the service: the technical performance and the business performance in
terms of business units of work. An SLA is a formal agreement between service
consumers and service providers related to QoS response times, business units
of work, and action guarantees.

616 Appendix B ■ Evaluating SOA Services

The overall assessment of the SLA is one of the following:

Good — The SLA clearly describes the technical and business perfor-
mance.

Adequate — The SLA describes the technical and business performance,
but there may be slight ambiguities or minor missing information.

Poor — The SLA is nonexistent or insufficient to measure or monitor the
service performance.

Service Level Agreement Questions

Does the service have at least one SLA, as specified in the run-time
policies? — In an SOA, services are a managed, governed set of enter-
prise assets responsible for ensuring conformance to SLAs. Thus, a
service is required to have at least one SLA. (Chapter 2, 12)

Yes — At least one SLA is provided.

No — There are no SLAs in the run-time service policy.

Is each SLA formally specified? — An SLA is a formal agreement
between service consumers and service providers related to QoS busi-
ness units of work, and action guarantees. (Chapter 12)

Yes — The SLA is formally specified.

No — The SLA is informally specified or unspecified.

Does the SLA provide a description of the service’s technical per-
formance, such as availability, reliability, throughput, and response
time? — Technical users need to know what to expect from the service,
including response time, throughput, availability, planned maintenance,
and so on. (Chapter 2, 3, 12)

Yes — The technical performance is specified.

No — The technical performance is not specified or it is lacking key
aspects.

Does the SLA include business characteristics, such as business units
of work? Business users need to understand what a service does in busi-
ness terms, such as business units of work. (Chapter 2, 3)

Yes — The SLA contains business characteristics.

No — Business characteristics are not sufficiently specified.

Extensibility

Services will inevitably evolve to support broader user requirements and new
business requirements. A well-designed service can handle these changes

Appendix B ■ Evaluating SOA Services 617

gracefully because extensibility is designed in from the beginning. ‘‘Flex
points’’ in the design support likely areas of change.

The overall assessment of the extensibility is one of the following:

Good — The service can easily be extended in the future.

Adequate — The service can accept some changes for future require-
ments but not without a moderate amount of impact on its consumers.

Poor — Future extensions to the service are expected to be painful
affairs.

Extensibility Questions

Is the service designed to support the implementation of future re-
quirements? — Well-defined, business-aligned services are a critical
ingredient of a flexible, extensible enterprise SOA implementation. The
structure of services allows them to be independently developed and
extended. Adhering to the principles of loose coupling, encapsulation,
isolation of responsibilities, and autonomy, and following extensible
design patterns allow for extensible services. (Chapters 2, 3)

Yes — The service design supports future enhancements.

No — The service design does not accommodate future enhance-
ments.

Have the appropriate patterns or abstractions been used to facilitate
future enhancements? — Best practices provide patterns, techniques,
and tools for service composition that help reduce dependencies, limit
coupling, and maximize flexibility, all of which promote extensibility.
Specific design patterns should be followed to keep services indepen-
dent, extensible, and reusable.

Yes — Best practices for accommodating enhancements were used.

No — Best practices for accommodating enhancements were not used.

Variability and Configurability

Standard mechanisms for variation and configuring services should be defined
as part of the SOA. These mechanisms facilitate the use of a common,
technology-independent configuration service, and more importantly, com-
mon configuration data to be shared between services.

The overall assessment of the variability is one of the following:

Variable — The service supports sufficient variability mechanisms and
can easily be configured in a standard way when deployed.

Partially variable — The service varies from the standard mechanisms
in an acceptable way.

618 Appendix B ■ Evaluating SOA Services

Not sufficiently variable — The service cannot be configured or uses
nonstandard mechanisms that do not scale, are location-specific, require
tight coupling, or have similar drawbacks.

Variability and Configurability Questions

Does the service support a necessary variability mechanism? In order
to support a wide range of clients, services need the ability to vary cer-
tain aspects of their operations, such as rules, locations, datastores, QoS,
and the like, at run time or deployment time. The specific type of vari-
ability mechanism used depends on the requirements for that service.

Yes — The service supports sufficient variability.

No — The service does not support sufficient variability.

Does the service adhere to enterprise standards for configuration? —
When services use common configuration capabilities, the configura-
bility of the entire solution is greatly enhanced. It is important that the
configuration standards and practices established in SOA governance
drive the mechanisms of service configuration. If the service does vary
from the standards, then is the variance acceptable? (Chapter 2)

Yes — The service uses the standard mechanisms.

No — The service does not use the standard mechanisms.

Does the service use common data for configuration? — In addition to
using standard configuration mechanisms, the service should leverage
common configuration information. Externally modifiable configura-
tion parameters support common configuration needs. (Chapter 2)

Yes — Common configuration information is used.

No — Private configuration information is used.

Autonomy

Autonomy relates to the entire service life cycle, including deployment, run
time, and change time. An autonomous service’s life cycle is independent of
other services. It can be deployed, modified, and maintained independently
from other services and the solutions that use it. Loose coupling and isolation
of responsibilities help facilitate autonomy.

The overall assessment of the autonomy is one of the following:

Autonomous — The service can easily be deployed, modified, and main-
tained independently.

Not Autonomous — The service cannot be deployed, modified, and
maintained independently.

Appendix B ■ Evaluating SOA Services 619

Autonomy Questions

Is this service loosely coupled, and are its responsibilities well
isolated? — The tighter the coupling and the less isolated the respon-
sibilities of a service, the weaker the autonomy. (Chapter 2, 12)

Yes — The service is loosely coupled and responsibilities are isolated.

No — The service’s coupling is tight or responsibilities are not
isolated.

Is this service’s life cycle independent of other services? — If this ser-
vice is required to change because of a change in another service, or this
service requires other services to be updated when it changes, then it is
not autonomous. (Chapter 2, 12)

Yes — The service’s life cycle is independent of other services.

No — Dependencies based on versions exist between services.

Can the service be deployed independently of other services? — If
deploying this service requires other services to be deployed at the
same time, in the same configuration, then it is not autonomous.
(Chapter 2, 12)

Yes — The service’s deployment is independent of other services.

No — Deployment dependencies exist with services.

Housekeeping Characteristics
The Housekeeping Characteristics allow for the management and reporting
of services and provide a place to collect additional information that may be
useful in analysis. These characteristics are not meant to evaluate the quality
of the service. Instead, they provide a baseline for certain management and
metrics, such as the number of outsourced services or how many utility
and foundation services you have.

A P P E N D I X

C

Additional Reading

It is virtually impossible to cover all of the facets of designing and building
SOA solutions in one book. We encourage additional reading on the topics we
have covered. As a starting point, you can use the following list of references
that we have found useful:

ACORD. www.acord.org/home/home.aspx.

Arsanjani, Ali. ”Principles of Advanced Software Engineering: Vari-
ation Oriented Analysis, Design and Implementation.’’ January 2000.
cs.mum.edu/cs525/Refs/VOD-12-27-99.PDF.

. ‘‘Service-oriented modeling and architecture.’’ IBM developer-
Works, November 2004. ibm.com/developerworks/library/
ws-soa-design1.

. ‘‘Towards a Pattern Language for Service-Oriented Architecture
and Integration, Part 2: Service Composition.’’ IBM developerWorks,
December 2005. www-128.ibm.com/developerworks/webservices/
library/ws-soa-soi2.

Arsanjani, Ali, Liang-Jie Zhang, Michael Ellis, Abdul Allam, and Kishore
Channabasavaiah. ‘‘Design an SOA solution using a reference architec-
ture.’’ IBM developerWorks, March 2007. www-128.ibm.com/
developerworks/library/ar-archtemp/index.html.

621

622 Appendix C ■ Additional Reading

Baeyens, Tom. ‘‘Process Component Models: The Next Generation in
Workflow?’’ InfoQ, February 2008. infoq.com/articles/process-
component-models.

Balcer, Marc J. ‘‘BPM Implementation with SOA and MDA.’’ OMG SOA,
BPM, and MDA Workshop, Burlingame, CA, October 2006. omg.org/
news/meetings/workshops/soa-bpm-mda-2006/06-1 Balcer Revised

.pdf.

Baresi, Luciano, Andrea Maurino, and Stefano Modafferi. ‘‘Towards
Distributed BPEL Orchestrations.’’ Proceedings of the Third Workshop on
Software Evolution through Transformations (SeTra). Rio Grande de Norte,
Brazil, 2006.

Berners-Lee, Tim, James Hendler, and Ora Lassila. ‘‘The Semantic Web.’’
Scientific American, May 2001. www.sciam.com/article.cfm?id = the-
semantic-web.

Bloomberg, Jason. ‘‘The LEGO Model of SOA.’’ ZapThink, December 11,
2006. www.zapthink.com/report.html?id = zapflash-20061212.

Booch, Gary. ‘‘SOA Best Practices.’’ Software architecture, software engi-
neering, and Renaissance Jazz blog, March 11, 2006. www-03.ibm
.com/developerworks/blogs/page/gradybooch?entry = soa best

practices.

Booch and Kruchten. The Rational Unified Process — An Introduction.
Addison-Wesley, 1999.

Brooks, Jr., Fred P. The Mythical Man-Month: Essays on Software Engineer-
ing, 20th Anniversary Edition. Reading, MA: Addison-Wesley
Professional, 1995.

Byrne, Brian, and Brian Yarow. ‘‘Building SOA solutions with Industry
Models and the IBM Rational Software Development Platform.’’ IBM
developerWorks, July 2006. www-128.ibm.com/developerworks/
rational/library/jul06/byrne yarow.

Cousins, Peter, and Ivan Casanova, ‘‘Service-Oriented Integration: A
Strategy Brief.’’ IONA Technologies, January 2004. http://microsites
.cmp.com/documents/s=9077/int1077662028640.

Daconta, Michael C. Information as Product. Outskirts Press, 2007.

Daconta, Michael C., Leo Obrst, and Kevin T. Smith. The Semantic Web:
A Guide to the Future of XML, Web Services, and Knowledge Management.
Hoboken, NJ: Wiley, 2003.

Dubray, Jean-Jacques. ‘‘Composite Software Construction — Under-
standing SOA in the Context of a Programming Model.’’ C4Media, 2007.
infoq.com/minibooks/composite-software-construction.

Appendix C ■ Additional Reading 623

. ‘‘Establishing a Service Governance Organization.’’ InfoQ,
October 2007. infoq.com/articles/soa-governance-organization.

Duermeyer, Karin. ‘‘Bridging Business Value to SOA: SOA Best
Practices.’’ May 24, 2005. websphere.org/docs/presentations/
Duermeyer-SOA Executive Event Muenchen.pdf.

Eeles, Peter, and Oliver Sims. Building Business Objects. New York:
Wiley, 1998.

Erl, Thomas. SOA: Principles of Service Design. Upper Saddle River, NJ:
Prentice Hall, 2007.

Evdemon, John. ‘‘Principles of service design: Service patterns and anti-
patterns.’’ MSDN, August 2005. http://msdn2.microsoft.com/en-us/
library/ms954638.aspx

. ‘‘The four tenets of service orientation.’’ BPMInstitute, May 2005.
bpminstitute.org/articles/article/article/the-four-tenets-of-

service-orientation.html.

Fitts, Sean. ‘‘When exceptions are the rule: Achieving reliable and trace-
able service oriented architectures.’’ SOA/WebServices Journal, Septem-
ber 2005. http://webservices.sys-con.com/read/121945.htm.

Fowler, Martin. Patterns of Enterprise Architecture. Reading, MA:
Addison-Wesley, 2002.

Fuller, Tom. ‘‘A Foundation for the Pillars of Software Factories.’’ The
Architecture Journal, no. 9, 2006. architecturejournal.net/2006/
issue9/F4 Foundation.

Hay, David C. Data Model Patterns: Conventions of Thought. New York:
Dorset House, 1995.

Heffner, Randy. ‘‘A strategic SOA platform vision.’’ SOA World, January
2006. soa-world.com/FeatureRO.asp?Featureid=188.

Helland, Pat. ‘‘Data on the Outside vs. Data on the Inside: An Exami-
nation of the Impact of Service Oriented Architectures on Data.’’ 2008.
http://msdn.microsoft.com/library/default.asp?url = /library/

en-us/dnbda/html/dataoutsideinside.asp.

High, Jr., Rob, Stephen Kinder, and Steve Graham. ‘‘IBM’s SOA Foun-
dation: An Architectural Introduction and Overview.’’ IBM developer-
Works, November 2005. http://download.boulder.ibm.com/ibmdl/
pub/software/dw/webservices/ws-soa-whitepaper.pdf.

Hofmeister, Christine, Robert Nord, and Dilip Soni. Applied Software
Architecture. Reading, MA: Addison-Wesley, 2000.

Hohpe, Gregor, and Bobby Woolf. Enterprise Integration Patterns:
Designing, Building, and Deploying Messaging Solutions. Boston: Addison-
Wesley, 2004.

624 Appendix C ■ Additional Reading

Hubert, Richard. Convergent Architecture: Building Model Driven J2EE
Systems with UML. Hoboken, NJ: Wiley, 2001.

Hutchison, B., M.T. Schmidt, P. Lambros, and R. Phippen. ‘‘SOA
programming model for implementing web services, Part 4: An intro-
duction to the IBM enterprise service bus.’’ IBM developerWorks, July
2005. www-128.ibm.com/developerworks/library/ws-soa-progmodel4.

Infravio. ‘‘The Definitive Guide to SOA Governance and Lifecycle Man-
agement.’’ 2006. infravio.com

‘‘Insurance Application Architecture.’’ www-1.ibm.com/industries/
financialservices/doc/content/solution/278918103.html.

‘‘J2EE Connector Architecture.’’ http://java.sun.com/j2ee/
connector.

‘‘Java Database Connectivity.’’ http://java.sun.com/javase/
technologies/database.

Keen, Martin, Oscar Adinolfi, Sarah Hemmings, Andrew Humphreys,
Kanthi Hanumanth, and Alasdair Nottingham. ‘‘Patterns: Implement-
ing an SOA using an Enterprise Service Bus in WebSphere Application
Server V6.’’ IBM Redbooks, 2005. redbooks.ibm.com/abstracts/
sg246494.html?Open.

Krafzig, Dirk, Karl Ganke, and Dirk Slama. Enterprise SOA: Service Ori-
ented Best Practices. Upper Saddle River, NJ: Prentice Hall, 2005.

Kruchten, Philippe. ‘‘The 4+1 View Model of Architecture.’’ IEEE Soft-
ware, vol. 12, no. 6:42–50, November 1995.

Lhotka, Rocky. ‘‘A SOA Version Covenant.’’ April 2005. theserverside
.net/articles/showarticle.tss?id=SOAVersioningCovenant.

Liu, Anna, and Ian Gorton. ‘‘Process and Criteria for Evaluating
Services-Based Integration Technologies.’’ The Architecture Journal, July
2005. http://msdn2.microsoft.com/en-us/arcjournal/aa480046.aspx.

Lublinsky, Boris.‘‘Achieving the Ultimate EAI Implementation.’’ EAI
Journal, 2001. eaijournal.com/Article.asp?ArticleID=303&
DepartmentId=7.

. ‘‘Approaches to Implementation of Business-to-Business Integra-
tion (B2Bi).’’ EAI Journal, vol. 4, no. 2:38–47. eaijournal.com/PDF/
B2BLublinsky.pdf.

. ‘‘Data transformation in SOA using WebSphere Transformation
Extender (TX).’’ IBM developerWorks, August 2007. www.ibm.com/
developerworks/library/ar-datatrans.

.‘‘Defining SOA as an architectural style.’’ IBM developerWorks,
January 2007. www-128.ibm.com/developerworks/architecture/
library/ar-soastyle.

Appendix C ■ Additional Reading 625

.‘‘Explore the role of service repositories and registries in Service-
Oriented Architecture (SOA).’’ IBM developerWorks, May 2007. www-128
.ibm.com/developerworks/architecture/library/ar-servrepos/

?S TACT=105AGX78&S CMP=HP.

.‘‘Implement WS Notification in WebSphere Application Server
V6.1.’’ IBM developerWorks, December 2006. www-128.ibm.com/
developerworks/architecture/library/ar-wasnot.

. ‘‘Implementing Exceptions in SOA.’’ InfoQ, May 2007. infoq.com/
articles/lublinsky-soa-exception.

. ‘‘Service Composition.’’ InfoQ, July 2007. infoq.com/articles/
lublinsky-soa-composition.

. ‘‘SOA Design: Meet in the Middle.’’ JavaPro, Fawcette Technical
Press FTP site, August 2004. ftponline.com/javapro/2004 10/

magazine/features/blublinsky/default.aspx?CP=true

. ‘‘SOA Programming Models,’’ InfoQ, October 2006. infoq.com/
articles/SOA-programming-models.

. ‘‘Supporting policies in Service-Oriented Architecture.’’ IBM
developerWorks, 2004. www-128.ibm.com/developerworks/
webservices/library/ws-support-soa.

. ‘‘Transactions and Web Services.’’ EAI Journal, January 2003.
bijonline.com/PDF/TWSLublinsky.pdf.

. ‘‘Unifying Data, Documents and Processes.’’ Enterprise Architect,
vol. 2, no. 2, 2004. ftponline.com/ea/magazine/summer2004/features/
blublinsky.

. ‘‘Versioning in SOA.’’ The Architecture Journal, no. 11:36-41.
http://msdn2.microsoft.com/en-us/arcjournal/bb491124.aspx.

Lublinsky, Boris and M. Farrell. ‘‘Top ten reasons why EAI implementa-
tions fail.’’ EAI Journal, December 2002, 41–42. bijonline.com/PDF/
LublinskyEAIFails.pdf.

Lublinsky, Boris and Michael Rosen. ‘‘Enterprise Integration Architec-
ture and Web Services.’’ Cutter Executive Report, vol. 5, no. 11, November
2002. cutter.com/architecture/abstracts.html#2002.

Lublinsky, Boris and D. Tyomkyn. ‘‘SOA & BPM: Living Happily Ever
After?’’ Business Integration Journal, March/April 2006, 22–24. bijonline
.com/index.cfm?section=article&aid=239.

Maldonado, Martin F. ‘‘Virtualization in a nutshell: A pattern point of
view.’’ IBM developerWorks, June 2006. www-128.ibm.com/
developerworks/grid/library/gr-virt.

626 Appendix C ■ Additional Reading

Malinverno, Paul. ‘‘Service-Oriented Architecture Craves Governance.’’
Gartner, January 20, 2006. http://www.gartner.com/
DisplayDocument?id=488180.

McGovern, James, Oliver Sims, Ashish Jain, and Mark Little. Enterprise
Service Oriented Architectures: Concepts, Challenges, Recommendations.
Dordrecht, The Netherlands: Springer, 2006.

Medicke, John, Feng-Wei Chen, and Margie Mago. ‘‘Creating an intel-
ligent and flexible solution with BPM, Business Rules, and Business
Intelligence.’’ IBM developerWorks, October 2003. www-128.ibm
.com/developerworks/db2/library/techarticle/0310medicke/

0310medicke.html.

Mellor, Stephen J. and Marc J. Balcer. Executable UML: A Foundation for
Model-Driven Architecture. Boston: Addison-Wesley, 2002.

‘‘Oasis SOA reference model.’’ April 2006. oasis-open.org/
committees/tc home.php?wg abbrev=soa-rm.

Oasis SOA rm wiki: Architecture/governance. http://wiki.oasis-open
.org/soa-rm/TheArchitecture/Governance.

O’Neill, Mark. ‘‘Architecting security for web services.’’ JavaPro, August
2003. ftponline.com/channels/security/javapro/2003 08/magazine/

features/moneill.

Open Group, The. ‘‘Part IV: Resource Base: Developing Architecture
Views.’’ The Open Group Architecture Framework 8.1.1, August 2006.
www.opengroup

.org/architecture/togaf8-doc/arch/chap31.html.

Orr, Ken. ‘‘BPM Project Perspectives.’’ BPTrends, April 2007. bptrends
.com/publicationfiles/04-07-COL-BPMandSOA-Rosen-final.pdf.

. ‘‘Business Architecture — Linking Business, Data, and Technol-
ogy.’’ Cutter Consortium Enterprise Architecture Executive Report, vol. 10,
no. 2, February 2007.

. ‘‘Business Process Modeling Fundamentals.’’ Cutter Consortium
Business-IT Strategies Executive Report, vol. 10, no. 7, 2007.

. ‘‘Business Reference Modeling — The New Rosetta Stone for
Managers.’’ Cutter Consortium Enterprise Architecture Executive Report,
vol. 9, no. 12, December 2006.

. ‘‘Business Semantics.’’ Cutter Consortium Business Intelligence
Executive Report, vol. 5, no. 7, 2005.

. ‘‘Information Integration in the Real World.’’ Cutter Consortium
Enterprise Architecture Executive Report, vol. 6, no. 4, 2003.

Appendix C ■ Additional Reading 627

Pereira, Jude. ‘‘Enterprise Application Integration: Approaches to Inte-
gration.’’ MindTree white paper, 2006. mindtree.com/white paper/

EAI-integration-approaches.pdf.

Porter, Michael E. Competitive Advantage: Creating and Sustaining Superior
Performance. New York: Free Press, 1985.

Ranganathan, Ramesh. ‘‘Managing exceptions in a SOA world.’’ IT Tool-
box: Emerging Technologies. September 2005. http://hosteddocs
.ittoolbox.com/RR091605.pdf.

Robinson, Rick. ‘‘Understand enterprise service bus scenarios and solu-
tions in service-oriented architecture, Part 1.’’ IBM developerWorks,
June 2004. www-106.ibm.com/developerworks/webservices/library/
ws-esbscen.

. ‘‘Understand enterprise service bus scenarios and solutions in
service-oriented architecture, Part 2.’’ IBM developerWorks, June 2004.
www-106.ibm.com/developerworks/webservices/library/

ws-esbscen2.html.

. ‘‘Understand enterprise service bus scenarios and solutions in
service-oriented architecture, Part 3.’’ IBM developerWorks, June 2004.
ibm.com/developerworks/webservices/library/ws-esbscen3.

Rosen, Michael. ‘‘5 Key Requirements for SOA.’’ BPTrends, May 2006.
bptrends.com/publicationfiles/05-06COL-5KeyReqforSOA-

Rosen.pdf.

. ‘‘Adoption of Best Practices in SOA Development.’’ Cutter Bench-
mark Review, vol. 6, no. 10, October 2006.

. ‘‘Business Architecture and SOA.’’ SOAInstitute, August
2006. soainstitute.org/articles/article/article/
business-architecture-and-soa.html.

. ‘‘Business Driven SOA.’’ SOAInstitute, February 2007. http://
www.soainstitute.org/articles/article/article/

business-driven-soa.html.

. ‘‘Designing Service Oriented Applications — Part I: Architecture
and Methodology.’’ Cutter Consortium Enterprise Architecture Executive
Report, vol. 9, no. 10, October 2006.

. ‘‘Designing Service Oriented Applications — Part II: Analysis and
Design.’’ Cutter Consortium Enterprise Architecture Executive Report, vol. 9,
no. 11, November 2006.

. ‘‘Implementing an SOA with common technologies.’’ Cutter Enter-
prise Architecture Executive Report, 7. The Cutter Consortium, July 2004.
cutter.com/content/architecture/fulltext/reports/2004/

07/index.html.

628 Appendix C ■ Additional Reading

. ‘‘Key Components of SOA.’’ SOAInstitute, July 2006.
soainstitute.org/articles/article/article/

key-components-of-soa.html.

.‘‘Making Sense of SOA Standards Activities.’’ SOAInstitute,
December 2006. soainstitute.org/articles/article/article/
making-sense-of-soa-standards-activities-part-i.html

.cutter.com/architecture/abstracts.html#2005.

. ‘‘Service Usage Types.’’ BPTrends, December 2007. bptrends
.com/publicationfiles/12-07 SOA Service Usage Types-Rosen-final

.pdf.

. ‘‘Services and Versioning.’’ SOAInstitute, November 2007.
soainstitute.org/articles/article/article/

services-and-versioning.html.

. ‘‘SOA, EA, and Tools: Part I.’’ BPTrends, November 2006.
bptrends.com/publicationfiles/11-06-COL-SOAEATools-Rosen.pdf.

. ‘‘SOA, EA, and Tools: Part II.’’ BPTrends, January 2007.
bptrends.com/publicationfiles/01-07-COL-BPM-SOA-Rosen-Final

.pdf.

. ‘‘SOA Governance: Adoption and Best Practices.’’ SOAInstitute,
January 2007. soainstitute.org/articles/article/article/
soa-governance-adoption-and-best-practices.html.

. ‘‘What Kind of Service Does a Business Process Need?’’ BPTrends.
July 2006. bptrends.com/publicationfiles/
07-06COL-WhatServiceDoesABPNeed-Rosen.pdf.

Rosen, Michael, and Boris Lublinsky. ‘‘Service-Oriented Integration:
Aligning SOA with enterprise integration.’’ Cutter Executive Report,
vol. 8, no. 1, January 2005.

Rosenbloom, Scott. ‘‘An Introduction to Service-oriented Integration.’’
April 2003. wrq.com/info/newsletters/03/april/soi vision.html.

Rummler, Geary A., and Alan P. Brache. Improving Performance: How
to Manage the White Space in the Organization Chart. San Francisco, CA:
Jossey-Bass Wiley, 1990.

Selvage, Mei, Dan Wolfson, Bob Zurek, and Ed Kahan. ‘‘Achieve seman-
tic interoperability in a SOA.’’ IBM developerWorks, June 2006. www-128
.ibm.com/developerworks/webservices/library/

ws-soa-seminterop.html.

Shlaer, Sally and Stephen J. Mellor. Object Lifecycles: Modeling the World in
States. Englewood Cliffs, NJ: Yourdon Press, 1992.

Appendix C ■ Additional Reading 629

. Object-Oriented Systems Analysis: Modeling the World in Data.
Englewood Cliffs, NJ: Yourdon Press, 1988.

Simmons, Scott. ‘‘Introducing the WebSphere Integration Reference
Architecture.’’ IBM WebSphere Developer Technical Journal, August 2005.
www-ibm.com/developerworks/websphere/techjournal/0508 simmons/

0508 simmon.

Smith, Kevin T. ‘‘Creating Secure Web Service Sessions.’’ SOA/Web Ser-
vices Journal, July 2006.

. ‘‘Six Basic Rules for Securing SOA-Based Projects: Common Sense
SOA Security.’’ SOA/Web Services Journal, October 2006.

. ‘‘SOA Access Control Policy Management — Approaches, Com-
mon Pitfalls, and Best Practices.’’ SOA/Web Services Journal, September
2006.

Specifications: Service Component Architecture (SCA) and Service Data
Objects (SDO). www-128.ibm.com/developerworks/webservices/
library/specification/ws-scasdosumm.

Taylor, D. A. Business Engineering with Object Technology. New York:
Wiley, 1995.

Tilkov, Stefan. ‘‘10 Principles of SOA.’’ InfoQ, 2007. infoq.com/
articles/tilkov-10-soa-principles.

Topinski, Jan, Bartosz Kiepuszewsky, and Borys Stokalski. ‘‘Service Ori-
ented Integration: A Report from the Trenches.’’ Cutter Consortium
Enterprise Architecture Executive Report, vol. 9, no. 5, May 2006.

Trowbridge, David, Ulrich Roxburgh, Gregor Hohpe, Dragos
Manolescu, and E. G. Nadhan. ’’Integration Patterns.’’ Microsoft
Corporation, June 2004. http://msdn2.microsoft.com/en-us/
library/ms978729.aspx.

Ulrich, William. ‘‘Business Architecture: Aligning Strategy & Deploy-
ment.’’ BPMInstitute, June 2, 2006. www.bpminstitute.org/
articles/article/article/business-architecture-moving.html.

US Department of Agriculture (USDA). Working paper. USDA, 2003.
www.usda.gov/da/property/RealProp.pdf.

Vinoski, Steve. ‘‘The social side of services.’’ IEEE Internet Computing,
January 2006. iona.com/hyplan/vinoski/pdfs/IEEE-The Social

Side of Services.pdf.

‘‘Web Service Façade for Legacy Applications.’’ Microsoft patterns &
practices Developer Center, June 2003. http://msdn.microsoft.com/
en-us/library/ms979218.aspx.

630 Appendix C ■ Additional Reading

‘‘Web Services Architecture.’’ W3C Working Group Note 11 February
2004. w3.org/TR/ws-arch.

‘‘Web Services Composite Application Framework (WS-CAF).’’ August
2006. oasis-open.org/committees/tc home.php?wg abbrev=ws-caf.

Whittle, Ralph and Conrad B. Myrick. Enterprise Business Architecture:
The Formal Link Between Strategy and Results. Boca Raton, FL: CRC
Press, 2004.

Wikipedia. http://en.wikipedia.org/wiki/Virtualization.

XFire User Guide. ‘‘Versioning best practices.’’ http://docs.codehaus
.org/display/XFIRE/Versioning.

Yu, Weihai. ‘‘Peer to Peer Execution of BPEL Processes.’’ Proceedings of
the CAiSE 2007 Forum at the 19th International Conference on Advanced Sys-
tems Engineering, Trondheim, Norway, 11-15 June 2007.

Index

A
ABAC (Attribute-Based Access

Control), 397, 399
abstract classes, in derivation, 192–193
abstract processes

process modeling with, 303
turning executable processes into,

305–306, 308
using BPEL with, 300, 308–309

abstraction
as architectural principle, 31
avoiding SOA stovepipes by using,

199–200
evaluating Design Characteristics for,

593, 606–607
overview of, 163–164

abstraction layer
CICS integration using, 558–559
integration service using, 360–361
as service bus, 345

access control
authentication, 392–395
authorization, 395–396
case study example, 441–442
DAC and MAC, 396–397
for data, not just services, 427–428
defined, 399
enforcing policy. See policy

enforcement approaches

federated identity and
cross-enterprise, 397–400

security gateway rules, 331
Access Control Policy Management

Service, 418
AccessInsuredLocation operation,

547, 552–553
accommodation of change, 31
ACID (atomicity, consistency,

isolation, and durability)
transactions, 295, 382–383

ACME Insurance
domains, 153
service implementation design,

268–272
ACME Insurance, service interface

design
conceptual architecture, 225–227
overview of, 224–225
problem space model. See problem

space model
solution model, 241–249
use cases. See business use cases

ACME Insurance, service-based
integration, 541–578

AccessInsuredLocation, 552–553
ACME Insurance, 542–547
based on existing Java APIs,

568–570

631

632 Index ■ A

ACME Insurance, service-based
integration (continued)

based on vendor’s Web Services,
576–578

CollectPolicyFinancials, 555–556
establishing policy submission,

548–551
with existing CICS transactions,

557–565
with existing COM components,

565–568
with existing databases, 573–576
with existing J2EE applications,

570–573
GeneratePolicyNoticeDocuments,

554–555
GetDriversInformation, 553–554
high-level integration design,

547–548
rate insurance policy, 551–552
requirements for ACME

implementation, 556–557
work with documents, 556

ACORD (The Agency Company
Organization for Research and
Development)

Create Quote operation, 271
document receipt and, 261
overview of, 246

actions, activity diagram, 257–258
activities

with conditional outputs, 148–149
islands of automation focusing on

limited set of, 355
middle-out process design, 110
service composition using human,

297–298
value chain, 125–126, 499–500

activity diagrams, 257–258
actors, 126, 228–229
administration, ESB, 347
The Agency Company Organization

for Research and Development. See
ACORD (The Agency Company
Organization for Research and
Development)

agility, 16–18
alignment

Business Motivation Model, 136–137
overview of, 17–18
of services with business, 40–41

Alignment Characteristics, evaluating
SOA, 597–605

business alignment, 598–599
defined, 597–598
fit for purpose, 601–602
security, 602–603
Semantic Alignment, 603–605
service evaluation matrix overview,

591–592
specification, 599–601

#all keyword, 195
Anonymous SSO, 413
APIs (application programming

interfaces)
building SOA stovepipes, 100
integration based on existing Java,

557, 568–570
logger, 335–336
transforming into new service

interfaces, 16
application architecture

3-tiered, 317–321
Enterprise Architecture, 45–46
n-tiered, 318–321
SOA enterprise solutions vs., 312–313

application developers, 461
application exceptions, service

interface design, 220
application metamodel, 74–75
application profile, 74–75
application programming interfaces.

See APIs (application programming
interfaces)

application servers, 421–422
applications

agility, flexibility and alignment
architecture, 17

insurance case study of existing IT,
543–545

integration requirements, 15–16
SOA enterprise solutions vs., 312–313

Index ■ A 633

architectural models
overview of, 74–75
service composition, 279–281

architectural views, 30–31
architecture. See also SOA

(Service-Oriented Architecture),
promise of

avoiding death by, 32–33
business. See BA (business

architecture)
case study of overall integration,

547–548
complete analysis for security, 437
conceptual, 226–227, 497–498
defining, 28–29
enterprise solution, 313–317
life cycle process, 83
principles and practices of, 30–32
styles, 29–30

architecture fundamentals, 33–50
architecture defined, 28–29
business-driven, 41–44
common semantics and data, 40
determining how to use, 41
elements of, 33–38
Enterprise Architecture vs., 44–46,

49–50
integrating packaged and legacy

systems, 39
principles, 30–33
reference architecture, 73–75
services. See services
software architecture, 46–50
styles, 29–30
technology infrastructure, 39–40

artifacts
dependency management, 484
finding with service repository,

483–485
middle-out process design, 111
Reusable Asset Specification, 485–486
service, 38

aspect partitioning, 152
assertions, SAML, 411–412, 435
Assessments, Business Motivation

Model, 133

associations
defined in information model, 166
modeling using specializations,

172–174
multiplicity of, 166–167

atomic service, 62
atomicity, consistency, isolation, and

durability (ACID) transactions, 295,
382–383

attesting trust, 422–423
Attribute Service, 418, 440
Attribute SSO, 413
attribute statements, SAML assertions,

412
Attribute-Based Access Control

(ABAC), 397, 399
attributes

decentralized policy management,
429–430

derived, 174–175
identifiers as, 163–167
information model, 163–167
modeling using specializations and,

172–174
auditing

developing enterprise policy, 478
security and, 355–356
troubleshooting and, 435–436

Auditing Services, 418
authentication

best practices, 419
case study example, 437–442
defined, 400
of enterprise applications, 355–357
identity propagation for SSO,

420–425
overview of, 392–395
point-to-point, 425–426
SAML assertions, 412
SSL. See SSL authentication
SSL/TLS protocols, 393, 400–403
travel insurance case study, 519–521

authorization. See also access control
for access control, 395–396
defined, 395
enforcing DAC and MAC, 396–397

634 Index ■ A–B

authorization. See also access control
(continued)

enterprise applications, 355–357
overview of, 400
travel insurance case study, 521–522

Authorization Decision Service, 418,
440

authorization decision statements,
SAML, 412

automation, islands of, 355
Automobile LOB Pricing service,

269–271
autonomy, service

dealing with service changes, 326
evaluating SOA, 596, 618–619
overview of, 54
SCA references and, 284

B
B2B interactions, 206, 313–317
BA (business architecture). See also

BMM (Business Motivation Model)
basing SOA project on, 114
creating semantic information model,

88–90
defining, 121–122
designing, 121–124
enterprise, 124
Enterprise Architecture and, 44, 46
getting started, 85–86
implementing, 78
methodology, 80–81, 85–86
project, 124–125
service and information models,

127–130
service design process, 502–505
SOA driven by, 41–44
technology of, 130–132

BAM (business activity monitoring),
338–340

banking, customer service solution,
4–7

behaviors, modeling, 172–174
binding, dynamic, 54–55, 56
biometrics, and authentication, 393
BMM (Business Motivation Model),

132–137

alignment and traceability, 136–137
defining, 131
Ends, 134
Influencers, 136
Means, 134–136
overview of, 132–133
service design process, 503
travel insurance case study, 501–502

bottom-up SOA, service design,
108–113

BPDM (Business Process Definition
Metamodel), 132

BPEL (Business Process Execution
Management), 42, 140

BPM (Business Process Management).
See also Business Process Models

benefits, limitations of, 141–142
creating reference architecture using,

85
defining, 64
differentiating service policies with,

463
engines, 286, 294–296
implementing services and SOA with,

42–43
marketing hype or reality of, 141–142
modeling and, 137–138
purposes of, 70–72
server, centralized orchestration,

290–292
service composition and, 278–279

BPMN (Business Process Modeling
Notation)

defined, 131–132
example of, 138–139
executable models and, 140–141
problem model scenario diagrams

using, 229
service composition and, 278–279

BRM (Business Rules Management),
70–72

Browser-Based SSO
federated identity and, 398
identity propagation with REST

using, 424–425
using trusted token service, 423–424

Index ■ B 635

BU01- quote insurance (business use
case)

actors, 228
alternative workflow, 582
basic workflow, 580–582
detailed scenario diagrams,

234–238
document model, 248–249
information model, 246–248
initial scenario diagrams, 229–232
overview of, 579
performance goals, 582
problem space model, 227–228

BU02- process application (business
use case)

actors, 228
alternative workflow, 585
basic workflow, 583–584
detailed scenario diagrams, 234–238
document model, 248–249
information model, 246–248
initial scenario diagrams, 229–232
overview of, 582
performance goals, 585
problem space model, 227–228

BU03- change policy (business use
case)

actors, 228
alternative workflow, 587–588
basic workflow, 585–587
detailed scenario diagrams, 234–238
document model, 248–249
extension points, 588
information model, 246–248
initial scenario diagrams, 229–232
overview of, 585
problem space model, 227–228
use cases, business, 585–588

BU04- cancel insurance (business use
case)

actors, 228
detailed scenario diagrams, 234–238
document model, 248–249
information model, 246–248
initial scenario diagrams, 229–232

bus, ESB, 346

business, starting with, 119–157. See
also BA (business architecture)

business architecture, 121–124
business architecture technology,

130–132
business context, 126–130
Business Motivation Model, 132–137
Business Process Management,

137–138
Business Process Models. See

Business Process Models
enterprise business architecture, 124
organizing services, 151–155
overview of, 119–120
project business architecture, 124–125
service inventory, 155–156
travel insurance case study, 498–502,

506–508
value chain, 125–126

business activity monitoring (BAM),
338–340

business alignment, 40–41, 591,
598–599

business architecture. See BA (business
architecture)

business components
implementing data mapping, 378–379
implementing database-based

integration, 574–576
implementing integration with direct

database access, 376
implementing integration with J2C,

373
implementing MOM-based

integration, 366
integration access with, 361–362
integration based on vendor’s Web

Services, 577–578
layer, 363–364

business context diagram
defined, 122
overview of, 126–130
service design process, 503
travel insurance case study,

506–508
business derivation, 31

636 Index ■ B

business domain-independent
interoperability, 162

business domain-specific
interoperability, 161–162

business layer. See service business
layer

business logic, 264–267
business metamodel, reference

architecture, 73, 75
business model, 78, 83–85, 222–224
Business Motivation Model. See BMM

(Business Motivation Model)
Business Perspective, 590–597
business process architect, 460
business process controller, 315–317,

341
Business Process Definition Metamodel

(BPDM), 132
Business Process Execution

Management (BPEL), 42, 140
Business Process Management. See

BPM (Business Process
Management)

Business Process Modeling Notation.
See BPMN (Business Process
Modeling Notation)

Business Process Models, 138–155
analysis and design, 24–25
Business Process Management vs.,

138–139
Business Process Modeling Notation,

131–132
components, 139–140
conditional flows, 148
conditional operation outputs,

148–149
creating, 143–148
defined, 36, 64
executable, 140–141
overview of, 22
processes and services, 149–150
service design using, 107–108
in SOA world, 142–143
travel insurance case study, 509–510

business processes
business rules vs., 292–295

defined, 62, 86
describing business model scenario,

223–224
diagram, 122
getting started, 86–88
implementing, 79
implementing with business rules,

294
integration of, 357
islands of automation duplicating,

355
methodology, 86–88
overview of, 36
service design process, 504
service granularity for, 56
service policies vs., 463
travel insurance case study, 509–510

business profile, reference architecture,
74–75

business rules
Business Motivation Model, 502
Business Rules Management, 70–72
context-based routing and, 366
directives governing, 135–136
service composition and, 292–295

Business Rules Group, 132
Business Rules Management (BRM),

70–72
business services

Business Process Models defining, 64
characteristics of, 207
common patterns of, 68–70
creating business processes from, 120
defined, 62
as foundation for business processes,

315
granularity of, 57
implementing business processes,

87–88
implementing with business rules,

294
integration of, 360–364
integration services vs., 364
interface design requirements,

216–217
organizing service inventory, 232–233

Index ■ B–C 637

overview of, 35–36
service hierarchy, 58–59, 275–276
specifications, 95–96
types and purpose of, 70–72
typical interface combinations, 217

business use cases, 579–588
BU01- quote insurance, 579–582
BU02- process application, 582–585
BU03- change policy, 585–588

business value chain. See value chain
diagram

business workers, 228
business-domain semantics, 201

C
CalculatePolicyFinancials ope-

ration, 546
callable agent, 343
CancelInsurancePolicy operation,

545, 550–551, 556
canonical data format, Message

Brokers, 368–369
case studies

service-based integration. See ACME
Insurance, service-based
integration

travel insurance, 493–540
cataloging, 483
CCI (Common Client Interface), J2C,

372
centralized orchestration, 290–292
centralized policy management,

428–429
Certificate Revocation Lists (CRLs), 433
change

designing XML schemas for, 188
service repository for, 484

change-time governance, 20, 451,
453–454

choreography, of service interactions,
277–278

chunking, service payload, 384
CICS-based integrations, 557–565

ACME’s implementation of, 562–565
approaches, 558–562
comparison of approaches, 563

defined, 556
classes, information model, 163–167
classes, referenced, 177
clusters, information model, 176–177
coarse-grained services

business services, 57
overview of, 53–54
service interface design, 205–206

COM components, integration with,
557, 565–568

Common Client Interface (CCI), J2C,
372

Common Object Request Broker
Architecture (CORBA), 4–5, 7–10

common semantics
creating semantic information model,

88–90
defining, 40
in enterprise policy, 478
importance of in SOA, 160–162
overview of, 19–20
semantic data information type,

52–53
communications

as architectural principle, 32
ESB capabilities, 350
specifying service infrastructure, 39

compensation
implementing for integration

services, 382–383
service, 296–297

Competitive Advantage (Porter), 125
component view, 47, 49
components

building services with, 102
Business Process Model, 139–140
reuse using, 12
separating security into services and,

416–419
services vs., 50–51

composite services. See also service
composition

defined, 62
evaluating Design Characteristics,

594, 611–612
as result of combining services, 274

638 Index ■ C–D

composite types
analyzing, 597
defined, 170

computations, business logic, 267
conceptual architecture

creating project, 226–227
travel insurance case study, 497–498,

510–512
concerns, separation of, 30
conditional flows, 148
conditional operation outputs, 148–149
conductor-based composition, 280–281
confidentiality

case study examples, 442, 522
defined, 400
security and, 400–401

configuration
defining service, 38
evaluating, 596, 617–618

connection point, 51
consistency, 13–14, 31
consistency property, transactions, 382
constraints, 97–98, 404
construction

analyzing, 597
business service, 70
service, 61

context-based routing, 366
contrived identifiers, 171
conversation state, 218
conversational composition services,

279–280
CORBA (Common Object Request

Broker Architecture), 4–5, 7–10
core information modeling. See

information modeling
correlation identifier, 211
costs, implementing integration, 356
coupling. See also loose coupling

database-based integration and,
574

defined, 64
drawbacks of integration using SOI,

360
evaluating Design Characteristics,

593, 607–609

Russian doll design pattern for,
195–196, 198

service interface design, 213–215
Course of Action, Business Motivation

Model, 135–136
covenants, version deployment,

327–328
create, read, update, delete (CRUD)

services, 386
Create Quote operation, 269–272
CRLs (Certificate Revocation Lists), 433
cross-enterprise access, 397–400
CRUD (create, read, update, delete)

services, 386
cryptography

confidentiality and, 400–401
digital signatures based on, 404
performance impacted by, 446
XML Signature relying on, 415

customer service, example scenario,
4–7

D
DAC (Discretionary Access Control),

396–397, 400
data

access control for, 427–428
creating semantic information model,

88–90
decoupling, 66–67
encryption. See encryption
integration requirements, 15–16
islands of, 354–355

data access virtualization, Enterprise
Data Bus, 386–389

data flows, Business Process Models,
139

data mapping, 356, 362, 378–380
data model reuse, 246
data types

composite, 170
implementing, 170
overview of, 167–168
simple, 168–169

Database Management Systems, J2C
adapters for, 372

Index ■ D 639

databases
avoiding SOA stovepipes, 199–200
Enterprise Data Bus originating in,

387
implementing integration, 375–376,

557, 573–576
insurance case study of existing IT,

543–545
service management, 342

data-centric approach processes, 223
data-passing invocation style, 209–210
datastores, activity diagram, 257–258
DCE (Distributed Computing

Environment), 8, 66
DCOM (Distributed Common Object

Model), 7–10
death by architecture, 32–33
decentralized orchestration, 290–292
decentralized policy management

with attribute propagation, 429–430
with identity propagation, 430–431

decision services, 71–72, 260
decomposition, 90–94
deep authentication, 420
dependencies

defining building and use of services,
39

loosely vs. tightly coupled, 64
managing between service artifacts,

484
of security standards, 445

deploy-time governance
defined, 20, 451
overview of, 469–471
service life cycle, 105

derivations
disallowing, 195–198
by extension, 193–194
by restriction, 194
using abstract classes, 192–193

derived attributes, 174–175
design

high-level integration, 547–548
service discovery during, 22–23
SOA best practices, 24–25
travel insurance case study, 502–506

Design Characteristics, evaluating
SOA, 605–613

abstraction, 606–607
composable, 611–612
coupling, 607–609
governance, 612–613
granularity, 609–610
isolation of responsibilities, 605–606
service evaluation matrix overview,

592–594
stateless, 610–611

Design Perspective, 590–597
design-time

defining building and use of services
at, 38

developing repository for, 84
middle-out process phase of, 112
service discovery during, 22–23,

54–55
design-time governance, 462–469

defined, 20, 451
overview of, 462–463
service design and specification,

465–467
service identification, 464–465
service implementation, 467–469
service policies and business

processes, 463
Desired Results, Business Motivation

Model, 134, 135
determinism, business rules vs.

processes, 293
development

determining environment for, 41
efficiency in, 14–15, 18
model-based, 23–24

diagrams, defining, 527–528
digital certificate authentication, 393,

521
digital signatures, 404, 426
dimensioned numbers, 168
dimensions, service, 60–61
direct database access, integration,

375–376
direct routing, using service registry,

323–325

640 Index ■ D–E

direct trust, 420
Directives, Business Motivation Model,

133, 135–136
discovery, service

during design-time, 22–23
dynamic, 54, 55–56
specifying service infrastructure, 40
using service repository, 483

Discretionary Access Control (DAC),
396–397, 400

Distributed Common Object Model
(DCOM), 7–10

Distributed Computing Environment
(DCE), 8, 66

document model, 248–249, 529–530
document-passing invocation style,

208–209, 217
documents

adapting information model, 179–180
Business Process Model, 139, 146–148
case study designing, 533–534
case study of integration services,

556–557
defining, 178–179
implementing, 80
multiple, 180–181
overview of, 177–178
service interface design, 221–222,

261–262
documents, and XML, 181–190

designing for change, 188
overview of, 181–183
types in schemas, 185–187
variations in schemas, 187–188
versioning support in schemas,

189–190
XML patterns. See XML patterns
XML schema, 184–185

domain data, as information type,
52–53

domain object containers. See
documents

domain services
characteristics of, 207
defining, 62–63
granularity of, 57

service hierarchy, 58–59, 275–276
typical interface combinations, 217

domains
creating information model from,

163–167, 528
defined, 153
interoperability levels, 161–162
organizing services into, 152–154
as point of view, 165
service inventory, 156
types of, 154–155

domain-specific data types
composite, 170
implementing, 170
overview of, 167–168
simple, 168–169

DSLs (domain-specific languages), 23,
288–289

durable property, transactions, 382
dynamic binding, 54–55, 56
dynamic discovery, 54, 55–56
dynamic WS-SecurityPolicy,

436–437

E
EA (Enterprise Architecture)

4+1, services and, 49–50
defined, 44
reference architecture for SOA,

73–75, 85
SOA vs., 44–46

EAI (enterprise application
integration), 15

Eclipse, BPEL Visual Designer for, 301
efficiency in development, 14–15, 18
element substitution, 196–198
encapsulation

decoupling interface from
implementation, 66

with Russian doll design pattern, 196
of services, 54

encryption
confidentiality and, 400–401
large messages and, 384
XML Encryption standard, 415–416

Index ■ E 641

endpoint addresses
locating services, 98, 321–325
security gateway enforcing, 331
version deployment using, 328–329

Ends, Business Motivation Model,
132–133, 134

enterprise architect, 460
Enterprise Architecture. See EA

(Enterprise Architecture)
enterprise business architecture,

119–120, 123–124
enterprise business model, 115
enterprise business processes

Business Process Models defining, 64
combining services into, 39
common patterns of, 69
conceptual architecture for, 226
defined, 63
need for governance, 455–456
service granularity for, 56
service hierarchy, 58–59

enterprise business services. See
enterprise solutions, building

Enterprise Data Bus, 386–389
enterprise perspective, of SOA, 37
Enterprise Resource Planning Systems,

372
Enterprise Resources and Operational

Systems layer, 363
enterprise resources, as architectural

element, 35
enterprise semantics, 200
Enterprise Service Bus. See ESB

(Enterprise Service Bus)
enterprise service context and

inventory, problem model, 232–234
Enterprise Service Management (ESM),

450–451
enterprise solutions, building, 311–352

applications vs., 312–313
architecting security for, 330–333
Enterprise Service Bus. See ESB

(Enterprise Service Bus)
example of, 325
exception handling and logging,

333–337

layered SOA/multitiered application
architectures, 317–321

locating services, 321–325
monitoring and managing, 337–343
overview of, 311–312
service-based, 313–317
versioning, 325–329

enterprise strategy pattern, 237–238
Enterprise System Analysis, 107
enterprise tier, 319, 321
entitlement, visibility vs., 207
entity diagram, 525–527
entity managers, 234
entity services

business logic implementation, 260
constructing as service layer, 71–72
interaction controller supporting,

314–315
enumeration data types, 169
error handling

CICS integration, 565
enterprise policies for, 478
integration with COM components,

568
ESB (Enterprise Service Bus), 344–351

architecture, 346–348
choosing, 350–351
defining, 344–346
engine, 346
as framework, 349
identity propagation within, 421–422
implementing integration access,

377–378
as service container, 348–349
stand-alone, 348

ESM (Enterprise Service Management),
450–451

‘‘Establishing a Service Governance
Organization’’ (Dubray), 450

EstablishPolicySubmission

operation, 545, 548–551, 556
event-based composition, 285–286
event-based invocation style, 211–212
evolution, service repository and, 484
Excel notation, and data mapping,

379

642 Index ■ E–G

exception handling
building enterprise solutions,

333–337
implementing, 266–267
service interface design, 220

Exception Resolution Service, 336
Exceptions/Logging Portal, 336
executable Business Process Models,

140–141
executable processes

BPEL using, 300
building with domain-specific

languages, 288–289
central orchestration with, 292
orchestration engine-based

composition with, 287
turning into abstract processes, 306

execution state, 218
extended value chain, 125–126
extensibility, evaluating, 595–596,

616–617
eXtensible Access Control Markup

Language. See XACML (eXtensible
Access Control Markup Language)

Extensible Markup Language. See XML
(Extensible Markup Language)

extensions
derivation by, 193–194
versioning schemas with, 189–190

external actors, problem model, 228
external services

construction of, 61
defining, 63
granularity of, 57
service hierarchy, 58–59, 275–276

F
facilitation, as architectural principle,

32
failover, 40, 559
federated database technology, 387
federated identity, 397–400, 413
FileNet application, 556, 577–578
fine-grained services, 53–54, 205–206
fit for purpose, evaluating alignment,

592, 601–602

flexibility
accommodating change, 31
architectural requirements, 18
overview of, 16–18
security services for, 418
of WS-SecurityPolicy, 436–437

foundation domains, 154
foundation services

business logic, 260
conceptual architecture, 227
defining, 62
granularity, 57–58
problem model design, 233
service hierarchy, 275–276

4+1 Views, 46–50
framework, development, 41
framework, ESB as, 349
functional architect, 459
functionality

of integration services, 361
islands of automation duplicating,

355

G
Gang of Four Mediator design pattern,

308
gateways, 139, 148–149
general-purpose languages (GPLs), 289
GeneratePolicyNotice operation,

557
GeneratePolicyNoticeDocuments

operation, 546, 554–555
GetCatastrophicInformation

operation, 552–553, 557
getDriverRecord operation, 270–271
GetDriversInformation operation,

546
GetGeoCoding operation, 552–553, 557
GetInsurancetoValue operation,

552–553
GetInsuranceToValue operation, 557
GetPolicyFinancials operation, 557
GetPublicProtectionCode

operation, 552–553, 557
getVehicleInfo operation, 270–271
global policy, 428–429, 431–432

Index ■ G–I 643

goals
Business Motivation Model, 134, 135,

502
service interface design, 216–217

Google Mail, 211
governance, 449–491

defining, 450–452
enterprise policy, 477–481
evaluating, 594, 612–613
metamodel, 74–75
middle-out process design, 111
need for, 453–459
overview of, 20–21
reference architecture, 84
run-time policies, 486–490
of services by policy, 55
SOA management and, 450
SOA project based on, 115
structuring organization for, 475–477
types of, 20–21
using service repository, 481–486

GPLs (general-purpose languages), 289
granularity

analyzing, 596
business rules vs. processes, 293
for business services, 70
defined, 53–54
defining, 62
drawbacks of integration using SOI,

360
evaluating, 593–594, 609–610
hierarchy of service types and, 56–59
integration based on vendor’s Web

Services, 576
integration services and, 361
integration using J2C, 373
integration with Web Services, 370
interface design, 205–207
overview of, 60–61
specifying size, 38
typical interface combinations, 217

H
heterogeneity, and integration, 380
hierarchical composition services,

279–280

hierarchical data model, XML, 183, 190
high-level integration design,

547–548
history, learning from, 7–10
Housekeeping Characteristics,

evaluating SOA services, 590–591,
619

HTTP transport, 384, 563
hubs and spokes, ESB, 345–346
human activities

building enterprise solutions,
313–317

manager of, 297–298
in service composition, 297–298

I
Identification and Authentication

Services, 418
identifiers, 170–172
identity

authentication and, 394
best practices, 419–426
federated, 397–400
identifiers and, 171
travel insurance case study

authentication, 521
WS-Trust/WS-Federation used for,

408
Identity Federation Framework

(ID-FF), 398, 413
identity propagation

within application server or ESB,
421–422

assigning attesting trust for, 422–423
case study example, 439, 441–442
choosing solution, 425–426
decentralized policy management

with, 430–431
example of, 394–395
with REST using Browser-Based SSO,

424–425
for Single Sign-On solutions, 420
with trusted token service, 423–424

identity provider, 398
Identity SSO, 413
Identity Transformation Services, 418

644 Index ■ I

ID-FF (Identity Federation
Framework), 398, 413

ID-WSF (Identity Web Services
Framework), 398–399, 413

implementation. See also SOA
(Service-Oriented Architecture),
getting started

coupling, 574
layers, 535–536

Implementation Perspective, 590–597
Influencers, Business Motivation

Model, 133, 136
information

islands of automation, 355
islands of data, 354
islands of security, 355–357
role of integration in SOA, 357

information architecture
agility, flexibility, alignment for, 17
common semantics for, 19–20
creating semantic information model,

88–90
designing, 80
Enterprise Architecture vs. SOA, 44,

46
governance of, 20
for services, 52–53

information hiding, 66, 429
information metamodel, 73, 75, 84–85
information modeling

association multiplicities, 166–167
associations, 166
attributes and instances, 165–166
business context diagram for, 127–130
business model, 223–224
classes, attributes and instances,

164–165
data types, 167–170
derived attributes, 174–175
developing from use cases, 201
documents, building, 179–180
documents, designing, 221–222
finding classes, 167
identifiers, 170–172
objects and attributes, 163–164
problem model, 239

semantic interoperability using, 163
service design process, 506
service expectations, 97
solution model, 246–248
specializations, 172–174
structuring, 176–177
travel insurance case study,

527–530
uniqueness constraints, 170–172
value constraints, 176

initial scenarios, problem model,
229–232

input parameters, activity diagram,
257–258

instances, information model, 164–165
integration, of applications and data,

15–16, 18
integration access implementation,

365–378
data mapping, 378
direct database access, 375–376
Enterprise Service Bus, 377–378
existing Web Services, 369–371
JCA/J2C adapters, 372–374
Message Broker, 367–369
messaging (MOM) infrastructure,

365–367
Web Service wrappers, 374–375

Integration Access layer, 363
integration components, 260
integration services, 353–390

advantages of, 360–362
as architectural layer, 35
case study. See ACME Insurance,

service-based integration
challenges of, 354–357
characteristics of, 207
construction of, 61
data mapping for, 378–380
data virtualization and Enterprise

Data Bus in, 386–389
defined, 63
Enterprise Service Bus and, 350
granularity of, 57
interface combinations, 217
large messages and, 384–386

Index ■ I–L 645

layered enterprise architecture for,
363–364

on-demand, 100–102
overview of, 358–360
reference architecture for, 84
security for, 380–381
service hierarchy and,

58–59, 275–276
transactional support, 381–383
versioning, 383–384

integrity
defined, 400
security and, 401–403
travel insurance case study,

522–523
interaction controller, 313–315
interaction model

business context diagram, 127, 508
service expectations, 97

interaction style, 207–213
analyzing, 597
data passing, 209–210
document passing, 208–209
events, 211–212
mixed styles, 212–213
overview of, 207–208
parameter passing, 208
request/reply, 210–211

interactions, service, 530
interceptor, 331–333
interceptor agent, 343
intermediary-based routing, 324–325,

328
Internet banking example, 5–6
Internet scope, service interface, 206
interoperability, 67–68
invocation

implementing privacy, 355
of services by consumers, 321–325
state, 218

islands of automation, 355
islands of data, 354–355
islands of security, 355–357
isolated property, transactions, 382
isolation of responsibilities

evaluating, 592, 605–606

services and, 54
Two-Phase Commit protocol,

295–296
ivory tower dictator, 477

J
J2C (J2EE Connector Architecture),

372–374, 381
J2EE applications, integration with,

557, 570–573
Java

integration with existing APIs, 557,
568–570

limitations for enterprise
applications, 9

Java-COM bridge, 566–567
JCA (Java Connector Architecture)

adapters, 372–374, 558
JMS (Java Message Service), 570–571
JNI (Java Native Interface), 566–567
JSR (Java Specification Request), 316

K
Kerberos

Enterprise Service Bus support for,
350

governance policy, 452
identity propagation to COM

components, 568
integration implementation, 380, 565
security architecture supporting, 330
WS-Security Token Profile, 406, 577

knowledge, loose coupling
requirements, 68

KPIs (key performance indicators), 78,
341–342

L
lanes, Business Process Models, 140
languages

domain-specific, 23, 288–289
general-purpose, 289
orchestration, 276
Rights Expression Language, 406
SAML. See SAML (Security Assertion

Markup Language)

646 Index ■ L–M

languages (continued)
Web Ontology Language, 162
Web service, 277
Web Services Choreography

Language, 277–278, 286–290
WS-BPEL. See WS-BPEL (Web

Services Business Process
Execution Language)

WSDL. See WSDL (Web Services
Description Language)

XACML. See XACML (eXtensible
Access Control Markup
Language)

XML. See XML (Extensible Markup
Language)

large size messages, 384–385
layered SOA architecture,

316–321
learning from history, 7–10
legacy systems

building services from, 99
functionality of integration services,

361
integrating into service environment,

39
integration using J2C, 373
integration using Web Services

wrappers, 375
integration with COM components,

565–568
legal values, 165
legalities, SOA governance, 453
LEGO analogy, 42–43
Liberty Alliance, 398, 413
life cycle, service, 104–106
line-of-business services. See LOB

(line-of-business) services
load balancing, CICS integration, 559,

563
LOB (line-of-business) services

conceptual architecture for, 226
granularity, 57
service hierarchy, 58–59

local policies, combining global and,
431–432

locating services, 98, 321–325

location coupling, 574
location transparency

loose coupling for, 65–66
services designed for, 55
specifying service infrastructure, 40

logging, exception
CICS integration using, 565
integration with COM components,

568
overview of, 336–337

Logging Service, 336
logic implementation, 259–260
logical view, 47, 49
login, username/password, 393
loose coupling, 64–68

assumptions and, 68
data and, 66–67
between interface and

implementation, 66
between interoperability and

platform independence, 67–68
knowledge and, 68
location transparency and, 65–66
overview of, 64–65
separating security into

services/components, 416–419
service interface design using,

213–215
between services, 54, 274
Two-Phase Commit protocol and, 296
usage and, 68
versioning and, 67

M
MAC (Mandatory Access Control),

396–397, 400
major changes, XML schemas, 188
management, 337–343

business activity, 338–340
Enterprise Service Bus, 350–351
overview of, 337–338
SOA governance vs. SOA, 450–451
SOA tools for, 473
technical, 340–343

Mandatory Access Control (MAC),
396–397, 400

Index ■ M–N 647

mashups, 274–275
maturity levels, semantic

interoperability, 161
MBD (model-based development),

74–75, 85
Means, Business Motivation Model,

132–136
mediator

conductor-based composition using,
280–281

data transformation using, 378–379
ESB support for, 347
routing/transformation problems

using, 328
medium-grained services, 57
memory utilization, 384
MEPs (Message Exchange Patterns),

208
Message Brokers, 367–369
Message Exchange Patterns (MEPs),

208
message sender

best practices, 419
defined, 394
integrity and, 402
non-repudiation, 402
WS-Trust, 407–408

messages
business context diagram, 126
ESB processing capabilities, 350
implementing data mapping as part

of delivery, 378
large size, 384–386

Message Oriented Middleware (MOM)
infrastructure, 365–368

messaging systems, J2C adapters for,
372

metadata, 527–528
metrics

creating reference architecture, 84–85
measuring success with, 41

middle-out process, service design,
109–112

middleware abstraction layers, CICS
integrations, 558–559

minimum architecture, 82–84

minor changes, XML schemas, 188
Mission, Business Motivation Model,

133, 502
model-based development (MBD),

74–75, 85
modeling. See also information

modeling
business context diagram, 506–508
Business Process Models. See

Business Process Models
business processing, 22
defining, 527–528
development based on, 23–24
ESB capabilities, 351
first rules of, 508
interaction model, 508
shared information model, 508

modernization, of existing
applications, 99

modularity of services, 53–54
MOM (Message Oriented Middleware)

infrastructure, 365–368
monitoring, of enterprise solutions

business activity, 338–340
ESB support for, 347
overview of, 337–338
technical monitoring of SOA

solutions, 340–343
monitoring agents, types of, 342–343
motivation, business. See BMM

(Business Motivation Model)
MQ infrastracture

CICS integration, 559–561, 563
dealing with large messages, 384

multiple population identifiers,
171–172

multitiered application architecture,
317–321

MVC (Model-View-Controller) design
pattern, 313–314, 416–419

N
namespaces, XML, 189–190, 197–198
naming conventions, 478, 530
NetBeans, 301
.NET/COM bridge, 565–568

648 Index ■ N–P

nonpersistent messaging, 366
non-repudiation

case study examples, 442, 522–523
defined, 400
security and, 404–405

Notification Service, 336
n-tier solution architecture, 318–321,

518–519
numeric data types, 168

O
Object Management Group (OMG), 132
Objectives, Business Motivation Model

applying via Directives, 135–136
case study, 502
overview of, 134

objects
achieving reuse through, 12
derived attributes from, 174–175
identifiers and uniqueness constraints

of, 170–172
information model defining,

163–167
modeling using specializations,

172–174
services vs., 50

OMG (Object Management Group),
132

on-demand services, 100–102
OO (object-oriented) design

overview of, 90–91
use of, 164
XML hierarchical data model vs., 183,

190
OpenCSA (Open Composite Services

Architecture), 283
operation procedures

case study, 536–538
implementation of services, 224
service definition diagrams, 244–245
within solution model, 246

operational logic, modeling, 257–258
operational systems, as architectural

element, 35
(optional) attribute, XML schemas, 189

orchestration
with BPEL, 299–301
centralized and decentralized,

290–292
defined, 36, 63
engine-based composition, 286–290
human activities incorporated into,

297–298
overview of, 276–278
pitfalls of service composition,

307–308
supporting business rules, 293–294

output parameters, activity diagram,
257–258

outsourced (rented) services,
99–102

OWL (Web Ontology Language), 162
ownership

analyzing, 596
business service, 70
service, 60–61
structuring for SOA governance, 476

P
packaged systems, integrating, 39
PADBAC (Predetermined

Authorization Decision-Based
Access Control), 397, 400,
432–434

PAPs (Policy Administration Points)
authorization for access control using,

395
policy application points vs., 486
XACML architecture, 414

parameter-passing invocation style,
208, 217

partitioning, domain, 152
passwords

authentication, 393
case study, 437–439
WS-Security Username Token Profile,

406
pattern, as architectural principle, 31
Patterns of Enterprise Application

Architecture (Fowler), 301

Index ■ P 649

PDPs (Policy Decision Points)
authorization for access control using,

395–396
centralized policy management

using, 428–429
combining global and local policies,

431–432
decentralized policy management

using, 429–431
Mandatory Access Control using,

396
WS-Federation using, 409
XACML architecture using, 395

peer-to-peer based composition,
280–281

PEPs (Policy Enforcement Points)
authorization for access control using,

395–396
centralized policy management and,

429
decentralized policy management

with attribute propagation,
429–430

decentralized policy management
with identity propagation,
430–431

enforcing service policies at run-time,
471

integration based on vendor’s Web
Services, 578

Mandatory Access Control using, 396
run-time policy enforcement using,

486–488
WS-Federation using, 409
XACML architecture, 395

performance
building enterprise solutions, 314
centralized policy management and,

429
combining global and local policies,

431–432
database-based integrations and,

574–575
impact of security on, 446

persistent messaging, MOM
implementations, 366

phases, implementing security in, 444
physical data, as information type,

52–53
physical view, 48
PIPs (Policy Information Points),

395
planning, for security, 443–444
platform independence, 67–68
platform profiles, reference

architecture, 74–75
point-and-click WSDL generation,

199–200
point-to-point authentication, 425–426
policies

Business Motivation Model, 502
defined, 55
design-time governance. See

design-time governance
developing and registering run-time,

486–488
developing enterprise, 477–481
directives governing business,

135–136
enforcing and adapting run-time,

488–490
governance of, 20, 105–106, 450–454,

477–481
integration services case study,

548–551, 555–556
middle-out process design, 111
monitoring enterprise solutions, 338
need for explicit run-time service

policies, 456–457
run-time enforcement and

adaptation, 488–490
separating business logic from,

457–458
separating business processes from

service, 463
service constraints, 97–98
versioning, 66

Policy Administration Points. See PAPs
(Policy Administration Points)

policy application points, 486–488
Policy Decision Points. See PDPs

(Policy Decision Points)

650 Index ■ P–R

policy enforcement approaches,
428–435

choosing solution, 434–435
combining local and global enterprise

policy, 431–432
decentralized PDP/PEP, 430–431
predetermined decision-based

models, 432–434
purely centralized PDP, 428–429
purely decentralized PDP/PEP,

429–430
Policy Information Points (PIPs), 395
Policy Management Service, case

study, 440
policy push method, 431–432
policy retrieval method, 431
Policy Retrieval Service, 418, 440
portals, 315–316
portfolio architect, 460
portfolio rationalization, 78–79
Potential impact, 136
powerless committee, 477
Predetermined Authorization

Decision-Based Access Control
(PADBAC), 397, 400, 432–434

PriceForQuote operation, 269–270
PriceRequest document, 270–271
primary activities, extended value

chain, 125–126
principal domains, 154
principles, architectural, 30–33
privacy, pseudonym SSO for, 413
private processes, 316
problem space model, 227–241

actors, 228–229
describing, 224
detailed scenario diagrams, 234–238
enterprise service context and

inventory, 232–234
information model, 239
initial scenario diagrams, 229–232
service specifications, 239–241
use case diagrams, 227–228

process (behavior) model, 97
process documentation structure, 225
process flows, Business Process

Models, 139

process metamodel, reference
architecture, 74–75

process steps, Business Process
Models, 139

process view, 48–50
process-centric approach processes, 223
processes

business. See business processes
Business Process Models and,

149–150
modeling in service composition,

303–307
organizing service inventory for

enterprise, 232
programmatic composition, 281–282
programming, DSLs vs. GPLs, 289
project business architecture

defined, 120
enterprise business architecture vs.,

123–124
features of, 124–125

project-specific interoperability, 161
proxy agent, 343
pseudonym SSO, 413
public key cryptography, 404, 415
publish-find-bind triangle, 456–457,

486–487
Publish/Subscribe (Pub/Sub)

composite service, 285–286
pull model, 298
push model, 298

Q
QoS (quality of service)

ESB and, 350
service specifications and, 94

QuoteRequest document, 269

R
Radio Frequency Identification (RFID)

reader, 211
RAS (Reusable Asset Specification),

485–486
RateAutoPolicy integration, 551
RateCommercialAutoProperty

operation, 557
RateCommercialProperty operation,

551, 556

Index ■ R 651

RateInsurancePolicy operation, 546,
551–552

The Rational Unified Process — An
Introduction (Booch and Krutchen),
28

RBAC (Role-Based Access Control),
397, 400

RDF (Resource Description
Framework), 162

recursive aggregation, of orchestration
engines, 288

reference architecture
contents of, 73–75
getting started, 82–85
goals of, 73
methodology, 80–81, 82–85
middle-out process phase, 111
overview of, 19

referenced classes, 177
references, document marking, 248
registry. See service registry
ReinstateInsurancePolicy

operation, 545, 551, 556
REL (Rights Expression Language), 406
relying party, 398
Remote Method Invocation (RMI),

566–567, 570
Remote Procedure Call (RPC), 8
reporting, reference architecture, 85
repositories, middle-out process

design, 111
Representational State Transfer. See

REST (Representational State
Transfer)-based Web services

request/reply invocation style,
210–211

request/response protocol
SAML, 412
XACML, 413–414

requirements, security, 443–444
research, integration and, 356
Reservation Web Service, 442
resource access layer

business logic implementation, 260
implementation components,

259–260
implementing, 267–268

overview of, 254–256
responsibilities, 256–257

Resource Description Framework
(RDF), 162

resource tier, 319–320, 321
REST (Representational State

Transfer)-based Web services
confidentiality, 401
identity propagation, 424–425
integrity, 403
non-repudiation, 404

restriction, derivations by, 194
retirement, service, 105, 473–475
RetrieveInsurancePolicy

operation, 546, 551, 556
RetrievePolicyComplianceInfor

mation operation, 546, 557
return on investment (ROI), of SOA,

273
Reusable Asset Specification (RAS),

485–486
reuse

analyzing, 597
architectural requirements, 13–14, 18
challenges of, 11–13
data model, 246
DSLs vs. GPLs, 289
example scenario, 6
integration policy for, 362
motivations for, 10–11
need for governance, 455
promoting consistency, 31
Reusable Asset Specification, 485–486
of services, 54

revisions, XML schemas, 188
RFID (Radio Frequency Identification)

reader, 211
Rights Expression Language (REL), 406
RMI (Remote Method Invocation),

566–567, 570
roadmap, reference architecture, 83–85
ROI (return on investment), of SOA,

273
Role-Based Access Control (RBAC),

397, 400
root class, selecting for document, 178
root node, document marking, 248

652 Index ■ R–S

RPC (Remote Procedure Call), 8
rules. See business rules
rules engines, 294–295
run-time

design-time registry vs., 22
ESB configuration at, 347
governance, 451, 471–475
tracking what is running at, 38

run-time service policy
analyzing, 597
authoring, 478
creating, 451
design phase, 462
developing and registering, 486–488
enforcement and adaptation, 488–490
need for explicit, 456–457
run-time phase, 471–475

Russian doll, XML design pattern,
195–196

S
SaaS (software-as-a-service), 85,

100–102
Salami Slice, XML design, 196–197
SAML (Security Assertion Markup

Language)
Browser-Based SSO for REST,

424–425
case studies using, 441–442, 521
defined, 408
overview of, 411–413
Token Profile standard, WS-Security,

406, 420, 441–442
using federated identity, 398–399
WS-Federation using, 409
WS-Trust accommodating, 407–408
XACML policies carried by, 414–415

SAML Issuing Authority, 412
SCA (Service Component Architecture)

building services using, 102
composition, 282–285
implementing business components,

362
scalability, centralized orchestration

and, 290–292
scenarios, use case

Business Process Models, 144
case studies, 496–497, 514–517
creating information model, 528
implementing business layer,

268–272
multiple, 144–146
problem model diagrams, 229–232,

234–238
service design, 505–506
service interface design, 223–224
service model, 241–243
step reuse, 146

scope
analyzing, 596
business service, 69
service, 60–61
service interface design, 205–207
software architecture vs. SOA, 31
typical interface combinations, 217

security, 391–447
access control, 395–397, 427–435
auditing, 435–436
authentication, 392–395, 419–426
authorization, 395–396
case study examples, 437–442,

523–524
CICS integration, 564–565
complete architecture analysis of, 437
components. See components
confidentiality, 400–401
credentials, 380
cross-enterprise access, 397–400
database-based integrations,

575–576
ESB support for, 347, 350
evaluating Alignment Characteristics,

592, 602–603
federated identity, 397–400
flexibility with WS-SecurityPolicy,

436–437
gateway, 330–331
high-level game plan for, 443–447
identity, 419–426
integration role, 357
integration support, 380–381
integration using J2C, 372

Index ■ S 653

integration using vendor’s Web
Services, 577–578

integration with COM components,
566, 568

integration with MOM, 366
integrity, 401–403
interceptors, 331–333
islands of, 355–357
non-repudiation, 404–405
overview of, 330
selecting enterprise service products,

416–419
tagging, 427–428
terminology, 400–401
troubleshooting, 435–436
Web Services. See Web Services,

standards and specifications
Security Assertion Markup Language.

See SAML (Security Assertion
Markup Language)

Security Token Service. See STS
(Security Token Service)

SEI (Software Engineering Institute),
28

self-describing, service contracts, 55
Semantic Alignment, evaluating, 592,

603–605
semantic data information type,

52–53
semantic information model

creating, 88–90
implementation of, 78
reference architecture, 83
SOA methodology, 81

semantic input validations, 263–264
semantic interoperability

avoiding SOA stovepipes, 199–200
core information modeling,

163–167
importance of, 160–162

The Semantic Web: A Guide to the Future
of XML, Web Services, and Knowledge
Management (Daconta, Obrst, and
Smith), 161, 163

‘‘The Semantic Web’’, Scientific
America, 162–163

semantics, common. See also service
context and common semantics

creating semantic information model,
88–90

defining, 40
in enterprise policy, 478
importance of, 160–162
overview of, 19–20
semantic data information type,

52–53
SEMCI (Single Entry Multiple Carrier

Interface), 225
sender-voucher confirmation method,

421
separation of concern

applying to service types, 70–72
as architectural principle, 30
logical design vs. technology

implementation, 49
servers, centralized, 290–292
service architecture, basic, 254–260

activity diagrams, 257–258
implementation components,

259–260
layer responsibilities, 256–257
overview of, 254–256

service autonomy. See autonomy,
service

service business layer
implementation components,

259–260
implementing, 263–267
implementing, example of, 268–272
implementing interface layer, 260
overview of, 254–256
responsibilities, 256–257

Service Component Architecture. See
SCA (Service Component
Architecture)

service composition, 273–309. See also
composite services

architectural models in, 279–281
avoiding static, programmatic

orchestration, 307–308
BPM-composition relationship,

278–279

654 Index ■ S

service composition, 273–309. See also
composite services (continued)

business rules and, 292–295
case study example, 301–307
incorporating human activities into,

297–298
orchestration and choreography,

276–278
orchestration with BPEL, 299–301,

308–309
separation into service layers,

275–276
transactions and, 295–297
understanding, 274–275
using layered service approach,

308
service composition, implementing,

281–292
centralized/decentralized

approaches, 290–292
event-based approach, 285–286
orchestration engine-based approach,

286–290
programmatic approach, 281–282
Service Component Architecture

approach, 282–285
service container, ESB as, 348–349
service context and common

semantics, 159–202
best practices, and pitfalls, 199–201
core information modeling, 163–167
defining types, 167–170
derived attributes, 174–176
documents, 177–181
documents and XML. See documents,

and XML
identifiers and uniqueness

constraints, 170–172
importance of semantics, 160–163
specializations, 172–174
structuring information models,

176–177
value constraints, 176
XML patterns. See XML patterns

service contracts, 55, 260
service definitions, 243–246, 350

service deployment, governance,
469–471

service design, 106–109
bottom-up approaches, 108–109
design-time governance, 465–467
overview of, 106
service life cycle, 105
top-down approaches, 106–108

service endpoint addresses
interceptors enforcing, 332
locating services, 98, 321–325
security gateway enforcing, 331
version deployment using, 328–329

service execution model, 97
service hierarchy, 56–59, 275–276, 308
service identification

design-time governance, 464–465
overview of, 90–94
service life cycle, 105
summary of, 102–103

service implementation design,
253–271. See also business use cases

basic service architecture, 254–260
business layer, 263–267
business layer, example, 268–272
case study, 534–538
governance, 467–469
interface layer, 260–262
overview of, 253–254
resource layer, 267–268

service infrastructure specialist, 461
service interface

building, 38
creating reference architecture, 83
decoupling from implementation, 66
defined, 62
future of semantic, 89–90
governance of, 22
implementation components,

259–260
implementing, 260–262
integration of applications/data with,

15–16
overview of, 50–52, 254–256
responsibilities, 256–257
service level agreement and, 53

Index ■ S 655

service interface design, 203–252
business use cases. See business use

cases
case study, 530–532
document design, 221–222
example of. See ACME Insurance,

service interface design
exceptions, 220
identifying granularity, 217
interaction styles, 207–213
isolating responsibilities, 213–215
service characteristics and, 204–207
SOA context and, 204
stateless interfaces, 218–220
summary of, 249–251
understanding overall context,

215–216
service inventory

designing problem model, 232–234
designing SOA, 155–156
service identification, 93–94
service interface design, 216–217
travel insurance case study, 524–525

service level agreements. See SLAs
(service level agreements)

service life cycle, SOA governance,
459–475

deploy-time, 469–471
design-time, 462–469
overview of, 104–106, 459–461
phases of, 451–452
run-time, 471–475

service management
architecture, 341–342
exception logging, 337

service metamodel, reference
architecture, 73, 75

service model, 6–7, 241–243
Service Provider Interface (SPI), J2C,

372
service registry

CICS integration using, 564
ESB support for, 346
implementing location transparency,

65–66
overview of, 323–324

publishing run-time policies in,
487–488

role of, 322
service repository

artifacts, 484–485
basic architecture, 481–483
cataloging and discovery, 483
dependency management, 484
governance using, 481–486
Reusable Asset Specification, 485–486
service evolution and versioning, 484
validation, 483

service retirement, 105, 473–475
service specifications

constraints, 97–98
current practices, 95–96
evaluating, 595
expectations, 96–97
formal vs. informal, 241
interaction model of, 97
location of, 98
overview of, 94
problem model of, 239–240
service life cycle and, 105
travel insurance case study, 534–535

service tester, 461
service utilization process, run-time

governance, 471–474
service-based enterprise solutions,

313–317
service-based integration case study.

See ACME Insurance, service-based
integration

Service-Oriented Architecture
getting started. See SOA

(Service-Oriented Architecture),
getting started

promise of. See SOA
(Service-Oriented Architecture),
promise of

Service-Oriented Enterprise (SOE), 450
Service-Oriented Integration (SOI),

358–360
services

analysis and design, 24–25
business. See business services

656 Index ■ S

services (continued)
Business Process Models and,

149–151
buying, 98–99
conceptual architecture, 497–498
design process, 505–506
design-time discovery, 22–23
efficiency in developing, 15
enterprise solutions. See enterprise

solutions, building
governance of, 20, 22
granularity. See granularity
implementation of, 79–81
integration. See integration services
organizing, 151–155
reference architecture, 83–85
reuse of. See reuse
security, 416–419

services, characteristics of
common patterns, 68–70
dimensions, 60–64
granularity, 56–59
loose coupling, 64–68
overview of, 53–56
types and purpose, 70–72

services, evaluating SOA, 589–619
Alignment Characteristics, 597–605
Design Characteristics, 605–613
evaluation matrix, 590–597
Housekeeping Characteristics, 619
overview of, 589–590
Technical Characteristics, 613–619

services, SOA architecture
fundamentals, 37–72

aligning to business, 40–41
aligning with business, 40–41
building and using, 38–39
characteristics of. See services,

characteristics of
combining into enterprise processes,

39
defining, 37–38, 50–52
defining common semantics and data,

40
definitions, 61–64
enterprise architecture for, 44–46

information architecture relating to,
52–53

integrating packaged and legacy
systems, 39

specifying technology infrastructure,
39–40

services assembler, 461
services librarian, 461
services metamodel, 84
services realization, 98–104

building, 102–103
buying, 99
outsourcing, 99–102
overview of, 98–99
summary of, 103–104

Session Façade J2EE design pattern,
308

shared information model
business context providing, 127–130,

508
deriving documents from, 221–222

silent rollback, of 2PC, 296
simple data types, 168–169
Single Entry Multiple Carrier Interface

(SEMCI), 225
Single Sign-On. See SSO (Single

Sign-On)
size, large message, 384–386
SLAs (service level agreements)

analyzing, 597
defined, 53
designing, 343
design-time governance, 462
ESB capabilities, 350
evaluating Technical Characteristics,

595, 615–616
service managers evaluating, 341–342

smart data continuum, 161
SOA (Service-Oriented Architecture),

getting started
business architecture, 85–86
business processes, 86–88
compromise approach, 109–112
identifying services, 90–94, 102–103
information design, 88–90
methodology overview, 78–82

Index ■ S 657

practical steps, 113–115
realizing services, 98–103
reference architecture, 82–85
service design process, 106–109
service life cycle, 104–106
specifying services, 94–98

SOA (Service-Oriented Architecture),
promise of

agility and flexibility, 16–18
alignment, 17–18
analysis and design, 24–25
business processing modeling, 22
common semantics, 19–20
design-time service discovery, 22–23
efficient development, 14–15, 18
example scenario, 4–7
governance, 20–22
integration of applications and data,

15, 18
learning from history, 7–10
model-based development, 23–24
motivations for using, 10–11
reference architecture, 19
reuse, 11–14, 18

SOA run-time architect, 461
SOA stovepipes, 199
‘‘The social side of services’’, IEEE

Internet Computing (Vinoski), 322
SOE (Service-Oriented Enterprise), 450
software abstraction layers, CICS

integrations, 558–559
software architecture

comparing SOA to, 46–48
defining, 28–29
principles and practices of, 30–33
SOA vs., 31
styles, 29–30

Software Engineering Institute (SEI), 28
software-as-a-service (SaaS), 85,

100–102
SOI (Service-Oriented Integration),

358–360
solution lead, 459
solution model, service interface

design, 241–249
describing, 224

document model, 248–249
information model, 246–248
operations procedures, 246
overview of, 222–223
service definition diagrams, 243–246
service model, 241–243

specializations, 172–174
specifications

analyzing, 597
evaluating Alignment Characteristics,

591, 599–601
evaluating Technical Characteristics,

613–615
SPI (Service Provider Interface), J2C,

372
SSL authentication

confidentiality and, 522
integrity and, 522
point-to-point authentication using,

425–426
travel insurance case study, 521

SSL/TLS authentication protocols, 393,
400–403

SSO (Single Sign-On)
browser-based vs. service-based, 398
case study, 438–439
defined, 355
SAML 2.0 support for, 413
using federated identity for, 397–398

SSO (Single Sign-On), identity
propagation for, 420–426

within application server or ESB,
421–422

assigning attesting trust, 422–423
Browser-Based SSO for REST,

424–425
choosing solution, 425–426
defined, 394–395
overview of, 420–421
using trusted token service, 423–424

staff resolution, 297–298
stakeholders

role in SOA governance, 459–460
service deployment, 469–471
service design and specification,

465–467

658 Index ■ S–T

stakeholders (continued)
service identification, 464–465
service implementation, 467–469
service retirement, 475
service utilization, 473–474

stand-alone ESB architecture, 348
standards

developing enterprise policy, 478
fully understanding details of, 445
reusing, 200–201
selecting products for enterprises

based on, 419
using accepted, 444–445

statefulness, 293
stateless

evaluating, 594, 610–611
service operations, 55

stateless service interfaces, 218–220
step reuse, 146
store-and-forward pattern, 385–386
stored procedures, 376
Strategy, Business Motivation Model

applying via Directives, 135–136
defined, 134
implementing Goals through, 135
travel insurance case study, 502

structuring organization, for
governance, 475–477

STS (Security Token Service)
as authorization service for

WS-Federation, 409
case study, 440–442
defined, 418
defined by WS-Trust, 406–408
WS-SecureConversation, 410

styles, architectural, 29–30
subelements, document marking, 248
subjects, business context diagram, 126
subpopulation identifiers, 172
supporting activities, extended value

chain, 125–126
symbolic data types, 169
synchronicity, business rules vs.

processes, 293
synchronous invocations, 373
syntactic coupling, 160

syntactic data validations, 260–263
system exceptions, service interface

design, 220

T
Tactics, Business Motivation Model,

135, 502
task services

business logic implementation, 260
constructing as service layer, 71–72
interaction controller supporting, 315

Technical Characteristics, 613–619
autonomy, 618–619
extensibility, 616–617
service evaluation matrix overview,

595–596
service level agreement, 615–616
services, evaluating SOA, 613–619
specification, 613–615
variability and configurability,

617–618
technology

agility, flexibility and alignment of, 17
analysis and design of, 24
business architecture, 122–123,

130–132
EA and SOA architecture, 45–46
implementing integration and, 356
logical design vs. implementation of,

49
monitoring SOA solutions, 340–343
reference architecture for SOA, 74–75
service specifications, 96
specifying service infrastructure,

39–40
testing, middle-out process phase, 112
TFIM (Tivoli Federated Identity

Manager), 381, 565
3-tiered application architecture

n-tiered vs., 318–321
overview of, 317–318

Tivoli Federated Identity Manager
(TFIM), 381, 565

Token Profile standards, WS-Security,
406, 412, 420

tokens, SAML, 412

Index ■ T–U 659

tokens, trust propagation using, 420
top-down SOA, service design,

106–107, 109–113
traceability, Business Motivation

Model, 136–137
Transaction Monitors, J2C adapters for,

372
transactions

ESB support for, 346
integration using J2C, 372
MOM-based integration, 366
service composition and, 295–297
support in integration, 381–383

transformations
components of, 259
implementing data, 379–380
implementing interface layer, 262
reference architecture for SOA, 74–75

transitive trust, 420–423
transport protocols, 380
travel insurance case study, 493–540

analysis and design review, 502–506
authentication, 519–521
authorization, 521–522
business analysis, 506–508
business concerns, 498–502
business process model, 509–510
conceptual architecture, 497–498
confidentiality, 522
document design, 533–534
entity diagram, 525–527
information model, 527–530
integrity and non-repudiation,

522–523
scenario, 496–497
security design, 523–524
service conceptual architecture,

510–512
service implementation design,

534–538
service interface design, 530–532
service inventory, 524–525
solution architecture, 518–519
use cases, 512–517

troubleshooting, auditing and,
435–436

trust, 425–426. See also identity
propagation

trusted token service, 423–424
try/catch blocks, exception

handling, 266, 333–337
Tuxedo, 7–10
2PC (Two-Phase Commit) protocol,

295–296
type, analyzing, 597

U
UDDI (Universal Description,

Discovery and Integration) registry,
323

undo actions, of 2PC, 296
uniqueness constraints, 170–172
Universal Description, Discovery and

Integration (UDDI) registry, 323
UpdateInsurancePolicy operation,

545, 550, 556
URI mapper, 561–562
usage

analyzing, 597
loose coupling for, 68
loose coupling requirements, 68
service life cycle, 105
service pattern, 71

use cases. See also business use cases
Business Process Models and,

144–146
creating information model from, 528
designing initial scenarios, 229–232
developing information models based

on, 201
identifying for service interface

design, 223–224, 225
overview of, 48, 143–144
problem model, 227–228
service design process, 506
step reuse, 146
travel insurance case study, 512–517

<<used>> and <<used by>>

relationship, coupling, 64
user identity, 380–381, 413
user tier, 318–319, 320
user-facing mashups, 275

660 Index ■ U–W

usernames
authentication, 393
case study, 437–439
WS-Security Username Token Profile,

406
utility services

as bottom-up approach, 108
characteristics of, 207
defined, 63
granularity of, 57–59
service hierarchy and, 275–276
typical interface combinations, 217

V
validations

semantic input, 263–264
syntactic data, 260–262
using service repository, 483

value chain diagram
case study, 499–500
defined, 122
overview of, 125–126
reasons to use, 131
service design process, 503–504

value constraints, information
modeling, 176

variability, evaluating, 596,
617–618

VB (Visual Basic), 4–5, 8–10
vehicle identification number (VIN),

171
vendors, integration using Web

Services of, 576–578
Venetian Blind, XML design pattern,

197–198
verification, DSLs vs. GPLs, 289
versioning

analyzing, 597
creating reference architecture, 84
dealing with service changes, 325–327
deployment and access approaches,

327–329
designing XML documents for,

188–189
developing enterprise policy, 479
example of, 329

integration, 383–384
overview of, 67
service repository and, 484
support in XML schemas, 189–190

views
architectural, 30–31
software architectural, 46–48

VIN (vehicle identification number),
171

virtualization, 345, 386–389
visibility

analyzing, 596
defined, 206–207
service interface design, 207

Vision, Business Motivation Model,
133–134, 501

Visual Basic (VB), 4–5, 8–10
Visual Studio, 565–566

W
Web Ontology Language (OWL), 162
Web Services, 562

infrastructure of services using, 42
integration based on, 369–371
integration based on CICS, 561–565
integration based on vendor’s, 557,

576–578
integration using wrappers, 374–375
integration with COM components,

557, 565–568
integration with existing J2EE

applications, 570–573
limitations in enterprise applications,

9
technology independence and, 49
user identity conversion requests

implemented, 381
Web Services Business Process

Execution Language. See WS-BPEL
(Web Services Business Process
Execution Language)

Web Services Choreography Language
(WS-CDL), 277–278, 286–290

Web Services Description Language.
See WSDL (Web Services
Description Language)

Index ■ W 661

Web Services Remote Portlets (WSRP),
316

Web Services Secure Exchange
(WS-SX) Technical Committee, 408,
410

Web Services, standards and
specifications, 405–416

SAML, 411–413
types of, 408–409
WS-Federation, 409–410
WS-SecureConversation, 410
WS-Security SOAP messaging,

405–406
WS-SecurityPolicy and WS-Policy

Framework, 410–411
WS-Trust, 406–408
XACML, 413–415
XML encryption, 415–416
XML Signature, 415

Web-Service-based SSO, 398, 423–424
WebSphere MQ integration, 559–561,

563
wires, SCA, 285
workflow

BU01- quote insurance, 580–582
BU02- process application, 583–585
BU03- change policy, 585–588
defining, 63
orchestration of service composition,

276–278
workspace tier, 319, 320–321
WorkWithDocuments operation,

556–557
WS-BPEL (Web Services Business

Process Execution Language)
abstract processes for, 308–309
defining, 278
orchestration with, 276, 299–301
reference guide for, 299
service composition using, 303–307

WS-CDL (Web Services Choreography
Language), 277–278, 286–290

WSDL (Web Services Description
Language)

avoiding SOA stovepipes, 199–200

CICS integration using Web Services,
562

fallacy of publish-find-bind triangle,
456–457

generating service interface with, 16
integration using Web Services

wrappers, 375
useless, 370–371
WS-BPEL extending, 300
WS-Policy complementing, 410

WS-Federation
defined, 408
origins of, 399
overview of, 409–410
WS-Trust used with, 408

WS-Policy
defined, 408
overview of, 410–411
WS-SecurityPolicy as subset of, 410

WS-Policy framework, 486–488
WSRP (Web Services Remote Portlets),

316
WS-SecureConversation

achieving confidentiality with, 401
confidentiality of, 405
defined, 408
overview of, 410
WS-Trust used with, 408

WS-Security, defined, 408
WS-Security SOAP messaging

confidentiality of, 401
integrity, 403
non-repudiation, 404
overview of, 405–406
point-to-point authentication, 426
WS-Federation, 408–409
WS-SecureConversation, 410
WS-Trust, 406–408
XML Encryption utilized by, 415–416
XML Signature utilized by, 415

WS-SecurityPolicy
defined, 408
developing and registering run-time

policies, 487
flexibility with, 436–437

662 Index ■ W–X

WS-SecurityPolicy (continued)
integration based on vendor’s Web

Services, 577–578
overview of, 410–411

WS-SX (Web Services Secure
Exchange) Technical Committee,
408, 410

WS-Trust
built on WS-Security SOAP

messaging, 405
confidentiality of, 401
defined, 408
overview of, 406–408
WS-Federation using and extending,

409

X
X.509 Certificates, WS-Security Token

Profile, 406, 426
XACML (eXtensible Access Control

Markup Language)
authorization for access control, 395
defined, 408–409
overview of, 413–415

XML (Extensible Markup Language)
integration with Web Services and,

370
semantic interoperability and,

160–162
WS-BPEL based on, 300
XACML, 413–414

XML documents
designing for change, 188
overview of, 181–183

schemas, 184–185
signing with XML Signature, 404
types in schemas, 185–187
variations in schemas, 187–188
versioning support in schemas,

189–190
XML Encryption standard, 401, 409,

415–416
XML namespaces, 189
XML parsers, 189
XML patterns, 190–198

derivation by extension, 193–194
derivation by restriction, 194
derivation using abstract classes,

192–193
disallowing derivations, 195–198
overview of, 190–192

XML schemas
avoiding SOA stovepipes,

199–200
overview of, 184–185
as semantic technology, 162
types in, 185–187
variations in, 187–188
versioning support in, 189–190

XML Signature
defined, 409
overview of, 415
point-to-point authentication using,

426
providing integrity, 403
providing non-repudiation, 404

XML-DSIG. See XML Signature
XML-SIG. See XML Signature

	cover
	page_c2
	page_r01
	page_r02
	page_r03
	page_r04
	page_r05
	page_r06
	page_r07
	page_r08
	page_r09
	page_r10
	page_r11
	page_r12
	page_r13
	page_r14
	page_r15
	page_r16
	page_r17
	page_r18
	page_r19
	page_r20
	page_r21
	page_r22
	page_r23
	page_r24
	page_r25
	page_r26
	page_r27
	page_r28
	page_r29
	page_r30
	page_r31
	page_r32
	page_r33
	page_r34
	page_z0001
	page_z0002
	page_z0003
	page_z0004
	page_z0005
	page_z0006
	page_z0007
	page_z0008
	page_z0009
	page_z0010
	page_z0011
	page_z0012
	page_z0013
	page_z0014
	page_z0015
	page_z0016
	page_z0017
	page_z0018
	page_z0019
	page_z0020
	page_z0021
	page_z0022
	page_z0023
	page_z0024
	page_z0025
	page_z0026
	page_z0027
	page_z0028
	page_z0029
	page_z0030
	page_z0031
	page_z0032
	page_z0033
	page_z0034
	page_z0035
	page_z0036
	page_z0037
	page_z0038
	page_z0039
	page_z0040
	page_z0041
	page_z0042
	page_z0043
	page_z0044
	page_z0045
	page_z0046
	page_z0047
	page_z0048
	page_z0049
	page_z0050
	page_z0051
	page_z0052
	page_z0053
	page_z0054
	page_z0055
	page_z0056
	page_z0057
	page_z0058
	page_z0059
	page_z0060
	page_z0061
	page_z0062
	page_z0063
	page_z0064
	page_z0065
	page_z0066
	page_z0067
	page_z0068
	page_z0069
	page_z0070
	page_z0071
	page_z0072
	page_z0073
	page_z0074
	page_z0075
	page_z0076
	page_z0077
	page_z0078
	page_z0079
	page_z0080
	page_z0081
	page_z0082
	page_z0083
	page_z0084
	page_z0085
	page_z0086
	page_z0087
	page_z0088
	page_z0089
	page_z0090
	page_z0091
	page_z0092
	page_z0093
	page_z0094
	page_z0095
	page_z0096
	page_z0097
	page_z0098
	page_z0099
	page_z0100
	page_z0101
	page_z0102
	page_z0103
	page_z0104
	page_z0105
	page_z0106
	page_z0107
	page_z0108
	page_z0109
	page_z0110
	page_z0111
	page_z0112
	page_z0113
	page_z0114
	page_z0115
	page_z0116
	page_z0117
	page_z0118
	page_z0119
	page_z0120
	page_z0121
	page_z0122
	page_z0123
	page_z0124
	page_z0125
	page_z0126
	page_z0127
	page_z0128
	page_z0129
	page_z0130
	page_z0131
	page_z0132
	page_z0133
	page_z0134
	page_z0135
	page_z0136
	page_z0137
	page_z0138
	page_z0139
	page_z0140
	page_z0141
	page_z0142
	page_z0143
	page_z0144
	page_z0145
	page_z0146
	page_z0147
	page_z0148
	page_z0149
	page_z0150
	page_z0151
	page_z0152
	page_z0153
	page_z0154
	page_z0155
	page_z0156
	page_z0157
	page_z0158
	page_z0159
	page_z0160
	page_z0161
	page_z0162
	page_z0163
	page_z0164
	page_z0165
	page_z0166
	page_z0167
	page_z0168
	page_z0169
	page_z0170
	page_z0171
	page_z0172
	page_z0173
	page_z0174
	page_z0175
	page_z0176
	page_z0177
	page_z0178
	page_z0179
	page_z0180
	page_z0181
	page_z0182
	page_z0183
	page_z0184
	page_z0185
	page_z0186
	page_z0187
	page_z0188
	page_z0189
	page_z0190
	page_z0191
	page_z0192
	page_z0193
	page_z0194
	page_z0195
	page_z0196
	page_z0197
	page_z0198
	page_z0199
	page_z0200
	page_z0201
	page_z0202
	page_z0203
	page_z0204
	page_z0205
	page_z0206
	page_z0207
	page_z0208
	page_z0209
	page_z0210
	page_z0211
	page_z0212
	page_z0213
	page_z0214
	page_z0215
	page_z0216
	page_z0217
	page_z0218
	page_z0219
	page_z0220
	page_z0221
	page_z0222
	page_z0223
	page_z0224
	page_z0225
	page_z0226
	page_z0227
	page_z0228
	page_z0229
	page_z0230
	page_z0231
	page_z0232
	page_z0233
	page_z0234
	page_z0235
	page_z0236
	page_z0237
	page_z0238
	page_z0239
	page_z0240
	page_z0241
	page_z0242
	page_z0243
	page_z0244
	page_z0245
	page_z0246
	page_z0247
	page_z0248
	page_z0249
	page_z0250
	page_z0251
	page_z0252
	page_z0253
	page_z0254
	page_z0255
	page_z0256
	page_z0257
	page_z0258
	page_z0259
	page_z0260
	page_z0261
	page_z0262
	page_z0263
	page_z0264
	page_z0265
	page_z0266
	page_z0267
	page_z0268
	page_z0269
	page_z0270
	page_z0271
	page_z0272
	page_z0273
	page_z0274
	page_z0275
	page_z0276
	page_z0277
	page_z0278
	page_z0279
	page_z0280
	page_z0281
	page_z0282
	page_z0283
	page_z0284
	page_z0285
	page_z0286
	page_z0287
	page_z0288
	page_z0289
	page_z0290
	page_z0291
	page_z0292
	page_z0293
	page_z0294
	page_z0295
	page_z0296
	page_z0297
	page_z0298
	page_z0299
	page_z0300
	page_z0301
	page_z0302
	page_z0303
	page_z0304
	page_z0305
	page_z0306
	page_z0307
	page_z0308
	page_z0309
	page_z0310
	page_z0311
	page_z0312
	page_z0313
	page_z0314
	page_z0315
	page_z0316
	page_z0317
	page_z0318
	page_z0319
	page_z0320
	page_z0321
	page_z0322
	page_z0323
	page_z0324
	page_z0325
	page_z0326
	page_z0327
	page_z0328
	page_z0329
	page_z0330
	page_z0331
	page_z0332
	page_z0333
	page_z0334
	page_z0335
	page_z0336
	page_z0337
	page_z0338
	page_z0339
	page_z0340
	page_z0341
	page_z0342
	page_z0343
	page_z0344
	page_z0345
	page_z0346
	page_z0347
	page_z0348
	page_z0349
	page_z0350
	page_z0351
	page_z0352
	page_z0353
	page_z0354
	page_z0355
	page_z0356
	page_z0357
	page_z0358
	page_z0359
	page_z0360
	page_z0361
	page_z0362
	page_z0363
	page_z0364
	page_z0365
	page_z0366
	page_z0367
	page_z0368
	page_z0369
	page_z0370
	page_z0371
	page_z0372
	page_z0373
	page_z0374
	page_z0375
	page_z0376
	page_z0377
	page_z0378
	page_z0379
	page_z0380
	page_z0381
	page_z0382
	page_z0383
	page_z0384
	page_z0385
	page_z0386
	page_z0387
	page_z0388
	page_z0389
	page_z0390
	page_z0391
	page_z0392
	page_z0393
	page_z0394
	page_z0395
	page_z0396
	page_z0397
	page_z0398
	page_z0399
	page_z0400
	page_z0401
	page_z0402
	page_z0403
	page_z0404
	page_z0405
	page_z0406
	page_z0407
	page_z0408
	page_z0409
	page_z0410
	page_z0411
	page_z0412
	page_z0413
	page_z0414
	page_z0415
	page_z0416
	page_z0417
	page_z0418
	page_z0419
	page_z0420
	page_z0421
	page_z0422
	page_z0423
	page_z0424
	page_z0425
	page_z0426
	page_z0427
	page_z0428
	page_z0429
	page_z0430
	page_z0431
	page_z0432
	page_z0433
	page_z0434
	page_z0435
	page_z0436
	page_z0437
	page_z0438
	page_z0439
	page_z0440
	page_z0441
	page_z0442
	page_z0443
	page_z0444
	page_z0445
	page_z0446
	page_z0447
	page_z0448
	page_z0449
	page_z0450
	page_z0451
	page_z0452
	page_z0453
	page_z0454
	page_z0455
	page_z0456
	page_z0457
	page_z0458
	page_z0459
	page_z0460
	page_z0461
	page_z0462
	page_z0463
	page_z0464
	page_z0465
	page_z0466
	page_z0467
	page_z0468
	page_z0469
	page_z0470
	page_z0471
	page_z0472
	page_z0473
	page_z0474
	page_z0475
	page_z0476
	page_z0477
	page_z0478
	page_z0479
	page_z0480
	page_z0481
	page_z0482
	page_z0483
	page_z0484
	page_z0485
	page_z0486
	page_z0487
	page_z0488
	page_z0489
	page_z0490
	page_z0491
	page_z0492
	page_z0493
	page_z0494
	page_z0495
	page_z0496
	page_z0497
	page_z0498
	page_z0499
	page_z0500
	page_z0501
	page_z0502
	page_z0503
	page_z0504
	page_z0505
	page_z0506
	page_z0507
	page_z0508
	page_z0509
	page_z0510
	page_z0511
	page_z0512
	page_z0513
	page_z0514
	page_z0515
	page_z0516
	page_z0517
	page_z0518
	page_z0519
	page_z0520
	page_z0521
	page_z0522
	page_z0523
	page_z0524
	page_z0525
	page_z0526
	page_z0527
	page_z0528
	page_z0529
	page_z0530
	page_z0531
	page_z0532
	page_z0533
	page_z0534
	page_z0535
	page_z0536
	page_z0537
	page_z0538
	page_z0539
	page_z0540
	page_z0541
	page_z0542
	page_z0543
	page_z0544
	page_z0545
	page_z0546
	page_z0547
	page_z0548
	page_z0549
	page_z0550
	page_z0551
	page_z0552
	page_z0553
	page_z0554
	page_z0555
	page_z0556
	page_z0557
	page_z0558
	page_z0559
	page_z0560
	page_z0561
	page_z0562
	page_z0563
	page_z0564
	page_z0565
	page_z0566
	page_z0567
	page_z0568
	page_z0569
	page_z0570
	page_z0571
	page_z0572
	page_z0573
	page_z0574
	page_z0575
	page_z0576
	page_z0577
	page_z0578
	page_z0579
	page_z0580
	page_z0581
	page_z0582
	page_z0583
	page_z0584
	page_z0585
	page_z0586
	page_z0587
	page_z0588
	page_z0589
	page_z0590
	page_z0591
	page_z0592
	page_z0593
	page_z0594
	page_z0595
	page_z0596
	page_z0597
	page_z0598
	page_z0599
	page_z0600
	page_z0601
	page_z0602
	page_z0603
	page_z0604
	page_z0605
	page_z0606
	page_z0607
	page_z0608
	page_z0609
	page_z0610
	page_z0611
	page_z0612
	page_z0613
	page_z0614
	page_z0615
	page_z0616
	page_z0617
	page_z0618
	page_z0619
	page_z0620
	page_z0621
	page_z0622
	page_z0623
	page_z0624
	page_z0625
	page_z0626
	page_z0627
	page_z0628
	page_z0629
	page_z0630
	page_z0631
	page_z0632
	page_z0633
	page_z0634
	page_z0635
	page_z0636
	page_z0637
	page_z0638
	page_z0639
	page_z0640
	page_z0641
	page_z0642
	page_z0643
	page_z0644
	page_z0645
	page_z0646
	page_z0647
	page_z0648
	page_z0649
	page_z0650
	page_z0651
	page_z0652
	page_z0653
	page_z0654
	page_z0655
	page_z0656
	page_z0657
	page_z0658
	page_z0659
	page_z0660
	page_z0661
	page_z0662

