

ARCHITECTURE DESIGN FOR SOFT ERRORS

This page intentionally left blank

ARCHITECTURE DESIGN
FOR SOFT ERRORS

Shubu Mukherjee

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Morgan Kaufmann Publishers is an imprint of Elsevier

Acquisitions Editor Charles Glaser
Publishing Services Manager George Morrison
Project Manager Murthy Karthikeyan
Editorial Assistant Matthew Cater
Cover Design Alisa Andreola
Compositor diacriTech
Cover Printer Phoenix Color, Inc.
Interior Printer Sheridan Books

Morgan Kaufmann Publishers is an imprint of Elsevier.
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

This book is printed on acid-free paper. ∞©
Copyright © 2008 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as trademarks or registered
trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a claim, the product names
appear in initial capital or all capital letters. Readers, however, should contact the appropriate companies for
more complete information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means—electronic, mechanical, photocopying, scanning, or otherwise—without prior written
permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford,
UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: permissions@elsevier.com. You may also
complete your request online via the Elsevier homepage (http://elsevier.com), by selecting “Support &
Contact” then “Copyright and Permission” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Mukherjee, Shubu.

Architecture design for soft errors/Shubu Mukherjee.
p. cm.

Includes index.
ISBN 978-0-12-369529-1

1. Integrated circuits. 2. Integrated circuits—Effect of radiation on. 3. Computer architecture.
4. System design. I. Title.

TK7874.M86143 2008
621.3815–dc22

2007048527

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

ISBN: 978-0-12-369529-1

For information on all Morgan Kaufmann publications,
visit our Web site at www.mkp.com or www.books.elsevier.com

Printed and bound in the United States of America
08 09 10 11 12 5 4 3 2 1

To my wife Mimi, my daughter Rianna, and my son Ryone

and

In remembrance of my late father Ardhendu S. Mukherjee

This page intentionally left blank

Contents

Foreword xiii
Preface xvii

1 Introduction 1
1.1 Overview 1

1.1.1 Evidence of Soft Errors 2
1.1.2 Types of Soft Errors 3
1.1.3 Cost-Effective Solutions to Mitigate the Impact of Soft Errors 4

1.2 Faults 6
1.3 Errors 7
1.4 Metrics 9
1.5 Dependability Models 11

1.5.1 Reliability 12
1.5.2 Availability 13
1.5.3 Miscellaneous Models 13

1.6 Permanent Faults in Complementary Metal Oxide Semiconductor
Technology 14
1.6.1 Metal Failure Modes 15
1.6.2 Gate Oxide Failure Modes 17

1.7 Radiation-Induced Transient Faults in CMOS Transistors 20
1.7.1 The Alpha Particle 20
1.7.2 The Neutron 21
1.7.3 Interaction of Alpha Particles and Neutrons

with Silicon Crystals 26
1.8 Architectural Fault Models for Alpha Particle

and Neutron Strikes 30
1.9 Silent Data Corruption and Detected Unrecoverable Error 32

1.9.1 Basic Definitions: SDC and DUE 32
1.9.2 SDC and DUE Budgets 34

vii

viii Contents

1.10 Soft Error Scaling Trends 36
1.10.1 SRAM and Latch Scaling Trends 36
1.10.2 DRAM Scaling Trends 37

1.11 Summary 38
1.12 Historical Anecdote 39

References 40

2 Device- and Circuit-Level Modeling, Measurement,
and Mitigation 43
2.1 Overview 43
2.2 Modeling Circuit-Level SERs 44

2.2.1 Impact of Alpha Particle or Neutron on Circuit Elements 45
2.2.2 Critical Charge (Qcrit) 46
2.2.3 Timing Vulnerability Factor 50
2.2.4 Masking Effects in Combinatorial Logic Gates 52
2.2.5 Vulnerability of Clock Circuits 59

2.3 Measurement 60
2.3.1 Field Data Collection 62
2.3.2 Accelerated Alpha Particle Tests 62
2.3.3 Accelerated Neutron Tests 63

2.4 Mitigation Techniques 67
2.4.1 Device Enhancements 67
2.4.2 Circuit Enhancements 68

2.5 Summary 74
2.6 Historical Anecdote 76

References 76

3 Architectural Vulnerability Analysis 79
3.1 Overview 79
3.2 AVF Basics 80
3.3 Does a Bit Matter? 81
3.4 SDC and DUE Equations 82

3.4.1 Bit-Level SDC and DUE FIT Equations 83
3.4.2 Chip-Level SDC and DUE FIT Equations 84
3.4.3 False DUE AVF 86
3.4.4 Case Study: False DUE from Lockstepped Checkers 87
3.4.5 Process-Kill versus System-Kill DUE AVF 89

3.5 ACE Principles 90
3.5.1 Types of ACE and Un-ACE Bits 90
3.5.2 Point-of-Strike Model versus Propagated Fault Model 91

3.6 Microarchitectural Un-ACE Bits 93
3.6.1 Idle or Invalid State 93
3.6.2 Misspeculated State 93
3.6.3 Predictor Structures 93
3.6.4 Ex-ACE State 93

Contents ix

3.7 Architectural Un-ACE Bits 94
3.7.1 NOP Instructions 94
3.7.2 Performance-Enhancing Operations 94
3.7.3 Predicated False Instructions 95
3.7.4 Dynamically Dead Instructions 95
3.7.5 Logical Masking 96

3.8 AVF Equations for a Hardware Structure 96
3.9 Computing AVF with Little’s Law 98

3.9.1 Implications of Little’s Law for AVF Computation 101
3.10 Computing AVF with a Performance Model 101

3.10.1 Limitations of AVF Analysis with Performance Models 103
3.11 ACE Analysis Using the Point-of-Strike Fault Model 106

3.11.1 AVF Results from an Itanium�2 Performance Model 107
3.12 ACE Analysis Using the Propagated Fault Model 114
3.13 Summary 118
3.14 Historical Anecdote 118

References 119

4 Advanced Architectural Vulnerability Analysis 121
4.1 Overview 121
4.2 Lifetime Analysis of RAM Arrays 123

4.2.1 Basic Idea of Lifetime Analysis 123
4.2.2 Accounting for Structural Differences in Lifetime Analysis 125
4.2.3 Impact of Working Set Size for Lifetime Analysis 129
4.2.4 Granularity of Lifetime Analysis 130
4.2.5 Computing the DUE AVF 131

4.3 Lifetime Analysis of CAM Arrays 134
4.3.1 Handling False-Positive Matches in a CAM Array 135
4.3.2 Handling False-Negative Matches in a CAM Array 137

4.4 Effect of Cooldown in Lifetime Analysis 138
4.5 AVF Results for Cache, Data Translation Buffer,

and Store Buffer 140
4.5.1 Unknown Components 140
4.5.2 RAM Arrays 142
4.5.3 CAM Arrays 145
4.5.4 DUE AVF 146

4.6 Computing AVFs Using SFI into an RTL Model 146
4.6.1 Comparison of Fault Injection and ACE Analyses 147
4.6.2 Random Sampling in SFI 149
4.6.3 Determining if an Injected Fault Will Result in an Error 151

4.7 Case Study of SFI 152
4.7.1 The Illinois SFI Study 152
4.7.2 SFI Methodology 152
4.7.3 Transient Faults in Pipeline State 154
4.7.4 Transient Faults in Logic Blocks 156

x Contents

4.8 Summary 158
4.9 Historical Anecdote 159

References 160

5 Error Coding Techniques 161
5.1 Overview 161
5.2 Fault Detection and ECC for State Bits 162

5.2.1 Basics of Error Coding 162
5.2.2 Error Detection Using Parity Codes 168
5.2.3 Single-Error Correction Codes 170
5.2.4 Single-Error Correct Double-Error Detect Code 174
5.2.5 Double-Error Correct Triple-Error Detect Code 176
5.2.6 Cyclic Redundancy Check 178

5.3 Error Detection Codes for Execution Units 181
5.3.1 AN Codes 182
5.3.2 Residue Codes 183
5.3.3 Parity Prediction Circuits 185

5.4 Implementation Overhead of Error Detection
and Correction Codes 187
5.4.1 Number of Logic Levels 187
5.4.2 Overhead in Area 189

5.5 Scrubbing Analysis 190
5.5.1 DUE FIT from Temporal Double-Bit Error with No Scrubbing 191
5.5.2 DUE Rate from Temporal Double-Bit Error with

Fixed-Interval Scrubbing 193
5.6 Detecting False Errors 194

5.6.1 Sources of False DUE Events in a Microprocessor Pipeline 195
5.6.2 Mechanism to Propagate Error Information 197
5.6.3 Distinguishing False Errors from True Errors 198

5.7 Hardware Assertions 200
5.8 Machine Check Architecture 202

5.8.1 Informing the OS of an Error 202
5.8.2 Recording Information about the Error 203
5.8.3 Isolating the Error 203

5.9 Summary 203
5.10 Historical Anecdote 205

References 205

6 Fault Detection via Redundant Execution 207
6.1 Overview 207
6.2 Sphere of Replication 208

6.2.1 Components of the Sphere of Replication 208
6.2.2 The Size of Sphere of Replication 209
6.2.3 Output Comparison and Input Replication 211

Contents xi

6.3 Fault Detection via Cycle-by-Cycle Lockstepping 212
6.3.1 Advantages of Lockstepping 213
6.3.2 Disadvantages of Lockstepping 213
6.3.3 Lockstepping in the Stratus ftServer 216

6.4 Lockstepping in the Hewlett-Packard NonStop
Himalaya Architecture 218

6.5 Lockstepping in the IBM Z-series Processors 220
6.6 Fault Detection via RMT 222
6.7 RMT in the Marathon Endurance Server 223
6.8 RMT in the Hewlett-Packard NonStop� AdvancedArchitecture 225
6.9 RMT Within a Single-Processor Core 227

6.9.1 A Simultaneous Multithreaded Processor 228
6.9.2 Design Space for SMT in a Single Core 229
6.9.3 Output Comparison in an SRT Processor 230
6.9.4 Input Replication in an SRT Processor 232
6.9.5 Input Replication of Cached Load Data 234
6.9.6 Two Techniques to Enhance Performance of an SRT Processor 236
6.9.7 Performance Evaluation of an SRT Processor 238
6.9.8 Alternate Single-Core RMT Implementation 239

6.10 RMT in a Multicore Architecture 240
6.11 DIVA: RMT Using Specialized Checker Processor 241
6.12 RMT Enhancements 244

6.12.1 Relaxed Input Replication 244
6.12.2 Relaxed Output Comparison 245
6.12.3 Partial RMT 245

6.13 Summary 247
6.14 Historical Anecdote 248

References 250

7 Hardware Error Recovery 253
7.1 Overview 253
7.2 Classification of Hardware Error Recovery Schemes 254

7.2.1 Reboot 255
7.2.2 Forward Error Recovery 255
7.2.3 Backward Error Recovery 256

7.3 Forward Error Recovery 258
7.3.1 Fail-Over Systems 258
7.3.2 DMR with Recovery 259
7.3.3 Triple Modular Redundancy 260
7.3.4 Pair-and-Spare 262

7.4 Backward Error Recovery with Fault Detection Before
Register Commit 263
7.4.1 Fujitsu SPARC64 V: Parity with Retry 264
7.4.2 IBM Z-Series: Lockstepping with Retry 265

xii Contents

7.4.3 Simultaneous and Redundantly Threaded Processor
with Recovery 266

7.4.4 Chip-Level Redundantly Threaded Processor
with Recovery (CRTR) 269

7.4.5 Exposure Reduction via Pipeline Squash 270
7.4.6 Fault Screening with Pipeline Squash and Re-execution 273

7.5 Backward Error Recovery with Fault Detection before
Memory Commit 277
7.5.1 Incremental Checkpointing Using a History Buffer 278
7.5.2 Periodic Checkpointing with Fingerprinting 280

7.6 Backward Error Recovery with Fault Detection
before I/O Commit 283
7.6.1 LVQ-Based Recovery in an SRT Processor 284
7.6.2 ReVive: Backward Error Recovery Using Global Checkpoints 288
7.6.3 SafetyNet: Backward Error Recovery Using Local Checkpoints 290

7.7 Backward Error Recovery with Fault Detection
after I/O Commit 292

7.8 Summary 292
7.9 Historical Anecdote 294

References 294

8 Software Detection and Recovery 297
8.1 Overview 297
8.2 Fault Detection Using SIS 299
8.3 Fault Detection Using Software RMT 301

8.3.1 Error Detection by Duplicated Instructions 303
8.3.2 Software-Implemented Fault Tolerance 305
8.3.3 Configurable Transient Fault Detection

via Dynamic Binary Translation 306
8.4 Fault Detection Using Hybrid RMT 309

8.4.1 CRAFT: A Hybrid RMT Implementation 310
8.4.2 CRAFT Evaluation 311

8.5 Fault Detection Using RVMs 313
8.6 Application-Level Recovery 315

8.6.1 Forward Error Recovery Using Software RMT and AN Codes for
Fault Detection 315

8.6.2 Log-Based Backward Error Recovery in Database Systems 317
8.6.3 Checkpoint-Based Backward Error Recovery for Shared-Memory

Programs 319
8.7 OS-Level and VMM-Level Recoveries 322
8.8 Summary 323

References 324

Index 327

Foreword

I am delighted to see this new book on architectural design for soft errors by
Dr. Shubu Mukherjee. The metrics used by architects for processor and chipset
design are changing to include reliability as a first-class consideration during
design. Dr. Mukherjee brings his extensive first-hand knowledge of this field to
make this book an enlightening source for understanding the cause of this change,
interpreting its impact, and understanding the techniques that can be used to ame-
liorate the impact.

For decades, the principal metric used by microprocessor and chipset architects
has been performance. As dictated by Moore’s law, the base technology has pro-
vided an exponentially increasing number of transistors. Architects have been con-
stantly seeking the best organizations to use this increasing number of transistors
to improve performance.

Moore’s law is, however, not without its dark side. For example, as we have
moved from generation to generation, the power consumed by each transistor has
not fallen in direct proportion to its size, so both the total power consumed by each
chip and the power density have been increasing rapidly.Afew years ago, it became
vogue to observe, given current trends, that in a few generations the temperature
on a chip would be hotter than that on the surface of the sun. Thus, over the last
few years, in addition to their concerns about improving performance, architects
have had to deal with using and managing power effectively.

Even more recently, another complicating consequence of Moore’s law has risen
in significance: reliability. The transistors in a microprocessor are, of course, used
to create logic circuits, where one or more transistors are used to represent a logic
bit with the binary values of either 0 or 1. Unfortunately, a variety of phenomena,
such as from radioactive decay or cosmic rays, can cause the binary value held
by a transistor to change. Chapters 1 and 2 contain an excellent treatment of these
device- and circuit-level effects.

Since a change in a bit, which is often called a bit flip, can result in an erroneous
calculation, the increasing number of transistors provided by Moore’s law has a

xiii

xiv Foreword

direct impact on the reliability of a chip. For example, if we assume (as is roughly
projected over the next few process generations) that the reliability of each indi-
vidual transistor is approximately unchanged across generations, then a doubling
of the number of transistors might naively be expected to double the error rates of
the chips. The situation is, however, not nearly so simple, as a single erroneous bit
value may not result in a user-visible error.

The fact that not every bit flip will result in a user-visible error is an interesting
phenomenon. Thus, for example, a bit flip in a prediction structure, like a branch
predictor, can never have an effect on the correctness of the computation, while a
bit flip in the current program counter will almost certainly result in an erroneous
calculation. Many other structures will fall in between these extremes, where a bit
flip will sometimes result in an error and other times not. Since every structure can
behave differently, the question arises of how is each structure affected by bit flips
and overall how significant a problem are these bit flips? Since the late 1990s that
has been a focus of Dr. Mukherjee’s research.

By late 2001 or early 2002, Dr. Mukherjee had already convinced himself that the
reliability of microprocessors was about to become a critical issue for microarchi-
tects to take into consideration in their designs. Along with Professor Steve Rein-
hardt from the University of Michigan, he had already researched and published
techniques for coping with reliability issues, such as by doing duplicate compu-
tations and by comparing the results in a multithreaded processor. It was around
that time, however, that he came into my office discouraged because he was unable
to convince the developers of a future microprocessor that they needed to consider
reliability as a first-class design metric along with performance and power.

At that time, techniques existed and were used to analyze the reliability of a
design. These techniques were used late in the design process to validate that a
design had achieved its reliability goals. Unfortunately, the techniques required
the existence of essentially the entire logic of the design. Therefore, they could not
be used either to guide designs on the reliability consequences of a design decision
or for early projections of the ultimate reliability of the design. The consequence
was that while opinions were rife, there was little quantitative evidence to base
reliability decisions on early in the design process.

The lack of a quantitative approach to the analysis of a potentially important
architectural design metric reminded me of an analogous situation from my early
days at Digital Equipment Corporation (DEC). In the early 1980s when I was start-
ing my career at DEC, performance was the principal design metric. Yet, most
performance analysis was done by benchmarking the system after it was fully
designed and operational. Performance considerations during the design process
were largely a matter of opinion.

One of my most vivid recollections of the range of opinions (and their accu-
racy) concerned the matter of caches. At that time, the benefits of (or even the
necessity for) caches were being hotly debated. I recall attending two design meet-
ings. At the first meeting, a highly respected senior engineer proposed for a next-
generation machine that if the team would just let him design a cache that was

Foreword xv

twice the size of the cache of the VAX-11/780, he would promise a machine with
twice the performance of the 11/780. At another meeting, a comparably senior and
highly respected engineer stated that we needed to eliminate all caches since “bad”
reference patterns to a cache would result in a performance worse than that with
no cache at all. Neither had any data to support his opinion.

My advisor, Professor Ed Davidson at the University of Illinois, had instilled
in me the need for quantitatively analyzing systems to make good design deci-
sions. Thus, much of the early part of my career was spent developing techniques
and tools for quantitatively analyzing and predicting the performance of design
ideas (both mine and others’) early in the design process. It was then that I had the
good fortune to work with people like Professor Doug Clark, who also helped me
promulgate what he called the “Iron Law of Performance” that related the instruc-
tions in a program, the cycles used by the average instruction, and the processor’s
frequency to the performance of the system. So, it was during this time that I gen-
erated measurements and analyses that demonstrated that both senior engineers’
opinions were wrong: neither any amount of reduction of memory reference time
could double the performance nor “bad” patterns could happen negating all ben-
efits of the cache.

Thus, in the early 2000s, we seemed to be in the same position with respect to
reliability as we had been with respect to performance in the early 1980s. There
was an abundance of divergent qualitative opinions, and it was difficult to get
the level of design commitment that would be necessary to address the issue. So,
in what seemed a recapitulation of the earlier days of my career, I worked with
Dr. Mukherjee and the team he built to develop a quantitative approach to reliabil-
ity. The result was, in part, a methodology to estimate reliability early in the design
process and is included in Chapters 3 and 4 of this book.

With this methodology in hand, Dr. Mukherjee started to have success at con-
vincing people, at all levels, of the exact extent of the problem and how effective
were the design alternatives being proposed to remediate it. In one meeting in
particular, after Dr. Mukherjee presented the case for concerns about reliability, an
executive noted that although people had been coming to him for years predicting
reliability problems, this was the first time he had heard a compelling analysis of
the magnitude of the situation.

The lack of good analysis methodologies resulting in a less-than-optimal engi-
neering is ironically illustrated in an anecdote about Dr. Mukherjee himself. Prior
to the development of an adequate analysis methodology, an opinion had formed
that a particular structure in a design contributed significantly to the reliability of
the processor and needed to be protected. Then, Dr. Mukherjee and other mem-
bers of the design team invented a very clever technique to protect the structure.
Later, after we developed the applicable analysis methodology, we found that the
structure was actually intrinsically very reliable and the protection was overkill.

Now that we have good analysis methodologies that can be used early in the
design cycle, including in particular those developed by Dr. Mukherjee, one can
practice good engineering by focusing remediation efforts on those parts of the

xvi Foreword

design where the cost-benefit ratio is the best. An especially important aspect of
this is that one can also consider techniques that strive to meet a reliability goal
rather than strive to simply achieve perfect (or near-perfect) reliability. Chapters 5,
6, and 7 present a comprehensive overview of many hardware-based techniques
for improving processor reliability, and Chapter 8 does the same for software-based
techniques. Many of these error protection schemes have existed for decades, but
what makes this book particularly attractive is that Dr. Mukherjee describes these
techniques in the light of the new quantitative analysis outlined in Chapters 3 and 4.

Processor architects are now coming to appreciate the issues and opportunities
associated with the architectural reliability of microprocessors and chipsets. For
example, not long ago Dr. Mukherjee made a presentation of a portion of our
quantitative analysis methodology at an internal conference.After the presentation,
an attendee of the conference came up to me and said that he had really expected
to hate the presentation but had in fact found it to be particularly compelling and
enlightening. I trust that you will find reading this book equally compelling and
enlightening and a great guide to the architectural ramifications of soft errors.

Dr. Joel S. Emer
Intel Fellow

Director of Microarchitecture Research, Intel Corporation

Preface

As kids many of us were fascinated by black holes and solar flares in deep space. Lit-
tle did we know that particles from deep space could affect computing systems on
the earth, causing blue screens and incorrect bank balances. Complementary metal
oxide semiconductor (CMOS) technology has shrunk to a point where radiation
from deep space and packaging materials has started causing such malfunction at
an increasing rate. These radiation-induced errors are termed “soft” since the state
of one or more bits in a silicon chip could flip temporarily without damaging the
hardware. As there are no appropriate shielding materials to protect against cosmic
rays, the design community is striving to find process, circuit, architectural, and
software solutions to mitigate the effects of soft errors.

This book describes architectural techniques to tackle the soft error problem.
Computer architecture has long coped with various types of faults, including faults
induced by radiation. For example, error correction codes are commonly used in
memory systems. High-end systems have often used redundant copies of hardware
to detect faults and recover from errors. Many of these solutions have, however,
been prohibitively expensive and difficult to justify in the mainstream commodity
computing market.

The necessity to find cheaper reliability solutions has driven a whole new class
of quantitative analysis of soft errors and corresponding solutions that mitigate
their effects. This book covers the new methodologies for quantitative analysis of
soft errors and novel cost-effective architectural techniques to mitigate their effects.
This book also reevaluates traditional architectural solutions in the context of the
new quantitative analysis.

These methodologies and techniques are covered in Chapters 3–7. Chapters 3
and 4 discuss how to quantify the architectural impact of soft errors. Chapter 5
describes error coding techniques in a way that is understandable by practitioners
and without covering number theory in detail. Chapter 6 discusses how redundant
computation streams can be used to detect faults by comparing outputs of the two
streams. Chapter 7 discusses how to recover from an error once a fault is detected.

xvii

xviii Preface

To provide readers with a better grasp of the broader problem definition and
solution space, this book also delves into the physics of soft errors and reviews cur-
rent circuit and software mitigation techniques. In my experience, it is impossible to
become the so-called soft error or reliability architect without a fundamental grasp
of the entire area, which spans device physics (Chapter 1), circuits (Chapter 2),
and software (Chapter 8). Part of the motivation behind adding these chapters
had grown out of my frustration at some of the students working on architecture
design for soft errors not knowing why a bit flips due to a neutron strike or how a
radiation-hardened circuit works.

Researching material for this book had been a lot of fun. I spent many hours
reading and rereading articles that I was already familiar with. This helped me
gain a better understanding of the area that I am already supposed to be an expert
in. Based on the research I did on this book, I even filed a patent that enhances a
basic circuit solution to protect against soft errors. I also realized that there is no
other comprehensive book like this one in the area of architecture design for soft
errors. There are bits and pieces of material available in different books and research
papers. Putting all the material together in one book was definitely challenging but
in the end, has been very rewarding.

I have put emphasis on the definition of terms used in this book. For example,
I distinguish between a fault and an error and have stuck to these terminologies
wherever possible. I have tried to define in a better way many terms that have
been in use for ages in the classical fault tolerance literature. For example, the
terms fault, errors, and mean time to failure (MTTF) are related to a domain or a
boundary and are not “absolute” terms. Identifying the silent data corruption (SDC)
MTTF and detected unrecoverable error (DUE) MTTF domains is important to
design appropriate protection at different layers of the hardware and software
stacks. In this book, I extensively use the acronyms SDC and DUE, which have
been adopted by the large part of industry today. I was one of those who coined
these acronyms within Intel Corporation and defined these terms precisely for
appropriate use.

I expect that the concepts I define in this book will continue to persist for several
years to come. A number of reliability challenges have arisen in CMOS. Soft error is
just one of them. Others include process-related cell instability, process variation,
and wearout causing frequency degradation and other errors. Among these areas,
architecture design for soft errors is probably the most evolved area and hence
ready to be captured in a book. The other areas are evolving rapidly, so one can
expect books on these in the next several years. I also expect that the concepts from
this book will be used in the other areas of architecture design for reliability.

I have tried to define the concepts in this book using first principles as much
as possible. I do, however, believe that concepts and designs without implemen-
tations leave incomplete understanding of the concepts themselves. Hence, wher-
ever possible I have defined the concepts in the context of specific implementations.
I have also added simulation numbers—borrowed from research papers—wherever
appropriate to define the basic concepts themselves.

Preface xix

In some cases, I have defined certain concepts in greater detail than others. It
was important to spend more time describing concepts that are used as the basis
of other proliferations. In some other cases, particularly for certain commercial
systems, the publicly available description and evaluation of the systems are not
as extensive. Hence, in some of the cases, the description may not be as extensive
as I would have liked.

How to Use This Book
I see this book being used in four ways: by industry practitioners to estimate soft
error rates of their parts and identify techniques to mitigate them, by researchers
investigating soft errors, by graduate students learning about the area, and by
advanced undergraduates curious about fault-tolerant machines. To use this book,
one requires a background in basic computer architectural concepts, such as
pipelines and caches. This book can also be used by industrial design managers
requiring a basic introduction to soft errors.

There are a number of different ways this book could be read or used in a course.
Here I outline a few possibilities:

■ Complete course on architecture design for soft errors covering the entire
book.

■ Short course on architecture design for soft errors, including Chapters 1, 3, 5,
6, and 7.

■ Reference book on classical fault-tolerant machines, including Chapters 6
and 7 only.

■ Reference book on circuit course on reliability, including Chapters 1 and 2
only.

■ Reference book on software fault tolerance, including Chapters 1 and 8 only.

At the end of each chapter, I have provided a summary of the chapter. I hope this
will help readers maintain the continuity if they decide to skip the chapter. The
summary should also be helpful for students taking courses that cover only part
of the book.

Acknowledgements
Writing a book takes a lot of time, energy, and passion. Finding the time to write
a book with a full-time job and “full-time” family is very difficult. In many ways,
writing this book had become one of our family projects. I want to thank my loving
wife, Mimi Mukherjee, and my two children, Rianna and Ryone, for letting me
work on this book on many evenings and weekends. A special thanks to Mimi for
having the confidence that I will indeed finish writing on this book. Thanks to my

xx Preface

brother’s family, Dipu, Anindita, Nishant, and Maya, for their constant support to
finish this book and letting me work on it during our joint vacation.

This is the only book I have written, and I have often asked myself what
prompted me to write a book. Perhaps, my late father, Ardhendu S. Mukherjee,
who was a professor in genetics and had written a number of books himself, was
my inspiration. Since I was 5 years old, my mother, Sati Mukherjee, who founded
her own school, had taught me how learning can be fun. Perhaps the urge to convey
how much fun learning can be inspired me to write this book.

I learned to read and write in elementary through high school. But writing a
technical document in a way that is understandable and clear takes a lot of skill. By
no means do I claim to be the best writer. But whatever little I can write, I ascribe
that to my Ph.D. advisor, Prof. Mark D. Hill. I still joke about how Mark made me
revise our first joint paper seven times before he called it a first draft! Besides Mark,
my coadvisors, Prof. James Larus and Prof. David Wood, helped me significantly
in my writing skills. I remember how Jim had edited a draft of my paper and cut it
down to half the original size without changing the meaning of a single sentence.
From David, I learned how to express concepts in a simple and a structured manner.

After leaving graduate school, I worked in Digital Equipment Corporation for
10 days, in Compaq for 3 years, and in Intel Corporation for 6 years. Throughout
this work life, I was and still am very fortunate to have worked with Dr. Joel Emer.
Joel had revolutionized computer architecture design by introducing the notion of
quantitative analysis, which is part and parcel of every high-end microprocessor
design effort today. I had worked closely with Joel on architecture design for reli-
ability and particularly on the quantitative analysis of soft errors. Joel also has an
uncanny ability to express concepts in a very simple form. I hope that part of that
has rubbed off on me and on this book. I also thank Joel for writing the foreword
for this book.

Besides Joel Emer, I had also worked closely with Dr. Steve Reinhardt on soft
errors.Although Steve and I had been to graduate school together, our collaboration
on reliability started after graduate school at the 1999 International Symposium on
Computer Architecture (ISCA), when we discussed the basic ideas of Redundant
Multithreading, which I cover in this book. Steve was also intimately involved in
the vulnerability analysis of soft errors. My work with Steve had helped shape
many of the concepts in this book.

I have had lively discussions on soft errors with many other colleagues, senior
technologists, friends, and managers. This list includes (but is in no way limited
to) Vinod Ambrose, David August, Arijit Biswas, Frank Binns, Wayne Burleson,
Dan Casaletto, Robert Cohn, John Crawford, Morgan Dempsey, Phil Emma,
Tryggve Fossum, Sudhanva Gurumurthi, Glenn Hinton, John Holm, Chris
Hotchkiss, Tanay Karnik, Jon Lueker, Geoff Lowney, Jose Maiz, Pinder
Matharu, Thanos Papathanasiou, Steve Pawlowski, Mike Powell, Steve Raasch,
Paul Racunas, George Reis, Paul Ryan, Norbert Seifert, Vilas Sridharan,
T. N. Vijaykumar, Chris Weaver, Theo Yigzaw, and Victor Zia.

Preface xxi

I would also like to thank the following people for providing prompt reviews
of different parts of the manuscript: Nidhi Aggarwal, Vinod Ambrose, Hisashige
Ando, Wendy Bartlett, Tom Bissett,Arijit Biswas, Wayne Burleson, Sudhanva Guru-
murthi, Mark Hill, James Hoe, Peter Hazucha, Will Hasenplaugh, Tanay Karnik,
Jerry Li, Ishwar Parulkar, George Reis, Ronny Ronen, Pia Sanda, Premkishore Shiv-
akumar, Norbert Seifert, Jeff Somers, and Nick Wang. They helped correct many
errors in the manuscript.

Finally, I thank Denise Penrose and Chuck Glaser from Morgan Kaufmann for
agreeing to publish this book. Denise sought me out at the 2004 ISCA in Munich
and followed up quickly thereafter to sign the contract for the book.

I sincerely hope that the readers will enjoy this book. That will certainly be worth
the 2 years of my personal and family time I have put into creating this book.

Shubu Mukherjee

This page intentionally left blank

C H A P T E R1
Introduction

1.1 Overview
In the past few decades, the exponential growth in the number of transistors per
chip has brought tremendous progress in the performance and functionality of
semiconductor devices and, in particular, microprocessors. In 1965, Intel Corpo-
ration’s cofounder, Gordon Moore, predicted that the number of transistors per
chip will double every 18–24 months. The first Intel microprocessor with 2200
transistors was developed in 1971, 24 years after the invention of the transistor by
John Bardeen, Walter Brattain, and William Shockley in Bell Labs. Thirty-five years
later, in 2006, Intel announced its first billion-transistor Itanium� microprocessor—
codenamed Montecito—with approximately 1.72 billion transistors. This exponen-
tial growth in the number of transistors—popularly known as Moore’s law—has
fueled the growth of the semiconductor industry for the past four decades.

Each succeeding technology generation has, however, introduced new obstacles
to maintaining this exponential growth rate in the number of transistors per chip.
Packing more and more transistors on a chip requires printing ever-smaller fea-
tures. This led the industry to change lithography—the technology used to print
circuits onto computer chips—multiple times. The performance of off-chip dynamic
random access memories (DRAM) compared to microprocessors started slowing
down resulting in the “memory wall” problem. This led to faster DRAM tech-
nologies, as well as to adoption of higher level architectural solutions, such as
prefetching and multithreading, which allow a microprocessor to tolerate longer
latency memory operations. Recently, the power dissipation of semiconductor
chips started reaching astronomical proportions, signaling the arrival of the “power
wall.” This caused manufacturers to pay special attention to reducing power
dissipation via innovation in process technology as well as in architecture and

1

2 CHAPTER 1 Introduction

circuit design. In this series of challenges, transient faults from alpha particles and
neutrons are next in line. Some refer to this as the “soft error wall.”

Radiation-induced transient faults arise from energetic particles, such as alpha
particles from packaging material and neutrons from the atmosphere, generating
electron–hole pairs (directly or indirectly) as they pass through a semiconductor
device. Transistor source and diffusion nodes can collect these charges. A sufficient
amount of accumulated charge may invert the state of a logic device, such as a
latch, static random access memory (SRAM) cell, or gate, thereby introducing a
logical fault into the circuit’s operation. Because this type of fault does not reflect a
permanent malfunction of the device, it is termed soft or transient.

This book describes architectural techniques to tackle the soft error problem.
Computer architecture has long coped with various types of faults, including faults
induced by radiation. For example, error correction codes (ECC) are commonly
used in memory systems. High-end systems have often used redundant copies of
hardware to detect faults and recover from errors. Many of these solutions have,
however, been prohibitively expensive and difficult to justify in the mainstream
commodity computing market.

The necessity to find cheaper reliability solutions has driven a whole new class
of quantitative analysis of soft errors and corresponding solutions that mitigate
their effects. This book covers the new methodologies for quantitative analysis
of soft errors and novel cost-effective architectural techniques to mitigate them.
This book also reevaluates traditional architectural solutions in the context of the
new quantitative analysis. To provide readers with a better grasp of the broader
problem definition and solution space, this book also delves into the physics of
soft errors and reviews current circuit and software mitigation techniques.

Specifically, this chapter provides a general introduction to and necessary
background for radiation-induced soft errors, which is the topic of this book. The
chapter reviews basic terminologies, such as faults and errors, and dependability
models and describes basic types of permanent and transient faults encountered in
silicon chips. Readers not interested in a broad overview of permanent faults could
skip that section. The chapter will go into the details of the physics of how alpha
particles and neutrons cause a transient fault. Finally, this chapter reviews archi-
tectural models of soft errors and corresponding trends in soft error rates (SERs).

1.1.1 Evidence of Soft Errors
The first report on soft errors due to alpha particle contamination in computer chips
was from Intel Corporation in 1978. Intel was unable to deliver its chips to AT&T,
which had contracted to use Intel components to convert its switching system
from mechanical relays to integrated circuits. Eventually, Intel’s May and Woods
traced the problem to their chip packaging modules. These packaging modules
got contaminated with uranium from an old uranium mine located upstream on
Colorado’s Green River from the new ceramic factory that made these modules. In
their 1979 landmark paper, May and Woods [15] described Intel’s problem with

1.1 Overview 3

alpha particle contamination. The authors introduced the key concept of Qcrit
or “critical charge,” which must be overcome by the accumulated charge gener-
ated by the particle strike to introduce the fault into the circuit’s operation. Subse-
quently, IBM Corporation faced a similar problem of radioactive contamination in
its chips from 1986 to 1987. Eventually, IBM traced the problem to a distant chemi-
cal plant, which used a radioactive contaminant to clean the bottles that stored an
acid required in the chip manufacturing process.

The first report on soft errors due to cosmic radiation in computer chips came
in 1984 but remained within IBM Corporation [30]. In 1979, Ziegler and Lanford
predicted the occurrence of soft errors due to cosmic radiation at terrestrial sites
and aircraft altitudes [29]. Because it was difficult to isolate errors specifically from
cosmic radiation, Ziegler and Lanford’s prediction was treated with skepticism.
Then, the duo postulated that such errors would increase with altitude, thereby
providing a unique signature for soft errors due to cosmic radiation. IBM validated
this hypothesis from the data gathered from its computer repair logs. Subsequently,
in 1996, Normand reported a number of incidents of cosmic ray strikes by studying
error logs of several large computer systems [17].

In 1995, Baumann et al. [4] observed a new kind of soft errors caused by boron-10
isotopes, which were activated by low-energy atmospheric neutrons. This discov-
ery prompted the removal of boro-phospho-silicate glass (BPSG) and boron-10
isotopes from the manufacturing process, thereby solving this specific problem.

Historical data on soft errors in commercial systems are, however, hard to come
by. This is partly because it is hard to trace back an error to an alpha or cosmic
ray strike and partly because companies are uncomfortable revealing problems
with their equipment. Only a few incidents have been reported so far. In 2000, Sun
Microsystems observed this phenomenon in their UltraSPARC-II-based servers,
where the error protection scheme implemented was insufficient to handle soft
errors occurring in the SRAM chips in the systems. In 2004, Cypress semiconductor
reported a number of incidents arising due to soft errors [30]. In one incident, a
single soft error crashed an interleaved system farm. In another incident, a single
soft error brought a billion-dollar automotive factory to halt every month. In 2005,
Hewlett-Packard acknowledged that a large installed base of a 2048-CPU server
system in Los Alamos National Laboratory—located at about 7000 feet above sea
level—crashed frequently because of cosmic ray strikes to its parity-protected cache
tag array [16].

1.1.2 Types of Soft Errors
The cost of recovery from a soft error depends on the specific nature of the error
arising from the particle strike. Soft errors can either result in a silent data corruption
(SDC) or detected unrecoverable error (DUE). Corrupted data that go unnoticed by
the user are benign and excluded from the SDC category. But corrupted data that
eventually result in a visible error that the user cares about cause an SDC event.
In contrast, a DUE event is one in which the computer system detects the soft

4 CHAPTER 1 Introduction

error and potentially crashes the system but avoids corruption of any data the user
cares about. An SDC event can also crash a computer system, besides causing data
corruption. However, it is often hard, if not impossible, to trace back where the SDC
event originally occurred. Subtleties in these definitions are discussed later in this
chapter. Besides SDC and DUE, a third category of benign errors exists. These are
corrected errors that may be reported back to the operating system (OS). Because
the system recovers from the effect of the errors, these are usually not a cause of
concern. Nevertheless, many vendors use the reported rate of correctable errors as
an early warning that a system may have an impending hardware problem.

Typically, an SDC event is perceived as significantly more harmful than a DUE
event. An SDC event causes loss of data, whereas a DUE event’s damage is lim-
ited to unavailability of a system. Nevertheless, there are various categories of
machines that guarantee high reliability for SDC, DUE, or both. For example, the
classical mainframe systems with triple-modular redundancy (TMR) offer both
high degree of data integrity (hence, low SDC) and high availability (hence, low
DUE). In contrast, web servers could often offer high availability by failing over to
a spare standby system but may not offer high data integrity.

To guarantee a certain level of reliable operation, companies have SDC and DUE
budgets for their silicon chips. If you ask a typical customer about how many errors
he or she expects in his or her computer system, the response is usually zero. The
reality is, though, computer systems do encounter soft errors that result in SDC
and DUE events. A computer vendor tries to ensure that the number of SDC and
DUE events encountered by its systems is low enough compared to other errors
arising from software bugs, manufacturing defects, part wearout, stress-induced
errors, etc.

Because the rate of occurrence of other errors differs in different market seg-
ments, vendors often have SDC and DUE budgets for different market segments.
For example, software in desktop systems is expected to crash more often than
that of high-end server systems, where after an initial maturity period, the number
of software bugs goes down dramatically [27]. Consequently, the rate of SDC and
DUE events needs to be significantly lower in high-end server systems, as opposed
to computer systems sitting in homes and on desktops. Additionally, hundreds and
thousands of server systems are deployed in a typical data center today. Hence, the
rate of occurrence of these events is magnified 100 to 1000 times when viewed as
an aggregate. This additional consideration further drives down the SDC and DUE
budgets set by a vendor for the server machines.

1.1.3 Cost-Effective Solutions to Mitigate the
Impact of Soft Errors

Meeting the SDC and DUE budgets for commercial microprocessor chips, chipsets,
and computer memories without sacrificing performance or power has become a
daunting task. A typical commercial microprocessor consists of tens of millions of
circuit elements, such as SRAM (random access memory) cells; clocked memory

1.1 Overview 5

elements, such as latches and flip-flops; and logic elements, such as NAND and
NOR gates. The mean time to failure (MTTF) of such an individual circuit element
could be as high as a billion years. However, with hundreds of millions of these
elements on the chip, the overall MTTF of a single microprocessor chip could easily
come down to a few years. Further, when individual chips are combined to form a
large shared-memory system, the overall MTTF can come down to a few months.
In large data centers—using thousands of these systems—the MTTF of the overall
cluster can come down to weeks or even days.

Commercial microprocessors typically use several flavors of fault detection and
ECC to protect these circuit elements. The die area overheads of these gate- or
transistor-level detection and correction techniques could range roughly between
2% to greater than 100%. This extra area devoted to error protection could have
otherwise been used to offer higher performance or better functionality. Often, these
detection and correction codes would add extra cycles in a microprocessor pipeline
and consume extra power, thereby further sacrificing performance. Hence, micro-
processor designers judiciously choose the error protection techniques to meet the
SDC and DUE budgets without unnecessarily sacrificing die area, performance, or
even power.

In contrast, mainframe-class solutions, such as TMR, run identical copies of the
same program on three microprocessors to detect and correct any errors. While this
approach can dramatically reduce the SDC and DUE, it comes with greater than
200% overhead in die area and a commensurate increase in power. This solution is
deemed an overkill in the commercial microprocessor market. In summary, gate- or
transistor-level protection, such as fault detection and ECC, can limit the incurred
overhead but may not provide adequate error coverage, whereas mainframe-
class solutions can certainly provide adequate coverage but at a very high cost
(Figure 1.1).

The key to successful design of a highly reliable, yet competitive, microproces-
sor or chipset is a systematic analysis and modeling of its SER. Then, designers
can choose cost-effective protection mechanisms that can help bring down the

Soft Error
Coverage

Overhead of Protection

Mainframe-class
protection

Cost-effective
solutions

Gate- or
Transistor-level

protection

FIGURE 1.1 Range of soft error protection schemes.

6 CHAPTER 1 Introduction

SER within the prescribed budget. Often this process is iterated several times
till designers are happy with the predicted SER. This book describes the cur-
rent state-of-the-art in soft error modeling, measurement, detection, and correction
mechanisms.

This chapter reviews basic definitions of faults, errors, and metrics, and depend-
ability models. Then, it shows how these definitions and metrics apply to both
permanent and transient faults. The discussion on permanent faults will place
radiation-induced transient faults in a broader context, covering various silicon
reliability problems.

1.2 Faults
User-visible errors, such as soft errors, are a manifestation of underlying faults in a
computer system. Faults in hardware structures or software modules could arise
from defects, imperfections, or interactions with the external environment. Exam-
ples of faults include manufacturing defects in a silicon chip, software bugs, or bit
flips caused by cosmic ray strikes.

Typically, faults are classified into three broad categories—permanent, intermit-
tent, and transient. The names of the faults reflect their nature. Permanent faults
remain for indefinite periods till corrective action is taken. Oxide wearout, which
can lead to a transistor malfunction in a silicon chip, is an example of a permanent
fault. Intermittent faults appear, disappear, and then reappear and are often early
indicators of impending permanent faults. Partial oxide wearout may cause inter-
mittent faults initially. Finally, transient faults are those that appear and disappear.
Bit flips or gate malfunction from an alpha particle or a neutron strike is an example
of a transient fault and is the subject of this book.

Faults in a computer system can occur directly in a user application, thereby
eventually giving rise to a user-visible error. Alternatively, it can appear in any
abstraction layer underneath the user application. In a computer system, the
abstraction layers can be classified into six broad categories (Figure 1.2)—user
application, OS, firmware, architecture, circuits, and process technology. Software
bugs are faults arising in applications, OSs, or firmware. Design faults can arise in
architecture or circuits. Defects, imperfections, or bit flips from particle strikes are
examples of faults in the process technology or the underlying silicon chip.

A fault in a particular layer may not show up as a user-visible error. This is
because of two reasons. First, a fault may be masked in an intermediate layer.
A defective transistor—perhaps arising from oxide wearout—may affect perfor-
mance but may not affect correct operation of an architecture. This could happen,
for example, if the transistor is part of a branch predictor. Modern architectures
typically use a branch predictor to accelerate performance but have the ability to
recover from a branch misprediction.

Second, any of the layers may be partially or fully designed to tolerate faults.
For example, special circuits—radiation-hardened cells—can detect and recover

1.3 Errors 7

User Applications

Operating System

Firmware

Architecture

Circuits

Process Technology

FIGURE 1.2 Abstraction layers in a computer system.

from faults in transistors. Similarly, each abstraction layer, shown in Figure 1.2,
can be designed to tolerate faults arising in lower layers. If a fault is tolerated at a
particular layer, then the fault is avoided at the layer above it.

The next section discusses how faults are related to errors.

1.3 Errors
Errors are manifestation of faults. Faults are necessary to cause an error, but not all
faults show up as errors. Figure 1.3 shows that a fault within a particular scope may
not show up as an error outside the scope if the fault is either masked or tolerated.
The notion of an error (and units to characterize or measure it) is fundamentally
tied to the notion of a scope. When a fault is detected in a specific scope, it becomes
an error in that scope. Similarly, when an error is corrected in a given a scope,
its effect usually does not propagate outside the scope. This book tries to use the
terms fault detection and error correction as consistently as possible. Since an error
can propagate and be detected again in a different scope, it is also acceptable to use
the term error detection (as opposed to fault detection).

Three examples are considered here. The first one is a fault in a branch predictor.
No fault in a branch predictor will cause a user-visible error. Hence, there is no
scope outside which a branch predictor fault would show up as an error. In contrast,
a fault in a cache cell can potentially lead to a user-visible error. If the cache cell
is protected with ECC, then a fault is an error within the scope of the ECC logic.
Outside the scope of this logic where our typical observation point would be, the
fault gets tolerated and never causes an error. Consider a third scenario in which
three complete microprocessors vote on the correct output. If the output of one of
the processors is incorrect, then the voting logic assumes that the other two are

8 CHAPTER 1 Introduction

Fault Fault

(a) (b)

Inner ScopeInner Scope

Outer Scope Outer ScopeError

FIGURE 1.3 (a) Fault within the inner scope masked and not visible outside
the inner scope. (b) Fault propagated outside the outer scope and visible as
an error.

correct, thereby correcting any internal fault. In this case, the scope is the entire
microprocessor. A fault within the microprocessor will never show up outside the
voting logic.

In traditional fault-tolerance literature, a third term—failures—is used besides
faults and errors. Failure is defined as a system malfunction that causes the system
to not meet its correctness, performance, or other guarantees. A failure is, however,
simply a special case of an error showing up at a boundary where it becomes visible
to the user. This could be an SDC event, such as a change in the bank account, which
the user sees. This could also be a detected error (or DUE) caught by the system
but not corrected and may lead to temporary unavailability of the system itself.
For example, an ATM machine could be unavailable temporarily due to a system
reboot caused by a radiation-induced bit flip in the hardware. Alternatively, a disk
could be considered to have failed if its performance degrades by 1000x, even if it
continues to return correct data.

Like faults, errors can be classified as permanent, intermittent, or transient.As the
names indicate, a permanent fault causes a permanent or hard error, an intermittent
fault causes an intermittent error, and a transient fault causes a transient or soft
error. Hard errors can cause both infant mortality and lifetime reliability problems
and are typically characterized by the classic bathtub curve, shown in Figure 1.4.
Initially, the error rate is typically high because of either bugs in the system or
latent hardware defects. Beyond the infant mortality phase, a system typically
works properly until the end of its useful lifetime is reached. Then, the wearout
accelerates causing significantly higher error rates. The silicon industry typically
uses a technique called burn-in to move the starting use point of a chip to the
beginning of the useful lifetime period shown in Figure 1.4. Burn-in removes any
chips that fail initially, thereby leaving parts that can last through the useful lifetime
period. Further, the silicon industry designs technology parameters, such as oxide
thickness, to guarantee that most chips last a minimal lifetime period.

1.4 Metrics 9

Instantaneous
Error
Rate

Time

infant
mortality
phase

useful lifetime
wearout
phase

FIGURE 1.4 Bathtub curve showing the relationship between failure rate,
infant mortality, useful lifetime, and wearout phase.

1.4 Metrics
Time to failure (TTF) expresses fault and error rates, even though the term TTF
refers specifically to failures. As the name suggests, TTF is the time to a fault or an
error, as the case may be. For example, if an error occurs after 3 years of operation,
then the TTF of that system for that instance is 3 years. Similarly, MTTF expresses
the mean time elapsed between two faults or errors. Thus, if a system gets an error
every 3 years, then that system’s MTTF is 3 years. Sometimes reliability models use
median time to failure (MeTTF), instead of MTTF, such as in Black’s equation for
electromigration (EM)–related errors (see Electromigration, p. 15).

Under certain assumptions (e.g., an exponential TTF, see Reliability, p. 12), the
MTTF of various components comprising a system can be combined to obtain the
MTTF of the whole system. For example, if a system is composed of two compo-
nents, each with an MTTF of 6 years, then the MTTF of the whole system is

MTTFsystem =
1

1

MTTFcomponent 1
+ 1

MTTFcomponent 2

=
1

1
6 + 1

6

= 3

More generally,

MTTFsystem =
1

n∑
i=0

1
MTTFi

Although the term MTTF is fairly easy to understand, computing the MTTF
of a whole system from individual component MTTFs is a little cumbersome, as
expressed by the above equations. Hence, engineers often prefer the term failure in
time (FIT), which is additive.

10 CHAPTER 1 Introduction

One FIT represents an error in a billion (109) hours. Thus, if a system is
composed of two components, each having an error rate of 10 FIT, then the system
has a total error rate of 20 FIT. The summation assumes that the errors in each
component are independent.

The error rate of a component or a system is often referred to as its FIT rate.
Thus, the FIT rate equation of a system is

FIT ratesystem =
n∑

i=0

FIT ratei

As may be evident by now, FIT rate and MTTF of a component are inversely
related under certain conditions (e.g., exponentially distributed TTF):

MTTF in years =
109

FIT rate × 24 hours × 365 days

Thus, an MTTF of 1000 years roughly translates into a FIT rate of 114 FIT.

■ E X A M P L E

A silicon chip consists of a billion transistors, each with a FIT rate of
0.00001 FIT. What will be the MTTF of a system composed of 100 such
chips?

S O L U T I O N The FIT rate of each chip = 109 × 0.00001 FIT = 104 FIT. The
FIT rate of 100 such chips = 100 × 104 = 106 FIT. Then, the MTTF of a system
with 100 such chips = 109/(106 × 24) ∼ 40 days.

■ E X A M P L E

What is the MTTF of a computer’s memory system that has 16 gigabytes of
memory? Assume FIT per bit is 0.00001 FIT.

S O L U T I O N The FIT rate of the memory system = 16 × 230 × 8 × 0.00001 =
1 374 390 FIT. This translates into an MTTF of 109/(1 374 390 × 24) ∼ 30 days.

Besides MTTF, two terms—mean time to repair (MTTR) and mean time between
failures (MTBF)—are commonly used in the fault-tolerance literature. MTTR
represents the mean time needed to repair an error once it is detected. MTBF

1.5 Dependability Models 11

MTTF MTTR

MTBF

Time

Fault Detected
System Start

or Re-start

System Start
or Re-start

FIGURE 1.5 Relationship between MTTF, MTTR, and MTBF.

represents the average time between the occurrences of two errors. As Figure 1.5
shows, MTBF = MTTF + MTTR. Typically, MTTR � MTTF. The next section
examines how these terms are used to express various concepts in reliable
computing.

Recently, Weaver et al. [26] introduced the term mean instructions to failure
(MITF). MITF captures the average number of instructions committed in a micro-
processor between two errors. Similarly, Reis et al. [19] introduced the term mean
work to failure (MWTF) to capture the average amount of work between two errors.
The latter is useful for comparing the reliability for different workloads. Unlike
MTTF, both MITF and MWTF try to capture the amount of work done till an error
is experienced. Hence, MITF and MWTF are often useful in doing trade-off studies
between performance and error rate.

The definitions of MTTF and FIT rate have one subtlety that may not be obvious.
Both terms are related to a particular scope (as explained in the last section).
Consider a bit with ECC, which can correct an error in the single bit. The MTTF(bit)
is significantly lower than the MTTF(bit + ECC). Conversely, the FIT rate(bit) is sig-
nificantly greater than the FIT rate(bit + ECC). In both cases, it is the MTTF that is
affected and not the MTBF. Vendors, however, sometimes incorrectly report MTBF
numbers for the components they are selling, if they add error correction to the
component.

All the above metrics can be applied separately for SDC or DUE. Thus, one can
talk about SDC MTTF or SDC FIT. Similarly, one can express DUE MTTF or DUE
FIT. Usually, the total SER is expressed as the sum of SDC FIT and DUE FIT.

1.5 Dependability Models
Reliability and availability are two attributes typically used to characterize the
behavior of a system experiencing faults. This section discusses mathematical mod-
els to describe these attributes and the foundation behind the metrics discussed in
the last section. This section will also discuss other miscellaneous related models
used to characterize systems experiencing faults.

12 CHAPTER 1 Introduction

1.5.1 Reliability
The reliability R(t) of a system is the probability that the system does not experience
a user-visible error in the time interval (0, t]. In other words, R(t)=P(T > t), where T
is a random variable denoting the lifetime of a system. If a population of N0 similar
systems is considered, then R(t) is the fraction of the systems that survive beyond
time t. If Nt is the number of systems that have survived until time t and E(t) is the
number of systems that experienced errors in the interval (0, t], then

R(t) =
Nt

N0
=

N0 − E(t)
N0

= 1 − E(t)
N0

Differentiating this equation, one gets

dR(t)
dt

= −
dE(t)

dt
N0

The instantaneous error rate or hazard rate h(t)—graphed in Figure 1.4—is defined
as the probability that a system experiences an error in the time interval �t, given
that it has survived till time t. Intuitively, h(t) is the probability of an error in the
time interval (t, t + �t].

h(t) = P(t < T ≤ t + �t|(T > t)) =
dE(t)

dt
Nt

=

dE(t)
dt
N0
Nt
N0

=
dR(t)

dt
R(t)

Rewriting,
dR(t)

dt
= −h(t)R(t)

The general solution to this differential equation is

R(t) = e−∫
h(t)dt

If one assumes that h(t) has a constant value of λ (e.g., during the useful lifetime
phase in Figure 1.4), then

R(t) = e−λt

This exponential relationship between reliability and time is known as the
exponential failure law, which is commonly used in soft error analysis. The expecta-
tion of R(t) is the MTTF and is equal to λ.

The exponential failure law lets one sum FIT rates of individual transistors or
bits in a silicon chip. If it is assumed that a chip has n bits, where the ith bit has
a constant and independent hazard rate of hi, then, R(t) of the whole chip can be
expressed as

R(t) =
n−1∏
i=0

Ri (t) =
n−1∏
i=0

e−hit = e
−

(∑
i=0

hi

)
t

1.5 Dependability Models 13

Thus, the reliability function of the chip is also exponentially distributed with a
constant FIT rate, which is the sum of the FIT rates of individual bits.

The exponential failure law is extremely important for soft error analysis because
it allows one to compute the FIT rate of a system by summing the FIT rates of indi-
vidual components in the system. The exponential failure law requires that the
instantaneous SER in a given period of time is constant. This assumption is reason-
able for soft error analysis because alpha particles and neutrons introduce faults
in random bits in computer chips. However, not all errors follow the exponential
failure law (e.g., wearout in Figure 1.4). The Weibull or log-normal distributions
could be used in cases that have a time-varying failure rate function [18].

1.5.2 Availability
Availability is the probability that a system is functioning correctly at a particular
instant of time. Unlike reliability, which is defined over a time interval, availability
is defined at an instant of time. Availability is also commonly expressed as

Availability =
system uptime

system uptime + system downtime
=

MTTF
MTTF + MTTR

=
MTTF
MTBF

Thus, availability can be increased either by increasing MTTF or by decreasing
MTTR.

Often, the term five 9s or six 9s is used to describe the availability of a system.
The term five 9s indicates that a system is available 99.999% of the time, which
translates to a downtime of about 5 minutes per year. Similarly, the term six 9s
indicates that a system is available 99.9999% of the time, which denotes a system
downtime of about 32 seconds per year. In general, n 9s indicate two 9s before the
decimal point and (n − 2) 9s after the decimal point, if expressed in percentage.

■ E X A M P L E

If the MTTR of a system is 30 minutes, how many crashes can it sustain per
year and still maintain a five 9s uptime? What is the MTTF in this case?

S O L U T I O N A five 9s uptime denotes a total downtime of about 5 hours per
year. Hence, the number of system crashes allowed for this system per year is
(5 × 60/30) = 10. The MTTF is (1 year–5 hours)/10 = 876 hours.

1.5.3 Miscellaneous Models
Three other models, namely maitainability, safety, and performability, are often
used to describe systems experiencing faults. Maintainability is the probability that
a failed system will be restored to its original functioning state within a specific

14 CHAPTER 1 Introduction

period of time. Maintainability can be modeled as an exponential repair law, a
concept very similar to the exponential failure law.

Safety is the probability that a system will either function correctly or fail in a
“safe” manner that causes no harm to other related systems. Thus, unlike reliability,
safety modeling incorporates a “fail-stop” behavior. Fail-stop implies that when a
fault occurs, the system stops operating, thereby preventing the effect of the fault
to propagate any further.

Finally, performability of a system is the probability that the system will per-
form at or above some performance level at a specific point of time [10]. Unlike
reliability, which relates to correct functionality of all components, performability
measures the probability that a subset of functions will be performed correctly.
Graceful degradation, which is a system’s ability to perform at a lower level of
performance in the face of faults, can be expressed in terms of a performability
measure.

These models are added here for completeness and will not be used in the rest of
this book. The next few sections discuss how the reliability and availability models
apply to both permanent and transient faults.

1.6 Permanent Faults in Complementary Metal
Oxide Semiconductor Technology
Dependability models, such as reliability and availability, can characterize both
permanent and transient faults. This section examines several types of permanent
faults experienced by complementary metal oxide semiconductor (CMOS) transis-
tors. The next section discusses transient fault models for CMOS transistors. This
section reviews basic types of permanent faults to give the reader a broad under-
standing of the current silicon reliability problems, although radiation-induced
transient faults are the focus of this book.

Permanent faults in CMOS devices can be classified as either extrinsic or intrinsic
faults. Extrinsic faults are caused by manufacturing defects, such as contaminants
in silicon devices. Extrinsic faults result in infant mortality, and the fault rate usu-
ally decreases over time (Figure 1.4). Typically, a process called burn-in, in which
silicon chips are tested at elevated temperatures and voltages, is used to acceler-
ate the manifestation of extrinsic faults. The defect rate is expressed in defective
parts per million.

In contrast, intrinsic faults arise from wearout of materials, such as silicon diox-
ide, used in making CMOS transistors. In Figure 1.4, the intrinsic fault rate corres-
ponds to the wearout phase and typically increases with time. Several architecture
researchers are examining how to extend the useful lifetime of a transistor device
by delaying the onset of the wearout phase and decreasing the use of the device
itself.

1.6 Permanent Faults in Complementary Metal Oxide Semiconductor Technology 15

This section briefly reviews intrinsic fault models affecting the lifetime reliability
of a silicon device. Specifically, this section examines metal and oxide failure
modes. These fault models are discussed in greater detail in Segura and Hawkins’
book [23].

1.6.1 Metal Failure Modes
This section discusses the two key metal failure modes, namely EM and metal stress
voiding (MSV).

Electromigration
EM is a failure mechanism that causes voids in metal lines or interconnects in semi-
conductor devices (Figure 1.6). Often, these metal atoms from the voided region
create an extruding bulge on the metal line itself.

EM is caused by electron flow and exacerbated by rise in temperature. As elec-
trons move through metal lines, they collide with the metal atoms. If these collisions
transfer sufficient momentum to the metal atoms, then these atoms may get dis-
placed in the direction of the electron flow. The depleted region becomes the void,
and the region accumulating these atoms forms the extrusion.

Black’s law is commonly used to predict the MeTTF of a group of aluminum
interconnects. This law was derived empirically. It applies to a group of metal
interconnects and cannot be used to predict the TTF of an individual interconnect
wire. Black’s law states that

MeTTFEM =
A0

j2
e

e
Ea
kT

where A0 is a constant dependent on technology, je is electron current density
(A/cm2), T is the temperature (K), Ea is the activation energy (eV) for EM failure,
and k is the Boltzmann constant. As technology shrinks, the current density usually
increases, so designers need to work harder to keep the current density at acceptable
levels to prevent excessive EM. Nevertheless, the exponential temperature term has
a more acute effect on MeTTF than current density.

Metal Line

Void
Extrusion

FIGURE 1.6 Void in a metal line from EM.

16 CHAPTER 1 Introduction

■ E X A M P L E

Use Black’s equation to estimate relative average lifetimes of two identical
parts. A metal line in part 1 runs at 70◦C with a maximum current density of
1 MA/cm2. Asimilar metal line in part 2 runs at 100◦C with a maximum current
density of 2 MA/cm2. Use Ea = 0.8 eV and k = 86.17μ eV/K.

S O L U T I O N Plugging in the numbers

MeTTFpart 1

MeTTFpart 2
=

22

12 × e
Ea
k

[
1

(273+70) − 1
(273+100)

]
= 35

Hence, product 1 will last 35 times longer than product 2.

An additional phenomenon called the Blech effect dictates whether EM will
occur. Ilan Blech demonstrated that the product of the maximum metal line length
(lmax) below which EM will not occur and the current density (je) is a constant for
a given technology.

Metal Stress Voiding
MSV causes voids in metal lines due to different thermal expansion rates of metal
lines and the passivation material they bond to. This can happen during the fabrica-
tion process itself. When deposited metal reaches 400◦C or higher for a passivation
step, the metal expands and tightly bonds to the passivation material. But when
cooled to room temperature, enormous tensile stress appears in the metal due to the
differences in the thermal coefficient of expansion of the two materials. If the stress
is large enough, then it can pull a line apart. The void can show up immediately or
years later.

The MTTF due to MSV is given by

MTTFMSV =
B0

(T0 − T)n
e

Eb
kT ,

where T is the temperature, T0 is the temperature at which the metal was deposited,
B0, n, and Eb are material-dependent constants, and k is the Boltzmann constant.
For copper, n = 2.5 and Eb = 0.9. The higher the operating temperature, lower is
the term (T0 −T) and higher the MTTFMSV. Interestingly, however, the exponential
term drops rapidly with a rise in the operating temperature and usually has the
more dominant effect.

In general, copper is more resistive to EM and MSV than aluminum. Copper
has replaced aluminum for metal lines in the high-end semiconductor industry.
Copper, however, can cause severe contamination in the fab and therefore needs a
more carefully controlled process.

1.6 Permanent Faults in Complementary Metal Oxide Semiconductor Technology 17

1.6.2 Gate Oxide Failure Modes
Gate oxide reliability has become an increasing concern in the design of
high-performance silicon chips. Gate oxide consists of thin noncrystalline and
amorphous silicon dioxide (SiO2). In a bulk CMOS transistor device (Figure 1.7),
the gate oxide electrically isolates the polysilicon gate from the underlying semi-
conductor crystalline structure known as the substrate or bulk of the device. The
substrate can be constructed from either p-type silicon for n-type metal oxide semi-
conductor (nMOS) transistors or n-type silicon for p-type metal oxide semiconduc-
tor (pMOS) transistors. The source and drain are also made from crystalline silicon
but implanted with dopants of polarity opposite to that of the substrate. Thus, for
example, an nMOS source and drain would be doped with an n-type dopant.

The gate is the control terminal, whereas the source provides electrons or hole
carriers that are collected by the drain. When the gate terminal voltage of an nMOS
(pMOS) transistor is increased (decreased) sufficiently, the vertical electric field
attracts minority carriers (electrons in nMOS and holes in pMOS) toward the gate.
The gate oxide insulation stops these carriers causing them to accumulate at the
gate oxide interface. This creates the conducting channel between the source and
drain, thereby turning on the transistor.

The switching speed of a CMOS transistor—going from off to on or the reverse—
is a function of the gate oxide thickness (for a given gate oxide). As transistors
shrink in size with every technology generation, the supply voltage is reduced
to maintain the overall power consumption of a chip. Supply voltage reduc-
tion, in turn, can reduce the switching speed. To increase the switching speed,
the gate oxide thickness is correspondingly reduced. Gate oxide thicknesses, for
example, have decreased from 750 Å from the 1970s to 15 Å in the 2000s, where
1 Å = 1 angstrom = 10−10m. SiO2 molecules are 3.5 Å in diameter, so gate oxide
thicknesses rapidly approach molecular dimensions. Oxides with such a low
thickness—less than 30 Å—are referred to as ultrathin oxides.

Reducing the oxide thickness further has become challenging since the oxide
layer runs out of atoms. Further, a thinner gate oxide increases oxide leakage.
Hence, the industry is researching into what is known as high-k materials, such as
hafnium dioxide (HfO2), zirconium dioxide (ZrO2), and titanium dioxide (TiO2),

Gate
Gate Oxide

source drain

substrate

FIGURE 1.7 Physical structure of a bulk CMOS transistor. The substrate is also
referred to as bulk.

18 CHAPTER 1 Introduction

which have a dielectric constant or “k” above 3.9, the “k” of silicon dioxide. These
high-k oxides are thicker than SiO2. Besides, they reduce the oxide leakage when
the transistor is off without affecting the transistor’s performance when it is on.

This section discusses three oxide failure mechanisms—wearout in ultrathin
oxides, hot carrier injection (HCI), and negative bias temperature instability (NBTI).

Gate Oxide Wearout
Ultrathin oxide breakdown causes a sudden discontinuous increase in conduc-
tance, often accompanied by an increased current noise. This causes a reduction
in the “on” current of the transistor. Gradual oxide breakdown may initially lead
to intermittent faults but may eventually prevent the transistor from functioning
correctly, thereby causing a permanent fault in the device.

The breakdown is caused by gradual buildup of electron traps, which are oxide
defects produced by missing oxygen atoms. Such electron traps can exist from
the point of oxide creation, or they can be created when the SiO2–SiO2 bonds are
broken by energetic particles, such as electrons, holes, or radiations. The precise
point at which the breakdown occurs is statistically distributed, so only statistical
averages can be predicted. The breakdown occurs when a statistical distribution
of these traps is vertically aligned and allows a thermally damaging current to
flow through the oxide. This is known as the percolation model of wearout and
breakdown.

The time-to-breakdown (Tbd) for gate oxide could be expressed as

Tbd = Ce
γ

(
αtox+ Ea

kTj
−VG

)
,

where C is a constant, tox is the gate oxide thickness, Tj is the average junction
temperature, Ea is the activation energy, VG is the gate voltage, and γ and α are
technology-dependent constants. Thus, Tbd decreases with decreasing oxide thick-
ness but increases with decreasing VG.

The Tbd model is still an area of active research. Please refer to Strathis [22] for
an in-depth discussion of this subject.

Hot Carrier Injection
HCI results in a degradation of the maximum operating frequency of the silicon
chip. HCI arises from impact ionization when electrons in the channel strike the
silicon atoms around the drain–substrate interface. This could happen from one of
several conditions, such as higher power supply, short channel lengths, poor oxide
interface, or accidental overvoltage in the power rails.

The ionization produces electron–hole pairs in the drain. Some of these carriers
enter the substrate, thereby increasing the substrate current Isub. A small fraction
of carriers created from the ionization may have sufficient energy (3.1 eV for elec-
trons and 4.6 eV for holes) to cross the oxide barrier and enter the oxide to cause
damage. Because these carriers have a high mean equivalent temperature, they are

1.6 Permanent Faults in Complementary Metal Oxide Semiconductor Technology 19

referred to as “hot” carriers. Interestingly, however, HCI becomes worse as ambient
temperature decreases because of a corresponding increase in carrier mobility.

■ E X A M P L E

Compute the mean equivalent temperature of an electron with energy of 3.1 eV.
Assume that the thermal energy follows the Boltzmann distribution: Et = kT/q,
where Et is thermal energy, T is the temperature (K), and k is the Boltzmann
constant = 1.38 × 10−23J/K, and q = 1.6 × 10−19 C.

S O L U T I O N Rearranging the terms of the equation, the mean equivalent tem-
perature T = Etq/k = 3.1 × 1.6 × 10−19/(1.38 × 10−23) ∼ 36 000 K.

Typically, the drain saturation current (IDsat) degradation is used to measure
HCI degradation because IDsat is one of the key transistor parameters that most
closely approximates the impact on circuit speed and because HCI-related damage
occurs only during normal operation when the transistor is in saturation. Oxide
damage due to HCI raises the threshold voltage of an nMOS transistor causing IDsat
to degrade.

Frequency guardbanding is a typical measure adopted by the silicon chip indus-
try to cope with HCI-related degradation. The expected lifetime of a silicon chip
is often between 5 and 15 years. Usually, the frequency degradation during the
expected lifetime is between 1% and 10%. Hence, the chips are rated at a few per-
centage points below what they actually run at. This reduction in the frequency is
called the frequency guardband.

Transistor lifetime degradation (τ) due to HCI (e.g., 3% reduction in threshold
voltage) is specified as

τ = Constant
W
ID(

Isub
ID

)3 ,

where W is the transistor width, ID is the drain current, and Isub is the substrate
current. The ID and Isub parameters are typically estimated for the use condition of
the chip (e.g., power on).

Negative Bias Temperature Instability
Like HCI, NBTI causes degradation of maximum frequency. Unlike HCI, which
affects both nMOS and pMOS devices, NBTI only affects short-channel pMOS
transistors (hence the term “negative bias”). The “hydrogen-release” model
provides the most popular explanation for this effect. Under stress (e.g., high
temperature), highly energetic holes bombard the channel–oxide interface, electro-
chemically react with the oxide interface, and release hydrogen atoms by breaking
the silicon–hydrogen bonds. These free hydrogen atoms combine with oxygen or

20 CHAPTER 1 Introduction

nitrogen atoms to create positively charged traps at the oxide–channel interface.
This causes a reduction in mobility of holes and a shift in the pMOS threshold volt-
age in the more negative direction. These effects cause the transistor drive current to
degrade, thereby slowing down the transistor device. The term “instability” refers
to the variation of threshold voltage with time. Researchers are actively looking
into models that can predict how NBTI will manifest in future process generations.

1.7 Radiation-Induced Transient Faults in
CMOS Transistors
Transient faults in semiconductor devices can be induced by a variety of sources,
such as transistor variability, thermal cycling, erratic fluctuations of minimum volt-
age at which a circuit is functional, and radiation external to the chip. Transistor
variability arises due to the random dopant fluctuations, use of subwavelength
lithography, and high heat flux across the silicon die [5]. Thermal cycling can be
caused by repeated stress from temperature fluctuations. Erratic fluctuations in
the minimum voltage of a circuit can be caused by gate oxide soft breakdown in
combination with high gate leakage [1].

This book focuses on radiation-induced transient faults. There are two sources
of radiation-induced faults—alpha particles from packaging and neutrons from
the atmosphere. This section discusses the nature of these particles and how they
introduce errors in silicon chips. The permanent faults described earlier in this
chapter and the transient faults discussed in the last paragraph can mostly be
taken care of before a chip is shipped. In contrast, a radiation-induced transient
fault is typically addressed in the field with appropriate fault detection and error
correction circuitry.

1.7.1 The Alpha Particle
An alpha particle consists of two protons and two neutrons bound together into a
particle that is identical to a helium nucleus. Alpha particles are emitted by radioac-
tive nuclei, such as uranium or radium, in a process known as alpha decay. This
sometimes leaves the nucleus in an excited state, with the emission of a gamma ray
removing the excess energy.

The alpha particles typically have kinetic energies of a few MeV, which is lower
than those of typical neutrons that affect CMOS chips. Nevertheless, alpha particles
can affect semiconductor devices because they deposit a dense track of charge and
create electron–hole pairs as they pass through the substrate. Details of the inter-
action of alpha particles and neutrons with semiconductor devices are described
below.

Alpha particles can arise from radioactive impurities used in chip packaging,
such as in the solder balls or contamination of semiconductor processing mate-
rials. It is very difficult to eliminate alpha particles completely from the chip

1.7 Radiation-Induced Transient Faults in CMOS Transistors 21

packaging materials. Small amounts of epoxy or nonradioactive lead can, how-
ever, significantly reduce a chip’s sensitivity to alpha particles by providing a pro-
tective shield against such radiation. Even then, chips are still exposed to very
small amounts of alpha radiation. Consequently, chips need fault detection and
error correction techniques within the semiconductor chip itself to protect against
alpha radiation.

1.7.2 The Neutron
The neutron is one of the subatomic particles that make up an atom. Atoms are
considered to be the basic building blocks of matter and consist of three types
of subatomic particles: protons, neutrons, and electrons. Protons and neutrons
reside inside an atom’s dense center. A proton has a mass of about 1.67 × 10−27kg.
A neutron is only slightly heavier than a proton. An electron is about 2000 times
lighter than both a proton and a neutron. A proton is positively charged, a neu-
tron is neutral, and an electron is negatively charged. An atom consists of an equal
number of protons and electrons and hence it is neutral itself.

Figure 1.8 shows the two dominant models of an atom. In the Bohr model
(Figure 1.8a), electrons circle around the nucleus at different levels or orbitals much
like planets circle the sun. Electrons can exist at definite energy levels, but can move
from one energy state to another. Electrons release energy as electromagnetic radia-
tion when they change state. The Bohr model explains the mechanics of the simplest
atoms, like hydrogen. Figure 1.8b shows the wave model of an atom in which elec-
trons form a cloud around the nucleus instead of orbiting around the nucleus, as
in the Bohr model. This is based on quantum theory. Recently, the string theory has
tried explaining the structure of an atom as particles on a string.

The neutrons that cause soft errors in CMOS circuits arise when atoms
break apart into protons, electrons, neutrons. The half-life of a neutron is about

electron

nucleus

(a) (b)

2

2

1

FIGURE 1.8 (a) Bohr model of an atom. (b) Wave model of an atom.

22 CHAPTER 1 Introduction

10–11 minutes,1 unlike a proton whose half-life is about 1032 years. Thus, protons
can persist for long durations before decaying and constitute the majority of the
primary cosmic rays that bombard the earth’s outer atmosphere. When these protons
and associated particles hit atmospheric atoms, they create a shower of secondary
particles, which constitute the secondary cosmic rays. The particles that ultimately
hit the earth’s surface are known as terrestrial cosmic rays. The rest of the section
describes these different kinds of cosmic rays.

Computers used in space routinely encounter primary and secondary cosmic
rays. In contrast, computers at the earth’s surface need only deal with terrestrial
cosmic rays, which are easier to protect against compared to primary and secondary
cosmic rays. This book focuses on architecture design for soft errors encountered
by computers used closer to the earth’s surface (and not in space).

Primary Cosmic Rays
Primary cosmic rays consist of two types of particles: galactic particles and solar
particles. Galactic particles are believed to arise from supernova explosions, stellar
flares, and other cosmic activities. They consist of about 92% protons, 6% alpha
particles, and 2% heavier atomic nuclei. Galactic particles typically have ener-
gies above 1 GeV.2 The highest energy recorded so far for a galactic particle is
3 × 1020 eV. As a reference point, the energy of a 1020 eV particle is the same as that
of a baseball thrown at 50 miles per hour [7]. These particles have a flux of about
36 000 particles/cm2-hour (compared to about 14 particles/cm2-hour that hit the
earth’s surface).

As the name suggests solar particles arise from the sun. Solar particles have
significantly less energy than galactic particles. Typically, a particle needs about
1 GeV of energy or more to penetrate the earth’s atmosphere and reach sea level,
unless the particle traverses down directly into the earth’s magnetic poles. Whether
solar particles have sufficient energy or flux to penetrate the earth’s atmosphere
depends on the solar cycle.

The solar cycle—also referred to as the sunspot cycle—has a period of about
11 years. Sunspots are dark regions on the sun with strong magnetic fields. They
appear dark because they are a few thousand degrees cooler than their surround-
ings. Few sunspots appear during the solar minimum when the luminosity of
the sun is stable and quite uniform. In contrast, at the peak of the solar cycle,
hundreds of sunspots appear on the sun. This is accompanied by sudden, violent,
and unpredictable bursts of radiation from solar flares. The last solar maximum
was around the years 2000–2001.

1The half-life for a given particle is the time for half the radioactive nuclei in any sample to
undergo radioactive decay.
21 eV is a unit of energy equal to the work done by an electron accelerated through a potential
difference of 1 V.

1.7 Radiation-Induced Transient Faults in CMOS Transistors 23

Interestingly, the sea-level neutron flux is minimum during the solar maximum
and maximum during the solar minimum. During the solar maximum, the num-
ber of solar particles does indeed increase by a million-fold and exceeds that of the
galactic particles. This large number of solar particles creates an additional mag-
netic field around the earth. This field increases the shielding against intragalactic
cosmic rays. The net effect is that the number of sea-level neutrons decreases by
30% during the solar maximum compared to that during the solar minimum.

Overall, neutrons from galactic particles are still the dominant source of neu-
trons on the earth’s surface. This conclusion is further supported by the fact that
flux of terrestrial cosmic rays varies by less than 2% between day and night.

Both the flux and energy of neutrons determine the SER experienced by CMOS
chips. To the first order for a given CMOS circuit, the SER from cosmic rays is
proportional to the neutron flux. The energy of these particles also makes a differ-
ence, but the relationship is a little more complex and will be explained later in the
chapter.

Secondary Cosmic Rays
Secondary cosmic rays are produced in the earth’s atmosphere when primary
cosmic rays collide with atmospheric atoms. This interaction produces a cascade
of secondary particles, such as pions, muons, neutrons. Pions and muons decay
spontaneously because their mean lifetimes are in nanoseconds and microseconds,
respectively. Neutrons have a mean lifetime of 10–11 minutes, so they survive
longer. But most of these neutrons lose energy and are lost from the cascade. Never-
theless, they collide again with atmospheric atoms and create new showers and fur-
ther cascades.

The flux of these secondary particles varies with altitude. The flux of secondary
particles is relatively small in the outer atmosphere where the atmosphere is not as
thick. The flux continues to increase as the altitude drops and peaks at around 15 km
(also known as the Pfotzer point). The density of secondary particles continues to
decrease thereafter till sea level.

Figure 1.9 shows the variation of neutron flux with altitude. This variation in
flux is given by the following equation [30], where H is the altitude in kilometers:

Flux increase over sea level = e

(
119.685 × H − 4.585 × H2

136

)

This equation is a rough approximation of how the neutron flux varies with
altitude. A more detailed calculation can be found in the joint electron device engi-
neering council (JEDEC) standard [13].3

3The Web site http://www.seutest.com provides a calculator to compute the neutron flux
at a location based on a variety of parameters, such as latitude, longitude, altitude, and
geometric rigidity (discussed later in this section).

24 CHAPTER 1 Introduction

1

10

100

1000

0 2 4 6 8 10 12 14 16 18 20

Altitude (in km)

F
ac

to
r

In
cr

ea
se

 i
n

N
eu

tr
on

 F
lu

x

Airplane altitude

Denver, Colorado, USA

New York City, NY, USA

FIGURE 1.9 Variation of neutron flux with altitude. In Denver, Colorado, for
example, the neutron flux is about 3.5 times higher than that in New York
City, which is at sea level.

■ E X A M P L E

Airplanes typically fly at an altitude of 10 km. What is the increase in neutron
flux over the sea level at this altitude?

S O L U T I O N The equation given above shows that the neutron flux increases
by 228 times over sea level at an altitude of 10 km at which airplanes typically
fly. This implies that the SER of CMOS chips operating in airplanes will be
228 times higher than what the same chips experience at sea level.

Please note that the SER experienced by CMOS chips will be slightly higher than
indicated by the neutron flux equation given above. This is because of the presence
of other particles, such as pions and muons, besides neutrons.

Terrestrial Cosmic Rays
Terrestrial cosmic rays refer to those cosmic particles that finally hit the earth’s
surface. Terrestrial cosmic rays primarily arise from the cosmic ray cascades and
consist of fewer than 1% primary particles.

Both the distribution of energy and flux of neutrons determine the SER expe-
rienced by CMOS chips. Figure 1.10 shows the distribution of neutron flux with
energy based on a recent measurement by Gordon et al. [9]. Typically, only neutrons

1.7 Radiation-Induced Transient Faults in CMOS Transistors 25

0.0001

0.0010

0.0100

0.1000

1.0000

10 100 1000
Neutron Energy (MeV)

Neutrons/cm2-hour ~ = 14
N

eu
tr

on
s/

cm
2 -M

eV
-h

ou
r

FIGURE 1.10 Terrestrial differential neutron flux (neutrons/cm2-MeV-hour)
plotted as a function of the neutron energy. The area under the curve gives a
total neutron flux of about 14 neutrons/cm2-Mev-hour.

above 10 MeV affect CMOS chips today.4 To the first order, the SER is proportional
to the neutron flux. Integrating the area under the curve in Figure 1.10 gives a total
neutron flux of about 14 neutrons per cm2-hour. Earlier measurements by Ziegler
in 1996, however, had suggested about 20 neutrons per cm2-hour [28]. The JEDEC
standard [13] has agreed to use the recent data of Gordon et al. instead of Ziegler’s,
possibly because the more recent measurements are more accurate.

The neutron flux varies not only with altitude but also with the location on the
earth. The earth’s magnetic field can bend both primary and secondary cosmic
particles and reflect them back into space. The minimum momentum necessary for
a normally incident particle to overcome the earth’s magnetic intensity and reach
sea level is called the “geomagnetic rigidity (GR)” of a terrestrial site. The higher
the GR of a site, the lower is the terrestrial cosmic ray flux. The GR at New York City
is 2 GeV and hence only particles with energies above 2 GeV can cause a terrestrial
cascade.

Typically, the magnetic field only causes the neutron flux to vary across any two
terrestrial sites by only about a factor of 2x. The GR is highest near the equator
(about 17 GeV) and hence the neutron flux is lowest there. In contrast, the GR is
lowest near the north and south poles (about 1 GeV), where the neutron flux is the
highest. The city of Kolkata in India, for example, is close to sea level and has one of
the highest GR (15.67 GeV). Nevertheless, its neutron flux is only about half of that

4Terrestrial neutrons have two other peaks below the one between 10 and 1000 MeV. The
other two peaks appear roughly between 0.01 and 0.02 eV (also called thermal neutrons) and
between 0.01 and 5 MeV. These neutrons could also cause transient faults. Further, thermal
neutrons may also arise in semiconductor processes that use the boron-10 isotope.

26 CHAPTER 1 Introduction

of New York City, although its GR is eight times higher than that of New York City.
The JEDEC standard [13] describes how to map a given terrestrial site to its GR and
compute the corresponding neutron flux at that location. In summary, three factors
influence the neutron flux at a terrestrial site: the solar cycle, its altitude, and its
latitude and longitude, which determines its GR.

The neutron flux discussed so far is without any shielding and measured in open
air. The flux seen within a concrete building can be somewhat lower. For example,
a building with 3-feet concrete walls could see a 30% reduction in SER. Unfortu-
nately, unlike for alpha particles, there is no known shielding for these atmospheric
cosmic rays except 10–15 feet of concrete. Consequently, semiconductor chips deep
inside the basement of a building are less affected by atmospheric neutrons com-
pared to those directly exposed to the atmosphere (e.g., next to a glass window).
Since it is impractical to ship a silicon chip with a 10-feet concrete slab, silicon chip
manufacturers look for other ways to reduce the error rate introduced by these
neutrons.

1.7.3 Interaction of Alpha Particles and
Neutrons with Silicon Crystals

Alpha particles and neutrons slightly differ in their interactions with silicon crys-
tals. Charged alpha particles interact directly with electrons. In contrast, neutrons
interact with silicon via inelastic or elastic collisions. Inelastic collisions cause the
incoming neutrons to lose their identity and create secondary particles, whereas
elastic collisions preserve the identity of the incoming particles. Experimental
results show that inelastic collisions cause the majority of the soft errors due to
neutrons [21], hence inelastic collisions will be the focus of this section.

Stopping Power
When an alpha particle penetrates a silicon crystal, it causes strong field perturba-
tions, thereby creating electron–hole pairs in the bulk or substrate of a transistor
(Figure 1.11). The electric field near the p–n junction—the interface between the

+
+ +–

–

–+
+

+

–
– –

alpha or neutron strike

Gate
Gate Oxide

source drain

bulk

FIGURE 1.11 Interaction of an alpha particle or a neutron with silicon crystal.

1.7 Radiation-Induced Transient Faults in CMOS Transistors 27

st
op

pi
ng

 p
ow

er
 d

E
/d

R
 [

M
eV

/m
m

]

16
O

12
C

11
B

28
Si

4
He

9
Be

energy E [MeV]

4

3

2

1

0
0 10 20 30 40

FIGURE 1.12 Stopping power of different particles in silicon. Reprinted with
permission from Karnik et al. [12]. Copyright © 2004 IEEE.

bulk and diffusion—can be high enough to prevent the electron–hole pairs from
recombining. Then, the excess carriers could be swept into the diffusion regions
and eventually to the device contacts, thereby registering an incorrect signal.

Stopping power is one of the key concepts necessary to explain the interaction
of alpha particles with silicon. Stopping power is defined as the energy lost per
unit track length, which measures the energy exchanged between an incoming
particle and electrons in a medium. This is same as the linear energy transfer (LET),
assuming all the energy absorbed by the medium is utilized for the production of
electron–hole pairs. The maximum stopping power is referred to as the Bragg peak.
Figure 1.12 shows the stopping power of different particles in a silicon crystal.

Stopping power quantifies the energy released from the interaction between
alpha particles and silicon crystals, which in turn can generate electron–hole pairs.
About 3.6 eV of energy is required to create one such pair. For example, an alpha
particle (4He) with a kinetic energy of 10 MeV has a stopping power of about
100 keV/μm (Figure 1.12) and hence can roughly generate about 2.8 × 104 electron–
hole pairs/μ m.5 The charge on an electron is 1.6 × 10−19C, so this generates roughly
a charge as high as 4.5 fC/μm.6 Whether the generated charge can actually cause
a malfunction or a bit flip depends on two other factors, namely, charge collec-
tion efficiency and critical charge of the circuit, which are covered later in this
section.

5In reality, the stopping power varies over its penetration distance (as expressed in μm) [21].
61 fC = 1 femto Coulomb = 10−15 C.

28 CHAPTER 1 Introduction

60

50

40

30

20

10

0
0 10 20 30

ra
ng

e
R

 [
m

m
]

energy E [MeV]

28
Si

16
O

12
C

11
B

9
Be

4
He

FIGURE 1.13 Penetration range in silicon of different particles as a function
of energy. Reprinted with permission from Karnik et al. [12]. Copyright © 2004
IEEE.

■ E X A M P L E

Compute the amount of charge necessary to flip a memory cell with a
capacitance of 2 fF/μm and a supply voltage of 1.2V.7

S O L U T I O N Total charge in the cell = capacitance × voltage = 2 × 1.2 =
2.4 fC/μm. It should be noted that a 10 MeV alpha particle could flip this cell.

■ E X A M P L E

Can a single photon of visible light carrying 2 eV cause an upset?

S O L U T I O N The minimum energy needed to generate an electron–hole pair
is 3.6 eV. So, it is highly unlikely that a photon will generate an electron–hole
pair. Even if it did generate a single electron–hole pair, the generated charge
would correspond to the charge on a single electron or 0.00016 fC, which is
several orders of magnitude less than 1–10 fC of charge stored by devices in
current technologies. Hence, a single photon cannot cause an upset.

Neutrons do not directly cause a transient fault because they do not directly
create electron–hole pairs in silicon crystals (hence their stopping power is zero).
Instead, these particles collide with the nuclei in the semiconductor resulting in the
emission of secondary nuclear fragments. These fragments could consist of parti-
cles such as pions, protons, neutrons, deuteron, tritons, alpha particles, and other

7fF = femto Farad, unit of measure for capacitance.

1.7 Radiation-Induced Transient Faults in CMOS Transistors 29

heavy nuclei, such as magnesium, oxygen, and carbon. These secondary fragments
can cause ionization tracks that can produce a sufficient number of electron–hole
pairs to cause a transient fault in the device. The probability of a collision that pro-
duces these secondary fragments, however, is extremely small. Consequently, about
105 times greater number of neutrons is necessary than alpha particles to produce
the same number of transient faults in a semiconductor device.

To understand the interaction, consider the following example of an inelastic
collision provided by Tang [24] in which a 200 MeV neutron interacts with 28Si.
This can produce the following interaction:

n + 28Si → 2p + 2n + 25Mg∗,

where n is a neutron, p is a proton, and 25Mg* is an excited compound nucleus,
which deexcites as

25Mg∗ → n + 3 4He + 12C

This creates one neutron, three alpha particles (4He), and a residual nucleus 12C.
The 12C nucleus has the smallest kinetic energy of all these particles but the highest
stopping power estimated at 1.25 MeV/μm (Figure 1.12) with a maximum pene-
tration range of 3 μm (Figure 1.13) around its Bragg peak. This can generate about
3.5×105 electron–hole pairs with a total charge of about 55.7 fC. As shown in an ear-
lier example for the alpha particle, this charge is often sufficient to cause a transient
fault. The high stopping power of these ions also explain why neutrons produce an
intense current pulse with a small width, whereas alpha particles produce a shorter
but wider current pulse.

Besides neutrons, other particles, such as pions and muons, exist in the terres-
trial cosmic rays. However, neither pions nor muons are a significant threat to
semiconductor devices. The number of pions is negligible compared to neutrons
and therefore pions can cause far less upsets than neutrons. The kinetic energy
of muons is usually very high, and muons do interact directly with electrons.
Nevertheless, typically, muons do not create a sufficiently dense electron–hole trail
to cause an upset. Ziegler and Puchner [30] predict that these particles can cause
soft errors worth only a few FIT.

Critical Charge (Qcrit)
Stopping power explains why and how many electron–hole pairs may be generated
by an alpha or a neutron strike, but it does not explain if the circuit will actually
malfunction. The charge accumulation needs to cross a certain threshold before
an SRAM cell, for example, will flip the charge stored in the cell. This minimum
charge necessary to cause a circuit malfunction is termed as the critical charge of
the circuit and represented as Qcrit. Typically, Qcrit is estimated in circuit models
by repeatedly injecting different current pulses through the circuit till the circuit
malfunctions.

30 CHAPTER 1 Introduction

Hazucha and Svensson [11] proposed the following model to predict neutron-
induced circuit SER:

Circuit SER = Constant × Flux × Area × e− Qcrit
Qcoll

Constant is a constant parameter dependent on the process technology and circuit
design style, Flux is the flux of neutrons at the specific location, Area is the area of
the circuit sensitive to soft errors, and Qcoll is the charge collection efficiency (ratio
of collected charge and generated charge per unit volume). It should be noted that
the SER is a linear function of the neutron flux, as well as the area of the circuit.
The parameter Qcoll depends strongly on doping and Vcc and is directly related to
the stopping power. The greater is the stopping power, the greater is Qcoll. Qcoll
can be derived empirically using either accelerated neutron tests or device physics
models, whereas Qcrit is derived using circuit simulators. Although Hazucha and
Svensson formulated this equation for neutrons, it can also be used to predict the
SER of alpha particles. In reality, the SER equations used in industrial models can
be far more complicated with a number of other terms to characterize the specific
technology generation.

The Hazucha and Svensson equation does explain the basic trends in SERs over
process technology. With every process generation, the area of the same circuit goes
down, so this should reduce the effective SER encountered by a circuit scaled down
from one process generation to the next. However, Qcrit also decreases because the
voltage of the circuit typically goes down across process generations. At present, for
latches and logic, this effect appears to cancel each other out, resulting in roughly a
constant circuit SER across generations. However, if Qcrit is sufficiently low, such
as seen in SRAM devices, which are usually 5–10 times smaller than latches in the
same technology, then the impact of the area begins to dominate. This is usually
referred to as the saturation effect, where the SER for a circuit decreases with process
generations. Interestingly, however, the circuit is highly vulnerable to soft errors
in the saturation region. In the extreme case, as Qcrit approaches zero, almost any
amount of charge generated by alpha or neutron strikes will result in a transient
fault.

Chapter 2 discusses in greater detail how to compute Qcrit and map it into a
circuit-level SER.

1.8 Architectural Fault Models for Alpha
Particle and Neutron Strikes
Microprocessors and other silicon chips can be considered to have different levels
of abstractions: transistors that create circuits, circuits that create logic gates and
storage devices, and finally the gates and storage devices themselves. The last
few sections describe how a transistor collects charge from an alpha particle or a

1.8 Architectural Fault Models for Alpha Particle and Neutron Strikes 31

10

Alpha particle
or neutron strike

FIGURE 1.14 Strike on a storage device can flip the bit stored from zero
to one.

neutron strike. When this charge is sufficient to overwhelm a circuit, then it may
malfunction. Logically, at the gate or cell level, this malfunction appears as a bit
flip. For storage devices, the concept is simple: when a bit residing in a storage cell
flips, a transient fault is said to have occurred (Figure 1.14).

For logic devices, however, a change in the value of the input node feeding a
gate or output node coming out of a gate does not necessarily mean a transient
fault has actually occurred. Only when this transient fault propagates to a forward
latch or storage cell does one say a transient fault has occurred. Chapter 2 discusses
transient faults in logic devices in greater detail.

An alpha particle or a neutron strike can, however, cause bit flips in multiple
storage or logic gates. There are two types of multibit faults: spatial and tempo-
ral. Spatial multibit faults arise when a single neutron can cause flips in multiple
contiguous cells. In today’s technology, such multibit faults primarily arise only in
SRAM and DRAM cells because latches and clocked logic devices are significantly
larger than these memory cells. Temporal multibit errors occur when two different
neutron or alpha particles strike two different bits. Typically, these are related to
error detection codes and are discussed in Chapter 5.

Maiz et al. [14] computed the probability of a spatial multibit error in 130- and
90-nm process technology for Intel SRAM cells based on experiments done under
an accelerated neutron beam (Figure 1.15).8 The probability of an error in three or
more contiguous bits is still quite low, but the double-bit error rate could be as high
as 1–5% of the single-bit error rate. Such double-bit errors could arise because of
not only the small size of transistors but also the aggressive layout optimizations
of memory cells. As process technology continues to shrink, this effect will get
worse and is likely to increase the number of spatial double-bit errors. Fortunately,
current processors and chipsets can use interleaved error detection and correction
codes to tackle such errors (see Chapter 5). For further details on multibit errors,
please refer to recent analysis of multibit errors in CMOS technology by Seifert
et al. [20].

8Chapter 2 discusses accelerated neutron tests.

32 CHAPTER 1 Introduction

y = 0.93x
–6.00

y = 6.22x
–8.09

Number of bits

P
ro

ba
bi

li
ty

Multi-bit error probability
1E-1

1E-2

1E-3

1E-4

1E-5
1 2 3 4 5 6

130 nm

90 nm

FIGURE 1.15 Probability of a multibit error compared to a single-bit error in
a sample of SRAM cells. Reprinted with permission from Maiz et al. [14].
Copyright © 2003 IEEE.

1.9 Silent Data Corruption and Detected
Unrecoverable Error
For an alpha particle or a neutron to cause a soft error, the strike must flip the
state of a bit. Whether the bit flip eventually affects the final outcome of a program
(Figure 1.3) depends on whether the error propagates without getting masked,
whether there is error detection, and whether there is error detection and cor-
rection. Architecturally, the error detection and correction mechanisms create two
categories of errors: SDC and DUE. Much of the industry has embraced this model
because of two reasons. First, different market segments care to a different degree
about SDC versus DUE. Second, this allows semiconductor manufacturers to spec-
ify what the error rates of their chips are.

The rest of this section explains these definitions, the subtleties around the def-
initions, and soft error budgets vendors typically create for their silicon chips.

1.9.1 Basic Definitions: SDC and DUE
Figure 1.16 illustrates the possible outcomes of a single-bit fault. Outcomes
labeled 1–3 indicate nonerror conditions. The most insidious form of error is SDC
(outcome 4), where a fault induces the system to generate erroneous outputs. SDC
can be expressed as both FIT and MTTF. To avoid SDC, designers often use basic
error detection mechanisms, such as parity.

The ability to detect a fault but not correct it avoids generating incorrect outputs,
but cannot recover when an error occurs. In other words, simple error detection
does not reduce the overall error rate but does provide fail-stop behavior and
thereby avoids any data corruption. Errors in this category are called DUE. Like

1.9 Silent Data Corruption and Detected Unrecoverable Error 33

bit has
error protection?

faulty bit is
read?

benign fault;
no error

no yes

benign fault;
no error

fault corrected;
no error

no
detection

only

detection &
 correction

no yes

SDC false DUE true DUE

noyes

affects program
outcome?

4

2

1

3 5 6

affects program
outcome?

FIGURE 1.16 Classification of the possible outcomes of a faulty bit in a micro-
processor. Reprinted with permission from Weaver et al. [26]. Copyright ©
2004 IEEE.

SDC, DUE is also expressed in both FIT and MTTF. Currently, much of the industry
specifies SERs in terms of SDC and DUE numbers.

DUE events are further subdivided according to whether the detected fault
would have affected the final outcome of the execution. Such benign detected faults
are called false DUE events (outcome 5 of Figure 1.16) and others true DUE events
(outcome 6). A conservative system that signals all detected faults as processor
failures will unnecessarily raise the DUE rate by failing on false DUE events. Alter-
natively, if the processor can identify false DUE events (e.g., the fault corrupted
only the result of a wrong-path instruction), then it can suppress the error signal.

DUE events can also be divided into process-kill and system-kill categories (not
shown in Figure 1.16). In some cases, such as a parity error on an architectural
register, an OS can isolate the error to a specific process or set of processes. The
OS can then kill the affected process or processes but leave the rest of the system
running. Such a DUE event is called process-kill DUE. The remaining DUE events
fall into the system-kill DUE category, as the only recourse is to bring down the
entire system.

■ E X A M P L E

Asilicon chip had an initial SDC of 1000 FIT purely from soft errors. The vendor
decided to add parity to every bit that contributed to the 1000 FIT SDC. The

34 CHAPTER 1 Introduction

vendor also estimated that the false DUE per bit will cause a DUE increase of
20%. What is the resulting DUE of the chip? Assume only single-bit faults.

S O L U T I O N Adding parity to the chip converts SDC to DUE. So, the total
DUE of the chip would be (1 + 0.2) × 1000 = 1200 FIT.

There are four subtleties in the definitions of SDC and DUE. First, inherent in
the definition of a DUE event is the idea that it is a fail-stop. That is, on detecting
the error, the computer system prevents propagation of its effect beyond the point
at which it has been detected. Typically, a computer system can reboot—either
automatically or manually—and return to normal function after a DUE event. That
may not necessarily be true for an SDC event.

Second, because a DUE event is caused by an error detected by the computer
system, it is often possible to trace back to the point where the error occurred (see
Chapter 5). A computer system will typically or optionally log such an event either
in hardware or in software, allowing system diagnosis. In contrast, it is usually very
hard to trace back and identify the origin of an SDC event in a computer system.
Logs may be missing if the system crashes due to an SDC event before the computer
has a chance to log the error.

Third, a system crash may not necessarily be a DUE event. An SDC event may
corrupt OS structures, which may lead to a system crash. System crashes that are
not fail-stop—that is, the effect of the error was not detected and its propagation
halted—are usually classified as SDC events.

Finally, a particle strike in a bit can result in both SDC and DUE events. For
example, a bit may have an error detection scheme, such as parity, but the parity
check could happen a few cycles after the bit is read and used. The hardware can
clearly detect the error, but its effect may already propagate to user-visible state.
Conservatively, soft errors in this bit can be classified always as SDC. Alternatively,
soft errors in this bit can be binned as SDC during the vulnerable interval where its
effect can propagate to user-visible state and DUE after parity check is activated.
The latter needs careful probabilistic analysis.

1.9.2 SDC and DUE Budgets
Typically, silicon chip vendors have market-specific SDC and DUE budgets that
they require their chips to meet. This is similar in some ways to a chip’s power
budget or performance target. The key point to note is that chip operation is not
error free. The soft error budgets for a chip would be set sufficiently low for a target
market such that the SDC and DUE from alpha particles and neutrons would be a
small fraction of the overall error rate. For example, companies could set an overall
target (for both soft and other errors) of 1000 years MTTF or 114 FIT for SDC and
25 years MTTF or about 4500 FIT for DUE for their systems [16]. The SDC and DUE
due to alpha particle and neutron strikes are supposed to be only a small fraction
of this overall budget.

1.9 Silent Data Corruption and Detected Unrecoverable Error 35

TABLE 1-1 ■ SDC and DUE Tolerance in Different Application Segments

Data Integrity Requirement Availability Requirement

Mission-critical applications Extremely low SDC Extremely low DUE
Web-server applications Moderate SDC tolerated Low DUE
Back-end databases Very low SDC Moderate DUE tolerated
Desktop applications Higher SDC tolerated Higher DUE tolerated

Table 1-1 shows examples of SDC and DUE tolerance in sample application
servers. For example, databases often have error recovery mechanisms (via their
logs) and can often tolerate and recover from detected errors (see Log-Based Back-
ward Error Recovery in Database Systems, p. 317, Chapter 8). But they are often
not equipped to recover from an SDC event due to a particle strike. In contrast, in
the desktop market, software bugs and device driver crashes often account for a
majority of the errors. Hence, processors and chipsets in such systems can tolerate
more errors due to particle strikes and may not need as aggressive a protection
mechanism as those used in mission-critical systems, such as airplanes. Mission-
critical systems, on the other hand, must have extremely low SDC and DUE because
people’s lives may be at stake.

■ E X A M P L E

A system is to be composed of a number of silicon chips, each with an SDC
MTTF of 1000 years and DUE MTTF of 10 years (both from soft errors only).
The system MTTF budgets are 100 years for SDC and 5 years for DUE. What is
the maximum number of chips that can fit into the overall soft error budget?

S O L U T I O N 10 chips can fit under the SDC budget (= 1000/100) and two
chips under the DUE budget (= 10/5). Hence, the maximum number of chips
that can be accommodated is two chips.

■ E X A M P L E

If the effective FIT rate of a latch is 0.1 milliFIT, then how many latches can be
accommodated in a microprocessor with a latch SDC budget of 10 FIT?

S O L U T I O N Total number of latches that can be accommodated is 100 000
(= 10/0.0001). The Fujitsu SPARC64 V processor (announced in 2003) had
200 000 latches [2]. Modern microprocessors can have as many as 10 times
greater number of latches as that in the Fujitsu SPARC64 V. Consequently, it
becomes critical to protect these latches to allow the processor to meet its SDC
budget.

36 CHAPTER 1 Introduction

1.10 Soft Error Scaling Trends
The study of computer design and silicon chips necessitates prediction of future
scaling trends. This section discusses current predictions of soft error scaling trends
in SRAM, latches, and DRAM cells. As with any prediction, these could be proven
incorrect in the future.

1.10.1 SRAM and Latch Scaling Trends
As explained in the Critical Charge (Qcrit) subsection in this chapter, there are two
opposite effects that determine the SER of circuits, such as SRAM cells or latches.
An SRAM cell typically consists of six transistors that make up two cross-coupled
inverters that store the memory value and a couple of transistors that connect the
input and output to the bitlines. As transistor and hence SRAM cell size continues
to shrink across process technologies, the SER should reduce because a neutron
has a less cross-sectional area to strike and cause a malfunction. However, as the
cell size decreases, it holds less charge causing the Qcrit to decrease. This makes it
easier for the cell to be upset due to a neutron strike. Figure 1.17 shows that these
opposing effects mostly cancel each other out, and overall there is a slight decrease
in SRAM SER. This suggests that SRAM cells approach the “saturation” region
in which any strike would potentially cause a soft error (because of a sufficiently
low Qcrit).

BPSG
Free

10

0.1 1 10 100

0.0

1.0Bit SER sensitivity
System SER
Vdd vs. generation

2.0

3.0

4.0

5.0

1

0.1

0.01

0.001

0.0001

S
E

R
 (

a.
u.

)

SRAM Generation (Mbits)

SRAM Scaling Trends

V
ol

ta
ge

 (
V

)

FIGURE 1.17 SRAM scaling trend. a.u. = arbitrary units. BPSG refers to boron
contamination that could increase neutron-related errors. The graph shows
that the FIT/bit for SRAM cells in recent times (toward the right end of the
graph) decreases slowly over time. Vdd is the supply voltage of the chip.
Reprinted with permission from Baumann [3]. Copyright © 2002 IEEE.

1.10 Soft Error Scaling Trends 37

Overall, the FIT/bit of SRAM storage appears be in the range of 1–10 milliFIT
[17,25]. The relatively large variation in the FIT rate arises primarily due to the
variation in size, supply voltage, collection efficiency, and other process-related
parameters of an SRAM cell. In contrast, the SER for latches appears to be roughly
constant (or to vary within a narrow band) over the past few generations since they
have not approached the saturation region yet [8].

The SER of other logic devices are, however, predicted to increase over
technology generations. SER of logic devices, such as NAND and NOR gates, are
typically lower than those of storage elements, such as SRAM cells or latches,
because the effects of most alpha particle or neutron strikes are masked. For exam-
ple, the glitch created at a gate by a strike may not propagate to a forward latch to
cause an error. This is known as electrical masking. As the number of logic levels
shrinks and the frequency of chips increases, this masking effect is reduced causing
more soft errors. Chapter 2 discusses soft error trends in logic devices in greater
detail.

Overall, to the first approximation today, the SER of a silicon chip is a func-
tion of the number of unprotected latches and SRAM cells in the chip. Because
the total number of bits in a microprocessor—both protected and unprotected—
roughly doubles every technology generation, one can expect the SER to roughly
double, unless significant soft error protection techniques are designed into the
microprocessor.

1.10.2 DRAM Scaling Trends
Figure 1.18 shows the scaling trends in DRAMs. DRAM cells are typically made
of four transistors (as opposed to six-transistor SRAMs). Large main memory
systems are made up of DRAM chips. Typically, a DRAM device consists of
256–1024 megabits in current technology. A number of these devices are, in turn,
put in a dual-interlocked memory module (DIMM), which connects to the pro-
cessor motherboard. DIMMs of 1 gigabyte are not uncommon today in desk-
tops and laptops. Total DRAM capacity in a server machine can be as high as
512 gigabytes.

DRAM and SRAM scaling trends differ significantly. Vendors have successfully
reduced the FIT/bit of DRAMs exponentially as the number of bits per DRAM
device has increased. The FIT per DRAM device, however, appears to have stayed
roughly constant over generations. DRAM vendors have achieved this by digging
deeper trenches, adding more stacks, using thinner and alternate dielectrics, and
putting bigger capacitors on the DRAM cells. This has allowed the collected charge
to decrease without decreasing Qcrit.

Although the DRAM FIT per device has remained constant, large servers with
significant amounts of memory may still have significant error rates. Further,
because the amount of memory used can be very large, DRAM can also encounter
multiple bit errors. Appropriate fault detection and error correction techniques
must be used to tackle these errors.

38 CHAPTER 1 Introduction

5.0

4.0

3.0

2.0

1.0

0.0

1000

0.001

0.01

0.1

1

10

100101

DRAM Generation (Mbits)

DRAM Scaling Trends

S
E

R
 (

a.
u.

)

V
ol

ta
ge

 (
V

)

Bit SER sensitivity
System SER
Vdd vs. generation

FIGURE 1.18 DRAM scaling trends. a.u. = arbitrary unit. This graph shows the
DRAM FIT/bit decreases exponentially with every DRAM device generation,
but the FIT/device has remained roughly constant in recent times. Reprinted
with permission from Baumann [3]. Copyright © 2002 IEEE.

1.11 Summary
Radiation-induced transient faults are caused by alpha particles found in chip
packages and atmospheric neutrons. A soft error is a manifestation of a transient
fault. Soft errors due to alpha particles in silicon chips were first reported by Intel
Corporation in 1979, and soft errors due to neutrons were first reported by IBM Cor-
poration in 1984. Since then computer system problems caused by alpha particles
and neutrons have been reported intermittently.

MTTF is a common metric used to express the SER from alpha particles and
neutrons. The MTTF of a system composed of multiple components is the inverse
of the sum of the inverse of the component MTTFs. The inverse of MTTF can also be
expressed as FIT rates. One FIT represents an error in a billion hours. FIT rates are
additive under the exponential failure law, which is commonly used in soft error
analysis.

A soft error can be classified either as SDC or DUE. An SDC event arises when
corrupted data eventually become visible to the user. A DUE event arises when the
system detects a fault. The DUE typically assumes a fail-stop behavior in which
an SDC event can never occur. Thus, the SER can be expressed as either the SDC
MTTF or DUE MTTF, as the case may be.

Radiation-induced transient faults is one of many silicon reliability problems
faced by the chip industry today. Other types of faults include permanent faults
caused by EM and gate oxide breakdown and transient faults caused by transistor
variability, thermal cycling, and erratic fluctuations of minimum voltage at which
a circuit is functional. Radiation-induced transient faults are, however, the only

1.12 Historical Anecdote 39

ones that are typically dealt with directly in the field with fault detection and error
correction circuitry.

Although alpha particles and neutrons are both classified as radiation, they arise
from different sources. Alpha particles arise from chip packaging material. In con-
trast, neutrons emanate when primary, secondary, and tertiary cosmic rays collide
with the atmosphere. Neutrons from galactic particles, instead of solar particles,
are the dominant source of neutrons on the earth’s surface.

An alpha particle causes a malfunction in a circuit’s operation when it penetrates
a crystal and loses sufficient energy in a transistor’s substrate to create electron–
hole pairs that are swept into the diffusion regions of the transistor. The amount of
energy lost or released by an alpha particle per unit track length in a silicon crystal
is known as the stopping power. Stopping power varies with kinetic energy of an
alpha particle. The greater the kinetic energy of an alpha particle, the less is its
stopping power and hence the amount of energy released in a silicon crystal.

Neutrons do not interact with the silicon crystal to create electron–hole pairs.
Instead, neutrons can undergo inelastic collisions with the silicon crystal, which
can produce alpha particles and carbon (12C) nuclei. A carbon nucleus has a low
energy but a high stopping power in a silicon crystal. This carbon nucleus can
generate sufficient electron–hole pairs to cause a transistor malfunction.

The charge generated by alpha particles and neutrons must be higher than the
minimum charge necessary to cause circuit malfunction. This minimum charge is
known as the critical charge and expressed as Qcrit. As transistors shrink in size
with every process technology generation, they hold less charge, thereby causing
a lower Qcrit and making them more vulnerable to a particle strike. However,
with every technology generation, the transistors also shrink in size making them
harder to strike. For latches, these effects often cancel out, roughly giving a constant
FIT/bit over technology generations. For SRAM cells, the transistor has shrunk to
an extent that most particle strikes on such a cell will cause a bit flip. Hence, the
SER of an SRAM cell continues to decrease with every process technology. DRAMs
have, however, managed to aggressively decrease the FIT/bit using various opti-
mizations not typically available for SRAM cells or latches.

1.12 Historical Anecdote
The first half of the 20th century saw a flurry of research into radiation physics. In
the 1890s Wilhelm Conrad Roentgen discovered X-rays, for which he received the
first Nobel Prize for physics in 1902. Scientists discovered that X-rays and other
radioactive materials ionize gases, which enabled these gases to conduct electric-
ity. This effect was used to measure radiation using electroscopes. Scientists soon
discovered that the charge in these electroscopes leaked away over time, no matter
how they designed the electroscopes or what shielding they used around them.
In 1912, an Austrian physicist named Victor Hess took an electroscope to a higher
altitude in balloon flights and observed that the intensity of the ionizing radiation

40 CHAPTER 1 Introduction

initially decreased with altitude, but by about 5000 feet, the radiation was more
intense than that at sea level. Victor Hess surmised that this was due to cosmic
radiation coming from beyond the earth’s atmosphere. Since then, the change in
cosmic radiation flux with altitude has typically been used as the signature to iden-
tify cosmic rays. The term “cosmic rays” was, however, introduced later in 1926 by
an American physicist named Robert Millikan.

References
[1] M. Agostinelli, J. Hicks, J. Xu, B. Woolery, K. Mistry, K. Zhang, S. Jacobs, J. Jopling, W. Yang,

B. Lee, T. Raz, M. Mehalel, P. Kolar, Y. Wang, J. Sandford, D. Pivin, C. Peterson, M. DiBattista,
S. Pae, M. Jones, S. Johnson, and G. Subramanian, “Erratic Fluctuations of SRAM Cache Vmin
at the 90 nm Process Technology Node,” in IEEE International Electron Devices Meeting (IEDM),
pp. 655–658, December 2005.

[2] H. Ando, Y. Yoshida, A. Inoue, I. Sugiyama, T. Asakawa, K. Morita, T. Muta, T. Motokurumada,
S. Okada, H. Yamashita, Y. Satsukawa, A. Konmoto, R. Yamashita, and H. Sugiyama, “A 13 GHz
Fifth Generation SPARC64 Microprocessor,” in IEEE Journal of Solid State Circuits, Volume 38,
Issue 11, pp. 1896–1905, November 2003.

[3] R. Baumann, “Tutorial on Soft Errors,” in International Reliability Physics Symposium (IRPS) Tutorial
Notes, IEEE, Dallas, Texas, USA, April 2002.

[4] R. Baumann, T. Hossain, E. Smith, S. Murata, and H. Kitagawa, “Boron as a Primary Source of
Radiation in High Density DRAMs,” in IEEE Symposium on VLSI, pp. 81–82, June 1995.

[5] S. Borkar, “Designing Reliable Systems from Unreliable Components: The Challenges of Transistor
Variability and Degradation,” IEEE Micro, Volume 25, Issue 6, pp. 10–16, November/December
2005.

[6] D. Bossen, “CMOS Soft Errors and Server Design,” in International Reliability Physics Symposium
(IRPS) Tutorial Notes, IEEE, Dallas, Texas, USA, April 2002.

[7] M. W. Friedlander, A Thin Cosmic Rain: Particles from Outer Space, Harvard University Press,
November 2002.

[8] S. Hareland, J. Maiz, M. Alavi, K. Mistry, S. Walstra, and C. Dai, “Impact of CMOS Process Scaling
and SOI on the Soft Error Rates of Logic Processes,” in Symposium on VLSI Technology Digest of
Technical Papers, pp. 73–74, June 2001.

[9] M. S. Gordon, et al., “Measurement of the Flux and Energy Spectrum of Cosmic-Ray Induced
Neutrons on the Ground,” IEEE Transactions on Nuclear Science, Vol. 51, No. 6, Part 2,
pp. 3427–3434, December 2004.

[10] B. R. Havekort, et al., Performability Modelling: Techniques and Tools, John Wiley and Sons, 2001.

[11] P. Hazucha and C. Svensson, “Impact of CMOS Technological Scaling on theAtmospheric Neutron
Soft Error Rate,” IEEE Transactions on Nuclear Science, Vol. 47, No. 6, pp. 2586–2594, December 2000.

[12] T. Karnik, P. Hazucha, and J. Patel, “Characterization of Soft Errors Caused by Single Event
Upsets in CMOS Processes,” IEEE Transactions on Dependable and Secure Computing, Vol. 1, No. 2,
pp. 128–143, April-June 2004.

[13] JEDEC Standard, “Measurement and Reporting of Alpha Particles and Terrestrial Cosmic
Ray-Induced Soft Errors in Semiconductor Devices,” JESD89, August 2001.

References 41

[14] J. Maiz, S. Hareland, K. Zhang, and P. Armstrong, “Characterization of Multi-Bit Soft Error Events
in Advanced SRAMs,” Digest of International Electronic Device Meeting (IEDM), pp. 21.4.1–21.4.4,
December 2003.

[15] T. C. May and M. H. Woods, “Alpha-Particle-Induced Soft Errors in Dynamic Memories,” IEEE
Transactions on Electronic Devices, Vol. 26, Issue 1, pp. 2–9, January 1979.

[16] S. E. Michalak, K. W. Harris, N. W. Hengartner, B. E. Takala, and S. A. Wender, “Predicting the
Number of Fatal Soft Errors in Los Alamos National Laboratory’s ASC Q Supercomputer,” IEEE
Transactions on Device and Materials Reliability, Vol. 5, No. 3, pp. 329–335, September 2005.

[17] E. Normand, “Single Event Upset at Ground Level,” IEEE Transactions on Nuclear Science, Vol. 43,
No. 6, pp. 2742–2750, December 1996.

[18] D. K. Pradhan, Fault-Tolerant Computer System Design, Prentice-Hall, 2003.

[19] G. Reis, J. Chang, N. Vachharajani, R. Rangan, D. August, and S. S. Mukherjee, “Design and Eval-
uation of Hybrid Fault-Detection Systems,” in International Symposium on Computer Architecture
(ISCA), pp. 148–159, Madison, Wisconsin, USA, June 2005.

[20] N. Seifert, et al., “Radiation-Induced Soft Error Rates of Advanced CMOS Bulk Devices,” in 44th
Annual International Reliability Physics Symposium (IRPS), pp. 217–225, 2006.

[21] G. R. Srinivasan, “Modeling the Cosmic-Ray-Induced Soft-Error Rate in Integrated Circuits: An
Overview,” IBM Journal of Research and Development, Vol. 40, No. 1, pp. 77–89, January 1996.

[22] J. H. Strathis, “Reliability Limits for the Gate Insulator in CMOS Technology,” IBM Journal of
Research and Development, Vol. 46, No. 2/3, pp. 265–286, March/May 2002.

[23] J. Segura and C. F. Hawkins, CMOS Electronics: How It Works, How It Fails, Wiley-IEEE Press, 2004.

[24] H. H. K. Tang, “Nuclear Physics of Cosmic Ray Interaction with Semiconductor Materials: Particle-
Induced Soft Errors from a Physicist’s Perspective,” IBM Journal of Research and Development,
Vol. 40, No. 1, pp. 91–108, January 1996.

[25] Y. Tosaka, S. Satoh, K. Suzuki, T. Suguii, H. Ehara, G. A. Woffinden, and S. A. Wender, “Impact
of Cosmic Ray Neutron Induced Soft Errors, on Advanced Submicron CMOS Circuits,” in VLSI
Symposium on VLSI Technology Digest of Technical Papers, pp. 148–149, June 1996.

[26] C. Weaver, J. Emer, S. S. Mukherjee, and S. K. Reinhardt, “Techniques to Reduce the Soft Error
Rate of a High-Performance Microprocessor,” in 31st Annual International Symposium on Computer
Architecture, pp. 264–275, June 2004.

[27] A. P. Wood, “Software Reliability from the Customer View,” IEEE Computer, Vol. 36, No. 8,
pp. 37–42, August 2003.

[28] J. F. Ziegler, “Terrestrial Cosmic Rays,” IBM Journal of Research and Development, Vol. 40, No. 1,
pp. 19–39, January 1996.

[29] J. F. Ziegler and W. A. Lanford, “The Effect of Cosmic Rays on Computer Memories,” Science,
Vol. 206, No. 776, 1979.

[30] J. F. Zielger and H. Puchner, SER—History, Trends and Challenges, Cypress Semiconductor
Corporation, 2004.

This page intentionally left blank

C H A P T E R2
Device- and
Circuit-Level
Modeling,
Measurement,
and Mitigation

2.1 Overview
Analysis of SERs in silicon chips requires an understanding of the impact of alpha
particle and neutron strikes on transistor devices, circuit elements, and architectural
structures. Chapter 1 covered the basic physics of the interactions of alpha particles
and neutrons with transistor devices. Subsequent chapters cover the impact of these
errors at the architectural level. This chapter examines how transistors and circuit
elements react and respond to alpha- and neutron-induced transient faults. More
specifically, this chapter describes current practices to model, measure, and mitigate
soft errors in transistor devices and circuit elements.

Computing the SER of a microprocessor or other chipsets requires analyses of
two broad areas: the intrinsic FIT rate of the circuits and the devices compris-
ing the chip and the corresponding vulnerability factors by which the intrinsic
FIT rate can be derated. Computing the intrinsic FIT rate of a circuit element is a

43

44 CHAPTER 2 Device- and Circuit-Level Modeling, Measurement, and Mitigation

two-step process: first one must compute the Qcrit or critical charge that the charge
released by an alpha particle or neutron strike must overcome to cause a circuit
malfunction. Thereafter, the Qcrit must be mapped to a corresponding FIT rate
for the circuit element. The general procedure to compute the FIT rate in such
a fashion, as described in this chapter, applies to memory elements, latches, and
logic gates.

Once the intrinsic FIT rate is computed, it needs be derated by a variety of
vulnerability factors. For example, if the intrinsic FIT rate of an adder is 10 milliFIT,
but the adder itself is not vulnerable 70% of the time, then the intrinsic FIT rate needs
to be multiplied by 0.3 to compute a derated FIT rate of 3 milliFIT. Subsequent chap-
ters explain how to model this effect at the architectural level. Typically, however,
at the circuit level, unclocked circuit elements, such as SRAM cells, are typically
vulnerable 100% of the time, whereas clocked elements, such as latches, static logic,
and dynamic logic, may not be vulnerable 100% of the time. This chapter describes
how to model a variety of such masking effects and vulnerability factors in clocked
circuit elements and the impact of transient faults on clock circuits and how they
create soft errors.

The soft error models must be calibrated and validated with measurements.
Because soft errors typically occur once in several years in a single chip, the occur-
rence of errors needs to be accelerated to measure them within a short period
of time. This can be accomplished either by collecting error data from numerous
chips and computers or by increasing the flux of the generated alpha particles and
neutrons. This chapter describes how such measurements are done today.

Finally, this chapter describes some state-of-the-art device- and circuit-level soft
error mitigation techniques. This is a rich area of research. Both industry and
academia are actively pursuing such mitigation techniques.

2.2 Modeling Circuit-Level SERs
Modeling the SER of a chip requires a method to compute the intrinsic SER of a
circuit. Then, the intrinsic error rate is derated by various vulnerability factors.
These vulnerability factors arise from a certain resilience of circuits to soft errors as
well as from various masking effects inherent in the circuit’s operation. To explain
how alpha particles and neutrons interact with circuit elements, this section first
describes the concept of Qcrit (or critical charge) and how it can be mapped to
the FIT rate of a circuit. Then, this section describes the timing vulnerability factor
(TVF) of latches and masking effects in static logic and dynamic logic. Finally, this
section describes how clock circuits can be impacted by alpha or neutron strikes.

For research in architecture design for soft errors, it may be hard to model
these effects in detail. However, Normand found the FIT/bit for memory cells to
range between 1 and 10 milliFIT/bit [20]. Although FIT rate of individual circuits
can vary widely, this book assumes intrinsic SERs in this range, unless specified
otherwise.

2.2 Modeling Circuit-Level SERs 45

2.2.1 Impact of Alpha Particle or Neutron
on Circuit Elements

An alpha particle or a neutron strike typically manifests itself as a transient distur-
bance that would usually last less than 100 picoseconds. If this charge disturbance is
smaller than the noise margin, the circuit will continue to operate correctly. Other-
wise, the disturbed voltage may invert the logic state.

Let us examine an SRAM cell to understand this phenomenon better (see Rabaey
et al. [21], for more detail on SRAM cell design). Figure 2.1 shows an SRAM cell
made of a pair of cross-coupled inverters. When the wordline is low, the cell holds
data in the cross-coupled inverters and the bitlines are decoupled. If a particle
strike causes one of the sensitive nodes to transition, then the disturbance may
propagate through the inverter and cause a transient disturbance on the second
sensitive node. This will cause the second node to propagate the incorrect value,
thereby causing both nodes to flip. This results in flipping the state of the bit held in
the SRAM cell. Radiation-hardened cell design—described later in this chapter—is
one way to correct such bit flips using a regenerative circuit.

An SRAM cell can also encounter a soft error when the wordline is high and the
data are being read out through the bitlines. The voltage differential, which is used
to sense if the cell holds a value “0” or a “1,” can be disturbed causing a corrupted
value to be read out.

Other circuit elements, such as DRAM cells, register file cells, latches, static logic
gates, and dynamic logic gates, are affected in similar ways by particle strikes. The
size of these cells, number of ports, nature of their operation, etc. affect the degree
to which a particle strike can introduce a disturbance in each circuit’s operation.
The next section explains how to reason about the rate at which a particle strike will
introduce a sufficiently large disturbance to cause a circuit element to malfunction.

Word LineWord Line

Vdd

VssSensitive Nodes

Bit lineBit line

(a)

Word Line

Bit line

Word Line

Bit line

(b)

Sensitive Nodes

FIGURE 2.1 Nodes in an SRAM cell most sensitive to an alpha or a neutron
strike. (a) A transistor-level diagram. (b) The same figure at a logic level, in
which the two cross-coupled inverters represent the memory element. The
bitlines are complements of each other, whereas the wordlines are the same
for both.

46 CHAPTER 2 Device- and Circuit-Level Modeling, Measurement, and Mitigation

2.2.2 Critical Charge (Qcrit)
Computing and modeling the intrinsic SER experienced by a circuit element, such
as an SRAM cell or a latch, due to the disturbance introduced by a particle strike
involves a two-step process. First, the critical charge (Qcrit) of the circuit element
must be computed. Then, the Qcrit must be mapped to the SER expressed in FIT.

Critical charge or Qcrit is the minimum charge that must be deposited by a
particle strike to cause a circuit to malfunction. Qcrit is usually computed using
integrated circuit simulators, such as SPICE1, by injecting current pulses into the
sensitive nodes of a circuit. These pulses represent the current generated from
electron–hole pairs created by an alpha particle or a neutron strike. The smallest
charge corresponding to an injected current pulse that inverts the state of a circuit
element is the Qcrit of the circuit. Because charge = capacitance × voltage2, Qcrit
depends on the supply voltage (Vcc). Hazucha et al. [11] found that raising the
Vcc from 2.2 to 3.3 V for an SRAM cell in a 0.6-μm process raises the Qcrit from
51.5 to 91.4 fC. It is also generally accepted that Qcrit is very weakly dependent on
temperature.

This section discusses two broad methodologies to map Qcrit to an FIT rate. The
first one involves empirical measurements that help map Qcrit to FIT. The second
method uses simulation for the same.

Semiempirical Mapping of Qcrit to FIT
Once Qcrit is computed for a specific circuit element, it needs to be mapped into
a SER expressed in FIT. This mapping can be derived by combining physics-based
models and experimental data. This section describes three such methods.

Hazucha and Svensson Model One can start from an equation, such as the one
proposed by Hazucha and Svensson [10]:

Circuit SER = Constant × Flux × Area × e− Qcrit
Qcoll

Flux is the alpha or neutron flux experienced by the circuit, Area is the effective
diffusion area, and Qcoll is the collection efficiency (ratio of charge collected and
charge generated). The parameters of the equation (e.g., Constant, Qcoll) can be
derived empirically using accelerated tests. For alpha particles, such accelerated

1SPICE stands for Simulation Program with Integrated Circuit Emphasis. It was developed
by a group of researchers in the mid-70s at the University of California, Berkeley and has
been continuously enhanced since then for improved speed, accuracy, and usability in both
digital and analog circuit designs. SPICE and its various offshoots are by far the most popular
circuit simulators available.
2For circuits with feedback loops, the charge held may have a different dependence on
voltage and current.

2.2 Modeling Circuit-Level SERs 47

tests can be performed using a radioactive thorium foil (see later sections of this
chapter). For neutrons, the accelerated neutron tests can be performed in particle
accelerators, such as the one available in the Weapons Neutron Research (WNR)
Facility at the Los Alamos Neutron Science Center (LANSCE). The maximum WNR
flux is 108 times greater than that experienced at sea level in the atmosphere. Thus,
soft errors can be captured easily within seconds to hours by exposing SRAM
arrays or test chips under the WNR neutron source. Besides the advantage of
vastly increased flux, the WNR neutron beam also offers an energy distribution
that closely matches that of atmospheric neutrons, which makes it attractive for
chip manufacturers. The energy distribution of the WNR facility is discussed later
in this chapter.

Such semiempirical mapping of Qcrit to FIT is a popular and fairly precise
method to compute the FIT rate of CMOS circuits. However, because the parame-
ters of the equation depend on a specific process generation, the equation must be
calibrated for each new technology generation.

Burst Generation Rate Method The burst generation rate (BGR) method pro-
posed by Ziegler and Lanford [29] is based on two key parameters: the sensitive
volume (SV) and neutron-induced recoil energy (E-recoil). In this method, an upset
is said to occur if the burst of charge generated by neutron–silicon interactions
within the SV of a device is greater than Qcrit. E-recoil is expressed as:

E-recoil = Qcrit × 22.5,

where E-recoil and Qcrit are expressed in MeV and pC, respectively. Then, the
upset rate is computed as

Upset rate = Qcoll × SV ×
∫

E−neutron

(
BGR(E-neutron, E-recoil)

dN
dE

)
dE,

where dN/dE is the differential neutron flux spectrum (expressed in neutrons/
cm2-hour-MeV), E-neutron is the neutron energy (expressed in MeV), BGR(E-
neutron, E-recoil) is the energy deposited in silicon by neutron interactions
(expressed in cm2/μm3), and Qcoll is the collection efficiency (ratio of charge col-
lected and charge generated). Empirical heavy ion testing—often done in parti-
cle accelerators—is used to obtain and tabulate the BGR values as a function of
E-neutron and E-recoil. The integration itself is performed numerically using the
experimental BGR data.

■ E X A M P L E

Compute the approximate FIT rate of a 1-megabyte SRAM device using the
BGR method. Assume that the SV per bit is 1μm3, collection efficiency is 75%,
and a total BGR is 10−13 cm2/μm3.

48 CHAPTER 2 Device- and Circuit-Level Modeling, Measurement, and Mitigation

S O L U T I O N Figure 1.10 (p. 25) shows that the total neutron flux is
14 neutrons/cm2-hour (integrated across all the energy ranges). Simplifying
the BGR equation shows that the upset rate per bit = 0.75 × 1 × 10−13 × 14 ×
109 FIT = 1.1 milliFIT/bit. Then, the approximate FIT rate of a 1-megabyte
SRAM device = 8 × 220 × 0.0011 FIT ∼= 9 kiloFIT. It should be noted that this
is an approximation. To compute the exact FIT rate, the product of BGR and
differential flux for each energy level must be integrated.

Neutron Cross-Section Method To compute the device upset rate using the BGR
method, one must compute a device’s SV, which is often difficult to ascertain.
Instead, the neutron cross-section (NCS) method proposed by Taber and Normand
[26] tries to avoid using the SV parameter (as well as Qcrit), by directly correlating
the neutron environment parameters, such as flux and energy, with the device
upset rate. The NCS method expresses the upset rate as

Upset rate =
∫

E-neutron

(
σ

dN
dE

)
dE

This equation replaces Qcoll, SV, and BGR, used in the BGR method, with a
single variable σ denoting the neutron cross section. The neutron cross section
is defined as the probability that a neutron with energy E-neutron will interact
and produce an upset in a semiconductor device. It is expressed in cm2/device or
cm2/bit. These probabilities are generated for specific device types using acceler-
ated neutron and/or proton testing.

Using Simulation Models to Map Qcrit to FIT
To avoid such a detailed calibration, Murley and Srinivasan [19] had proposed
modeling the charge collection phenomenon from first principles. In this method-
ology, alpha and neutron strikes on devices are simulated from first principles. In
cases where simulations result in a collected charge greater than Qcrit, the circuit
is assumed to malfunction. This gives the probability of an upset, given a certain
alpha or neutron flux. This can then be easily converted into a FIT rate. This method-
ology, however, requires a detailed knowledge of the process technology and how
that can interact with alpha particles and neutrons.

Two key concepts are typically used to model the interaction of alpha parti-
cles and neutrons with transistor devices and circuit elements. First, as described
in Chapter 1, an alpha or a neutron strike directly or indirectly results in ioniza-
tion that creates electron–hole pairs. If the charge collected from the electron–hole
pairs is greater than Qcrit, then the circuit can potentially malfunction. The parti-
cle strike simulations must take into account that particles can come at any inci-
dent angle, strike any node within a circuit, and result in current pulses of various

2.2 Modeling Circuit-Level SERs 49

Gate Gate Oxide

source drain

substrate

++

+

+

+

–

––

–

–

+

Cosmic Ray Ion Track

equi-potential lines

Funnel

FIGURE 2.2 Field funneling effect in bulk CMOS transistor.

shapes. These can result in very long simulation times, so typically such simulations
use various approximations and sampling techniques, such as the Monte Carlo
method.3

Second, an alpha or a neutron strike can cause a transient distortion of the electric
field in the depletion region of a transistor. This phenomenon is known as “field
funneling” because the equipotential lines are stretched in the shape of a funnel
along the radiation track (Figure 2.2). Field funneling increases the total amount of
charge collected by the radiated junction resulting in a higher SER. Field funneling
also produces a sharp peak in the disturbed current. This effect is not as critical for
DRAM cells, where the cells are periodically refreshed and the charge collection
times are relatively small compared to the refresh cycle (in nanoseconds). But in
SRAM cells, the stabilization is produced within a few tens of picoseconds by the
cross-coupled inverter circuits. Hence, a sharper pulse with a few picosecond width
will deposit more charge in a shorter time than a slower rising pulse. Hence, SRAM
SER simulations must consider the shape of the pulse generated by an alpha particle
or a neutron strike.

Once the intrinsic FIT rate of a circuit is computed, it must be derated by the
appropriate vulnerability factors to compute the circuit-level SER. The next few
sections will describe how to compute such vulnerability factors for various types
of circuits.

3Monte Carlo simulations are usually stochastic algorithms that rely on random numbers
to effectively simulate part of a large experimental space.

50 CHAPTER 2 Device- and Circuit-Level Modeling, Measurement, and Mitigation

2.2.3 Timing Vulnerability Factor
Timing Vulnerability Factor (TVF) is the fraction of time a circuit element is
vulnerable to upsets. The circuit SER computed in the last section must be multi-
plied by the circuit’s TVF to obtain the circuit’s SER. An SRAM cell in a processor
cache usually has a TVF of 100% (or 1, if expressed as a fraction) because any strike
during a clock cycle can change the value stored in the SRAM cell. However, flip-
flops and latches are clocked elements and may have a TVF less than 100%. The rest
of the section discusses how to reason about TVF of edge-triggered flip-flops and
edge-triggered latches. To better explain the TVF of flip-flop or latch, this section
describes the operation of a master–slave flip-flop first.

Figure 2.3 shows a flip-flop and its corresponding timing diagram. When the
clock transitions from low to high, the flip-flop latches in the data at input d. During
the high phase of the clock, the flip-flop is in the hold mode, maintaining the value
of d (just before the rising clock edge) at the output q. When the clock transitions
to the low phase, the output q is typically driven to the next logic element, latch,
or flip-flop. The storage nodes of the flip-flop are typically vulnerable to soft errors
when the flip-flop is sampling and holding data during this high phase of the clock.
When the clock phase is low, the flip-flop is driving data to the next stage and is
able to recover from a particle strike. Consequently, in this case flip-flop’s TVF
is roughly 50% (half of the clock phase). For a master–slave flip-flop operating in
sequence, the same concepts apply, except that the master is vulnerable in one clock
phase while the slave is vulnerable in the alternate clock phase.

Reasoning about TVF of flip-flops and latches in modern microprocessors is
slightly more involved [24]. Unlike lower frequency designs (e.g., below 1 GHz),
higher frequency latches start driving data during the high clock phase. Therefore,
the alpha or neutron strike causing the upset must occur sufficiently early in the
high clock phase for the signal to propagate to the next flip-flop or latch through
the forward logic in the path to the next flip-flop or latch. The longer the forward
path, the greater the amount of time it takes for the error to propagate to the next
flip-flop or latch. Hence, shorter is its window of vulnerability and smaller is the
TVF (Figure 2.4).

(a) (b)

d q

Flip-Flop

Input Output

Clock

Clock

Q

D

FIGURE 2.3 (a) Edge-triggered flip-flop. (b) Timing diagram of the flip-flop.

2.2 Modeling Circuit-Level SERs 51

WOV WOV WOV

(a) (b) (c)Clock Period

FIGURE 2.4 Timing diagram of a flip-flop. The arrow represents the time it
takes to propagate through the forward logic to reach the next forward
latch. WOV = window of vulnerability. TVF = WOV/clock period. (a) Only the
high clock phase is vulnerable. (b) TVF < 50% because the path length to cover
in the forward path is greater than 50% of the clock period. (c) TVF < 50%, but
significantly smaller than that in (b) because the path length to be covered is
significantly longer.

■ E X A M P L E

If the frequency of a processor is 2 Ghz, with an average propagation delay of
400 picoseconds, what is the TVF of an average flip-flop in the design?

S O L U T I O N The clock cycle of a 2-GHz design is 500 picoseconds. Hence, the
TVF = (500 − 400)/500 = 20%.

■ E X A M P L E

Clock gating schemes are used aggressively to reduce power consumed by
a processor. Assume a design based on master–slave flip-flops in which the
master flip-flop holds the data and the slave is shut off during clock gating.
Also, assume that each flip-flop has a TVF of 20%. How much will the TVF
increase if the processor has all its flip-flops clock gated for 40% of the time?

S O L U T I O N Sixty percent of the time the TVF of each flip-flop is 20%. Forty
percent of the time the master–slave flip-flop is clock gated during which the
master’s TVF is 100% and the slave’s TVF is 0%. The average TVF during the
40% duration is 50%. Therefore, the average TVF of a flip-flop in this design is
(0.6×20%+0.4×50%)=32%. Thus, the TVF increases from 20% to 32%, thereby
raising the SER by 60%.

In reality, TVF depends on a number of different components besides prop-
agation delay through the forward logic path. TVF also depends on the setup
time of the flip-flop or latch, the clock rise, and fall time, as well as on the clock
skew.

Figure 2.5 shows the variation of TVF as a function of propagation delay for a
specific set of parameters.

52 CHAPTER 2 Device- and Circuit-Level Modeling, Measurement, and Mitigation

0 0.2 0.4 0.6 0.8 1

0.2000

0.1000

0.0000

0.3000

0.4000

0.5000

Tprop/Tcycle
T

V
F

1 GHz
4 GHz

FIGURE 2.5 TVF as a function of Tprop (propagation delay) and clock fre-
quency. TVF is lower for higher frequencies. Reprinted with permission from
Seifert and Tam [24]. Copyright © 2004 IEEE.

Figure 2.6 shows another interesting point about TVF. For a given design in
a high-frequency processor, TVF decreases with an increasing clock frequency.
This is because propagation delay in current microprocessors does not decrease
proportionately with an increase in clock frequency. Hence, the window of vulner-
ability decreases, thereby decreasing the TVF.

2.2.4 Masking Effects in Combinatorial
Logic Gates

Logic gates are building blocks of modern silicon chips, including complex micro-
processors. Figure 2.1 shows an example of an SRAM cell built from inverters,
which are perhaps the simplest of logic gates. Figure 2.7 shows an adder circuit
created from a combination of XOR, AND, and OR gates. See Rabaey et al. [21] for
an explanation of how these gates are created from basic CMOS transistors.

A malfunction due to a particle strike in one of these logic gates must reach
and be captured in the forward memory element (LATCH_S or LATCH_Cout in
Figure 2.7) for the malfunction to cause an error.4 Otherwise, the effects are masked
and do not cause a malfunction in the full circuit’s operation. Thus, evaluating the
SER of a logic gate consists of evaluating the Qcrit of each gate, mapping the Qcrit
to the appropriate FIT rate using the method described earlier in this chapter, and
evaluating whether the fault introduced in the gate’s operation will be masked
or actually reach the forward latch. Alternatively, using circuit simulations, it is
also possible to evaluate the average Qcrit of a whole circuit itself, such as the

4Whether the error latched in actually causes a user-visible error depends on the architectural
design and operation of the chip itself. Chapter 3 discusses this effect in detail.

2.2 Modeling Circuit-Level SERs 53

Tprop/Tcycle
T

V
F

0.2

0.1

0

0 0.2 0.4 0.6 0.8 1

0.3

0.4
latch
MS FF

FIGURE 2.6 Variation of TVF with Tprop (propagation delay). Tcycle = clock
period. MS FF = master–slave flip-flop. Reprinted with permission from Seifert
and Tam [24]. Copyright © 2004 IEEE.

adder circuit shown in Figure 2.7. Then, the average Qcrit should incorporate all
the masking effects.

In today’s microprocessors, greater than 90% of the radiation-induced faults in
logic gates could potentially be masked. Nevertheless, faults in logic gates cannot
be ignored because of three reasons. First, a modern billion-transistor micropro-
cessor is composed of tens to hundreds of millions of logic gates. Even a small
contribution to the FIT rate from logic can add up creating a significant overall
FIT rate for the microprocessor itself. Second, as discussed later in this section,
the effect of this masking decreases with new technology generations. This may
cause the overall contribution to the FIT rate from logic gates to come close to and
possibly even exceed that caused by latches. Third, it is significantly more difficult
to architecturally protect these logic gates compared to SRAM cells used in proces-
sor caches. Simple ECCs, such as parity, are difficult to implement for logic blocks.
Circuit-level techniques, such as radiation hardening, that can protect logic blocks
are discussed later in this chapter.

There are three kinds of masking commonly observed in logic blocks [1,16,25]:

■ Logical masking. A particle strike can be logically masked if it affects a portion
of the circuit that does not logically affect the final outcome of the circuit. For
example, if the first input of the OR gate in Figure 2.7 is one, then the second
input is a “don’t care” because the final result will always be one. Hence, a
strike at the second input node of the OR gate, when the first input node is
one, is logically masked.

■ Electrical masking. A particle strike can be electrically masked if the pulse cre-
ated by the strike attenuates before it reaches the forward latch. For example,
in Figure 2.7, if the particle strikes cin at the input of the first AND gate, but this
pulse attenuates by the time it reaches the OR gate, then the error introduced
by the pulse will never reach the forward latch LATCH_Cout.

54 CHAPTER 2 Device- and Circuit-Level Modeling, Measurement, and Mitigation

a

b

a ⊕ b

ab

cin

S = (a ⊕ b) ⊕ cin

(a ⊕ b) cin

LATCH_S

LATCH_Cout

LATCH_A

LATCH_B

LATCH_Cin

Cout = (a ⊕ b) cin + ab

XOR XOR

OR
AND

AND

FIGURE 2.7 Logic diagram for a full-adder. A and B are the inputs, Cin is the
carry-in from a previous full-adder, S is the sum, and Cout is the carry-out to
the next adder. ⊕ denotes the XOR operation.

■ Latch-window masking. A particle strike can also be masked if the resulting
pulse does not reach the forward latch at the clock transition (or latching win-
dow) where the latch captures its input value. For example, in Figure 2.7,
if a particle creates an erroneous pulse at the input of the OR gate, but
the propagated pulse does not reach the forward latch LATCH_Cout at the
point where the latch reads the value of the input, then the error will be
masked.

To accurately compute the SER of logic blocks, it is essential to model each of
these masking effects.

Modeling the Effects of Masking in Logic
When a particle strikes a sensitive node of a circuit, it produces a current pulse with
a rapid rise time but a more gradual fall time. Hence, the first step in modeling the
masking effects is to model this current pulse I(t) as a time-dependent current
source [6, 28]:

I(t) =
2
p

×
Q
T

×

√
t
T

× e− t
T

where Q is the amount of charge collected from a particle strike and the time
constant T is a function of the CMOS process. A smaller T results in a shorter, but
more intense, pulse compared to the pulse produced by a larger T. The square
root function captures the rapid rise in the current pulse, whereas the negative
exponential term captures the gradual fall of the pulse. Typically, both T and Q
decrease with each successive technology generation.

This current pulse can now be used to drive circuit simulators, such as SPICE,
to gauge the impact of a particle strike on a logic gate.

Logical Masking Conceptually, computing the effect of logical masking is rela-
tively straightforward. It involves injecting erroneous current pulses into different
parts of a logic block and simulating its operation for various inputs or benchmarks.

2.2 Modeling Circuit-Level SERs 55

A random sample of nodes and pulses is typically selected to avoid simulating
the logic block under every different configuration of inputs and error pulses.
Alternatively, logical masking can also be modeled in a logic-level simulator by
flipping inputs from zero to one or vice versa. The latter method is much faster
because it does not involve detailed simulation of a current pulse and its effect on
the logic.

Electrical Masking Computing the effects of electrical and latch-window mask-
ing is a little more involved. As the current pulse traverses through the cascade of
gates, its strength continues to attenuate. More specifically, the rise and fall times
of the pulse increase and its amplitude decreases. The increase in rise and fall times
of the pulse results from circuit delays caused by the switching delay of the tran-
sistors. The decrease in amplitude may occur if and when a gate turns off before
the output pulse reaches its full amplitude. This can happen if an input transi-
tion occurs before the gate has completely switched from its previous transition.
This causes the gate to switch in the opposite direction before reaching the peak
amplitude of the input pulse, thereby degrading the output pulse. This effect cas-
cades from one gate to the next, thereby slowly attenuating the signal. If the signal
completely attenuates before reaching the forward latch, then the forward latch
does not record an erroneous value, and the error is said to be electrically masked.
Shivakumar et al. [25] used the rise and fall time model of Horowitz [12] and the
logical delay degradation model of Bellido-Diaz et al. [2] to compute the impact of
electrical masking through a logic block.

Latch-Window Masking An edge-triggered latch is only vulnerable to latching
in a propagated error during a small latching window around its closing clock
edge (Figure 2.8). This latching window is effectively the sum of the setup time
and hold time of the latch. The setup time is the minimum amount of time before
the clock edge for which data to be latched in must be valid. The hold time is the
minimum amount of time after the clock edge that the data must be valid for the
latch to correctly read it in. Pulses that completely overlap the latching window
will always cause an error in the latch. Pulses that are not overlapped with the
latching window will always be masked. Pulses that partially overlap with the
latching window may or may not be masked. Shivakumar et al. [25] believe that
errors caused by partially overlapped pulses are a secondary effect.

Assume c = clock cycle, d = pulse width, and w = width of latch window. If soft
errors due to partially overlapped pulses are ignored, then the probability of a soft
error can be expressed as

■ If d < w, Probability(soft error) = 0 because the pulse cannot span the entire
latch window.

■ If w ≤ d ≤ c + w, Probability(soft error) = (d − w)/c because the pulse must
arrive in the interval (d − w) just prior to the latching window.

56 CHAPTER 2 Device- and Circuit-Level Modeling, Measurement, and Mitigation

Clock Cycle

Latching Window

Pulse not masked

Pulses masked

Pulse may or may
not be masked

FIGURE 2.8 Latch-window masking.

■ If d > c + w, Probability(soft error) = 1, the pulse is guaranteed to overlap
with at least one latching window. It should be noted if c < d < c + w, then d
can overlap with two consecutive latching windows and still not cause a soft
error.

It should be noted that the latch-window masking reduces the fault rate of logic
gates. In contrast, a strike to a latch may get masked if the latch drives data to its
output. This reduces the TVF of the latch. This latter masking effect reduces the
fault rate of the latch and not the fault rate of the logic gates feeding it.

Putting All These Together To appropriately model the SER of combinatorial
logic gates, all the three masking effects must be taken into account. A fully exhaus-
tive model would simulate charge collections of all different magnitudes and at
different nodes of the logic circuits (e.g., as in the TIme DEpendent Ser Tool called
TIDEST [23]) and then study the masking effects for each of these cases. A fully
exhaustive simulation model can be very precise but can also lead to extremely
long simulation times even for small circuits. Hence, sampling methods, such as
Monte Carlo simulations, are typically used to reduce the simulation space.

Zhang and Shanbhag [28] proposed an alternate approximation to reduce the
simulation times required to compute the masking effects. In this method, logical
masking effects were computed using fault injection into a logic-level simulator,
which is significantly faster than a circuit simulator. Then, the electrical and latch-
window masking effects were computed using a circuit simulator. For each circuit
encountered in a chip, they first extracted the path that the resulting error from a
particle strike would propagate through. They mapped this path to an equivalent
chain of inverters. The electrical masking and latch-window masking effects were

2.2 Modeling Circuit-Level SERs 57

computed ahead of time for representative inverter chains. Hence, the effects of
electrical and latch-window masking in these circuits become simply a table lookup.
The authors found that this approximation introduced less than 5% error in the SER
prediction compared to Monte Carlo-based simulation approaches. Overall, these
three techniques—using logic-level simulation for logic masking, extracting the
path the error propagates through, and mapping the path to an equivalent inverter
chain—speed up the masking simulations by orders of magnitude over using brute-
force circuit simulation. Other researchers (e.g., Gill et al. [7]) are exploring other
options to further reduce this simulation time.

Impact of Technology Scaling As feature size decreases, the relative contribution
of logic soft errors may continue to increase. This is because of three reasons. First,
logic gates are typically wider devices than memory circuits, such as SRAM cells.
But technology scaling more rapidly decreases the size and Qcrit of logic gates than
that of SRAM cells.

Second, the effect of electrical masking will decrease with technology scaling.
This is because fewer error pulses will attenuate as the frequency of these gates
continues to increase.

Third, a higher degree of pipelining, if used by high-end microprocessors and
chipsets, will decrease the clock cycle without significantly changing the setup time
and hold time of latches. Recently, microprocessors have moved toward shallower
pipelines to avoid excessive power dissipation and design complexity. Neverthe-
less, after this sharp change toward shallower pipelines, the number of pipeline
stages in a processor continues to increase again. This will decrease the amount
of latch-window masking experienced by a circuit. Overall, Shivakumar et al. [25]
predicted that the SER from logic gates rises exponentially. But the jury is still out
on this issue.

Masking Effects in Dynamic Logic
Evaluating the masking effects in a dynamic logic gate is a little more involved
than computing the same for a static logic gate. Figure 2.9 shows a dynamic logic
gate evaluating the NAND function. The operation of a dynamic gate is typically
divided into two major phases: precharge and evaluation. The mode of operation is
determined by the clock signal. When CLK = 0, the precharge transistor precharges
the output node OUT to Vdd and the pull-down path is off. When CLK = 1, the
precharge transistor turns off and the evaluation transistor is on. The output
discharges conditionally based on the input values and the pull-down topology.
The dynamic gate in Figure 2.9, for example, will discharge if all the three inputs—
IN1, IN2, and IN3—are one.

Dynamic gates are mostly vulnerable to particle strikes during the evaluation
phase. The precharge phase drives the output strongly and hence makes the gate
resilient to soft errors during that period. Thus, the TVF of the dynamic gate is
roughly 50%. Further, even during the evaluation phase, the pull-down topology

58 CHAPTER 2 Device- and Circuit-Level Modeling, Measurement, and Mitigation

OUT

Vdd

Vss

pull-down
network

Precharge Transistor

Evaluation TransistorCLK

IN3

IN2

IN1

CLK

FIGURE 2.9 A dynamic logic gate evaluating the NAND function of the three
inputs (IN1, IN2, and IN3).

and the inputs determine whether a soft error is logically masked. In Figure 2.9, a
soft error can affect the output only under two conditions: each input is one or one
of three inputs is zero. In the first case in which each input is one, fault in any input
will change the outcome. For the second case, only strikes to the input that is zero
will change the outcome. There are eight possible input combinations. Assuming
a uniform distribution of input values, the SER can be derated by (1 + (1/3) × 3)/
8 = 25% (i.e., one out of four input combinations is vulnerable). Thus, the circuit-
level vulnerability factor for the dynamic gate is 50% × 25% = 12.5%.

■ E X A M P L E

Compute the circuit-level vulnerability factor for the dynamic gate computing
the NOR function as shown in Figure 2.10. Assume a uniform distribution of
input values.

S O L U T I O N The dynamic gate in Figure 2.10 will discharge if either IN1 or
IN2 is one. A soft error can change the outcome only under two conditions:
when both inputs are zero or one of the two inputs is one. Hence, the SER can
be derated by (1+(1/2)×2)/4=50%. Multiplying this with a TVF of 50% results
in a circuit-level vulnerability factor of 50% × 50% = 25%.

2.2 Modeling Circuit-Level SERs 59

CLK

OUT

Vdd

CLK

IN1 IN2

Vss

pull-down
network

Precharge Transistor

Evaluation Transistor

FIGURE 2.10 A dynamic logic gate evaluating the NOR function of two inputs
(IN1 and IN2).

Dynamic logic gates sometimes have storage nodes at their outputs to hold the
data generated by the dynamic logic. The storage node is referred to as a keeper,
whose SER can be computed the same way as a storage node.

2.2.5 Vulnerability of Clock Circuits
Global and local clock networks used in CMOS microprocessors and other chips
are also vulnerable to alpha particle and neutron strikes. But errors generated by
these clock networks are slightly different from those generated by logic or latches.
The two dominant error modes from particle strikes in clock networks are

■ Jitter. Particle strikes can cause the clock edge to move randomly in time
creating jitter in the clock edge (Figure 2.11a). Such jitter can also be caused by
noise and process variations. More specifically for radiation, the jitter occurs
when a particle strikes a clock node close to when a clock will be asserted.
This can result in a violation of the setup time, causing the data to be latched
incorrectly.

■ Race. If a particle strike generates sufficient charge to create a new clock pulse
(Figure 2.11b), then this may accidentally trigger unwanted activity in the
clocked circuit, such as premature latching of the input data. In a pipelined
microprocessor, this can result in data races through successive stages of the
clocked latches, eventually causing an erroneous operation.

Whether a particle strike results in a clock jitter or a data race depends on the
time between the arrival of data at the input of a clocked latch and the beginning
of the setup time prior to the clock edge. This time is normally referred to as the

60 CHAPTER 2 Device- and Circuit-Level Modeling, Measurement, and Mitigation

(a)

Clock Jitter

Clock

Clock

Unwanted Clock Edge Causing Data Race

(b)

FIGURE 2.11 The impact of particle strikes on the clock network. The strike
can result in either a jitter (a) or a data race (b).

“data margin.” Figure 2.12 shows this effect. When the margin is low (implying
that the data arrive close to the clock edge), then an error can result from the jitter
introduced by a particle strike on the clock node (as shown in Figure 2.11a). In
contrast, if the data margin is high (implying that the data arrive much earlier than
the clock edge), then an error can result from the particle strike if an additional
clock pulse is created by the particle strike (as shown in Figure 2.11b).

Modeling the impact of jitter and race is somewhat involved for a simple cir-
cuit and gets significantly more computationally expensive for a whole chip. For
details on how to model SERs in clock networks, the readers are referred to Seifert
et al. [23]. They proposed a faster simulation technique that uses a combination of
analytical modeling and simulation using a critical pulse width that is sufficient
to upset a latch.

They also demonstrated that the soft error contribution from clock networks is
sufficiently low—of the order of <10% of that contributed by flip-flops and latches.
This is because the window of vulnerability for a particle to strike and cause a jitter
or a race is quite small. Nevertheless, in certain design styles, such as in certain
pulsed latch designs in which pulse generators feed few pulsed latches, the clock
network can result in as high an SER as 50% of that contributed by the latches in
the design.

2.3 Measurement
The previous section discussed how to model and compute the SER of various cir-
cuit elements. This section examines techniques to measure the SER of circuit ele-
ments and chips. The measurements of SERs are typically used in two ways. First,
selected predictions and parameters from the models are calibrated using measure-
ments to increase our confidence in these models. Second, data from measurements

2.3 Measurement 61

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Margin/Tcycle

SE
R

 (
a.

u.
)

RaceJitter

FIGURE 2.12 SER and Qcrit of clock node as a function of data margin for a
flip-flop-based design. Tcycle = clock cycle time. a.u. = arbitrary unit. Reprinted
with permission from Seifert et al. [23]. Copyright © 2005 IEEE.

are used to create the models, as discussed in the Critical Charge (Qcrit) subsection
in this chapter.

Measurements of SERs, however, pose one challenging problem. If the typical
FIT rate of a circuit element is in the range of around 1 milliFIT, then one encounters
only one error every 1012 hours or 114 155 years of operation. Further, to achieve
a statistical significance, several errors must be detected before the FIT rate of the
circuit element can be predicted. Obviously, it is not possible to measure the FIT rate
of an individual circuit element within a reasonable amount of time. Guidelines
for such measurements are given in the JEDEC standard [13].

To measure the SER of circuits and chips in a reasonable amount of time and
with some degree of statistical significance, practitioners typically use the following
methods (or a combination of these):

■ Measure the SER over a large number of elements. To compute the FIT per bit (often
denoted as FIT/bit) of an SRAM cell in a processor’s cache, one can measure
the SER of the entire cache and then divide the FIT rate by the number of
bits in the cache. Similarly, to compute the FIT/latch on a test chip, one can
measure the FIT rate over many latches and then divide by the number of
latches to obtain the FIT/latch. These numbers can even be aggregated over
a large number of computers (e.g., deployed in the field).

■ Increase the flux of alpha particles or neutrons striking the device. Increasing the
flux of alpha particles or neutrons typically causes circuit elements to fail
faster. For example, in Los Alamos National Laboratory, the neutron beam
produces a maximum neutron flux that is 108 times greater than that experi-
enced on the earth’s surface. Dividing the observed failure rate by 108 gives
the approximate atmospheric FIT rate experienced by these elements.

62 CHAPTER 2 Device- and Circuit-Level Modeling, Measurement, and Mitigation

Measurement of radiation-induced SERs must consider three aspects:

■ Do the data come from the field or accelerated tests?

■ Is the error rate due to alpha particles or neutrons?

■ Is the FIT rate of individual circuit elements or that of a full chip being
measured?

The rest of this section provides answers to these questions.

2.3.1 Field Data Collection
Field data on soft errors can be collected from error logs of computer systems.
Computer systems will typically log information—either in hardware or in
software—about both corrected and detected but uncorrected errors experienced
by the computer system. Significant information about soft errors can be gleaned
from these error logs. Although these error logs capture information about a vari-
ety of errors, soft errors can be recognized from their “signature,” such as random
occurrence in time across machines and an enhanced rate of errors in machines at
higher elevations.

Eugene Normand is probably the first to report an analysis of SERs experi-
enced by a number of computer systems in the field and at ground level [20]. He
was looking for evidence of neutron-induced errors in such computer systems.
In Fermilab computers, Normand found the FIT/bit of the DRAM to be around
0.7 milliFIT, which is 5–10 times greater than that expected by the manufacturers
and 500 times greater than that expected from alpha particles. With further anal-
ysis, Normand inferred that this error rate must have been due to atmospheric
neutrons. In five Nite Hawk computers, Normand found the error rate of DRAM
to be around 2.3 milliFIT/bit. He also looked at a CRAY YMP-8’s SRAM memory
system log and found the error rate to be about 1.3 milliFIT/bit. It should be noted
that FIT/bit of DRAM chips have come down significantly since then (see DRAM
Scaling Trends, p. 37, Chapter 1).

2.3.2 Accelerated Alpha Particle Tests
Accelerated measurements of soft errors due to alpha particles can be obtained by
exposing silicon chips to radioactive isotopes, such as americium-241, uranium-238,
or thorium-232 that emit alpha particles. These are commercially available as thin
foils or disks. The radioactive nature of the materials makes it imperative that they
be handled by trained personnel and stored appropriately to avoid health hazards.
Figure 2.13 shows an experimental setup in which a CMOS chip is exposed to a
thorium-232 foil.

The radioactive foils emitting the alpha particles must be in close proximity
to the CMOS chip. This is because alpha particles are absorbed within 5–8 cm in
air. Typically, the top of the circuit die is directly exposed to the foil. Packages

2.3 Measurement 63

Thorium 232Th foil

�

DIL package
without lid

FIGURE 2.13 Measurement setup for soft errors due to alpha particles. DIL
package = dual in-line package. Reprinted with permission from Karnik et al.
[14]. Copyright © 2005 IEEE.

suitable for such testing are dual-in-line packages—shown in Figure 2.13—and
similar wirebond-type packages with pads around the perimeter of the die. This
setup requires removing the lid of the package.

Flip-chip packages, however, make it hard to expose silicon chips to these
radioactive foils. In flip-chip packages the chips are contacted using solder-ball
technology such that the chips face downward toward the module substrate. For
these packages, Ziegler and Puchner [30] suggest the use of radioactive fluids that
can be introduced at the edge of a chip. Capillary action is often adequate to make
the fluid flow under the chip, thereby bringing the silicon chip in close proximity
to the alpha-emitting radioactive material.

The foil or fluid used in the experiment must be calibrated by a counter to gauge
its alpha emission rate. Then, after exposing the die/chip to the foil or fluid for a
predetermined period of time, the total number of errors is counted. For memories,
this involves reading out the final data pattern and comparing it to the data pattern
originally written into the memory. From the alpha activity of the foil, exposure
time, and error count, the SER due to alpha particles under natural conditions can
be computed.

The exact alpha particle flux arising from natural conditions varies with the
process and packaging technology. Typically, each semiconductor vendor will
know the maximum alpha particle rate experienced by the chips.

2.3.3 Accelerated Neutron Tests
Accelerated measurement of soft errors due to neutron particles can be performed
by exposing the silicon chips to an energetic neutron or proton beam. The JEDEC
standard [13] contains a list of facilities where neutron soft error experiments can
be performed. Most of these facilities charge about US$300–US$1000 per hour of
beam time. There are three possibilities:

■ White neutron beam. The preferred method of measuring neutron-induced
SER is to use a neutron beam with an energy spectrum similar to that of

64 CHAPTER 2 Device- and Circuit-Level Modeling, Measurement, and Mitigation

10
neutron energy [MeV]

neutron beam
sea level

dN
/d

E
 [

n/
M

eV
/c

m
2 /h

r]

100 10001
0.001

0.01

0.1

1

10

FIGURE 2.14 Neutron energy spectrum at sea level versus the one available
from the “white” neutron beam at the WNR Facility in Los Alamos National
Laboratory. Reprinted with permission from Karnik et al. [14]. Copyright ©
2005 IEEE.

atmospheric neutrons at sea level (Figure 2.14). The beam is referred to as a
white neutron beam because it contains neutrons with different energy levels.
In the WNR Facility at the Los Alamos National Laboratory in the United
States, this white beam is produced by directing the 800-MeV protons on a
tungsten target. When the protons hit the tungsten target, they shatter the
tungsten nucleon (much like when a glass shatters into many pieces) and give
rise to neutrons with different energy levels. This mechanism is normally
referred to as a spallation reaction. At WNR, the spallation reaction produces a
total neutron flux (of various energies) of up to 108 times higher than the flux at
sea level. Hence, the error rate measured at WNR must be reduced by 108 times
to obtain the atmospheric SER.5 This beam is widely used by semiconductor
companies and memory manufacturers to measure the neutron-induced SER
of their parts.

■ Monoenergetic neutron beam. The second approach is to use monoenergetic
neutrons to obtain the SER for specific energy levels. These numbers can
then be combined—a process called deconvolution—to approximate the SER
under a white beam. It appears that in recent years, the dependence of the
SER on neutron energy levels has come down dramatically, making it easier
to carry out the deconvolution. Monoenergetic neutrons can be produced in a
particle accelerator, in a nuclear reactor, or via a deuterium (2H)– tritium (3H)
reaction. Examples of monoenergetic neutron sources in the United States are
the 160-MeV beam at Indiana University Cyclotron Facility, 65-MeV beam in
Crocker Nuclear Lab in University of California at Davis, and 14-MeV beam
in BOEING.

5There is some controversy over whether the SER scales linearly with the neutron flux,
particularly at the highest flux levels.

2.3 Measurement 65

■ Proton beam. The third approach is to use a proton beam, which is usually more
readily available than a neutron beam. It is much easier to produce a mono-
energetic and high-intensity proton beam. In contrast, neutrons typically arise
as secondary particles following a collision of accelerated charged particles
with a target. The use of a proton beam is justified because for energies greater
than 50 MeV, a proton beam produces results similar to those produced by
neutrons. High-energy protons interact with the nucleus of an atom in the
same way as neutrons would (via strong interaction). Low-energy protons
behave differently and have a much higher probability of interacting with
electrons (via Coulomb interaction). Proton beams may, however, produce
less accurate results in the future because the median neutron energy that
affects silicon appears to be decreasing with technology scaling [30]. Another
disadvantage of the proton beam is that the damage from radiation to the
tested parts is typically higher than that due to neutrons. This is a concern if
the supply of chips is limited (e.g., test chips or prototypes). The Northeast
Proton Therapy Center in Boston, USA, has a 150-MeV proton beam.

Figure 2.15 shows a typical experimental setup with the neutron beam available
in WNR. The neutron beam enters from the left, passes through a uranium fission
detector chamber, and continues toward the silicon chips mounted on the circuit
boards. The boards are carefully aligned with a laser beam to ensure that the chips
under test—often referred to as DUT or device under test—are covered by the
incident beam.

The exact neutron flux reaching the DUT is tracked by the WNR detectors. Since
neutrons penetrate easily through circuit boards, often multiple boards will be
set up back to back to get greater bandwidth out of these tests. The neutron flux
reduction from each circuit board can be easily calibrated with the use of the WNR
detectors. Karnik et al. [14] measured about a 4% reduction in neutron flux for

detector
fission

chamber

divergent
beam

....

circuit boards
with devices

under test

FIGURE 2.15 Experimental setup for a neutron beam experiment. Reprinted
with permission from Karnik et al. [14]. Copyright © 2004 IEEE.

66 CHAPTER 2 Device- and Circuit-Level Modeling, Measurement, and Mitigation

every circuit board in the path of the beam. Unlike the WNR beam, some beams
are isotropic (i.e., dissipates in all directions). In such cases, specially designed colli-
mators may be necessary to direct the beam to the appropriate DUT. The computer
systems that are used to collect the data from the DUT are also not kept in the path
of the beam and are often several tens of feet away from the DUT and connected
with long cables.

The metallic portions of the DUT and circuit boards may become radioactive
after exposure to a neutron or a proton beam. Hence, these DUT and circuit boards
must be kept in isolation till these boards are no longer radioactive. This may take
a few weeks to several months.

Typically, DUT can be of three types: memory (SRAM or DRAM) chips, spe-
cially manufactured test chips, and complex silicon chips, such as microprocessors.
SRAM or DRAM chips are usually commercially available but may require expen-
sive tester equipment to write test patterns and to read them after beam exposure
to check how many of these failed.

Test chips are often used to measure the intrinsic SER of specific cells, such
as latches, manufactured in a specific technology. For example, Hazucha et al. [8]
created test circuits that have a number of latches connected as a shift register. These
were mounted on specially designed circuit boards that can be controlled from a
laptop. Test patterns are shifted in to these latches, which are exposed to the beam.
Subsequently, the test patterns are read to determine which latches experienced
bit flips. Yamamoto et al. [27] described another soft error test chip that arranges
latches like SRAM cells.

Complex silicon chips, such as microprocessors, can also be exposed to such a
beam, as long as the incident beam covers the portions of the microprocessor of
interest. Two types of measurements are typically performed with such a beam.
Intrinsic SER of large arrays, such as caches, can be measured by loading the cache
with a test pattern and computing how many of the test bits flip under the beam.
Microprocessors often have debug ports that allow one to load test patterns into
such large arrays.

Alternatively, the MTTF of microprocessors could be measured using a neutron
beam, as long as the beam covers the entire microprocessor. The WNR beam, for
example, is about 3.5 inches in diameter [14], which is sufficiently large to cover a
typical microprocessor. In this method, the microprocessor under test is exposed to
a neutron beam until a system crash or a data corruption is observed. Such exper-
iments can be expensive because microprocessors may take seconds to minutes
before a failure may be observed, and this procedure must be repeated hundreds
of times to achieve a statistical significance. Constantinescu [5] described one such
experiment with an Itanium� processor running Microsoft Windows NT 4.0 and a
Linpack benchmark. The aim of the modeling techniques described in this book is to
predict this measured MTTF of a full-blown silicon chip, such as a microprocessor.

Modeling and measurement of device and circuit-level soft errors allow one to
identify candidate hardware structures that may need protection. The next section
discusses such protection mechanisms available at the device and circuit levels.

2.4 Mitigation Techniques 67

2.4 Mitigation Techniques
Designers try to accurately model and measure the SER of a chip, so that appropriate
design techniques can be used to mitigate it. The rest of the book talks about how
to model mitigate SER at the logic and architectural levels. This section provides
several examples of soft error mitigation techniques used in CMOS devices and
circuits.

2.4.1 Device Enhancements
Two of the most effective device-enhancement schemes to reduce the SER are the
triple-well and silicon-on-insulator (SOI) technologies. Ziegler and Puchner [30]
described a number of other techniques, such as buried-layer implants and the use
of epitaxial substrate wafers, to reduce the SER of silicon devices. The impact of
the latter techniques can vary depending on the specific technology and device
characteristics.

Triple-well technology is nowadays commonly used in deep submicron CMOS
technology to improve transistor performance. As Figure 2.16 shows, a triple-
well device provides a complete electrical isolation for nMOS devices in a p-type
substrate. This reduces substrate noise currents, thereby improving the perfor-
mance of the nMOS device. Triple-well processes help reduce the SER because the
deep n-well sweeps away some of the electrons generated from an alpha particle or
a neutron strike. This helps reduce the number of electrons collected by the drain
of the nMOS device, thereby reducing the probability of an upset.

An SOI process also improves transistor performance in the deep submicron
technology. The SOI process introduces a buried oxide between the source (and
drain) and the substrate (Figure 2.17). This eliminates the junction capacitance
between the source (or drain) and substrate, thereby speeding up the device. At
the same time, SOI significantly reduces the SV, which reduces the amount of

deep n-well

p-well n-well

poly gate

VccVss

p-substrate

p+p+

–
–

––
–

+
+
+++

poly gate

n+n+

FIGURE 2.16 Triple well. Many of the electrons generated from an alpha
particle or a neutron strike can be swept away by the deep n-well.

68 CHAPTER 2 Device- and Circuit-Level Modeling, Measurement, and Mitigation

Gate
Gate Oxide

source drain

substrate

Gate
Gate Oxide

source drainsubstrate

Oxide

junction
capacitance

no junction
capacitance

(a) bulk CMOS

(b) Partially Depleted SOI

substrate

Gate
Gate Oxide

source drainsubstrate
Oxide

no junction
capacitance

(c) Fully Depleted SOI

substrate

FIGURE 2.17 (a) Junction capacitance slows down the switching speed of a
bulk CMOS transistor. The absence of junction capacitance speeds up both a
partially depleted SOI transistor (b) and fully depleted SOI transistor (c).

charge collected from a particle strike, thereby reducing the vulnerability to soft
errors.

There are two types of SOI processes—partially depleted and fully depleted.
Partially depleted SOI is already being used by IBM in its manufacturing processes.
IBM’s experiments [4] have shown that their partially depleted SRAM cells can have
5 times lower SER than IBM’s comparable bulk CMOS SRAM cells. But there are no
current data on the effectiveness of SOI in reducing SER in latches and logic. The
reduction in SER from partially depleted SOI (compared to bulk) could be offset
by a phenomenon called bipolar junction effect, in which an additional current
could be activated from the drain to the source due to the presence of the floating
body.

As Figure 2.17c shows, fully depleted SOI has the lowest sensitive region com-
pared to bulk or partially depleted SOI and consequently could achieve the great-
est reduction in SER. It also does not have the bipolar junction effect because the
substrate above the buried oxide is fully depleted and therefore excess charge gen-
erated in the substrate would be swept away to the drain. Nevertheless, manufac-
turing fully depleted SOI devices in large volumes is still a significant challenge
faced by the industry.

2.4.2 Circuit Enhancements
Designers commonly use two tricks to reduce the soft error vulnerability of circuit
elements: increasing the capacitance of a device, thereby increasing its Qcrit, and
using radiation-hardened cells. This section discusses these two techniques.

2.4 Mitigation Techniques 69

Increasing Capacitance of Circuit Elements
The most common and perhaps obvious way to reduce the SER of a circuit is to
increase the capacitance of its diffusion areas. Increasing the capacitance raises
the Qcrit because the total charge at a node is the product of its capacitance and
voltage. The capacitance can be raised usually by increasing the size of the device.
Alternatively, an explicit capacitor can be added to the diffusion area of the device.
Figure 2.18a shows the structure of a capacitor that can be attached to various nodes

Word Line

Bit line

Word Line

Bit line
Node Cap

VddVss

V
dd

V
ss

CLK

CLK

d

q

CLK

CLK

q

CLK

Vdd

fb

Vss

d

q

N-stack

V
dd

V
ss

(a)

(b)

(c)
(d)

(e)

fb

VddVss VddVss

V
dd

V
ss

CLK

CLK

d

CLK

CLK

fb

FIGURE 2.18 Reduction of SER by introducing capacitance. (a) Capacitor struc-
ture. (b) Addition of capacitance to an SRAM cell. (c) Addition of capacitance
to the feedback node of a latch. (d) Addition of capacitance to the feedback
node and to the output of a latch. (e) Addition of capacitance to the keeper
cell of the dynamic node.

70 CHAPTER 2 Device- and Circuit-Level Modeling, Measurement, and Mitigation

in a circuit to raise the sensitive node’s capacitance. For example, Figure 2.18b
shows how two capacitors can be added to an SRAM cell to reduce its SER.

Figure 2.18c–e shows how capacitors can be added to three latches commonly
used in a high-performance microprocessor design. The input and output of these
latches are typically denoted by d and q, respectively. The delay from d to q is
referred to as the d-to-q time. The first latch in Figure 2.18c—called path-exclusive
latch—has a decoupled feedback node (fb) and output node (q), whereas the second
latch in Figure 2.18d has the feedback node and output node connected. Adding the
capacitor to the path-exclusive latch does not affect the delay through the latch (d-
to-q) but slows the loop recovery time (d-to-fb). Adding the capacitor to the latch in
Figure 2.18d slows down both the d-to-q and d-to-fb times. Figure 2.18e shows how
to add a capacitor to a dynamic cell. A dynamic cell stores its value in a “keeper”
circuit, which is a standard cross-coupled latch.

The reduction in the SER and the corresponding reduction in performance and
increase in power are directly related to the capacitance added to a node. Karnik
et al. [15] have shown that such techniques can reduce the SER of latches three-fold
but could slow down the latch. The performance penalty can be hidden by only
adding capacitors to latches that are not in a critical path. Using these techniques,
the authors estimated an overall chip-level power increase of less than 3%, with
an overall SER reduction of 25–32%. Mohanram and Touba [18] and Gill et al. [7]
proposed an alternate technique in which they identified the most vulnerable gates
in a logic circuit and then added appropriate protection—including capacitors—
to reduce the soft error vulnerability. The vulnerability of gates can vary widely
because of the logical, electrical, and latch-window masking effects discussed
earlier.

Recently, DRAM vendors have been investigating the use of stacked capacitors
to reduce the SER of DRAMs. Although this works for DRAMs, it does not work
as effectively for SRAMs embedded in microprocessors due to power and area
reasons. Often, the area above the SRAMs is also unavailable because of metal
lines and hence it may be hard to find a place to put these capacitors on the SRAM
cells.

Radiation-Hardened Cells
Radiation hardening is a second circuit technique for reducing the circuit-level SER.
Unlike the previous method of increasing the diffusion capacitance that applies to
almost any transistor, radiation hardening only applies to storage cells, such as
SRAM cells or latches. This section discusses two radiation-hardened cell designs.
The underlying principle of the radiation-hardened design is quite simple. It main-
tains a redundant copy of data, which can not only provide the correct data after a
particle strike but also help the corrupted section recover from the upset.6

6Although the term “radiation hardening” could have a broader meaning, radiation-
hardened cells typically have this definition in the industry.

2.4 Mitigation Techniques 71

d d

CLK

N0 N1

P0 P1

P2 P3

P4 P5

P6 P7

N2
N3

X0
X1

X2

X3

FIGURE 2.19 Radiation-hardened latch design using a pMOS slave latch. The
shaded region shows the original latch (without the clock).

Figure 2.19 shows a radiation-hardened latch proposed by Rockett [22]. The
main latch consists of the cross-coupled inverters composed of {N0,P0} and {N1,P1}.
Two additional transistors—N2 and N3—control the writability of the latch. The
redundant cell is a pMOS latch composed of two cross-coupled inverters {P2,P4,P6}
and {P3,P5,P7}. The pMOS latch acts as a redundant storage only when the clock
(CLK) is low. When the clock is high, data can be read from or written into the
main latch.

In this circuit, the nodes X0 through X3 are most sensitive to particle strikes.
Because X0 and X1 behave in the same way as do X2 and X3, the different cases are
only illustrated with X0 and X2. Four possibilities can arise from a particle strike:
(i) X0 is 0 and can transition to 1, (ii) X0 is 1 and can transition to 0, (iii) X2 is 0
and can transition to 1, and (iv) X2 is 1 and can transition to 0. Case (i) cannot
occur because a positive upset pulse, which forces X0 to transition from 0 to 1,
also shuts off the pMOS transistor P4, while the pMOS transistor P2 restores X0’s
state. Case (ii) can occur due to a negative upset pulse on the drain of N0 or N2.
To prevent this scenario, the cell is designed to make P6 significantly stronger than
P4, which avoids reverting the state of the slave latch. Case (iii) is similar to case (i)
and is avoided because the corresponding pMOS transistors, P3 and P7, are shut
off. Case (iv) cannot generate upsets in pMOS transistors and can only generate
positive upset pulses (that is, transitions from 0 to 1 only).

Calin et al. [3] proposed an alternate and perhaps more widely known
design called DICE (dual-interlocked CEll). Unlike other radiation-hardened
designs, the DICE cell does not rely on device sizing or added capacitance.

72 CHAPTER 2 Device- and Circuit-Level Modeling, Measurement, and Mitigation

d dN0

P1

N1

N2

N3

P0

P2

P3

X0 X1

X2X3

(a)

N4 N5

N6N7

d

X0

P0 P1 P2 P3

X1 X2 X3

N0 N1 N2 N3

N5 N6 N7N4
CLK

(b)

d

FIGURE 2.20 DICE (dual-interlocked CEII). (a) Schematic diagram that illus-
trates the principles of operation of the DICE storage cell. (b) Same as (a),
but drawn as the canonical DICE memory cell.

Figure 2.20 shows a DICE memory cell. It uses twice the number of transistors com-
pared to a traditional SRAM cell. Four nodes—X0, X1, X2, and X3—store the data as
two pairs of complementary values: 1010 or 0101. Each X is connected to a pair of N
and P transistors, and it also controls the operation of another pair of N and P tran-
sistors. For example, X0 is connected to N0 and P0, but it also controls the operation
of P1 and N3. These are simultaneously written to and read through the transmis-
sion gates. Figure 2.21 shows a radiation-hardened DICE latch. The connections

2.4 Mitigation Techniques 73

P1

N1

P0

N0

P3

N3

P2

N2

q

q

CLK

CLK

d

FIGURE 2.21 DICE latch.

and principles of operation of this latch are very similar to that of the DICE
memory cell.

In Figure 2.20, the four nodes—X0 through X3—are most sensitive to particle
strikes. The soft error immunity of this cell can be illustrated using X0. Two pos-
sibilities can arise in the DICE memory cell after a particle strike on X0: (i) X0 is 0
and can transition to 1 and (ii) X0 is 1 and can transition to 0. Case (i) forces X3 to
transition to 0. But this shuts off P1 and N2. This isolates X1 and X2, which capac-
itatively preserve their states. Once the transient pulse generated by the particle
strike disappears, X1 and X2 restore the state of X0 and X3 via the transistors N0
and P3. Case (ii) works in the same way. The transition of X0 from 1 to 0 affects X1,
but shuts off N3. Corresponding X1 transition from 1 to 0 shuts off P2. X2 and X3
capacitatively preserve the value of the latch and restore the states of X0 and X1
via the transistors N1 and P0.

Estimates vary, but the DICE cell can reduce the SER by 10- to 100-fold [9]. The
DICE cell does not reduce the SER of the cell to zero because of two reasons. First,
if a single particle strikes two adjacent nodes simultaneously, such as X0 and X1,
then the cell cannot recover. Second, although a DICE latch itself can recover from
a single strike, a glitch may appear at the output q, which in turn may be captured
by subsequent latches on its path.

A DICE cell can be 1.7 to 2 times greater in area than the original cell [3],
but Hazucha et al. [9] have shown that with careful design, this overhead can
be reduced to less than 1.5-fold. Further, if scan logic is factored in, then the area
overhead of a DICE latch could be even lower because the scan logic is not typically

74 CHAPTER 2 Device- and Circuit-Level Modeling, Measurement, and Mitigation

Input B

Input A

Output

FIGURE 2.22 C-element used for fault detection.

radiation hardened. Interestingly, however, a DICE latch does not affect the d-to-q
time, thereby making it attractive for microprocessor pipeline latches that are in
critical paths where extra levels of logic introduced by a conventional parity or an
ECC could increase the cycle time. Hazucha et al. have also demonstrated that the
energy penalty can be reduced to less than 40% by using devices with two different
threshold voltages.

Recently, Mitra et al. [17] have proposed another radiation-hardening scheme
that detects faults using at-speed scan logic. The basic idea is illustrated in
Figure 2.22, which shows a circuit called C-Element. The C-Element acts as an
inverter when both inputs A and B are the same. But when the inputs are differ-
ent, the C-Element does not let either input propagate. Thus, one could detect a
transient fault by connecting the redundant storage elements to the inputs A and
B. In the presence of scan, the second redundant value could be generated by the
scan latch itself. To ensure that the scan latch does not slow down the main latch, it
must run at the same speed as the main latch. Hence, this will work as long as the
scan latch runs “at speed.” The high-end silicon industry, such as the those man-
ufacturing microprocessors, is moving away from at-speed scan because at-speed
scan logic ends up consuming too much power and area.

2.5 Summary
To compute the SER of a circuit, one must ascertain the critical charge (Qcrit) of
the circuit and the circuit-specific vulnerability. The Qcrit must be mapped to the

2.5 Summary 75

corresponding SER (typically expressed in FIT) and multiplied by the circuit’s
vulnerability factor to obtain the circuit-specific SER. Qcrit is the minimum charge
that must be deposited by an alpha particle or a neutron strike to cause the circuit to
malfunction. Qcrit is usually computed using integrated circuit simulators. Once
Qcrit is computed for a specific circuit element, it must be mapped to an SER. There
are various models and methods, such as the Hazucha and Svensson model, the
BGR method, the NCS method, and Murley and Srinivasan model, which allow
one to map Qcrit to its corresponding FIT rate.

Different circuit elements have different levels of vulnerability to soft errors.
Latches and flip-flops are only vulnerable to a particle strike when they hold data
(as opposed to driving the data). This is commonly expressed as a TVF. Similarly,
many strikes in static logic gates are masked before they can reach a forward latch
where the error can get latched. The inherent nature of the pull-down network in
a dynamic logic circuit can mask many transient faults. Finally, clock circuits are
also vulnerable to transient faults, which can either move a clock edge or create a
new clock edge, eventually leading to a soft error. These effects must be taken into
account to compute the SER for a circuit element.

Soft error models for circuit elements must be validated using measurements.
Measurement of soft errors is a challenge because a typical soft error in an indi-
vidual bit may take hundreds of thousands of years to manifest. Hence, to mea-
sure the SER of a device or a circuit in a reasonable amount of time, the error
rate is usually measured over a large number of such bits or circuit elements.
Alternatively, accelerated tests with a higher alpha or neutron flux can be per-
formed to obtain errors faster. For field data collection, the luxury of increas-
ing the flux does not exist, so the measurements are done typically over a large
number of bits or parts. Even for accelerated tests, which use thorium foils for
alpha particles or particle accelerators for neutron measurements, the error rates
are measured over several bits or parts to ensure the results are statistically
significant.

Modeling and measurement expose vulnerable circuits in a design. These vul-
nerable circuits could be protected by architectural techniques as well as by device
and circuit techniques. Architectural techniques to protect against soft errors are
described in later chapters. Device-level protection techniques include triple-well
and SOI technologies. Triple-well transistors reduce the SER because their deep
n-well sweeps away some of the electrons generated from an alpha particle or a
neutron strike. SOI reduces the SER by reducing the SV (in the substrate) that is
vulnerable to particle strikes.

At the circuit level, there are two techniques to reduce the SER. The first one
is to add capacitance to vulnerable nodes in a circuit, thereby increasing its Qcrit.
The second method is to create a radiation-hardened cell. A radiation-hardened
cell usually uses extra transistors that restore the state of the original circuit in the
case of a particle strike.

76 CHAPTER 2 Device- and Circuit-Level Modeling, Measurement, and Mitigation

2.6 Historical Anecdote
Linear particle accelerators, such as the one available in the LANSCE, are used
routinely to test the vulnerability of silicon chips to neutron-induced soft errors.
One purpose of these accelerators is to accelerate a particle with sufficient energy
toward a nucleus, so that it can overcome the electrical repulsion of the nucleus
and thereby “crack” it open. For example, in LANSCE when an accelerated proton
beam hits a tungsten nucleon, the nucleon breaks open giving rise to neutrons of
various energies.

Work on linear particle accelerators started in the early 20th century. In the 1930s
in England, John Cockcroft and Ernest Walton started experimenting with accel-
erating protons down an 8-feet tube by building up a potential of 800 kV. This
was sufficient to disintegrate a lithium nucleus into two alpha particles. Greater
energy levels were, however, required to shatter other types of nucleons. Around
the same time, Robert Van de Graff developed the famous Van de Graff gener-
ator that could generate voltage difference as high as 1.5 MV. Maintaining such
high voltages proved to be difficult, so researchers started exploring the idea of
accelerating particles by using a lower voltage more than once. In Germany, Rolf
Wideroe invented exactly such a scheme. By extending Wideroe’s scheme, in the
United States, Ernest Lawrence and David Sloan managed to accelerate mercury
ions to energies of a million volts.

The linear accelerators developed thus far are impractical for particles lighter
than mercury ions, such as alpha particles. This is because several meters long vac-
uum tubes were required for lighter particles. Instead, Ernest Lawrence proposed
the use of a circular path in which particles—guided by magnetic and electric
fields—would accelerate as they spiral outward from the center to the edge of the
circle. Lawrence overcame several practical obstacles to finally create the device
called the cyclotron that could create million-volt projectiles out of light particles.
Since then, linear particle accelerators and cyclotrons have evolved in sophistica-
tion. Today, they can be several miles in length and can accelerate lighter particles
to energies of several hundred million volts.

References
[1] M. P. Baze and S. P. Buchner, “Attenuation of Single Event Induced Pulses in CMOS Combinational

Logic,” IEEE Transactions on Nuclear Science, Vol. 44, No. 6, pp. 2217–2223, December 1997.

[2] M. J. Bellido-Diaz, J. Juan-Chico, A. J. Acosta, M. Valencia, and J. L. Heurtas, “Logical Modeling
of Delay Degradation Effect in Static CMOS Gates,” IEE Proceedings Circuits, Devices, and Systems,
Vol. 147, No. 2, pp. 107–117, April 2000.

[3] T. Calin, M. Nicolaidis, and R. Velazco, “Upset Hardened Memory Design for Submicron CMOS
Technology,” IEEE Transactions on Nuclear Science, Vol. 43, No. 6, pp. 2874–2878, December
1996.

References 77

[4] E. H. Cannon, D. D. Reinhardt, M. S. Gordon, and P. S. Makowenskyj, “SRAM SER in 90, 130
and 180 nm Bulk and SOI Technologies,” in Reliability Physics Symposium Proceedings, 2004. 42nd
Annual. 2004 IEEE International, pp. 300–304, 25–29 April 2004.

[5] C. Constantinescu, “Neutron SER Characterization of Microprocessors,” in International Conference
on Dependable Systems and Networks (DSN), pp. 754–759, July 2005.

[6] L. B. Freeman, “Critical Charge Calculations for a Bipolar SRMA Array,” IBM Journal of Research
and Development, Vol. 40, No. 1, pp. 119–129, January 1996.

[7] B. S. Gill, C. Papachristou, F. G. Wolff, and N. Seifert, “Node Sensitivity Analysis for Soft Errors
in CMOS Logic,” in International Test Conference, paper 37.2, pp. 1–9, November 2005.

[8] P. Hazucha, T. Karnik, J. Maiz, S. Walstra, B. Bloechel, J. Tschanz, G. Dermer, S. Hareland,
P. Armstrong, and S. Borkar, “Neutron Soft Error Rate Measurements in a 90-nm CMOS Pro-
cess and Scaling Trends in SRAM from 0.25-μm to 90-nm Generation,” in IEDM ’03 Technical
Digest, IEEE International, pp. 21.5.1–21.5.4, 8–10 December, 2003.

[9] P. Hazucha, T. Karnik, S. Walstra, B. A. Bloechel, J. W. Tschanz, J. Maiz, K. Soumyanath,
G. E. Dermer, S. Narenda, V. De, and S. Borkar, “Measurements and Analysis of SER-Tolerant
Latch in a 90-nm Dual-VT CMOS Process,” IEEE Journal of Solid-State Circuits, Vol. 39, No. 9,
pp. 617–620, September 2004.

[10] P. Hazucha and C. Svensson, “Impact of CMOS Technology Scaling on the Atmospheric Neutron
Soft Error Rate,” IEEE Transactions on Nuclear Science, Vol. 47, No. 6, pp. 2586–2594, December
2000.

[11] P. Hazucha, C. Svensson, and S. A. Wender, “Cosmic-Ray Soft Error Rate Characterization
of a Standard 0.6-μm CMOS Process,” IEEE Journal of Solid-State Circuits, Vol. 35, No. 10,
pp. 1422–1429, October 2000.

[12] M. A. Horowitz, Timing Models for MOS Circuits, Technical Report SEL83-003, Integrated Circuits
Laboratory, Stanford University, 1983.

[13] JEDEC standard JESD89, Measurement and Reporting of Alpha Particles and Terrestrial Cosmic-Ray-
Induced Soft Errors in Semiconductor Devices, August 2001.

[14] T. Karnik, P. Hazucha, and J. Patel, “Characterization of Soft Errors Caused by Single Event
Upsets in CMOS Processes,” IEEE Transactions on Dependable and Secure Computing, Vol. 1, No. 2,
pp. 128–143, April–June 2004.

[15] T. Karnik, S. Vangal, V. Veeramachaneni, P. Hazucha, V. Errguntla, and S. Borkar, “Selective Node
Engineering for Chip-Level Soft Error Rate Improvement,” in 2002 Symposium on VLSI Circuits
Digest of Technical Papers, pp. 204–205, June 2002.

[16] P. Liden, P. Dahlgren, R. Johansson, and J. Karlsson, “On Latching Probability of Particle Induced
Transient in Combinatorial Networks,” in 24th Symposium on Fault-Tolerant Computing (FTCS),
pp. 340–349, June 1994.

[17] S. Mitra, N. Seifert, M. Zhang, Q. Shi, and K. S. Kim, “Robust System Design with Built-In Soft-
Error Resilience,” Vol. 38, No. 2, pp. 43–52, IEEE Computer, February 2005.

[18] K. Mohanram and N. A. Touba, “Cost-Effective Approach for Reducing Soft Error Failure Rate in
Logic Circuits,” in International Test Conference, Sep. 30–Oct. 2, 2003.

[19] P. C. Murley and G. R. Srinivasan, “Soft-Error Monte Carlo Modeling Program, SEMM,” IBM
Journal of Research and Development, Vol. 40, No. 1, pp. 109–118, January 1996.

[20] E. Normand, “Single Event Upset at Ground Level,” IEEE Transactions on Nuclear Science, Vol. 43,
No. 6, pp. 2742–2750, December 1996.

78 CHAPTER 2 Device- and Circuit-Level Modeling, Measurement, and Mitigation

[21] J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated Circuits, Prentice Hall, 2003.

[22] L. Rockett, “An SEU Hardened CMOS Data Latch Design,” IEEE Transactions on Nuclear Science,
Vol. NS-35, No. 6, pp. 1682–1687, December 1988.

[23] N. Seifert, P. Shipley, M. D. Pant, V. Ambrose, and B. Gill, “Radiation-Induced Clock Jitter and
Race,” in International Reliability Physics Symposium, pp. 215–222, April 2005.

[24] N. Seifert and N. Tam, “Timing Vulnerability Factors of Sequentials,” IEEE Transactions on Device
and Materials Reliability, Vol. 3, No. 4, pp. 516–522, September 2004.

[25] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi, “Modeling the Effect of Tech-
nology Trends on the Soft Error Rate of Combinatorial Logic,” in International Conference on Depend-
able Systems and Networks, pp. 389–398, June 2002.

[26] A. Taber and E. Normand, “Single Event Upset in Avionics,” IEEE Transactions on Nuclear Science,
Vol. 40, No. 2, pp. 120–126, April 1993.

[27] S. Yamamoto, K. Kokuryou, Y. Okada, J. Komori, E. Murakami, K. Kubota, N. Matsuoka, and
Y. Nagai, “Neutron-Induced Soft Error in Logic Devices Using Quasi-Monenergetic Neutron
Beam,” in 42nd Annual International Reliability Physics Symposium, Phoenix, pp. 305–309, April
2004.

[28] M. Zhang and N. R. Shanbhag, “A Soft Error Rate Analysis (SERA) Methodology,” in International
Conference on Computer Aided Design, pp. 111–118, November 2004.

[29] J. F. Ziegler and W. A. Lanford, “Effect of Cosmic Rays on Computer Memories,” Science, Vol. 206,
No. 4420, pp. 776–788, November 1979.

[30] J. F. Zielger and H. Puchner, SER—History, Trends and Challenges, Cypress Semiconductor
Corporation, 2004.

C H A P T E R3
Architectural
Vulnerability Analysis

3.1 Overview
Chapter 2 examined device- and circuit-level techniques to model soft errors. This
chapter discusses the concept of Architectural Vulnerability Factor (AVF) to model
soft errors at the architectural level. AVF is the fraction of faults that show up as
user-visible errors. The circuit- and device-level SERs need to be derated by the
AVF to obtain the observed SERs of silicon chips. The higher the AVF of a bit, the
higher is its vulnerability to cause soft errors. Hence, architects use AVFs to identify
candidates to add error protection schemes.

The basic question that underlies the AVF computation is whether a particle
strike on a bit matters. If a bit flip does not produce an incorrect output, then the
bit flip does not matter and fault is masked. The fraction of bit flips that affect the
final outcome of a program is captured by the bit’s AVF. AVF across bits in a silicon
chip can be as low as a few percent, which will reduce the intrinsic device- and
circuit-level SER by 100-fold. AVF of different structures can vary widely, which
makes AVF an important metric to identify structures that need protection.

This chapter discusses the basics of AVF analysis, its relationship to SDC and
DUE of a chip, Architecturally Correct Execution (ACE) principles, and how ACE
principles can be used to compute per-structure AVFs using Little’s law as well
as performance simulation models. Chapter 4 describes advanced techniques to
compute AVF of structures.

79

80 CHAPTER 3 Architectural Vulnerability Analysis

3.2 AVF Basics
As discussed in the previous two chapters, an alpha particle or a neutron strike can
induce a malfunction in a transistor’s operation. This malfunction can manifest
itself in a variety of ways, such as change in the output of a gate or a bit flip in
a latch or a memory cell. Not all these errors, however, manifest themselves as
user-visible errors. Consider the following instruction sequence:

1 R3 = R2 OR R1

2 R1 = R2 + R2.

(1) ORs the values of registers R1 and R2 and puts the result in register R3. If R2 = 1
and R1 = 0, then R3 = 1. Even if a particle strike on register R1’s least significant bit
changes the value of R1 to 1, R3 will still be 1. (2) immediately overwrites R1 and
hence an error in R1 will not manifest itself to the user.

There are a number of instances during the execution of a program where a
bit flip in a latch, a memory cell, or a logic gate gets masked and does not result
in a user-visible error. Chapter 2 discussed two examples of such masking: TVF
and logical masking. TVF captures the fraction of time a clocked storage element,
such as a latch, is vulnerable to an upset. Logical masking arises when a logic gate
logically masks a bit flip (e.g., if one input of an OR gate is one, then a strike on the
other input is logically masked).

In general, the intrinsic FIT rate of a transistor or a group of transistors needs
to be derated by a number of vulnerability factors that specify the probability that
an internal fault in a device’s operation will result in an externally visible error.
This chapter describes the concept of the AVF, which is central to the design of
architectural solutions to soft errors. AVF has also been called logic derating factor,
architectural derating factor, and soft error sensitivity.

AVF expresses the probability that a user-visible error will occur given a bit
flip in a storage cell [8]. For example, a bit flip in a branch predictor will never
show up as a user-visible error. Hence, the branch predictor’s AVF = 0%. In con-
trast, a bit flip in a committed program counter will almost invariably crash a
program. Hence, a program counter’s AVF is close to 100%. Computing the AVF
of other microarchitectural structures, such as an instruction queue or processor
cache, is more involved because the value stored in a bit in such a structure may
sometimes be required to be correct for ACE and at other times the value may
not matter for correct execution. The AVF of such structures can vary anywhere
from 0% to 100%. Consequently, AVFs can significantly change the overall FIT
rate of a chip. This chapter discusses how to compute the AVF of such complex
structures.

Implicit in the definition of AVF is the concept of “scope” as explained in
Chapter 1 (Figure 1.3). A bit flip can get masked in an inner microarchitectural
scope (e.g., bit flip in branch predictor bits) or in an inner architectural scope

3.3 Does a Bit Matter? 81

(e.g., bit flip in architectural register that is overwritten before being read) or may
not matter to the user, even if it is visible (e.g., bit flip causing a pixel on the
screen to change color for a fraction of a second). Discussions on AVF in this book
exclude the last case because that is subjective to the user and hard to quantify.
One could conceptually define a new vulnerability factor—perhaps called the per-
ceptual vulnerability factor—that takes into account whether such bit flips will
matter to the user or not. As may be obvious by now, the term “user visible”
here refers to the scope where the error is observed and corresponding AVF is
computed.

3.3 Does a Bit Matter?
As may be apparent by now, the SER and AVF are properties of a bit in a chip
and not of a program itself. That is, we cannot talk about a program’s AVF, but we
can talk about a bit’s SER or AVF. To compute the AVF of a bit, one can pose the
following question: Does the bit matter? More specifically, does the value of the bit
in a specific cycle affect the final output of a program? If the bit in a particular cycle
has no effect on the correct execution of a program, then the bit in the specified cycle
can be flipped by a particle strike without disrupting the program. These concepts
are formalized in the next section.

Figure 3.1 shows a flowchart from when a bit gets struck to when one needs to
decide whether a bit matters or not. If the faulty bit is not read, then it cannot cause

bit has
error protection?

faulty bit is
read?

benign fault;
no error

no yes

benign fault;
no error

fault corrected;
no error

no
detection

only

detection &
 correction

no yes

SDC false DUE true DUE

noyes

affects program
outcome?

4

1

5 6

affects program
outcome?

3

2

FIGURE 3.1 Classification of the possible outcomes of a faulty bit in a micro-
processor (same as Figure 1.16 on p. 33). Reprinted with permission from
Weaver et al. [15]. Copyright © 2004 IEEE.

82 CHAPTER 3 Architectural Vulnerability Analysis

an error and therefore is a benign fault (case 1 in Figure 3.1). However, if the faulty
bit is read, then one needs to ask whether the bit has error protection. If the bit has
error detection and correction (e.g., like ECC), then the fault is corrected, causing
no user-visible error (case 2). If the bit has no error protection—that is, neither error
detection nor correction—then one needs to ask whether the bit flip affected the
program outcome. If the answer is no, then the bit does not matter and that leads
to case 3. However, if the bit flip does affect the program outcome, then it causes
what is known as an SDC event (case 4). Now, if the bit only has error detection
(e.g., parity bit without the ability to recover from an error), then it prevents data
corruption but can still cause the program to crash. Then, irrespective of whether
the bit matters or not, the program usually will be halted and crashed as soon as
the error is detected. Such error detection events, typically visible to the user, are
called DUE. If an error is declared to be a DUE, then it means that it can under no
circumstances cause an SDC. Thus, the definition of DUE has the implicit notion
of a fail-stop system.

Figure 3.1 shows that DUE events can be further broken down into false and
true DUE events. False DUE events (case 5) are those DUE that could have
been avoided if there was no error detection mechanism to begin with. For
example, certain bits of a wrong-path instruction may not cause an error. In
the absence of an error detection mechanism, a flip in such a bit would have
gone unnoticed and would not have created any user-visible error. However,
because the error detection mechanism detects the error and possibly reports
it, the program or the system may be unnecessarily brought down. A bit flip
that matters and is detected by the system is a true DUE event (case 6). As
may be obvious by now, protecting a bit with an error detection mechanism
moves category 3 to 5 and 4 to 6. This is explored in greater detail in the next
section.

The discussion in the rest of this chapter assumes a single-bit fault model. The
concepts, however, apply directly to spatial multibit faults. Multibit faults manifest
themselves as either spatial faults or temporal faults. Spatial faults are those in
which a single alpha or neutron strike upsets multiple contiguous bits. Temporal
multibit faults are a function of the error detection code and occur when the number
of independent strikes to the protected bits overwhelms the coding scheme. For
spatial multibit faults, one can treat each bit independently and hence compute
its vulnerability. Analyzing the vulnerability for temporal multibit faults is a little
more involved. Both the definition and the analysis of temporal multibit faults are
discussed in Chapter 5 (see Scrubbing Analysis, p. 190).

3.4 SDC and DUE Equations
This section examines how to compute per-bit, per-structure, and chip-level SDC
and DUE FITs and their relationships to the corresponding AVFs.

3.4 SDC and DUE Equations 83

3.4.1 Bit-Level SDC and DUE FIT Equations
Mathematically, one can express and SDC FIT rate of a storage cell as follows:

SDC FIT = SDC AVF × TVF × intrinsic FIT

The intrinsic FIT rate of a cell is its device-level SER and includes any extra derating,
such as the ones that may be necessary for a dynamic cell (see Masking Effects in
Dynamic Logic, p. 57). The SDC AVF is often referred to simply as the AVF.

Similarly, the DUE FIT of a bit can be expressed as

DUE FIT = DUE AVF × TVF × intrinsic FIT

Thus, as stated in the last section, the device-level error rate (TVF×intrinsic FIT)
must be multiplied or derated by the AVF to get the effective FIT rate of the bit.

The above equations explain why AVF forms the foundation of architectural
solutions to soft errors. If one protects a bit with an error detection scheme, such as
parity, then one can mark its SDC AVF = 0. Consequently, the SDC FIT of the bit is
zero. Similarly, if one protects the bit with an error correction scheme, such as ECC,
then its DUE AVF = 0, which makes its DUE FIT ∼= 0. There are yet other schemes
that will reduce the AVF somewhat but not to zero. Also, as will be seen soon, the
DUE AVF is a function of the error detection scheme, whereas the SDC AVF is not.

The above equations only express the SDC and DUE FIT of a storage cell, such as
a latch or a memory cell, but not that of logic gates. As explained in Chapter 2 (see
Masking Effects in Combinatorial Logic Gates, p. 52), most faults in logic gates get
masked. One way to capture the effect of faults in gates is to increase the intrinsic
FIT rate of the forward latch by the FIT contribution of the logic gates feeding the
latch. Thus, the intrinsic FIT may have two contributions—one from faults due to
direct particle strikes and the other from logic gate faults that propagated to the
forward latch. In both cases, the AVF remains the same.

AVF plays an important role in deciding whether an error protection scheme is
necessary. A conservative estimate of AVF (e.g., 100%) will unnecessarily overpro-
tect the chip and devote precious silicon resources that could otherwise be used to
improve the performance or add other features. In contrast, not adding sufficient
protection will leave the chip with a level of unreliability that the market would
not like. Hence, it is critical to accurately compute the AVF of various bits in the
processor and chipsets.

■ E X A M P L E

What is the SDC FIT of a bit with an AVF of 15% and FIT/bit of 0.001?

S O L U T I O N The SDC FIT = 0.15 × 0.001 = 150 microFIT.

84 CHAPTER 3 Architectural Vulnerability Analysis

3.4.2 Chip-Level SDC and DUE FIT Equations
To compute the chip-level FIT, one can sum the SDC and DUE FIT rates of all
devices in the chip. That is,

SDC FIT of chip =
∑

i over all storage cells

SDC FIT of celli

DUE FIT of chip =
∑

i over all storage cells

DUE FIT of celli

These summations work if one assumes that the SERs follow the exponential failure
law (see Dependability Models, p. 11), which is true in general for soft errors.

■ E X A M P L E

What is the SDC FIT of a chip with 10 million SRAM cells and 1 million latches?
Assume that the FIT rate of logic elements is negligible, intrinsic FIT rates of
an SRAM cell and a latch are both 1 milliFIT/bit. Assume that the AVF is 30%
for SRAM cells and 20% for latches. Also, assume that the TVF of SRAM cells
and latches is 100% and 50%, respectively.

S O L U T I O N The total SDC FIT = 10 000 000 × 0.3 × 1 × 0.001 + 1 000 000 × 0.2 ×
0.5 × 0.001 = 3100 FIT. This is equivalent to an SDC event every 37 years.

■ E X A M P L E

A system manufacturer deemed that 37 years of SDC MTTF is too high for
a 1000-system cluster being built. Such a 1000-system cluster would have an
aggregate SDC MTTF of roughly 2 weeks. The chip manufacturer agreed to
protect 90% of the SRAM cells and latches with parity bits. What will be the
resulting SDC and DUE FIT rates? Assume that DUE AVFs of parity-protected
SRAM cells and latches are 30% and 20%, respectively. Also, assume that the
chip manufacturer adds one bit of parity for every 10 storage cells.

S O L U T I O N The per-system SDC FIT = (1−0.9) × 3100 FIT = 310 FIT (or about
368 years). The aggregate SDC FIT rate of the 1000-processor cluster would
be 4.4 months. The per-system DUE FIT = 0.9 × 1.1 × (10 000 000 × 0.3 × 1 ×
0.001 + 1 000 000 × 0.2 × 0.5 × 0.001) = 3069 FIT (or about 37 years). The 1.1
multiplier arises from the extra bits of parity one needs to add. The aggregate
1000-processor system would now have a DUE MTTF of roughly 2 weeks. This
may be acceptable to the system manufacturer because data integrity was more
critical than system uptime.

3.4 SDC and DUE Equations 85

To compute the chip-level SDC and DUE FIT rates, intrinsic FIT/bit rates
and per-bit AVF numbers are required. Computing these numbers on a per-
bit basis can, however, be cumbersome given that there are hundreds of mil-
lions of cells in a modern microprocessor and chipset. Fortunately, for most
structures, such as a cache or an instruction queue, the FIT/bit of the basic
storage cell used to create the structure is roughly the same. The per-bit AVF
and TVF may vary widely, but one can create average AVFs and TVFs across
all bits in a structure. The FIT/structure is computed as the sum of FIT/bit
over all its bits. Hence, the per-structure SDC FIT can be approximated as aver-
age AVFstructure × average TVFstructure × FIT/structure. Similarly, per-structure
DUE FIT ∼= average DUE AVFstructure × average TVFstructure × FIT/structure.
Then, one can express the SDC and DUE FIT equations as:

SDC FIT of chip =
∑

i over all structures on the chip

SDC FIT of structurei

DUE FIT of chip =
∑

i over all structures on the chip

DUE FIT of structurei

The above notion of computing an average AVF for a structure can also be
extended to the entire chip so that one could compute an average per-bit SDC
and DUE AVF across the chip. This can easily give the chip-level SDC and
DUE FIT rates. But the chip-level AVF may not be as useful in determining
the structures that are more vulnerable to soft errors and therefore may need
enhanced protection.

The AVF also varies by benchmarks, so one could enumerate the SDC and
DUE FIT of a chip for each benchmark. Fortunately, however,AVF is a separable
term because the circuit-level FIT (TVF and intrinsic FIT) is mostly independent
of the benchmark and AVF. Hence, one can talk about average SDC FIT and
average per-structure AVFs across benchmarks. For example, if a hypothetical
chip consists of two structures, A and B, and one estimates the SDC FIT and
AVFs for benchmarks b1 and b2, then one can express SDC FIT as

SDC FITb1 = SDC AVFA,b1 × Circuit FITA + SDC AVFB,b1 × Circuit FITB

SDC FITb2 = SDC AVFA,b2 × Circuit FITA + SDC AVFB,b2 × Circuit FITB

Hence,

Avg SDC FIT = Avg SDC AVFA × Circuit FITA + Avg SDC AVFB × Circuit FITB

where Circuit FIT = TVF × intrinsic FIT, Avg = Average, Avg SDC FIT =
(SDC FITb1 + SDCFITb2)/2,AvgSDCAVFA = (SDCAVFA,b1 + SDCAVFA,b2)/2,
and Avg SDC AVFB = (SDC AVFB,b1 + SDC AVFB,b2)/2.

86 CHAPTER 3 Architectural Vulnerability Analysis

3.4.3 False DUE AVF
As Figure 3.1 shows, false DUE events arise when the occurrence of an error is
reported incorrectly (since the error would have been masked in the absence of an
error detection mechanism). This can happen, for example, if one incorrectly flags
an error in the non-opcode bits of a wrong-path instruction in a microprocessor.
Then, mathematically, one can express the per-bit total DUE AVF as

DUE AVF = true DUE AVF + false DUE AVF

The true DUE AVF can be expressed as

true DUE AVF for a bit (with error detection) = SDC AVF for the same bit

(prior to adding error detection)

In other words, adding error detection converts the original SDC AVF to true
DUE AVF.

Thus, adding an error detection mechanism has two effects. First, it introduces
the false DUE AVF component. Second, it also adds extra bits, which can be vul-
nerable to strikes. For example, errors in the parity bits are false DUE events.

■ E X A M P L E

One vendor is interested in the total SER and expresses it as the sum of SDC
and DUE FIT. The SDC FIT for the chip before adding parity is 3100 and 0 FIT,
respectively. After adding parity to 90% of the storage cells, the SDC and DUE
FIT are 310 and 3069 FIT, respectively. Compute the total SER FIT before and
after adding the parity bits.

S O L U T I O N Before adding parity, the per-system SDC and DUE FIT were
3100 and 0 FIT, respectively. The total SER FIT was 3100 FIT. The introduction
of parity resulted in the SDC and DUE FIT rates of 310 and 3069 FIT, respec-
tively. Hence, the total per-system SER FIT with parity is 3379 FIT. Interestingly,
adding parity to 90% of the storage cells decreased the SDC FIT by 90% but
increased the overall SER by 9%. For applications that care more about data
integrity, rather than system uptime, this is often a reasonable compromise.

The true DUE AVF is independent of the specific error detection mecha-
nism. But the false DUE AVF is a function of the error detection mechanism
introduced. The false DUE AVF can be negligible for some structures and detec-
tion schemes but can be as high as 10 times that of the true DUE AVF in yet
other ones. The next section examines how cycle-by-cycle Lockstepping can
significantly enhance the false DUE rate.

3.4 SDC and DUE Equations 87

3.4.4 Case Study: False DUE from Lockstepped
Checkers

Lockstepping is a well-established technique that can detect faults in micropro-
cessors and in full systems. Figure 3.2 shows an example of two Lockstepped
processors. Each processor’s state is initialized in exactly the same way, and both
processors run identical copies of the program. In each cycle, signals from Proces-
sor0 and Processor1 are compared at the output comparator to check for faults.
When the output comparator detects a mismatch, it triggers appropriate actions,
such as halting the processors and forcing a reboot or triggering hardware or soft-
ware recovery actions. To ensure that both Processor0 and Processor1 execute iden-
tical paths of the program they are executing, the inputs to both processors must
also be appropriately replicated. In this example, the memory and/or disk are not
protected with Lockstepping and hence alternate mechanisms, such as error codes,
may be necessary to protect them from errors.

Lockstepping by itself is purely a fault detection mechanism. It can reduce the
SDC FIT to almost zero for components it is covering—Processor0 and Processor1,
for example, in Figure 3.2. However, in the absence of any recovery mechanism,

Processor0 Processor1

Output
Comparator

Input
Replicator

Memory & Disks

{checker
components

FIGURE 3.2 Lockstepped CPUs. The output comparator and input replicator
are components of the Lockstep checker.

88 CHAPTER 3 Architectural Vulnerability Analysis

Lockstepping can significantly increase the false DUE. This will be illustrated using
a branch predictor, which in the absence of Lockstepping has an SDC AVF of zero.
For more details about branch predictors, please see Hennessy and Patterson [6].

A fault in a branch predictor usually does not cause incorrect execution. Branch
predictors are commonly used by pipelined processors to predict the direction and
target of a branch instruction before the branch is executed (usually much later)
in the pipeline. The processor continues fetching instructions based on this pre-
diction. When the branch eventually executes and produces the correct branch
direction and target, the processor ensures that the original prediction was indeed
correct. If the prediction was incorrect, then the processor throws away the exe-
cuted (but uncommitted) state and restarts execution from the target of the branch.
Hence, a fault in the branch predictor can only lead to a misdirection that may
affect the performance only slightly (for most microarchitectures) but will not
affect the correct execution of the processor. Hence, a branch predictor’s SDC AVF
is zero.

In a Lockstepped system, a fault in a branch predictor may cause the two Lock-
stepped processors to produce the same output in different cycles. Assume that
Processor0 encounters a branch that is mispredicted due to a particle strike in its
branch predictor, whereas the same branch in Processor1 is predicted correctly.
This causes a timing mismatch in the two processors, causing them to commit
the branch instructions in different cycles. In many cases, this may even throw
the two processors to go down two different, but correct, paths of the same pro-
gram they are running. Executions on both processors are correct, but the Lock-
stepped checker signals an error because of the mismatch. This is a false DUE
event.

■ E X A M P L E

What is the false DUE rate arising from the branch predictors in a pair of
Lockstepped processors? Assume that the branch predictor has 100 000 bits, an
average false DUE AVF of 10%, and 1 millFIT/bit as the intrinsic FIT/bit.

S O L U T I O N The total false DUE FIT contribution of the two branch
predictors = 2 × 100 000 × 0.1 × 0.001 = 20 FIT.

■ E X A M P L E

Assume that each of the Lockstepped processors has an ECC-protected write-
back data cache of 8 megabytes. ECC corrects the errors in the data cache.
Assume 8 bits of ECC per 64 bits of data (or, 1 bit of code per 8 bits of data).
Ignore the data cache tags for this example. Also, assume if an error is detected
by the ECC code, then the processor takes an extra cycle to correct it (often called

3.4 SDC and DUE Equations 89

out-of-band correction). If this mode cannot be changed or turned off,1 what
is the false DUE rate from the data cache in a Lockstepped system? Assume
that the data cache had an original SDC DUE AVF of 10% and FIT/bit of
1 milliFIT.

S O L U T I O N Every time an error is detected and corrected by the ECC code,
the processors can go out of Lockstep mode. The potential false DUE rate = 2 ×
223 × (8 + 1) × 0.1 × 0.001 ∼= 16 100 FIT (∼7.6 years of MTTF) just from the
8 megabyte cache.

As the two examples above show, false DUE AVF contributions from struc-
tures that would otherwise not cause an SDC or a DUE in the absence of
Lockstepping may actually end up contributing significantly to the false DUE
FIT rate of Lockstepped processors. Chapter 7 discusses recovery mechanisms
that help reduce the false DUE AVF.

3.4.5 Process-Kill versus System-Kill DUE AVF
Until now, it was assumed that on a DUE event, the entire system goes down.
Fortunately, this is not always the case. If the OS can determine that the hardware
error is isolated to a specific process, then it only needs to kill the user process
experiencing the error, but the system can continue operating. For example, if the
hardware detects a parity error on an architectural register file and reports it back
to the OS, then the OS can kill the current user process and continue normal opera-
tion. Such DUE events are called process-kill DUE events. Of course, if the current
process experiencing the error happens to be a kernel process, then the OS may
not have any choice but to crash the machine. The latter is called system-kill DUE
events.

■ E X A M P L E

A system manufacturer determines that OS hooks can be included to avoid
crashing of the system in certain instances when an error is detected. A total
DUE FIT of 100 FIT was anticipated. It also determined that in about 40% of the
cases, it can kill the process experiencing the error. OS kernel processes were
expected to be running 20% of the time. What is the process- and system-kill
DUE FIT rate of the system?

S O L U T I O N Total process-kill DUE FIT = 0.8 × 0.4 × 100 = 32 FIT. Total
system-kill DUE FIT = 100 − 32 = 68 FIT.

1See Chapter 5.

90 CHAPTER 3 Architectural Vulnerability Analysis

3.5 ACE Principles
As illustrated in the previous sections of this chapter, AVF answers the question
whether a bit matters to the final outcome of a program. The concept of ACE
formalizes this notion. Let us assume that a program runs for 10 billion cycles
through a microprocessor chip. Out of these 10 billion cycles, let us assume that
a particular bit in the chip is only required to be correct 1 billion of those cycles.
In the other 9 billion cycles, it does not matter what the value of that bit is for the
program to execute correctly. Then, the AVF of the bit is 1/10 = 10%. The bit is an
ACE bit—required for ACE—for 1 billion cycles. For the rest of the cycles, the value
of the bit is unnecessary for ACE and therefore termed un-ACE.

3.5.1 Types of ACE and Un-ACE Bits
Broadly, there are two types of ACE (or un-ACE) bits in a machine: microarchitec-
tural and architectural. Microarchitectural ACE bits are those that are not visible
to a programmer but can still affect the final outcome of a program. Some microar-
chitectural bits, such as the branch predictor and replacement policy bits, are often
inherently un-ACE. Other microarchitectural bits, such as those in the pointer for
an instruction queue, may be ACE part of the time when it ends up pointing to
incorrect entries in the queue.

Architectural ACE bits are those that are visible to a programmer. A faulty value
in one of these bits would directly affect the user-visible state. To understand how
to identify architectural ACE or un-ACE bits, let us examine the dynamic dataflow
graph of a program. A program’s dynamic dataflow graph shows how data are
consumed and generated according to the instructions of a program as the instruc-
tions execute. The graph begins with one or more program inputs and ends with
the production of one or more program outputs, possibly observable by a user
(see Figure 3.3). For the program to produce the correct output, the path from the
input to the output must be executed correctly. This is the ACE path. Instructions
on the ACE path are denoted using ACE cards in Figure 3.3. Dynamically executed
instructions that do not contribute to the final outcome of the program are not
required to produce the correct output.

The path with the “king” card in Figure 3.3 is an example of an architectural
un-ACE path in the program because this path does not affect whether the program
would have executed correctly. As will be seen later, certain bits (e.g., opcode bits)
in an un-ACE instruction could still be ACE because a strike on such bits may cause
the program to take an incorrect path. However, for simplicity of expression (but
not for AVF calculation), the instruction is called un-ACE.

The notion of architectural ACE-ness is transitive. If an ACE store instruction
stores a byte into memory, then at least one bit of that byte is ACE. For simplicity of
analysis, the whole byte is often conservatively assumed to be ACE. The ACE byte
may be transferred between various levels of the memory hierarchy, but it needs

3.5 ACE Principles 91

Program Input

Program Output
Program Output

un-ACE instruction

FIGURE 3.3 Architectural ACE versus un-ACE paths in the dynamic dataflow
graph of a program. The un-ACE instruction does not affect the final output
of a program. The ACE instructions are marked with ACE cards.

to be correct throughout its “journey” through the computer system. Otherwise,
by definition, it will result in an SDC event. When a load instruction loads such an
ACE byte memory, the load instruction itself becomes ACE. Such notion of ACE-
ness can be applied to other objects, such as instruction chunks in the front end of
the pipeline or cache blocks moving between processor caches and main memory.

Based on the above definition of ACE and un-ACE objects, it is easy to define
whether a bit contains ACE state or not. A bit is in ACE state when ACE values from
an object reside in that bit. The fraction of cycles ACE values reside in a bit is its
AVF. Hence, a particle strike causing a bit flip during the cycles the bit contains ACE
state will cause an SDC event (in the absence of any error detection or correction
mechanism). Later in this chapter, three techniques to compute the AVF using such
ACE principles are examined.

3.5.2 Point-of-Strike Model versus Propagated
Fault Model

The definition of anACE state has a subtlety with respect to where the particle strike
occurred. One must distinguish between whether a storage bit was struck directly

92 CHAPTER 3 Architectural Vulnerability Analysis

by a particle causing a fault (point-of-strike fault) or whether the fault propagated
to the bit after it struck a different storage bit (propagated fault). ACE-ness and
AVF of a bit are strictly defined for the bit that got struck and hence are based on
the point-of-strike model.

It is critical to distinguish between the point-of-strike and propagated fault
model when computing the AVF of structures. Otherwise, one may double count
the same fault. For example, assume that a system has two structures, A and B,
with the same intrinsic FIT/structure of 20 FIT. Assume that 50% of the faults in
A propagate to B. That is, one computes A’s AVF to be 10%. This does not, how-
ever, mean that B’s AVF is 50% of 10%, which is 5%. Instead, B’s AVF must also be
computed using the point-of-strike fault model (let us assume it to be 20%). Then,
the total FIT rate of A and B is (10% + 20%) × 20 FIT = 6 FIT.

Later in this chapter, two techniques that use variations of these themes to
compute the AVF are described. The first one directly uses a point-of-strike fault
model to compute the AVF (see ACE Analysis Using the Point-of-Strike Fault
Model, p. 106). The second one uses the propagated fault model to indirectly
derive the AVF (see ACE Analysis Using the Propagated Fault Model, p. 114).
In the second technique, the definition of the AVF is still based on the point-of-
strike model (as it should be), but the calculations are based on a propagated fault
model.

■ E X A M P L E

A microprocessor designer is faced with the question about which of the
following two structures is more important to protect: a cache controller state
table or a processor retire buffer. The designer finds that the AVF and intrin-
sic FIT for both structures is the same. Nevertheless, the designer argues
that all instructions must pass through the instruction retire buffer, whereas
only a subset of instructions—specifically load and stores—access the cache
controller state table. Hence, the designer concludes that it is much more criti-
cal to protect the instruction retire buffer than the cache controller table. Is this
observation correct?

S O L U T I O N The observation is incorrect. This is because the designer is mix-
ing the point-of-strike and propagated fault models. The point-of-strike fault
model shows that the FIT rates of both structures is same and hence protecting
both structures is equally important. If faults propagate to the retire buffer, then
FIT rate contribution of those faults must be ascribed to the structure where
the fault originated (i.e., using the point-of-strike model) and not to the retire
buffer. Protecting the retire buffer may not help if the fault has already occurred
in the instruction entering the retire buffer.

As was discussed earlier in this section, the sources of ACE and un-ACE bits
are divided into two general categories: microarchitectural and architectural.

3.6 Microarchitectural Un-ACE Bits 93

The sources of microarchitectural and architectural un-ACE bits are discussed
in the next two sections. How to use such categorization to compute the AVF
is discussed later.

3.6 Microarchitectural Un-ACE Bits
Microarchitectural un-ACE bits are those that cannot influence committed architec-
tural state. Microarchitectural un-ACE bits can arise from the following scenarios:

3.6.1 Idle or Invalid State
There are a number of instances in a microarchitecture of a microprocessor or a
chipset when a data or a status bit is idle or does not contain any valid information.
Such data and status bits are un-ACE bits. Control bits are, however, often conser-
vatively assumed to be ACE bits because a strike on a control bit may cause idle
state to be treated as nonidle state.

3.6.2 Misspeculated State
Modern microprocessors often perform speculative operations that may later be
found to be incorrect. Examples of such operations are speculative execution
following a branch prediction or speculative memory disambiguation. The bits
that represent incorrectly speculated operations are un-ACE bits.

3.6.3 Predictor Structures
Modern microprocessors have many predictor structures, such as branch predic-
tors, jump predictors, return stack predictors, and store-load dependence pre-
dictors. A fault in such a structure may result in a misprediction and will affect
performance but will not affect correct execution. Consequently, all such predic-
tor structures contain only un-ACE bits. An example of a predictor structure in
the chipsets is the least recently used (LRU)–state bits that predict the block to be
evicted next in a cache. A strike on such an LRU-state bit will cause the processor
or chipset to evict a different cache block but may not affect correct execution.

3.6.4 Ex-ACE State
ACE bits become un-ACE bits after their last use. In other words, the bits are
dead. This category encompasses both architecturally dead values, such as those

94 CHAPTER 3 Architectural Vulnerability Analysis

in registers, and an architecturally invisible state. For example, after a dynamic
instance of an instruction is issued for the last time from an instruction queue, it
may still persist in a valid state in the instruction queue, waiting until the processor
knows that no further reissue will be needed, but a fault in that instruction will not
have any effect on the output of a program.

3.7 Architectural Un-ACE Bits
Architectural un-ACE bits are those that affect correct-path instruction execution
and committed architectural state but only in ways that do not change the output of
the system. For example, a strike on a storage cell carrying the operand specifier of a
NOP instruction will not affect a program’s computation. The bits of an instruction
that are not necessary for an ACE path are un-ACE instruction bits. Sources of
architectural un-ACE bits in processors and chipsets are identified below:

3.7.1 NOP Instructions
Most instruction sets have NOP instructions that do not affect the architectural
state of the processor. Fahs et al. [3] found 10% NOPs in the dynamic instruction
stream of a SPEC2000 integer benchmark suite compiled with the Alpha instruction
set. On the Intel� Itanium� processor, Choi et al. [4] observed 27% retired NOPs
in SPEC2000 integer benchmarks. These instructions are introduced for a variety
of reasons, such as to align instructions to address boundaries or to fill very long
instruction word (VLIW)–style instruction templates. The only ACE bits in a NOP
instruction are those that distinguish the instruction from a non-NOP instruction.
Depending on the instruction set, this may be the opcode or the destination register
specifier. The remaining bits are un-ACE bits.

3.7.2 Performance-Enhancing Operations
Most modern processors and chipsets include performance-enhancing instructions
and operations. For example, a nonbinding prefetch operation brings data into the
cache to reduce the latency of later loads or stores. Asingle-bit upset in a nonopcode
field of such a prefetch instruction issued by the processor or prefetch operation
issued by a chipset cache may not affect the correct execution of a program. A fault
may cause the wrong data to get prefetched or may cause the address to become
invalid, in which case the prefetch may be ignored, but the program semantics
will not change. Thus, the nonopcode bits are un-ACE bits. Fahs et al. [3] reported
that 0.3% of the dynamic Alpha processor instructions in SPEC2000 integer suite
were prefetch instructions. The Itanium�2 architecture has other performance-
enhancing instructions, such as the branch prediction hint instruction.

3.7 Architectural Un-ACE Bits 95

3.7.3 Predicated False Instructions
Predicated instruction-set architectures, such as IA64, allow instruction execution
to be qualified based on a predicate register. If the predicate register is true, the
instruction will be committed. If the predicate register is false, the instruction’s
result will be discarded. All bits except the predicate register specifier bits in a
predicated false instruction are un-ACE bits. A corruption of the predicate register
specifier bits may erroneously cause the instruction to be predicated true. Hence,
those bits are often conservatively referred to as ACE instruction bits. However, if
the instruction itself is dynamically dead (see below) and the predicate register is
overwritten before any other intervening use, then the predicate register and the
corresponding specifier can be considered un-ACE bits. Mukherjee et al. [10] found
about 7% of dynamic instructions to be predicated false.

3.7.4 Dynamically Dead Instructions
Dynamically dead instructions are those whose results are not used. Instructions
whose results are simply not read by any other instructions are termed first-level
dynamically dead (FDD). Transitively dynamically dead (TDD) instructions are
those whose results are used only by FDD instructions or other TDD instructions.
An instruction with multiple destination registers is dynamically dead only if all
its destination registers are unused.

FDD and TDD instructions need to be tracked through both registers and mem-
ory. For example, if two instructions Aand B successively write the same register R1
without any intervening read of register R1, then A is an FDD instruction tracked
via register R1. Similarly, if two store instructions C and D write the same memory
address M without any intervening load to M, then C is an FDD instruction tracked
via memory address M.

Using theAlpha instruction set running the SPEC2000 integer benchmarks, Butts
and Sohi [2] reported that about 9% FDD and 3% TDD instructions tracked only via
registers. In contrast, Fahs et al. [3] found that about 14% FDD and TDD instructions
tracked via both registers and memory in their evaluation of SPEC2000 integer
benchmarks running on an Alpha instruction set architecture (ISA). Evaluation
of Mukherjee et al. [10] with IA64 across portions of 18 SPEC2000 benchmarks
shows that about 12% FDD and 8% TDD instructions tracked via both registers and
memory. Their analysis assumes that memory results produced by FDD and TDD
instructions are not used by other I/O devices. Their numbers for dynamically dead
instructions are higher than earlier evaluations most likely because of aggressive
compiler optimizations, which have been shown to increase the fraction of dead
instructions [2].

In general, one needs to count all the opcode and destination register specifier
bits of FDD and TDD instructions as ACE bits; all other instruction bits can be
un-ACE bits. If the opcode bits get corrupted, then the machine may crash when

96 CHAPTER 3 Architectural Vulnerability Analysis

evaluating those bits. If the destination register specifier bits get corrupted, then
an FDD or a TDD instruction may corrupt a nondead architectural register, which
could affect the final outcome of a program. This accounting is conservative, as it is
likely that some fraction of bit upsets in the opcode or destination register specifier
would not lead to incorrect program output.

3.7.5 Logical Masking
There are many bits that belong to operands in a chain of computation whose values
still do not influence the computation results. Such bits are said to be logically
masked. For example, consider the following code sequence:

1 R2 = R3 OR 0x00FF

2 R4 = R2 OR 0xFF00

3 R3 = 0

4 R2 = 0

5 output R4.

In this case, the lower 16 bits of R4 will be 0xFFFF regardless of the values of
R2 and R3. When the value of a bit in an operand does not influence the result
of the operation, the phenomenon is called logical masking. In our example, bits
0 to 7 (the low-order bits) of R3 are logically masked in instruction (1), and bits
8 to 15 of R2 are masked in instruction (2). One could identify additional un-ACE
bits by considering transitive logical masking, where the effects of logical masking
are propagated backward transitively. For a bit in a register to be logically masked
(and thus be un-ACE), it must be logically masked for all its uses. In the above code
sequence, bits 8 to 15 of R3 contribute only to bits 8 to 15 of R2, since R3 is set to zero
and the value of R3 used in instruction (1) is not used anywhere else. Because bits
8 to 15 of R2 are logically masked in instruction (2), via transitive logical masking,
bits 8 to 15 of R3 can be considered masked as well.

Logical masking can also arise from compare instructions prior to branches
(where the bit may matter only if the value is zero or nonzero but not necessarily
every value), bitwise logical operations, and 32-bit operations in a 64-bit architec-
ture (where it is assumed that the upper 32 bits are un-ACE, which may not be
true for certain ISAs, such as the Alpha ISA). Typically, all logically masked bits are
un-ACE bits and can be factored out of the AVF calculation.

3.8 AVF Equations for a Hardware Structure
Using the classification of ACE and un-ACE bits and assuming the point-of-strike
fault model, one can compute the AVF of a hardware structure. As discussed earlier,

3.8 AVF Equations for a Hardware Structure 97

the AVF of a storage cell is the fraction of time an upset in that cell will cause a
visible error in the final output of a program. Thus, the AVF (i.e., SDC AVF) for an
unprotected storage cell is the percentage of time the cell contains an ACE bit. For
example, if a storage cell contains ACE bits for a billion cycles out of an execution
of 10 billion cycles, then the AVF for that cell is 10%.

Although the AVF equations were defined with respect to a storage cell, the AVF
is typically computed for an entire hardware structure. The AVF for a hardware
structure is simply the average AVF for all the bits in that structure, assuming that
all the bits in that structure have the same circuit composition and hence the same
raw FIT rate. Then, the AVF of a hardware structure with N bits is equal to

AVFstructure =

N∑
i=0

(bitwise AVF)i

N

which can be rewritten as

AVFstructure =

N∑
i=0

(
Cycles bit i is in ACE state

Cycles over which state is observed

)
i

N
=

N∑
i=0

(
ACE cycles for bit i

Total cycles

)
i

N

where the cycles bit i in ACE state is denoted as ACE cycles and cycles over which
state is observed for all bits as total cycles. Again, rewriting

AVFstructure =

N∑
i=0

ACE cyclesi

N × total cycles

It will be seen that this equation is very useful to compute the AVF of a structure
using a performance simulator. This equation can also be rewritten as

AVFstructure =

N∑
i=0

ACE cyclesi

Total cycles

N
=

Average number of ACE bits in a structure in a cycle
Total number of bits in a structure

The next section shows that this form of the equation can be useful to gain an in-
depth understanding of the microarchitectural parameters affectingAVF. Figure 3.4
shows how one can compute the AVF of a structure using this form of the equa-
tion and the notion of ACE and un-ACE bits. This figure shows that in a specific
cycle, there are two entries with architectural un-ACE instructions, three entries
with microarchitectural un-ACE instructions, and one entry with an ACE instruc-
tion. The instantaneous AVF of the structure in that cycle is, therefore, equal to
1/6 = 17%.

98 CHAPTER 3 Architectural Vulnerability Analysis

Architectural un-ACE Micro-architectural un-ACE

NOP
Ex-

ACE
Inst

Instruction Queue

Wrong-
Path
Inst

IdleACE
InstPrefetch

FIGURE 3.4 Identifying ACE and un-ACE bits in an instruction queue in a micro-
processor in a particular cycle.

■ E X A M P L E

Compute the AVF of a 4-bit structure over three cycles of execution. In the first
cycle, bits 0 and 1 are ACE; in cycle 2, bit 3 is ACE; and in cycle 3, all four bits
are ACE.

S O L U T I O N AVFcycle 1 = 2/4 = 50%, AVFcycle 2 = 1/4 = 25%, AVFcycle 3 = 4/4 =
100%. The average AVF over three cycles are then (50% + 25% + 100%)/3 = 58%.

The same ACE and un-ACE analysis can be used to compute the DUE
AVFs for bits or structures with error detection. However, this requires spe-
cific knowledge of the error detection scheme for specific bits and structures.
As discussed earlier, adding error detection to a structure converts its SDC AVF
to true DUE AVF but introduces an additional false DUE AVF component. The
un-ACE analysis helps compute this false DUE AVF. By identifying the fraction
of cycles, un-ACE bits trigger error detection mechanism. This fraction is the
false DUE AVF for the specific structure.

3.9 Computing AVF with Little’s Law
As was seen in the previous section, a structure’s AVF can be expressed as the
ratio of the average number of ACE bits in a cycle resident in the structure and
the total number of bits in that structure. Little’s law [7] is a basic queuing theory

3.9 Computing AVF with Little’s Law 99

equation that enables one to compute the average number of ACE bits resident
in a structure. Little’s law can be translated into the equation N = B × L, where
N is the average number of bits in a box, B is the average bandwidth per cycle
into the box, and L is the average latency of an individual object through the box
(Figure 3.5a), where none of the objects flowing into the box is lost or removed.
Little’s law can also be applied to a subset of the bits. Hence, by applying this to
ACE bits (Figure 3.5b), one gets the average number of ACE bits in a box as the
product of the average bandwidth of ACE bits into the box (BACE) times the average
residence cycles of an ACE bit in the box (LACE). Thus, one can express the AVF of a
structure as

AVFstructure =
Average number of ACE bits in a structure in a cycle

Total number of bits in a structure

=
BACE × LACE

Total number of bits in a structure

(a)

(b)

FIGURE 3.5 Illustration of Little’s law to compute AVF. (a) Flow of ACE and
un-ACE instructions through a hardware structure, such as an instruction
queue. (b) Flow of only ACE instructions through the structure.

100 CHAPTER 3 Architectural Vulnerability Analysis

This is a powerful equation that not only allows one to quickly do back-of-the-
envelope calculations of AVF but also provides insight into the parameters AVF
depends on.

■ E X A M P L E

To quickly compute the approximate AVF of a 32-entry instruction queue, let
us categorize instructions into ACE and un-ACE and ignore the ACE bits in un-
ACE instructions. Assume that the instruction per cycle (IPC) of ACE instruc-
tions is two and average delay of an instruction in the instruction queue is five
cycles. What is the approximate AVF of the instruction queue?

S O L U T I O N BACE =2 IPCs, LACE =5 cycles. Then, AVF=2×5/32=10/32=31%.

■ E X A M P L E

Compute the AVF of a branch commit table in a microprocessor. At the decode
stage, every decoded branch and its associated information are entered into
the branch commit table. When the branch commits and is deemed to have
been mispredicted, then the information in the commit table is accessed to
recover the state of the pipeline and restart the pipeline from the correct-path
instruction after the branch. Assume an entire entry in the branch commit
table is either ACE or un-ACE, the average IPC of the machine is two, the
decode to commit delay (including queueing delay) is 30 cycles, one out of five
instructions are branches, the branch misprediction rate is 3%, and the branch
commit table has 64 entries.

S O L U T I O N Atanyinstant, thereare four typesofentries in thebranchcommit
table: ACE mispredicted branch entries that will be used for recovery, un-ACE
branch instructions that are predicted correctly, wrong-path un-ACE branch
entries, and idle un-ACE entries. There is one branch per five committed instruc-
tions. The branch misprediction rate is 3% so 3 out of 100 branches are mispre-
dicted. In other words, 3 out of 500 instructions are mispredicted. The mispre-
dicted branch IPC is then 2 × (3/500) = 0.012. Since the decode to commit delay
(including queueing delay) is 30 cycles, the average number of mispredicted
branch instructions in the commit table is 0.12 × 30 = 0.36. The total number of
entries in the commit table is 64. Hence, the AVF = 0.36/64 = 0.56%.

Although Little’s law is useful to compute the AVF of hardware structures,
it must be applied carefully. Little’s law cannot be applied if the ACE objects
flowing through a structure change. For example, Little’s law cannot be directly
applied to an adder, which takes two operands as inputs and produces one

3.10 Computing AVF with a Performance Model 101

output. In this case, Little’s law can be applied separately to the input and
output datapath latches.

3.9.1 Implications of Little’s Law for AVF
Computation

Using Little’s law to compute the AVF gives one four important insights into the
computation of AVF and the factors AVF depends on. First, AVF is a function of the
architecturally sensitive area of exposure to radiation. This is expressed through
Little’s law by multiplying the number of incoming ACE bits into a structure with
the delay experienced in the structure. “Sensitive” area in this context refers to the
fraction of area that on average is occupied by ACE objects.

Second, IPC alone may not determine the AVF of microprocessor pipeline struc-
tures. Let us consider the instruction queue in a processor pipeline. Let us define
ACE IPC and ACE latency as the IPC of ACE instructions and latency of ACE
instructions through the instruction queue, respectively. The instruction queue usu-
ally has the same IPC as the retire unit in a processor pipeline. A benchmark with
high IPC can have high ACE IPC but low ACE latency because instructions may
be flowing rapidly through the pipeline. Similarly, a benchmark with low IPC can
have low ACE IPC, but instructions may be stalled behind cache misses, making
ACE latency high. Consequently, both these benchmarks can have very similar AVF
for the instruction queue in the pipeline.

Third, it is often not unusual to assume that a structure’s AVF decreases if objects
move faster through the structure, thereby reducing the exposure time to radiation.
However, the AVF may not actually decrease if there is a corresponding increase
in the bandwidth of ACE objects flowing into the structure.

Fourth, one can relateAVF of different structures using Little’s law. If objects flow
from a structure A to a structure B, then in the steady state, the average bandwidth
of ACE objects through both A and B will usually be the same. To compute the AVF,
however, one needs the average delay through objects A and B and the size of each
structure, which may differ. However, in the degenerate case where a sequence of
single-bit storage cells with unit delay is connected (e.g., sequence of flow-through
latches in a datapath), the AVF of each of these storage cells is the same.

3.10 Computing AVF with a Performance Model
To study the trade-off between performance, power, and soft errors, and to design
the appropriate machine, architects need an early AVF estimate for the chip they are
designing. Figure 3.6 shows the different steps in the design of a high-performance
microprocessor. Typically, this process starts with a performance model—typically

102 CHAPTER 3 Architectural Vulnerability Analysis

Performance
Modeling

Logic
Design

Circuit
Design

Layout
Design

Validation &
Verification

FIGURE 3.6 Typical flow in the design of a microprocessor.

written in C or C++. A performance model is an abstract representation of the
machine’s timing behavior, which allows architects to predict the performance of
the machine under design. This is followed by the actual architectural definition
and logic design of the processor. This is often done in a Register Transfer Language
(RTL), such as Verilog. Once the RTL is ready, circuit designers convert the logic
blocks into circuit blocks using a variety of tools. This is followed by layout design,
validation, and verification. The outputs from the validation and verification steps
are fed back to the different stages of the design to fix bugs. High-performance
chipsets usually follow the same flow. Nevertheless, some application-specific inte-
grated circuits may skip some of the intermediate steps (e.g., they may need to
model the performance of the chip).

The two obvious places to model the AVF are in the performance model and in
the RTL model. The advantage of the RTL model is that it has the detailed state of
microprocessor or chipset structures. Hence, one could use statistical fault injection
into different RTL states (e.g., latches) and see if the fault shows up as a user-visible
error and thereby compute the AVF. Chapter 4 discusses in detail the advantages
and drawbacks of statistical fault injection. AVF evaluation with an RTL model,
however, poses two problems for an architect. First, RTL may not be available long
after the architecture specification has been defined. By the time RTL is created and
the architects find out what the AVFs are, it may be too late to do any major changes
to the design because of schedule pressures. It may, however, be possible to use an
earlier version of the RTL (from a previous generation chip), but that may still be
error prone.

Second, RTL simulations are orders of magnitude slower than performance
models. RTL simulations can often only be realistically run for tens of thousands
of instructions, but the effect of a fault in a microarchitectural structure may not
show up till after tens of millions of instructions. Further, since soft errors are an
average and statistical quantity, it is critical to do such simulations over a number
of benchmarks, potentially spanning millions to billions of instructions. Further,
statistical fault injection into a chip with billions of transistors necessitates an explo-
sive number of simulations to reach a statistical significance.

Nevertheless, for many structures, such as flow-through pipeline latches, the
fault-to-error latency is fairly small (e.g., less than 1000 cycles often). Furthermore,
some of these structures may not be available in the performance model. For such
structures, statistical fault injection into the RTL is a desirable way to measure the

3.10 Computing AVF with a Performance Model 103

AVF. The section Computing AVFs Using Statistical Fault Injection into RTL, p. 146,
Chapter 4, discusses these issues in greater detail.

3.10.1 Limitations of AVF Analysis with
Performance Models

The AVF analysis technique using a performance model can provide early esti-
mates of per-structure AVFs, but it also has four limitations that readers should be
aware of.

What Is the Scope?
As discussed in Chapter 1 (see Faults, p. 6), the concept of MTTF is fundamentally
tied to a “scope.” A scope is a domain with which an MTTF value is associated.
Because MTTF is inversely proportional to the FIT rate and hence to the AVF, the
concept ofAVF is also related to the scope for which theAVF is defined. For example,
if the scope is defined to be the full system, including I/O devices, then an object
is ACE only if its effect shows up at the I/O interface. In contrast, if the scope is
defined to be at the cache-to-main memory interface, then one can declare an object
arriving at the cache-to-memory interface to be ACE if it shows up at this interface.
But what is an ACE bit at the cache-to-memory interface may be un-ACE when the
scope is expanded to the full system (e.g., a memory value with an error may never
be written back to disk).

Further, the scope at which an error shows up depends on the user’s interaction
with a program. Normally, a program’s outputs are just the values sent by the
program via I/O operations. However, if a program is run under a debugger, then
the program variables examined via the debugger become outputs and influence
the determination of the ACE bits.

For AVF analysis in a performance model, one usually requires a precise defini-
tion of what constitutes the scope. It is assumed that the scope extends to an I/O
device. In practice, it is hard to track values this far. However, performance models
can track values well beyond the point that they are committed to architectural reg-
isters or stored to memory to determine whether they could potentially influence
the output. Given such a definition of a scope, one can determine in a performance
model the ACE and un-ACE bits.

What Is a Correct Output?
Besides the scope, one also needs a precise definition of what constitutes the correct
output. This does not necessarily correspond to meeting the precise semantics of
the architecture, which can allow multiple correct outputs for the same program.
Similarly, in a multiprocessor system, multiple executions of the same parallel pro-
gram may yield different outcomes due to race conditions. Whether a bit is ACE
or un-ACE may depend on the outcome of a race.

104 CHAPTER 3 Architectural Vulnerability Analysis

To make the methodology precise, ACE analysis computes the AVF for a
specific dynamic instance or execution of a program. Given a specific execution
of a program, the ACE analysis assumes that the final system output is the cor-
rect one. Any bit flip that would have caused the program to generate an output
different from the expected system output for that instance constitutes an error. In
a multiprocessor system, ACE analysis would use the outcome of the race in the
particular execution under study to determine the ACE and un-ACE.

Thus, this style of AVF estimation is a postanalysis method. That is, one runs the
programs, collects statistics, and analyzes what the per-structure AVFs would have
been. This is, however, not different from how performance simulators estimate
performance and power.

ACE Analysis Provides an Upper Bound
As may be obvious by now, proving that a bit is un-ACE is easier than proving that
the bit is ACE. For example, if one has two consecutive stores to the same register
A without any intervening read, then register A’s bits are dynamically dead and
hence un-ACE in the interval from the first store to the second store. However,
this second store may not occur within the window of simulation or the first store
may have been evicted from the AVF analysis window, in which case one cannot
determine if register A’s bits were ACE or un-ACE, unless the program can be run
to completion.

Nevertheless, since a conservative (upper bound) SER and hence AVF estimate
are desired, the analysis first assumes that all bits are ACE bits unless it can be
shown otherwise. Then it identifies as many sources of un-ACE bits as it can. The
analysis does not need (nor claims) to have a complete categorization of un-ACE
bits; however, the more comprehensive the analysis is, the tighter the bound will be.

Recently, a couple of studies have examined the preciseness with whichAVFs can
be computed. Wang et al. [14] computed AVFs using ACE analysis on a relatively
less detailed performance model and found that the resulting AVF is two to three
times higher than what SFI would predict from an RTL model. The authors argued
that this is because it is difficult to add the necessary detail to a performance model
to compute the appropriate AVFs. Biswas et al. [1] have shown, however, that such
details are not hard to add to a performance simulation model to appropriately
compute precise AVFs.

Similarly, Li et al. [8] argue that AVF analysis reaches its limit when one con-
siders tens of thousands of computers or a very high intrinsic FIT rate (significantly
higher than what a radiation-induced transient fault would cause). It is unclear
what underlying phenomenon is forcing this limit. One possibility is that higher
numbers of computers or higher intrinsic FIT rate may be introducing multi-bit
faults. In such as case, the basic AVF analysis needs to be extended and the error
rate computed differently. For an example of how to compute the SER from double
bit errors, the reader is referred to the scrubbing analysis in Chapter 5.

3.10 Computing AVF with a Performance Model 105

The reader should also note that often a conservative upper bound on AVF is
sufficient for what a designer is looking for. If the conservative upper-bound AVF
estimates satisfy the soft error budget of a chip, then the designer may not care to
further refine them. If not, the designers may continue to refine the AVF analysis
for the most vulnerable structures until they are satisfied with the analysis.

Chapter 4 shows how one could extend this analysis to gather best estimate AVF
numbers based on the properties of certain structures.

ACE Analysis Approximates Program Behavior in the
Presence of Faults
One subtle issue that may not be immediately obvious is thatACE analysis attempts
to approximate the behavior of a faulty instance of a program from an analysis of
a fault-free execution of the same program. For example, Figure 3.7b shows the
dynamic execution of a program in which the program takes the wrong branch
direction because of a fault. Currently, ACE analysis assumes that any such control
flow inducing instruction is ACE. Nevertheless, it is possible that even if the branch
takes the incorrect path, it will eventually produce the correct result, thereby mak-
ing the result of some branches un-ACE [13]. Such branches are called Y-branches.
The impact of this phenomenon is expected to be limited. Nevertheless, this is yet
another place where ACE analysis provides an upper-bound estimate. One way to
make the analysis more precise for Y-branches is to simulate both paths of a branch
during a program’s execution and determine if the paths eventually converge with
the same architectural state.

Incorrect
Path

Fau
lt-

fre
e F

low

Correct
Path

Correct
Path

Incorrect
Path

Faulty Flow

(a) (b)

FIGURE 3.7 Examples of fault-free (a) and faulty (b) flows of a program exe-
cution. ACE analysis attempts to approximate the behavior of (b) using (a).

106 CHAPTER 3 Architectural Vulnerability Analysis

CAM structures introduce a similar challenge. Chapter 4 shows how to compute
the AVF of such CAM structures.

3.11 ACE Analysis Using the Point-of-Strike
Fault Model
As it was discussed earlier, one can use the following equation—based directly on
the point-of-strike fault model—to compute the per-structure AVFs:

AVFstructure =

N∑
i=0

ACE cyclesi

N × Total cycles

Thus, the following three terms are needed:

■ sum of residence cycles of all ACE bits of objects resident in the structure
during program execution

■ total execution cycles for which the ACE bits’ residence time is observed

■ total number of bits in a hardware structure.

Using a performance model, one can compute all the above. This chapter illustrates
this technique using objects that carry instruction information along the pipeline
(Figure 3.8). Chapter 4 discusses advanced techniques to compute AVF for struc-
tures that carry other types of objects, such as cache blocks.

The AVF algorithm can be divided into three parts. As an instruction flows
through different structures in the pipeline, the residence time of the instruction in
the structure is recorded. Then, before the instruction disappears from the machine,
either via a commit or via a squash, the structures through which it flowed are
updated with a variety of information, such as the residence cycles, whether the
instruction committed, etc. (part 1). Also, if the instruction commits, the instruction

Simulated Pipeline

Data structures to capture
per-structure residence information

Instruction
Flow Analysis Window

FIGURE 3.8 Pictorial view of data structures for the AVF algorithm used in a
performance model.

3.11 ACE Analysis Using the Point-of-Strike Fault Model 107

is put in a postcommit analysis window to determine if the instruction is
dynamically dead or if there are any bits that are logically masked (part 2). Finally,
at the end of the simulation, using the information captured in parts 1 and 2, one
can easily compute the AVF of a structure (part 3).

To compute whether an instruction is an FDD or a TDD instruction and whether
any of the result bits has logical masking, one must know about the future use
of an instruction’s result. The analysis window is used to capture this future use.
When an instruction commits, it is entered into the analysis window, linking it
with the instructions that produced its operands. At any time, one can analyze the
future use of an instruction’s results by examining its successors in the analysis
window. Of course, because the analysis window must be finite in size, one cannot
always determine the future use precisely. An analysis window of a few thousand
instructions usually covers most of the needed the future use information, but
practitioners have used tens of thousands of instructions for this window.

The analysis window needs three subwindows that compute FDD, TDD, and
logical masking information. Each subwindow can be implemented with two pri-
mary data structures: a linked list of instructions in commit order and a table indexed
via architectural register number or memory address. The linked list maintains the
relative age information necessary to compute future use. Each entry in the table
maintains the list of producers and consumers for that register or memory location.
The FDD, TDD, and logical masking information can all be computed using this
list of producers and consumers. Thus, a list with two consecutive producers for a
register R and no intervening consumer for the same register R can be used to mark
the first producer of R as a dynamically dead instruction.

3.11.1 AVF Results from an Itanium®2
Performance Model

This section presents a case study of AVF evaluations for two structures: an instruc-
tion queue and execution units for an Itanium�2 processor pipeline. This case study
is based on the evaluations presented by Mukherjee et al. [10]. The evaluation
methodology will be discussed first followed by AVF analyses for an instruction
queue and latches in input and output datapaths in execution units. This case study
demonstrates how ACE analysis can compute both SDC and DUE AVFs.

Evaluation Methodology
The evaluation uses an Itanium�2-like IA64 processor scaled to 2003 technology.
Itanium�2 is one of Intel� Corporation’s high-end processor architectures. This
processor was modeled in detail in the Asim performance model framework [5]
developed by a group in the Compaq Computer Corporation and was eventually
licensed and developed further by architects in Intel Corporation. In Asim, Red
Hat Linux 7.2 was modeled in detail via an OS simulation front end. For wrong
paths, the simulator fetched the misspeculated instructions but did not have the

108 CHAPTER 3 Architectural Vulnerability Analysis

correct memory addresses that a load or a store may have accessed. This processor
model is augmented with an instrumentation to evaluate per-structure AVFs.

Figure 3.9 lists the skip intervals and input set selected for each of the SPEC 2000
programs used for this analysis. Because it is difficult, if not impossible, to simulate
in detail an entire program, simulation models typically simulate only sections of
programs or benchmarks to predict performance. The skip intervals shown here
were computed using simpoint analysis of Sherwood et al. [12] modified for the
IA64 ISA [11]. The numbers presented here are only for the first simpoint. Sim-
points provide sections of the program that can best predict the performance of the
whole program itself. Although simpoints do not necessarily provide sections that
can best predict AVFs, it is probably a fair approximation for the AVFs as well. In
this evaluation, each simpoint is simulated for 100 million instructions (includ-
ing NOPs). The benchmarks were compiled with the Intel� electron compiler
(version 7.0) with the highest level of optimization.

Program-Level Decomposition
Figure 3.10 shows a decomposition of the dynamic stream of instructions based
on whether the instruction’s output affects the final output of the benchmark. An
instruction whose result may affect the output is an ACE instruction, while an
instruction that definitely does not affect the final output is un-ACE. As the figure
shows, on average, about 46% of the instructions are ACE instructions. The rest are

Integer
Benchmarks

Instructions
Skipped

Floating Point
Benchmarks

Instructions
Skipped

bzip2-source 48,900 M ammp 50,900 M

cc-200 16,600 M

120,600 M 100 M

0 M

applu 500 M

crafty apsi

eon-kajiya 73,000 M art-110 36,400 M

gap 18,800 M equake 1,500 M

gzip-graphic 2,9000 M facerec 64,100 M

mcf 26,200 M fma3d 23,600 M

parser 71,400 M galgel 5,000 M

123,500 M

73,300 M

78,100 M

23,800 M

perlbmk-makerand lucas

twolf mesa

vortex_lendian3 59,300 M

185,400 M

mgrid 200 M

vpr-route 49,200 M sixtrack 4,100 M

swim

wupwise

FIGURE 3.9 Benchmarks used for AVF studies of the instruction queue and
execution unit of the Itanium®2 pipeline under study. M = million. Reprinted
with permission from Mukherjee et al. [10]. Copyright ©2003 IEEE.

3.11 ACE Analysis Using the Point-of-Strike Fault Model 109

DYNAMICALLY DEAD
20%

PREDICATED FALSE
7%

NOP
26%

ACE
46%

PERFORMANCE INST
1%

FIGURE 3.10 ACE and un-ACE breakdown of the committed instruction stream
in an Itanium®2 pipeline for the benchmarks shown in Figure 3.9.

un-ACE instructions. Some of these un-ACE instructions still containACE bits, such
as the opcode bits of prefetch instructions. Because this analysis is conservative,
there may be other opportunities to move instructions from the ACE to un-ACE
category.

NOPs, predicated false instructions, and performance-enhancing prefetch inst-
ructions account for 26%, 7%, and 1%, respectively. NOPs are introduced in the
IA64 instruction stream to align instructions on three-instruction bundle bound-
aries. These NOPs are carried through the Itanium�2 pipeline. Finally, dynamically
dead instructions account for 20% of the total number of committed instructions.

AVF Analysis for the Itanium®2 Instruction Queue
Figure 3.10 shows the fraction of cycles a storage cell in the instruction queue
contains ACE and un-ACE bits. An instruction queue is a structure into which
the processor fetches instructions. A separate scheduler usually identifies and dis-
patches from this queue instructions that are ready to be executed. This calculation
assumes each entry of the instruction queue is approximately 100 bits. An IA64
instruction is 41 bits, but the number of bits required in the entry is higher because
a large number of bits are required to capture the in-flight state of an instruction
in the machine. Out of these 100 bits, five bits are control bits and cannot be der-
ated. Of the remaining 95 bits, seven opcode bits are not derated (i.e., considered

110 CHAPTER 3 Architectural Vulnerability Analysis

ACE) for any instruction. Additionally, the six predicate specifier bits of falsely
predicated instructions or the seven destination register specifier bits for FDD and
TDD instructions are not derated.

Figure 3.11a shows that on average, a storage cell in the instruction queue con-
tains an ACE bit about 29% of the time. Thus, the AVF of the instruction queue is
29%. On average, a cell is idle 38% of the cycles and contains a nonidle un-ACE bit

Idle & Misc
38%

Neutral
16%

SDC AVF
29%

Uncommitted
6%

Dynamically
Dead
11%

(a)

Idle & Misc
38%

Neutral
16%

True DUE AVF
29%

Uncommitted
6%

False DUE AVF
33%

Dynamically
Dead
11% (b)

FIGURE 3.11 ACE and un-ACE breakdown of an instruction queue in an
Itanium®2 pipeline. (a) The SDC AVF for the unprotected instruction queue
is 29%. (b) The DUE AVF of the same instruction queue with parity protection,
but no recovery, is 62% (29% true DUE AVF + 33% false DUE AVF).

3.11 ACE Analysis Using the Point-of-Strike Fault Model 111

about 33% of the cycles. This 33% includes 6% uncommitted, such as wrong-path
instructions, 16% neutral, such as NOPs, and 11% dynamically dead. Across the
simulated portions of the benchmark suite (Figure 3.12), the AVF number ranges
between 14% and 47% for the instruction queue. The floating-point programs, in
general, have higher AVFs than to integer programs (31% vs. 25%, respectively).
This is because floating-point programs usually have many long-latency instruc-
tions and few branch mispredictions.

Figure 3.11b shows the false DUE AVF of the instruction queue, assuming that
it is protected with parity. The parity bit is checked when an instruction is ready
for issue. The entire nonidle un-ACE portion is now ascribed to the false DUE AVF.

ACE

IDLE

EX_ACE

WRONG_PATH

TDD_mem

TDD_reg

FDD_mem

FDD_reg

PREFETCH

PREDICATED_FALSE

NOP

UNKNOWN

ACE

DATAPATH IDLE

LOGICAL MASKING

UNIT IDLE

SPECULATIVE_ISSUE

WRONG_PATH

TDD_mem

TDD_reg

FDD_mem

FDD_reg

PREFETCH

PREDICATED_FALSE

NOP

UNKNOWN

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

%
 o

f
st

at
e

%
 o

f
st

at
e

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

bz
ip

2_
so

ur
ce

cc
_2

00

cr
af

ty

eo
n_

ka
ji

ya ga
p

gz
ip

_g
ra

ph
ic

m
cf

pa
rs

er

pe
rl

bm
k_

m
ak

er
an

d

tw
ol

f

vo
rt

ex
_l

en
di

an
3

vp
r_

ro
ut

e

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

av
er

ag
e

bz
ip

2_
so

ur
ce

cc
_2

00

cr
af

ty

eo
n_

ka
ji

ya ga
p

gz
ip

_g
ra

ph
ic

m
cf

pa
rs

er

pe
rl

bm
k_

m
ak

er
an

d

tw
ol

f

vo
rt

ex
_l

en
di

an
3

vp
r_

ro
ut

e

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

av
er

ag
e

(a)

(b)

FIGURE 3.12 ACE and un-ACE breakdown for an instruction queue (a) and
execution unit (b) for an Itanium®2 pipeline. Reprinted with permission from
Mukherjee et al. [10]. Copyright ©2003 IEEE.

112 CHAPTER 3 Architectural Vulnerability Analysis

Hence, the false DUE AVF of the instruction queue protected with parity is 33%.
The total DUE AVF is 29% + 33% = 62%.

Figure 3.13 shows how to approximate AVFs (at the instruction level) for the
instruction queue using Little’s law. The AVF of the instruction queue can be
approximated as the ratio of the average number of ACE instructions in the instruc-
tion queue to the total number of instruction entries in the instruction queue, which
is 64 in the machine simulated. The number of ACE instructions in the instruction
queue in an average cycle, as given by Little’s law, is the product of the bandwidth
(ACE IPC) and the average number of cycles an instruction in the instruction queue
can be considered to be in ACE state (ACE latency). It should be noted that an
instruction can persist even after it is issued for the last time. Thus, after an ACE
instruction is issued for the last time, the ACE bits holding the ACE instruction
become un-ACE. The ACE IPC and ACE latency were obtained from the perfor-
mance model.

Using the ACE IPC and ACE latency, the AVFs in Figure 3.13 can be computed.
This method computes an average AVF of 19%, which is 10% lower than that
of actual AVF for the instruction queue reported earlier. This difference can be
attributed to the ACE bits of un-ACE instructions, such as prefetch and dynami-
cally dead instructions, whose results do not affect the final output of a program.
Figure 3.13 accounts for these as un-ACE bits, but ACE numbers in Figure 3.11
and Figure 3.12 include them. If the Little’s law analysis was done at the bit level,
instead of instruction level as in Table 2, then the average AVF of 29% in Figure 3.11
would have matched.

Figure 3.13 also explains why lucas has an AVF similar to ammp although lucas
has one of the highest ACE IPCs. This is because the AVF depends on both the ACE

Integer
Benchmarks

ACE IPC ACE Latency
(cycles)

ACE
Inst

AVF
Benchmarks

ACE IPC ACE Latency
(cycles)

#ACE
Inst

AVF

bzip2-source 0.55 22 12 19% ammp

Floating Point

0.23 92 21 33%
cc-200 0.57 18 10 16% applu 0.82 21 18 27%
crafty 0.37 15 6 9% apsi 0.31 31 9 15%
eon-kajiya 0.36 20 7 11% art-110 0.68 37 25 40%
gap 0.78 17 13 21% equake 0.26 12 3 5%
gzip-graphic 0.60 13 8 12% facerec 0.41 7 3 5%
mcf 0.25 68 17 26% fma3d 0.59 11 7 10%
parser 0.49 24 12 19% galgel 1.10 21 23 35%
perlbmk-makerand 0.38 17 7 10% lucas 1.23 17 21 33%

0.30 27 8 13% mesa 0.47 16 8 12%
vortex_lendian3 0.42 22 9 15% mgrid 1.28 10 13 21%
vpr-route

twolf

0.35 12 4 7% sixtrack 0.66 20 13 21%
swim 1.08 16 17 27%
wupwise 1.60 13 20 31%

average 0.45 23 9 15% average 0.77 23 14 23%

FIGURE 3.13 AVF breakdown for an instruction queue with Little’s law. Num-
ber of ACE instructions = ACE IPC × ACE latency. AVF = number of ACE instruc-
tions/number of instruction queue entries. Reprinted with permission from
Mukherjee et al. [10]. Copyright ©2003 IEEE.

3.11 ACE Analysis Using the Point-of-Strike Fault Model 113

IPC and ACE latency. Although lucas has a high ACE IPC, it has relatively low ACE
latency. Consequently, the product of these two terms results in an AVF similar to
ammp’s, which has a low ACE IPC but a high ACE latency.

AVF for Execution Units
This section describes the AVF numbers of the execution units in the simulated
machine model. In this six-issue machine, there are four integer pipes and two
floating-point pipes. Integer multiplication is, however, processed in the floating-
point pipeline. When integer programs execute the floating-point pipes lie idle. It
is also assumed that the execution units overall have about 50% control latches and
50% datapath latches. First, how to derate the entire execution unit is discussed so
that the results would apply to both the control and the datapath latches. Then, it
will be shown how to further derate the datapath latches.

Figure 3.12b shows that the execution units on average spend 11% of the cycles
processing ACE instructions (with a range of 4% to 27%). Thus, the average AVF
of a latch in the execution units is 11%. Interestingly, the execution units’ AVF is
significantly lower than that of the instruction queue. This is due to three effects.
First, the instruction queue must hold the state of the instructions until they execute
and retire. Thus, ACE instructions persist longer in the instruction queue than the
time they take to execute in the execution units.

Second, speculatively issued instructions succeeding cache miss loads must
replay through the instruction queue. However, only the last pass through the
execution units matters for correct execution. The execution unit state for all prior
executions is counted as un-ACE. It should be noted that this is possible in this
processor model because a corrupted bit in one of the instructions designated for
a replay does not affect the decision to replay. The information necessary to make
this decision resides elsewhere in the instruction queue.

Third, the floating-point pipes are mostly idle while executing integer code,
greatly reducing their AVFs.

This analysis computes a single AVF for both the control and the datapath latches
in the execution units. However, the datapath latches can be further derated based
on whether specific datapath bits are logically masked or are simply idle. Here
logical masking is applied to data values (and hence datapaths) only; analyzing
logical masking for control latches would be a complex task.

Logical masking functions were implemented only for a small but important
subset of the roughly 2000 static internal instruction types in the processor model.
This subset contains a variety of functions, including logical OR, AND. It was
also estimated that another 20% of the instructions (including loads, stores, and
branches) will not have any direct logical masking effect. The combination of
these two categories covers the vast majority of dynamically executed instructions.
Figure 3.12b shows that this logical masking analysis further reduces the AVF by
0.5% (averaged across both control and data latches, although this does not apply
to control latches). It is expected that the incremental decrease in AVF due to the

114 CHAPTER 3 Architectural Vulnerability Analysis

remaining unanalyzed instruction types will be small. Transitive logical masking,
which would further reduce the AVF number for the datapath latches, was not
considered in this analysis.

Datapath latches can be further derated by identifying the fraction of time they
remain idle. For example, an IA64 compare instruction produces two predicate
values—a predicate value and its complement. However, in the simulated imple-
mentation, these two result bits are sent over a 64-bit result bus, leaving 62 of the
datapath lanes idle. This effect further reduces the AVF by 1.5%, as shown by DAT-
APATH_IDLE in Figure 3.12b Depending on the implementation, however, the
DATATPATH_IDLE portion can also be viewed as bits that get logically masked
at the implementation level. In contrast, UNIT_IDLE in Figure 3.12b refers to the
whole execution unit being idle because of the lack of any instruction issued to that
unit.

Overall, the average AVF for the execution units is reduced to 9% when logical
masking and idle latches are accounted for. Across the simulated portions of our
benchmark suite, the AVF for the execution units ranges from 4% to 27%.

It should be noted that Little’s law cannot be applied to the entire execution
units because the objects flowing through the execution units change. Nevertheless,
Little’s law can be applied to the input and output datapath latches.

3.12 ACE Analysis Using the Propagated
Fault Model
Li et al. [9] developed a tool called SoftArch, which makes use of the propagated
fault model in a performance simulator to compute the SER. Instead of comput-
ing the AVFs directly using the equations shown earlier (see AVF Equations for a
Hardware Structure, p. 96), SoftArch evaluates the AVF indirectly by evaluating the
derated and nonderated MTTF for a particular structure. The AVF can be obtained
by dividing the nonderated MTTF by the derated MTTF. The reader should note
that computing AVFs using either the point-of-strike model directly or the propa-
gated fault model indirectly (like SoftArch does) suffers from the same limitations
outlined in Limitations of AVF Analysis with Performance Models (p. 103).

Figure 3.14 shows a hypothetical example of how to compute the MTTF using
the propagated fault model. Each of the four faults shown in the figure has a certain
probability of occurrence and a corresponding nonderated error rate. The second
fault gets masked, but the TTF for the first, third, and fourth errors are 1000, 10000,
and 20000, respectively. If one assumes that these three errors are completely inde-
pendent of each other and occur with equal probability (=1/3), then the MTTF
would be [1000 × (1/3) + 10000 x (1/3) + 20000 × (1/3)] = 10230 cycles. In reality,
however, a program may run for longer than 20000 cycles. One cannot assume that
the distribution of errors is uniform, although the underlying faults from alpha
particle or neutron strikes may occur uniformly.

3.12 ACE Analysis Using the Propagated Fault Model 115

Fault in
Instruction Queue

Fault in
Register File

Fault in
Cache Controller

Fault in
Instruction Queue

fault masked

Cycle 1000 Cycle 10,000

Timeline of the
occurrence of faults
(point of strike)

Timeline of the
faults propagating to
an output causing a
user-visible error

ACE
ACE

Cycle 20,000

ACE

FIGURE 3.14 Hypothetical example showing different TTFs. The first timeline
shows the occurrence of four potential faults. Each has a certain probability of
occurrence. Some of these will get masked. The second timeline shows when
the faults show up as a user-visible error at some output.

To illustrate how SoftArch computes the MTTF, let us consider the following
example. Let us assume that

■ a chip has only one unit in which the probability of an intrinsic fault (p) is 0.1
in each cycle

■ the workload is an infinite loop

■ each iteration in the loop has four cycles

■ the unit always has ACE values in the first two cycles of the loop and un-ACE
values in the last two cycles of the same loop

■ the program is fail-stop with respect to this unit, that is, as soon as an error is
detected, the program stops

■ T is a random variable that designates the TTF, T can assume the values
1, 2, 5, 6, 9, 10, … , T cannot be 3, 4, 7, or 8 because the unit has un-ACE
values in the last two cycles of the loop and the MTTF is the expected value
of T or E(T).

Then, E(T) = 1 × p + 2 × (1 − p) × p + 3 × 0 + 4 × 0 + 5 × (1 − p)2 × p + … This is an
infinite series. For this particular example, it sums to 18.53 cycles. For such a loop,
Li et al. have created a closed form of the equation as

MTTF =
LT + 1 × p + 2 × p × (1 − p)

p × (2 − p)
− LT

116 CHAPTER 3 Architectural Vulnerability Analysis

v1 v2 v3

v4 v5

v6

{f1} {f 2} {f 3}

++

{f1, f 2} {f 2, f 3}

{f1, f 2}

NOT

FIGURE 3.15 Example of fault propagation.

where LT is number of cycles in the loop. Using LT = 4, p = 0.1, we get MTTF=18.53
cycles as well.

The above example shows how to compute the MTTF when there is only one
unit in a chip. To compute the MTTF in the presence of multiple units across a
chip, SoftArch must keep track of how faults propagate through the units during
a program’s execution. Figure 3.15 shows such an example of fault propagation.
Let us assume v6 = NOT (v4), v4 = v1 + v2, v5 = v2 + v3, and f1, f2, and f3 are
the faults generated in v1, v2, and v3, respectively, and v6 is an output of the
computation. It should be noted that v5 is dynamically dead. In this case, only
faults f1 and f2 affect whether output v6 has an error. Hence, v1, v2, v4, and v6
constitute the ACE path. SoftArch tracks propagation of such ACE values through
the dataflow graph of the program to compute the probability of an error in an
outcome.

Then, the MTTF of an indefinitely executing program can be expressed as

MTTF =
N∑

i=1

ti × Prob(vi)

where ti is the time when fault i manifests itself as an error in the output and
Prob(vi) is the probability that the value vi corresponding to the fault i has an error,
but no prior value v1, v2, … , vi−1, has an error. As may be obvious, v1, v2, …, vN
constitute an ordered set of values, errors in which show up at t1, t2, …, tN times,
where t1 < t2 … < tN . SoftArch computes the MTTF by keeping track of the vis, fis,
and tis. For finite programs, SoftArch proposes to run the same program repeatedly
(and therefore indefinitely) and, thereby, compute the MTTF.

Figure 3.16 shows SoftArch’s evaluation ofAVFs for several processor structures.
As described earlier, the AVF for a processor structure can be evaluated as the

3.12 ACE Analysis Using the Propagated Fault Model 117

(a)

(b)

ibuf
80%
70%
60%
50%
40%
30%
20%
10%

0

bzip crafty gap gcc gzip mcf perlbmk vpr twolf AVG

43
19

20
42

28
21

0

A
V

F

idu reg iq dtlb itlb fxu fpu chip

19

710%

0

20%

30%

40%

50%

60%

ammp art applu apsi facerec equake lucas mesa mgrid sixtrack swim wupwise AVG

49
11 13 14

10

13
6 4

A
V

F

ibuf idu reg iq dtlb itlb fpufxu chip

FIGURE 3.16 AVFs from SoftArch’s evaluation of a processor roughly resem-
bling IBM’s Power4 architecture. (a) AVF for SPECint 2000. (b) AVF for SPECfp
2000. Reprinted with permission from Li et al. [9]. ibuf = instruction buffer,
idu = instruction decode unit, reg = architectural register file, iq = instruction
queue, dtlb = data TLB, itlb = instruction TLB, fxu = fixed point (integer) exe-
cution unit, fpu = floating point unit, and chip = entire chip. Copyright ©2005
IEEE.

ratio of the nonderated and derated MTTF for that particular structure. For this
evaluation, SoftArch makes the simplifying assumption that any value stored to
memory is an output. Nevertheless, this methodology still provides an upper-
bound estimate of what the AVF is. Figure 3.16 shows that the AVFs vary from
0% to 49% for different structures and benchmarks.

Unlike ACE analysis that directly computes the AVF, SoftArch first computes the
MTTF and then derives the AVFs from them. Theoretically, both are valid methods
to compute AVFs. Both suffer from the same disadvantages arising out of using a
performance model to compute the AVFs. Both may require significant amounts
of memory in the software used to compute the AVFs. ACE analysis may require
a significant amount of memory to keep track of dynamically dead instructions.
This method attempts to limit the amount of memory needed by using a smaller
window of analysis to track dynamically dead instructions, thereby incurring some
inaccuracy. SoftArch may require a significant amount of memory to track propa-
gation of ACE values through the dataflow graph. SoftArch reduces this memory
requirement by tracking values only through registers but not through memory
of the simulated benchmarks, which would also incur some inaccuracy. A system-
atic evaluation of the merits and demerits of each method, however, is a topic of
future work.

118 CHAPTER 3 Architectural Vulnerability Analysis

3.13 Summary
AVF identifies the fraction of faults that result in a user-visible error for a transistor,
bit, or structure. The circuit-level error rate needs to be derated (or multiplied) by
the AVF to obtain the overall SER for the component in question. AVFs can vary
widely—from 0% to 100%. To reduce the overall SER of the chip under design,
designers can choose structures with relatively high bit count and high AVF as
candidates for protection.

The SDC FIT of a bit can be expressed as the product of its SDC AVF and circuit-
level SER. Similarly, the DUE FIT of a bit can be expressed as the product of its
DUE AVF and circuit-level SER. The DUE AVF of a bit is the sum of the true and
false DUE AVFs. The true DUE AVF of a bit is its SDC AVF without any error
detection. The SDC FIT of a chip can be computed by summing the SDC FIT of
all of its constituent transistors, bits, or structures. The same can be done for the
DUE FIT.

This formulation of FIT rates and AVFs applies to a single-bit fault model, which
is the dominant component of radiation-induced soft errors. Multibit faults can
also be analyzed and their formulation will be discussed later in this book. It is also
important to note that the AVF is assigned to the bit that was struck by an alpha
particle or a neutron and not to a bit where the fault may have propagated.

AVFs can be computed based on ACE principles. A bit is ACE if it needs to be
correct for the correct execution of a program. Otherwise, it is un-ACE. The fraction
of cycles for which a bit is ACE is its AVF. A structure’s AVF is the average AVF
of all its constituent bits. Alternatively, a structures’s AVF can be expressed as the
ratio of the average number of ACE bits in a cycle and the total number of bits in
the structure.

Often it is easy to identify the source of un-ACEness and hence AVF can be con-
servatively computed by analyzing the un-ACE bits during a program’s execution.
Un-ACE bits can arise from both microarchitectural and architectural components.
Examples of microarchitectural un-ACE bits are bits that are idle, bits containing
misspeculated states. Examples of architectural un-ACE bits are nonopcode bits of
a NOP instruction, nonopcode bits of prefetch and branch hint instructions, and
nonopcode and nonregister specifier bits of dynamically dead instructions. Using
such an analysis, the AVFs of different structures can be computed using a perfor-
mance simulation model.

3.14 Historical Anecdote
Prior to the introduction of the term AVF, Intel had widely used the term “logic
derating factor” to indicate the same. In 2001, we, a group of four engineers, tried to
develop the AVF methodology and frequently talked about cross-purposes because
of the term “derating factor.” The reason is because the two terms—“derating” and
“derating factor”—go in different directions. When we reduce the derating, we

References 119

increase the vulnerability of a bit to soft errors. However, when we reduce the
derating factor, we reduce the vulnerability of the bit to soft errors. Quite often
we would say one thing (e.g., this technique will reduce the derating) when we
meant the other (e.g., this technique will reduce the derating factor). To avoid this
confusion, we coined the term “vulnerability factor” to replace “derating factor.”
If you derate more, we increase both the vulnerability and vulnerability factor.
Since then, discussions on AVF were more meaningful than in the early days of
development of the AVF ideas. Currently, the term AVF is widely used across Intel’s
soft error groups and management circles.

References
[1] A. Biswas, P. Racunas, J. Emer, and S. S. Mukherjee, “Computing Accurate AVFs using ACE

Analysis on Performance Models: A Rebuttal,” Computer Architecture Letters (CAL), December
2007.

[2] J. A. Butts and G. Sohi, “Dynamic Dead-Instruction Detection and Elimination,” in 10th Inter-
national Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), pp. 199–210, October 2002.

[3] B. Fahs, S. Bose, M. Crum, B. Slechta, F. Spadini, T. Tung, S. J. Patel, and S. S. Lumetta, “Perfor-
mance Characterization of a Hardware Mechanism for Dynamic Optimization,” in 34th Annual
International Symposium on Microarchitecture (MICRO), pp. 16–27, December 2001.

[4] Y. Choi, A. Knies, L. Gerke, and T.-F. Ngai, “The Impact of If-Conversion and Branch Prediction
on Program Execution on the Intel Itanium Processor,” in 34th Annual International Symposium on
Microarchitecture (MICRO), pp. 182–191, December 2001.

[5] J. Emer, P. Ahuja, N. Binkert, E. Borch, R. Espasa, T. Juan, A. Klauser, C. K. Luk, S. Manne,
S. S. Mukherjee, H. Patil, and S. Wallace, “Asim: A Performance Model Framework,” IEEE Com-
puter, Vol. 35, No. 2, pp. 68–76, February 2002.

[6] J. L. Hennessy and D.A. Patterson, Computer Architecture: A Quantitative Approach, Elsevier Science,
2003.

[7] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik, Quantitative System Performance,
Prentice-Hall, Englewood Cliffs, New Jersey, 1984.

[8] X. Li, S. V. Adve, P. Bose, and J. A. Rivers , “Architecture-Level Soft Error Analysis: Examining the
Limits of Common Assumptions,” in International Conference on Dependable Systems and Networks
(DSN), pp. 266–275, 2007.

[9] X. Li, S. V. Adve, P. Bose, and J. A. Rivers, “SoftArch: An Architecture-Level Tool for Modeling
and Analyzing Soft Errors,” in International Conference on Dependable Systems and Networks (DSN),
pp. 496–505, 2005.

[10] S. S. Mukherjee, C. T. Weaver, J. Emer, S. K. Reinhardt, and T. Austin, “A Systematic Methodol-
ogy to Compute the Architectural Vulnerability Factors for a High-Performance Microprocessor,”
in 36th Annual International Symposium on Microarchitecture (MICRO), pp. 29–40, December 2003.

[11] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karnunanidhi, “Pinpointing Represen-
tative Portions of Large Intel Itanium Programs with Dynamic Instrumentation,” in 37th Annual
International Symposium on Microarchitecture (MICRO), pp. 81–92, 2004.

120 CHAPTER 3 Architectural Vulnerability Analysis

[12] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically Characterizing Large
Scale Program Behavior,” in 10th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pp. 45–57, October 2002.

[13] N. Wang, M. Fertig, and S. Patel, “Y-Branches: When You Come to a Fork in the Road, Take It,” in
12th International Conference on Parallel Architectures and Compilation Techniques (PACT), pp. 56–67,
2003.

[14] N. Wang, A. Mahesri, and S. J. Patel, “Examining ACE Analysis Reliability Estimates Using Fault-
Injection,” in 34th International Symposium on Computer Architecture (ISCA), pp. 460–469, 2007.

[15] C. Weaver, J. Emer, S. S. Mukherjee, and S. K. Reinhardt, “Techniques to Reduce the Soft Error
Rate of a High-Performance Microprocessor,” in 31st Annual International Symposium on Computer
Architecture, pp. 264–275, June 2004.

C H A P T E R4
Advanced
Architectural
Vulnerability Analysis

4.1 Overview
Architectural vulnerability analysis is one of the key techniques to identify
candidate hardware structures that need protection from soft errors. The higher
is a bit’s Architectural Vulnerability Factor (AVF), the greater is its vulnerability to
soft errors and hence the need to protect the bit. Besides identifying the most vul-
nerable structures, the AVF of every hardware structure on a chip is also necessary
to compute the full-chip SDC and DUE FIT rates. Hence, a complete evaluation of
AVFs of all hardware structures in a chip is critical.

Chapter 3 examined the basics of computing AVFs using ACE analysis. ACE
analysis identifies the fraction of time a bit in a structure needs to be correct—that
is, ACE—for the program to produce the correct output. This fraction of time is the
AVF of the bit. The rest of the time—the time for which the bit does not need to be
correct—is called un-ACE.

This chapter extends AVF analysis described in Chapter 3 in three ways. First,
this chapter examines how to extend the ACE analysis to address-based struc-
tures, such as random access memories (RAMs) and content-addressable memo-
ries (CAMs). Chapter 3 focused primarily on ACE analysis of instruction-based
structures. ACE analysis of structures carrying instructions is simpler than that for

121

122 CHAPTER 4 Advanced Architectural Vulnerability Analysis

address-based structures. This is because whether a bit is un-ACE or not in a
particular cycle depends on whether the corresponding constituent bit of the
instruction is un-ACE. For example, for a wrong-path instruction, it can be conser-
vatively assumed that all bits, other than the opcode bits representing the instruc-
tion, are un-ACE. Consequently, the bits carrying these un-ACE instruction bits
are also un-ACE for the duration they carry the instruction information. In con-
trast, whether data bits in a cache are un-ACE or not requires a more involved
analysis. For example, if a wrong-path load instruction accesses read-only data in
a write-through cache, then the corresponding data bits are un-ACE if and only if
there is no previous or subsequent access to the same data words by another ACE
instruction before the cache block is evicted from the cache. To track whether data
bits in a cache, or more generally in RAM and CAM arrays, are ACE or un-ACE,
this chapter introduces the concept of lifetime analysis.

Second, to track whether bits in a CAM array are ACE or un-ACE, this chapter
explains how to augment the lifetime analysis of CAM arrays with a technique
called hamming-distance-one analysis. The power of ACE analysis to compute AVF
arises from its ability to compute the vulnerability of a program from a fault-free
execution of the program itself. CAMs, however, make such ACE analysis difficult.
A CAM array typically consists of a set of set-associative entries (Figure 4.1). On a
CAM match with a set of incoming bits, the corresponding RAM entry is read. ACE
analysis with CAMs is difficult because a bit flip in the CAM array can cause an
incorrect match against the incoming bits (causing a false-positive match) or a no
match when it should have matched (causing a false-negative match). Superficially,
it may appear that it will almost be impossible to characterize whether such a bit
flip in a CAM array would be ACE or un-ACE without actually flipping a bit in the
CAM array and following the subsequent execution of the program. However, the
hamming-distance-one analysis can identify the CAM bit or a set of CAM bits that

CAM
array

RAM
array

Incoming Bits
to Try to Match

Against CAM array entries

FIGURE 4.1 Mechanics of a CAM array.

4.2 Lifetime Analysis of RAM Arrays 123

need to be ACE to produce the correct output from a program. Once these bits are
identified, one can perform the same lifetime analysis, as is done for RAM array
bits, to compute the AVF of the CAM array.

Third, this chapter discusses how to compute AVFs using SFI. Unlike ACE analy-
sis that computes AVFs using a fault-free execution of a program, SFI introduces a
sample of faults (bit flips) into a hardware model—typically a gate-level represen-
tation called an RTL model during a program’s execution and observes whether
that fault caused a user-visible error. If these bit flips eventually cause a program
to produce an incorrect output, then the corresponding state elements are ACE.
The difficulty with SFI is that to obtain representative results, one needs to inject
faults into a detailed gate-level model, which is significantly slower than a perfor-
mance model, and carry out a large set of experiments to create a proper statistical
representation of the AVF. This allows RTL with SFI simulations to only be run
for 1000–10 000 cycles per benchmark, which is often inadequate to decide if these
elements are ACE or un-ACE because many microarchitectural and architectural
states can live significantly longer than 10 000 cycles. However, SFI into an RTL
model can be adequate for latches and flip-flops, whose ACE-ness can often be
determined within this window of simulation because the lifetime of data held in
these state elements is short (only tens or hundreds of cycles). This chapter dis-
cusses the basic principles of SFI and how it can be used to compute AVFs using
an RTL model.

4.2 Lifetime Analysis of RAM Arrays
This section explains how to extend the AVF analysis to address-based RAM arrays
using lifetime analysis and how the differences in properties of different structures
and the granularity of the analysis can affect the AVF. Finally, this section illustrates
how to compute DUEAVF for RAM arrays that are protected with an error detection
mechanism, such as parity.

4.2.1 Basic Idea of Lifetime Analysis
Computing a bit’s AVF involves identifying the fraction of time it is ACE. As in
Chapter 3, one can focus on identifying un-ACE components in a bit’s lifetime
since it is typically easier to determine if a bit is un-ACE (as opposed to ACE)
in a particular cycle. Subtracting the un-ACE time from total time provides an
upper bound on the ACE lifetime of the bit. Lifetime analysis of ACE or un-ACE
determination is illustrated using the example in Figure 4.2.

Figure 4.2 shows example activities occurring during the lifetime of a bit in an
RAM array, such as in a cache. The bit begins in “idle” state but is eventually filled
with appropriate values that could be either ACE or un-ACE. The bit is read and

124 CHAPTER 4 Advanced Architectural Vulnerability Analysis

Fill Write Read Evict Fill

Time

WriteReadRead

FIGURE 4.2 Lifetime analysis of a bit.

written. Eventually, the state contained in the bit is evicted and refilled. The life-
time of this bit can be divided up into several nonoverlapping components: idle,
fill-to-read, read-to-read, read-to-write, write-to-write, write-to-read, read-to-evict,
and evict-to-fill. By definition, idle and evict-to-fill are un-ACE since there is no
valid state in the bit during those intervals. Read-to-write and write-to-write life-
times are also un-ACE because a strike on the bit after the read (for read-to-write)
or first write (for write-to-write) will not result in an error.

Whether the four other lifetime components—fill-to-read, read-to-read, write-
to-read, and read-to-evict—are un-ACE depends on the ACE-ness of the reads
and the nature of the architectural structure the bit is a part of. If the read itself in
fill-to-read is ACE, then the fill-to-read lifetime is ACE. This can be deduced tran-
sitively from the ACE-ness of an instruction. For example, if an instruction reading
the register file is ACE, then the read itself is ACE, causing the fill-to-read time to
become ACE. However, if the read in fill-to-read is un-ACE (due to an un-ACE
read), then one cannot conclude that the fill-to-read time is un-ACE itself until the
ACE-ness of the subsequent read is determined. If the first read is un-ACE and the
second read is ACE (in the read-to-read lifetime), then both fill-to-read and read-
to-read are ACE. However, if both the reads are un-ACE, then one cannot conclude
if the fill-to-read and the read-to-read lifetimes are ACE or un-ACE before observ-
ing the subsequent write. Once the subsequent write (in read-to-write) is observed,
then one can know for sure that the read-to-write lifetime is un-ACE. Then both
fill-to-read and read-to-read can be marked as un-ACE.

Finally, whether the read-to-evict is ACE or un-ACE depends on the property of
the structure the bit resides in. For example, if the structure is a write-through cache,
then the evict operation simply discards the value in the bit. This makes the read-
to-evict time un-ACE, independent of the ACE-ness of the read itself. However, in a
write-back cache, where the value of a modified bit may be written back to a lower-
level cache, the analysis is more complex. To determine whether the read-to-evict is
ACE or un-ACE, one has to track the ACE-ness of value through its journey through
the computer system until it is overwritten. Often, this interstructure analysis is
complicated. Hence, one could conservatively assume that if value in the bit is
modified and written back on an evict, then read-to-evict time is ACE. The next
subsection further examines how properties of a structure can affect the ACE-ness
or un-ACE-ness of a lifetime.

4.2 Lifetime Analysis of RAM Arrays 125

■ E X A M P L E

In Figure 4.2, compute the AVF for the given lifetime from the first fill to the
next fill. Assume the following lifetimes are ACE: fill-to-read and write-to-read.
Rest is un-ACE. Fill-to-read time is 10 cycles. Write-to-read time is 20 cycles.
Fill-to-fill time is 200 cycles.

S O L U T I O N Total ACE time = 10 + 20 = 30 cycles. Total time = 200 cycles.
AVF = 30/200 = 15%.

■ E X A M P L E

A designer is faced with the proposition of evaluating the AVF of a cache and
its output latch. Every time the cache is read, the data from the cache are first
written to the output latch from where it is read in the next cycle. The designer
argues that since every read—hence every ACE read—from the cache is staged
through the output latch, the AVF of the output latch should be an upper bound
for the AVF of the cache. Is this correct?

S O L U T I O N This is incorrect. Figure 4.3 shows the lifetime analysis of a
counterexample. Consider a one-bit cache with a corresponding output latch.
Consider a lifetime sequence of a Fill, 3 ACE Reads, and an Evict. For every
ACE Read in the cache, there is a corresponding Write into the output latch
followed by an ACE Read in the next cycle after the Write. The AVF of the
one-bit cache for this sequence is 12/14 = 86% since Fill to third ACE Read is
12 cycles and total number of cycles is 14. In contrast, the AVF of the output
latch is 3/14 = 21%. The AVF of the output latch in this case is significantly
smaller than the AVF of the cache. The reason why the AVF of the output latch
cannot approximate the AVF of the cache is that the ACE residency time of bits
in the cache is significantly longer than that in the output latch. One can easily
construct another example to show that the inverse conclusion—whether the
AVF of the output latch is a lower bound of the AVF of the cache—is incorrect
as well.

4.2.2 Accounting for Structural Differences in
Lifetime Analysis

As explained in the previous subsection, theACE-ness of a bit in a structure depends
both on the ACE-ness of the operation on the structure, such as a read, and on cer-
tain properties of the structure itself. This section analyzes how ACE-ness can differ

126 CHAPTER 4 Advanced Architectural Vulnerability Analysis

C
ycle 0

C
ycle 4

C
ycle 10

C
ycle 12

C
ycle 14

C
ycle 5

C
ycle 11

C
ycle 13

Timeline
for the
one-bit
cache

F
ill

A
C

E
 R

ead

A
C

E
 R

ead

A
C

E
 R

ead

A
C

E
 R

ead

A
C

E
 R

ead

A
C

E
 R

ead

W
rite

W
rite

W
rite

Corresponding
timeline for
the output latch

E
vict

FIGURE 4.3 Lifetime analysis of a one-bit cache and its corresponding output
latch.

for four microprocessor structures: a write-through data cache, a write-back data
cache, a data address translation buffer (commonly known as the TLB for trans-
lation lookaside buffer), and a store buffer. These structures are described briefly
below. Readers are referred to Hennessy and Patterson [4] for detailed architectural
descriptions of these structures.

Although a data cache is typically protected in a processor, it is a useful structure
to explain how lifetime analysis works. Besides, as will be seen later (in Computing
the DUE AVF, p. 131), designers often try to optimize the implementation of ECC to
reduce the performance degradation by trading off error rate against performance.
The AVF analysis of caches is useful for such trade-off analysis.

Data Caches
A processor’s closest data cache is a structure that usually sits close to the execution
units and holds the processor’s most recently and frequently used data. This allows
the execution units to compute faster by obtaining data from faster and smaller
data caches than from bigger caches or main memory that can be farther away.
This section considers a data cache that a processor accesses on every load to read
data and on every store to write data. The stores could, however, be routed to the
cache via the store buffer discussed later in this section.

4.2 Lifetime Analysis of RAM Arrays 127

Such a data cache can be either a write-through or a write-back. As the name
suggests, a write to a write-through data cache writes the data not only to the
data cache in question but also to a lower level of the memory hierarchy, which
could be a bigger cache or a main memory. Consequently, a write-through data
cache never has modified data. In contrast, a write-back data cache keeps modi-
fied data and does not propagate the newly written data to a lower level of the
memory hierarchy. This is a performance optimization that works well when
enough write bandwidth is not available. Eventually, when a cache block needs
to be replaced, the modified data are written back and hence the name write-back
cache.

As shown in Figure 4.4, the ACE and un-ACE classifications differ for a write-
through and a write-back cache (as well as for a data translation buffer and a
store buffer). The column “un-ACE” shows the lifetime components that can be
definitely identified as un-ACE. The column “Potentially ACE” shows lifetime
components, such as fill-to-read, that are possibly ACE, unless one can show
through further analysis that these components are un-ACE. For example, if the
read and all subsequent reads before eviction can be shown to be un-ACE, then the
fill-to-read component becomes un-ACE. Hence, this column is marked potentially
ACE. Finally, the column “Unknown” shows lifetime components that remain unre-
solved because the simulation ends before the resolution could be achieved. The
section Effect of Cooldown in Lifetime Analysis, p. 138, examines how a technique
called cooldown can reduce this unknown component.

Processor
Structure

Lifetime Classification

un-ACE ACE

Potentially ACE Unknown

Write-through
data cache

idle, fill-to-write, fill-to-evict, read-to-
write, read-to-evict, write-to-write,
write-to-evict, evict-to-fill

idle, fill-to-write, fill-to-evict, read-to-
write, read-to-evict, write-to-write,
write-to-evict, evict-to-fill

idle, fill-to-write, fill-to-evict, read-to-
write, read-to-evict, write-to-write,
evict-to-fill

fill-to-read, read-to-read,
write-to-read

fill-to-end,
read-to-end,
write-to-end

Write-back data
cache

fill-to-read, read-to-read,
write-to-read, write-to-evict,
write-to-end

fill-to-end,
read-to-end

Data Translation
Buffer

idle, read-to-evict, evict-to-fill fill-to-read, read-to-read fill-to-end,
read-to-end

Store Buffer fill-to-read, fill-to-evict, fill-
to-end, read-to-read, read-
to-evict, read-to-end

none

FIGURE 4.4 Lifetime classification of RAM arrays in four processor structures.
The sections Accounting for Structural Differences in Lifetime Analysis, p. 125,
and Effect of Cooldown in Lifetime Analysis, p. 138, explain components of
the table. End here denotes the end of simulation.

128 CHAPTER 4 Advanced Architectural Vulnerability Analysis

In Figure 4.4, the most striking difference in the lifetimes for a write-through
and a write-back cache is the write-to-evict component, which is un-ACE for a
write-through cache but could be ACE for a write-back cache. The write-to-evict is
un-ACE in a write-through cache because on eviction, the data are thrown away. So
an upset on any of those bits would not matter. In contrast, in a write-back cache,
modified data generated by a write will be written back to the lower levels of the
memory hierarchy on eviction. Consequently, those data will be used and could
potentially be ACE.

To track whether write-to-evict and other lifetime components are ACE or not,
one needs to track the values through the memory hierarchy and hence perform
interstructure ACE analysis. For practical purposes, industrial design teams could
assume conservatively that any write-to-evict in a write-back cache is ACE, unless
the AVF is too high and calls for a more precise analysis. Figure 4.4 bins the lifetime
components into ACE or un-ACE based on this conservative assumption. Some
of the ACE components could, however, be categorized as un-ACE with further
information from interstructure analysis.

Data Translation Buffer
The data translation buffer is a processor structure that caches virtual-to-physical
address translations and associated page protection information from the page
table. A page table is a common OS structure maintained in software. It allows
a virtual user process to map its address space to the physical address space of
the machine, thereby supporting virtual memory. Every load and store instruction
performs a CAM operation (Figure 4.1) on the data translation buffer with its virtual
address. On a CAM hit, a load or a store obtains the corresponding physical address
and the associated protection information.

ACE analysis of the data translation buffer RAM is relatively straightforward,
particularly because there are no “writes” to a data translation buffer besides the
“fill” that writes an entry when it is brought into the buffer. Fill-to-read and read-to-
read are again ACE, by default, unless the corresponding load or store that initiated
the read is un-ACE and there is no subsequent ACE read on this entry.

Store Buffer
The store buffer is a staging buffer for stores before the store data are written into a
coalescing merge buffer. From the merge buffer, the data are written to the cache. For
dynamically scheduled processors, a store buffer is particularly important to ensure
memory ordering within a program. Like the data cache, the store buffer is written
into by store instructions but read by loads. Unlike the data cache, however, each
store creates a new entry in the store buffer. Thus, the store buffer can concurrently
hold multiple stores to the same address. Also, the store buffer typically has per-
byte mask bits to identify the bytes that have been modified. As soon as a store
instruction retires, it becomes a candidate for eviction. When a store is evicted, the
pipeline moves it to a coalescing merge buffer from where the data are eventually

4.2 Lifetime Analysis of RAM Arrays 129

written into the cache hierarchy. The residency times of entries in the store buffer
are much shorter than corresponding ones in the data cache or data translation
buffer.

Let us now examine which components are ACE and un-ACE. The evict-to-fill
time in a store buffer is un-ACE because there is no valid entry in a store buffer
once the entry is evicted. Read-to-fill time may be ACE, unlike in a write-through
cache. This is because even if the read in read-to-evict is initiated by an un-ACE
load, once the entry is evicted, the corresponding data are written back to the cache
and could be potentially ACE.

Further, the store buffer is somewhat unique in that a write to the data bit of
one entry can change the ACE status of a data bit in a completely different entry.
Consider two stores that write to the same byte of a data address. These stores
will occupy different entries in the store buffer. In a single-processor system, the
bits representing this byte in the store buffer entry associated with the older store
become un-ACE as soon as the younger store in the store buffer retires. This is
because any subsequent loads to this address will receive their value from the
younger store buffer entry.

4.2.3 Impact of Working Set Size for Lifetime
Analysis

Besides the nature of an address-based structure, the working set size of a program
resident in such structures can have a significant impact on a structure’s AVF. For
example, if in a 128-entry data translation buffer, only one entry is ever used, then
the AVF will never exceed 1/128. Similarly, if a structure’s miss rate is very high,
then the AVF is likely to be low because part of the ACE lifetime gets converted to
un-ACE time. For example, an intervening eviction between a write and a read—
arising possibly from reduction in a structure’s size or forced eviction—can convert
ACE time to un-ACE, thereby reducing that entry’s contribution to overall AVF
(Figure 4.5).

The AVF is harder to predict, however, if the working set size of the structure
is just around the size of the structure itself. If the working set size fits just in
the structure, then the AVF could be potentially high. But if the structure’s size
is reduced slightly, the AVF could go down significantly because of evictions and
turnover experienced by the structure.

■ E X A M P L E

Consider two scenarios for a 64-entry RAM structure. In both cases, there is a
miss followed by one or more ACE reads, followed by a miss again. Then, the
pattern repeats. However, in the first one, the following sequence plays out: a

130 CHAPTER 4 Advanced Architectural Vulnerability Analysis

Fill ReadEvict FillWriteRead

ACE time
(a)

(b)

Read Evict Fill

Time

Time

Fill WriteRead

ACE time ACE time

FIGURE 4.5 Evictions can reduce the ACE time of a bit or a structure. (a) The
original flow. (b) The reduction in ACE time due to an early eviction.

miss-to-last read time is 99 cycles followed by a read-to-miss time of one cycle.
In the second one, the following sequence occurs: a miss-to-read is one cycle
and read-to-miss is one cycle. Consider the ACE reads. Compute the AVF in
the two different scenarios.

S O L U T I O N In the first case, the AVF = 99/(99+1) = 99%. In the second case,
the AVF is 1/(1 + 1) = 50%. The first case experiences a low miss rate, whereas
the second case has a fairly high miss rate.

4.2.4 Granularity of Lifetime Analysis
The granularity at which lifetime information is maintained can have a significant
impact on the lifetime analysis of certain structures, such as a cache. This relates to
accurate accounting in ACE analysis, unlike the previous two issues that relate to
the property of a structure and the working set size of a program. Let us consider
a cache to understand this point. A cache data (or RAM) array is divided into
cache blocks, whose typical size ranges between 32 and 128 bytes. When a byte
in a cache block A is accessed, the entire cache block A is fetched into the cache.
However, not all the remaining bytes in the block A will be read or written by the
processor. When a new cache block B replaces the cache block A, the remaining
bytes in block A become un-ACE. This is reflected as fill-to-evict time (see Figure
4.4), which represents the bytes of the data never used before the line is evicted or

4.2 Lifetime Analysis of RAM Arrays 131

used only by the initial access. For a write-through cache, fill-to-evict time could
be as high as 45% of its total un-ACE time [3].

The write-back cache also needs special consideration. Consider the following
scenario in the data array. Two consecutive bytes A and B in the same cache block
are fetched into the data array. If A is only read and B is never read prior to eviction,
then the fill-to-evict time for B is un-ACE. In contrast, if A is written into, then the
fill-to-evict time for B becomes potentially ACE because the entire block (including
B) could now be written back into the next level of the cache hierarchy. Thus, a
fault in B could propagate to other levels of the memory hierarchy. To handle a
write-back cache, the lifetime breakdown must be modified. Bytes of a modified
line that have not themselves been modified are ACE from fill-to-evict, regardless
of what may happen to them in the interim. The bytes that have been modified
are ACE from last write-to-evict and any from earlier write-to-read time. The bytes
of an unmodified line work identically to those of a write-through cache. Hence,
two of the un-ACE components of a write-back cache (as shown in Figure 4.4),
fill-to-evict and read-to-evict, can be conditionally ACE at certain times. This extra
ACE component could potentially be reduced by adding multiple modified bits,
each representing a portion of the cache line.

For the data translation buffer, it is sufficient to maintain the ACE and un-ACE
components on a per-entry basis. For the store buffer data array, however, it may be
necessary to maintain the information on a per-byte basis because of the per-byte
masks.

■ E X A M P L E

Compute the AVF of a structure in which the average residence time is 100
cycles and 40% of the bytes in a block are never touched once they are brought
in. There are on average two ACE reads to the other 60% of the bytes in the
block. Average fill-to-read time is 40 cycles and read-to-read time is 30 cycles.
Read-to-evict time is un-ACE.

S O L U T I O N The AVF would be 40% × 0 + 60% × (40 + 30)/100 = 42%.

4.2.5 Computing the DUE AVF
All prior discussions in this section focused on determining the SDC AVF, which
assumes no protection for a specific structure. Instead, if these structures had
fault detection (e.g., via parity protection) and no recovery mechanism, then the
corresponding AVF is called DUE AVF. As described in False DUE AVF, p. 86,
Chapter 3, one can derive the DUE AVF by summing the original SDC AVF and the
resulting false DUE AVF.

In the structures referred to in this section, false DUE AVF from parity protec-
tion arises only for a write-back cache and the store buffer. On detecting a parity

132 CHAPTER 4 Advanced Architectural Vulnerability Analysis

error, the write-through cache and the data translation buffer can refetch the
corresponding entry from the higher-level cache and page table, respectively. That
is, with parity and an appropriate recovery mechanism, the DUE AVF of both a
write-through data cache and a data translation can be reduced to zero.

In both the write-back cache and the store buffer RAM false DUE arises from
dynamically dead loads. When a dynamically dead load reads an entry in the
cache or the store buffer RAM array, it can check for errors by recomputing the
parity bit. If there is a mismatch between the existing and the computed parity
bit, then the cache or the store buffer will signal an error, resulting in a false DUE
event.

■ E X A M P L E

Assume a processor has a few architecturally visible scratch registers, which
are used only in a special mode. Nevertheless, the processor initializes them to
zero every time it boots and the OS saves and restores them on every context
switch. What is the SDC AVF of these scratch registers? What would be the
DUE AVF if the registers were protected with parity and checked for errors
every time they are read?

S O L U T I O N Since the registers are rarely used, the SDC AVF is probably close
to zero. If the registers are protected with parity, then whenever the OS saves
them, it will be forced to read the registers and declare an error on a parity
check violation. Hence, the DUE AVF for these registers are probably close to
100% (Figure 4.6a). Note, however, if the register is actively read and written,
the false DUE AVF goes down, even if the OS saves and restores the registers
(Figure 4.6b).

■ E X A M P L E

To protect against transient faults, processors often have their caches pro-
tected with SECDED ECC, where SECDED is for single-error correction and
double-error detection (see Chapter 5 for details on how SECDED ECC works).
Although SECDED ECC can correct single-bit errors, it can incur an extra cycle
of penalty in a high-frequency processor pipeline. To avoid this extra cycle of
penalty, a processor designer decided to use the ECC for in-line fault detection,
which will not incur this penalty, but out-of-band error recovery to ensure that
errors in the cache are eventually corrected. In-line fault detection ensures that
when a load accesses the cache line with a fault, it will always detect the error
but will not be able to correct it. A background scrubber wakes up periodically,
scans one cache line at a time, and corrects any resident error in the cache using

4.2 Lifetime Analysis of RAM Arrays 133

Initialization

Fill ReadWriteRead

Contributes to false DUE AVF

OS reads
& saves

OS reads
& saves

Contributes to false DUE AVF

Time

Time

(a)

(b)

FIGURE 4.6 False DUE exposure in two different cases. (a) For a bit that is
hardly written or read but saved by the OS. (b) For a bit that is actively read
and written as well as saved by the OS.

the ECC. This is called out-of-band correction since the scrubber is not in the
critical path of a load access. AMD’s OpteronTM processor uses a somewhat
similar scheme [2].

Let us consider a 16-kilobyte write-through cache, with each ECC covering
8 bytes of data. Also, assume that load accesses to the cache are uniformly
distributed, and each ECC-protected word undergoes the following lifetime
sequence: fill, ACE read, ACE read, evict. Assume both fill-to-ACE read and
ACE read-to-evict time are negligible. ACE read-to-ACE read time per word
on average is 1000 cycles. Assume that the scrubber wakes up every 20 cycles
(ignore the absence of free read port in the cache), finds the next cache block
(size = 64 bytes), and corrects any existing error in all the eight words in the
block. For simplicity, assume that the scrubber typically accesses a word half-
way between the two ACE reads. How much will the DUE AVF of the cache
reduce from this scrubbing scheme?

S O L U T I O N In the absence of any scrubbing, a load accessing a faulty word
will incur a DUE event. Whenever a scrubbing event occurs between two ACE
reads, the ACE time from ACE read-to-scrub is converted to un-ACE, which
causes the reduction in the DUE AVF (Figure 4.7). However, the cache itself
has 256 cache blocks, so the DUE AVF reduction would be roughly 500 cycles

134 CHAPTER 4 Advanced Architectural Vulnerability Analysis

Fill

Fill

Evict

EvictScrub

ACE time

ACE time un-ACE time ACE time

Time

Time

ACE
Read

ACE
Read

ACE
Read

ACE
Read

(a)

(b)

FIGURE 4.7 Effects of scrubbing. (a) Fill-to-read and read-to-read are both ACE.
(b) Fill-to-read is ACE, but read-to-scrub is un-ACE due to the intervening scrub.
It should be noted that the scrub can happen anywhere between the two ACE
Reads, and it will still convert the read-to-scrub time to un-ACE.

(half of the ACE read-to-ACE read time, as per the example) for every 256 ×
20 = 5120 cycles. The total time to sequentially scrub the cache is 5120 cycles.
Consequently, the DUE AVF reduction in this specific scenario would be ∼10%
(500/5120).

Using simulation, Biswas et al. [3] showed that the DUE AVF could be reduced
by 42% by scrubbing with a 16-kilobyte cache, a 2-GHz processor, and a scrubbing
interval of 40 ns (which was the best scrubbing interval for the OpteronTM pro-
cessor). This analysis scrubs only on idle cache cycles to minimize any disruption
in the processor’s performance. The reduction in DUE AVF from scrubbing, how-
ever, is highly dependent on the interaccess time of a word, the size of the cache,
and the frequency of scrubbing. Consequently, the advantage of scrubbing must
be carefully computed based on these design parameters.

4.3 Lifetime Analysis of CAM Arrays
The lifetime analysis of CAMs has both similarities to and differences from that of
RAM arrays. Like RAM arrays, CAMs are common hardware structures used in
a silicon chip design. For example, tags in data caches are designed with CAMs.
As in Figure 4.2, the lifetime analysis of CAMs also involves monitoring activities
on the CAM array and identifying the un-ACE portion of a CAM bit’s lifetime. If

4.3 Lifetime Analysis of CAM Arrays 135

Should Have Actual
Outcome

Potential Error? Scenario

Write-
through
Cache

Data
Translation

Buffer

Store Buffer

Mismatched Matched Yes Yes Yes False Positive

Matched Mis-
matched

No No Yes False Negative

FIGURE 4.8 Un-ACE CAM lookup scenarios with single-bit faults.

the soft error contribution of a CAM array is deemed high from its bit count or
its AVF computed via the lifetime analysis, then a designer can choose to add to
it a protection mechanism, such as parity, ECC bits (see Chapter 5), or radiation-
hardened circuits (see Chapter 2).

Unlike RAM arrays, however, one needs to handle false-positive and false-
negative matches in CAM arrays. As discussed before, a CAM, such as the tag store,
operates by simultaneously comparing the incoming match bits (e.g., an address)
against the contents of each of several memory entries (Figure 4.1). Such a CAM
can give rise to two types of mismatches, as shown in Figure 4.8. First, incoming
bits can match against a CAM entry in the presence of a fault when it should really
have mismatched (the false-positive case). If the RAM entry corresponding to the
CAM entry is read, then this will cause the RAM array to deliver incorrect data,
potentially causing incorrect execution. Similarly, there is a potential for incorrect
execution if the RAM entry is written into.

Alternatively, incoming bits may not match any CAM entry, although they
should have really matched (the false-negative case). For a write-through cache or a
data translation buffer, this would result in a miss, causing the entry to be refetched
without causing incorrect execution. However, for a store buffer that holds modi-
fied data, this may cause an error because the incoming load would miss in the
store buffer and obtain possibly stale data from the cache. An incoming write to a
write-back cache will have a similar problem. A false-negative match would refetch
an incorrect block to which the write will deposit its data. Methods to handle these
scenarios are discussed in more detail below.

4.3.1 Handling False-Positive Matches in a
CAM Array

Figure 4.9 shows an example of the false-positive match. The incoming match bits,
1001, would not have matched against the existing CAM entry, 1000, unless the
fourth bit is flipped to 1. One can use a technique called hamming-distance-one anal-
ysis to compute the AVF of CAM entries. Two sets of bits are said to be apart by
hamming distance of one, if they differ in only one bit position. Thus, 1001 and
1000 are apart by a hamming distance of one (in the third bit position, assuming

136 CHAPTER 4 Advanced Architectural Vulnerability Analysis

No Match

(a) No match in the absence of a fault

(b) False-positive match in the presence of a fault

CAM Entry

CAM Entry

Incoming Match Bits

Incoming Match Bits

1 10 0

1 10 0 1 10 0

1 00 0

FIGURE 4.9 False-positive match for a CAM entry.

bit positions are marked from zero to three). Similarly, 0001 and 1000 are apart
by a hamming distance of two because they differ in the zero-th and third bit
positions.

Assuming a single-bit fault model, an incoming set of bits can cause a false-
positive match in the CAM array if and only if there exists an entry in the CAM
array that differs from the incoming set of bits in one bit position. In other words,
false positives are introduced in the CAM entries that are at a hamming distance
one from the incoming set of bits. The example in Figure 4.10 shows that only two
of the CAM entries are at a hamming distance of one from the incoming bits.

Once the bits that may cause a mismatch have been identified, one can perform
the lifetime analysis on these bits. However, because the false-positive case is caused
by one particular bit in a tag entry, the ACE analysis of the tag array must be done
on a per-bit basis, rather than on a per-entry or a per-byte basis as in the RAM
arrays. That is, when a match is found, the bit is marked as potentially ACE. All
other bits in the same entry remain un-ACE.

■ E X A M P L E

Compute the AVF of a write-through CAM array with 10 4-bit-wide entries
over 10 cycles. Assume that only false-positive matches (not false-negative
ones) contribute to the AVF. In each cycle, there is an incoming address
CAM-ing against the CAM array. During these 10 cycles (marked 0 through 9),
there is only one hamming-distance-one match in bit position 1 of entry 1 in
cycle 7. Entry 1 gets evicted in cycle 9.

S O L U T I O N Because the CAM array is write-through, the structure does not
hold modified data in the corresponding RAM array. Bit 1 of entry 1 is poten-
tially ACE for eight cycles (cycles 0 through 7) because any fault in bit position

4.3 Lifetime Analysis of CAM Arrays 137

CAM array

Hamming-distance-one match

Hamming-distance-one match

Incoming Match Bits

1 0 0 1

1 1 0 1

1 1 1 11 0 0 1

1 0 0 0

0 0 0 1

FIGURE 4.10 Hamming-distance-one match in a CAM array.

1 between cycles 0 and 7 would deliver a false-positive match in cycle 7. The
rest of the bits are un-ACE throughout. The AVF of bit 1 of entry 1 is 8/10 = 80%.
The AVF of the rest of the bits throughout these 10 cycles is zero. So the average
AVF of the CAM entry is (80% × 1 + 0 × 39)/40 = 2%.

4.3.2 Handling False-Negative Matches in a CAM
Array

The false-negative case is easier to track than the false-positive case. The false-
negative case occurs when the incoming match bits do not find a match when
they should have really matched the bits in a CAM entry. A single-bit fault in
any bit of the CAM entry would force a mismatch. On a false-negative match,
therefore, all bits in the CAM entry are marked either ACE or un-ACE depending
on whether a false miss in the structure would cause incorrect execution. In a
data translation buffer or a write-through cache, such a false miss will not cause
an incorrect execution, but this would cause an incorrect execution in a write-
back cache or a store buffer. In the write-back cache, a false miss could fetch stale
data, causing incorrect execution. In the store buffer, an incoming load address
CAM-ing against the store buffer will miss and obtain stale data from the data
cache, potentially causing incorrect execution.

Interestingly, there is a subtle difference between the RAM and CAM analyses.
On a single-bit fault in the RAM array, the actual execution does not necessarily
change because the effect of the single-bit fault is localized. In contrast, on a false-
negative match in the CAM array, one may not get an actual fault (e.g., as in the
write-through cache or the data translation buffer). But the fault can alter the flow
of execution because the hardware would potentially bring in a new entry in the

138 CHAPTER 4 Advanced Architectural Vulnerability Analysis

CAM array. Biswas et al. [3], however, verified that this effect did not alter the AVF
of a microprocessor data translation buffer in any significant way.

4.4 Effect of Cooldown in Lifetime Analysis
As should be apparent by now, properties of structures (e.g., write-back vs. write-
through) and time of occurrence of events, such as write, read, or evictions, may
have a significant impact on the AVF of a structure. In a similar way, when the AVF
simulation ends can also have a significant impact on the AVF of structures. This
is termed as an “edge effect.”

The edge effects arise as an artifact of not running a benchmark to completion in
a performance model. For example, in Figure 4.11a, if the simulation ended after the
fill, then one would not know if the fill-to-end time is ACE or un-ACE and therefore
must be marked as unknown. If there were an ACE read after the simulation ended,
the fill-to-end time should really have been ACE. Conversely, if there were an
eviction after the simulation ended (Figure 4.11b), then the ACE read-to-end time
should have been un-ACE instead of unknown. These can have significant impacts
on the AVF numbers because designers may have to conservatively assume that
AVF = (ACE time + unknown time)/(total time).

unknown

Fill Evict

Time

ACE
Read

Simulation
Ends

ACE time unknown

Fill Evict

Time

ACE
Read

Simulation
Ends

(a)

(b)

FIGURE 4.11 Edge effect in determining ACE and un-ACE time in a write-
through structure. In (a), fill-to-end time is unknown when the simulation
ends but should really be ACE. In (b), ACE read-to-end time is unknown when
the simulation ends but should really be un-ACE.

4.4 Effect of Cooldown in Lifetime Analysis 139

To tackle these edge effects, Biswas et al. [3] introduced the concept of cooldown,
which is complementary to the concept of warm-up in a performance model.
A processor model faces a problem at start-up in that initially all processor states,
such as the content of the cache, are uninitialized. If simulation begins immediately,
the simulator will show an artificially high number of cache misses. This problem
can be solved by warming up the caches before activating full simulation. In the
warm-up period, no statistics are gathered, but the caches and other structures are
warmed up to reflect the steady-state behavior of a processor.

Cooldown is the dual of warm-up and follows the actual statistics-gathering
phase in a simulation. During the cooldown interval, one only needs to track events
that determine if specific lifetime components, such as fill-to-end or read-to-end,
should be ACE or un-ACE. If after the end of the cooldown interval, one cannot
precisely determine if the specific lifetime components are ACE or un-ACE, they
can be marked as unknown (Figure 4.4).

Figure 4.12 shows the effect cooldown has in reducing the unknown compo-
nent. The y-axis of the graph shows the average AVF for each structure over all
benchmarks. There are two bars associated with each structure. The first bar rep-
resents the structure’s AVF without cooldown, and the second represents the AVF
with cooldown. The gray section of each bar represents the fraction of AVF that
is unknown at simulation end. For every structure other than the tags (CAM) of
the data translation buffer, the cooldown period reduces the unknown component
by over 50%. Less effect is seen in the data translation buffer because an unknown

0

5
10

15

20
25

30

35

40
45

50

D
ca

ch
e

D
at

a
(W

T
)

D
ca

ch
e

D
at

a
(W

B
)

dT
L

B
 D

at
a

D
ca

ch
e

T
ag

s
(W

T
)

D
ca

ch
e

T
ag

s
(W

B
)

Unknown

dT
L

B
 T

ag
s

A
V

F
 %

FIGURE 4.12 Effect of cooldown with a 10-million instruction cooldown inter-
val. For each structure, there are two bars. The first bar shows the AVF without
cooldown. Reprinted with permission from Biswas et al. [3]. Copyright © 2005
IEEE.

140 CHAPTER 4 Advanced Architectural Vulnerability Analysis

entry can only be classified after it is evicted, and the data translation buffer has
a much lower turnover rate than the other structures. Increasing the cooldown
period, however, progressively reduces the unknown component without raising
the ACE component, suggesting that asymptotically the unknown component may
become negligible.

4.5 AVF Results for Cache, Data Translation
Buffer, and Store Buffer
This section discusses AVF results for a write-through and a write-back cache,
a data translation buffer, and a store buffer. These structures and their differ-
ences have been described earlier in this chapter (see Accounting for Structural
Differences in LifetimeAnalysis, p. 125). The evaluation methodology, performance
simulator, and benchmark slices are same as described in Evaluation Methodology,
p. 107, Chapter 3. Both the data caches studied are 16-kilobyte four-way set asso-
ciative. The data translation buffer is fully set associative with 128 entries. The store
buffer has 32 entries. All simulations were run for 10 million instructions followed
by a cooldown of 10 million instructions. Further details of these experiments are
described in Biswas et al. [3].

As per the ACE methodology, the AVF can be divided into two components:
potentially ACE and unknown components (Figure 4.4). Potentially ACE compo-
nents are those that are possibly ACE unless later analysis proves they are un-
ACE. Unknown lifetime components are those that are unknown because the sim-
ulation ended before resolving whether the components are unknown. As it was
seen in Effect of Cooldown in Lifetime Analysis, p. 138, typically these unknown
components can be reduced significantly using cooldown techniques. Based on
this observation, one can use two AVF terms: upper-bound AVF and best-estimate
AVF. Upper-bound AVF includes both potentially ACE and unknown components.
In contrast, best-estimate AVF includes only potentially ACE components under
the assumption that if one ran the programs to completion, the unknowns would
resolve and become mostly un-ACE.

4.5.1 Unknown Components
From the graphs in Figures 4.13–4.16, it is seen that the RAM arrays have an aver-
age unknown component of 3% and data cache and store buffer CAM arrays have
an average of 4%. The data translation buffer CAM array has a significantly higher
unknown component of 13%. This is because the data translation buffer has a sig-
nificantly lower turnover rate than the data cache. That is, entries tend to stick
around in the data translation buffer for long durations—even beyond the sim-
ulation and cooldown periods. Thus, all the CAM bits in an entry that do not
hamming-distance-one match with a memory operation remain in the unknown
state until that entry is evicted from the translation buffer.

4.5 AVF Results for Cache, Data Translation Buffer, and Store Buffer 141

A
V

F
 %

100

90

80

70

60

50

40

30

20

10

0
cr

af
ty

ga
p

pa
rs

er

pe
rl

bm
k_

m
ak

er
an

d

vp
r_

ro
ut

e

eq
ua

ke

fm
a3

d

ga
lg

el

av
er

ag
e

w
up

w
is

e

sw
im

si
xt

ra
ck

m
gr

id

m
es

a

lu
ca

s

fa
ce

re
c

ar
t_

1

ap
si

ap
pl

u

am
m

p

vo
rt

ex
_l

en
di

an
3

tw
ol

f

m
cf

gz
ip

_g
ra

ph
ic

eo
n_

ka
ji

ya

cc
_1

66

bz
ip

2_
so

ur
ce

Unknown AVF

Best Estimate AVF

(a) Write-Through Cache RAM Array

A
V

F
 %

100

90

80

70

60

50

40

30

20

10

0

cr
af

ty

ga
p

pa
rs

er

pe
rl

bm
k_

m
ak

er
an

d

vp
r_

ro
ut

e

eq
ua

ke

fm
a3

d

ga
lg

el

av
er

ag
e

w
up

w
is

e

sw
im

si
xt

ra
ck

m
gr

id

m
es

a

lu
ca

s

fa
ce

re
c

ar
t_

1

ap
si

ap
pl

u

am
m

p

vo
rt

ex
_l

en
di

an
3

tw
ol

f

m
cf

gz
ip

_g
ra

ph
ic

eo
n_

ka
ji

ya

cc
_1

66

bz
ip

2_
so

ur
ce

(b) Write-Back Cache RAM Array

Unknown AVF

Best Estimate AVF

FIGURE 4.13 AVFs of the RAM arrays of a write-through and a write-back
cache.

Fortunately, hamming-distance-one matches are rare, and each match only adds
ACE time to a single bit of the matched tag in the CAM array. Further, separate
experiments done by Biswas et al. (not shown here) show that nearly all these
bits will eventually resolve to the un-ACE state. Similarly, the unknown lifetime
components for the data arrays also resolve mostly to un-ACE if the cooldown
period is extended further. Hence, the rest of this section primarily discusses the
best-estimate AVF numbers.

142 CHAPTER 4 Advanced Architectural Vulnerability Analysis

(a) Data Translation Buffer RAM Array

Unknown AVF
Best Estimate AVF

100

90

80

70

60

50

40

30

20

10

0

100
90
80
70
60
50
40
30
20
10
0

A
V

F
 %

A
V

F
 %

(b) Store Buffer RAM Array

cr
af

ty

ga
p

pa
rs

er

pe
rl

bm
k_

m
ak

er
an

d

vp
r_

ro
ut

e

eq
ua

ke

fm
a3

d

ga
lg

el

av
er

ag
e

w
up

w
is

e

sw
im

si
xt

ra
ck

m
gr

id

m
es

a

lu
ca

s

fa
ce

re
c

ar
t_

1

ap
si

ap
pl

u

am
m

p

vo
rt

ex
_l

en
di

an
3

tw
ol

f

m
cf

gz
ip

_g
ra

ph
ic

eo
n_

ka
ji

ya

cc
_1

66

bz
ip

2_
so

ur
ce

cr
af

ty

ga
p

pa
rs

er

pe
rl

bm
k_

m
ak

er
an

d

vp
r_

ro
ut

e

eq
ua

ke

fm
a3

d

ga
lg

el

av
er

ag
e

w
up

w
is

e

sw
im

si
xt

ra
ck

m
gr

id

m
es

a

lu
ca

s

fa
ce

re
c

ar
t_

1

ap
si

ap
pl

u

am
m

p

vo
rt

ex
_l

en
di

an
3

tw
ol

f

m
cf

gz
ip

_g
ra

ph
ic

eo
n_

ka
ji

ya

cc
_1

66

bz
ip

2_
so

ur
ce

Unknown AVF
Best Estimate AVF

FIGURE 4.14 AVFs of the RAM arrays of a data translation buffer and a store
buffer.

4.5.2 RAM Arrays
The best estimate of SDC AVFs varies widely across the RAM arrays: from 4% for
the store buffer (Figure 4.14) to 6% for the write-through data cache (Figure 4.13)
to 25% for the write-back cache (Figure 4.13) to 36% for the data translation buffer
(Figure 4.14). If unknown time is included, these rise to 4%, 9%, 28%, and 38%,
respectively.

4.5 AVF Results for Cache, Data Translation Buffer, and Store Buffer 143

Unknown AVF
Best Estimate AVF

100
90
80

70
60
50

40
30
20
10

0

100
90
80
70
60
50
40
30
20
10
0

A
V

F
 %

A
V

F
 %

cr
af

ty

ga
p

pa
rs

er

pe
rl

bm
k_

m
ak

er
an

d

vp
r_

ro
ut

e

eq
ua

ke

fm
a3

d

ga
lg

el

av
er

ag
e

w
up

w
is

e

sw
im

si
xt

ra
ck

m
gr

id

m
es

a

lu
ca

s

fa
ce

re
c

ar
t_

1

ap
si

ap
pl

u

am
m

p

vo
rt

ex
_l

en
di

an
3

tw
ol

f

m
cf

gz
ip

_g
ra

ph
ic

eo
n_

ka
ji

ya

cc
_1

66

bz
ip

2_
so

ur
ce

cr
af

ty

ga
p

pa
rs

er

pe
rl

bm
k_

m
ak

er
an

d

vp
r_

ro
ut

e

eq
ua

ke

fm
a3

d

ga
lg

el

av
er

ag
e

w
up

w
is

e

sw
im

si
xt

ra
ck

m
gr

id

m
es

a

lu
ca

s

fa
ce

re
c

ar
t_

1

ap
si

ap
pl

u

am
m

p

vo
rt

ex
_l

en
di

an
3

tw
ol

f

m
cf

gz
ip

_g
ra

ph
ic

eo
n_

ka
ji

ya

cc
_1

66

bz
ip

2_
so

ur
ce

(a) Data Translation Buffer CAM Array

(b) Store Buffer CAM Array

Unknown AVF
Best Estimate AVF

FIGURE 4.15 AVFs of the tag (CAM) array of a data translation buffer and a
store buffer.

The store buffer’s low SDC AVF arises from its bursty behavior and lower aver-
age utilization in most benchmarks.Additionally, the store buffer has per-byte mask
bits that identify which of the 16 bytes of an entry is written. Entries that are not
written remain un-ACE and do not contribute to the AVF. In the average in-use
store buffer entry, only 6 out of the 16 bytes were written.

The data translation buffer’s RAM array has an SDC AVF of 36%, the highest
among the RAM arrays discussed in this chapter. This is due to its read-only status
and relatively low turnover rate.

144 CHAPTER 4 Advanced Architectural Vulnerability Analysis

Unknown AVF
Best Estimate AVF

100
90
80
70
60
50
40
30
20
10
0

A
V

F
 %

100

90

80

70

60

50

40

30

20

10

0

A
V

F
 %

cr
af

ty

ga
p

pa
rs

er

pe
rl

bm
k_

m
ak

er
an

d

vp
r_

ro
ut

e

eq
ua

ke

fm
a3

d

ga
lg

el

av
er

ag
e

w
up

w
is

e

sw
im

si
xt

ra
ck

m
gr

id

m
es

a

lu
ca

s

fa
ce

re
c

ar
t_

1

ap
si

ap
pl

u

am
m

p

vo
rt

ex
_l

en
di

an
3

tw
ol

f

m
cf

gz
ip

_g
ra

ph
ic

eo
n_

ka
ji

ya

cc
_1

66

bz
ip

2_
so

ur
ce

cr
af

ty

ga
p

pa
rs

er

pe
rl

bm
k_

m
ak

er
an

d

vp
r_

ro
ut

e

eq
ua

ke

fm
a3

d

ga
lg

el

av
er

ag
e

w
up

w
is

e

sw
im

si
xt

ra
ck

m
gr

id

m
es

a

lu
ca

s

fa
ce

re
c

ar
t_

1

ap
si

ap
pl

u

am
m

p

vo
rt

ex
_l

en
di

an
3

tw
ol

f

m
cf

gz
ip

_g
ra

ph
ic

eo
n_

ka
ji

ya

cc
_1

66

bz
ip

2_
so

ur
ce

(a) Write-Through Cache CAM Array

(b) Write-Back Cache CAM Array

Unknown AVF
Best Estimate AVF

FIGURE 4.16 AVFs of the tag (CAM) arrays of a write-through and a write-back
cache.

The write-through cache’s SDC AVF is relatively low for three reasons. First,
on average, over 45% of the bytes read into the cache are accessed only on that
initial access or not at all. A read or write to a specific byte or word brings in a
whole cache block full of bytes, but many of these other bytes are never accessed.
Second, read-to-evict constitutes a significant fraction of the average overall lifetime
(over 20%). These results agree with observations made by others (e.g., Lai et al. [6],

4.5 AVF Results for Cache, Data Translation Buffer, and Store Buffer 145

Wood et al. [10]). Read-to-evict is un-ACE for a write-through cache. It is also
un-ACE for a write-back cache, assuming that no write preceded the read. Last,
unlike the data translation buffer, a data cache line is modified by stores, indicating
that any bytes overwritten by a store are un-ACE in the time period from the last
useful read until the write. On the graph, this component of un-ACE time accounts
for a little less than 5% of the overall lifetime.

The write-back cache’s SDC AVF is 25% compared to 6% of the write-through
cache. This is because a write to a byte of a cache line makes all unmodified bytes in
the cache line ACE from the time of the initial fill until the eviction of the line. This
is true regardless of the intervening access pattern to that line. Per-byte mask bits
(as in the store buffer) would help avoid the write-backs of bytes never modified,
thereby reducing the write-back cache’s AVF.

It should be noted that there is a wide variation among the AVFs across bench-
marks. Further, AVFs of the different structures for the same benchmark are not
necessarily correlated, that is, a high AVF on one structure may not necessarily
imply a high AVF on a different structure for the same benchmark. This is true for
both the RAM and CAM arrays.

4.5.3 CAM Arrays
The best-estimate SDC AVFs of the CAM arrays of the write-through cache and the
data translation buffer, which do not include unknown time, are quite low: 0.41%
and 3%, respectively. These values are considerably lower than the same values
for the corresponding data arrays: 6% and 36%, respectively. The low AVF in these
CAM arrays arises because the false-negative case—mismatch when there should
have been a match—forces a miss and refetch in these structures but does not
cause an error. In contrast, the false-positive case—match when there should have
been a mismatch—causes an error, but it only affects the ACE state of the single
bit that causes the difference. Consequently, there are significantly fewer ACE bits
on average in the tag arrays of these structures compared to the data arrays. The
write-through tag AVF is particularly low because a hamming-distance-one match
would have to occur between the four members of a set to contribute to ACE time.

When including unknown time, SDC AVFs of the CAM arrays of the write-
through cache and data translation buffer increase to 4.3% and 16%, respectively.
The lower numbers are more representative of the actual AVFs of these two struc-
tures because hamming-distance-one matches are so rare, and each hamming-
distance-one match makes only 1-bit ACE. If the higher numbers were used, one
would be classifying all bits of the tag as ACE at the end point of the simula-
tion. Also, it is likely that these structures would be effectively flushed by a context
switch before the end of the cooldown phase (unless the structures have per-process
identifiers).

In contrast, the SDC AVF of the store buffer is 7.7%, which is, as per our expec-
tation, higher than that of the corresponding RAM arrays. This is because the store
buffer tags are always ACE from fill to evict. The only contributor to un-ACE time

146 CHAPTER 4 Advanced Architectural Vulnerability Analysis

for the store buffer tags is the idle lifetime component. The low AVF implies that
the store buffer utilization is on average quite low. The CAM AVF is higher than
the RAM AVF for the store buffer because all the bytes in the store buffer entry are
not written by each store. On average, an in-use store buffer entry contains only 6
valid bytes out of 16 total bytes. Only the valid bytes contribute ACE time.

The SDC AVF of the CAM array of the write-back cache is 25% but is not directly
correlated with that of its RAM array. This is because two of the un-ACE com-
ponents for a write-through cache—fill-to-evict and read-to-evict—may become
potentially ACE in a write-back cache. A write-back cache’s CAM entry is always
ACE from the time of first modification of its corresponding RAM entry until that
entry is evicted.

4.5.4 DUE AVF
A DUE occurs when a fault in a structure can be detected but cannot be recovered
from it. Putting parity on the RAM arrays of a write-back cache or a store buffer
allows one to detect a fault in a dirty block but not recover from it. To compute
the DUE AVF, one can sum the original SDC AVF (same as the true DUE AVF with
parity) and false DUE AVF arising from dynamically dead loads. Analysis shows
that the false DUE AVF is, on average, an additional 0.2% and 0.5% arising out of
dynamically dead loads and stores. Hence, the total DUE AVF for the RAM arrays
of a store buffer and write-back cache is 4.2% and 25.5%, respectively. It should be
noted that the false DUE AVF component for these structures is significantly less
than what was found for an instruction queue (Figure 3.11).

The DUE AVF of the CAM arrays of both a write-back cache and a store buffer is
the same as their corresponding SDC AVF (in the absence of parity) since the CAM
bits are required to be (conservatively) correct even if the store is dynamically dead.
An incorrect CAM entry could result in data being written to a random memory
location when the entry is evicted.

Putting parity on a RAM or CAM array of a write-through cache or a data transla-
tion buffer allows one to recover from a parity error by refetching the correspon-
ding entry from the higher-level cache or page table, respectively. Consequently,
DUE AVF of these arrays can be reduced to zero in the presence of parity.

4.6 Computing AVFs Using SFI into
an RTL Model
This chapter so far has discussed how to compute the AVF of RAM and CAM arrays
using ACE analysis of fault-free execution. This section discusses how to compute
theAVF and assess the relative vulnerabilities of different structures using SFI. First,
the equivalence of fault injection and ACE analyses, as well as their advantages
and disadvantages, is discussed. Then, two key aspects of the SFI methodology are
described. Finally, a case study on SFI done at the University of Illinois at Urbana–
Champaign is discussed.

4.6 Computing AVFs Using SFI into an RTL Model 147

4.6.1 Comparison of Fault Injection
and ACE Analyses

Figure 4.17 shows how ACE analysis and SFI can compute the same AVF.
Figure 4.17a shows a sequence of operations: a Fill, an ACE Read, an ACE Read,
an un-ACE Read, and an Evict. Let us assume that the ACE time is from the Fill to
the second ACE Read and the un-ACE time is from the second ACE Read till Evict.
Hence, the AVF = ACE Time/(Fill to Evict Time) = 6/15 = 40%.

Figure 4.17b shows how the same can be achieved via fault injection. In this
experiment, the same program is executed 15 times (instead of once as done in
ACE analysis). In each of the executions, a fault is injected into a different cycle.
For example, during the first execution, the fault is injected into cycle 0; during
the second execution, the fault is injected into cycle 1 etc. When a fault is injected,
the bit’s value is flipped. That is, it changes to one if it were zero and zero if it
were one. The bit’s AVF in this case is defined as the number of errors divided by
the number of faults injected. A fault results in an error only when the bit is ACE.
Hence, the AVF = 6/15 = 40%. In other words, both fault injection and ACE analyses
will ideally yield the same AVF for a bit.

In reality, however, both ACE analysis and fault injection suffer from a number
of shortcomings, which limit the scope of their use. ACE analysis relies on precise
identification of ACE and un-ACE components of a bit’s lifetime and hence requires
executing the program through tens of millions of instructions as well as by using
cooldown. Typically, in a microprocessor, a performance model is able to run such
a huge number of instructions; hence, ACE analysis is reasonable to apply in a

Fill

Cycle 0 Cycle 15Cycle 10Cycle 6Cycle 3

Cycle 0 Cycle 15Cycle 10Cycle 6Cycle 3

Fill

Evict

Evict

un-ACE timeACE time
Time

Time

un-ACE
Read

un-ACE
Read

ACE
Read

ACE
Read

ACE
Read

ACE
Read

(a)

(b)

FIGURE 4.17 (a) ACE analysis of an example lifetime. (b) Analysis using fault
injection in the same lifetime period. The arrows with the solid head show
the injection of a fault into a bit.

148 CHAPTER 4 Advanced Architectural Vulnerability Analysis

performance simulator. However, a performance simulator does not capture all
the detailed microarchitectural state of a machine. For example, typically latches
are not present in a performance simulator. Hence, it is difficult to compute the
AVF of latches in a performance simulator.

Also, ACE analysis may not be able to track bit flips that cause a control-flow
change but do not change the final output of the program (see ACE Analysis
Approximates Program Behavior in the Presence of Faults, p. 105). Fault injection
can, however, compute the AVF of latches and track control-flow changes and con-
sequent masking because it simulates the propagation of the injected fault through
the program execution. Nonetheless, this may not have a large impact on the AVF
numbers. For example, using microbenchmarks, Biswas et al. [3] found that both
SFI into an RTL model and ACE analysis in a performance model of a commercial-
grade microprocessor (built by Intel Corporation) yielded a very similar AVF of the
Data Translation Buffer (DTB) CAM and RAM.

Fault injection requires executing a program repeatedly for each injected fault
to see if the injected fault results in a user-visible error for the specific instance
of the fault. An exhaustive search of this space is almost impossible because it
requires an explosive number of experiments spanning the total state of a silicon
chip (e.g., upward of 200 million bits in a current microprocessor), potential space
of benchmarks running on the chip, and the cycles in which faults can be injected.
Instead, practitioners use statistical sampling, which is covered in the next subsec-
tion. Because of the statistical nature of this methodology, it is called statistical fault
injection.

SFI into a performance simulator may be less meaningful because a performance
simulator does not precisely capture the logic state of a silicon chip. Instead, SFI is
typically done into a chip’s RTL model consisting primarily of logic gates. Although
an RTL model exposes the detailed operation of a processor, it also makes the SFI
simulations orders of magnitude slower than those of a performance simulator. This
is because large number of simulations must be run to evaluate the AVF of each
structure and because the RTL model is itself slow. Consequently, such simulations
are often run for 1000–10 000 simulated processor cycles, which is often insufficient
to determine if a bit flip isACE or un-ACE. Hence, SFI may result in large unknowns
and hence a conservative estimate of AVF because of lack of knowledge about the
ACE-ness of a latch or a bit.

Further, because an RTLmodel cannot run a program to completion, SFI typically
runs two copies of the same program on two RTL models: one faulty and one clean
(with no fault). For each fault injection experiment, a fault is injected into one of the
RTL models denoted as the faulty model. The clean copy runs the original program
without any injected fault. After several cycles—typically, 1000–10 000 cycles—the
architectural states of the two models are compared. If the architectural states do
not match, then it is often assumed that there is an error and the state in to which the
fault was injected is assumed to be ACE. This is, however, not strictly correct since
the mismatch could have resulted from the fault injected into an un-ACE state. For
example, if the fault was injected into a dynamically dead state, which is un-ACE,

4.6 Computing AVFs Using SFI into an RTL Model 149

the architectural states of the two copies can mismatch, but this may produce no
error in the final outcome of the program. This issue is discussed in greater detail
later in this chapter.

Finally, an RTL model is often not available during the early design exploration
of a processor or a silicon chip, which makes it hard to compute AVFs using SFI.
However, performance models are typically created early in the design cycle of a
high-performance microprocessor (but not necessarily for chipsets). This leaves the
designer with two options to compute AVFs: ACE analysis in a performance model
or SFI into an RTL model for an earlier generation of the processor or the silicon
chip, if available.

4.6.2 Random Sampling in SFI
To determine a structure’s AVF using fault injection, one can use the following
algorithm: pick a bit in the structure, pick a benchmark, and pick a cycle among
the total number of cycles the benchmark will run. Start the benchmark execution,
and at the predetermined cycle, flip the state of the bit. Then continue running the
program until one can determine if the bit flip results in a user-visible error (i.e.,
bit was ACE at the point of fault injection) or not. Repeat this procedure for the
selected list of benchmarks, for every cycle the benchmark executes, and for every
bit or state element in the silicon chip. As the reader can easily guess, this results
in an explosive number of experiments. For example, with 30 benchmarks, each
running a billion cycles, and 200 million state elements, one ends up with 6 × 1018

experiments. If each experiment took 10 hours to run and one had a thousand
computers at one’s disposal to do the experiments, this would still take about
7 × 1012 years to complete all the experiments. Clearly, this is infeasible.

To reduce this space of experiments, one can randomly select a set of bench-
marks, a set of cycles to inject faults into, and a set of bits in each structure. If the
random samples are selected appropriately, the computed AVF should asymptot-
ically approach that of the full fault injection or ACE analysis. It should be noted
that each fault injection represents a Bernoulli trial with the bit’s AVF as the proba-
bility that the specific experiment will cause an error. Then, the minimum number
of experiments necessary or n can be computed as

n =
4zα/2

2 × AVF (1 − AVF)
w2

where zα/2 denotes the value of the standard normal variable for the confidence
level 100 × (1 − α)% and w is the width of the confidence interval at the particular
confidence level [1]. In a layman’s terms, an experimental result that yields an X%
confidence interval at a Y% confidence level indicates that if the experiment was
repeated 100 times, then on average, Y of the experiments would return a result
within X% of the true value of the random variable. The values of z can be obtained
from statistical tables (e.g., table 5 in Appendix A in Allen [1]). The AVF is the

150 CHAPTER 4 Advanced Architectural Vulnerability Analysis

sample AVF computed as the ratio of user-visible errors and the number of fault
injection experiments.

■ E X A M P L E

Compute the minimum number of experiments necessary for an AVF of 30%
for a 95% confidence level with a 10% error in the AVF in either direction.
Repeat the calculation for a 99% confidence level.

S O L U T I O N For the 95% confidence level, zα/2 = 1.96. For 10% error in
the AVF in either direction, w = 2 × 0.1 × 0.3 = 0.06. Hence, n = 4 × 1.962 ×
0.3(1 − 0.3)/0.062 = 896.37. So the minimum of fault injection experiments
necessary is 897. For the 99% confidence level, zα/2 = 2.576, so n = 4 × 2.5762 ×
0.3(1 − 0.3)/0.062 = 1548.35. Hence, the minimum number of fault injections
necessary is 1549.

Figure 4.18 shows that the number of experiments required increases with the
increase in confidence level and decrease in the error bound. For example, with a
10% error margin in one direction, the number of experiments required increases
4-fold when the confidence level is raised from 90% to 99.9%. Similarly, for a
confidence level of 90%, the number of experiments increases 25-fold when the
error bound in one direction is tightened from 50% to 10%.

0

500

1000

1500

2000

2500

3000

0% 20% 40% 60%

Width/2

N
u

m
b

er
 o

f
E

xp
er

im
en

ts

CL = 99.9%

CL = 99%

CL = 95%

CL = 90%

FIGURE 4.18 Number of fault injection experiments necessary to achieve the
appropriate confidence level (CL) and error margin (or width) for a sample
AVF of 30%. The zα/2 values for 99.9%, 99%, 95%, and 90% CL are 3.291, 2.576,
1.96, and 1.645, respectively. Using these values, the same graph can be recon-
structed for different values of AVF.

4.6 Computing AVFs Using SFI into an RTL Model 151

4.6.3 Determining if an Injected Fault Will Result
in an Error

One of the key questions in SFI into an RTL model is to determine if an injected
fault actually will result in an error. In ACE terminology, one needs to determine
if the bit or the state element is ACE when the fault is injected. Because of the
thousands of simulations that must be run for each AVF evaluation for each struc-
ture and because the RTL model is usually orders of magnitude slower than a
performance simulator, each SFI experiment is typically run for a small number
of cycles—typically between 1000 and 10 000 cycles. Determining ACE-ness in this
short interval is often a challenge.

SFI will typically run two copies of the RTL simulation: one with a fault and
one without a fault (called the clean copy). At the end of the simulation, the faulty
model is compared with the clean copy to determine if the injected fault resulted
in an error. There are two choices for state to compare: architectural state and
microarchitectural state. Architectural state includes register files and memory, and
microarchitectural state represents internal state that has not yet been exposed
outside the processor (e.g., instruction queue state).

If there is a mismatch in an architectural state between the faulty and the clean
copies, then the fault could be potentially ACE. However, just because architec-
tural state is incorrect, it does not necessarily mean that the final outcome of the
program will be altered. For example, a faulty value could propagate to an archi-
tectural register but later could be overwritten without any intervening reads. That
is, the faulty value is dynamically dead. In such an instance, the fault is actu-
ally un-ACE and gets masked. Hence, the mismatch in the architectural state
only provides a conservative estimate about whether the injected fault is ACE
or not.

In contrast, a mismatch in the microarchitectural state, but no mismatch in archi-
tectural state, indicates that the fault is latent and may result in an error later in
the program after the simulation ends. This is often labeled as unknown since the
ACE-ness cannot be determined when the simulation ends. However, if there is
no mismatch in either architectural or microarchitectural state, then the fault is
masked and therefore is un-ACE.

Many microarchitectural structures, such as a data translation buffer or a cache,
can have latent faults long after the simulation ends. This makes it difficult to
compute the AVF of such structures using SFI due to the short simulation interval.
However, faults in flow-through latches that only contain transient data in the
pipeline and affect architectural state can fairly quickly show up as errors in the
architectural state if the injected fault is ACE. Hence, computing the AVF of latches
using SFI into an RTL model is well suited.

To reduce the simulation time for each fault, the state comparison between the
faulty and clean copies is often done periodically, instead of at the end. This is
because if the fault is masked completely from both the architectural and the

152 CHAPTER 4 Advanced Architectural Vulnerability Analysis

microarchitectural states, then the simulation can end earlier than the predesig-
nated number of cycles the simulation was supposed to run for. Since significant
fraction of faults is masked, this could significantly improve simulation time.

4.7 Case Study of SFI
This section will describe the Illinois SFI study conducted by Wang et al. [9]. The
Illinois SFI study not only investigates the absolute vulnerability of various proces-
sor structures but also delves into the relative vulnerabilities of different structures
and latches used in their processor core. For further studies of SFI into an RTL
model, readers are referred to Kim and Somani’s work on SFI into a picoJavaTM

core [5] and study of SFI into the RTL model of an Itanium� processor by Nguyen,
et al. [7].

4.7.1 The Illinois SFI Study
The Illinois SFI study shows the masking effects of injected faults in a dynamically
scheduled superscalar processor using a subset of the Alpha ISA. For this study,
the authors wrote the RTL model in Verilog from scratch. The authors’ goal was to
have a latch-accurate model to study the masking effects from injected faults both
in latches as well as in microarchitectural structures.

Processor Model
The processor model used in the Illinois SFI study is a dynamically scheduled
superscalar pipeline. Figure 4.19a shows a diagram of this pipeline. Figure 4.19b
shows the key processor parameters. To understand the details of this pipeline,
the readers are referred to Hennessy and Patterson’s book on computer architec-
ture design [4]. This processor model uses the Alpha ISA but does not execute
floating-point instructions, synchronizing memory operations, and a few miscel-
laneous instructions. The processor resembles a modern, dynamically scheduled
superscalar processor.

The processor has a 12-stage pipeline with up to 132 instructions in flight. The
32-entry dynamic scheduler can issue up to six IPCs. To support dynamic schedul-
ing, the pipeline supports a load queue (LDQ), store (store queue), speculative
RAT (register allocation table), memory dependence predictor (mem dep pred 0
and mem dep pred 1), and a 64-entry ROB (ReOrder Buffer).

4.7.2 SFI Methodology
The Illinois SFI study divides the fault injection experiments into two varieties:
those targeting both RAM arrays and latches and those targeting only latches.
Each experiment requires repeatedly injecting faults and determining if the fault
would result in a user-visible error. Each such fault injection is called a trial of

4.7 Case Study of SFI 153

RAS BTB L1 Insn
Cache

TLB

TLB

BOB BrPred0

Align + Rotate BrPred1

32 Entry Fetch Queue

4X Decoder

Spec RAT Spec Free List Mem Dep Pred 0

Intra Bundle Rename Mem Dep Pred 1

32–Entry Scheduler

Register File

ALU

Arch RAT Arch Free List

Fetch

Decode

Rename

Schedule

RegRead

Execute

Retire

ALU ALU Br AGEN

LDQ STQ
L1 Data
Cache

AGEN

64–Entry ReOrder Buffer

Stage

Fetch 1024 entry 4-way set-associative with bimodal branch predictor
Hybrid branch predictor: bimodal, local, and global predictors
8-entry return address stack with pointer recovery
8-wide split-line fetch from a 2-way set-associative 8 kB L1 cache
32-entry fetch queue

4-wide decode

4-wide rename from 80 physical registers
Speculative and architectural rename maps maintained

Decode

Rename

Issue
Reg Read

Execute

Memory

Retire

Features

32-entry scheduler w/ speculative wakeup and instruction replay
80 65-bit physical register file with 11 read ports and 7 write ports

2 simple ALUs (ALU = arithmetic logic unit)
1 complex ALU (2-5 cycles) with buffer for register file port conflicts
1 branch ALU
2 address generation units for memory instructions

16-entry load and store queues
2-cycle, dual-ported 2-way set-associative 32 kB L1 dcache
Dual porting achieved with eight interleaved banks
16 non-coalescing miss handling registers for lockup free accesses
Memory dependence prediction using store sets

64-entry reorder buffer with 8-wide retire

(a) (b)

FIGURE 4.19 The processor model used in the Illinois SFI study. (a) The
pipeline. (b) The key processor parameters. Reprinted with permission from
Wang et al. [9]. Copyright © 2004 IEEE.

the experiment. In each trial, the authors injected faults into randomly chosen bits
from the 31 000 RAM bits and 14 000 latch bits. To achieve statistical significance,
fault injection trials were repeated 25 000–30 000 times for each experiment. Each
fault injection trial consisted of running a clean copy and a faulty copy for up to
10 000 cycles. However, for simplicity, instead of injecting faults at any randomly
chosen cycle, the authors injected the faults on a set of 250–300 start points in the
designated faulty copy.

Each trial was continuously monitored for one of the four outcomes: microarchi-
tectural state match (μArch Match), incorrect program output (SDC-Output), pre-
mature termination of the workload (SDC-Termination), and none of the above or
unknown (Gray Area). μArch Match occurs when the entire microarchitectural state
of the processor model (i.e., every bit of state in the machine) is equivalent to that of
the clean copy. If a trial results in a microarchitectural state match with no previous
architectural state inconsistencies, then it is safe to declare that the injected fault’s
effects have been masked by the microarchitectural layer. These trials are placed
in the μArch Match category. Since checking for microarchitectural state matches is
relatively expensive requiring a full microarchitectural state comparison between
the faulty and clean copies, this study only performed the check periodically, tak-
ing advantage of the fact that once a microarchitectural state match occurs, the
remainder of the simulation is guaranteed to have a consistent microarchitectural
state. The check was performed on an exponential time scale: at 1, 10, 100, 1000,
and 10 000 cycles after the injection.

The faulty copy’s architectural state (i.e., program-visible state such as mem-
ory, registers, and program counter) is compared with that of the clean copy in

154 CHAPTER 4 Advanced Architectural Vulnerability Analysis

every cycle. If the architectural state comparison fails, then the transient fault has
corrupted architectural state, and the trial is put in the SDC-Output or SDC-
Termination bin. Trials that result in register and memory corruptions are con-
servatively placed into the SDC-Output category, along with those that result in
TLB misses. Trials in the SDC-Termination category are those trials that resulted in
pipeline deadlock or resulted in an instruction generating an exception, such as
memory alignment errors and arithmetic overflow. Strictly speaking, all errors in
the SDC-Termination category are SDCs, unless one can definitely prove that the
program terminated before corrupting the data that are visible to the user. For
example, if corrupted data are written to a database on disk before the program
terminates, then the SDC-Terminated error definitely falls in the SDC bin.

If a trial does not result in aμArch Match, SDC-Output, or SDC-Termination, within
the 10 000-cycle simulation limit, the trial is placed into the Gray Area category.
Either the fault is latent within the pipeline or it is successfully masked, but the
timing of the simulation is thrown off such that a complete microarchitectural
state match is never detected. Of those that are latent, some will eventually affect
architectural state, while others propagate to portions of the processor where they
will never affect correct execution.

4.7.3 Transient Faults in Pipeline State
Figure 4.20 shows the results of fault injection experiments into the pipeline state.
Each bar in the graph represents a different benchmark application from the

%
 F

au
lt

s

bz
ip

2_
l

av
er

ag
e_

l

av
er

ag
e_

l1
r

vo
lt

ex
_l

vo
lt

ex
_l

1
r

pa
rs

er
_l

pa
rs

er
_l

1
r

m
cf

_l

m
cf

_l
1

r

gz
ip

_l

gz
ip

_l
1

r

ga
p_

l1
r

ga
p_

l

cc
1_

l

cc
1_

l1
r

bz
ip

2_
l1

r

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

uArch Match
Gray Area
SDC-Termination
SDC-Output

FIGURE 4.20 Results from fault injection into pipeline state. l + r denotes fault
injection into both latch and RAM. l denotes fault injection only into latches.
Reprinted with permission from Wang et al. [9]. Copyright © 2004 IEEE.

4.7 Case Study of SFI 155

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

C
um

ul
at

iv
e

%
 o

f
 la

tc
he

s

% Contribution to soft error rate

0.20 0.4 0.6 0.8 1

0.9

1

FIGURE 4.21 Variation in latch vulnerability. Reprinted with permission from
Wang and Patel [8]. Copyright © 2006 IEEE.

SPEC2000 integer benchmark suite. The data from fault injection into latches and
RAMs are labeled with an l+ r suffix, while data from injection into only latches are
labeled with an l suffix. The different benchmarks represent different workloads on
the processor, which affect the masking rate of the microarchitecture. The average
results are presented in the rightmost bar in the graph I.

Examining the aggregate bars of both graphs, one can observe that approxi-
mately 85% of latch+RAM faults and about 88% of latch-based faults are success-
fully masked. The fraction of trials in the Gray Area accounts for another 3% for
both experiments; the study was not able to determine conclusively whether these
faults are masked or not. The remaining 12% of latch+RAM trials and 9% of latch
trials are known errors that are either SDC-Output or SDC-Termination.

Figure 4.20 shows the average vulnerability of a latch or a processor state ele-
ment for different benchmarks. However, previously, it was seen that the AVF
of processor structures varies from structure to structure within a benchmark.
Figure 4.21 shows a similar variation for latches. This study was done by some
of the authors of the Illinois SFI study using the same experimental framework
[8].1 In particular, Figure 4.21 shows that 30% of the latches account for 70% of the
total soft error contribution from latches. Consequently, these 30% of the latches
should be the first target for soft error protection mechanisms.

1Although the original paper [8] reports the variation for all processor states, Figure 4.21
shows the variation only for the latches in the design. The authors graciously extracted the
latch vulnerability data for this book.

156 CHAPTER 4 Advanced Architectural Vulnerability Analysis

4.7.4 Transient Faults in Logic Blocks
To understand the vulnerability of logic blocks, each latch or RAM cell in the
processor was categorized based on the general function provided by that bit of
state. For example, latches and RAM cells that hold instruction input and out-
put operands were placed into a data category. Figure 4.22 lists the various cate-
gories of logic blocks used in the Illinois SFI study and provides a brief descrip-
tion for each, as well as the number of bits of latches and RAM cells within that
category.

The results of the fault injection experiments (for latches and latches+RAMs)
were then categorized by the logic block of the bit of state that the fault was injected
into and the resulting outcome of the trial. Figure 4.23 shows the results of these
experiments categorized by the functional block.

Figure 4.23a shows that the architectural register alias table (archrat) and the
physical register file (regfile) are especially vulnerable to soft errors. This is not
surprising since these structures contain the software-visible program state. The
speculative register alias table (specrat) and the speculative free list (specfreelist)
also appear to be particularly vulnerable. In order to bolster the overall reliability
of our microarchitecture, it would be sensible to protect these structures.

Category Description
Bits of

Latches
Bits of
RAMs

addr 64-bit address field for memory operations. 384 3584

archfreelist Architectural register free list. 0 336

archrat Architectural register alias table. 0 224

ctrl
Miscellaneous control state such as decoded instruction
bundle control words and state machines.

2502 1916

data Instruction input and output operands. 5899 2820

insn Parts of the instruction word passed along with each instruction. 1525 2016

pc 62-bit program counter fields. 1984 12480

qctrl Control state associated with queues. 176 0

regfile 65-bit register file entries and scoreboard bits. 80 5200

regptr 7-bit physical register file pointers. 978 1852

specfreelist

specrat

Speculative register free list.

Speculative register alias table.

0

0

336

224

valid Valid bits throughout the pipeline. 263 124

robptr 6-bit ROB tags. 352 444

FIGURE 4.22 Description of different categories of state. Reprinted with per-
mission from Wang and Patel [8]. Copyright IEEE © 2006.

4.7 Case Study of SFI 157

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

(a)

(b)

0%

%
F

au
lt

s

ar
ch

fr
ee

li
st

ar
ch

ra
t

ct
rl

da
ta

in
sn pc

qc
tr

l

re
gf

il
e

re
gp

tr

ro
bp

tr

sp
ec

fr
ee

li
st

sp
ec

ra
t

va
li

d

av
er

ag
e

SDC-Output
SDC-Termination
Gray Area
uArch Match

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

%
 F

au
lt

s

ad
dr

ad
dr

ct
rl

da
ta

in
sn

in
sn

ct
rl

m
em

da
ta pc

qc
tr

l

re
gp

tr

ro
bp

tr

va
li

d

av
er

ag
e

SDC-Output
SDC-Termination
Gray Area
uArch Match

FIGURE 4.23 Results of fault injection into (a) latches and RAM cells and
(b) latches alone. Reprinted with permission from Wang and Patel [8].
Copyright © 2006 IEEE.

Both the latch+RAM injections and the latch-only injections show high vulner-
ability for the bits categorized as qctrl and valid. Their impact on the overall fail
rate is small, however, since they constitute only a small fraction of the total state
of the machine. Also, it is interesting to note that the fail rate of the data category
is the lowest due to a combination of low utilization rate, speculation, and logical
masking.

158 CHAPTER 4 Advanced Architectural Vulnerability Analysis

4.8 Summary
AVF of a hardware structure expresses the fraction of faults that show up as user-
visible errors. The intrinsic SER of a structure arising from circuit and device prop-
erties must be multiplied by the AVF to obtain the SER of the structure. Both the
absolute and relative AVFs are useful. The absolute value of AVF is used to com-
pute the overall chip-level SER. The relative values of AVFs are used to identify
structures in need of protection. This chapter extends the AVF analysis described
in Chapter 3 to three types of structures: address-based RAM arrays, CAM arrays,
and latches.

Computing the AVF of address-based RAM arrays requires an extension called
lifetime analysis. Lifetime analysis of a bit or a structure divides up the lifetime
of a bit or a structure as a program executes into multiple nonoverlapping seg-
ments. For example, for a byte in the cache, the lifetime can be divided into fill-
to-read, read-to-read, read-to-write, write-to-read, read-to-evict, etc. Each of these
individual lifetime components can be categorized into potentially ACE, un-ACE,
or unknown. For example, if the read in fill-to-read is an ACE read (implying the
read value affects the final outcome of the executing program), then the fill-to-read
component is ACE as well. Similarly, the read-to-evict component could be un-ACE
in a write-through cache. Unknown components arise when the analysis cannot
determine how the lifetime of a component should be binned (perhaps because
the simulation ends prior to the determination of ACE-ness or un-ACE-ness of a
component). By summing up all the potentially ACE and unknown lifetime com-
ponents of a structure and dividing by the total simulation time, one can obtain an
upper bound on the structure’s AVF.

The AVF analysis of CAM arrays is slightly more involved. A CAM array, such
as a tag store, operates by simultaneously comparing a set of incoming match
bits (e.g., an address) against the contents of each of several memory entries.
A single-bit fault in the CAM array results in two scenarios that could cause incor-
rect execution: a false-positive match or a false-negative match. A false-positive
match occurs when a bit flip in the CAM array causes a match when there should not
have been a match. A false-negative match occurs when a bit flip in the CAM array
causes a mismatch when there should have been a match. False-positive matches
can be tracked using hamming-distance-one analysis. The incoming match bits and
bits of an entry in the CAM array are said to be Hamming distance one apart if they
differ in one bit. When a fault occurs, only this bit can give rise to a false-positive
match. On encountering a false-positive match and by tracking the lifetime of the
bit causing the match, one can compute the AVF arising from such a match. The
false-negative match is easier to track. By tracking the lifetime of the CAM entry
associated with a false-negative match (i.e., the entry that should have matched),
one can compute the corresponding AVF component.

Computing latch AVFs using ACE analysis in a performance model is difficult
because a performance model does not typically model the behavior of latches.

4.9 Historical Anecdote 159

Instead, it is easier to do in an RTL model that captures the actual behavior of the
hardware being built. However, RTL models are usually 100 to 1000 times slower
than performance models, making it difficult to run RTL models for more than tens
of thousands of cycles to determine AVFs. This is too short for ACE analysis to
determine ACE-ness of many structures, and it may be somewhat cumbersome to
implement the ACE analysis of a low-level gate-centric RTL model. Instead, it is
easier to use SFI to compute the AVF of latches. In SFI, random bit flips simulating
faults are introduced in an RTL model to create a faulty copy. Simultaneously, a
clean copy is run separately. If after some number of the cycles, the architectural
states of the faulty and clean copies differ, then one can assume that the fault is
likely to show up as an error. This is not strictly correct but used in practice due to
limitations imposed by the RTLmodel. Such experiments are repeated thousands of
times. Each time a different bit may be flipped at a different point in the simulation.
By repeating these fault injection experiments, one can obtain a desired level of
statistical significance in the AVF numbers.

4.9 Historical Anecdote
I was the lead soft error architect of an Itanium� processor design that was even-
tually canceled. Itanium� processors are, in general, aggressive about soft error
protection. During the design process, we assumed, based on established design
guidelines (and not a proper AVF analysis), that the data translation buffer CAM
was highly vulnerable to soft errors. Protecting this CAM with parity was difficult
because of Itanium architecture’s support of multiple page sizes.

A simple scheme such as adding a parity bit to the CAM and then augmenting
the incoming address with the appropriate parity bit to enable the CAM operation
did not work. This is because the number of bits of the incoming address over
which we needed to compute the parity was determined by the page size, whose
information was embedded in the RAM array of the data translation buffer. Thus,
we could not compute the parity of the incoming address without looking up the
data translation buffer RAM array first.

To tackle this problem, we came up with a novel scheme that simultaneously
computed the parity for multiple page sizes and then CAM-ed the data translation
buffer appropriately. Details of this scheme are described in the US Patent Applica-
tion 20060150048 filed to the US patent office on December 30, 2004. This was even
coded into the RTL model of the Itanium processor we were building.

Later when we formulated the AVF analysis of address-based structures and
computed the AVF of the data translation buffer CAM, we found it to be very
small, around 2–3%. This immediately made the soft error contribution of the data
translation buffer CAM noncritical to the processor we were building. We would
not have protected this CAM, if we had these data prior to making the decision
about protecting the CAM array.

160 CHAPTER 4 Advanced Architectural Vulnerability Analysis

References
[1] A. O. Allen, Probability, Statistics, and Queue Theory with Computer Science Applications, Academic

Press, 1990.

[2] AMD, “BIOS and Kernel Developer’s Guide for AMD AthlonTM64 and AMD
OpteronTM Processors.” Publication #26094, Revision 3.14, April 2004. Available at:
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_ docs/26094.PDF.

[3] A. Biswas, P. Racunas, R. Cheveresan, J. Emer, S. S. Mukherjee, and R. Rangan, “Computing
Architectural Vulnerability Factors for Address-Based Structures,” in 32nd Annual International
Symposium on Computer Architecture (ISCA), pp. 532–543, June 2005.

[4] J. L. Hennessy and D. L. Patterson, Computer Architecture: A Quantitative Approach, Morgan
Kaufmann Publishers, 2003.

[5] S. Kim and A. K. Somani, “Soft Error Sensitivity Characterization for Microprocessor Dependabil-
ity Enhancement Strategy,” in International Conference on Dependable Systems and Networks (DSN),
pp. 416–425, June 2002.

[6] A. Lai, C. Fide, and B. Falsafi. “Dead-Block Prediction and Dead-Block Correlating Prefetchers,”
in 28th International Symposium on Computer Architecture, pp. 144–154, June 2001.

[7] H. T. Nguyen, Y. Yagil, N. Seifert, and M. Reitsma, “Chip-Level Soft Error Estimation Method,”
IEEE Transactions on Device and Materials Reliability, Vol. 5, No. 3, pp. 365–381, September 2005.

[8] N. Wang and S. J. Patel, “ReStore: Symptom-Based Soft Error Detection in Microprocessors,” IEEE
Transactions on Dependable and Secure Computing, Vol. 3, No. 3, pp. 188–201, July–September 2006.

[9] N. Wang, J. Quek, T. M. Rafacz, and S. J. Patel, “Characterizing the Effects of Transient Faults
on a High-Performance Processor Pipeline,” in International Conference on Dependable Systems and
Networks (DSN), pp. 61–70, June 2004.

[10] D. Wood, M. Hill, and R. Kessler. “A Model for Estimating Trace-Sample Miss Ratios,” in 1991
SIGMETRICS Conference on Measurement and Modeling of Computer Systems, pp. 79–89, May 1991.

C H A P T E R5
Error Coding
Techniques

5.1 Overview
Architectural vulnerability analysis, which was described in Chapters 3 and 4,
identifies the most vulnerable hardware structures that may need protection. This
chapter discusses how to protect these vulnerable structures with error coding tech-
niques. The theory of error coding is a rich area of mathematics. However, instead of
delving deep into the theory of error coding techniques, this chapter describes cod-
ing techniques from a practitioner’s perspective with simple examples to illustrate
the basic concepts. Examples of common error codes used in computer systems
and covered in this chapter include parity codes, single-error correct double-error
detect (SECDED) codes, double-error correct triple-error detect (DECTED) codes,
and cyclic redundancy check (CRC) codes. This chapter also discusses advanced
error codes, such as AN codes, residue codes, and parity prediction circuits, which
protect execution units.

For practitioners, implementation overhead of such codes is an important
metric, which is also discussed in this chapter. Protecting structures from multibit
faults becomes important as the structure grows in size. This chapter describes
a technique called scrubbing, which can reduce the SER without incurring the
overhead of the larger multibit fault detectors, and discusses how architecture-
specific knowledge can reduce the overhead of error detection, help identify false
errors, and help create hardware assertions to detect faults in a processor or a
chipset.

161

162 CHAPTER 5 Error Coding Techniques

Finally, this chapter discusses the role of a machine check architecture (MCA),
which is invoked when the hardware detects a fault or corrects an error.

5.2 Fault Detection and ECC for State Bits
This section describes some simple, yet powerful, fault detection and error
correction schemes. First, basics of error coding are described with simple exam-
ples. Then a number of coding schemes, parity codes, single error correction (SEC)
codes, SECDED codes, and CRC codes, are discussed. There are other and more
complex codes available, but the reader is referred to Peterson and Weldon [15] for
further reading on error coding theory.

5.2.1 Basics of Error Coding
Coding schemes are one of the most powerful and popular architectural error pro-
tection mechanisms used in computing systems today. Coding schemes can be used
to detect or correct single-bit or multibit error. If a fault in a bit is always detected
by a code, then the bit’s SDC AVF is zero, but the DUE AVF can still be nonzero. In
contrast, if a fault in a bit is not only detected but also the corresponding error is
corrected by a code, then both its SDC and DUE AVFs can be made zero. First, this
section illustrates the basics of single-bit fault detection and error correction using
simple examples. Second, it elaborates on how the concept of Hamming distance
relates to the number of errors that can be detected or corrected. Finally, it discusses
the computation of the minimum number of code bits needed to correct a given
number of errors in a set of bits.

Simple Examples to Illustrate Single-Bit Fault Detection
and Error Correction

The basic idea of error codes can be explained with a simple example. Assume that
one data bit needs to be protected against single-bit errors during its residence in a
buffer (Figure 5.1). The value of this data bit can be either zero or one. Let us add

data bit

encoder decoder

buffer
code word code word

data bit

error
signal

no error

err
or

FIGURE 5.1 Example of encoding and decoding processes.

5.2 Fault Detection and ECC for State Bits 163

one code bit to the data bit to form a code word, such that the code word is a tuple:
<data bit, code bit>. Each entry of the buffer will hold such a code word. Let us
define an encoding scheme that sets the code bit as follows:

code bit = data bit

Before writing the data bit into the buffer, the encoder creates the code bit, appends
it to the data bit, and writes the code word into the buffer. When the data bit
needs to be read out of the buffer, the whole code word is read out and decoded.
The valid code words must be either 00 or 11 since the code bit must equal the
data bit. In such a case, there is no error, and the data bit is returned. However,
if the code word read out is either 01 or 10, then the value of the code word
changes while it was resident in the buffer. One of the causes of this bit flip could
be due to an alpha particle or a neutron strike either on the data bit or on the
code bit.

The decoding process is easier for code words that are separable. A code word
is separable if the data bits are distinct from the code bits within a code word.
For example, in the above example, the code word = <data bit, code bit>. If
the code word is valid, the decoder simply extracts the data bit from the code
word and returns it. Examples of nonseparable codes are covered later in this
chapter.

The code word representation of 00 and 11 can only detect a single-bit fault
but cannot correct it. For example, the data bit could be struck, so that the code
word changes from a valid 00 word to invalid 10 code word. However, looking
at 10 without any prior knowledge of what the data bit was, the decoder cannot
determine if code word changed from 00 to 10 (data bit flipped) or 11 to 10 (code
bit flipped).

Expanding the set of code bits can help identify the bit in error. For example, let
us define a new code word as a three-tuple: <data bit, code bit 1, code bit 2>. Then,
let us define the code bits as:

code bit = data bit

code bit 2 = NOT (data bit)

The valid code words are 001 and 110. Based on this code, one can eas-
ily identify the bit position that got struck. For example, if the code word is
101, then one can say that the data bit was struck. This is because the code
bit 1 = NOT (code bit 2), which is the correct relationship. But the relationship
between data bit and code bit 1 and that between data bit and code bit 2 are
inconsistent. This inconsistency can arise only if the data bit experienced a fault.
It should be noted that code bit 2 could be set to data bit itself (without the
inversion).

164 CHAPTER 5 Error Coding Techniques

■ E X A M P L E

For the code word defined above, determine which bit is in error when the
code word is 111.

S O L U T I O N Code bit 2 is in error. This is because the code bit 1 = data bit = 1.
But code bit 2 is not the inverse of either data bit or code bit 1.

The examples in this section illustrate the detection and correction of single-bit
errors. The same basic concepts can be expanded to cover the detection and/or
correction of multibit errors. Such codes are covered later in this section.

Determination of Number of Bit Errors That Can Be Detected
and Corrected
As must be evident by now, code words are often divided into two distinct spaces:
words that are fault-free and words that have faults in them. In our example for
fault detection earlier in this section, the fault-free code words were 00 and 11 and
erroneous code words were 10 and 01. Similarly, in our error correction example, the
error-free code words were 001 and 110 and any other bit combination is erroneous.
When one or more errors occur, the code word moves from an error-free to an
erroneous space, which makes it possible to detect or correct the error.

There is, however, a limit to the number of errors a code word can detect or
correct. For example, the example code word for error detection can only detect
one error. However, if two bits are in error, then this code word may not be able to
detect the double bit error. For example, if the first bit of the code 00 gets struck,
then it can change to 10 (erroneous word). But if the second bit is struck now, it
can change to 11, making it a valid code word. Consequently, this code cannot
detect double-bit errors. The number of bits a coding scheme can detect or correct
is determined by its minimum Hamming distance.

The Hamming distance between two words or bit vectors is the number of
bit positions they differ in. For example, consider the following two words:
A = 00001111 and B = 00001110. They only differ in the last bit position, so the
Hamming distance between A and B is 1. If B were 11110011, then A and B differ the
in the first six bit positions, hence the Hamming distance between A and B would
be 6. If A and B were the nodes of a binary n-cube, then the Hamming distance
would be the minimum number of links to be traversed to get from A to B.

Given a code word space, the minimum Hamming distance of the code word
is defined as the minimum Hamming distance between any two valid (fault-free)
code words in the space. For example, for our example code word that only detects
faults, the valid code words are 00 and 11. The minimum Hamming distance for
this code space is 2. Similarly, the valid code words for our error correction example
are 001 and 110. The minimum Hamming distance for this code word space is 3.

5.2 Fault Detection and ECC for State Bits 165

■ E X A M P L E

Consider the following set of code words: 000, 011, 101, 110. What is the
minimum Hamming distance for this set of code words?

S O L U T I O N Assume HD(x, y) = Hamming distance between x and y. Then,
HD(000, 011) = 2, HD(000, 101) = 2, HD(000, 110) = 2, HD(011, 101) = 2, HD(011,
110) = 2, HD(101, 110) = 2. Hence, the minimum Hamming distance = 2.

The minimum Hamming distance of a code word determines the number of bit
errors that can be detected and/or corrected by the code word. There are three key
results:

■ The minimum Hamming distance of a code word must be α + 1 for it to detect all
faults in α or fewer bits in the code word. In our error correction example, the
minimum Hamming distance of the code word was 3, with the valid code
words being 001 and 110 (α = 2). Consequently, a single error or a double-bit
error will convert a valid error-free code word into a code word with error.
Athird error, however, can potentially bring the code word back into the error-
free space, thereby avoiding detection. Hence, this code word can only detect
either single-bit or double-bit errors but not triple-bit errors.

■ The minimum Hamming distance of a code word must be 2β + 1 for it to correct all
errors in β or fewer bits in the code word. Again, in our error correction example,
the minimum Hamming distance of the code word was 3, so β = 1. Any fault
in β or fewer bits will still be at least β + 1 Hamming distance from the nearest
valid code word. Thus, given a valid code word 001 (in our error correction
example), a bit flip in the first bit would convert it to 101, which is still at a
Hamming distance of 2 away the other valid code word of 110. Thus, no other
single-bit error in any bit other than the first one can reach this erroneous
code word 101. Hence, the bit position in error can be precisely identified and
hence corrected.

■ The minimum Hamming distance of a code word must be α + β + 1, where α ≥ β, for
it to detect all errors in α or fewer bits and correct all errors in β or fewer errors. This
result follows from the prior two results about error detection and correction.
Thus, if the minimum Hamming distance of a code word is 4, then it can
correct single-bit errors and detect double-bit errors, if α = 2 and β = 1. Such
a coding scheme is referred to as SECDED codes, which are covered later in
this section. Figure 5.2 shows the number of bit errors that can be detected
or corrected, given a minimum Hamming distance for a code word. It should
be noted that different numbers of bit errors can be detected and corrected
depending on the values of α and β.

166 CHAPTER 5 Error Coding Techniques

Minimum Hamming Distance 1

0

0

Number of bits in which error is detected (�)

Number of bits in which error is corrected (�)

2

1

0

3

1

1

3

2

0

4

2

1

4

3

0

5

2

2

5

3

1

5

4

0

FIGURE 5.2 Relationship between minimum Hamming distance and number
of bit errors that can be detected and corrected.

■ E X A M P L E

What is the minimum Hamming distance of a code that can detect two faults
and correct one?

S O L U T I O N From Figure 5.2, such a code must have a minimum Hamming
distance of 4.

Determination of the Minimum Number of Code Bits Needed
for Error Correction
There is an alternate formulation that computes the minimum number of code
bits needed, given the number of bit errors that need to be corrected. In contrast,
the formulation above shows the number of bits that can be corrected, given the
minimum Hamming distance of a code word. Given k data bits and r code bits
(where n = k + r), the r code bits must be able to precisely determine the bit position
or positions in error. To correct a single-bit error, the 2r combinations arising from
the r code bits must be able to determine where the error occurred in the n bits.
This combination must also be able to represent that no bit position is in error. This
results in the equation

2r ≥ k + r + 1

If k = 1, then r must be at least 2 to satisfy the above inequality. Thus, in our
error correction example above, the number of code bits chosen (two) was optimal.

The number of error correction bits used determines the code’s storage over-
head. Figure 5.3 shows how this overhead grows with the number of data bits for
single-bit error correction. The overhead of single-bit error correction decreases
with the increase in the number of data bits. For example, for a single data bit,
the overhead of error correction is 200%. In contrast, for 64 data bits, only 7
code bits are necessary for single-bit correction, which results in an overhead of
only 11%. However, the number of data bits that can be covered in a single code
word depends on a variety of implementation issues, such as the number of avail-
able data bits, timing. Implementation issues for ECC are discussed later in this
section.

5.2 Fault Detection and ECC for State Bits 167

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70
Number of data bits

M
in

im
um

 n
um

be
r

of
 c

od
e

bi
ts

ne
ed

ed
 f

or
 s

in
gl

e
bi

t
co

rr
ec

ti
on

FIGURE 5.3 The minimum number of code bits needed to correct a single-bit
error for a given number of data bits.

The minimum number of code bits required to correct multiple bit errors can
be computed in a similar fashion. To correct a double-bit error, for example, the
number of code words must cover the following three cases: no error (1), single-bit
errors (k + r), and double-bit errors (k+r)C2.1 Hence, one has the inequality:

2r ≥ 1 + k + r +k+r C2

Thus, to correct double-bit errors in a 64-bit data word (i.e., k = 64), r or the
number of code bits must be at least 12. In general, the minimum number of code
bits (r) needed to correct m bit errors in a data word with k bits is given by

2r ≥
m∑
i=0

k+rCi

■ E X A M P L E

Using the above equation, compare the increase in storage overhead to correct
a single-bit error, a double-bit error, and a triple-bit error in a 64-bit data word.

S O L U T I O N For all three correction schemes, k = 64. For a single-bit cor-
rection (m = 1), the minimum r = 7. For a double-bit correction (m = 2), the
minimum r = 13. For a triple-bit correction (m = 3), the minimum r = 20. Con-
sequently, the overheads for single-bit, double-bit, and triple-bit corrections
are 11%, 22%, and 32%, respectively.

1aCb = (a!)/((a − b)!b!), where a! = a∗(a − 1)∗(a − 2)∗…∗2∗1, ∗represents multiplication, and
a > b.

168 CHAPTER 5 Error Coding Techniques

A designer usually carefully weighs these overheads in error correction against
the performance degradation the chip may experience. For example, a processor
cache often occupies a significant fraction of the chip. For a single-error correction
(SEC), the overhead is about 11%, whereas for a triple-error correction, the over-
head is as high as 32%. An overhead of 11% indicates that about 10% (= 11/111) of
the bits available for a cache are used for error correction. Similarly, a 32% over-
head indicates that about 24% (= 32/132) of the bits available for a cache are used
for error correction. Thus, going from a single-bit correction to a triple-bit correc-
tion, about 14% more bits are needed. Instead of using these bits for error cor-
rection, these bits could be used to increase the performance of the chip itself by
increasing the size of the cache. The designer must carefully weigh the advan-
tage of a triple-error correction against increasing the performance of the chip
itself.

The next few sections describe different fault detection and error correction
strategies and the overheads associated with them.

5.2.2 Error Detection Using Parity Codes
Parity codes are perhaps the simplest form of error detection. In its basic form,
a parity code is simply a single code bit attached to a set of k data bits. Even par-
ity codes set this bit to 1 if there is an odd number of 1s in the k-bit data word
(so that the resulting code word has an even number of 1s). Alternatively, odd
parity codes set this bit to 1 if there is an even number of 1s in the k-bit data word
(so that the resulting code has an odd number of 1s). Given a set of k bits (denoted
as a0 a1… ak−1), one can compute the even parity code corresponding to these k bits
using the following equation:

Even parity code = a0 ⊕ a1 ⊕ K ⊕ ak−1

where ⊕ denotes the bit-wise XOR operation.2 For example, given a set of four bits
0011, the corresponding even parity code is 0. Parity codes are separable since the
parity bit is distinct and separate from the data bits.

The minimum Hamming distance of any parity code is two, so a parity code can
always detect single-bit faults. Such a code can also detect all odd numbers of faults
since every odd number of faults will put the code word back into the erroneous
space. Parity codes cannot, however, detect even numbers of faults since two faults
will put the word back into fault-free space.

Parity codes can be made to detect spatially contiguous multibit faults using a
technique called interleaving. Figure 5.4 shows an example of two interleaved code

2Bitwise XOR operation: 0 XOR 0 = 0, 0 XOR 1 = 1, 1 XOR 0 = 1, 1 XOR 1 = 0.

5.2 Fault Detection and ECC for State Bits 169

Code Word 1

Code Word 2

FIGURE 5.4 Example of interleaving. Bits (represented by squares) of code
words 1 and 2 are interleaved. The interleaving distance is 2.

words. If two contiguous bits are upset by a single alpha particle or a neutron strike,
then the particle strike will corrupt both code words 1 and 2. The parity codes for the
individual code words will detect the error. Interleaving distance is defined as the
number of contiguous bit errors the interleaving scheme can catch. The interleaving
distance in Figure 5.4 is 2. Alternatively, for example, if three code words are inter-
leaved, such that any three contiguous bits are covered by three different parity
codes, then the interleaving distance is 3. The greater is the interleaving distance
for a given number of code word bits, the greater is the distance the XOR tree
for the parity computation has to be typically spread out. Hence, a greater inter-
leaving distance will typically require a longer time to compute the parity tree.
Whether this affects the timing of the chip under design depends on the specific
implementation.

The number of bits a parity code can cover may depend on either the implemen-
tation or the architecture. To meet the timing constraints of a pipeline, the parity
code may have to be restricted to cover a certain number of bits. Then, the set of bits
that need protection may have to be broken up into smaller sized chunks—with
each chunk covered by a single parity bit.

In some cases, the architecture may dictate the number of bits that need be
covered with parity. Many instruction sets allow reads and writes to both byte-sized
data and word-sized data. Aword in this case can be multiple bytes. Per-byte parity,
instead of per-word parity, allows the architecture to avoid reading the entire word
to compute the appropriate parity for a read to a single byte. For example, a word
could be composed of the following two bytes: 00000001 and 00000001. If parity
is computed over the whole word, then the parity bit is 0 (assuming even parity).
But if the first byte and the word-wide parity code are read, one may erroneously
conclude that there has been a parity error, when there was not a parity error to
begin with. Hence, to determine if the first byte had an error, the entire word along
with its parity bit needs to be read out. Instead, having per-byte parity allows the
architecture to only read the first byte and its corresponding parity bit to check for
the error in the first byte.

The next section describes how to extend the concept of parity bits to correct bit
errors.

170 CHAPTER 5 Error Coding Techniques

5.2.3 Single-Error Correction Codes
Given a set of bits, a conceptually simple way to detect and correct a single-bit error
is to organize the data bits in a two-dimensional array and compute the parity for
each row and column. This is referred to as a product code. In Figure 5.5, 12 data
bits are arranged in a 4 × 3 two-dimensional array. Then one can compute the parity
for each row to generate the horizontal parity bits and for each column to generate
the vertical parity bits. In such an arrangement, if an error occurs in one of the
data bits, then the error can be precisely isolated to a specific row and column.
The combination of the row and column indices will point to the exact bit location
where the error occurred. By flipping the identified bit, one can correct the error.
These codes are called product codes.

■ E X A M P L E

In the example in Figure 5.5, the horizontal and vertical parity bits are read out
as 110 and 0100, respectively. Was there a fault? If so, which bit encountered
the fault?

S O L U T I O N The vertical parity bits are all correct, but the second horizontal
parity bit is incorrect. This implies that there was no fault in the data bits.
Hence, one can conclude that the second horizontal parity bit encountered a
fault. By flipping the bit to zero, we can correct it.

Product codes using horizontal and vertical parity bits are, however, not optimal
in the number of code bits used. For example, to detect a single-bit error in 12 data
bits, the product code in Figure 5.5 uses seven code bits. However, as Figure 5.3
shows, the optimal number of code bits necessary to correct a single-bit error in
12 bits is five. More sophisticated ECC can reduce the number of code bits necessary
for SEC. To describe how ECC works, the concept of a parity check matrix is now
introduced.

0

1

1

0

0

0

1

1

1

0

1

0

0

1

1

0

1

0

0

Data Bits{

H
orizontal P

arity B
its

Vertical Parity Bits

FIGURE 5.5 Single-error correction with a product code using horizontal and
vertical parity bits.

5.2 Fault Detection and ECC for State Bits 171

A parity check matrix consists of r rows and n columns (n = k + r), where k is the
number of data bits and r is the number of check bits. Each column in the parity
check matrix corresponds to either a data bit or a code bit. The positions of the
1s in a row in the parity check matrix indicate the bit positions that are involved
in the parity check equation for that row. For example, the parity check matrix in
Figure 5.6a defines the following parity check equations:

C3 = D2 ⊕ D3 ⊕ D4

C2 = D1 ⊕ D3 ⊕ D4

C1 = D1 ⊕ D2 ⊕ D4

where ⊕ denotes the bit-wise XOR operation. If D1D2D3D4 = 1010, then C3 = 1,
C2 = 0, C1 = 1. The corresponding code word C1C2C3D1D2D3D4 is 1011010. If
E represents the code word vector, then in matrix notation, E = [1 0 1 1 0 1 0].

The parity check matrix is created carefully to allow the generation of the syn-
drome, which identifies the bit position in error in a given code word. If P is the par-
ity check matrix and in E is the code word vector, then the syndrome is expressed as

S = P • ET

where ET is the transpose of E. For example, if P is the parity check matrix in
Figure 5.6a and E = [1 0 1 1 0 1 0], then one can derive S as

S =

[
0 0 1 0 1 1 1
0 1 0 1 0 1 1
1 0 0 1 1 0 1

]
•

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
1
1
0
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎣ 0

0
0

⎤
⎦

C1

0

0 1 0 1 0 1 1

0 1 0 1 1 1

C2 C3 D1 D2 D3 D4

(a)

1 0 0 1 1 0 1

C1

0

0 1 1 0 0 1 1

0 0 1 1 1 1

C2 D1 C3 D2 D3 D4

(b)

1 0 1 0 1 0 1

FIGURE 5.6 Parity check matrices for the code word: D1D2D3D4 with corre-
sponding code bits C1C2C3. (a) Parity check matrix where code bit columns are
contiguous. (b) Parity check matrix where the code bit columns are in power
of two positions. The syndrome (discussed in the text) for (b) points to the bit
position in error, if the count of the column is started from 1. The syndrome
zero would mean no error.

172 CHAPTER 5 Error Coding Techniques

If S is expressed as [S3 S2 S1], then S3 = (0 AND 1) ⊕ (0 AND 0) ⊕ (1 AND 1) ⊕
(0 AND 1) ⊕ (1 AND 0) ⊕ (1 AND 1) ⊕ (1 AND 0) = 0, where the dot represents the
bit-wiseAND operation and ⊕ represents the bit-wise XOR operation. S2 and S1 can
be computed in a similar fashion. The syndrome in this example is zero, indicating
that there is no single-bit error in the code word E.

Any nonzero syndrome would indicate an error in E. By construction, S1 =
C1 ⊕ C′

1, S2 = C2 ⊕ C′
2, and S3 = C3 ⊕ C′

3, where Ci is the parity code computed
before the code word was written into the buffer and C′

i is the parity code com-
puted after the code word is read out of the buffer. If any of Ci (resident parity) and
C′

i (recomputed parity) do not match, then the code word had a bit flip while it was
resident in the buffer. Hence, S will be nonzero. For example, if D1 flips due to an
alpha particle or a neutron strike (denoted in bold in the vector ET shown below,
then one can obtain S as

S =

⎡
⎣ 0 0 1 0 1 1 1

0 1 0 1 0 1 1
1 0 0 1 1 0 1

⎤
⎦ •

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
1
0
0
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎣ 0

1
1

⎤
⎦

The reader can easily verify that the bit error in each code word position creates
a different syndrome value that can help identify and correct the bit in error. More
interestingly, if the check bits are placed in power-of-two positions (1, 2, 4, …)
and the column count starts with 1 (zero indicates no error), then the syndrome
identifies exactly which bit position is in error. Such a coding scheme is referred to
as a Hamming code. The parity check matrix in the prior example is not organized
as such. Thus, the syndrome is 3 although the error is in bit position 4. In contrast,
the parity check bits are placed in power-of-two positions in Figure 5.6b. Using this
parity check matrix and code word matrix E rewritten as [C1C2D1C3D2D3D4], one
can get the syndrome as

S =

⎡
⎢⎢⎣

0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1

⎤
⎥⎥⎦ •

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
1
0
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎣ 0

1
1

⎤
⎦

Thus, the syndrome is three, which is also the bit position in error. This is also
referred to as a (7,4) Hamming SEC code. In general, a Hamming code is referred
to as (n, k) Hamming code.

5.2 Fault Detection and ECC for State Bits 173

■ E X A M P L E

Using the above parity check matrix, find the bit position in error in the code
word 1010010.

S O L U T I O N S3 = 1, S2 = 0, S1 = 0, indicating the bit position in error is 100 or
in the fourth position.

From Figure 5.2, it follows that the minimum Hamming distance of SEC codes
is 3. This also implies that no two columns in the parity check matrix of a SEC code
can be identical (that is, each column is unique). This is because if two columns
were identical, then one can create two valid code words that only differ in ET’s
bit positions that correspond to the identical columns. For example, if the last two
columns are identical in the parity check matrix shown above, then one could create
two valid code words, both of which have identical bits except for the last two bits.
The two code words could have 00 and 11 as the last two bits. This would imply
that the code word’s minimum Hamming distance is 2 and, hence, it will not be
able to correct any single-bit error.

■ E X A M P L E

In the parity check matrix shown below, the last two columns are identical.
Create two code words that when multiplied with the parity check matrix
yield zero syndrome but are only apart by a Hamming distance of 2.

H =

⎡
⎢⎣

0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 1 1

⎤
⎥⎦

S O L U T I O N The following two code words—1001100 and 1001111—yield a
syndrome of zero with the above parity check matrix but are only apart by
a Hamming distance of 2. Hence, this parity check matrix will not be able to
correct single-bit errors.

As may be clear by now, a SEC ECC is simply a combination of multiple parity
trees (e.g., for C1, C2, and C3). By creating and combining the parity check equations
carefully, one is able to detect and correct a single-bit error. Further, the code words
protected with ECC can be interleaved to correct multibit errors in the same way
as the code words protected with parity bits can be interleaved to detect multibit
errors (as discussed in the previous section, Error Detection Using Parity Codes).
For further reading on SEC and the theory of ECC spanning the use of Galois fields
and generator matrices, readers are referred to Peterson and Weldon [15].

174 CHAPTER 5 Error Coding Techniques

5.2.4 Single-Error Correct Double-Error
Detect Code

A SEC code can detect and correct single-bit errors but cannot detect double-bit
errors. As suggested by Figure 5.2, a SECDED code’s minimum Hamming
distance must be 4, whereas this SEC code’s minimum Hamming distance is
3 and hence it cannot simultaneously correct single-bit errors and detect double-
bit errors. For the parity check matrix for the Hamming SEC code in the previous
subsection, consider the following code word with errors in bit positions 3 and
8: [1 0 0 1 0 1 1]. The Hamming SEC code syndrome is 100, which suggests
a single-bit error in bit position 4, which is incorrect. The problem here is
that a nonzero syndrome cannot distinguish between a single- and a double-bit
error.

A SEC code’s parity check matrix can be extended easily to create a SECDED
code that can both correct single-bit errors and detect double-bit errors. Today, such
SECDED codes are widely used in computing systems to protect memory cells,
such as microprocessor caches, and even to register files in certain architectures. To
create a SECDED code from a SEC code, one can add an extra bit that represents
the parity over the seven bits of the SEC code word. The syndrome becomes a 4-bit
entity, instead of a 3-bit entity, for SEC codes. Then, one can distinguish between
the following cases:

■ If the syndrome is zero, then there is no error.

■ If the syndrome is nonzero and the extra parity bit is incorrect, then there is a
single-bit correctable error.

■ If the syndrome is nonzero, but the extra parity bit is correct, then there is an
uncorrectable double-bit error.

The parity check matrix of this SECDED code can be represented as

⎡
⎢⎢⎢⎣

1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 0
0 1 1 0 0 1 1 0
1 0 1 0 1 0 1 0

⎤
⎥⎥⎥⎦

The additional first row now represents the extra parity bit. The additional last
column places the extra parity bit in the power-of-two position to ensure it is a
Hamming code. Hence, the code word with the double-bit error would look like
[1 0 0 1 0 1 1 0], where the last 0 represents the extra parity check bit. Then, H × ET

gives us:

5.2 Fault Detection and ECC for State Bits 175

S =

⎡
⎢⎢⎢⎣

1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 0
0 1 1 0 0 1 1 0
1 0 1 0 1 0 1 0

⎤
⎥⎥⎥⎦ •

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
1
0
1
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎦

Here the extra bit (last bit in code word) is correct, but the syndrome 0100 is
nonzero. Therefore, this SECDED code can correctly identify a double-bit error.
However, if the code word is [1 0 0 1 0 1 0 0], then the extra bit is zero and incorrect,
which suggests a single-bit error. The resulting syndrome is 1011, the lower three
bits of which indicate the bit position in error.

The parity check matrix of a SECDED code has important properties that can
be used to optimize the design of the code. Like the parity check matrix for a SEC
code, all the columns in SECDED code’s parity check matrix must be unique for it to
correct single-bit errors. Also, since the minimum Hamming distance of a SECDED
code is 4, no three or fewer columns of its parity check matrix can sum to zero
(under XOR or modulo-2 summation). This also implies that no two columns of a
SECDED code’s parity check matrix can sum to a third column. These properties
can be used to optimize the implementation of a SECDED ECC.

The number of 1s in the parity check matrix has two implications on the imple-
mentation of the SECDED code. First, each entry with a 1 in the parity check matrix
causes an XOR operation. Hence, typically, greater the number of 1s in the parity
check matrix, greater is the number of XOR gates. Second, greater the number of
1s in a single row of the parity check matrix, the greater is the time taken or com-
plexity incurred to compute the SECDED ECC. For example, the first row of the
SECDED ECC shown above has all 1s and hence requires either a long sequence of
bit-wise XOR operations or a wide XOR gate. Consequently, reducing the number
of 1s in each row of the parity check matrix results in a more efficient implementa-
tion. For example, the following parity check matrix (with the code word sequence
[C1C2D1C3D2D3D4C4]) ⎡

⎢⎢⎢⎣
0 0 1 0 1 1 0 1

0 0 0 1 1 1 1 0

0 1 1 0 0 1 1 0

1 0 1 0 1 0 1 0

⎤
⎥⎥⎥⎦

has only a total of sixteen 1s compared to the earlier one that has twenty 1s. Further,
the maximum number of 1s per row is four compared to eight in the earlier one.

This optimized parity check matrix is based on a construction proposed by Hsiao
and is referred to as the Odd-weight column SECDED code [5]. Hsiao’s construction

176 CHAPTER 5 Error Coding Techniques

satisfies the properties of the parity check matrix (e.g., no three or fewer columns
can sum to zero) yet results in a much more efficient implementation. Hsiao’s
construction imposes the following restrictions on a parity check matrix’s columns:

■ no column has all zeros

■ every column is distinct

■ every column contains an odd number of 1s.

The parity check matrix above satisfies these properties. A zero syndrome indicates
no error, but the condition to distinguish between a single- and a double-bit error
is different from what was used before. If the number of 1s in the syndrome is even,
then it indicates a double-bit error; otherwise it is a single-bit error. Thus, with the
code word [1 0 0 1 0 1 0 0], one gets a syndrome of 1011. Since the number of 1s is
odd, it indicates a single-bit error. The lower three bits specify the bit position in
error. Hsiao [5] describes how to construct Odd-weight column SECDED codes for
an arbitrary number of data bits.

■ E X A M P L E

For the parity check matrix that uses Hsiao’s formulation, determine whether
the code word 10110111 is correct, has a single-bit error, or has a double-bit
error.

S O L U T I O N The syndrome is 1111. The number of 1s is even, so this indicates
a double-bit error.

5.2.5 Double-Error Correct Triple-Error
Detect Code

As seen earlier, SEC or SECDED codes can be extended to correct specific types
of double-bit errors. Interleaving independent code words with an interleaving
distance of 2 allows one to correct a spatially contiguous double-bit error. A tech-
nique called scrubbing, described later in this chapter, can help protect against a
temporal double-bit fault, which can arise due to particle strikes in two separate
bits protected by the same SEC or SECDED code. The scrubbing mechanism would
attempt to read the code word between the occurrences of the two faults, so that the
SEC or SECDED code could correct the single-bit fault before the fault is converted
into a double-bit fault.

The applicability of interleaving or scrubbing, however, is limited to specific
types of double-bit faults and may not always be effective (e.g., if the second error
occurs before the scrubber gets a chance to correct the first error). In contrast,
a DECTED code can correct any single- or double-bit error in a code word. It can

5.2 Fault Detection and ECC for State Bits 177

also detect triple-bit faults. To understand the theory of DECTED codes, one needs
a background in advanced mathematics. The theory itself is outside the scope of
this book. Nevertheless, using an example, this section illustrates how a DECTED
code works. The construction of this example DECTED code follows from a
class of codes known as BCH codes named after the inventors R. C. Bose,
D. K. Ray-Chaudhuri, and A. Hocquenghem.

There are some similarities between how DECTED and SECDED codes work.
Like in a SECDED code, a DECTED code can construct a parity check matrix,
which when multiplied by the code word gives a syndrome. By examining the
syndrome, one can identify if there was no fault, a single-bit fault, a double-bit
fault, or a triple-bit fault. The minimum Hamming distance of a DECTED code is 6
(see Determination of Number of Bit Errors That Can Be Detected and Corrected,
p. 164). This also implies that any linear combination of five or fewer columns of
the parity check matrix of such a code is not zero.

Aparity check matrix for a (N−1, N−2m−2) DECTED code is usually expressed
in a compact form as ⎡

⎢⎣
1 1 1 K 1
1 X X2 K XN−2

1 X3 X6 K X3(N−2)

⎤
⎥⎦

where X is the root of a primitive binary polynomial P(x) of degree m, N = 2m, the
number of data bits is N − 2m − 2, and number of check bits is 2m + 1. The design
may have to incur the overhead of extra bits if the number of data bits is fewer than
N − 2m − 2.

As an example, one can define a (31, 20) DECTED code with m = 5 and P(X) =
1 + X2 + X5. In a binary vector format, X can be expressed as a vector [0 1 0 0 0],
where the entries of the vector are the coefficients of the corresponding polynomial.
Similarly, X4 can be expressed as [0 0 0 0 1]. X5 will be computed as X5 mod P(X),
which equals 1 + X2 and is expressed in a binary vector format as [1 0 1 0 0].
Expanding the Xs for the (31, 20) DECTED code, one can obtain the following
parity check matrix:

1 1
1 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0
0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1
0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0
0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0
0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1
1 0 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 1 1 0
0 0 1 1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 1 1 0 1 0 0 0 0 1 1 0 0 1
0 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 1 1 0 1
0 1 1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 1 1 0 1 0 0 0 0 1 1 0 0 1 0
0 0 0 1 0 1 0 1 1 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 0 1 1 1

178 CHAPTER 5 Error Coding Techniques

The vector X embedded in this matrix is shaded. Column 2 of this matrix is
[1 0 1 0 0 0 0 0 0 1 0], which is the same as [1 X X3].

The syndrome can be obtained by multiplying the parity check matrix with the
code word vector. The syndrome is a binary vector with 2m + 1 entries and can be
expressed as [S0 S1 S2], where S0 consists of one bit and S1 and S2 both consist of
m bits each. The syndrome can be decoded as follows:

■ If the syndrome is zero, then there is no fault.

■ If S0 = 1, then there is a single-bit fault and the error position is the root of
the linear equation y + S1 = 0. The error can be corrected by inverting the bit
position.

■ If S0 = 0, then there is a double-bit error. If the bit positions in error are E1
and E2 (expressed as numbers less than 2m), then it turns out that S1 = E1 + E2
and S2 = E13 + E23. It can be shown that E1 and E2 are roots of the quadratic
equation S1 y2+S12y+(S13+S2) = 0. It should be noted that for a single-bit error
(say with E1 > 0 and E2 = 0), this equation degenerates into the linear equation
y + S1 = 0. This is because S13 + S2 = E12E2 + E1 E22 = E1 E2S1. If E2 = 0, then
S13 + S2 = 0.

■ If S0 = 0 and the quadratic equation has no solution or if S0 = 1 and the
quadratic equation does not degenerate into a linear equation, then there is
an uncorrectable error.

For example, if the 31-bit code word is [0 0 0 … 0], then the syndrome is zero and
there is no fault. If the code word is [1 0 0 … 0], then the syndrome is [1 1 0 0 0 0 1 0 0
0 0]. That is, S0 = 1, S1 = [1 0 0 0 0], and S2 = [1 0 0 0 0]. Since S0 = 1, one would expect
a single-bit fault. The solution to the equation y + S1 = 0 is y = 1, indicating that the
bit position 1 is in error. If the 31-bit code word is [1 1 0 … 0], then the syndrome is
[0 1 1 0 0 0 1 0 0 1 0]. S0 = 0, S1 = [1 1 0 0 0], S2 = [1 0 0 1 0]. S1 can be interpreted
as the number 3, and S2 can be interpreted as the number 9. The reader can verify
that the first and second bit positions are in error. Then, S1 = E1 + E2 = 1 + 2 = 3.
S2 = 13 + 23 = 9. Instead of solving the quadratic equation in hardware to find the
bit positions in error, researchers have proposed to solve the quadratic equation
for all possible values of the syndrome and store the values in a table for use by the
hardware.

5.2.6 Cyclic Redundancy Check
CRC codes are a type of cyclic code. An end-around shift of a cyclic code word
produces another valid code word. Like the Hamming codes discussed so far in
this chapter, CRC codes are also linear block codes. CRC codes are typically used
to detect burst errors, errors in a sequence of bits. Typically, such errors arise in
transmission lines due to coupling and noise but not due to soft errors.

5.2 Fault Detection and ECC for State Bits 179

Soft errors usually do not affect transmission lines because metal lines
transferring data can typically recover from an alpha particle or a neutron strike.
Nevertheless, CRC codes can provide soft error protection for memory cells as a
by-product of protecting transmission lines. For example, if there is a buffer into
which the data from a transmission line are dumped before the data are read out
and the CRC is decoded, then the buffer is protected against soft errors via the
CRC code. CRC codes by themselves only provide error detection, so the CRC
code reduces the buffer’s SDC AVF to close to zero. However, often when a CRC
error is detected by the receiver, it sends a signal back to the sender to resend the
data. In such a case, the faulty data in the buffer are recovered, so both the SDC
and DUE AVFs of the buffer reduce to almost zero.

The underlying principle of CRC codes is based on a polynomial division. CRC
codes treat a code word as a polynomial. For example, the data word 1011010 would
be represented as the polynomial D(x) = x6 + x4 + x3 + x, where the coefficients of
xi are the data word bits. In general, given a k-bit data word, one can construct a
polynomial D(x) of degree k−1, where xk−1 is the highest order term. Further, the
sender and receiver must agree on a generator polynomial G(x). For example, G(x)
could be x4 + x + 1. If the degree of G(x) is r, then k must be greater than r.

The CRC encoding process involves dividing D(x)·xr by G(x) to obtain the quo-
tient p(x) and the remainder R(x), which is of degree r−1. This results in the equa-
tion D(x) · xr = G(x) · p(x) + R(x). Then the transmitted polynomial T(x) = G(x) ·
p(x) = D(x) ·xr − R(x). Because the addition of coefficients is an XOR operation and
the product is an AND operation, it turns out that the coefficients of T(x) can simply
be expressed as a concatenation of coefficients of D(x) and R(x). Figure 5.7 shows
an example of how to generate the coefficients of T(x), given the data bits 1011010
and the corresponding generator polynomial x4 + x + 1. The bits corresponding to
the transmitted polynomial T(x) are the ones sent on the transmission lines.

1

1 1 1 1

1

1

1

1 1 1 1

1

1 1

1

1 1

1 1

1

1 1 10

0 0 0

00

0

0 0

1 1 1

1 1

11

11

1

1

0 0

0 0

0

0 0 0

0

0

0 0 0 0 0 0

0 0

 R(x) =

p(x) =
G(x) =

FIGURE 5.7 Polynomial division to generate the CRC code. The data bits
represented by D(x) are 1011010. The bits corresponding to the generator
polynomial G(x) = x4 + x + 1 are 10011, which is the divisor. The corresponding
remainder is 1111. Hence, the transmitted bits = original data bits concate-
nated with remainder bits = 10110101111.

180 CHAPTER 5 Error Coding Techniques

The CRC decoding process involves simply dividing T(x) by G(x). If the
remainder is zero, then D(x)’s coefficients have been transmitted without error
and can be extracted from T(x). However, if the remainder is nonzero, then T(x)
was in error during transmission. For example, it arrives as T′(x)=T(x)+E(x), where
E(x) is the error polynomial. Each 1 bit in E(x) corresponds to 1 bit that has been
inverted. T(x)/G(x) will always be zero but E(x)/G(x) may not be. Errors that cause
E(x)/G(x) to be zero will not be detected by the CRC code.

The challenge of a CRC code is, therefore, to minimize the number of errors that
cause E(x)/G(x) to be zero. If a single-bit error occurs, then G(x) will never divide
E(x) as long as G(x) contains two or more terms. Similar properties can be derived
for double-bit errors. For example, on a double-bit error, one can have E(x) = xi + xj,
where i > j · E(x) = xj · (xi−j + 1). So, as long as E(x) is not divisible by x and xm + 1 is
not divisible by G(x), where i − j ≤ m, G(x) can detect double-bit errors m distance
apart. However, more importantly, a CRC code with r check bits can detect all
burst errors of length ≤ r, as long as G(x) contains x0 (i.e., 1) as one of its polynomial
terms. E(x) in this case can be represented as xi · (xl−1 + xl−2 + 1), where i is the bit
position where the burst starts and l is the length of the burst error. G(x) will not
divide E(x) in this case as long as it contains x0 as a term and r ≥ l.

CRC is particularly attractive for error detection because of the simplicity of
its encoding and decoding implementations. The CRC encoding scheme can be
implemented simply as a chain of XORs and flip-flops. Figure 5.8 shows the CRC
encoding circuit corresponding to the generator polynomial x4+ x + 1. In every clock
iteration, one bit of D(x) · xr is fed into the circuit. In the example used earlier, the
corresponding coefficient would be 10110100000. After k + r − 1 iterations, the data
flip-flops will contain the coefficients of the remainder, which when concatenated
with the coefficients of D(x) will provide the word to be transmitted.

The key to the construction of a CRC encoding circuit is the placement of the
XOR gates. Whenever the coefficient is 1 (except for the highest order 1), one can
insert an XOR gate before the data flip-flop. For example, in Figure 5.8, the two XOR
gates to the right correspond to the two rightmost 1s in the generator polynomial

Q DQ DQ DQ D

Clock

serial data in

XORXOR

FIGURE 5.8 CRC encoding circuit corresponding to the generator polynomial
x4 + x + 1 (with corresponding coefficients 10011). “Serial data in” is the port
through which the D(x) polynomial enters its bit stream from the most signif-
icant bit. The square boxes are data flip-flops with D as the clocked input and
Q as the clocked output.

5.3 Error Detection Codes for Execution Units 181

coefficient 10011. The leftmost one (or one in the most significant bit) does not need
an XOR gate by itself. Instead, the output Q of the leftmost flip-flop is fed back into
the XOR gates to enable the division operation that the CRC encoding performs. It
will be left as an exercise to the reader to perform the clocking steps to be convinced
that indeed this circuit will generate the remainder 1111 (Figure 5.7) for the data
word 1011010 and generator polynomial coefficients 10011.

Today, CRC is widely used in a variety of interconnection networks and software
protocols. Three of the most commonly used generator polynomials are:

■ CRC-12: G(x) = x12 + x11 + x3 + x2 + x1 + 1

■ CRC-16: G(x) = x16 + x15 + x2 + 1

■ CRC-CCITT3: G(x) = x16 + x12 + x5 + 1.

■ E X A M P L E

Compute the transmitted polynomial for D(x) = 10011 when the generator poly-
nomial G(x) = x + 1.

S O L U T I O N Dividing D(x) · x by G(x) gives p(x) = 1100 and R(x) = 1. So, the
transmitted bits are D(x) · x + R(x) = 100111. Interestingly, R(x) is also the even
parity code for the data bits 1011. It turns out that an even parity code is the
same as a 1-bit CRC code.

5.3 Error Detection Codes for Execution Units
In a microprocessor pipeline, execution units, such as adders and multipliers, are in
general less vulnerable to soft errors than structures that hold architectural state or
are stall points in the pipeline. This is because of two reasons. First, execution units
are largely composed of logic circuits, which have high levels of logical, electrical,
and latch-window masking (see Masking Effects in Combinatorial Logic Gates,
p. 52, Chapter 2). In contrast, structures holding architectural state or stall points
are composed of state bits that do not have many of these masking properties.

The second reason is more subtle but can be easily explained using Little’s law
formulation for AVF (see Computing AVF with Little’s Law, p. 98, Chapter 3).
Using Little’s law, one can show that the AVF of a structure is proportional to
BACE × LACE, where BACE is the throughput of ACE instructions into the structure
and LACE is the latency or delay of ACE instructions through the structure. On
average, BACE remains the same through similar structures in the pipeline (e.g.,
ones that process all ACE instructions).

3CCITT stands for International Telephone and Telegraph Consultative Committee.

182 CHAPTER 5 Error Coding Techniques

instruction
queue execution

unit latches

FIGURE 5.9 An example processor pipeline. Instruction queue is a stall point.

However, LACE varies significantly across the pipeline (Figure 5.9). Stall points in
a pipeline, such as an instruction queue, have a significantly higher LACE than the
input or output latches of execution units. This is because the pipeline can back up
due to a cache miss or a branch misprediction. In contrast, LACE can be much lower
for execution unit latches because execution units typically do not hold stalled
instructions. Hence, AVF of stall points in a pipeline is typically significantly higher
than that of execution units. The window of exposure of structures containing
architectural state is also usually higher than that of execution unit latches. Hence,
both structures with architectural state and stall points in a pipeline are more prone
to soft errors than execution units. Consequently, for soft errors, structures with
architectural or stalled state are the first candidate for protection. Nevertheless, once
these more vulnerable structures are protected, execution units could potentially
become targets for protection from soft errors. The techniques described in this
chapter can also be used to protect the execution units from other kinds of faults
described in Chapter 1.

This section discusses three schemes to detect transient faults in execution unit
logic and latches. These are called AN codes, residue codes, and parity prediction
circuits. The first two are called arithmetic codes. Also, AN codes are not separable,
whereas residue codes and parity prediction circuits are separable codes. These
codes are cheaper than full duplication of functional units, which makes them
attractive to designers. Some of these codes ensure important properties, such as
fault secureness. These properties are not discussed in this book because these are
not as relevant for soft errors. The readers are referred to Pradhan [16] for a detailed
discussion on these properties.

5.3.1 AN Codes
AN codes are the simplest form of arithmetic codes. Arithmetic codes are invariant
under a set of arithmetic operations. For example, given an arithmetic operation •

and two bit strings a and b, then C is an arithmetic code if C(a • b) = C(a) • C(b).
C(a) and C(b) can be computed from the source operands a and b, whereas C(a • b)
can be computed from the result. Thus, by comparing C(a • b) obtained from the

5.3 Error Detection Codes for Execution Units 183

result and C(a) • C(b) obtained from the source, one can determine if the operation
incurred an error.

Specifically, anAN code is formed by multiplying each data word N by a constant
A (hence, the name AN code). AN codes can be applied for addition or subtraction
operations since A(N1 + N2) = A(N1) + A(N2) and A(N1 − N2) = A(N1) − A(N2). The
choice of A determines the extra bits that are needed to encode N. A typical value
of A is 3 since 3N = 2N + N, which can be derived by a left shift of N followed
by an addition with N itself. However, the same does not hold for multiplication
and division operations. The next subsection examines another class of arithmetic
codes called residue codes that do not have this limitation.

5.3.2 Residue Codes
Residue codes are another class of arithmetic codes. Unlike AN codes, they are
separable codes and applicable to a wide variety of execution units, such as inte-
ger addition, subtraction, multiplication, and division, as well as shift operations.
This section discusses the basic principles of residue codes for integer opera-
tions. Iacobovici has shown that residues can be extended to shift operations [6].
Extending residue codes to floating-point and logical operations is still an active
area of research [8]. IBM’s recent mainframe microprocessor—codenamed z6—
incorporates residue codes in its pipeline [21].

Modulus is the operation under which residue codes are invariant for addition,
subtraction, multiplication, and division and used as the underlying principle to
generate residue codes. For addition, (N1 + N2) mod M = ((N1 mod M) + (N2 mod
M)) mod M. For example, N1 = 10, N2 = 9, M = 3. Then 19 mod 3 = 1 (left-hand side
of equation), and ((10 mod 3) + (9 mod 3)) mod 3 = (1 + 0) mod 3 = 1 (right-hand side
of equation). The same is true for subtraction. Figure 5.10 shows the block diagram
of residue code logic for an adder.

For multiplication, (N1 × N2) mod M = ((N1 mod M) × (N2 mod M)) mod M.
Using the same values for the addition example, one gets the left-hand side of this
equation = (10 × 9) mod 3 = 0. Similarly, right-hand side = ((10 mod 3) × (9 mod 3))

Modulo Adder

Adder
Residue Generator

Comparator

N1

N2

Residue (N1)

Residue (N2)

Result

Residue (Result)

Error?

FIGURE 5.10 Block diagram of residue code logic for an adder.

184 CHAPTER 5 Error Coding Techniques

mod 3 = (1 × 0) mod 3 = 0. For division, the following equation holds: D − R = Q × I,
where D = dividend, R = remainder, Q = quotient, and I = divisor. Since subtraction
and multiplication are individually invariant under the modulus operation, one can
have ((D mod M)−(R mod M)) mod M = ((Q mod M) × (I mod M)) mod M. Signed
operations in 2’s complement arithmetic cause some additional complications but
can be handled easily.

Residue codes for addition can be implemented using a logarithmic tree of
adders if the numbers are represented in binary arithmetic and the divisor M is
of the form 2k−1. The process is known as “casting out Ms,” so when M = 3, the
process is called “casting out 3s.” To understand how this works, let us assume
that a binary number is represented as a sequence of n concatenated values: an−1an−2
… a1a0, where each ai is represented with k bits. For example, if N = 1111001,
k = 2, M = 3, n = 4, then one can have a3 = 1, a2 = 11, a1 = 10, and a0 = 01. N can be
expressed as

N = an−1 · 2k x (n−1) + an−2 · 2k x (n−2) + L + a1 · 2k + a0

Then, N mod M becomes

N mod M = ((an−1 · 2k x (n−1))mod M + (an−2 · 2k x (n−2))mod M + L
+ (a1. 2k)mod M + (a0)mod M)mod M

Since (A×B) mod M = ((A mod M)×(B mod M)) mod M and (2k×i mod (2k−1)) = 1,
one can have

N mod M = ((an−1)mod M + (an−2)mod M + L + (a1)mod M + (a0)mod M)mod M

Or,

N mod M = (an−1 + an−2 + L + a1 + a0)mod M

In other words, the modulus of N with respect to M is simply the modulo sum
of the individual concatenated values. So, for N = 121 = 1111001 in binary, one can
have ((1) + (11) + (10) + (01)) mod 3 = 7 mod 3 = 1.

Low-cost residue codes with low modulus, such as 3, are particularly attractive
for soft errors. But higher the modulus, the greater is the power of residue codes
to detect single and multi-bit faults. For more on residue code implementation,
readers are referred to Noufal and Nicolaidis [11].

■ E X A M P L E

An adder has a residue code generator associated with it. The source operands
are 8 and 9. The final result is 17 with a residue of 1 computed from the
source operands. Assume the modulus is 3. Was there an error in the addition
operation?

5.3 Error Detection Codes for Execution Units 185

S O L U T I O N 8 in binary representation is 1000 and 9 is 1001. The modulus
= (10 + 00 + 10 + 01) mod 3 = 5 mode 3 = 2. The residue computed from the result
was 1. Hence, there was an error. It should be noted that the hardware cannot
tell if the addition operation or the residue computation was in error in this
case.

The next subsection examines a different style of fault detection that extends the
concept of parity to execution units.

5.3.3 Parity Prediction Circuits
Parity prediction circuits use properties of carry chains in addition and multipli-
cation operations. Like residue codes, parity prediction circuits can be made to
work for subtraction and division. Like AN and residue codes, parity prediction
computes the parity of the result of an operation in two ways: first from the source
operands and second by computing the parity of the result value itself. Although
the term “prediction” suggests that the parity of the result of an operation is “pre-
dicted” from the source operands, in reality it is computed accurately. The term
“prediction” here is not used in the sense speculative microprocessors use it today
to refer to, for example, branch prediction logic. Parity prediction circuits are cur-
rently used in commercial microprocessors, such as the Fujitsu SPARC64 V micro-
processor [2].

To understand how parity prediction works, let us consider the following
addition operation: S = A + B. Let Ac, Bc, and Sc be the parity bits for A, B,
and S, respectively. Further, let A = an−1an−2 … a1a0, B = bn−1bn−2 … b1b0, and
S = sn−1sn−2 … s1s0, where ai, bi, and si are individual bits representing A, B, and
S, and n is the total number of bits representing each of these variables. Now, Sc
can be computed in two ways (Figure 5.11). First, by definition, Sc = sn−1 XOR sn−2
XOR … XOR s1 XOR s0, which can be computed from the result S. Second, it turns

XOR

Adder
Parity Generator

Comparator

A

B

Ac

Bc

Error?
Carry Chain

Ac XOR Bc XOR Carry Chain

Sc

S

FIGURE 5.11 Parity prediction circuit.

186 CHAPTER 5 Error Coding Techniques

out that Sc can also be computed from Ac, Bc, and the carry chain. Let ci be the carry
out from the addition of ai and bi. Then, Sc = Ac XOR Bc XOR (cn−1 XOR cn−2 XOR
… XOR c1 XOR c0). Thus, by computing Sc in two different ways and by comparing
them, one can verify whether the addition operation was performed correctly. For
example, if in binary representation, if A = 01010, B = 01001, then S = A + B = 10011.
Ac = 0, Bc = 0, and Sc= 1. The carry chain is 01000. So, Sc computed as an XOR of Ac,
Bc, and the carry chain is 1.

The implementation of a parity prediction circuit must ensure that a strike on the
carry chain does not cause erroneous S and Sc values (or itsAVF will be higher). This
could happen because the carry chain feeds both S (from which one version of Sc is
computed) and Sc, which can be computed from Ac, Bc, and the carry chain. If the
same error propagates to both versions, then the error may elude detection by this
circuit. To avoid this problem, parity prediction circuits typically implement dual-
rail redundant carry chains to ensure that a strike on a carry chain does produce
erroneous Sc on both paths.

Parity prediction circuits for multipliers can be constructed similarly since a mul-
tiplication is a composition of multiple addition operations. Nevertheless, parity
prediction circuits may differ depending on whether one can use a Booth multiplier
or a Wallace tree. Readers are referred to Nicolaidis and Duarte [13] and Nicolaidis
et al. [14] for detailed description of how to construct parity prediction circuits for
different multipliers.

Given that both residue codes and parity prediction circuits are good candidates
to protect execution units against soft errors, it is natural to ask which one should a
designer choose. It is normally accepted that parity prediction circuits are cheaper in
area than residue codes for adders and small multipliers. But for large multipliers
(e.g., 64 bits wide), it turns out that the residue codes are cheaper. For further
discussion on the implementation of residue codes and parity prediction circuits,
readers are referred to Noufal and Nicolaidis [11] and Nicolaidis [12].

■ E X A M P L E

Compute the parity for the addition operation of the two source operands 01111
and 00001 directly and through the parity prediction circuit.

S O L U T I O N The sum is 10000, so the parity of the sum is 1. The parity of the
first operand is 0 and the second operand is 1. The carry chain is 01111, whose
parity is 0. Consequently, the parity from the parity prediction circuit is 0 XOR
1 XOR 0 = 1.

As should be obvious by now, different protection schemes have different over-
heads and trade-offs. The next section discusses some of the implementation
overheads and issues that arise in the design of error detection and correction
codes.

5.4 Implementation Overhead of Error Detection and Correction Codes 187

5.4 Implementation Overhead of Error
Detection and Correction Codes
Implementors of error detection and coding techniques typically worry about two
overheads: number of logic levels in the encoder and decoder and the overhead in
area incurred by the extra bits and logic. This section elaborates on each of these.

5.4.1 Number of Logic Levels
Figure 5.12 shows the logic diagram of a SEC encoder and decoder described in
Single-Error Correction Codes earlier in this chapter. For example, before writing
the data bits to a register file, the check bits must be generated and stored along
with the data bits (the encoding step). Similarly, before reading the data bits, the
syndrome must be generated and checked for errors (the decoding step).

As Figure 5.12 shows, encoding is simpler and takes fewer logic levels than
decoding. Nevertheless, even the simple encoding logic may be hard to fit into
the cycle time of a processor. For example, assume that a processor pipeline has
12 stages of logic per pipeline stage and the critical path for a stage is already 12
logic levels. Then adding ECC encoding to the pipeline stage may increase the
critical path to 13 stages. This reduces the processor frequency by (1/12) = 8.3% by
stretching the cycle time, which may be unacceptable to the design.

Decoding can pose an even greater performance penalty because it requires
several levels of logic to decode the error code associated with the data. Hence, like
encoding, it may not fit into a processor’s or chipset’s cycle time. Such a style of
error code decoding is referred to as in-line error detection and/or correction, in
which the error code is decoded and the error state of the data is identified before
the data are allowed to be used by the next pipeline stage. Alternatively, one can
allow out-of-band decoding in which the data are allowed to be read by intermediate
stages of the pipeline but eventually the error is tracked down before it is allowed
to propagate beyond a certain boundary. Three ways in which the performance
degradation associated with error code decoding can be reduced with both in-line
and out-of-band decoding are discussed subsequently.

First, like Hsiao’s formulation for odd-weight column SECDED codes (see
Single-Error Correct Double-Error Detect Code, p. 174), one can try to reduce the
average number of 1s in a row of the parity check matrix. The number of 1s in
the parity check matrix determines the binary XOR operations one has to do in
the critical path. Hence, reducing the average number of 1s across the rows of the
parity check matrix would reduce the height of the logic tree necessary to decode
the ECC. This would still be in-line ECC decoding but with less overhead in time.

Second, if part of the error decoding logic fits into the cycle time, but not the
full logic, then one may consider alternate schemes. For example, the AMD’s
OpteronTM processor uses an in-line error detection mechanism but an out-of-band
probabilistic ECC correction scheme for its data cache [1]. For every load access to

188 CHAPTER 5 Error Coding Techniques

(b)

D1

D2

D3

D4

D1

D2

D3

D4

C1

C2

C3

(a)

no error?

D
ata P

ass T
hrough

S
yndrom

e D
ecoder

D1

D2

D3

D4

C1

C2

C3

S1

S2

S3

FIGURE 5.12 (a) SEC Encoder. (b) SEC Decoder. (7,4) code. D1–D4 are data bits,
C1–C3 are check bits, and S1–S3 are syndrome bits.

the cache, the ECC logic checks whether there is an error in the cache. If there is
no error, the load is allowed to proceed. In the background, a hardware scrubber
wakes up periodically and examines the data cache blocks for errors. If it finds
errors, it corrects them using the ECC correction logic. Thus, if there is a bit flip in
the cache and the hardware scrubber corrects it before a load accesses it, then there
will not be any error. As discussed in Computing the DUE AVF, p. 131, Chapter 4,
the effectiveness of such a scheme is highly dependent on the frequency with which
loads access the cache, the size of the cache, and frequency of scrubbing.

5.4 Implementation Overhead of Error Detection and Correction Codes 189

Third, if the error decoding logic does not fit in the cycle time, then one can
try out-of-band error decoding and correction. For example, the error signal from
the parity prediction logic in the Fujitsu SPARC64 V execution units is generated
after the result moves to the next pipeline stage [2]. The error signal is propagated
to the commit point and associated with the appropriate instruction before the
instruction retires. The commit logic checks for errors in each instruction. This
allows the pipeline not only to detect the error before the instruction’s result is
committed but also helps to recover from the error by flushing the pipeline from
the instruction that encountered the error. Then, by refetching and executing the
offending instruction, the processor recovers from the error.

5.4.2 Overhead in Area
Error coding techniques incur two kinds of area overhead: number of added check
bits and logic to encode and decode the check bits. The cost of the error coding
and decoding logic is typically amortized over many bits. For example, one could
have a single-error encoder and a decoder for a 32-kilobyte cache, which would
amortize the cost of the encoding logic and decoding logic.

The greater concern for area is the additional check bits. Figure 5.3 shows that
the number of extra bits necessary to correct a single bit of error in a given num-
ber of data bits grows slowly with the number of data bits. Consequently, the
greater the data bits a set of code bits can cover, the lower is the overhead incurred
in an area. However, there is a limit to the number of data bits that can be cov-
ered with a given code. For example, a cache block is typically 32 or 64 bytes.
But the ECC granularity is usually 64 bits (8 bytes) or fewer. This is because
a typical instruction in a microprocessor can only work on a maximum of 64
bits. If the ECC were to cover the entire 32 bytes (four 64-bit words), then the
ECC encoding step would be a read-modify-write operation, that is, first read
the entire cache block, write the appropriate 64-bit data word in there, recom-
pute ECC for the whole block, and then write the ECC bits into the appropriate
block. This read-modify-write can be an expensive operation and can cause per-
formance degradation by stretching the critical path of a pipeline stage. Hence,
today’s processors typically limit the ECC to 64 bits. For a SECDED code, the over-
head is 8 bits, so a typical word consists of 72 bits: 64 bits for data and 8 bits for
the code.

It is noteworthy though the same read-modify-write concern may not exist for
parity codes. This is because the parity of the whole cache block can be recomputed
using only the parity of the word just changed and the parity of the whole block.
The parity of the whole cache block still has to be read but not the words untouched
by the specific operation.

The overhead of ECC increases if double-bit errors need to be corrected. There
are two kinds of double-bit errors: spatial and temporal. Spatial double-bit errors
are those experienced by adjacent bits (typically caused by the same particle strike).
Temporal double-bit errors are experienced by nonadjacent bits (typically caused

190 CHAPTER 5 Error Coding Techniques

by two different particle strikes). One way to protect against both spatial and
temporal double-bit errors is to use double-error correction (DEC) codes. DEC
codes, however, need significantly more check bits than SEC codes. For example,
for 64 data bits, SEC needs only 7 bits but DEC needs 12 bits (see Determination of
the Minimum Number of Code Bits Needed for Error Correction, p. 166).

To avoid incurring the extra overhead for double-bit correction, computer sys-
tems often use two schemes: interleaving to tackle spatial double-bit errors and
scrubbing to tackle temporal double-bit errors. As Figure 5.4 shows, interleaving
allows errors in two consecutive bits to be caught in two different code words. If
the protection scheme is parity, then this allows one to detect spatial double-bit
errors. If the protection scheme is SECDED ECC, then this allows one to detect and
correct spatial double-bit errors. In main memory systems composed of multiple
DRAM chips, this interleaving is often performed across the multiple chips, with
each bit in the DRAM being covered by a different ECC. Then, if an entire DRAM
chip experiences a hard fail and stops functioning (called chipkill), the data in that
DRAM can be recovered using the other DRAM chips and the ECC. Thus, the same
SECDED ECC can not only prevent spatial double-bit errors but also protect the
memory system from a complete chip failure.

Scrubbing is a scheme typically used in large main memories, where the proba-
bility of a temporal double-bit error can be high. If two different particles flip two
different bits in a data word, then SECDED ECC may not be able to correct the
error, unless there is an intervening access to the word. This is because typically in
computer systems, an ECC correction is invoked only when the word is accessed.
If the word is not accessed, the first error will go unnoticed and uncorrected. When
the second error occurs, the single-bit error gets converted into a double-bit error,
which can only be detected by SECDED but not corrected. Scrubbing tries to avoid
such accumulation of errors by accessing the data word, checking the ECC for any
potential correctable error, correcting the error, and writing it back. Chipsets nor-
mally distinguish between two styles of scrubbing: demand scrubbing writes back
corrected data back into the memory block from where it was read by the processor
and patrol scrubbing works in the background looking for and correcting resident
errors.

Finally, whether scrubbing is necessary in a particular computer memory system
depends on its SER, the target error rate it plans to achieve, and the size of the
memory. The next section discusses how to compute the reduction in SER from
scrubbing.

5.5 Scrubbing Analysis
This section shows how to compute the reduction in temporal double-bit error rate
from scrubbing. First, the SER from temporal double-bit errors in the absence of any
scrubbing is computed. Then, the same is computed in the presence of scrubbing.
Such analysis is essential for architects trying to decide if they should augment the

5.5 Scrubbing Analysis 191

basic ECC scheme with a scrubber. For both cases—with and without scrubbing—it
will be shown how to enumerate the double-FIT rate from first principles [9] and
using a compact form proposed by Saleh et al. [18].

5.5.1 DUE FIT from Temporal Double-Bit Error
with No Scrubbing

Assume that an 8-bit SECDED ECC protects 64 bits of data, which is referred to as a
quadword in this section. A temporal double-bit error occurs when two bits of this
72-bit protected quadword are flipped by two separate alpha particle or neutron
strikes. This analysis is only concerned with strikes in the data portion of the cache
blocks (and not the tags). To compute the FIT contribution of temporal double-bit
errors, the following terms need to be defined:

■ Q = number of quadwords in the cache memory. Each quadword consists of
64 bits of data and 8 bits of ECC. Thus, there are a total of 72 bits per quadword

■ E = number of random single-bit errors that occur in the population of Q
quadwords.

Given E single-bit errors in Q different quadwords, the probability that (E + 1)th

error will cause a double-bit error is E/Q. Let Pd[n] be the probability that a
sequence of n strikes causes n−1 single-bit errors (but no double-bit errors) fol-
lowed by a double-bit error on the nth strike. Pd[1] must be 0 because a single strike
cannot cause a double-bit error. Pd[2] is the probability that the second strike hits
the same quadword as the first strike, or 1/Q. Pd[3] is the probability that the
first two strikes hit different quadwords (i.e., 1 − Pd[2]) times the probability that
the third strike hits either of the first two quadwords that got struck (i.e., 2/Q).
Following this formulation and using * to represent multiplication, one gets

■ Pd[2] = 1/Q

■ Pd[3] = [(Q−1)/Q] ∗ [2/Q]

■ Pd[4] = [(Q−1)/Q] ∗ [(Q−2)/Q] ∗ [3/Q]

■ …

■ Pd[E] = [(Q−1)/Q] ∗ [(Q−2)/Q] ∗ [(Q−3)/Q] ∗ … ∗ [(Q−E+ 2)/Q] ∗ [(E−1)/Q].

Then the probability of a double-bit error after a time period T = Pd[N] ∗ P[N
strikes in time T] for all N. Using this equation, one can solve for the expected value
of T to derive the MTTF to a temporal double-bit error.

There is, however, an easier way to calculate MTTF to a temporal double-bit
error. Assume that M is the mean number of single-bit errors needed to get a
double-bit error. Then, the MTTF of a temporal double-bit error = M * MTTF of a

192 CHAPTER 5 Error Coding Techniques

single-bit error. (Similarly, the FIT rate for a double-bit error = 1/M ∗ FIT rate for a
single-bit error.) A simple computer program can calculate M very easily as the
expected value of Pd[.].

■ E X A M P L E

Compute the DUE rate from temporal double-bit errors in a 32 megabyte cache,
assuming a FIT/bit of 1 milliFIT. Use the method described above. Assume
M = 2567, which can be easily computed using a computer program.

S O L U T I O N The cache has 222 quadwords. The single-bit FIT rate for the
entire cache is 0.001 ∗ 222 ∗ 72 = 3.02 ∗ 105, i.e., the MTTF is 109/(3.02 ∗ 105) =
3311 hours. Using a computer program, one can find that M = 2567. Then the
MTTF to a double-bit error = 3311 ∗ 2567 hours = 970 years.

Using a Poisson distribution Saleh et al. [18] came up with a compact approx-
imation for double-bit error MTTFs of large memory systems. Derivation of
Saleh et al. shows that the MTTF of such temporal double-bit errors is equal to
[1/(72 ∗ f)] ∗ sqrt(pi/2Q), where f = FIT rate of a single bit.

■ E X A M P L E

Compute the DUE rate from temporal double-bit errors in a 32-megabyte cache,
assuming a FIT/bit of 1 milliFIT. Use the compact equation of Saleh et al.

S O L U T I O N f = 0.001. Q=222. Then DUE rate = 0.0085 * 109 hours or 970 years.
The answer is the same when computed from first principles or Saleh’s compact
form.

The above calculation does not factor in the reduced error rates because of the
AVF. The single-bit FIT/bit can be appropriately derated using the AVF to compute
the more realistic temporal double-bit DUE rate.

It is important to note that the MTTF contribution from temporal double-bit
errors for a system with multiple chips cannot be computed in the same way as can
be done for single-bit errors. If chip failure rates are independent (and exponentially
distributed), then a system composed of two chips, each with an MTTF of 100 years,
has an overall MTTF of 100/2 = 50 years. Unfortunately, double-bit error rates are
not independent because the MTTF of a double-bit error is not a linear function of
the number of bits. This is also evident in Saleh’s compact form, which shows that
the rate of such double-bit errors is inversely proportional to the square root of the
size of the cache. Thus, quadrupling the cache size halves the MTTF of double-bit
errors but does not reduce it by a factor of 4.

5.5 Scrubbing Analysis 193

5.5.2 DUE Rate from Temporal Double-Bit Error
with Fixed-Interval Scrubbing

Fixed-interval scrubbing can significantly improve the MTTF of the cache
subsystem. By scrubbing a cache block, one means that for each quadword of the
block, one reads it, computes its ECC, and compares the computed code with the
existing ECC. For a single-bit error, the error is corrected and the correct ECC is
rewritten into the cache. Fixed-interval scrubbing indicates that all cache blocks in
the system are scrubbed at a fixed-interval rate, such as every day or every month.
Scrubbing can help improve the MTTF because it removes single-bit errors from
the cache system (protected with SECDED ECC), thereby reducing the probability
of a future temporal double-bit error.

Even in systems without active scrubbing, single-bit errors are effectively
scrubbed whenever a quadword’s ECC is recalculated and rewritten. This occurs
when new data are written to the cache because either the cached location is
updated by the processor or the cached block is replaced and overwritten with
data from a different memory location. In some systems, a single-bit error detected
on a read will also cause ECC to be recalculated and rewritten. The key difference
between these passive updates and active scrubbing is that the former provides no
upper bound on the interval between ECC updates.

To compute the MTTF with scrubbing, let us define the following terms:

■ I = scrubbing interval

■ N = number of scrubbing intervals to reach MTTF (with scrubbing active at
the end of each interval I)

■ pf = probability of a double-bit error from temporally separate alpha or
neutron strikes in the interval I.

Then, by definition, MTTF of a temporal double-bit error = N ∗ I. Assuming each
such scrubbing interval is independent, the probability that one has no double-bit
error in the first N intervals followed by a double-bit error in the N + 1th interval
is (1 − pf)N ∗ pf. Thus, N is the expected value of a random variable with proba-
bility distribution function (1 − pf)N ∗ pf. So, given an interval I, one computes the
number of single-bit errors (say S) that can occur in that interval. pf is equal to
the sum of the probabilities of a double-bit error, given 2, 3, 4, … , S errors. This
probability can be computed the same way (as described in the last section) for a
system with no scrubbing. Thus, given pf and I, one can easily compute N using a
simple computer program.

Figure 5.13 shows how scrubbing once a year, month, and day can improve
the MTTF numbers for a system configured with an aggregate 16 gigabytes of
on-chip cache and assuming an AVF of 100%. This could, for example, arise from a
64-processor multiprocessor or a cluster, with each processor having 256 megabytes
of on-chip cache. Hence, fixed-interval scrubbing can significantly improve the

194 CHAPTER 5 Error Coding Techniques

1

10

100

1000

10000

100000

1000000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

FIT/bit

M
T

T
F

 in
 y

ea
rs

Scrub once a day Scrub once a month

Scrub once a year With no scrubbing

FIGURE 5.13 Impact on fixed-interval scrubbing (once a year, once a week,
and once a day) on the MTTF of temporal double-bit errors for a system with
16 gigabytes of on-chip cache. Reprinted with permission from Mukherjee
et al. [9]. Copyright © 2004 IEEE.

MTTF of a processor and system’s cache subsystem. Thus, for example, for a FIT/bit
of 1 milliFIT, the MTTF of temporal double-bit errors are 40 years, 2281 years, 28 172
years, and 959 267 years, respectively, for a system with no scrubbing and scrubbing
once a year, once a month, and once a day.

These numbers come close to compact-form MTTF prediction or temporal
double-bit errors with fixed-interval scrubbing of Saleh et al. Closed form of Saleh
et al. for this MTTF is 2/[Q ∗ I ∗ (f ∗ 72)2]. With a FIT/bit (i.e., f) of 0.001, Saleh et al.
would predict MTTFs of 2341 years, 28 484 years, and 854 515 years, respectively,
for a system with scrubbing once a year, once a month, and once a day.

Scrubbing reduces the temporal double-bit DUE rate of a chip. In contrast, the
next section discusses how to specifically reduce the false DUE rate of a chip.

5.6 Detecting False Errors
This section describes techniques to track false errors and thereby reduce the false
DUE AVF. The previous section’s discussion on scrubbing analysis, in contrast,
reduces the total DUE rate—both true and false—from double-bit errors.

Error detection schemes, such as parity codes, can introduce false errors (see
False DUE AVF, p. 86, Chapter 3). An error detection scheme detects not only true
errors from faults that will affect the final outcome of the program but also false
errors that would not have affected the system’s final output in the absence of any
error detection (Figure 3.1). For example, a fault in a wrong-path instruction in the

5.6 Detecting False Errors 195

instruction queue would not affect any user-visible state. However, the processor
is unlikely to know in the issue stage whether or not an instruction is on the correct
path and thus may be forced to halt the pipeline on detecting any instruction queue
parity error.

Unlike error detection and correction codes that are typically agnostic of the
semantics of the underlying architecture, false error detection typically requires this
knowledge. Hence, this section illustrates how to reduce the impact of false errors
for a specific scenario: in a processor pipeline with structures protected with parity
codes. The parity code is written every time a structure is written to. The parity
code is read and checked for error every time the corresponding hardware structure
is read out. On encountering an error, the processor halts further progress of the
pipeline and raises a machine check exception (see Machine Check Architecture
later in this chapter).

First, this section discusses the sources of false DUE events in a microprocessor,
followed by how the error information can be propagated and how one can even-
tually distinguish a false error from a true error using this propagated information.

5.6.1 Sources of False DUE Events in a
Microprocessor Pipeline

To eliminate false errors from (and thereby reduce the corresponding false DUE
rate of) hardware structures in a processor, one must first identify the sources of
these errors. Whether a masked fault is flagged as an error is a function of both the
architecture and the error detection mechanism. Here five example sources of false
errors in a processor pipeline potentially triggered by parity codes are described.
The first three are described by Weaver et al. [22], the fourth one by Ergin et al. [4],
and the last one by Wang et al. [20].

■ Instructions whose results the microarchitecture will never commit. For example,
a strike on the bits of a parity-protected hardware structure holding nonop-
code bits of a wrong-path instruction may lead to a false error. A wrong-path
instruction arises in a processor pipeline that attempts to speculatively execute
instructions beyond a control-flow instruction (e.g., branch). If the speculation
is incorrect, the pipeline ends up with wrong-path instructions that may flow
through different hardware structures in the pipeline but will eventually be
squashed at the retire stage. Predicated instruction sets, such as the Itanium�

architecture, can have a similar problem if the predicate guarding an instruc-
tion evaluates to false. If the pipeline checks for parity errors when the resident
bits are read out of the structure, then the pipeline may flag an error and may
be forced to halt further progress to avoid any potential SDC. This action is
appropriate if it were indeed a true error, but strikes to bits containing nonop-
code bits of a wrong-path or a falsely predicated instruction would have been
masked in the absence of the parity code.

196 CHAPTER 5 Error Coding Techniques

■ Instruction types that are neutral to errors. No-ops, prefetches, and branch
prediction hint instructions, for example, do not affect correctness. No-ops
are instructions that have no effect on program execution but may be neces-
sary for pipeline scheduling or other reasons. Many prefetches often simply
move data closer to a processor cache from one farther away, thereby speeding
up program execution, but do not affect correctness. Branch prediction hints
simply tell the processor pipeline the branch direction to predict, instead of
using the underyling hardware prediction. Hence, these instructions are all
neutral to errors. Consequently, faults in bits other than the opcode bits of
these instructions will not affect a program’s final outcome.

■ Dynamically dead instructions. These instructions generate values that ulti-
mately do not affect the result. One can classify dynamically dead instructions
as first level or transitive. First-level dynamically dead (FDD) instructions are
those whose results are not read by any other instruction. Transitive dynami-
cally dead (TDD) instructions are those whose results are used only by FDD
instructions or other TDD instructions. Depending on whether the instruction
writes a register or a memory location, one can further classify the dynami-
cally dead instructions as being tracked via register or memory, respectively.
A strike on any bit on a dynamically dead instruction, except the destina-
tion register specifier bits, will not change the final outcome of a program.
Similarly, a strike on the result (e.g., register or memory value) of a dynami-
cally dead instruction will also not affect the program’s outcome. On average,
dynamically dead instructions account for 20% of all instructions in the bina-
ries examined by Weaver et al. [22].

■ Narrow values. Processor pipelines often operate on smaller sized data than
allowed by the corresponding data path or registers. For example, instructions
could perform addition and subtraction on byte-sized or 8-bit data, whereas
the data paths and registers themselves could be 64 bits wide to support
operations on 64-bit-wide data. However, if parity is computed for the entire
64 bits, then any error in the 54 bits not holding the byte-sized data would
also be flagged as an error.

■ Conditional branches. Wang et al. [20] identified an additional source of false
errors arising from conditional branches. They found that in 40% of the
dynamically executed conditional branches in CPU2000 benchmarks, the
direction in which the branch went did not matter. This could happen, for
example, if a loop is unrolled but also has an exit code that can fully execute
the loop with lower performance. If the loop branch is taken, the loop executes
fast through the unrolled portion. If the loop branch is not taken, it jumps to
the exit code, runs slower, but still produces the correct answer. Thus, when
the pipeline detects an error in a branch direction, in the CPU2000 bench-
marks, it would flag an error that would have been masked in the absence of
the fault detection mechanism 40% of the time.

5.6 Detecting False Errors 197

The next two subsections describe techniques to avoid raising a machine check
exception on these classes of false errors. The focus will be on the first four examples
because detecting false errors on conditional branches still remains a challenging
research problem. This is because it is difficult to determine if the control and data
flow after an incorrectly taken conditional branch will converge in the future.

5.6.2 Mechanism to Propagate Error
Information

The key challenge in distinguishing false errors from true errors is that the processor
may not have enough information to make this distinction at the point it detects the
error. For example, when the instruction queue detects an error on an instruction,
it may not be able to tell whether the instruction was a wrong-path instruction or
not. Consequently, one needs to propagate the error information down the pipeline
and raise the error when there is enough information to make this distinction. This
section discusses how to propagate this error information for later use. The next
section discusses what information one would need to identify false errors.

To propagate error information between different parts of the microprocessor
hardware Weaver et al. [22] introduced a new bit called the π bit, which stands for
the possibly incorrect bit. A π bit is logically associated with each instruction as it
flows down the pipeline from decode to retirement. The π bit is initially cleared to
indicate the absence of any error. When the instruction queue receives the instruc-
tion, it stores the π bit along with the instruction. On detecting an error (possibly via
parity), the instruction queue sets the affected instruction’s π bit instead of raising
a machine check exception. Subsequently, the instruction issues and flows down
the pipeline. When the instruction reaches commit point, one can determine if the
instruction was on the wrong path. If so, one can ignore the π bit, avoiding a false
DUE event if the bit was set. If not, one has the option to raise the machine check
error at the commit point of the instruction. It should be noted that a strike on the
π bit itself will result in a false DUE event.

One can easily generalize the π bit mechanism and attach the π bit to different
objects flowing through the pipeline, as long as the π bits are propagated correctly
from object to object. For example, modern microprocessors typically fetch instruc-
tions in multiples, sometimes called chunks. Chunks flow through the front end of
the pipeline until they are decoded. One can attach a π bit to each fetch chunk. If the
chunk encounters an error, one can set the π bit of the chunk. Subsequently, when
the chunk is decoded into multiple instructions, one can copy the π bit value of the
chunk to initialize the π bit of each instruction. Thus, one can use the π bit to avoid
false DUE events on structures in the front end of the pipeline before individual
instructions are decoded. Similarly, the π bit can be propagated from instructions
to instructions and registers or from instructions and registers to memory and vice
versa. Propagating the π bit between instructions may require the π bit itself to

198 CHAPTER 5 Error Coding Techniques

undergo appropriate transformations. For example, on an addition operation, the
destination register of the instruction may have to OR the π bits of all the instruc-
tions, as well as the operand registers.

In general, a π bit can be attached to any object flowing through the pipeline or
to any hardware structure, but the granularity of the π bit depends on the imple-
mentation. For example, if a π bit is attached to a 64-bit register value, then a single
π bit can only tell that there may have been an error in one of the 64 bits. Alter-
natively, if there is a π bit per byte, then one could identify the byte among the
64 bits that may have had an error. This may be important to instruction sets that
allow byte-level writes. More generally, the granularity of the π bit can be refined
to isolate the location of errors in the hardware.

One does not, however, expect all hardware structures in a processor or an entire
system to be populated with π bits. For example, an implementation may choose
to have π bits in caches but not in main memory. Consequently, when cache blocks
are written back from a cache to a main memory, the π bit information would be
lost. In such a case, the π bit will go out of scope. When the π bit goes out of scope,
an implementation should flag an error if the π bit is set because the system can no
longer track the error.

The π bit is also sometimes referred to as the poison bit and has been used to track
false errors outside the processor cores in some commercial systems. It should be
noted that the π bit itself may encounter a fault, so it may need to be protected.

5.6.3 Distinguishing False Errors from True Errors
As discussed earlier, false errors can arise in a processor pipeline from three cate-
gories of instructions. This section discusses how one can use the π bit information
to avoid false errors on these three instruction categories and narrow values and
thereby reduce the false DUE rate of the instruction queue.

False Errors on Uncommitted Instructions
Given the π bit, it is relatively straightforward to avoid false errors on instructions
that will never commit their results. As explained earlier, the retire unit can ignore
the π bit for the wrong-path and falsely predicated instructions, thereby avoiding
false errors on such instructions. The retire unit must, however, examine the π bit
of instructions on the correct path and flag an error if the π bit is set. The next two
subsections show how to avoid false errors on instructions on the correct path.

False Errors on Neutral Instruction Types
Many instructions, such as the no-ops, prefetches, or branch predict hints, will
never affect the final outcome of a program and therefore the hardware need not
raise an error on nonopcode bits of such instructions. However, to identify such
instructions, the hardware must decode the instruction at every place it wants to

5.6 Detecting False Errors 199

avoid a false error. Instead, Weaver et al. [22] proposed using another bit called
the anti-π bit, which is associated with every instruction when the instruction is
decoded. The anti-π bit is set for neutral instruction types and cleared for others.
Then, when the instruction queue gets a parity error on nonopcode bits of an entry,
it identifies neutral instructions using the anti-π bit and does not set the π bit on
that instruction. In other words, the anti-π bit neutralizes the π bit for those entries.
Alternatively, the instruction queue could set the π bit but carry both the anti-π bit
and π bit to the retire unit and take the appropriate decision there.

It should be noted that the hardware could also avoid the anti-π bit on every
instruction if it decoded the instruction again at the retire unit. Unfortunately, this
means that an instruction must be read after it has been issued and completed. This
may raise the false DUE AVF by extending the ACE lifetime of the instruction.

The anti-π bit can be generalized to hardware activities that do not affect the cor-
rectness of a program. For example, one could attach an anti-π bit to the command
and address generated by a hardware data prefetcher. Any soft error on such an
activity can be ignored. The anti-π bit provides a concise mechanism to identify
such activities.

False Errors on Dynamically Dead Instructions
One can use the π bit to track false errors in dynamically dead instructions. This
section illustrates three uses of the π bit. Weaver et al. [22] describe an additional
scheme called the postcommit error tracking buffer, which is not covered here.

■ π bit per register. One can allocate a π bit for every register. An instruction’s
π bit is propagated to its destination register. An error is signaled when an
instruction reads a source register with a π bit set. If no instruction reads
the register before it is overwritten, the instruction is FDD, and no error is
signalled. This mechanism provides 100% coverage on all FDD instructions.
However, when one signals an error, one cannot determine the instruction
that originally caused the error. This lack of information may complicate some
recovery schemes.

■ π bits on every structure inside the chip, except the memory system. Although
the above two mechanisms avoid false errors on FDD instructions tracked
via registers, they do not cover instructions that are transitively dead (TDD)
via registers. One easy way to track TDD instructions is to declare the error
only when a processor interacts with the memory system or I/O devices.
Thus, if there are π bits on every structure in a processor—except caches
and main memory—and the same propagation rule for π bits as described
earlier is followed, then false errors on TDD instructions can be avoided as
well. This would mean signalling errors only when a store instruction or an
I/O access is about to commit its data to the caches, memory system, or
I/O device. In this case, one can get complete coverage of false errors on

200 CHAPTER 5 Error Coding Techniques

TDD instructions tracked via registers, but like the previous mechanism,
one can lose the ability to precisely determine the instruction that originally
encountered the error.

■ π bit on caches and memory. Finally, if the entire chip and memory system have
π bits, then false errors on both FDD and TDD instructions can be tracked
via memory as well. In such a case, an error would be raised only when the
processor makes an I/O access (e.g., uncached load or store) that has its π

bit set. This technique would also allow one to track errors across multiple
processors in a shared-memory multiprocessor system.

As the above discussions suggest, the π bit is a powerful mechanism to propagate
error information, so that the error can be raised at a later point in time when it
can be determined whether the error was actually a false or a true error. Thus, it
decouples the detection of an error from the signalling of the error. This allows a
microprocessor designer the choice to raise the error either on the use of a value or
when the π bit for a value goes out of scope.

False Errors in Narrow Values
As discussed earlier, narrow values embedded in wider data paths can give rise
to false errors if the entire data path is protected with parity bits. The key here
is to identify the bits that do not matter in the event of an alpha particle or a
neutron strike. This can be accomplished by attaching an anti-π bit similar to the
one described earlier for neutral instruction types. Thus, if the width of the actual
operand (e.g., lower eight bits in a 64-bit register) is known and the anti-π bit is set,
then only the parity on the lower operand bits can be computed. This would avoid
raising a false error if the nonoperand bits are struck.

Ergin et al. [4] describe a similar mechanism that can identify and ignore the
nonoperand bits in a wide register or a data path. Method of Ergin et al. works even
in the absence of an error detection mechanism and thereby can reduce the SDC
AVF as well. The SDC AVF can arise if sign-extended nonoperand bits are actually
used to perform an operation, although the actual operand width is smaller (e.g., if a
64-bit adder is used for an 8-bit addition). In this case, ignoring the nonoperand bits
in the registers and sign extending them before the appropriate operation would
help reduce the SDC by ignoring any error in the nonoperand bits.

5.7 Hardware Assertions
This section discusses how hardware assertions can be used to detect soft errors. If
these assertions are violated during a program’s execution, then an error must have
occurred. Parity and ECC are a generic form of hardware assertion that does not
use architecture-specific knowledge. In contrast, this section discusses examples

5.7 Hardware Assertions 201

of architecture-specific hardware assertions. In the previous section, knowledge of
the underlying architecture was also necessary to detect false errors. A typical char-
acteristic of these assertions is that they incur lower overhead in area and latency
to detect errors compared to error detection and correction codes. The drawback is
that the assertion is a customized error detection or correction procedure for each
hardware structure and may be hard to generalize like parity or ECC.

One can imagine a variety of such hardware assertions. For example, a MESI
cache coherence protocol has four states for a cache block participating in the
protocol: Modified, Exclusive, Shared, and Invalid. A protocol implementation
may require a block to first go from Invalid to Exclusive before it transitions to
Modified state. Hence, if a finite-state machine implementing the state transi-
tions detects such a transition from Invalid to Modified state, it can declare an
error.

Reddy et al. [17] studied two such hardware assertions in a microprocessor
pipeline. The first scheme is related to the instruction issue logic, which the authors
call Timestamp-Based Assertion Checking (TAC). The second one tracks errors in
the register rename mapping, which the authors call Register Name Authentica-
tion (RNA). Here the TAC mechanism is discussed. The RNA mechanism is more
involved, and readers are referred to the paper for the details of how RNA works.

To detect faults, TAC associates timestamps to instructions as they issue to the
execution units. Assume instruction Ais an addition operation: R1 = R2 + R3, which
adds registers R2 and R3 and produces the corresponding sum in the destination
R1. Also, assume that instruction B writes the destination register R2 before A uses
it. Consequently, for many pipelines, the following hardware assertion will hold:
Timestamp (A) ≥ Timestamp (B). Further, if the latency of instruction B through
the execution unit is known to be L, then the following assertion should hold as
well: Timestamp (A) ≥ Timestamp (B) + L. Reddy et al. show how to implement
these timestamp counters and check the hardware assertions when instructions
retire.

Figure 5.14 shows the result of fault injection into targeted areas in the hardware
(e.g., ready bits), which would cause the instruction to issue earlier than the asser-
tions would allow. As seen in the figure, for the nine benchmarks studied with TAC,
on average, 80% of the injected faults were detected by TAC (shown as Assert+SDC
in the figure). Another 17% of the faults detected by TAC are actually false errors
(shown as Assert+Masked). False errors can arise because the final output may still
be correct, although an instruction may have issued earlier (e.g., if the previous
source value was the same as the new and correct one). The rest are masked and
not detected by TAC.

Nakka et al. [10] propose a more generic framework to implement hardware
assertions. They propose the use of an offload engine—called the Reliability and
Security Engine (RSE)—that will perform the hardware assertions. Communication
paths between the main processor and the RSE allow the processor to send the data
necessary for the RSE to check the hardware assertion.

202 CHAPTER 5 Error Coding Techniques

100

90

80

70

60

50

40

30

20

10

0

%
 o

f
to

ta
l f

au
lt

s i
nj

ec
te

d

ga
p

bz
ip

gc
c

gz
ip

pa
rse

r
pe

rl
tw

ol
f

vo
rte

x
vp

r
Avg

Assert 1 SDC

Assert 1 Masked

Undet 1 Masked

Undet 1 SDC

FIGURE 5.14 Breakdown of outcome of TAC fault injection experiments.
Assert + SDC = category of faults that would have caused an SDC and detected
by TAC. Assert + Masked = false errors detected by TAC. Undet + Masked = not
detected by TAC but benign faults. Undet + SDC = not detected by TAC
and causes SDC. Reprinted with permission from Reddy et al. [17]. Copyright
© 2006 IEEE.

5.8 Machine Check Architecture
The MCA of a processor or a chipset specifies the actions it must take on detecting
or correcting a hardware error (e.g., see the Intel manual [7]). Typically, there are
three types of actions: informing the OS of the error, recording the information
related to the error, and isolating the error to a specific hardware component.

5.8.1 Informing the OS of an Error
On detecting a fault, the hardware would usually raise an uncorrectable machine
check interrupt to inform the OS that it cannot guarantee correct operation. This
would typically result in a reboot. Nevertheless, in certain cases, the OS may be
able to isolate the error to a specific user process. In such a case, the OS can just kill
the user process that experienced the error and continue its operation. The overall
process-kill DUE rate of the system still remains the same, but the system-kill DUE
can be reduced (see Basic Definitions: SDC and DUE, p. 32, Chapter 1).

On correcting an error, the hardware optionally raises a correctable machine
check interrupt. This is optional and is typically controlled by a mode bit set by
the OS because normal hardware operation can continue correctly. Nevertheless,
if the number of correctable interrupts raised is greater than a certain expected

5.9 Summary 203

threshold, then it may be an indication to the OS that the hardware may not be
functioning correctly and an impending uncorrectable error may be expected.

5.8.2 Recording Information about the Error
The hardware can record information about the error in one of two ways: it can
provide appropriate information (e.g., error number or type) to the OS when it
raises the interrupt. Alternatively, it can log the error in hardware registers. For
example, Intel�x86 processors record the error information in hardware register
banks [7]. IBM�’s Power architecture records similar information in fault isolation
registers [3]. The OS can read these registers when it receives the uncorrectable or
correctable machine check interrupt and takes appropriate actions.

5.8.3 Isolating the Error
Isolating an error to a specific hardware chip is typically important for hard errors
since the specific unit experiencing an error may need to be replaced. IBM calls such
units field-replaceable units (FRUs) [3]. When an error is detected, it can usually
be mapped to a specific FRU, unless it happens in the communication channel
between two or more FRUs. In this case, the error is typically ascribed to both. This
could be a costly procedure since field representatives may have to test and/or
replace both units, although only one was probably operating incorrectly. IBM’s
Power4 processor has enough hardware hooks to minimize such a multiFRU fault
isolation.

5.9 Summary
Error coding techniques are used widely in the industry today to protect against
transient faults caused by alpha particle and neutron strikes. The coding schemes
typically add redundant check bits to a set of data bits in such a way that an error can
be either detected or corrected by examining the check bits. Reducing the number
of check bits used in an error code is often important to reduce the overhead of
error detection and correction.

Parity, SEC, SECDED, DECTED, and CRC codes are common error detection and
correction codes used to protect memory structures. Parity codes provide perhaps
the simplest form of fault detection. An even parity code needs one check bit that
is the XOR of all the data bits. Parity codes can detect single-bit faults and faults in
odd numbers of data bits.

SEC codes add a set of check bits to correct single-bit errors. Each check bit in a
SEC code is an XOR of a combination of a subset of the data bits. The relationship
between the data bits and check bits is typically expressed as a parity check matrix.
By multiplying the parity check matrix with a set of incoming data and check bits,
one can obtain a set of bits called a syndrome. A zero syndrome indicates no error,

204 CHAPTER 5 Error Coding Techniques

whereas a nonzero syndrome can give the exact location of the bit in error if the
parity check matrix is set up appropriately to create what is known as a Hamming
code.

ASEC code can be extended with an extra bit to create a SECDED code. The extra
bit is effectively the parity of the set of bits used by the SEC code. By interpreting
the syndrome differently, the SECDED code can correct single-bit errors and detect
double-bit errors.

Similarly, a DECTED code can correct double-bit errors and detect triple-bit
errors. By interpreting the syndrome differently, one can detect the bit positions of
both single-bit and double-bit errors and thereby correct them by inverting the bits.

CRC codes are typically used to detect a burst of errors in signal lines. Although
transmission lines do not experience soft errors from particle strikes, CRC codes are
still interesting for soft errors because such codes can cover the corresponding send
and receive buffers. Polynomial division underlies the principles behind encoding
and decoding CRC codes.

Execution units cannot be protected easily with parity, SEC codes, etc. Instead,
they can be protected with residue codes or parity prediction circuits. A residue
for an integer is the remainder obtained by dividing it by another smaller integer.
Residue codes compute residues directly from the result of an operation and sepa-
rately from the source operands themselves. Then, by comparing the two residues,
one can determine if there was an error. Parity prediction circuits work in a similar
fashion. Such circuits compute the parity bit directly from the result and separately
from the source operands and the corresponding carry chain.

Error codes can come with high overheads, so architects have invented several
schemes to reduce their overheads. Reducing the number of 1s in a row of the parity
check matrix helps reduce the critical path of encoding and decoding SECDED
codes. Other architectures have used out-of-band ECC correction to reduce the
overhead. Out-of-band correction does not correct the data in the critical path of
the access but does it later.

Scrubbing is another overhead reduction technique that accesses blocks of mem-
ory periodically and corrects single-bit errors. This prevents temporal double-bit
errors caused by accumulation of single-bit errors. This allows a SECDED code to
correct temporal double-bit errors. Alternatively, a single particle strike can affect
two or more contiguous bits in some cases causing a spatial multibit error. To pre-
vent such a spatial multibit error, architects often interleave ECC of different data
words. A particle strike in such a case will upset separate code words and will be
detected and corrected.

Knowledge of the specific architecture can help architects create other fault detec-
tion and error correction mechanisms. For example, false errors on wrong-path
instructions could be detected and isolated by the hardware since the results of
wrong-path instructions will not be committed. Similarly, hardware assertions that
assert certain properties of the architecture or instruction flow can be used to detect
faults and correct errors.

References 205

5.10 Historical Anecdote
Error detection and correction codes have evolved over several decades. In 1948,
Claude Shannon’s landmark paper, titled “A Mathematical Theory of Communi-
cation,” perhaps started the formal discipline of coding theory [19]. Working at
Bell Labs, Shannon showed that it was possible to encode messages for transmis-
sion in such a way that the number of extra bits was minimal. Few years later,
Richard Hamming, also in Bell Labs, produced a 3-bit code for four data bits.
Hamming invented this code after several failed attempts to punch out a message
on a paper using the parity code. Apparently, Hamming expressed his frustration
in the following words, “If it can detect the error, why can’t it correct it!” Since the
early 1950s, coding theory has evolved to cover a variety of fault models and situa-
tions. Today, error detection and correction codes are widely used across various
forms of computing systems, including the ones sent for space exploration.

References
[1] AMD, “BIOS and Kernel Developer’s Guide for AMD AthlonTM 64 and AMD OpteronTM Pro-

cessors,” Publication #26094, Revision 3.14, April 2004. Available at: http://www.amd.com/
us-en/assets/content_type/white_papers_and_tech_docs/26094.PDF.

[2] H. Ando, Y. Yoshida, A. Inoue, I. Sugiyama, T. Asakawa, K. Morita, T. Muta,
T. Motokurumada, S. Okada, H. Yamashita, Y. Satsukawa, A. Konmoto, R. Yamashita, and
H. Sugiyama, “A 1.3 GHz Fifth Generation SPARC64 Microprocessor,” in International Solid-State
Circuits Conference, pp. 1896–1905, 2003.

[3] D. C. Bossen, A. Kitamorn, K. F. Reick, and M. S. Floyd, “Fault-Tolerant Design of the IBM pSeries
690 System Using POWER4 Processor Technology,” IBM Journal of Research and Development,
Vol. 46, No. 1, pp. 77–86, 2002.

[4] O. Ergin, O. Unsal, X. Vera, andA. Gonzalez, “Exploiting Narrow Values for Soft Error Tolerance,”
IEEE Computer Architecture Letters, Vol. 5, pp. 12–12, 2006.

[5] M. Y. Hsiao, “AClass of Optimal Minimum Odd-Weight-Column SEC-DED Codes,” IBM Journal
of Research and Development, Vol. 14, No. 4, pp. 395–401, 1970.

[6] S. Iacobovici, “Residue-Based Error Detection for a Shift Operation,” United States Patent Appli-
cation, filed August 22, 2005.

[7] Intel Corporation, Intel� 64 and IA-32 Architectures, Software Developer’s Manual, Volume 3A:
System Programming Guide, Part 1. Available at: http://www.intel.com.

[8] J.-C. Lo, “Reliable Floating-Point Arithmetic Algorithms for Error-Coded Operands,” IEEE Trans-
actions on Computers, Vol. 43, No. 4, pp. 400–412, April 1994.

[9] S. S. Mukherjee, J. Emer, T. Fossum, and S. K. Reinhardt, “Cache Scrubbing in Microprocessors:
Myth or Necessity?” in 10th IEEE Pacific Rim International Symposium on Dependable Computing
(PRDC), pp. 37–42, March 3–5, 2004, Papeete, French Polynesia.

[10] N. Nakka, J. Xu, Z. Kalbarczyk, and R. K. Iyer, “An Architectural Framework for Provid-
ing Reliability and Security Support,” Dependable Systems and Networks (DSN), pp. 585–594,
June 2004.

206 CHAPTER 5 Error Coding Techniques

[11] I. A. Noufal and M. Nicolaidis, “A CAD Framework for Generating Self-Checking Multipliers
Based on Residue Codes,” in Design, Automation and Test in Europe Conference and Exhibition,
pp. 122–129, 1999.

[12] M. Nicolaidis, “Carry Checking/Parity Prediction Adders and ALUs,” IEEE Transactions on Very
Large Scale Integration (VLSI), Vol. 11, No. 1, pp. 121–128, February 2003.

[13] M. Nicolaidis and R. O. Duarte, “Fault-Secure Parity Prediction Booth Multipliers,” IEEE Design
and Test of Computers, Vol. 16, No. 3, pp. 90–101, July–September 1999.

[14] M. Nicolaidis, R. O. Duarte, S. Manich, and J. Figueras, “Fault-Secure Parity PredictionArithmetic
Operators,” IEEE Design and Test of Computers, Vol. 14, No. 2, pp. 60–71, April–June 1997.

[15] W. W. Peterson and E. J. Weldon, Jr., Error-Correcting Codes, MIT Press, 1961.

[16] D. K. Pradhan, Fault-Tolerant Computer System Design, Prentice-Hall, 2003.

[17] V. K. Reddy, A. S. Al-Zawawi, and E. Rotenberg. “Assertion-Based Microarchitecture Design for
Improved Fault Tolerance.” in Proceedings of the 24th IEEE International Conference on Computer
Design (ICCD-24), pp. 362–369, October 2006.

[18] A. M. Saleh, J. J. Serrano, and J. H. Patel, “Reliability of Scrubbing Recovery Techniques for
Memory Systems,” IEEE Transactions on Reliability, Vol. 39, No. 1, pp. 114–122, April 1990.

[19] C. E. Shannon, “A Mathematical Theory of Communication,” Bell System Technical Journal,
Vol. 27, pp. 379–423, 623–656, July–October, 1948.

[20] N. Wang, M. Fertig, and S. Patel, “Y-Branches: When You Come to a Fork in the Road, Take
It,” in 12th International Conference on Parallel Architectures and Compilation Techniques (PACT),
pp. 56–66, 2003.

[21] C. Webb, “z6—The Next-Generation Mainframe Microprocessor,” Hot Chips, August 19–21, 2007.

[22] C. Weaver, J. Emer, S. S. Mukherjee, and S. K. Reinhardt, “Reducing the Soft Error Rate of a
Microprocessor,” IEEE Micro, Vol. 24, No. 6, pp. 30–37, November–December 2004.

C H A P T E R6
Fault Detection via
Redundant Execution

6.1 Overview
Fault detection via redundant execution is a common form of fault detection that
has been used for decades. Unlike error coding techniques—described in the previ-
ous chapter—that detect faults using redundant information in storage bits or logic
units, the techniques described in this chapter detect faults by comparing outputs
from redundant streams of instructions. Typically, fault detection via redundant
execution can provide greater fault coverage across a processor chip compared to
error coding techniques on individual hardware structures. This is because the same
redundant execution technique can cover multiple hardware structures, unlike in
many error coding implementations where each structure must be protected indi-
vidually. Further, redundant execution can more easily protect logic and compu-
tation blocks that change the data the blocks operate on. In contrast, error coding
techniques are typically used for storage and communication that leave the data
unchanged over periods of time. Redundant execution techniques can, however,
add significant hardware overhead over error coding schemes.

This chapter focuses on two redundant execution schemes commonly used in
the industry: Lockstepping and Redundant Multithreading (RMT). In Lockstep-
ping, both redundant copies have exactly the same state in every cycle. Conse-
quently, a fault in either copy may cause the redundant copies to produce different
outputs in the same cycle. A fault is detected on such an output mismatch. In con-
trast, in RMT, only outputs of committed instructions are compared. The internal
state of the individual redundant threads in an RMT implementation can be very
different.

207

208 CHAPTER 6 Fault Detection via Redundant Execution

This chapter discusses the different trade-offs offered by Lockstepping and RMT.
To illustrate the trade-offs, this chapter first discusses the concept of the sphere of
replication. The sphere of replication determines the logical boundary within which
all states are logically or physically replicated. The sphere of replication is critical
to understand the outputs in a Lockstepped or an RMT implementation that need
comparison.

Then, this chapter describes three Lockstepped implementations—the Stratus
ftServer, the Hewlett-Packard NonStop Architecture, and the IBM Z-series proces-
sors. These three examples illustrate how varying the size of the sphere of replica-
tion can change the trade-offs associated with implementing Lockstepping.

Finally, five RMT implementations are discussed—the Marathon Endurance
Server, the Hewlett-Packard NonStop Advanced Architecture (NSAA), simul-
taneous and redundantly threaded (SRT) processor, the chip-level redundantly
threaded (CRT) processor, and dynamic implementation verification architecture
(DIVA). Because RMT implementations do not impose the constraint of cycle-
by-cycle synchronization, one can implement the redundant threads of RMT in a
variety of ways: in a hardware thread, in a processor core, or in a special
checker core. These five implementations differ not only in the size of the
sphere of replication but also in how the redundant threads are implemented.
The first two have been implemented in commercial systems, whereas the last
three designs are only paper proposals but have been studied extensively by
researchers.

6.2 Sphere of Replication
The concept of the sphere of replication [10] makes it easier to understand the
mechanics of fault detection schemes based on redundant execution, such as Lock-
stepping or RMT. In a fault detection scheme with redundant execution, the same
program executes as identical and committed instruction streams. For a dual-
modular redundancy (DMR) system, there are two identical streams. For a triple
modular redundancy (TMR) system, there are three identical streams of execution.
Specific outputs are compared from each stream. A fault is flagged when there is a
mismatch in the compared outputs.

6.2.1 Components of the Sphere of Replication
The sphere of replication identifies the logical domain protected by the fault detec-
tion scheme. That is, any fault that occurs within the sphere of replication and
propagates to its boundary will be detected by the fault detection scheme corre-
sponding to the sphere of replication. Figure 6.1 shows an example sphere of repli-
cation that includes redundant copies of a microprocessor but excludes memory,

6.2 Sphere of Replication 209

Disk
Main

Memory

Output
Comparison

Input
Replication

Sphere of Replication

Other I/O

Microprocessor 0 Microprocessor 1

FIGURE 6.1 Sphere of replication (shaded region) that excludes memory, disk,
and other I/O.

disks, and other I/O subsystems. There are three questions related to the sphere
of replication:

■ For which components will the redundant execution mechanism detect faults?
Components outside the sphere of replication are not covered by redundant
execution and may need to use alternative techniques, such as parity, ECC, or
replication, for fault coverage.

■ Which outputs must be compared? Failure to compare critical values compro-
mises fault coverage. However, needless comparisons increase overhead and
complexity without improving coverage.

■ Which inputs must be replicated? Failure to correctly replicate inputs can
result in the redundant threads following divergent execution paths.

6.2.2 The Size of Sphere of Replication
The extent of the sphere of replication affects a number of system parameters.
A larger sphere typically replicates more state (e.g., memory). However, moving
state into the sphere indicates that updates to that state occur independently in
each execution copy. Thus, a larger sphere tends to decrease the bandwidth required
for output comparison and input replication, potentially simplifying the compara-
tor and replicator circuits.

The size of the sphere of replication also depends on how much control vendors
have over the components they use in their machines. For example, vendors, such

210 CHAPTER 6 Fault Detection via Redundant Execution

Disk

Main
Memory 0

Microprocessor 0

Output
Comparison

Input
Replication

Sphere of Replication

Other I/O

Main
Memory 1

Microprocessor 1

FIGURE 6.2 Sphere of replication (shaded region) that includes memory but
excludes disk and other I/O.

as Tandem or Stratus, do not have much control over the microprocessor itself and
hence their spheres of replication include two or three microprocessor chips. In
contrast, IBM designs its own fault-tolerant microprocessor and hence it can afford
to create a sphere of replication that is limited to a single microprocessor, but with
redundant pipelines.

In practice, the size of the sphere of replication can vary widely. The sphere of
replication in Stratus’ ftServer [19] includes redundant copies of both the micro-
processor and the main memory (Figure 6.2). In contrast, the sphere of replication
of the Hewlett-Packard Himalaya system [23] includes only redundant copies of
the microprocessor but not the main memory or I/O system. The sphere of repli-
cation in the IBM G5 processor [13], on the other hand, comprises only part of
the processor pipeline—fetch, decode, and execution units. Even the architectural
register file in the G5 is outside the sphere of replication.

■ E X A M P L E

Compute the DUE FIT rate of the following microprocessor. The micropro-
cessor has two parts: a core and an uncore. The core has 60 SDC FIT and 60
DUE FIT. The uncore has 40 SDC FIT and 40 DUE FIT. Designers decided to
add redundant execution to the microprocessor with the sphere of replication
covering the entire core. Assume that the false DUE FIT arising from the redun-
dant execution is 10 DUE FIT.

6.2 Sphere of Replication 211

S O L U T I O N Redundant execution eliminates the SDC FIT for the core since
thesphereof replication includes theentirecore. TheDUEFIT = 10 (falseDUE) +
60 (from core) + 40 (from uncore) = 110 FIT. So, the total SDC FIT reduces from
100 FIT to 40 FIT, but the DUE FIT increases from 100 FIT to 110 FIT.

6.2.3 Output Comparison and Input
Replication

Any outputs leaving the sphere of replication must be compared to check for
mismatch and corresponding faults. Faults that do not propagate to the output
comparator corresponding to the sphere get masked and hence do not require
detection or comparison. The output comparator has also been referred to in the
literature as the checker.

Any inputs into the sphere of replication must be appropriately replicated and
delivered to the correct points within the sphere. If the inputs are not replicated
correctly, then the redundant copies may still execute correctly but may follow
different (but still correct) paths. For example, if the redundant copies read a
processor cycle counter but obtain different values for the same cycle counter, then
the redundant copies may diverge. Although the individual copies will execute
correctly, the output comparison may indicate a mismatch even in the absence of a
fault because of divergent execution. Hence, it is critical to ensure that both copies
execute the same correct path in the absence of any fault. This can be ensured if the
inputs are replicated appropriately.

Broadly, there are two styles of output comparison and input replication. First
one is cycle synchronized. That is, each redundant copy within the sphere has
exactly the same state in every clock cycle as its redundant copy. The Stratus
ftServer, for example, is cycle synchronized. This is typically referred to as Lockstep-
ping since the redundant copies within the sphere are exactly in sync in every cycle.
The output comparator can compare any set of hardware signals coming from the
redundant copies in the sphere. In the absence of any fault, these signals should
match exactly in each cycle. It should be noted that the output comparator does
not need any semantic information about the signals. As long as the signals match,
the comparator can certify that the redundant copies did not encounter a single-bit
fault.

The second style is one that compares specific events or instructions, instead
of hardware signals, from two executing streams of instructions. For example, the
Tandem NSAA [2] has the same sphere of replication as the Stratus ftServer but is
not cycle synchronized. Instead, the Tandem NSAA compares I/O events coming
from two separate microprocessors. To avoid cycle-by-cycle synchronization, the
NSAA takes special care in replicating the inputs, such as interrupts and DMA

212 CHAPTER 6 Fault Detection via Redundant Execution

activities. This is normally referred to as Loose Lockstepping or RMT. The next two
sections describe several styles of Lockstepped and RMT systems.

6.3 Fault Detection via Cycle-by-Cycle
Lockstepping
Lockstepping is a well-known fault detection technique and has been used since
the 1980s by mainframes and highly reliable computers. Since the 1960s and
1970s, companies, such as Stratus, Tandem, and IBM, have built fault-tolerant
computers that failed over to a standby backup machine when the primary failed.
However, the fault coverage in these machines was not as evolved as in today’s
fault-tolerant machines. In the 1980s, more and more business applications, such as
online transaction processing, started to run continuously (24 hours a day, 7 days
a week). This required the processors themselves to be online 24 × 7 with very little
downtime and high fault coverage and detection capabilities. To meet this market
demand, in the 1980s, Stratus and Tandem introduced Lockstepped processors in
their systems (besides other enhancements to the memory and I/O subsystem), but
IBM relied on extreme levels of error checking throughout its processor and system
design. In the 1990s, however, IBM switched to a Lockstepped processor pipeline
architecture.

In the cycle-by-cycle Lockstepping, redundant copies of a program are executed
through cycle-synchronized redundant hardware.An output comparator compares
a set of hardware signals from each redundant copy. On a mismatch, the comparator
flags an error. Thus, Lockstepping reduces the SDC rate of a system. Lockstepping
by itself, however, does not imply the presence or absence of any accompanying
recovery mechanism, such as checkpointing, or the use of TMR that allows systems
to make progress even after a fault is detected.

Lockstepping necessitates a cycle-by-cycle synchronization of the redundant
hardware. That is, in each cycle, both hardware copies have exactly the same state,
execute the same stream of instructions, and produce the same stream of events
in exactly the same cycles. In the absence of a cycle-level synchronization, the
two redundant copies can diverge rapidly. This effect is even more prominent in
dynamically scheduled processors1, which can speculatively execute instructions
that may not be on the correct path. Cycle synchronization is difficult to implement
in a logically shared hardware (e.g., within a multithreaded processor core) and
hence typically Lockstepping uses physically redundant and identical copies of
the hardware. Cycle-by-cycle synchronization also makes input replication easier
since the inputs will be correct as long as the replicated inputs are delivered in the
same cycle to the redundant hardware.

1Also known as out-of-order processors.

6.3 Fault Detection via Cycle-by-Cycle Lockstepping 213

Lockstepping poses two critical constraints on the system design. First, the
redundant copies must be fully deterministic. That is, they must produce the same
set of output signals, given the same set of input signals.

Second, the hardware must support deterministic reset. On a reset, a micropro-
cessor’s or a chipset’s state is set to a specific state. This state must be identical
for both redundant copies of the hardware, even for the state that does not affect
correct execution of the pipeline. For example, a branch predictor’s initial state
does not affect the correct execution in the absence of Lockstepping. However, if
the redundant microprocessors have different initial state in their branch predic-
tors, then they are highly likely to diverge and cause a Lockstepping mismatch.
A branch misprediction could trigger an incorrect path load in one copy, whereas
a correct prediction may not trigger the same in the redundant copy causing a
Lockstep failure.

The rest of the section discusses the advantages and disadvantages of Lockstep-
ping and describes three commercial implementations of Lockstepped systems.
These commercial systems differ in the sizes of the sphere of replication chosen for
the Lockstepped implementation.

6.3.1 Advantages of Lockstepping
Lockstepping provides a great degree of fault coverage. It can detect almost all
transient faults in the physically redundant copies within the sphere of repli-
cation. It cannot detect faults that are masked within the sphere of replication,
which are faults one usually does not care about. Lockstepping can also detect
most permanent faults in either copy. The only transient and permanent faults
Lockstepping cannot detect are the ones that affect the redundant copies in exactly
the same way. But the likelihood of two faults affecting the two redundant copies in
exactly the same way is extremely low, unless it is caused by a design fault, which
could potentially affect both redundant copies in the same way.

Lockstepping can be implemented purely as a hardware layer underneath appli-
cations and OS. As long as all inputs—specifically hardware signals feeding the
sphere of replication—are correctly replicated to the two redundant copies, all soft-
ware, including applications and OS, on both the redundant copies of the hardware
will execute the same stream of instructions. Then, any mismatch in the stream of
instructions due to a fault will be caught by the output comparator. This makes it
an attractive solution for system vendors, such as Stratus, who have little control
over the microprocessor they may be using or the OS they may have to run.

6.3.2 Disadvantages of Lockstepping
Lockstepping does, however, come with some significant disadvantages. The cost
of a Lockstepped system is higher than that of a normal machine since it uses
redundant copies of the hardware. At the extreme, the performance-per-unit price

214 CHAPTER 6 Fault Detection via Redundant Execution

of such a system could be nearly half that of a commodity non-fault-tolerant system.
In other words, the same dollars could purchase approximately twice as many
commodity systems as fault-tolerant systems. Hence, the cost of fault tolerance
must be weighed against the customer’s penalty incurred from the downtime of
the machines.

The validation time for a Lockstepped system can also be higher than that for
a normal machine. This is because Lockstepping requires each redundant copy
to execute deterministically to produce the same output when fed with the same
input. Given up to a billion transistors on today’s chips, nondeterminism can arise
easily in a microprocessor or a chipset implementation. For example, a floating bit
that assumes random values due to circuit marginality may not cause incorrect
execution but may easily cause a Lockstep failure. Similarly, clock domain crossing
may induce clock skews differently in the redundant copies of the hardware, which
may again cause Lockstep failures. The implementation-related nondeterminism
must be weeded out for Lockstepping to work correctly.

Validating that a microprocessor will execute deterministically over months or
years is a nontrivial job. Typically, testers used in the validation of microprocessors
and chipsets can only run for millions of cycles. In a tester, the chip under test is
fed with input vectors and compared against a predefined set of output vectors.
This process can guarantee fully deterministic operation only for millions of cycles
but not for months or years. Hence, a whole range of functional tests are run on the
microprocessor to guarantee that the microprocessor will operate correctly over
months of operation. These functional tests, however, do not guarantee determin-
ism. Hence, validating that a microprocessor will operate deterministically over
months or years is a challenging proposition.

Also, Lockstepping often needs to be accompanied by a recovery mechanism
because of its potential to increase the false DUE rate. Recall that the false DUE
events arise from benign faults that are detected by the fault detection mechanism
(see Silent Data Corruption and Detected Unrecoverable Error, p. 32, Chapter 1).
For example, faults in branch predictors may cause one of the Lockstep processors
to execute wrong-path instructions that are different from the ones executed by its
Lockstep pair (Figure 6.3). This is likely to cause a Lockstep failure and hence is a
false DUE event. Similarly, structures that do not have in-line recovery may trigger
false DUE events. For example, a parity-protected write-through cache can recover
from a strike on the data portion of the cache by refetching the block from a lower
level memory. But this refetch operation may cause a timing mismatch with the
other Lockstep processor, which may not initiate a refetch in the absence of a fault
(Figure 6.4). This would again cause an unnecessary Lockstep failure. Any out-of-
band ECC flow would cause a similar problem. One option would be to turn the
parity or ECC check off, which may or may not be possible depending on whether
the processor had the option to turn it off. Alternatively, this parity or ECC check
event could be signalled to the Lockstep output comparator, which could do a fast
reset and restart of the whole system. The case studies on Lockstepping in Chapter 3

6.3 Fault Detection via Cycle-by-Cycle Lockstepping 215

Cycle

...

n

n 1 1

n 1 2

n 1 3

n 1 4

...

Lockstep Processor A

...

Correct Path: R1 5 R2 1 R3

Wrong Path: R4 5 [R1]

Wrong Path: R5 5 R4 * 7

Correct Path: R4 5 [R1 1 8]

Correct Path: R5 5 R4 / 7

...

Lockstep Processor B

...

Correct Path: R1 5 R2 1 R3

Correct Path: R4 5 [R1 1 8]

Correct Path: R5 5 R4 / 7

...

...

...

FIGURE 6.3 Lockstep violation due to a strike on a branch predictor of
processor A. The notation Rn = [Rm] denotes that register Rn is loaded from
the memory location Rm. Each row shows the instructions seen by the execu-
tion unit of each processor. The processors A and B are in Lockstep in cycle n. In
cycle n + 1, processor A goes down the wrong path due to a strike on its branch
predictor. Processor B, however, still remains on the correct path. Processor A
returns to the correct path in cycle n + 3, but the two processors are no longer
cycle synchronized. Lockstep output comparators that check instruction sig-
nals at the memory likely detect this violation immediately. Lockstep output
comparators that check signals at the memory or I/O boundary will eventually
detect such a timing mismatch.

Lockstep Processor A

...

...

Correct Path: R1 5 R2 1 R3

Correct Path: R4 5 [R1 1 8], Parity Error 1 Refetch

No commit

No commit

Correct Path: R4 5 [R1 1 8], No Error, Cache Hit

Lockstep Processor B

Correct Path: R1 5 R2 1 R3

Correct Path: R4 5 [R1 1 8], No Error, Cache Hit

Correct Path: R5 5 R4 / 7

...

...

...

...

...

n

n 1 1

n 1 2

n 1 3

n 1 4

...

Cycle

FIGURE 6.4 Lockstep violation due to a parity check followed by refetch of
cache line in processor A. Each row shows the instruction committed in the
specific cycle in each processor. In cycle n + 1, processor A’s cache gets a parity
error and must refetch the cache line. Processor B does not get a parity error
and proceeds without any hiccup. Processor A eventually commits the offend-
ing instruction in cycle n + 4, but by that time, both processors are already out
of Lockstep.

(see Case Study: False DUE from Lockstepped Checkers, p. 87) show that false DUE
can contribute significantly to the total DUE rate of the Lockstepped system.

False DUE events can also arise in Lockstep processors from faults in un-ACE
instructions that may not cause a timing mismatch. For example, an alpha particle
or a neutron strike on the result of a dynamically dead instruction is un-ACE since

216 CHAPTER 6 Fault Detection via Redundant Execution

there is no further consumer of the result value. But a fault detection resulting from
a mismatch in the result of the corresponding dynamically dead instructions in a
Lockstep processor pair will be a false DUE event.

Chapter 7 discusses recovery mechanisms to reduce both true and false DUE
rates arising in a Lockstep system. The next three subsections describe three differ-
ent commercial Lockstep systems, each with a different sphere of replication.

■ E X A M P L E

Assume that a processor write-back cache has a DUE FIT of 500 when protected
with parity and DUE FIT of 0 when protected with SECDED ECC. When the
ECC is invoked, it requires an extra cycle to correct the error. Also, assume
that the processor branch predictor has an intrinsic SDC rate of 100 FIT. The
branch predictor’s AVF is zero for a single processor, so the total SDC rate of the
branch predictor is zero in non-Lockstep mode. Two such processors are now
Lockstepped. What is the false DUE rate for this Lockstepped pair? Assume
false DUE arises only from the cache and branch predictor.

S O L U T I O N From the cache, the false DUE rate for Lockstepping is 500 ×
2 = 1000 FIT (the factor 2 arises because of two processors in a pair). From the
branch predictor, the SDC FIT rate is 100 × 2 × 0.1 = 20 FIT, if one assumes a
Lockstep AVF of 10%. The total false DUE FIT arising from Lockstepping is
1020 FIT.

6.3.3 Lockstepping in the Stratus ftServer
The Stratus ftServer (Figure 6.5) provides a very high level of fault tolerance
using redundant Lockstepped processors and redundant I/O components [19].
Stratus Technologies has a long history of building custom fault-tolerant com-
puters since the early 1980s [12]. Like Stratus’ previous machines, the ftServer is
targeted for use in mission-critical applications (see SDC and DUE Budgets, p. 34,
Chapter 1), which can tolerate extremely low levels of SDC and DUE rates. Unlike
Stratus’ prior fault-tolerant computers, however, the ftServer uses commodity off-
the-shelf components, such as Intel x86 processors and Windows Server 2003 and
Linux OS. The processor nodes themselves can either be multicore or symmetric
multiprocessors (SMP).

The ftServer comes in two configurations: DMR or TMR. In the DMR configura-
tion, the sphere of replication comprises dual-redundant Lockstepped processors,
dual copies of main memory, and dual copies of the chipset. The “fault detection
and isolation” component in Figure 6.5 consists of the output comparator and the
input replicator. Output comparison is done at the I/O boundary before traffic goes

6.3 Fault Detection via Cycle-by-Cycle Lockstepping 217

TMR
Disk

Disk
PCI Fault

Detection
and

Isolation

PCI

TMRTMR
Disk

Processor
1-N way SMP

Processor
1-N way SMP

Memory

Memory

Chipset

Chipset

PCI

L
ockstep
C

P
U

s

Fault
Detection

and
Isolation

F
ault

D
etection

F
ault

D
etection

F
ault

D
etection

Processor
1-N way SMP

Memory

Chipset

DMR

FIGURE 6.5 Stratus ftServer. Reprinted with permission from Somers [19].
Copyright © 2002 Stratus Technologies.

into the PCI2 bus. Input replication is done at the I/O boundary as well. The output
comparator, input replicator, and the I/O components themselves (e.g., PCI bus,
disks) are mirrored for added fault tolerance. The Ethernet network adapter is not
mirrored but has three backup adapters. During transmission, all four adapters are
used, but packets can be received only on a single adapter. The ftServer has fault
detection mechanisms on other mechanical components, such as the power supply
and the fans.

In the DMR system, if one output is in error, then the node that generated that
output is shut down, but the other node continues execution. In the event that a
miscompare occurs between two outputs, the DMR comparator waits for a corre-
sponding error signal to propagate from one of the two Lockstepped nodes. The
error signal could arise from a number of sources, including internal parity errors,
power errors, and thermal errors in one of the Lockstepped pairs. Then, the com-
parator knows not only that there is an error but also which of the two systems is
faulty. Based on this information, it removes the offending node (processor, mem-
ory, and chipset) from service and initiates a service call with Stratus. In the absence
of the internal error signal, the ftServer removes a node from service based on a
software algorithm that takes various heuristics, such as age of the components,
into account. In all cases, the system continues to operate without interruption.

In the TMR mode, however, the ftServer does not need to make use of the error
signal. This is because on a single fault, two of the three systems must be correct.
Once it identifies the faulty system, it removes the offending node from service

2PCI stands for Peripheral Component Interconnect. It is a standard bus that allows I/O
devices to connect to the rest of the computer system.

218 CHAPTER 6 Fault Detection via Redundant Execution

and continues in the reduced DMR mode. It also initiates a service call to Stratus
to repair the degraded system.

Interestingly, the ftServer can run a commodity OS without any significant
change because the underlying hardware is completely Lockstepped. Each indi-
vidual OS image in the ftServer has no knowledge that there are other redundant
images of the same OS working in Lockstep. In contrast, the Hewlett-Packard
NSAA (see RMT in the Hewlett-Packard NonStop� Advanced Architecture,
p. 225) needs to modify its OS because it does not implement strict cycle-by-cycle
Lockstepping.

The use of the Windows OS does, however, require the ftServer to take some addi-
tional steps3. Errant device drivers are acknowledged as the root cause of many of
the Windows crashes. Microsoft itself has estimated that device drivers are respon-
sible for 30% of Windows NT� reboots. Hence, the ftServer takes additional steps
to ensure that device drivers do not cause Lockstep failures or crashes. For exam-
ple, the ftServer only installs device drivers that pass the Microsoft Windows 2003
WHQL (Windows Hardware Quality Labs) tests. Further, Stratus has hardened
the device drivers through extensive testing and additional error checks either by
licensing the device driver from the vendor or by working with the vendor. The
ftServer also isolates the PCI adapters from the rest of the system when it detects
device driver problems.

6.4 Lockstepping in the Hewlett-Packard
NonStop Himalaya Architecture
Like Stratus Technologies, Tandem Computer Systems has been building fault-
tolerant computer systems for mission-critical applications since the late 1970s [12].
In the late 1980s, Tandem introduced custom-built Lockstepped processors into
its fault-tolerant computers to respond to market demands for highly available
fault-tolerant computers. Tandem started using commodity MIPS�-based RISC
processors in its Lockstepped machines from the early 1990s. However, unlike
Stratus’ recent move to use a commodity OS, Tandem continues to use its own
in-house fault-tolerant OS called the NonStop kernel. In 2001, Hewlett-Packard
acquired Compaq Computer Corporation, which in turn had acquired Tandem
Computer Systems in 1997. Tandem continues to design and sell fault-tolerant
computers under the Hewlett-Packard NonStop brand name.

Figure 6.6 shows a block diagram of the Hewlett-Packard NonStop Himalaya
system [23]. It uses Lockstepped off-the-shelf MIPS microprocessors. Like the Stra-
tus ftServer, it also is targeted to tolerate extremely low levels of SDC and DUE.
The sphere of replication comprises the microprocessor (and its associated off-
chip caches) and the interface ASICs responsible for output comparison and input

3See http://www.stratus.com for white papers on this subject.

6.4 Lockstepping in the Hewlett-Packard NonStop Himalaya Architecture 219

Secondary
Cache

Microprocessor

Interface
ASIC

Interface
ASIC

Secondary
Cache

ServerNet

Main
Memory

Check

Ethernet, Disk & Other I/O Peripherals

Microprocessor

FIGURE 6.6 Hewlett-Packard NonStop Architecture with Lockstepped micro-
processors and ServerNet as the interconnect fabric.

replication. Unlike the Stratus ftServer system, main memory in Hewlett-Packard’s
NonStop Architecture is outside the sphere of replication. Consequently, the Non-
Stop Architecture does not have to replicate the entire main memory. Instead, it
protects main memory using ECC.

The I/O subsystem is also outside the sphere of replication. The I/O system is
connected to the processors using an in-house network called ServerNet, which
forms the backbone of the current NonStop Architecture. ServerNet is a fast,
scalable, reliable, and point-to-point system area network that can connect a large
number of processors and I/O peripherals. ServerNet provides independent redun-
dant paths for all traffic via independent X and Y subnetworks.

To provide recovery from faults, the NonStop Himalaya servers use process pairs
implemented by the NonStop kernel. One of the processes in a process pair is
designed as the primary and the other one as the backup. The primary process runs
on a pair of Lockstepped processors and regularly sends checkpointing information
to the backup process, which runs on a pair of Lockstepped processors as well.
When the primary process experiences a Lockstep error, the backup process takes
over and continues to run. Hewlett-Packard Corporation also offers a TMR solution
in its NonStop Integrity line of servers, which do not require the use of process pairs.

Recently, Hewlett-Packard moved away from Lockstepped systems for Redun-
dantly Multithreaded systems. Hewlett-Packard calls this its NSAA. This imple-
mentation is discussed later in this chapter (see RMT in the Hewlett-Packard
NonStop� Advanced Architecture, p. 225).

220 CHAPTER 6 Fault Detection via Redundant Execution

6.5 Lockstepping in the IBM Z-series
Processors
IBM has been designing fault-tolerant machines since the late 1960s but waited to
introduce its Lockstepped processor architecture as late as the mid-1990s. In the
early 1990s, IBM moved the processors used in its high-end fault-tolerant machines
from emitter-coupled logic (ECL) to CMOS technology. Successive generations of
these CMOS processors were codenamed G1–G6, and z900 and more recently z990
and z9 EC. In the ECL processors and in G1 and G2 CMOS processors, IBM used
extensive per-structure error checking logic in its pipeline. IBM estimates the total
area overhead from such error checking logic to be between 20% and 30% of single
nonchecked pipeline [13].

With the move to CMOS technology, IBM designers found it increasingly dif-
ficult to increase the processor frequency with extra levels of error checking logic
in the critical path of the pipeline. Hence, with the introduction of the G3 micro-
processor, IBM moved to a Lockstepped pipeline implementation in which the
error checking logic was removed from the critical path. Instead, the instruction
fetch and execution units were replicated and checked for errors at the end of the
pipeline. Spainhower and Gregg [20] estimate the area overhead from this Lock-
stepped implementation to be 35%. IBM used this dual fetch and execution unit
through its z990 architecture. In the more recent z6 architecture, however, IBM has
reverted to a non-Lockstepped implementation that has as many as 20 000 error
checkers sprinkled across the microprocessor [22].

Figure 6.7 shows the IBM G5’s Lockstepped processor architecture. The G5 con-
sists of four units: the buffer control element (BCE), the I unit, the E unit, and the
R unit. The BCE consists of the L1 cache and TLBs. The I unit is responsible for the
instruction fetch, decode, address generation, and issue queue that issues instruc-
tions to the E unit. The E unit consists of the execution units and local copies of
the register files. The R unit is responsible for fault detection and recovery. It holds
checkpointed copy of the entire microarchitectural state of the processor (including
the architecture register file), timing facility, and other miscellaneous state infor-
mation.4

The sphere of replication in the G5 consists of replicated I and E units. Figure 6.7
shows signals from replicated units (dashed arrows). Any updates to the archi-
tecture register file (in the R unit) or caches (in the BCE) must be first checked
for faults (output comparison). Similarly, any inputs into the I or E unit must be
replicated appropriately (input replication). Unlike Stratus’s ftServer or Tandem’s
NonStop Himalaya Architecture, the sphere of replication in the IBM machine is
much smaller. The G5’s sphere of replication excludes not only main memory and
I/O components but also the caches and architected register file. Consequently, all

4Historical Anecdote on p. 248 describes the origin of the name R unit.

6.5 Lockstepping in the IBM Z-series Processors 221

I-buffer

B

Address
adder

Address
control

ALB

L2

L2

Millicode
array/
cache

even DW

Millicode
array/
cache

odd DW

Translator

TLB/
directory

LAAASTO

Data-oddData-even

Data-oddData-even

Store buffer Store buffer

Buffer
control
element

EU-B

I and D
absolute
address
history

I-decode

BTB I-reg

I unit

IU-B

IU-B

IU-B

Address

EU data

TOD

R unit

RU data

Current/
check-
point
state

EU-B

E unit

GRs/ARs

E unit
control

and
ASYNC
control

Areg Breg

FPRs
Operand
buffers

Areg Breg

Creg

BTB
CR
AA
LA

STO
AR
GR

Branch target buffer
Control register
Absolute address
Logical address

Segment table origin
Access registers
General registers and
millicode general registers

I&D
TOD

EU-B
IU-B

Instruction and data
Time of day
Duplicated E unit
Duplicated I unit

Creg

Fixed-
point
ALU

HEX/BFP
floating-

point ALU

Local
CR copies

I-queue

ARX

FIGURE 6.7 IBM G5 microprocessor. Reprinted with permission from Slegel
et al. [13]. Copyright © 1999 IEEE.

arrays in the BCE and R unit must be protected to allow complete fault coverage.
For example, the L1 cache is write-through, so it uses parity codes to recover from
faults. The store buffer and the architecture register file are protected with ECC.
Although the architecture register file lives outside the sphere of replication in the
R unit, the G5 maintains shadow copies of the register file in the E units to speed
up execution.

When the R unit or L1 cache detects a fault, the pipeline commits pend-
ing updates from retired instructions and discards any state corresponding to

222 CHAPTER 6 Fault Detection via Redundant Execution

nonretired instructions. Then, it resets all internal state in the I and E units. The
R unit is read out in sequence with ECC logic, correcting any errors in the regis-
ters. The shadow copies of the register file are also updated in parallel. The R unit
registers are read a second time to ensure that there are no hard correctable errors.
Finally, the E unit restarts instruction fetching and execution. If the Lockstep vio-
lation was caused by a transient fault, such as an alpha particle or a neutron strike,
then the pipeline can recover using this mechanism. However, if the second read of
the R unit indicates an error or the E unit cannot successfully retire an instruction,
then the machine has probably encountered a hard error. The pipeline is halted
with a different sequence of diagnosis and recovery invoked to deal with the latter
case.

Forwarding replicated signals from the I and E units to R unit and L1 cache
can cause extra delays along the pipeline. To avoid slowing down the pipeline, the
z990 processor [14]—a later version of the G5 processor—skews the signals from
the replicated units by one cycle. Signals from the primary I and E units arrive at
the output comparators a cycle earlier than the replicated ones. This allows the
primary units to be packed close to the nonreplicated units, such as the caches, and
the replicated units to be placed further apart.

6.6 Fault Detection via RMT
RMT is a fault detection mechanism, which like cycle-by-cycle Lockstepping, runs
redundant copies of the same program and compares outputs from the redun-
dant copies to detect faults. Recall that in Lockstepping outputs are compared and
inputs are replicated at a hardware clock or at a cycle boundary. In contrast, in
RMT, output comparison and input replication happen at a committed instruction
boundary. A committed instruction is one whose result the processor commits and
does not discard, for example, due to a misspeculation internal to the processor.
Like “multithreading,” RMT itself is a concept, not an implementation. RMT can
be implemented on most, if not all, implementations of multithreading, such as
simultaneous multithreading (SMT) or multicore processors.

Comparing outputs and replicating inputs at a committed instruction boundary
enables RMT to relax many of the constraints imposed by cycle-by-cycle Lock-
stepping. RMT does not require the hardware running the redundant copies of a
program to have exactly the same microarchitectural state in every cycle. Examples
of structures that hold microarchitectural state are the branch predictor, instruction
queue, caches, etc. Instead, RMT only requires that the redundant copies have
the same architectural state (e.g., architectural register file, memory) at a commit-
ted instruction boundary. Unlike microarchitectural state, architectural state of a
machine corresponding to program is visible to a user or a programmer.

Relaxing the constraint of cycle synchronization allows great flexibility in RMT
implementations. As is shown later, RMT can be implemented across whole
systems, within a single system, across two similar and different processor cores,

6.7 RMT in the Marathon Endurance Server 223

and within a single-processor core. Chapter 8 discusses how RMT can be imple-
mented purely in software as well. For pure hardware RMT implementations, relax-
ing the constraint of cycle synchronization makes functional validation of the RMT
implementation much easier since much of the validation can be done in a presili-
con design phase.

Relaxing the constraint of cycle synchronization, however, makes input repli-
cation more complicated in RMT than in Lockstepping. This section shows how
five different RMT implementations deal with input replication in different ways.
How the sphere of replication differs in each of these implementations is also
explained.

6.7 RMT in the Marathon Endurance Server
Marathon Technologies Corporation was perhaps the first to implement an RMT-
based fault-tolerant machine using redundant processors in a commercially avail-
able server called EnduranceTM 4000. The company was founded in 1993 on the
premise of this technology. The key to Endurance’s success is its use of commod-
ity OSs, such as Windows OS, and commodity microprocessors, such as the Intel
Pentium processors. Another key feature of the Endurance machine is its abil-
ity to tolerate disasters (e.g., terrorist attack) by separating the redundant proces-
sors up to 1.5 km apart. Because of such loose coupling between the redundant
processors, Marathon had to adopt the RMT model instead of the cycle-by-cycle
Lockstepping.

Recently, Marathon Technologies has moved away from the Endurance servers,
which required some custom hardware. Today, Marathon’s EverRun servers
provide fault tolerance using a pure software implementation based on virtuali-
zation technology (see Chapter 8).

Figure 6.8 shows a block diagram of the Endurance machine [3]. It consists of two
compute elements (CEs) and two I/O processor boxes. All four processors—one in
each CE and one in each I/O—are commodity Intel Pentium microprocessors that
run the Windows NT OS. The CEs execute the redundant threads as an RMT pair.
The sphere of replication consists of the two CEs, which include the microprocessor,
the main memory, and a proprietary Marathon InterConnect (MIC) card. The MIC
connects the two CEs and the two I/O processors. The MIC links can be up to
1.5 km in length, thereby allowing a CE and an I/O processor slice to be located
physically apart from its pair.

The I/O processors do the output replication. The CEs forward their I/O
requests to both I/O processors, each of which compares both requests for
any mismatch. The storage system is mirrored across both I/O processors. The
network adapter is also replicated. Network packets can be received in either I/O
processor, but packets can only be sent out through one of the two I/O processors.
If one of the sending adapters fails, the other one takes over. In an implementation
with reduced coverage, it is also possible to have only one I/O processor.

224 CHAPTER 6 Fault Detection via Redundant Execution

Memory Memory

Processor ProcessorMIC MIC

Memory Memory

Processor ProcessorMIC MIC

I/O I/O

Compute Element Compute Element

Ethernet

Local Area Network

Mirrored Storage
DisksDisks

I/O Processor I/O Processor

FIGURE 6.8 Block diagram of the Marathon Technology Endurance™ Series
Machine. MIC = Marathon’s Proprietary Interconnect ASIC.

The input replication is a little more involved. To ensure that both the redun-
dant threads execute the same committed instruction stream, the inputs—including
asynchronous interrupts and I/O responses—must be replicated to both threads
at exactly the same instruction boundary. When the two redundant processors run
independently of each other, this condition is hard to guarantee. The Hewlett-
Packard NSAA, described in the next section, is able to do this with OS support.
But the Marathon Endurance machine runs a commodity OS and hence does not
have this advantage.

Instead, the Endurance machine divides up the instruction stream into succes-
sive quanta. At the beginning of each quantum, the performance counter is set to
trigger a callback after a specific number of instructions have been committed. All
other interrupts are disabled. When a quantum expires, each redundant processor
enters into a special mode in which each tries to ensure that it has reached the
same instruction in the execution stream with the same state. This special mode
consists of a complex combination of instruction execution, single stepping, and
breakpointing. The synchronization requests during this interval are sent to the
I/O processors, which try to determine if both processors have reached the same
point of execution. At the end of this synchronization phase, both processors reach
the same instruction boundary. At this point, all inputs are replicated via the MIC

6.8 RMT in the Hewlett-Packard NonStop® Advanced Architecture 225

to the redundant processors. This includes also the logical time delivered to both
the processors by the I/O processor, which acts as a time server.

The Endurance machine prevents any SDC since I/O writes are checked before
written to disk. On an RMT mismatch, the I/O processors try to determine the
CE that failed. If the diagnosis is successful, then the failed CE will be restarted
or replaced and restarted as the case may be. When the failed CE comes back up,
it automatically synchronizes with the running CE, which continues running in a
nonredundant mode throughout the recovery period.

If the I/O processors cannot, however, determine the CE that had the data cor-
ruption, then there are two options available to the system administrator for config-
uring the system response to indeterminate CE data corruption. If the system was
configured for data availability, the CE that is removed is the slave CE (recipient of
the last synchronization). If the system was configured for data integrity, then the
entire system is rebooted and restarted.

I/O processor errors are handled similarly. For data availability, the I/O pro-
cessor with the poorest selection of devices will be removed (I/O boot drive, CE
boot drive, CE Data drives, Ethernet ports, memory, etc). If the I/O processors are
indistinguishable in capabilities, then the I/O processor that did not boot the mas-
ter CE (source of the last synchronization) is removed. For data integrity, the entire
system must be rebooted.

6.8 RMT in the Hewlett-Packard NonStop®

Advanced Architecture
Recently, Hewlett-Packard moved its NonStop servers from a cycle-by-cycle Lock-
stepped architecture (see Lockstepping in the Hewlett-Packard NonStop Himalaya
Architecture, p. 218) to what they call “Loose Lockstepping” [2], which is a form
of RMT. Bernick et al. [2] believe that cycle-by-cycle Lockstepping will become sig-
nificantly harder in the future because of five reasons. First, minor nondetermin-
istic behavior, such as arbitration of asynchronous events, will continue to exist in
future microprocessors. These are not easy to deal with in a Lockstepped processor
pair. Second, power management techniques with variable frequencies—critical
to current and future processors—may cause Lockstep failures and may need to
be turned off for Lockstepping to work. Third, multiple clocks and clock domain
crossings in a microprocessor create asynchronous interfaces that are very difficult
to deal with in Lockstepping. Fourth, low-level fix-up routines (e.g., in microcode or
millicode) triggered in a microprocessor to correct soft errors can complicate
Lockstep operation. Finally, Lockstepping microprocessor pairs today implies
Lockstepping multiple cores. A problem in one of the cores can bring down the
whole multicore chip, which can be an undesirable property.

Figure 6.9 shows a picture of Hewlett-Packard’s NSAA. A processing element
is a processor core. A slice consists of several PEs and main memory. One or more

226 CHAPTER 6 Fault Detection via Redundant Execution

MEM

Voter 0

SAN

Redundant
ServerNet

System Area
Networks

Voter 1

SAN

Voter 2

SAN

Voter 3

SAN

LSU

Network
Adapter

MEM

PE3

PE1

PE0PE0PE0

PE1

PE2

PE3

PE1

PE2

PE3

PE2

MEM

Slice

Network
Adapter

Storage
Adapter

Storage
Adapter

FIGURE 6.9 Hewlett-Packard NonStop Architecture. Reprinted with permis-
sion from Bernick et al. [2]. Copyright © 2005 IEEE.

PEs make up a processor socket, which is currently from Intel’s Itanium� processor
line. A logical processor consists of one PE per slice. Two or three PEs—one from
each slice—make up a logical processor that runs redundant RMT code. In a DMR
configuration, two PEs make up a logical processor. In a TMR configuration, the
numberofPEs ina logicalprocessor is three.Eachlogicalprocessor isassociatedwith
at least one logical synchronization unit (LSU), which acts as the output comparator
and input replicator. Each LSU is completely self-checking internally. One LSU per
logical processor is sufficient, but for increased availability, the NSAA may allow
a machine to configure two LSUs per logical processor in the future. Thus, a TMR
machine using three 4-way SMPs will have three slices, four logical processors, and
four LSUs. The logical processors are, however, not allowed to communicate with
other logical processors within the SMP system using shared memory.

The sphere of replication in the NSAA is somewhat similar to that of the
Endurance machine. The sphere consists of either duplicate (for DMR) or triplicate
(for TMR) copies of a slice. APE in each slice forms one of the two (for DMR) or three
(for TMR) elements of a system. The LSUs check outgoing stores to main memory
and I/O requests. For a DMR system, the LSUs check for mismatch between the
two redundant copies. In a TMR system, the LSUs check outputs from three slices
and vote on which one is the correct one. Like the Marathon Endurance machine,
the I/O subsystem in NSAA is mirrored to allow greater level of fault tolerance. It
also has end-to-end checksums for disk accesses to allow for better data integrity.

As discussed earlier, processor and I/O completion interrupts in an RMT imple-
mentation must be delivered to redundant instruction streams at exactly the same
instruction boundary, which is referred to as a “rendezvous” point by the NSAA.
Normally, such interrupts would arrive at each PE at slightly different times and
may not be delivered at the same instruction boundary in each thread. Hence, on

6.9 RMT Within a Single-Processor Core 227

receiving an interrupt, each PE writes its proposal for a future rendezvous point in
LSU hardware registers. The proposal consists of a voluntary rendezvous oppor-
tunity (VRO) sequence number along with the delivered interrupt. Once an LSU
collects all the rendezvous proposals, it writes them back into a special block of
memory in each slice. Each PE compares its own rendezvous proposal with the
ones posted by other PEs and selects the highest VRO sequence number. When
each PE reaches that VRO, it can symmetrically schedule the interrupt handler for
execution.

The VRO is defined by a small set of instructions that must be embedded
throughout the OS and user applications because the VRO code constitutes the
only rendezvous points in the NSAA. If a process executes for a long time without
entering any VRO code, then the NSAA uses a combination of fast-forwarding and
state copying to bring the two threads at the same instruction boundary. Readers
are referred to Bernick et al. [2] for a detailed description of these algorithms. In an
alternate implementation, Hewlett-Packard’s Integrity S2 systems use performance
counters to define a rendezvous point without the need for explicit embedding of
VRO code. The NSAA also disables some Itanium-specific data and control spec-
ulation that may cause the redundant streams to execute different sequences of
instructions.

Mechanisms to recover from a fault are different in the DMR and TMR con-
figurations. In the DMR configuration, an output comparison error followed by a
self-identifying fault, such as a bus error, allows the NSAA to precisely identify the
faulty slice and isolate it. Operations can continue on the good slice. Alternatively,
if the output comparator cannot determine the faulty slice, then the application
could fail over to a different logical processor and continue execution. In the TMR
configuration, an output comparison error allows the voting logic to identify the
faulty slice (since only one of the three will usually experience a fault) and isolate
it, and allows the nonfaulty ones to continue execution.

When a faulty slice resumes execution after a reboot (if it is a soft error) or
replacement (if it is a hard error), its state must be made consistent with the
state of the other slice or slices with which it synchronizes its redundant execu-
tion. The NSAA refers to this as a “reintegration” operation. To facilitate reinte-
gration, the NSAA provides a high-bandwidth unidirectional ring network that
connects the slices together. The entire memory state of a nonfaulty slice is copied
to the slice being reintegrated. The copy operation also intercepts and copies any
in-flight store to memory issued by the nonfaulty slices during the reintegration
process.

6.9 RMT Within a Single-Processor Core
This section and the next two sections describe RMT implementations that have a
smaller sphere of replication than the Marathon Endurance server or the Hewlett-
Packard NSAA. Specifically, this section examines RMT implementations whose

228 CHAPTER 6 Fault Detection via Redundant Execution

spheres of replication are limited to a single-processor core, similar to that used
in the IBM Z-series processors (see Lockstepping in the IBM Z-series Proces-
sors, p. 220).

Two such implementations with different spheres of replication are described:
one that includes the architecture register file but not the caches or main memory
(SRT-Memory) and another that excludes the architecture register file and caches
and main memory (SRT-Register). Both SRT implementations rely on an underlying
processor architecture called SMT. To the best of the author’s knowledge, no current
commercial machine implements RMT within a single core. Numerous researchers
are, however, investigating techniques to improve the RMT design. Because this is
an active area of research, this section covers the RMT nuances within a single core
in greater detail than the other RMT implementations covered earlier. First, this
section describes an example SMT processor. Then, it will discuss how to extend
the SMT implementation to incorporate SRT enhancements.

6.9.1 A Simultaneous Multithreaded Processor
SMT is a technique that allows fine-grained resource sharing among multiple
threads in a dynamically scheduled superscalar processor [18]. An SMT proces-
sor extends a standard superscalar pipeline to execute instructions from multiple
threads, possibly in the same cycle. To facilitate the discussion in this section, a
specific SMT implementation is used (Figure 6.10). Mukherjee et al. describe an
alternate implementation of SMT in a commercial microprocessor design that was
eventually canceled [6]. In the SMT implementation in Figure 6.10, the fetch stage
feeds instructions from multiple threads (one thread per cycle) to a fetch/decode
queue. The decode stage picks instructions from this queue, decodes them, locates
their source operands, and places them into the register update unit (RUU). The
RUU serves as a combination of global reservation station pool, rename register
file, and reorder buffer. Loads and stores are broken into an address and a memory
reference. The address generation portion is placed in the RUU, while the memory
reference portion is placed into a similar structure, the load/store queue (LSQ) (not
shown in Figure 6.10).

Figure 6.10 shows instructions from two threads sharing the RUU. Multiple
IPCs are issued from the RUU to the execution units and written back to the
RUU without considering thread identity. The processor provides precise excep-
tions by committing results for each thread from the RUU to the register files
in program order. Tullsen et al. [17] showed that optimizing the fetch policy—
the policy that determines the thread from which the instructions are fetched
in each cycle—can improve the performance of an SMT processor. The best-
performing policy Tullsen, et al. examined was named ICount. The ICount pol-
icy counts the number of instructions from active threads that are currently in the
instruction buffers and fetches instructions from the thread that has the fewest
instructions. The assumption is that the thread with the fewest instructions moves

6.9 RMT Within a Single-Processor Core 229

Fetch PC

Instruction Cache

Decode
Register
Rename

Fp
Regs

Int.
Regs

Fp
Units

Ld/St
Units

Data
Cache

Int.
Units

Thread 0

Thread 1

R3 5 R11 R7

R8 5 R7 * 2

RUU

R1 (R2)

R1 (R2)

FIGURE 6.10 Sharing of RUU between two threads in an SMT processor.
Reprinted with permission from Reinhardt and Mukherjee [10]. Copyright ©
2000 IEEE.

instructions through the processor quickly and hence makes the most efficient use
of the pipeline.

6.9.2 Design Space for SMT in a Single Core
One can modify an SMT processor to detect faults by executing two redundant
copies of each thread in separate thread contexts. Unlike true SMT threads, each
redundant thread pair appears to the OS as a single thread. All replication and
checking are performed transparently in hardware. This class of single-core RMT
implementations within an SMT processor is referred to as an SRT processor [10].
One of the two redundant threads in an SRT processor will be designed to run
ahead of the other. Hence, the two redundant threads will be referred to as the
leading thread and the trailing thread.

This section focuses on how to design an SRT processor with two thread contexts
to support a single-visible-thread SRT device. One can easily extend such designs
to support two OS-visible threads on an SMT machine with four thread contexts.

Unlike the RMT implementations in the Marathon Endurance server or the
Hewlett-Packard NonStop Architecture, the sphere of replication in an SRT pro-
cessor is physically less distinct because replication occurs through both time
redundancy and space redundancy. For example, the corresponding instruc-
tions from redundant threads may occupy the same RUU slot in different cycles
(time redundancy), different RUU slots in the same cycle (space redundancy),
or different slots in different cycles (both). Like other RMT systems, SRT pro-
cessors detect faults by comparing outputs of redundantly executing instruction
streams.

230 CHAPTER 6 Fault Detection via Redundant Execution

6.9.3 Output Comparison in an SRT Processor
The sphere of replication determines the values that need to be compared. Output
comparison techniques for the three different single-core RMT implementations
are described.

Output Comparison in SRT-Memory
When the register file lies inside the sphere (SRT-Memory, Figure 6.11a), there are
three types of values that exit the sphere:

■ Stores. The output comparator must verify the address and data of every
committed store before it forwards it outside the sphere of replication. One
can use an ordered, noncoalescing store buffer shared between the redundant
threads to synchronize and verify store values as they retire in program order
from the RUU/LSQ. Each thread has an independent tail pointer into the
buffer. If a thread finds its tail entry uninitialized, it writes the address and
data value of its store into the entry. The second thread will find this entry
initialized, so it will compare its address and data with the existing values.
On a match, the entry is marked as verified and issued to the data cache.
A mismatch indicates a fault. In this implementation, misspeculated stores
never send their data outside the sphere of replication, so they do not need
checking. To provide each thread with a consistent view of memory, the store

(a) (b)

Fetch PC

Instruction
Cache

Decode Register
Rename

Fp
Regs

Int.
Regs

Fp
Units

Ld/St
Units

Int.
Units

Thread 0

Thread 1

RUU

D
ata C

ache

R3 = R1 + R7

R8 = R7 * 2

R1 (R2)

R1 (R2)

Fetch PC

Instruction
Cache

Decode Register
Rename

Fp
Regs

Int.
Regs

Fp
Units

Ld/St
Units

Int.
Units

Thread 0

Thread 1

RUU

D
ata C

ache

R3 = R1 + R7

R8 = R7 * 2

R1 (R2)

R1 (R2)

FIGURE 6.11 Two spheres of replication for an SRT processor. The shaded box
in (a) shows a sphere of replication that includes the entire SMT pipeline
shown in Figure 6.10, except the first-level data and instruction caches (SRT-
Memory). The shaded box in (b) shows a sphere of replication that excludes
the architectural register file, the first-level data cache, and the first-level
instruction cache (SRT-Register). Reprinted with permission from Reinhardt
and Mukherjee [10]. Copyright © 2000 IEEE.

6.9 RMT Within a Single-Processor Core 231

buffer forwards data to subsequent loads only if the store has retired in the
thread issuing the load.

■ Cached load addresses.Although cached data and instruction fetch addresses
leave the sphere of execution, they do not affect the architectural state of
the machine, so they do not require checking. If a faulty address leads to an
incorrect load value or instruction, any resulting error will be detected via
other output comparison checks before affecting architectural state outside
the sphere. It will be seen later that allowing one thread to issue cache fetches
early (and without output comparison), effectively prefetching for the other
thread, is critical to the efficiency in SRT processors.

■ Uncached load addresses. Unlike cached loads, uncached loads typically have
side effects in I/O devices outside the sphere of replication, so these addresses
must be checked. However, unlike stores, uncached load addresses must be
compared before the load commits. Fortunately, in most processors, uncached
loads issue nonspeculatively and only after all prior loads and stores commit.
Also, no load or store after the uncached load in program order can issue
until the uncached load commits. Thus, an uncached load can simply stall
in the execute stage until the corresponding instruction for the other thread
arrives, at which point the addresses can be compared. An undetected fault
could occur if an uncached load address was erroneously classified as cached
and allowed to proceed without being checked. Adequate precautions must
be taken to prevent this specific case, such as additional physical address
cacheability checks.

Output Comparison in SRT-Register
The second sphere of replication (Figure 6.11b) does not contain the register file
(SRT-Register), so it requires output comparison on values sent to the register
file—i.e., on register write-backs of committed instructions. As with stores, both
the address (register index) and value must be verified. Register write-back com-
parison could be done as instructions retire from the RUU. However, forcing every
instruction to wait for its equivalent from the other thread significantly increases
RUU occupancy. Since the RUU is a precious resource, one could instead use a
register check buffer, similar to the store buffer, to hold results from retired but
unmatched instructions. The first instance of an instruction records its result in the
buffer. When the corresponding instruction from the other thread leaves the RUU,
the index and value are compared and, if they match, the register file is updated.

As with the store buffer, results in the register check buffer must be forwarded
to the subsequent instructions in the same thread to provide a consistent view
of the register file. The design can avoid complex forwarding logic by using the
separate per-thread register files of the SMT architecture as “future files” [15]. That
is, as each instruction retires from the RUU, it updates the appropriate per-thread
register file, as in a standard SMT processor. This register file then reflects the

232 CHAPTER 6 Fault Detection via Redundant Execution

up-to-date but unverified register contents for that redundant thread. As register
updates are verified and removed from the register check buffer, they are sent to
a third register file, which holds the protected, verified architectural state for the
user-visible thread.

Having a protected copy of the architectural register file outside the sphere
of replication simplifies fault recovery on an output mismatch, as the program
can be restarted from the known good contents of the register file (as in the IBM
Z-series microprocessors [13]). However, this benefit requires the additional costs
of verifying register updates and protecting the register file with ECC or similar
coverage. Although the register check buffer is conceptually similar to the store
buffer, it must be significantly larger and must sustain higher bandwidth in updates
per cycle to avoid degrading performance.

6.9.4 Input Replication in an SRT Processor
Inputs to the sphere of replication must be handled carefully to guarantee that
both execution copies follow precisely the same path. Specifically, corresponding
operations that input data from outside the sphere must return the same data
values in both redundant threads. Otherwise, the threads may follow divergent
execution paths, leading to differing outputs that will be detected and handled as
if a hardware fault occurred. As with output comparison, the sphere of replication
identifies values that must be considered for input replication: those that cross the
boundary into the sphere.

Input Replication in SRT-Memory
For the first sphere of replication (SRT-Memory, Figure 6.11a), four kinds of inputs
enter the sphere:

■ Instructions. If the contents of the instruction space do not vary with time,
then unsynchronized accesses from redundant threads to the same instruc-
tion address will return the same instruction without additional mechanisms.
Updates to the instruction space require thread synchronization, but these
updates already involve system-specific operations to maintain instruction-
cache consistency in current processors. These operations can be extended to
enforce a consistent view of the instruction space across redundant threads.

The instruction replication itself can be implemented in a couple of ways.
One possibility would to replicate instructions directly from the instruction
cache but to allow unsynchronized access to it from both threads [10]. Another
possibility would be to forward retired instructions from the leading thread
to the trailing thread’s fetch unit [6]. The latter is very precise because only
the committed instruction stream is forwarded to the trailing thread, thereby
avoiding any branch misprediction in the trailing thread. In fact, a branch
misprediction in the trailing thread in this case would be flagged as an error.

6.9 RMT Within a Single-Processor Core 233

In effect, the branch direction and address computation logic for the trailing
thread acts as an output comparator.

■ Cached load data. Corresponding cached loads from replicated threads
must return the same value to each thread. Unlike instructions, data val-
ues may be updated by other processors or by DMA I/O devices between
load accesses. An out-of-order SRT processor may also issue correspond-
ing loads from different threads in a different order and in different cycles.
Because of speculation, the threads may even issue different numbers of
loads. Later in this section, two mechanisms for input replication for cached
load data—active load address buffer (ALAB) and load value queue (LVQ)—
are described.

■ Uncached load data. As with cached load data, corresponding loads must
return the same value to both threads. Because corresponding uncached loads
must synchronize to compare addresses before being issued outside the sphere
of replication, it is straightforward to maintain synchronization until the load
data return and then replicate that value for both threads. Other instructions
that access nonreplicated, time-varying state, such as the Alpha rpcc instruc-
tion that reads the cycle counter, are handled similarly.

■ External interrupts. Interrupts must be delivered to both threads at precisely
the same point in their execution. Three solutions are possible. The first solu-
tion forces the threads to the same execution point by stalling the leading
thread until the trailing thread catches up and then delivers the interrupt syn-
chronously to both threads. The second solution delivers the interrupt to the
leading thread, records the execution point at which it is delivered (e.g., in
committed instructions since the last context switch), and then delivers the
interrupt to the trailing thread when it reaches the identical execution point.
The third solution rolls both threads back to the point of the last commit-
ted register write. Rolling back may, however, be difficult if memory state is
committed and exposed outside the sphere of replication.

Input Replication in SRT-Register
As with output comparison, moving the register file outside the sphere means that
additional values cross the sphere boundary. In the case of input replication, it is
the register read values that require further consideration. However, each thread’s
register read values are produced by its own register writes, so corresponding
instructions will receive the same source register values in both threads in the
absence of faults (and assuming that all other inputs are replicated correctly). In
fact, many source register values are obtained not from the register file but by
forwarding the results of earlier uncommitted instructions from the RUU (or from
the “future file” as discussed in the previous section). Hence, input replication of
register values requires no special mechanisms even when the register file is outside
the sphere of replication.

234 CHAPTER 6 Fault Detection via Redundant Execution

6.9.5 Input Replication of Cached Load Data
Input replication of cached load data is problematic for both SRT-Memory and
SRT-Register implementations because data values can be modified from outside
the processor. For example, consider a program waiting in a spin loop on a cached
synchronization flag to be updated by another processor. The program may count
the number of loop iterations in order to profile wait times to adaptively switch
synchronization algorithms. To prevent redundant threads from diverging, both
threads must spin for an identical number of iterations. That is, the update of
the flag must appear to occur in the same loop iteration in each thread, even if
these corresponding iterations are widely separated in time. Simply invalidating
or updating the cache may cause the leading thread to execute more loop iterations
than the trailing thread. Hence, special attention needs to be given to input repli-
cation of cached data. Here two mechanisms for input replication of cached load
data, the ALAB and the LVQ, are described.

Active Load Address Buffer
The ALAB provides correct input replication of cached load data by guaranteeing
that corresponding loads from redundant threads will return the same value from
the data cache. To provide this guarantee, the ALAB delays a cache block’s replace-
ment or invalidation after the execution of a load in the leading thread until the
retirement of the corresponding load in the trailing thread.

The ALAB itself comprises a collection of identical entries, each containing an
address tag, a counter, and a pending-invalidate bit. When a leading thread’s
load executes, the ALAB is searched for an entry whose tag matches the load’s
effective address; if none is found, a new entry is allocated. Finally, the entry’s
counter is incremented to indicate an outstanding load to the block. When a trailing
thread’s load retires, theALAB is again searched and the matching entry’s counter is
decremented.

When a cache block is about to be replaced or invalidated, the ALAB is searched
for an entry matching the block’s address. If a matching entry with a nonzero count
is found, the block cannot be replaced or invalidated until all the trailing thread’s
outstanding accesses to the block have completed. At this point, the counter will
be zero and the block can be released. To guarantee that the counter eventually
reaches zero, the cache sets the ALAB entry’s pending-invalidate bit to indicate
that it is waiting; leading-thread loads that attempt to increment an entry with a set
pending-invalidate bit are stalled. Because the trailing thread can always make for-
ward progress, the outstanding loads will eventually complete. Although the block
for which the cache receives the invalidation request cannot be immediately inval-
idated, the cache can still send an acknowledgement for the invalidation request.
However, depending on the memory consistency model, the processor may have
to stall other memory requests until the corresponding ALAB counter reaches zero.

The ALAB must reliably track every outstanding load and therefore cannot evict
a nonzero ALAB entry. A leading-thread load must stall if it cannot allocate a new

6.9 RMT Within a Single-Processor Core 235

entry due to ALAB mapping conflicts or if it would increment the entry’s counter
beyond the maximum value. Leading-thread stalls may lead to a deadlock. The pro-
cessor can detect this deadlock condition by recognizing when (1) the trailing thread
has caught up to the leading thread and (2) the leading thread’s oldest instruction
is a load stalled because it cannot perform its ALAB increment. In this case, the
processor must flush the leading thread from the pipeline (as on a misspeculation)
and decrement the ALAB counters corresponding to executed but squashed loads.
The stalled load can then reissue; because the trailing thread has committed all
outstanding loads, it is guaranteed not to stall on the ALAB increment. Evaluation
of an SRT processor by Reinhardt and Mukherjee [10] showed that a 64-entry, fully
associative ALAB with 7-bit counters avoids this deadlock entirely across all their
benchmarks.

Load Value Queue
The LVQ is an alternate mechanism to implement input replication of cached load
values. Compared to the ALAB, the LVQ is much simpler to implement. In this
mechanism, one of the redundant threads is designated as a leading thread and
the other one as a trailing thread. Only the leading thread issues cached loads to
the data cache outside the sphere of replication. When a cached load commits, the
leading thread sends the load’s address and value to the trailing thread via the
LVQ, which is a first-in first-out buffer.

The LVQ can be read out both in program order and out-of-order. In the
in-order implementation, the trailing thread performs loads in program order and
nonspeculatively. The loads in the trailing thread proceed through the regular pro-
cessor pipeline. However, instead of probing the data cache, the trailing thread
waits for its corresponding load address and value from the leading thread to
show up at the head of the LVQ. Input replication is guaranteed because the trail-
ing thread receives the same value for the load that the leading thread used.

Alternatively, loads from the trailing thread can issue out of order. In this case,
the leading thread must attach tags to the loads it inserts in the LVQ and must
transmit these tags to the trailing thread. One way to achieve this is to forward the
instruction tags of the leading thread to the replicated instructions of the trailing
thread. This is easy to do in the second instruction replication mechanism outlined
earlier (see Input Replication in an SRT Processor, p. 232).

Figure 6.12 shows the lookup operation performed in either an in-order or an
out-of-order LVQ. Typically, a load would look up both a data cache and a store
queue simultaneously to see the structure that has the most recent value required
by the load instruction. This is the path followed by loads from a leading thread.
However, loads from the trailing thread simply look up the LVQ, bypass the data
cache and store queue, and forward their data back to the registers waiting for the
loaded values.

The LVQ provides a couple of additional advantages to the SRT implementa-
tion. The LVQ reduces the pressure on the data cache ports because, unlike the

236 CHAPTER 6 Fault Detection via Redundant Execution

Load from Leading Thread

Load from Trailing Thread

LVQ
Data

Cache Store Queue

Load Value for Leading Thread

Load Value for Trailing Thread

Multiplexor

FIGURE 6.12 Lookup operation of an LVQ in an SRT processor. The figure shows
only the case when a leading thread’s load hits in the data cache or the store
queue.

ALAB design, only one thread probes the data cache. Additionally, the LVQ can
accelerate fault detection of faulty addresses by comparing the effective address
of the leading thread from the LVQ with the effective address of the trailing
thread.

6.9.6 Two Techniques to Enhance Performance
of an SRT Processor

An SRT processor can improve its performance using one thread to improve cache
and branch prediction behavior for the other thread. Two such mechanisms—slack
fetch and branch outcome queue—that achieve this performance improvement
are described. During execution, these mechanisms allow the trailing thread to
use fewer pipeline resources, such as compute bandwidth and pipeline structure
space, which improves the overall performance of an SRT processor. Hence, typ-
ically an SRT processor—running a single logical program replicated as redun-
dant threads—would complete the logical program faster than the underly-
ing SMT pipeline would when running two independent copies of the same
program.

6.9 RMT Within a Single-Processor Core 237

Slack Fetch
The slack fetch mechanism tries to maintain a constant slack of instructions between
the leading and the trailing threads. Ideally, branches from the trailing thread
should probe the branch predictor after the corresponding branch from the leading
thread has executed and updated the predictor. Similarly, accesses from the trail-
ing thread should probe the instruction and data caches after the corresponding
accesses from the leading thread have incurred any misses and brought in the cache
blocks. Slack fetch achieves this by forcing instructions from the trailing thread to
execute later in time than the corresponding instructions from the leading thread.

In one implementation, slack fetch can be implemented using a signed counter
that is decremented when the (predesignated) leading thread commits an instruc-
tion and can be incremented when the (predesignated) trailing thread commits an
instruction. The counter is initialized at reset to the target slack. By adding the
counter’s value in each cycle to the trailing thread’s instruction count, the ICount
fetch policy (see A Simultaneous Multithreaded Processor, p. 228) favors the lead-
ing thread until the target slack is reached, automatically guiding the fetch stage
to maintain the desired slack.

Alternatively, slack fetch can also be implemented using the second instruction
replication mechanism described earlier (see Input Replication in an SRT Processor,
p. 232). By forwarding committed instructions from the leading thread to the fetch
unit of the trailing thread, an inherent slack is introduced, such that cache misses
incurred by the leading thread’s instructions are already resolved before the cor-
responding trailing-thread loads probe the cache or LVQ, as the case may be. In
this implementation, the trailing thread’s instructions can be prioritized over that
of the leading thread to help reduce pressure pipeline structures, such as the store
queue.

Branch Outcome Queue
The branch outcome queue reduces misspeculation more directly and effectively
than the slack fetch mechanism. This technique uses a hardware queue to deliver the
leading thread’s committed branch outcomes (branch PCs and target addresses) to
the trailing thread. In the fetch stage, the trailing thread uses the head of the queue
much like a branch target buffer, reliably directing the thread down the same path
as the leading thread. Consequently, in the absence of faults, the trailing thread’s
branches never misfetch or mispredict and the trailing thread never misspeculates.
To keep the threads in sync, the leading thread stalls in the commit stage if it cannot
retire a branch because the queue is full. The trailing thread stalls in the fetch stage
if the queue becomes empty.

Alternatively, if the committed instructions from the leading thread are for-
warded to the fetch stage of the trailing thread, then one does not need a branch
outcome queue. This is because the trailing thread receives the precise committed

238 CHAPTER 6 Fault Detection via Redundant Execution

path of the leading thread, which achieves the same effect as the branch outcome
queue.

6.9.7 Performance Evaluation of an SRT
Processor

Mukherjee et al. evaluated the performance of an SRT implementation on a com-
mercial SMT processor using all the 18 SPEC95 benchmarks [6]. They showed that
on average SRT degrades performance over running just the single thread (without
any redundant copies) by 32%. SRT techniques improve performance over running
two redundant copies of the same program (without any input replication or output
comparison) by 11%. This improvement is due to the positive effects of the LVQ and
instruction replication in the SRT processor. The LVQ reduces data cache misses
in two ways: the trailing thread cannot miss because it never directly accesses the
cache and the leading thread thrashes less in “hot” cache sets because it does not
compete with the trailing thread. They found that their SRT processor, on average,
has 68% fewer data cache misses than the base processor running redundant copies
of two threads.

Mukherjee et al. also found that output comparator for stores is one of the key
bottlenecks in the SRT design. The store comparator increases the lifetime of a
leading thread’s stores, which must now wait for the corresponding stores from
the trailing thread to show up before they can retire. On average, for one logical
thread, the store comparator increased the lifetime of a leading thread’s store by
39 cycles. Eighteen of these cycles represent the minimum latency for the trailing-
thread store to fetch and execute; the extra 21 cycles came from queuing delays in
the instruction replication mechanism and processor pipeline.

Consequently, increasing the size of the store queue has significant impact on
performance because this allows other stores from the leading thread to make
progress. A per-thread store queue (with 64 entries per thread) instead of a com-
bined store queue for both leading and trailing threads improved performance by
4%, bringing the degradation to only roughly 30%. Completely eliminating the
impact of the store comparator perhaps with an even bigger store queue would
improve performance by another 5% and reduce the performance degradation
to 26%.

In a multicore processor with SMT threads, turning on SRT also reduces the
overall throughput of the processor itself since half the threads are running redun-
dantly instead of contributing to the overall performance. By turning on SRT, the
benefits of a second SMT thread running on the same core are lost. SRT recov-
ers some of this performance loss because of reduced pressure on the memory
system (since only one thread accesses memory) and branch predictor (since
only one thread gets its predictions from the branch predictor). However, a bet-
ter underlying SMT implementation will usually cause less penalty in latency

6.9 RMT Within a Single-Processor Core 239

(i.e., increase in execution time of a single program) from SRT. But a better
SMT implementation would also cause higher degradation in throughput from a
multicore SRT processor.

6.9.8 Alternate Single-Core RMT
Implementation

Rotenberg’s single-core RMT implementation (AR-SMT) design [11] is an alternate
implementation of RMT within a single-core SMT processor. AR-SMT incorporates
two redundant threads: the “active,” orA-thread, and the “redundant,” or R-thread.
Committed register write-backs and load values from the A-thread are placed in
a delay buffer, where they serve as the alternate execution stream against which
R-thread results are checked and predictions to eliminate speculation on the R-
thread. Thus, the delay buffer combines SRT’s register check buffer and branch
outcome queue. In addition, the R-thread uses the delay buffer as a source of value
predictions to speculate past data dependencies.

AR-SMT is one point in the SRT design space; its sphere of replication is the SRT-
Register’s sphere in which the register file resides outside. In AR-SMT, the R-thread
register file serves as the architectural file: register write-back values are verified
before updating the R-thread registers, and the R-thread file is considered to be a
valid checkpoint for fault recovery. As with the register files in SRT-Register, the
A-thread register file serves only to bypass uncommitted register updates still in
the delay buffer. Thus, replication does not provide fault coverage for the R-thread
register file, so this register file must be augmented with an alternate coverage
technique, such as ECC. Otherwise, a fault in an R-thread register value would lead
to a mismatch in A-thread and R-thread results. AR-SMT would correctly detect
this fault but may improperly recover by restarting from the corrupted R-thread
register file contents.

Fundamentally, for fault detection using redundant computation, one needs two
redundant computation units or threads and an output comparator. Typically, these
are three distinct components of a fault detecting system. AR-SMT, however, com-
bines the R-thread with the output comparator, which potentially saves hardware
but results in reduced fault coverage compared to an SRT-style design.

AR-SMT also varies significantly from the SRT designs described above since in
AR-SMT entire main memory is inside the sphere of replication. This scheme pro-
vides better memory fault detection than ECC. Nevertheless, doubling the physical
memory of a system can be very expensive. Because the R-stream has a separate
memory image distinct from that of the A-stream, AR-SMT requires modifica-
tions in the OS to manage the additional address mappings needed to replicate
the address space. To make this replication simpler, the design disables redun-
dant threading on OS calls, leaving kernel code vulnerable to transient hardware
faults.

240 CHAPTER 6 Fault Detection via Redundant Execution

6.10 RMT in a Multicore Architecture
This section discusses how RMT can be implemented in a chip multiprocessor
(CMP), more popularly known today as multicore processors. This is referred to as
chip-level redundant threading or CRT. CRT achieves core Lockstepping’s perma-
nent fault coverage while maintaining SRT’s low-overhead output comparison and
efficiency optimizations. The basic idea of CRT is to generate logically redundant
threads, as in SRT, but to run the leading and trailing threads on separate processor
cores, as shown in Figure 6.13 [6,7].

The trailing threads’ LVQs and branch outcome queues now receive inputs from
leading threads on the other processor core. Similarly, the store comparator, which
compares store instructions from redundant threads, receives retired stores from
the leading thread on one processor core and trailing thread on another processor
core. To forward inputs to the LVQ, the branch outcome queue, and the store com-
parator, moderately wide datapaths between the processors are needed. It may be
possible to lay out the processor cores on the die such that such datapaths do not tra-
verse long distances. These datapaths will be outside the sphere of replication and
may require protection with some form of information redundancy, such as parity.

CRT processors provide two advantages over Lockstepped microprocessors.
First, in Lockstepped processors, all processor output signals must be compared
for mismatch, including miss requests from the data and instruction caches. This

BOQ

Processor Core 2Processor Core 1

Trailing
Thread A

Trailing
Thread B

Leading
Thread A

LVQ

Stores

BOQ

Leading
Thread B

Stores

LVQ

FIGURE 6.13 Block diagram of a CRT implementation using two cross-coupled
processor cores. BOQ = branch outcome queue.

6.11 DIVA: RMT Using Specialized Checker Processor 241

comparison is in the critical path of the cache miss and often adversely affects
performance. More generally, the output comparator must interpose on every log-
ical signal from the two processor cores, check for mismatch, and then forward the
signal outside the sphere of replication. Of course, a CRT processor incurs latency
to forward data to the LVQ, the branch outcome queue, or the store comparator,
but these queues serve to decouple the execution of the redundant threads and are
not generally in the critical path of data accesses.

Second, CRT processors can run multiple independent threads more efficiently
than Lockstepped processors. By pairing leading and trailing threads of different
programs on the same processor, the overall throughput can be maximized. A trail-
ing thread rarely or never misspeculates, freeing resources for the other applica-
tion’s leading thread. Additionally, in our implementation, trailing threads do not
use the data cache or the load queue, freeing up additional resources for leading
threads. Evaluation of Mukherjee et al. shows that such a CRT processor performs
similarly to core Lockstepping for single-program runs (in non-SMT mode) but can
outperform Lockstepping by 13% on average (with a maximum improvement of
22%) for multithreaded program runs.

6.11 DIVA: RMT Using Specialized Checker
Processor
As discussed earlier, in both the SRT and CRT implementations, the trailing thread
consumes significantly less pipeline bandwidth than the leading thread. Austin
took this idea further by designing a custom lightweight checker core that is paired
up with a normal processor core. Austin calls this the Dynamic Implementation
Verification Architecture (DIVA) [1].

To understand how DIVA works, let us look at the following sequence of two
dynamic instructions: (Inst1) R1 = R2 + R3 and (Inst2) R5 = R1 + R4. The instruction
Inst1—executed first—reads source registers R2 and R3, computes the sum of the
values in the two registers, and then writes them back into destination register
R1. The second instruction Inst2 does the same—reads values in source registers
R1 (just produced) and R4, computes the sum of these values, and then writes
them back into destination register R4. To verify that this sequence of instructions
executes correctly, two properties must be ensured:

■ Given the source register values, each add operation computes the result value
correctly. For example, given the source register values for Inst2, it must be
verified that the add operation actually computes the value in R5 correctly.

■ The source register values flow correctly and without errors to every instruc-
tion. For example, it must be verified that Inst2 receives the correct values
for R1 and R4. In a pipelined implementation with pipeline bypasses, the
value in R1 may flow directly from Inst1 to Inst2 without going through the

242 CHAPTER 6 Fault Detection via Redundant Execution

E
X

E
C

U
T

E

C
O

M
P

A
R

E

R
E

A
D

C
H

E
C

K

C
O

M
M

IT

CHKcomp Pipeline

CHKcomm Pipeline

Register & Memory
Bypass

<inst, result, src1, src2>

<inst, result, src1, src2>

<inst, result>

<success?>

<success?>

computation
from main
processor core

FIGURE 6.14 DIVA checker architecture.

architecture storage register R1. In this case, it must be verified that this bypass
flow is correct.

Figure 6.14 shows how DIVA implements these two verification steps using
separate checker pipelines: the CHKcomp pipeline that verifies the first property
and the CHKcomm pipeline that verifies the second. Because the two pipelines are
simpler than the main processor core, Austin argues that they can run at a much
slower frequency, allowing a much simpler pipeline implementation than the main
processor. Using a performance simulator of the DIVA architecture, Austin has also
shown that on a set of selected SPEC benchmarks, the DIVA checker slows down
the main processor core on average by only 3% (with a maximum degradation
of 15%).

The CHKcomp Pipeline
The CHKcomp pipeline verifies that an instruction has been executed correctly
by the main processor. For a given instruction executed in the main processor
core, the CHKcomp pipeline receives the instruction, the source operand val-
ues, and the result operation. In the EXECUTE stage, the CHKcomp pipeline
recomputes the result based on the source operand values it receives. Then, in the
COMPARE stage, it compares the result value just generated with the result value
it receives from the main processor. If the compared values match, then the DIVA
checker can certify that the values have been computed correctly. If the compared

6.11 DIVA: RMT Using Specialized Checker Processor 243

values do not match due to a particle strike in either the main processor or the
DIVA checker, it will be flagged as an error.

The CHKcomp pipeline does not have any dependences. It simply computes
the result value based on the incoming source operand values. Consequently, as
many CHKcomp pipelines can be instantiated as may be necessary to match the
instruction throughput of the main processor. For example, if the main processor
can commit four instructions in a DIVAchecker cycle, one can potentially instantiate
four CHKcomp pipelines to avoid slowing down the main processor. This allows
the DIVA CHKcomp pipeline to match the main processor’s bandwidth even with
a much slower clock.

The CHKcomm Pipeline
The CHKcomm pipeline verifies that operand values flow correctly from one
instruction to another. Like the CHKcomp pipeline, it also receives instructions
with their source operands. In the READ stage, it reads the values of these source
operands from its own architectural register file. The CHECK stage verifies that the
source operands received and source operands read from the register file match.
For example, for Inst1, the CHKcomm pipeline will read R2 and R3 from its own
register file and verify that the incoming source operand values match these. Then,
in the cycle after the READ stage, the CHKcomm pipeline will write back the result
value into the destination register. For Inst1, the pipeline will write back R1’s value
it received from the main processor into the register file.

Inst2, however, poses a little complication since it must receive the value of R1
from Inst1. Hence, the pipeline needs to implement a bypass path, so that Inst1’s
result value is forwarded as a source operand for Inst2. Thus, the CHECK stage can
receive the source operands either from the register file or from the bypass path. In
either case, however, it simply compares the source operands while the write-back
of the result operand proceeds in parallel.

Unlike the CHKcomp pipeline, replicating the CHKcomm pipeline poses some
difficulties because of the bypass operations. To match the instruction bandwidth
of the main processor, the CHKcomm pipeline can be replicated multiple times. But
each of these pipelines must implement a complicated bypass network that allows
values to be forwarded arbitrarily across any of these pipelines. For example, if
the main processor can commit four instructions per DIVA checker cycle, then four
CHKcomm pipelines can be implemented to avoid slowing down the main proces-
sor. However, if Inst1 is executed on CHKcomm pipeline 1 and Inst2 is executed
on CHKcomm 2, then Inst1’s result value must be forwarded from pipeline 1 to
pipeline 2. In the general case, Inst1’s result may need to be forwarded to all of
the other three pipelines. Such bypass paths may make it challenging to scale the
CHKcomm pipeline to match the main processor bandwidth.

Trade-offs in the DIVA Processor
The DIVAarchitecture poses two significant advantages beyond detecting transient
faults. First, it can detect both permanent faults and design errors in the main

244 CHAPTER 6 Fault Detection via Redundant Execution

processor. In contrast, in an SRT processor, permanent faults on structures shared
between the redundant threads may go undetected. A CRT processor would detect
such permanent faults, but since the redundant cores would typically be replicated,
it will not be able catch design errors. Also, DIVA does not require an underlying
SMT architecture like an SRT processor.

DIVA does, however, pose a few other challenges in its design. First, in the
presence of I/O devices or multiple processors, the DIVA architecture can detect
false transient faults due to external memory writes. On detecting a fault, the DIVA
checker proposes to execute the instruction entirely on the DIVA checker itself.
This property can potentially lead to a livelock if the external agent (I/O device or
processor) continues to provide the same external memory write but with different
values. It should be possible to augment DIVA with an ALAB or LVQ to avoid this
problem.

Second, to guarantee forward progress in the presence of permanent faults in
the main processor, DIVA assumes that the checker is always correct and proceeds
using the checker’s result in the case of a mismatch. Also, for uncached loads and
stores that cannot be executed twice, DIVA relies on the checker to execute them
nonredundantly. In these cases, faults in the checker itself—including transient
faults—must be detected or avoided through alternative techniques. For example,
Austin suggests that design errors could be avoided by formally verifying the
checker. Alternatively, the DIVA checkers can be replicated and run in Lockstep to
detect faults in the checker itself.

6.12 RMT Enhancements
Enhancements in the RMT design are an active area of research today. The primary
goal of most RMT optimizations is to reduce the performance degradation of a
single program caused by the redundant thread. Such enhancements may offer
reduced fault coverage in some cases. That may still be worthwhile if the SER is
within a product’s SDC and DUE budgets.

An RMT implementation’s performance degradation can be reduced using three
broad techniques: relaxing constraints on input replication, relaxing constraints on
output comparison, and partial RMT techniques that avoid executing some number
of instructions in one of the redundant threads.

6.12.1 Relaxed Input Replication
Input replication, such as of that of load values, may sometimes prevent the trailing
thread from making progress. This could be because the communication latency
between the leading and the trailing threads is high. Alternatively, this could
also be because the trailing thread starts to march ahead of the leading thread,
which could happen in some RMT designs. Load value predictors—explored

6.12 RMT Enhancements 245

in microarchitecture research in the past decade—can help the trailing thread
make progress without waiting for its inputs from the leading thread’s LVQ, for
example.

6.12.2 Relaxed Output Comparison
Output comparison necessitates committed instructions or selected instructions
of both the threads to be available for comparison. This can cause performance
degradation if this comparison causes one of the threads to be held up. The SRT
and CRT implementations already relax this constraint somewhat by requiring
output comparison only on selected instructions, such as stores, without increasing
a processor’s SDC rate.

Even in an SRT implementation, the leading thread can be held up by the trailing
thread. This may disallow the leading thread to make further progress possibly
because structures, such as the store queue, may have filled up. To allow the leading
thread to make progress, an SRT implementation could choose to not compare
stores when the leading thread cannot make progress. This would incur a higher
SER, which could be computed through an AVF analysis.

Vijaykumar et al. [21] proposed and Gomaa et al. [4] refined a scheme called
dependence-based checking elision (DBCE) to reduce the number of instructions
that needs to be checked for faults. As instructions execute, a transient fault prop-
agates through the instruction chains via either its control flow (e.g., branches) or
its dataflow (e.g., registers). As instructions execute, the DBCE scheme builds short
sequences of instructions to create these dependence chains. Given such a DBCE
chain, only the last instruction in the chain needs to be checked for faults. Instruc-
tions that mask faults, such as OR instruction, cannot be part of such a chain unless
they are the last instruction of a chain. Otherwise, they can mask faults, whose
effect may not be captured by the last instruction in a DBCE chain. Alternatively,
masking instructions can be allowed to be part of a chain but that will reduce the
fault coverage of the RMT implementation.

Alternatively, a transaction-based implementation can offer significantly greater
flexibility in fault detection but without sacrificing fault coverage. In a transaction-
based system, a program is constructed as a series of transactions, where each
transaction may consist of one or more instructions. The result of a transaction is
committed to the global state atomically at the end of a transaction. By running
transactions redundantly and comparing their outputs before the transaction com-
mit point, one can detect faults in such transactions. This requires output compari-
son only when a transaction commits, thereby reducing the need for both redundant
threads to be synchronized at every instruction.

6.12.3 Partial RMT
Another way to reduce performance degradation from an RMT implementation
is to avoid executing selected regions of one of the redundant threads. By not

246 CHAPTER 6 Fault Detection via Redundant Execution

executing instructions from one of the threads, for example, an SRT implementation
can free up execution resources for the other thread. There have been a number of
proposals that exploit this:

■ Instruction reuse. Sodani and Sohi proposed instruction reuse to expedite
the execution of a single program [16]. Sodani and Sohi created an instruction
reuse buffer that tracks one or more instructions’ input and output values.
If an instruction or a sequence of instructions is executed again and can be
matched against the instructions present in the reuse buffer, then the pipeline
can simply obtain the output of the instructions without executing them. In
an SRT implementation, the contents of the reuse buffer can be updated after
the output comparator certifies that an instruction is fault free. In subsequent
executions, the trailing thread can use values being passed to it by the leading
thread (e.g., via an RVQ) to probe the reuse buffer, obtain the result values in
case of a hit, and thereby avoid executing the instruction itself. Parashar et al.
[8] and Gomaa and Vijaykumar [5] have explored variants of this scheme.

■ Avoid execution of dynamically dead instructions. Parashar et al. [9] have
proposed a scheme called SlicK that tracks backward slices of instructions in
the leading thread to determine, and thereby eliminate, any dynamically dead
instruction from the trailing thread. Recall that a dynamically dead instruc-
tion is one whose result will never be used by any instruction in future. For
example, if register R1 is written by an instruction and subsequently over-
written by another instruction without any intervening writes to R1, then the
first instruction that wrote R1 is dynamically dead. SlicK would potentially
avoid executing any such dynamically dead instruction tracked through the
architectural registers.

■ Store value prediction. In the basic SlicK implementation, all stores are com-
pared to ensure full fault coverage. Only the dynamically dead instructions
are not executed. Parashar et al. [9] enhanced this scheme further by using
store value prediction. The enhanced SlicK implementation avoided execut-
ing any instruction leading up to a store, whose value could be predicted by
a store predictor.

■ Turn trailing thread off in high IPC regions. Another way to reduce the per-
formance degradation of RMT is to completely turn off the trailing thread in
certain regions of a program. These regions could be regions with high IPC,
low AVF, or high power dissipation. Gomaa and Vijaykumar [5] studied a
scheme in which they turned off the trailing thread (thereby reducing fault
coverage and increasing AVF) during regions of a program they found to have
high IPC. The key challenge of such a scheme is to recreate the correct state
of the trailing thread from which it can be restarted. Gomaa and Vijaykumar
recreated this state by forwarding architectural state updates from the lead-
ing to the trailing thread. Alternatively, one could use an RVQ or an LVQ to
recover the trailing thread’s state as well since both these structures contain
the updates to architectural state.

6.13 Summary 247

6.13 Summary
In fault detection via redundant execution, identical copies of the same program
are executed redundantly. The outputs of the redundantly executing streams are
compared for mismatch. A mismatch signals a fault and can initiate a number of
possible recovery actions.

The concept of the sphere of replication helps explain how such redundant execu-
tion streams work. The sphere of replication identifies the logical domain protected
by the fault detection scheme. Any component within the sphere must be logically
or physically replicated. Any output leaving the sphere of replication must be com-
pared to check for mismatch and corresponding faults. The output comparator has
also been referred to in the literature as the checker. Any inputs into the sphere of
replication must be appropriately replicated and delivered to the correct points
within the sphere.

There are two ways of performing such redundant execution: cycle-by-cycle
Lockstepping or RMT. Lockstepping has been used for decades in mainframe
systems, whereas RMT has been introduced in the past decade. RMT has also
been referred to as loose Lockstepping. In Lockstepping, redundant streams are
usually run on two separate, but identical, processor cores. The processor cores
must have the exact same state in each cycle. Consequently, output compari-
son involves comparing the values of signals coming from each processor core
in the sphere of replication. Lockstepping does not require any semantic infor-
mation from these signals. Because both processor cores have the same state
in each cycle, any pair of hardware signals from the redundant processor cores
must have the exact same value in the absence of a fault. Inputs into the sphere
must be replicated and delivered to both processor cores at the same cycle
boundary.

The Stratus ftServer, Hewlett-Packard Himalaya, and the IBM Z-series machines
are all Lockstepped. Nevertheless, the designs differ significantly in their spheres
of replication, which affects the hardware overhead incurred by each design. The
ftServer includes main memory in its sphere of replication, which implies that main
memory is replicated for each redundant execution stream. Himalaya’s sphere of
replication does not include main memory. Instead, Himalaya compares outputs
arising from the processors themselves. The Z-series processors replicate processor
pipelines on the processor chip itself. The processor pipelines constitute the sphere
of replication in the Z-series processors.

In contrast, in RMT, only committed instructions from redundant streams are
compared for mismatch. The underlying hardware contexts running the redun-
dant threads can be either processor cores or hardware threads in a multithreaded
processor. The hardware contexts running the redundant threads may not have
the same state in the same cycle. What outputs must be compared depends on
the size of the sphere. If the sphere of replication includes processor cores and
memory, then only outputs to I/O devices must be compared for mismatch. Inputs
must be replicated carefully in an RMT system since the underlying redundant
contexts have different states in the same cycle. Inputs are typically delivered

248 CHAPTER 6 Fault Detection via Redundant Execution

at the same committed instruction boundary, which ensures that the redundant
execution streams do not diverge.

The Marathon Endurance Server and the Hewlett-Packard NSAA implement
RMT with similar spheres of replication. Both include memory and processors
in their spheres of replication and compare I/O outputs for mismatches. The
machines, however, differ significantly in the way they do input replication. The
Marathon Endurance Server raises an interrupt after a predetermined number of
committed instructions. The two instruction streams coordinate and determine a
point to replicate inputs. In NSAA, however, the instruction streams explicitly poll
the machine for input replication requests and post requests to obtain the replicated
inputs. This requires modifications to the OS, which is possible because the NSAA
runs its own custom OS, unlike the Endurance Server that runs Windows, which
is a commodity OS.

Other proposed RMT designs, such as SRT, CRT, and DIVA, implement RMT
within a single chip. In SRT, the redundant threads are implemented within a
single multithreaded processor core, whereas in CRT the redundant threads are
executed on different processor cores on the same chip. In contrast, DIVA creates
a specialized checker core to act as one of the redundant threads. Each of these
designs offers different trade-offs and hardware overhead.

6.14 Historical Anecdote
Contributed by Dr. Phil Emma of IBM Corporation:

In a bold move in the early 1990s, IBM transitioned mainframe design over to
CMOS. For the first time, IBM was going to build its large S390 Servers (now called
“series”) using a new custom CMOS microprocessor. The internal name for this
system was “Alliance,” signifying the joint “alliance” formed between research
engineers and development engineers to create this processor.

I was given the role of leading the specification and design of the “R unit,” which
was an entirely new unit that took a new approach toward RAS within the new
context of CMOS. S390 historically featured “bulletproof” RAS required by many
mainframe customers and particularly those in financial businesses. Our goal was
to make each server generation more reliable than the previous generation. We
wanted to catch as many faults as possible and to recover from as many errors as
possible.

Historically, in our bipolar designs, checking circuitry was integral to the compu-
tation circuitry. Most combinational logic had integral parity prediction, and most
state logic was encoded using fail-safe techniques and state checking. There were
many registers put in for retaining state (to recover to), and all state was scannable.
In those machines, the timing was not dominated by wire paths, and the power-
ful ECL logic was not very sensitive to capacitive loading, so these well-evolved
techniques made sense.

6.14 Historical Anecdote 249

CMOS, however, is extremely sensitive to loading, and in the new custom design,
wire lengths were critical. Therefore, in a radical departure from what we had done
in the past, we decided to merely replicate the processor (but not the cache). The pair
of processors were operated as a single logical processor. A new “R unit” verified—
on a per-instruction basis—that both processors produced the same results. The R
unit also maintained a “golden” (ECC-protected) checkpoint of all architected state.
The R unit could effect recovery actions and log errors when they were found. It also
contained lots of other odds and ends, time-of-day clocks, timers, service interfaces,
trace arrays, etc.

The R unit was designed as a fully replicated and fully cross-checked “dual
pipeline.” That is, in addition to doing bulletproof checking of the rest of the
machine, it also did a bulletproof checking of itself. We estimated that the chip
area overhead for having a redundant processor and an R unit was about 30%.
By not putting parity prediction circuits into the processors, we kept their areas
(hence wire-bound paths) and capacitive loadings small. This gave us a significant
performance advantage for nearly the same area penalty, and an arguably smaller
design effort.

People have conjectured why this was called the “R unit.” We do not know for
sure. Charles Webb, the chief architect of the machine, started calling it the “R unit”
from day 1. “R” never stood for anything. It was just a letter (like the I and E units).
Many years after the fact, I have heard sales and marketing people say that it was
the “Register” unit (because of all the checkpointing), the “Recovery” unit, or the
“Reliability” unit. In reality, it was just the “R” unit, and “R” did not stand for
anything.

Vijay Lund was a rising-star executive in charge of the project. Initially, it was
clear that he was a little uncomfortable with having research engineers embedded
in the development design team and more than a little uncomfortable (in those
days) with having a researcher like me leading part of the design. Given our cul-
tural differences, I fully understood this, and it was not an unreasonable point
of view. But what was especially perplexing to all executives—and to Vijay—was
that although we had two processors in there, we were using them like they were a
single processor. Most executives had a very hard time accepting this as being the
right approach.

Every time I bumped into Vijay (and most other executives), I would be asked
how I knew that we are going to have errors at all in the silicon. This was a
new technology. We had no evidence that we would have errors at all. Would
it not be better to just forget about the R unit and run the chip as a dual-
core chip? I would always tell them that they should think about RAS exactly
like they thought about term life insurance. If they are extremely lucky, then it
is a total waste of their money. Nonetheless, every time I would see Vijay, he
would ask the same question. I think that he enjoyed teasing me to keep me on
my toes.

One day I came into Vijay’s conference room to give my weekly status report to
the management team. At the end of my presentation, Vijay said that he had finally

250 CHAPTER 6 Fault Detection via Redundant Execution

figured out what “R” stood for. So I asked “What does ‘R’ stand for?” He said “It
means Removable.” As I said before, Vijay knew how to keep a team on its toes.

References
[1] T. M. Austin, “DIVA: A Reliable Substrate for Deep Submicron Microarchitecture Design,” in 32nd

Annual International Symposium on Microarchitecture (MICRO), pp. 196–207, 1999.

[2] D. Bernick, B. Bruckert, P. D. Vigna, D. Garcia, R. Jardine, J. Klecka, and J. Smullen, “NonStop�
AdvancedArchitecture,” in Proceedings. International Conference on Dependable Systems and Networks
(DSN), pp. 12–21, Yakohama, Japan, June/July 2005.

[3] T. D. Bissett, P. A. Leveille, E. Muench, G. A. Tremblay, “Loosely-Coupled, Synchronized Execu-
tion,” United States Patent 5,896,523, issued April 20, 1999.

[4] M. A. Gomaa, C. Scarbrough, T. N. Vijaykumar, and I. Pomeranz, “Transient Fault-Recovery for
Chip Multiprocessors,” in Proceedings of 30th Annual International Symposium on Computer Archi-
tecture (ISCA), pp. 98–109, June 2003.

[5] M. A. Gomaa and T. N. Vijaykumar, “Opportunistic Fault Detection,” in 32nd Annual International
Symposium on Computer Architecture (ISCA), pp. 172–183, Madison, Wisconsin, USA, June 2005.

[6] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt, “Detailed Design and Evaluation of Redundant
Multithreading Alternatives,” in Proceedings of the 29th Annual International Symposium on Computer
Architecture (ISCA), pp. 99–110, Anchorage, Alaska, USA, May 2002.

[7] R. Nair and J. E. Smith, “Method and Apparatus for Fault-Tolerance Via Dual Thread Crosscheck-
ing,” United States Patent Application, publication date September 19, 2002.

[8] A. Parashar, S. Gurumurthi, and A. Sivasubramaniam, “A Complexity-Effective Approach to ALU
Bandwidth Enhancement for Instruction-Level Temporal Redundancy,” in 31st Annual Interna-
tional Symposium on Computer Architecture (ISCA), pp. 376–386, June 2004.

[9] A. Parashar, S. Gurumurthi, and A. Sivasubramaniam, “SlicK: Slice-Based Locality Exploitation
for Efficient Redundant Multithreading,” in 12th Annual International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), pp. 95–105, October 2006.

[10] S. K. Reinhardt and S. S. Mukherjee, “Transient Fault Detection via Simultaneous Multithreading,”
in 27th Annual International Symposium on Computer Architecture (ISCA), pp. 25–36, Vancouver,
British Columbia, Canada, USA, June 2000.

[11] E. Rotenberg, “AR-SMT: A Microarchitectural Approach to Fault Tolerance in Microprocessors,”
in 29th Annual Fault-Tolerant Computing Systems (FTCS), p. 84, Madison, Wisconsin, USA, June
1999.

[12] D. P. Sieiorek and R. S. Swarz, Reliable Computer Systems: Design and Evaluation, A. K. Peters, 1998.

[13] T. J. Slegel, R. M. Averill III, M. A. Check, B. C. Giamei, B. W. Krumm, C. A. Krygowski, W. H. Li,
J. S. Liptay, J. D. MacDougall, T. J. McPherson, J. A. Navarro, E. M. Schwarz, K. Shum, and C. F.
Webb, “IBM’s S/390 G5 Microprocessor Design,” IEEE Micro, pp. 12–23, March/April 1999.

[14] T. J. Slegel, E Pfeffer, and J. A. Magee, “The IBM eServer z990 Microprocessor,” IBM Journal of
Research and Development, Vol. 48 No. 3/4, pp. 295–309, May/July 2004.

[15] J. E. Smith and A. R. Pleszkun, “Implementing Precise Interrupts in Pipelined Processors,” IEEE
Transactions on Computers, Vol. 37, No. 5, pp. 562–573, May 1988.

References 251

[16] A. Sodani and G. S. Sohi, “Dynamic Instruction Reuse,” in 24th Annual International Symposium on
Computer Architecture (ISCA), pp. 194–205, Denver, Colorado, USA, June 1997.

[17] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, and R. L. Stamm, “Exploiting Choice:
Instruction Fetch and Issue on an Implementable Simultaneous Multithreading Processor,” in 23rd
Annual International Symposium on Computer Architecture (ISCA), pp. 191–202, May 1999.

[18] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous Multithreading: Maximizing On-Chip
Parallelism,” in 22nd Annual International Symposium on Computer Architecture (ISCA), pp. 392–403,
Italy, June 1995.

[19] J. Somers, “Stratus ftServer—Intel Fault Tolerant Platform,” Intel Developer Forum, Fall 2002.

[20] L. Spainhower and T. A. Gregg, “IBM S/390 Parallel Enterprise Server G5 Fault Tolerance: A
Historical Perspective,” IBM Journal of Research and Development, Vol. 43, No. 5/6, pp. 863–873,
September/November 1999.

[21] T. N. Vijaykumar, I. Pomeranz, and K. Cheng, “Transient Fault Recovery using Simultaneous
Multithreading,” in Proceedings of the 29th Annual International Symposium on Computer Architecture
(ISCA), May 2002.

[22] C. Webb, “z6—The Next-Generation Mainframe Microprocessor,” Hot Chips, August 2007.

[23] A. Wood, R. Jardine, and W. Bartlett, “Data Integrity in HP NonStop Servers,” in 2nd IEEE Workshop
on Silicon Errors in Logic and System Effects (SELSE), Urbana-Champaign, April 2006.

This page intentionally left blank

C H A P T E R7
Hardware Error
Recovery

7.1 Overview
As discussed in Chapter 1, soft errors can be classified into two categories: SDC and
DUE. Some of the error coding techniques, such as parity, discussed in Chapter 5
and the fault detection techniques outlined in Chapter 6 convert SDC to DUE. In
some cases, these techniques may result in additional DUE rates arising from the
mechanics of the fault detection technique. This chapter discusses additional hard-
ware recovery techniques that will reduce both SDC and DUE rates arising from
transient faults. The same recovery techniques may not be as useful for permanent
hardware faults because fixing the permanent fault typically would involve a part
replacement, which is not discussed in this chapter.

This chapter uses the term error recovery instead of fault recovery, even though the
process of detecting a malfunction was referred to as fault detection. This is because
a hardware fault is a physical phenomenon involving a hardware malfunction. The
effect of the fault will typically propagate to a boundary of a domain where the
fault will be detected by a fault detection mechanism. Once a fault is detected, it
becomes an error. Thus, a recovery mechanism will typically help a system recover
from an error (and not a fault).

The reader should also note that an error recovery mechanism reduces the SDC
and DUE rates of the domain it is associated with. For example, a domain could
simply include the microprocessor chip. Alternatively, a domain could include an
entire system. (For a detailed discussion on how faults and errors relate to the

253

254 CHAPTER 7 Hardware Error Recovery

domain of fault detection and error recovery, the reader is referred to the section
Faults, p. 6, Chapter 1.) To characterize the SDC or DUE rate of a domain, one can
compute the domain’s MTBF as the sum of its MTTF and MTTR. At the system
level, one often talks about availability, which is the ratio of system uptime (MTTF)
divided by total system time (MTBF). Availability is often expressed in number of
9s. For example, five 9s would mean that the system availability is 99.999%. This
would mean a system downtime of 5.26 minutes per year. Similarly, six 9s would
mean a system downtime of 31.56 seconds.

Recovery schemes can be broadly categorized into forward and backward recov-
ery schemes. In forward error recovery, the system continues fault free execution
from its current state even after it detects a fault. This is possible because forward
recovery schemes maintain concurrent and replicated state information, which
allows them to execute forward from a fault free state. In contrast, in a backward
error recovery, usually the state of the machine is rewound backward to a known
good state from where the machine begins execution again.

This chapter discusses various forms of forward and backward error recovery
schemes. Forward recovery schemes discussed in this chapter include fail-over
systems that fail over to a standby spare, DMR systems that run two copies of
the same program to detect faults, TMR systems that run triplicate versions of the
same program, and pair-and-spare systems that run a pair of DMR systems with
one being the primary and the other secondary standby.

The design of a backward error recovery scheme depends on where the fault is
detected. If a fault is detected before an instruction’s result register values are com-
mitted, for example, then the existing branch misprediction recovery mechanism
can be used to recover from an error. This chapter examines backward recovery
schemes in various systems: systems that detect faults before register values are
committed, systems that detect faults before memory values are committed, and
systems that detect faults before I/O outputs are committed.

7.2 Classification of Hardware Error
Recovery Schemes
Fundamental to any error recovery mechanism is the “state” to which the system
is taken when the error recovery mechanism is triggered. For example, Figure 7.1
shows state transition of a system consisting of two bits. The initial state of the
system is 00. It goes through two intermediate states—01 and 10. Eventually, it
reaches the state 11 when it gets a particle strike. This changes the state incorrectly
to 01. If this incorrect state transition can be detected, then the error can be flagged.
Also, it is assumed that the identity of the bit that was struck is unknown, so the
state cannot be reconstructed. Then, to recover from the error, there are several
choices that are described below.

7.2 Classification of Hardware Error Recovery Schemes 255

00 10 11

01

Initial
State

01

Intermediate
State

Current
State

Particle
Strike

State in Error

FIGURE 7.1 State to recover to on a particle strike. The system can revert to
the initial state (reboot) or the intermediate state (backward error recovery)
or continue forward from its current state (forward error recovery).

7.2.1 Reboot
The system can be reverted to its initial state, and execution can be restarted. This
may require rebooting a system. In Figure 7.1, this would correspond to reverting
to the initial state 00. This is a valid recovery mechanism for transient faults, if
the latency of reexecution is not critical. For hard errors, however, this mechanism
may not work as well since on reexecution the system may get the same error
again.

7.2.2 Forward Error Recovery
The second option would be to continue the system from its current state after
a fault is detected. In Figure 7.1, this would correspond to the current state 11
when the fault is encountered. This style of error recovery is usually known as
forward error recovery. The key in forward error recovery is to maintain redun-
dant information that allows one to reconstruct an up-to-date error-free state.
ECC is a form of forward error recovery in which the state of the bits protected
by the ECC code is reconstructed, thereby allowing the system to make forward
progress.

Forward error recovery of full computing systems, including logic and ALU
components, however, can be much more hardware intensive since this may use
redundant copies of the entire computing state. An output comparator would
identify the faulty component among the redundant copies. The correct state can
be copied from one of the correct components to the faulty one. Then the entire
system can be restarted.

This could be possible, for example, if there are triply redundant copies of the
execution system and state. Before committing any state outside the redundant
copies, the copies can vote on the state. If one of them disagrees, then the other
two are potentially correct. The faulty copy can be disabled, and the correct ones
could proceed. For transient faults, the faulty copy can be scrubbed of any faults

256 CHAPTER 7 Hardware Error Recovery

and reintegrated into the triply redundant system. For permanent faults, the faulty
component may have to be replaced with a fault free component.

7.2.3 Backward Error Recovery
Backward error recovery is an alternate recovery scheme in which the system can
be restored to and restarted from an intermediate state. For example, in Figure 7.1,
the system could revert to the state 01 or 10. Backward recovery often requires less
hardware than forward error recovery mechanisms. Backward error recovery does,
however, require saving an intermediate state to which one can take the system
back to when the fault is detected. This intermediate saved state is usually called
a checkpoint. How checkpoint creation relates to fault detection, when outputs can
be committed, when external inputs can be consumed, and how the granularity of
fault detection relates to recovery are discussed below.

How Fault Detection Relates to Checkpoint Content
Broadly, there are three kinds of states in a computer system: architectural register
files, memory, and I/O state. Acheckpoint can comprise one or more of these states.
Typically, in a computer system and particularly in a microprocessor, a register file
is small and frequently written to. Memory is significantly bigger and committed
to either when a store instruction executes and commits its value to memory or
an I/O device transfers data to a pre-allocated portion of memory. Finally, the I/O
state (e.g., disks) is usually the biggest state in a computer system and usually
committed to less frequently than register files or main memory.

What constitutes a checkpoint in a system also depends on where the fault detec-
tion point is with respect to when these states are committed. This chapter describes
four styles of backward error recovery depending on where the fault detection
occurs. These include system where

■ Fault detection before any state—register, memory, or I/O state—is committed.

■ Fault detection after register state is committed but before memory or I/O
state is committed.

■ Fault detection after register and memory states are committed but before
I/O state is committed.

■ Fault detection after I/O state is committed.

Output and Input Commit Problems
A system with backward error recovery must also be careful about the output and
input commit problems. A recovery scheme can only recover the state of a system

7.2 Classification of Hardware Error Recovery Schemes 257

within a certain boundary or a sphere of recovery. For example, assume that a sphere
of recovery consists only of a processor chip where the fault detection occurs before
memory or I/O is committed to. The checkpoint in such a recovery scheme may
consist only of processor registers. On detecting an error, the processor reloads its
entire state from the checkpoint and resumes execution.

The output commit problem arises if a system allows any output, which it can-
not recover from, to exit the sphere of recovery. In the example just described, the
processor cannot recover from memory writes it propagates to main memory or
I/O operations it propagates to disks because the checkpoint it maintains does
not comprehend memory or I/O state. Consequently, to avoid the output commit
problem, this system cannot allow any corrupted store or I/O operation to exit the
sphere of recovery until it has certified that all prior operations leading to the store
or I/O operation are fault free.

Similarly, the input commit problem arises if a system restarts execution from
a previous checkpoint but cannot replay inputs that had arrived from outside the
sphere of recovery. During the course of normal operation in the example that was
just described, a processor will receive inputs, such as load values from the memory
system and external I/O interrupts. When the processor rolls back to a previous
checkpoint and restarts execution, it must replay all these events since these events
may not arrive again. How the backward recovery schemes solve the output and
input commit problems is described in this chapter.

Granularity of Fault Detection
To only detect faults in a given domain and reduce the SDC rate, it is often suf-
ficient to do output comparison at a coarser granularity. For example, to prevent
corrupted data to exit a processor, one can compare selected instructions, such
as stores, that update memory or I/O instructions, such as uncached loads and
stores. Once one detects such a fault, one can halt the system and prevent any
SDC from propagating to memory or disks. The same granularity of comparison
may work for forward error recovery. In a triply redundant system, the compo-
nent that produces the faulty store output can be identified by the output com-
parator, isolated, and then restarted using correct state from one of the other two
components.

In contrast, the same granularity of fault detection may not work for backward
error recovery. If a store output mismatch from two redundant copies is detected,
it is not known which one is the faulty copy. Further, checkpoint may not be fault
free since the checkpoint may consist of the architectural registers in a processor.
Afaulty instruction can update the architectural registers, but its effect may show up
much later through a store at the output comparator. If the processor is rolled back
to a previous architectural checkpoint, it cannot be guaranteed that the checkpoint
itself is fault free (Figure 7.2). Hence, backward error recovery to reduce DUE
necessitates fault detection at a finer granularity than what is simply needed to
prevent SDC.

258 CHAPTER 7 Hardware Error Recovery

storestore

particle strike

fault detected

corrupted checkpoint

checkpoint

Instruction
Stream 0

Instruction
Stream 1

FIGURE 7.2 Granularity of fault detection in a backward error recovery exe-
cuting redundant instruction streams. If only store instructions are compared,
then the fault can be eventually detected. But the checkpoint prior to where
the fault is detected may already have been corrupted. If the instruction
stream reverts to the last checkpoint after the fault is detected, then it may
not be able to correct the error.

This chapter discusses several examples of backward error recovery schemes
that will highlight different aspects of the relationship between fault detection and
checkpoint creation, output and input commit problems, and granularity of fault
detection.

7.3 Forward Error Recovery
Forward error recovery schemes allow a system to proceed from its current state
once the system detects a fault. Four styles of forward error recovery schemes
are discussed in this section: fail-over systems, DMR systems, TMR systems, and
pair-and-spare systems.

7.3.1 Fail-Over Systems
Fail-over systems typically consist of a mirrored pair of computing slices: a primary
slice and a standby slice. The primary executes applications until it detects a fault.
If the system can determine that the fault has not corrupted any architectural state,
then it can copy the state of the primary slice to the standby. The standby then takes
over and continues execution. This is often possible if the effect of a fault is limited
to a single process. The entire system can continue execution from the point the
fault is detected, but the failed process may need to restart from the beginning. The
early fault-tolerant computing systems built in the 1960s and 1970s by IBM, Stratus,
and Tandem were primarily fail-over systems. Marathon’s recent Endurance server
used fail-over principles to recover from hardware errors (see RMT in the Marathon
Endurance Server, p. 223, Chapter 6).

7.3 Forward Error Recovery 259

CPU Power CPUPower

Terminal Controller

Disk Controller

To Terminal

To Disks

Interprocessor Link Interprocessor Link

Interprocessor Link Interprocessor Link

Non-critical controller Non-critical controller

Bus
Switch

Power

FIGURE 7.3 An example of an early fail-over, fault-tolerant computer system
from Tandem [2].

Figure 7.3 shows an example of an early fail-over system from Tandem
Computer systems. Such a configuration had replicated processors or CPUs, power
supplies, interprocessor links, etc. in each slice of the fail-over system. A bus switch
monitored the primary slice for faults. If it found a fault, then it would copy the
state to the standby and resume execution.

Fail-over systems are often good at recovering from software bugs or system
hangs but may have trouble recovering from a transient fault that corrupts the
architectural state of the machine. In such cases, the standby can take over but
may not be able to guarantee forward error recovery because the state of the pri-
mary slice has already been corrupted. Hence, the system will have to be rebooted,
and all applications will be restarted. The next three mechanisms described in
forward error recovery try to address this problem and provide better forward
error recovery guarantees.

7.3.2 DMR with Recovery
DMR systems can be designed to recover from transient faults. Typically, DMR
systems can detect faults using Lockstepping or RMT (see Chapter 6). An output
comparator will compare the outputs of two redundantly executing instruction
streams. An output mismatch will indicate the presence of a fault (Figure 7.4a).
In some cases, an output mismatch can also occur due to the two slices taking
correct but divergent paths. Stratus ftServer and Marathon Endurance machines
both support a DMR mode with recovery.

260 CHAPTER 7 Hardware Error Recovery

(a) (b)

(c) (d)

Slice 0 Slice 1

Slice 0 Slice 1

Slice 0 Slice 1

Slice 0 Slice 1

Output Comparator

Output Comparator

Output Comparator

Output Comparator

FIGURE 7.4 Flow of operations in a DMR machine. (a) Normal operation with
dual systems whose outputs are checked by an output comparator. (b) An
internal error checker in System 0 fires, and the signal propagates to the out-
put comparator. (c) The entire system is frozen. The entire system state is
copied from System 1 to System 0. (d) Normal operation is resumed.

Once an output mismatch is caught, the output comparators can wait for the
arrival of an internal error signal (Figure 7.4b). For example, when a bit in Slice 0
flips in a structure protected with parity, Slice 0 can propagate the parity error
signal to the output comparator. Without this signal, the output comparator cannot
determine the slice is in error, although it detects the existence of a fault. After
determining the slice is in error, the output comparator can initiate a copy of the
internal machine state from Slice 1 to Slice 0 (Figure 7.4c). This ensures that both
slices have the same state. Then it can resume execution (Figure 7.4d).

Such a scheme cannot recover from all errors. How much this scheme reduces
the DUE depends on how much internal error checking one has in each slice. Also,
in Lockstepped DMR systems, the false DUE can be particularly high because of
timing mismatches. In such a case, a recovery mechanism, such as this one, can be
beneficial.

7.3.3 Triple Modular Redundancy
A TMR system provides much lower levels of DUE than a DMR system. As the
name suggests, a TMR system runs three copies of the same program (Figure 7.5)
and compares outputs from these programs. The fault detection technique itself

7.3 Forward Error Recovery 261

Slice 0 Slice 1 Slice 2

Output Comparator

FIGURE 7.5 A TMR system. The output comparator compares outputs from
three copies of the same program.

could be either cycle-by-cycle Lockstepping or RMT (see Chapter 6). If the output
comparison logic (often called a voter for a TMR system) determines that outputs
from the three slices executing the same program redundantly are the same, then
there is no fault and the output comparison succeeds.

If the output comparison logic finds that only two of the three outputs match,
then it will signal that the slice producing the mismatched output has experienced
a fault. Typically, the TMR system will disable the slice in error but let the other
two slices continue execution in a degraded DMR mode. The TMR system now has
a couple of choices to bring online the slice in error. One possibility would be for
the TMR system to log a service call for a technician to arrive at the site to debug
the problem and restart the system.

Alternatively, it can try to fix the error and bring the slice in error into the TMR
domain again. For transient faults, this would be the ideal solution. To achieve this,
the degraded DMR system will be halted at an appropriate point, and the entire
state of the correct slices would be copied to the one in error. Then, the TMR system
can resume execution. The system will come back up automatically, but during this
state copy, the entire TMR system may be unavailable to the user. This would add
to the downtime of a TMR system and may reduce its availability.

The time to copy state from a correct slice of the TMR machine to the incorrect
slice can be prohibitive, particularly if the TMR system copies main memory, as in
Stratus’ ftServer or Hewlett-Packard’s NSAA (see Chapter 6). To reduce this time,
the NSAA provides two special hooks for this reintegration. First, it provides a
direct ring-based link between the memories used in the three slices of the TMR
system. This allows fast copying during reintegration. Figure 7.6 shows a picture
of this direct connection. The LSUs (described in Chapter 6) serve as the output
comparators and input replicators for the TMR system. Memory in any slice can
receive updates to it either from its local processor or from another slice coming
from reintegration link.

Second, the NSAA allows execution to proceed while the underlying system
copies memory state from the correct to the faulty slice, thereby reducing down-
time. The degraded DMR system—consisting of the correct pair of working slices—
can continue to generate writes to main memory while this copy is in progress.

262 CHAPTER 7 Hardware Error Recovery

Voter

SAN
Intfc

Voter

SAN
Intfc

Voter

SAN
Intfc

LSU LSU LSU

System Area Networks

Reintegration Links

S
lice C

S
lice B

S
lice A

FIGURE 7.6 Reintegration in the Hewlett-Packard NSAA design. Reprinted
with permission from Bernick et al. [4]. Copyright © 2005 IEEE.

Because the reintegration links connect to the path between the chipset and main
memory, all writes to the main memory from a slice are forwarded on the reintegra-
tion links and copied to the slice being reintegrated. Eventually, the processors in
the DMR system will flush their caches. Write-backs from the caches will again be
forwarded to the reintegration links and copied over. Finally, the processors will be
paused, and their internal state copied over to a predefined region in memory. The
reintegrated processor will receive these updates and copy the state from mem-
ory to the appropriate internal registers. Thereafter, the TMR system can resume
execution.

7.3.4 Pair-and-Spare
Like TMR, pair-and-spare is a classical fault-tolerance technique, which maintains a
primary pair of slices and a spare pair as standby (Figure 7.7). The pairs themselves
are used for fault detection with a technique such as Lockstepping or RMT. The
spare pair receives continuous updates from the primary pair to ensure that the
spare pair can resume execution from the point before the primary failed. This
is termed forward error recovery because the spare pair does not roll back to any
previous state. This saves downtime by avoiding any processor freeze to facilitate
reintegration of the faulty slice. But it requires more hardware than TMR.

In the Tandem (and now Hewlett-Packard) systems, a software abstraction in its
OS—called the NonStop kernel—called process pair facilitated the implementation
of pair-and-spare systems [3]. A process pair refers to a pair of logically communi-
cating processes. Each process in turn runs on a pair of redundantly executing Lock-
stepped processors. The process pair abstraction allows the two communicating
logical processes of the pair to collectively represent a named resource, such as

7.4 Backward Error Recovery with Fault Detection before Register Commit 263

Signal when
primary detects
faultPrimary Pair Secondary Pair

Output Comparator

Slice 1Slice 0

Output Comparator

Slice 2 Slice 3

State
Forwarded

FIGURE 7.7 System with pair-and-spare.

a processor. One process functions as the primary unit at any point in time and
sends necessary state to the other logical process. If the primary process detects a
fault, the spare process would take over. The NonStop kernel would transparently
redirect requests to the spare without the application seeing an error. The NonStop
kernel takes special care to ensure that the named resource table that provides this
redirection transparency is fault free.

7.4 Backward Error Recovery with Fault
Detection before Register Commit
Backward error recovery often requires less hardware than forward error recov-
ery schemes described in the previous section. This is because in a backward
error recovery, as each instruction executes, the system does not have to maintain
an up-to-date fault free state. Maintaining this state—beyond what is required for
fault detection only—can be quite hardware intensive (e.g., as in TMR). Instead,
in a backward error recovery, the system keeps checkpoints to which it can roll
back in the event of an error. A checkpoint can be more compact and less hardware
intensive than maintaining a full-blown slice of the machine (e.g., as done in TMR).

This section discusses recovery and checkpointing techniques when the fault
detection happens before register values are committed by a processor. Subsequent
chapters examine how the sphere of recovery can be expanded by doing the fault
detection before memory values or I/O values are committed. If fault detection
occurs prior to committing register values, then a backward error recovery scheme
can make use of the state that a modern processor already keeps to recover from a
misspeculation, such as branch misprediction.

Broadly, such backward error recovery techniques can be classified into two
categories: one that requires precise fault detection and one that detects faults prob-
abilistically. Four techniques that require precise detection are discussed: Fujitsu
SPARC64 V’s parity with retry, the IBM Z-series Lockstepping with retry, simulta-
neous and redundantly threaded processor with recovery (SRTR), and chip-level
redundantly threaded processor with recovery (CRTR). For probabilistic tech-
niques, two proposals are discussed: exposure reduction with pipeline squash

264 CHAPTER 7 Hardware Error Recovery

and fault screening with pipeline squash and reexecution. SRTR, CRTR, and the
probabilistic mechanisms are still under investigation and have not been imple-
mented in any commercial system.

The output commit problem is solved relatively easily in these systems, but the
input commit problem requires careful attention. The processor does not commit
any value before the values are certified to be fault free. Hence, there is no danger
of exposing a fault free state that cannot be recovered from. This solves the output
commit problem. The input commit problem can arise from four sources: archi-
tectural register values, memory values, I/O devices accessed through uncached
accesses (e.g., uncached loads), and external interrupts. Architectural registers are
idempotent and cannot be directly changed by another processor or I/O device,
so they can be reread a second time after the processor recovers. Memory values
can be changed by an I/O device or by another processor, but they can be reread
without loss of correctness (even if the value changes). Uncached loads must be
handled carefully because an uncached load may return a value that cannot be
replayed a second time. Hence, uncached loads are handled carefully by these
systems. The addresses are typically compared and certified fault free before the
uncached load is issued into the system. Finally, interrupts are only delivered at a
committed instruction boundary, so that interrupts do not have to be replayed.

7.4.1 Fujitsu SPARC64 V: Parity with Retry
Perhaps the simplest way to implement backward error recovery is to reuse the
checkpoint information that a processor already maintains. Typically, to keep a
modern processor pipeline full, the processor will predict the direction a branch
instruction will take before the branch is executed. For example, in Figure 7.8, the
SPARC64 V processor [1] will predict the direction of the branch in the Fetch stage
of the pipeline, but the actual outcome of the branch will not be known until the
Execute stage.

Because these branch predictions can sometimes be incorrect, these processors
have the ability to discard instructions executed speculatively (in the shadow of
the mispredicted branch) and restart the execution of the pipeline right after the
last instruction that retired from the pipeline. To allow restart, a pipeline would
checkpoint the architectural state of the pipeline every time a branch is predicted.
Then, when a branch misprediction is detected, the transient microarchitectural
state of the pipeline can be discarded and execution restarted from the checkpoint
associated with the branch that was mispredicted. More aggressively, speculative
microprocessors, such as the SPARC64 V, checkpoint the state every cycle, thereby
having the ability to recover from any instruction—whether it is a branch or not.

Every time a SPARC64 V instruction is executed speculatively, its result is written
to the reorder buffer for use in other instructions. The reorder buffer acts as a
buffer that maintains the program order in which instructions retire, as well as the
values generated speculatively by each instruction. Once an instruction retires, it is
removed from the reorder buffer, and its register value is committed to the register

7.4 Backward Error Recovery with Fault Detection before Register Commit 265

L1 I$ RSA

Fetch
Port

Store
Port

Store
Buffer

RSE

RSF

RSBR

GUB

CSE

Control
Registers

PC

L1 D$

Data
parity

Address
parity

Data
ECC

L2$

System Bus
Interface

GPR

FPR

FUB

FPA

FPB

FXB

FXA

EAGB

EAGA

Branch
Predict

Decode

& Issue

FIGURE 7.8 Error checkers in the Fujitsu SPARC64 V pipeline. Instructions are
fetched from the L1 instruction cache (I$) with the help of the branch predictor.
Then they are sent to the I-Buf. Thereafter, they are decoded and sent to the
reservations stations (RSA, RSE, RSF, and RSBR) for dispatch. Registers GUB,
GPR, FPR, and FUB are read in the Reg-Read stage. Instructions are executed
in the Execute stage. EAGA, EAGB, FXA, FXB, FPA, and FPB represent different
execution units. The memory stage has a number of usual components, such
as store buffer, L1 data cache, L2 cache. Reprinted with permission from Ando
et al. [1]. Copyright © 2003 IEEE.

files GPR (for integer operations) and FPR (for floating-point operations). Thus, the
architecture register file automatically contains checkpointed states up to the last
committed instruction. This way when a misspeculation is detected, the pipeline
flushes intermediate states in the reorder buffers (as well as other more obscure
states) and returns to correct state in one cycle.

The same mechanism can be used to recover from transient faults. The Fujitsu
SPARC64 V processor (Figure 7.8) uses such a mechanism. It protects microarchi-
tectural structures, address paths, and datapaths with parity codes, and ALUs and
shifter with parity prediction circuits. Parity codes and parity prediction circuits can
detect faults but not correct errors. When a parity error is detected, this pipeline pre-
vents the offending instruction from retiring, throws away any transient pipeline
state, and restarts execution from the instruction after the last correctly retired
instruction.

7.4.2 IBM Z-Series: Lockstepping with Retry
Compared to the Fujitsu SPARC64 V, the IBM Z-series processors are more aggres-
sive in their DUE reduction through the use of Lockstepping with retry. The
Z-series processors (until the z990) implement Lockstepped pipelines that detect

266 CHAPTER 7 Hardware Error Recovery

transient faults before any instruction’s result is committed to the architectural
register file (see Lockstepping in the IBM Z-series Processors, p. 220 in Chapter 6).

The Z-series uses three copies of the register file. One copy each is associated
with each of the Lockstepped pipelines. As instructions retire, speculative register
state is written into these register files, so that subsequent instructions can read their
source operands and make progress. The third copy is the architectural register file
to which results are committed if and only if the Lockstep comparison indicates no
error. This third copy is protected with ECC because its state is used to recover the
pipeline when a fault is detected.

If the Lockstepped output comparator indicates an error, then the pipeline state
is flushed and architectural register file state is loaded back in both the pipelines.
Execution restarts from the instruction after the last correctly retired instruction.
The Z-series also has other mechanisms to diagnose errors and decide if the
error was a permanent or a soft error. The Z-series processors are used in IBM’s
S/390 systems that have both system-level error recovery and process migration
capabilities.

7.4.3 Simultaneous and Redundantly Threaded
Processor with Recovery

An SRTR processor [21] is an enhancement of an SRT processor that was discussed
in Chapter 6 (see RMT Within a Single-Processor Core, p. 227). Instead of using
Lockstepping as its fault detection mechanism, like the IBM Z-series machines,
an SRTR processor uses an RMT implementation called SRT as its fault detection
mechanism. An SRT processor was designed to prevent SDC but not recover from
errors and reduce DUE. Hence, an SRT processor need not compare the output of
every instruction. An SRT processor only needed to do its output comparison for
selected instructions, such as stores, uncached loads and stores, and I/O instruc-
tions, to prevent any data corruption to propagate to memory or disks.

The SRTR mechanism enhances an SRT processor with the ability to recover from
detected errors using the checkpointing mechanism that already exists in a modern
processor today. This requires two key changes to an SRT processor. First, to have
an error-free checkpoint, the granularity of fault checking must reduce to every
instruction, unlike the SRT version that checks for faults on selected instructions
(see Figure 7.2). Second, the fault check must be performed before an instruction
commits its destination register value to the architectural register file.

Using the above two changes, an SRTR processor—like an IBM Z-series proces-
sor that uses Lockstepping for fault detection—can recover from errors. However,
detecting the faults before register commit makes it difficult for an SRTR processor
to obtain the performance advantage offered by an SRT processor. Recall that an
SRT processor’s performance advantage came from skewing the two redundant
threads by some number of committed instructions. Because the leading thread
would run several tens to hundreds of instructions ahead of the trailing thread,

7.4 Backward Error Recovery with Fault Detection before Register Commit 267

it would resolve branch mispredictions and cache misses for the trailing thread.
Consequently, when the trailing thread probes the branch predictor, it would get
the correct branch direction. Similarly, the trailing thread would rarely get cache
misses because the leading thread would have already resolved them.

Achieving the same effect in an SRTR processor is difficult because of two rea-
sons. First, in an SRT processor, the leading thread’s execution may not slow down
significantly, even with the skewed execution of the redundant threads. This is
because the leading thread is allowed to commit instructions, thereby freeing up
internal pipeline resources. In an SRTR processor, however, instructions from the
leading thread cannot be committed until they are checked for faults. This makes
it difficult to prevent performance degradation in an SRTR processor.

Second, in an SRT processor, the leading thread forwards only committed load or
register values to the trailing thread. In contrast, an SRTR processor must forward
uncommitted results to the trailing thread. This may not, however, skew the redun-
dant threads far enough to cover the branch misprediction and cache miss latencies.
Hence, Vijaykumar et al. [21] suggest forwarding results of instructions specula-
tively from the leading to the trailing thread before the leading thread knows if its
instructions are on the wrong path or not.

Forwarding results speculatively leads to additional complexity of having to
roll back the state of the thread in the event of a misspeculation. To manage this
increased complexity, the SRTR implementation forces the trailing thread to fol-
low the same path—whether correct path or incorrectly speculated path—as the
leading thread. In contrast, in an SRT processor, the trailing thread only follows
the same correct path as the leading thread but is not required to follow the same
misspeculated path.

The rest of this section describes how an SRTR processor augments an SRT
processor to enable transparent hardware recovery. Specifically, the key structures
necessary are a prediction queue, an active list (AL), a shadow active list (SAL), a
modified LVQ, a register value queue (RVQ), and the commit vectors (CV). These
are described below. Figure 7.9 shows where these structures can be added to
an SMT pipeline. Vijaykumar et al. have shown through simulations that SRTR

To D-cache

predQ

LVQ
RVQ

Fetch
Rename

I-cache
Decode

Register
File

Original
SMT

SRTR
LdQ/StB

Commit Vector

Active List CommitF
un

ct
io

na
l

U
ni

ts

Shadow Active List

Is
su

e
Q

ue
ue

FIGURE 7.9 The SRTR pipeline. Reprinted with permission from Vijaykumar
et al. [21]. Copyright © 2002 IEEE.

268 CHAPTER 7 Hardware Error Recovery

degrades the performance of an SRT pipeline by only 1% for SPEC 1995 integer
benchmarks and by 7% for SPEC 1995 floating benchmarks.

Prediction Queue (predQ)
To force both threads to follow the same path, SRTR uses a structure called the pre-
diction queue (predQ) to forward predicted PCs—correct or incorrect—from the
leading to the trailing thread (Figure 7.9). The trailing thread uses these predicted
PCs, instead of its branch predictor, to guide its instruction fetch. The leading thread
must clean up predQ on a misprediction and roll back both its state and the trailing
thread’s state. After instructions are fetched, they proceed to the issue queue and
the AL.

Active List and Shadow Active List
The AL is a per-thread structure that holds instructions in predicted order. When
an instruction is issued and removed from the issue queue, the instruction stays
in its AL to allow fault checking. Because SRTR forces leading and trailing threads
to follow the same path, corresponding instructions from the redundant threads
occupy the same positions in their respective ALs. When the leading thread detects
a misprediction, it removes wrong-path instructions from its AL and sends a signal
to the trailing thread to do the same. Eventually, instructions commit from the AL
in program order.

The SRTR pipeline maintains an additional structure called the SAL. The SAL
entries correspond to the ones in the AL. The SAL holds pointers to the LVQ and
RVQ entries.

Load Value Queue
The SRTR pipeline maintains the LVQ in the same way the SRT does, except it
introduces a level of indirection through the SAL. The SAL maintains pointers to
both LVQ and RVQ entries, thereby allowing ease of checking. Further, to facilitate
the rollback of the LVQ, branches place the LVQ tail pointer in the SAL at the time
they enter the AL. Because the LVQ is in (speculative) program order, the LVQ
tail pointer points to the LVQ entry to which the LVQ needs to be rolled back, if
the branch mispredicts. A mispredicted branch’s AL pointer locates the LVQ tail
pointer in the SAL, and the LVQ is rolled back to the pointer.

Register Value Queue
The SRTR pipeline uses the RVQ to check for faults in nonmemory instructions.
After the leading instruction writes its result back into its own copy of the regis-
ter file, it enters the fault-check stage. In the fault-check stage, a leading thread’s
instruction puts its result value in the RVQ using the pointer from the SAL. The
instruction then waits in the AL to commit or squash due to faults or mispredic-
tions. Because the fault-check stage is after write-back, the stage does not affect
branch misprediction penalty or the number of bypass paths.

7.4 Backward Error Recovery with Fault Detection before Register Commit 269

The trailing thread’s instructions also use the SAL to obtain their RVQ point-
ers and find their leading counterparts’ values. Because either the leading or
trailing thread—in theory—can reach the RVQ first, the SRTR uses a full/empty
bit to indicate the thread that stored its value first in an RVQ entry. When the
corresponding instruction from the redundant thread reaches the fault-check stage,
it is compared for mismatch with the existing entry. An RVQ entry is relinquished
in queue order after the checking is done. To avoid the bandwidth pressure to com-
pare every instruction, Vijaykumar et al. introduced a scheme called DBCE, which
was discussed in Chapter 6 (see RMT Enhancements, p. 244).

Recovery in SRTR
Register values, store addresses and values, and load addresses are checked in the
RVQ (store buffer) and LVQ, respectively. To facilitate the check, SRTR introduced
a structure called the CV. Each entry in the CV corresponds to an entry in the AL. As
instructions are placed in the AL, their CV entries are set to a not-checked-yet state.
As instructions retire, they are stalled at commit until they are checked. If the check
succeeds, the CV entries corresponding to the leading and trailing instructions are
set to the checked-ok state. Corresponding instructions from the leading and trailing
threads commit only if its CV entry and its trailing counterpart’s CV entry are in
the checked-ok state.

If a check fails, the CV entries of the leading and trailing instructions are set
to the failed-check state. When a failed-check entry reaches the head of the leading
AL, all later instructions are squashed. The leading thread waits until the trailing
thread’s corresponding entry reaches the head of the trailing AL before restarting
both threads at the offending instruction. Because there is a time gap between the
setting and the reading of the CV and between the committing of leading and
trailing counterparts, the CV is protected by ECC to prevent faults from corrupting
it in the time gap.

There are errors from which SRTR cannot recover: if a fault corrupts a register
after the register value is written back (committed), then the fact that leading and
trailing instructions use different physical registers allows SRTR to detect the fault
on the next use of the register value. However, SRTR cannot recover from this fault.
To avoid this loss of recovery, one solution is to provide ECC on the register file.

7.4.4 Chip-Level Redundantly Threaded
Processor with Recovery (CRTR)

Gomaa et al. [9] extended the SRTR concept to a CMP or what is more popu-
larly known as multicore processors today. Instead of running the redundant RMT
threads within a single core, CRTR runs the redundant threads on two separate
cores in a multicore processor, similar to what CRT does for fault detection (see
RMT in a Multicore Architecture, p. 240, Chapter 6).

270 CHAPTER 7 Hardware Error Recovery

CRTR differs from SRTR in one fundamental way. A leading thread’s instruc-
tions are allowed to commit their values to the leading thread’s own regis-
ter file before the instructions are checked for faults. Before a trailing thread’s
instruction commits, it compares its output with the corresponding instruc-
tion from the leading thread. This scheme allows the leading thread to march
ahead and introduce the slack needed to resolve the cache misses and branch
mispredictions before the corresponding instruction from the trailing thread
catches up. This is necessary in CRTR because the latency of communication
between cores is longer than that observed by SRTR.

Recovering the leading thread is, however, more complex because the leading
thread can commit the corrupted state to its own register file. The trailing thread
flushes its speculative state when it detects a fault, and it copies its state to the lead-
ing thread, thereby recovering the leading thread as well. Then it can restart the
pipeline from the offending instruction. Also, a CRTR processor does not need an
ALor an SALsince instructions are compared for faults in a program’s commit order.

7.4.5 Exposure Reduction via Pipeline Squash
In this section on backward error recovery with fault detection before register com-
mit, four techniques were described, all of which precisely detect the presence of a
fault prior to triggering an error recovery operation. This subsection and the next
one examine two techniques that do not precisely detect the presence of a fault and
may trigger the error recovery speculatively.

This subsection describes an eager scheme that will squash the pipeline state
on specific pipeline events, such as a long-latency cache miss. The next subsec-
tion reviews a lazier mechanism. The basic idea in the eager scheme is to remove
pipeline objects from vulnerable storage, thereby reducing their exposure to radi-
ation. Because these pipeline events are usually more common than soft errors,
this scheme squashes the speculative pipeline state only when the pipeline may be
stalled, thereby minimizing the performance degradation from this scheme.

For example, microprocessors often aggressively fetch instructions from pro-
tected memory, such as the main memory protected with ECC or a read-only
instruction cache protected with parity (but recoverable because instructions can
be refetched from the main memory on a parity error). However, these instructions
may stall in the instruction queue due to pipeline hazards, such as lack of functional
units or cache misses. The longer such instructions reside in the instruction queue,
the higher the likelihood that they will get struck by an alpha particle or a neutron.

In such cases, one could squash (or remove) instructions from the instruction
queue and bring them back when the pipeline resumes execution. No architectural
state is committed to the register file because the state squashed is purely in flight
and speculative. This reduces an instruction’s exposure to radiation, thereby low-
ering the instruction queue’s SDC and/or DUE rate. Weaver et al. [23] introduced
this scheme and evaluated it for an instruction queue. Gomaa and Vijaykumar [8]
later evaluated such squashing for a full pipeline.

7.4 Backward Error Recovery with Fault Detection before Register Commit 271

Triggers and Actions
Mechanisms to reduce exposure to radiation can be characterized in two dimen-
sions: triggers and actions. A trigger is an event that initiates an action to reduce
exposure. The goal is to avoid having instructions sit needlessly in processor
structures, such as the instruction queue, for long periods of time. Hence, the trig-
ger must be an event that indicates that queued instructions will face a long delay.
Cache misses provide such a trigger. Instructions following a load that misses in
the cache may not make progress while the miss is outstanding, particularly in
an in-order machine. The situation is similar, though not as pronounced, for out-
of-order machines in which instructions dependent on a load miss cannot make
progress until the load returns data. Hence, it is fair to expect that removing instruc-
tions from the pipeline during the miss interval should not degrade performance
significantly.

Once the processor incurs a cache miss, one possible action could be to
remove existing instructions from the processor pipeline. These instructions can be
refetched later when the cache miss returns the data. Such instruction squashing
attempts to keep instructions from sitting needlessly in the pipeline for extended
periods. To avoid removing instructions that could be executed before the miss
completes, the pipeline should squash only those instructions that are younger
than the load that missed in the cache. Fetch throttling can also be another action.
Fetch throttling prevents new instructions from being added to the pipeline by
stalling the front end of the machine.

This section illustrates how to reduce the AVF by squashing instructions in a
pipeline (the action) based on a load miss in the processor caches (the trigger). The
AVF reduction techniques are illustrated using an instruction queue—a structure
that holds instructions before they are issued to the execution units in a dynamically
scheduled processor pipeline.

Analyzing Impact on Performance
Traditionally, the terms MTBF and MTTF have been used to reason about error rates
in processors and systems (see Metrics, p. 9, Chapter 1). Although MTTF provides
a metric for error rates, it does not allow one to reason about the trade-off between
error rates and the performance of a processor. Weaver et al. [23] introduced the
concept of MITF as one approach to reason about this trade-off. MITF tells us how
many instructions a processor will commit, on average, between two errors. MITF
is related to MTTF as follows:

MITF =
number of committed instructions

number of errors encountered

=
number of committed instructions

total execution time in cycles
frequency × MTTF

= IPC × frequency × MTTF

272 CHAPTER 7 Hardware Error Recovery

As with SDC and DUE MTTFs, one has corresponding SDC and DUE MITFs.
Hence, for example, a processor running at 2 GHz with an average IPC of 2 and
DUE MTTF of 10 years would have a DUE MITF of 1. 3 × 1018 instructions.

Ahigher MITF implies a greater amount of work done between errors.Assuming
that, within certain bounds, increasing MITF is desirable, then one can use MITF
to reason about the trade-off between performance and reliability. Since MITF =
1/(raw error rate × AVF), one has

MITF =
IPC × frequency

raw error rate × AVF
=

frequency
raw error rate

×
IPC
AVF

Thus, at a fixed frequency and raw error rate, MITF is proportional to the ratio of
IPC to AVF. More specifically, SDC MITF is proportional to IPC/(SDC AVF), and
DUE MITF is proportional to IPC/(DUE AVF). It can be argued that mechanisms
that reduce both the AVF and the IPC, such as the one proposed in the previous
section, may be worthwhile only if they increase the MITF, that is, if they increase
the IPC-to-AVF ratio by reducing AVF relative to the base case to a greater degree
than reducing IPC.

Although one can use MITF to reason about performance versus AVF for incre-
mental changes, one needs to be cautious not to misuse it. For example, it could be
argued that doubling processor performance while reducing the MTTF by 50% is a
reasonable trade-off as the MITF would remain constant. However, this explanation
may be inadequate for customers who see their equipment fail twice as often.

Benefits of Pipeline Squash for an Instruction Queue
Table 7-1 shows how the average IPC and average AVFs change when all instruc-
tions in the instruction queue are squashed after a load miss in the L1 and the
L0 caches [23]. The simulated machine configuration is the same as used in ACE
Analysis Using the Point-of-Strike Fault Model, p. 106, Chapter 3. The L0 cache is
the smallest data cache closest to the processor pipeline. The L1 cache is larger than
L0 but is accessed only on an L0 miss. The SDC arises when the instruction queue
is not protected, whereas the DUE arises if the instruction queue is protected with
parity.

TABLE 7-1 ■ Impact of Squashing on IPC and an Instruction Queue’s SDC
and DUE AVFs

Design Point IPC SDC AVF DUE AVF IPC/SDC AVF IPC/DUE AVF

No squashing 1.21 29% 62% 4.1 2.0
Squash on L1 load misses 1.19 22% 51% 5.6 2.3
Squash on L0 load misses 1.09 19% 48% 5.7 2.3

7.4 Backward Error Recovery with Fault Detection before Register Commit 273

In this machine, when instructions are squashed on load misses in the L1 cache,
the IPC decreases only by 1.7% (from 1.21 to 1.19) for a reduction in SDC and
DUE AVFs by 26% (from 29% to 22%) and 18% (from 29% to 1.09%), respec-
tively. However, when instructions are squashed on L0 misses, the IPC decreases
by 10% for a reduction in SDC and DUE AVFs of only 35% and 23%, respectively.
Squashing based on L0 misses provides a greater reduction in AVF for a corre-
spondingly higher reduction in performance. Nevertheless, squashing on L1 misses
appears more profitable because the SDC MITF (proportional to IPC/SDC AVF)
and DUE MITF (proportional to IPC/DUE AVF) go up 37% and 15%, respectively.

Gomaa and Vijaykumar [8] studied squashing instructions on an L1 miss for an
out-of-order processor. They found that the SDC AVF of the instruction queue
of their simulated machine decreases by 21%, which is close to what Weaver
et al. [23] reported for an in-order pipeline, shown in Table 7-1. However, Gomaa
et al. [9] found that the IPC decreases by 3.5%, which is almost two times higher
than that reported by Weaver et al. [23]. This is probably because an out-of-order
pipeline can more effectively hide some of the cache miss latency by continuing
to issue instructions following the load that missed in the cache. Squashing these
instructions that could be issued out of order in the shadow of the load miss would
degrade performance. In contrast, an in-order pipeline may not be able to issue
instructions in the shadow of a load miss. Therefore, squashing such instructions
would not cause significant performance degradation.

7.4.6 Fault Screening with Pipeline Squash
and Re-execution

Fault screening is a mechanism that—like exposure reduction via pipeline squash—
speculatively squashes pipeline state to recover from errors. Unlike exposure reduc-
tion that eagerly squashes pipeline state on long-latency pipeline events, fault
screening is a lazier mechanism that tries to predict the presence of a fault in the sys-
tem based on the current state of the microarchitecture and a program’s behavior.
Then they will trigger a recovery operation through pipeline squash.

Basic Idea
Fault screening is a mechanism that classifies program, architectural, or microar-
chitectural state into fault free state and faulty state. This is much like screening
cancerous cells as benign or malignant. Because fault screening is much like diag-
nosing diseases from a patient’s symptoms, the mechanism has also been referred
to as symptomatic fault detection.

Fault screeners differ from a traditional fault detection mechanism, such as a
parity code, in three ways. First, typically traditional fault detectors can precisely
detect faults a detector is designed to catch (e.g., single-bit faults). In contrast, fault
screeners can only probabilistically identify whether a given state is faulty or fault
free at a given point of time.

274 CHAPTER 7 Hardware Error Recovery

Second, often a fault detection mechanism is assumed to be fail-stop—that is, on
detecting a fault, the detection mechanism works with the processor or OS to halt
further progress of a program to avoid any SDC. The probabilistic nature of fault
screeners makes it difficult for fault screeners to be fail-stop.

Third, a fault screener can identify propagated faults, whereas often a fault
detection mechanism cannot do the same. For example, if a fault occurs in an unpro-
tected structure and then propagates to a parity-protected structure, the parity code
cannot detect the fault. This is because the parity is computed on the already faulty
bits. A fault screener screens faults based on program behavior and does not rely
on computing a code based on incoming values. Hence, fault screeners are adept
at identifying faults that propagate from structure to structure.

A fault screener identifies faulty state by detecting departure of program state
from expected or established behavior. Racunas et al. [16] refer to such a departure
as a perturbation. A perturbation may be natural, resulting from variations in pro-
gram input or current phase of the application. A perturbation may also be induced
by a fault. One can consider a static instruction in an algorithm that generates a
result value between 0 and 16 the first thousand times it is executed. Its execution
history suggests that the next value it generates will also be within this range. If
the next instance of the instruction instead generates a value of 50, this value is a
deviation from the established behavior and can be considered a perturbation. The
new value of 50 could be a natural perturbation resulting from the program having
moved to process a new set of data or it could be an induced perturbation resulting
from a fault.

Interestingly, perturbations induced by a fault resulting from a neutron or an
alpha particle strike far exceed the natural perturbation in a program. For example,
a strike to a higher order bit of an instruction address is highly likely to crash a
program, causing an induced perturbation. In the absence of software bugs, such
extreme situations are unlikely during the normal execution of a program. The next
subsection illustrates this phenomenon.

Natural versus Induced Perturbations
To illustrate how induced perturbations may far exceed natural perturbations,
Racunas et al. [16] used departure from a static instruction’s established result value
space as an operational definition of a perturbation.Astatic instruction is an instruc-
tion that appears in a program binary at a fixed address when loaded into program
memory but can have numerous dynamic instances as it is executed throughout a
program. For example, incrementing the loop counter in a program loop can be a
static instruction, but when it is executed multiple times for each iteration of the
loop, it becomes a dynamic instantiation of the instruction. A static instruction’s
result value space is the set of values generated by the dynamic instances of that
static instruction. Racunas et al. [16] classify this value space into three classes. The
first class consists of static instructions each of whose working set of results is fewer
than 256 unique values 99.9% of the time. For a static instruction falling into this

7.4 Backward Error Recovery with Fault Detection before Register Commit 275

class, a perturbation is defined as any new result that cannot be found in this array
of 256 recently generated unique values.

The second class consists of static instructions whose result values have an iden-
tifiable stride between consecutive instances of the instruction 99.9% of the time.
Racunas et al. [16] maintain an array of 256 most recent unique strides for each
static instruction. Each stride is computed by subtracting the most recent result
value generated by the instruction from its current result value. For static instruc-
tions falling into this class, a perturbation is defined as any new result that produces
a stride that cannot be found in the array of 256 unique strides.

The third class consists of any static instruction not falling into either of the first
two classes. For these instructions, the first result value they generate is recorded.
Each time a new result value is generated, it is compared to this first result, and
any bits in the new result that differ from the first result are identified. A bitmask
is maintained that represents the set of all bits that have never changed from the
first result value through the entire course of program execution. For this class of
static instructions, a perturbation is defined as any new result value that differs
from the first result value in a bit location that has previously been invariant. After
each perturbation occurs, the bitmask is changed to mark the new bit as a variant.
Hence, a static instruction with a 32-bit result can be responsible for a maximum of
32 perturbations in the course of the entire benchmark run. The method of detect-
ing invariant bits in this class is similar to the method of software bug detection
proposed by Hangal and Lam [11].

Figure 7.10 compares natural and induced perturbations caught by the fault
screening mechanism described. For this graph, Racunas et al. [16] ran each bench-
mark 10 000 times. On each program run, they picked a random segment of dynamic

0
20

00
40

00
60

00
80

00
10

00
0

S
Q

L

T
P

C
C

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

bz
ip

2

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

bm
k

tw
ol

f

vo
rt

ex v
p

r

av
er

ag
e

C

od
e

Se
gs

 w
it

h
P

er
tu

rb
at

io
n

(o
ut

 o
f

10
 K

)

Perturbations (faulty)

Perturbations (clean)

Benchmark

FIGURE 7.10 Perturbation in program segments. “Perturbations (clean)” are
natural perturbations in a program. “Perturbations (faulty)” are induced per-
turbations. Reprinted with permission from Racunas et al. [16]. Copyright
© 2007 IEEE.

276 CHAPTER 7 Hardware Error Recovery

execution 64 instructions in length. The black bar in the graph represents the
number of the 10 000 segments that contain a natural perturbation during the
normal run of the benchmark. For example, for SQL, it can be seen that 386 of
these 10 000 random segments contain a natural perturbation. Next, they ran the
benchmark again, with injecting a fault into the program just before each of the
same random segments of execution. The gray bar represents the number of these
segments that contain a perturbation after the fault is injected. The graph shows
that the number of instances of program perturbations increases more than 30-fold
on average in the presence of a fault. This is the fundamental phenomenon that
underlies fault screening.

As may be obvious by now, fault screeners are often incapable of distinguish-
ing between natural and induced perturbations. Consequently, the use of such
screeners most likely will require an accompanying recovery mechanism to avoid
crashing a program in the presence of natural perturbations. Fault screeners are
also incapable of catching faults that do not cause program perturbations, unless
the fault coincides with an unrelated natural perturbation.

Research in Fault Screeners
Wang and Patel [22] and Racunas et al. [16] have studied several fault screeners
and have shown that their screening accuracy may vary between 30% and 75%, as
shown in Figure 7.11. Different fault screeners use different history and microarchi-
tecture state to screen faults. For example, the ext-history screener tracks the history
of past values seen by a static instruction, the dyn-range tracks the dynamic range
of values seen by a static instruction, invar tries to identify bits that are invariant
and seen by a static instruction, tlb screens faults based on tlb misses, and bloom
uses a bloom filter [5] to screen for errors.

0

1000
2000

3000

4000
5000

6000

7000

8000
9000

10000

S
Q

L

T
P

C
C

db
_a

vg

bz
ip

2

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

bm
k

tw
ol

f

vo
rt

ex vp
r

in
t_

av
g

F
au

lt
s

Sc
re

en
ed

 (
ou

t
of

 1
0

K
 in

je
ct

ed
) ext-history

dyn-range

invar

tlb

bloom

FIGURE 7.11 Accuracy of the fault screeners. Reprinted with permission from
Racunas et al. [16]. db_avg is the average of database benchmarks SQL and
TPCC. int_avg is the average of SPEC integer benchmarks shown to the right
of db_avg. Copyright © 2007 IEEE.

7.5 Backward Error Recovery with Fault Detection before Memory Commit 277

Much research remains in the design and use of fault screeners to make them
practical and useful in commodity microprocessors. Wang and Patel [22] studied
other screeners, such as cache misses. However, screener design needs refinement
and will remain an area of active research. The use of such screeners also needs
further investigation. Wang and Patel [22] describe a design called RESTORE, which
recovers a processor pipeline from an earlier checkpoint once it screens an error.
Racunas et al. [16] propose recovering the pipeline state by flushing the pipeline
and restarting it on screening an error.

Also, researchers are yet to evaluate the SER reduction from fault screening. Prior
investigation has only evaluated the accuracy of fault screeners using fault injection
into committed instruction state. This needs to be translated into an SER for bits in
a chip. The difficulty is that the ACE analysis described in Chapter 3 cannot be used
directly to evaluate the SER from fault screeners. This is because ACE analysis tries
to abstract the SER from a single fault free execution. In contrast, fault screeners are
only activated in the presence of a faulty symptom. Hence, without fault injection,
it may be difficult to model the SER of a chip using a fault screener.

7.5 Backward Error Recovery with Fault
Detection before Memory Commit
This section discusses design trade-offs for backward error recovery schemes that
allow a processor to commit values to its architectural registers, but not to memory,
prior to the fault detection point. In the schemes described in the last section in
which the register commit was after the fault check, a processor could flush spec-
ulative pipeline state and restart execution from the existing architectural regis-
ter file. In contrast, any backward error recovery scheme that allows values to be
committed to the register file must provide a mechanism to roll back the register
state.

The constraint of fault detection after the register commit point may often be
imposed by the constraints of a specific design or implementation. For example,
if the processor pipeline makes it difficult to add an extra pipe stage before the
write-back stage where register values are committed, then the designer may be
forced to do the fault detection after the register commit.

Once a fault is detected in such a backward error recovery scheme, a processor
or a computing system needs a checkpoint to roll back the register state to. The
method of generating this checkpoint can have a significant impact on how the
system performs. There are typically two ways of generating such a checkpoint:
incremental and periodic. In the incremental checkpointing, a system keeps a log of
new values as and when they are generated. When these new values are committed
to the register file, they are not checked for faults. However, they are checked for
faults before they are committed to the log. On detecting a fault, this log is traversed
in reverse order to regenerate the state of the system at the point where the fault

278 CHAPTER 7 Hardware Error Recovery

was detected. In such a case, overhead to create the checkpoint is minimal, but the
time to recover depends on how fast the error log can be traversed. This section
describes a backward error recovery scheme that uses a history buffer as the log for
incremental checkpointing.

In the periodic checkpointing, the processor periodically takes a snapshot of
its state, which in this case is the processor register state. Before committing its
state to a checkpoint, the processor or the system will typically ensure that the
snapshot is fault free. Then, on detecting a fault, the processor reverts to the
previous checkpoint and restarts execution. Periodically checkpointing the pro-
cessor state reduces the need to do fault detection on every instruction execution
(to guarantee that the checkpoint is fault free). However, it creates two new chal-
lenges. First, a large amount of state may need to be copied to create the checkpoint.
Second, a large amount of state may be necessary to be compared to ensure that
the newly created checkpoint is fault free. This section describes a scheme called
fingerprinting that reduces the amount of state necessary to be compared to ensure
a fault free checkpoint.

Because neither system—incremental nor periodic checkpointing—described in
this section commits memory or I/O values outside the sphere of recovery, the
output and input commit problems are solved relatively easily. No store or I/O
operation is allowed until the corresponding operation is certified fault free, which
solves the output commit problem. This also makes it easier to solve the input
commit problem. Because stores are not committed till they pass their fault detec-
tion point and loads are idempotent, these systems can allow loads to be reis-
sued by the processor after they roll back and recover from a previous checkpoint.
Any uncached load must, however, be delayed until the load address is certified
fault free.

Although incremental checkpointing and periodic checkpointing are discussed
in the context of backward error recovery before memory commit, these techniques
can also be extended to backward error recovery schemes that allow memory or
I/O to commit before doing the fault check. Neither of these techniques, to the best
of my knowledge, has been implemented in any commercial system.

7.5.1 Incremental Checkpointing Using
a History Buffer

The key requirement to move the fault detection point of an instruction beyond
its register commit point is to preserve the checkpointed state corresponding to
an instruction. In SRTR, the processor frees up this state as soon as an instruction
retires. Instead, an instruction could be retired, but its state must be preserved
until the instruction passes its fault detection point. This state can be preserved via
the use of a history buffer [12]. Smith and Pleszkun [18] first proposed a history
buffer to support precise interrupts, but this section shows how it can be used for
backward error recovery as well.

7.5 Backward Error Recovery with Fault Detection before Memory Commit 279

Structure of the History Buffer
The history buffer consists of a table with a number of entries. Each entry contains
information pertinent to a retired instruction, such as the instruction pointer, the
old destination register value, and the physical register to which the destination
architecture register was mapped. The instruction pointer can be either the program
counter or an implementation-dependent instruction number. The old destination
value records the value of the register before this instruction rewrote it with its
destination register value. Finally, the register mapping is also needed to identify
the physical register that was updated. The number of entries in the history buffer
is dependent on the implementation and must be chosen carefully to avoid stalls
in the pipeline. The history buffer mechanism can work with many fault detec-
tion mechanisms, such as Lockstepping and SRT, which detect faults after register
values have been committed.

Adding Entries to the History Buffer
When an instruction retires, but before it writes its destination register to the regis-
ter file, an entry is created in the history buffer, and the entry’s contents are updated
with the instruction pointer, old register value, and register map. Reading the old
register value may require an additional read port in the register file. An additional
read port may increase the size of the register file and/or increase its access time.
Nevertheless, there are known techniques to avoid this performance loss (e.g.,
by replicating the register file). In effect, by updating the history buffer when an
instruction retires, an incremental checkpoint of the processor state is created.

Freeing up Entries in the History Buffer
When a retired instruction passes its fault detection point, the corresponding entry
in the history buffer is freed up. This is because the checkpoint corresponding to
an instruction that has been certified to be fault free is no longer needed.

Recovery Using the History Buffer
If the fault detection mechanism detects a fault in a retired instruction, then the
recovery mechanism kicks in. The following are the steps involved in recovering a
processor that uses SRT as its fault detection mechanism:

■ For both redundant threads, flush all speculative instructions that have not
retired.

■ For the trailing thread, flush its architectural state, including the architectural
register file.

■ Reconstruct the correct state of the architectural register file of the leading
thread using the existing contents of the register file and the history buffer.
The architectural register file contains values up to the last retired instruction,
which can be older than the instruction experiencing the fault. Hence, the

280 CHAPTER 7 Hardware Error Recovery

values have to be rolled back to the state prior to the instruction with the
fault. This can be accomplished by finding the oldest update to that register
from the history buffer. This procedure is repeated for every register value
that exists in the history buffer.

■ Then the history buffer is flushed.

■ The contents of the leading thread’s register file are loaded into the trailing
thread’s register file.

■ Both threads are restarted from the instruction that experienced the fault.

7.5.2 Periodic Checkpointing with
Fingerprinting

Unlike incremental checkpointing that incrementally builds a checkpoint, periodic
checkpointing takes a snapshot of the processor state periodically. Although this
reduces the necessity to do a fault detection on every instruction to ensure a fault
free checkpoint, it does require copying a large amount of state to create the check-
point and to ensure that the checkpoint is fault free.

Smolens et al. [19] introduced the concept of fingerprinting to reduce the amount
of state that may be necessary to be compared for fault detection prior to checkpoint
creation. In some ways, fingerprinting is a data compression mechanism. As and
when each value is generated, it merges the generated value into a global running
value or the fingerprint. Then, instead of comparing each and every value, the
fingerprint can be compared prior to generating a checkpoint to ensure that the
checkpoint is fault free.

Fingerprinting may be appropriate for a system that uses Lockstepping or RMT
as its fault detection mechanism and where the communication bandwidth between
the redundant cores, threads, or nodes is severely constrained. For example, if there
are two processor chips or sockets forming the redundant pair, then the bandwidth
between the chips may be limited. Copying state to create a checkpoint within a
processor chip, however, may not incur a significant performance penalty since the
communication for this copy operation may be limited to within a processor chip.
But the state comparison requires off-chip communication, and off-chip bandwidth
is often severely limited. Fingerprinting can help reduce the performance degra-
dation from comparing large amounts of off-chip state. The rest of this subsection
discusses fingerprinting and how it can help reduce the bandwidth requirements
in the context of chip-external detection.

Fingerprint Mechanism
Afingerprint provides a concise view of the past and present program states. It con-
tains a summary of the outputs of any new register values created by each executing
instruction, the new memory values (for stores), and the effective addresses (for
both loads and stores). By capturing all updates to architectural state, a fingerprint

7.5 Backward Error Recovery with Fault Detection before Memory Commit 281

can ensure that it can help create a fault free checkpoint. It should be noted that this
implementation of fingerprinting allows not only register values to be committed
to the register file but also memory values to be committed to the processor caches.
Nevertheless, the caches are not allowed to write back their modified data to main
memory till the fault check has been done.

For fault detection with RMT processors, the fingerprint implementation must
monitor only committed register values. However, for fault detection with Lock-
stepped processors, the fingerprint implementation can monitor both speculative
and committed updates to the physical register file since both Lockstepped proces-
sors are cycle synchronized.

To create the fingerprint, Smolens et al. [19] propose hashing the generated values
into a cyclic code. There are two key requirements for the code. First, the code must
have a low probability of undetected faults. Second, the code should be small for
both easy computation and low bandwidth comparison. For a p-bit CRC code, the
probability of an undetected error is at most 2−p. Smolens et al. [19] used a 16-bit
(p = 16) CRC code for their evaluation. A16-bit CRC code has a 0.000015 probability
that an error will go undetected. The reader is referred to Cyclic Redundancy Check,
p. 178, Chapter 5, for a discussion on CRC codes.

Evaluation Methodology
To evaluate chip-external fault detection using fingerprinting for full-state compar-
ison, Smolens et al. [19] simulated the execution of all 26 SPEC CPU 2000 bench-
marks using SimpleScalar sim-cache [6] and two commercial workloads—TPC-C
and SPECWeb—using Virtutech Simics. The simulated processor executed one IPC
at a clock frequency of 1 GHz. The only microarchitecture parameter relevant to this
evaluation was the level 2 (L2) cache configuration. The simulated processor has
an inclusive 1-megabyte four-way set-associative cache with 64-byte lines.

The benchmarks used for evaluation can be classified into three categories: SPEC
integer, SPEC floating point, and commercial workloads. Using the prescribed
procedure from SimPoint [14], the authors simulated up to eight predetermined
100 million instruction regions from each SPEC benchmark’s complete execution
trace.UsingSimics, theauthorsrantwocommercialworkloadsonSolaris8:aTPC-C-
like online transaction processing (OLTP) workload with IBM DB2 and a SPECWeb.
The 100-client OLTP workload consisted of a 40-warehouse database striped across
five raw disks and one dedicated log disk. The SPECWeb workload serviced 100 con-
nections with Apache 2.0. The authors warmed both commercial workloads until
the CPU utilization reached 100% and the transaction rate reached steady state.
Once warmed, the commercial workloads executed for 500 million instructions.

Bandwidth Required for Full-State Comparison Using
Lockstepped Processors
Smolens et al. [19] evaluated fault detection mechanisms based on their state-
comparison bandwidth demand between mirrored processors. The bandwidth

282 CHAPTER 7 Hardware Error Recovery

required for off-chip comparison is calculated as the sum of the address and data-
bus traffic from off-chip memory requests. The average chip-external bandwidths
generated by the three simulated application classes—SPEC CPU 2000 integer
(SPEC CINT), SPEC CPU 2000 floating-point (SPEC CFP), and commercial—were

■ SPEC CINT: 3.8 megabytes per second

■ SPEC CFP: 45.6 megabytes per second

■ Commercial: 121.0 megabytes per second.

Whether Lockstepped or RMT systems can handle these full-state comparison
bandwidths will depend on the exact system configuration.

Full-state comparison without fingerprinting uses the entire register file con-
tents and all cache lines modified since the last checkpoint. The number of updated
cache lines, however, grows slowly as the checkpoint interval is increased because
of spatial locality. Assuming that the full-state comparison bandwidth amor-
tizes over the entire checkpoint interval, the required bandwidth decreases as
the checkpoint interval increases. In Figure 7.12, the average bandwidth require-
ment decreases sharply as the checkpoint interval increases. However, for the
range of intervals compatible with I/O interarrival times of commercial workloads
(hundred to thousands of instructions), the required bandwidth remains above
several hundred megabytes per second.

102 104 106

0

0.5

1

Checkpoint interval (instructions)

C
om

pa
ri

so
n

ba
nd

w
id

th
 (

G
B

/s
)

SPEC Int

SPEC FP

Commercial Workloads

FIGURE 7.12 Required bandwidth for full-state comparison (without finger-
printing) as a function of the checkpoint interval. Reprinted with permission
from Smolens et al. [19]. Copyright © 2004 IEEE.

7.6 Backward Error Recovery with Fault Detection before I/O Commit 283

Fingerprinting provides a compressed view of the architectural state changes
and significantly reduces this bandwidth pressure. Instead of comparing every
instruction result, fingerprinting compares only two bytes per checkpoint interval.
The bandwidth overhead for fingerprint comparison is thus orders of magnitude
less than full-state comparison. Assuming a 1000-instruction checkpoint interval
on a 1000-MIPS processor, fingerprinting consumes just 2 megabytes per second.

7.6 Backward Error Recovery with Fault
Detection before I/O Commit
Until now this chapter discussed backward error recovery mechanisms that either
do not commit any values outside the processor pipeline or commits values only
to the architectural register files and processor caches. This subsection discusses
backward recovery techniques that allow processor pipelines to commit values to
main memory. By letting values to be committed to main memory, a system typically
decreases the frequency, and the necessary bandwidth needed, with which the fault
detection mechanism must be invoked. However, because the total amount of state
held by main memory is several orders of magnitude greater than that of a processor
register file, one needs recovery techniques that are different from those that rely
on fault detection before memory commit.

This subsection discusses three such techniques. None of these has been imple-
mented in a commercial system. The first is a log-based recovery mechanism. Specif-
ically, an implementation that relies on an SRT processor’s LVQ mechanism to
recover from errors is discussed. This implementation will commit newly gener-
ated memory values to main memory. On detecting a fault, it will roll back to a
previous checkpoint maintained by the processor. Then it replays the execution
from the checkpoint using load values already recorded in the LVQ but without
committing memory values regenerated by stores. This implementation protects
against faults within the processor pipeline as covered by the sphere of replication.

Two other techniques that are discussed are ReVive [15] and SafetyNet [20],
which can recover from errors not only in the processor but also in the system
itself, such as ones in the coherence protocol. Both these techniques generate and
maintain system-wide checkpoints. On detecting a fault, both systems roll back
to a previous checkpoint and restart execution. These techniques may provide
more complete system-wide fault coverage than error coding techniques, such
as ECC, since they can recover from errors in logic blocks, such as coherence
controllers.

Generating system-wide checkpoints, however, can be tricky. If a processor or
a node generates its own checkpoint independent of other processors or nodes,
then it may lead to the “checkpoint inconsistency” problem. Given a fault, the
system has to roll back the system—include all processor or nodes—to a consistent
global state. Aset of uncoordinated checkpoints may not provide a single consistent
global state. For example, in Figure 7.13, node 0 sends a request for ownership for

284 CHAPTER 7 Hardware Error Recovery

Local
Checkpoint

Node 0 Timeline Node 1 Timeline

Local
Checkpoint

Request for ownership
for a memory block

Response transferring

ownership for memory block

T
im

e

FIGURE 7.13 Demonstration of how local uncoordinated checkpoint can lead
to inconsistent global state.

a memory block. Node 1 sends a transfer of ownership response back to node 0.
At this point, both nodes 0 and node 1 take their local checkpoints. Then, node 0
receives the transfer of ownership response. The two local checkpoints shown in
the figure are, however, inconsistent and cannot portray a single consistent global
state. This is because node 1 thinks node 0 is the owner of the block, and node 0
thinks node 1 is the owner. Hence, checkpoint generation must be coordinated to
generate a single global consistent state.

ReVive generates a single consistent global state by stopping all processing nodes
and coordinating the generation of their individual checkpoints. In contrast, Safe-
tyNet generates local checkpoints within a node but has enough intelligence built
into the system to roll back to the appropriate local checkpoints that together make
up a single global state.

The three systems solve the output and input commit problems slightly differ-
ently. For LVQ-based recovery, memory is outside the sphere of recovery. It only
allows fault free stores to propagate to memory. However, because it allows multi-
ple stores to commit to main memory since it created the checkpoint, it must record
and replay all load values issued so far to ensure that on reexecution all the stores
already committed are seen again. In contrast, for ReVive and SafetyNet mem-
ory is inside the sphere of recovery but I/O is not. They solve the output commit
problem by not allowing I/O operations to commit until they can take a check-
point. They solve the input commit problem by recording all external events, such
as I/O interrupts, and by replaying them during reexecution after a rollback and
recovery.

7.6.1 LVQ-Based Recovery in an SRT Processor
Log-based recovery is a well-established technique in the fault-tolerant systems
area [7]. The concept applies to any system that is piecewise deterministic, i.e., in

7.6 Backward Error Recovery with Fault Detection before I/O Commit 285

Checkpoint

Checkpoint

Checkpoint

Non-deterministic

Logged

Non-deterministic

Logged

Time

Executing Thread

Executing Thread

piece-wise deterministic

FIGURE 7.14 Log-based transparent recovery in a piecewise deterministic
system.

which execution consists of deterministic intervals separated by nondeterministic
events (Figure 7.14). In this context, an event is considered nondeterministic if its
execution is not determined entirely by the state inside the system. The state of a
piecewise deterministic system at any point can be recreated, given an initial con-
dition and a complete description of all nondeterministic events up to the desired
point.

In the context of a processor’s transparent hardware recovery, the initial con-
dition is the checkpointed architectural state, which includes any architecturally
visible state, such as the architectural register file. The nondeterministic events are
the following:

■ Load values, since memory contents may be modified external to the sphere
of replication by other processors or I/O devices

■ Asynchronous interrupts

■ Timing-dependent operations, such as ones that read on-chip cycle counters.

Interestingly, these events are identical to those required to maintain determi-
nism between the leading and trailing threads in an SRT processor. As long as
execution is deterministic, one can rely on both threads to follow the same execution
path. Thus, it is exactly these same nondeterministic events that must be captured
to keep the two threads consistent. This is the key insight behind log-based recovery
in an SRT processor [17].

A designer may want to keep the checkpoint and the log fault free at creation
and protected against transient faults (e.g., by ECC) to increase the fault coverage.
After the completion and fault free validation of a checkpoint, both the previous

286 CHAPTER 7 Hardware Error Recovery

checkpoint and all log entries prior to the new checkpoint can be discarded. The
minimum checkpoint frequency is determined by the maximum available log stor-
age and the maximum tolerable recovery latency.

The rest of this subsection describes the relationship between fault detec-
tion, checkpointing, and logging in SRT; how it can handle faults during regular
execution (i.e., nonrecovery mode), during checkpoint creation, and in recovery
mode; and how it can log load values and asynchronous interrupts.

Fault Detection, Checkpointing, and Logging
As discussed earlier (RMT within a Single-Processor Core, p. 227, Chapter 6), an
SRT processor’s performance advantage over Lockstepping comes from doing the
fault detection in the larger SRT-Memory sphere. Nevertheless, when checkpoints
are created, it may also be necessary to check them for faults. That is, all new
register values from the two redundant threads must be compared for mismatch.
In the absence of a mismatch, they can be sent to the ECC-protected checkpoint
storage. Because the checkpoint includes the state of the architectural register file,
fault detection during checkpoint creation is similar to the checking required for
the smaller SRT-Register’s sphere used in SRTR. However, the logging mechanism
may avoid the performance problems suffered by SRTR due to limited slack. The
log of external events, such as loads and asynchronous interrupts, ensures that the
internal state of the machine at the point of a detected fault can be reproduced
starting from the last checkpoint. This capability decouples the fault detection in
SRT-Memory (used to verify data sent out externally) from the fault detection in
SRT-Register (used to validate checkpoints).

This decoupling has two effects. First, checkpoint validation is not in the criti-
cal path of the program execution and thus can be done at leisure and in the
background. Second, the log-based method does not have to create checkpoints
corresponding to every output point. Rather, checkpoints can be created at any
desired frequency. As discussed above, decreases in checkpoint frequency come at
the cost of increased log storage and increased recovery latency.

Handling Faults in Nonrecovery Mode
In such a design, during normal execution (i.e., in a nonrecovery mode), an output
mismatch for data exiting the SRT-Memory sphere (e.g., in a store address or in a
value) indicates the presence of a fault. Then, both the leading- and the trailing-
thread contexts are flushed because one cannot tell the thread that contains the
fault. Both thread contexts are reloaded from the latest complete checkpoint. Then
execution is resumed in recovery mode in which both the threads are driven by the
saved event log.

This recovery mode is indistinguishable from the normal operation for the trail-
ing thread but is distinct for the leading thread. Thus, for example, leading thread
loads will be satisfied from the log rather than from the data cache, as in a normal
operation. These recovery operations continue until all outputs generated since the

7.6 Backward Error Recovery with Fault Detection before I/O Commit 287

checkpoint have been regenerated. This point is detected by maintaining a counter
that tracks the number of outputs generated since the previous checkpoint, decre-
menting this counter for each regenerated output and exiting recovery mode when
the counter reaches zero. The regenerated outputs, such as stores, are discarded
because they have already been exposed outside the SRT-Memory.

Handling Faults during Checkpoint Creation
Checkpoint creation may occur either continuously in the background or at
periodic intervals. Register values from both threads are compared for mismatch.
In the absence of any mismatch, the outputs are committed to the external check-
point storage. However, on a mismatch, both threads are flushed and restored to
the previous complete checkpoint. Then the same procedure is followed as out-
lined earlier. It should be noted that external checkpoint storage must be capable of
storing a full valid checkpoint until a subsequent checkpoint can be fully validated,
potentially requiring twice the capacity of the architectural register file.

Handling Faults during Recovery Mode
Faults could occur during the recovery procedure itself. To detect these faults,
one can run both the leading and trailing threads and compare both threads’ out-
puts that leave the SRT-Memory sphere. A detected fault during recovery mode
could imply the presence of a permanent fault, when one could flag this to the
OS to let it decide future action. Alternatively, if system designers believe that
transient faults could be likely in such a situation, then they could simply restart
both the redundant threads from the last checkpoint and run them off the saved
event log.

Logging Loads Using the LVQ
As discussed earlier, the log required for recovery is a simple extension of the input
replication mechanism already needed by an SRT processor to provide fault detec-
tion. Hence, one can leverage the input replication mechanisms, which recreate
nondeterministic events from the leading thread in the trailing thread, to handle
these same events for recovery. RMT replicates load values from the leading to the
trailing thread using an LVQ. The LVQ is a queue of load values as seen by the
leading thread. Loads from the trailing thread obtain their values from the LVQ
instead of the data cache.

Extending the LVQ for recovery consists of maintaining LVQ entries after the
trailing thread has consumed them until a checkpoint is completed. If checkpoints
are frequent, entries may be kept in the same physical LVQ structure used for input
replication. Otherwise, a larger log may be required, when LVQ entries may be
copied from the primary LVQ to a separate recovery-only LVQ structure. Because
the performance of recovery may not be critical, the recovery LVQ may be larger,
slower, and farther from the core than the replication LVQ. Even if a single physical
structure is used, it is useful to logically distinguish replication LVQ entries (which

288 CHAPTER 7 Hardware Error Recovery

have not been consumed by the trailing thread) from recovery LVQ entries (which
have been consumed by the trailing thread but are not yet incorporated in the latest
checkpoint).

Logging Asynchronous Interrupts
Asynchronous interrupts are replicated in an SRT processor by logging the point in
the dynamic instruction stream at which the interrupt is taken in the leading thread
and by generating the interrupt at the same point in the trailing thread, or by forcing
the thread copies to synchronize to the same execution point and delivering the
interrupt simultaneously. In the former scenario, asynchronous interrupts could be
logged and replayed in the same manner as loads. The mechanism for generating
interrupts from the log can leverage the logic used to generate interrupts in the
trailing thread in a normal operation. In the latter scenario, interrupts are not stored
and transferred between threads, so there is no mechanism to leverage. In this case,
a more direct approach would be to force a checkpoint after the threads synchronize,
eliminating the need to log interrupt events. Other nondeterministic events should
be addressed on a case-by-case basis, though this framework of leveraging the
replication mechanism for logging (or forcing checkpoints) should apply in general.

7.6.2 ReVive: Backward Error Recovery Using
Global Checkpoints

ReVive is a backward error recovery technique targeted for cache-coherent shared-
memory multiprocessors [15]. Such a shared-memory multiprocessor is composed
of multiple nodes. Each node consists of a processor, caches, and its local main
memory. The caches are kept coherent using a cache coherence protocol. Unlike
the LVQ-based recovery in SRT, ReVive maintains system-wide global checkpoints
that can help the system recover from errors in either the memory system or the
coherence protocol logic.

ReVive has three basic components: distributed parity to detect faults in mem-
ory, an undo log that tracks the first writes to memory locations after a consistent
checkpoint is established, and a method to create a globally consistent checkpoint.
In the LVQ-based recovery just described, the SRT processor periodically copies its
architectural state to a separate checkpoint memory. This maybe feasible since the
architectural state is typically small, consisting of architectural registers and pro-
cessor state. Then it logs nondeterministic events and input load values to replay
them later during recovery.

In contrast, ReVive uses the entire memory itself as its checkpoint since copy-
ing it may be infeasible. First, ReVive ensures that the entire memory across the
system is in a consistent state. This may require flushing the processor caches, so
that individual processors do not have a more recent up-to-date copy of modified
blocks. ReVive’s log keeps track of the first memory write to any memory location

7.6 Backward Error Recovery with Fault Detection before I/O Commit 289

since the consistent global state was created. On detecting a fault, ReVive uses the
combination of the current memory state and the undo log to roll back the entire
memory state of the system to a globally consistent state.

Distributed Parity
ReVive implements distributed parity to both detect faults and recover from errors
in its distributed memory, which serves both as the main memory and as a part
of the checkpoint. The scheme is similar to what is used in RAID (Redundant
Array of Inexpensive Disks) systems. As Figure 7.15 shows, in ReVive, memory is
organized as parity groups, where a memory block in one node contains the parity
bits corresponding to the data bits for the other nodes. Thus, a parity bit P in the
memory block holding parity can be computed as P = A XOR B XOR C, where A,
B, and C are the corresponding data bits in each of the other memories.

When a memory write occurs in a specific memory block, the corresponding
controller sends the XOR of the original parity bits and the newly created parity
bits for the memory block that was just written to the memory that holds its parity
bits. Assume the new parity bit is C′. Then the controller holding C sends an update
U = C XOR C′ to the controller with the parity bit. The reader can easily verify
that the controller with the parity bits can compute the new parity bit simply as
P′ =P XOR U. Using this distributed parity scheme, ReVive can completely recover
from single-bit transient faults in its memory system and from the complete loss of
a node’s entire memory.

Logging Writes
ReVive must keep track of the first write to any memory block since the last
checkpoint was created. When it detects a write, it copies the old value into a
log and writes the new value to memory. Then, on detecting a fault, it can simply
use the log to reset the values of all blocks to recreate the checkpoint and restart
execution.

Typically, cache-coherent, shared-memory multiprocessors implement a single-
writer invalidation protocol, which allows multiple readable copies of a memory

A parity
group

Memory 0 Memory 1 Memory 2 Memory 3

FIGURE 7.15 Parity groups in ReVive’s distributed memory protected with par-
ity. Shaded boxes represent parity bits, whereas boxes not shaded represent
data bits. Each bit in the shaded parity box is an XOR of the corresponding
data bits in the same parity group.

290 CHAPTER 7 Hardware Error Recovery

block, but only one node can write the block at any time. To write a block, a node
must have the only copy of the block and must be its exclusive owner. Before a
block transitions from readable to exclusive, the corresponding node must request
an exclusive write access to this block. This makes it easy for a memory controller
to detect a node’s intention to write a memory block. At that point, the memory
controller can save the old value of the memory block in the log.

To only log the first write to block after a checkpoint, ReVive augments its blocks
with an additional bit—called the log bit—beyond what may be needed by the
coherence protocol. The log bit tracks first writes to a block after a checkpoint. If
the log bit is set, then ReVive will not copy the block’s old value to the log when a
write request comes. The log bits are reset when a checkpoint is created.

Global Checkpoint Creation
To create the global checkpoint, ReVive follows a simple two-phase protocol. First,
all processors and nodes synchronize and flush all their caches to write all modified
data back to memory. Then the processors synchronize again to ensure that all
processors have completed writing all their data back to memory. All the log bits are
also cleared at this time. The checkpoint is now established, and all processors can
resume execution. Because an error may occur during the creation of a checkpoint,
ReVive does not discard the old log till all processors complete the two-phase
protocol.

7.6.3 SafetyNet: Backward Error Recovery Using
Local Checkpoints

Like ReVive, SafetyNet is a backward error recovery scheme targeted to recover
from errors in a cache-coherent, shared-memory multiprocessor [20]. SafetyNet’s
logging scheme is similar to ReVive’s. Unlike ReVive, however, SafetyNet generates
local checkpoints in a way that allows it to create a globally consistent state, if
a roll-back is necessary. In the background, SafetyNet coordinates different local
checkpoints to ensure that there always exists a globally consistent checkpointed
state that the entire system can roll back to. Once it establishes such a recovery point,
it frees up any prior local checkpoints. Because SafetyNet takes local checkpoints, it
can create checkpoints much faster than ReVive. The SafetyNet scheme is, however,
more complex to implement than ReVive.

Creating Consistent Checkpoints
In SafetyNet, all nodes periodically take local checkpoints at a globally synchronous
logical time. The local checkpoint is a combination of the processor’s architec-
tural state and a log of first memory writes since the last checkpoint was initiated.
To ensure that the local checkpoints reflect a consistent system state, SafetyNet
exploits the key insight that, in retrospect, a coherence transaction appears logically
atomic once the entire coherence transaction has completed. A transaction’s point

7.6 Backward Error Recovery with Fault Detection before I/O Commit 291

Node 0 Node 1

Checkpoint #3

Checkpoint #1

Checkpoint #4

Checkpoint #5

Checkpoint #2

physical
time

T1

<data,CN3>

<request B>T0

T2

point of
atomicity

FIGURE 7.16 Example of checkpoint coordination in SafetyNet. Reprinted
with permission from Sorin et al. [20]. Copyright © 2002 IEEE.

of atomicity can be established when the previous owner of the requested block
processes the request. For example, in Figure 7.16, the point of atomicity could be
T1. Node 0 sends a request to the previous owner (Node 1). Node 1 establishes the
point of atomicity at T1 and forwards its last checkpoint number (checkpoint #2) to
Node 0 as its checkpoint number for the point of atomicity. Node 0, the requestor,
does not learn the location of the atomicity point until it receives the response that
completes the transaction. To ensure that the system never recovers to the “mid-
dle” of a transaction, the requestor does not advance the recovery point until all its
outstanding transactions complete successfully. After completion, the transaction
appears atomic.

Advancing the Global Recovery Point
At any point of time, SafetyNet maintains a combination of local checkpoints that
constitute a consistent global state, which is referred to as the global recovery point.
As each node creates local checkpoints, one must advance the global recovery point,
so that each node can free up the storage for its prior local checkpoints. Further, any
I/O operation can be performed only after a global recovery point is established.

For a checkpoint interval to be fault free, no fault detector in the system should
signal an error and every transfer of ownership in that interval must complete suc-
cessfully. This ensures that the data were transferred fault free to the requestor.
Once every component has independently declared that it has received fault
free data in response to all its requests in the interval before the checkpoint, the
global recovery point can be advanced. At this point, all transactions prior to this
checkpoint have had their points of atomicity determined. Then the state for the

292 CHAPTER 7 Hardware Error Recovery

prior recovery point can be deallocated lazily. One can establish this global recovery
point in the background to avoid slowing down the main computation.

The latency to establish the global recovery point depends on the fault detec-
tion latency. Some faults that manifest themselves as corrupted messages can be
caught immediately through CRC codes, which are often used to protect network
messages. Other faults, such as dropped messages, may have to rely on timeout
latency that can be many traversals of the interconnect.

7.7 Backward Error Recovery with Fault
Detection after I/O Commit
Including I/O devices in the sphere of recovery is a difficult problem and is hard
to tackle in hardware. This is because I/O operations can have side effects, which
may be hard to control and recover from. For example, an uncached store to an I/O
device may trigger the device to send an incorrect message to a terminal, which
cannot be recovered from. It is often difficult for a computing system to recover
from such an operation.

There are, however, scenarios in which an application can recover even after
it commits to an I/O device. For example, databases routinely maintain recovery
logs that can be used to recover from incorrect disk operation. These recovery
operations are, however, often handled on a per-application basis and in software.
Nakamo et al. [13] discuss how disk operations can be rolled back since disk reads
are idempotent.

Networking stacks, such as TCP/IP, are allowed to send duplicate messages
into the network. This is because if the sender does not receive an acknowledge-
ment, it can send a duplicate copy of the message to the receiver. The same mech-
anism can be used to send a duplicate message after any operation has been
rolled back. Chapter 8 discusses such software-controlled backward error recovery
techniques.

7.8 Summary
Fault detection mechanisms either remove any SDC from a system or convert them
to DUE. Error recovery mechanisms can reduce or eliminate both the SDC and
DUE rates of a system. Broadly, error recovery mechanisms can be classified into
forward and backward error recovery mechanisms.

In a forward error recovery, a system can continue executing from its current
state after a fault is detected. The forward error recovery schemes usually main-
tain a redundant, up-to-date error-free state from which the system can continue
execution. In contrast, a backward error recovery scheme usually rolls back to a
previous error-free state of a system. Such states are referred to as checkpoints and
can be generated incrementally or periodically by a system.

7.8 Summary 293

There are four options for implementing forward error recovery in hardware:
fail-over systems, DMR, TMR, and pair-and-spare. Each of these systems has incre-
mentally smaller downtime compared with the previous one. Fail-over systems
typically consist of a mirrored pair of computing slices denoted as the primary and
secondary. When the primary slice detects a fault, the secondary slice takes over
execution with some state correction (e.g., restarting the failed process).

A DMR system detects faults by comparing outputs from two redundant slices
of execution. Further, if an internal error checker, such as a parity checker, fires
within one of the slices, then the output comparator can precisely determine the
slice that is in error. Then, by copying the correct state from the fault free slice to
the faulty slice, the DMR system can recover from the error.

A TMR system extends the concept of DMR by running three redundant slices
of execution. The output comparator votes on the output that is correct. If outputs
from one of the redundant slices are faulty, then the TMR system freezes that slice
but can continue execution in degraded DMR mode with the other two fault free
slices. Eventually, the correct state must be copied from the fault free slices to the
faulty slice to reintegrate the faulty slice into the TMR system.

Finally, pair-and-spare extends the TMR concept by running four redundant
slices. The primary pair is the one that commits to system state. The secondary pair
keeps its state up-to-date with the primary pair. When the primary pair detects a
fault, it transfers execution to the secondary pair.

Unlike forward error recovery schemes, a backward error recovery scheme rolls
back execution to a prior fault free state referred to as a checkpoint. What constitutes
a checkpoint depends on the fault detection scheme. Four options are possible:
fault detection before register commit, fault detection before memory commit, fault
detection before I/O commit, and fault detection after I/O commit. Fault detection
after I/O commit is typically achieved in software (not discussed in this chapter).
If the fault is detected before registers are committed, then existing techniques that
a processor uses to recover from a misspeculation, such as a branch misprediction,
can be used to recover from a transient fault.

If the fault is detected after registers are committed, but before memory is com-
mitted, then the recovery scheme needs a mechanism to checkpoint the register
state. This can be done incrementally through the use of a history buffer that logs
all register updates. Alternatively, this can be done periodically by taking snapshots
of the register state. Periodic checkpointing may require significant output com-
parison bandwidth to ensure that the checkpoint is fault free. This can be reduced
through a state-compression technique known as fingerprinting.

If the fault is detected after memory is committed, then the system must support
a mechanism to roll back memory state. Memory state is typically much larger than
register state, so it may be difficult to take a checkpoint of memory state. Instead,
systems typically maintain a log of memory values received from the system since
the prior register checkpoint. During recovery, the system can then replay exe-
cution, starting at the register checkpoint and using the log of memory values as
inputs to the execution stream. Distributed memory machines impose an additional

294 CHAPTER 7 Hardware Error Recovery

problem in which checkpoints must be globally consistent across an entire system.
This can be achieved by coordinating checkpoint generation across the individual
nodes of a distributed system.

7.9 Historical Anecdote
One of Stratus Technologies’ customers had requested an automatic reboot capabil-
ity in the event of a system hang. This is because the customer had many unattended
sites that would benefit from such an automatic reboot. Stratus did implement such
a facility through something called a dead man timer [10]. The computer automati-
cally rebooted if the dead man timer was not periodically reset by the software run-
ning on it. Many of Stratus’ customers who were not aware of this dead man timer
were not running the appropriate software to reset it. They experienced many mys-
terious crashes for months. Thus, a capability that Stratus implemented to recover
a system from a system hang ended up crashing the system itself.

Stratus did not notice this problem due to a number of issues. The dead man
timer was not well documented and was designed in a somewhat ad hoc fashion.
It did not record a log and therefore operators had no way of telling if the dead
man timer had reset the system. The signal to drive the timer was only 1 bit wide,
nonredundant, and unchecked. Consequently, a 1-bit error in the transmission of
the signal could also activate the timer mechanism. The timer design was not also
subject to usual design reviews that engineering companies normally implement.
Once Stratus was notified of the problem, its engineers fixed the problem in a
week. Since then, Stratus has imposed strict review and controls to ensure that
new features do not cause similar problems.

References
[1] H. Ando, Y. Yoshida, A. Inoue, I. Sugiyama, T. Asakawa, K. Morita, T. Muta, T. Motokurumada,

S. Okada, H. Yamashita, Y. Satsukawa, A. Konmoto, R. Yamashita, and H. Sugiyama “A 1.3 GHz
Fifth Generation SPARC Microprocessor,” in 2003 IEEE Solid State Circuits Conference (ISSCC),
pp. 1896–1905, 2003.

[2] J. Barlett, W. Bartlett, R. Carr, D. Garcia, J. Gray, R. Horst, R. Jardine, D. Lenoski, and D. Mcguire
“Fault Tolerance in Tandem Computer Systems,” Technical Report 90.5, Part Number 40666,
Hewlett-Packard, May 1990.

[3] W. Bartlett and L. Spainhower, “Commercial Fault Tolerance: A Tale of Two Systems,” IEEE Trans-
actions on Dependable and Secure Computing, Vol. 1, No. 1, pp. 87–96, January–March 2004.

[4] D. Bernick, B. Bruckert, P. D. Vigna, D. Garcia, R. Jardine, J. Klecka, and J. Smullen, “NonStop�
Advanced Architecture,” in Proceedings of the International Conference on Dependable Systems and
Networks (DSN), pp. 12–21, 2005.

[5] B. Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors,” Communications of the
ACM, Vol. 13, No. 7, pp. 422–426, July 1970.

[6] D. Burger and T. M. Austin, “The Simplescalar Tool Set, Version 2.0,” Technical Report 1342,
Computer Sciences Department, University of Wisconsin–Madison, June 1997.

References 295

[7] M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson, “A Survey of Rollback-Recovery
Protocols in Message-Passing Systems,” Technical Report CMU-CS-99-148, School of Computer
Science, Carnegie Mellon University, June 1999.

[8] M. A. Gomaa and T. N. Vijaykumar, “Opportunistic Fault Detection,” in 32nd Annual International
Symposium on Computer Architecture, pp. 172–183, 2005.

[9] M. A. Gomaa, C. Scarbrough, T. N. Vijaykumar, and I. Pomeranz, “Transient Fault-Recovery
for Chip Multiprocessors,” in 30th Annual International Symposium on Computer Architecture,
pp. 96–109, June 2003.

[10] P. A. Green Jr., “Observations From 16 Years at a Fault-Tolerant Computer Company,” in 15th
Symposium on Reliable Distributed Systems, pp. 162–164, 1996.

[11] S. Hangal and M. Lam, “Tracking Down Software Bugs Using Automatic Anomaly Detection,” in
International Conference on Software Engineering, ICSE’02, pp. 291–301, May 2002.

[12] S. S. Mukherjee, S. K. Reinhardt, and J. S. Emer, “Incremental Checkpointing in a Multi-Threaded
Architecture,” United States Patent Application, Filed August 29, 2003.

[13] J. Nakamo, P. Montesinos, K. Gharachorloo, and J. Torrellas, “ReVive I/O: Efficient Handling of
I/O in Highly-Available Rollback-Recovery Servers,” in 12th Annual International Symposium on
High-Performance Computer Architecture (HPCA), pp. 200–211, 2006.

[14] E. Perelman, G. Hamerly, M. Van Biesbrouck, T. Sherwood, and B. Calder, “Using SimPoint for
Accurate and Efficient Simulation,” in ACM SIGMETRICS, the International Conference on Measure-
ment and Modeling of Computer Systems, pp. 318–319, June 2003.

[15] M. Prvulovic, Z. Zhang, and J. Torrellas, “ReVive: Cost-EffectiveArchitectural Support for Rollback
Recovery in Shared-Memory Multiprocessors,” in 29th Annual International Symposium on Computer
Architecture (ISCA), pp. 111–122, 2002.

[16] P. Racunas, K. Constantinides, S. Manne, and S. S. Mukherjee, “Perturbation-Based Fault Screen-
ing,” in 13th Annual International High-Performance Computer Architecture (HPCA), pp. 169–180,
February 2007.

[17] S. K. Reinhardt, S. S. Mukherjee, and J. S. Emer, “Periodic Checkpointing in a Redundantly Multi-
Threaded Architecture,” United States Patent Application, Filed August 29, 2003.

[18] J. E. Smith and A. R. Pleszkun, “Implementation of Precise Interrupts in Pipelined Processors,” in
12th International Symposium on Computer Architecture, pp. 291–299, 1985.

[19] J. C. Smolens, B. T. Gold, J. Kim, B. Falsafi, J. C. Hoe, and A. G. Nowatzyk, “Fingerprinting:
Bounding Soft-Error Detection Latency and Bandwidth,” IEEE Micro, Vol. 24, No. 6, pp. 22–29,
November 2004.

[20] D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood, “SafetyNet: Improving the Availability of
Shared Memory Multiprocessors with Global Checkpoint/Recovery,” in International Symposium
on Computer Architecture (ISCA), pp. 123–134, May 2002.

[21] T. N. Vijaykumar, I. Pomeranz, and K. Cheng, “Transient Fault Recovery Using Simultaneous
Multithreading,” in 29th Annual International Symposium on Computer Architecture, pp. 87–98, May
2002.

[22] N. J. Wang and S. J. Patel, “ReStore: Symptom-Based Soft Error Detection in Microprocessors,”
IEEE Transactions on Dependable and Secure Computing, Vol. 3, No. 3, pp. 188–201, July–September
2006.

[23] C. Weaver, J. Emer, S. S. Mukherjee, and S. K. Reinhardt, “Techniques to Reduce the Soft Error
Rate of a High-Performance Microprocessor,” in 31st Annual International Symposium on Computer
Architecture (ISCA), pp. 264–275, 2004.

This page intentionally left blank

C H A P T E R8
Software Detection
and Recovery

8.1 Overview
Software techniques to detect transient faults and correct corresponding errors
are gaining popularity. Recently, Marathon Technologies introduced its EverRun
servers in which fault tolerance is implemented completely in software [15]. Soft-
ware fault-tolerance schemes typically degrade performance more than the hard-
ware techniques described in previous chapters because of the inherent overhead
incurred by software techniques. Further, in some cases, pure software implemen-
tations may not have enough visibility into the hardware to provide adequate fault
coverage.

Nevertheless, software fault-tolerance schemes can still be attractive for several
reasons. Software schemes are cheaper to implement since they do not have to be
built into hardware modules. These schemes are more flexible and can be deployed
in the field long after the hardware has been in use. Software schemes can typi-
cally be run with off-the-shelf hardware and often require little or no modification
to existing hardware. For soft errors, recovery time is often not as critical since
soft errors occur in days, months, or years, and not in every microsecond. Hence,
software implementations of recovery, which may take longer to execute than hard-
ware recovery schemes, are often attractive solutions. The level of protection offered
by software schemes can also be adjusted (e.g., traded off with performance) for
selected applications.

Like hardware schemes, software fault-tolerance schemes can be classified into
fault detection and error recovery techniques. Both software fault detection and

297

298 CHAPTER 8 Software Detection and Recovery

software error recovery can be implemented in multiple levels of the software
stack. They can be implemented directly in an application, in the OS, or in
the virtual machine layer that abstracts the hardware and can run multiple OS
(Figure 8.1). Implementing detection and/or recovery in each of these layers has
its own advantage and disadvantage. Application-level detection and recovery are
easier to implement since the application is often under a programmer’s control.
Afault in the OS, however, may not be detectable through this mechanism. OS-level
detection and recovery may have greater fault coverage but requires changing an
OS. It may, however, be difficult to add detection and recovery in a mature OS, such
as Windows. Finally, the virtualization layer provides a great place to include fault-
tolerance mechanisms since it is closest to the hardware and can provide maximum
fault coverage. The complexity of including such mechanisms in the virtualization
layer would typically be higher than in an application.

This chapter illustrates the principles of fault detection and error recovery
schemes implemented in an application, an OS, and a virtualization layer. Sev-
eral example implementations are used to illustrate these principles. The first two
techniques for fault detection—signatured instruction streams (SIS) and software
RMT—can be used to detect faults across an application or in selected regions of an
application. Since the OS can be thought of as a specialized application itself, these
techniques can also be applied to detect faults in the OS as well. An implementa-
tion of a hybrid RMT solution that augments the software RMT implementation
with targeted hardware support is also described. Then two implementations of

Application

Operating System 1

Virtual Machine

Application

Operating System 2

Hardware

Software Layers
Where Fault
Tolerance Can
Be Implemented

FIGURE 8.1 Implementation options for software fault tolerance.

8.2 Fault Detection Using SIS 299

redundant virtual machine (RVM) that detects faults by running redundant copies
of virtual machines and comparing their outputs are discussed.

Like hardware error recovery, software error recovery can also be classified
into forward and backward error recoveries. Application-specific recovery can be
implemented in various ways. To illustrate the underlying principles of software
error recovery, an implementation of forward error recovery done via compiler
transformations and two implementations of backward error recovery—one used
in databases and the other proposed for parallel shared-memory programs—are
described.

Since the OS has better control over the hardware resources, it is often a good
place to implement backward error recovery. As discussed in Chapter 7, back-
ward error recovery techniques must deal with the output and input commit
problems. The output commit problem arises if a system allows an output from
which it cannot recover to exit a domain or a sphere of recovery. The input commit
arises if the system rolls back to a previous state or checkpoint but cannot replay
the inputs that arrived from outside the sphere of recovery. For an OS, the out-
puts and inputs are typically related to I/O operations. Since the OS can control
I/O devices directly, it is often easier to implement backward error recovery in
the OS. This OS-level backward recovery is illustrated using two examples: one
that uses a pseudo-device driver and other that checkpoints the state of the OS
periodically. Finally, how error recovery can be implemented on top of an RVM
is described.

8.2 Fault Detection Using SIS
Fault detection using software checkers has been thoroughly researched in the
literature [5]. A software checker will usually check for a violation of a program
condition, such as a pointer reference accessing an unmapped region of memory.
There are usually two kinds of software checkers: assertion checkers and signature
checkers.Assertion checkers typically will assert a property, such as memory bound
violation, which can happen due to either a software bug or a hardware fault.
These assertions can be application specific, such as ensuring that the value of a
computation is within a certain range. Alternatively, these assertions can also be
generic, such as ensuring that a program does not dereference a dangling pointer.

Signature checking has typically been used in software fault detection to check
control-flow violations. As instructions in a program execute, a signature is created
for the flow of a group of instructions. These signatures are compared with a set of
predetermined signatures that are allowed to be produced in a fault free execution.
This section discusses an example of signature-based assertion checking.

These checkers can be implemented purely in software or with some hardware
support. Software assertions can be inserted by a programmer, by a compiler, or

300 CHAPTER 8 Software Detection and Recovery

through a binary translation. Some of these software checkers can add significant
overhead to a program’s execution. The overhead of software checking can be
reduced by performing the checks in a separate coprocessor, often called a watch-
dog processor [5], or in a customized hardware engine [8].

SIS [14] is an example of signature checking that uses partial hardware support.
SIS detects control-flow violations that could be caused by transient or other kinds
of faults. Hence, SIS’s coverage is limited to any fault that causes control-flow
violation. Nevertheless, SIS can be quite useful in providing partial fault coverage.

SIS detects faults by comparing signatures generated statically at compile time
with the corresponding ones generated at run-time. A signature is an encoding of a
group of instructions that execute in sequence. Schuette and Shen [14] chose a 16-bit
CRC code with the generator polynomial x16 + x12 + x3 + x + 1. The reader is referred
to the section Cyclic Redundancy Check, p. 178, Chapter 5, for a description of
CRC codes. A signature mismatch indicates the presence of a fault. To generate a
signature, one must statically identify a sequence of instructions for which one can
compute the signature. This can be achieved by partitioning a program into blocks
or groups of instructions that have one entry point and one or more exit points. Let
us call such a block or a group a node.

The simplest form of a node is a basic block of instructions. A basic block is a
sequence of instructions with one entry point and one exit point. The entry point
is the first instruction of the basic block. The exit point is the last instruction and
consists of a control transfer instruction, such as a branch or a jump. A program can
be statically expressed as a combination of basic blocks. Schuette and Shen [14],
however, chose a different form of a node, possibly to increase the fault coverage
of instructions. Nevertheless, the same principles can be applied to basic blocks
as well.

Figure 8.2a shows an example program segment that can be broken up into four
nodes, as shown in Figure 8.2b. It should be noted that Node 3 has three exit points
and therefore is not a basic block. Figure 8.2c shows how these can be represented
in the form of a control-flow graph (CFG). Each node has one entry point but may
have more than one exit point. Then, for each node, one computes a signature for
the entry point to each exit point within a node. Each signature can be associated
with the corresponding exit point of the node. Schuette and Shen [14] showed that
such program transformations to embed signatures in a program incurred about a
9%–10% memory overhead.

The run-time system regenerates these signatures for each node as the program
executes. These signatures could be monitored purely in software but that may
significantly degrade performance. Hence, Schuette and Shen [14] propose the use
of a custom monitoring hardware. The monitoring hardware observes these sig-
natures as they are fetched from instruction memory and compares them with the
signatures it continuously generates. Because the monitoring hardware runs in par-
allel to the main processor that executes the program and does not interrupt the
executing program, it does not slow down the main processor.

8.3 Fault Detection Using Software RMT 301

(a)

Instruction
Number Label
1 a
2
3
4
5
6
7
8
9
10
11 first
12
13 fifth
14

Operation

third
second

b

compare a, b
beq first

f 5 f xor e

br third

br third

b 5 b 1 c
b 5 b 2 d
br fifth

d 5 c 3 d
compare d, a
bne second

compare f, b

b 5 a and b

(b)

Node Entry
or Exit?

fifth

third
second

Node
1

2
3

4

Instruction
Number

3
2

4
13
14

7
8
9
10

12

1

5
6

11 first

Label Operation

br third

beq first

f 5 f xor e
compare f, b
br third

a b
b 5 b 1 c
b 5 b 2 d
br fifth

d 5 c 3 d
compare d, a
bne second

compare a, b

b 5 a and b

entry

exit

exit
entry / exit
entry / exit

exit

IN 12

(c)

Node 1 Node 2 Node 3 Node 4
IN 14 IN 5 IN 6

IN 10

IN 9

FIGURE 8.2 Partitioning a program to create SIS. (a) An example program.
(b) How to partition the program into nodes, such that each node has only
one entry point. Entry and exit denote entry and exit points, respectively.
(c) Representation of (b) in a graphical format. This is also known as the CFG.
The arcs/arrows in the graph are labeled with the instruction number (IN)
corresponding to the exit condition from the node.

8.3 Fault Detection Using Software RMT
Chapter 6 discussed the concept of RMT and how it can help detect faults by
running redundant copies of the same program. This section discusses how RMT
can be implemented in software. Unlike cycle-by-cycle Lockstepping, RMT does
not require two redundant copies of hardware that are completely cycle synchro-
nized. Instead, RMT compares programmer-visible committed instruction streams
from two redundant threads running the same program. Hence, RMT can be
implemented purely in software as well since it compares instructions and corre-
sponding results that are visible to software. In contrast, Lockstepping is funda-
mentally a hardware concept. To detect faults, Lockstepping compares hardware
signals that may not be visible to software. Further, in modern speculative proces-
sors, it is often hard to keep independent copies of hardware running redundant
software in a cycle-synchronized mode. Hence, it is very difficult to implement
Lockstepping in software without significant hardware support. Also, unlike soft-
ware checkers that check individual properties of a program’s execution, such

302 CHAPTER 8 Software Detection and Recovery

as ensuring that the control flow is following the correct path, software RMT
typically provides broader fault coverage since it executes redundant copies of the
program.

Figure 8.3 shows the sphere of replication of a software RMT system. Recall
that the sphere of replication identifies the logical domain protected by the fault
detection scheme (see Sphere of Replication, p. 208, Chapter 6). Components within
the sphere of replication are either logically or physically replicated. Any fault that
occurs within the sphere of replication and propagates to its boundary will be
detected by the fault detection scheme corresponding to the sphere of replication.
Any outputs leaving the sphere must be checked by an output comparator for
errors. Any inputs coming into the sphere of replication must be replicated to the
redundant versions at the same instruction boundary to ensure that both versions
follow the same execution path. If inputs, such as interrupts, are delivered to the
redundant threads at different instruction boundaries, the redundant threads may
execute correctly but follow different program execution paths. Hence, the inputs
must be delivered at the same instruction boundary in both versions.

Unlike hardware RMT systems that typically use separate hardware contexts,
such as registers, address space, and separate program counters, for each of the
redundant threads, a software RMT instantiation can implement the redundant
versions within the same hardware context. Then the redundant versions would
share the same control-flow mechanism, such as the program counter. Conse-
quently, in a software RMT implementation, any control-flow change, such as a
branch to a new instruction, must be checked for faults to avoid reducing the fault
coverage. In terms of the sphere of replication, hardware RMT systems have the

Disk
Main

Memory

Sphere of Replication

Other I/O

Output
Comparison

Input
Replication

Thread 0 Thread 1

FIGURE 8.3 Sphere of replication of an RMT system. The sphere of replication
includes the two thread contexts running redundant code.

8.3 Fault Detection Using Software RMT 303

program counter inside the sphere, whereas in software RMT implementations the
program counter is typically outside the sphere.

The performance degradation from software RMT systems is typically greater
than that from hardware RMT systems. This is because the output comparison must
be invoked fairly frequently. Since such output comparison is done in software, it
slows down the program more than a hardware RMT system would.

This section discusses three implementations of software RMT: error detection
by duplicated instructions (EDDI), software-implemented fault tolerance (SWIFT),
and Spot. EDDI proposed by Oh et al. [9] implements software RMT on a MIPS
instruction set using a compiler. SWIFT proposed by Reis et al. [11] also imple-
ments software RMT using a compiler, but for the Itanium architecture. It improves
upon EDDI by excluding memory from the sphere of replication and by provid-
ing better protection on control transfers. Finally, Spot proposed by Reis et al. [13]
implements software RMT using binary translation on an x86 architecture. Unlike
EDDI or SWIFT, Spot does not require source code since it operates directly on
the binary. None of these software systems, to the best of my knowledge, is used
commercially.

8.3.1 Error Detection by Duplicated Instructions
EDDI implements software RMT within a single hardware context [9]. It duplicates
instructions within a single thread to create two redundant execution streams. To
check for faults, it introduces compare instructions at specific points in a program.
The existing architectural register file and memory address space are split in half
between the two redundantly executing streams of computation. Consequently,
both the register file and the memory are within the sphere of replication. This
model will work for cache-coherent, shared-memory multiprocessors as well if the
entire shared address space is split among the redundantly executing streams. In
this model, I/O resides outside the sphere of replication, so special support may
be needed to replicate I/O operations (e.g., DMA from an I/O device to mem-
ory). The same issue will arise for interrupts and other forms of asynchronous
exceptions.

EDDI Transformation
Figure 8.4 shows an example transformation that the EDDI scheme will perform.
Registers R11, R12, R13, and R14 are registers used in the first executing stream,
whereas R21, R22, R23, and R24 are the corresponding registers used in the second
executing stream. The original program segment shown in Figure 8.4a consists of a
load, an add, and a store instruction. Figure 8.4b shows the EDDI transformation.
Each instruction is redundantly executed. However, EDDI only checks inputs to the
store—registers R11 and R14—for faults. In EDDI, there is a slight subtlety in mem-
ory address comparison. Since memory is split into two halves, the corresponding
memory addresses in the two redundant versions are not the same. Nevertheless,

304 CHAPTER 8 Software Detection and Recovery

LOAD R12 5 [R11]

ADD R115 R12 1 R13

LOAD R12 5 [R11]

LOAD R22 5 [R21]

ADD R115 R12 1 R13

ADD R21 5 R22 1 R23

COMPARE R11, R21

(a) (b)

FIGURE 8.4 EDDI transformation. (a) Original program. (b) Program with EDDI
transformations.

they could be made to be at a fixed offset from one another. The compare instruction
must take this into account. For simplicity, this effect is not shown in Figure 8.4.
Also, because the sphere of replication includes main memory, EDDI could have
relaxed this constraint and checked only I/O operations through system calls.

EDDI also checks inputs to branch instructions in the same way it checks inputs
to store instructions. This guarantees that EDDI has correct inputs to a branch
instruction. Nevertheless, the branch instruction could receive incorrect inputs due
to a particle strike on the datapath from the register to the branch instruction’s
execution unit.

EDDI Evaluation
To evaluate the effectiveness of EDDI, Oh et al. [9] performed random bit flips
in the code segment to see how many of these bit flips result in an error. This
methodology neither reflects the true soft error characteristics of a processor or a
machine nor allows computing the AVF. Nevertheless, the methodology gives an
idea of how many bit flips injected in a code stream may result in an error. Using
this methodology, Oh et al. [9] show that the percentage of undetected incorrect
output for eight benchmarks—FFT, Hanoi, Compress, Qsort, Fibonacci, Insert-sort,
Matrix multiply, and Shuffle—reduce from 20% to 1.5% on average.

Figure 8.5 shows the performance degradation from introducing extra instruc-
tions in the code stream. On a two-way superscalar machine, which in a cycle can
execute a maximum of two instructions from either of the two executing streams,
the average performance degradation ranges between 36% and 111%. The degra-
dation is not uniformly 100% because in many cases a processor may not be able
to issue a maximum of two IPCs from a single execution stream because of interin-
struction dependences. In such a case, the redundant instructions can execute in
parallel, thereby causing less performance degradation. This parallel execution

8.3 Fault Detection Using Software RMT 305

102.8%

90.4%

72.6%

50.8%

75.8%

89.3%

62.0%

74.9%

111.1%
105.9%

89.3%
90.7%

33.9%36.3%

13.3%

44.7%

100.0%

120.0%

80.0%

60.0%

40.0%

20.0%

0.0%

Hanoi Compress Qsort Fibonacci Dhrystone Matrix mul ShuffleFFT

two-way issue four-way issue

FIGURE 8.5 EDDI execution time overhead in MIPS R4400 (two-way issue) and
R10000 (four-way issue) processors. Reprinted with permission from Oh et al.
[9]. Copyright © 2002 IEEE.

effect is more pronounced in a four-way issue processor pipeline where the
performance degradation ranges from 13.3% to 105.9%.

8.3.2 Software-Implemented Fault Tolerance
In many ways SWIFT is similar to EDDI. SWIFT implements software RMT for
an Itanium2 architecture using a single hardware context [11]. Like EDDI, SWIFT
splits the registers among the two redundant versions, thereby including the regis-
ter file in the sphere of replication. Unlike EDDI, however, SWIFT does not duplicate
memory since it checks every store for faults, and memory is typically protected
with ECC. By placing memory outside the sphere of replication, SWIFT achieves
two benefits. First, it reduces system cost. Second, it makes it easier to do input
replication for I/O operations. For example, DMA operations can simply transfer
I/O data directly to the single copy of memory, thereby making it unnecessary to
change how I/O devices or the OS operates.

SWIFT still duplicates the load instruction to ensure that both redundant exe-
cution streams have the correct inputs from load instructions. This may cause
false DUE since the second redundant load may pick up a different, yet correct,
value. This can happen if an I/O device or another processor in a shared-memory
multiprocessor changes the loaded value between the two corresponding load
operations.

SWIFT provides better control-flow checking than EDDI using an extension of
the basic idea of SIS (Fault Detection Using SIS, p. 299). Recall that control-flow
changes in a software RMT implementation using a single context may need to
be protected since the control-flow mechanism is outside the sphere of replication

306 CHAPTER 8 Software Detection and Recovery

unlike a hardware RMT implementation. There are two kinds of checks the software
must perform. First, one must ensure that the registers used by the control trans-
fer instructions have the correct values. Second, one must ensure that the transfer
itself happened correctly. Ensuring the first condition implies checking the register
values feeding the control instructions. Both EDDI and SWIFT do this check.

SWIFT uses signatures of predicted hyperblocks, which are extensions of basic
blocks, to ensure that the control transfer happens correctly. The mechanism
reserves a designated general-purpose register—referred to as the GSR—to hold
the signature for the currently executing basic block. These signatures are gener-
ated for basic blocks in a manner similar to that for SIS. Before the control transfer
happens, the basic block asserts its target using a second register called RTS. After
the control transfer takes place, the target decodes its signatures from RTS and
compares it to the statically assigned signature of the block it is supposed to be in.

Specifically, let us assume that SIG_CURRENT is the signature of the current
basic block. Let us also assume that SIG_TARGET is the signature of the basic block
that the control should be transferred to. Before the control transfer in the current
basic block, SWIFT would execute the following operation: RTS = SIG_CURRENT
XOR SIG_TARGET. Once the branch is taken, the instruction GSR = GSR XOR RTS
is executed. It should be noted that GSR contains SIG_CURRENT before this XOR
operation is executed. If the control transfer happens correctly, GSR would become
SIG_TARGET through this operation (since A XOR A XOR B = B). However, if the
control transfer happens incorrectly, then the GSR value will not match the signa-
ture of the basic block the control was transferred to. Thus, when SWIFT compares
GSR (after the XOR operation) with the statically generated signature for the basic
block, it can immediately find the fault.

SWIFT’s performance and AVF reduction capability are described later in this
chapter in the section CRAFT: A Hybrid RMT Implementation, p. 310.

8.3.3 Configurable Transient Fault Detection
via Dynamic Binary Translation

In a software implementation, it is often easier to trade off reliability for perfor-
mance because the software can be changed or adopted to specific needs. Reis
et al. [13] used this observation to implement a software RMT scheme called Spot
in which they could adjust the level of reliability required by a user. Spot uses the
general principles of SWIFT—as described in the previous subsection—but imple-
ments software RMT using binary translation for an x86 architecture. Subsequently,
the binary translation mechanism, an evaluation of Spot, and how Spot can be used
to modulate the level of reliability a user may want are described.

Fault Detection via Binary Translation
Spot implements software RMT using the Pin dynamic instrumentation frame-
work [4]. Pin allows users to insert code snippets into an existing binary. The code

8.3 Fault Detection Using Software RMT 307

snippets for Spot are the reliability transformations to introduce redundant and
check instructions. Introducing new code snippets in an existing binary can be chal-
lenging. For example, the new binary must change any branch address affected by
the introduction of new code.

It is also difficult to statically handle many other challenging issues, such as
variable-length instructions, mixed code and data, statically unknown indirect
jump targets, dynamically generated code, and dynamically loaded library. Hence,
Pin uses a dynamic instrumentation framework in which Pin combines the original
binary and new code snippets dynamically at run-time. To reduce the cost of binary
translation, Pin uses a software code cache that stores the most recently executed
transformed code. Unlike SWIFT, Spot does not do signature checking because it
does not have the program’s CFG. Instead, it checks the source registers feeding
a branch.

Evaluation
Unlike EDDI or SWIFT, Spot computes the AVF of the architectural register file
to guide reliability modulation (the reader is referred to Chapter 3 and Chapter 4
for AVF analysis techniques). Current processors do not provide hardware hooks
to allow a program to estimate its AVF at run-time, but researchers are exploring
the area [16]. Consequently, it is difficult to compute the AVF at run-time as the
program executes. Instead, Reis et al. [13] do SFI into the architectural register file
as a program runs (see Computing AVFs Using SFI into an RTL Model, p. 146,
Chapter 4). The fault is injected into a random bit at a random point in time as the
program executes.

If the program runs to completion, then the fault was masked and the corres-
ponding bit into which the fault was injected was un-ACE (unnecessary for ACE). If
the program produces the wrong output, if the program does not run to completion,
or if the program’s exit code indicates an error, then the corresponding bit for that
fault injection is classified as ACE. Then dividing the total number of ACE instances
by the total number of injected faults gives the average SDC AVF of the register
file. Similarly, the DUE AVF is computed as the ratio of ACE and un-ACE instances
detected by Spot and the total number of injected faults.

This fault injection study with 15 SPEC benchmarks shows that the SDC AVF for
the register file reduces from 20.2% to 6.5%, resulting in three-fold increase in SDC
coverage. The difference—20.2% – 6.5%—13.7% is the true DUE AVF. The actual
DUE AVF goes up slightly more because of false DUE effects (in which faults in
un-ACE bits are flagged as errors).

Figure 8.6 shows the performance degradation experienced by SPEC integer
benchmarks when Spot implements the highest level of reliability it can offer. On
average, Spots slow down execution four-fold. In the figure, duplication is the
overhead from duplicating the instruction streams to create the redundant execu-
tion streams, whereas detection shows the overhead for instructions to check for
errors. Basepin is Pin’s overhead to implement the dynamic binary translation. As

308 CHAPTER 8 Software Detection and Recovery

8

7

6

5

4

3

2

1

0

09
9.

go
12

9.
co

m
pr

es
s

13
0.

li
14

7.
vo

rte
x

17
9.

ar
t

19
7.

pa
rs

er

G
eo

M
ea

n

30
0.

tw
ol

f

25
6.

bz
ip

2

25
5.

vo
rte

x

25
4.

ga
p

18
6.

cr
af

ty

18
3.

eq
ua

ke

18
1.

m
cf

17
7.

m
es

a

16
4.

gz
ip

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 T

im
e

detection
duplication
basepin
nopin

FIGURE 8.6 Execution time increase from Spot’s software RMT implementa-
tion using the dynamic binary translator Pin. Reprinted with permission from
Reis et al. [13]. Copyright © 2006 IEEE.

is obvious from the figure, both detection and duplication add significant overhead
to Spot’s implementation. Spot’s high-performance degradation may be tolerable
when a system cannot complete a program because of frequent soft errors. If Spot
can be combined with an error recovery mechanism (discussed later in this chapter),
then it can let a program proceed to completion. Spot’s performance degradation
can, however, be reduced if the system requires reduced levels of reliability. The
next subsection discusses how to trade off reliability for performance.

Trading off Reliability for Performance
One way to reduce the performance overhead from Spot’s software RMT imple-
mentation is to incur greater numbers of SDC errors. To do this effectively, one can
protect structures with higher AVF or bit counts and potentially remove the protec-
tion on structures with lowerAVFs. For example, in an x86 architecture, the registers
EBP and ESP are typically highly susceptible to transient faults. These registers are
used primarily as pointers loading from and storing to memory. Hence, faults in
these registers will likely cause a segmentation fault.

Spot allows each architectural register to be either protected or not protected
via the binary translation mechanism. If a register is unprotected, instructions to
duplicate the operation that uses the register and instructions that detect a fault
in that register are both eliminated, thereby improving performance of the appli-
cation. Given that the x86 architecture has eight registers, one can create 28 or 256
combinations. For example, one of the 256 combinations could have protection on
the registers EBP and ESP but no protection on the other six registers.

Figure 8.7 shows the performance of each of the 256 combinations against their
SDC AVF. The left side of the graph contains data points that have EBP pro-
tected, causing greater execution time, and the right side of the graph typically

8.4 Fault Detection Using Hybrid RMT 309

6

4

2
N

or
m

al
iz

ed
 E

xe
cu

ti
on

 T
im

e

0
0 5 10 15 20 25

SDC AVF

B

A

FIGURE 8.7 Trading off performance for reliability for the SPEC integer bench-
mark gap. Points A and B are discussed in the text. Reprinted with permission
from Reis et al. [13] Copyright © 2006 IEEE.

has no protection for EBP. As this graph shows, there is performance-reliability
trade-off that software can exploit. For example, a user may choose to get a two-
fold degradation in performance for an SDC AVF of 15% (point B in Figure 8.7),
instead of a four-fold degradation in performance with an SDC AVF of 5% (point
A in Figure 8.7).

Computing AVFs to make this trade-off can, however, be challenging. Obtaining
the AVFs for architectural register files requires numerous fault injection experi-
ments on a per-application basis, which can be tedious. A programmer typically
has visibility into architectural structures only. Microarchitectural structures are
not exposed to the programmer, and current hardware does not provide any way
to compute what the AVFs of different structures could be. To make matters more
complex, AVFs change across structures, so minimizing the AVF of a register file
alone may not mean that the SDC rate of a processor running an application has
been lowered. This remains a future research area in computer architecture.

8.4 Fault Detection Using Hybrid RMT
Software fault detection schemes typically have two limitations. First, the extra
duplication and/or checks add overhead and degrade performance. Both SIS and
software RMT incur significant performance degradation.

Second, software often does not have visibility into certain structures in the
hardware and therefore is often unable to protect such structures. For example, a
software RMT implementation compares input operands for stores. Then the store
can be executed. At this point, the store retires and sends its data to the memory
system. Usually, in a modern dynamically scheduled processor, a store resides in a
store buffer. Once the store retires, it is eventually evicted from the store buffer, and
its data are committed to the memory system. Asoftware RMT implementation that

310 CHAPTER 8 Software Detection and Recovery

creates the redundant contexts within the same hardware thread cannot, however,
protect the datapath from the store buffer to the memory system because it does
not have visibility into this part of the machine.

Hence, researchers have examined hybrid RMT schemes that combine the best of
software and hardware RMT schemes. Software RMT schemes are typically cheaper
to implement since they do not need extra silicon area. Hardware RMT schemes pro-
vide better fault coverage and lower performance degradation. Compiler-assisted
fault tolerance (CRAFT) is one such hybrid RMT scheme, which is described in this
section.

8.4.1 CRAFT: A Hybrid RMT Implementation
CRAFT augments SWIFT’s implementation of software RMT with hardware sup-
port that improves both fault coverage and performance [12]. CRAFT introduces
two changes in hardware: one for store checks and one for load value replication
(Table 8-1). As shown in Table 8-1, with no fault detection, the stores and loads
execute as is. SWIFT inserts extra instructions to duplicate the instruction stream
and then compares the inputs to both store and load instructions to ensure that
instructions receive the correct values. Once a value is loaded using the original
instruction, SWIFT copies the loaded value to the redundant stream’s correspond-
ing register.

Although SWIFT ensures that the registers that are inputs to stores are fault free,
it cannot protect the store instruction itself or the datapath from the registers to
the branch. For example, if the store instruction is corrupted in the store buffer
after the store receives its inputs, then SWIFT cannot detect the fault. Further, the
extra check instructions themselves add overhead and degrade performance. To
reduce this overhead, Reis et al. [12] propose to introduce new store instructions in
the architecture and a corresponding checking store buffer (CSB) that will handle the
store checks. This creates two flavors of store instructions: the original ones that

TABLE 8-1 ■ Comparison of CRAFT with Other Techniques. Rn = [Rm] Denotes a Load Oper-
ation That Loads Register Rn with a Value from Memory Location Rm. Simi-
larly, [Rn] = Rm Denotes a Store Operation That Stores the Value in Register
Rm to the Memory Location Rn

Instruction
Type

No Fault
Detection

SWIFT CRAFT: CSB CRAFT: LVQ CRAFT: CSB +
LVQ

Store [R11] = R12 br FaultDet, if R11 != R21 [R11] = R12 Same as SWIFT Same as CRAFT: CSB
br FaultDet, if R12 != R22 Duplicate: [R21] = R22
[R11] = R12

Load R11 = [R12] br FaultDet, if R21 != R22 Same as SWIFT R11 = [R12] Same as CRAFT: LVQ
R11 = [R12] Duplicate: R21 = [R22]
R21 = R11

8.4 Fault Detection Using Hybrid RMT 311

cannot commit their data to memory and the duplicate ones that will commit their
values to memory after the stores are checked for faults. CRAFT introduces both
flavors of instructions—possibly back-to-back—as shown in Table 8-1. When both
the original and duplicate stores enter the CSB, the CSB will compare their inputs
to ensure that they are fault free and then commit the value of the original store.
The CSB must be implemented carefully to ensure that both redundant streams can
make forward progress. This can be usually solved by reserving a few CSB entries
for each stream.

SWIFT is also partially vulnerable in its load check and duplication sequence
(Table 8-1). The load instruction can still experience a transient fault between the
address check (branch instruction shown in table) and the address consumption
by the load instruction. Also, there is a vulnerability to transient faults between
the original load (R11 = [R12]) and the move operation (R21 = R11). That is, if R11 is
corrupted after the load operation, then R21 will receive the corrupted value, and
both redundant streams will end up using the same faulty value, which will go
undetected.

To avoid these problems associated with a load operation, CRAFT provides
the option of using a hardware LVQ as described in Load Value Queue, p. 235,
Chapter 6. The LVQ is a structure that allows the primary redundant stream to
forward load values to the duplicate stream using a queue of load addresses and
values. Unlike SWIFT, CRAFT will issue two load instructions: one is the original
one and the other is the duplicate one. The duplicate one will pick up its load
value from the LVQ instead of the cache. It should be noted that if both redun-
dant loads read their values from the cache, then there is the possibility of a false
error. This is because the value in the cache could be changed by an I/O device or
another processor before the second redundant load has the opportunity to read it
from the cache. SWIFT avoids this problem by only issuing one load and copying
the loaded value to the redundant stream’s register. CRAFT not only avoids this
using the LVQ but also provides greater fault coverage since the load path is now
completely protected.

8.4.2 CRAFT Evaluation
Figure 8.8 shows a comparison of AVF from the different schemes. NOFT has no
fault tolerance. SWIFT is described in the previous subsection. CRAFT has three
versions: one with CSB, one with LVQ, and one with both the CSB and the LVQ.
CRAFT:CSB uses SWIFT’s load replication scheme and CRAFT:LVQ uses SWIFT’s
store checking scheme. SDC is broken into two pieces: dSDC is the one that
definitely causes an incorrect output but without crashing the program. pSDC
is a probable SDC that causes system hangs or other program crashes without
producing an output. AVFSDC = AVFdSDC + AVFpSDC. (Total) AVF = AVFdSDC +
AVFpSDC + AVFDUE.

Both the performance and AVF were measured on a simulated Itanium2 proces-
sor using benchmarks drawn from SPEC CPUINT2000, SPEC CPUFP2000, SPEC

312 CHAPTER 8 Software Detection and Recovery

System

No FT 18.65%

AVF AVFdSDC AVFDUE AVFDUE AVFDUEAVF AVFAVFpSDC AVFpSDC AVFpSDCAVFdSDC AVFdSDC

7.89% 10.76%

Integer Register File (GR) Predicate Register File (PR) Instruction Fetch Buffer (IFB)

0.41%

1.69%

1.69%

0.04%

0.12%

0.09%

0.13%26.78%

23.80%

25.14%

22.95%

SWIFT

CRAFT:CSB

CRAFT:LVQ

CRAFT:CSB1LVQ

0.00%

24.96%

23.30%

23.33%

21.52%

1.58 % 0.55% 1.03% 0.00% 8.64% 4.48% 4.16% 0.00%

17.99%

14.17%

13.91%

19.57%

0.53%

0.23%

1.18%

1.05%

0.65%

0.02%

0.72%

0.01%

19.17%

19.82%

16.07%

14.97%

3.91%

3.47%

3.19%

2.65%

0.01%

0.01%

0.02%

0.02%

0.03%

0.01%

0.04%

0.01%

3.95%

3.49%

3.52%

2.68%1.39%

FIGURE 8.8 SDC and DUE AVF of three structures with different fault detection
options. Reprinted with permission from Reis et al. [12]. Copyright © 2005 IEEE.

CPUINT95, and MediaBench suites. To measure the AVF, the authors injected faults
randomly into three structures—integer register file, predicate register file, and
instruction fetch buffer—in a detailed timing simulator of the Itanium2 processor.
Each faulty simulation was run until all effects of the fault manifested in an archi-
tectural state or until the fault was masked. Once all effects of a fault manifest in an
architectural state, the authors only needed to run the functional (or architectural)
simulation, thereby improving simulation speed and accuracy of AVF numbers by
running programs to completion, which allowed the authors to precisely determine
if the faulty bit was ACE or un-ACE.

As expected, SWIFT reduces the SDC AVF for the three structures 19-fold, which
is a significant improvement. CRAFT:CSB decreases the AVF more than 2.5-fold
over SWIFT. The introduction of the LVQ, however, makes CRAFT’s AVF worse
because the loads in CRAFT:LVQ could experience a segmentation fault before
the load address is checked. In contrast, SWIFT checks the fault before the load
is executed in the program, thereby avoiding this problem. CRAFT could avoid
this problem if a mechanism to delay raising the segmentation fault until the load
addresses are compared for faults is provided (e.g., see Mechanism to Propagate
Error Information, p. 197, Chapter 5).

Reis et al. [12] also introduced a new metric called MWTF to measure the prof-
itability of the different fault detection schemes. MWTF is similar to the metric MITF,
as discussed in Exposure Reduction via Pipeline Squash, p. 270, Chapter 7. MITF
measures the average number of instructions committed between two errors. MITF,
however, does not apply in this case because the number of instructions of each fault
detection scheme is different from that of the original non-fault-detecting scheme.
However, the total work done by each program under each fault detection scheme
is still the same. Hence, MWTF is a more appropriate term. Like MITF, MWTF is
proportional to the ratio of performance and AVF. Performance is expressed as the
inverse of execution time. Thus, a scheme could be better than another one if its
overall MWTF is higher than that of the other.

Figure 8.9 shows the MWTF for SDC and dSDC errors for the four fault detection
schemes.As expected, CRAFT:CSB has the highest MWTF and is the most profitable

8.5 Fault Detection Using RVMs 313

100.0 1000.0

100.0

10.0

1.0

SWIFT

CRAFT:LVQ
CRAFT:CSB1LVQ

CRAFT:CSB
SWIFT

CRAFT:LVQ
CRAFT:CSB1LVQ

CRAFT:CSB

10.0

1.0

GR PR IF
B

GR PR IF
B

(a) Mean Work to SDC failure (b) Mean Work to dSDC failure

FIGURE 8.9 Normalized MWTF for three structures and the four fault detec-
tion techniques. GR = general purpose registers, PR = predicate registers, IFB =
instruction fetch buffer. Reprinted with permission from Reis et al. [12].
Copyright © 2005 IEEE.

scheme. CRAFT with LVQ loses out because of the increased AVF experienced due
to the faulting loads. However, if only dSDCs—that is, SDC errors that always
result in only an output mismatch with no other clue that a fault has occurred—are
considered, then CRAFT with LVQ schemes do better.

8.5 Fault Detection Using RVMs
This section examines the implementation of fault detection in the virtual machine
layer (Figure 8.1). In the presence of a virtual machine software layer, application
accesses to I/O devices and physical memory go through another level of indirec-
tion. Instead of accessing and managing the hardware resources directly, the OS
implicitly calls the virtual machine layer software that is inserted between the hard-
ware layer and the OS. The virtual machine layer—often referred to as the virtual
machine monitor (VMM)—manages these accesses on behalf of the OS. Because
the OS does not have direct access to the hardware devices, one can run multiple
copies of the same OS or multiple OSs on a single VMM.

In recent years, VMMs have become increasingly popular because of two rea-
sons. First, they provide fault isolation. In some OSs, such as Microsoft Windows,
an application crash or a device driver error may bring down the entire OS. With
an underlying VMM, such a crash would only bring down the offending virtual
machine but not the entire system. Second, in many data centers, machines are
underutilized because they often run dedicated applications, such as a file server,
an e-mail server. The availability of spare compute power and virtual machine soft-
ware allows data center managers to consolidate multiple server software—each
running on its private copy of the OS—on a single physical machine.

Popular VMMs, also sometimes called hypervisors, include VMWare’s ESX
server, Microsoft’s Viridian server, and the freely available Xen software. Many
companies, such as Marathon Technologies, have built their own private virtual
machine layer to implement fault tolerance. Certain virtual machines, such as Xeon,
require special OS support to run efficiently and therefore cannot run unmodified
commodity OSs. This style of virtualization is known as paravirtualization.

314 CHAPTER 8 Software Detection and Recovery

Implementing fault detection using a pair of RVMs uses the same principles as
RMT described in Chapter 6. The sphere of replication includes the two RVMs run-
ning identical copies of applications and OSs (Figure 8.10). The output comparison
is done at I/O requests from the application and OS to the VMM. The VMM syn-
chronizes both copies of the virtual machine and sends the I/O request out to the
I/O devices. To provide storage redundancy, the same I/O request could be sent
to multiple identical disks as well.

Input replication can be tricky since both redundant copies must receive I/O
interrupts and responses at the same exact instruction. To facilitate input repli-
cation, execution is typically broken up into multiple epochs. An epoch can be a
sequence of a preset number of committed instructions. At the end of an epoch,
I/O interrupts are replicated and delivered to the RVMundant virtual machines,
so that both virtual machines process them at the same instruction boundary.

Like other software fault detection schemes, reads and writes from special
machine registers, such as the cycle counter register or time of day register, must be
handled with care since the RVMs can read them at different times. Such registers
can be treated as being outside the sphere of replication. Writes to such registers
must be synchronized and compared by the VMM. Reads from these registers can
specify an epoch boundary. The VMM can replicate these reads to the RVMs.

Application Application

Operating System Operating System

Virtual Machine 2Virtual Machine 1

Virtual Machine Monitor

I/O Devices (e.g., disks, network)

Sphere of
Replication

Output ComparisonInput Replication

FIGURE 8.10 Redundant virtual machines.

8.6 Application-Level Recovery 315

The commercially available Marathon EverRun server uses similar principles
of RVMs to implement fault detection completely in software [15]. The EverRun
machine also allows recovery in case one of the virtual machines hangs. The Ever-
Run machine accomplishes this by copying the state of one virtual machine to
another and then transparently restarting the entire EverRun server. Bressoud and
Schneider [1] created a similar fault detection scheme using RVMs.

8.6 Application-Level Recovery
Software fault detection techniques discussed so far can reduce the SDC component
of the SER and often replace it with DUE. Once a fault is detected, an error recov-
ery scheme needs to be triggered if the system wants to reduce its DUE rate.
Error recovery can be implemented either in hardware or in software. Chapter 7
discussed various hardware error recovery schemes. The rest of this chapter dis-
cusses software error recovery mechanisms.

Software error recovery schemes, like software fault detection schemes, can
be implemented in three places: in the application, in the OS, or in the VMM.
Application-level recovery allows an application programmer to implement recov-
ery without changing the underlying OS. Database applications have traditionally
implemented their own recovery schemes to “undo” failed transactions. OS-level
recovery requires changing the OS itself (or at least some device drivers), which can
be more difficult to implement, test, and deploy. A virtual machine can run several
commodity OSs simultaneously and can be a convenient spot to implement both
fault detection and software error recovery since it does not require any change to
the OSs themselves.

This section discusses three flavors of application-level error recovery: forward
error recovery using triplication and arithmetic codes, log-based backward error
recovery in a database system using logs, and a checkpoint-based backward error
recovery scheme for shared-memory parallel programs. Applications themselves
can, of course, implement their own recovery scheme using application-specific
knowledge and custom implementations. A complete coverage of all such tech-
niques is beyond the scope of this book. Nevertheless, the three schemes described
in this section will illustrate some of the challenges faced by application-level
recovery schemes. The basic principles of error recovery, such as output and input
commit problems, are similar to what has been discussed for hardware implemen-
tations of backward error recovery in Chapter 7.

8.6.1 Forward Error Recovery Using Software
RMT and AN Codes for Fault Detection

As the name suggests, a forward error recovery scheme continues to execute—that
is, move forward—on encountering an error. In an application, such a forward
recovery can be implemented by using three redundant elements: the first two for

316 CHAPTER 8 Software Detection and Recovery

fault detection and the third for recovery. One possibility is to implement three
redundant streams of instructions and use majority voting to decide what stream
is in error. Alternatively, one can use two redundant streams augmented with an
additional fault detection capability to decide the copy in error. These schemes are
described by Reis et al. [10].

The first scheme of Reis et al.—called SWIFT-R—intertwines three copies of
a program and adds majority voting before critical instructions (Figure 8.11).
Figure 8.11 shows an example of how this can be implemented. Registers R1n
denote the original set of registers, registers R2n denote the second set, and reg-
isters R3n denote the third set of registers. As Figure 8.11 shows, before a load
(R13 = [R14]), majority voting ensures that one has the correct value in R14. The add
instruction is triplicated. Finally, before a store operation is performed ([R11] = R12),
both its operands are validated through majority voting. On average, Reis et al.
found that SWIFT-R degrades performance by about 200% using this triplication
mechanism. However, it improves the SDC AVF of the architecture register file
about 10-fold.

To reduce the performance degradation from triplicating every instruction,
Reis et al. also explored the idea of using only two redundant streams. To facil-
itate the recovery, the second stream is encoded as an AN code (see AN Codes,
p. 182, Chapter 5), where A= 3 is a constant that multiplies the basic operand N
found in the first redundant stream. Errors in the AN-coded stream can be detected
by dividing the operands in this stream by A. If the modulus is nonzero, then this
stream had an error. Alternatively, if operands in the first non-AN-coded stream
when multiplied by Ado not match with the AN-coded stream, but the AN operand
is divisible by A, then the first stream must be in error. Once the error is decoded, the
state of the correct stream can be copied to the faulty stream and execution restarted.
This AN-coding mechanism significantly improves the performance over SWIFT-R
and degrades the performance on average by only 36%. However, this AN-coding

Original Code Fault Tolerant Version

majority(R14, R24, R34)

R13 5 [R14]

R23 5 R23

R33 5 R33

R115 R121 R13 R11 5 R12 1 R13

R21 5 R22 1 R23

R31 5 R32 1 R33

majority(R11, R21, R31)

majority(R12, R22, R32)

[R11] 5 R12 [R11] 5 R12

R13 5 [R14]

FIGURE 8.11 SWIFT-R triplication and validation.

8.6 Application-Level Recovery 317

mechanism reduces the SDC AVF of the architectural register file by only around
50%. This AN-coding scheme has lower fault coverage than SWIFT-R because
AN-coded values cannot propagate through logical operations, such as OR
and AND. Also, multiplying an operand N by A may cause an overflow. In
cases where the compiler cannot guarantee an overflow, it cannot fully protect
the operands.

8.6.2 Log-Based Backward Error Recovery
in Database Systems

Unlike the somewhat generic forward error recovery technique described in the
previous section, the error recovery technique in this section is customized to a
database program. A database is an application that stores information or data in
a systematic way. It allows queries that can search, sort, read, write, update, or
perform other operations on the data stored in the database. Databases form a
very important class of application across the globe today and are used by almost
every major corporation. Companies store information, such as payroll, finances,
employee information, in such databases. Consequently, databases often become
mission-critical applications for many corporations.

To avoid data loss, databases have traditionally used their own error recov-
ery schemes. Many companies, such as Hewlett-Packard’s Tandem division, sold
fault-tolerant computers with their own custom databases to enhance the level of
reliability seen by a customer. Databases can get corrupted due to both a hardware
fault and a software malfunction. The error recovery schemes for databases are
constructed in such a way that they can withstand failures in almost any part of the
computer system, including disks. This includes recovering from transient faults
in processor chips, chipsets, disk controllers, or any other silicon in the system
itself.

To guard against data corruption, commercially available commodity databases
typically implement their own error recovery scheme in software through the use
of a “log.” Database logs typically contain the history of all online sessions, tables,
and contexts used in the database. These are captured as a sequence of log records
that can be used to restart the database from a consistent state and recreate the
appropriate state the database should be in. The log is typically duplicated to protect
it against faults.

The rest of this subsection briefly describes how a database log is structured and
managed. For more details on databases and database logs, readers are referred to
Gray and Reuter’s book on transaction processing [3]. There are three key compo-
nents to consider for a log: sequential files that implement the log, the log anchor,
and the log manager. Logs are analogous to hardware implementations of history
buffers (see Incremental Checkpointing Using a History Buffer, p. 278, Chapter 7),
but the differences between the two are interesting to note.

318 CHAPTER 8 Software Detection and Recovery

Log Files
A log consists of multiple sequential files that contain log records (Figure 8.12).
Each log file is usually duplexed—possibly on different disks—to avoid a single
point of failure. The most recent sequential files that contain the log are kept online.
The rest are moved to archival storage. Duplicate copies of each physical file in a
log are allocated at a time. As the log starts to fill up, two more physical files are
allocated to continue the log. Because the log consists of several duplicated files,
its name space must be managed with care.

Log Anchor
The log anchor encapsulates the name space of the log files. The redundant log files
use standard file names ending with specific patterns, such as LOGA00000000 and
LOGB00000000, which allow easy generation and tracking of the file names. The
log anchor contains the prefixes of these filenames (e.g., LOGA and LOGB) and the
index of the current log file (to indicate the sequence number of the log file among
the successive log files that are created).

The log anchor typically has other fields, such as log sequence number (LSN),
for various log records and a log lock. The LSN is the unique index of a log record
in the log. The LSN usually consists of a record’s file number and relative byte
offset of the record within that file. An LSN can be cast as an integer that increases
monotonically. The monotonicity property of a log is important to ensure that the
log preserves the relative timeline of the records as they are created. The log anchor
typically maintains the LSN of the most recently written record, LSN of the next
record, etc.

Long-term Archive (e.g., tapes)

LOGA Files LOGB Files

Log Records
Stored in LOGA
& LOGB files

Log
Anchor

FIGURE 8.12 Structure of a database log.

8.6 Application-Level Recovery 319

The log anchor also controls concurrent accesses to the end of the log using an
exclusive semaphore called the log lock. Updates to sequential files happen at the
end of the file. Hence, accesses to the end of the log by multiple processes must be
controlled with a lock or a semaphore (or a similar synchronization mechanism).
Fortunately, updates happen only to the end of the log since intermediate records
are never updated once they are written. Access to this log lock could become a
performance bottleneck. Hence, the log lock must be implemented carefully.

Log Manager
The log manager is a process or a demon that manages the log file and provides
access to the log anchors and log records. In the absence of any error, the log
manager simply writes log records. However, when an application, a system, or
a database transaction reports an error, the log is used to clean up the state. To
return each logged object to its most recent consistent state, a database transac-
tion manager process would typically read the log records via the log manager,
“undo” the effect of any fault by traversing backward in time, and then “redo” the
operations to bring the database back to its most recent consistent state.

8.6.3 Checkpoint-Based Backward Error
Recovery for Shared-Memory Programs

Checkpoint-based error recovery is another backward error recovery scheme.
Unlike log-based backward error recovery, checkpoint-based schemes must peri-
odically save their state in a checkpoint; hence, the application’s performance may
suffer if checkpoints are taken frequently. A log-based recovery updates the log
incrementally, so it incurs relatively lower performance degradation for the appli-
cation compared to checkpointing. However, in the log-based error recovery, to
create the consistent state of the application, one must traverse the log and recreate
the application’s state incrementally. Hence, the error recovery itself is slower in
log-based backward error recovery than in checkpoint-based recovery, which can
simply copy the checkpoint to the application’s state and continue execution.

This section discusses an example of application-level checkpointing proposed
by Bronevetsky et al. [2]. Although the discussion will be centered around shared-
memory programs, the same basic principles can be applied to message-passing
parallel programs as well. First, a brief overview of the technique is given. Then,
two important components of the program, saving state and avoiding deadlocks
for synchronization primitives, are discussed.

Overview
In the method of Bronevetsky et al., an executable with checkpointing capabili-
ties must be created. To achieve this, an application programmer must annotate a
shared-memory parallel program with potentialCheckpoint() calls in places where

320 CHAPTER 8 Software Detection and Recovery

it may be safe to take a checkpoint (not shown in figure). The authors’ preprocessor
then instruments the original application source code with code necessary to do the
checkpointing. The preprocessor avoids taking checkpoints at some of the poten-
tialCheckpoint() calls where it deems it unnecessary. Then the code runs through
the normal compilation procedure and creates the corresponding executable.

When this executable is run, there is a coordination layer to ensure that system-
wide checkpoints are taken at the correct point without introducing deadlocks
(Figure 8.13). The running program makes calls to the OpenMP library that imple-
ments the shared-memory primitives. OpenMP is a current standard to write
shared-memory parallel programs. These shared-memory primitives in turn run
on native shared-memory hardware.

The checkpointing protocol itself is done in three steps. (1) Each thread calls
a barrier. (2) Each thread saves its private state. Thread 0 also saves the shared
state. (3) Each thread calls a second barrier. The recovery algorithm works in three
phases as well. (1) Every thread calls a barrier. (2) All threads restore their private
variables. Thread 0 restores the shared variables as well. (3) Every thread calls a
barrier. Execution can restart after step 3.

A barrier operation—both for checkpointing and for normal operations—must
ensure that all threads globally commit their memory values, so that all threads have
the same consistent view of memory after emerging from the barrier. The check-
point barriers must also not interfere with normal barriers in a shared-memory

App.

Run time

Compile time
C3 Preproc. Native Comp.

Application
Source
with CP code

Application
Source

Executable

SMP Hardware

Shared Memory System
with OpenMP

Coordination
Layer

OpenMP
(unmodified)

App.

Coordination
Layer

OpenMP
(unmodified)

FIGURE 8.13 Overview of compile- and run-time methodologies used in
checkpoint-based backward error recovery proposed by Bronevetsky et al.

8.6 Application-Level Recovery 321

program. This is because one of the threads could enter a checkpointing barrier—
waiting for other threads to do the same—whereas another thread could enter a
normal program barrier—waiting for other threads to do the same. This would
cause a deadlock. How to avoid such situations is discussed below.

Saving State
Hardware typically does not have visibility into an application’s data structures
and hence must interpret the entire register file or the memory as an architectural
state. In contrast, an application can precisely identify what constitutes its state,
which typically consists of the global variables, the local variables, the dynami-
cally allocated data called the heap, and a stack of function calls and returns. An
application’s checkpoint must consist of these data structures.

The global and local variables are easily identifiable in an application and can
be saved at checkpoint time. To tackle the heap, Bronevetsky et al. [2] created their
own heap library to keep track of any dynamically allocated data structures, so
that at checkpoint time, the application can easily identify how much of the heap
has been allocated and must be saved. Instead of keeping track of the stack by
using implementation-dependent hardware registers, the authors use their own
implementation of the call stack. For every function call that can lead to the poten-
tialCheckpoint() call, they push the function call name into a separate pc_stack.
For every function return, they pop the stack. This allowed the authors to precisely
keep track of the stack. Variables local to a function call are similarly saved in a
separated local variable stack corresponding to every function call push.

Avoiding Deadlocks in Synchronization Constructs
Shared-memory parallel programs usually offer two synchronization primitives—
barrier and locks—both of which can cause deadlocks during checkpoint creation.A
barrier is a global synchronization primitive. All threads must reach the barrier and
usually commit any outstanding memory operation before any thread can exit the
barrier. A lock and unlock pair is typically used by a single thread to create a critical
section in which the thread can have exclusive access to specific data structures
guarded by the lock. When a thread holds a lock, other threads requesting the lock
must wait until the thread holding the lock releases it through an unlock operation.
Message-passing programs do not have barriers or locks, so deadlocks associated
with locks and barriers will not arise in message-passing programs.

Figure 8.14 shows examples of deadlock scenarios for a barrier and for a lock
operation. A deadlock could occur if one of the threads (Thread 0 in Figure 8.14a)
enters a checkpoint call site, whereas the other threads wait for a normal program
barrier. Thread 0 will never enter the normal program barrier because it waits for
Thread 1 and Thread 2 to also enter the global checkpoint creation phase. Thread 1
and Thread 2 wait for Thread 0 to enter the normal program barrier instead. This
causes a deadlock.

322 CHAPTER 8 Software Detection and Recovery

T
im

e

Normal
Program
Barrier

Thread 0
Thread 1

Thread 2 Thread 0 Thread 1

Checkpoint creation point

Lock

Unlock

Unlock

(a) (b)

Lock

FIGURE 8.14 Deadlock scenarios for barrier (a) and lock (b) operations when
global checkpoints must be taken.

Similarly, Figure 8.14b shows a deadlock scenario with a lock operation. Thread 1
grabs a lock and enters its critical section. Then it decides to take a checkpoint and
waits for Thread 0 to enter the checkpoint phase as well. Thread 0, on the other
hand, tries to acquire the lock Thread 1 is holding, fails, and waits for Thread 1 to
release the lock. Thread 1 will not release the lock till Thread 0 enters the global
checkpoint phase. Thread 0 will not enter the global checkpoint phase, since it waits
for Thread 1 to release the lock. This causes a deadlock.

The solutions to both deadlock problems are simple. For the barriers, Thread 1
and Thread 2 must be forced to take a checkpoint as soon as they hit a normal
program barrier, and some other thread (Thread 0) in this case has initiated a
checkpoint operation. This can be implemented through simple Boolean flags
implemented via shared memory. Similarly, a flag can be associated with each
lock. Before a thread initiates a checkpoint, it sets the flag corresponding to all
locks it is holding to TRUE. Then it releases all its locks. When a different thread
acquires the lock, it checks the value of the flag associated with the lock. If it is
TRUE, then it releases the lock and takes a checkpoint. Eventually, the thread that
originally held the lock and initiated the checkpoint re-requests the lock, acquires
it, and continues with normal operation.

8.7 OS-Level and VMM-Level Recoveries
Recovery in the OS or the VMM is very appealing. One can imagine running
multiple applications, such as an editor and a playing audio in the background,
when one’s machine crashes. When the system recovers from this error, it would be
very nice to have both the editing window with unsaved changes visible and the
song replayed exactly from where it was left off. This requires extensive checkpoint-
ing and recovery mechanisms in either the OS or the VMM. Commercial systems
are yet to fully adapt these techniques.

8.8 Summary 323

Operating System Kernel

Pseudo-Device Driver (PDD)

Device Driver (DD)

Device

FIGURE 8.15 The pseudo-device driver (PDD) software layer.

An interesting OS-level approach to handle the output commit problem has been
proposed by Masubuchi et al. [6]. Disk output requests are redirected to a pseudo-
device driver rather than to the device driver (Figure 8.15). The pseudo-device
driver blocks outputs from any process until the next checkpoint. Nakano et al. [7]
further optimized this proposal by observing that disk I/O and many network I/O
operations are idempotent and can be replayed even if the output has already been
committed once before. This is because disk I/O is naturally idempotent. Network
I/O is not idempotent by itself, but TCP/IP network protocol allows sending and
receiving of the same packet with the same sequence number multiple times. The
receiver discards any redundant copies of the same packet.

8.8 Summary
Software fault-tolerance techniques are gaining popularity. Recently, Marathon
Technologies introduced software fault tolerance in its EverRun servers. Software
fault detection and error recovery schemes can be implemented in various lay-
ers, such as in an application, in an OS, and in a VMM. Faults can be detected in
an application using SIS or software RMT. In SIS, a program precomputes signa-
tures corresponding to a group of instructions at compile time. By comparing these
signatures to the ones generated at run-time, one can detect if the program flow
executed correctly.

In contrast, software RMT runs two redundant versions of the same program
through a single hardware context. Unlike hardware RMT implementations where
the program counter is inside the sphere of replication, software RMT implemen-
tations share the same program counter among the redundant versions. Hence,
the program counter is outside the sphere of replication and must be protected to
guarantee appropriate fault coverage. Such software RMT schemes can be imple-
mented either via a compiler or via binary translation. Software RMT schemes can
also be augmented with specific hardware support, such as an LVQ or a CSB, to
reduce the performance degradation incurred by a software RMT implementation.
Similarly, faults can also be detected by running a pair of RVMs that check each
other via the VMM.

324 CHAPTER 8 Software Detection and Recovery

Like hardware error recovery, software error recovery schemes can also be
grouped into forward and backward error recovery schemes. In a software forward
error recovery scheme, one can maintain three redundant versions of a program
in a single hardware context. Alternatively, one can maintain two redundant ver-
sions but add software checks, such as AN codes, to detect faults in individual
versions. On detecting a fault, the software copies the state of the faulty version to
the correction version and resumes execution.

Software backward error recovery, like hardware schemes, can be based either
on logs or on checkpoints. Log-based backward error recovery schemes, typically
implemented in databases, maintain a log of transactions that are rolled back when
a fault is detected. In contrast, a software checkpointing scheme periodically saves
the state of an application or a system to which the application or the system can
roll back on detecting a fault. Such recovery schemes can be implemented in an
application, an OS, or a VMM.

References
[1] T. C. Bressoud and F. B. Schneider, “Hypervisor-Based Fault Tolerance,” ACM Transactions on

Computer Systems, Vol. 14, No. 1, pp. 80–107, February 1996.

[2] G. Bronevetsky, D. Marques, K. Pingali, P. Szwed, and M. Schulz, “Application-Level Checkpoint-
ing for Shared Memory Programs,” in 11th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pp. 235–247, October 2004.

[3] J. Gray and A. Reuter, Transaction Processing: Concepts and Techniques, Morgan Kaufmann
Publishers, 1993.

[4] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood, “Pin: Building Customized Program Analysis Tools with Dynamic Instrumen-
tation,” in ACM SIGPLAN Conference on Programming Language Design and Implementation,
pp. 190–200, June 2005.

[5] A. Mahmood and E. J. McCluskey, “Concurrent Error Detection Using Watchdog Processors—
A Survey,” IEEE Transactions on Computers, Vol. 37, No. 2, pp. 160–174, February 1988.

[6] Y. Masubuchi, S. Hoshina, T. Shimada, H. Hirayama, and N. Kato, “Fault Recovery Mecha-
nism for Multiprocessor Servers,” in 27th International Symposium on Fault-Tolerant Computing,
pp. 184–193, 1997.

[7] J. Nakano, P. Montesinos, K. Gharachorloo, and J. Torrellas, “ReViveI/O: Efficient Handling of
I/O in Highly-Available Rollback-Recovery Servers,” in 12th International Symposium on High-
Performance Computer Architecture (HPCA), pp. 200–211, 2006.

[8] N. Nakka, Z. Kalbarczyk, R. K. Iyer, and J. Xu, “An Architectural Framework for Providing Relia-
bility and Security Support,” in International Conference on Dependable Systems and Networks (DSN),
pp. 585–594, 2004.

[9] N. Oh, P. P. Shirvani, and E. J. McCluskey, “Error Detection by Duplicated Instructions in Super-
Scalar Processors,” IEEE Transactions on Reliability, Vol. 51, No. 1, pp. 63–75, March 2002.

[10] G. A. Reis, J. Chang, and D. I. August, “Automatic Instruction-Level Software-Only Recovery,”
IEEE Micro, Vol. 27, No. 1, pp. 36–47, January 2007.

References 325

[11] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August, “SWIFT: Software Imple-
mented Fault Tolerance,” in 3rd International Symposium on Code Generation and Optimization (CGO),
pp. 243–254, March 2005.

[12] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, D. I. August, and S. S. Mukherjee, “Design
and Evaluation of Hybrid Fault-Detection Systems,” in 32nd International Symposium on Computer
Architecture (ISCA), pp. 148–159, June 2005.

[13] G. A. Reis, J. Chang, D. I. August, R. Cohn, and S. S. Mukherjee, “Configurable Transient Fault
Detection via Dynamic Binary Translation,” in 2nd Workshop on Architectural Reliability (WAR),
December 2006.

[14] M. A. Schuette and J. P. Shen, “Processor Control Flow Monitoring Using Signatured Instruction
Streams,” IEEE Transactions on Computers, Vol. C-36, No. 3, pp. 264–276, March 1987.

[15] G. Tremblay, P. Leveille, J. McCollum, M. J. Pratt, and T. Bissett, “Fault Resilient/Fault Tolerant
Computing,” European Patent Application Number 04254117.7, filed July 9th, 2004

[16] K. R. Walcott, G. Humphreys, and S. Gurumurthi, “Dynamic Prediction of Architectural Vulnera-
bility from Microarchitectural State,” in International Symposium on Computer Architecture (ISCA),
pp. 516–527, San Diego, California, June 2007.

This page intentionally left blank

Index

A
Accelerated alpha particle tests, 62–63
Accelerated neutron tests, 63–66

monoenergetic neutron beam, 64
proton beam, 65
white neutron beam, 63

ACE. See Architecturally correct
execution

Active load address buffer (ALAB),
234–235

Alpha ISA, 152
Alpha particle, 20

accelerated tests, 62–63
architectural fault models for, 30–31
contamination, 2
impact on circuit elements, 45
interaction with silicon crystals, 26
soft errors due to, 63

Alpha radiation, 21
AMD’s OpteronTM processor, 133, 187
AN codes, 182–183, 315–316
Application-level recovery, 315
Architectural ACE bits, 90
Architectural ACE versus un-ACE

paths, 91
Architectural derating factor, 80
Architecturally correct execution:

instruction per cycle (IPC) of, 101
principles, 90
types of, 90

Architecturally correct execution
analysis:

and fault injection, comparison of,
147–149

using point-of-strike fault model, 106
using propagated fault model,

114–117
Architectural un-ACE bits:

dynamically dead instructions, 95
logical masking, 96
NOP instructions, 94
performance-enhancing operations, 94
predicated false instructions, 95

Architectural vulnerability factor:
algorithm, data structures for, 106
basics, 80
of bit, 81
of branch commit table, 100
of CAM arrays, 135, 143–144
DUE and SDC, 86
of hardware structure, 96–97
of Itanium®2 execution unit, 113–114
of Itanium®2 instruction queue,

109–113
of latches, 148
of RAM arrays, 123, 141–142
from SoftArch’s evaluation, 114–117

Architectural vulnerability factor
computation:

using ACE analysis, 104–105
using Little’s law, 98–101
using performance model, 101–105
using SFI, 146

Arithmetic codes. See AN codes; Residue
codes

AR-SMT, 239
Assertion checkers, 299
AVF. See Architectural vulnerability

factor

327

328 Index

B
Backward error recovery, 256

checkpoint-based schemes, 256–257, 319
with fault detection after I/O

commit, 292
with fault detection before I/O

commit, 283
with fault detection before memory

commit, 277
with fault detection before register

commit, 263, 270
granularity of fault detection in,

257–258
incremental and periodic

checkpointing, 278
log-based schemes, 317
output and input commit problems,

256, 264
using global checkpoints. See ReVive
using local checkpoints. See SafetyNet

BCH codes, 177
Binary translation, 306–307
Black’s law, 15
Blech effect, 16
Bohr model of atom, 21
Boron-10 isotopes, 3
Boro-phospho-silicate glass (BPSG), 3
Bragg peak, 27
Branch outcome queue, 237, 240
Branch predictors, faults in, 88, 214–215
Buffer control element (BCE), 220
Burn-in, 8
Burst errors, 178
Burst generation rate (BGR) method, 47

C
Cache-coherent shared-memory

multiprocessors, 288
Cached load data, 231, 233

input replication of, 234
CAM arrays. See Content-addressable

memory arrays
C-Element, 74
Checking store buffer (CSB), 310

Checkpoint-based backward error
recovery:

compile- and run-time methods in, 320
for shared-memory programs, 319

Checkpoints, 256–257, 286–287
Chip-external fault detection, 281
Chip-level redundantly threaded

processor with recovery (CRTR),
269–270

Chip-level redundant threading (CRT)
processors, 240–241

Chip multiprocessor (CMP). See
Multicore processor

Circuit-level SERs, modeling of, 44
Clock circuits, vulnerability of, 59–60
Clock jitter, 59–60
CMOS transistors. See Complementary

metal oxide semiconductor
transistors

Code bits, 163, 166–168
Code words, 163

Hamming distance of, 164–165
Combinatorial logic gates:

masking effects in, 52
SER of, 56

Compiler-assisted fault tolerance
(CRAFT), 310

evaluation of, 311
versus SWIFT, 310

Complementary metal oxide semi-
conductor transistors:

field funneling effect in, 49
permanent faults in, 14
radiation-induced transient

faults in, 20
structure of, 17
switching speed of, 17, 68

Configurable transient fault detection, 306
Content-addressable memory arrays:

AVF of, 135
best-estimate SDC AVFs of, 145–146
bit flip in, 122
of data translation buffer, 143
DUE AVF of, 146
false-negative matches in, 137

Index 329

false-positive matches in, 135–137
hamming-distance-one match in, 137
lifetime analysis of, 134
mechanics of, 122
of store buffer, 143
of write-through and write-back

cache, 144
Cosmic radiation, 3
Cosmic rays. See Primary, Secondary, and

Terrestrial cosmic rays
2048-CPU server system, 3
CRC codes. See Cyclic redundancy check

codes
Critical charge (Qcrit), 3, 29

computation of, 46
to FIT, semiempirical mapping of, 46

Cycle-by-cycle lockstepping, 212. See also
Lockstepping

Cyclic redundancy check codes,
178–181, 300

encoding and decoding process,
179–180

generator polynomials, 181
principle of, 179

D
Database logs, 317

log anchor, 318
log files, 318
log manager, 319
structure of, 318

Database systems, 317
Data caches, 126–128. See also Write-back

cache; Write-through cache
Datapath latches, 114
Data translation buffer, 128, 139

CAM array, 143
RAM array, 142

Deadlocks, for synchronization
primitives, 321

Dead man timer, 294
Decoding process. See Encoding and

decoding process
DECTED code. See Double-error correct

triple-error detect code
Delay buffer, 239

Dependability models, 11–14
availability, 13
maintainability, 13
performability, 14
reliability, 12
safety, 14

Dependence-based checking elision
(DBCE), 245

Detected unrecoverable error, 3
AVF of bit, 86
budgets, 34
definitions, 32–34
false events, 82, 86, 132–133,

195–197, 214
FIT of bit, 83
FIT of chip, 84–85
process-kill versus system-kill

events, 89
tolerance in application servers, 35
true events, 33, 82

Distributed parity, 289
Double bit errors:

detection of, 174
kinds of, 189

Double-bit faults, 176
Double-error correct triple-error detect

code, 176–178
Hamming distance of, 177
parity check matrix for, 177
syndrome, 178

DRAM. See Dynamic random
access memory

Dual-in-line packages, 63
Dual-interlocked cell (DICE), 71–72
Dual-interlocked memory module

(DIMM), 37
Dual modular redundancy (DMR)

system, 208, 259–260
DUE. See Detected unrecoverable error
Dynamically dead instructions, 95,

196, 246
Dynamically scheduled superscalar

pipeline, 152–153
masking effects of injected

faults in, 152
transient faults in, 154–157

330 Index

Dynamic implementation verification
architecture (DIVA), 241–242

CHKcomm pipeline, 243
CHKcomp pipeline, 242
trade-offs in, 243

Dynamic logic gate:
evaluating NAND function, 57–58
evaluating NOR function, 59
masking effects in, 57–59

Dynamic random access memory:
FIT/bit of, 62
scaling trends, 37–38

E
ECC. See Error correction codes
Edge effects, 138
Edge-triggered flip-flop, 50. See also

Flip-flop
Edge-triggered latch, 55
Electrical masking, 37, 53

modeling of, 55
Electromigration (EM), 15–16
Electron–hole pairs, 18, 27–29
Electrons, 21
Emitter-coupled logic (ECL), 220
Encoding and decoding process, 162–163,

179–180
EnduranceTM 4000, 223–224
Error, 7–9

isolation of, 203
recording information about, 203

Error codes, 161
Error coding:

area overhead of, 189–190
basics of, 162

Error correction codes, 2, 5
for state bits, 162
overheads of, 187–190

Error detection:
for execution units, 181
overheads of, 187–190
using parity codes, 168–169

Error detection by duplicated
instructions (EDDI), 303

evaluation of, 304
transformation, 303–304

Error information, propagation of, 197

Error recovery mechanism, 254
EverRun servers, 223, 297, 315
Exponential failure law, 12
External interrupts, 233
Extrinsic faults, 14

F
Fail-over systems, 258–259
Failure in time, 9–10

of bit-level DUE, 83
of bit-level SDC, 83
of chip-level DUE, 84–85
of chip-level SDC, 84–85
mapping of Qcrit to, 46

Failure in time/bit:
of DRAM, 62
of SRAM cell, 61

Failures, 8
False errors, 201

on conditional branches, 196
detection of, 194
on dynamically dead instructions,

196, 199
in narrow values, 196, 200
on neutral instruction types, 198
and true errors, difference between,

197–198
on uncommitted instructions, 198

Fault detection, 5
after I/O commit, 292
C-element for, 74
granularity of, 257–258
before I/O commit, 283
before memory commit, 277
before register commit, 263
in SRT-Memory sphere, 286
using binary translation, 306
using cycle-by-cycle lockstepping, 212
using redundant execution, 208
using RMT, 222

Fault free checkpoint, 278, 281
Fault isolation, 313
Fault propagation, 116
Faults, 6–7

in branch predictors, 88, 214–215
in logic gates, 53
in silicon chips, 6

Index 331

Fault screeners:
natural versus induced perturbations,

274–276
versus parity code, 273–274
research in, 276–277

Fault screening, with pipeline squash and
re-execution, 173

Fault secureness, 182
Fault-tolerant computer system, 212, 216,

218, 259
Faulty bits:

in microprocessor, 81
outcomes of, 32–33

Fetch throttling, 271
Field data collection, 62
Field funneling, 49
Field-replaceable units (FRUs), 203
Fingerprinting, 278, 280

chip-external fault detection
using, 281

First-level dynamically dead (FDD)
instructions, 95, 107, 196

FIT. See Failure in time
Fixed-interval scrubbing, 193–194
Flip-chip packages, 63
Flip-flop:

timing diagram of, 50–51
TVF of, 50

Forward error recovery, 255
DMR systems, 259
fail-over systems, 258–259
pair-and-spare systems, 262
triple modular redundancy system,

260–262
using triplication and arithmetic

codes, 315
Fujitsu SPARC64 V processor:

error checkers in, 265
parity with retry, 264–265

Full adder, logic diagram of, 54
Full-state comparison bandwidths,

281–282

G
Galactic particles, 22
Gate oxide failure modes, 17
Gate oxide insulation, 17
Gate oxide wearout, 18

Geomagnetic rigidity (GR), 25
Global checkpoints, 288, 290, 321
Global recovery point, 291

H

Hamming code, 172
Hamming distance:

of code word, 164–165
of DECTED code, 177
of parity code, 168
of SEC codes, 173
of SECDED codes, 174

Hamming-distance-one analysis, 122,
135, 137

Hard errors, 8
Hardware assertions, 200–202
Hardware error recovery schemes, 254
Hazucha and Svensson model, 46
Hewlett-Packard NonStop Himalaya

architecture, lockstepping in,
218–219

Hewlett-Packard NSAA. See NonStop®

Advanced Architecture
High-k materials, 17
High-performance microprocessor,

70, 102
History buffer:

adding entries to, 279
freeing up entries in, 279
recovery using, 279
structure of, 279

Hot carrier injection (HCI), 18
Hybrid RMT implementation, 310
“Hydrogen-release” model, 19
Hypervisors, 313

I

IA64, 95, 107, 109
IBM G5’s Lockstepped processor

architecture, 220–222
IBM Z-series processors:

lockstepping in, 220
lockstepping with retry, 265

ICount policy, 228, 237
Incremental checkpoint, using history

buffer. See History buffer
Inelastic collisions, 26

332 Index

In-line error detection, 187
Instruction fetch buffer, 312
Instruction queue, 98, 101, 112, 197, 270.

See also Itanium®2 instruction queue
pipeline squash for, benefits of,

272–273
Instruction reuse buffer, 246
Integer register file, 312
Interleaving, 168–169, 190
Intermittent errors, 8
Intermittent faults, 6
Intrinsic faults, 14
Itanium®2 execution unit, 108

AVF analysis for, 113–114
Itanium®2 instruction queue,

108–109
ACE and un-ACE breakdown of,

109–110
AVF analysis for, 109–113

Itanium® architecture, 195
Itanium® processor, 1, 66, 159
Itanium®2 performance model:

evaluation methodology, 107
program-level decomposition, 108

J
Joint electron device engineering council

(JEDEC) standard, 23, 63

L
Latches, 30–31

addition of capacitors to, 70
AVF of, 148
fault injection in, 154–157
in performance simulator, 148
scaling trends, 36
SERs of, 37
vulnerability of, 155

Latch-window masking, 54–56
Lifetime analysis:

of ACE and un-ACE components, 124
of CAM arrays, 134
cooldown in, effect of, 138–140
of RAM arrays, 123

Linear particle accelerators, 76

Little’s law, 181
AVF breakdown for instruction queue

with, 112
for AVF computation, 98–101

Load/store queue (LSQ), 228
Load value queue, 235–236, 240, 268,

283, 311
logging loads using, 287
in SRT processor, 236, 284

Lockstep failure, 214
Lockstepped checkers, 87–89
Lockstepping, 87, 211

advantages of, 213
disadvantages of, 213–216, 225
in HP NonStop Himalaya architecture,

218–219
in IBM Z-series processors, 220, 265
in software, 301
in Stratus ftServer, 216–218

Lockstep processors, 214–215
Log-based error recovery, 283

in database systems, 317
in piecewise deterministic system, 283

Logical masking, 53, 96
logic-level simulation for, 57
modeling of, 54

Logical synchronization unit (LSU), 226
Logic derating factor, 80, 118
Logic gates:

faults in, 53
SER of, 52
technology scaling on, 57

Log sequence number (LSNs), 318
Loose lockstepping, 212, 225. See also

Lockstepping
Los Alamos Neutron Science Center

(LANSCE), 47
LVQ. See Load value queue

M
Machine check architecture, 202–203
Marathon InterConnect (MIC) card, 223
Mean instructions to failure (MITF), 11, 271–

272
Mean time between failures (MTBF), 10

Index 333

Mean time to failure (MTTF), 5, 9, 103, 271
computation of, 114–116
of microprocessors, 5, 66
of temporal double-bit error, 191

Mean time to repair (MTTR), 10
Mean work to failure (MWTF), 11,

312–313
Median time to failure (MeTTF), 9
Memory cells, 31, 44, 179
Metal failure modes:

electromigration, 15–16
metal stress voiding, 16

Metal lines, voids in, 15
Metal stress voiding (MSV), 16
Metrics, 9–11
Microarchitectural ACE bits, 90
Microarchitectural un-ACE bits:

ex-ACE state, 93
idle or invalid state, 93
misspeculated state, 93
predictor structures, 93

Microprocessor, 4, 30, 53, 102
false DUE events in, 195–197
faulty bit in, 81
instruction queue in, 98
MTTF of, 5, 66
predictor structures of, 93
SER of, 43
validation of, 214

Mitigation techniques:
circuit enhancements, 68–74
device enhancements, 67–68

Monoenergetic neutron beam, 64
Multibit errors, 31–32
Multibit faults, 31
Multicore architecture, RMT in, 240
Multicore processor, 240, 269

N
Negative bias temperature instability

(NBTI), 19
Neutron, 21, 23

accelerated tests, 63–66
impact on circuit elements, 45
interaction with silicon crystals, 26

Neutron beam, 65–66
Neutron cross-section (NSC) method, 48

Neutron flux, 23–25
Neutron-induced SER, 62–63
Neutron strike:

architectural fault models for, 30–31
on storage device, 31

nMOS transistors, 17
Nonrecovery mode, handling

faults in, 286
NonStop® Advanced Architecture, 211,

225–227
reintegration in, 261–262

NonStop kernel, 218, 262
NonStop servers, 225
NOP instructions, 94
NSAA. See NonStop® Advanced

Architecture

O
Odd-weight column SECDED code, 175,

187. See also Single-error correct
double-error detect code

Online transaction processing (OLTP)
workload, 281

OpenMP library, 320
OS-level recovery, 299, 322
Out-of-band error decoding and

correction, 189

P
Pair-and-spare systems, 262
Paravirtualization, 313
Parity bits, 170, 289
Parity check matrix:

of DECTED code, 177
properties of, 176
of SEC code, 170–172
of SECDED code, 174–176

Parity codes, 168–169
Parity prediction circuits:

for addition operation, 185
for multipliers, 186

Partial RMT techniques, 245–246
π bit, 197

on caches and memory, 200
for every register, 199

Perceptual vulnerability factor, 81

334 Index

Periodic checkpoint, 278
with fingerprinting, 280

Permanent errors, 8
Permanent faults, 6

in CMOS transistors, 14
Pin dynamic instrumentation

framework, 306
Pions and muons, 23, 29
pMOS latch, 71
pMOS transistors, 17
Point-of-strike fault model, 106

versus propagated fault model, 91–92
Polynomial division, 179
potentialCheckpoint() call, 319
Predicated false instructions, 95
Predicate register file, 312
Primary cosmic rays, 22
Process-kill DUE events, 89
Process pair, 262
Product codes, 170
Program’s execution, fault-free and faulty

flow of, 105
Propagated fault model, 114–117
Propagation delay, 51–53
Proton beam, 65
Protons, 21
Pseudo-device driver (PDD) software

layer, 323

R
Radiation exposure reduction:

with pipeline squash, 270
triggers and actions, 271

Radiation-hardened cells:
DICE latch, 72
DICE memory cell, 72
pMOS latch, 71

Radiation-hardening, 70
Radiation-induced transient faults, 2

in CMOS transistors, 20
Radioactive contamination, 3
Radioactive isotopes, 62
Random access memory (RAM) arrays:

AVF of, 123
best estimate SDC AVFs of, 142–145
of data translation buffer, 142

DUE AVF of, 131–134, 146
fault injection in, 154–157
of store buffer, 142
of write-through and write-back

cache, 141
Random access memory arrays, lifetime

analysis of:
basics, 123
of bit, 124
effect of cooldown in, 125
granularity of, 130
of one-bit cache, 126
structural differences in, 125
working set size for, 129

Reboot, 255
Recovery mode, handling faults

during, 287
Redundant execution schemes, 207
Redundantly multithreaded (RMT),

219, 222
enhancements in, 244
in Hewlett-Packard NSAA, 225–227
implementation in software. See

Software RMT implementation
in Marathon Endurance server,

223–225
in multicore architecture, 240
performance degradation reduction,

244
relaxed input replication, 244
relaxed output comparison, 245
in single-processor core, 227
using specialized checker processor,

241
Redundant virtual machine (RVM),

299, 313–315
Register check buffer, 231–232
Register name authentication (RNA), 201
Register transfer language (RTL), 102, 148
Register update unit (RUU), 228
Register value queue (RVQ), 268
Reliability and Security Engine (RSE), 201
Rendezvous point, 226
Residue codes, 183–185

for addition, 183
for integer operations, 183
for multiplication, 183

Index 335

ReVive, 284, 288
distributed parity, 289
global checkpoint creation, 290
logging writes, 289

“R Unit,” 248–249

S
SafetyNet, 284

checkpoint coordination in, 291
global recovery point, 291–292
local checkpoint creation, 290

Scrubbing, 134, 176, 190–194
SDC. See Silent data corruption
SEC. See Single-error correction
SECDED code. See Single-error correct

double-error detect code
Secondary cosmic rays, 23
SERs. See Soft error rates
ServerNet, 219
Shared-memory parallel program:

deadlock scenarios for barrier and locks,
321–322

with potentialCheckpoint() call, 319
saving state, 321

Signature checkers, 299–300
Signatured instruction streams (SIS),

299–300
Silent data corruption, 3. See also Detected

unrecoverable error
AVF of bit, 86
budgets, 34
definitions, 32–34
FIT of bit, 83
FIT of chip, 84–85
tolerance in application servers, 35

Silicon chips, 4
faults in, 6
lifetime of, 19

Silicon-on-insulator (SOI) technology,
67–68

Simultaneous and redundantly threaded
processor with recovery (SRTR)
processor, 266–268

active list and shadow active list, 268
commit vectors, 269
load value queue, 268
prediction queue (predQ), 268
register value queue, 268

Simultaneous and redundantly threaded
(SRT)-memory:

fault detection in, 286
input replication in, 232
output comparison in, 230–231

Simultaneous and redundantly threaded
(SRT) processor:

asynchronous interrupts in, 288
checkpointing in, 286
input replication in, 232
instruction replication in, 232
load value queue (LVQ)-based

recovery in, 236, 284
logging in, 286
output comparison in, 230
performance evaluation of, 236, 238
redundant threads in, 229
sphere of replication in, 229–230

Simultaneous and redundantly threaded
(SRT)-register:

input replication in, 233
output comparison in, 231–232

Simultaneous multithreaded (SMT)
processor, 228–229

Single-bit error, 32, 165, 167, 170, 174
Single-bit faults, 32, 135, 137, 162–163
Single-error correct double-error detect

code, 132, 165, 174–176
Hamming distance of, 174
parity check matrix of, 174–176
syndrome, 174

Single-error correction, 170–173
encoder and decoder, 187–188
Hamming distance of, 173
overhead of, 166, 168
parity check matrix for, 170–172
syndrome, 172

Slack fetch mechanism, 237
SlicK, 246
SoftArch, 114–117
Soft error rates, 5, 11, 30

of CMOS chips, 24
of combinatorial logic gates, 56
of latches, 37
of logic gates, 52
measurements of, 60
of SRAM cells, 36

336 Index

Soft errors:
accelerated measurements of, 62–63
cost-effective solutions to, 4–6
due to alpha particles, 63
evidence of, 2–3
field data on, 62
protection schemes, 5
scaling trends, 36–38
sensitivity, 80
types of, 3–4

Software assertions, 299
Software bugs, 4, 259
Software checkers, 299–300
Software error recovery, 299, 315
Software fault detection, 299

limitations of, 309
using hybrid RMT, 309
using RVMs, 313
using signatured instruction streams,

299–300
using software RMT, 301

Software fault-tolerance, 297
implementation options for, 298

Software-implemented fault tolerance (SWIFT),
305–306

Software RMT implementation, 298, 303
fault detection using, 301
sphere of replication of, 302
using binary translation, 306

Solar cycle, 22
Solar particles, 22
Spallation reaction, 64
SPEC CPU 2000 benchmarks, 95, 281
SPEC CPU 2000 floating-point (SPEC CFP),

282
SPEC CPU 2000 integer (SPEC CINT), 282
SPECWeb workload, 281
Sphere of replication, 208, 223

components of, 208–209
in Endurance machine, 223
in G5 microprocessor, 220
inputs to, 232
in NSAA, 226
output comparison and input

replication, 211
size of, 209–211
in SRT processor, 229

Spot, 306
evaluation of, 307
performance-reliability trade off,

308–309
SRAM. See Static random access memory
S390 Servers, 248
Static random access memory, 3

addition of capacitance to, 69–70
alpha particle impact on, 45
FIT/bit of, 61
scaling trends, 36

Statistical fault injection (SFI), 102, 148
architectural and microarchitectural

state comparison in, 151
AVF computation using, 146
case study of. See Statistical fault

injection (SFI) study, at Illinois
in latches and RAM cells, 156–157
random sampling in, 149–150
into RTL model, 148, 151

Statistical fault injection (SFI) study,
at Illinois:

logic blocks in, 156–157
methodology, 152–154
processor model in, 152

Stopping power, 26–29
Store buffer, 128, 132

CAM array, 143
RAM array, 142

Store value prediction, 246
Stratus ftServer, 259, 261

DMR configuration, 216
fault detection and isolation, 216–217
lockstepping in, 216–218
TMR configuration, 217

SWIFT-R triplication and validation, 316
Symmetric multiprocessors (SMP), 216
Symptomatic fault detection, 273
Syndrome, 172, 174, 178
System-kill DUE events, 89
System-wide checkpoints, 283

T
Temporal double-bit error:

DUE FIT of, 191–194
with fixed-interval scrubbing, 193–194
MTTF of, 191–193
without scrubbing, 191–192

Index 337

Terrestrial cosmic rays, 24
Terrestrial differential neutron flux, 25
Thorium-232, 62
Timestamp-based assertion checking

(TAC), 201
Time to failure (TTF), 9, 115
Timing vulnerability factor (TVF), 50–52
Transient faults, 2, 6, 154, 156, 182.

See also Radiation-induced
transient faults

Transistors per chip, 1
Transitive dynamically dead (TDD)

instructions, 95, 107, 196
Translation lookaside buffer (TLB).

See Data translation buffer
Transmission lines, 178–179, 204
Triple-bit faults, 177
Triple-modular redundancy (TMR)

system, 4–5, 208, 260–262
Triple-well technology, 67
Triply redundant system, 255, 257

U
UltraSPARC-II-based servers, 3
un-ACE bits, 90–92
Uncached load data, 231, 233
Uranium, 2, 62
User-visible errors, 6, 80, 123, 148, 152. See

also Soft errors

V
Verilog, 102, 152
Virtualization layer, 298
Virtual machine monitor (VMM), 313
VMM-level recovery, 322
Voluntary rendezvous opportunity

(VRO), 227

W
Watch-dog processor, 300
Weapons Neutron Research (WNR),

47, 64–65
White neutron beam, 63–64
Windows hardware quality labs

(WHQL) tests, 218

Windows NT® reboots, 218
Wirebond-type packages, 63
Write-back cache, 127, 131–132

CAM array, 144
RAM array, 141

Write-through cache, 127, 131
CAM array, 144
RAM array, 141

Z
z6 architecture, 220
z990 architecture, 220

This page intentionally left blank

	cover
	page_r01
	page_r02
	page_r03
	page_r04
	page_r05
	page_r06
	page_r07
	page_r08
	page_r09
	page_r10
	page_r11
	page_r12
	page_r13
	page_r14
	page_r15
	page_r16
	page_r17
	page_r18
	page_r19
	page_r20
	page_r21
	page_r22
	page_z0001
	page_z0002
	page_z0003
	page_z0004
	page_z0005
	page_z0006
	page_z0007
	page_z0008
	page_z0009
	page_z0010
	page_z0011
	page_z0012
	page_z0013
	page_z0014
	page_z0015
	page_z0016
	page_z0017
	page_z0018
	page_z0019
	page_z0020
	page_z0021
	page_z0022
	page_z0023
	page_z0024
	page_z0025
	page_z0026
	page_z0027
	page_z0028
	page_z0029
	page_z0030
	page_z0031
	page_z0032
	page_z0033
	page_z0034
	page_z0035
	page_z0036
	page_z0037
	page_z0038
	page_z0039
	page_z0040
	page_z0041
	page_z0042
	page_z0043
	page_z0044
	page_z0045
	page_z0046
	page_z0047
	page_z0048
	page_z0049
	page_z0050
	page_z0051
	page_z0052
	page_z0053
	page_z0054
	page_z0055
	page_z0056
	page_z0057
	page_z0058
	page_z0059
	page_z0060
	page_z0061
	page_z0062
	page_z0063
	page_z0064
	page_z0065
	page_z0066
	page_z0067
	page_z0068
	page_z0069
	page_z0070
	page_z0071
	page_z0072
	page_z0073
	page_z0074
	page_z0075
	page_z0076
	page_z0077
	page_z0078
	page_z0079
	page_z0080
	page_z0081
	page_z0082
	page_z0083
	page_z0084
	page_z0085
	page_z0086
	page_z0087
	page_z0088
	page_z0089
	page_z0090
	page_z0091
	page_z0092
	page_z0093
	page_z0094
	page_z0095
	page_z0096
	page_z0097
	page_z0098
	page_z0099
	page_z0100
	page_z0101
	page_z0102
	page_z0103
	page_z0104
	page_z0105
	page_z0106
	page_z0107
	page_z0108
	page_z0109
	page_z0110
	page_z0111
	page_z0112
	page_z0113
	page_z0114
	page_z0115
	page_z0116
	page_z0117
	page_z0118
	page_z0119
	page_z0120
	page_z0121
	page_z0122
	page_z0123
	page_z0124
	page_z0125
	page_z0126
	page_z0127
	page_z0128
	page_z0129
	page_z0130
	page_z0131
	page_z0132
	page_z0133
	page_z0134
	page_z0135
	page_z0136
	page_z0137
	page_z0138
	page_z0139
	page_z0140
	page_z0141
	page_z0142
	page_z0143
	page_z0144
	page_z0145
	page_z0146
	page_z0147
	page_z0148
	page_z0149
	page_z0150
	page_z0151
	page_z0152
	page_z0153
	page_z0154
	page_z0155
	page_z0156
	page_z0157
	page_z0158
	page_z0159
	page_z0160
	page_z0161
	page_z0162
	page_z0163
	page_z0164
	page_z0165
	page_z0166
	page_z0167
	page_z0168
	page_z0169
	page_z0170
	page_z0171
	page_z0172
	page_z0173
	page_z0174
	page_z0175
	page_z0176
	page_z0177
	page_z0178
	page_z0179
	page_z0180
	page_z0181
	page_z0182
	page_z0183
	page_z0184
	page_z0185
	page_z0186
	page_z0187
	page_z0188
	page_z0189
	page_z0190
	page_z0191
	page_z0192
	page_z0193
	page_z0194
	page_z0195
	page_z0196
	page_z0197
	page_z0198
	page_z0199
	page_z0200
	page_z0201
	page_z0202
	page_z0203
	page_z0204
	page_z0205
	page_z0206
	page_z0207
	page_z0208
	page_z0209
	page_z0210
	page_z0211
	page_z0212
	page_z0213
	page_z0214
	page_z0215
	page_z0216
	page_z0217
	page_z0218
	page_z0219
	page_z0220
	page_z0221
	page_z0222
	page_z0223
	page_z0224
	page_z0225
	page_z0226
	page_z0227
	page_z0228
	page_z0229
	page_z0230
	page_z0231
	page_z0232
	page_z0233
	page_z0234
	page_z0235
	page_z0236
	page_z0237
	page_z0238
	page_z0239
	page_z0240
	page_z0241
	page_z0242
	page_z0243
	page_z0244
	page_z0245
	page_z0246
	page_z0247
	page_z0248
	page_z0249
	page_z0250
	page_z0251
	page_z0252
	page_z0253
	page_z0254
	page_z0255
	page_z0256
	page_z0257
	page_z0258
	page_z0259
	page_z0260
	page_z0261
	page_z0262
	page_z0263
	page_z0264
	page_z0265
	page_z0266
	page_z0267
	page_z0268
	page_z0269
	page_z0270
	page_z0271
	page_z0272
	page_z0273
	page_z0274
	page_z0275
	page_z0276
	page_z0277
	page_z0278
	page_z0279
	page_z0280
	page_z0281
	page_z0282
	page_z0283
	page_z0284
	page_z0285
	page_z0286
	page_z0287
	page_z0288
	page_z0289
	page_z0290
	page_z0291
	page_z0292
	page_z0293
	page_z0294
	page_z0295
	page_z0296
	page_z0297
	page_z0298
	page_z0299
	page_z0300
	page_z0301
	page_z0302
	page_z0303
	page_z0304
	page_z0305
	page_z0306
	page_z0307
	page_z0308
	page_z0309
	page_z0310
	page_z0311
	page_z0312
	page_z0313
	page_z0314
	page_z0315
	page_z0316
	page_z0317
	page_z0318
	page_z0319
	page_z0320
	page_z0321
	page_z0322
	page_z0323
	page_z0324
	page_z0325
	page_z0326
	page_z0327
	page_z0328
	page_z0329
	page_z0330
	page_z0331
	page_z0332
	page_z0333
	page_z0334
	page_z0335
	page_z0336
	page_z0337
	page_z0338

