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and vibration in buildings. The book covers room acoustics but the main emphasis is
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problems connected to service equipment and external sources. Measuring techniques
connected to these fields are also brought in. It is designed for advanced level engi-
neering studies and is also valuable as a guide for practitioners and acoustic con-
sultants who need to fulfil the demands of building regulations.

It gives emphasis to the acoustical performance of buildings as derived from the
performance of the elements comprising various structures. Consequently, the physical
aspects of sound transmission and absorption need to be understood, and the main
focus is on the design of elements and structures to provide high sound insulation and
high absorbing power. Examples are taken from all types of buildings. The book aims
at giving an understanding of the physical principles involved and three chapters are
therefore devoted to vibration phenomena and sound waves in fluids and solid media.
Subjective aspects connected to sound and sound perception is sufficiently covered by
other books; however, the chapter on room acoustics includes descriptions of measures
that quantify the “acoustic quality” of rooms for speech and music.
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Preface 
 

This book is mainly a translated version of a book that appeared in the Norwegian 
language in 2002, published by Tapir Academic Press, which originated from my many 
years of teaching at the Norwegian Institute of Technology (NTH) and the Norwegian 
University of Science and Technology (NTNU). This teaching included building 
acoustics, general noise abatement and acoustic measurement techniques. The book is 
therefore primarily intended for the engineering student but it should be possible to use it 
as a reference, partly because quite a number of references for further reading are 
included. This applies to books and journal articles as well as references to relevant 
standards, international as well as European. The author is painfully aware of the 
constant revisions of the latter group but as they normally retain the number these 
references also should have certain longevity. Although mainly a translated version of 
the Norwegian edition, quite a lot of new material is included, certainly in the chapter on 
sound absorbers, a field of particular interest for me in recent years.  
 The appearance of this English edition is wholly due to my friend and colleague 
Peter Lord, former professor at the University of Salford and long-time editor of the 
Journal of Applied Acoustics. Although getting many hints from colleagues abroad to 
translate the book, Peter really started the process by urging the present publisher to put 
some pressure on me.  
 The cooperation and inspiration offered by colleagues within the acoustics groups 
at NTNU and SINTEF is greatly acknowledged. I also take great pleasure in the many 
contacts with former students, coming back to me to discuss problems encountered in 
their professional life.  
 A special thanks to Arild Brekke, Sigurd Hveem, Ulf R. Kristiansen, Asbjørn 
Krokstad and Rolf Tore Randeberg for reading and commenting on the original 
Norwegian edition. For reading and commenting on some new material on room 
acoustics, I am indebted to Peter Svensson and to Arne Jensen, an expert on FEMLAB™, 
for providing additional FEM calculations.  
 
NTNU, Trondheim 
September 2007        
               



 

 



 
Introduction 

 
 
In recent years there has been an increased interest in office buildings, factory spaces and 
dwellings when the acoustics is of concern. It is acknowledged that reducing noise levels 
in the living environment of people does improve the quality of life and also contributes 
to an improvement in health. Legal requirements demanded by the authorities in various 
countries cover a wide range of characteristics — noise levels, airborne and impact sound 
insulation and reverberation time. In order to enforce such requirements, relevant 
measuring procedures must be provided, formulated in national or international 
standards. The international standards provided by ISO (International Standards 
Organization) have reflected the trend mentioned above, increasing both in number and 
covering broader aspects. On the European stage, the standard organization CEN has 
been very active in bringing out standards as a follow-up to the EU directives. The 
cooperation between ISO and CEN under the Vienna agreement has contributed 
substantially to the creation of standards of general acceptance.  
 However, measurement procedures applied in the laboratory or in the field is just 
one part of the story. Manufactures of building components and materials must have 
harmonized and practically oriented test methods and other guidelines to meet the 
regulatory requirements and consumer expectations in the quality of the products. This 
again is the task of the standards organizations.  
 Controlling the acoustical conditions, be it in the sound insulation, reverberation 
time or noise levels in a building or testing the acoustic properties of components in the 
laboratory may certainly be complicated tasks even for qualified personnel. There is, 
however, a problem area of another dimension than the above tasks — an accurate 
prediction of the acoustic conditions and properties. Nowadays, there certainly is a 
number of computer-based tools at the disposal of the building acoustics expert. 
However, without a thorough understanding of the physical principles one may easily go 
down the wrong track when new and novel constructions are needed. The author believes 
that insight into the physical phenomena and the ability to convert the knowledge into 
practical use is the mark of the expert, not a morass of lexicographical wisdom.  
 Furthermore, from the author’s point of view the concept of building acoustics 
includes all types of acoustic and vibration phenomena related to buildings. 
Traditionally, one might envisage that this concept is limited to sound insulation 
problems in buildings whereas the design of rooms for proper conditions for music and 
speech, i.e. room acoustics, is something else. In the English language, the concept of 
architectural acoustics is often used to include all these aspects but in this book we shall 
use the former notion. In addition to the subjects of sound insulation and room acoustics, 
it would be natural to include all types of noise and vibration problems within the 
concept of building acoustics, whether the sources are internal, e.g. building service, or 
external, e.g. transport or industry. This book does not aim to do justice to all these topics 
but concentrate on the acoustic performance of building elements and constructions, in 
particular how they may be designed to obtain high sound insulation and absorption.  
 A chapter on room acoustics is also included but where large rooms are concerned 
the applications are generally directed towards industrial spaces, not performance spaces 
such as concert halls, theatres etc. This is a choice based on the experience that the reader 
will have fewer problems in finding an extensive literature on the acoustics performance 
of those rooms.  As far as the noise and vibration aspect of building service equipment is 
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concerned, these are not covered in any detail except for the important area of vibration 
isolation. The basis for this type of isolation is included as a part of the general 
description of mechanical oscillations. 
 Some readers will certainly miss a chapter on the subjective aspects of sound — the 
human hearing mechanism and the relationship between the objective, measurable 
quantities and the subjectively adjusted measurement quantities such as the frequency 
weighted sound pressure levels, using the A- or C-weighting curve, or the loudness or 
loudness level expressed in sone and phon, respectively. These aspects are, however, 
thoroughly treated in a number of books on noise and noise abatement allowing us to 
leave it out here. This said, it should be stressed that our ears are among the best 
instruments for acoustic analysis. A building acoustics “diagnosis” may often be put 
forward more easily by placing your ear to the wall than using an instrument.  
 The understanding of the performance of simple mechanical vibrating systems is 
basic for the understanding of the behaviour of complex systems such as the building 
elements and constructions one finds in buildings. Chapter 1 gives an overview of how 
oscillations of various types, periodic, transient as well as stochastic (random), are 
characterized and analysed in the time domain as well as in the frequency domain. In 
Chapter 2, the transfer of such oscillations through mechanical systems is treated, starting 
from systems made up of the concentrated (lumped) elements mass, spring and damper.  
This provides the base for a transition to continuous systems where wave phenomena 
become dominant. 
 In Chapter 3, we describe wave phenomena in fluid as well as in solid media, the 
sources of sound waves and their propagation in these media. Particular emphasis is 
placed on the subject of bending (flexural) waves to provide the background for treating 
sound transmission through building elements. 
 Chapter 4 is devoted to room acoustics with emphasis on the physical aspects. 
However, an overview of the room acoustic parameters for characterizing the acoustic 
quality with respect to transmission of music and speech is included. Important 
measuring quantities, which must be determined in practice, e.g. determining sound 
insulation, are also treated along with the expected measurement accuracy of these 
quantities. 
 Chapter 5 is wholly devoted to acoustic absorbing materials and constructions, 
modelling the absorption of sound in porous materials as well as the absorption offered 
by absorbers based on a resonator principle, membrane absorbers and absorbers of 
Helmholtz type. The last, based on microperforated panels, is given a broad treatment. 
Measuring methods for absorption and for the determination of material properties, 
important for modelling the absorption capability of absorbers, are thoroughly treated. 
 Chapter 6 introduces the measures used to characterize the sound isolating 
capability of building elements and constructions; i.e. the sound reduction index (also 
known as transmission loss) and impact sound pressure level, along with their frequency 
weighted counterparts. The treatment of sound transmission phenomena starts with a 
look at the ability of the elements to act as sound radiators, thereafter how these elements 
are vibrating when forced, either by point or distributed forces (pressure field). The 
treatment in this chapter is limited to single leaf partitions. 
 Statistical energy analysis (SEA) is a method for prediction of the dynamic 
behaviour of complex systems, containing both acoustic and structural elements. The 
method has gained wide acceptance for use in building acoustics and a short introduction 
is therefore given in Chapter 7, partly to give some background to the results presented in 
the remaining chapters. 
 Chapter 8 extends the treatment on sound transmission to composite elements such 
as double leaf constructions, sandwich elements etc. and the last chapter, Chapter 9, 
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looks into methods for predicting the resulting sound insulation in a finished building. 
Here one takes account of all the different sound transmission paths between rooms 
putting emphasis on the flanking transmission, sound energy transmitted by way of the 
flanking members of the primary partition. 
 We have, as far as possible, tried to compare the various prediction models 
presented with relevant measurement results. A collection of results from sound 
insulation tests, compiled by Homb et al. (1983) (see references to Chapter 6), has been 
extremely valuable in preparing the Chapters 6 and 8. A number of data, both measured 
and predicted results, have also been reproduced from scientific journals and books. By 
reproduced we mean that the data are digitized from the original figures and plotted into 
new graphs. Permission from individuals and from journal publishers to do so is 
gratefully acknowledged.  
 Commercial program packages have been used for a couple of the examples but 
generally the calculations are performed by programs developed by the author and 
colleagues at NTNU and SINTEF. Important contributions have also resulted from 
cooperation with colleagues from the Katholieke Universiteit Leuven, Belgium, and 
l’Université de Maine, Le Mans, France. One of these programs, WinFLAG™, has for 
some years been commercially available.  
 Lastly, some comments must be made on the nomenclature used for the quantities. 
The quantities and units recommended by ISO are laid down in a new series of standards 
with the main number 80000 of which the acoustics field is covered by part 8. As a 
general rule, all quantities having the unit 1 (one) should be denoted factor, i.e. one 
should use absorption factor, transmission factor and so on, not absorption coefficient 
and transmission coefficient. We shall then reserve the notion “coefficient” for quantities 
having a unit different from 1. We have adhered to these recommendations in this book, 
which hopefully will not appear confusing for those accustomed to use the word 
coefficient whatever the unit might be.  
 

           T.E. Vigran 
 
                   

 





CHAPTER 1 
 

Oscillating systems. Description and analysis 
 

1.1 INTRODUCTION 

Sound and vibration are dynamic phenomena, generally referred to as oscillatory motion. 
Audible sound is due to oscillations in the air pressure propagating as waves. The term 
vibration is used when talking about oscillations in mechanical systems. These may, 
depending on the dimensions of the system and the actual frequency, appear as wave 
motions of different kinds. It is then time to point out what is meant by the terms 
oscillation and wave. Exact definitions may be found in the international standard ISO 
2041. To express it in a general way, we may say that an oscillation is the variation with 
time of the magnitude of a measurable quantity, the magnitude being alternately greater 
and smaller than some mean value. With a wave there is an oscillatory motion 
propagating through the actual medium and this motion is wholly dependent on the 
physical properties of the medium. There is a transport of energy but not of the medium 
itself.  
 The first step in measurement analysis of oscillations is usually a transformation of 
the motion into an electrical oscillation or signal, using some kind of transducer. This 
applies to all types of oscillatory motion with which we shall be concerned in building 
acoustics, whether we are measuring vibration quantities such as acceleration or velocity, 
or sound quantities such as pressure or particle velocity. In the current volume, the notion 
signal analysis is therefore synonymous with the analysis of the actual oscillatory 
motion. 
 In modern stand-alone analysing equipment the signals are digitized and one 
normally has at one’s disposal a large menu of analysing options. Alternatively, with the 
common use of PCs in recent years, signals are input to sound cards in the PC and the 
analysing functions are implemented by software. This transforms the PC into a 
reasonably prized measuring system taking advantage of already existing resources, 
screen etc. No matter how these analysing functions are implemented, there is always a 
demand on the user for knowledge of modern signal analysis, in particular, on being 
aware of the possibilities and limitations of the actual “instrument” being used.  
 This chapter is aiming to give an elementary overview of the mathematical basis for 
some common types of signal analysis, in particular on the frequency analysis of sound 
and vibration quantities where the oscillations are described in the frequency domain. 
Some commonly used measurement quantities are introduced when it is natural to do so. 
There is a huge literature base on the subject, including textbooks. Some references can 
be found at the end of the chapter. 

1.2 TYPES OF OSCILLATORY MOTION 

Oscillatory motion may, as other kinds of physical phenomena, be characterized as either 
deterministic or stochastic (random). A process of some kind is denoted deterministic if it 
may be described by an explicit mathematical expression. Using knowledge of the actual 
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physical phenomena and/or based on observations of the oscillatory motion we may in 
this case predict the future motion. As examples we may think of the motion of a 
pendulum, the motion of the pistons in a car engine etc.  
 For other processes we get data that never repeat themselves exactly. We have no 
possibility to predict the exact magnitude of a given measurement variable at a future 
time. Such processes are called stochastic and they may only be described by probability 
functions and statistical characteristics such as e.g. expected value (mean value) and 
standard deviation. The sound pressure (noise) from a jet engine, vibrations in a duct 
wall due to a turbulent flow inside the duct and the wind forces on a building during a 
storm are all examples of such processes. There are obvious problems using this simple 
classification scheme, whether it be deterministic or stochastic. As a practical guide one 
may decide the classification on the basis of how well one is able to reproduce the 
measured data in controlled experiments.   
 Normally, one will find various classification schemes for the two main types of 
process, an example being depicted in Figure 1.1. For a rough grouping one may denote 
a deterministic motion to be periodic or non-periodic, i.e. the oscillatory motion repeats 
itself after a period time T or it does not. A transient motion, a pulse, is the most 
important type of non-periodic motion. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Oscillation type

Deterministic Stochastic

Periodic Non-periodic Stationary Non-stationary

Sinusoidal Complex
periodic

Almost
periodic

Transient Ergodic Non-ergodic Various forms of
characterization  

 
Figure 1.1 Classification of oscillatory motion. 

 
 
 Stochastic or random types of motion may roughly be divided into stationary and 
non-stationary types, i.e. the statistical properties are classified as invariant with respect 
to time or not. Again, there are of course problems connected to such a simple 
classification. In practical work, however, we will consider a process as being stationary 
if the statistical properties are constant over the time span in which we are interested in 
making observations. It is also important to note that these simple classification schemes 
do not exclude various combinations. A transient motion may, for example, also be 
stochastic. 
 It may already at this point be worth mentioning that stochastic motions, in practice 
stochastic signals, are commonly used when testing acoustical or mechanical systems. 
One may often tailor make the signal to cover just the frequency range needed. With 
digital systems, however, the test signals are not strictly stochastic but so-called pseudo-
stochastic.  This implies that they are periodic stochastic, i.e. they will eventually repeat 
themselves but the period will be very long, maybe several minutes. An important 
development in the measuring technique is by the use of signals where the periodicity of 
such stochastic or noise-like signals is turned to an advantage. This applies to the use of 
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MLS (maximum length sequences) which are binary sequences repeating themselves 
exactly. Measurements may then be performed where the useful signal, i.e. the MLS 
signal, has an amplitude not much higher or even lower than other disturbing signals 
(background noise). This is possible when performing a synchronous averaging over 
several sequences. As one may understand this presupposes that the tested system is time 
invariant.  
 A further development in the measuring technique is by using so-called chirp 
signals or swept sine signals. As the latter name implies, these are transient signals where 
the frequency sweeps from a starting frequency to a final frequency during the 
measurement period. The application of such signals in system testing is at least 30 years 
old but due to modern digital technology it is now in widespread use. We shall deal with 
such test signals in section 1.5. A recent international standard, ISO 18233, is devoted to 
the application of such new measurement technique in building acoustics.                   

1.3 METHODS FOR SIGNAL ANALYSIS 

The methods or techniques that are used in practical signal analysis may be divided into 
three main groups as follows: 1) signal amplitude analysis, 2) time domain analysis and 
3) frequency domain analysis (spectral analysis).  Figure 1.2 gives an overview of some 
concepts associated with these main groups.   
 For many purposes the only information needed is the absolute value of the 
oscillation, normally specified by the RMS-value (root-mean-square value) or the peak 
value. The reason is that these values may be specified as a legal limit value, e.g. the 
maximum vibration amplitude for a certain type of machine, the maximum A- or C-
weighted sound pressure level in a living environment or in a work space. These types of 
analysis may normally be carried out using simple and low-cost instrumentation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Signal analysis

Magnitude
analysis

Time domain
analysis

RMS-value
Max./min. values
Variance, probability 
density etc.

Time history
Impulse response
Correlation
Covariance

Spectrum
Frequency response
Coherence
Cepstrum

Frequency domain
analysis

Fourier transform

 
Figure 1.2 Signal analysis types and methods. 

 
 
 More advanced equipment is needed for accurate analysis in the time or frequency 
domain, in particular when information from many parts of a system is needed and/or 
when the task is to map the relationship between data from the various parts. Time 
domain analysis as cross correlation or the equivalent frequency analysis, i.e. transfer 
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function analysis, requires two-channel instruments. When performing so-called modal 
analysis, where the purpose is to map the global vibration pattern of a mechanical 
system, a multi-channel instrument will be appropriate. As pointed out above these types 
of instruments are, owing to modern digital analysis methods, commonly available. 
However, the demand for knowledge to enable them to be used properly is by no means 
diminishing.  
 The main type of practical analysis in the fields of acoustics and vibration is 
frequency domain analysis. The emphasis will therefore mainly be placed on this type of 
analysis. The fundamental bases for this method are Fourier series and Fourier 
transforms. This chapter aims at giving an overview of the mathematical basis and 
furthermore on the modifications necessary for treating data in a digital form, i.e. 
performing digital signal analysis. Simulations and use of data in digital form are used to 
produce the illustrations below.  

1.4 FOURIER ANALYSIS (SPECTRAL ANALYSIS) 

Frequency domain analysis of acoustic and vibration signals is normally denoted by 
spectral analysis as we want to extract information, in more or less detail, of the 
frequency or spectral content. The analysis technique, based on Fourier series and 
Fourier transforms, will be demonstrated using a number of different types of signal: 
periodic, transient as well as stochastic.   

1.4.1 Periodic signals. Fourier series 

We now assume that we have a function x(t) that varies periodically with time period T, 
i.e. we may write x(t) = x(t +kT) where k is a whole number. According to Fourier’s 
theorem such a function may be represented by the series 
 

 0
1

2( ) cos sink k
k

k t k tx t a a b
T T

2π π∞

=

⎛= + +⎜
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The so-called fundamental frequency f1 (in Hz) is given by the inverse of the period time 
T. Equation (1.1) therefore tells us that the function x(t) may be expressed by the 
fundamental frequency and its harmonic components, hence 
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where ω1 is the fundamental frequency expressed by its angular frequency in radians per 
second. Using the latter leads to the equation in its simplest form but we shall, as far as 
possible use the most common measurement variable, the frequency in Hertz (Hz). 
Equation (1.1) may then be written 
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where the coefficients ak and bk are given by the integrals 
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 a0 is the mean value of the function. For a periodic oscillation this value is by 
definition equal to zero but we shall for completeness retain it in the following 
derivations. In standard textbooks on mathematics one will find the coefficients readily 
calculated for a large number of functions. Before we give some examples, two 
alternative expressions for such Fourier series are worth looking into, expressions that 
are more common in signal analysis. The first alternative form of Equation (1.1) is 
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where we may easily show that the Fourier coefficients (Fourier amplitudes) ck and the 
Fourier phase angles θk are given by the following expressions: 
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Introducing complex numbers we may derive the second alternative form of Equation 
(1.1).  Moivre’s formula gives  
 
 jcos ( ) j sin( ) ,nn n e θθ θ+ ⋅ =  
 
where j is the complex unit, and we may then write 
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The quantity |Xk| is the modulus of the complex Fourier amplitude. Even if x(t) is a real 
function we may mathematically represent it in complex form using both positive and 
negative frequencies. There is, however, no reason to ascribe any physical significance to 
these negative frequencies. They show up at an intermediate stage in the calculations and 
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our physical measurement variables will always be functions of the positive frequencies. 
Note the symmetry in the Equations (1.6) and (1.7). The relationship to the coefficients 
used above will be 
 

 
( )

( )

1 j ,
2
1 j .
2

k k k

k k k

X a b

X a b−

= −

= +
 (1.8) 

 
Hence 
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1.4.1.1 Energy in a periodic oscillation. Mean square and RMS-values 

In sound or vibration measurements the function x(t) may, to mention a few examples, 
represent the pressure in a sound wave at a given position in a room; the displacement, 
the velocity or acceleration amplitude at a point on a wall or at a point on the surface of a 
machine. Using the first example we put x(t) = p(t), where p is the pressure in the sound 
wave with the unit Pa (Pascal). The instantaneous energy transported per unit time and 
per unit area normal to the direction of propagation, i.e. the intensity of the wave, will be 
proportional to the square of the pressure. By using Equation (1.3) or (1.5), where we 
now put a0 (or c0) equal to zero, we obtain 
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where the line above the pressure squared denotes taking the mean value over time. The 
total energy flow is then given by the squared sum of the Fourier amplitudes. 
Considering the total sound pressure as being a sum of sound pressure components, each 
component associated with a given amplitude and frequency, it is reasonable to believe 
that each component carries its part of the energy, i.e. that the energy in the kth harmonic 
is proportional to ck

2. However, we cannot claim this on the basis of Equation (1.10) 
only.  
 We may use a similar argument when x(t) represents a velocity amplitude u(t) of a 
part of a mechanical system,  e.g. a vibrating plate. The mean square value of u(t) will 
then be proportional to the kinetic energy of this part of the system. However, in practical 
measurement technique another quantity is more commonly used than the mean square 
value. This is obtained by taking the root of it and then we arrive at the RMS-value (root-
mean-square-value) of the chosen variable. We then have 
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where crms denotes the RMS-value of the harmonic components. Using the complex form 
of Equation (1.6) we get  
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Figure 1.3 Periodic time function. 
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Figure 1.4 Frequency amplitude spectrum of the time function in Figure 1.3. 
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1.4.1.2 Frequency analysis of a periodic function (periodic signal) 

An example of a periodic function is shown in Figure 1.3. Performing Fourier analysis 
we get the frequency amplitudes |Xk| as shown in Figure 1.4. The calculations for this 
example are indeed performed by the so-called discrete Fourier transform (DFT) (see 
below), but this has no importance in this example. We have derived the time function by 
just summing three sinusoidal signals having amplitudes of 1.0, 0.5 and 0.3, respectively 
but also adjusting their relative phases. Performing the Fourier calculation, Figure 1.4 
shows that these components will appear with the RMS-values reasonably correct. 

1.4.2 Transient signals. Fourier integral 

The above mathematical description may be adapted for non-periodic functions, e.g. 
transient time functions such as the sound pressure pulse from a gunshot or an explosion, 
the acceleration of a plate when hit by a hammer etc. Formally, we may say that the 
function is still periodic but the period T now goes to infinity. This makes the distance 
between frequency components infinitesimal, in the limiting case it goes to zero. We then 
get a continuous frequency spectrum. The Fourier series transforms into an integral and 
the Fourier coefficients will be a continuous function of the frequency, the so-called 
Fourier transform. Working from Equation (1.7), we may express the transform X(f) as 
follows 
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where X(f) will exist if 
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X(f) is called the direct Fourier transform or spectrum. If this is a known function we 
may use the inverse transform to find the corresponding time function x(t). Using a 
similar modification of Equation (1.6) we may write 
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Equations (1.13) and (1.14) are a Fourier transform pair. It should be noted that X(f) 
again is a complex function with both positive and negative frequencies which applies 
even if the time function is real. It is also usual to express X(f) using a polar notation as 
in Equation (1.7), i.e. we write 
 
 j ( )( ) ( ) ,fX f X f e θ=  (1.15) 
 
where |X(f)| and θ(f) are denoted amplitude spectrum and phase spectrum, respectively.  
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1.4.2.1 Energy in transient motion 

Again letting x(t) represent the time history of the sound pressure in air caused by a gun 
shot, an explosion or similar events, the total energy represented by the integral  
 
 2 ( )dx t t∫  

 
must be finite. From Equations (1.13) and (1.14) it is easy to show that  
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In other words; we may find the total energy either by an integration of the time function 
or by an integration of the Fourier transform in the frequency domain. This is the reason 
why the squared modulus |X(f)|2 = X(f)⋅X*(f) is called the energy spectral density, where 
X*(f) is the complex conjugate of X(f). The last form of the integral in Equation (1.16) is 
possible because the time function x(t), representing all types of oscillatory motion, will 
be a real function and therefore  X(-f) = X*(f).   

1.4.2.2 Examples of Fourier transforms 

 In practice we certainly must, in the first place, put a finite limit on the time T when 
using our Fourier transform. Second, in measurement as well in calculations, the 
transform is used in a discrete form (DFT). In this section we shall, however, show some 
examples where the transform may readily be calculated analytically using Equation 
(1.13). In this way we may vary the parameters to illustrate some important relationships 
between the time and frequency domain representations.  
 

A) A function describing a simple pulse of rectangular shape may be expressed as 
 

      x(t) = A   for  -T/2 ≤ t ≤ T/2 
   and x(t) = 0   otherwise. 
 
Inserting this into the expression for X(f) (see Equation (1.13)) we obtain 
 

 sin( )( ) .fTX f AT
fT
π

π
=  

 
Figures 1.5 and 1.6 show some examples of the time function and the resulting modulus 
|X(f)| of the transform. The amplitude A is arbitrarily set equal to 100 and the time T is 
chosen 1, 5 and 10 ms, respectively. It should be noted that the spectrum broadens out 
with decreasing pulse duration. However, as the amplitude A is constant the spectral 
amplitudes must decrease. (Try to explain why.) An “infinitely” short pulse, represented 
by the so-called Dirac δ-function, gives an infinite broad spectrum of constant amplitude, 
a white spectrum. (Could you state the frequency amplitude of such a function?) 
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Figure 1.5 Time functions of rectangular pulses. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.6 Modulus of the Fourier transforms of rectangular pulses. 
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 B) The example above does not represent, for many reasons, an oscillatory motion 
you will find in real life. It does, however, illustrate important relationships concerning 
the form of a pulse and the corresponding frequency spectrum. The following example 
uses a more realistic type of motion; the function used represents the amplitude 
(displacement, velocity or acceleration) of a simple mass and spring system having a 
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viscous damping small enough to make it oscillate. We assume that x(t) is the 
displacement of the mass when we initially move it from its stable position and then 
release it. We may write 
 

 0( ) cos(2 ) for 0
and ( ) 0 otherwise.

atx t Ae f t t
x t
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How quickly the motion “dies out” is determined by the constant a and Figure 1.7 shows 
a time section where a is 1 s-1 and 50 s-1, respectively. The amplitude A is set equal to 1.0 
and the frequency f0 is 25 Hz for both curves1. The modulus of the Fourier transform will 
be 
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Figure 1.7 Time function of a damped oscillation (see the expression for x(t) above). The constant a is equal to 
1 (thin line) and 50 (thick line), respectively. 
 
 
 This expression is shown in Figure 1.8 for the two values of a. It should be noted 
that the ordinate scale is logarithmic in contrast to that used in Figure 1.6. As expected 
we do get a very narrow spectrum around f0 when the system has low damping. Setting a 
= 1 s-1 reduces the amplitude to 1/10 of the starting value after a time 2.3 seconds, i.e. 
after some 60 periods. When a is 50 s-1 the amplitude is down to 1/10 just after one 
period and the spectrum is then much broader.  
                                                 
1 The frequency f0 will not be independent of the damping of a real system. However, with the chosen variation 
in the damping coefficient a the variation in f0 will be approximately 5%. 
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Figure 1.8 Fourier transform of time functions shown in Figure 1.7 

 

1.4.3 Stochastic (random) motion. Fourier transform for a finite time T 

As pointed out above, a stochastic process gives data, which in a strict sense never 
exactly repeat themselves. Figure 1.9 may be thought of as time samples of such 
processes. It could for example be the sound pressure measured at a given distance from 
a sound source of stochastic nature such as a jet engine, a nozzle for compressed air or a 
waterfall to mention a few examples. It is important to realize that such time histories or 
time functions, in practice, certainly being of finite length, are just samples of an infinite 
number of functions which could be attributed to the actual physical process. Collections 
of identical types of source will each give a different time function. All these possible 
time functions taken together make up what one in a strict sense calls a stochastic 
process. A collection of such time functions is what is called an ensemble. 
 In practice, however, just one such time history may be sufficient in our data 
analysis. The reason for this is that processes that represent physical phenomena often 
are ergodic. This means that we may extract all the necessary information from one 
single time function. This does not imply, however, that we will not experience non-
linear phenomena when dealing with sound and vibration data analysis, analysis that 
demands ensemble averaging.  
 Lets make x(t) represent one such stationary time function, existing in a theoretical 
sense for all values of time t. Then we get 
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which means that the Fourier transform according to Equation (1.13) does not exist.  
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Figure 1.9 Examples of time functions of a stochastic signal. The signals (oscillations) are limited to a 
frequency interval of 10–250 Hz. 
 
 
 Obviously, we shall not be able to measure over an infinite time in any case. To 
perform an analysis the idea is to define a new time function xT(t), equal to the original 
function x(t) in a time interval T but equal to zero otherwise. We then get an estimate of 
X(f) by calculation of a Fourier transform over the time interval T 
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A finite transform as shown here will always exist for a time segment of a stationary 
stochastic function. Taking Equation (1.6) into consideration we may see that for the 
discrete frequency components fk =k/T the transform in Equation (1.17) will give 
  

X(fk,T) = T Xk   with  k = ± 1, ± 2, ± 3,... 
 
This means that when performing the transform and letting the frequency f just to take on 
the discrete values fk we get a Fourier series with period T. This is in fact the method 
used when processing data digitally. Before taking up that theme we shall introduce an 
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important function used to characterize stochastic functions in the frequency domain, the 
power spectral density function, or in short, the power spectrum. Since xT(t) only exist in 
the time interval T we may calculate the mean square value as follows 
 

 ( ) ( )2 2 2

0 0

1 1 2( ) d d | ( ) | d
T

T T T T
2x t x t t x t t X f

T T T

+∞ ∞

−∞

= = =∫ ∫ ∫ f , (1.18) 

 
where the last expression is calculated using Equation (1.16). By assuming that the 
function is stationary (and ergodic) we may show that the mean square value of x(t) is 
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where G(f) is the power spectral density function mentioned above and defined by the 
Fourier transform 
 

 22( ) lim ( ) .TT
G f X f

T⇒∞

⎡ ⎤= ⎢ ⎥⎣ ⎦
 (1.20) 

 
Equation (1.20) gives the formal definition of the function but the reason for using such a 
term should be more obvious looking at Equation (1.19). Here one may see that G(f) is 
the contribution per Hz to the mean square value, a quantity generally proportional to the 
power, hence the term power spectrum or more correctly power spectral density. 

1.4.4 Discrete Fourier transform (DFT) 

When processing data digitally one has, as pointed out above, to use a discrete set of 
frequency values. Calculating a finite Fourier transform using Equation (1.17) will give a 
Fourier series with period T. Here we shall just give a summary of this discrete type of 
transformation and point to some relationships important in measurement applications. 
When presenting the examples on spectral analysis (see section 1.4.5 below), we shall 
use this technique to simulate the results from a digital frequency analysis. 
 The first two steps in a digital analysis are 1) sampling and 2) quantization. The 
first step means that the signal x(t) is substituted by a number N samples separated by a 
time step of Δt as illustrated in Figure 1.10. The length of the signal being analysed is 
then T = N⋅ Δt, and the calculations are performed treating the data as periodic with a 
time period of T. According to the sampling theorem this implies that the upper 
frequency limit in the analysis is fco = 1/(2Δt). This frequency is called the Nyquist 
frequency or cut-off frequency. 
 The quantization, performed by an analogue to digital converter (AD-converter), 
means an allocation of a finite set of numbers to the amplitudes of the sampled signal. 
This is illustrated in Figure 1.11, which shows the numbers or estimates allocated to the 
samples. The number of bits handled by the AD-converter gives the accuracy of these 
estimates. A 12-bit converter resolves the signal into 212 = 4096 steps, a 16-bit into 
65536 steps etc.  
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Figure 1.10 Sampling of a continuous signal by time intervals Δt. 
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Figure 1.11 Allocating amplitude values to the samples. The marked bars indicate the values x0 and xN – 1 
allocated to the first and the last sample. 
 
 
 The continuous time signal x(t) is thereby substituted by a set of numbers  xn = 
x(nΔt) with n = 0, 1, 2, 3,..., N – 1. The corresponding continuous transform X(f) (see 
Equation (1.17)) will turn into a discrete sequence Xk = X(kΔf) with k = 0, 1, 2, 3,…, N – 
1. Per definition, the discrete Fourier transform (DFT) is given by 
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where Δf is 1/T.  The discrete inverse Fourier transform (IDFT) is accordingly given by 
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It should be noted that Equation (1.22) is an exact inverse function of Equation (1.21) 
and not an approximation. This is true in spite of our starting point being the continuous 
Fourier transform.        
 These equations form the basis of digital Fourier analysis. Looking at these 
equations one will see that a straightforward analysis using an N-points transform will 
require N2 complex multiplications. Here the fast Fourier transform (FFT) algorithm is 
appearing as a saviour. Details on the procedure are outside the scope of this book. It is 
sufficient to point out the benefit of using this algorithm requiring N⋅ ln(N) operations 
only, as opposed to N2 and the difference is quite formidable. Just for a “small” transform 
using N = 210 = 1024, the ratio of these number of operations is 147. Using N = 216 = 
65536, the ratio will be 5900.  
 It may at this stage be appropriate to point out some further important phenomena 
appearing using DFT analysis. These are 1) aliasing and 2) leakage, where the first one 
is a unique problem in digital analysis. As indicated above, the upper frequency limit 
where reliable information can be extracted is 1/(2Δt) = Δf⋅N/2 = fs/2, where fs is the 
sampling frequency. Any signal components with higher frequencies present will not be 
detected but instead will be mistakenly assigned to lower frequency components. They 
are being “folded back” to the lower frequency components, which is the reason behind 
the term aliasing. There are two methods to escape this problem. One either uses a 
sampling frequency much higher than the expected highest frequency component in the 
signal or inserts sharp anti-aliasing filters which cut away or eliminate the components 
having frequencies above the Nyquist frequency. 
 The second phenomenon, leakage, means that one may get frequency components 
which in fact are not present in the actual signal. The main reason is that one is 
performing an analysis using a limited time segment. Starting or/and stopping the 
sampling at a time when the signal amplitude is not zero will create a discontinuity, i.e. 
we get a step in the value of the function giving components that are not present in the 
actual signal. The remedy is to apply various kinds of “window”; multiplying the time 
signal with a form function before taking the transform. These windows are symmetrical 
around T/2 and go to zero at each end. One then removes some of the energy but this 
may be compensated for after performing the analysis. There are a number of such 
windows in use, Hanning, Hamming and Kaiser-Bessel to mention a few. 

1.4.5  Spectral analysis measurements 

In practice, one will normally find that the sound or vibration phenomena to be analysed 
cannot be distinctly classified as periodic, transient or stochastic. They may contain 
elements of two or more types. Sound or vibration spectra from technical equipment such 
as a motor, a pump etc. will contain periodic components due to the rotation of blade 
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wheels or gears together with stochastic components from turbulent flow of air or water 
in the cooling system. This will not cause any problem if the task is just to perform a 
simple amplitude analysis, i.e. to ascertain the RMS-value of the signal.  
 For a spectrum analysis, however, one has to consider exactly what sort of 
information is needed. Commercial frequency analysers may be divided roughly into two 
groups: the analysers with a fixed set of filters and the FFT analysers. One may find 
instruments where both types of analysis are implemented. The International 
Electrotechnical Commission (IEC) specifies the requirements for such instruments. 
Relevant examples are the standard for sound level meters, IEC 61672, Parts 1 and 2. 
The octave-band and fractional octave-band filters are specified in IEC 61260. 

1.4.5.1 Spectral analysis using fixed filters 

Analysers using fixed filters may be divided into two groups depending on the analysis 
being performed sequentially or in parallel. The latter type is called real time analyser 
because the entire spectrum is scanned at the same time. These analysers have a set of 
parallel filters, each filter covering a smaller or broader frequency band of the chosen 
frequency range. On the other hand, performing the analysis sequentially, which implies 
measuring one band at a time; one is dependent on the signal being stationary during the 
whole time of measurement. This is of course a serious limitation and the real time 
analysers now dominate the market.  
 In any case, we may for each frequency band determine a mean square value (or the 
RMS-value) for the signal passing through, which gives us an estimate of the spectral 
distribution. Measuring a stochastic signal this procedure will by definition give the 
power spectrum if we let the bandwidth Δf of the filters go to zero. We may write 
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The symbol ξ describes the result after passing the signal x(t) through the filter. In 
practice the averaging time T must be chosen giving consideration to the accuracy 
needed and the bandwidth must be adapted to the task. As for the latter, the question is 
whether detailed frequency information or more approximate estimates, i.e. mean values 
in octave or one-third-octave bands, are in demand.  
 The process of analysing a broadband signal using fixed filters with a given 
frequency bandwidth Δf is illustrated in Figure 1.12, using a sound pressure signal p(t) as 
an example. After passing one of the filters indicated by its centre frequency f0, we obtain 
a new time signal p(t, f0, Δf), a function of the selected band. Normally, we want to 
express the result in terms of the sound pressure level Lp in decibels (dB), as indicated by 
the lowermost sketch, for which we calculate the RMS-value and thereafter write the 
expression 
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The quantity p0 is the reference value for sound pressure equal to 2⋅10-5 Pa. For 
stochastic sound we observe from Equation (1.23) that p2

rms(f0, Δf) in the expression is an 
estimate of Gp(f0)⋅ Δf. As for the frequency bands normally used, an octave band will 
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have a bandwidth Δf ≈ 0.71⋅ f0 and a one-third-octave band a bandwidth Δf ≈ 0.23⋅ f0. As 
mentioned above, specifications for such filters are given in IEC 61260. 
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Equation (1.24) 

Figure 1.12 Frequency analysis of a sound pressure signal using fixed filters of bandwidth Δf. A filter having a 
centre frequency f0 is indicated.  
 
 We shall also give a specific example of such analysis using these two types of 
band pass filter. Figure 1.13 shows the result of the analysis on a signal which could 
represent the sound pressure measured at a certain distance from a given source. In 
addition to the sound pressure levels using these filters, analysis is performed using a 
discrete Fourier transform as described in section 1.4.4.  
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Figure 1.13 Stochastic noise signal with added pure tone components. Analysis in octave bands (1/1) and one-
third-octave bands (1/3) together with discrete Fourier transform analysis (DFT). 
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Applying DFT analysis however, we see that the sound (or noise), being mainly 
stochastic, also contain periodic components (pure tones). The measuring technique 
using fixed bandwidth filters will also give correct RMS-values for these pure tone 
components, crms in Equation (1.11), but in two conditions: 1) the bandwidth of the filters 
must be less than the distance between the pure tone components and 2) the rest of the 
signal inside the band must be negligible. The frequency resolution will however be poor 
and without the ability to repeat the analysis using another bandwidth it is difficult to 
decide whether or not a periodic component is present in the signal.  
 Without doubt, we may by looking at the one-third-octave band data in Figure 1.13 
be reasonably sure that there are pure tones around 250 Hz and 1000 Hz but this is not so 
around 2000 Hz. Using DFT gives quite another opportunity to detect such components 
with certainty because one may choose the required frequency resolution2.  

1.4.5.2 FFT analysis 

The breakthrough concerning the use of the discrete Fourier transform (DFT) came with 
the finding of an algorithm for a fast calculation, giving the fast Fourier transform (FFT). 
With modern FFT analysers the calculation time for equations such as (1.21) and (1.22) 
is of the order of milliseconds for many thousands of samples. The number of channels 
available in one instrument has also steadily increased. This offers the opportunity to 
map the global motion of a whole system in just one operation as opposed to using a 
single channel instrument capable of measuring at just one point at the time.  
 Many of the examples shown here are calculated using an FFT routine. It may be 
pertinent at this point to sum up the deliberations one must make before starting an 
analysis, this in spite of the “brain” the instrument maker has put into the instrument.  
 One may normally choose the number of samples N (1024, 2048, 4096, ...) or from 
a limited set. The next choice to decide on is the maximum frequency fmax. This normally 
results in setting the sampling frequency fs to a minimum value of 2⋅fmax (a common 
choice is 2.56⋅fmax). Furthermore, the anti-aliasing filter of the instrument is set to “cut 
away” all frequency components above fmax. What will the frequency resolution then be? 
From section 1.4.4 we know that the frequency lines will be 
 

 where 0, 1, 2, 3,..., 1.s
n

nfn nf n
T N t N

N= = = = −
Δ

 

 
As an example we may choose N = 1024 and fmax to be 5000 Hz. With fs = 2.56 ⋅fmax = 
12800 Hz, the total time of analysis T will be 80 milliseconds. The number of frequency 
lines below the Nyquist frequency will then be 512 with a frequency resolution Δf = 12.5 
Hz. A commercial instrument will then present a total of 400 lines, i.e. all lines up to the 
chosen maximum frequency, 400⋅12.5 Hz = 5000 Hz. An alternative choice of N = 2048 
will give 800 lines with a resolution of 6.25 Hz and so on.  
 This kind of analysis, called base band analysis, gives lines from 0 Hz to fmax. More 
often, one is interested in zooming in on a smaller frequency interval, which means that 
one would like to have all frequency lines fn inside an interval given by   f1 < fn < f2. Most 
instruments have this option but imply that one must repeat the measurement. More 
details concerning this technique may be found in the rather extensive literature on the 
subject. 

                                                 
2 The analysis is performed using a Hanning window, which gives good accuracy as for the frequency of the 
pure tone but less accuracy when it comes to amplitude. 
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Figure 1.14 Example of a periodic signal with added Gaussian noise signal (normally distributed noise). The 
periodic signal is identical to the one shown in Figure 1.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.15 The Fourier transform of the signal given in Figure 1.14. 
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 The next subject one should address is the accuracy of the amplitude values for the 
frequency lines. When the power spectrum is the goal (see Equation (1.20)), using the 
process outlined in the example above we have got an estimate based on the analysing 
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time T. In the same way as when applying the fixed filter analysis, outlined in section 
1.4.5.1, we have to select a total measuring time giving the desired accuracy. Measuring 
on a stationary signal we just have to repeat the process; performing an averaging over n 
records and thus obtaining an estimate for a total measuring time of n⋅T.  
 We shall show a couple of examples of signal analysis using FFT both being 
simulations based on data in a digital format. Comparing with the processing performed 
in a commercial instruments this means that we are entering the process following the 
AD-converter.  
 In the first example, given in Figure 1.14, we are using the same periodic signal as 
shown in Figure 1.3 but now we have added a stochastic signal, a Gaussian distributed 
noise signal with zero mean value and a standard deviation equal to 0.5. Performing the 
Fourier transform we may see from Figure 1.15 that the periodic components show up 
again but now together with a contribution due to the noise.  
 The second example shows an analysis of a Gaussian distributed noise signal where 
the power spectrum is constant, i.e. G(f) has a constant value G0 for “all” frequencies. 
Such a signal is called white noise. This is of course an ideal concept, which is the reason 
for the quotation marks on the word all. There must in practice certainly be an upper 
limit in frequency. An example of the time signal of such noise is shown in Figure 1.16 
whereas Figure 1.17 gives the corresponding power spectrum averaged using different 
number of records n. 
 The spectra are shown using a relative scale to show clearly the improvements in 
the accuracy by increasing the number n. Each curve is shifted by a factor of 10 from the 
previous one. Without doing so the curves will lie on top of one another. (Are you able to 
estimate the correct value of G0 from Figure 1.17?) 
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Figure 1.16 Noise signal in the time domain. The noise signal is “white” in the frequency range 0–500 Hz. 
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Figure 1.17 Power spectrum (relative values) calculated by averaging n time samples of the type shown in 
Figure 1.16, using N = 1024 and fs = 1000 Hz.  Note: The curves are shifted by a factor of 10.    
 
 

1.5 ANALYSIS IN THE TIME DOMAIN. TEST SIGNALS 

We have up to now concentrated on the frequency domain description of various types of 
oscillation (represented by signals). We have, starting out from a description in the time 
domain, made a transformation into the frequency domain, which is the most common 
way of describing sound and vibration phenomena. In some situations there are, 
however, other types of information that is required such as the statistical amplitude 
distribution or the autocorrelation function, the latter giving information on the 
dependence of data obtained at different times. It is reasonable in this context also to give 
some examples of this matter. 
 We have treated rather thoroughly the subject of stochastic noise, assuming a 
Gaussian distribution. The reason for this is partly due to the common use of such signals 
as test signals when measuring various types of transfer function. These are measurement 
situations where we want to map the relationship between a physical quantity 
representing the input to the system and another physical quantity representing the output 
or the response. This could be the velocity at a point in mechanical system excited by a 
force at the same point or at a more distant point. As another example, it could be the 
sound pressure level at a given position in a room when a given voltage is applied to the 
input terminals of a loudspeaker. The topic of transfer functions and applications is 
treated in the next chapter. Here we shall use a stochastic noise signal as an illustration of 
time signal analysis and further present a couple of deterministic signal types, also 
popular as test signals.                      
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1.5.1 Probability density function. Autocorrelation 

In Figure 1.2, the probability distribution was listed as one type of amplitude analysis. A 
more precise term is the probability density function p(x), which gives us the probability 
of finding the amplitude of a signal x(t) within a certain interval Δx. It is given by a 
limiting value as  
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where P is the probability, a positive number between zero and one. In general, p(x) will 
also be a function of time but for stationary and ergodic signals there will be no time 
dependence. In the literature, one will find a huge number of mathematical density 
functions with descriptions of their properties. The numbers of density functions 
associated with physical phenomena are infinite. As for the stochastic noise signal we 
have used up to now we have assumed it to be Gaussian distributed, which means that 
the density function is given by 
 

 
2

221( ) ,
2

x

p x e σ
σ π

−
=  (1.26) 

 
where the standard deviation σ is a measure of the width of the distribution. The square 
of this quantity is called variance and is given by  
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In the case of oscillations, the mean value is zero and this equation gives us the mean 
square value, i.e. the square of the RMS-value. 
 The density function, Equation (1.26), gives us the well-known bell-shaped curve 
as shown in Figure 1.18. It may, however, be interesting to see if this type of diagram 
could give information on other types of signal. As an example we may calculate p(x) for 
a sinusoidal signal superimposed on Gaussian noise signals. The sinusoidal signal is 
given by ˆ( ) sin( )x t x tω θ= + , where the phase angle θ is considered to be a random 
variable. It may be shown that the probability density function (Bendat and Piersol 
(1980)),3 in this case will be 
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This function is shown in Figure 1.18 when the amplitude  is equal to one, i.e. the 
RMS-value or σsinus is approximately 0.71, using the RMS-value σnoise as a parameter. 
When the latter is small one may see that the curve is approaching the density curve for a 
sine or cosine function, a curve resembling a hyperbolic function with high values near 

x̂
x~

                                                 
3 It is a misprint in Equation (2.35) in the reference. 
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to the maximum values. This is easily seen looking at a sinusoidal function. The function 
“spends more time” around the maximum values than around zero. For increasing σnoise 
the function will, however, approach the common Gaussian curve again.  
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Figure 1.18 Probability density functions of a sum of a sinusoidal signal and a Gaussian noise signal. Thick 
curve – Gaussian noise only with σ  = 1. Thin curves – sum of sinusoidal, having amplitude equal 1 and noise 
with σ equal 0.1, 0.3 and 0.5, respectively. 
 
 
 A probability density function thus gives information on how the amplitude is 
distributed. It does, in other words, tell us the amount of time it is expected to be within a 
certain range and furthermore, in which part of the time it is larger or smaller than some 
given value. It cannot, however, tell us anything about the time coherence in the signal. 
As an example it may tell us that the sound pressure is above 1 Pa during 1% of the time 
but it will not tell us whether this occurs due to pulses having a duration of 10 ms or 100 
ms. We may obtain information of the latter type by looking at the signal at certain 
intervals τ in time.  
 We define the autocorrelation function R(τ ) as 
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As is apparent from Equation (1.29), we take the value of the function x(t) at a given 
time t and multiply it with the value at a later time t + τ , thereafter taking the mean value 
of all such products. Before showing some examples we shall point to some important 
properties. First, this function gives a description of the signal in the time domain as 
equivalent to the spectral density function in the frequency domain. These functions 
comprise a Fourier transformation pair.  
 Assuming, as before, a stationary signal and performing the averaging process over 
a sufficiently long time, the function R will be independent of time and a function of τ  
only. Furthermore, the function is symmetric, R(τ) = R(-τ) and it has a maximum for  τ = 
0.  In the latter case, we see from Equation (1.29) that this maximum is nothing more 
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than the mean square value of the signal. Lastly, the value of the function will, for 
stochastic signals, approach zero with increasing τ.  
 Two examples of autocorrelation are shown in Figure 1.19, a pure sinusoidal signal 
and a Gaussian noise signal having variance equal to one. Mathematically speaking, the 
first one should turn out as a sinusoidal function but in practice the signal must be of 
finite length, therefore also in the numerical calculation used here. Both functions will 
therefore approach zero when increasing τ. (You may show that R(0) is correct by 
applying the information above.) 
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Figure 1.19 Autocorrelation function of stochastic noise and sinusoidal signal of length 5⋅π. 

 

1.5.2 Test signals 

As pointed out in the introduction to this section, the reason for the relatively broad 
coverage of Gaussian noise signal is their use as test signals. With their broadband 
character it may cover any frequency interval and the spectrum may be shaped if 
necessary. One will find an example of the latter in so-called pink noise, shaping the 
signal such that the energy in the test signal is constant when using filters having a 
constant relative bandwidth; octave or fractional-octave filters. Real test signals must of 
course have a finite length; they are pseudo stochastic repeating themselves after a given 
time. This property is normally not exploited when using this common type of noise 
signal generator. Using pseudo stochastic signals that exactly repeat themselves were 
first implemented applying MLS signals, a type that became very popular after being 
introduced in measuring equipment well over a decade ago.  
 We have called MLS signals as pseudo stochastic due to their noise-like properties 
but it must be stressed that they are wholly deterministic. There are, however, a multitude 
of deterministic signals that have been or are still being used for testing. These may be 
periodic (purely sinusoidal, amplitude modulated as well as frequency modulated signals 
etc.) or transient. As an example here we shall use the swept sine (SS) signal, a type also 
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called chirp or sinusoidal sweep to give some names found in the literature. This is a 
signal where the frequency varies continually, linearly or nonlinearly, from a selected 
starting frequency to a selected stop frequency. Figure 1.20 gives an example where the 
frequency varies linearly with time. There are several reasons for the relatively recent 
popularity of these test signals. 
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Figure 1.20 Example on a swept sinusoidal signal (“chirp”). The frequency increases linearly from 0–100 Hz in 
1 second.  
 
  
 One may shape the spectrum by varying the sweep in different ways. A linear 
sweep with constant amplitude will give a white spectrum while increasing the frequency 
exponentially with time will give a pink spectrum. However, there are other properties 
just as important, especially when comparing with the MLS signals described below.  
 One advantage that should be mentioned is the reduced sensitivity to time variance 
e.g. changes in the propagating medium during measurement, for sound waves caused by 
air movements and temperature changes. The reason is that information is collected for 
one frequency at the time, whereas for noise signals the information is collected for all 
frequencies during the whole measurement.  
 Figure 1.21 shows an example of spectrum and autocorrelation function for a swept 
sine signal where we have chosen a starting frequency of 100 Hz and made it sweep 
linearly to 300 Hz. As expected we get a reasonably flat band-like spectrum but as seen 
from the diagram at b) one certainly needs to be aware of the side lobes in the spectrum.  
 The second type of deterministic signals extensively used in modern measurement 
technique is the MLS signals (maximum length sequences). The advantages of using this 
type of noise-like signals will be clear when treating transfer function measurements in 
the following chapter. Here we shall give an overview of the most important properties 
only. 
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Figure 1.21 Chirp signal, linear sweep 100–300 Hz in 2 seconds. a) Spectrum, linear scale. b) Spectrum, 
logarithmic scale (arbitrary). c) Autocorrelation function. 
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 The literature on MLS is relatively large but for a discussion of basic properties one 
may look at the article by Rife and Vanderkooy (1989). Summing up we may state the 
following: The MLS is a periodic binary sequence having an approximately flat 
spectrum. Such sequences are easily generated using an arrangement of shift registers. 
The length L of a sequence is given by 
 
 2 1mL = − , (1.30) 
 
where m is the number of steps in the shift register, a number that also denotes the order 
of the sequence. One may generate several sequences of the same order but each of them 
is unique. An example is shown in Figure 1.22, being the first 65 samples of a sequence 
of order 12. The whole length is thereby 4095. In practice sequences up to the order of 
20–22 are used, i.e. a length of several millions.  
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Figure 1.22 Example of maximum length sequence (MLS). The first 65 samples of a sequence of order 12. 

 
 
 When listening to such a sequence and a common white noise signal played 
through a loudspeaker, it is very difficult to distinguish between them. Technically, they 
are used in the same way. The MLS is however, not only deterministic but assuming it is 
replayed periodically, we will get a line spectrum with a distance between lines given by 
 

 s (Hz),ff
L

Δ =  (1.31) 

 
where fs is the sampling frequency, i.e. the fixed rate of outputting the binary samples. 
Using a sampling frequency of 10 000 Hz the time for outputting a sequence of order 12 
will be 0.41 seconds. One therefore has the ability to adapt the signal to the given task by 
choosing sequence length and sampling frequency. The main advantage is, however, the 
deterministic property; we may repeat the measurement many times to improve the 
accuracy of the measured variable. This is true only when assuming the system to be 
constant during the measurement; the system must be time invariant. As pointed out 
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above, this may be a serious limitation in using MLS as opposed to the swept sine 
technique.  
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Figure 1.23 Example of maximum length sequence (MLS). a) The first 25 lines in the spectrum of the sequence 
shown in Figure 1.22. b) Autocorrelation function. 
 
 
 Finally it should be pointed out that, since the MLS has a flat frequency or line 
spectrum, the autocorrelation function is very near to a Dirac δ-function. Figure 1.23 
shows the spectrum and the autocorrelation function for the sequence partly shown in 
Figure 1.22. For the spectrum, only the first 25 lines are shown. (How many lines are 
there?) 
 

 



30 Building acoustics 

1.6 REFERENCES 

IEC 61260: 1995, Electroacoustics − Octave band filters and fractional-octave band 
 filters. 
IEC 61672: 2002, Electroacoustics – Sound level meters. Part 1: Specifications. 
ISO 2041: 1990, Vibration and shock – Vocabulary. 
ISO 18431–1: 2005, Mechanical vibration and shock – Signal processing. Part 1: 

General introduction. 
ISO 18233: 2006, Acoustics – Application of new measurement technique in building 

and room acoustics. 
 
Bendat, J. S. and Piersol, A. G. (1980) Engineering applications of correlation and 
 spectral analysis. John Wiley & Sons, New York. 
Bendat, J. S. and Piersol, A. G. (2000) Analysis and measurement procedures, 3nd edn. 
 John Wiley & Sons, New York. 
Newland, D. E. (1993) An introduction to random vibrations, spectral and wavelet 
 analysis, 3rd edn. Longman, Harlow.  
Rife, D. D. and Vanderkooy, J. (1989) Transfer-function measurements with maximum-
 length sequences. J. Audio Eng. Soc., 37, 419–443. 
Tohyama, M. and Koike, T. (1998) Fundamentals of acoustic signal processing. 
 Academic Press, London. 
 
 
 



CHAPTER 2 
 

Excitation and response of dynamic systems 
 

 
 

2.1 INTRODUCTION 

The main purpose of Chapter 1 was to give a general description of different types of 
oscillating motion, how it can be described and how it can be measured when 
representing the motion of a real physical system. We also presupposed that when 
working with such a system, either in acoustics or vibration, we could convert the actual 
physical oscillation variable (force, acceleration, sound pressure etc.) into an electrical 
signal to be used in the further processing. The concept of signal and oscillation are in 
this connection synonymous.  
 In general, oscillations in a physical elastic system will arise when dynamic forces 
or moments excite the system. A pure acoustic system could be an air-filled enclosure or 
a collection of such enclosures; a room inside a building, a reactive silencer (exhaust 
silencer for a car), a driver’s cabin and so on. Mechanical systems are often associated 
with solid structures such as beams, plates or shells. Dealing with building acoustics the 
actual system is normally a combined or coupled system containing acoustical and 
mechanical elements. This may easily be illustrated using the transmission of sound 
energy from your neighbour’s TV or hi-fi system. The loudspeakers set up a sound field 
in your neighbour’s room, which excites the separating wall into mechanical oscillation. 
This motion will cause motion in the air next to the wall, thereby setting up a sound field 
in the room that in turn will excite our eardrums.  
 Our interest will therefore be concerned with the coupling between an oscillation 
variable describing the excitation or input to the system and the corresponding variable 
describing the response or output. In the following we shall use these words alternatively 
because it is quite common to talk about the input–output relationship of a system, in 
particular when dealing with electric circuits.   
 Assuming that our physical system is linear and that the physical parameters are 
constant, we may always define a transfer function, a frequency function giving the 
relationship between the input and output variables. Several transfer functions have their 
own names; impedance and mobility are important examples. Assuming that the 
parameters are constant means that the system properties are independent of time, i.e. the 
system is time invariant.  Linearity means the principle of superposition is valid, which 
implies that if the excitation contains several frequency components, expressed by a 
Fourier series or transform, the response will be the summed response caused by each 
component alone.  
 The assumption that the parameters are constant in time may often be a reasonable 
one, at least when the time span of the measurements is relatively short. The assumption 
concerning linearity could be more critical as all physical systems will give a non-linear 
response when driven too hard. The transition to non-linearity will normally occur 
gradually, which does not lessen the problem. Nevertheless, we may in most cases 
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assume that our physical system is linear within a certain magnitude range of excitation. 
This applies to the sound pressure levels we normally encounter within a building. This 
may not be the case when exciting structures using a mechanical source. Testing the 
transmission of impact sound, one uses a hammer blow or several hammers (the 
standardized tapping machine). In such cases one should be aware that the result might 
depend on the applied force. The only way to control it is to perform measurements 
varying the force level.  
 In the following we shall refer to examples using simple mechanical systems. As an 
introduction, however, it could be useful to address a practical case containing the 
aforementioned couplings between acoustical and mechanical components.  

2.2 A PRACTICAL EXAMPLE 

Figure 2.1 shows a machine or generator of some kind mounted on a base plate, placed 
on the floor in a building. Additionally, due to noise emission it is placed within an 
enclosure. The machine needs cooling and therefore openings in the enclosure are 
required, the openings are equipped with silencers. The problem to be addressed could be 
of two kinds; there could either be an existing problem or there is a question of designing 
a system, with the sketched components, to reduce the noise. In the latter case prediction 
tools must be available, which again presuppose knowledge of all sound sources.  
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Figure 2.1 A machine unit with enclosure and supplied with silencers. Transmission paths for sound energy are 
indicated: a) direct transmission through enclosure walls. b) by way of structural connections. c) by way of 
openings (silencers and leakages). 
 
 
 Some pertinent questions in this connection will be: how large is the force 
amplitude input to the foundation and floor due to the vibration of the machine? How 
large is the sound power radiated from the floor into the room below due to these forces? 
What will the sound pressure level inside the enclosure be and furthermore, what is the 
relation between this sound pressure level and the sound pressure level outside the 
enclosure, partly due to transmission through the walls, partly through the silencers? 
What is the possibility of “short-circuiting” any of the noise measures by unwanted 
mechanical couplings, air leaks etc.? 
 All these questions require knowledge of transfer functions of some kind, the 
relationship between physical variables that will normally be a function of frequency and 
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we must be able to calculate these functions, analytically, numerically or by using 
empirical methods. However, it should be observed that these variables normally are 
space dependent. As an example, the sound pressure level, both inside and outside the 
enclosure, could be expected to vary with position. One has then to deal with a 
representative set of transfer functions between the variables.  
 On the other hand, the noise problem could be an existing one. A solution then 
requires the analogous possibility using measurement techniques to map the noise field. 
The complexity of such mapping will be highly dependent on the number of sources, i.e. 
if there is just one dominating source or if there is a complex interaction of many 
sources. 

2.3 TRANSFER FUNCTION. DEFINITION AND PROPERTIES 

When using the term transfer function we will, as pointed out above, assume that the 
actual system is linear and stable. The purpose of such a function is that when known, 
one may not only determine the response of a harmonic input with a given frequency but 
also find the response following an arbitrary input time function x(t). This could be a 
transient or stochastic time function or a combination of such functions. To make it 
simple we shall as much as possible use a harmonic signal input for the illustrations in 
this chapter. 

2.3.1 Definitions 

Strictly speaking, the term transfer function applies to the ratio of the Laplace transforms 
of the input and output signals, the frequency response function H(f) or H(ω) being a 
special case.  When writing 
 
 ( ) ( ) ( )Y f H f X f= ⋅ , (2.1) 
 
Y(f) and X(f) are the Fourier transform of the output signal y(t) and the input signal x(t), 
respectively, as shown in Figure 2.2. Normally we shall use the term transfer function for 
the function H(f) but we shall also sometimes apply the term frequency response. The 
latter is often used when the input signal amplitude is frequency independent but has a 
constant arbitrary value.  
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Figure 2.2 A system having one input and one output. Mathematical representations in time and frequency 
domains. 
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 A description giving the relationship between the input and output in the time 
domain is also appropriate. The impulse response gives us the relation between the time 
signals x(t) and y(t). The x(t) being an infinite sharp pulse, i.e. a Dirac δ-function, the 
signal y(t) will give us the impulse response. The transfer function H(f) and the impulse 
response h(τ) is also a Fourier transform pair and they therefore contain the same 
information. Modern measurement technique using signal types such as MLS or swept 
sine, utilize this property as they may easily determine the impulse response and from 
there use the Fourier transform to find the corresponding transfer function.  Concerning 
the different types of test signals being used, see section 1.5.2. 
 A transfer function H(f) is normally a complex function, which in other words tells 
us that the variables describing the input and output have a phase difference. We may 
therefore choose between having the H(f) expressed by its real and imaginary parts or by 
its modulus and phase: 
 

 j ( ) 2 2 j ( )

( ) Re{ ( )} j Im{ ( )} ( ) j ( )

or ( ) ( ) ( ) ( ) ,f f

H f H f H f A f B

H f H f e A f B f eθ

= + ⋅ = + ⋅

= ⋅ = + ⋅

f
θ  (2.2) 

 
where θ(f) is given by 

 ( )tan( ( )) .
( )

B ff
A f

θ =  (2.3) 

 
The modulus |H(f)| is often referred to as the gain factor of the system and θ(f) the 
corresponding phase factor. It is important to note that H(f) is a function of frequency 
only, which is a consequence of assuming the system to be linear and stable. If the 
system does not fulfil these conditions the transfer function will, in the former case, 
depend on the input amplitude. In the latter case, there will be a time dependency. 

2.3.2 Some important relationships 

Knowing the transfer function we may calculate the response (output) for any type of 
excitation (input) if the conditions, as mentioned above, are fulfilled. A Fourier series or 
integral may express the excitation and the response will be a sum of the responses for 
each of the components in the excitation. From the response we may then calculate the 
mean square value or the RMS-value.  
 Associated with the general treatment of oscillations or signals in Chapter 1 we 
shall state some important relationships concerning “two-signal” or “two-channel” 
analysis. We will again assume that the system has one input and one output as shown in 
Figure 2.2. For systems having several inputs and/or several outputs the reader should 
consult the specialized literature on the subject, e.g. Bendat and Piersol (2000). 

2.3.2.1 Cross spectrum and coherence function 
Broadband stochastic signals are suitable for investigating an actual system. Assuming 
that the excitation (input signal) is such a signal we may show that the following two 
relationships are valid, equations linking the transfer function and the spectral density: 
 



Excitation and response 35 

 2( )yy xxG H f G= ⋅  (2.4) 

 and ( ) .xyG H f G= ⋅ xx  (2.5) 
The first equation links together the power spectrum, or more correctly the power 
spectral density, on the input and output side of the system. Only the gain factor appears 
in the equation and all quantities are real. Equation (2.5), however, is complex and here 
we have got a new spectral function Gxy. This is the cross spectral density function, 
shortened to cross spectrum and defined by 
  

 *2( ) lim ( ) ( ) ,xy T TT
G f X f Y f

T⇒∞

⎡ ⎤= ⋅⎢ ⎥⎣ ⎦
 (2.6) 

 
where the star symbol * signifies that the complex conjugate of the Fourier transform of 
the input signal shall be used. A very important application of this function is to 
determine the transfer function H(f) by way of Equation (2.5). This is the preferred 
instrument technique instead of using the direct definition given in Equation (2.1). The 
reason is that it may be shown that with the former the expected value will be more 
correct, which is related to the ideal situation expressed by the Equations (2.4) and (2.5). 
Apart from the assumptions concerning linearity and time invariance, we have tacitly 
assumed that there are no external noise signals either in the input or output to disturb 
our measurements. In practice, there certainly will be such disturbances. A method to 
control this, i.e. finding out if the signal in the output really is caused by the excitation 
signal and not by any disturbing signal, is by measuring the so-called coherence function 
γxy, given by 
 

 
2

( )
( ) 0 ( ) 1.

( ) ( )
xy

xy xy
xx yy

G f
f f

G f G f
γ =

⋅
γ≤ ≤  (2.7) 

 
A coherence function identically equal to 1.0 implies that the output signal is caused by 
nothing other than the applied input signal. If less than 1.0, this means that there are 
systematic and/or random errors in the measured transfer function. This need not be 
caused by external noise only but could be linked to the problem of using too few lines in 
the discrete Fourier transform, i.e. too few lines when the transfer function varies 
strongly within narrow frequency intervals. An example is when the system exhibits 
strong resonances (see below). This type of systematic error, which is caused by 
inadequate frequency resolution, is called leakage, a subject treated in section 1.4.4. 

2.3.2.2 Cross correlation. Determination of the impulse response 
In an analogous way as the power spectral density G (power spectrum) has its time 
domain equivalent description in the autocorrelation function R(τ), the cross spectrum 
Gxy has its equivalent, its Fourier transform, in the cross correlation function Rxy(τ). This 
is defined by 

 
0

1( ) lim ( ) ( )d .
T

xy T
R x t y t

T
τ τ τ

⇒∞
= ⋅ +∫  (2.8) 

 
One might say that this function experienced its renaissance in measurements of sound 
and vibration by the introduction of MLS as a test signal. Using such signals one may 
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easily and accurately determine impulse responses for a system and thereby one may 
determine the corresponding transfer functions. The method is widely used in building 
acoustics, in room acoustic measurements as well as in measurements of sound 
insulation. In recent years, however, the swept sine technique has become a rival to the 
technique using MLS (see below). An important feature in both methods is the larger 
dynamic range as compared with earlier conventional methods. 
 
 
 
 
 
 
 
 
 
 

SYSTEM
White noise

Cross-
correlation

h(τ )

 
Figure 2.3 Principle determination of the impulse response of a system by cross correlation. 

  
 
 The measurement principle using MLS is based on the fact that when using a 
stochastic white noise input signal one will obtain the impulse response when cross 
correlating the output and input signals. The principle set-up is shown in Figure 2.3. The 
crucial point is that one may get an accurate estimate of the impulse response by 
substituting the white noise signal with an MLS signal. Since the latter is deterministic 
one may, assuming as before that the system is time invariant, constantly improve the 
estimate by increasing the number of sequences used in the averaging process.   
 Obtaining the impulse response using the swept sine technique may be 
implemented in different ways. Maybe the simplest one to grasp is the one illustrated in 
Figure 2.4, where one as a first step performs a Fourier transform of both the output and 
the input signal. By a spectral division we obtain the transfer function directly, and the 
impulse response may be obtained by an inverse Fourier transform. As pointed out in 
Chapter 1 the swept sine technique has some important advantages compared with the 
technique using MLS, e.g. more robust in terms of time variance and an even greater 
dynamic range may be obtained.  
 

SYSTEM
MLS or SS

h(τ )
FFT

FFT

IFFT

 

 
 
 
 
 
 
 
 
Figure 2.4 Principle determination of the impulse response of a system by spectral division of the Fourier 
transforms.  

2.3.3 Examples of transfer functions. Mechanical systems 

A transfer function is certainly linked to the specific variables defined as being the 
excitation (input) and the response (output). In acoustics and vibration there are a number 
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of transfer functions we shall use and many of these functions have special names. In this 
chapter, we shall draw on examples from mechanical systems. The analogous acoustic 
quantities will be introduced in the following chapter. 
 For mechanical systems we shall define the following quantities; see also ISO 
2041: 
 
Mechanical impedance, the complex ratio of force F, applied to a point in the system, 
and the resulting velocity v: 
 

 mech
N s .
m

FZ
v

⋅⎛= ⎜
⎝ ⎠

⎞
⎟  (2.9) 

 
This definition presupposes simple harmonic motion. If this is not the case, the variables 
must be interpreted as functions of frequency, i.e. Fourier transforms. The force and 
velocity may be taken at the same or different points. One normally distinguishes 
between these two cases by applying different names. In the former case the name point 
impedance, or more precisely driving point impedance, is used whereas one uses the 
name transfer impedance in the latter case. Do note that the impedance is not the transfer 
function when interpreting the force as the excitation. In that case the inverse quantity 
represents the transfer function, which is called 
 
Mechanical mobility and thus  
 

 mech
m .

N s
vM
F

⎛= ⎜
⎞
⎟⋅⎝ ⎠

 (2.10) 

 
The quantity is in some cases referred to as admittance.  We shall also define the 
 
Transmissibility, which is the non-dimensional ratio of the response amplitude of a 
system in steady-state forced motion to the excitation amplitude. The ratio may be one of 
forces, displacements, velocities or accelerations. 
 Analogous quantities are used for mechanical moments, where one finds moment 
impedance and moment mobility. Then the force and velocity are replaced by moment 
and angular velocity. It should also be mentioned that one may also find data represented 
as apparent mass, i.e. the velocity v in Equation (2.9) is replaced by the acceleration a. 

2.3.3.1 Driving point impedance and mobility 

The fundamental physical characteristics of mechanical systems are mass, stiffness and 
damping. We shall in the first place assume that our masses, springs and dampers are 
ideal concentrated (or lumped) elements. When driving these elements using a harmonic 
force F⋅exp(jω t) the resulting velocity v will also be harmonic and we may create the 
Table 2.1 below. 
 The fundamental and important difference between the impedances, maybe looking 
at the impedance as resistance against movement, increase with frequency for a mass 
whereas decrease with a spring. For a viscous damper the damping is proportional to 
velocity, thereby making the impedance frequency independent. The damping in elastic 
media, e.g. metal, rubber and plastics, is however better characterized as hysteretic. This 
kind of damping is proportional to the displacement and described, as shown later on, by 
using complex spring stiffness, for materials using a complex modulus of elasticity.  
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Table 2.1 Impedance and mobility of the simple elements mass, spring and viscous damper. F – force, v – 
velocity, a – acceleration, k – spring stiffness, c – damping coefficient.  
 

Element Symbol Calculation Impedance Mobility 
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Figure 2.5  Modulus of impedance for the components mass and spring, given as a function of frequency. Mass 
weight and spring stiffness are indicated on the curves.   
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 When depicting an impedance or mobility in a frequency diagram one usually uses 
a logarithmic scale and the modulus of the actual quantity is given in decibels (dB) with 
an agreed reference value. In the impedance diagram, shown in Figure 2.5, a reference 
value of 1N⋅s/m is used and the solid lines show the impedance for lumped mass and 
spring elements. Using such diagrams for plotting the impedance of composite and more 
complex systems one will immediately observe in which part of the frequency range we 
may characterize the systems behaviour in terms of mass, a spring or damping. (What 
would the corresponding mobility diagram look like?) 

2.4 TRANSFER FUNCTIONS. SIMPLE MASS-SPRING SYSTEMS 

The simple mass-spring system is the classical example for illustrating transfer functions 
in a physical system, a system also called a linear harmonic oscillator. We shall model 
the system using three concentrated (lumped) elements, a mass, a spring and a damper. 
The system is assumed to have one degree of freedom only, a transverse movement as 
shown in Figure 2.6. The justification for using such a simple system is twofold: it 
exhibits most of the phenomena found in more complex systems and furthermore, it 
gives us the opportunity to define and clarify the concepts and quantities to be used later 
on. We shall either use the displacement or the velocity as the response quantity, the 
latter when dealing with the impedance of the system.    
 As seen from the figure we assume that an outside force F drives the mass. The 
first task will be to calculate the movement of the mass as a function of frequency, 
second, we shall calculate the transmitted force F’ to the base or foundation. The latter 
task is fundamental to the subject area of vibration isolation. 
 

  m

F
x(t)

c
k

F´

Figure 2.6 Simple mass-spring system (harmonic oscillator). 

2.4.1 Free oscillations (vibrations) 

We shall start by assuming that the system in one way or other is displaced from its 
equilibrium position and thereafter left to move freely. Without any outside forces 
operating, i.e. F equal to zero, the sum of inertial forces Fm, spring forces Fk and viscous 
damping forces Fc will be equal to zero: 
 
 0,m c kF F F+ + =  (2.11) 
 
giving 
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2

0 or

d d 0,
dd

m a c v k x

x xm c k x
tt

⋅ + ⋅ + ⋅ =

+ + ⋅ =
 (2.12) 

 
where x, v and a are displacement, velocity and acceleration, respectively. The damping 
coefficient c will be the prime factor in the solution of the differential equation 
describing the transient motion when the system is left to vibrate freely. A suitable 
variable characterising the damping is the damping ratio ζ. This quantity gives the 
damping coefficient c relative to the critical damping coefficient ccritical of the system, 
 

 
critical 0 0

.
2 4

c c c
c m m

ζ
ω π

= = =
f

 (2.13) 

 
f0 is the fundamental frequency (eigenfrequency), the natural frequency of oscillation for 
the undamped system, i.e. when the damping coefficient c is equal to zero. This 
frequency is given by 
 

 0
0

1 .
2 2

kf
m

ω
π π

= =  (2.14) 

 
We shall in the following use both the frequency f and the angular frequency ω, choosing 
the one most suitable in each case, but without changing the name of quantities such as 
natural frequency etc. Inserting the damping ratio into Equation (2.12) we may solve the 
equation for the following three cases: 
 
 ζ < 1 will give us a damped oscillatory motion where the displacement x may be 
expressed as: 
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d d

d
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 (2.15) 

where 
 

 2 2 2
d 0 1 , and BC A B tg .

A
ω ω ζ θ= − = + =   

 
The coefficients A and B, or alternatively C and θ, must be determined from the initial 
conditions. In section 1.4.2.2, we used this transient motion for illustrating the 
calculation of the Fourier transform.   
 
ζ =1 indicates that the system is critically damped. The movement is no longer 
oscillatory, the system is returning to its stable position in a minimum time. (Make a 
comparison with the spring system of e.g. a car.) The solution is now  
 
   (2.16) 0( ) ( ) e .tx t A B t ξω−= + ⋅ ⋅
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ζ > 1 shows that the system is more than critically damped giving a solution 
 

 
2

0 00 1( ) e e e .ttx t A Bω ζ ω ζξω − − −− 2 1 t⎡ ⎤= +⎢ ⎥⎣ ⎦
 (2.17) 

2.4.1.1 Free oscillations with hysteric damping 

As stated in section 2.3.3.1, using viscous damping is not appropriate in modelling a 
system with elastic components such as rubber, plastics etc. The damping is better 
described as hysteretic, normally using the loss factor η as a characteristic quantity. In 
our simple mass-spring system we shall remove the viscous damper and introduce 
damping through a complex spring stiffness k 
 
 (1 j ).k k η= + ⋅  (2.18) 
 
The loss factor η will always be much less than one. For metals one will find η in the 
range of 10-4 – 10-3, for rubber of the order 10-2. Equation (2.12) will then be replaced by 
the following 
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2
d (1 j ) 0.
d

xm k x
t

η⋅ + + ⋅ =  (2.19) 

 
We now assume that the solution of this equation will have the same form as Equation 
(2.15) but we shall express it using the complex form, x(t) = A⋅exp(jγ t).  By insertion 
into Equation (2.19) we easily solve for the exponent γ  
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Hence, we obtain 
 

 01 j
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0( ) e having a real solution: ( ) e cos( ).
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Compared with the solution (2.15) the damping ratio ζ is replaced by η/2 in the 
exponential term. It should also be mentioned that other quantities are in use for 
expressing the damping, such as the logarithmic decrement δ and the Q factor. Assuming 
that the damping is small the relationship between all these quantities is as follows 
 

 12
Q

.δζ η
π
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The reverberation time T is used in building acoustics to express the damping of sound 
in rooms. However, the concept is useful when dealing with vibration as well. By 
definition the reverberation time T is the time elapsed before the energy in an oscillating 
system is reduced to 10-6 of the initial value. As the energy is proportional to the square 
of the vibration amplitude we may represent the definition by 
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and if further applied to Equation (2.21) we have 
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This expression is applied in measurement methods for determining the loss factor for 
materials where the energy losses are relatively small. For materials with high losses the 
reverberation time will be too short to obtain reasonable accuracy. A better method is 
then to excite the material specimen into resonance and measure the Q factor.     

2.4.2 Forced oscillations (vibrations) 

Driving our simple mass-spring system using an external force F we now obtain 
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where we have, in the last equation, indicated that the external force could be an arbitrary 
function of time. There are several available procedures for solving the equation. Our 
aim is to determine the transfer function between applied force and displacement and, 
later, between force and velocity, which is the driving point impedance. Letting the input 
force be a simple harmonic force is the easiest way to solve the differential equation. 
Even then the solution will contain two terms. One of these terms will represent a 
transient motion as we start when the system is in a stable position. This will be the 
solution of the homogeneous Equation (2.12) whereas the other term will be the 
stationary part, which will be of primary interest. We may solve this term by expressing 
the force as F(t) = F0⋅exp(jω t) and then assuming a solution having the form x(t) = 
x0⋅exp(jω t). Inserting this into Equation (2.25) we get 
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and therefore we may write 
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When differentiating we get the velocity v(t) as 
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The quantity Zm is the mechanical impedance, the driving point impedance at the point 
where the force is applied. In this case, this will be the sum of the impedances for the 
three elements because they all have the same velocity and the force is the sum of the 
forces on the elements. Alternatively, expressing the impedance by its modulus and 
phase as shown in Equation (2.2), we write 
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It should be noted that the phase changes sign when the frequency ω of the applied force 
is equal to the fundamental frequency (eigenfrequency) ω0 of the system, i.e. when we 
excite the system into resonance. One possible method of mapping the resonance 
frequencies of a system is therefore by detecting the frequencies where one finds the 
maximum relative phase changes.  
 We shall use an impedance diagram to depict the modulus given in Equation (2.29). 
Figure 2.7 shows an example using the following data for the system components: the 
mass weight m is 1.0 kg, the spring stiffness k is 4⋅105 N/m and the damping coefficient c 
is equal to 18 kg/s. It should be fairly obvious why one normally divides the response to 
the force into three main ranges, which are called stiffness-controlled, damping-
controlled and mass-controlled ranges.  
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Figure 2.7 Modulus of the impedance of a simple mass-spring system. The mass weight is 1 kg, the spring 
stiffness is 4⋅105 N/m and the damping coefficient is 18kg/s. 
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Stiffness-controlled range,  ω << ω0 
In this case, we have ω2 << k/m = ω0

2 and |Zm| ≈ k/ω. The spring stiffness is the 
determining factor for the impedance. At very low frequencies the conditions are the 
same as when the force is a simple static load. The displacement is proportional to the 
force and in phase with it. Assuming a frequency independent force the velocity 
amplitude will increase with frequency and arrive at its maximum amplitude in the 
damping-controlled range. 
 
Damping-controlled range,  ω ≈ ω0 
Here we find  |Zm| ≈ c, telling us that it is damping only that controls the amplitude at 
resonance. The velocity and force are in phase whereas the displacement and force are 
90° out of phase.  
 
Mass-controlled range,  ω >> ω0  
Above the resonance frequency the mass will start to be the controlling factor, |Zm| ≈ ωm. 
Again assuming a frequency independent force the velocity will be inversely 
proportional to frequency and there will be a 90° phase difference between force and 
velocity. The acceleration will be constant and in phase with the force. (How will the 
displacement behave?) 
 Most people will be more familiar with a description showing a resonance to be a 
maximum value and not a minimum as shown here. We shall therefore use the mobility 
as the descriptive quantity when giving further examples. 

2.4.3 Transmitted force to the foundation (base) 

Using the equations above we are now in a position to calculate the force transmitted to 
the foundation or base, i.e. the ratio of the transmitted force and the applied force. This is 
of great interest in the field of vibration isolation of rotating machinery exhibiting 
unbalanced forces.  The task here is to design an elastic supporting system reducing the 
transmission of forces to the foundation and thereby prevent harmful vibrations to be 
transmitted to the environment. We shall again use the simple model depicted in Figure 
2.6 where the machine is modelled as a lumped mass and is placed on an elastic element, 
a simple spring. This model is, for several reasons, not a very realistic one especially due 
to the assumption of a foundation of infinite stiffness. If that is the case in practice, we 
should not need the isolation! We shall however, treat the more general case later. 
 From the figure we obtain for the force F’ transmitted to the base 
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Using the expression for the velocity v from Equation (2.28) we find 
 

 
j

0

m

j
j

j

t
kcF e k .F c

kZ c m

ω
ω

ω ω
ω

−⋅ ⎛ ⎞′ = − =⎜ ⎟ ⎛ ⎞⎝ ⎠ + ⋅ −⎜ ⎟
⎝ ⎠

F⋅  (2.31) 

 
We shall introduce the fundamental frequency ω0 and the damping ratio ζ arriving at  
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If we only are interested in the ratio of the force amplitude transmitted and the exciting 
force amplitude and not their phase relationship, we calculate the modulus of the ratio of 
the complex quantities, i.e. the transmissibility T as 
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Figure 2.8 shows the transmissibility for four values of the damping ratio ζ.  At low 
frequencies we find the force transmitted is the same as the exciting force; there will be 
no vibration isolation. The force amplification at resonance will depend on the damping 
and to obtain any isolation at all, the frequency must be higher than 21/2⋅f0. When 
designing for vibration isolation one therefore must ensure that the frequencies of the 
unbalanced forces are relatively high compared to the natural frequencies of the system.   
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Figure 2.8 Transmissibility, the ratio of transmitted force (to the foundation) and the applied force, of a simple 
mass-spring system with viscous damping. The damping ratio ζ  for the curves is given in the legend.  
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 In the above model viscous damping was assumed, which will give a 
transmissibility dependent on damping also at the higher frequencies. As an alternative 
model we shall assume that damping is hysteretic (see section 2.4.1.1). Instead of 
Equation (2.30), we now have  
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The transmissibility Th will then be given by 
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Figure 2.9 Transmissibility, the ratio of transmitted force (to the foundation) and the applied force, of a simple 
mass-spring system with hysteretic damping. The loss factor η is indicated on the curves.  
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 This transmissibility is shown in Figure 2.9 for four values of the loss factor η. 
These values are, according to Equation (2.22), chosen equal to twice the damping ratios 
ζ used in Figure 2.8. It should be noted that the transmissibility is independent of the loss 
factor at the higher frequencies under the condition where η is not unrealistically high, 
thereby violating the assumption η << 1 as indicated in Equation (2.20).  
 In addition to the transmissibility T other quantities are in use to characterize the 
usefulness of elastic supporting systems. An appropriate question one may ask is: What 
do I gain by using an elastic system compared to mounting my machine directly on to the 
foundation? In that case one must of course model the foundation in a more realistic way 
than one of infinite stiffness. We shall define the efficiency E of the isolating system by 
the ratio1  
 

 
foundation without isolator

foundation with isolator

.
v

E
v

=  (2.37) 

 
Later on we shall give examples using this quantity but this requires us to extend our 
knowledge to systems having several degrees of freedom. 

2.4.4 Response to a complex excitation 

Up until now we have assumed that the exciting force could be described by a simple 
harmonic time function, i.e. there is only one frequency operating at a time. We have, 
however, pointed out that knowing the transfer function we may calculate the response 
for any type of excitation. For this to be possible the condition of linearity must be 
fulfilled, the principle of superposition must apply. This means that, when expressing the 
excitation in a Fourier series or transform, the response will be the sum of the responses 
for each component in the excitation. A periodic excitation will give a periodic response 
and the system will resonate when a component in the excitation coincides with one of 
the natural frequencies (eigenfrequencies) of the system.  
 We shall give an example again using the simple mass-spring system in Figure 2.6 
but we will exchange the viscous damping with the structural or hysteric one. We 
furthermore exchange the harmonic time function of the force with a stochastic one. This 
implies describing the force excitation using a spectrum, a spectral density function 
GF(f), and our task is to calculate the resulting velocity of  the mass. We certainly know 
that the velocity v(t) will be a stochastic function but what is the resulting RMS-value? 
 To answer the question we shall use the general Equation (2.4) linking together the 
spectral densities (power spectrum) of the input and output quantities. In our system, the 
input quantity is the force F with the power spectrum GF(f), the output being the velocity 
v with power spectrum Gv(f). The transfer function H(f) is therefore 1/Zm, i.e. the 
mobility M of the system. The task is therefore to calculate the integral 
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In this case the mobility will be 

 
1 The term insertion loss is also commonly used, indicating the difference in some quantity when inserting a 
new member or device into an existing system. 
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and we must solve an integral, which after some rearranging may be written 
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The result is certainly wholly dependent on the force power spectrum GF(f). For 
simplicity we shall assume that the spectrum is white, in any case constant in a frequency 
range where the response is high. Setting GF(f) equal to G0 we may show that 
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The importance of having a high loss factor η is certainly expected as we then get a low 
response at resonance. The way the mass and stiffness influence the result are, however, 
not easy to guess. 

2.5 SYSTEMS WITH SEVERAL DEGREES OF FREEDOM 

We have in the derivations above used a very simple mechanical system having one 
degree of freedom to illustrate the general term transfer function and its special forms 
impedance and mobility. The system has just one natural frequency and one natural way 
of motion, the latter usually called a mode. An extensive coverage of mechanical systems 
having several degrees of freedom is outside the scope of this book. For the interested 
reader there are a number of textbooks on the subject to consult, e.g. Meirovitch (1997). 
Here we shall just give a short general description of systems described either as discrete 
or continuous. In the former case, we are able to model the system composed of 
concentrated or lumped elements, such as masses, springs and dampers. This is opposed 
to continuous systems where wave motion must be taken into consideration; where the 
wavelength is becoming comparable with or less than the dimensions of the system.  
 We shall, in this main section, give some examples of models using lumped 
elements, to present a more realistic treatment of the theme vibration isolation than that 
given in section 2.4.3. Examples on continuous systems will be presented in the 
following chapters. 
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2.5.1 Modelling systems using lumped elements 

The modelling of a system as a collection of lumped elements (masses, springs and 
dampers) may be applied in practice both to mechanical and acoustical systems. If the 
task is to calculate the motion of each element in the system we have to find all the 
natural frequencies of the system as well as the modal vectors (eigenvectors). The latter 
defines the natural forms of vibration, the natural modes. The important point is that any 
possible type of motion, resulting from a given force excitation, may be described by a 
linear combination of these modal vectors. This is the background for calculating the 
response using so-called modal analysis; see section 2.5.3.1 below.   
 In many cases, however, we are not interested in performing a detailed analysis of 
all parts of the system. The task may only be to calculate the impedance (or mobility) at a 
place where the force (or moment) is attacking, making us able to control the mechanical 
power transmitted to the system. Such an analysis may be performed in a simple way 
dealing with systems having a small number of elements. There exists, however, several 
commercial computer programs that will be helpful if one is able to model the actual 
system using an analogue electrical system.  
 

  m1

F

c1k1

 m2

c2k2

Figure 2.10 System with two masses, springs and dampers. On the calculation of mobility, see text. 
 
 
 We shall present an example using this kind of modelling applying the system 
shown in Figure 2.10, which is a combination of two simple mass-spring systems. The 
system with elements using suffix 1 has identical data as used for calculating the 
impedance shown in Figure 2.7. In the other system, suffix 2, the mass is increased by a 
factor of 10 and the damping is also increased. The total or combined system has now 
two natural frequencies. For the frequencies in this case, and for several other simple 
systems, one may find analytical expressions in the literature, e.g. Blevins (1979). These 
are fi (i = 1, 2) given by 
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For this case we have chosen to calculate the input point mobility and Figure 2.11 shows 
the result compared with the result setting the mass m2 infinitely large. Comparing with 
the latter result, which we calculated earlier on and where the natural frequency is 100 
Hz, we have now two resonances. The corresponding natural frequencies, calculated 
using Equation (2.42) are 30.2 and 106.0 Hz, respectively. (It should be observed that the 
natural frequencies are calculated for systems without damping). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

10 100 100020 50 200 500 2000 5000

Frequency  (Hz)

-100

-80

-60

-40

-20

0

M
od

ul
us

 o
f m

ob
ilit

y 
(d

B
 re

 1
m

/N
s)

Mass

10 kg

1 kg

0.1 kg

107N/m

106N/m

105N/m

Stiffness

 

Figure 2.11 Input mobility of system shown in Figure 2.10. Dashed curve: m1=1kg. k1=4⋅105 N/m. c1=18 N⋅s/m.  
m2=10kg. k1=4⋅105 N/m. c1=100 N⋅s/m. Solid curve: m2= ∞.  
 

2.5.2 Vibration isolation. The efficiency of isolating systems 

We shall again use the system depicted in Figure 2.10 to give a more realistic illustration 
of vibration isolation, and in particular using the efficiency E, defined in Equation (2.37), 
to characterize the effect of the elastic support. Elastic supports are normally introduced 
to reduce vibrations from a machine transmitting vibrations to the foundation, 
alternatively to reduce vibrations in the foundation being transmitted to e.g. sensitive 
equipment. The former case is sketched in Figure 2.12, where we wish to isolate any 
unbalanced forces in the upper structure (machine) from the lower structure (foundation 
or floor). As a measure of success we shall compare the two situations marked a) and b). 
In general, this may be a complicated task. We normally have to apply more than one 
isolator, which implies several degrees of freedom. Furthermore, we may as a worst case 
have to model the machine and foundation as continuous systems.  
 We shall, however, assume that each of the three structures may be characterized 
by the mobility applicable for a movement in only one direction, here specifically in the 
vertical direction. Using indices m, i and f indicating the mobility of structure 1 
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(machine), isolator and structure 2 (foundation) respectively, we may express the 
efficiency E as 
 

 2 m f i

2 m f
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= =
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 (2.43) 

 
To make the isolator system efficient it is not sufficient to make the isolator “soft”, i.e. 
choose one with a high mobility. It must also be high compared with the sum of the 
motilities of the attached structures.  
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Figure 2.12 Sketches for the calculation of the efficiency of a vibration isolating system. a) Structures coupled 
through isolator. b) Structures in direct contact. 
 
 
 

10 100 100020 50 200 500

Frequency (Hz)

-40

-30

-20

-10

0

10

20

30

40

20
 ⋅l

gE
  (

dB
)

 
Figure 2.13 The vibration isolation given by the efficiency on a logarithmic scale. The system is shown in 
Figure 2.10, where the mass m1 represents the “machine” and the components with suffix 2 represents the 
“foundation”. Solid curve – component values as in Figure 2.11. Dashed curve – m2 = m1 = 1.0 kg.  
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 We shall use the model shown in Figure 2.10 to illustrate the behaviour of the 
efficiency E given by Equation (2.43). We shall let the machine be represented by the 
mass m1 and the foundation by the mass m2, spring stiffness k2 and damping coefficient 
c2. The isolating element has the corresponding spring stiffness k1 and damping 
coefficient c1. The efficiency, given on a logarithmic scale, is shown in Figure 2.13 using 
two different values for the mass m2. For the solid line curve all component data are the 
same as used for calculating the input mobility shown in Figure 2.11. As seen from 
Figure 2.13 we do not obtain any isolation for frequencies less than 
approximately 2 times the highest natural frequency, which is around 150 Hz. In fact, 
below this frequency the conditions are worse than without the isolator. On the other 
hand, the influence of the foundation is negligible.  
 However, by reducing the mass of the foundation by a factor of 10, as shown by the 
dashed curve, the situation is quite different. In fact, we do get E > 1.0 (20⋅lgE > 0) in the 
interval between the two resonance frequencies but at the same time the frequency must 
be well over 200 Hz to obtain good isolation. (E will be > 1.0 for frequencies above 220 
Hz).  

2.5.3 Continuous systems 

 A model using lumped elements will, however, be useless when wave phenomena start 
appearing, which applies when the wavelength of an actual wave type becomes 
comparable with the physical dimensions of the elements. We then have to deal with 
systems having distributed mass and stiffness, the number of freedoms will in principle 
be infinite. 
 The above does not imply that discrete and continuous systems in principle 
represent different types of dynamical system exhibiting dissimilar dynamical 
characteristics. It should, as indicated above, merely be regarded as two different 
mathematical models for the same physical system. The behaviour is analogous even 
though the one is described using ordinary differential equations, the other by partial 
differential equations.  
 Comparing with the general description of discrete systems we now mathematically 
express the response of a continuous system to a given excitation by its eigenfunctions 
and its associated eigenfrequencies (or natural frequencies). The eigenfunctions are 
functions of the space coordinates. Analogous to the eigenvectors of discrete systems, 
which describe the natural modes of vibration, the eigenfunctions describe the natural 
modal shapes of the continuous system. Furthermore, expressing a complex vibration 
pattern with these functions is wholly analogous to the use of Fourier series or transforms 
on oscillations in the time domain. 
 We shall treat these subjects in more detail when dealing with wave and wave 
phenomena in Chapter 3 and also further on when dealing with sound transmission in 
Chapter 6. At this point we shall give a short overview on calculation and measurement 
methods relevant to continuous systems. 

2.5.3.1 Measurement and calculation methods 

For a number of simple structures having idealized boundary conditions we may find 
explicit analytical expressions for the eigenfunctions. As an example, we may for a panel 
(wall) assume that it is simply supported (or, alternatively, clamped) along the edges. In 
approximation, this could be true but such boundary conditions are always an 
idealization. In practice, performing calculations of either transfer functions or vibration 
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modes for a certain wave type we therefore have to rely on various approximate methods. 
Finite element methods (FEM, BEM) implemented in advanced computer programs, such 
as e.g. ANSYS™, ABAQUS™ and FEMLAB™, have made such methods powerful 
tools. At the same time one has the ability to use advanced experimental methods, modal 
testing or modal analysis, to compare and to give feedback on the calculated results. In 
an interactive way, one may then improve on the mathematical model of the structure 
under investigation.   
 Another important analytical tool is statistical energy analysis (SEA). We shall 
therefore give an overview of this method later in Chapter 7. As distinct from the finite 
element methods, SEA is what we might call an energy flow method. It will not give any 
detailed description of the oscillating motion at a given frequency but gives us a picture 
of the energy flow in the system averaged over wide frequency bands. The fundamental 
basis of the method is that each element or subsystem making up the structure under 
investigation exhibits a number of natural frequencies inside these frequency bands. The 
calculated response to an excitation is therefore always some mean value for one or more 
frequency bands. In a vast number of cases, not only in building acoustics but also in 
general noise problems, this is sufficient information. Several commercial computer 
program packages are available, e.g. AutoSEA™, SEADS™ and SEAM™.  
 In general, we know that the response to an input to a mechanical system such as a 
plate, a beam or a shell will be dependent on position. Detecting a resonance when the 
driving frequency coincide with one of the natural frequencies then presupposes that the 
amplitude of the vibration mode, associated with this natural frequency, is different from 
zero in the driving point. In a measurement situation for a proper mapping of natural 
frequencies several driving input points have to be used. 
 An experimental modal analysis does not map the natural frequencies of a structure 
only but determines the natural vibration patterns, the modal shape of the structure. 
Putting it simply, determining the modal shape is based on the measurement of a number 
of transfer functions for the structure. A force is applied in one or more points and for 
each driving point the response is measured at a number of positions distributed over the 
whole structure. From the measured resonance frequencies, one may estimate the natural 
frequencies. Simultaneously, one has at each of these frequencies and at each measuring 
point the information on how the structure vibrate both in amplitude and phase, i.e. one 
has an estimate of the associated modal shape. From this information it is possible to 
construct a model of the structure for solving the inverse problem: calculating the 
response to an arbitrary excitation. This is possible due to the response being a 
combination of the responses of the separate modes. An introduction to this technique 
can be found in the book by Ewins (1988). Modal analysis is, as mentioned above, an 
important measurement method giving feedback to finite element methods.  
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CHAPTER 3 
 

Waves in fluid and solid media 
 

 

3.1 INTRODUCTION 

This chapter is devoted to the fundamental properties of waves in fluids as well as in 
solid media, the latter being metal, concrete, plastics etc. Concerning fluid media we 
shall be considering gases only, which in normal cases in building acoustics will be air. 
 In addition to the treatment of the various types of wave motion we shall deal with 
the way waves are generated, i.e. examine sound sources and the way we can calculate 
the sound field generated by these sources. Furthermore, we shall use some simple cases 
of sound reflection from surfaces as an introduction to the later treatment of sound 
absorption and sound transmission. 
 As pointed out earlier, a wave is characterized by an oscillating motion propagated 
through the actual medium by virtue of its physical characteristics. Energy is transported 
by the wave but there is no net transfer of the medium. This does not imply that the 
medium, in a global sense, cannot be transported along with the wave, e.g. by wind, air 
movement in a ventilation duct etc. We shall, however, limit the treatment to cases where 
the medium is at rest.  
 Sound waves in solids can, as opposed to sound waves in fluids, store energy in 
shear motion. Whereas only compressional waves can exist in fluids, several other types 
of wave and combinations thereof are possible in solids. Of special importance in sound 
transmission in buildings is bending waves, also called flexural waves. Bending waves in 
plate-like structures will therefore be an important subject.  
 We shall presuppose that the acoustic phenomena are linear. Simply stated, this 
implies that the excursions in value of the physical quantities during wave motion are 
small compared with the value in a state of equilibrium. Non-linear phenomena occurring 
due to large deformations or at very high pressures are outside the scope of this book. 

3.2 SOUND WAVES IN GASES 

A sound wave propagating through a gas gives space and time variations in pressure, 
density and temperature as well as relative displacement from equilibrium of the particles 
of the gaseous medium. Observing the instantaneous values of pressure, density and 
particle velocity we may split these into an equilibrium part (or “direct current” part) and 
a fluctuating part due to the wave. We may write 
 
 total 0 total 0 total 0, , and ,P P p ρ ρ ρ= + = + v = V + v  (3.1) 
 
where P0 and ρ0 are the equilibrium value for the pressure (the atmospheric pressure) and 
density, respectively. The acoustic “disturbances” are the sound pressure p and the 
density variation ρ. Given the loudness of sound we are normally exposed to means that 
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the acoustic fluctuating parts are relatively small; we may assume the phenomena to be 
linear. Also note, as pointed out in the introduction, that we will assume V0 to be zero. It 
should also be observed that this quantity as well as the particle velocity v is a vector 
quantity. 
 Given these approximations we can write down the linear or the so-called acoustic 
approximations for the governing fluid equations. These equations concern the 
conservation of mass, the fluid forces and the relationship between changes in pressure 
and density. We get 

 0 ,
t
ρ ρ∂

= − ∇⋅
∂

v  (3.2) 

 0p
t

ρ ∂
∇ = −

∂
v  (3.3) 

and 2 ,p c ρ=  (3.4) 
 
where c is the sound speed (phase speed) in the actual medium. Why it is termed phase 
speed is due to the fact that travelling along with the wave at the same speed c one 
always sees the same pattern; there is no change of phase. Eliminating the variables v and 
ρ from these equations we get the wave equation 
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We now assume that the sound wave is split into partial waves having a harmonic time 
dependency. This means that it is sufficient to observe just one frequency component at 
the time. The sound pressure p and the particle velocity v at an arbitrary point in the 
sound field may then be expressed as 
 

 
{ }
{ }

j

j

ˆ( , ) Re ( ) e

ˆand ( , ) Re ( ) e ,

t

t

p t p

t

ω

ω

= ⋅

= ⋅

r r

v r v r
 (3.6) 

 
where Re{…} signify that we shall use the real part of the expression, further that the 
amplitudes of p and v, indicated by the “hats”, are in general complex values. As a rule 
one implicitly uses the real value to obtain the real physical quantity. It is therefore 
common practice to leave out the Re{…} in the expressions. When introducing the 
harmonic time dependency Equation (3.5) will transform into the Helmholtz equation 
 

 
2

2 2 2
2 0,p p p k p

c
ω

∇ + = ∇ + =  (3.7) 

 
where k (m-1) is denoted wave number. 
 The pressure and the particle velocity in a sound field may vary in a very complex 
manner but still obeying the wave equation. Plane wave and spherical wave fields are 
examples of idealized types of wave field that are not only important theoretically but 
also in practical measurement situations. 
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3.2.1 Plane waves 

Using the notion plane wave implies a wave where the sound pressure varies in one 
direction only. We have not yet introduced any energy losses in the Equations (3.2) 
through (3.4), which means that the pressure amplitude will be constant, and we may 
write 
 
 j( )ˆ( , ) e ,tp t p ω − ⋅= ⋅ k rr  (3.8) 
 
where k = n ·2π/λ is the wave number vector and λ is the wavelength. It should be 
observed that the last term in the exponent is the vector product of the wave number 
vector and the coordinate vector r. For a plane wave in the positive x-direction we obtain 
 
 j( )ˆ( , ) e ,xt k xp x t p ω −= ⋅  (3.9) 
 
where kx is the component of the wave number in the x-direction. The equation tells us 
that either we observe the pressure as a function of time or as a function of location at a 
given time, it represents a simple oscillatory motion. As for other types of oscillation we 
shall use the RMS-value as a characteristic quantity, 
 

 2 2

0

1 ( , )d ,
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p p x t t
T

= ∫  (3.10) 

 
which further may be expressed in decibels (dB) by the sound pressure level Lp 
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 (3.11) 

 
The reference value p0 is equal to 2⋅10-5 Pa, an international standard value for sound in 
air.      
 In practice, one may generate a plane wave in a duct or tube under the condition 
that the diameter is much less than the wavelength. In addition, the wave must not be 
reflected back from the end of the duct or tube; it must be equipped with a so-called 
anechoic termination. This technique is especially used for determination of sound power 
emitted by sources in duct systems, e.g. air conditioning fans as specified in ISO 5136. 

3.2.1.1 Phase speed and particle velocity 

The most common form expressing the pressure in a plane wave is given by Equation 
(3.8). For a plane wave, however, the wave Equation (3.5) will be satisfied by any 
function having the argument (t – x/c) or (t + x/c). The sound pressure will be constant as 
long as this argument has a constant value, which makes us realize that the quantity c 
really represents the propagation speed. As mentioned above, when travelling along with 
the wave at a speed dx/dt = ± c one will always “see” the same phase of the wave and the 
pressure will be constant. An analogous example is when surfing in the sea. This is the 
reason for calling c the phase speed.    
 According to the relationship we have used concerning changes in pressure and 
density, Equation (3.4), we have implicitly assumed that the changes take place 
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adiabatically. This implies that the changes happen so fast that the temperature exchange 
with the surrounding medium is negligible. This is opposed to wave propagation in 
capillary tubes or generally in porous media, a theme we will treat in Chapter 5. 
 Starting from the general adiabatic gas equation  
 
 constant,P V γ⋅ =  (3.12) 
 
where  P and V are the pressure and volume of the gas, respectively and where γ  is the 
adiabatic constant (≈ 1.4 for air), we may show that Equation (3.4) gives 
 

 2 0

0
.Pp c γρ ρ

ρ
= ⋅ = ⋅  (3.13) 

 
This also implies that the phase speed is proportional to the absolute temperature T (°K) 
because we have 
 

 0
0

0
.Pc Tγ

ρ
= ∝  (3.14) 

 
Due to our application here we have here added an index zero to the phase speed. In the 
literature several approximate expressions may be found. A more accurate one is: 
 
 0 (air) 20.05 273.2 ,c t= ⋅ +  (3.15) 
 
where the temperature t is given in degree Celsius (°C). When it comes to the particle 
velocity v, dealing with linear acoustics, it is implicitly assumed that its absolute value is 
much less than the phase speed. That the assumption is fulfilled for the sound pressures 
normally experienced in our daily life is illustrated in the example below. (We disregard 
sound pressure levels that may even briefly damage our hearing). For the one-
dimensional case we may write Equation (3.3) as 
 

 0 ,xvp
x t

ρ ∂∂
= −

∂ ∂
 (3.16) 

 
which for a harmonic time dependency gives 
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 (3.17) 

 
The quantity ρ0c0 is the characteristic impedance of the medium, and it is a special case 
of the specific acoustic impedance defined by 
       

 s
Pa s .

m
pZ
v

⋅⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (3.18) 

 
Example What is the magnitude of the particle velocity at a sound pressure of 1.0 Pa, 
being equivalent to a sound pressure level of ≈ 94 dB?  
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 At a temperature of 20 °C the characteristic impedance of air will be 415 Pa⋅s/m, 
which inserted into Equation (3.17) will give ≈ 2.5⋅10-3 m/s = 2.5 mm/s.  

3.2.2 Spherical waves 

Assuming spherical symmetry we arrive at the second idealized type of wave, the 
spherical wave. The wave equation may then be expressed as 
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Analogous to the plane wave we may then express a partial spherical wave propagating 
from a centre (coordinate r = 0) as 
 

 ( )jˆ
( , ) e .t krpp r t

r
ω −= ⋅  (3.20) 

 
In this case, the coordinate vector has the same direction as the wave number vector and 
we may omit the vector notion. In contrast to the case of plane waves, the specific 
impedance will not be constant but will depend on the ratio of wavelength and distance 
from the source point. Using Equation (3.3), with the gradient expressed in spherical 
coordinates, in Equation (3.20) we get 
 

 s 0 0
j .

1 j
krZ c

kr
ρ=

+
 (3.21) 

 
As seen from the equation, there will be a phase difference between sound pressure and 
velocity. Only in the case where the distance r is much larger than the wavelength, i.e. 
when kr >> 1, we may set Zs ≈ ρ0c0.  

3.2.3 Energy loss during propagation 

In the expressions for the sound pressure, given in Equation (3.8) for a plane wave and in 
Equation (3.20) for a spherical wave, we presupposed that the wave number k was a real 
quantity. In the physical sense this implies that the wave suffers no energy loss; the wave 
is not attenuated during propagation through the medium. However, in real media there 
will always be some energy losses caused by various mechanisms. Furthermore, in many 
cases one does try to optimize such losses; e.g. by the design of sound absorbers to be 
applied in rooms or to be used in various types of silencer. In other cases, e.g. during 
outdoor sound propagation over large distances natural losses will occur due to so-called 
relaxation phenomena. These losses, which are strongly frequency dependent, will be 
treated in Chapter 4. 
 It must be stressed that the attenuation we are concerned with here represents a real 
energy loss as opposed to a purely spherical spreading of sound energy over an 
increasing volume. We shall, whenever necessary, use the term excess attenuation to 
distinguish such losses from the latter type. Formally, we shall introduce such losses 
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either by using a complex wave number k' or a complex propagation coefficient Γ.1 We 
shall introduce these quantities by writing Γ = j⋅ k' = α + j⋅β. For the sound pressure in a 
plane wave, propagating in the positive x-direction, we may then write  
   
 j ( j ) j

0 0ˆ ˆ( , ) e e e e ,x t x tp x t p pω α β ω−Γ − += ⋅ ⋅ = ⋅ ⋅  (3.22) 
 
where the components α and β are the attenuation coefficient and the phase coefficient, 
respectively. Comparing with Equation (3.9) we immediately see that the phase 
coefficient β is equal to our real wave number kx, whereas the attenuation coefficient 
represents the energy losses. The latter is often specified by the number of decibels per 
metre, which by using Equation (3.22) is given by 
 
 Attenuation (dB/m) 8.69 .α≈ ⋅  (3.23) 
 
In this book we shall reserve the symbol α for the absorption factor. Therefore later on 
we will replace the attenuation coefficient α with the quantity m/2, where m is called 
power attenuation coefficient. 
 Figure 3.1 may be used as an illustration of the sound pressure amplitude of an 
ideal plane wave and a wave being attenuated during propagation, respectively. These 
may be regarded as sections of the wave fronts. One must, however, be aware that the 
actual physical waves are compressional and not transverse types of waves, the former 
exhibiting alternating condensation and rarefaction.  
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.1 Sketch of the sound pressure in a wave front. a) Ideal plane wave. b) Attenuated plane wave. 

 

3.2.3.1 Wave propagation with viscous losses 

In our illustrations using the simple mass-spring system, we introduced viscous losses in 
the equation of force. In an analogous way we will do the same with Equation (3.3), the 
so-called Euler equation. For simplicity, we shall assume that the wave is a plane one, 
and we shall add a loss term r⋅vx where vx is the particle velocity in the x-direction. The 
quantity r is the airflow resistivity of the medium of propagation having a dimension of 
Pa⋅s/m2. As we shall see later, this is an important parameter when characterizing porous 
materials. Equation (3.16) will then be modified to 
 

                                                 
1 In ISO 80000 Part 8, the small Greek letter γ is used. 

a) b)
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Combining this equation with the corresponding one-dimensional versions of Equations 
(3.2) and (3.4), we may show that the propagation coefficient Γ and the specific 
impedance Zs can be written as 
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If we compare with the corresponding expressions for a lossless plane wave (for Zs see 
Equation (3.17)), we have now got an additional complex root expression. A medium 
having this property is moreover the simplest model for a porous material, a Rayleigh 
model (named after physicist Lord Rayleigh). This model will, together with other 
models for porous material, be treated in Chapter 5. At this point, however, we shall only 
give an example of the attenuation brought about by such a resistive component. We 
shall assume a high frequency and/or a low flow resistivity such that the imaginary part 
in the root expression is << 1. The propagation coefficient will then be 
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The attenuation coefficient α is the real part of the expression, and the attenuation ΔL in 
decibels per metre will be given by 
 

 ( )
0 0

8.69 dB/m .
2

rL
cρ

Δ =  (3.27) 

 
Having a flow resistivity of 1000 Pa⋅s/m2 will then give us an attenuation ≈ 10 dB/m. We 
may add that the normal quality of mineral wool used in buildings has a flow resistivity 
10 times higher but we shall be reminded of the assumption introduced above. 
 (You may try the analogous calculation assuming a high flow resistivity and/or low 
frequencies. Hint: ( )1 j 1 j / 2x x− ⋅ ≈ − for x >> 1.) 

3.3 SOUND INTENSITY AND SOUND POWER 

A sound wave involves transport of energy and the energy flow per unit time through a 
given surface is called sound power. If this surface encloses a given sound source 
completely we will determine the total power, which is a characteristic quantity of the 
source.  
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Figure 3.2 a) Intensity: power through a surface of area 1 m2 normal to the direction of wave propagation. b) 
The intensity integrated over a closed surface gives the total emitted power of a source.   
 
 
With the term sound intensity is meant the sound power transmitted through a surface 
area of 1 m2 perpendicular to the direction of propagation (Figure 3.2). When using the 
terms sound intensity and sound power it is normally understood that these are time-
averaged quantities. However, for completeness we shall also introduce the instantaneous 
quantities as well. The intensity is, analogous to the particle velocity, a vector quantity 
and is given by the product of the sound pressure at a point and the associated particle 
velocity, i.e. expressed as 
 
 2( ) ( ) ( ) (watt/m )t p t t= ⋅I v . (3.28) 
 
The time-averaged sound intensity is ideally defined by the expression 
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where T is the measuring time, which in practice must certainly be finite. The total sound 
power emitted from a given source is found by integrating the time-averaged intensity 
over a surface completely enclosing the source 
 
 nd d (watt),T TW S I S= ⋅ = ⋅∫ ∫I n  (3.30) 

 
where n denotes the unit vector normal to an element dS of the surface. The quantity ITn 
is then the component of the intensity in the normal direction, the normal time-averaged 
sound intensity often being abbreviated to normal sound intensity. It should be noted that 
this quantity is a signed one. In the same way as for the sound pressure level we define a 
normal (time-averaged) sound intensity level as 
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In this equation |ITn| is the absolute value of the normal sound intensity and I0 is the 
reference value for the intensity, equal to 10-12 watt/m2. When the normal intensity in a 
measurement situation is negative, the level is expressed as (–) XX dB. In the same way 
we define the sound power level 
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where the reference value W0 is 10-12 watt. In a plane wave field we may use the simple 
relationship between sound pressure and particle velocity to write 
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where the wavy symbol above p indicates an RMS-value. The expression is also valid for 
an ideal spherical wave field and is the basic equation used in several ISO standards for 
determination of sound power in a free field. The term signifies a sound field without 
reflections, e.g. in anechoic rooms, in ducts having an anechoic termination etc. 
(References on the subject are given at the end of the chapter.)  
 Using intensity, one is not dependent on having a free field to determine the sound 
power. The common procedure is first to define a closed measuring surface around the 
source. One then divides this surface into smaller subareas Si, thereby measuring the 
normal sound intensity by placing an intensity probe normal to each of these smaller 
surfaces. In this way one determines an average intensity value, both in space and time, 
for each surface and finally sums up the result using the expression 
 

 n .
N

T i i
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W I S= ⋅∑  (3.34) 

 
N is the number of subareas used and it should again be noted that the space average 

nT iI is a signed scalar value. 

3.4 THE GENERATION OF SOUND AND SOURCES OF SOUND 

Up to now we have described acoustic waves and wave motion without touching on how 
waves are being generated. In one way or another we shall have to feed energy into the 
system to start a wave motion, mathematically expressed; the right hand side of the wave 
Equation (3.5) cannot be equal to zero everywhere. 
 Sound generation is normally linked to processes involving mechanical energy, 
thereby resulting in a transformation of a part of this energy into acoustical energy. 
Concerning building acoustics the most common processes occurring are: 1) Buildings 
elements or whole constructions are excited into vibrations due to impacts, by friction, by 
sound pressure etc. Due to the fact that they are in contact with the surrounding medium 
(air) they will transfer this motion to the medium, and a sound field is generated due to 
this volume displacement. 2) Liquid flow or gas flow results in pressure and velocity 
variations in the medium and/or one has turbulent flows interacting with solid surfaces. 
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These two main types of process are denoted mechanical and aerodynamic/ 
hydrodynamic generated sound, respectively. The latter type is normally connected with 
the building service equipment such as the air-conditioning system, pumps, compressors 
etc. 
 There are also other types of sound generating mechanism such as explosions, just 
to mention another common type, and there are instances where thermal energy may 
transform directly into acoustic energy. The so-called Rijke tube is an example of the 
latter form of sound generation. Conversely, acoustic energy may transform into other 
types of energy, e.g. by the phenomenon of sonoluminence. We shall, however, not delve 
further into this phenomenon but concentrate on the mechanisms coupled to sound 
transmission in buildings. 
 The most important aspects concerning sound transmission are the mechanisms by 
which building elements as beams, plates and shells generate sound when set in motion. 
Questions to be asked could be: Why does a thin panel radiate less sound than a thicker 
one even when the vibration amplitude is the same? Why does an additional thin panel 
mounted on to a thicker wall being called an acoustical lining? Why is the amount of 
sound energy produced by a building element dependent not only on dimensions and 
material parameters but also on the way it is excited, by point forces, moments or sound 
pressure?  
 Before moving on to the themes concerning the dynamics of buildings elements, 
i.e. excitation, response and sound radiation, we shall use some elementary or idealized 
types of sound sources to illustrate the basic properties of sources in general. One will 
find the terms monopole, dipole, quadrupole, octopole and so on. Normally, however, 
one uses the term multipole when the number of elementary sources exceeds four. 
Multipoles of different order are useful in modelling sound radiation from plate-like 
structures. However, through the so-called Rayleigh integral we have another efficient 
basis for calculating the sound radiation from plane surfaces. A classic illustration of the 
use of this integral is in calculating the radiated sound from a plane surface of circular 
shape set into an infinite large wall. This type of source is called a baffled piston, which 
is used as a first approximation for a loudspeaker in a closed box. Actually, this type of 
source has much wider application. 

3.4.1 Elementary sound sources 

Vibrating surfaces in contact with the surrounding medium, which is air for most 
practical applications in building acoustics, give a volume displacement and thereby a 
wave motion is generated. A sensible way of calculating the sound radiated from a large 
vibrating plate or panel could then be to divide it into small elements, calculate the sound 
field from each element and thereafter sum these contributions, i.e. we make use of the 
principle of superposition. Normally, this process is not so simple due to the fact that the 
sound field from each element not only depends on the geometry of the surface, of which 
the element is a part, but also on other neighbouring surfaces. This does not imply, 
however, that combinations of elementary sources are not useful for modelling. In 
addition, some simple expressions arrived at in this way are useful in practice. 

3.4.1.1 Simple volume source. Monopole source 

The simplest type of source may be envisaged as a pulsating sphere, an elastic ball 
having radius a and where the volume fluctuates harmonically with a given angular 
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frequency ω. The radial surface velocity of the sphere may then be written as 
ˆ exp( j ),u u tω= ⋅ which is also indicated in Figure 3.3. 

 

 
Figure 3.3 Sound radiation from a monopole source. 

 
 
 An outgoing wave is generated and the sound field must, due to symmetry, be equal 
in all directions. Outside the sphere the sound pressure must satisfy the wave equation 
using spherical coordinates. The solution must be of the same type as in Equation (3.20) 
so we may write 
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where r is the distance to the centre of the sphere and A is unknown for the time being. 
To determine the latter we shall again make use of the Euler equation (3.3), which 
connects the gradient of the pressure to the particle velocity v(r,t), 
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We may then calculate the particle velocity, which at the surface of the sphere, i.e. when 
the distance r is equal to the radius a, must be equal to the velocity ua of the sphere. The 
unknown quantity A is thereby determined, giving the pressure  
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The question is now how large the radiated sound power will be and, furthermore, what 
are the controlling parameters? As we now have expressions both for the pressure and 
the particle velocity we may calculate the intensity and by integrating the intensity over a 
closed surface around the source we arrive at the total sound power. We shall perform 
this exercise at the surface of the sphere where the pressure after some algebra may be 
written as: 
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The sound pressure is then represented by two terms, the first term being in phase with 
the velocity of the sphere and the other 90° out of phase. The latter term will be dominant 
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if the wavelength is large in relation to the dimensions of the source (ka << 1) but for 
large values of ka, it will go to zero. The first term will, when multiplied by the velocity 
of the sphere, give us the “active” intensity, as opposed to second term which only gives 
a “reactive” intensity resulting in an exponentially decreasing near field.  
 This situation is not unique for this idealized type of source but generally applies to 
all acoustic sources. This implies that for broadband vibrating sources, at distances from 
the source less than 1–2 wavelengths, one will experience variations in the spectral 
content of the sound pressure. In practical measurements, using sound pressure 
measurements to determine the sound power of sources, one is therefore advised to 
perform the measurements at distances from the source greater than its largest dimension, 
at the same keeping the distance from the surface larger than 1–2 wavelengths. These 
specific requirements do not apply when it comes to direct measurements of intensity but 
certain recommendations, as to the measurement distances, do apply in this case. 
 The radiated real power from the monopole source will then be given by 
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where S is the area of the spherical surface and the symbol ∼ indicate RMS-value.  Later 
we shall show that the frequency-dependent factor k2a2/(1 + k2a2) represents the 
radiation factor of the monopole.  This quantity is very important in building acoustics 
and we shall later give a general definition. In the literature one also comes across the 
notion of source strength, which is the effective volume velocity Q S u= ⋅  of the 
source. The parentheses indicate, as in Equation (3.34), a space averaged value. For the 
monopole we then get  
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From these expressions we can see that the monopole is not an efficient radiator at low 
frequencies. Maintaining the sound power when lowering the frequency implies that the 
surface velocity must be increased in inverse ratio to the frequency. This again means 
that the displacement amplitude must increase in inverse ratio to the frequency squared. 
It goes without saying that this will, in the end, be impossible. Sound sources radiating 
bass sounds efficiently will therefore never be of small dimensions.   

3.4.1.2 Multipole sources 

When combining several simple monopole sources, assuming that the surface velocity is 
fixed and equal on all of them, we may show that the combination may radiate more or 
less power than each of them alone. The simplest case will be to combine two 
monopoles, vibrating either in phase or in anti-phase. The sound pressure on the surface 
of each monopole will be equal to the pressure produced by it plus the pressure caused 
by the vibration of the other. If the distance between them is small (compared to the 
wavelength) and they are working in phase the pressure may be nearly doubled and the 
sound power radiated will correspondingly be increased. However, when working in 
anti-phase the pressure may be small and the sound power may be drastically reduced. 
This is easily demonstrated by putting two loudspeakers in a stereo system close together 
and listening to the amount of bass being produced when playing music, coupling the 
loudspeakers either in phase or anti-phase.   
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Figure 3.4 Dipole, two monopoles in opposite phase. An oscillating sphere is an equivalent source. 
 
 
 Two simple monopole sources, coupled in anti-phase, are called a dipole and are 
illustrated in Figure 3.4. Assuming that the distance r to the observation point is large 
compared with the source dimensions we may write the pressure as  
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where h is the centre distance between the monopoles. D is the so-called dipole moment. 
As seen from the equation the dipole will not radiate evenly in all directions; we get a 
directivity factor expressed by the cosine of the angle ϕ to the point of observation and 
thereby a directivity pattern shaped as a figure-of-eight. When the wavelength is large 
compared with the source dimensions the sound power will be given by  
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and here we may see the dramatic reduction in sound power at low frequencies as 
compared with the monopole source. Comparing with Equation (3.40) we get 
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An oscillating sphere or ball, i.e. vibrating back and forth, will also act as a dipole and is 
equivalent to our two monopoles vibrating in anti-phase. This is in fact a very useful 
example to use later when we will treat the concept of radiation factor. 
 This kind of dipole action does not apply only to bodies of spherical shape; a 
vibrating string, a vibrating pipe or beam will also act like a dipole when it comes to 
sound radiation. Another example is a loudspeaker with an open back. At low 
frequencies both radiating surfaces will act like a monopole and these will be 180° out of 
phase with each other. There will be no efficient sound radiation where one does not 
mount the loudspeaker in a closed box, alternatively provide for a distance between the 
front and back large in comparison with the wavelength. The latter means that in practice 
one mounts the loudspeaker in a large baffle. We have tried to illustrate these effects in 
Figure 3.5. 
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Figure 3.5 A loudspeaker open at the back is a dipole source. a) No efficient radiation due to short distance 
between the front and back. b) A baffle increases the distance front–back.   
 
  
 Evidently, these results may be extended to poles of higher orders. A quadrupole is 
made up of four monopoles alternating in anti-phase or it could be two oscillating 
spheres in anti-phase. This type of sound source will be even less effective than a dipole 
at low frequencies as the radiated power will be proportional to the wave number with an 
exponent of six.  
 A group of sound sources characterised as multipole are vibrating surfaces such as 
plates, shells etc. that will be treated in detail later. Another important group is connected 
to fluid flow. A turbulent jet flow is a typical quadrupole source. Turbulent flow 
interacting with solid surfaces however constitutes sources of dipole character and as 
such will be found for example in air-conditioning terminal units as grilles and diffusers.  

3.4.2 Rayleigh integral formulation 

The idealized models treated above are, however, only useful in a qualitative way when 
it comes to calculating radiation from solid bodies such as plates or shells vibrating in 
complex patterns, in particular when the wavelength (in air) becomes comparable or less 
than the dimensions of the source. However, there are tools available to calculate the 
radiated power in the case when the surface velocity is known, either known in detail or 
as a space averaged value. 
 The German physicist von Helmholtz showed well over 100 years ago that the 
sound pressure outside a vibrating surface (see Figure 3.6) could be expressed as the sum 
of two integrals: 
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where n indicate the normal to the surface. The term /p n∂ ∂ will then, as in Equation 
(3.36), be proportional to the normal surface velocity un on the vibrating surface S, and 
can be written 
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When this velocity is known, we may solve the first of these integrals. The second 
integral requires knowledge of the pressure p(S) on the surface. This pressure distribution 
cannot be known in advance and involves a generally complicated calculation. 
Fortunately enough, when dealing with plane surfaces surrounded by another (infinitely) 
stiff surface, identified as an acoustic baffle, the second integral will be zero. We shall 
then be left with solving the integral 
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It should be seen that we shall be concerned with the radiation to one side of the surface, 
which explains the number two instead of four in the denominator. In many cases we 
shall only be interested in the pressure far for the surface, i.e. when the distance r is 
much larger than the dimensions of the source. In these cases, we may substitute r by the 
distance R (see Figure 3.6) and, furthermore, place this distance outside the integral. We 
then get the famous and very useful Rayleigh integral 
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It should be noted that we still have to keep the distance r in the exponential function. 
(Why is this?). In Chapter 6, where we treat the problem of sound transmission through 
walls and floors, we shall use this integral to compute the sound radiation from panels 
and walls vibrating in certain patterns, in particular from plates vibrating in their natural 
modes. As an introduction to such application we shall calculate the radiation from a 
vibrating circular disk or piston set in an infinitely large baffle.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.6 Calculating sound radiation from a vibrating surface of area S. 

3.4.3 Radiation from a piston having a circular cross section 

The circular surface depicted in Figure 3.7 is assumed to be a flat disk set into an 
infinitely large baffle. The disk, normally denoted a piston source, has a velocity of 
vibration ˆ exp( j )u u tω= ⋅ , which directly may replace the velocity un in Equation (3.46) 
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or (3.47) to find the sound pressure at a point with coordinates (R,ϕ). At points near to 
the surface, where Equation (3.46) has to be used, the distance r to surface element dS 
will be given by  

 ( )
1

2 2 22 sin cos ,r R q Rq ϕ θ= + −  (3.48) 

 
where q is the distance between the surface element and the centre of the piston. The 
solution of the integral is not trivial and it must generally be solved numerically except 
for points on the axis of the piston. The sound pressure in this near field will also 
fluctuate in a complicated manner due to the changing phase differences of the 
contributions from the different parts of the surface. The main purpose here is, however, 
to show the behaviour of the pressure in the far field and through this give an example of 
a source exhibiting a directional pattern quite different from our simple poles, e.g. a 
dipole.  
 

 
Figure 3.7 Coordinate system for calculation of sound pressure from a piston in a baffle. 

 
 
 At large distances from the surface, where the use of the Rayleigh integral is 
applicable, we will use the following approximation for r, setting 
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Inserting these expressions into Equation (3.47) we get 
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The solution may be expressed as 

 
( )2

1j( )0 0 2 J sin
ˆ( , , ) j e ,

2 sin
t kR kac kap R t u

R ka
ω ϕρϕ

ϕ
− ⎡ ⎤

= ⋅ ⎢ ⎥
⎣ ⎦

 (3.51) 

 
where J1 is a Bessel function of the first order. It is the term enclosed in parenthesis that 
determines the directivity distribution of the sound pressure, an example shown in Figure 
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3.8. The diameter 2⋅a is chosen equal to 250 mm and the sound pressure level 
distribution is shown for three frequencies: 1000, 2000 and 5000 Hz. To facilitate the 
comparison the maximum sound pressure is arbitrarily set to 40 dB for all frequencies. 
At the higher frequencies, i.e. when the product ka becomes much larger than one, the 
directivity pattern will be very complicated (ka will approximately be equal to 11.5 at 
5000 Hz), whereas the pattern at low frequencies will be little different from the ball-
shaped pattern of a monopole.  
 Thus, assuming that the wavelength is much larger than the dimensions of the 
piston by setting ka << 1, we may show that [2J1(ka sinϕ)/ ka sinϕ)] ≈ ½. Then we may 
write 
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The latter expression is as expected identical to the one giving the sound pressure from a 
monopole having source strength Q. (Show that Equation (3.37) gives the same 
expression when setting ka << 1 and r >> a.)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.8 Directivity pattern of a piston in a baffle. The maximum sound pressure level is arbitrarily set to 40 
dB for all frequencies.  

3.4.4 Radiation impedance 

In the previous chapter, the concepts of mechanical impedance and mobility were 
introduced to facilitate the calculation of the response of a mechanical system to a given 
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force input. In connection with sound sources it will be useful to introduce yet another 
(mechanical) impedance concept, the radiation impedance. This represents the ratio of 
the reaction force of the fluid medium on the source, i.e. caused by the motion of the 
source, and the source velocity. Denoting this reaction force Fr and the source velocity u 
we write 
 

 r
r r rj .FZ R X

u
= = + ⋅  (3.53) 

 
Using the piston source in the last section, assuming that it has mechanical impedance Zm 
(in vacuum) and driven by a force F, the radiation impedance will be coupled in series 
with the mechanical impedance. The velocity of the piston will therefore be 
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The real part Rr of the radiation impedance will give us the power radiated by the source 
so we may in general write 
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Using the monopole as an example we immediately get by using Equation (3.40) that  
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The imaginary part of the radiation impedance will on the other hand represent a load on 
the source, which, in many cases, may act as a contribution to the mechanical mass of the 
source. The radiation impedance is therefore an important factor in a number of different 
cases, not only when considering vibration of solid surfaces, but also generally when a 
vibrating column of air brings about sound radiation. There is a diverse range of 
examples one may mention here, ranging from sound radiation from musical instruments 
to resonance sound absorbers; see Chapter 5 and further on to sound transmission 
through holes and slits in wall or floors, see Chapter 8.  
 Finally, we shall consider the radiation impedance of a piston source where we 
expect that the result for low frequencies will be of the same form as for a monopole. 
However, in this case the impedance will attain quite another complexity. When 
calculating Zr we shall have to use the general Equation (3.46) but in this case we must 
calculate the pressure on the surface of the piston. Specifically, the pressure p on a 
surface element dS´ is induced by the sum of the movements by all the other elements dS. 
To arrive at the total pressure on the piston we therefore have to perform yet another 
integration, namely over the elements dS´. We shall not present this derivation, which 
may be simplified by using the principle of reciprocity outlined in section 3.6, but the 
end results are important and shall be commented upon. The radiation impedance for a 
piston placed in a baffle may be written (for a derivation see e.g. Kinsler et al. (2000)). 
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As stated above J1 is a Bessel function of order one, whereas H1 is a Struve function of 
order one. Concerning the definition and properties of these functions we may refer to 
Abramowitz and Stegun (1970). 
 The functions R1 and X1 are shown in Figure 3.9 as a function of ka going from 0 to 
a value of 20. For the piston used as an example in Figure 3.8 this implies going up to a 
frequency of approximately 8700 Hz. As shown the function R1 will approach the value 
of 1.0 at the higher frequencies, which means that the radiated power will be given by the 
expression 
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We shall later on use this expression as a reference when defining the so-called radiation 
factor (or radiation efficiency) applying it to all types of sound radiating surface. This 
will be treated in section 6.3.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.9 Relative radiation impedance of a piston in a baffle. Real part, R1, and imaginary part, X1, of the 
impedance function. 
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This expression may be written as 
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As expected the real part will, apart from a factor of two, be equal to the impedance of a 
monopole given in Equation (3.56). The imaginary part will represent the mass type 
impedance equal to the mass of air contained in a cylinder having the same area as the 
piston and a height h equal to 8a/3π. This mass impedance will decrease with increasing 
frequency in accordance with the decrease of X1 when increasing the frequency.  

3.5 SOUND FIELDS AT BOUNDARY SURFACES 

The assumption we have used up to now is that the wave propagation is taking place in 
an infinite space which is homogeneous and isotropic. When dealing with the acoustics 
inside buildings, however, we shall definitely be more concerned with what is happening 
at the boundaries between different media, e.g. such as the interface between air and a 
flexible surface of some kind. When waves are impinging at such a boundary it normally 
will be diffracted in some way, a part of the energy in the wave will go in another 
direction. The phenomenon is normally referred to as reflection when the boundary 
surface is much larger than the wavelength. In the opposite case, where the wavelength is 
much larger than the dimensions of the surface, we shall use the word scattering. We 
shall in this book mainly be concerned with boundary surfaces fulfilling the first 
condition but certainly when dealing with room acoustics scattering phenomena will be 
an important aspect. 
 When dealing with boundary surfaces we shall be interested in the reflected energy 
as well as the energy transmitted through the surface. The task of designing sound 
absorbers is to minimize the reflected energy, whereas designing for high sound 
insulation the aim is to reduce the transmitted energy.  
 Boundary surfaces will, irrespective of being fixed or set in motion by the sound 
waves, produce changes in the sound field, which means that some boundary conditions 
are given. We shall introduce the relevant boundary conditions when they are needed, an 
example is where the boundary surface is a solid, non-porous wall vibrating due to an 
outer sound field. The particle velocity of sound normal to the wall surface must then 
everywhere be equal to the velocity of the wall. If this were not the case, the local density 
of the fluid would become abnormally high or low, which is highly unlikely. 
 We shall introduce a complex pressure reflection factor Rp giving the ratio, both in 
amplitude and phase, between the sound pressure in the reflected and the incident wave. 
We shall write it as 
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As indicated, the reflection factor will in general be a function of the frequency and the 
angle of incidence ϕ of the wave. One will also find a reflection factor defined on the 
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basis of the intensity in the two waves. As the intensity both in a plane and a spherical 
wave is proportional to the sound pressure squared this reflection factor will be equal to 
|Rp|2. The part of the incident energy being lost in the reflection process, i.e. 1 - |Rp|2, is 
called the absorption factor having the symbol α  
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Another characteristic quantity to characterise a boundary surface is what we shall 
denote surface impedance Zg defined as 
 

 g
n boundary

ˆ
.

ˆ
pZ

v
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (3.63) 

 
The quantity vn is the component of the particle velocity normal to the boundary surface. 
In the example mentioned above, in connection with boundary surfaces, the velocity vn 
would be equal to the velocity of the boundary surface. The surface impedance may be 
considered as a variant of the general quantity specific impedance defined in Equation 
(3.18). A similar quantity is denoted transmission impedance or more commonly wall 
impedance, as one normally will use it as a characteristic for the wall surfaces in a room. 
However, in this case the quantity p̂ is the pressure difference between the two sides, not 
only the total pressure on one side. 
 In the following sections, we shall derive expressions for the reflection and 
absorption factors assuming that the boundary surface is characterized by the surface 
impedance Zg. We shall restrict our derivation to plane waves and, in the first place, 
assume that the wave is incident normally on the surface. At oblique incident there will 
be an important distinction whether the surface impedance will be a function of the angle 
of incidence or not. In the latter case, the surface is called locally reacting, which means 
that we need not consider in-plane wave propagation. This implies that the normal 
component of the particle velocity at a given point on the surface depends on the sound 
pressure at this point only. In other words, pressure on the surface at a certain point 
causes no movement elsewhere on the surface. In practice, this is a reasonable 
assumption for many types of porous absorber, at least in the lower frequency range but 
in general it may be difficult to decide whether an absorber may be treated as locally 
reacting or not. One may of course prevent sound propagation along the surface by 
subdividing the absorber using a lattice of some kind, e.g. a honeycomb core structure 
but such solutions may not be desirable due to other requirements.  

3.5.1 Sound incidence normal to a boundary surface 

We shall assume that a plane wave is incident normally on a boundary surface, which is 
coincident with the plane having the coordinate x = 0 (see Figure 3.10). 
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Figure 3.10 Incident and reflected plane wave at a surface. 
 
 
By using Equations (3.9) and (3.17) we may express the sound pressure and the particle 
velocity in the incident wave as 
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where ρ0c0 is the characteristic impedance of the medium. For the reflected wave we get 
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There will be a change in sign for the wave number due to the change of direction of the 
wave. At the same time the particle velocity is changing sign as the gradient of the 
pressure is changing sign along with the wave number. The total pressure at the 
boundary surface (x = 0) will be 
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and the particle velocity: 
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Inserting these expressions into Equation (3.63) we get 
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and furthermore 
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Inserting this expression into Equation (3.62) we arrive at the absorption factor for 
normal incidence expressed as 
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For most simple illustration using these equations we may assume that the boundary 
“surface” is dividing two different gases. As a thought experiment we shall have an 
infinite long tube containing the gases, which are separated by a massless membrane. 
Letting the gases be air and helium, having at 20°C a characteristic impedance of 415 
and 170 Pa⋅s/m, respectively, this “surface” will give a reflection factor |Rp| equal to 0.42 
using Equation (3.69) and an absorption factor α equal to 0.82 by using Equation (3.70). 
 Another example, which may be more interesting, is the boundary between air and 
water. Setting the density and sound speed for water as 1000 kg/m3 and 1500 m/s, 
respectively; we arrive at a characteristic impedance of 1.5⋅106 Pa⋅s/m. This implies that 
we obtain a pressure reflection factor approximately equal to 0.9995 and an absorption 
factor of about 1.1⋅10-3. A water surface is therefore, practically speaking, a totally 
reflecting surface or a nearly “infinitely hard” surface. 
 
 Some special cases of the equations above may be listed: 

•  An “infinitely hard” surface, i.e. Zg ⇒ ∞ gives |Rp| =1, δ = 0 and α = 0. 
•  A “soft” surface, denoted a pressure release surface, i.e. Zg ⇒ 0 gives |Rp| =1, δ 

= π and α = 0. 
•   A totally absorbing surface, i.e. Zg = Z0 gives |Rp| = 0, δ = 0 and α = 1. 
 

 As is apparent from Equation (3.70), the impedance of the boundary surface 
uniquely determines the absorption factor but the opposite is not true. Representing the 
absorption factor by parametric curves in a Cartesian coordinate system, using the real 
part of the impedance as abscissa and the imaginary part as ordinate, it is relatively easy 
to show that the curves are circles. The circles have their centres in (x0,0) and the their 
radii will be (x0

2 – 1)1/2, where x0 = (2/α) – 1. This is shown in Figure 3.11 having an 
elliptical form due to a difference in scale on the two axes. Finally, Figure 3.12 maybe 
illustrate in a better way how the impedance components should be adjusted to achieve a 
high absorption factor.  
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Figure 3.11 Absorption factor as a function of the normalised impedance components (Z = Zg/Z0) of the 
boundary surface. Normal incidence. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.12 Three-dimensional plot corresponding to Figure 3.11.  
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3.5.1.1 Sound pressure in front of a boundary surface 

Determination of the sound absorption factor of small specimens and for normal 
incidence is performed in a so-called standing wave tube. This will be treated in detail in 
section 5.3. In the “classical” method of performing such measurements one needs an 
expression for the total pressure in front of the specimen surface. At an arbitrary distance 
x in front of the surface we get 
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When carrying out measurements one determines the RMS-value of the sound pressure, 
by definition given by 
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As before, we shall indicate the RMS-value by using a curly over-bar to distinguish it 
from the amplitude value, the latter is indicated by a “hat” on top of the symbol. Inserting 
Equation (3.71) into (3.72) we get 
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The pressure will therefore exhibit maximum and minimum values given by the 
equations 
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From the measurements of these pressure values one determines the absolute value of the 
reflection factor and thereby the absorption factor. (How do we determine the impedance 
Zg?) 

3.5.2 Oblique sound incidence 

We shall extend the above calculations by giving the incident wave (see Figure 3.13) an 
angle ϕ with the normal to the surface. We may then rotate the coordinate system and 
obtain a new x coordinate given as x'= x⋅cosϕ + y⋅sinϕ. The sound pressure and the 
normal component of the particle velocity may then be expressed as 
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As seen, we tacitly infer the time dependence ejωt. In a similar manner we get for the 
reflected wave 
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In analogy with the use of the Equations (3.66) to (3.69) we now get 
 

 g 0

g 0

cos
.

cosp
Z Z

R
Z Z

ϕ
ϕ

−
=

+
 (3.77) 

 
Equation (3.73), giving the total sound pressure in front of the surface, will be modified 
to read  
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Figure 3.13 Sound incidence at an angle ϕ. Locally reacting boundary of impedance Zg. 
 
 
 According to our assumption on local surface reaction, which implies that the 
impedance Zg is independent of the angle ϕ, we may then calculate the statistical 
absorption factor αstat. This is an average value for α over all angles of incidence using 
the expression 
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Inserting for Rp according to Equation (3.77) we get 
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The symbol z is the surface impedance normalised by the characteristic impedance Z0 of 
the medium, i.e.  
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Figure 3.14 shows the average value αstat as a function of the normalized surface 
impedance. A comparison with Figure 3.11 generally shows that the statistical absorption 
coefficient is higher than the normal incidence factor, but also that the absolute 
maximum is slightly lower; (αstat)max ≈ 0.95 at z' ≈ 1.6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.14 Statistical absorption factor as a function of the normalized impedance components, (Z = Zg/Z0).  
   

3.5.3 Oblique sound incidence. Boundary between two media 

A general treatment of the case of plane wave’s incident on a locally reacting surface was 
given in the previous section. Implicitly, this means that we presuppose the impedance Zg 
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being independent of the angle of incidence. We also pointed out that this assumption is 
reasonably correct for many porous materials. However, one will often encounter cases 
where one cannot use this assumption but we shall postpone the treatment of calculation 
models for such cases until later. 
 Simple models for a homogeneous and isotropic porous material consider it to 
behave as a fluid; we shall use the term equivalent fluid. Such a fluid may be 
characterized by its propagation coefficient Γ  (or by the complex wave number k′ = –
j⋅Γ) and its complex characteristic impedance Zc. Alternative descriptions use the bulk 
modulus K and the equivalent (or effective) density ρ. The relations between these 
quantities are given by the following expressions 
     

 c and j with .pZ K K VK
V

ρρ ω −
= Γ = ⋅ =

Δ
 (3.82) 

 
The last equation defines the bulk modulus; the ratio between the pressure and the 
relative change in volume. 
 As an introduction to these simple models, which we shall treat in more detail in 
Chapter 5, we shall assume we have an infinitely thick wall of a porous material with a 
given characteristic impedance Z2 = ρ2c2 and a wave number k2. The medium of the 
incident wave is characterized using an index 1 as shown in Figure 3.15. We shall, as 
before, calculate the reflection coefficient and further examine the conditions necessary 
for the porous material to behave as locally reacting. The sound pressure for the three 
partial waves is given by 
 

 

1 1

1 1

2 2

j( cos sin )
i i

j( cos sin )
r r

j( cos sin )
t t

ˆ e ,
ˆ e ,
ˆ e .

k x k y

k x k y

k x k y

p p

p p

p p

ϕ ϕ

ϕ ϕ

ψ ψ

− +

−

− +

= ⋅

= ⋅

= ⋅

 (3.83) 

 
We have as before omitted the time dependence ejωt. Furthermore, the reflection is 
specular; a condition that immediately will follow from the boundary conditions without 
being shown in detail here.  
 Another important law will, however, follow from these equations. The pressure 
must be equal on both sides of the boundary, i.e. for x = 0 we get pi + pr = pt. Applying 
this to Equations (3.83) we obtain Snell’s law:  
 
 1 2sin sin ,k kϕ ψ=  (3.84) 
 
which, by using the sound speeds, may be written 
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As the two media are in contact with each other, this implies that the normal component 
of the particle velocity on both sides will be the same. This will give another boundary 
condition stating that 
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Figure 3.15 Incident wave on a boundary surface between two media having different characteristic impedance. 
Specular reflection and transmission into medium two. 
 
 
 In this case, the pressure reflection factor will be  
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Comparing with the former Equation (3.77) we find that the surface impedance Zg now is 
replaced by Z2/cosψ. The requirement that the boundary surface is locally reacting, i.e. ψ 
≈ 0, presupposes that the sound speed in medium two must be much lower than in 
medium one, which follows from Equation (3.85). Alternatively, we may envisage that 
the energy losses in medium two are very large; the attenuation of sound waves along the 
boundary surface is so large that there is, practically speaking, a local reaction only.  

3.6 STANDING WAVES. RESONANCE 

In section 3.5.1.1, we calculated the total pressure in front of a surface as being the sum 
of the pressures in the incident plane wave and the reflected (plane) wave, respectively. 
Letting the reflected wave now hit a second surface, a standing wave may appear 
between these two surfaces. This may be realized in practice by using a tube with stiff 
walls and closed at both ends by some kind of lid. The cross sectional dimensions must 
be much smaller than the wavelength but we shall not put any restrictions on the length L 
of the tube. For simplicity, we shall assume that the lids closing off the tube are totally 
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reflecting. The surface impedance for these lids is thereby infinite and the particle 
velocity is zero. Our task is to find an expression for the pressure p in the tube. 
 As a starting point we assume that there is no sound source inside the tube, which is 
wholly analogous to the case of free vibration in a mechanical system treated in Chapter 
2. Now we have to solve the homogeneous wave equation, the Helmholtz equation (3.7), 
which in one-dimensional form is given by 
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The general solution of this equation is  
 
 ( ) sin( ) cos( ),p x A kx B kx= +  (3.89) 
 
where A and B are constants to be determined by the boundary conditions. Having 
assumed that the particle velocity is zero at each end of the tube, this implies that the 
gradient dp/dx of the pressure is zero at both tube ends. Setting the coordinate x equal to 
zero at one end and equal to L at the other end, these conditions imply that the constant A 
must be equal to zero and that the wave number k may only attain a given set of values. 
The only possible solutions, the eigenfunctions will be 
 
 ( ) cos( ),n np x B k x=  (3.90) 
 
where the wave numbers kn and the associated natural frequencies are given by 
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The lowest natural frequency of a tube having a length of one metre is then f1 ≈ 170 Hz 
(20°C). (What is the lowest natural frequency of a similar tube having an open end as an 
organ pipe? To calculate this one may for simplicity assume that the sound pressure in 
the open end is equal to zero.) 
 How does one calculate the sound pressure caused by a given sound source placed 
at certain point inside the tube? We have to solve the wave equation (3.88) but now 
having a source term on the right hand side. Assuming a monopole source inside the tube 
we shall first have to modify Equation (3.2), which is the equation of conservation of 
mass in the system. We shall now write 
 

 0 0( , ),q t
t
ρ ρ∂

= − ∇⋅ +
∂

v r  (3.92) 

 
where q represents the source, a mass flux in an area having coordinates r0. This implies 
that the sought after right-hand source term of the wave equation will be a time 
derivative of q. We shall not go into details on how to obtain a solution of the wave 
equation in this case. Suffice to say that one expresses both the pressure and the source 
strength by sums of the eigenfunctions (3.90) and then adjusting the coefficients in these 
sums.  Assuming that the source area is very small in comparison with the other 
dimensions, the pressure in a position x caused by a source placed in position x0 may be 
written as 
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The constant C will contain the strength of the source having the frequency f. There are 
several important comments to be made on this result. First, the pressure will be 
dominated by the term having a natural frequency nearest to the driving frequency but 
the response will contain contributions from many terms in the sum. 
 Second, as we have not introduced any form of energy losses in the tube, the 
pressure will go to infinity when the driving frequency coincides with any of the natural 
frequencies. To calculate on a more realistic situation we may formally add a loss term in 
the denominator. This is carried out by calculating on a situation as depicted in Figure 
3.16, where a small loudspeaker is placed at a distance x0 from the wall in one end and 
where the sound pressure is measured by a microphone placed at a distance x.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.16 A hard-walled tube with a sound source and a receiver (microphone). 
 
  
 The results of the calculations are shown in Figure 3.17. Due to the 1.7 metre 
length of the tube the first natural frequency will be 100 Hz and the following ones 
multiples of this frequency. Using one of the source positions we get, as expected, 
resonances at these frequencies. For the second source position, in the centre of the tube, 
no resonances shows up at 100 Hz and 300 Hz. (Why is that?) 
 Last but not least a very important comment should be made on Equation (3.93) 
when it comes to the symmetry in the expression: the source and the receiver may change 
places without altering the results. This is an example of the aforementioned acoustical 
reciprocity principle, a principle that is quite general and in many instances very useful 
in practice. A generalization to three-dimensional sound fields is evident but the principle 
of exchanging source and receiver does also apply when the system contains structural 
components, albeit subject to some limitations. We shall return to this theme when 
treating the subject of sound transmission in Chapter 6 where we deal with the general 
subject of vibroacoustic reciprocity (see section 6.6.1).  
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Figure 3.17 Relative sound pressure at a fixed position, x = 1.2 m, in the tube shown in Figure 3.16. Solid line – 
source at x0 = 0.5 m. Dashed line – source at x0 = 0.85 m (centre of tube). 
 

3.7 WAVE TYPES IN SOLID MEDIA 

As mentioned in the introduction to this chapter, acoustic waves in solid media are 
distinctly different from their counterpart in fluids due to shear stresses and shear 
deformations. This leads to the occurrence of several other wave types besides the 
compressional or longitudinal treated up to now. We shall mainly give an outline of these 
wave types but go into some detail on bending or flexural waves, the wave type of 
particular importance in sound transmission phenomena in buildings.  
 Two types of wave may exist at the same time in a medium of infinite extent; ideal 
longitudinal waves, as in fluids, and ideal transverse or shear waves. In the latter, the 
particle displacement will be normal to the direction of propagation; see below. From the 
basic equations of elasticity we may show that all wave motion in solids may be seen as a 
combination of these two “pure” waves but many of these combinations have specific 
names. It could be mentioned that in a semi-infinite medium surface waves (Rayleigh 
waves) may occur but these have little relevance in building acoustics. We shall be more 
interested in which combinations of the two basic waves may exist in structural elements 
such as beams and plates, an example being the aforementioned bending waves. 

3.7.1 Longitudinal waves 

Ideal or pure longitudinal waves may only exist in a medium of infinite extent. 
Practically speaking, this implies that the solid structure must be very large compared 
with the wavelength. When taking into account the actual dimensions of building 
elements and the relevant frequency range, displacements normal to the direction of 
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wave propagation will occur, i.e. longitudinal stresses will produce lateral strains on the 
outer free surfaces. This is called the Poisson contraction phenomenon. The associated 
wave type is therefore called quasi-longitudinal and Figure 3.18 a) may serve as an 
illustration. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.18 Wave types in solids. a) Quasi-longitudinal wave.  b) Shear wave. c) Bending wave. 
 
 
 The solid lines in the figure represent elements of the structure at rest whereas the 
broken lines illustrate the deformations of these elements both in the direction of wave 
propagation and laterally. Using the particle velocity as the variable, we may show that 
for free waves (one-dimensional case) the following differential equation applies  
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where vx is the velocity in the x-direction (the direction of propagation) and ρ is the 
density of the medium. E' is a property of the material which depends on the actual 
lateral displacements. Taking a plate as an example, we get lateral displacements or 
contractions in one direction giving 
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where E is the modulus of elasticity (Young’s modulus) of the material and υ is the 
Poisson’s ratio. The latter is defined as the ratio of the magnitudes of the lateral strain to 
the longitudinal strain. As seen from Table 3.1, this ratio varies between 0.2 and 0.35 for 
common building materials.  

a)

b)

c)
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 It should be noted that using the particle velocity as a variable, which we have done 
in Equation (3.94) and also further on, is just a choice. A corresponding equation for e.g. 
the displacement could be used as well. The phase speed of the longitudinal wave, 
according to the equations above, will be given by 
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−
 (3.96) 

 
Examples of data for common materials are given in Table 3.1, which we may use to 
calculate the wave speed for longitudinal waves. It should be noted that wave speed 
normally found in tabled data applies to pure longitudinal waves, i.e. calculated from the 
formula (E/ρ)1/2.  The loss factor given in the table applies to the internal energy losses in 
the material. 
 

Table 3.1 Examples of material properties. 

 
 
Material 

Density 
kg/m3 

E-modulus1 
109 Pa 

Poisson’s 
ratio 

Loss factor 
ηint⋅10-3 

Steel 7700–7800 190–210 0.28–0.31 ~ 0.1 
Aluminium 2700 66–72 0.33–034 ~ 0.1 
Glass 2500 60 - 0.6–2.0 
Concrete 2300 32–40 0.15–0.2 4–8 
Concrete  
(lightweight aggregate) 

400–600 1.0–2.5 ~ 0.2 10–20 

Concrete  
(autoclaved aerated) 

1300 3.8 2 ~ 0.2 10–20 

Gypsum plate (plasterboard) 800–900 4.1 ~ 0.3 10–15 
Chipboard 650–800 3.8 ~ 0.2 10–30 
Fir, spruce 400–700 7–12 ~ 0.4 8–10 

 
 1 Dynamic E-modulus.  2 E-modulus for static pressure. 

3.7.2 Shear waves 

In a pure shear wave, also referred to as a transverse wave, we only get shear 
deformations and no change of volume (see b) in Figure 3.18). The particle movements 
are normal to the direction of wave propagation, and the wave equation for free wave 
motion will be analogous to Equation (3.94), i.e. 
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where vy represents the particle velocity normal to the direction of propagation. The shear 
modulus is given by 
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and for the phase speed cS we get  
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Using Equation (3.96), (3.98) and (3.99) we get for a plate 
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Inserting a Poisson’s ratio of 0.3 as an example will give a ratio of these wave speeds of 
approximately 0.59. The wave speed of a shear wave will then always be less than the 
speed of a longitudinal wave. Lastly, we point to the fact that pure shear waves will, like 
pure longitudinal waves, generally occur only in bodies where the dimensions are very 
large compared with the wavelength.  

3.7.3 Bending waves (flexural waves) 

Bending waves are likely to be excited in bodies or structures where one or two 
dimensions are becoming small compared to the wavelength at an actual frequency. This 
implies that this wave type will be dominant in common construction elements, for 
example beams and plates. This again means that it takes on a central position in building 
acoustics, also due to these waves being easy to excite. Furthermore, the particle velocity 
will be normal to the direction of propagation, which also means that it is normal to the 
surface of a beam or plate (see c) in Figure 3.18). This again implies that there will be an 
efficient coupling to the surrounding medium (air), which means that the plate or beam 
potentially could be an efficient sound source. We may easily be aware of this fact by 
knocking on a thin metal plate. 
 Our treatment of bending waves will mainly be concerned with simple thin plate 
models, also called Bernoulli–Euler models. In these models, one presuppose that the 
deformation of an element due to bending is much larger than the one caused by shear 
and, furthermore, the rotation of the element is neglected. A limit for using thin plate 
models, often referred to in the literature, is that the wavelength of the bending wave 
must be larger than six times the thickness of the beam or plate. For quite common 
thicknesses of concrete this may be a limitation and one should then apply thick plate 
models (Reissner–Mindlin). We shall limit ourselves to giving some examples of the 
differences one may encounter by using these models. 
 The treatment will also, if not pointed out otherwise, be limited to plates of 
isotropic materials, which means that the material properties are independent of 
direction. One then needs only two quantities, the modulus of elasticity and Poisson’s 
ratio, to describe the linear relationship between forces and displacements. 
Unfortunately, a large group of building materials exhibit anisotropy, the material 
properties depend on direction. Wooden materials are typical examples where the 
properties depend on the direction of the fibres. Other examples are composite materials 
reinforced by fibres. A special type of anisotropy is denoted orthotropic. An orthotropic 
plate is a plate where the material properties are symmetric about three mutually 
perpendicular axes. Well-known examples are corrugated panels often used in industrial 
buildings; having a waveform or a more sophisticated trapezoidal cross section, the latter 
normally called cladding. It should be noted, however, that to apply the general theory of 
orthotropic plates to corrugated panels one has to find the equivalent orthotropic 
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constants for these panels. We shall give an example below (see section 3.7.3.3) and the 
reason is that further on we shall calculate the sound transmission through such panels. 

3.7.3.1 Free vibration of plates. One-dimensional case 

The differential equation describing the wave motion is substantially more complicated 
than for the ones treated above. The reason is that each element of the plate, as sketched 
in Figure 3.18 c), will be influenced by moments as well as shear forces. We shall not 
derive the equation, just state that the equation for the particle velocity normal to the 
plate surface may be written as 
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where B and m is the plate bending stiffness per unit length and the mass per unit area, 
respectively. The same differential equation applies to other quantities such as 
displacement, angular velocity, shear force and bending moment but we shall use the 
particle velocity as the characterizing quantity. Assuming a solution of the form 
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we get the following expression for the wave number kB by insertion into Equation 
(3.101): 
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where the phase speed cB is given by 
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As seen from this equation, the medium will be dispersive for bending waves, which 
means that the phase speed will be frequency dependent. A broadband-pulsed signal will 
therefore change its shape during propagation; the high frequency wave components will 
outrun the components having a lower frequency. For a homogeneous plate having a 
thickness h we get from Equation (3.103): 
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where f is the frequency in Hz and where the phase speed cL for longitudinal waves in the 
medium is given by Equation (3.96). We arrive at this expression by substituting for the 
quantities m and B, respectively, using the following formulae 
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The quantity I  is the cross sectional area moment of inertia of the plate per unit width. 
As mentioned above, the expressions given for the wave number and phase speed 
presupposes that the plate is thin, i.e. the wavelength should be larger than six times the 
plate thickness. Another way of expressing this is by demanding that cB should be less 
than 0.3⋅cL. (How can you show this?) If this condition is fulfilled the error should be 
less than 10%. 
 We may if need be, by using results from Mindlin (1951), calculate a corrected 
phase speed c'B if the condition above is not fulfilled. The corrected phase speed is given 
by 

 3 3 3 3
B GB

1 1 1 ,
' c cc γ

= +
⋅

 (3.106) 

 
where γ  is a factor depending on Poisson’s ratio υ according to Table 3.2. 
 
 

Table 3.2 Correction table for Equation (3.106). 
 

υ 0.2 0.3 0.4 0.5 
γ 0.689 0.841 0.919 0.955 

 
 
 Examples of calculated phase speed for concrete plates, in the thickness range of 
50–200 mm, are shown in Figure 3.19. Corresponding data for steel plates, having 
thickness covering the range of 1–10 mm, are shown in Figure 3.20. Calculated results in 
both diagrams are performed using thin plate theory as well as thick plate theory (see 
Equations (3.103) and (3.106)). For the chosen range of plate thickness and frequency 
range there is practically no difference when it comes to the steel plates. The limit on the 
thin plate theory will in this case correspond to a phase speed of approximately 1500 m/s. 
As for the concrete, however, the corresponding limit will approximately be 1000 m/s, 
which may be seen clearly from the two sets of curves. 
 Shown in both figures is also the phase speed in air. The point of intersection 
between this line and the corresponding curves for the different plate thickness, i.e. 
where cair is equal to cB, is defining the so-called critical frequency fc. This quantity is of 
fundamental importance when it comes to sound radiation from plates in bending 
vibrations (see section 6.3.3).  

3.7.3.2 Eigenfunctions and eigenfrequencies (natural frequencies) of plates 

In accordance with the general observations in section 2.5.3, we are in a position to 
describe the vibrations in structural elements, such as beams, plates and shells, by 
eigenfunctions and corresponding eigenfrequencies. Starting out from these functions we 
may, in an analogous way as in section 3.6 above, e.g. calculate transfer functions 
between an input force and a chosen velocity component. This will be a continuance of 
the calculations on discrete (lumped) mechanical systems given in sections 2.5.1 and 
2.5.2. 
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Figure 3.19 Phase speed of bending waves in concrete slabs of thickness 50, 100, 150 and 200 mm. Thin lines – 
calculated using thin plate theory. Thick lines – calculated using Equation (3.106). Horizontal line – acoustic 
wave speed in air.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.20 Phase speed of bending waves in steel plates of thickness 1, 2, 5 and 10 mm. See also caption of 
Figure 3.19. 
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 In the literature, e.g. Blevins (1979), we find the eigenfunctions and 
eigenfrequencies listed for various types of structural element having different shapes 
and dimensions, and subjected to different boundary conditions. As a rule, exact data are 
only found for regular-shaped elements having idealized boundary conditions. For more 
complicated cases one must resort to finite element methods (FEM), but given the 
versatility of modern FEM software packages this seldom gives practical problems. As 
an illustration we give the results of an exact calculation on a typical isotropic element; a 
thin rectangular panel simply supported along the edges having length a and b, 
respectively. This boundary condition implies that the velocity as well as the moment is 
zero along the edges. We may remark that measurement results of natural frequencies for 
floors in buildings of monolithic concrete give reasonable agreement with calculations 
when using this condition.  
 The eigenfunctions Ψi,n(x,z) for the plate, placed in the plane x–z, must satisfy the 
following wave equation (presupposing harmonic time variation ejω t) 
 
 2 2 2

, , ,( , ) ( , ) 0.i n i n i nB x z m x zω⋅∇ ∇ Ψ − ⋅ ⋅ Ψ =  (3.107) 
 
Imposing simply supported boundaries gives the solutions 
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The associated eigenfrequencies will be given by 
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For a homogeneous plate this equation may be expressed as 
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Each of these eigenfunctions, or each set of indices (i,n), thereby defines a mode of 
vibration, a natural mode or eigenmode. Any complex pattern of vibration may then be 
expressed by a sum of these modes. It should be noted that none of the indices i and n 
may be equal to zero. The first eigenfrequency or natural frequency of a plate is therefore 
f1,1. 
 Figure 3.21 gives examples of natural modes of vibration for a plate according to 
Equation (3.108) and calculated for some of the lowest set of indices. Figure 3.22 gives 
corresponding examples on natural frequencies for a simply supported 180 mm thick 
concrete slab. The edges a and b are 4.0 and 6.0 metres, respectively. 

3.7.3.3 Eigenfrequencies of orthotropic plates 

In contrast to the isotropic plates (or panels), the material properties for orthotropic plates 
will depend on the direction. These properties are by definition, as also mentioned above, 
symmetric about three mutually perpendicular axes. We will again assume that the panel 
is placed in the xz-plane, furthermore that the x- and z-axis are axes of symmetry with 
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corresponding bending stiffness Bx and Bz. In several cases, one may apply the geometric 
average of the stiffness in these two directions to characterize the panel stiffness but this 
may also turn out to be completely wrong, e.g. when calculating the natural frequencies. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.21 Rectangular plates in bending motion. Examples on mode shape. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.22 Natural frequencies (eigenfrequencies) of a 180 mm thick concrete slab, dimensions 4.0 by 6.0 
metres; the frequencies of the first 10 modes of the slab that is simply supported.   
 
  
 We shall characterize the orthotropic plate using the material properties Ex, Ez, υx, 
υz and Gxz, i.e. by the elasticity modulus and Poisson’s ratio for the two directions 
together with the shear modulus. There are really four independent quantities only as 
taking symmetry into consideration gives 
 

 
(1,2) mode(1,1) mode 

 
(2,2) mode (2,3) mode

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

Natural frequency number

Fr
eq

ue
nc

y 
(H

z)

 



Waves in fluid and solid media 95 

 

 .x z z xE Eυ υ=  (3.111) 
 
The bending stiffness in the two directions will then be given by 
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Analogous to Equation (3.109), we shall give a formula for the natural frequencies of a 
simply supported rectangular plate with dimensions a and b. Formulae covering cases 
with other types of boundary condition may be found in the literature, e.g. Blevins 
(1979). For the simply supported plate we get 
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where  Bxz is given by 
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For the isotropic case, where 
 
 [ ], , and / 2(1 )x z x z xzE E E G Eυ υ υ υ= = = = = + , 
 
it is easy to show that Equation (3.113) simplifies to Equation (3.109). It was formerly 
pointed out that the types of orthotropic plate normally found as building components, 
mainly in industrial buildings, are plates with attached stiffeners or corrugated plates. 
The latter may have many different shapes; from the “wavy” corrugated type to the more 
sophisticated having trapezoidal corrugations denoted as cladding. When applying the 
general theory of orthotropic plates on corrugated plates several assumptions must be 
fulfilled. We shall not delve into these assumptions, but just point to the fact that for 
many types equivalent expressions for the stiffness components Bx, Bz and Bxz exist in the 
literature, expressions which one may use to calculate e.g. the natural frequencies. 
 One example we shall use is the “wavy” type of corrugations; a panel having 
thickness h and where the “waves” have sinusoidal shape with wavelength L and 
amplitude H. The total height of the panel is then 2H. Following Timoshenko and 
Woinowsky-Krieger (1959)2 we may write: 

                                                 
2 These equations are also referenced in Blevins (1979), unfortunately, with a misprint in the expression for Bz. 
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 Example We shall compare the natural frequencies of a flat square plate with the 
corresponding ones for a wave corrugated plate. For a 1 mm thick steel plate with sides 1 
metre long we get f1,1 ≈ 4.9 Hz, this by using Equation (3.109) with E equal to 2.1⋅1011 
Pa, m equal to 7.8 kg/m2 and υ equal to 0.3. Letting the height of the wave corrugated 
plate be 20 mm (H equal to 10 mm) and the “wavelength” be equal to 100 mm, we get 
f1,1 ≈ 25.5 Hz by using Equations (3.113) and (3.115). Proceeding to the (2,2) mode we 
will have f2,2 ≈ 19.7 Hz for the flat plate and 102 Hz for the corrugated one. Selecting a 
larger height and/or shorter wavelength for the corrugations will give even larger 
differences. It should be observed that we have to take into account the fact that the mass 
per unit area will increase when making the corrugations. 
 We shall later (see Chapter 6) demonstrate the effect of such corrugations on the 
sound transmission as compared to a flat plate. However, we shall then employ the more 
commonly used cladding type of plate, i.e. the type having trapezoidal corrugations. 
Predicting the bending stiffness in this case, analogous expressions to the ones above 
must be used. These are given in the literature; see e.g. Hansen (1993) or Buzzi et al. 
(2003). The latter also cite expressions for L-shaped plates in additions to the trapezoidal 
ones.3      

3.7.3.4 Response to force excitation 

If the eigenfunctions for a given system are known we may, by analogy with the 
calculations performed on the air-filled tube in section 3.6, calculate the response to a 
given mechanical input. Again using a plate as an example we may calculate the transfer 
function between a force (or moment) in a given point and a given response quantity 
such as velocity or acceleration in the same or in another point. We shall have to solve 
the wave Equation (3.107) but now modified by a term on the right-hand side 
representing the excitation. The response and the relevant transfer function may then be 
expressed by a sum of the eigenfunctions for the plate. 
 The measurement technique to determine such transfer functions is either by 
attaching an electrodynamic vibration exciter to the structure or using a transient 
excitation with a hammer blow or equivalent. The response quantity is measured at the 
driving point or at other relevant positions. The latter option gives basic data to 
determine the resonant vibration modes of the structure, a so-called modal analysis. We 
shall present an example on such transfer functions, using bending waves on a plate. This 

                                                 
3 The quantity b in equation (38) lacks definition. It is the distance from the y-axis to the plate neutral axis.   
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example will, however, be on an input mobility, not a transfer mobility (the ratio of 
velocity at one point and the force at another point) as used in modal analysis. The 
mobility we are using is also calculated, not measured, but this gives us the opportunity 
to vary the parameters to illustrate the influence of, for example damping.  
 The object is a 15 mm thick glass plate of rectangular shape, simply supported 
along the edges of length 1.10 metre and 1.50 metre, respectively. It is driven by a 
constant force normal to the plate at a point (x,z) equal to (0.20, 0.50). The input 
mobility, again using a logarithmic scale, is shown in Figure 3.23 for two values of the 
loss factor η. The highest value used is not a realistic one but is used to illustrate the 
influence of damping. 
 The thick horizontal line in the figure gives the mobility for an infinitely large plate 
of the same material and thickness. It may be surprising that this mobility is independent 
of frequency and at the same time is a real quantity. It should be noted that this is not 
generally true; e.g. neither the input mobility at the midpoint of an infinitely long beam 
nor at the end of a half-infinite beam has these characteristics.  
 On this horizontal line some marks have been made indicating some of the lowest 
natural frequencies of the plate, five frequencies altogether. The fourth and the fifth 
nearly fall together, which indicates that it is not always possible to detect the natural 
frequencies from such measurement data. The bandwidth of a resonance maximum may 
be larger than the distance between the natural frequencies. Several natural frequencies 
may then, depending on the damping, “hide” themselves inside a resonance maximum. It 
should also be remembered that one does not get any response from a certain mode 
having a node, i.e. zero displacement, at the driving point.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.23 Input point mobility of a 15 mm thick glass plate, dimensions 1.10 x 1.50 metre, for two different 
loss factors. Solid horizontal line – mobility of an infinite size plate, with marks indicating the first five natural 
frequencies of the finite plate.   
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3.7.3.5 Modal density for bending waves on plates 

Detailed frequency information is normally not required for quantities used in building 
acoustics. In general, one is interested in average values taken over relatively broad 
frequency bands such as one-third-octave bands or octave bands. This is true for sound 
pressure levels as well as for levels of vibration, e.g. one wish to determine an average 
velocity level for a wall or floor in a building. To ensure that the measurement result has 
the desired accuracy one has to estimate the required number of measurement points on 
the structure and this is directly linked to the number of modes having their natural 
frequencies within the frequency band measured. It is therefore important to estimate the 
density of natural frequencies in the structure to be measured, the so-called modal 
density. 
 A suitable procedure for this calculation is to make the modes expressed by their 
modal wave numbers ki,n, instead of by their natural frequencies. These wave numbers 
will be 
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where kix and knz are the wave number components in the x- and z-direction, respectively. 
All natural frequencies may therefore be plotted in a wave number diagram as shown in 
Figure 3.24, where each point represents a mode (eigenmode).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.24 Modal wave numbers for bending waves on a rectangular plate of dimensions a and b. The 
eigenmodes within a frequency band Δω are indicated.  
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 If we wish to calculate the number of modes inside a given frequency interval Δω 
(or Δf), we just count the number of points ΔN inside an area defined by two quarter 
circular arcs having wave numbers kB(ω) and kB(ω+Δω), these being wave numbers 
corresponding to the lower and upper cut-off frequencies for the given band pass filter. 
We then get 
 

 ( ) ( )2 2
B B 2 .

4
a bN k kπ ω ω ω
π

⋅⎡ ⎤Δ = ⋅ + Δ − ⋅⎣ ⎦  (3.118) 

 
In the case of kB not being too small, an approximate expression for the modal density is 
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or 
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where S is the plate area. As we can see, the modal density of thin plates is frequency 
independent. This is again not the case for other types and shapes of structure; see e.g. 
Blevins (1979).  
 Example The bandwidth of a third-octave-band filter is approximately Δf ≈ 0.23⋅f0, 
where f0 is the centre frequency of the band. Choosing f0 = 1000 Hz and taking the 
concrete slab used in Figure 3.22 as an example we get, even at this relatively high 
frequency, ΔN ≈ 14. In contrast to this, a room above this concrete slab (taken as the 24 
m2 floor of the room) having a ceiling height 2.5 m will have approximately 4 400 modes 
inside the same bandwidth! The latter number is calculated using the expression 
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where V is the room volume. This expression is derived using an analogous procedure to 
the one used above taking into account the equation for the natural frequencies of a 
three-dimensional air-filled space (see section 4.4.1). 

3.7.3.6 Internal energy losses in materials. Loss factor for bending waves. 

In a previous chapter, when dealing with oscillations in simple mass-spring systems, we 
introduced the loss factor by way of a complex stiffness. In a similar way we shall, for 
bending waves in a given structure, define a complex bending stiffness B′ : 
 
 ( )' 1 j ,B B η= + ⋅  (3.121) 
 
where η  is the loss factor. By formal definition, as found in the literature, it is given by 
the ratio of the mechanical energy Ed dissipated in a period of vibration to the reversible 
mechanical energy Em: 
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Inserting Equation (3.121) into expressions for natural frequencies of an element, e.g. 
into Equation (3.109), we shall get complex natural frequencies 
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This is another formal way of stating that the system has internal energy losses, meaning 
that the amplitude always has a finite value at resonance. 
 The loss factor may be determined by measuring either the quality factor Q, the 
bandwidth Δf for a given mode at resonance or the reverberation time T following an 
excitation of the system at the given natural frequency f0. The relations between these 
quantities are: 
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The energy losses of a given element will, however, always be caused by several 
mechanisms; first, there will be inner losses in the material, where the vibration energy is 
converted into heat, second, there will be energy radiated as sound. Another important 
loss mechanism is “leakage” to connected structures, which we may call edge losses. The 
total loss factor may therefore be expressed by a sum of loss factors representing these 
mechanisms: 
 
 total internal radiation edges.η η η η= + +  (3.125) 
 
The crucial questions will then be: 1) which one or which ones of these are the most 
important in an actual case and 2) how shall we arrive at the data, using either 
calculations or measurement. The internal losses of metal elements are normally very 
small; ηinternal is of the order 10-3–10-4. A producer of viscoelastic layers intended for 
damping of metal panels would certainly be concerned with the question of how much 
theηinternal will increase by bounding the layer to the panel. He will then certainly apply a 
measurement method where the other contributions to the losses are small, i.e. by freely 
suspending the specimen sample and at the same time ensure that the amount of radiation 
is small. 
 For common building constructions composed of materials such as concrete, 
gypsum etc. we may find that the loss factor due to internal losses is of the order 0.01. 
Being part of a building construction one normally finds that the edge losses tend to 
dominate. This implies that, when performing measurements in the field, one can only 
determine the total loss factor. This is however the important factor when it comes to 
sound transmission and its estimation and measurement in the field or laboratory. Lastly, 
we shall therefore give a supplementary expression for the last two terms in Equation 
(3.125). This will apply to a plate or panel element having a mass per unit area m, an area 
S and the length l of the edges. The expression, given below, is taken from the standard 
EN 12354–1. 



Waves in fluid and solid media 101 

 

 
4

0 0 0
total internal 2

c 1

.k k
k

c c
f m S f f

ρη η σ α
π π =

= + +
⋅ ⋅ ∑  (3.126) 

 
The element has critical frequency fc (see section 3.7.3.1) and radiation factor σ for free 
bending waves. The energy losses along the edges k are characterized by an absorption 
factor αk for bending waves. This factor may in a field situation be in the range 0.05 to 
0.5. Further on we shall look into ways of estimating this factor. 
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CHAPTER 4 
 

Room acoustics 
 

 

4.1 INTRODUCTION 

In talking about the concept of room acoustics we shall include all aspects of the 
behaviour of sound in a room, covering both the physical aspects as well as the 
subjective effects. In other words, room acoustics deals with measurement and prediction 
of the sound field resulting from a given distribution of sources as well as how a listener 
experiences this sound field, i.e. will the listener characterize the room as having “good 
acoustics”? When designing for a good acoustic environment, which could be everything 
from introducing some absorbers into an office space to the complete design of a concert 
hall, one must bear in mind both the physical and the psychological aspects. This implies 
having knowledge on how the shape of the room, the dimensions and the material 
properties of the construction influences the sound field. Just as important, however, is a 
knowledge of the relationship between the physical measurable parameters of this field 
and the subjective impression for a listener. Finding such objective parameters, either 
measurable or predictable, which correlate well with the subjective impression of the 
acoustic quality, is still a subject of research. It goes without saying that the number of 
suggested parameters is quite large. The reverberation time in a room has been, and still 
is, an important parameter in any judgement of quality. Another large group of 
parameters are also based on the impulse responses of the room but here the emphasis is 
on the relative energy content in given time intervals.  
 In this chapter, the primary emphasis will be on the physical properties, partly to 
give a background for the most common measurement methods in room acoustics. 
Suggested requirements for parameters, other than the reverberation time, will to some 
extent also be touched on. 

4.2 MODELLING OF SOUND FIELDS IN ROOMS. OVERVIEW 

In principle, we should be able to calculate the sound field in a room, generated by one 
or more sources, applying a wave equation of the same type as used earlier in the one-
dimensional case (see section 3.6). There we introduced a sound source as a mass flux q, 
having the dimensions of kg⋅m-3·s-1, in the equation of continuity. In the three-
dimensional case, we obtain 
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Solving this equation analytically will normally become very difficult except for simple 
room shapes and simple boundary conditions, e.g. an empty rectangular-shaped room 
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having walls of infinite stiffness. Solutions for such special cases may, however, give 
some general information on sound fields in rooms. It is therefore useful to discuss some 
of these cases, which we shall return to in section 4.4.2. 
 The development of numerical techniques in recent time has been formidable, 
which include FEM (finite element methods), BEM (boundary element methods) and 
various other numerical methods for predicting sound propagation in bounded spaces. 
Using these, accurate solutions may be obtained for complex room shapes and boundary 
conditions. First and foremost, these techniques are suitable in the lower frequency 
ranges, i.e. when the ratio between a typical room dimension and the wavelength is not 
too large. When using a FEM technique a reasonable number of elements per wavelength 
are of the order three to four. If the typical room dimension is 10 metres one may at 100 
Hz perhaps use 1000 elements. However, to calculate with the same accuracy at 1000 Hz 
one needs 1000000 elements. Depending on the specific computer FEM software, 
different types of elements are implemented, having some 8 to 20 nodes. At each of these 
nodes we shall then calculate the sound field quantity in question. In spite of the large 
capacity of modern computers, the limitations imposed on these calculations should be 
obvious. It should, however, be stressed that FEM calculations have become very 
important tools in the area of sound radiation and sound transmission, in particular where 
a strong coupling between a vibrating structure and the surrounding medium is expected.  
 A number of other approximate methods have a long history in room acoustics. The 
reason is that one normally is not interested in a detailed description frequency by 
frequency. The average value in frequency bands, being either octave or one-third-octave 
bands, has been more relevant. In the literature one will therefore find methods 
characterized under headings such as statistical room acoustics and geometrical room 
acoustics. The first term implies treating the sound pressure in a room as a stochastic 
quantity with a certain space variance. The classical diffuse field model, also called the 
Sabine model, is an extreme case in this respect. The latter name is a recognition of the 
American scientist Wallace Clement Sabine (1868–1919) who published his famous 
article “Reverberation” in the year 1900 containing a formula for the reverberation time 
in rooms, a formula still being the most used. In a diffuse field model, the space variance 
of the sound pressure is zero, the energy density is everywhere the same in the room. 
Such a model may be seen as the acoustic analogue of the classical kinetic gas model.  
 There is also a long tradition for using geometrical models in acoustics, see e.g. 
Pierce (1989). For geometrical acoustics in general, also denoted ray acoustics, the 
concept of wave front is central. At a given frequency, a wave front is a surface where 
the sound pressure everywhere is in phase. As the wave front moves in time, the line 
described in space by a given point on the surface is called the ray path. Generally, it is 
not necessary to assume that the amplitude is constant over the wave front or that the 
wave front is a plane surface but in room acoustics this is assumed. Curved paths have no 
place in geometrical room acoustics; the sound energy propagates along straight ray 
paths just like light. Inherent in these geometrical models there is no frequency 
information and the validity of the calculated results is in principle limited to a frequency 
range where we may assume specular reflections and where diffraction phenomena may 
be neglected. Such phenomena may, however, be included in these models by certain 
artifices. We shall deal with them by giving an overview of the principles.  
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4.2.1 Models for small and large rooms 

We have given an overview and some general remarks concerning the different models 
used to predict the sound field in rooms. We shall proceed by going into more detail on 
the suitability of these models for given situations. Simple diffuse field models may in 
practice be quite sufficient predictors given that a certain minimum number of room 
modes are being excited and participate in the build-up of the sound field. However, 
there are also a number of other conditions that have to be fulfilled before it is reasonable 
to assume that a global sound pressure level or a global reverberation time exists. The 
linear dimensions of the room must not be too different; the absorption material must be 
reasonably evenly distributed on the room surfaces and the total absorption area must not 
be too high. 
 To apply the simple expressions for the reverberation time, given in section 4.5.1.2 
below, also presupposes that only the room volume and the total surface area determine 
the mean free path of the sound, i.e. the distance between each reflection. When filling 
the room with a certain number of scattering objects an “internal” reverberation process 
may be set up between these objects and the common reverberation time formulae are no 
longer applicable. We should then bear in mind how to explain the diffusing elements 
required for laboratories performing standard absorption measurements according to ISO 
354. We shall return to this question when treating the subject of scattering. 
 In conclusion, large discrepancies between the ideal conditions demanded for a 
diffuse field and the actual room conditions make such models unsuitable. It may be that 
the linear dimensions are quite different; e.g. the room is “flat” in the sense that the 
ceiling height is small compared to the length and width of the room (industrial hall, 
landscaped office etc.) or the room is “long” (a corridor etc.). Absorbing materials or 
objects may also be unevenly distributed and the room may also contain a number of 
different types of reflecting and/or scattering object. 
 The choice of models to use on such “large rooms” is obviously dependent on the 
intended function for the room, a function that also determines the parameters we shall 
use to validate the acoustic quality. On industrial premises, e.g. large industrial halls, 
where a large attenuation between the various noise sources and the workers is aimed at, 
the decrease in decibels per metre distance may be a suitable parameter to estimate. For 
rooms having a simple shape, such a parameter could be estimated by an analytical 
model. 
 In performance spaces, theatres, auditoria, concert halls etc., the function of the 
room is to forward the sound to the audience, which implies that a quite different set of 
parameters, are necessary. Predicting the sound field in such rooms is generally based on 
methods from geometrical acoustics, partly combined with statistical considerations to 
include scattering (diffusion) phenomena. Two methods, principally different, are used: 
the ray-tracing method and the mirror-source method. The former simulates a sound 
source by emitting a large number of “sound rays”, these being evenly distributed over 
the solid angle covered by the actual sound source. Each ray is followed as it hits the 
various surfaces in the room, being specularly reflected and radiated having a reduced 
energy caused by the absorption factor of the surface.  
 According to the name, the mirror-source method is based on the mirror images of 
the real source. The sound from a mirror source received at a given point is reflected 
once in the surface of the mirror. These first-order sources are then being mirrored by all 
room surfaces giving second-order sources and so on. Short descriptions of these two 
geometrical prediction models are given in section 4.8. Software having implemented 
these methods is commercially available. Most of them are based on a hybrid method 
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combining the principles outlined above. A number of them have the possibility of 
simulating simple types of scattering effect.   

4.3 ROOM ACOUSTIC PARAMETERS. QUALITY CRITERIA 

The parameters used for assessing the acoustic quality of a room obviously depend on its 
intended use. Whereas the reverberation time and/or the sound level reduction by 
distance from the source may be sufficient in an industrial hall, a more comprehensive 
set of parameters must be used in e.g. concert halls. It is acknowledged that the 
reverberation time has an important role and there is sufficient background experience on 
how long or short it should be depending on the size of the room and related to the type 
of the performance room; theatre, room for music performance etc. As for music 
performance, the type of music will be a vital factor; see e.g. Kuttruff (1999). 
 A number of other parameters that correlates well with the subjective impression 
are based on data calculated from measured impulse responses in the room; see ISO 
3382. An example is shown in Figure 4.1, a measured impulse response using an MLS 
technique (see section 1.5.2).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.1 A measured impulse response in an 1800 m3 auditorium using a MLS signal (sequence length of 
order 16 and sampling frequency 25 kHz of which only every second point is shown). After Lundeby et al. 
(1995). 
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 Irrespective of the intended use of the room, whether for speech or music, it is 
important to design the room in such a way as to give a balanced set (in time) of the early 
reflections onto the audience area. Reflections following the direct sound within a time 
span of approximately 50 milliseconds will contribute to the strength of the direct sound. 
A listener will not perceive these reflections as a separate part or as an echo, but will if a 
strong reflection has a longer delay. This phenomenon is called the precedence effect or 
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Haas effect, the latter name in recognition of one of the many researchers on the 
phenomenon, Haas (1951).  
 Added to the time arrival of the reflections, it is important for rooms for music 
performances to know where the reflections are coming from. The directional 
distribution is critical for the listener’s feeling of spaciousness of the sound field, i.e. 
lateral reflections are just as important as reflections from the ceiling.  Added to this fact, 
there has in the last 20 years been a growing awareness that diffuse reflections are also 
very important, again for rooms for music performances. We shall therefore give some 
examples of these other objective acoustic parameters used for larger halls, how they are 
determined and, to a limited extent, on the underlying subjective matter.  

4.3.1 Reverberation time 

The reverberation time T is defined as the time required for the sound pressure level in a 
room to decrease by 60 dB from an initial level, i.e. the level before the sound source is 
stopped. This is not necessarily coincident with a listeners feeling of reverberation and in 
ISO 3382 one will find that measurement of the early decay time (EDT) is recommended 
as a supplement to the conventional reverberation time. Both parameters are determined 
from the decay curve, EDT from the first 10 dB of decay, and T normally from the 30 dB 
range between –5 and –35 dB below the initial level. Both quantities are calculated as the 
time necessary for a 60 dB decay having the rate of decay in the ranges indicated. 
 Throughout the time a number of methods have been used to determine the decay 
curves and thereby the reverberation time. A common method is to excite the room by a 
source emitting band limited stochastic noise, which is turned off after a constant sound 
pressure level is reached. For historical reasons, we shall mention the so-called level 
recorders, a level versus time writer, recording directly the sound pressure level decay, 
where the eye could fit a straight line. Later developments included instruments giving 
out the decay data digitally, enabling a line fit e.g. by the method of least squares. 
 Modern methods based on deterministic signals such as MLS or SS, however, are 
superior in the dynamic range achieved in the measurements and may well measure over 
a decay range of 60 dB or more. It may be shown that the decay curve is obtained by a 
“backward” or reversed time integration of impulse responses as the one shown in Figure 
4.1. Normally as we are interested in the reverberation as a function of frequency, the 
impulse response is filtered in octave or one-third-octave bands before performing this 
integration. The decay as a function of time is then given by 
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where p is the impulse response. Certainly, this equation was also utilized when analogue 
measuring equipment was used by splitting the integral into two parts as follows 
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The upper limit of the integration poses a problem as the background noise unrelated to 
the source signal will be integrated as well. Different techniques are suggested to 
minimize the influence of background noise. One method is to estimate the background 
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noise from the later part of the impulse response, thereafter compensating for the noise 
by assuming that the energy decays exponentially with the same decay rate as the actual 
one at a level 10–15 dB above the background level. Such a technique (see Lundeby et 
al. (1995)) is used calculating the decay curves shown in Figure 4.2. The impulse 
response shown in Figure 4.1 is filtered by a one-third-octave band of centre frequency 
1000 Hz and the decay curves are calculated with and without being compensated for 
background noise. In one set of curves, the level of the background is equal to the one 
present at the time of measurement. In the second set, the background noise is artificially 
increased to show that also in this case one will obtain a decay curve having an 
acceptable dynamic range. Ideally, all the solid curves should be coincident but this will 
only be the case if the decay rate is everywhere the same.  
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Figure 4.2 Decay curves based on filtering, one-third-octave band 1000 Hz and reverse time integration of the 
impulse response shown in Figure 4.1. Solid curves – integration with background noise compensation. Dashed 
curves – integration of the total impulse response. One set of curves is using an artificially added noise. After 
Vigran et al. (1995). 
 

4.3.2 Other parameters based on the impulse response 

A large number of parameters suggested in the literature and applied over the years are 
listed and commented on in ISO 3382. These are all derived from measured impulse 
responses, and we shall present a selection of these measures. 
 The balance between the early and late arriving sound energy, which concerns the 
balance between the clarity (or distinctness) and the feeling of reverberation, is important 
for music as well as for speech. Several parameters are suggested to cover this matter in 
room acoustics. The simplest ones deal with the ratio of the total sound energy received 
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in the first 50 or 80 milliseconds to the rest of the energy received. We have an early-to-
late index Cte defined by 
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where te is 50 ms for speech and 80 ms for music. A recommended value for this 
parameter is 0 dB.  
 An early variant of this parameter was D50, which is denoted definition in line with 
the original German notion of Deutlichkeit. The difference from the above is that, instead 
of the late energy, one is using the total energy received. Hence 
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The relationship between C50 and D50 is then given by 
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making it unnecessary to measure both parameters. 
 By way of introduction, we pointed out that the direction of sound incidence was 
important for the feeling of spaciousness. Of special importance are the lateral 
reflections, which also contribute to an impression of widening a source or a source area. 
Several early lateral energy measures are proposed, one is the lateral energy fraction LF 
based on measured impulse responses obtained from an omni-directional and a figure-of-
eight pattern microphones. It is defined as 
 

 
80ms 80ms

2 2
L

5ms 0

( )d ( )d ,LF p t t p t t= ∫ ∫  (4.7) 

 
where pL is the sound pressure obtained with the figure-of-eight microphone. This 
microphone is intended to be directed in such a way that it responds predominantly to 
sound arriving from the lateral directions and is not significantly influenced by the direct 
sound.  
 Because the directivity of a figure-of-eight microphone essentially has a cosine 
pattern and the pressure is squared, the resulting contribution from a given reflection will 
vary with the square of the cosine of the angle between the reflection relative to the axis 
of maximum sensitivity of the microphone. An alternative parameter is LFC, where the 
contributions will be a function of the cosine to this angle. This parameter, which is 
believed to be subjectively more accurate, is defined by 
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In addition to the parameters given above, there are others related to our binaural 
hearing, based on measurements using an artificial or dummy head. These so-called 
inter-aural cross correlation measures are correlated to the subjective quality of “spatial 
impression”. 

4.4  WAVE THEORETICAL MODELS 

Obtaining analytical solutions to the wave equation (4.1) are difficult except in cases 
where the room has a simple shape and simple boundary conditions. In section 3.6, we 
arrived at a solution for the sound field in a simple one-dimensional case: a tube closed 
in both ends and with stiff walls where we assumed that the particle velocity everywhere 
was equal to zero. We may easily generalize these results to the three-dimensional case if 
we assume that the room has a rectangular shape with dimensions Lx, Ly and Lz. We shall 
use this as an example to illustrate some important properties of sound fields in rooms; 
how the impulse response will depend on e.g. the room dimensions and furthermore, how 
we may predict the impulse responses.  
 For a free wave field we shall have to solve the wave equation without the source 
term. Assuming harmonic time dependence, we get the Helmholtz equation for the sound 
pressure in three-dimensional form 
 
 2 2 0,p k p∇ + =  (4.9) 
 
where k is the wave number. Initially, we shall assume that all boundary surfaces are 
infinitely stiff and there are no other energy losses in the room. The eigenfunctions for 
the pressure will then be given by 
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where C is a constant and where the eigenvalues for the wave number is given by 
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The corresponding eigenfrequencies are given by 
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To each of these eigenfunctions or normal modes there is a set of numbers, a set of 
indices. Equation (4.10) then represents a three-dimensional standing wave if we 
multiply with the time-dependent factor exp(jω t). In the literature special names are used 
for the wave forms associated with these sets of indices. We have an axial mode when 
two of the indices are equal to zero, a tangential mode when just one of the indices is 
zero, and finally, an oblique mode when all indices are different from zero. (Can you tell 
the direction of the wave in the room in these three cases?) 
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 For the case of the one-dimensional standing wave, we named the points where the 
sound pressure was zero as nodal points. By analogy, here we shall have nodal planes if 
one or more of these indices is zero and the indices will indicate the number of such 
planes normal to the x-, y- and z-axis, respectively. That the nodal points have the form 
of a plane is a special case due to the example we have chosen, the rectangular room. For 
other shapes we shall have other types of geometric surface; we shall call them nodal 
surfaces.  

4.4.1 The density of eigenfrequencies (modal density) 

Concerning measurements in building acoustics, such as sound insulation, sound 
absorption, sound power etc. the eigenfrequencies per se are not particularly important. 
The relative density, i.e. the number of eigenfrequencies within a given bandwidth, is, 
however, of crucial importance for measurement accuracy. By analogy to the calculation 
of the modal density for a plate (see section 3.7.3.5), we may develop a wave number 
diagram having the shape as the octant of a sphere. Summing up the number of “points” 
or eigenfrequencies N below a given frequency f, we arrive at the following approximate 
expression 
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where V, S and L are the room volume, the total surface area of the room and the total 
length of the edges, respectively. Differentiating this expression with respect to 
frequency we arrive at the following approximate expression for the modal density 
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As seen, the first term will be the dominant one at higher frequencies, and in the 
literature one often finds this term alone. This certainly has the advantage of requiring 
the room volume only, but this practice may introduce large errors at low frequencies.  
 
 Example An ordinary sitting room in a dwelling with dimensions Lx⋅ Ly⋅ Lz equal to 
6.2 ⋅ 4.1 ⋅ 2.5 metres, gives us a floor area of 25.4 m2 and a volume of 63.6 m3. Choosing 
a frequency of 100 Hz, Equation (4.14) gives us ΔN/Δf equal to 0.361. If we measure 
using one-third-octave bands filters, at centre frequency 100 Hz we get a bandwidth Δf ≈ 
0.23⋅100 = 23 Hz. We will then get 23⋅0.361 ≈ 8 eigenfrequencies inside this band, 
which compares well with an exact calculation giving seven eigenfrequencies. If we just 
use the first term we will get five eigenfrequencies. However, going up in frequency the 
first term will become dominant. Keeping a fixed bandwidth of 23 Hz and moving up to 
1000 Hz, we expect to find approximately 500 eigenfrequencies (the first term alone 
gives 470). Using a one-third-octave filter we arrive at approximately 5000 
eigenfrequencies inside the band.  
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4.4.2 Sound pressure in a room using a monopole source 

We shall proceed by calculating the sound field in a room of rectangular shape where we 
have placed a sound source in a given position. This is again a generalization of the one-
dimensional case of a tube with a sound source (see section 3.6). We shall assume that 
the source is a monopole, pulsating harmonically in time. The task is then to solve the 
Helmholtz equation (4.9) but now modified with a source term on the right side of the 
equation. We shall characterize the monopole source by its volume velocity or source 
strength Q having unit m3/s, i.e. not by the mass q as in Equation (4.1). The pressure 
root-mean-square-value in a given point (x,y,z) caused by the source in a position 
(x0,y0,z0) may be written 
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The quantity ω is the angular frequency of the source, and 
x y zn n nω  are the 

eigenfrequencies according to Equation (4.12). The Ψ-functions are the corresponding 
eigenfunctions:  
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x y zn n nV is a normalizing factor, depending on the modal numbers, given by 
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The equations are derived assuming no energy losses in the room. However, as shown 
earlier in section 3.7.3.6, we may introduce small losses by complex eigenfunctions. We 
shall write 
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where η is the loss factor and T the corresponding reverberation time. As an example of 
the use of Equation (4.15), we shall calculate the pressure at a given position in the same 
room as used in the example in section 4.4.1. We shall make the reverberation time 1.0 
seconds independent of frequency.  
 The pressure response is shown in Figure 4.3 represented by the transfer function 
p/(Q⋅ω) on a logarithmic scale for a frequency range up to 1000 Hz. This implies that we 
have related the pressure to the volume acceleration of the monopole source, both given 
by their root-mean-square-values. Also shown in the diagram are the lowest 10 
eigenfrequencies. It will appear that only the very low frequency resonances may be 
identified. In the higher frequency range we find that the response is made up by 
contributions from many modes.  
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Figure 4.3 Transfer function between sound pressure and monopole source volume acceleration in a room of 
dimensions 6.2 x 4.1 x 2.5 metres and reverberation time 1.0 seconds. Source position (1.7, 1.0, 1.5), receiver 
position (3.5, 2.5, 1.5). Thick solid curve – analysis in one-third-octave bands. Dashed line – diffuse-field 
model. The points show calculated resonance frequencies.  
 
 
 The response is also shown resulting from an analysis in one-third-octave bands, a 
normal procedure when performing measurements in buildings. It is then of interest to 
calculate the result if one is using a simple diffuse field model for this case (see section 
4.5.1 below). Assuming that the pressure at the receiver position is not affected by the 
direct field from the source, we may use the simple relationship between the source 
power W and the average sound pressure in the room stating that 
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where A is the total absorbing area in the room. A monopole source freely suspended in 
the room will radiate a power 
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Equating these powers, we obtain 
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The result is shown by the dashed line in Figure 4.3. We see that there is a good fit 
between this result and the frequency averaged data in the frequency range above 200 
Hz. However, it must be noted that we have performed a calculation just for one receiver 
position. Determining the emitted power from a source in a standard reverberation room 
test (see ISO 3741) the squared sound pressure is space averaged by using a number of 
microphone positions. It is interesting to note that this standard requires a minimum room 
volume of 70 m3 (the volume in our example is approximately 64 m3) permitting 
measurements upwards from 200 Hz.  

4.4.3 Impulse responses and transfer functions 

The common measurement procedure today is to determine pertinent impulse responses, 
hereby using these to calculate reverberation time, other room acoustic measures and 
transfer functions if required. In the preceding section, we calculated the transfer 
function between the sound pressure at a given position in a room and the volume 
acceleration of a source at another position. Vice versa, by an inverse Fourier transform 
of the transfer function we shall arrive at the impulse response, from which we may 
calculate the reverberation time and check that it is correct. The latter means that it is 1.0 
second independent of frequency, as presupposed when calculating the transfer function 
shown in Figure 4.3.  
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Figure 4.4 Impulse response calculated from the transfer function shown in Figure 4.3.  
 
 
 The unfiltered impulse response (for the frequency range up to 1000 Hz) 
corresponding to the transfer function in Figure 4.3 is shown in Figure 4.4. It should be 
noted that when calculating the inverse transform one must ensure that the result, the 
impulse response, turns out to be a purely real quantity, which implies a meticulous 
treatment of the real and imaginary part of the transfer function.  
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 The unfiltered impulse response may now be filtered in either octave or one-third-
octave bands to arrive at the reverberation time in these bands. This is carried out using 
octave bands with centre frequencies 125, 250 and 500 Hz and the decay curves are 
shown in Figure 4.5. Fitting straight lines to these curves, one will find that the time for 
the sound pressure level to decrease 60 dB is 1 second, which was input to the 
calculations using Equation (4.15). For simplicity, the decay curves are not calculated 
using the integration procedure given by Equation (4.2) but by a running short-time (50 
milliseconds) integration of the squared response. In fact, such a procedure simulates the 
working of the old level recorders.  
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Figure 4.5 Decay curves in octave bands with centre frequencies 125, 250 and 500 Hz, calculated from the 
impulse response shown in Figure 4.4.  
 
 
 To conclude on this topic, we shall present examples of transfer functions based on 
impulse responses obtained in a real room like the one shown in Figure 4.1. The purpose 
is, for one thing, to show that transfer functions obtained in real rooms have the character 
as calculated and depicted in Figure 4.3. We shall use transfer functions based on 
impulse responses measured in the same auditorium as the one used for measuring the 
impulse response in Figure 4.1. The result is shown in Figure 4.6 where the sound 
pressure level (arbitrary reference) is given for the frequency range 100–200 Hz. One of 
these curves corresponds to the impulse response shown in Figure 4.1, for the other two 
curves the axis of the loudspeaker source is rotated 30° and 60°, respectively, from the 
horizontal plane. It goes without saying that the results exhibit the expected deterministic 
behaviour depending, among other factors, on the physical dimensions of the room.   
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Figure 4.6 Some examples of transfer functions measured in an auditorium of volume 1800 m3. Measurements 
by varying the direction of the loudspeaker axis.   

4.5 STATISTICAL MODELS. DIFFUSE-FIELD MODELS 

We demonstrated in section 4.4.2 that, rising to sufficiently high frequencies, one cannot 
link the various maxima in the transfer functions to the individual eigenfrequencies. 
These higher frequency maxima are the result of many, simultaneously excited modes 
adding up in phase. Correspondingly, minima in the response are the results of many 
modes having amplitudes and phase relationship resulting in a very small vector when 
added. It is also very important to realize that the general features of these transfer 
functions such as the distribution of minima, the level difference between minima and 
maxima, the phase change over a given frequency range etc. is not specifically dependent 
on the room or the relative position of the source and receiver. A “flat” frequency 
response curve, which is the aim when designing microphones and loudspeakers, will 
never be obtained in a room.  
 At sufficiently high frequencies, however, we may express the abovementioned 
variables by statistical means. Specifically, we shall be able to do this when the distance 
between the eigenfrequencies becomes less than the bandwidth of the resonances. The 
so-called Schroeder cut-off frequency fS, given by 
 

 S 2000 ,Tf
V

=  (4.22) 

 
where V and T are the volume (m3) and reverberation time (s), respectively, may be used 
as a frequency limit above which a statistical treatment is feasible. This corresponds to a 
frequency where we will find approximately three eigenfrequencies within the bandwidth 
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of a resonance. The formula may be understood from the following facts: the resonance 
bandwidth is inversely proportional to the reverberation time and the separation between 
the eigenfrequencies is inversely proportional to the room volume. For the example used 
in Figure 4.3, we arrive at a cut-off frequency of approximately 250 Hz.  
 In building acoustics, however, we are not normally interested in a statistical 
description of pure tone responses for rooms. We shall look for responses averaged over 
frequency bands, octave or one-third-octave bands and broadband excitation sources are 
used. This leads to a treatment where we are looking at the energy or the energy density 
as the primary acoustic variable, which allows us to “forget about” the wave nature of the 
field as long as we keep away from the low frequency range. In this relation, it is 
pertinent to start by presenting a model that properly may be denoted the classical diffuse 
field model. It will appear that the formulae derived from this model are implemented in 
a number of measurement procedures both for laboratory and field use, in spite of their 
presumptions of an ideal diffuse field. An ideal diffuse field should imply that the energy 
density is everywhere the same in the room but, actually, acousticians have agreed 
neither on the definition nor on a measurements method for this concept. A couple of 
suggestions for a definition: 

• In a diffuse field the probability of energy transport is the same in all directions 
and the energy angle of incidence on the room boundaries is random. 

• A diffuse sound field contains a superposition of an infinite number of plane, 
progressive waves making all directions of propagation equally probable and 
their phase relationship are random at all room positions. 

Both definitions, and a number of others, should be conceptually adequate but offer 
little help as to the design of a measurement method. We shall not delve into the various 
diffusivity measures being suggested, of which none has been generally accepted. In 
practice, when the international standards on laboratory measurements are concerned, 
procedures on improving the diffusivity are specified together with qualification 
procedures to be fulfilled before making the laboratory fit for a certain task. As for 
measurements in situ one is certainly forced to accept the existing situation. 
 In a number of standard measurement tasks in building acoustics, determination of 
sound absorption, sound insulation or source acoustic power, the primary tasks is to 
determine a time and space averaged squared sound pressure in addition to the 
reverberation time. In several cases, pressure measurements may be substituted by 
intensity measurements but still averaging procedures in time and over closed surfaces 
must be applied. Concerning the measurement accuracy of the averaged (squared) 
sound pressure and the reverberation time, this may be predicted using statistical models 
for the sound field. We shall return to this topic after treating the classical model for a 
diffuse sound field.         

4.5.1 Classical diffuse-field model 

For the energy balance in a room where a source is emitting a given power W (see Figure 
4.7), a simple differential equation may be set up. This power is either “picked up”, i.e. 
absorbed, by the boundary surfaces or other objects in the room or contributes to the 
build-up of the sound energy density. The boundary surfaces certainly include all 
absorbers which may be mounted there. We may write 
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where V is the room volume and w is the energy density (J/m3) in the room. We shall, for 
simplicity, initially assume that the room boundaries are the only absorbing surfaces, 
thereby relating the first term to the absorption factors αj of these surface areas Sj. Hence 
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where Wi is the power incident on all boundaries (walls, floor and ceiling) and Ib is the 
corresponding sound intensity.  
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Figure 4.7 Room with a sound source, emitting a power W.   
 
 
 Having assumed that the energy density is everywhere the same implies that the 
latter quantities are independent of the position on the boundary. Equation (4.23) may 
therefore be written as 
 

 b b
d ,
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j

wW I S V I A V
t t

α= ⋅ + ⋅ = ⋅ + ⋅∑ dw  (4.25) 

 
where A (m2) is the total absorbing area of the room. It remains to find the relationship 
between the energy density w and the intensity Ib. It should be noted that the total sound 
intensity at any position in the room is ideally equal to zero because the energy transport 
is the same in all directions but certainly, we may associate an effective intensity with the 
energy transport in a given direction. The idea is then to calculate the part of the energy 
contained in a small element of volume that per unit time impinges on a small boundary 
surface element, thereafter integrating the contributions from the whole volume. We shall 
skip the details in this calculation, which results in 
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Additionally, we have introduced the relationship between the sound energy density and 
the sound pressure in a plane progressive wave, this due to our assumption that the sound 
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field in the sound is a superposition of plane waves. As seen from the formula, the 
intensity at the boundaries differs only by the constant 4, different from the 
corresponding one in a plane progressive wave. Introducing this result into Equation 
(4.25) we get 
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Obviously, the pressure root-mean-square value here must be interpreted as a short-time 
averaged variable, i.e. the averaging must be performed over a time interval much less 
than the reverberation time. The general solution of this equation is given by 
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The constant K is determined by the initial conditions. We shall look into two special 
cases, applying this solution.        

4.5.1.1 The build-up of the sound field. Sound power determination 

We now assume that the sound pressure is zero when the source is turned 
on, ( 0 , which gives at 0p t= = )
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The sound will then build up arriving at a stationary value when the time t goes to 
infinity. The RMS-value of the sound pressure becomes 
 

 2 0 04 .t
cp W

A
ρ

→∞ =  (4.30) 

 
The equation then gives us the possibility of determining the sound power emitted by a 
source by way of measuring the mean square pressure in a room having a known total 
absorbing area. For laboratories this type of room is called a reverberation room and 
procedures for such measurements are found in international standards (see e.g. ISO 
3741). 
 A couple of important points concerning such measurements must be mentioned. 
As pointed out above, one has to determine the time and space averaged value of the 
sound pressure squared. This is accomplished either by measurements using a 
microphone (or an array of microphones) at a number of fixed positions in the room or 
by a microphone moved through a fixed path in the room (line, circle etc.). One must, 
however, avoid positions near to the boundaries where the sound pressure is 
systematically higher than in the inner parts of the room.  Waterhouse (1955) has shown 
that the sound pressure level at a wall, at an edge and at a corner, respectively, will be 3, 
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6 and 9 dB higher than the average level in the room. This is also easily demonstrated by 
direct measurements. Restricting the determination of the average sound pressure level to 
the inner part of a room, normally half a wavelength away from the boundaries, implies 
that we are “losing” a part of the sound energy. One therefore finds that the standards 
include a frequency-dependent correction term, the so-called Waterhouse correction to 
compensate for this effect and the power is then calculated from 
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where S is the total surface area of the room. In addition, the standard ISO 3741 includes 
some minor corrections for the barometric pressure and temperature and furthermore, the 
absorption area A is substituted by the so-called room constant R where 
 

 ,
11

A AR A
S

α
= =

−−
 (4.32) 

 
and where α is the mean absorption factor of the room boundaries. Normally, the mean 
absorption factor is required to be small for laboratory reverberation rooms making this 
correction also small. However, in the high frequency range (above 8–10 kHz) this may 
not be the case, especially due to air absorption (see section 4.5.1.3). 

4.5.1.2 Reverberation time 

Turning off the sound source when the stationary condition is reached, i.e. setting 
2 ( ) 2p t p∞=  at time t = 0, and W = 0 for t > 0, we get  
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As the reverberation time T is defined by the time elapsed for the sound pressure level to 
decrease by 60 dB, or equivalent, that the sound energy density has decreased by a factor 
10-6, we write 
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which gives us the reverberation time, commonly denoted T60, as 
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This is the famous reverberation time formula by Sabine, which is the most commonly 
used in practice in spite of its simplicity and the assumptions lying behind its derivation. 
Obviously, it cannot be applied for rooms having a very high absorption area. Setting the 
absorption factor equal to 1.0 for all surfaces, we still get a finite reverberation time 
whereas it is obvious that we shall get no reverberation at all. Other formulae have been 
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developed taking account of the fact that the reverberation is not a continuous process 
but involves a stepwise reduction of the wave energy when hitting the boundary surfaces. 
We shall not go into detail but just refer to a couple of these formulae. The first one is 
denoted Eyring’s formula (see Eyring (1930)), which may be expressed as 
 

 Ey
0

55.26 ,
ln(1 )
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c S α
= ⋅

− ⋅ −
 (4.36) 

 
where α as before is the average absorption factor of the room boundaries, i.e. 
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The formula is obviously correct for the case of totally absorbing surfaces as we then get 
TEy equal to zero. For the case of α << 1, the formula will be identical to the one by 
Sabine. 
 Still another is the Millington–Sette formula (Millington (1932) and Sette (1933)), 
where one does not form the average of the absorption factors as above but is using the 
average of the so-called absorption exponents α ' = –ln(1–α). This leads to 
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 (4.38) 

 
One drawback of this formula is that the reverberation time will be zero if a certain 
subsurface has an absorption factor equal to 1.0. In practice, the absorption factors αi 
have to be interpreted as an average factor for e.g. a whole wall. It is claimed (see e.g. 
Dance and Shield (2000)) that when modelling the sound field in rooms having strongly 
absorbing surfaces this formula gives a better fit to measurement data than the formulae 
of Sabine and Eyring.  
 Sabine’s formula is however widely used, also by the standard measurement 
procedure for determining the absorption area and absorption factors of absorbers of all 
types (see ISO 354). By the determination of absorption factors one measures the 
reverberation time before and after introduction of the test specimen, here assumed to be 
a plane surface of area St, into the room. The absorption factor is then given by 
 

 Sa
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T0 and T are the reverberation times without and with the test specimen present, 
respectively. One thereby neglects the absorption of the room surface covered by the test 
specimen but this surface is assumed to be a hard surface, normally concrete, having 
negligible absorption. We shall return to this measurement procedure in the following 
chapter.  
 To conclude this section, we mention that various extensions of the simple 
reverberation time formulae have been proposed, in particular to cover situations where 
the absorption is strongly non-uniformly distributed in the room. A review of these 
formulae may be found in Ducourneau and Planeau (2003), who performed an 
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experimental investigation in two different rooms comparing, altogether, seven different 
formulae. However, this number includes the three formulae presented above.  
 Here, we shall present just one example of the formulae particularly developed for 
covering the aspect of non-uniformity, a formula given by Arau-Puchades (1988). It 
applies strictly to rectangular rooms only and may be considered as a product sum of 
Eyring’s formula defined for the room surfaces in the three main axis directions, X, Y and 
Z, each term weighted by the relative area in these directions. It may be expressed as  
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where q is the factor 55.26/c0. Using this formula one may e.g. assign the area SX to the 
ceiling and the floor having average absorption factorα X, the two sets of sidewalls to the 
corresponding surface areas and absorption coefficients with indices Y and Z. It will 
appear that this formula will predict quite longer reverberation times than predicted by 
the simple Eyring’s formula in case of low absorption on the largest surfaces of the 
room.  

4.5.1.3 The influence of air absorption 

In the derivation of the formulae above we assumed that all energy losses were taking 
place at the boundaries of the room. This is only partly correct as one in larger rooms 
and/or at high frequencies one may have a significant contribution to the absorption 
caused by energy dissipation mechanisms in the air itself. This is partly caused by 
thermal and viscous phenomena but for sound propagation through air by far the most 
important effect is due to relaxation phenomena. This is related to exchange of vibration 
energy between the sound wave and the oxygen and nitrogen molecules; the molecules 
extract energy from the passing wave but release the energy after some delay. This 
delayed process leads to hysteretic energy losses, an excess attenuation of the wave 
added to other energy losses.  
 The relaxation process is critically dependent on the presence of water molecules, 
which implies that the excess attenuation, also strongly dependent on frequency, is a 
function of relative humidity and temperature. Numerical expressions are available (see 
ISO 9613–1) to calculate the attenuation coefficient, which include both the “classic” 
thermal/viscous part besides the one due to relaxation. The standard gives data that are 
given the title atmospheric absorption, as attenuation coefficient α in decibels per metre. 
This is convenient due to the common use of such data in predicting outdoor sound 
propagation. For applications in room acoustics, we shall, however, make use of the 
power attenuation coefficient with the symbol m, at the same time reserving the symbol 
α for the absorption factor. The conversion between these quantities is, as shown earlier, 
simple as we find 
 
 ( )Attenuation dB/m 10 lg(e) 4.343 .mα = = ⋅ ⋅ ≈ m⋅  (4.41) 
 
Examples on data are shown in Figure 4.8, where the power attenuation coefficient m is 
given as a function of relative humidity at 20° Celsius, the frequency being the 
parameter.  
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Figure 4.8 Power attenuation coefficient m for atmospheric absorption at 20° Celsius.  Calculated from ISO 
9613–1.  
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 This atmospheric or air absorption brings about a modification of the total 
absorption area of a room by an added term 4mV, where V is the volume of the room. 
Instead of Equation (4.35) we get 
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 (4.42) 

 
where As represent the total absorption area in the room exclusive of the air absorption. 
This added term may certainly also be included in other expressions for the reverberation 
time by modifying the denominator in the Equations (4.36) and (4.38). (How should we 
include the air absorption into Equation (4.40)?). Certainly, the air absorption will be 
important in large rooms. However, at a relative humidity in the range 20–30 %, which is 
not unusual at certain times of the year in some countries, one will find that the 
reverberation time at frequencies above 6–8 kHz, even for moderate sized rooms, will be 
considerably influenced by air absorption.  
 
 Example In a room of volume 100 m3 one measures a reverberation time of 0.5 
seconds in the one-third-octave band with centre frequency 8000 Hz. The relative 
humidity is 20 %. Using Figure 4.8 we find that m is equal to 0.05 m-1 at the frequency 
8000 Hz. (The figure applies to single frequencies but we shall use it to represent the 
corresponding frequency band.) The air absorption alone then gives an absorption area of 
20 m2. Applying Equation (4.35) we find the total absorption area A of the room is 
approximately 32.5 m2. More than half of this absorption area is then due to air 
absorption. Without this contribution, the reverberation time would be well over one 
second. 
 Evidently, the air absorption may have important implications on the reverberation 
time but also on sound pressure levels in rooms at sufficiently high frequencies. We 
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referred in section 4.5.1.1 above to the standard ISO 3741 on sound power determination 
in a reverberation room, where a correction factor (1 )α− was applied to the absorption 
area (see Equation (4.32)). Vorländer (1995) has shown that this correction factor is an 
approximation of the general term exp(A/S), where the absorption area is given by  
 
 ln(1 ) 4 .A S mVα= − ⋅ − +  (4.43) 
 
If m equals zero, we certainly arrive at the correction term in Equation (4.32) again as 
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Using this general correction, Vorländer (1995) obtains a very good fit, even up to 20 
kHz, between the sound powers of a reference sound source determined in a 
reverberation room as compared with a free field determination. 

4.5.1.4 Sound field composing direct and diffuse field  

When deriving Equation (4.28), we assumed that the sound field was an ideal diffuse 
one; the energy density was everywhere the same in the room. It is obvious, however, 
that the source must represent a discontinuity; even in a room having a very long 
reverberation time there must exists a direct sound field in the neighbourhood of the 
source. We shall have to distinguish between the source near field, where the sound 
pressure may vary in a very complicated manner depending on the type of source, and 
the far field where the sound pressure decreases regularly with the distance from the 
source (see the discussion on sound sources in Chapter 3).  
 Assuming a position in the far field, we may apply the formula describing the 
relationship between the source sound power and the pressure squared in an ideal 
spherical (or plane) wave field: 
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Initially, we shall assume that the source is a monopole, hence 
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For other types of source, we may introduce a directivity factor Dθ, thus write 
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where r is the distance from the source. The index θ on the directivity indicates that the 
latter generally depends on a properly defined angle. Combining this expression with the 
simple one giving the pressure in a diffuse field, Equation (4.30), we arrive at the 
following expression for the total sound field: 
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Expressed by the corresponding levels using standardized reference values for sound 
pressure and sound power, we may write 
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For simplicity, we have given the characteristic impedance ρ0c0 the value 400 Pa⋅s/m. 
The difference between the sound pressure level and the sound power level is shown in 
Figure 4.9 as a function of the relative distance r/(Dθ)1/2. The parameter on the curves is 
the absorption area A. The dashed curve indicates the relative level of the direct field.  
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Figure 4.9 Sound pressure level as a function of relative distance from a source of sound power level LW. The 
parameter is the room total absorption area A. The dashed line indicates the free field level.  
 
 
 The distance rH from the source, where the contributions from the direct field and 
the diffuse field are equal, is called the hall radius or also room radius for the case where 
the directivity factor is equal to 1.0: 
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 Example In Figure 4.9 we calculated the difference between the sound pressure and 
the power levels for the cases where the absorption area varies between 5 and 200 m2. 
Correspondingly, the room radius will vary between 0.32 and 1.99 metres. 

4.5.2 Measurements of sound pressure levels and reverberation time 

As pointed out in the introduction to section 4.5, the formulae derived using simple 
diffuse models are used in a number of measurement tasks both in the laboratory and in 
the field. Quantities such as sound pressure squared and reverberation time are 
considered, subject to certain presumptions, as global measures but in the sense of being 
average values with a space variance. We shall therefore have means to estimate this 
variance to be able to predict the uncertainty in the end results, results obtained by 
sampling the sound field in the room at a number of microphone positions.  
 Instead of sampling the sound field in a number of fixed positions, one may use a 
microphone moving continuously through the room. As the pressure is strongly 
correlated at adjacent positions, positions within some half a wavelength apart, implies 
that no new information is gained from close lying positions. The length of the path 
covered by such a microphone must therefore be carefully chosen by keeping this in 
mind. We shall return to this question later on, first, treating the case of using discrete 
sampling of the sound field to determine the average sound pressure squared and the 
reverberation time. 
 One may use several quantities to characterize the measurement uncertainty. It 
should also be noted that the expressions for the variance (or standard deviation) may be 
given as a relative value or not, which means that they are stated relative to the mean 
value or not. The relative variance of an actual quantity x shall be defined as 
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where the index r indicates a relative value and E{…} the expectation value. The square 
root of this expression is denoted the relative, sometimes the normalized, standard 
deviation. The symbol s is commonly used to indicate the standard deviation, indicating 
that practical calculations comprises a limited selection of data enabling us just to 
estimate the underlying expectation value.  

4.5.2.1 Sound pressure level variance 

An early effort to predict the space variance of the squared sound pressure is due to 
Lubman (1974), working on the determination of sound power level of sources in a 
reverberation room. At frequencies above the Schroeder cut-off frequency fS (see 
Equation (4.22)) he found a relative variance of 1.0 for pure tone sources assuming that 
p2 was exponentially distributed. The corresponding standard deviation s(Lp) of the 
sound pressure level is then approximately equal to 5.6 dB, which implies that the 95% 
confidence interval will be as large as 22 dB. It should not come as a surprise that sound 
power level determination of pure tone sources present special problems in order to 
arrive at a reasonably correct space averaged value. Sources having a larger bandwidth 
will tend to “smear out” these space variations, thereby making the measurement task 
considerably easier. We shall present expressions below taking the bandwidth into 
account.  
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   The Schroeder cut-off frequency represents an important division in the prediction 
of the variance. A satisfactory theory does not exist which covers the frequency range 
below this cut-off frequency. However, we shall present an estimate also for this range, a 
range where investigations are best conducted by FEM modelling. As for the frequency 
range above fS, statistical models will have limited validity if the absorption becomes so 
large that the direct field is significant, which may happen at sufficiently high 
frequencies.  
 Lubman (1974) presented the following expressions for the relative variance: 
For the range given by 0.2⋅fS ≤ f ≤ 0.5⋅fS he got 
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where ΔN is the number of natural modes inside the frequency band Δf (see Equation 
(4.14)). As for the range f ≥ fS he found 
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where T is the usual reverberation time. It should be noted that both expressions 
presuppose that the product Δf⋅T is numerically equal or larger than 20.  
 Normally, one is looking for the corresponding standard deviation s(Lp) in the 
sound pressure level. However, to calculate this one needs to know the probability 
distribution of p2. If the relative variance is less than approximately 0.5 we may make an 
estimate based on transforming the sound pressure level in the following manner: 
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Differentiating the last expression with regards to p2, we get 
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Up until now we have concentrated on the spatial variance. In measurements on 
stochastic signals there will also be a corresponding relative time variance given by 
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where Ti is the measuring or integration time used to determine p2 in a given microphone 
position. Certainly, we are able to make this time variance arbitrarily small by extending 
the measuring time but there is, of course, a trade-off here. In practice, one normally 
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chooses a measurement time making the time variance some one-tenth of the expected 
spatial variance. 
 If the task is to determine the average stationary sound pressure level in a room set 
up by a given source, we may choose a number M of microphone positions. Assuming 
that the sound pressures at these positions are uncorrelated, i.e. the positions are some 
half a wavelength apart, we may estimate the relative variance in the mean value by the 
following equation 

 ( ) ( ) ( )2 2 2 2
r t2 2

r ,
p p

p
M

σ σ
σ

+
=  (4.57) 

 
where we may insert the actual contributions to the variance from the Equations (4.52), 
(4.53) and (4.56).  
 The spatial variance expressions given above were developed in connection with 
the problem of sound power determination in reverberation rooms, i.e. a typical 
laboratory set-up in hard-walled rooms. They may, however, also be applied to field 
measurement such as sound insulation between dwellings, from which we shall give 
some examples taken from a NORDTEST report (see Olesen (1992)). The main content 
of this report may now be found in the standard ISO 140 Part 14.   
 In this report, however, some modifications are introduced in the above expressions 
when calculating the standard deviation s(Lp). In Equation (4.52) the factor π is 
substituted by the number 8.5, which is claimed to give a better fit to experimental data. 
Furthermore, an additional term is introduced into Equation (4.53) allowing for a 
possible influence of the direct field from the source. Figures 4.10 and 4.11 show the 
results; the measured and the predicted standard deviation of the sound pressure level in 
two rooms having widely different volumes. Taking the valid range of the theoretical 
expressions into account, the fit between measured and predicted data are reasonably 
good. As for the smallest sized room, the expressions are not valid below approximately 
150 Hz. For the larger room, there are also some discrepancies in the higher frequency 
range, most probably due to a relatively high and unevenly distributed absorption 
(carpeted floor). All results are based on measurements using five microphone positions 
for each of the two source positions used. 
 Apart from the determination of sound power of sources in reverberation rooms 
and the determination of sound insulation, great effort has been put into finding accurate 
methods for determination of sound pressure levels from service equipment in buildings. 
Service equipment noise normally involves low frequency components and small rooms 
makes a correct sampling of the room important, this is so even if legal requirements are 
commonly specified by the overall A- or C-weighted sound pressure levels. It has been 
shown (see e.g. Simmons (1997)) that combining a few microphone positions in the 
room with a corner position, the corner having the highest C-weighted sound pressure 
level, is an efficient procedure both with respect to the correct average value (less bias 
error) and to the reproducibility. This procedure has been adopted by the international 
standard ISO 16032. 
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Figure 4.10 Spatial distribution of sound pressure level. Furnished living room with carpet, volume 102 m3. 
Solid curve – measured standard deviation. Dashed curve – predicted standard deviation. After Olesen (1992).  
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Figure 4.11 Spatial distribution of sound pressure level. Toilet with hard room boundaries, volume 11.1 m3. 
Solid curve – measured standard deviation. Dashed curve – predicted standard deviation. After Olesen (1992). 
 

 



130 Building acoustics 

4.5.2.2 Reverberation time variance 

Measurements of sound decay and reverberation time in rooms are performed either by 
using a method based on an interrupted noise signal or by a method based on the 
integrated impulse response, specifically by 
 

• exciting the room using a stochastic noise signal, usually filtered in octave or 
one-third-octave bands, and recording the sound pressure level after turning off 
the source, i.e. the method outlined when deriving the reverberation time 
formula in section 4.5.1.2 

• measuring the impulse response, using either a maximum length sequence 
signal (MLS signal) or a swept sine signal (SS signal), which again is filtered 
in octave or one-third-octave bands, thereafter applying the method given in 
section 4.3.1.  

  

 As for the first method concerned one will, due to the stochastic noise of the signal, 
observe variations in the results when repeating the measurement. This will be the case 
even if both source and microphone positions are exactly the same. The reason is that the 
stochastic signal is stopped at an arbitrary time making the room excited by different 
“members” of the ensemble of noise signals produced by the source. It makes no 
difference if the stochastic signal in fact is pseudo stochastic, i.e. periodically repeats 
itself, as the source normally is not stopped coincident with this period. The variance due 
to the variation in the reverberation time measured at a given position we shall call an 
ensemble variance. This quantity σe

2(T) is therefore an analogue of the time variance 
σt

2(p2) by a sound pressure measurement (see Equation (4.56)).   
 By measuring the reverberation time using M microphone positions, repeating each 
measurement N times in each position, the relative variance in the average reverberation 
will be given by 
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=  (4.58) 

 
where the first term is the variance due to the spatial variation. It should be noted that the 
last term will be zero when using an impulse response technique as the excitation signal 
will be deterministic in this case. This does not, however, imply that systematic errors 
cannot occur in this case if the system is not time invariant, e.g. due to temperature 
changes etc. during the measurement. The SS technique is less prone to such errors than 
the MLS technique.  
 Returning to the method of using interrupted noise, Davy et al. (1979) developed 
theoretical expressions for the two contributions to the variance, applicable to frequencies above 
the Schroeder frequency fS. In effect, they calculated the variance of the slope of the decay 
curves but the results may easily be transformed to apply to the corresponding reverberation 
time. As expected, these expressions are functions of the filter bandwidth and reverberation time 
but also depends on the time constant (or “internal reverberation time”) of the measuring 
apparatus together with the dynamic range available. It has to be remembered that at the time 
when this work was performed the equipment available was of analogue type such as the level 
recorder. We shall therefore just give an example applicable for one-third-octave measurements, 
using a dynamic range of 30 dB and a RC detector (exponential averaging). The time constant 
of this detector is assumed to be one-quarter of the equivalent time constant for the room. The 
relative variance of the mean reverberation time may then be written (Vigran (1980)) as  
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where f0 is the centre frequency in the one-third-octave band. This expression is also 
used in the report by Olesen (1992) comparing with measurement results obtained in a 
small laboratory room of volume 65 m3, having an almost frequency independent 
reverberation time of two seconds. The numbers N and M of source and microphone 
positions were two and six, respectively. The result is shown in Figure 4.12, given by the 
reverberation time standard deviation, i.e. by the expression  
 
 ( )r( )s T T Tσ= ⋅ ⋅ M , 
 
and as seen, the fit between measured and predicted results is quite good. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

63 125 250 500 1000 2000 4000

Frequency (Hz)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

S
ta

nd
ar

d 
de

vi
at

io
n 

(s
)

Volume 65 m3

 
Figure 4.12 Reverberation time standard deviation in a laboratory room of volume 65 m3. The reverberation 
time is approximately frequency independent (2 seconds). Solid curve – measured. Dashed curve – predicted. 
After Olesen (1992).  
  

4.5.2.3 Procedures for measurements in stationary sound fields 

As is apparent from the discussions above, a number of the standard measurement tasks 
in building acoustics; e.g. sound insulation, sound absorption and noise measurements, 
are based on determination of the spatial averaged sound pressure squared and the 
reverberation time. In the following, we shall use the sound pressure as an example. 
 We shall further assume that measurements are performed on band-limited 
stochastic noise. This may comprise measurements on a broadband source of unknown 
sound power where we apply filtering in octave or one-third-octave bands for the 
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analysis; e.g. in a sound power determination in a reverberation room. In other cases, we 
shall set up a sound field in a room with a loudspeaker driven by a narrowband signal. In 
the latter case, we may alternatively measure the impulse response (between the 
loudspeaker source signal and the signal from the microphone) using MLS or another 
deterministic signal. The latter procedure is certainly superior when the task is to 
determine differences in the squared sound pressures, e.g. when determining the airborne 
sound insulation between two rooms. 
 Regarding a spatial averaged value as a reasonably global one for the room 
presupposes that the room dimensions are of the same order of magnitude. This means 
that in those rooms where the dimensions are too different, a corridor, an open plan 
office or school, a factory hall etc., one will never, using a single source, find areas 
where the sound pressure level is constant (in the statistical sense of the word). We will 
experience a systematic variation; the sound pressure level will decrease more or less 
rapidly with the distance from the source depending on the room shape, the absorption 
and the presence of scattering objects. We shall return to this subject in section 4.9. 
 In most measurements standards, the required end result is the mean sound pressure 
level and quantities derived from it. The underlying quantity, however, is the mean 
squared pressure. In principle, we may proceed in two ways: We may sample the sound 
field in a number M of microphone positions, which we in fact assumed when deriving 
the expressions above, thereby calculating the mean sound pressure using the formula 
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where pi

2 denotes the time averaged squared pressure in position i. Alternatively, we may 
use a microphone moving along a certain path in the room, performing a continuous 
averaging process in time and space. We will then write 
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where Tpath is the time used for the complete path.  
 How do we compare these two methods as to the measuring accuracy? If a given 
length of the path could be attributed to a certain equivalent number Meq of discrete 
positions we could apply the equations given in section 4.5.2.1 directly for the 
calculation of the standard deviation according to Equation (4.57). The time averaging 
term σt should not give any problem as the total measuring time is Tpath = Ti ⋅ M, but how 
long should the path be to correspond to M positions spaced at a distance ensuring 
uncorrelated sampling? This may be calculated for frequencies above the Schroeder 
frequency fS and for a circular path, which is the most practical one, we approximately 
(perhaps not particularly surprising) get 
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The quantities r and f0 are the path radius and the centre frequency in the actual 
frequency band, respectively. A microphone path corresponding to three discrete 
microphone positions at 100 Hz should, therefore, have a radius of approximately 0.8 
metres.  
 Accurate estimates of the measurement accuracy at frequencies below fS are 
difficult to attain, but there are guidelines in measurement standards to improve the 
accuracy (see below). As seen from Equation (4.52), the number of modes excited is 
vital, and exciting the room by band-limited noise will certainly excite most modes inside 
the frequency band. However, we have seen that a source cannot excite a mode having a 
node at the source position. This is one reason for the requirements in standards to use 
several source positions, which is particularly important when measuring at low 
frequencies. It should not come as a surprise that some laboratories are, using not only a 
moving microphone but also a moving source.  
 Eventually, at sufficiently low frequencies, the number of modes will be too small 
to realistically speak of a space averaged value of the squared pressure. The exception is 
when the frequency gets so low that there will only be a homogeneous pressure field in 
the room, i.e. when going below the first eigenmode for the room.  
 Guidelines and help on these questions are given in national and/or international 
standards. These give guidance and requirements as to the choice of measuring positions 
and source positioning; the number of these depending i.a. on frequency and room 
volume, the distance of microphone positions from the source and from the room 
boundaries etc. Information is also given on the measurement uncertainty of the 
procedure or method. Concerning the latter, one will find the concepts of repeatability 
and reproducibility standard deviation. The former implies the standard deviation 
obtained when repeating a given procedure within a short time interval and under 
identical conditions (same laboratory, same operator, same measuring equipment). 
Otherwise, when these conditions are unequal, we have reproducibility conditions. The 
standard deviation of reproducibility therefore includes the standard deviation of 
repeatability. Data for reproducibility are usually established by round robin experiments 
by a number of participating laboratories. 
 To conclude, one will find the necessary instructions in the relevant standards to 
perform most measurement tasks. The purpose of dealing in some detail with the basis 
for these measurements are twofold: to give some understanding of the formulations, 
found in these standards, at the same time give some assistance when presented with a 
measurement task not covered by any standard. 

4.6 GEOMETRICAL MODELS 

A number of computer software programs, of which many are commercially available, 
are developed to predict sound propagation in large rooms, e.g. concert halls or large 
factory spaces. We shall not present any overview of the various programs or deal with 
specific published work where these programs are used but limit ourselves to give an 
outline of the principles behind the models. The majority of prediction models used for 
large rooms are based on geometrical acoustics, partly combined with statistical concepts 
to include scattering effects. Judged by the concepts found in the literature dealing with 
these prediction models, there may be some confusion as to the number of basic methods 
used. In effect, there are only two basic methods, the ray-tracing method and the image-
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source method. The models implemented in software programs are, however, given 
special names depending on the specific algorithm used and furthermore, there exist 
hybrid types combining principles from ray-tracing and image-source modelling. A 
review on computer modelling of sound fields is given a journal special issue (see Naylor 
(1993)).  

4.6.1 Ray-tracing models 

A pioneering work on computer modelling using the ray-tracing method is from 
Krokstad et al. (1968). Calculation involving ray tracing is based on simulating a point 
source emitting a large number of “rays” evenly distributed per unit solid angle. Each ray 
then represents a given solid angle part of the spherical wave emitted from the source. 
The rays are “followed” on their way through the room, either through a sufficiently long 
time span or until they hit a surface defined as totally absorbing (see Figure 4.13). The 
seating area in, for example, a concert hall, is a surface of the latter type. What is a 
“sufficiently” long time if such a surface does not exist? Pragmatically, one may choose 
the time according to the energy left in the ray after a certain time interval but there are 
also implementations where the last surface point hit is defined as a new source, in its 
turn emitting the rest energy of the ray, contributing to the reverberant energy in the 
room.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.13 The principle of ray tracing. 
 
 A major problem using ray tracing is that a ray, per definition, has no extent, i.e. in 
practice it almost never hits a receiving point. This implies that the detectors 
(“microphones”), which shall record the rays hitting a given surface and thereby the 
magnitude and direction of the intensity, must be quite large. One may apply spherical 
microphones having a diameter in the range of one metre. Certainly, applying a very 
large number of rays, one may reduce the diameter but there is also the question of 
calculating time. There are alternative measures, such as using a beam having the shape 
of a cone of pyramid, but in effect, these are models of a hybrid type (see below).  
 One will also encounter the notion of “sound particle” instead of the ray and 
thereby the concept of sound particle tracing (see e.g. Stephenson (1990)). The algorithm 
to calculate the trajectories is the same; the sound particles or phonons propagate along 
rays.   The differences are found on the receiving side; i.e. how the detectors are arranged 
and how the energy is calculated. In principle, however, it is still a ray-tracing method.  
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4.6.2 Image-source models 

Image-source (or mirror-source) modelling is based on regarding all reflections from the 
boundary surfaces as sound contributions from images of the real source(s). The strength 
of this type of modelling, when carried out rigorously, is that it covers all transmission 
paths between source and receiver. It may give the impulse responses correct inside the 
framework of geometrical acoustics.  
 It is relatively simple mathematically to find all these mirror sources. The main 
problem is that except for rooms of very simple shapes, most of these sources are either 
not visible in a given receiver position or may be invisible in any part of, for example, 
the audience area. This means that a number of reflections are not physically valid. To 
separate out the “valid” image sources is a time-consuming task when coming to the 
higher order reflections. We may illustrate this by calculating the number of image 
sources of the order N in a room having M surfaces, which is given by M(M – 1)N–1. In a 
room having e.g. M equal to 12, we get approximately 16 000 image sources of the forth 
order, approximately 175 000 of the fifth order and so on. Except for rooms having a 
very simple shape, e.g. rectangular ones, maybe only a few hundred of these sources are 
valid. As in the case of ray tracing the question arises on when to stop the calculations. 
“Adding on” to the results using statistical arguments are common having carried out 
calculations correctly up to a given order of reflections.  
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Figure 4.14 Example on trajectory between a receiver and a third-order image source.                      

 
 
 Sketches which illustrate some of the aspects discussed above are shown in Figures 
4.14 and 4.15. The first one shows, in a cross section (horizontally or vertically) through 
a room of rectangular shape (parallelepiped), an example of the trajectory between a 
receiver and a third-order image source. Figure 4.15 gives an example on a first-order 
image source S1 (mirrored in wall W), which is not visible in any of the possible receiver 
positions R within the indicated sector, a sector given by the solid angle defined by the 
wall surface as seen from the image source.  
 Finding the image-source positions is in many cases quite easy where regular room 
shapes are concerned and one may also find analytical expressions as to the sound 
propagation. An example that we shall also use later on (see section 4.8) is sketched in 
Figure 4.16, which shows a vertical section of a long “flat” room. Here we shall assume 
that the ceiling height is much smaller than the other dimensions of the room; i.e. we 
shall neglect the influence of the sidewalls.  
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Figure 4.15 Example on image source not being visible in receiver positions R. 

 
 
 We shall put a source midway between the floor and the ceiling, initially assuming 
that the absorption factor α is the same for these boundary surfaces. The energy density 
w at a receiver position may then be expressed by 
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where W is the source sound power, r and rn are the distances between the source and the 
receiver and between the receiver and the image source with index n, respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

S R

S2

S1

S2

S1

Sn

Figure 4.16 Image sources in a “flat” room. 
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4.6.3 Hybrid models 

A number of the computer programs for room acoustic predictions are based on models 
that we may characterize as being hybrid; they comprise elements from ray-tracing 
methods as well as from image-source methods. An important aspect when developing 
such programs is to reduce the computing time. 
 A common practice is initially by finding available image sources by following ray 
trajectories, thereby noting the points on the boundaries hit by these rays. Thereafter, one 
is testing whether these reflection sequences will contribute to the energy in a given 
receiver position in the same manner as when using a pure image-source method. One 
makes use of a beam, either in the form of a cone or a pyramid, where the ray itself 
represents the axis. At each reflection, the highest point in the beam will represent an 
image source. This approach makes it possible to work with receivers represented by 
points, not as a large sphere necessary in a pure ray-tracing model. Certainly, the 
approach is not without its problems. The number of beams is certainly finite, making it 
possible to find only a limited number of image sources. Another problem is that the ray 
direction following a reflection is solely determined by the axis of the beam, which 
implies that the beam is not split up when it hits two or more surfaces. This makes it 
possible for some image sources to “illuminate” and thereby contribute to the energy in 
receiver points that in effect are not visible. And, vice versa, some image sources may 
not illuminate receivers that in fact should be visible. For a closer description of the 
procedure, see for example, Lewers (1993). 
 The necessary finite number of rays or beams will impose a limit on the accuracy of 
the calculated impulse response. One therefore has to apply other methods to add a 
reverberant “tail” to the response. This is coupled to the aspect of adding some diffuse 
reflections to the response. Obviously, scattering phenomena have strictly no place in 
geometrical acoustics but certainly being present in real rooms due to surface 
irregularities and objects filling the room. A strong element of diffuse reflections is also 
important in performance spaces such as concert halls etc., making it necessary by some 
artifice also to implement this aspect in the prediction models, mainly by some statistical 
type of reasoning. 

4.7 SCATTERING OF SOUND ENERGY 

With the concept of diffraction, it is generally understood that changes are taking place 
in the direction of sound propagation, thereby including both the concept of reflection 
and scattering. As to the former, one assumes that the dimensions of the reflecting 
surface are large as compared with the wavelength, the reflection is considered to be 
specular. The word scattering is commonly used when the dimensions of the surface or 
object hit are comparable or less than the wavelength. As pointed out above, scattering 
has strictly no place in geometrical acoustics. By e.g. ray-tracing modelling there is 
certainly no impediment for not making the reflection specular; the ray may be reflected 
in a random direction, however a physical reason for allowing such a diffuse reflection 
must exist. 
 Several hybrids models (see e.g. Heinz (1993); Naylor (1993b)) combine a strict 
calculation using specular reflections together with the addition of a certain number of 
such diffuse reflections. When modelling the sound field in large assembly halls, concert 
halls etc. one might say that the inclusion of diffuse energy is justified by the necessary 
partially detailed description of the room. In addition, scattering phenomena certainly 
exist when increasing the frequency and the wavelength is becoming comparable to the 
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size of objects. The energy in the incident wave will be redistributed with a directional 
distribution depending both on the shape of the object and on the ratio of wavelength to 
object dimensions. 
   Since 20 years ago, there has been a growing awareness that diffuse reflections 
are very important, especially for rooms for music performances. It is realized that an 
important contribution to the fame of some older concert halls, e.g. the Grosser 
Musikvereinsaal in Vienna, is the diffuseness provided by numerous surface 
irregularities: various types of surface decoration, columns, balconies etc.  Following the 
work of Schroeder (1975, 1979) on the design of artificial diffusing elements based on 
number theory, a range of commercial as well as non-commercial diffusing elements are 
now in use in rooms for music production and reproduction. A comprehensible treatise 
may be found in Cox and D’Antonio (2004). Here we shall just give a short overview on 
these types of diffuser element. In this connection a series of measurement methods are 
developed to characterize the acoustic properties of such elements both in ISO (ISO 
17497) and in AES (Audio Engineering Society).  

4.7.1 Artificial diffusing elements 

The sound scattering properties of solid bodies and surfaces is of great interest in many 
areas of acoustics and the distribution of the scattered energy around structures of 
various shapes for a given incident wave is well known. Such distributions are normally 
given in the form of a directivity pattern for the scattered wave. In room acoustic 
modelling, however, one is in most cases not interested in such a detailed pattern. A 
surface property of major interest is the total amount of non-specularly reflected sound 
energy in relation to the total reflected energy. In ISO 17497 Part 1 a quantity named the 
scattering coefficient  s is defined,1 as one minus the ratio of the specularly reflected 
acoustic energy Espec to the total reflected acoustic energy Etotal: 
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 (4.64) 

 
Theoretically, this quantity can take on values between zero and one, where zero means a 
totally specular reflecting surface and one means a totally scattering surface. Being 
measured in a reverberation room as a random incidence quantity in one-third-octave or 
octave bands, it represents a direct analogue to the statistical absorption factor. 
 The main purpose of the artificially diffusing elements is certainly to reduce the 
specularly reflected energy. However, from the point of view of the producers of such 
elements one would like to have a corresponding measure characterizing the uniformity 
of the reflected sound, in the same way as characterizing radiated sound from sources, 
e.g. loudspeakers.  There seems as yet no universal agreement concerning such a 
diffusion coefficient (or factor) to characterize these so-called diffusers but there is 
ongoing work e.g. inside ISO. The problem is to arrive at a single number measure 
characterizing the scattering directivity pattern.  
 These artificial types of diffuser element constitute a hard surface with grooves or 
protrusions of various shapes. The surface irregularity used may be one-dimensional or 
two-dimensional, according to the task of making a diffuser working in one or two 

 
1 Having the unit of 1, it should have been termed scattering factor. 
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planes. We shall confine ourselves to the first type, as the extension to two dimensions is 
reasonably straightforward, conceptually at least.    
 Schroeder (1975) began his work on what we may term mathematical diffusers by 
investigating the scattering from surfaces shaped in the form of a maximum length 
sequence (MLS). We showed in section 1.5.2 the particular Fourier properties of these 
sequences giving a completely flat power spectrum. Then, quoting Schroeder: “Thus, 
because of the relation between the Fourier transform and the directivity pattern, a wall 
with reflection coefficients alternating between +1 and –1, would scatter an incident 
plane wave evenly (except for a dip in the specular direction which corresponds to the 
DC component in the spectrum).” The “MLS wall” was realized as a hard wall with 
“grooves” or wells a quarter of a wavelength deep in the area where a reflection factor of 
–1 was called for. In practice, such diffusers work, however, over a rather limited 
frequency range, approximately one octave. There are means of increasing the workable 
bandwidth, as recent research shows, but this implies adding active components to the 
diffuser (see Cox et al. (2006)).         
 However, there are other periodic sequences having useful Fourier properties, 
which make them excellently suited for modelling diffusing elements having a much 
broader bandwidth than the MLS. These are the quadratic residue sequences and the 
primitive root sequences (see e.g. Schroeder (1999), Cox and Antonio (2004)). The 
sequence forming the base for making a quadratic residue diffuser (QRD) is given by 
 
  (4.65) 2MOD where  1,2,3,...ns m N m= =
 
This means that sn is the reminder when m2 is divided by the prime number N. Taking 
N=7 as an example, we get the following sequence: 0, 1, 4, 2, 2, 4, 1. In a similar way as 
for the MLS diffuser the numbers are transformed into the corresponding depths dn of the 
grooves or wells of the surface, but these are now not constant:  
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So how do we choose the maximum depth dmax and also the width of each well? 
Certainly, to make the diffuser work properly there should be plane wave propagation in 
each well and there must be a significant phase change for the waves reflected from the 
bottom. The design rule normally used for the latter, which determines the maximum 
workable wavelength or the equivalent minimum frequency, is expressed as:  
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where c0 is the speed of sound. This design rule implies that the mean depth of the wells 
at this frequency is of the order of a quarter of a wavelength. As for the width w of each 
well, we should ensure plane wave propagation, which implies being below the cut-off 
frequency giving  
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The width w is normally chosen in the range of 5–10 cm. Making the wells too narrow 
may increase the surface area too much giving unwanted surface sound absorption, 
especially when the wells have separating walls (see Figure 4.17 a). 
 The other type of sequence having Fourier properties that makes them useful in the 
construction of broadband diffusers, giving little specular reflections, is the primitive 
root sequences. These are calculated in a slightly different way than the quadratic residue 
ones, given by: 
 
  (4.69) MOD where  n 1,2,3,...n

ns p N= =
 
The number p is denoted a primitive root modulo N, also called a generating element 
because it generates a complete residue system in some permutation. As an example, 
choosing N equal to 7 there are two primitive roots, being 3 and 5. We shall use a higher 
number N in our example below, choosing N equal to 13 where the lowest primitive root 
is 2. Using (4.69) to calculate this sequence gives the values shown in Table 4.1. 
 
 
Table 4.1 Primitive root sequence for N equal 13 and primitive root p equal 2. Well depths in mm for design 
frequency 1000 Hz. 
 

n 1 2 3 4 5 6 7 8 9 10 11 12 
sn 2 4 8 3 6 12 11 9 5 10 7 1 
dn 

(mm) 
28 57 113 43 85 170 156 128 71 142 99 14 

 
 
 In the last row the corresponding depths of the wells are given, calculated by 
equation (1.3) choosing a design frequency (fmin) of 1000 Hz. It should be noted that 
there is only N –1 cells in the sequence. As is apparent from the table and also from 
Figure 4.17, where we have put three such periods on a row, diffusers based on a 
primitive root sequence (PRD) are unsymmetrical.  
 
 

a)

b)
 

 
 
 
 
 
 
 
 
 
Figure 4.17 Sketch of a ceiling having three periods of a primitive root diffuser (PRD) with N equal 13. 
a) With dividing walls between the wells (grooves), b) Without dividing walls. 
 
 
 Prediction methods for the acoustic pressure field, i.e. the sum of the direct field 
from a source and the scattered field, is normally based on the Helmholtz-Kirchhoff 
integral equation (see e.g. Cox and Lam (1994)). This means using Equation (3.44) in 
Chapter 3 with an added term representing the direct field. If only the far field is of 
interest, a computational method based on the analogue Fraunhofer diffraction method in 
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optics may be used. We shall not treat any of these methods here, but to illustrate the 
effect of these diffusers, especially to reduce the specular reflection, we shall present an 
example based on the FEM technique in two dimensions. The situation is depicted in 
Figure 4.18, showing the same three periods of the PRD depicted in Figure 4.17, where 
the wells (protrusions) are calculated in Table 4.1.  
 
 
 
 
 
 
 
 
 
 
 
 
 

L

r

S
p

Figure 4.18 Sketch of situation for calculating the sound pressure level above a diffuser surface consisting of 
three periods of a primitive root sequence. Height of wells is given in Table 4.1 and height of point source (S) is 
0.7 metres.  
 
 
 The resulting sound pressure level from a point source at height 0.7 metres is 
calculated on a circle with a radius of 1 metre above the diffuser. As the width of the 
wells is chosen equal to 5 cm, there will be a 10 cm flat (hard) surface added to each end 
of the diffuser. The calculations were performed using the Comsol Multiphysics™ 
software, modelling the field outside the semicircle to be a free field by adding a so-
called perfectly matched layer (PML).  
 The results are shown in Figure 4.19, giving the total sound pressure level, at a 
design frequency of 1000 Hz, on the half-circle as a function of angle. The source 
acoustic power is arbitrarily set to 1 W, thus giving the rather high sound pressure levels. 
The FEM calculations are performed both for the situation described and also for a flat 
surface. The results are compared with a simple analytical calculation for an infinitely 
large flat surface. Apart from the discrepancies around the main lobe, the FEM 
calculations predict the flat surface situation quite well. The most important result, 
however, is the effect of the diffuser surface as compared by the flat one, giving a mean 
difference in the specular direction in the order of 6–8 dB.  

4.7.2 Scattering by objects distributed in rooms  

Big industrial halls, either production or assembly spaces, will always contain a large 
number of scattering objects. A realistic modelling of the sound propagation in such halls 
implies that one has to take scattering phenomena into account. Having objects covering 
a wide range of sizes, shapes and orientation in the room one certainly cannot take the 
influence of each object into account; one has to rely on rough characterizations and 
apply statistical concepts.  
 In presenting examples on calculating sound propagation in large rooms we shall 
use factory halls. It is therefore appropriate to give a short overview on the scattering 
theory used, which e.g. is outlined by Kuttruff (1981). Basically, two hypotheses are 
used: 
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• The sound scattering objects are assumed to be point like and the energy of the 

incident wave is scattered evenly in all directions. 
• The scattering phenomenon follows a Poisson process. The energy emitted by the 

source is sent out in discrete quantities as “phonons” or sound packages having 
energy W⋅Δt, where W is the sound power of the source. 
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Figure 4.19 Total sound pressure level as a function of angle calculated on the circle with radius r equal one 
meter; situation as depicted in Figure 4.18. The source (S) power is equal to 1.0 W. Thick solid line – diffuser 
surface (FEM). Thin solid line – flat surface (FEM). Dashed line – flat, infinitely large surface (analytical). 
 
 
 The validity of the first hypothesis will depend on the ratio of the dimensions of the 
scattering object and the actual wavelength. Initially assuming that an object scatters 
sound, not only reflects sound in a specular way, we shall put up a limit on the 
relationship between a typical dimension D and the wavelength λ, demanding that D/λ > 
1/2π. 
 From the second hypothesis follows that the probability density Pk of a phonon 
hitting a number k scattering objects within a time interval tk is given by 
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− ⋅
= ,  (4.70) 

 
where c0 is the usual wave speed and q is the average scattering cross section per unit 
room volume, a quantity also denoted the scattering frequency.  
 The determination of q is difficult for scattering objects having a complicated 
shape. A common practice is equalizing the scattering effect (at high frequencies) of an 
object having a total surface area S by the one offered by a sphere of equal surface area. 
The average scattering cross section may then be expressed as 
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when a total of N objects with surface areas Si are present in a room of volume V. 
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Figure 4.20 The probability of a wave (a phonon) hitting a given number of scattering objects, indicated by the 
number on the curves, having propagated a path of length c0·t. The scattering cross section q is equal to 0.1m-1.  
 
 
 Figure 4.20 shows the probability density P, according to Equation (4.70), of a 
phonon hitting a given number k of objects having propagated a path of length c0·t. The 
number k is the parameter indicated on the curves calculated for a scattering cross section 
q equal to 0.1 m-1. The Poisson distribution will typically give a high probability for 
hitting a single object; however, the corresponding width is small, whereas the 
probability for hitting many objects is small but the distribution is broad.  
 An important quantity relating to these aspects is the mean free path R of the 
sound. This quantity is generally used to characterize the path that the sound is expected 
to travel between two reflections. For an empty rectangular room having a volume V and 
a total surface area of S, we may show that R is equal to 4V/S. Introducing scattering 
objects into the room (see Figure 4.21) we may, by using the probability function given 
by Equation (4.70), calculate the corresponding probability function of the free paths R 
and thereby the expected or mean value R . The outcome is that R is equal to 1/q.  

4.8 CALCULATION MODELS. EXAMPLES 

In the literature one will find reported a very large number of different models for 
predicting sound propagation in large rooms. A number of these are implemented in 
commercial computer software, e.g. CATT™, EASE™, EPIDAURE™ and ODEON™. 
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Most are developed for applications in performance rooms, i.e. for predicting the 
acoustics in rooms for speech and music. The trend is not only to give visual descriptions 
of the results but also to present the results by auralization. This implies that one may 
listen to music or speech “played” in a room at the design stage. This is accomplished by 
a process called convolution; the music or speech signal is convolved by the predicted 
impulse response belonging to a given source–receiver configuration. 
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Figure 4.21 Sketch illustrating the concept of mean free path. 

 
 
 It is outside the scope of this book to give an overview or a closer description of 
this software based on the principles outlined in section 4.6. We shall, however, give 
examples on some special models primarily developed to predict sound propagation in 
large factory halls etc. The computer models mentioned above may certainly also be 
applied to such rooms but the ones we shall present cover the most important quantities 
to be predicted for such rooms: the attenuation of sound as a function of distance and the 
reverberation time. These are the analytical image-source models of Jovicic (1979) and 
Lindqvist (1982) together with the ray-tracing model of Ondet and Barbry (1989), the 
last including scattering in a very ingenious manner.  

4.8.1 The model of Jovicic 

The aim is to find an expression for the sound pressure level as a function of distance 
from a source of a given sound power level, which implies finding how the level 
decreases analogous to the results shown in Figure 4.9, however, without the constraint 
that the dimensions of the room should be fairly equal. Jovicic’s models are confined to 
rooms of rectangular shapes, either “long” rooms, where one dimension is much larger 
than others (corridors etc.), or “flat” rooms, where two dimensions are much larger than 
the third one. We shall confine ourselves to the latter type, where the following 
assumptions are made: 

• The influence of the sidewalls are neglected. 
• The ceiling is treated as a plane surface like the floor. A serrated ceiling or 

ceilings with baffles etc. are treated as scattering objects. 
• The absorption factor used is the mean value for the floor and ceiling. 
• The sound source is placed midway between floor and ceiling. 
• The scattering objects, which may also be assigned an absorption factor, are 

randomly distributed in the room. 
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The total energy density at a receiving point at a given distance r from the source is 
assumed to be given by 
 tot d s ,w w w= +  (4.72) 
 
where wd is the contribution from the direct sound, i.e. the non-scattered part, and ws is 
the contribution from the phonons arriving at the receiver position after one or more 
collisions with the scattering objects. Without these scattering objects, wd will be given 
by Equation (4.63) but now we shall have to modify this expression by subtracting the 
part being scattered or attenuated in other ways than by specular reflections from the 
room boundaries. We shall start looking at the scattered sound. 

4.8.1.1 Scattered sound energy 

Starting from the probability density given in Equation (4.70), Kuttruff (1981) calculated 
the corresponding probability that a phonon after a time t should be at a distance r from 
the source. In an infinite space, this probability density will be given by 
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assuming that qc0t >> 1, which implies that the travelled distance c0t must be much larger 
than the mean free path R =1/q. It may also be mentioned that P is a solution of the so-
called diffusion equation used in fluid dynamics, which is 
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 (4.74) 

 
when setting the diffusion constant D equal to c0/(3q). The diffusion equation may e.g. 
describe how the concentration Q of a fluid, such as a dye, when injected into another 
fluid, changes with time. It should not be too difficult to envisage that this is a process 
quite analogous to how sound particles or phonons diffuse into a space containing 
scattering objects.  
 Jovicic assumes that the same probability P(r,t) applies to the phonons from the 
image sources as all scattering objects are mirrored in the boundary surfaces (floor and 
ceiling) as well. The predicted total probability applicable to the phonons sent out from 
the original source and the image sources is then given by 
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where h is the height of the room. Inside a small volume element, containing the 
receiving position at a distance r from the source, we shall find phonons emitted from the 
source (and the image sources) at different points in time, thereby having different 
probability P(r,t,h) of arriving at the chosen volume element. The shortest time of arrival 
will be r/c0 and the longest one will be infinity. 
 On their way, the phonons are losing their energy, partly by hitting the scattering 
objects having absorption factor αs, partly hitting the floor and ceiling having absorption 
factors αf and αc, respectively. In addition, we have the excess attenuation due to air 
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absorption characterized by the power attenuation coefficient m. All these attenuation 
processes may be assembled in a factor exp(–bc0t), where b is a total attenuation 
coefficient comprising all loss mechanisms.  
 Now, the idea is to assume that this attenuation takes place gradually along the 
whole path covered by a phonon. Thereby, we may assemble all the energy of phonons 
arriving by calculating the integral 
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An approximate solution to this integral, where e.g. the lowest limit is zero, is given by 
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where K0 is the modified Bessel function of zero order. The attenuation coefficient b may 
be expressed as 
 ( ) s, , .b b h q q mα α′ ′= + +  (4.78) 
 
The quantity , which expresses the attenuation due to the boundary surfaces is, as 
indicated, not only a function of the mean absorption exponent 

'b
( )ln 1α α′ = − − for these 

surfaces but is also a function of the ceiling height and the scattering cross section.  

4.8.1.2 “Direct” sound energy 

The expression giving the direct energy density caused by the source and its infinite 
number of images (see Equation (4.63)) may approximately be solved by letting this row 
of sources be represented by a line source. The following solution is obtained: 
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 where    

 2 with ln(1 )
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 0F ( ) sin( ) Ci( ) cos( ) Si( ) .
2

x x x x x π⎡ ⎤= ⋅ − −⎢ ⎥⎣ ⎦
 

 
The functions Ci and Si are the so-called cosine and sine integral function (see e.g. 
Abramowitz and Stegun (1970)). We have thereby arrived at a closed expression for the 
energy density in the direct field but without taking the scattered part into account. We 
shall have to correct it by the probability exp(–qc0t) that a phonon has not been scattered 
during the time t. Also taking the excess attenuation due to air absorption into account, 
we finally may express the direct (or the non-scattered) energy density by  
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Figure 4.22 The relative sound pressure level as a function of distance from a source in a “flat” room. 
Contributions from scattered and non-scattered sound according to a model of Jovicic (1979). The room is 5 
metres high.  
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4.8.1.3 Total energy density. Predicted results 

The total energy density at a given distance from the source is then given by Equation 
(4.72) with ws and wd expressed by the Equations (4.77) and (4.80). We shall present 
some examples on using this equation where we, as in section 4.5.1.4, shall depict the 
relative sound pressure level, the difference between the sound pressure level Lp and the 
source sound power level Lw, as a function of the source–receiver distance. Assuming 
that the sound field is an assembly of plane waves having an intensity w⋅c0, we arrive at 
the ordinate for these curves by calculating the quantity 10⋅lg(w⋅c0/W). 
 The room height is chosen equal to 5 metres in all predictions shown. Furthermore, 
for simplicity the air absorption is put equal to zero. Figure 4.22 shows the total relative 
sound pressure level together with the separate contributions due to wd and ws for a room 
having a relatively small number of scattering objects; q is chosen equal to 0.025 m-1. At 
large distances from the source, however, the level is still determined by the scattered 
field. For the sake of comparison, we have added a line representing the free field 
“distance law” for a monopole source, a 6 dB decrease per doubling of the distance. It 
should be obvious that one cannot apply any kind of “distance law”, i.e. a constant 
number of decibels per distance doubling, in such rooms. 
 The next two figures show the total relative sound pressure level only but with 
different values for the absorption factor of the ceiling (see Figure 4.23) and in the mean 
scattering cross section q (see Figure 4.24). It should be noted that, even if the absorption 
exponents are entering into the equations above, the absorption factors α are used as 
input data when calculating the results.  
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Figure 4.23 The relative sound pressure level as a function of distance from a source in a “flat” room. The room 
is 5 metres high. The parameter on the curves is the absorption factor α for the ceiling.    
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Figure 4.24 The relative sound pressure level as a function of distance from a source in a “flat” room. The room 
is 5 metres high. The parameter on the curves is the scattering cross section q (m-1).  
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4.8.1.4 Reverberation time 

Another effect to be observed in large rooms containing a large quantity of scattering 
objects is that the reverberation time is no longer a global quantity, but may vary 
systematically with the distance between source and receiver. This effect was observed 
by Jovicic (1971) by measurements in large industrial halls and confirmed theoretically 
by Vigran (1978) starting out from Jovicic’s expressions given above.  
 The build-up of the scattered energy density in the room is given by Equation 
(4.76) As the build-up and the corresponding decay of sound energy are complimentary 
processes we may express the scattered energy density wrev during decay as 
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Assuming that the mean scattering cross section q is relatively large, the scattered energy 
will dominate except when near to the source. In such a case we may use this equation 
directly to calculate the decay rate and thereby the reverberation time. A comparison 
between measured and predicted results is shown in Table 4.2. The reverberation time 
was measured by Jovicic (1971) in an industrial hall having a floor with dimensions 105 
x 105 metres and a ceiling height of 11.5 metres. Measurements were performed in 
octave bands in the frequency range 125–4000 Hz at distances between source and 
receiver of 20 and 80 metre, respectively. The attenuation coefficient is given as a mean 
value, b equal to 1.22 m-1, for this frequency range, and the mean scattering cross section 
q is stated to be 0.1 m-1. The values in the table are average values for this frequency 
range and as seen, the fit between measured and predicted values are surprisingly good. 
 
 
Table 4.2 Measured and predicted values for the mean reverberation time T at two different distances between 
source and receiver. Mean values for the frequency range 125–4000 Hz, in an industrial hall of volume 125 000 
m3.  
 

Distance r Measured T Predicted T 
(m) (s) (s) 
20 2.65 2.60 
80 3.12 3.30 

 

4.8.2 The model of Lindqvist 

Lindqvist (1982) developed this analytically based image-source model further by also 
taking the reflections from the sidewalls into account, in addition, allowing for a random 
positioning of the source and receiver. The shape of the room is, however, still limited to 
rectangular, certainly a natural limitation for this kind of model. Based on the work of 
Kuttruff (see above), the scattering model applied by Lindqvist is more detailed than the 
one used by Jovicic but the scattering objects still have to be stochastically distributed in 
the room. The difference in predicted results using these two models will certainly 
depend on the actual situation. For relatively large rooms having not too much in the way 
of scattering object the differences is assumed to be relatively small, probably in the 
range of 1–2 dB. 
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 In more recent time, the practical use of such analytical models is certainly reduced 
due to powerful computer simulations, either based on the ray-tracing or the image-
source technique. The purpose of bringing forward the above works is primarily to 
illustrate some of the fundamental principles behind this type of modelling. 

4.8.3 The model of Ondet and Barbry 

An interesting solution to the problem of including scattering object was given by Ondet 
and Barbry (1989), which was implemented in the computer program RAYSCAT 
(RAYCUB in a later version). This is not, as the models discussed above, an image-
source model but a ray-tracing one. Therefore, it does not impose any restrictions as to 
the shape of the room like the analytical models. The idea is to regard the areas of the 
room that contain scattering objects as zones having mean free paths depending on the 
density of these objects (see Figure 4.21). Each of these zones is allocated a certain mean 
free path kR R= , where the index k indicates the actual zone, whereas the areas without 
scattering object are allocated a mean free path .R = ∞ How is this idea compatible with 
a ray-tracing model where one certainly has to follow each ray around in the room? 
 Ondet and Barbry start by again using the Poisson distribution given by Equation 
(4.70), and they show that the paths lengths Ri covered between each hit have a 
probability density distribution given by 
 

  (4.82) ( ) e ,qRP R q −= ⋅
 
which gives an expected value { }E R R q= = 1/ . Furthermore, one may generate these 
random distances Ri by using random numbers ai between zero and one, thereafter 
inserting these numbers into the following expression: 
 
 ln( ).iR R a= − ⋅ i  (4.83) 
 
The procedure is then as follows: One follows each ray in the normal manner until it 
crosses the border of a zone defined to contain scattering objects and thereby allocated a 
certain mean free path. A path length R1 is then computed according to Equation (4.83) 
by drawing a random number a1. This implies that it hits a scattering object after 
covering the distance R1, thereafter directed in a random direction with a new random 
path length R2. It may then hit another object within this zone or maybe escape from this 
zone. 
 A good fit between measured and predicted results is obtained by applying this 
procedure, both by Ondet and Barbry (1988) and others (see e.g. Vermeir (1992)). The 
computing time may, however, be quite long for rooms having complicated shapes, many 
zones with scattering objects of high density.  
 Later, other models have been developed (see e.g. Dance and Shield (1997)), 
limiting the room shape to rectangular where one may easily implement an image-source 
model, however, trying to keep the most important concepts from the Ondet–Barbry 
model; i.e. the subdivision of the room into zones containing scattering objects, the 
placement of absorbing element and barriers etc. The program CISM by Dance and 
Shield gives shorter computing times but at the expense of accuracy. It is not able to 
represent scattering in the same manner as the models treated above, which decreases the 
accuracy in areas far from the nearest source.          
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CHAPTER 5 
 

Sound absorbers 
 

5.1 INTRODUCTION 

In the preceding chapter on room acoustics, we presupposed that an absorption factor 
and an accompanying equivalent absorption area could characterize the relevant sound 
absorbing surfaces. We did not, however, consider the kind of material parameters 
determining these quantities. Here we shall aim at giving a theoretical basis for the 
functioning of so-called acoustic materials; sound absorbing materials and constructions 
having their primary applications in controlling the acoustic conditions in rooms in 
buildings. This knowledge is in fact not only applicable in rooms but also for designing 
proper acoustic conditions in transport, e.g. for passengers and personnel in trains and 
buses and also for designing special devices for sound reduction, e.g. silencers for air-
conditioning units. We shall in this chapter also deal with measurement and prediction 
methods for acoustic absorption, including how one measures the material parameters 
that determine the absorption. 
 The functioning of absorbing materials is linked to the behaviour of sound waves at 
the interface between two media (see Chapter 3). When a sound wave hits such a 
boundary it will normally be diffracted; a part of the energy will be deflected in a 
direction different from that of the incidence wave. If the boundary surface is large 
compared with the wavelength one characterizes the process as reflection. If the opposite 
is true, the word scattering is used. In many cases, we shall also be interested in what is 
happening on the other side of the boundary, i.e. we shall be concerned with the energy 
transmitted through the boundary surface. As in Chapter 3, we shall limit the treatment to 
simple cases of reflection and we shall, furthermore, assume plane wave incidence. 
 With reference to the preceding chapter on room acoustics, we shall remind the 
reader that the primary task of acoustic absorbers placed in a room is to ensure that only 
a controlled part of the sound energy is reflected back into the room. Seen from inside 
the room we want the rest of the energy, originating from whatever source, to be 
absorbed, which normally means that the energy is transformed into heat. It should be 
pointed out that according to internationally accepted conventions we class all non-
reflected energy as absorbed energy. Seen from inside the room, an open window is a 
strongly absorbing surface even if no energy is dissipated in this surface, only 
transmitted out of the room. 
 The absorption factor of a given surface, defined by the ratio of the absorbed 
energy to the incident energy, may be determined by different measurement methods. For 
normal incidence the so-called Kundt’s tube or standing wave tube may be used. This 
technique has as its background the determination of the absorption factor by scanning 
the maximum and minimum values of the standing wave set up in the tube. This classical 
method is considered to be a little outdated compared to methods based on modern signal 
analysis techniques. However, standing wave tube measurements are normally used for 
testing on small specimens, usually in development projects. Large-scale measurements 
for product data are normally performed in a laboratory reverberation room measuring 
the absorption factor by diffuse sound incidence, i.e. measuring the average value for all 
angles of incidence.  
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 A number of other methods, most of them non-standard, are also in use both in 
laboratories and in the field (in situ methods). Development of in situ methods usable for 
low frequencies is particularly challenging, specifically from a few hundred Hertz and 
downwards. 
 For development purposes it should certainly be an advantage to make a direct 
calculation of the absorption factor based on material data and geometry for the absorber. 
Reasonable accurate analytical methods exist for homogeneous materials with simple 
geometry (plane absorbers), but certainly dependent on the accuracy of the material 
parameters going into the models. 

5.2 MAIN CATEGORIES OF ABSORBER 

Commonly used acoustic absorbers (absorbing surfaces) may be divided into two main 
groups: 

a) Porous absorbers, e.g. mineral wool, plastic foams, fabric etc. 
b) Resonator absorbers, either membrane or absorbers based on the Helmholtz 

resonator principle. 
 

 Basic forms of absorbers used in practice are depicted in Figure 5.1. Porous 
materials are often placed directly on to a hard surface or with a cavity behind to increase 
the absorption at low frequencies (see a) and b)). Membrane absorbers, depicted in c), 
may be a thin panel (or foil) of metal or hardboard, again placed at a certain distance 
from a hard surface. For a resonance absorber of the Helmholtz type, shown in d), the 
panel is perforated is various ways, normally by holes or slits. Combinations of the 
abovementioned types are also generally found. 
 When designing for proper acoustic conditions in a given room, one should be 
aware of other mechanisms present and capable of absorbing sound energy. In a room 
having lightweight wall constructions one may unintentionally induce plate vibrations by 
the sound field. This vibration energy may partly be dissipated in the plates themselves 
and partly radiated to a neighbouring room. With the latter mechanism the energy is also 
absorbed (non-reflected) as seen from the primary room. Thermal and viscous effects 
also add to the loss of acoustic energy in the room. These effects are contained in a 
“classical” part of the expression for the attenuation coefficient. More important, 
however, is the relaxation or hysteretic phenomena. Depending on the moisture content 
of the air in the room one may observe that these phenomena dominate the acoustic 
energy losses at the higher frequencies (in the kHz range). This type of air absorption has 
already been treated in the preceding Chapter 4 (see section 4.5.1.3). 

5.2.1 Porous materials 

Well-known porous materials are products of mineral fibres and plastic foams. 
Commonly used are blankets of mineral “wool”, either glass or stone wool. These have 
fibres with a diameter in the range 2–20μ, commonly 4–10μ. Due to the manufacturing 
process the fibres will be distributed anisotropically. They will be randomly distributed 
in a plane parallel to the outer surface of the blanket but there will be few fibres oriented 
normally to this plane. One will find the mineral fibre products of the type “elastic” 
blankets as well as compressed into stiff boards, the latter normally used in suspended 
ceilings.  
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 Plastic fibres products, e.g. polyester fibres materials, are also becoming popular 
for sound absorption. The diameter of the fibres in these products is normally larger than 
for the mineral wool products, being of the order 20–50μ. The aforementioned 
anisotropy also applies to these products. Other types of porous materials are also 
commercially available. Products comprise glass and metals in a sintered form. One may 
also find aluminium expanded as foam but to be effective as an absorber the pores must 
be interconnected. There also exist products using fibres of aluminium compressed into 
sheets of thickness 2–5 mm. These are intended for suspended ceilings.  
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Figure 5.1 Basic types of acoustic absorber. 

5.2.2 Membrane absorbers 

By definition, a membrane shall have no stiffness but thin metal sheets are usually 
included when talking of membrane absorbers. The prerequisites for obtaining a 
reasonably high absorption factor are low surface weight and high internal losses in the 
membrane (plate) material. Aluminium or steel panels having a thickness of 0.5–1.0 mm 
mounted at a certain distance from a hard wall or ceiling normally absorbs in a limited 
frequency range only, having a statistical absorption factor α usually less than 0.5–0.6. 
By using thin sheets of plastic materials instead of metal much better performance may 
be achieved.  

5.2.3 Helmholtz resonators using perforated plates 

Helmholtz resonator absorbers are based on the principle that the air in the holes (or 
slots) of the plate represents a mass and that the air volume of the cavity behind the plate 
represents the spring stiffness in an equivalent oscillator, i.e. a simple mass-spring 
system. To absorb or dissipate acoustic energy one certainly must include a resistive 
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component, which traditionally has been accomplished by filling the cavity behind the 
plate partly or wholly with a porous absorber as seen from Figure 5.2 a). It is not 
necessary, however, to fill the cavity wholly or partly to achieve high absorption. An 
adjustment of the resistance may be achieved by gluing a thin fabric to the plate (see b)). 
Such products are commercially available using panels of steel, aluminium, plaster and 
wood. A combination of fabric and a porous blanket in the cavity is sometimes used to 
achieve an even higher absorption.  
 Resonator absorbers with perforated plates or foils having holes of diameter less 
than 0.5 mm are commonly referred to as microperforated absorbers (MPA) (see c)). In 
this case the viscous losses in the holes give the necessary resistance without the use of 
any additional fabric. Instead of using perforations with holes, thin slits are an 
alternative. Commercial products are available made of steel, aluminium and plastics.  
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Figure 5.2 Resonator panels based on Helmholtz type. 

5.3 MEASUREMENT METHODS FOR ABSORPTION AND IMPEDANCE 

The absorption factor, the ratio of the absorbed and the incident acoustic energy, is 
determined by different methods according to the type of incident wave field. For 
measurements on small specimens, i.e. where the typical dimensions are smaller than the 
wavelength, the standing wave tube, also called the Kundt’s tube, is used. The absorption 
factor for normal incidence is determined by measuring the maximum and minimum 
pressure amplitude in the standing wave set up in the tube by a loudspeaker. This basic 
technique is, as mentioned in the introduction, considered a little outdated in comparison 
with more modern methods based on transfer function measurements. It may then seem a 
little odd that this classical technique was implemented relatively late (1993) in an 
international standard, ISO 10534–1, after being used for at least 50 years. Commercial 
equipment has also been available for many decades. However, there exists a second part 
of the mentioned standard, ISO 10534–2, based on using broadband signals and 
measurement of the pressure transfer function between different positions in the tube.  
 The results from measurements of absorption factor and acoustic impedance, using 
the standing wave method, obviously are meaningful only when assuming these to be 
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independent of the size of the specimen, which is normally quite small. The homogeneity 
of the material is therefore an important factor. If we wish to extrapolate the results to 
larger areas and other angles of incidence we also need to know whether we may assume 
that the material is locally reacting or not, which means whether or not we expect that the 
impedance is a function of the angle of incidence. 
 Traditionally, measurement of the absorption factor of larger specimens is 
performed in a reverberation room. One then determines the average value over all 
angles of incidence under diffuse field conditions. The product data normally supplied by 
producers of absorbers are determined according to the international standard ISO 354, 
which specifies measurement conditions for reverberation room testing. The area 
required for measurement is 10–12 square metres and there are requirements as to shape 
of the area. The reason for these requirements is that the absorption factor determined by 
this method always includes an additional amount due to the edge effect, which is a 
diffraction phenomenon along the edges of the specimen. This effect makes the specimen 
acoustically larger the geometric area, which may result in obtaining absorption factors 
larger than 1.0. Certainly, this does not imply that the energy absorbed is larger than the 
incident energy (!).        
 In the literature one may find a number of laboratory measurement methods for 
determining absorption factors as a function of incidence angle, applying relatively large 
specimens. None of these is yet standardized. There have recently been efforts put into 
the development of similar in situ techniques, i.e. methods for measurements of 
absorption and impedance both inside buildings and outside. These methods are mainly 
based on the same principle as used in ISO 10534–2, which implies the specified two-
microphone method is extended to spherical wave fields. References to most of these 
methods may be found in Dutilleux et al. (2001). We shall not treat them here any further 
apart from one suggested by Mommertz (1995). 
 This method determines the reflection factor for a surface based on using a single 
microphone placed near to the surface of the specimen. The idea is to use MLS signals in 
a subtraction technique; the impulse response measured placing the microphone in a free 
field is subtracted from the impulse response measured near to the surface. Doing this, 
one is left with a signal representing the reflection. One obvious prerequisite is that the 
configuration (loudspeaker source and microphone) is identical in both impulse response 
measurements. With certain modifications this method is implemented in an ISO 
standard for determining absorption factors for road surfaces (see ISO 13472–1). Later 
efforts have been to make a reference measurement near to a very hard surface, i.e. a 
totally reflecting surface, instead of a measurement in the free field. The swept sine 
technique (SS) may of course be just as applicable as using MLS signals.   
   

5.3.1 Classical standing wave tube method (ISO 10534–1) 

Using this method the specimen is placed at one end of a tube (see Figure 5.3). A 
loudspeaker is used to create a standing wave field in the tube, a field that is detected by 
a probe microphone. To fulfil the requirement having only plane wave propagation in the 
tube, the linear dimension of the cross section must be less than the wavelength. More 
specifically, the frequency range of the measurements extends upwards to the frequency 
of the first cross mode of the tube, which for tubes of circular cross-section will 
approximately be given by 0.586⋅c/D, where c is the speed of sound and D the diameter 
of the tube. For a 10 cm diameter tube this frequency will be approximately 2000 Hz. 
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 As derived in Chapter 3 (section 3.5.1.1), the RMS-value of the sound pressure at a 
given frequency may be expressed as 
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where Rp is the pressure reflection factor having phase angle δ.  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.3 Sketch of the set-up for the “classical” standing wave tube measurement method. 
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 From the ratio of the maximum and the minimum sound pressure amplitudes, these 
amplitudes are given by 
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we may then determine the modulus of the pressure reflection factor Rp. The phase angle 
δ is determined by the position of the first minimum pressure close to the specimen. (Can 
you set up the expression for this phase angle using Equation (5.1)?). From these data 
both the input impedance Zg and the absorption factor α are determined from the 
equations 

 g 0 0 0
1 1
1 1

p

p p

R R
Z c Z

R R
ρ p+ +

= =
− −

 (5.3) 

and 

 

g

0
2

g g

0 0

.

4Re

2Re 1

Z
Z

Z Z
Z Z

α

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭=
⎧ ⎫⎪ ⎪+ +⎨ ⎬
⎪ ⎪⎩ ⎭

 (5.4) 

          
A sketch of the sound pressure level, given by the expression  
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and exhibiting alternating maxima and minima,  is shown in Figure 5.4. It should be 
noted that the equations above does not take into account any possible energy losses in 
the medium in front of the specimen. The figure, which is reproduced from the standard, 
gives however a much too exaggerated picture of how the ratio of the maximum and 
minimum varies along the tube. Obviously, the point here is to make one aware of this 
effect, which certainly must be observed when performing accurate measurements. 
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 Figure 5.4 Standing wave pattern in the test tube. 
 

5.3.2 Standing wave tube. Method using transfer function (ISO 10534–2)  

The classical method is based on measurements on a standing wave having just one 
frequency component. We may obtain the same results by representing the sound 
pressure and particle velocity as simple functions of time. We can use an arbitrary time 
function to set up a sound field in the tube and then use the Fourier transform to revert to 
the frequency domain. As an example, we may represent the pressure reflection factor at 
an arbitrary position x in the tube as being the transfer function having the pressure pi in 
the incident plane wave as the input variable and the pressure pr in the reflected wave as 
the output variable:  
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where F symbolizes the Fourier transform. The basic idea is to express the relationship 
between the wave components at two (or more) positions along the tube. Doing this it 
may be shown that we are able to make separate estimates of the intensity in the incident 
and the reflected wave. In fact, to determine the variables we shall be interested in, it is 
sufficient to measure one single transfer function, namely between the total pressure in 
two positions. Using Figure 5.5 as a starting point, we shall give a short description of 
the procedure. At two positions, having coordinates x1 and x2, we define  
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and a transfer function H12 for the total pressure in these two positions: 
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Figure 5.5 Wave components in a standing wave tube. 

 
 
 Correspondingly, for the pressure in the incident and reflected wave, respectively, 
we may define transfer functions 
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From Equations (5.6) to (5.8) we get by eliminating R(x2,f): 
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We have assumed plane wave propagation only and we may then write 
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where k12 and k21 are wave numbers for the incident and reflected wave, respectively. 
Furthermore, assuming no energy losses in the tube between these two positions, we may 
write k12 = k21 = k0 and Equation (5.9) will become 
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where d = x2 - x1. This is the basic equation when using this two-microphone method to 
determine reflection factor, impedance and intensity. 
 Implementing this method to determine the reflection factor and impedance implies 
that the probe microphone in the classical method is substituted by two pressure 
microphones separated by a given distance d (see Figure 5.6). Here the distance from the 
microphone no. 1 (closest to the loudspeaker) to the surface of the specimen is denoted l. 
Feeding the loudspeaker with a broadband signal; the total pressure transfer function H12 
between the positions 1 and 2 is determined. Again assuming that there are no energy 
losses in the tube we may transform the reflection factor, according to Equation (5.11), to 
the position of the surface of the specimen. We then get 
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Figure 5.6 Impedance measurement set-up using a two-microphone method. 

 
 
 Knowing the refection factor we may easily calculate the input impedance of the 
specimen by inserting Equation (5.12) into Equation (5.3). After some algebra we get 
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We shall present some measurement results below using this method (see e.g. Figures 
5.15 and 5.26). 
 Lastly, it should be mentioned that determining the basic transfer function H12 
several types of broadband signals are in use; stochastic noise, MLS signals and swept 
sine (SS) signals. There is also the possibility of using just one microphone moved 
between positions assuming that the signal is reproducible. No calibration to account for 
the mismatch between microphones is then necessary. 

5.3.3 Reverberation room method (ISO 354) 

Product data specifying the absorption capability of materials are normally determined 
by measurements in a diffuse field using the so-called reverberation room method. The 
specifications applying to this method are found in the international standard ISO 354. 
We have already discussed the method in connection with the diffuse field theory for 
rooms (see section 4.5.1.2). We shall therefore just briefly repeat the basic principle. It is 
based on the Sabine formula for the reverberation time in a room: 
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where V is the volume of the room and A is the total equivalent absorption area. The total 
absorption area has, as is apparent from last expression, contributions AS from the 
surfaces and objects in the room together with the air absorption, the latter specified by 
the power attenuation coefficient m.  
 The determination of the absorption factor is performed by measurements of the 
reverberation time before and after the specimen(s) is introduced into the room. 
Assuming the specimen to be a plane object having a total surface S (10–12 m2), the 
absorption factor is expressed as 
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where T and T0 are the reverberation times in the room with and without the specimen, 
respectively. We have assumed that the environmental conditions are the same in both 
measurements and furthermore; we have neglected the absorption of the room surface 
being covered by the specimen, assuming this to be a hard surface of concrete having 
negligible total absorption. However, diffraction effects, denoted earlier on as edge 
effects, will often result in obtaining absorption factors in excess of 1.0. This 
phenomenon will be treated in more detail below (see section 5.5.3.2). For further details 
concerning this method the reader should consult the standard.  

5.4 MODELLING SOUND ABSORBERS  

Section 5.2 gave an overview of the main types of absorber being used in practice. These 
could roughly be divided into two groups: one based on the principle of viscous losses in 
a porous medium and the other utilizing a resonance principle. There is, however, no 
clear boundary between the two types. In practice, a given product may combine these 
two principles and the term used when specifying the absorber may follow the most 
dominant feature.  
 There are several design tools available, certainly of different complexity.  Simple 
modelling based on lumped elements may often be sufficient, a modelling analogous to 
the one used when treating mechanical systems in Chapter 2 (section 2.5.1). An assembly 
of elements makes up the actual acoustical system, elements having their analogues in an 
equivalent mechanical or electrical system. For the latter, in particular, there are a 
substantial number of computer programs that may be applied for calculation on the 
analogous acoustical system. One should, however, be warned not to work beyond the 
range of validity. Acoustical systems imply wave motion, i.e. using lumped element 
models presupposes that the dimensions of the elements must always be less than the 
wavelength. Below, we shall give an example on such a modelling technique using a 
very simple acoustical system called a Helmholtz resonator.  
 A step further in modelling acoustical systems, allowing wave motion in one 
direction, is by using the transfer matrix method. In the analogous electrical system this 
is denoted four-pole theory. The method presupposes that we are able to set up a matrix 
that describes the relationship between the acoustical quantities on the input and output 
side of each element in the system. The matrices, representing all the elements in the 
actual acoustical system, may then be combined to calculate the sought-after quantities. 
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Examples will be given in section 5.7 where we shall include matrices representing 
porous materials based on models treated in section 5.5. 
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Figure 5.7 Analogue components in acoustic, electrical and mechanical systems. 

5.4.1  Simple analogues 

Figure 5.7 shows one of the simple analogies one may use for the relationship between 
acoustical, electrical and mechanical systems, the so-called impedance analogy. This 
implies that that the sound pressure in the acoustical system is equal to a voltage in the 
electrical system and to a force in the mechanical system. Correspondingly, an acoustical 
particle velocity (or volume velocity) will be a current and a vibration velocity. The 
relationship between acoustic impedance, specific acoustic impedance and mechanical 
impedance will then be: 

 s mec
a 2 ,

Z ZpZ
v S S S

= = =
⋅

 (5.16) 

where S is an area (m2). 
 As mentioned above, we shall start with a very simple acoustical system, the 
Helmholtz resonator, to illustrate the use of such analogies. In its simplest form, this may 
be considered as a harmonic oscillator; mechanically speaking it is a simple mass-spring 
system. The mass will be an oscillating air column in a tube (or in a slot) being driven by 
the sound pressure, this mass is coupled to a spring represented by a closed volume of air 
(see Figure 5.8 a)). We then have to find the spring stiffness, the mass and the damping 
coefficient, expressed by acoustical quantities, to calculate the resonance frequency and 
the energy dissipation. 

5.4.1.1 The stiffness of a closed volume 
We may find the mechanical stiffness of a closed volume by using the equation P⋅V γ = 
constant, giving the relationship between pressure and volume under adiabatic 
conditions. However, it may be more appropriate from an acoustical viewpoint to use the 
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acoustical equations derived previously. We shall use both approaches, starting with a 
resonator where the air volume are compressed by a small piston in the neck being driven 
by a alternating force F as sketched in Figure 5.8 b).  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                   

Piston, area S

F
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Volume V

Incident wave

d

a)                                     b)

Volume V

 
Figure 5.8 A simple Helmholtz resonator driven by a) a sound wave.  b) a mechanical force.       

 
 
 By differentiating the adiabatic equation of state, we get 
 

 d d 0.P V
P V

γ+ =  (5.17) 

 
In this equation we may consider the differential dP as the equivalent sound pressure p = 
F/S and the pressure P as the ambient pressure P0. If the force is giving the piston a 
displacement Δx we get 
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and the mechanical stiffness kmec will then be 
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We have introduced the sound (phase) speed c0 in the last equation. Considering the 
relationship in Equations (5.16), the corresponding acoustical stiffness will be equal to 
ρ0c0

2/V.  We may now show by calculating the acoustical impedance in a tube closed at 
one end, as depicted in Figure 5.9, that we get the same result in the low frequency limit, 
i.e. when making the dimensions smaller than the wavelength. We shall use the equations 
in Chapter 3 (section 3.5.1), which gives us the acoustic impedance at a distance d from 
the reflecting closed end as 
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As we assume that the closed end is totally reflecting, the sound pressure amplitudes in 
the two partial waves must be equal. This gives us 
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Making the approximation kd << 1 we see that the result is the same as derived above. 
The equivalent acoustical stiffness is again ρ0c0

2/V. 
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Figure 5.9 Plane waves in a tube. The tube is terminated by a totally reflecting surface. 
 

5.4.1.2 The acoustic mass in a tube 
Using a similar procedure, as when deducing the stiffness, we shall find an expression 
for the equivalent mass by calculating the acoustical impedance at a distance d from a 
pressure release surface, i.e. the pressure at the surface is zero as opposed to the above 
setting the particle velocity equal to zero. The same procedure that gave us Equation 
(5.21) will now give 
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The equivalent acoustical mass is therefore ρ0d/S. We are now in a position to calculate 
the resonance frequency of a resonator having a volume V and a “neck” of length d with 
a cross sectional area of S. We get:  
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For a more accurate calculation we must take into account that the effective oscillating 
mass  is larger than the one contained in the neck. We have to add the so-called end 
correction. Furthermore, making use of the resonator requires information on the energy 
losses of the system. We shall treat the latter item first. 
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5.4.1.3 Acoustical resistance 
To calculate energy losses due to viscous forces, we have to modify the simple equation 
of force, the Euler equation, to include the effects of such forces. The linearized Navier-
Stokes equation of force may be written as 
 

 0
4 ( )
3

p
t

ρ μ μ∂
∇ = − + ∇ ∇⋅ − ∇×∇×

∂
v v ,v  (5.24) 

 
where we now have got two additional terms both containing the coefficient of viscosity 
μ. This coefficient is approximately equal to 2⋅10-5 kg/(m⋅s) for air. 
 To carry out calculations on absorbers where perforated plates are an element, we 
shall have to predict the inherent viscous losses by sound propagation through 
perforations such as holes or slits. For the former and also for calculation on the single 
Helmholtz resonator in the next section, we shall start looking at thin tubes of circular 
cross section and calculate the sound propagation in the axis direction, again assuming 
harmonic time dependence. The equation of force may then be simplified to 
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The variable vx is the component of the particle velocity in the axial direction, and r the 
radius vector (cylindrical coordinates). Assuming that the velocity is zero at the tube 
walls, i.e. when r is equal to the radius a, the solution to the equation is (see Allard 
(1993)) 
 

 0 0

0 0

J ( ) j1 1 , where
j J ( )x

qrpv q
x qa

.ωρ
ωρ μ

⎛ ⎞ −∂
= − − =⎜ ⎟∂ ⎝ ⎠

 (5.26) 

 
The symbol J0 indicates a Bessel function of the first kind and zero order. From this 
equation we may now calculate the mean particle velocity in a cross section of the tube. 
We get 
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where 
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We may rewrite this expression as 
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where ρ is the effective density of the air in the tube, given by 
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Assuming that the length d of the tube in question is much shorter than the wavelength 
we may express the specific acoustic impedance as 
 

 
( )
( )

1

1
s 0

0

J j2j 1
j J jx

spZ d
v s s

ωρ .

−
⎛ ⎞−Δ ⎜= = −
⎜ − −⎝ ⎠

⎟
⎟

 (5.31) 

 
At low frequencies, setting s in Equation (5.28) less than ≈ 2.0, a very good 
approximation for the term enclosed in the parenthesis is 4/3 - j⋅8/s2, which gives  
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or expressed by the acoustic impedance 
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The viscosity then gives us two effects. First, we get a resistive part being analogous to 
the mechanical damping coefficient, and we shall note the relationship with a quantity to 
be introduced later, the airflow resistance. This is a very important material parameter 
for all porous media. Using the definitions found in the international measurement 
standard, ISO 9053, which is treated further in section 5.6.1, the quantity 8μ/a2 will be 
the flow resistivity of the tube, having symbol r and dimension Pa⋅s/m2. Second, the 
viscosity also affects the mass term in the expression for the impedance. We get an 
increase of one-third compared with our earlier calculations (see Equation (5.22)).  
 For a panel, either a slatted one, i.e. an assemblage of parallel beams, or perforated 
by thin slits, we shall need an expression for the equivalent viscous losses in a single 
long slit (see Figure 5.10). We shall assume that the input pressure is the same along the 
whole length of the slit, the length being long in comparison with the wavelength. 
Furthermore, the pressure p in the slit varies only in the x-direction, and the velocity in 
this direction is only dependent on the z-coordinate. It may be shown (see e.g. Vigran 
and Pettersen (2005)), that the effective density of the air in the slit of width b may be 
written 
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For an (infinitely) long slit in a plate of thickness d the specific impedance will then be 
 

 



170 Building acoustics 

 

1

0

tan( )
2j = j 1

2

s

k b

Z d d k bρω ρ ω .

−′⎛ ⎞
⎜ ⎟

= −⎜ ′⎜ ⎟
⎝ ⎠

⎟  (5.35) 

 

d

b

z

x
y

 
Figure 5.10 A single slit of width b in a plate of thickness d. 

 
 
 Using a series expansion in the angular frequency ω, the first three terms will be 
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where the constant term in the real part corresponds to the value 8μ/a2 found above for 
cylindrical tubes with radius a. We may also observe, looking at the imaginary part, that 
the viscosity again results in an added mass for the air in the slit. 

5.4.1.4 The Helmholtz resonator. An example using analogies 

A complete model for a Helmholtz resonator embedded in a hard wall, as depicted in 
Figure 5.8, must include all types of energy losses. The “natural” losses are represented 
by two components: the one caused by the viscous losses and the other due to the 
reradiated sound energy. Certainly, without the viscous losses the resonator will not act 
as an absorber! In designing for good room acoustics conditions it was noted that 
diffusers might be just as important as absorbers. In this connection, Helmholtz 
resonators are useful, contributing to the diffuse sound by partly reradiating the sound 
energy. 
 There will also be contributions to the viscous losses from the surfaces around the 
resonator neck but we shall neglect these for the moment. On the other hand, we shall 
have to find an expression for the acoustic impedance describing the sound radiation 
from the tube opening. Here we may make use of the formerly derived radiation 
impedance for a circular piston placed in an infinite baffle (see section 3.4.4). We then 
have to envisage that the air column in the neck moves like a rigid piston. Using a low 
frequency approximation for the radiation impedance expressed by its equivalent 
acoustic impedance, we get 
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where S and a are the piston radius and area, respectively. The imaginary part of the 
impedance is cast into this form to make a comparison with Equation (5.22). It is easily 
seen that it gives an added mass equivalent to an increase Δd = 8a/3π ≈ 0.85⋅a in the 
length of the neck. It is commonly assumed that the same correction may be applied to 
both ends of the neck, thereby setting the effective length of the neck to 
be . This so-called end correction will certainly depend on the actual cross 
sectional shape being different for noncircular openings, for slits etc. Data for these other 
shapes are listed in the literature. An important case in practice is long and narrow slits 
and we shall therefore include this case (see below). 

' 1.7d d a= + ⋅

 How good is a single Helmholtz resonator when it comes to absorption? To arrive 
at the maximum absorption we have to adjust the system to make the two resistive terms, 
given by the Equations (5.33) and (5.37), equal at the resonance frequency. Doing this, 
the effective absorption area of the resonator opening will be given by 
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where λ0 is the wavelength at resonance. The effective absorption area is therefore much 
larger than the physical size of the opening. However, the resonator will have a small 
bandwidth, e.g. the relative bandwidth Δf /f0 could be as small as 0.01, which implies a Q 
factor as high as 100. In practice, one normally designs for a more broadband absorber 
by adding some resistance in the opening, which may be in the form of a porous material, 
a metal grid etc. To retain the absorption area one has to increase the volume of the 
resonator, which again means that the opening has to be adjusted to maintain the chosen 
resonance frequency. 

5.4.1.5 Distributed Helmholtz resonators 

Single Helmholtz resonators are used in many practical cases where the task is to remove 
single frequencies. More commonly used are the types that we may name distributed 
Helmholtz resonators, which we referred to in the introduction (see section 5.2.3). These 
are absorbers using perforated panels, perhaps in the form of slats, mounted at a certain 
distance  from a hard wall or ceiling. To each opening (see Figure 5.11 a)), or to each 
slit, (see Figure 5.11 b)), we then allocate a part of the cavity volume that is used when 
calculating the resonance frequency by Equation (5.23). We then get 
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where ε is the perforation or the “porosity” of the panel. The distance  is here assumed 
to be much less than the wavelength. It should also be noted that for the assumption of a 
locally reacting absorber to be valid, the cavity volume has to be subdivided to minimize 
lateral wave propagation. 
 In the same way as for a single resonator one must introduce some resistance in 
addition to the natural viscous losses to obtain an absorber for practical use. One will 
certainly also have some additional viscous losses due to the air movements on the panel 
surfaces around the holes or slits but this is normally not enough. The exceptions to this 

 



172 Building acoustics 

situation, which was mentioned in section 5.2.3, are when using the so-called micro-
perforated panels, panels where the perforations with holes or slits have a typical linear 
dimension less than 0.5 mm.  
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Figure 5.11 Distributed Helmholtz resonators. a) panel perforated by holes and backed by a cavity.  b) slatted 
panel backed by a cavity.  
 
   
 It was also pointed out that one normally adjusted the resistance by filling, partly or 
wholly, the void behind the panel with a porous material, commonly mineral wool, or by 
gluing a thin fabric on to the backside of the panel. This was shown in Figure 5.2. There 
are several points to be noted concerning these solutions. The simple model used above 
is not valid when filling the void, wholly or partly, by a porous material. The model 
presupposes an empty air space and filling it modifies the resonance frequency calculated 
using Equation (5.39). The actual frequency will normally be lower. Furthermore, the 
particle velocity in the openings will be inversely proportional to the rate of perforation. 
We must take account of this when adjusting the resistance of the system. Using for 
example a porous material with a flow resistivity r and if we shall need a total flow 
resistance of R (Pa⋅s/m), this means that the thickness of the material required is R⋅ε /r. 
 Figure 5.12 shows an example of calculated absorption factors at normal incidence 
for a distributed resonator of the type shown in Figure 5.11 a). The plate (panel) has a 
thickness of 1 mm and placed against a cavity having a depth of 100 mm. The plate is 
perforated with holes having a diameter of 3 mm and the area allotted to each hole is 100 
mm2, i.e. the perforation rate is approximately 7%. The lowest curve gives the result 
without any porous layer or fabric at the back of the plate, with the others a porous layer 
is added having the indicated total resistance. The calculations do not presuppose that the 
depth of the cavity is less than the wavelength. This means that, in addition to the broad 
peak around the resonance frequency according to Equation (5.39), we will see the effect 
of the standing waves in the cavity at higher frequencies. 
 A further example is given in Figure 5.13, showing measured results from a 
standard reverberation room test on a distributed resonator of the type discussed above. 
The panels, placed against a cavity of depth 50 mm, are measured having only a fabric of 
flow resistance 190 Pa·s/m glued to them as well as combined with the cavity filled with 
a high density porous material, rock wool 70 kg/m3.   
 Furthermore, the rather thick panel of 14 mm allows the holes, normally cylindrical 
of diameter 8 mm, to have a conical shape (see insert to the figure), which may greatly 
enhance the absorption of this type of resonator absorbers (see Vigran (2004)). As seen 
from the results, filling the cavity completely with a porous absorber improves the low 
frequency absorption. However, by changing the shape of the perforations only, an 
amazing added improvement is attained.  
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Figure 5.12 Absorption factor at normal incidence. Hole-perforated plate backed by a cavity of depth 100 mm. 
For further specifications, see text.  
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Figure 5.13 Absorption factor measured in a reverberation chamber. 14 mm perforated panel, perforation rate 
12%, with a layer of fabric backed by a cavity of depth 50 mm. Curve no. 1 – cylindrical holes, empty cavity. 
Curve no. 2 – cylindrical holes, cavity filled with mineral wool. Curve no. 3 – conical holes, cavity filled with 
mineral wool. 
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           As mentioned several times already, it is possible to obtain a sufficiently high 
resistance just by making the holes or slits small enough, which means a dimension of 
less than 0.5 mm. Traditionally, the hole-perforated models have been called micro-
perforated absorbers or MPA due to the fact that these were the first on the market. 
However, as the same effect may be achieved by other shapes of perforations the term 
MPA comprises a larger range of products. We shall give two examples of data for such 
products, the first is 0.6 mm thick steel panels perforated by circular holes having 
diameter of 0.46 mm placed with a c-c distance of 5 mm. This corresponds to a rate of 
perforation of approximately 0.7%. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
 
 

Figure 5.14 Absorption factor of microperforated plates (Gema Ultramicro® suspended 200 mm from a hard 
surface). Dotted curve – measured in a reverberation room. Solid curve – predicted.    
 
 
 Measured results, i.e. product data from the producer, are obtained in a standard 
reverberation room test, here with a cavity depth of 200 mm. These one-third-octave 
band data are shown in Figure 5.14 together with a prediction using the same type of 
calculation method as shown in Figure 5.12. Here, however, we have calculated a mean 
value over all incidence angles to compare with the diffuse field data from the 
reverberation room test. The prediction method for these absorption data is given in 
section 5.7. 
 Data allowing one to calculate the resonance frequency of resonator panels having 
perforations of other shapes than the circular holes may be found in the literature. We 
shall restrict ourselves to one important type, depicted in Figure 5.11 b). These absorbers 
are denoted “slatted panels”, if they are constructed from parallel slats; which implies 
that the panel thickness normally is 9–10 mm or more. However, products of this type 
are often thin metal panels perforated by long slots. In that case the notion “slotted 
panels” may be more appropriate.  As for the common slatted panels the width of the 
slots may be from some 5–10 mm upwards, which implies that a resistance fabric or 
porous material must be added. As for the calculation of resonance frequency, Equation 
(5.39) still applies but the end correction will be given by 
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The quantity b is the width of the slot, and ε is the rate of perforation b/C, where C is the 
c-c distance between the slots. Similarly to the use of conically shaped holes instead of 
the normal cylindrical ones to enhance the absorption, one will obtain the same effect 
using a slatted panel where the slots are wedge-shaped instead of using the normal 
rectangular slats. However, this necessitates another prediction model (see Vigran 
(2004)).  
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Figure 5.15 Absorption factor of resonance absorber.  Aluminium plate with micro-slits.  Measured and 
predicted results for normal incidence. The cavity depth d is indicated on the curves. Solid curves – measured. 
Dashed curves – predicted.  
  
 
 A recent development is using microperforations in the form of narrow slits of 
width of some tenth of a millimetre, again utilizing the “natural” viscous losses for 
obtaining the necessary resistance component (see section 5.4.1.3). We shall illustrate 
this by showing measured and predicted results where the measurements were performed 
in a standing wave tube. The tube had a square cross section with side length 200 mm, 
which limits the measurement range upwards to approximately 850 Hz. (Why is that ?)  
 A cross section of the plate used in shown in the insert to Figure 5.15. As indicated, 
the thickness of the aluminium plate used was 1.0 mm, and the slits made by laser were 
only 0.15 mm wide and 10 mm apart. Figure 5.15 shows measured and predicted results 
using a cavity depth of 50, 100 and 200 mm, respectively. As seen from the results, using 
a model based on Equations (5.36), (5.21) and (5.40), taking the perforation rate into 
account, predicts the general shape very well. However, this model presupposes that the 
plate itself does not move and cannot predict the excursions showing up in the frequency 
range 100–150 Hz, particularly pronounced at cavity depth 200 mm. These are due to 
mechanical resonances in the “bars” making up the plate.  
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5.4.1.6 Membrane absorbers 

These absorbers are, as the name suggests, ideally, an impervious membrane stretched at 
a certain distance from a hard surface making up an airtight cavity. In common speech 
the notion has a wider use, also including cases where one is not using membranes but 
stiff materials such as metal or plastics. This means one is using materials giving bending 
forces and bending displacements, not only tensional ones. Modelling these absorbers, 
taking the bending stiffness into account, is relatively complicated. We shall therefore 
give an approximate model where we assume that the bending stiffness is negligible in 
comparison with the stiffness of the cavity. This implies that we return to the ideal 
membrane case. Assuming normal sound incidence, the input impedance may be written 
as 
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where m is the mass per unit area of the membrane, and where Rm represents the 
resistance component in the system. By using the approximation shown in the last 
equation, where we assume that the depth of the cavity is small compared with the 
wavelength, we have returned to the simple mass-spring system having a resonance 
frequency f0 given by 

 
2

0 0 0
0

1 .
2 2

c
f

m m
ω ρ
π π

= = ≈
60  (5.42) 

 
In the approximation shown by the last term we have used ρ0 = 1.21 kg/m3 and c0 = 340 
m/s.            
 The absorption factor at resonance and the width of this resonance are certainly 
wholly dependent on the resistance. Estimating this quantity poses the real practical 
problem when designing membrane absorbers. Normally, thin metal panels are applied 
where the resistance is partly due to internal energy losses in the material itself, partly to 
frictional losses in the mechanical coupling between elements and partly to acoustic 
radiation. As pointed out above one also havs to take the possible influence of plate 
resonances into account, i.e. the eigenmodes of the single plates. This may give an 
absorption factor varying quite irregularly with frequency. This type of “membrane” 
absorber normally ends up having a badly adjusted resistance, which seldom gives a 
absorption factor in excess of 0.5. This also applies even when the cavity is filled, wholly 
or partly with a porous material. The simple model treated here does, however, not cover 
that case.  
 A quite different kind of membrane absorber is a collection of small, completely 
closed plastic “boxes” having wall thickness of some tenth of a millimetre (see e.g. 
Mechel and Kiesewetter (1981)). This gives a distributed resonant system where the 
effective resistance of each box is more optimal for the system than in the case of metal 
panels described above. 
 Another development, which deserves mention here, even if the membrane effect is 
not the primary concern, is absorbers using different types of flexible, microperforated 
sheets. These are, in fact, MPAs where the normal hole-perforated plates are replaced by 
flexible plastic sheets with holes made by heated spikes, a process much cheaper than 
making such holes in panels of hard materials as metal, glass etc. However, as these 
sheets are very light one cannot neglect the mass of the sheet itself and the calculation 
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model has to be modified. Kang and Fuchs (1999) have presented measured and 
predicted results for such microperforated membranes and an example is given in Figure 
5.16.  
 In this case the membrane has a thickness of 0.11 mm and a surface weight of 0.14 
kg/m2 and it is mounted at a distance of 100 mm in front of a rigid wall in a reverberation 
room. The diameter of the holes was 0.2 mm and the perforation rate was 0.79%. The 
measured results are presented together with predicted results using two slightly different 
models, the one by the authors and the other using a commercial software package 
WinFlag™. Both models represent the impedance of the perforated membrane as a 
parallel combination of the impedance of the membrane itself and the impedance 
represented by the perforations. For the latter, Kang and Fuchs use the approximations 
given by Maa (see e.g. Maa (1987)), whereas the other uses the Equation (5.31) directly.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.16 Absorption factor for a microperforated membrane mounted against a rigid wall at a distance of 
100 mm. Measured (•) and predicted results (solid line) reproduced from Kang and Fuchs (1999). Dashed line – 
predicted results using the software WinFlag™. 
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5.5 POROUS MATERIALS 

Modelling porous materials is still an active area of research due to the different fields of 
application. These are certainly not limited to the design of absorbers for use in room 
acoustics, but spans from materials for application in silencers over to the modelling of 
sound propagation in complex porous structures, which could be geological formations 
on the sea bottom as well as human tissue.  
 Traditionally, the porous materials used as sound absorbers have been of mineral 
wool fibre, either rock wool or glass wool. Later developments have been on cellular 
plastic foam materials, e.g. polyurethane, polyester etc. There are literally hundreds of 
different cellular foam materials on the market but only a few are actually suited as 
acoustic absorbers. The built-up structure of most porous materials is too complicated for 
a direct modelling of characteristic impedance and propagation coefficient based on the 
geometry of the frame or “skeleton” structure. This applies even if we assume that the 
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frame is completely stiff resulting only in a movement of the air contained in the pores, 
this being subjected to viscous and thermal conditions. It should then not come as a 
surprise that most models describing sound propagation in porous materials may be 
characterized as being phenomenological. One will find models based on one or more 
macroscopic material properties, flow resistivity, porosity etc. We shall present some of 
these models, which in the literature are termed equivalent fluid models. The material 
behaves like a fluid in a macroscopic perspective, and the sound propagates in the form 
of a simple compressional wave. 
 When we cannot assume that the frame is completely stiff the modelling gets more 
difficult. The movement of the fame will be coupled to the movement of the air in the 
pores resulting in a significant influence on the properties in certain frequency ranges. 
There will be several types of wave propagating and, furthermore, it is generally not so 
that one type of wave propagates through the frame and another in the air particles in the 
pores. The models commonly used in this case are based on Biot theory (see e.g. Allard 
(1993)), which, in fact, was developed for quite another purpose, modelling sound 
propagation in porous, fluid-filled rock formations. We shall not go into details on this 
theory but give a short overview illustrated by examples. 

5.5.1 The Rayleigh model 

As a very simple model for a porous material we may envisage a bundle or matrix of 
very thin tubes. We assume that the tubes have a circular cross section and being 
sufficiently thin so as to make the air movements in them governed by viscous forces. 
We may then apply the calculations performed connected to the mode of operation of the 
Helmholtz resonator. A sketch of the cross section of the material is shown in Figure 
5.17.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.17 Simple model of a porous material, a bundle of thin tubes imbedded in a solid matrix. 
 
  
  Initially, we look at one of the tubes assuming that the particle velocity is 
represented by a mean value <vx> taken over the cross section. We shall also use the 
approximation leading to Equation (5.32), assuming that the quantity s from Equation 
(5.28) is less than two. This implies that the diameter (2a) of the tube should be less than 
0.5 mm if the approximation is to be valid for frequencies up to 1000 Hz.            
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 Denoting the mean value of the particle velocity as vm will give the following 
equation of force 

 0 m m 0 m m2
8j jp v v v r v

x a
μωρ ωρ∂

− = + = +
∂

' ,  (5.43) 

 
where we have introduced the flow resistivity r' in the tube, having the dimension 
Pa⋅s/m2. For simplicity, we have also replaced the constant 4/3 in the mass term by 1.  
 The corresponding continuity equation, i.e. the equation stating the conservation of 
mass, may in this one-dimensional case be written 
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when we take account of the relationship between the pressure and the density 
fluctuations. We shall look for solutions to these equations expressing the sound pressure 
and the particle velocity as   
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where the wave number k' now is a complex quantity. Inserting these expressions into 
Equations (5.43) and (5.44) we get 
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where a solution may only be found when the determinant is zero, i.e. when 
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This gives us the following equation for the wave number 
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and thereby the impedance 
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We have then arrived at an expression giving the complex wave number and the 
characteristic impedance in one tube in the matrix of tubes sketched above. Our task now 
is to find the input impedance at the surface of the matrix. We have then to take account 
of the contraction of the “stream lines” when entering the matrix from the outside 
medium. This is accomplished by introducing the porosity σ of the matrix, the ratio of 
the pore (or tube) volume to the total volume. For this simple case the porosity will be 
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the same as the quantity perforation rate ε used in section 5.4.1.5. Here we have to put r 
= r'/σ and Z = Z'/σ, hence 
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and 1 j ,

rk
c
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ρ ω

ρ σ
σ ρ ω

= −

= −

 (5.49) 

 
where Z will be the characteristic impedance for the equivalent fluid represented by this 
bundle of tubes. Z will also be the input impedance for a half-infinite thickness of such a 
porous medium, for which we may use Equation (5.4) to calculate the absorption factor 
for normal incidence. It should, however, be more realistic to calculate a situation where 
the porous medium has a finite thickness, also terminated by a hard reflecting surface. 
This will represent a first model simulating a porous sample of e.g. mineral wool placed 
against a hard wall in a room. We may modify Equation (5.21) by introducing the 
complex wave number k' and also exchanging the characteristic impedance ρ0c0 for air 
by the impedance Z. The input impedance Zg will then take the form 
 
 g j cotg( ' ).Z Z k d= − ⋅  (5.50) 
 
Assuming that the thickness d of the material is much less than the wavelength (k'd << 
1), we may use an approximation for the cotangent function, setting cotg(x) ≈ 1/x - x/3. 
Hence 
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This expression warrants several comments. First, the real part will only be one-third of 
the flow resistance. We will also get some sort of a resonance when the imaginary part is 
equal to zero. Normally, however, the stiffness part will dominate, which in practice 
gives a relatively high resonance frequency f0. (Make a calculation of f0 setting e.g. d 
equal 50 mm.) 

5.5.2 Simple equivalent fluid models 

A model suggested by Delany and Bazley (1970) is, due to its simplicity, widely used for 
describing the behaviour of porous materials, being applied to materials ranging from 
mineral wool products to porous soil. They developed their model, giving the complex 
wave number and the characteristic impedance, in a purely empirical way by 
measurements on a broad range of materials having a porosity of approximately one. 
This was done by fitting of data to a model having the flow resistivity and the frequency 
as parameters. Using the propagation coefficient Γ = j⋅k′ instead of the complex wave 
number k′, the expressions are 
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It is assumed that the quantity E lies inside the range 0.01–1.0. As mentioned above, the 
model has been and still is widely used. One should, however, bear in mind that the 
materials used in the development were highly porous mineral wool products. A slightly 
different model is given by Mechel (1976) (see also Mechel (1988)), where the equations 
are partly theoretically based, i.e. when describing the behaviour at low frequencies, 
partly by a curve-fitting procedure on measured data at the higher frequency range. The 
model also includes the porosity as a parameter but, unfortunately, this parameter only 
affects the low frequency part. In effect, this is again a one-parameter model and to fit 
the various expressions together it is advisable to set the porosity parameter equal to 
0.95.  
 When E < Ex (see Table 5.1 for the transition between equations), we get 
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where γ  is adiabatic constant for air (≈ 1.4). When E > Ex, Mechel gives the following 
expressions 
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The limiting value for E, denoted Ex, that determines whether one shall use Equations 
(5.53) or (5.54) for the real and imaginary components of Γ and Zc, respectively, is 
shown in Table 5.1. 
 

Table 5.1 Limiting values for the components in the model by Mechel (1988). 
 

Component Limiting value Ex 
Γreal 0.04 
Γimag 0.008 
Zreal 0.006 
Zimag 0.02 

 
 
 Calculations on a 50 mm thick porous material having a flow resistivity of 10 
kPa⋅s/m2 and backed by a hard wall is shown in Figures 5.18 and 5.19, using the models 
of Delany-Bazley and Mechel. The porosity is put equal to 0.95 in Mechel’s model. The 
first figure gives the real and imaginary part of the input impedance, the second one the 
corresponding absorption factor. It is observed that the differences are quite small in this 
example. However, Mechel’s model does “repair” the anomaly at the lower frequencies.  
 Wilson (1997) has also developed a simple phenomenological model for sound 
propagation in porous materials, based on viewing the thermal and viscous diffusion in 
porous media as relaxational processes. Of particular interest compared to the models 
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Figure 5.18 Real and imaginary part of the input impedance of a 50 mm thick material with a hard backing 
(normal incidence). Comparison of models by Delany-Bazley and Mechel.   
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Figure 5.19 Absorption factor corresponding to the data shown in Figure 5.18. 
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above is that Wilson’s model also repairs the anomaly of the Delany-Bazley model 
giving a realistic prediction over a far broader frequency range. In fact, predictions at low 
frequencies coincide very well with the ones by Mechel’s model rendering it unnecessary 
to “splice” models in order to cover a broader frequency range. The latter comparison is 
not given by Wilson but is easily demonstrated.        

5.5.3 Absorption as a function of material parameters and dimensions 

It is interesting and of great practical importance as well, to know the way in which 
material parameters and dimensions do influence the absorption capabilities of a porous 
material. The influence of the parameters is easy to show in models involving just one or 
may be two parameters. For models having a great number of parameters, as the ones 
given below, it is rather difficult to give a complete overview. We shall therefore restrict 
the following illustrations, to the effect of varying the flow resistivity and thickness of 
the sample, to the model of Delany and Bazley. Furthermore, to make the illustrations 
simple, most data shown in this chapter apply to normal sound incidence on the actual 
absorbing surface. Referring back to the treatment in Chapter 3, on absorption by oblique 
and ultimately diffuse sound incidence, it will be appropriate also to illustrate this effect. 
 A further presumption to these calculations is that the actual surface is “infinitely” 
large. In practice, this implies that the surface is sufficiently large in comparison to 
wavelength thus enabling us to neglect any effects due to the outer free edges. On finite 
size samples there will, however, always be some diffraction effects along the edges, the 
so-called edge effect. The result is an increase in the effective absorption area, which 
means that the “acoustic area” is larger than the geometrical area. One may therefore end 
up with data for the absorption factor larger than one (1.0) when dividing the measured 
total absorption area by the area of the absorber.  
 As mentioned when presenting the measurement methods for absorption, this effect 
still shows up in results from reverberation room measurements in spite of the rather 
large area specified (10–12 m2) and a ratio of width to length between 0.7 and 1.0 just to 
minimize this effect. Thomasson (1980), using the sound field distribution above a finite 
absorbing surface surrounded by a hard surface, which corresponds to a reverberation 
room situation, calculated the effective statistical absorption factor as a function of area. 
We shall illustrate the importance of absorber size by using Thomason’s expression to 
compare with measured data from a reverberation room test. 

5.5.3.1 Flow resistivity and thickness of sample 

In the introduction it was mentioned that the normal mounting of a porous absorber is 
either directly on to a hard surface or at a certain distance from it, i.e. leaving a cavity 
behind it. For ceilings, the latter is the normal mounting, not only because there must be 
some space for the service equipment but one gains additional absorption at the lower 
frequencies. We will start giving some results where the absorber is directly attached to a 
hard and infinitely large surface. 
 A typical result when varying the thickness of porous absorber is shown in Figure 
5.20. The absorption factor is calculated for normal incidence and for thickness in the 
range of 25 to 100 mm, the flow resistivity being 10 kPa⋅s/m2. As is apparent from the 
figure, the thickness has to be large to obtain high absorption at the lower frequencies. 
The physical explanation is that waves having the larger wavelengths penetrate far into 
the material, also being less attenuated and thereby reflected from the back wall. 
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Figure 5.20 Absorption factor at normal incidence for a porous material attached directly on to a hard wall.   
The parameter in the graph is the thickness in mm. Dalany-Bazley model with r equal 10 kPa⋅s/m2. 
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Figure 5.21 Absorption factor at normal incidence for a 50 mm thick porous material attached directly 
on to a hard wall. The parameter in the graph is the flow resistivity in kPa⋅s/m2. 
 
  There is, however, a “trade-off” between thickness and flow resistance. We may 
increase the absorption in the lower frequency range, for a fixed thickness, by increasing 
the flow resistivity as the latter will increase the attenuation rate. But there will be an 
optimum value here due to increased reflection from the front surface caused by the 
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increased flow resistivity. This is easily demonstrated by Figure 5.21 showing again the 
absorption factor for a 50 mm porous absorber at normal incidence, now where the flow 
resistivity is varied in the range 5 to 75 kPa⋅s/m2. An increased absorption at the lower 
frequencies is obtained at the cost of a decreased absorption at the higher frequencies 
when making the flow resistivity too high. Some product data shown in Figure 5.33 may 
serve as an indication of the relationship between flow resistivity and the density. 
 We may, however, obtain a substantial increase in the absorption at lower 
frequencies by mounting the absorber at a certain distance from a wall or ceiling. This is, 
in fact, common practice when mounting absorbing ceiling panels. One will not obtain 
fully the same absorption as when applying the same total thickness of the material, but 
the effect is good. An example is shown in Figure 5.22, giving the absorption factor for 
three different combinations of a porous absorber and the cavity behind. The model used 
here is the one by Mechel using a flow resistivity of 10 kPa⋅s/m2. As shown in section 
5.5.2, this model gives a more correct result in the lower frequency range than the 
Delany-Bazley model but this is not important here. Making a comparison with the 
absorption offered by a 25 mm thick absorber placed directly against a hard wall (see 
Figure 5.20), the combination of a 25 mm absorber and a 75 mm cavity gives a 
substantial increase at low frequencies. The drawback of such a combination is that we 
get standing wave phenomena in the cavity, thereby a reduced effect in certain frequency 
ranges. We have seen these phenomena before when treating resonance absorbers (see 
e.g. Figure 5.12). The locations of these minima will, however, depend on the angle of 
incidence. For the absorption factor data measured by diffuse sound incidence this effect 
will hardly be noticeable, except when the ratio of cavity depth to the thickness of the 
porous sample is very large.  
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Figure 5.22 Absorption factor at normal incidence for combinations of a porous absorber with an airspace in 
front of a hard wall. Mechel’s model for the porous absorber having r = 10 kPa⋅s/m2. 

5.5.3.2 Angle of incidence dependency. Diffuse field data 

We have, to make it simple, used the condition of normal sound incidence in most 
illustrations. This is, however, not the angle of incidence giving the maximum 
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absorption. Taking porous materials as an example, we find that an angle of incidence 
50–60° will give a maximum absorption factor. The mean value obtained when 
averaging over all angles of incidence, i.e. the statistical absorption factor αstat, is of even 
more practical interest. We may determine this factor by using our models to calculate 
the mean value for incidence angles in the range 0 to 90°. As shown earlier on, assuming 
local reaction such that the input impedance Zg is independent of the angle of incidence 
ϕ, the statistical absorption factor is expressed as 
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where Rp is the pressure reflection factor given by 
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Figure 5.23 Absorption factor for a 50 mm porous sample with hard backing. The parameter on the curves is 
the angle of incidence in degrees. The dashed curve shows the statistical absorption factor. Delany-Bazley 
model with r = 10kPa⋅s/m2.     
 
 
 In the last expression we have normalized the input impedance by the characteristic 
impedance Z0 for air. Inserting this last expression into Equation (5.55) we get 
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where Re again denote the real part of the actual quantity.  
 In Figure 5.23, we have again used a porous material with a thickness of 50 mm as 
an example. The angle of incidence is varied between zero and 89 degrees, i.e. between 
normal incidence and nearly grazing incidence. One can observe the larger absorption 
obtained for oblique incidence, however approaching zero by grazing incidence. The 
dotted curve shows the statistical absorption factor calculated from Equation (5.57).  
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Figure 5.24 Statistical absorption factor of a porous absorber having different areas, 50 mm mineral wool (r = 
30 kPa⋅s/m2) with hard backing. The test area is square with dimensions indicated. The corresponding predicted 
absorption factors for an infinitely large specimen, both for normal and diffuse sound incidence, are also shown. 
Prediction method for finite size specimen and corresponding measurement data (reverberation room) from 
Thomasson (1982). 

 
 
 It now remains to see how the last result would turn out if one cannot assume that 
the lateral dimensions of the sample are not very large compared to the wavelength. We 
have indeed up to now assumed that the area of the absorber was infinitely large. That 
we must take account of a finite size absorber does not only apply in a standard 
reverberation room measurement, but certainly in normal practical applications. 
Thomasson (1980) has shown, again assuming that the absorber is locally reacting, that 
we should substitute Equation (5.57) by 
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where Zf is denoted field impedance, a quantity that may be interpreted as a radiation 
impedance for a plane surface having the same shape as the absorber and the same 
velocity distribution. Thus, Zf will be a function of the shape and dimensions of the 
specimen as well as a function of the frequency and the angle of incidence. It should be 
noted that the direction of incidence must be specified both by the angle ϕ with the 
surface normal as well as the azimuth angle θ.  
 One may interpret this in another way by using an electrical analogue, a circuit 
where Zf ⋅Z0 is the internal impedance of a generator twice the sound pressure in the 
incoming wave and where Zn ⋅Z0 is the outer load impedance. The expressions giving Zf 
are quite complicated integrals that normally have to be solved numerically. As expected, 
Equation (5.58) is approaching Equation (5.57) when the linear dimensions of the 
absorber get large compared to the wavelength because then Zf ≈ 1/cosϕ. 
 Figure 5.24 shows predicted results compared with measurements data from a 
reverberation room test. According to Thomasson (1982), the test sample is mineral wool 
of 50 mm thickness having a flow resistivity of 30 kPa⋅s/m2. His measurement data from 
the reverberation room tests are given in one-third-octave bands. Measurements and 
predictions are performed on three different sample areas of which we show the results 
for the two areas, 1.2 x 1.2 m2 and 3.6 x 3.6 m2.  

For the calculated results in Figure 5.24 we have again used the model by 
Delany and Bazley to describe the mineral wool. For comparison, we have also given the 
result for the absorption factor at normal sound incidence as well as for diffuse sound 
incidence using Equation (5.57), i.e. data corresponding to the ones shown in Figure 
5.23. As is evident from Figure 5.24, the increase in the statistical absorption factor for a 
finite sample size is quite dramatic, even for the sample having a side length 3.6 of 
metres; which in fact is a common size for reverberation room tests. As we also may 
observe the fit between measured and calculated results is generally very good. It should 
be mentioned that Thomasson’s calculated values for one-third-octave bands are not 
shown in the figure. This is because the differences between his calculated results and 
the ones plotted are negligible. 
 We shall round off this discussion of the edge effect by presenting an 
illustration showing how it can be utilized in practice. As an alternative to attaching a 
certain amount of absorbers on to a wall or ceiling covering one single area one may, if 
this is not unsuitable, split the absorber into smaller patches separated by some distance. 
Figure 5.25 shows results from an experiment conducted in a reverberation room. Eight 
blankets of 25 mm thick mineral wool, each having a dimension of 0.6 times 1.2 metres, 
was first arranged as one single area and thereafter separated as shown in the sketch 
beside the figure. As the total area when placed adjacent to one another (5.8 m2) is less 
the 10 m2 required for a normal test, the edge effect for the lowest curve will be larger 
than normal. However, when pushing the blankets away from each other the increase in 
the absorption is very large. (It should be noted that the absorption factor is calculated for 
an area of 5.8 m2 in all cases).  

Holmberg et al. (2003) have developed a prediction model to calculate the 
statistical absorption factor of such absorbing patches arranged in a periodic pattern. The 
measurement data shown above were, in fact, used to compare with their predictions. 
The predicted results, which compared favorably with the measured ones, are, however, 
not shown here.           
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Figure 5.25 Reverberation room measurements of the absorption factor of eight mineral wool blankets, 25 mm 
thick and having a total area of 5.8 m2. Dimensions and measured configuration is shown in the sketch. Student 
tutorial, NTNU.  
 

5.5.4 Further models for materials with a stiff frame (skeleton) 

In more recent years there has been development of several models using a more detailed 
description of the structure of the material, the aim being to use directly measurable 
material quantities. Early work on this (e.g. Zwikker and Kosten (1949)), introduced a 
structure factor in addition to the flow resistivity and porosity, a factor that is now 
termed tortuosity or sinuosity. In a popular way, we may say that this parameter gives us 
information on the directionality of the pores in the material. In a material having straight 
through pores of cylindrical shape making an angle ϕ with the outer surface, the 
tortuosity ks is given by 

 s 2
1 ,

cos
k

ϕ
=  (5.59) 

which, as an example, gives  ks equals 2 for ϕ equal 45°. In many applications however, a 
model using these three parameters will be too simple even for materials where one 
assumes isotropy and a stiff frame.  
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5.5.4.1 The model of Attenborough 

Attenborough (1983,1992), introduces an additional parameter sf, denoted pore shape 
factor, as a phenomenological description of the geometrical form of the pores. The 
problem with this factor is that it cannot be measured separately but must be estimated by 
fitting the model to measured data. As shown in Chapter 3 (section 3.5.3), we may 
express the complex characteristic impedance Zc and the propagation coefficient Γ by an 
equivalent or effective density ρeff and a corresponding bulk modulus Keff, thus 
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According to the model of Attenbourough we get 
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The symbol J denotes a Bessel function and the quantity sA is given by 
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The quantity Pr in Equation (5.61) is the so-called Prandtl number given by μ⋅ cp/κ. This 
number is a constant for a given fluid that describes the relationship between the 
coefficient of viscosity μ, the thermal conductivity κ and the specific heat capacity at 
constant pressure cp. For air we get Pr ≈ 0.71. 
 Assuming sA << 1, which implies low frequency and/or high flow resistivity r, 
Attenborough gives the following expressions for characteristic impedance and 
propagation coefficient: 
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(5.63) 

 
As an example on the use of these equations, Figure 5.26 shows measured and predicted 
absorption factors for discs of a porous wood (rattan palm) placed at given distances 
from a hard wall. In one set of curves the disc thickness d is 5 mm with an air cavity 
depth l of 85 mm and in the other set the disc thickness is 10 mm and the cavity depth is 
40 mm. Measurements are performed in a standing wave tube, starting with 
measurements on a 50 mm thick sample placed directly on the hard backing surface. 
From the measured impedance data on this sample, the appropriate material parameters 
were extracted by fitting the Attenborough model to the data. We are then in the position 
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to calculate Zc and Γ according to Equations (5.60) and (5.61), which in turn enable us to 
calculate the results shown in Figure 5.26 using a general calculation routine based on 
transfer matrices (see section 5.7.1 and Equation (5.85)).   
 Certainly, in this case more simple models could probably have been used as the 
pores in the wooden material are straight tubes directed normally to the surface of the cut 
discs.  
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Figure 5.26 Normal incidence absorption factor of a disc of porous wood (rattan palm) mounted in front of a 
hard wall. Disc thickness (d) and cavity depth (l) is indicated. Solid curves – measured. Dashed curves – 
predicted. See also description in the text. 
 

5.5.4.2  The model of Allard/Johnson 

This model (see e.g. Allard (1993)) exchanges the non-measurable quantity sf in the 
Attenborough formulation with two other parameters. These are the characteristic viscous 
length Λ and the characteristic thermal length Λ', which are defined in the following way 
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In the expression for Λ the numerator is a surface integral where the velocity vi of the 
fluid, as indicated by the index w, applies to the inner walls of the pores. The 
denominator is the corresponding volume integral that applies to the whole volume of 
pores. The thermal length Λ' is given by the ratio of the total inner surface area A to the 
total volume V of the pores. 
 The great advantage in using this description is that it is possible to determine both 
parameters separately by ultrasonic measurement technique (see below for measurements 
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of material parameters). Concerning the size of these parameters, one will find values in 
the range of some tenths of a micrometer to some hundred micrometers for typical 
porous foam materials. The ratio between the two parameters will tell us something of 
what the pores look like. We have tried to illustrate this in Figure 5.27. Certainly, the two 
parameters will be equal in a material where the pores have simple tube like shape, 
whereas Λ < Λ' when the connections between the pores are small and narrow. This is 
due to the fact that the viscous length Λ will mainly be determined by the contributions 
from areas having large velocity amplitudes, i.e. where the passages are narrow. 
 
 
 
 
 
 
 
 
 
 
 
 

 
     Λ = Λ’     Λ < Λ’ 

Figure 5.27 Sketches of the form of the pores in a porous material. 
      
 
The expressions for effective density and bulk modulus according to this model is 
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The functions GJ and GJ´ are given by 
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Figure 5.28 may serve as an example showing the importance of these characteristic 
lengths. Calculations are performed for a 50 mm thick sample directly on to a hard 
backing, keeping the characteristic thermal length constant while varying the 
corresponding viscous length between 10 and 100 μm. The other parameters used in this 
example are given in the figure caption. 
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 When both lengths are relatively large and of equal size the absorption 
characteristic is similar to the ones found for ordinary mineral wool products. By 
decreasing values of Λ, however, the characteristic resembles the ones found for certain 
types of plastic foam materials (see next section).  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.28 Normal incidence absorption factor of a porous material of 50 mm thickness with hard backing 
predicted by the Allard/Johnson model. The curve parameter is the characteristic viscous length Λ (μm). Other 
data are: r – 20000 Pa⋅s/m2, σ − 0.95, ks − 2.0, Λ′ − 100μm. 
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5.5.5 Models for materials having an elastic frame (skeleton) 

The models are getting even more complicated where we cannot assume that the frame 
stays motionless under the sound field impact. There will be a coupled motion of the 
frame and the air in the pores, which may give pronounced effects in certain frequency 
ranges. Up to now we have tacitly assumed that that there will be just one wave type 
propagating in the medium, i.e. a compressional wave. Now we will have three types of 
wave: two compressional waves denoted a fast and a slow wave, respectively, together 
with a shear wave. These waves will have quite different properties depending on the 
coupling between the fluid and the frame. 
 In common porous materials, where the fluid is air, there is a weak coupling 
between the frame and the fluid. In the audio- and ultrasound frequency range one of the 
compressional waves will mainly propagate in the air contained in the pores leaving the 
frame motionless. The second one will propagate in both media, having a velocity 
approximately equal to the velocity of a compressional wave in the frame situated in 
vacuum. One then gets a situation where the motion or vibration of the frame results in a 
corresponding motion of the air in the pores.  
 A movement in the air will, on the other hand, not affect the frame in the same way, 
as the latter is much heavier. The air will move in the frame without affecting it. One 
should then envisage that we could talk about an airborne and a frame-borne wave, but 
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the former, for which the attenuation is large due to the viscous coupling between frame 
and air, is traditionally denoted the slow wave.  
 The effect of an elastic frame may be quite pronounced for certain types of 
absorber, especially for plastic foam materials. A simulated result is shown in Figure 
5.29, where the shear modulus G of the frame is reduced from a maximum value (G1) of 
2.0⋅107(1+j⋅0.1) Pa in steps of 10. The other parameters for the material are identical to 
the ones used in Figure 5.28 having Λ equal to 20μ. The calculations are performed 
using a full Biot-model following the procedure and formulae given by Brouard et al. 
(1995). To compare, we have also plotted the data, shown by the circular points, from the 
latter figure that assumes an infinitely stiff frame according to the Allard/Johnson model. 
Apparently, the results using the maximum value of the shear modulus gives nearly 
identical result as a calculation assuming an infinitely stiff frame.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.29 Normal incidence absorption factor of a material with an elastic frame modelled using Biot theory. 
The shear modulus is reduced in steps with a factor of 10 from G1 = 2.0⋅107(1+j⋅0.1) Pa. Other data are the 
same as used in Figure 5.28 (Λ = 20μ). Symbols indicate data calculated by the Allard/Johnson model given by 
Equation (5.65).   
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 Another example is given in Figure 5.30, which shows a comparison between 
measured and calculated results, again using a full Biot model. The measurements are 
conducted in a free field environment using a two-microphone technique. The 
calculations are performed using two different methods, an analytical one and one using 
a finite element method (FEM). The analytical method is the same as used in Figure 5.29. 
Apparently, the two calculation methods are consistent with each other and the general 
appearance is validated by the measurement results. It should be noted that a linear 
frequency axis is used in this case. 
 The absorption has a maximum value in the frequency range 700–800 Hz, which is 
caused by a rather strong movement of the frame at these frequencies. Calculating the 
displacement at the surface of the foam material, a calculation possible by using FEM 
technique, is shown in Figure 5.31. The displacement is calculated for a normal 
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incidence plane wave having a sound pressure of 1 Pa. We observe that the displacement 
has a pronounced maximum in the same frequency range as found for the absorption 
curve.  
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Figure 5.30 Normal incidence absorption factor of 50 mm polyurethane with hard backing. Measurement data, 
using a two-microphone free field technique and two loudspeaker positions (L1, L2), are compared both with 
analytical results and results using a finite element method (FEM). From Vigran et al. (1997).  
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Figure 5.31 Calculated displacement at the surface of 50 mm thick polyurethane foam. Incident sound pressure 
equal 1 Pa. 
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5.6 MEASUREMENTS OF MATERIAL PARAMETERS 

In general, there exist several methods for determining the material parameters needed 
for the models described here. Most of them are laboratory methods and it is certainly an 
advantage having a method which allows direct determination of each individual 
parameter. There is an international standard for determination of the important 
parameter airflow resistance. 

5.6.1 Airflow resistance and resistivity 

The airflow resistivity is one of the most important parameters to characterize porous 
materials. Porous materials, as applicable in building acoustics, could be mineral wool 
products, plastic foam materials as well as porous fabric, curtains etc. The terms and 
symbols used for characterising the resistance of materials may sometimes be confusing. 
We shall here use the international standard, ISO 9053, as a directive, represented in 
Table 5.2. 
 
 

Table 5.2 Terms and symbols for airflow resistance.  
 

 Quantity Symbol Unit 
 

ISO 9053 
1) Airflow resistance 
2) Specific airflow   

resistance 
3) Airflow resistivity 

R 
RS  
r 

Pa⋅s/m3  (N⋅s/m5) 
Pa⋅s/m    (N⋅s/m3) 
 
Pa⋅s/m2  (N⋅s/m4) 

 
 
 The ISO standard specifies two different methods for determining these quantities. 
Both methods are based on measuring the pressure difference across a disk, cut out from 
the test material, when a known volume of air is passing through. The difference between 
the methods is that one method (method a) uses a constant airflow (DC flow) while the 
other uses alternating low frequency airflow (AC flow) of frequency 2–4 Hz. In the 
former case one measures the pressure difference by a manometer while the latter uses a 
microphone. Sketches showing these two principal methods are shown in Figure 5.32. 
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Figure 5.32 Principal set-up for measurement of airflow resistance according to ISO 9053. a) Direct airflow 
method; b) Alternating airflow method. 
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 The quantities R, Rs and r are defined by the following 
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The quantity qv is volume velocity (m3/s) of the airflow through the specimen having an 
area S, which implies that the mean flow velocity is equal to qv/S (m/s). The quantity d is 
the thickness of the sample in the direction of the flow. The specific airflow resistance Rs 
is the linear airflow resistance of the sample, having the same dimension as the specific 
impedance. In the old centimetre-gram-second (CGS) system of units, this quantity had 
its own unit, the Rayl in honour of the physicist, Lord Rayleigh. One may find it still in 
use but then as mks Rayls reflecting the SI system of units.  
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Figure 5.33 Typical data for airflow resistivity of mineral wool, glass wool (G) and rock wool (R) as a function 
of density.     
 
  
 For a homogeneous material we may find the flow resistance per unit length, the 
airflow resistivity having the symbol r. This is the quantity normally found as product 
data for porous materials. Some typical data (Norwegian products) for mineral wool 
types of porous material are given in Figure 5.33. 
 Finally, it should be mentioned that in other circumstances an inverse quantity is 
used, this in order to characterize the “openness” of a porous material for airflows. This 
is the quantity permeability B defined by 
 

 2(m ),B
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where μ  is the coefficient of viscosity.  

5.6.2 Porosity 

By the porosity of a porous material, it is understood as the relative part of the volume of 
the open pores in the material, which in our case is the relative volume part of air. This 
applies to fibrous materials as well as granular ones. As is apparent from the models 
described above, the parameter is important when it comes to sound propagation in 
porous materials. In connection with geophysical characterization, it is common practice 
to determine this parameter by filling up the pores with water or some other fluid. It goes 
without saying that this will not be a practical procedure in the case of the porous 
materials used as acoustic absorbers.  
 

Piston

V

V = V + V

0

t f s

 
Figure 5.34 A principal set-up for determining porosity. 

 
 
 Champoux et al. (1991) have developed an accurate method based on using air. The 
principle is not new but by using modern equipment they arrive at accuracy better than 
1%. As shown in Figure 5.34, the material having a given total volume Vt = Vf + Vs is 
placed in a closed compartment. Here Vf and Vs denote the volume of the pores and the 
volume of the solid frame, respectively. By definition, the porosity σ is given by 
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When we talk about the volume of the pores we shall infer that the pores in this volume 
are interconnected, i.e. excluding the volume of closed pores. The rest of the air volume 
in the chamber is denoted V0. The procedure is now to give the piston a controlled 
displacement resulting in a precise change ΔV in the volume and a resulting pressure 
change ΔP. Assuming that the pressure in the chamber initially is equal to the barometric 
pressure P0 and, furthermore, that the change of state takes place isothermally we get 
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We have then determined the unknown total volume V of air in the chamber, V= V0 + Vf. 
Since the volume V0 is easily measured, we have determined the sought after volume Vf 
of the pores.  
 This is an outline of the basic principle of the measurement. The practical 
implementation certainly involves problems such as ensuring an isothermal change of 
state, the determination of small pressure changes etc. In the set-up mentioned, one is 
using a piston of diameter 4 mm, positioned to an accuracy of 1 micrometer. A 
differential pressure transducer detects pressure changes within 10-6 mm of mercury. The 
material samples have a maximum volume of 1.5 litres. The general accuracy is, as 
mentioned above, better than 1%.  

5.6.3 Tortuosity, characteristic viscous and thermal lengths 

There are several methods for the determination of tortuosity. For materials having a 
non-conducting frame one may compare the conductivity when saturating the material 
with an electrical conducting fluid with the conductivity of the fluid itself (see e.g. Allard 
(1993:73)).  
 Later developments apply more efficient methods based on high frequency 
measuring techniques. The principle is based on measuring the sound transmission 
through the material, utilizing the high frequency asymptotic behaviour to determine the 
tortuosity and well as the characteristic viscous and thermal lengths. At sufficiently high 
frequencies, a practical frequency range for these measurements is 100–800 kHz, one 
may assume that the frame is motionless. The complex wave number may then be 
approximated to read 
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The quantity δ is denoted the viscous skin depth. Allard et al. (1994) used this expression 
to determine the tortuosity ks, utilizing the fact that the viscous skin depth approaches 
zero at sufficiently high frequencies, i.e. that the following apply: 
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The quantity ceff is thereby the effective speed of sound through the material. The 
measurements are relatively easy to perform by placing a disc of the material between an 
ultrasound source and receiver. One then compares the transit time of a broadband pulse 
of ultrasound with and without the disc between source and receiver. A Fourier 
transformation into the frequency domain then gives the sound speed as a function of 
frequency, which enables one to use the extrapolation given in Equation (5.72). A 
practical problem is to find suitable ultrasound transducers for air, both having sufficient 
power and bandwidth. The range of ultrasound propagation in air is generally short in 
addition to a normally large attenuation through the material sample. This implies that 
the sample may have to be just a few millimetres in thickness, thus not being 
representative of the material as such. 
 Leclaire et al. (1996) took the use of Equation (5.71) a step further by utilizing the 
differences in the physical properties of air and helium to obtain an independent 
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determination of the characteristic viscous and thermal lengths. A procedure to do this is 
to plot the quantity 
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Figure 5.35 The relationship between the real part of (c0 /ceff )2 and the square root of the inverse frequency for 
a porous material having air-filled and helium-filled pores, respectively. The ordinate is normalized by the 
tortuosity kS. Material parameters: r − 30000Pa⋅s/m2, σ − 0.95, Λ − 50μm, Λ′ − 100μm. Solid lines – complete 
model. Dashed lines – approximate model. 
 
 
The slope of this function gives the possibility of determining the length L in the 
expression 
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whereas kS again is determined by the intercept with the ordinate. Performing this 
measurement twice, once by having the pores filled with air and, second, by helium, we 
can determine Λ and Λ′ by finding the slopes bair and bHe given by 
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How this linear approximation based on Equation (5.71) looks like compared with 
calculated results using the complete model is shown in Figure 5.35. By the notion 
complete model we understand the one where the complex wave number k´ is calculated 
from Equations (5.65) and (5.66). The suitability of the linear approximation is certainly 
dependent on the ratio of Λ to Λ′, which in the example is 1:2. By using a frequency 
range upwards from 250 kHz, the method seems to be accurate within 10–15 %. More 
information may be found in the referenced paper.  
  

5.7 PREDICTION METHODS FOR IMPEDANCE AND ABSORPTION 

Both commercial and specially made sound absorbers are rarely a simple and 
homogeneous structure. As an example, a fabric of some kind, a plastic membrane, a 
perforated panel etc., may cover a porous material. The whole structure may then be 
mounted at a certain distance from a wall or ceiling. We have given several examples of 
data for such absorbers in the sections above. Here we shall give a short review of the 
prediction method used. 
 A number of the elements or layers making up the structure of a given absorber 
may not be characterized as being locally reacting. This implies, not only that the input 
impedance will depend on the angle of sound incidence, but we will also get a lateral 
wave movement, i.e. along the actual surface. We then have to take the dimensions and 
the boundary conditions into account. We may accomplish this by applying models using 
finite element methods (FEM). There is software, also commercially available, to 
perform acoustic calculations on absorbers, especially on porous materials. We gave an 
example earlier (see also Figure 5.30). 
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Figure 5.36 A construction composed of several layers, each of infinite extent. 
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 Another procedure is by way of analytical modelling using transfer matrices.      
Basically, each layer in the combination, assumed to be of infinite extent, is represented 
by a matrix giving the relationship between a set of physical variables on the input and 
output side of the layer. These matrices may then be combined to give the relationship 
between the relevant physical variables for the whole combination. Characteristic data as 
absorption factor, input impedance and sound reduction index (transmission loss) may 
then be calculated assuming plane wave incidence. The size and complexity of these 
matrices, however, are totally dependent on the specific material in the actual layer, i.e. 
how many physical variables one has to use describing the wave motion in the material 
and then how many material parameters that are necessary to specify the material. In 
many cases, two physical variables are sufficient i.e. the sound pressure and the particle 
velocity. A simple 2 by 2 matrix then describes the relationship between these variables 
on the input and the output side. We shall use this description below to illustrate the 
method. 

5.7.1 Modelling by transfer matrices 

For the description of layers e.g. thin plates (panels), either perforated or non-perforated, 
two physical variables are always sufficient. The word “thin” here signify that we do not 
need to worry about the wave motion inside the plate itself; the wavelength being much 
longer than the thickness of the plate. With thicker elastic materials this simple model is 
no longer feasible (see the discussion below).  
 Porous materials may also be included in a simple 2 by 2 matrix description if they 
are modelled as an equivalent fluid. Such a model is applicable to many porous materials, 
e.g. mineral wool type absorbers. The basic assumptions are that the material is 
homogeneous and isotropic, having pores filled with air embedded in an infinitely stiff 
matrix or skeleton. Again, if the elastic properties of this skeleton have to be taken into 
account a description using two physical variables only is not feasible. 
 In our outline of the transfer matrix method we shall only use the 2 by 2 matrices, 
which in the analogue electrical case is denoted a two port or four pole. Using the sound 
pressure p together with particle velocity v as the variables, we can express the 
relationship between these variables on each side of the layer numbered n: 
 

  (5.75) n 1 11 12 n

n 1 21 22 n
.

p a a p
v a a v

−

−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 
The matrix for the total system, i.e. the one describing the relation between variables on 
the input and output side of the system, is arrived at by multiplying together the matrices 
representing each of the contributing layers. Denoting the elements in this matrix as A11, 
A12, A21 and A22, the input impedance Zg is given by 
 

 0 11 L 12
g

0 21 L 22
,

p A Z A
Z

v A Z A
+

= =
+

 (5.76) 

 
where ZL is the impedance on the output side, the load impedance. As shown earlier, 
when Zg is known we are able to calculate the absorption factor by using the expressions 
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 (5.77) 

 
The angle ϕ0 denotes the direction of plane wave incidence on the first layer. 
Furthermore, we have assumed that the medium on the input side is air having 
characteristic impedance ρ0c0. 
 As mentioned above, our model will turn out much more complicated if we want to 
include elastic materials either solid or porous. In the former case, we need at least four 
physical variables for description, e.g. the particle velocity and the stress in two 
directions. The corresponding matrix to the one given in Equation (5.75) will therefore 
be a 4 by 4 matrix instead of a 2 by 2 matrix. It may be shown, however, that if there are 
fluid layers on both sides of the elastic layer, this 4 by 4 matrix may be reduced to a 
simple 2 by 2 matrix.  
 Having a porous elastic material, on which we want to use the Biot theory, we end 
up with a 6 by 6 matrix. If we want to combine layers described in such a different way 
we cannot just multiply the matrices to make a model for the complete system; we shall 
have to construct coupling matrices expressing the boundary conditions between the 
layers. We have presented results above that have been calculated using such a technique 
(see section 5.5.5). Here we shall just illustrate the technique by showing how to find the 
components of the 2 by 2 matrix for a porous material described as an equivalent fluid. 
For a corresponding description using the Biot theory we shall refer to the literature (see 
e.g. Brouard et al. (1995)). 

5.7.1.1 Porous materials and panels 

We shall characterize a porous material by using the wave number k and the 
characteristic impedance Zc, both normally complex quantities. Alternatively, we could 
have used the effective density and the bulk modulus. However, the conversions between 
these variables are simple if one wishes to use the alternative description. For simplicity, 
we shall consider plane wave incidence normal to a layer of thickness d (see Figure 
5.37). Our task is, first, to set up the relationships between the sound pressure and the 
particle velocity on the two sides of the layer, second, to cast these into the form given in 
Equation (5.75). 
 
 
 
 
 
 
 
 
 
 

Figure 5.37 Sound transmission through a porous layer of thickness d.   

p1 p2

v1 v2

k, Zc

x=0 x=d

 
 
Generally, we may express these variables by the following equations, when assuming 
harmonic time dependence 
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The quantities A and B will be determined by the boundary conditions on each side of the 
layer. On the left-hand side, where x is equal zero, we get 
 

 (
1
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 (5.79) 

 
On the right-hand side, where x is equal to d, the pressure is given by 
 
 j j

2 ( ) cos j ( ) sinkd kdp A e B e A B kd A B kd−= ⋅ + ⋅ = + ⋅ − ⋅ − ⋅  (5.80) 
 
Hence, using the Equations (5.79) 
 
  (5.81) 2 1 c 1cos j cos .p p kd Z v kd= ⋅ − ⋅
 
Correspondingly, the particle velocity on the output side will be 
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2 1

c
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p
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We may now cast the Equations (5.81) and (5.82) into the form sought after 
 

 
c
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As an example, we shall assume that the layer is placed on to an infinitely hard wall, 
which implies that v2 is equal to zero or that the load impedance ZL in Equation (5.76) is 
infinite. The input impedance will then be 
  

 1
1 c

1
j cotg( )

p
,Z Z kd

v
= = − ⋅  (5.84) 

 
which was expected from our formerly derived result (see Equation (5.50)). 
 Equation (5.83) may, however, be put into a general form. First, it is common to 
substitute the wave number by the propagation coefficient Γ, which is given by j⋅k. 
Second, we shall not assume normal incidence but introduce oblique incidence giving the 
wave vector propagating through the material an angle ϕ with the normal. The result will 
be 
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 (5.85) 

 
It should be noted that cosϕ could be a complex quantity; see discussion on Snell’s law 
in Chapter 3 (section 3.5.3). 
 A concentrated layer, such as a membrane, thin plate etc. will result in a much 
simpler transfer matrix. In this case we get 
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where Zw is the so-called wall impedance, which is given by the ratio of the sound 
pressure difference across the layer to the velocity of the layer. We thereby assume that 
the velocity is equal on both sides of the layer. Equations (5.85) and (5.86) are the ones 
used in a number of the illustrations in this chapter (see e.g. Kristiansen and Vigran 
(1994)).   
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CHAPTER 6 
 

Sound transmission. Characterization and 
properties of single walls and floors 

 
 

6.1 INTRODUCTION 

In the preceding chapter, our concern was directed at the task of removing acoustic 
energy from a medium (air) by transport into an absorber that effectively could convert 
the energy into heat. Absorbing materials have a wide range of applications: as sound 
absorbers in rooms, included in noise barriers along roads, in silencers for air-
conditioning systems etc. One could then envisage that e.g. a porous material could be 
effective in reducing the transport of sound energy from an air-filled space to another, 
i.e. act as an isolator for sound energy in the same way as the material works for heat 
energy. Unfortunately, this is not the case. We normally demand that a dividing wall of 
reasonably good quality between rooms has a sound reduction index in the range 40–50 
dB. This corresponds to a transmission factor of 10-4–10-5 (see definitions below). To 
achieve this, our porous material must have an absorption factor of 0.9999 in the actual 
frequency range, indicating that this is not a workable solution. Effective partition walls 
are based on a major jump in the impedance, i.e. a very high reflection factor. Reducing 
sound transmission between rooms is therefore based on reflecting the energy back as 
opposed to trying to dissipate the energy in the partition.  
 These considerations apply to the transmission of airborne sound; we shall use the 
concept airborne sound insulation when talking of the ability of a construction to isolate 
against airborne sound. With the notion structure-borne sound is meant vibrations in 
solid structures, which in turn may radiate sound in the audible frequency range. Human 
walking or jumping is the major source of these vibrations in buildings, and one will find 
in the literature the terms impact sound and footfall noise used for describing the radiated 
sound. We shall use the first term, impact sound insulation as the corollary to airborne 
sound insulation. It should be noted that here we strictly are concerned with the 
transmission phenomena, i.e. not with the sound generated in the source room itself. 
 This chapter will be devoted to methods and techniques for prediction and 
measurement of the sound insulation properties of partitions, i.e. the sound transmission 
properties both by excitation of airborne sound and impacts. These properties may be 
quite different due to the different type of excitation by these two sources. In the case of 
airborne sound, a distributed pressure field will drive the construction, whereas the other 
excitation will be by “point” forces. This, however, does not prevent us, subject to some 
conditions, of calculating the airborne sound insulation when the impact sound insulation 
is known and vice versa.  
 As an introduction to the subject we shall use a practical example involving both 
types of excitation, in this case also a more general type of impact. A piece of machinery, 
mounted on a floor as shown in Figure 6.1, may induce vibrations (structure-borne 
sound) in the floor due to unbalanced forces. Furthermore, the machine will radiate 
sound energy setting up a sound field in the room, which may in turn excite the floor. 
Which one of these processes will dominate the sound energy being radiated into the 
room below will not only depend on the dynamic properties of the floor, but also on its 
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radiating properties, i.e. the efficiency of the floor to radiate sound. One may consider 
this process as analogous to a two-stage rocket. The vibration pattern set up in the floor 
is determined by the excitation and the dynamic properties and the radiated sound energy 
will be determined by how well this vibration pattern couples to the room below. This 
does not exclude possible feedback in the system; the floor vibration may influence the 
sources at the same time as the surrounding medium (air) may influence the movement of 
the floor. The latter type of feedback is normally neglected when dealing with building 
constructions; the inertia of the constructions is normally of quite another order of 
magnitude compared with the corresponding ones for air. The situation would have been 
quite different if the medium were water!   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 

Figure 6.1 Machinery on the floor in an equipment room. Sound transmission to neighbouring room.   
  

6.2 CHARACTERIZING AIRBORNE AND IMPACT SOUND INSULATION   

We shall introduce the quantities used to characterize sound insulation, quantities that 
will be found in common building regulations and requirements for the sound insulating 
properties of building elements and constructions. We shall derive the expressions used 
when measuring these properties both in laboratories and in the field and we shall show 
how these results may be converted to give a single number rating. 

6.2.1 Transmission factor and sound reduction index 

The transmission factor τ of a given surface is defined by the sound power, the ratio of 
the transmitted power Wt and the power Wi incident on the surface: 
 

 t

i
.

W
W

τ =  (6.1) 

 
The sound reduction index R is the corresponding logarithmic quantity defined as 
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In the literature one often finds the term transmission loss used for R. 
 In a traditional laboratory measurement procedure to determine the sound reduction 
index of a building element, it is presupposed that all sound energy transmission from the 
sending room to the receiver room takes place by way of the actual element (see Figure 
6.2). In practice, there are always limitations in spite of the massive flanking 
constructions surrounding the element under test. When the sound insulation gets 
sufficiently high there is bound to be additional sound transmission by way of these 
flanking constructions in much of the same way as normally encountered in buildings. 
This is discussed below. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.2 Laboratory set-up to determine the sound reduction index.   
 
  
 We shall assume that the sound field in the sending room, as well as in the 
receiving room, is diffuse. The sound intensity at the wall in the sending room will then 
be given by 
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where pS is the sound pressure in the sending room. The power transmitted through the 
building element having the surface area S will be 
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where pR and AR is the sound pressure and the total absorption area, respectively, in the 
receiving room. Hence, the transmission factor will be given by 
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The sound reduction index then becomes 

Wi Wt



210 Building acoustics 

 S
S R

R R R

110 lg 20 lg 10 lg 10 lg ,
p S SR L L
p A Aτ

⎛ ⎞⎛ ⎞= ⋅ = ⋅ + ⋅ = − + ⋅⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (6.6) 

 
where D = LS – LR is the difference in the mean sound pressure level in the sending and 
receiving room. This is the expression used in a standard laboratory procedure based on 
measurements of the sound pressure levels (see ISO Standard 140 Part 3). 
 An alternative procedure is based on determination of the transmitted power to the 
receiving room by way of measuring the intensity. An important reason for applying 
such a method is when the traditional method breaks down due to substantial flanking 
transmission. Using this method one determines the mean transmitted intensity IR over a 
surface SR that completely encloses the actual element having an area S. Instead of 
Equations (6.5) and (6.6) we get 
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and 
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 (6.8) 

 
The latter expression corresponds to the one to be found in ISO 15186 Part 1, having 
introduced the mean sound pressure level LpS in the sending room and the mean intensity 
level LIR taken over the measuring surface SR. In addition, the characteristic impedance 
ρ0c0 for air is set equal to 400 Pa⋅s/m.    
 Do we get the same results when applying these two methods? In theory, there will 
be a difference due to a certain underestimating of the transmitted power by the 
traditional method, resulting in a higher sound reduction index. When determining the 
mean sound pressure level in the receiving room certain limits are imposed on the 
distance to the room boundaries, i.e. the power is determined by measurements in the 
“inner part” of the room. A modified sound reduction index RI,M will therefore be more 
in accordance with R determined using Equation (6.6). This is defined as 
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where the last term is the so-called Waterhouse correction (see section 4.5.1.1). The 
quantities Sb and V are the total surface and volume of the receiving room, respectively. 
For the frequency f one uses the centre frequency in the actual frequency band.  

6.2.1.1 Apparent sound reduction index 

As opposed to the measuring situation in a laboratory, the normal situation in a building 
is the existence of a large number of transmission paths for the sound energy (see Figure 
6.3). As indicated in the figure, sound energy may, in addition to being directly 
transmitted through the wall partition, be transmitted via flanking constructions, via 
crack formations, out and in through windows, via a common ventilation duct, via cable 
ducts etc.  
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Figure 6.3 Measurement of sound insulation in a building. Examples of transmission paths between rooms.  
 
 
 It should be noted that the notion flanking transmission only implies that the 
transmission takes place in the manner of setting the flanking constructions into 
vibration, a part of which is transferred to constructions on the receiving side that are 
capable of radiating sound energy. We shall use the common term transmission path 
when referring to all the other mechanisms for transmission of sound between rooms. 
 The requirements for airborne sound insulation in buildings are in most countries 
given by certain limiting values of the sound reduction index. The same measurement 
procedure and calculation method as for the laboratory is applied. However, as one does 
not quantify the various contributions to the sound pressure level in the receiving room, 
we will write instead of Equation (6.6): 
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where D again is the difference in sound pressure level between rooms, but now the 
sound reduction index R' is called the apparent sound reduction index of the partition. A 
popular way of expressing this is to say that the partition takes the blame when other 
transmission paths contribute significantly to the level in the receiving room. There are, 
however, other measures that may be used to specify the sound insulation. As stated in 
ISO 140 Part 4, which concerns airborne sound insulation measurements in the field, we 
may also use the sound pressure level difference referred to a given reverberation time 
T0. Here we shall write 

 n
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10 lg ,T
TD D
T

⎛ ⎞
= + ⋅ ⎜ ⎟

⎝ ⎠
 (6.11) 

 
where the quantity DnT is denoted standardized level difference with T0 set equal to 0.5 
seconds for dwellings. Some countries are using this quantity in their requirements 
concerning airborne sound insulation, and it could be argued that this quantity is more in 
line with the actual sound insulation experienced by the users than the R'-value.  

6.2.1.2 Single number ratings and weighted sound reduction index 

When specifying the sound insulation capability of constructions, in particular when 
connected to acoustical requirements in building codes, it is sensible to use a single 
number instead of the whole frequency curve. Normally, the latter is composed of data in 
one-third-frequency bands from 100 to 3150 Hz or in an extended range going from 50 
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to 5000 Hz. The procedure to substitute these data by a single number is based on the use 
of a reference curve, which means that we have agreed on a suitable sound reduction 
curve to be compared with our measurement data. We shall not delve into the history of 
how these reference curves were developed, it is sufficient to state that there exists such 
reference curves both for airborne and impact sound, these being internationally accepted 
(see ISO 717 Part 1 and Part 2). The reference curve for the sound reduction index is 
shown in Figure 6.4 together with a measured result, a laboratory measurement of a 
double wall of 13 mm plasterboards on separate studs. The distance between the boards 
is 150 mm and the void between the boards is filled with mineral wool. 
 To calculate the single number value RW, the reference curve is shifted in 1 dB 
steps towards the measured curve until the sum of unfavourable deviations is as large as 
possible but not more then 32.0 dB when using 16 measurement frequencies. An 
unfavourable deviation at a given frequency occurs when the measurement result is less 
than the reference value. Only the unfavourable deviations are taken into account, i.e. 
high sound insulation data in the higher frequency range does not compensate for bad 
insulation at low frequencies.  
 As is apparent from Figure 6.4, a maximum shift of 7 dB is possible in this case, 
giving a sum of unfavourable deviations of 28 dB and hence an RW of 59 dB. In former 
standards there existed the so-called “8 dB rule”, which was based on the non-acceptance 
of very low sound insulation at one or more frequency bands. Unfavourable deviations of 
maximum 8 dB was accepted, a rule that was often the determining factor when 
calculating RW.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      
 
Figure 6.4 Calculation of the weighted sound reduction index RW. In this example RW is equal to 59 dB, which 
is the reference value at 500 Hz. The sum of unfavourable deviations is 28 dB; see text.    
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To a certain extent, the “8 dB rule” is compensated for by the introduction of the so-
called spectral adaptation terms, which is added to the weighted sound reduction index. 
These terms, specified by the symbol C, are in this case defined as: 
 

 A,1 w

tr A,2 w

and

,

C X X

C X X

= −

= −
 (6.12) 

 
where XA,1 is the normalized difference in the A-weighted sound pressure level between 
the sending and receiving room, the source spectrum being pink noise. Correspondingly, 
XA,2 is the normalized difference in the A-weighted sound pressure level between the 
sending room (or in the free field in front of a façade) and receiving room, the source 
spectrum being road traffic noise. The symbol XW stands for the single number calculated 
using the reference curve (e.g. RW or R'W). 
 For the specification of the sound insulation of façades, in particular against road 
traffic noise, a traffic noise sound insulation index RA has been in use in the Nordic 
countries. This index is adapted by ISO stating  
 
 A w tr .R R C= +  (6.13) 
 

6.2.1.3 Procedure for calculating the adaptation terms 

We shall illustrate the calculation procedure using the adaptation term Ctr as an example. 
We shall calculate the sound reduction index RA according to Equation (6.13) using the 
sketches in Figure 6.5 as a basis. We will assume that the source, being road traffic noise, 
sets up a diffuse sound field in the room with sound pressure level Lin, the corresponding 
driving sound pressure level at the façade is Lout. We shall define a sound reduction index 
for the actual part of the façade, having an area S, by the equation 
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where A is the total absorption area in the room. Normalizing the sound reduction index 
by setting / 1S A ≡ , we may express the A-weighted sound pressure levels outside and 
inside, respectively, as 
 

 
out( ) A

10
A out( ) 10 lg 10

j jL

p
j

L
−Δ⎡ ⎤

⎢ ⎥= ⋅
⎢ ⎥
⎣ ⎦
∑  (6.15) 

 and 

 
out( ) A

10
A in( ) 10 lg 10 .

j j jL R

p
j

L
− −Δ⎡ ⎤

⎢ ⎥= ⋅
⎢ ⎥
⎣ ⎦
∑  (6.16) 



214 Building acoustics 

The quantity ΔAj in the last equation is the A-weighting factor1 for the frequency band 
having centre frequency j. The frequency bandwidth may be octave or one-third-octave, 
whichever is appropriate. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.5 Sound transmission through a window. Sketch showing sound pressure levels outside and inside 
before and after A-weighting.  
 
 
 The quantity of interest, the difference in the A-weighted sound pressure levels, is 
given by 
 A A out A in( ) ( )p p pL L LΔ = − , (6.17) 
 
a quantity that we will be able to calculate knowing the spectrum of the outside noise. 
Here one uses a standard spectrum for road traffic noise. When expressing this spectrum 
in frequency band values in such a way that a summation after A-weighting gives zero 
dB, i.e.  
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we arrive at the sound reduction index for traffic noise 
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The spectrum level values Lj is given by  
 
 ( )out A .j jjL L= − Δ  (6.19) 

 
These values are tabled in ISO 717 Part 1 for one-third-octave bands as well as for 
octave bands. We may then readily calculate RA if we have laboratory measurement data 

                                                 
1 The A-weighting curve is specified in the IEC standard for sound level metres; see references to Chapter 1. 
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for the sound reduction index of the actual façade element. Tabled data for Lj covers not 
only the usual frequency range of 100–3150 Hz, but also the extended range 50–5000 
Hz. 
 A corresponding procedure is used to calculate the adaptation term C, which is used 
for the internal sound insulation in buildings. The only difference is that here one uses a 
pink noise spectrum instead of a traffic noise spectrum. It is recommended in ISO 717 to 
state the performance of building elements by adding the adaptation terms to the 
calculated weighted sound reduction index in the manner shown in the following 
example: 
 w tr( ; ) 41(0; 5) dB.R C C = −  
 
Several countries are now using the sum of the relevant single number quantity and the 
appropriate adaptation term in their requirements for sound insulation, e.g. between 
dwellings 
 w w 50 5000(limit) .R R C −′ ′= +  (6.20) 
 

6.2.2 Impact sound pressure level 

Sound insulation against impact sound is normally concerned with isolation of sound 
energy generated by footfalls. A hammer apparatus, normally called a tapping machine, 
for testing of floors was as far back as 1960 standardized by ISO; see ISO 140 Part 6 for 
specifications. In spite of many criticisms over the years, complaints that measured data 
do not rank the floors in accordance with the subjective impression etc., no international 
agreement has been reached concerning another test source. We shall treat this tapping 
machine in greater detail later on. At this stage we shall just point out that it has five 
hammers, each weighing 0.5 kg, arranged in such a way that they fall freely against the 
test object (the floor) twice per second, i.e. the tapping frequency is 10 Hz. The quantity 
actually measured is the sound power radiated into the room in question. This is 
commonly the room below the floor but there may as well be situations as with rooms 
sharing a common floor, transmission to a room from footfalls on a staircase etc. The 
measure in question, reflecting the sound power, is the normalized impact sound 
pressure level Ln. Under laboratory conditions, it is defined by 
 

 n i
0

10 lg ,AL L
A

⎛ ⎞
= + ⋅ ⎜ ⎟

⎝ ⎠
 (6.21) 

 
where Li is the sound pressure level in the receiving room due to the tapping machine. 
The room has a total equivalent absorption area A, and the reference area A0 is 10 m2. In 
a building we will define in a similar way an apparent normalized impact sound pressure 
level 

 n i
0

' ' 10 lg ,AL L
A

⎛ ⎞
= + ⋅ ⎜ ⎟

⎝ ⎠
 (6.22) 

 
where L'i is the sound pressure level in the receiving room. In this level, there may now 
be contributions from other surfaces than the primary floor. These two situations, 
measurements in a laboratory and in the field are illustrated in Figure 6.6. 
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Figure 6.6 Measurement of impact sound pressure level caused by the standard tapping machine. The 
laboratory situation is illustrated in the left figure; the figure to the right shows how flanking transmission may 
contribute in a field situation.  
 
 
 In the laboratory situation, where the task is to determine the radiated power from 
the actual test specimen, the receiving room is equipped with elastic layers in such a way 
that other surfaces are structurally separated from the primary one. In a building, on the 
other hand, flanking constructions may contribute but normally this is a lesser problem 
than in the case of airborne sound. 
 Finally, it should be mentioned that the impact sound pressure level measured in 
the field might, in an analogous way to the airborne sound pressure level difference in 
Equation (6.11), be referred to a standard reverberation time T0. The quantity in question 
is then called standardized impact sound pressure level   
  

 n i
0

' ' 10 lg ,T
TL L
T

⎛ ⎞
= + ⋅ ⎜ ⎟

⎝ ⎠
 (6.23) 

 
where T0 for dwellings is equal to 0.5 seconds. 

6.2.2.1 Single number rating and adaptation terms for impact sound 

As for airborne sound insulation, we may characterize the impact sound insulation by a 
weighted normalized impact sound pressure level Ln,w for a building element and by L'n,w 
when measured in a building. As the quantities measured represent the radiated sound 
power, a high impact sound isolation implies that the values of Ln are low. When 
comparing measured data with the reference curve unfavourable deviations are 
characterized by the measured data being greater than the corresponding reference data. 
Apart from this difference, the procedure is the same as for airborne sound insulation. 
The reference curve is shifted in steps of 1.0 dB against the measured one until the sum 
of unfavourable derivations is as large as possible but no greater than 32 dB. 
 An example showing laboratory data for a wood joist floor is given in Figure 6.7 
together with the reference curve. When shifting the reference curve by 5 dB as shown 
we obtain a normalized impact sound pressure level Ln,w of 65 dB as the sum of 
unfavourable deviations then becomes 27 dB. Shifting the reference by 4 dB only, one 
gets a deviation sum of 33 dB, which is larger than the limit. It should be mentioned that 

Li A L'i
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the standard demands that the measured data should be given to one decimal place but 
that is not used in this example. 
 The “8 dB rule” mentioned above was formerly also used for impact sound 
insulation. This has been superseded by an adaptation term having the symbol CI where 
the index signifies “impact”. The reason for introducing this term is that the impact 
sound pressure level Ln,w does not take sufficient account of level peaks at low 
frequencies, especially for wood joist floors. There is clear evidence that the unweighted 
impact level of the tapping machine is more representative of the A-weighted impact 
levels caused by walking for all types of floors. The adaptation term CI is therefore given 
as the difference between the unweighted sum Ln,sum of the normalized impact levels and 
the weighted impact sound pressure level  Ln,w, such that 
 

 /10
I n,sum n,w n,sum15 dB where 10 lg 10 jL

j

C L L L
⎛ ⎞
⎜ ⎟= − − = ⋅
⎜ ⎟
⎝ ⎠
∑ . (6.24) 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.7 Calculation of normalized impact sound pressure level Ln,w. Example of laboratory measurement of a 
wood joist floor. Ln,w is equal to 65 dB and the sum of unfavourable deviations is 27 dB; see text. 
 
 
The sum is either taken in one-third-octave bands in the frequency range 100 Hz to 2500 
Hz or in octave bands in the frequency range 125 to 2000 Hz. An extended range 
including the one-third-octave bands 50, 63 and 80 Hz is also used. The term is then 
denoted CI, 50 –2500. 
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6.3 SOUND RADIATION FROM BUILDING ELEMENTS 

The sound insulation offered by a building element or a complex construction, either for 
airborne sound or impacts will depend on two factors: 1) the dynamic response to the 
actual excitation, being an acoustic field or a direct mechanical force or moment and 2) 
the efficiency as a sound radiator given the actual response pattern. In this section, we 
shall deal with the last item, in particular the sound radiation from plane elements when 
given a bending wave velocity distribution. We shall give a definition of a quantity that 
is used to characterize the efficiency of a surface as a sound radiator, the radiation 
factor. In this connection we shall return to the simple and idealized sound sources, the 
monopole and dipole, to illustrate the idea. Following this presentation we shall treat the 
problems connected to the generation of the bending wave field and further on the 
transmission properties. 

6.3.1 The radiation factor 

A commonly used quantity to characterize the efficiency of a given vibrating surface, as 
a sound radiator is the radiation factor σ, also called radiation efficiency or radiation 
ratio. By definition 

 rad
2

0 0

,
W

c S u
σ

ρ
=  (6.25) 

 
where Wrad is the radiated power from the actual vibrating surface, having the area S, to 
the surrounding medium with characteristic impedance ρ0c0. The quantity 2u is the 
mean square velocity amplitude taken over the surface. The denominator in the 
expression is the power radiated from a partial area S of an infinitely large plane surface, 
all parts vibrating in phase with a velocity equal to this mean value, i.e. a plane wave 
radiation condition. We shall here refer back to the calculation of the radiated power 
from a plane circular piston set in a baffle (see section 3.4.4). Here we found the same 
expression when the piston dimensions become much larger than the wavelength. 
 The brackets in the expression signify that we are taking the mean value in the 
spatial domain, i.e. of the square RMS-value taken over all points on the surface. The 
condition for doing this, in a practical sense, is that the velocity does not vary too much 
from point to point, making it sensible to represent the velocity as a mean value. How 
large variations should be allowed will obviously depend on the application. In addition 
to taking the mean value in the time and spatial domain, a third type of averaging must be 
performed in practice; averaging inside frequency bands of width one-third-octave or 
octave. We then assume that the applied bandwidth is large enough to contain several 
natural frequency modes of the actual structure. 
 Determination of the radiation factor is often performed by way of measurements, 
as a direct prediction is difficult except for idealized cases. However, there are a number 
of analytical expressions available, both for plane surfaces and for shell constructions. 
We shall limit our discussions to plane surfaces.  
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6.3.1.1 Examples using idealized sources 

We shall start using the idealized type of sources, monopoles and dipoles, to illustrate the 
concept of radiation factor. For a monopole we found in section 3.4.1 that the radiated 
power could be expressed as 
 

 
2 2

2
0 0 2 2 ,

1a
k aW c u S

k a
ρ=

+
 (6.26) 

 
where k is the wave number and a the radius of the sphere with area S = 4π a2. Inserting 
this expression into Equation (6.25) giving the radiation factor, we get 
 

 
2 2

monopole 2 2 .
1

k a
k a

σ =
+

 (6.27) 

 
Examples on the radiation factor for a monopole source having radii of 5 and 25 cm, 
respectively, are shown in Figure 6.8. The radiation factor is given on a logarithmic scale 
as 10⋅lg σ, a quantity commonly denoted radiation index.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.8 Radiation factor of a monopole (pulsating sphere) and a dipole (oscillating sphere) with radius 5 and 
25 cm, respectively. Solid curves – monopole. Dashed curves – dipole. 
 
 
The technical report ISO/TR 7849 (1987)2 is using Equation (6.27) as an upper limit 
when calculating the radiated noise from machinery based on measured vibration levels. 
In this report it is expressed as 
 

                                                 
2 Currently (2007) under revision. 
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where f is the frequency and d is a typical dimension, which for a monopole is the 
diameter of the sphere. This implies that /d S π= or 3 2d V= ⋅ , where S and V are 

equal to the source radiating area and volume, respectively. It is easy to see that the two 
expressions are identical.  
 Figure 6.8 also shows the corresponding radiation factor for a dipole source 
exampled by an oscillating sphere having the same radius. As pointed out earlier on, a 
dipole is a much less effective source than a monopole at low frequencies. A practical 
example is the radiation from a loudspeaker mounted in a large baffle or in a closed box 
as compared to being freely suspended in the air. For illustration see section 3.4.1. 
 Calculating the radiation factor for an oscillating sphere is however a little more 
involved than for a pulsating one. We shall therefore just give the result, which is 
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 (6.29) 

 
and where |  | indicates the modulus of the expression. The expression is furthermore 
based on setting the mean squared velocity of the oscillating sphere equal to one-third of 
the same for the pulsating sphere. Hence 
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This may also be formulated by saying that the mean particle velocity on the surface of 
the oscillating sphere is (1/3)1/2 of the maximum velocity.  

6.3.2 Sound radiation from an infinite large plate 

We shall use an idealized example to show which parameters are important in sound 
radiation from plates, namely radiation from an infinitely large plate where a simple 
plane bending wave is propagating (see Figure 6.9). We shall calculate the sound 
pressure p in a point with coordinates (x,y) above the plate and further on, the radiation 
factor when the velocity is given by 
 
 Bj( )

B ˆ ,t k xu u e ω −= ⋅  (6.30) 
 
where kB is the wave number for the bending wave that is propagating in the x-direction. 
We now assume that the sound pressure above the plate can be expressed as 
 
 j( )ˆ( , ) ,x yt k x k yp x y p e ω − −= ⋅  (6.31) 
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where kx and ky are the components of the wave number in the medium around the plate 
(air). This expression has then to be a solution of the ordinary wave equation: 
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Figure 6.9 Sketch showing a plane bending wave on an infinitely large plate. The plate lies in the x–z plane and 
the pressure is calculated in points (x,y). 
 
 
 Inserting Equation (6.31) into (6.32) we immediately see that the wave number k 
for the sound field above the plate must be expressed by 
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.x yk k k

c
ω

= = +  (6.33) 

 
A further condition is that the component vy of the particle velocity, i.e. the component 
normal to the plate, must be equal to uB at the surface of the plate (y = 0). Since vy is 
given by       
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we get when setting y = 0, 
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The sound pressure may thereby be expressed as 
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This result shows that the important factor for the sound radiation is the ratio of the wave 
numbers in the plate and the surrounding medium. When kB > k, i.e. the wavelength λB in 
plate is smaller than the wavelength λ in the air, the sound pressure will decrease 
exponentially with the distance y. We only get an exponentially diminishing near field, as 
the exponent containing y becomes a real number. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.10 Sound radiation from a plate. The wavelength of the bending wave in the plate is larger than the 
wavelength in the surrounding medium. 
 
 
If, on the other hand, kB < k (or λB > λ) we have an ordinary propagating plane wave 
where the sound pressure increases with increasing ratio k/kB. This may be expressed by 
the angle ϕ of the radiated wave (see Figure 6.10). We get 
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The condition having λB > λ is sometimes called trace matching; the wavelength of the 
radiated wave is equal to the plate bending wavelength projected in the direction of the 
wave. In this case we may calculate the radiation factor by finding the radiated power 
from a partial surface S. This power may be expressed as 
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Hence, the radiation factor is given by 
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where we assume that kB < k. For increasing k, i.e. when the wavelength λB in the plate 
increases in relation to the wavelength λ in air, the radiation factor approaches 1 (one). 
This applies, as already demonstrated, for the idealized source types but also for plates of 
finite dimensions. 

6.3.3 Critical frequency (coincidence frequency) 

In the above we introduced the notion of trace matching. The term was first introduced 
in German literature (see e.g. Cremer et al. (1988)), describing the condition of the trace 
wavelength in an incident wave equal to the wavelength of the plate, i.e. a reversed 
situation of the one being described in the last section. In either case, there will be a 
limiting or critical frequency where this coincidence phenomenon may occur, also called 
the coincidence frequency. We shall use the former notion. At this frequency fc the 
wavelength λB is equal to the wavelength λ in the surrounding medium. In other words: 
the phase speed cB in the solid medium is equal to the phase speed c0 in the surrounding 
medium (air). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.11 Critical frequency of homogeneous plates as a function of thickness.  
  
 
 For thin plates, i.e. when the wavelength is larger than approximately six times the 
plate thickness, we have shown that the phase speed is expressed as 
 

 4B ,Bc
m

ω= ⋅  (6.40) 

 
where B is the bending stiffness per unit length and m is the mass per unit area. By 
putting cB equal to c0 and solving with respect to frequency, we get 
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For homogeneous plates we may write 
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where cL is the phase speed for longitudinal waves and h is the plate thickness. Figure 
6.11 shows the critical frequency for plates of some typical building materials. 

6.3.4 Sound radiation from a finite size plate 

We showed in the previous section that for frequencies lower than the critical frequency 
no radiation could occur from a plate of infinite size. This is certainly not the case for 
real plate structures of finite size but how shall this be calculated, e.g. for a rectangular 
plate having edges of length a and b? This will be rather more complicated than the 
idealized example with the infinite plate. Assuming that the vibration of the plate is 
determined by its natural modes, the radiation will depend on the actual modal pattern, 
which in turn is determined by the modes taking part and their individual vibration 
amplitudes. This implies that the mean surface velocity of the plate does not uniquely 
determine the radiated power. In principle therefore, one cannot calculate the radiation 
factor solely from the dimensions and material properties. The vibration generating 
mechanism or the form of excitation must also be known. With the latter we have 
knowledge of the actual source, what kind of source and how it actually is driving the 
plate. 
 In most practical cases, having a stationary mechanical excitation, the structure will 
be forced into vibration by a more or less broad banded source. This means that the 
vibration pattern is a combination of the natural modes having eigenfrequencies inside 
the actual frequency band being excited into resonance. The contribution from each of 
these modes will depend on how the structure is driven by the source. In our case, 
concerning the rectangular plate, we shall be quite pragmatic assuming that all modes 
having their natural frequency within the actual frequency band have the same velocity 
amplitude. Data given in standards, e.g. EN 12354–1 is calculated using this assumption 
and we shall give some examples below. 
 However, it will be quite useful to calculate the radiation factor for a single mode to 
see how critical the vibration pattern is concerning the radiated power. We shall therefore 
calculate the radiation factor for a simply supported plate set in an infinite baffle. We 
assume that the plate is vibrating in a simple harmonic way with a velocity given by 
 

 ˆ( , ) sin sin 0 , 0 ,x z
y

n x n zu x z u x a z b
a b
π π⎛ ⎞ ⎛ ⎞= ≤ ≤ ≤ ≤⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 (6.43) 

 
where nx and nz are the modal numbers in the x- and z-direction, respectively. This is 
illustrated in Figure 6.12, where the plate vibrates in a (5, 4) mode. The corresponding 
wave number are, as shown in Chapter 3, given by 
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Hence, the corresponding eigenfrequencies are given by 
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where B and m again is the bending stiffness per unit length and mass per unit area, 
respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.12 Sketch for calculating sound radiation from a finite size plate.  
 
 
 Before we perform the calculation of the radiated power, we shall give some 
qualitative comments on the situation. In the same manner as for the infinite plate, the 
relationship between the wave number in the plate and the wave number in the 
surrounding medium must be the determining factor for the radiation. In this case, 
however, we have two partial wave numbers (or partial wavelengths) to consider. 
Commonly, these are divided into three groups: 
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 The reason for these terms should be evident from Figure 6.13, with sketches 
showing a simply supported plate vibrating in a given corner mode and an edge mode, 
respectively. The modal pattern is for simplicity indicated by alternating signs; the left-
hand sketch is equivalent to the one shown in Figure 6.12 having modal numbers (5, 4). 
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In this case, we envisage that the wavelength in the surrounding medium is larger than 
both partial wave numbers of the bending wave in the plate. The various parts of the 
plate are vibrating in opposite phase separated by small distances, i.e. small when 
compared with the wavelength in the medium around. The plate becomes a multipole 
source; the movements of the various parts are not correlated or coordinated to be an 
effective sound source. The only effective radiating areas are the areas situated near to 
the corners, these are sufficiently far apart so as not to be mutually destructive. For the 
edge mode, one of the partial wavelengths is larger then the wavelength in the medium 
around, which results in a larger effective radiation area. 
 Both types of mode are also called slow acoustic modes because the phase speed of 
the wave is smaller than the same in the surrounding media. As for the last mentioned 
type of mode, the surface mode, the partial wavelengths and the speed is larger than in 
the media around. We get fast acoustic modes where the whole surface is an efficient 
radiator bringing the radiation factor towards the value of one.    
       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.13 Examples of modal pattern for a rectangular plate. Left figure – “corner mode”; both partial 
wavelengths are smaller than the wavelength in the surrounding medium. Right figure – “edge mode”; one of 
the partial wavelengths is larger than the wavelength in the surrounding medium. 
 

6.3.4.1 Radiation factor for a plate vibrating in a given mode 

Wallace (1972), based on the Rayleigh integral introduced in Chapter 3, calculated the 
sound pressure and thereby the intensity in the far field from a plate where the velocity is 
given by Equation (6.43). When integrating the intensity over a hemisphere over the 
plate we get the radiated power and thereby the radiation factor by using Equation (6.25). 
We shall not give the details here but for completeness we shall give the end result, 
which is 
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The quantities α and β are given by 
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is to be understood in the following way: cosine should be used when nx or nz is an 
uneven number, sine when they are even. The radiation factor, given by the radiation 
index 10⋅log σ, is shown in Figure 6.14 as a function of relative frequency, i.e. relative to 
the critical frequency. The plate is square (a = b), and the index is calculated for a 
number of the lower modes, the mode numbers (nx,nz) are indicated on the curves.  
 A Gaussian numerical integration is used to evaluate the integral in Equation (6.46)
. The accuracy is relatively low for f > fc and high mode numbers (>8–10). The important 
point is, however, to show the behaviour of the radiation factor at low frequencies and, at 
the same time, to link the results to the observations above and to compare with 
calculated results using the idealized source types. A plate vibrating in the fundamental 
mode (1, 1) will represent a monopole, whereas the vibration pattern in the (1, 2) mode 
or (2, 1) mode will represent a dipole. (Do compare Figure 6.8 and Figure 6.14).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.14 Radiation index of a square plate as a function of frequency relative to the critical frequency fc. The 
mode number (nx,nz) is indicated on the curves.  
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6.3.4.2 Frequency averaged radiation factor 

It is not possible to give a simple formula to calculate the radiation factor for a plate 
driven at a single frequency. The response will normally contain contributions from 
several modes each with different amplitude, depending on the location of these modes 
relative to the driving frequency and on the damping of the plate. The best one can do for 
practical use is to find a frequency averaged radiation factor. One will then assume that 
the excitation is relatively broadband as compared with the distance between the natural 
frequencies, furthermore, that all modes inside the frequency band are equally excited. 
Several expressions exist in the literature; see e.g. EN 12354–1, but it is not obvious that 
one is better than another. We will show data given by Leppington et al. (1982), who 
give the following expressions covering three frequency ranges 
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 (6.48) 

 
The quantities a and b again give the dimensions of the rectangular plate, where it is 
assumed that a < b. Further, the quantities S and U are the plate area and circumference, 
respectively, i.e. S = a⋅b and U = 2(a + b). The parameter χ is the square root of the ratio 
fc/f. It should be noted that the critical frequency should be much higher than the first 
eigenfrequency of the plate, due to the assumption that there should be resonant radiation 
by an assembly of modes. 
 An example using these equations is shown in Figure 6.15. The radiation index is 
calculated for plates of aluminium or steel where the length of one edge is 2 metres 
whereas the other is varied between 0.5 and 2 metres.  
 Comparing the lowermost three curves in the diagram, representing plates having 
identical thickness h, we observe that a long and narrow plate is a more efficient source 
than a square one, of course provided the velocity is the same. Similarly, when 
comparing the two uppermost curves we find that an increased thickness increases the 
radiation. Increasing the thickness implies a reduced critical frequency, here by a factor 
of two. This is the reason for the choice showing the radiation factor as a function of the 
ratio of frequency to the critical frequency. Additionally, the curves are more general 
than indicated by the examples. They may be applied to plates where the relationship 
between circumference U, area S and thickness h, i.e. the quantity U⋅h/S is equal to the 
ones given in the diagram. To calculate the critical frequency based on material 
properties and thickness one should apply Equation (6.41) or Figure 6.11. 

6.3.4.3 Radiation factor by acoustic excitation 

The results given in the preceding section only apply to resonant multimode vibration of 
a plate. It is presupposed that the plate is mechanically excited by a vibration source 
having a given bandwidth, either directly excited or by vibrations transmitted from a 
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connected structure. A typical example of the latter type in buildings is the so-called 
flanking transmission.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.15 Radiation index by resonant radiation from plates of steel or aluminium. Calculated from 
expressions by Leppington et al. (1982).  
 
 
 Hence, we cannot use these data when a sound field is driving the plate in a forced 
vibration pattern which is not “natural”. This is illustrated by the data in Figure 6.16, 
which are collected from a series of measurements by Venzke et al. (1973) on panels of 4 
mm thick aluminium. The radiation factor is measured using two different types of 
excitation: directly by an electrodynamic exciter and by a diffuse sound field, 
respectively, the latter is used in a standard sound insulation measurement. For the 
former we have compared the results by calculations according to the Equations (6.48), 
which shows that the fit between these data is quite good for frequencies above some 
400–500 Hz. Similar results are also reported by others (see e.g. Macadam (1976)). 
 As shown, the radiation factor will be larger for the case of sound field excitation 
than for a mechanical excitation in the frequency range below the critical frequency fc. 
The wave field in the plate will partly be determined by the sound pressure distribution 
imposed by the sound field, a forced vibration field, partly by the free waves originating 
from the edges of the finite plate. Of these partial wave types, the non-resonant (forced) 
and the resonant one, the former will be dominant when it comes to sound radiation. This 
implies, when we shall be able to predict the sound transmission through a panel or wall, 
which we will treat later, one must take both the resonant and the non-resonant radiation 
into account. 
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Figure 6.16 Radiation index of a 4 mm thick aluminium panel, 2.7m x 3.4m, measured using different kinds of 
excitation. Data from Venzke et al. (1973). Calculated data from Equation (6.48).  
 
  
 The radiation factor for forced vibrations by a sound field will necessarily be 
dependent on panel dimensions and the actual wavelength, but also on the angle of sound 
incidence. In building acoustics we shall primarily be interested in the radiation factor for 
an incident diffuse field. Several alternative expressions exist in the literature, e.g. Sewell 
(1970), Ljunggren (1991) and Novak (1995). We shall quote the first mentioned, which 
may be written 
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and where k is the wave number and F(Λ) = F(1/Λ) is denoted a shape function. Data for 
this shape function may be taken from a table but a more practical solution will be to use 
a polynomial approximation or similar.  
 Based on this equation, EN 12354–1 gives an approximate formula, where an upper 
limit of 2 is applied to the value of σf, i.e. 10⋅lg(σf) has a maximum value of 3 dB. 
Without making unduly large errors one may also leave out the shape function, because 
F will vary between zero and 0.5 when b/a varies between one and 10, and also the last 
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term in the expression. One easily observes that the variability of σf is much smaller than 
the corresponding one for resonant radiation. The radiation index 10⋅lg(σf) seldom goes 
below –5 dB. 

6.3.4.4 Radiation factor for stiffened and/or perforated panels 

Finally, we shall name some additional factors which are important concerning sound 
radiation from plates. The first deals with the effect of studs or stiffeners. One might 
argue that the stiffeners will divide the plate into a number of smaller plates, with the 
effect that the total circumference comprising all partial plates becomes larger. This will 
then increase the radiated power due to the resonant modes when f < fc; see Equation 
(6.48). This effect is experimentally confirmed as apparent from Figure 6.17. The 
radiation index is shown for the same aluminium panel used for Figure 6.16 but now the 
panel is stiffened by aluminium studs attached to the panel in a centre-to-centre distance 
of 400 mm. In one case, the stiffeners are running in one direction, in the other there 
were crosswise stiffeners as well. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.17 Radiation index of a 4 mm thick aluminium panel, 2.7 x 3.4 metres, measured using mechanical 
point excitation. The panel is stiffened using Al-profiles in one and two (crosswise) directions. Measurements 
according to Venzke et al. (1973). 
 
 
 The results shown are measured using mechanical point excitation. However, 
Venzke et al. also present similar data using diffuse field excitation. These exhibit 
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considerably less differences between stiffened and non-stiffened panel. (How would 
you explain this?) 
 Furthermore, it should be mentioned that a clamped plate would normally radiate 
sound better than a simply supported one. On the other hand, a freely suspended plate 
could create an acoustical “short-circuiting” between back and front, i.e. behaving like a 
dipole and thereby reducing the radiation. A pronounced example on such acoustical 
short-circuiting is to be found in perforated plates, which may exhibit very small 
radiation factors. In noise control of machinery this effect is well known and perforated 
panel are used in enclosures for e.g. rotating parts. This will reduce the radiated noise 
from the enclosure if being mechanically excited by the machine. Certainly, it will not 
act like an acoustical enclosure or barrier, if this should be the purpose of the shielding. 

6.4 BENDING WAVE GENERATION. IMPACT SOUND TRANSMISSION 

In section 6.3, the subject was sound radiation from a plate assuming that, in one way or 
another, it had been set into vibrations and thus obtained a velocity or velocity 
distribution. The pertinent question to be asked is therefore: How shall we find the 
velocity or velocity distribution induced by a given excitation of a structure having a 
certain shape, dimensions and material properties? Again, we shall only be concerned 
with plate structures and the types of excitation will either be a sound pressure 
distribution over the surface or mechanical point forces. We shall start with the latter 
being relevant for the problem of impact sound.  

6.4.1 Power input by point forces. Velocity amplitude of plate 

In Chapter 3 (section 3.7.3.4), we presented an example of the response of a plate excited 
by a point force. We calculated the input mobility M in a given point defined by 
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 (6.50) 

 
The quantities u0 and F represent the velocity and force at this point, respectively, and Z 
the corresponding point impedance or input impedance. Corresponding quantities are 
defined for moment and angular velocity but we shall limit our treatment to point forces.  
 For an infinitely large plate, excited into bending vibrations, Cremer et al. (1988) 
have shown that the input mobility is a real quantity given by 
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 (6.51) 

 
where the last term is an approximation applicable for homogeneous plates. The 
important point to be made concerning Equation (6.51) is that it also represents the mean 
value of the mobility of a finite plate, i.e. the mean value taken over all input points and 
over frequency. This fact has already been referred to in Chapter 3, where we showed in 
Figure 3.23 that the natural modes resulted in a mobility and impedance strongly space 
and frequency dependent. The expected or mean value, however, is equal to the one 
found for an infinite plate. 
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Figure 6.18 Dynamic point force input F to a plate having point mobility M. 

 
 
The mechanical power imparted to a structure by a point force may in general be written 
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where Re{…} denotes the real part. Setting out to calculate the part of this power being 
radiated as sound energy we shall need information, not only on the velocity amplitude 
of the driving point but on the global velocity distribution as well (see Equation (6.25)). 
In practice, we shall assume that the plate is driven by a dynamic force having a certain 
frequency bandwidth Δω, and we shall further assume that a number of modes have their 
natural frequencies inside this band. (Normally, having 5–6 eigenfrequencies inside Δω 
will give reasonable estimates). It may then be shown (Cremer et al. (1988)) that the 
mean square velocity amplitude may be expressed as 
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where  S, m and η  are, respectively; the area, the mass per unit area and the loss factor of 
the plate. The angular frequency ω will be the centre frequency in the band of width Δω. 
The function n(ω) is the modal density of the plate, formerly derived in Chapter 3, 
section 3.7.3.5 and given by 
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Inserting this expression into Equation (6.53) we get 
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where we have introduced the wave number kB in the last expression. We arrive at an 
alternative expression by introducing the mobility from Equation (6.51). Hence 
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The numerator in this expression represents the power imparted by the force, thereby 
giving us the following important relationship between that power and the resulting mean 
square velocity 
 2

mec mec .W Sm u E
ω

ηω ηω
Δ

= =  (6.57) 

 
The quantity Emec denotes the mechanical (modal) energy of the plate. It should be noted 
the validity of this expression is not limited to point excitation but it gives the general 
relationship between mechanical power and the mean square velocity of a structure. It is, 
however, presupposed that the structure is neither so large nor so heavily damped that we 
cannot reasonably determine a representative mean velocity. 
 We can at this point find an interesting analogue in the relationship between the 
sound power Wac injected by a source into a room and the resulting mean square sound 
pressure in the diffuse field. See the derivation in section 4.5.1, where we found that 
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where A, V and T are the total absorbing area, volume and reverberation time of the 
room, respectively. Substituting the latter quantity with the equivalent loss factor of the 
room using the relationship 
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we get 
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where w is the acoustical energy density in the room and Eac is the corresponding total 
acoustical energy. The last expressions in Equations (6.57) and (6.60) we shall meet 
again in Chapter 7 when dealing with statistical energy distribution and energy flow in 
multimode systems; i.e. when dealing with methods and prediction models labelled as 
statistical energy analysis (SEA). 
 We shall return to our point excited plate, and we shall address the problem of 
estimating the part of the mechanical energy transformed into sound power. Knowing 
both the mean velocity and the radiation factor we should be able to calculate the 
radiated power directly. However, as shown in the next section, the conditions in the 
neighbourhood of the driving point do complicate matters.    

6.4.2 Sound radiation by point force excitation 

The mechanical power imparted to a structure will be dissipated partly by internal losses, 
partly transmitted to connected structures and partly radiated as sound. When the 
surrounding medium is air, which is the case we shall be concerned with, the latter part 
will be small; normally a maximum of 1–2%. As indicated in the preceding section, 
radiation will partly be due to the reverberant wave field set up due to reflections from 
the plate boundaries. This part will be determined by the resonant modes giving a wave 
field having a mean square velocity given by Equation (6.55) or (6.56). In addition, there 
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will be a discontinuity at the driving point, which is called a bending wave near field. 
This field will determine the minimum amount of sound power radiated from a plate, the 
plate is of finite or infinite size, when it is driven by single point force or a collection of 
such forces. This fact is of great importance in the design of wall linings attached to 
heavier walls to minimize radiation (see Chapter 8). Figure 6.19 illustrates a possible 
situation at frequencies f < fc, where there is sound radiation caused by edge modes and 
bending near field around the excitation point.   
 
 
 
 
 
 
 
 
 
 
 
Figure 6.19 Sound radiation from a plate excited by a point force. Radiation due to bending wave near field and 
edges modes.  
 
 
 The total sound power radiated from a plate having finite dimensions may then be 
expressed as 
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Before treating this expression in more detail and applying it to the problem of impact 
sound we shall have a look at the first term, radiation due to the bending near field. 

6.4.2.1 Bending wave near field 

The radiated power caused by the bending near field may be calculated from an 
expression of the bending wave field set up on a thin, infinitely large plate by a point 
force. The derivation is given in Cremer et al. (1988) and we shall cite only the end result 
which is 
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and where k is the acoustic wave number, the wave number in the surrounding air. We 
have presented the first expression to show the analogy with the reverberant part of the 
radiated power (see below). However, looking at the second expression we observe that 
Wpoint is dependent neither on frequency nor on the bending stiffness. The latter fact may 
seem odd, as we know that an increased stiffness will result in a longer wavelength and 
thereby an increase in the radiated power. This effect is however offset by an increased 
“resistance” against movement; the input impedance is increasing and the mobility will 
be less as seen from Equation (6.51). It should be noted that Equation (6.62) applies only 
for frequencies below the critical frequency. 
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 It could be useful to give an example illustrative of the sound power due to this 
bending near field. We shall then make a comparison with the radiated sound power 
from a given area of an infinite plate, in conformity with defining the radiation factor. 
We envisage this area as a piston having radius a. Setting the velocity amplitude equal to 
u0 the radiated sound power will be given by 
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The task is now to find the radiated sound power due to the near field according to 
Equation (6.62) having velocity u0 in the driving point. Second, we shall calculate the 
radius a of the piston when Wpoint is equal to Wpiston. From Equations (6.50) and (6.51) 
together with Equation (6.41), we obtain 
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Equating this sound power with Wpiston we obtain 
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Example The critical frequency fc of a concrete plate, having a thickness of 50 mm, will 
be approximately 380 Hz (see Figure 6.11). The radius a of the equivalent piston source 
will thereby be ≈ 26 cm. Using e.g. an applied force of 10 N (RMS-value) we get from 
Equation (6.62) a radiated sound power of approximately 4.2⋅10-6 watts or a sound power 
level LW re 10-12 watts of 66 dB. Assuming a semicircular radiation centred on the driving 
point the sound pressure level Lp will be 58 dB at a distance of 1 metre. 
 In several practical cases, it is important to know the radiated power from the 
bending near field, not only when a point force drives the plate, but also equally well 
when driven along a line. The latter applies to cases where vibrations are transmitted to a 
panel or wall by studs or stiffeners. Corresponding expressions to the ones given in 
Equations (6.62) and (6.64) are 
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The quantities Fℓ and ℓ are the force per unit length and the length of the line, 
respectively. 

6.4.2.2 Total sound power emitted from a plate 

We have already presented an expression giving the total acoustical power emitted from 
one side of a point-excited plate (see Equation (6.61)). By inserting the expression for the 
power radiated from the near field, Equation (6.62) and using Equation (6.55), giving the 
mean square velocity, we obtain 
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Concerning the force F it is still presupposed that it has a given bandwidth although we 
allowed ourselves to leave out this index. Also, as pointed out above, the first term is 
only applicable at frequencies below the critical frequency fc. Another presumption is 
that the total energy loss of the plate is dominated by the inner material losses and 
boundary losses; i.e. the radiated acoustical power makes up a minor part of the total 
power dissipated. The latter condition is normally fulfilled when the surrounding 
medium is air (refer to the introduction to section 6.4.2). 
 From Equation (6.67) we may arrive at a couple of conclusions of great practical 
interest in general noise abatement. The radiation factor will, as seen from Figure 6.15, 
strongly increase when the frequency approaches the critical frequency, which implies 
that above a given frequency the reverberation field will dominate the radiated power. 
This again implies that the loss factor η will be of great importance. By artificially 
increasing this factor, adding e.g. viscoelastic layers to thin plates is therefore favourable. 
 Conversely, in the lower frequency range, the contribution from the near field 
could be dominant given that the loss factor is not too small. We may prove this by using 
Equation (6.48) to find a low frequency approximation for the radiation factor, this being 
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Thus, the second term in Equation (6.67) will be proportional to 1/(η ⋅ f ½) in the low 
frequency range, whereas the first term, representing the radiation from the near field, 
will be constant and frequency independent; thereby determining the radiated power 
above a certain frequency. Increasing the loss factor will in this case have no effect on 
the radiated power. Denoting the crossover frequency by fk, i.e. the frequency where 
Wpoint is equal to Wreverberant, we get 
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If the task is to reduce the radiated power for excitation frequencies f in the range given 
by fk < f << fc, no further increase in η will accomplish this. 
 
Example We shall assume that a steel panel, of 1 mm thickness, has a loss factor of 0.05, 
partly due to material losses and partly to boundary losses. For simplicity, we will further 
assume that the panel is square with dimensions 2.5 meters. The crossover frequency fk 
will then be approximately 250 Hz. A loss factor η > 0.05 will therefore not reduce the 
radiated power in the frequency range from 250 Hz and upwards to several kHz (the 
critical frequency for 1 mm steel is 12.5 kHz). It must, however, be noted that by 
increasing the loss factor with a viscoelastic layer, glued or sprayed on to the panel, there 
will be a reduction in the radiated power due to the added mass.  
 
 
 



238 Building acoustics 

6.4.2.3 Impact sound. Standardized tapping machine 

As mentioned in section 6.2.2, a standard tapping machine is used to quantify the impact 
sound insulation in buildings. It was also pointed out that there have been many 
objections against this machine, criticism on the practical use as regards to calibration 
etc., claims that its ranking of the test objects is not coinciding with a subjective ranking 
of the impact sound insulation. Concerning the ranking, problematic cases arise when 
used on e.g. wood joist floors. A great deal of research has be directed towards finding 
alternative methods for testing impact sound insulation, on methods using other types of 
sources that in a better way simulates the impact of human footfalls. Some alternative 
sources are suggested and explored; some are also included in national standards (e.g. 
Japan). The topic will, however, be too extensive to treat in this book. We shall therefore 
only give specifications on the standard tapping machine. 
 The tapping machine has five hammers, each having a mass mh of 0.5 kg. The 
hammers fall freely from a height H of 4.0 cm; each of them falls twice per second 
making the tapping frequency fs of the machine equal to 10 Hz. Assuming that the 
impacts on the test specimen are purely elastic, this kind of source will give a force 
inside a frequency band Δf that may be expressed as 
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v0 is here the speed of the hammer at the moment of impact giving an impulse I. The 
quantity g is the acceleration due to gravity. Measuring the force using one-third-octave 
bands, i.e. Δf ≈ 0.23⋅f0, where f0 is the centre frequency in the band, we get 
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The whole of this force is not necessarily transmitted to the floor under test; the ratio of 
the point impedance to the internal impedance of the source will be a determining factor. 
Instead of Equation (6.52), we shall have to express the mechanical power input to the 
floor by 
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Assuming Z >> Zh, which will always be the case when dealing with heavy floors as 
concrete etc., we are able to calculate the radiated power by inserting Equation (6.71), 
the equation for the force, into Equation (6.67). As an example, we shall use a 
homogeneous floor slab of thickness h. Restricting our discussion to the frequency range 
above the critical frequency enables us to set σ ≈ 1 giving  
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The quantities contained in the constant are the material data for the floor and the 
surrounding air. This implies that the radiated power will decease by the third power of 
the thickness in the given frequency range or, in other words, the sound power level will 
decrease by 9 dB for each doubling of the floor thickness. In addition, assuming that the 
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loss factor is frequency independent, the impact sound pressure level Ln in the receiving 
room (see section 6.2.2), will be frequency independent. 
 Using these presumptions, we shall use Equations (6.21), (6.58) and (6.67) to 
calculate the normalized impact sound pressure level giving 
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Measurements of the loss factor in practice have shown that it is slightly frequency 
dependent. Following Craik (1996), we may, as a rough estimate for heavy floors of 
concrete etc., write  

 1 0.015.
f

η = +  (6.75) 

       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.20 Normalized impact sound pressure level of a 140 mm thick concrete slab and a 260 mm thick 
hollow core concrete slab. Laboratory measurement data together with calculated results for the concrete slab. 
 
 
 An example is given in Figure 6.20 showing results of laboratory measurements on 
a concrete slab of thickness 140 mm. Comparing with calculated results we have used 
Equation (6.74) together with Equation (6.75) for the loss factor. The mass per unit area 
of the slab is 320 kg/m2 and the critical frequency is 120 Hz. As seen from the figure 
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measured and calculated results compares very well. The standard EN 12354–2 gives an 
alternative expression for the normalized impact sound pressure level, which is 
 

 n s
ref

155 30lg 10lg 10log 10lg (dB).fL m T
f

σ= − + + +  (6.76) 

 
However, using this equation we will obtain the same results as shown in the figure. The 
quantities TS and fref are the structural reverberation time given by Equation (6.59) and a 
reference frequency of 1000 Hz, respectively. 
 In Figure 6.20, we have also included a result measured on a thicker concrete slab 
of the hollow core type. A vertical section of such a slab is shown in the sketch in the 
same figure. These kinds of element exist in different thicknesses, also having hollows of 
different shapes. Statically considered they are equivalent to the massive slabs but, as 
seen from the figure, the curve shape of the impact level is quite different. To our 
knowledge, a similar model for the impact sound pressure level, as given for the massive 
slab, is not known.  

6.5 AIRBORNE SOUND TRANSMISSION. SOUND REDUCTION INDEX FOR 
SINGLE WALLS 

To calculate airborne sound transmission we are presented with a more complicated 
problem than with impact sound. We are again forced to calculate the bending wave field 
induced by the excitation and thereafter find the resulting radiated power due to this 
field. In this case, however, the vibration pattern of the structure is more complex having 
two components: 
 

• A forced vibration field; imparted to the wall due to the external sound field. 
This is also called the non-resonant field. 

• A resonant field; a vibration field due to the natural modes excited by 
reflections from the boundaries.  

   
The radiated sound power may now be expressed as 
 
 { }2 2

ac 0 0 f f r r ,W c S u uρ σ σ= ⋅ + ⋅  (6.77) 

 
where the indices f and r indicate “forced” and “resonant”, respectively. An exact 
theoretical treatment of this case will be rather involved, partly due to these two different 
mechanisms, partly due to a complicated dependency of the angle of sound incidence. 
We shall choose to give an overview of the physical background for these phenomena, 
followed by a calculation procedure covering the case of most interest, the airborne 
sound transmission by a diffuse field. 
 By analogy with the treatment of impact sound, it is useful to start considering a 
single wall or floor modelled as an infinitely large thin plate excited by a single plane 
wave. Such a simplification may be justified by the fact that several of these predicted 
results also apply for plates of finite dimensions. The reasoning behind this fact will be 
treated in section 6.5.2.  
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6.5.1 Sound transmitted through an infinitely large plate 

We shall assume that the plate lies in the xz-plane and that it is driven by an external 
force per unit area, a sound pressure p(x, z, t), due to the incident plane wave (see Figure 
6.21). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.21 Plane wave incidence on a thin, infinitely large plate. 
  
 
 The first task will be, analogous to the case of point force excitation, to find an 
expression for the plate velocity as a function of the sound pressure driving the plate. To 
solve this we have to use a differential equation, a wave equation, where the driving 
pressure is represented on the right side of the equation. Hence, to calculate the sound 
reduction index we shall have to find the sound pressure in the transmitted wave. We 
shall use this procedure but as an introduction we shall treat a special case neglecting the 
bending stiffness of the plate, i.e. characterizing the plate by its mass impedance only. 

6.5.1.1 Sound reduction index of a plate characterized by its mass impedance 

We may visualize such a wall or plate as a membrane (without tensional forces) or a 
collection of loosely connected point masses. A plastic curtain or something comparable 
will in practice behave, acoustically speaking, in such a way. For simplicity, we shall 
also assume normal sound incidence. The resulting input impedance Zg in this case (see 
section 3.5) will be 
 g 0 0 0j j .Z c m Z mρ ω ω= + = +  (6.78) 
 
This is a series connection of the mass impedance of the plate and the characteristic 
impedance of the air behind the plate. Seen from the side of the incident wave the plate 
will represent a boundary surface giving an absorption factor α that we may calculate 
using the following equation, derived in section 3.5.1 
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Having characterized the plate by its mass impedance, also having no internal energy 
losses, the transmission factor τ of the plate must be equal to the absorption factor α. 
Inserting for Zg after Equation (6.78), we get 
 

 2

0

1 ,

1
2

m
Z

τ
ω

=
⎛ ⎞

+ ⎜ ⎟
⎝ ⎠

 (6.80) 

 
giving the sound reduction index 
 

 
2

0
0 0

110 lg 10 lg 1 20 lg .
2

m f mR
Z Z

ω π
τ

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥= ⋅ = ⋅ + ≈ ⋅⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (6.81) 

 
This is the so-called mass law in its simplest form; the sound reduction index increases 
by 6 dB by each doubling of frequency and/or mass per unit area. The approximation 
given by the last expression, however presuppose that the mass impedance is much larger 
than the characteristic impedance of air. This condition is normally fulfilled for panels 
used in buildings. Inserting  the characteristic impedance of air at 20°C we get: 
 
 ( )0 20 lg 42.5 (dB).R m f≈ ⋅ −  (6.82) 

6.5.1.2 Bending wave field on plate. Wall impedance 

Taking the bending stiffness into account we have, as mentioned above, to solve a wave 
equation where the sound pressure of the incoming wave is the driving force. The wave 
equation may be written as 
 

 
2

2 2
2 ( , , ),B m p x z t

t
ξξ ∂

∇ ∇ + =
∂

 (6.83) 

 
where B and m are the bending stiffness per unit length and the mass per unit area, 
respectively. The quantity ξ is the particle displacement, the deflection of the plate 
surface. Assuming an harmonic time function ejω t and furthermore, using the velocity u 
as a variable we get 

 2 2 4
B

j ( , ).u k u p x z
m
ω

∇ ∇ − =  (6.84) 

 
For plane wave incidence we can cast p(x,z) in the form 
 
 ( ) j jˆ( , ) , ,x zk x k z

x zp x z p k k e e= ⋅ ⋅  (6.85) 
 
and by rotating the coordinate system one of the partial wave numbers kx and kz may be 
set equal to zero. We shall set kz equal to zero and assume that the solution for the 
velocity u have the same form as the one for the pressure. Inserting into Equation (6.84) 
we obtain the following relation between the amplitudes of the pressure and the velocity 



Sound transmission 243 

 

 
( )4 4

B

ˆj ( )ˆ( ) .x
x

x

p ku k
B k k

ω
=

−
 (6.86) 

 
We observe again, as when discussing the radiation factor of plates, the important 
relationship between the acoustic wave number and the bending wave number. This 
becomes more evident when we calculate the velocity, having a situation as sketched in 
Figure 6.21. For the sound pressure in the incident, reflected and transmitted wave, 
respectively, we shall write: 
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 (6.87) 

 
Hence, the total pressure on the plate is (y = 0): 
 
 ( ) j sin

i r tˆ ˆ ˆ( , ) e .kxp x z p p p ϕ−= + −  (6.88) 
 
Inserting this expression into Equation (6.86) with kx equal k⋅sinϕ, we arrive at the 
equation giving the relationship between the driving sound pressure and the resulting 
velocity: 

 
( )

( )
i r t

4 4 4
B

ˆ ˆ ˆj
ˆ .

sin

p p p
u

B k k

ω

ϕ

+ −
=

−
 (6.89) 

 
The ratio of the driving pressure to the velocity is generally known as wall impedance. 
This quantity, for which we shall use the symbol Zw, will be given by 
 

 ( )4 4 4i r t
w B

ˆ ˆ ˆ
sin .

ˆ j
p p p BZ k k

u
ϕ

ω
+ −

= = −  (6.90) 

 
Under the condition k > kB we shall always find an incident angle ϕ where Zw is equal to 
zero, making the velocity “infinitely” large. The plate will not present any obstacle for 
the sound wave! The conditions determining this trace matching were discussed in 
section 6.3.2 concerning sound radiation from a plate. The important point in this 
connection is that the angle giving a maximum radiation is also the one giving maximum 
excitation. This is an example of a general principle in acoustics, the so-called 
reciprocity principle, which we shall address in section 6.6.1. 
 A further discussion on Equation (6.90) will be easier when introducing the critical 
frequency fc and also some energy losses by way of a complex bending stiffness 
B(1+j⋅η). We may then write 

 ( )
2

4
w

c
j 1 1 j sin .fZ m

f
ω η ϕ

⎡ ⎤⎛ ⎞⎢ ⎥= − ⋅ +⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (6.91) 
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The equation clearly shows the presumption for the derivation in the preceding section; 
the wall impedance will become a pure mass impedance at frequencies far below the 
critical frequency.  

6.5.1.3 Sound reduction index of an infinitely large plate. Incidence angle dependence 

The transmission factorτ and the sound reduction index R are calculated from the ratio of 
the sound pressure amplitudes in the transmitted and incident wave. By definition:  
        

 
2

t t

i i

ˆ
.

ˆ
W p
W p

τ = =  (6.92) 

 
We may by using Equation (6.89) express the velocity as 
 

 
( )i r tj sin j sin

w

ˆ ˆ ˆ
ˆ e e .kx kxp p p

u u
Z

ϕ ϕ− −+ −
= = ⋅  (6.93) 

 
The normal component of the acoustic particle velocity v on both sides of the plate must 
be equal to the plate velocity u. Hence, the following relationship must apply, 
 
 i r tˆ ˆ ˆ ˆ .v v u v+ = =  (6.94) 
 
The relationship between these velocity amplitudes and the corresponding pressure 
amplitudes is easily found by applying the force equation (Euler equation), 
 

 0
0 0

1 .
jy

y

pv
yωρ=

=

⎛ ⎞∂
= − ⎜ ⎟∂⎝ ⎠

 (6.95) 

 
Applying this to Equations (6.87), we get 
 

 ti r
i r t

0 0 0

ˆˆ ˆˆ ˆ ˆcos , cos and cos .pp pv v v
Z Z Z

ϕ ϕ ϕ= = − =  (6.96) 

 
The Equations (6.93), (6.94) and (6.96) give us the relationship between the pressure 
amplitudes we are looking for as we find 
 

 ti

0 0
w

ˆˆ cos2ˆ .2
cos

ppu Z ZZ

ϕ

ϕ
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+

 (6.97) 

 
The transmission factor and the reduction index will then be given by 
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 (6.98) 

 
The wall impedance Zw will here be given by Equation (6.91). An example using these 
equations is shown in Figure 6.22, where the sound reduction index of a plate of surface 
weight 10 kg/m2 and critical frequency 1000 Hz is given for a number of incident angles.  
 The low values around the critical frequency should be noted, furthermore, how 
this “dip” approaches the critical frequency by increasing the angle should also be 
observed. The determining factor in this frequency range is the damping of the plate 
characterized by the loss factor, which in this example is rather high. We shall further 
note that the mass law gives an appropriate description at frequencies somewhat lower 
than the critical frequency. Above coincidence we observe that the dependence on 
frequency is much greater than the corresponding one in the mass law range. The 
bending stiffness will be the determining factor, and far above coincidence there will be 
an increase of 18 dB per octave. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.22 Sound reduction index of an infinitely large plate with the angle of incidence as parameter. 
Material data: m − 10 kg/m2, η − 0.1, fc − 1000 Hz.  
 

6.5.1.4 Sound reduction index by diffuse sound incidence 

On real partitions in buildings we normally have sound incidence from many angles at 
the same time. To calculate the sound insulation we could in principle use Equations 
(6.98) and (6.91), make a weighting according to the given distribution of incident angles 
and sum up the contributions. In practice, however, the actual distribution is seldom 
known. As mentioned in the introduction, the only viable solution is then to carry out the 
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calculatation assuming an ideal diffuse incident sound field; i.e. assuming sound 
incidence evenly distributed over all angles and with random phase. We shall approach 
the practical problem by again going back to our infinitely large plate. 
 In Chapter 5 (section 5.5.3.2) we calculated the statistical absorption factor for a 
sound-absorbing surface. The same type of integral may be used to calculate a statistical 
or diffuse field transmission factor τd. We shall write 
 

 
2

d
0

2 ( )sin cos d .

π

τ τ ϕ ϕ ϕ ϕ= ∫  (6.99) 

 
Inserting the transmission factor from Equation (6.98) with the wall impedance 
according to Equation (6.91) we shall not be able to give an analytical solution to the 
integral. Limiting the solution to low frequencies by using the approximation given by 
Equation (6.80), the result may be written 
 

 [ ]d 0 0
d

110 lg 10 lg 0.23 (dB).R R R
τ

= ⋅ = − ⋅  (6.100) 

 
The expression is commonly referred to as the diffuse field mass law. Cremer presented a 
similar expression as far back as 1942, valid for frequencies above the critical frequency, 
which we shall write 
 

 d c
0 c

210 lg 10lg 5 dB for .f m fR f f
Z f

π η⎡ ⎤ ⎛ ⎞
= + − >>⎜ ⎟⎢ ⎥

⎣ ⎦ ⎝ ⎠
 (6.101) 

 
We shall return to these expressions below when we address the problem of transmission 
through real walls or panels, taking the finite size into consideration. 

6.5.2 Sound transmission through a homogeneous single wall 

Starting out from the observations on sound transmitted through an infinitely large plate, 
we shall move on to the practical case of sound transmission from one room to another 
by way of a single homogeneous wall or floor. Several options are available for 
calculations. One possibility is an analytical solution starting out from a description of 
the sound field in the rooms coupled to the structural wave field in the wall, all of them 
expressed by a sum of the natural modes. The task is then to calculate the coupling 
between each of these modes, which is a relatively complex task (see e.g. Josse and 
Lamure (1964) or Nilsson (1974)). Using finite element methods (FEM) may be seen as 
a modern version of such procedures (see e.g. Pietrzyk (1997)). The power of such 
methods lies in the ability to investigate specific situations, preferably in the lower 
frequency range. 
 Statistical energy analysis (SEA) is also a powerful method under the condition that 
the modal fields have a sufficient number of eigenfrequencies inside the actual frequency 
band (see e.g. Craik (1996)). The strength of this method lies therefore in treating 
problems in the mid and high frequency range. We shall therefore give an introduction, 
backed up by some examples, for this method in the next chapter. 
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 Being pragmatic, we could investigate the applicability of the infinite plate model 
to real situations and in the preceding section we gave an expression for the sound 
reduction index for diffuse field incidence at low frequencies (see Equation (6.100)). In 
practice this equation will give values a little too low, a slightly better model for the field 
situation is  
 
 ( )d 0 5 dB 20 lg 47 dB,R R f m= − ≈ ⋅ ⋅ −  (6.102) 
 
a result which will come close to the one obtained by performing the integration of 
Equation (6.99), using an upper limit of approximately 78°. This is explained by the fact 
that wave components near to grazing incidence will be of less importance for finite size 
partitions. It does not explain, however, why such a simple expression gives quite a good 
prediction at low frequencies, i.e. for frequencies below the critical frequency. 
 This is connected to the phenomena outlined in the introduction to this section. The 
wave field in a finite plate will have the following two components: 1) A forced field set 
up by the sound field in the same way as in the “infinite” case and 2) a free field 
originating at the boundaries due to the impact of the forced field. The forced field 
cannot by itself satisfy the boundary conditions. The point now is, as we demonstrated in 
section 6.3.4, that the radiation from the free field or resonant modes is very inefficient at 
frequencies below the critical frequency. The forced field due to its longer wavelengths 
therefore mainly determines the transmission. This is the reason behind the fact that 
results calculated for an infinitely large wall with considerable success are transferable to 
one having a finite size. 
 The simple expression given above needs, however, some modification. The finite 
sized area influences the forced transmission. Sewell (1970) has calculated this effect 
based on calculating the transmission by diffuse field incidence of a plate surrounded by 
an infinite baffle. In the expressions given below for the transmission factor (see 
Equation (6.103)), the mentioned effect shows up in the radiation factor for forced 
transmission. 
 The importance of the loss factor should also be noted. The resonant modes will 
certainly be reduced in amplitude by increasing the loss factor. However, these modes 
are of minor importance in the acoustic radiation below the critical frequency. The effect 
of increasing the loss factor will therefore be very small. However, in the frequency 
range around the critical frequency and upwards, where the resonant transmission is 
dominant, any increase in the loss factor will be beneficial. 
 It is also worth noting that below a certain frequency, below the fundamental 
natural frequency, a plate will pass from the mass-controlled area to the stiffness-
controlled one. Ideally, the sound reduction index will then increase with decreasing 
frequency. This effect is normally not observed in measurement data for walls in 
buildings. The reason is partly that this frequency range in normally below the one used 
for measurement, partly that the coupling to the resonant room modes makes the sound 
reduction index vary in an irregular and not very transparent manner. 
 This, however, should not make us believe that low frequency and stiffness-
controlled transmission cannot be important in design of sound insulating devices. 
Enclosures designed for noise control of various machines and equipment will often 
include small size panels. The offending noise will often contain frequencies below the 
fundamental frequency of these panels, maybe even below the fundamental frequency of 
the air cavity of the enclosure. The stiffness of the panels, not their mass, is therefore of 
vital importance. This case is not covered by the formulae given below. 
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6.5.2.1 Formulas for calculation. Examples 

One should not be surprised, taken the complexity of the task to even calculate the sound 
reduction index of a single homogeneous wall between two rooms, that a number of 
formulas are cited in the literature. A number of these are found in EN 12354–1, in 
which Equation (6.103) is given for the transmission factor. The dimensions of the wall 
are given by the quantities a and b, ηtot is the total loss factor, σ and σf are the radiation 
factor for resonant and non-resonant transmission, respectively. The latter is expressed 
by the formula by Sewell (Equation (6.49)), whereas the corresponding one for σ is a 
little more involved than the one given in section 6.3.4.2. 
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 (6.103) 

 
For rough estimates one may make some simplifications. For forced transmission (f < fc), 
the simple mass law, given in Equation (6.102), is often sufficient. A slightly better 
alternative is to neglect the contribution from the resonant transmission but to include a 
slightly simplified area effect. Fahy (1987) has suggested that for the range f < fc one 
should use the following expression: 
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0 c
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c f
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 (6.104) 

 
where index f on the reduction index indicates that we are dealing with forced 
transmission. Inserting for R0 according to Equation (6.82) we get 
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In the frequency range above the critical frequency we may set σ ≈ 1, and when using the 
last entry in (6.103), we obtain  
                                   

 tot
c

20 lg( ) 10 lg 2 47 dB .c
fR m f f f
f

η
⎡ ⎤

= ⋅ ⋅ + ⋅ − >⎢ ⎥
⎣ ⎦

 (6.106) 

 
This expression is identical to the one given for a plate of infinite size (see Equation 
(6.101)). Below, we shall present several examples where we compare measured and 
calculated data. In all cases we shall use the complete set of equations given in Equation 
(6.103) and where the radiation factors are taken from Equations (6.48) and (6.49). 
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 A major problem performing these comparisons is the availability of a complete set 
of specifications for the measured object. Material data as well as dimensions may not be 
completely described. Presumably, the loss factor is the most critical parameter. A 
prediction of the sound reduction index in the frequency range around the critical 
frequency and above will be quite uncertain without this information. 
  
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.23 Sound reduction index of a 1 mm steel panel and a 120 mm concrete wall. Dashed lines: calculated 
data from Equations (6.103). The critical frequency for the concrete wall is indicated. Measured data from 
Homb et al. (1983).  
 
 
 Two examples on such a comparison are shown in Figure 6.23, measured and 
predicted sound reduction index of a 1 mm thick steel panel and a 120 mm thick concrete 
wall. In the first case we find that the critical frequency is approximately 12 kHz, making 
the panel mass controlled in the whole measuring range. The fit between measured and 
calculated data is very good. As for the 120 mm concrete, the fit around the critical 
frequency between these data is rather poor. However, no measured data for the loss 
factor were available making it necessary to use an estimate from Equation (6.75).  
 Results from reproducibility tests, comparing results from different laboratories 
measured on the same specimen, have shown that the reproducibility standard deviation 
becomes very large if the loss factor is not properly controlled. The prediction accuracy 
is also not very good around the critical frequency. Measured data on thick and massive 
walls normally exhibit a more or less constant “plateau” in the reduction index curve, as 
opposed to thin panels where there is normally a distinct “dip” in the curve. 
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 An example of the latter effect is given in Figure 6.24, which shows measurement 
data and calculated results on single glazing. This example is used due to the complete 
set of data given, both for the material and the geometry. Measurements are performed 
using three separate sheets, each of area (560 x 1680) mm2, mounted together in a frame 
making a total measuring area of (2020 x 1800) mm2. Measurements were conducted on 
samples of thickness 3, 4 and 6 mm, of which we are presenting the last two.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.24 Sound reduction index of single glazing. Measured data reused by permission from Quirt (1982).  
 
 
 The fit between measured and calculated results is very good for the 6 mm glazing, 
whereas the expected lower reduction index for the 4 mm glazing does not show up in 
the mass-controlled region. This discrepancy could be due to several factors; presumably 
it is caused by the influence of the frame. It should be noted that the scale used for the 
ordinate is different from the one used in Figure 6.23.  
 More recently, Callister et al. (1999) have reported on measurements and 
calculations on single glazing using a test area much smaller than by Quirt, specifically 
0.61m x 0.91 m. Their calculated results are based on Sewell’s expression for the 
reduction index at low frequencies and Cremer’s Equation (6.101) for frequencies above 
coincidence, together by a certain interpolation around the latter, following Sharp (1978).  
Doing this, they obtain a very good agreement between measured and calculated results. 
 Finally, we shall use the example shown in Figure 6.24 to illustrate the relationship 
between the resonant and non-resonant transmission in a specific case. Figure 6.25 again 
shows measured data for 6 mm glazing plotted together with the predicted ones. In 
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addition we have also plotted the resonant part separately. As evident from the figure, the 
resonant part is nearly negligible below the critical frequency, whereas it makes up the 
dominant contribution around and above this frequency.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.25 Sound reduction index of 6 mm glazing. Calculated result for resonant and total (resonant plus non-
resonant) transmission. Measured data reused by permission from Quirt (1982). 
 

6.5.3 Sound transmission for inhomogeneous materials. Orthotropic panels 

As distinct from e.g. glass, a number of other building construction elements cannot 
reasonably be characterized as homogeneous and isotropic. The latter term means that 
the element is composed of a material whose properties are independent of direction. The 
material properties of commonly used panels, however, may vary in the transverse 
direction as well as laterally. A typical example of the former type is sandwich elements, 
commonly an assembly of three layers but there may also be more layers. We shall defer 
the treatment of such elements to Chapter 8, which concerns sound transmission through 
partitions having several layers, double walls etc.  
 In this section we are concerned with orthotropic plates, a commonly used term for 
plates where the elastic properties are different in two axial directions. For plane plates 
this is caused by material anisotropy, this is typical for wooden materials where the 
bending stiffness depends on the direction of the fibres. Fibre-reinforced materials are 
another example. Another large class of building elements, which are orthotropic, are 
corrugated plates. Plates having a “wavy” corrugation are well known but more common 

63 125 250 500 1000 2000 4000

Frequency (Hz)

0

10

20

30

40

S
ou

nd
 re

du
ct

io
n 

in
de

x 
(d

B
)

Measured
R - total
R - resonant



252 Building acoustics 

in industrial buildings are plates where the corrugations have a trapezoidal shape, 
commonly called cladding. We have previously (see section 3.7.3.3) referred to the 
literature giving the equivalent components of stiffness for such plates, enabling us to 
apply the general theory for plane orthotropic plates. We also performed a calculation of 
natural frequencies for a “wave”-corrugated plate.  
 The advantage of corrugated plates is great strength as compared to weight. They 
are more lightweight and cheaper than plane plates having equal strength. The 
disadvantage, however, is that the sound reduction index may become much less than for 
plane plates of equal thickness. We shall use the symbol B1 to denote the bending 
stiffness (per unit length) about an axis lying in the plane of the plate normal to the 
corrugations, i.e. about the z-axis of Figure 6.26. Correspondingly, B2 is the bending 
stiffness about the x-axis. We shall then find two critical frequencies given as 
 

 
2 2
0 0

c1 c2
1 2

og ,
2 2
c cm mf f

B Bπ π
= =  (6.107) 

 
where m as usual represents the mass per unit area. The corrugations may increase the 
bending stiffness considerably, which certainly is the purpose, but it is followed by a low 
value of fc1.  This implies that the resonant transmission may become the dominant factor 
over a large part of the useful frequency range.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.26 Corrugated plate with incident sound wave in direction (ϕ,θ). 
 
               
 Certainly, there are a multitude of such plates in use. With some there is a relatively 
small difference between the stiffness components, which makes the difference small 
between the critical frequencies. The coincidence range with the typical dip in the sound 
reduction curve will then just be a little broader. Commonly, however, the difference in 
stiffness is much larger. Whereas fc1 could be in the range of some hundred hertz, the 
corresponding fc2 could be 15–30 kHz.    
 Instead of Equation (6.91) we get an expression for the wall impedance Zw 
dependent on two critical frequencies, at the same time dependent on two angles. In 
addition to the angle of incidence φ, the angle to the plate normal, the impedance will be 
a function of the azimuth angle θ as well. We get (see e.g. Hansen (1993) 
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The expression, however without the inclusion of the loss factor, was given back in 1960 
by Heckl. The transmission factor for a given angle of incidence, according to Equation 
(6.98), hence becomes 
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Setting out to calculate the transmission factor for diffuse field incidence we have to 
integrate this expression over all angles of incidence (see Equation (6.99)). Hence 
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Inserting  τ from Equation (6.109), we may write 
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The evaluation of this expression must be performed numerically. However, Heckl 
(1960) also gives some approximate expressions (for η equal zero). In the frequency 
range below the lowest critical frequency, we may use ordinary mass law. In two other 
frequency ranges, being the range between the critical frequencies and above the highest 
one, respectively, Heckl gives the following expressions:   
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It should be noted that the expressions above only apply to an infinitely large plate. 
Taking the finite dimensions into account, we may as before (see section 6.5.2.1) 
introduce the correction factor after Sewell (1970). Hansen (1993) introduces a 
correction by substituting the upper limit one (1.0) in the integral (6.111) over sin2ϕ by a 
variable limit 
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where S is the area of the panel and where we recognise the last term from the 
expressions given in section 6.5.2.1. In the examples we shall use, we have for simplicity 



254 Building acoustics 

fixed the upper limit at 0.96, which corresponds to a maximum angle of incidence of 
approximately 78°.  
 The first example, given in Figure 6.27, shows the sound reduction index for a 
specific case where the panel has a weight of 7.5 kg/m2 and where the critical 
frequencies are 400 Hz and 4000 Hz, respectively. The results shown are calculated by a 
numerical integration of the integral in Equation (6.111), where the integration is 
performed for loss factors of 0.01 and 0.1 (1% and 10%). In addition, Heckl’s 
approximation for the frequency range between the two critical frequencies is also 
included. As the loss factor is not included in this approximation one could expect that 
the best fit would be obtain for a low loss factor. The most important thing to note is, 
however, the far lower results one get as compared by the mass law.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.27 Predicted sound reduction index of corrugated panel of weight 7.5 kg/m2 and critical frequencies 
(fc1,fc2) equal (400,4000) Hz. Calculated using loss factor 1% and 10%, additional data using Heckl’s 
approximation in the range fc1< f <fc2. 
 
   
 The second example is taken from an extensive series of measurements performed 
by Hansen (1993). The series comprised 10 different types of corrugated panel, where 
the panels partly had the 10 m2 size normally used in laboratory tests, some very small; 
approximately 1.5 m2. Experiments were also conducted by additional damping of the 
panels. 
 We shall show results from measurements on the type denoted Hi Span ‘800’ (see 
Figure 6.28). This has a large measuring area, and in Hansen’s own calculations he uses 
a loss factor of 0.011 (1.1%) and the critical frequencies are 378 Hz and 30 400 Hz, 
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respectively. The measured results in Figure 6.28 are reproduced from Hansen’s data but 
the calculated results are performed using Equation (6.111), setting a fixed upper limit 
for the incidence angle of 78°. The differences between these data and Hansen’s own 
calculation are negligible when applied to the large measurement area. 
 Other results does not fit equally well with the calculated ones as in this example. 
Hansen does point out that when high accuracy is demanded one has to rely on measured 
results, which may be unnecessary to point out. A typical feature that often is observed in 
measurement results of corrugated panels is “dips” in the curve not attributed to 
coincidence phenomena. This may be seen in the measured result around 4000 Hz. Two 
explanations are suggested: acoustic wave standing wave resonances between the ribs 
and panel vibration resonances. By panel resonances we shall not understand the ones 
due to the eigenmodes of the entire panel but to the sub-panels of the cladding, i.e. 
vibration modes of particular sections of the profile. A later series of measurements 
combined with predictions using FEM analysis indeed have substantiated the latter 
explanation (see Lam and Windle (1995 a, b)).   
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.28 Sound reduction index of corrugated panel of weight 4.6 kg/m2 and critical frequencies (fc1, fc2) 
equal (378, 30400) Hz. Measurement data reproduced from Hansen (1993). Predicted data from Equation 
(6.111).  
 
 
 

63 125 250 500 1000 2000 4000

Frequency (Hz)

0

10

20

30

40

50

60

70

80

S
ou

nd
 re

du
ct

io
n 

in
de

x 
(d

B
)

Measured
Predicted
Mass law

24.5 mm 



256 Building acoustics 

6.5.4 Transmission through porous materials 

As pointed out in the introduction to this chapter, high sound insulation is based on high 
reflection from a dividing partition, not on dissipating the sound energy in the partition 
itself. Applying a porous material for good sound insulation is therefore not appropriate. 
This does not imply, however, that estimating the sound reduction index for such 
materials is not relevant. It is certainly of interest to be able to estimate the added 
insulation when mounting a porous absorber on to a wall or below a ceiling. 
 Measured data for the sound reduction index of mineral wool of different densities 
are available; e.g. by Homb et al. (1983). An example is given in Figure 6.29 where 
measured data for rock wool samples of density 50 kg/m3 are compared with 
calculations. In these calculations we obviously cannot use the formulae in the present 
chapter, apart from the one performing the averaging over the incidence angle (Equation 
(6.99)). Calculating the transmission factor of the porous material we shall have to use 
the equations given in Chapter 5 (section 5.7.1), where we calculated the impedance and 
absorption factor for such materials. It should be noted that we assume that the material 
is of infinite extent in the lateral direction, but we have reasons to believe that the 
boundary conditions are of minor importance in this case. (Set up an expression for the 
transmission factor e.g. by normal incidence using these equations.)  
      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.29 Sound reduction index of rock wool of density 50 kg/m3. The thickness in mm is indicated on the 
curves. Measured data from Homb et al. (1983). Dashed curves are predicted results using the model of Mechel 
for describing a porous material having flow resistivity 12 kPa·s/m2 and porosity 95 %.  
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 Apart from the very low frequency range we get a very good fit between measured 
and calculated results. The discrepancies at low frequencies may be caused partly by the 
limited specimen size, partly by a certain stiffness making the mats act like a plate. A 
more probable explanation is found in the measurement conditions; very low reduction 
indexes imply feedback between the sending and receiving room. When deriving 
Equation (6.6), which gives the sound reduction index, we implicitly assumed that there 
was no coupling between these rooms. At the same time one may get problems 
concerning the diffusivity when the partition is strongly absorbing. 

6.6 A RELATION BETWEEN AIRBORNE AND IMPACT SOUND INSULATION 

We have in general treated our two cases, a construction’s behaviour by point impacts 
versus a distributed excitation as a sound field, separately. Under certain conditions, 
however, we are able to derive a direct relationship between these two ways to 
characterize the sound insulation properties of a partition, i.e. a relation between the 
sound reduction index and the impact sound pressure level. One then makes use of a very 
important principle in vibroacoustics, the principle of reciprocity, a principle we have 
referred to several times in the preceding chapters. Reciprocity implies a mutual 
relationship and in its most general form tells us that the response at a certain point in a 
linear elastic system that is caused by exciting another point in the system is invariant by 
interchanging the source and receiver. 
 This was postulated by Lord Rayleigh as far back as 1873, but one had to wait 
nearly 100 years before a formal proof was put forward by Lyamshev (1957). This laid 
the foundation for many practical applications of the principle. Among these are many 
connected to sound radiation from vibrating structures, response of structures excited by 
sound fields and sound transmission. In all cases, reciprocal measurements of transfer 
functions may often be simpler and less time consuming than the equivalent direct 
measurements.  
 
 
 
 
 
 
 
 
 
 
 
Figure 6.30 Acoustic reciprocity. Exchanging the position of a monopole source and the position of the sound 
pressure measurement.     
 
 
 More recently Fahy (1995) has presented an extensive review of theory and 
practical applications. We shall not repeat it here, only to give a short overview and 
present an expression for the relationship between the radiated acoustic power from a 
structure excited by a point force and, conversely, the velocity when the structure is 
excited by a diffuse sound field. Next, we shall use this relationship to derive an 
expression linking the sound reduction index and the impact sound pressure level. 
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6.6.1 Vibroacoustic reciprocity, background and applications 

Generally, presenting the reciprocity theorem one uses the purely acoustical case as 
depicted in Figure 6.30. The sound pressure at a given frequency measured at a certain 
point in a fluid, this caused by an acoustic monopole situated at another position is 
independent of an interchange of source and receiver. This is true even if the 
transmission path comprises different media, boundary surfaces giving diffraction etc. 
The only basic requirement is that the boundary surfaces react linearly. Questions related 
to the influence of the dynamic behaviour of boundaries have engaged many scientists, 
e.g. will the principle work when including porous materials in the system? Does it 
require the boundaries to be locally reacting? 
 In fact, Rayleigh’s general principle of reciprocity implicitly implies that all types 
of component may take part in the dynamic process, provided that their kinetic, potential 
or dissipative energy is finite and positive functions of the velocity. Vibrating structures 
may then take part without invalidating the principle, this being formally proved by 
Lyamshev (1957). From this it follows that the transfer function between a mechanical 
point force applied to a structure (e.g. a plate or a shell) and the sound pressure in a point 
(see Figure 6.31) may be determined by exciting the structure by sound emitted by an 
acoustic monopole. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.31 Application of the principle of reciprocity. Mechanical forces and sound radiation.  
 
 
 An extension of this point-to-point connection was to prove that a similar reciprocal 
relationship exists between the sound radiation from a mechanical structure vibrating in a 
given mode and the response of this mode for incident sound. This leads to the question 
we shall be concerned with; the relationship between the point response of a structure to 
diffuse field incidence and the radiated power from the structure excited in the same 
point. The derivation is given in Cremer et al. (1988), where the following thought 
experiment is presented: 
 A plate, comprising a part of the wall in a room, is driven by a point force F (see 
Figure 6.32). We shall assume that the sound field set up in the room is diffuse and that 
the sound power emitted may be expressed by 
 
 2 ,W a F= ⋅  (6.114) 
 
where a is a factor of proportionality. The power sets up an acoustic field in the room, 
with a resulting sound pressure 
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where A is the total absorption area of the room. We further assume that, imbedded into 
another wall of the room, we have a small (in relation to the wavelength) mass-controlled 
piston of mass m and area S. The resulting force Fp on the piston, caused by the sound 
field in the room, induces a piston velocity ups given by 
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 This enables us to write 
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where the angular frequency ω is understood to be the centre frequency of a band broad 
enough to give diffuse field conditions.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.32 Sketch of a room used for a thought experiment. a) A force F is driving a plate being part of a wall, 
b) A monopole source drives the plate via the sound field in the room.  
 
 
 In the next part of the thought experiment (see Figure 6.32), we shall drive this 
piston by the same point force used to drive the plate. The piston then gets a velocity u'ps, 
thereby radiating a power W´ into the room equal to the power from a piston in a baffle. 
At low frequencies, the piston will act like a monopole source and the power may be 
written (see sections 3.4.1 and 3.4.4) 
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In the last expression we have inserted the relationship between the force and the 
resulting velocity of the piston. This power will again set up a sound field in the room 
having a sound pressure p´ given by 
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 The sound pressure p´ will then drive the plate, resulting in a velocity uP that in the 
linear case must be proportional to the applied pressure. Hence, we may write 
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where b is a second factor of proportionality. Using Equation (6.119) we get 
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Looking at Equations (6.117) and (6.121) we observe that we have just interchanged the 
source and receiving point. From the principle of reciprocity, these equations shall then 
be identical resulting in 
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From this follows that we may generally find the velocity of a structure placed in a 
diffuse field (see Equation (6.120)), if we know the power radiated from the structure by 
a point force excitation given by Equation (6.114). It should be noted that this 
specifically applies to a given point-to-point relationship. The proportionality factors a 
and b will generally be space dependent.  

6.6.2 Sound reduction index and impact sound pressure level: a relationship 

Finally, we shall follow Cremer et al. (1988), giving an example on how to use Equation 
(6.122) to derive a simple functional relationship between the impact sound pressure 
level of a massive floor construction and its sound reduction index. We shall assume that 
the frequency is above the critical frequency, i.e. setting the radiation factor σ ≈ 1 is 
applicable both for airborne and impact sound. We shall cast the impact sound pressure 
level Ln, given by Equation (6.21), into the form 
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where p0 and A0 are the reference values 2⋅10-5 Pa and 10 m2, respectively. This is 
equivalent to a radiated power Wn to the receiving room 
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The last expression is introduced from Equation (6.114). We may then write for Ln 
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For the sound reduction index we shall be looking for an expression for the 
proportionality factor b, the relationship between the velocity of the floor and the driving 
sound pressure. By definition, the sound reduction index is given by 
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where the radiation factor is included in the transmitted power Wt. Setting this factor 
equal to one, and furthermore, using Equation (6.120) we get 
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Combining this expression with Equation (6.125) and using Equation (6.122), we obtain 
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Inserting for the reference values together with the force from the tapping machine, the 
latter given by Equation (6.71), we arrive at a very simple expression applying to 
measurements in one-third-octave band   
   
 n 30 lg 38dB.L R f+ ≈ ⋅ +  (6.129) 
  
It should be noted that we have applied the point-to-point relationship according to the 
principle of reciprocity in a situation where both sound pressure and velocity are mean 
values taken over a room and a surface, respectively.  
 As seen from the examples shown in Figure 6.33, which are results from laboratory 
measurements, Equation (6.129) gives a very good prediction in the case of a massive 
concrete floor with the top cover. However, the fit is not particularly good for the hollow 
concrete floor, which may be caused by the non homogeneity of this type of floor. As 
shown earlier in Figure 6.20, we found that the impact sound pressure level of this type 
of floor exhibited quite another frequency characteristic than the homogeneous one.  
 We shall also call attention to two other conditions that must be fulfilled applying 
Equation (6.129). First, the transmission must take place only through the floor, i.e. the 
flanking transmission must be negligible. Second, we have assumed when deriving 
Equation (6.129) from Equation (6.128) that the force from the tapping machine is not 
reduced by any kind of elastic layer, a floating floor etc. Constructions intended for 
reducing impact sound will be treated in Chapter 8; here we just wanted to illustrate the 
effect of such measures.  
 In fact, we could have used expressions derived earlier to arrive at this relationship 
between the sound reduction index and the impact sound level. If we sum the expressions 
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given for R and Ln by Equations (6.74) and (6.106) we get, as expected, the same result 
as in Equation (6.129). 
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.33 The sum of impact sound pressure level and sound reduction index, calculated for two types of 
floor. 1) Lightweight concrete floor, 175 mm thick with 60 mm concrete top cover and 2) Hollow concrete 
floor, 260 mm thick. The latter is also measured with an added lightweight floating floor (chipboard on elastic 
layer).  
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CHAPTER 7 
 

Statistical energy analysis (SEA) 
 

 

 

7.1 INTRODUCTION 

We have several times referred to statistical energy analysis, SEA for short, which is a 
general prediction model for complex continuous systems comprising both acoustic and 
structural members. It has found many applications in building acoustics (see e.g. Craik 
(1996)), which warrants an introductory chapter giving a background for the examples 
being presented in the remaining two chapters. 
 One could argue against the notion of a “method” due to the fact that the user has 
the choice on how SEA should be applied to a specific system, but we shall not go into 
that discussion here. SEA originated in connection with the US space programme in the 
1960. The problem addressed was the prediction of the response, both of the complete 
structure and of single components, to the enormous sound and vibration forces released 
during takeoff. Later applications include the transmission of sound and vibration 
onboard ships, airplanes and other means of transport and also, as mentioned above, in 
buildings. The literature covering the field is quite extensive, and the list of references is 
by no means complete. We shall, however, give reference to a couple of general books 
on the subject, Lyon (1975) and Craik (1996), together with a review article, Fahy 
(1994). The last few years have seen a lot of work into the subject of estimating the 
uncertainty of the method. This, together with the advent of quite a number of 
commercially available computer programs (see section 2.5.3.1) has opened up SEA for 
more general use. 
 SEA is used to model complex resonant systems, which may contain structural 
members such as beams, plates and shells together with acoustical members such as air 
ducts and rooms. The response, represented by vibration levels (of velocity, acceleration 
or displacement) and sound pressure levels are calculated for the given excitation 
(mechanical force, acoustic pressure). The term statistical implies that the analysis, 
contrary to finite element methods (FEM, BEM), does not give any exact information on 
the behaviour of the system, e.g. how the system responds to an excitation of a single 
frequency. The calculated data will represent averaged values, not only over given 
frequency bands, but which also represents averaged values for an ensemble of systems 
which are nominally identical to the actual one but with a certain statistical spread. The 
latter is easy to forget because one normally observes, let alone makes measurements on, 
a given single system.  
 In the context of building acoustics the aforementioned consideration represents a 
strength due to the fact that the building components themselves and how they are 
interconnected, are not in every detail the same for nominally identical systems. Also, 
one is seldom interested in a detailed frequency description. Rough estimates on how the 
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sound or vibration levels vary with frequency, i.e. in octave or one-third-octave bands, 
are normally sufficient. 
 Sound and/or vibration energy are the primary variables in SEA and it may 
therefore be classed as an energy flow method. In that respect it is analogous to methods 
calculating heat flow in a system. We shall therefore use this analogy to illustrate the 
method. 
 Finally, we shall refer to some additional features important in practical 
applications of the method: 

• The most important choice is specifying the model, which is solely dependent 
on experience. The calculations themselves are relatively trivial.  

• SEA normally works at its best on systems having many cross couplings 
between the elements (subsystems). The accuracy will normally be less when 
elements have a series connection only. 

• SEA is most suitable for investigation of the type “what happens if…?”, i.e. in 
situations searching for the effects of modifications.  

• Experiments are just as important as the analysis. 
• Tools for estimating the accuracy of the results may be difficult to obtain. 

7.2 SYSTEM DESCRIPTION 

As pointed out in the introduction, the primary variable is the energy in the system. The 
other dynamic variables are deduced from the energy. Specifically, the energy is the 
modal energy, the energy per mode in the separate elements or subsystems. The modal 
density of these subsystems is therefore an important parameter. Furthermore, the energy 
loss mechanisms of each single subsystem are characterized by a loss factor and, 
analogously, we shall use coupling loss factors to characterize the power flow between 
subsystems.  Fahy (1998) has pointed out that the latter may not be the best alternative to 
describe the energy transport between subsystems, and he suggested using a power 
transfer coefficient. We shall not, however, treat this development here. 

7.2.1 Thermal–acoustic analogy 

To illustrate the terms, we shall as a starting point use a simple model of a thermal 
system depicted in Figure 7.1. Two identical components (subsystems) are coupled 
together, one of them connected to a heat supply. We shall assume that the thermal 
conductivity for both subsystems is high enough making the temperature the same inside 
each subsystem. 
 

 
 
 
 
 
 
 
 
 
 

System 1 System 2

Heat input

Radiation to surroundings

System 1 System 2

Heat input

Radiation to surroundings

Figure 7.1 Energy transport in a thermal system having two components (subsystems). 
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 Energy will be lost by radiation to the surroundings and by the exchange of energy 
by a thermal coupling. We shall look at the possible combinations when the radiation 
losses and the conductivity in the coupling, respectively, either has a low or high value. 
The number of squares in Table 7.1 represents the energy (temperature) inside the 
subsystems for the different combinations, certainly giving just a qualitative picture. A 
situation which we shall look into further on is when the radiation losses are small 
combined with a high conductivity, i.e. strong coupling. In this case the subsystems are 
“sharing” the energy; there will be a so-called equipartition of energy. 
 

 
Table 7.1 A qualitative picture of the energy (temperature) in the thermal system shown in Figure 7.1.  

  
Radiation loss High Low 
Conductivity System 1 System 2 System 1 System 2 
High     
Low     

 
 
 Transferring this model into a vibroacoustic one having resonant acoustic volumes 
(rooms etc.) and resonant solid structures, we may establish the following analogous 
quantities: 

• Thermal radiation losses      Losses due to absorption, internal losses in 
materials characterized by the reverberation time T60 or loss factor η. 

• Conductivity        Measure of the coupling strength, coupling loss factor ηij 
(may also be given by an impedance). 

• Temperature (energy)     Sound pressure level in room, vibration level 
(velocity etc.) of solid structures. 

• Thermal capacity      Modal density. 
 
The last item is not self-evident but it is connected to one of the most important 
assumptions for SEA.  

7.2.2 Basic assumptions 

The most important assumptions behind the method are the following: 
1. The loss of energy within a subsystem is proportional to the total energy of the 

subsystem. 
2. The energy transmitted from one subsystem to another is proportional to the 

modal energy difference. 
3. The forces driving the different subsystems are independent, statistically 

speaking. We may add the energy response resulting from these forces to 
arrive at the total (modal) energy of each subsystem. 

To give an illustration of these assumptions and express them in a mathematical form, 
we shall again start with a system having two components or subsystems, marked 1 and 
2 in Figure 7.2. The total energy is E1 and E2, respectively, of the subsystems having 
modal densities n1 and n2. The symbol W represents the power; Win for input power, W´ 
for transmitted power between subsystems and Wdiss for the energy dissipated or lost 
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inside a subsystem. Implicitly; all quantities E, n and W are functions of frequency and 
generally we shall use the angular frequency ω in the equations. 
 A simple practical example is depicted in Figure 7.3, a freely suspended plate 
forced into vibrations by the sound field set up in the room by a loudspeaker. In section 
7.3.1 below we shall apply the equations, which follow from the assumptions above, to 
calculate the amount of vibration resulting from a given input power to the room.   
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Figure 7.2 System with two components (subsystems). 
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Figure 7.3 Example of a system with two components; a room being the acoustic component having volume V 
and a free hanging panel of area S as the solid structure.  
 
 
 Assumption no. 1 above gives  
 
 diss ,W a E= ⋅  (7.1) 
 
where a is factor of proportionality. As shown earlier (see section 6.4.1), we found for a 
plate, having an area S and a mass m per unit area, that the relationship between the its 
mean square velocity and mechanical power W was given by 
 
 2 ,W m S u E

ω
ωη ωη

Δ
= ⋅ =  (7.2) 
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where η is the loss factor. It is assumed that the RMS-value is taken as a mean value over 
the area of the plate and also over a frequency band Δω to include a number of modes 
around the frequency ω. The model energy Emodal is expressed as 

 modal ,EE
n ω

=
⋅Δ

 (7.3) 

 
and assumption no. 2 tells us that the net power W12 transmitted between the two 
subsystems may be written 
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The quantities b and b´ = b/Δω are factors of proportionality. The equation may be cast 
into a more suitable form by introducing the aforementioned coupling loss factors ηij. We 
then have 
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 1 12 2 21,n nη η⋅ = ⋅  (7.6) 
 
which is called the reciprocity or the consistency relation. Equation (7.4) may then be 
written as 
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The last assumption given was that the forces driving the various subsystems were 
statistically independent. This implies that we may calculate the total modal energy of 
each subsystem by adding the responses resulting from each force input. For system 
containing k subsystems we get the following set of equations: 
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The terms on the diagonal represent the total loss factor of each subsystem. It should be 
noted that in the literature some are using double indices on the symbol for the internal 
loss factors, i.e. η11 for η1 etc. 

7.3 SYSTEM WITH TWO SUBSYSTEMS 

For the system shown in Figure 7.2, using Equations (7.8), we get 
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 Driving one subsystem only, e.g. setting W2

in equal zero, the last equation may be 
written 
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Two comments should be made about this equation and here we may compare with the 
simple thermal model that was our starting point: 

a) Assuming that the internal energy losses in subsystem no. 2 are small in 
comparison with the energy transmitted back to subsystem no. 1, equipartition 
of modal energy will occur. This implies  
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In such a case there is no point in adding damping to subsystem no. 2, i.e. 
increasing η2, unless it could be increased in size of the order of η21. 

b) E2/n2 will always be smaller than E1/n1, which means that η21 always will have a 
positive value. 

7.3.1 Free hanging plate in a room 

We shall give an example, used by Vér (1992), applying Equation (7.10) to the situation 
depicted in Figure 7.3. A loudspeaker is creating a sound field in a room of volume V 
and we shall assume that the field is a diffuse one. The plate, having an area S and a mass 
per unit area m is forced into vibration by the sound field. The task is to calculate the 
mean velocity amplitude of the plate. Representing the room and the plate by subsystem 
1 and 2, respectively, will be a suitable choice. The total energies may be written 
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where p represents the acoustic pressure in the room and u is the velocity we are seeking. 
The quantity w is the energy density in the room, for which we have used the simple 
expression valid for plane waves. For the corresponding modal densities we shall write 
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The quantities h and cL are the plate thickness and longitudinal wave speed, respectively. 
The equation for n1 is derived from the classical expression giving the modal density in a 
room of rectangular shape (see section 4.4.1), which is 
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The quantity ΔN is the number of natural frequencies inside the bandwidth Δf, S and L 
are here the total surface area of the room and the sum of all the edges in the room, 
respectively. Going to higher frequencies, the first term will become dominant and is 
therefore used in Equation (7.12) besides the transformation using the angular frequency.  
 It now remains an expression for η21, representing the radiated power from the 
plate, i.e. the power radiated back into the room resulting from the movement of the 
plate. This output power, radiated from both sides of the plate may be written as 
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Hence, the relationship between the coupling loss factor η21 and the radiation factor σ  
will be 
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Inserting Equations (7.11), (7.12) and (7.15) into Equation (7.10), we arrive at the 
relation between the velocity of the plate and the acoustic pressure in the room: 
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Example To put in some numbers we shall use a steel plate of 5 mm thickness being 
driven by a sound field where the sound pressure level in the room is 100 dB inside a 
one-third-octave band centred on 1000 Hz. The loss factor η2 will be quite small as the 
plate is freely hanging in the room; we may estimate η21 ≈ 10-4. Using the following data: 
h – 5 mm, m – 13.5 kg/m3, cL – 5200 m/s, ρ0c0 – 415 kg/m2s and c0 – 340 m/s we obtain 
the term 
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An estimate for the radiation factor σ could be 0.05–0.1 in the chosen frequency band as 
the critical frequency is approximately equal to 2500 Hz. In effect, we may neglect this 
term and transform Equation (7.16) into 
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where a denotes the acceleration. A sound pressure level of 100 dB corresponds to a 
sound pressure of 2 Pa, which gives 
 

  
2

2
4

m17.3
s

a = , or expressed as an acceleration level
2

2
0

10 lg 132dBa
aL
a

⎛ ⎞
= ⋅ ≈⎜ ⎟⎜ ⎟

⎝ ⎠
. 

 
The reference value a0 is 10-6 m/s2. Expressed as a RMS-value, the acceleration is 
thereby 4.2 m/s2 (or approximately half the acceleration of gravity). 
 It should, however, be no problem to increase the internal loss factor by a factor of 
100 by applying a visco-elastic layer to the plate, resulting in a η2 of 10-2. (What will be 
the effect on the acceleration level?)  

7.4 SEA APPLICATIONS IN BUILDING ACOUSTICS 

Based on the early applications of SEA, in particular on calculating the response of panel 
constructions in reverberant sound fields (see e.g. Maidanik (1962)), the method gained 
acceptance for solving building acoustic problems such as transmission through single 
and double wall constructions (Crocker and Price (1969); Price and Crocker (1970)). 
Transmission through constructions containing several layers such as double walls will 
be treated in the next chapter and we shall then include examples where SEA models are 
used. 
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1 32
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Figure 7.4 Sound transmission between two rooms by way of a separating wall and flanking walls. 
 

 
 It will be appropriate when presenting this short overview to use another building 
acoustic problem as an example, namely the sound transmission between two rooms 
including sound transmission by way of flanking walls. As we shall see later (see 
Chapter 9), there will be classical models to estimate both the direct transmission and the 
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flanking transmission. These models will, however, become quite complicated for 
multiple layer wall constructions and complex junctions. In such cases, modelling by 
SEA may be appropriate. A hint on how such problems could be treated will be outlined 
using the example shown in Figure 7.4, where the rooms are modelled as subsystems 1 
and 3. The separating wall constitutes subsystem 2, and we shall include only two 
flanking walls in the model, one wall in each room being subsystems 4 and 5.  
 
 
 

1 2 3

4 5

Non-resonant coupling

1 2 3

4 5

Non-resonant coupling

 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.5 SEA model for the situation shown in Figure 7.4. 
 
 
 One very important aspect, which should be borne in mind, is that the whole 
concept of SEA presupposes resonant systems and resonant transmission. The non-
resonant part of the sound transmission through the wall at frequencies below the critical 
frequency, the part calculated by the mass law, must therefore be included in a separate 
way. In Figure 7.5, this part of the transmission is shown by the direct connection 
between subsystems 1 and 3, which are the rooms. 
 From the simple example above, comprising two subsystems, we have already 
some of the expressions needed to fill into the matrix Equation (7.8) to solve for the 
sound transmission problem. However, it is easily seen that the key terms will be the 
coupling loss factors, which may be hard to estimate. Determining these factors by 
experiments may in practice be the only solution. (Set up the complete matrix equation 
for the system given in Figure 7.5 and try to pick out the most important components.) 
 Finally, we shall present an example on measured and predicted sound pressure 
level difference between two rooms caused by the different transmission paths using the 
above model. The results are laboratory measurement results from Building Research 
Establishment, UK, reproduced in the book by Craik (1996). The laboratory is 
constructed to measure the influence of flanking transmission, in the specific case the 
partition wall, subsystem 2, is concrete block cavity wall. The external flanking walls, 
subsystems 4 and 5 are lightweight block and brick cavity walls.  
 Figure 7.6 shows both the overall measured and predicted sound pressure level 
difference together with the predicted dominant transmission paths. The symbols 
included in parenthesis are taken from the calculation models in the standard EN 12354 
Part 1. The symbols D and F refer to the partition and flanking wall, respectively, seen 
from the sending room and the small letters, d and f, correspondingly refer to the ones 
seen from the receiving room.  Further treatment of these models is postponed until 
Chapter 9.   
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Figure 7.6 Sound pressure level difference between two rooms in a flanking transmission laboratory (Building 
Research Laboratory, UK). Overall predicted and measured results together with predicted dominant 
transmission paths. For symbols in parentheses; see EN 12354–1. Data reproduced from Craik (1996).  
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CHAPTER 8 
 

Sound transmission through multilayer 
elements  

 

 

8.1 INTRODUCTION 

Using the methods presented in Chapter 6, we may, with reasonable accuracy, predict the 
sound transmission properties of walls and floors characterized as single homogeneous 
elements. The complexity increases quickly when the elements are composed of several 
layers, also mechanically coupled in ways that are difficult to specify. 
 This chapter deals with these types of multilayer element but will, as in Chapter 6, 
treat the specific elements as being disconnected from their boundary elements. 
Certainly, this imposes a limitation as other connected structures certainly will influence 
the vibration wave field of the element in question, and more so if the mechanical 
couplings are strong. We shall postpone further discussion of this question to Chapter 9, 
which deals with the theme of flanking transmission, i.e. the prediction of sound 
transmission between rooms with several interacting structures.  
 We shall use the term multilayer to characterize a building element made up of two 
or more homogeneous layers. These may contain mechanical coupling elements, such as 
ties, studs or elastic layers. A double wall is a pertinent example, where the leaves are 
mechanically coupled or uncoupled depending on a common or separate system of studs. 
Another example is a floating floor construction where the top layer is coupled to the 
base floor through either a continuous elastic layer or by elastic point supports.  
 The level of coupling may be difficult to ascertain. Two common boards 
(plasterboard, chipboard etc.) placed in contact with another or even screwed together 
are, acoustically speaking, “weakly” coupled. With boards of identical thickness, the 
critical frequency of the combination will be approximately equal to the one for a single 
board and the sound reduction index will ideally increase by 6 dB due to the increase in 
weight by a factor of two. Gluing the boards together, however, we end up with a 
sandwich element, where the coupling depends on the type of glue and the element itself 
acquires some quite different properties than in the first mentioned case.  
 We shall, according to the terms used in the standard EN 12354, use the term 
element when speaking of a building component like a partition wall, a floor, a door etc., 
even when these are composite structures. In many cases one should perhaps better use 
the term “construction”, a collection of elements. Hopefully, the reader should not be 
confused finding both terms being used throughout the book. 

8.2 DOUBLE WALLS 

With the term double walls we are to understand constructions having two independent 
wall elements separated by an air-filled cavity that may contain a porous absorber. As 
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mentioned in the introduction, the wall elements may be mechanically coupled in 
different ways. We shall not put any restrictions on the type of elements; these may be 
massive heavy elements of concrete, brick etc. as well as lightweight elements such as 
plasterboard, chipboard, glazing etc. There is a great demand for lightweight 
constructions offering high sound insulation and we shall therefore put some emphasis 
on lightweight board constructions. These have at least two layers, certainly because 
single lightweight layers will never be able to fulfil the requirements e.g. imposed in 
building codes for dwellings. Combinations, such as a massive heavy element and an 
additional lightweight lining are practical constructions. Such combinations may achieve 
a considerably higher sound reduction index than the primary heavy one. 
 Searching for literature on the sound insulation of double walls, one quickly 
discovers that it is rather extensive, certainly on lightweight constructions. The 
theoretical analysis is, however, less developed than the one for single leaf constructions, 
which should not come as a surprise in view of the complexity involved. It is not only the 
mechanical couplings between the leaves that is difficult to quantify, the importance of 
the different, and at the same time distributed, energy loss mechanisms is difficult to 
ascertain. An illustration is given in Figure 8.1, indicating how energy may be 
transmitted between rooms by a lightweight double wall. A direct path coupling the two 
leaves across the cavity is indicated together with the paths across structural stud 
connections and along the outer boundaries.   
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8.1 Transmission paths for a lightweight double wall.   

 
 
 We do not intend to give a general overview of the literature dealing with double 
walls but to render an understanding of the physical variables involved by presenting a 
number of idealized examples. Prediction models using infinite size elements are 
appropriate also in this case. One cannot, however, avoid presenting results based on 
statistical energy analysis (SEA), a method applied to these questions as early as 1970 
onwards (see Chapter 7). Using SEA, suitable software may be developed for calculating 
transmission factors and sound reduction indices. In practice, it may also be 
advantageous to develop formulae giving rough estimates of the performance. Such 
expressions, developed on an empirical basis will also be given here.  

8.2.1 Double wall without mechanical connections 

Assuming that there are no structural connections between the two leaves of the wall, the 
energy transmission from one leaf to the other must take place by a forced excitation by 
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way of the cavity. As a first approximation to this case, which may well be found in 
practice, we shall deal with a situation where we assume diffuse sound fields, not only in 
the sending and receiving rooms but in the cavity as well. This certainly presupposes the 
cavity depth is larger than the wavelength. Such a situation is depicted in Figure 8.2 
where the sending and receiving rooms are separated by a double wall represented by 
two single partitions having sound reduction indexes R1 and R2.  
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Figure 8.2 Rooms separated by a double wall with a large cavity. 
 
 
 We may express these sound reduction indexes as: 
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where S is the area of the partitions. L and A denote the sound pressure level and the total 
absorption area, respectively, having indices according to the figure. The sound reduction 
index Rd of the “double” wall is expressed as 
 

 d 1 3
3

10 lg ,SR L L
A

= − + ⋅  (8.2) 

 
which, by inserting the Equations (8.1), gives 
 

 2
d 1 2 10 lg .AR R R

S
= + + ⋅  (8.3) 

 
In spite of the assumption, having a diffuse field in the cavity, the importance of the 
cavity damping is a general one. A porous absorber inside the cavity will generally 
attenuate waves running parallel to the wall leaves, and we know that obliquely incident 
waves are easily transmitted.  
 As an example we shall perform a calculation on an unbounded double wall of two 
9 mm plasterboards with a 50 mm cavity filled with a porous absorber of mineral wool 
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type (see Figure 8.3). These calculations are performed using a transfer matrix model 
described in Chapter 5 (section 5.7.1.1). The wall impedance of each board, see Chapter 
6, section 6.5.1.2, is given by  
 

 ( )
2

4
w

c
j 1 1 j sinfZ m

f
.ω η ϕ

⎡ ⎤⎛ ⎞
⎢ ⎥= − ⋅ +⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (8.4) 

 
The model of Mechel (1976) is used to describe the porous absorber in the same way as 
when calculating the transmission through the absorber alone; see Chapter 6 (section 
6.5.4). The flow resistivity of the porous layer is varied in steps to simulate various 
degrees of cavity damping, starting from a value of 10 kPa⋅s/m2, which corresponds to 
the value found for common products of mineral wool.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
Figure 8.3 Sound reduction index of an unbounded double wall. Diffuse field incidence. Two 9 mm 
plasterboards, 7.2 kg/m2 with critical frequency 2250 Hz. 50 mm cavity with porous material. Parameter is the 
flow resistivity: curve 1 having r = 10 kPa.s/m2 and for each curve 2–4 the resistivity is reduced by a factor of 
five. Lower dashed curve – reduction index for a single board.  
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 Figure 8.3 exhibits some typical features found for the sound reduction index of 
double walls with no structural connections between the leaves. At low frequencies, 
where the distance between the leaves is much smaller than the wavelength, the leaves 
will be strongly coupled by the acoustic stiffness of the air in the cavity, this in spite of 
the presence of the porous absorber. If the vibrations of the leaves are mass controlled, 
the wall will behave like a single leaf, having a mass equal to the sum of the masses of 
the leaves; compare with the dashed curve giving the reduction index of each leaf.  
 The acoustic coupling across the cavity will give a double wall resonance, resulting 
in a minimum value of R at a frequency expressed as  
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1 ,
2

s sf
m mπ

= +  (8.5) 

 
where m1 and m2 are the mass per unit area of the two leaves and where s is the stiffness 
per unit area represented by the cavity. As evident from the expression, this resonance 
corresponds to a symmetrical movement of two masses connected by a spring. Assuming 
that the spring stiffness is solely determined by the air in the cavity, it will have a value 
in the range between ρ0c0

2/d and P0/(σ⋅d). Here the quantities d, P0 and σ are the distance 
between the leaves, the barometric pressure and the porosity of the porous material, 
respectively.  
 In the latter expression we have assumed that the sound propagation takes place 
isothermally, whereas the former will apply for an empty (air-filled) cavity. In practice, it 
is not very important which one to use as the difference is given by the factor γ⋅σ, where 
γ is the adiabatic constant. The latter is approximately equal to 1.4 for air and the 
porosity is normally above 0.9, which leaves us with a difference in the range of 10–15 
%. For a rough estimate one normally finds expressions that applies to an air-filled 
cavity, such as 
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Figure 8.4 Sound reduction index of a double wall, 13 mm plasterboards mounted on separate studs, 150 mm 
cavity depth. Measured data from Homb et al. (1983). Predicted data from model by Sharp (1978).  
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 In our example (see Figure 8.3), we get f0 ≈ 140 Hz when using this expression. It 
should be noted that we presuppose that there is no elastic coupling of the leaves due to a 
possible elasticity in the porous material.  
 In the frequency range above the resonance frequency the sound reduction index 
will increase by 18 dB per octave. It is not evident from the figure that above a given 
frequency fd ≈ 55/d (see Equation (8.7), the increase is less strong and according to 
empirical data estimated as 12 dB per octave. In our example fd will be approximately 
1100 Hz, thus the effect will be partly masked by the “dip” due to coincidence.  
 These phenomena are all to be found in results from laboratory measurements. An 
example is given in Figure 8.4, presenting the sound reduction index of a double wall, 
two leaves of 13 mm plasterboard mounted on separate studs. The cavity depth is 150 
mm, and measurements were performed both leaving the cavity empty and also being 
completely filled up by rock wool of density 20 kg/m3. One cannot detect the double wall 
resonance as the measurements were limited downwards to 100 Hz, whereas the 
resonance should be around 65 Hz. The frequency fd, marking the transition from a 18 
dB per octave to a 12 dB per octave should be approximately equal to 370 Hz.  
 The predicted results are based on an empirical model by Sharp (1978). Using 
classical expressions and a large measurement database, he presented the following 
simple set of equations to predict the sound reduction index for double walls without 
structural connections, however having the cavity filled with a porous absorber: 
 

  (8.7) ( )
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1 2 0 d
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where fd, as given above, is equal to 55/d. The index M indicate that the reduction index 
is to be calculated from the total mass of the leaves, M = m1+m2. The predicted results 
shown in Figure 8.4 for the frequency range f < fd does not fit too well to the measured 
ones but due to lack of accurate specifications only the simple mass law is applied for 
calculating R1 and R2, i.e. the one given in Chapter 6 (section 6.5.2): 
 
 ( )20 lg 47dB.R f m= ⋅ −  (8.8) 
 
It may seem odd that no specifications as to the porous material, filling the cavity, enter 
into Equations (8.7). The attenuation caused by this material certainly depends on 
parameters such as flow resistance etc. Brekke (1979) suggested the following 
expression to be used for the frequency range above fd : 
 

 i
1 2

ref
20 lg ,ZR R R ATT

Z
= + + − ⋅  (8.9) 

 
where Zi and ATT is the input impedance of the absorber (as seen from the first leaf) and 
the attenuation offered by it. The reference impedance Zref is equal to the impedance of a 
porous material having a flow resistivity of 7 kPa⋅s/m2.  
 In spite of the influence of the cavity material there are several reasons for not 
gaining much by using more complicated expressions for the high frequency range than 
the one given in Equation (8.7). In practice, the reduction indices are normally much 
larger than the ones in the lower frequency range, even when taking the weighting curve 
into account (see Figure 6.4). The calculation accuracy which is certainly interesting 
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from a theoretical point of view, then becomes of less interest in practice. Furthermore, 
judging from Figure 8.3, there has to be large variations in the flow resistivity to really 
affect the reduction index, much larger variations than between the products normally 
used in lightweight double walls. The big difference lies in the amount of filling, either 
just a part or completely. There may be differences in the reduction index of 4–5 dB from 
a percentage of filling being 30–50% as compared with 90–100%.       

8.2.1.1 Lightly damped cavity 

Double walls, where the cavity is not efficiently damped by a porous absorber, will 
necessarily give a sound reduction index somewhere between the one found for an empty 
cavity and a completely filled one (see Figure 8.4). A case where one will benefit from a 
filling of the cavity, but for obvious reasons cannot fill it completely, is by window 
constructions applying a lining inside the window frame. In practice, these are cases 
having a reasonably large cavity depth, at least more than 50 mm, excluding common 
compact double (or triple) glazed units. For a double construction equipped with a frame 
absorber one could use Equation (8.3) as a first approximation, writing 
 

 1 2 1 210 lg 10 lg ,A UdR R R R R
S S

α
= + + ⋅ = + + ⋅  (8.10) 

 
where α is the absorption factor for the absorber along the frame, and U is the 
circumference or total length of the frame. Most correctly, one should use the absorption 
factor for normal incidence. (Why is that?) 
 
 
 
 
 
 
 
 
 
 
 
 
 

200 mm

100 mm mineral wool

12 mm chipboard

 

Figure 8.5 Arrangement for measurements on a double leaf construction (2.25 x 1.25 m) with no structural 
connection between the leaves. Adapted from Brekke (1979).  
 
 
 Even without an absorber in the cavity there will be a certain surface absorption 
due to viscous effects but the magnitude is difficult to estimate. In a relatively early 
phase of applying SEA models on problems in building acoustics the cases of an empty 
cavity and a cavity with a frame absorber were treated (see e.g. Crocker et al. (1971); 
Brekke (1979)). Both also treated the case when the leaves are structurally connected, a 
case recently taken up by Craik and Smith (2000), also within the framework of SEA. In 
parallel with the SEA type of modelling, analytical models for incorporating the effect of 
structural connections as studs or other types of mechanical links have been developed. 
A number of these efforts are mentioned by Wang et al. (2005), who themselves are 
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treating the case of a double leaf lightweight partition with periodically placed studs. We 
shall postpone the treatment of such mechanical connections to the next section.  
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Figure 8.6 SEA model for the set-up shown in Figure 8.5. Subsystems 1 and 5 represent the sending and 
receiving room, respectively. Subsystem 3 is the cavity between the leaves.   
 
 
  Referring back to the discussion in Chapter 7, we should expect that predictions 
using SEA would be accurate when the cavity is lightly damped. A cavity completely 
filled with a porous material may hardly be characterized as a resonant subsystem. 
Brekke (1979) used a set-up as shown in Figure 8.5, a double leaf construction of 12 mm 
chipboard with an absorber lining that was placed in a measuring opening of dimensions 
2.25 x 1.25 metres. The system was modeled using SEA according to the scheme shown 
in Figure 8.6. The system of equations is easy to formulate, estimating the loss factors is 
harder. By determining these factors mainly from independent measurements, the fit 
between measured and calculated results were reasonably good (see Figure 8.7).  
 Crocker et al. used a double leaf construction, which they called a double panel, 
aluminum panels of 3.2 mm thickness placed in an opening of 1.55 x 1.97 meters. The 
cavity, having a depth of 71 mm, was empty. The fit between measured and calculated 
results was good but based on estimated data for the internal material losses (see Figure 
8.7).   

8.2.2 Double walls with structural connections 

 An accurate prediction of sound insulation indexes of double wall constructions 
with different types of structural connection between the leaves (see Figure 8.1) has been 
and still is a challenge. In the cases cited above, which were using SEA modelling, the 
inclusion of structural connections has been an obvious extension. This includes 
coupling along a line, i.e. ribs or studs in lightweight partitions as well as discrete point 
connections, the latter being binders in heavy walls as brick or concrete. These 
connections may be modelled as separate modal subsystems or purely as coupling 
elements. 
 Sharp (1978) introduced an extension to the simple set of calculations in Equations 
(8.7) covering point and line connections for lightweight walls, assuming that these 
connections were infinitely stiff. An extension of the work of Sharp, taking the stiffness 
of the connections into account, has been suggested by Davy (1991). Later developments 
have been on models, partly of the type “smeared” model by representing the studs by 
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uniformly distributed elastic springs as well as a more accurate model taking the discrete 
placing of the studs into account by treating the wall as a periodic structure, see for 
example Lee and Kim (2002), who treated single panels with stiffeners and Wang et al. 
(2005), who extended this model to double leaf constructions. The “smeared” type of 
model follows the approach used for floating floors (see section 8.4.1) and in practice, 
there certainly are double wall constructions where the layers are connected in this 
manner, e.g. by a continuous elastic layer such as stiff mineral wool. A model for such 
cases has been presented by Kropp and Rebillard (1999).   
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Figure 8.7 Sound reduction index of lightweight double leaf constructions without structural connections. 
Measured and predicted results by Brekke (1979), using a frame absorber (w/abs.). Measured and predicted 
results by Crocker et al. (1971), using an empty cavity (ex/abs). 
 
  
 By lightweight double leaf partitions of plasterboard, chipboard etc. mounted on 
common studs, forces or moments transmitted through these studs normally are the 
determining factor in the frequency range above the double wall resonance. The 
development of studs having reduced stiffness is an important task as specially profiled 
steel studs have shown to give large improvements. Certainly, there will normally always 
be direct structural connections along the perimeter of a partition (edge coupling) but 
these are not equally important for lightweight constructions as for heavy, massive 
systems.  
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 We shall treat all these methods of couplings starting with a double construction of 
a special type: a heavy wall or ceiling covered by an additional so-called acoustical 
lining. This implies a lining having a low bending stiffness and a high critical frequency 
as compared with the primary heavy construction. This is a common method of 
improving the sound reduction index of a wall or the impact sound insulation of a ceiling 
(floor). The reason behind starting out with this example is that we may assume that the 
movement of the primary construction is not affected by the lining; i.e. we assume that 
there is no “feedback” in the system, which would certainly be the case of lightweight 
walls. A laboratory standard for measuring the improvement of such linings has recently 
become available (see ISO 140 Part 16).  

8.2.2.1 Acoustical lining 

The treatment of this case may be found in the book by Cremer et al. (1988), but was 
presented by Heckl as early as in 1959. As seen from Figure 8.8, we shall assume that the 
basic or primary construction is a heavy, massive wall (or floor) for which the critical 
frequency lies below the observed frequency range. Furthermore, we assume that the 
radiation factor is approximately equal to 1.0 in this frequency range. The lining, on the 
other hand, has such a high critical frequency that the bending wave near field, caused by 
vibrations transmitted through the studs or ties, will dominate in the radiated sound. This 
is the basic idea behind such additional acoustical linings; even if the lining is firmly 
connected to the basic wall, and thus obtains the same velocity as the latter at the 
connections, the total radiation will be reduced. 
 The sound reduction index for the combination (see Figure 8.8 b)), may be 
expressed as 
 

 i i

2 2,P
10 lg 10 lg ,W WR

W W W
⎛ ⎞

= ⋅ = ⋅ ⎜⎜ +⎝ ⎠2,B
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where Wi is the incident power on the primary wall. The radiated power from the lining 
is divided into two parts: the power W2,B radiated from the bending wave near field and 
the power W2,P due to the transmission through the cavity. The latter may, at frequencies 
above the double wall resonance (see Equation (8.6)), be written 
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 (8.12) 

 
The quantity W1 is the power transmitted through the primary wall. This equation tells us 
that the relationship between the mean velocity amplitude of the primary wall and the 
lining is proportional to the frequency squared. The cavity acts as a pure spring situated 
between the wall and the lining, these being represented by two masses. The radiated 
power from one of the structural bridges, which may be a stud (line connection) or a tie 
(point connection), may be written 
 
 2

2,B 0 0 2,B .BW c u Sρ σΔ = ⋅ ⋅  (8.13) 
 
The quantity σB is the radiation factor, however here defined by the velocity of the 
bridge, not as earlier by a mean velocity of the plate. Having a number n bridges 
distributed over  
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wall area S we may just multiply by n to arrive at the total radiated power. We have 
assumed that the radiation factor of the basic wall is approximately equal to 1.0, hence 
 
 2

1 0 0 1 .W c uρ= S  (8.14) 

 
Equations (8.12) through (8.14) then give 
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 Figure 8.8 Heavy basic wall with additional acoustical lining.  
 
 
 Inserting this equation into Equation (8.11), we get 
 

 

1

4 2
2,B0

B2
1

,

where 10 lg .

R R R

ufR n
f u

σ

= + Δ

⎡ ⎤⎛ ⎞⎢ ⎥Δ = − ⋅ + ⋅⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (8.16) 

 
The quantity ΔR is thereby the improvement of the reduction index due to the additional 
lining. To calculate this improvement we shall need an expression for the radiation factor 
σB. However, we have shown in Chapter 6 (section 6.4.2.1) that the radiated power from 
a bending wave near field on a plate driven at a point and along a line, respectively, is 
given by  
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where u0 is velocity in the point or on the line, and ℓ is the length of the line. The 
radiation factor for these two cases may then be expressed as 
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 (8.18) 

 
In the normal case using a set n of studs distributed evenly over the surface area S, where 
we shall apply the last expression, the centre-to-centre distance between the studs will be 
S/(n⋅ ℓ). 
 If we look at the expression for the sound reduction index, Equation (8.16), and  
initially assume that the ratio between the velocity of the primary wall and the velocity of  
the bridges are frequency independent, the improvement will increase by 12 dB per 
octave until it reaches a maximum, a plateau. This maximum will be determined by the 
critical frequency of the lining and the degree of mechanical contact between the wall 
and the lining. It should be noted that the improvement will go to zero towards the 
critical frequency. The lining will then became just as good a radiator as the primary wall 
and no improvement, except for the one caused by a small increase in mass, is to be 
expected. A sketch showing the improvement in principle is presented in Figure 8.9. 
 
 
 
 
 
 
 
 
 
 
 
 
 

f0 fc

ΔRmax

ΔR 12 dB/octave

Figure 8.9 Sound reduction improvement caused by an additional lining.  
 

 
 The maximum improvement offered by a lining connected to the primary wall by 
studs is shown in Figure 8.10. It should be noted that the data assume infinitely stiff 
connections between the primary construction and the lining. For the case of a lining 
detached from the primary wall, i.e. having contact along the edges only, one may in 
practice set the c-c distance to be equal to the smallest lining dimension. 
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Figure 8.10 Acoustic lining attached to the primary construction by infinitely stiff studs. The maximum 
improvement in the sound reduction index is given as a function of c-c distance of studs. The parameter shown 
on the curves is the critical frequency of the lining in kHz. 
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Figure 8.11 Brick wall with lining. Sound reduction index and improvement by lining of 12 mm chipboard 
directly attached to the wall. Measured data from Homb et al. (1983). 
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  The effect of such a lining of 12 mm chipboard attached to a lightweight brick 
wall of 87 mm thickness in shown in Figure 8.11. The cavity depth is 50 mm and filled 
with a porous absorber. The uppermost three curves show the sound reduction for the 
brick wall alone together with the result when adding the lining attached to the wall with 
wooden studs and steel profiles, respectively.  
 The lower curves show the improvement by the lining when using the two types of 
studs together with predicted results using Equation (8.16), assuming the studs are 
infinitely stiff. Obviously, using the steel profiles one has not got a perfectly stiff 
connection and furthermore, the ratio u2/u1 is frequency dependent. 
 Finally, dealing with acoustical linings we shall call attention to the achievable 
improvement in practice, being normally limited by flanking transmission. In most cases, 
the flanking transmission will have a greater influence by airborne sound transmission 
than by impact sound transmission. The improvement offered by a lining is therefore 
often higher for impact sound than for airborne sound.   
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Figure 8.12 Sound reduction index of double aluminium panel with (w/ties) and without tie beams (ex/ties). 
Predicted results using SEA modelling. Adapted from Crocker et al. (1971).  
 

8.2.2.2 Lightweight double leaf partitions with structural connections 

A double leaf partition with structural connections, in the form of point or line 
connection between the leaves, should be suited to modelling by SEA. In the model 
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shown in Figure 8.6 we shall have to include either a coupling element or a subsystem 
between the subsystems 2 and 4. An early example of such calculations, mentioned 
above, were performed by Crocker et al. (1971), where two aluminum panels of 
dimensions 1.55 x 1.97 m were interconnected by a total of 50 “ties”, these being short 
beams of aluminium of thickness 0.7 mm and width 25 mm. The comparison between 
measured and predicted results is shown in Figure 8.12. The fit between the two sets of 
data is very good but it should be noted that it is based on estimated values for internal 
loss factors of the material, η equal to 0.005 in the frequency range below 800 Hz and η 
equal to 0.02 above 800 Hz. 
 Structural connections in the form of studs are more relevant in building partitions. 
In spite of being a special laboratory model, the set-up used by Brekke (1979) (see 
Figure 8.5) gives results that are typical in practice. Brekke performed measurements and 
predictions where the panels were interconnected by different types of stud. In this case, 
the depth of the cavity was reduced to approximately 95 mm to accommodate the various 
types of studs. Measured sound reduction indexes of the double panel with and without 
two types of stud are depicted in Figure 8.13. Calculations for the set-up with wooden 
studs were performed using a SEA model determining the coupling loss factor for the 
studs by measurement. The fit between measured and predicted results were reasonably 
good with a maximum deviation of 5 dB but predicted results are omitted here. 
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Figure 8.13 Sound reduction index of experimental double panel, after Brekke (1979). 12 mm chipboards with 
a cavity of depth 95 mm filled with mineral wool. See also Figure 8.5.  
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 There is certainly a need for performing simple estimations of the sound reduction 
index of double constructions on common studs. We shall therefore include the 
prediction model by Sharp (1978), a commonly cited reference. The model that assumes 
infinitely stiff connections, either point or line connections, again uses Equation (8.11) as 
a base. We may write it in the following way 
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(8.19) 

 
We have then got an expression for the sound reduction index as a difference between 
the reduction index for the partition without the structural connections and a term due to 
these connections. Assuming that the sound radiation caused by these connections or 
bridges is dominant, i.e. W2,B >> W2,P, Sharp shows that in the frequency range f0 < f < fd, 
where Rwithout increases by 18 dB per octave the last term will increase by 12 dB per 
octave. Similarly, this term will increase by 6 dB per octave where Rwithout increases by 
12 dB per octave, that is to say when f > fd. Without going into detail, the resulting 
reduction index will in effect have a shape as sketched in Figure 8.14. We end up with a 
term ΔR added to the reduction index R, the latter determined by the total mass M = m1 + 
m2 of the partition: 
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Figure 8.14 Principal shape of the sound reduction index of a lightweight double leaf partition with and with 
and without infinitely stiff structural connections. Sketch according to Sharp (1978). 
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 The radiation factor σB of each of the n bridges is given by Equation (8.18). As 
distinct from the case of the acoustical lining treated in section 8.2.2.1, where we 
assumed that the primary wall was not influenced by the lining, we have now got an 
added term depending on the mass and input impedance of the leaves. From these 
impedances we shall understand the input impedance of the leaves seen from the bridges. 
For point connections we may use the expression valid for the point impedance of an 
infinitely large plate. As explained earlier (see Chapter 6, section 6.4.1), this expression 
also gives the space averaged mean value for a plate of finite dimensions. We shall write 
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where the critical frequency is introduced in the last expression. Inserting this expression 
into the term giving ΔR together with the expression for σB,point in Equation (8.18), we get 
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Here we have assumed that the point connections are arranged in a square pattern, the 
quantity a being the centre-to-centre distance between points.  
 In a similar way we shall make use of the expression for the point impedance of an 
infinitely long beam to calculate the input impedance of a plate driven along a line. The 
point impedance of an infinite beam having a mass m  per unit length is, according to 
Cremer et al. (1988): 
 ( )beam B2 1 j ,Z m c= + ⋅  (8.23) 
 
where cB is the bending wave speed. This impedance is, as opposed to Zpoint in Equation 
(8.21), a complex quantity. Driving the plate along a line by a force F distributed over a 
length Ly (see Figure 8.15), we may envisage that the plate is built up from a set of beams 
having cross-section ΔLy⋅ h. The impedance of each of these beams is 
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Figure 8.15 A plate driven along a line.  

 

 



294 Building acoustics 

 
 As we are driving all these “beams” in parallel, we get 
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The critical frequency is introduced here in the last expression. Inserting this expression 
into Equation (8.20), which gives ΔR, together with σB,line from Equation (8.18), we 
arrive at the approximate equation 
 

 

line c,line
2

1 c,2 2 c,1
c,line

1 2

10lg ( ) 23 dB,

where .

R b f

m f m f
f

m m

Δ ≈ ⋅ −

⎡ ⎤+
= ⎢ ⎥

+⎢ ⎥⎣ ⎦

 (8.26) 

 
The quantity b is the centre-to-centre distance between the line connectors (studs). It is 
apparent that this expression is identical to the one depicted in Figure 8.10. Here, 
however, the modified critical frequency fc,line takes the position of the critical frequency 
of the lining.  
 Before showing examples based on this expression, we shall also refer to a work by 
Davy (1991), having extended the work by Sharp by taking into account the elasticity of 
the connections. He uses the case of stud connections and introduces the compliance 
(inverse stiffness) CM of these connectors. The expressions, which are also cited in Bies 
and Hansen (1996), become relatively complicated and may be a little difficult to follow. 
However, we shall repeat them here and also make a comparison with the equations 
given above. 
 In the same manner as above, the energy transmission is divided into two parts, one 
part transmitted by way of the cavity, the other by way of the connections. In the 
frequency range between the double wall resonance f0 and fc,1, where the latter is the 
lowest of the critical frequencies of the two leaves, the transmission factor for the part 
caused by the connections is 
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The quantity b denotes, as before, the centre-to-centre distance between the studs. For 
“commonly used” steel studs, a compliance CM equal to 10-6 m2 ⋅N-1 is indicated and for 
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wooden studs, CM is zero. However, common experience shows that steel studs may have 
quite different elastic properties; the elasticity is not frequency independent. Estimating 
this property must therefore be based on experience.  
 The transmission factor for the part being transmitted across the cavity is 
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As apparent from the expression, the influence of a finite area S is taken into account. 
Further, a mean absorption factor α for the cavity is introduced. This may be put equal to 
1.0 having a completely filled cavity but in other cases it may be difficult to estimate. 
The sound reduction index which includes both contributions according to Equations 
(8.27) and (8.28) is then 
 
 B,line P 0 ,110lg( ) for .cR f f fτ τ= − + < <  (8.29) 
 
Davy (1991) also gives an estimate for the frequency range above fc,1, applied to the case 
of infinitely stiff studs but we shall not quote that here.  
 An example on the use of Equations (8.20) and (8.26) after Sharp and Equation 
(8.29) after Davy is shown in Figure 8.16. The specimen is a double leaf partition of 13 
mm plasterboards having a cavity depth of 70 mm, which was filled with mineral wool of 
nominal thickness of 60 mm. The boards are mounted on common studs, either wooden 
or steel. The predicted results are nearly identical when it comes to the case of wooden 
studs and the frequency is sufficiently below the critical frequency. In this case, however, 
none of the predictions fits the measured data particularly well.  
 Setting CM equal to 5.0⋅10-6 m2 ⋅N-1 as the compliance for the steel studs, the fit 
between the prediction using Davy’s equation and the measured data is surprisingly 
good. The crucial question remains however: How to estimate CM? 
 More recently, Hongisto et al. (2002) conducted a large experimental study on 
double walls, although on small size specimens (1105 x 2250 mm). The set-up was thus 
similar to the one used by Brekke (see Figure 8.5). However, here they used 2 mm thick 
steel panels and altogether four types of steel stud plus wooden studs were tested. Other 
variables were the cavity depth, the amount of absorber material filling the cavity and the 
flow resistivity of the absorber. Altogether 54 tests were conducted where the cavity 
conditions and the coupling between the panels were varied. No attempt to compare with 
prediction models was made. 
 For uncoupled panels the results show, as discussed in section 8.2.1, that the 
important parameters are the cavity thickness and the amount of filling. The flow 
resistivity played a minor role. For the coupled case, the stiffness certainly was the 
important factor, for wooden studs the spacing of the fastening screws also played an 
important part. Wang et al. (2005) used one of these measurement results, one with 
wooden studs and an empty cavity, to compare with their rather complex analytical 
model treating the double wall as a periodic structure. The periodic model gives quite an 
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undulating sound reduction curve but followed the general trend of the measured data, 
although the model was strictly two-dimensional. 
 Another approach to such analytical modelling, also taking advantage of the 
periodicity of the studs, is offered by Brunskog (2005).  The effect of the studs on the 
sound field in the cavity is also taken into account but again the cavity was empty. The 
agreement between measured and predicted results is quite good.  
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Figure 8.16 Sound reduction index of double leaf partition of 13 mm plasterboards on common wooden and 
steel studs, respectively. Measured data from Homb et al. (1983). Predictions according to Sharp (1978) and 
Davy (1991). 
 

8.2.2.3 Heavy (massive) double walls 

We have in the preceding section dealt with lightweight double leaf constructions where 
the leaves were connected by studs of various types. In the cases where the leaves are 
mounted on a separate system of studs there normally exists structural connections along 
the edges of the wall. In many cases such couplings are “weak” in the sense that the 
adjoining constructions have a much larger mass and stiffness, and the coupling is of 
little consequence unless a common, stiff frame is used.  
 This situation is quite distinct from the one experienced in double constructions 
involving brick or concrete, even including so-called lightweight concrete. The coupling 
along the boundary may completely determine the achieved result. In extreme cases there 
may be no improvements by using a double construction as compared with a single one.  
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Figure 8.17 gives an example, which shows that the difference in the reduction index, 
using a single wall of 150 mm thickness as compared with a double wall, 150 mm and 
100 mm thick, is negligible as long as one uses a common frame. It should be noted that 
the main part of the curve lies above the critical frequency, which for the 150 mm thick 
lightweight concrete partition is approximately 250 Hz. Both partitions have, however, a 
thin layer of plaster added which probably makes the effective critical frequency slightly 
lower.     
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Figure 8.17 Sound reduction index of lightweight concrete walls showing the effect of coupling along the 
boundary. A double wall with a common vs. a separate frame (with gap). Effect of binders in the case of a 
separate frame. See Figure 8.18. Data from Homb et al. (1983).  
 
 
 In these laboratory measurements the elements were mounted on a foundation or 
frame in the form of a niche between the measuring rooms. In fact, there are two niches, 
one in each room structurally separated by a gap (see Figure 8.18). As shown in Figure 
8.18 b) this makes it possible to mount the elements separately, each on its side of the 
gap. The distance between the elements gets larger (220 mm) but this is of minor 
importance as compared with the minimizing of the frame coupling. It should be noted 
that the dimensions of the boundary constructions is much larger than one normally finds 
in real buildings. As evident from Figure 8.17, we obtain a huge increase in the reduction 
index by separating the elements as compared with the case with the common frame. The 
frequency dependence is quite strong, approximately 18 dB per octave. The flattening of 
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the curve in the higher frequency range is probably due to flanking transmission, which 
even with laboratory facilities will show up at extreme level differences. 
 Finally, all structural connections between the two elements will necessarily 
diminish the sound insulation. As indicated in Figure 8.18 b) the binders used are 3.5 mm 
thick steel bolts. There are distributed over the whole wall area with a centre-to-centre 
distance of 500 mm. 
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Figure 8.18 Lightweight concrete double wall. a) Mounted on a common frame; b) Mounted on separate 
frames.  
 

8.3 SANDWICH ELEMENTS 

The concept of a sandwich applies to a large group of multilayer elements with 
applications in building constructions, in transport systems and not least, in plane and 
ship constructions (high speed boats). The literature in this field is rather extensive, 
which stems from the fact that modelling the different layers may be quite different 
depending on the given application. In our context of building acoustics we shall define a 
sandwich element as a three-layer structure having two thin plates (face sheets) bounded 
by a lightweight core material. As opposed to conventional double leaf constructions, 
where the cavity has an infill of porous material, we now have a core as a continuous and 
solid coupling element between the outer sheets (see Figure 8.19).  
 The face sheets may not have the same material properties or have the same 
thickness but that is the normal case. In addition, we have characterized them as being 
“thin”, which in practice implies that they are metal sheets, fibreboard, chipboard, 
plasterboard etc. As for the core material we find plastic foam as well as mineral wool, 
the latter having densities in the range of 100–150 kg/m3 and also cut to make the 
direction of the fibres normal to the sheets. A much used type of core is the honeycomb, 
a beehive plate where the material may be metal or plastic. A very cheap variant, found 
in door leaves, is a core made up of cardboard rings, i.e. short cylinders of cardboard.  
 Elements with honeycomb cores offer lightweight and high stiffness elements. 
They become nearly incompressible in the crosswise direction, which implies that we 
may characterize the core by its shear stiffness only. Such a description cannot be used in 
a number of other core materials, e.g. plastic foams as polyurethane, polystyrene etc. In 
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this case we could apply modelling by transfer matrices but a more advanced one than 
the equivalent fluid model used when calculating the data in Figure 8.3, now having to 
take the elastic properties into account. We have previously used a Biot model for a 
porous elastic material to calculate the absorption factor (see section 5.5.5). This model 
may thus be included in a transfer matrix calculation for the complete sandwich element 
by a procedure as e.g. used by Brouard et al. (1995). It should be noted, however, that 
these calculations presuppose infinite size layers. For finite size elements, one normally 
has to apply finite element methods (FEM) (see e.g. Vigran et al. (1997)). 
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Figure 8.19 Sandwich element. a) Principal structure; b) Definition of layer thicknesses.  
 
 
 To illustrate the general features of sound transmission through sandwich elements 
we shall, however, use another approach. We shall start using the same assumption 
applicable for elements with a honeycomb core; the element being infinitely stiff in the 
normal direction having a core characterized by its shear stiffness only. As a second step 
we shall assume that the core is a general homogeneous elastic material. It may also be a 
porous material but we shall not have to model it using Biot theory as we will assume 
that the pores are closed.  

8.3.1 Element with incompressible core material 

The most pronounced feature of sandwich elements, as distinct from the partition 
elements treated up to now, is the frequency-dependent bending stiffness. In the static 
case, and also at sufficiently low frequencies, the core will act like an ideal spacer for the 
face sheets. For simplification, we may assume that the face sheets are identical, enabling 
us to express the low frequency bending stiffness of the element as 
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For the definitions of these quantities, see Figure 8.19. At a sufficiently high frequency, 
however, we get a decoupling of the face sheets and the bending stiffness will just be the 
sum of the bending stiffness of each sheet. We may then write 
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Between these extremes the bending stiffness of the element will be determined by the 
properties of the core material. To find the effective bending stiffness we shall start with 
a differential equation for a sandwich element developed by Mead (1972). We shall 
assume that the element lies in the xz-plane having displacement ξ in the y-direction. The 
equation describing the free vibrations may be written 
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if we assume harmonic movements at an angular frequency ω . The quantity m is the 
total mass per unit area; Dys and B are the total bending stiffness of the face sheets and 
the maximum bending stiffness of the complete element, respectively. The quantity g is a 
term that contains the bending stiffness of the core. These quantities are given by 
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As seen from these equations, we may have different shear stiffness G in the x- and z-
direction but for simplicity, we shall assume that these are equal. Expressing the shear 
stiffness of the core in the usual way by the modulus of elasticity and Poisson’s ratio, we 
get 
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  Assuming a solution of Equation (8.32) of the form 
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we arrive at the following sixth order equation for the bending wave number: 
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It should be mentioned that Ferguson (1986) uses this equation to arrive at an explicit 
expression for the critical frequency of the element. As mentioned above, we shall 
primarily use it to demonstrate the frequency dependence of the bending stiffness and, 
second, show how this affects the bending phase speed. 
 The polynomial Equation (8.36) may easily be solved numerically and we may then 
find the effective bending stiffness Beff and the corresponding phase speed cB from the 
following equations: 
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Figure 8.20 shows a typical example of the frequency dependence of the bending 
stiffness. In this example, the face sheets are 9 mm chipboard and the core has properties 
corresponding to PVC foam (see Table 8.1). The bending stiffness is shown for two 
different thicknesses of the core, 50 mm and 100 mm. In the latter case, the dashed line 
shows the result of reducing the E-modulus and thereby also the shear stiffness by a 
factor of two. 
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Figure 8.20 Bending stiffness of a sandwich element. Face sheets of 9 mm chipboard with foam core (PVC) of 
thickness 50 and 100 mm. Dashed curve indicate 100 mm core with reduced shear stiffness.   
 
 
 

Table 8.1 Material data used in Figure 8.20. 
 

 E-modulus 
(Mpa) 

Density 
(kg/m3) 

Thickness 
(mm) 

Poisson’s ratio 

Face sheets 4000 800 9 0.3 
Core  50 60 50 - 100 0.3 
Core (dashed curve) 25 60 100 0.3 

 
 
 What are then the consequences for the phase speed of the bending wave and 
further on for the sound reduction index of a sandwich element? Using the second 
calculation in Equation (8.37), the corresponding phase speed will be as depicted in 
Figure 8.21. Keeping the same bending stiffness as present at low frequencies would 
result in a very low critical frequency. However, depending on the core shear stiffness 
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and thickness we obtain a more or less “flat” part on the curve before reaching 
coincidence.   
 It is also important to note that even if the critical frequency is relatively high, the 
radiation factor may be larger for a sandwich element as compared with a homogeneous 
one. The reason is that the phase speed cB will have a value close to the speed of sound in 
air over a broad frequency range. This implies that resonant transmission will be a more 
important factor below coincidence than in the case of a homogeneous element.  
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Figure 8.21 Phase speed cB of the sandwich element having bending stiffness as shown in Figure 8.20. The 
speed c0 is the phase speed in air. 
 
 
 How does one calculate the sound reduction index of a sandwich element having 
such frequency-dependent bending stiffness? This may be accomplished by using just the 
same expressions as given in Chapter 6 valid for a homogeneous single element, 
however, to calculate the reduction index at each frequency by using the radiation factor 
etc. appropriate for the bending stiffness in question. 
 An example is shown in Figure 8.22, where the reduction index is calculated for the 
element discussed above, however for three different core thicknesses. We have also 
assumed that the surface area is 10 m2 and that the element has a total loss factor of 0.05. 
For comparison, a curve giving the simple mass law is included. It should be obvious that 
a poor design may produce quite dramatic failure in the sound insulation, added to the 
fact that one is starting out with a lower reduction index than predicted by the mass law. 
As opposed to the figures illustrating the bending stiffness and the phase speed, we have 
not calculated the reduction index corresponding to the dashed curve, where the shear 
stiffness of the 100 mm core is reduced by a factor of two. How would you expect the 
reduction index to be in that case?  
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Figure 8.22 Sound reduction index of a sandwich element. Material data from Table 8.1. 
 

8.3.2 Sandwich element with compressible core 

Excluding sandwich cores of the honeycomb variety, we cannot in general neglect 
movements normal to the plane of the sandwich panel, i.e. there will be a transverse or 
dilatational movement where the face sheets move in opposite phase. There will be 
symmetric movements, dilatational modes, which may be considered as a generalized 
kind of double wall resonance, in addition to the anti-symmetric modes due to the 
bending waves as illustrated in Figure 8.23. 
 Moore and Lyon (1991) give analytical expression to calculate the sound reduction 
index of infinite size sandwich panels, for cases with isotropic as well as with orthotropic 
core materials. Concerning orthotropic materials, see Chapter 3 (section 3.7.3.3) and 
Chapter 6 (section 6.5.3). An interesting spin-off from their work is that a panel with an 
orthotropic core may in certain frequency ranges give a higher sound reduction index 
than predicted by the mass law.  
 The derivation of their expression is rather involved, and we shall not repeat it here. 
We shall look at the case of an isotropic core and show some calculated results where 
comparison with measured results is possible. Moore and Lyon’s work is based on the 
transmission factor for plane wave incidence expressed by the wall impedances Zs and Za 
for symmetric and anti-symmetric wave motion, respectively: 
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Figure 8.23 a) Anti-symmetric and b) symmetric wave motion in a sandwich element with compressible core.  
 
 
 To calculate the transmission factor for diffuse field incidence, we shall as usual 
integrate the expression; over a range 2π for the azimuth angle θ and up to an angle of 
approximately 80° for ϕ, the latter to simulate laboratory conditions. 
 The derivation of the expressions giving Zs and Za starts from the equations of 
motion for the face sheets and the core. The equations for the face sheets allows for in-
plane movements and for bending, whereas the core is described as a homogeneous and 
elastic material allowing for dilatational as well as shear wave motion. A 4x4 impedance 
matrix is set up to represent the core, relating both the normal and shear stress amplitudes 
to the velocity amplitudes of the face sheets, transverse as well as in-plane. 
 The next step is to link these impedance components, i.e. the matrix coefficients, to 
the equations of motion of the face sheets to arrive at the sought-after velocity 
amplitudes caused by the incident sound pressure. In this way, Moore and Lyon arrived 
at, given identical face sheets, two uncoupled equations describing the symmetric and 
nonsymmetric motion, respectively, and thereby to explicit expressions for Zs and Za for 
direct input to Equation (8.38). 
 Measured and predicted results for a sandwich panel of 13 mm plasterboards and a 
55 mm thick core of a polyurethane foam material (PUR) is shown in Figure 8.24. 
Taking account of the uncertainty of the material properties, the calculations are 
performed using two different values for the modulus of elasticity. The applied material 
data are given in Table 8.2.  
 As apparent from the figure, the fit between predicted and measured results is very 
good. The double wall resonance, caused by the symmetric or dilatational movement, is 
evident around 800 Hz in the same way as the effect of coincidence shows up in the 
frequency range 2500–3000 Hz. The frequency of the former one, the lowermost 
dilatational resonance, is given by 
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Figure 8.24 Sound reduction index of sandwich panel of 13 mm plasterboards and 55 mm polyurethane core. 
Predicted data using two different modulus of elasticity for the core. Measured data from Homb et al. (1983). 
 
  
 

Table 8.2 Material data for sandwich panel in Figure 8.24. 
  

 E-modulus 
(Mpa) 

Density 
(kg/m3) 

Loss factor 
 

Poisson’s 
number 

Face sheets, 13 mm 
plasterboard 

3200 800 0.05 0.30 

Core, 55 mm polyurethane 5 − 6 50 0.05 0.35 
 
 
 Concerning the fit between predicted and measured results in the lower frequency 
range, one should be reminded that the prediction applies to an infinite size panel, i.e. no 
area effect is included. Furthermore, the panel area of 7.5 m2 being used for the 
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measurements was a little smaller than required for a standard laboratory measurement, 
which is 10 m2. The predicted results are averaged values using data calculated for 
approximately 10 single frequencies inside each one-third-octave band. 
 Summing up sandwich elements: A critical factor in designing for good sound 
insulation is the core shear stiffness. By reducing the core thickness without changing 
any material parameters one may draw two important conclusions. The stiffness of the 
core will increase, moving the lowest dilatational resonance up in frequency. At the same 
time the bending stiffness of the element will decrease, which results in a reduced phase 
velocity for the anti-symmetric wave motion in the middle frequency range, thereby 
obtaining a higher reduction index.  

8.4 IMPACT SOUND INSULATION IMPROVEMENTS 

Adding a lining to the ceiling is one way of improving the airborne and/or the impact 
sound insulation of a floor, using a floating floor is another. The added floor “floats” on 
an elastic medium placed upon the primary floor construction. The elastic component is 
normally a continuous layer of mineral wool, plastic foam etc. but may be discrete load-
bearing mounts, e.g. rubber mounts or rubber strips. A floating floor may then be 
considered as a generalised form of vibration isolation. Principal solutions for the case of 
a concrete floating floor slab are shown in Figure 8.25. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Floating floor

Elastic layer
Primary floor

Elastic bearing

Porous material
(non-bearing)

a)

b)

 

Figure 8.25 Principal types of concrete floating floors. a) On a continuous elastic layer, b) on elastic load-
bearing unit mounts. 
 
 
 As far as the airborne sound insulation is concerned, such a construction is nothing 
less than a double wall construction without stiff structural connections. As for the 
improvements in the impact sound insulation, however, not only the properties of 
floating slab and the elastic layer are important, the properties of the ISO tapping 
machine may also influence the results. The latter applies in particular to cases where the 
floating floor is not a concrete slab but a lightweight construction, e.g. floorboards, 
parquet etc. We shall therefore mostly be concerned with the impact sound properties of 
such floating floors. 
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 The top layer or floating floor may either be characterized as locally or resonantly 
reacting, which here means that the force from the tapping machine is either transmitted 
from the top layer to the primary floor just around the neighbourhood of the tapping 
point or a reverberating bending wave field is generated. For a very stiff top layer, a local 
reaction implies that the internal losses must be large; the wave field must be heavily 
attenuated before it arrives at the boundaries and furthermore; the free reflected waves 
created at the boundaries must also decay swiftly. This condition is not possible to realize 
when it comes to concrete slabs, except may be in combination with thick layers of 
asphalt etc. 
 A lightweight top layer of floorboards, parquet etc. may normally be characterized 
as be locally reacting, primarily due to their lower stiffness in combination with higher 
inner energy losses as compared with concrete slabs. The bending wavelength of 
lightweight top floors is also substantially less than for concrete slabs as the latter 
normally have a thickness 40–50 mm. These facts have, as will be shown below, 
implications for the design of the connections between the top floor and the primary floor 
at the boundaries.  
 Soft floor coverings, carpets etc. are, as opposed to floating floors, purely an agent 
for improving the impact sound insulation. Such elastic layers change the shape of the 
force impulse impacted by the tapping machine, thereby affecting the mechanical power 
transmitted to the primary floor.  
 The achieved improvement, whatever the top layer used, is certainly not 
independent of the type of primary floor. This is completely analogous to the 
assumptions we were allowed to use when dealing with the improvement of linings as 
opposed to the general case of lightweight double leaf partitions. In the former case we 
could assume that the primary construction was unaffected by the presence of the lining. 
 In the same way, we shall start with prediction models for the improvement offered 
by floating floors on heavy floor constructions. It should be mentioned that the basic 
concrete floor slab specified in ISO 140 Part 8, which deals with laboratory 
measurements of the improvement or reduction in transmitted sound by soft floor 
coverings, shall have a thickness in the range 100–160 mm, preferably 140 mm. It is, 
however, certainly of interest to know the reduction offered when placed on e.g. a 
lightweight wood joist floor and we shall give examples of this case when dealing with 
lightweight top layers. Lately, a laboratory standard for determining the reduction in 
impact sound by floor coverings on a lightweight basic floor has been issued. Altogether, 
three different lightweight floors have been specified (see ISO 140 Part 11).         

8.4.1 Floating floors. Predicting improvements in impact sound insulation 

Predicting the impact sound insulation improvement offered by a floating floor is not an 
easy task. Analogous to the prediction of airborne sound insulation we shall have to take 
account of both forced and resonant transmission, the latter being dependent on the 
boundary conditions for the floating as well as for the primary floor. The boundary 
conditions for these are not necessarily identical. Modelling the floating layer is also an 
important task. May we consider the layer to act like an ideal spring or are we forced to 
model it as medium supporting wave motion? We certainly cannot extensively deal with 
all these factors; we shall limit our treatment to a “classic” model for forced transmission 
in addition to an SEA model dealing with the resonant transmission. 
 The most well-known work, dealing with floating floor constructions, was 
performed by Cremer in 1952, to be found in Cremer et al. (1988). In Cremer’s model 
the basic floor and the top floor are assumed to be two infinitely large and homogeneous 

 



308 Building acoustics 

slabs, characterized by their mass and bending stiffness and coupled together by an 
elastic layer characterized by its stiffness only. The system is driven by a point force, a 
falling hammer having a mass mh. As the slabs are infinitely large there will only be a 
bending wave near field propagating outwards from the driving point. This means that 
there will be no reflections setting up a reverberant field, which implies that both slabs 
are locally reacting. 
 Surprisingly, even if the slabs are characterized both by their mass and stiffness, the 
latter property does not enter into the expression for the impact sound improvement ΔLn. 
This quantity is defined as the difference in the radiated sound power from the primary 
construction applying the force directly on it and then to the floating slab. Cremer then 
showed that we get 
 

 h
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j 240 lg 20 lg 1 for ,f f mL f
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⎝ ⎠
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where f0 is the double wall resonance given by Equation (8.5) and Z1 is the mechanical 
point impedance of the floating slab. For heavy floating slabs such as concrete we may 
normally neglect the second term in the equation, thereby obtaining an improvement of 
12 dB per octave. The assumption concerning local reaction for both slabs is however, as 
pointed out above, not valid in practice for such floating floor constructions. One 
therefore never experiences improvements as high as predicted by this equation. The 
standard EN 12354-1 proposes a modified version of Equation (8.40) where the constant 
40 is substituted by 30, thereby reducing the frequency dependence to 9 dB per octave. 
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Figure 8.26 Model for calculating improvement in impact sound insulation. 

 
 
 It is also interesting to note that the Cremer equation is identical to the one arrived 
at using a simple one-dimensional model, where each layer is characterized by its 
mechanical impedance. Using the details found in Figure 8.26, we may calculate the 
velocity amplitudes of the primary floor, first, when being driven directly by a force F 
and, second, when the same force is driving the top floor.  Letting these velocities equal 
u2a and u2b, respectively, we get 
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The velocity ratio will be  
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With the last limit value we have assumed that the impedance of the primary slab is 
much larger than for the top slab, whereas the latter also is very much larger than the 
impedance of the elastic layer. Now assuming that the radiated power from the primary 
floor is proportional to the velocity squared, it follows 
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Assuming that the impedance of the top slab is an ideal mass impedance and the elastic 
layer is an ideal spring, i.e. |Z1| ∼ ω m1 and |Zd| ∼ sd/ω, we again obtain 
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An alternative to a continuous elastic layer is obtained by using elastic load-bearing unit 
mounts as shown in Figure 8.25 b). This type of connector may also be used to illustrate 
the influence of structural connections (sound bridges), normally unintentional, between 
the floating layer and the primary floor construction. Vér (1971) used a SEA model to 
calculate the improvement in the impact sound insulation by such floating floor 
constructions, assuming a reverberant bending wave field in the floating top slab. Other 
important assumptions were e.g. that the energy transmission from the top slab to the 
primary floor only takes place by way of the unit mounts, only transmitting forces and 
not moments. In other words, the coupling by way of the air stiffness in the cavity is 
disregarded. Furthermore, there is no correlation between the movements at the different 
mounts. Indicating the floating floor and the primary floor by the indices as above and 
having N mounts per unit area, each having a stiffness s, Vér gives the following result 
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Above a given frequency, when the last term inside the parenthesis becomes the 
dominating one, the frequency dependence of ΔLn will be 9 dB per octave. Inserting for 
the impedance of the floating floor slab we may use the approximate expression 
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where h1 and cL1 is the thickness and the longitudinal wave speed, respectively. It should 
be noted that the 9 dB per octave dependency presupposes that the loss factor of the 
floating slab as well as the stiffness of the elastic units are frequency independent.  
 An example of the measured improvement using a heavy floating floor, a 50 mm 
thick concrete slab on a 25 mm thick stiff mineral wool layer, is shown in Figure 8.27. 
Assuming that the total dynamic stiffness per unit area of the elastic layer is 8.0 MPa/m, 
we get a resonance frequency of approximately 40 Hz. This total stiffness represents the 
sum of the elastic stiffness of the mineral wool and the stiffness of the enclosed air (see 
section 8.4.4).  
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Figure 8.27 Improvement in the impact sound insulation by a heavy floating floor, 50 mm concrete slab, 25 mm 
mineral wool and 140 mm concrete basic floor. Measured data after Homb et al. (1983). Solid line – 9 dB per 
octave above resonance frequency. Dashed line – predicted for an equivalent elastic unit mounting.  
 
 
 The solid straight line represents the predicted improvement following a frequency 
dependence of 9 dB per octave above the resonance frequency, a curve that in this 
example gives a slightly better estimate than what is actually achieved (see comments 
below). It is also interesting to calculate the improvement in a thought experiment 
assuming that the top floor floats on mounting units having the same total stiffness as the 
mineral wool layer. The dashed line is calculated using Equation (8.45), where an 
empirical expression by Craik (1996) is used for the loss factor of concrete slabs (see 
also section 6.4.2.3), 
 

 1 0.015.
f

η = +  (8.47) 

 
It should be stressed that the latter result is included just to give an illustration of the use 
of Equation (8.45), not because we expect that there should be a good fit to measured 
data applied to a continuous elastic layer.   
 There exists, however, a series of measurement data on heavy floating floors on 
continuous elastic layers that show a smaller frequency dependence than 9 dB per octave. 
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At very low frequencies one may see frequency dependence near to the Cremer model 
whereas at higher frequencies one may experience frequency dependence nearer to 6 dB 
than 9 dB per octave. This is probably caused by wave motion in the elastic layer, i.e. 
characterizing the layer by its compressional stiffness only is not appropriate. As 
opposed to this effect, measured results on floating floors on discrete mounts give a good 
fit to predicted data using Equation (8.46).        

8.4.2 Lightweight floating floors 

A couple of principal solutions when it comes to lightweight floating floors as 
floorboards, parquet etc. are sketched in Figure 8.28. In both cases there is a continuous 
elastic layer but in the first case the top floor is directly coupled to the elastic layer. We 
shall refer to this as a “surface mounted” case. In the second case, referred to as “line 
mounted”, the top floor is mounted on beams or slats, the latter constituting the couplings 
to the elastic layer. This type of mounting may have the advantage that the dynamic 
stiffness of the enclosed air layer is diminished, at the same time also increasing the static 
stiffness of the top floor. In this line mounting case one may also replace the continuous 
elastic layer by unit mounts fastened below the beams, i.e. a mounting resembling the 
one shown in Figure 8.25 b).  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a)

b)

Floorboard

Elastic layer
Primary floor

Slats

 
 

Figure 8.28 Lightweight floating floor on a heavy basic floor. a) “Surface” mounted, b) “Line” mounted. 
 
 
 The improvements gained by using such lightweight floors are distinctly different 
from the ones of concrete slab form. As mentioned above, this is partly due to a more 
local reaction by the lightweight floors. At the same time, however, the mass impedance 
of the tapping hammers may no longer be neglected in comparison with the input 
impedance of the floor. In this case, we shall use the complete Equation (8.40) which 
may be written 
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 The last term only applies to frequencies above fz, a frequency that is determined by 
the ratio between the impedance of the top floor, specified by its mass and bending 
stiffness and the mass impedance of the hammer. At sufficiently high frequencies, the 
frequency dependence will be as high as 18 dB per octave, a result completely 
determined by the specific mass of the hammer. Testing such floors, however, is 
normally performed using additional loads of the order of 20–25 kg per unit area 
simulating the weight of furniture etc. This diminishes the effect of the hammer mass. 
 Two examples of the improvement gained by using lightweight floating floors are 
shown in Figure 8.29. In both cases the top floor is made of 22 mm thick chipboard, 
surface mounted on 15 mm plastic foam in the one case, line mounted by 22 x 95 mm 
beams on 25 mm stiff mineral wool in the second case. The primary floor is a 140 mm 
thick concrete slab in the first case and 200 mm lightweight concrete in the second. The 
difference in weight of the primary floor has negligible influence on the results as the 
mass in the latter case is just some 20 % less than in the case of the concrete floor.  
 The frequency fz (see Equation (8.48)), will be approximately 600 Hz and we 
observe that the frequency dependence above fz is very close to 18 dB per octave. We 
shall note that the measured data for the floor on plastic foam include the effect of a thin 
floor covering on top of the chipboard but this gives a contribution of maximum 5 dB (at 
2000 Hz). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.29 Impact sound improvement of lightweight floating floors, 22 mm chipboard surface mounted on 15 
mm plastic foam (80 kg/m3) and line mounted on 25 mm mineral wool (100 kg/m3). Measured results from 
Homb et al. (1983). 
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8.4.2.1 Lightweight primary floor  

In all examples shown relating to the improvement gained from floating floors, we have 
tacitly assumed that the primary floor is infinitely stiffer than the floating top floor. For 
lightweight primary floors such as wood joist floors, normally comprising lightweight 
panels both on top and on the underside, the impedance of the hammers will however 
influence the impact sound level of the primary construction as well, i.e. the 
measurement being the base for determining the reduction in transmitted sound. This 
problem, which was mentioned in the introduction to section 8.4, will be illustrated by 
measured data for the impact sound improvement of a lightweight floating floor 
combined with both a heavy and a lightweight primary floor. However, up to now we 
have not specifically looked into the impact sound insulation of such lightweight primary 
floor, partly due to the complexity in modelling, partly as they normally cannot offer 
sufficient impact sound insulation without being combined with a floating floor and/or a 
suspended ceiling. 
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Figure 8.30 Normalized impact sound level of wood joist floor. Predicted results are mean values using 15 
tapping positions. After Brunskog and Hammer (1999b). 
 
 
 Brunskog and Hammer (1999b) have presented a literature survey (see also 
Brunskog and Hammer (2000)), on the different approaches to the modelling and also 
presented their own prediction model taking the periodicity of the beam-plate system into 
account. Their approach is somewhat analogous to the one used by Lee and Kim (2002) 
treating airborne sound insulation (see section 8.2.2), as both start out from the 
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governing equations for two plates connected and stiffened by beams. In several cases, 
Brunskog and Hammer’s prediction model fits well to measured results. We shall present 
one example (see Figure 8.30), where the construction is depicted in the insert; a 
platform structure of two 22 mm matched boards connected by wooden beams of 
dimensions 67 x 220 mm, the cavity partly filled by mineral wool of thickness 120 mm 
and density 20 kg/m3. The measured results are taken from an earlier work by Bodlund 
(1987). It is worth noting that the general frequency dependence is quite different from 
the ones found for heavy floor constructions (see Figure 6.20). 
 We shall now return to the case of the impact sound improvement of a lightweight 
floating floor combined with such a lightweight primary floor as opposed to a 
combination with a heavy floor. The floating floor is here a combination of 22 mm thick 
chipboards and 13 mm plasterboards surface mounted on 25 mm stiff mineral wool. It is 
combined with two different primary floors; one being a 200 mm thick lightweight 
concrete floor of density 1300 kg/m3, the other a wood joist floor. The latter is a platform 
structure of 48 x 198 mm beams with 22 mm chipboard on top and combined with a 
ceiling of 2 x 13 mm plasterboards. As evident from Figure 8.31 we get, in the case of 
the heavy primary floor, a frequency dependency of 18 dB per octave just as shown in 
Figure 8.29. As expected, however, we do not see this effect using the wood joist floor. 
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Figure 8.31 Impact sound improvement of floating floor, 22 mm chipboard and 13 mm plasterboard on 25 mm 
mineral wool. Measurements on two different primary floors, 200 mm lightweight concrete and a wood joist 
construction. 
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8.4.3 The influence of structural connections (sound bridges) 

Structural connections, which we may refer to as sound bridges, may be of vital 
importance in the performance of a floating floor. This is certainly a case completely 
analogous to the effect of such structural connections in other types of multilayer 
constructions, e.g. when adding a lining to a basic construction. The conditions are 
however a little different for impact sound compared with airborne sound, as the 
influence of a sound bridge on the impact sound depends on whether the top floor is 
locally reacting or not, where there is no simple criterion to use. There is obviously a 
gradual transition between these extreme cases depending on material properties, 
thickness etc. making us dependent on experiments or experience to decide on a proper 
design. All investigations do, however, show that heavy floating floors such as concrete 
are extremely vulnerable to sound bridges, being in the form of point connections to the 
primary floor or as connections to the adjoining walls.  
 This was shown early on by Gösele (1964) in a laboratory experiment introducing 
point contacts to the primary floor in the form of cylinders of gypsum, 30 mm in 
diameter. The results are shown in Figure 8.32, where the parameter for the curves is the  
number of such bridges. It should be noted that just one of these bridges reduces the 
improvement to nearly half its value.    
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Figure 8.32 The influence of sound bridges, cylinders of gypsum of diameter 30 mm, on the measured impact 
sound improvement of a concrete floating floor. Data from Gösele (1964). 
 
 
 Correspondingly, Gösele (1964) performed a similar experiment where he made 
solid contact between the concrete top slab and one of the adjoining walls. This made in 
effect a direct structural connection between the floating floor and the primary floor. The 
result is shown in Figure 8.33 together with a sketch of the situation. The parameter on 
the curves is the length of the solid connection between the floating slab and the wall. It 
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should be obvious that such stiff connections along the boundaries have a destructive 
effect on the working of a floating floor but the requirement as to the stiffness of such 
connections is not evident. Experience shows that such connections may have a stiffness 
that is a lot stiffer than the elastic layer before a reduction in the effect of the floating 
floor is detected.   
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Figure 8.33 The effect of solid line contacts between a concrete floating floor and the adjoining wall. The 
length of the line bridges is the parameter on the curves. Measurements by Gösele (1964). 
   
   
 Extensive experiments (e.g. Holmås and Bjørklund (1979); Austnes and Hveem 
(1983)) on lightweight floating floors using floorboards, combinations of chipboard and 
plasterboard, parquet etc. show that stiff boundary connections have substantially less 
effect than in the case of heavy floating floors. Holmås and Bjørklund (1979) used a 
laboratory set-up with a wood joist primary floor combined with various types of 
lightweight floating floor. Fixed connections were established between the floating floor 
and a boundary wall in contact with the primary floor, the effect being an increase in the 
transmitted impact sound level at frequencies above approximately 300 Hz, this when 
placing the tapping machine at positions near to the boundary wall (< 1 metre) as 
compared to other tapping positions. This clearly indicates the local reaction of such 
lightweight floating floors, an effect making them less critical with regards to non-
intentional structural connections.  

8.4.4 Properties of elastic layers 

Assuming that the mass m per unit area of the floating floor is substantially less than the 
mass of the primary floor, Equation (8.5) may be simplified to 
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where s is the total stiffness per unit area of the elastic layer. For porous layers the 
stiffness may be expressed as 
 

 dyn 0
skeleton air ,

E Ps s s
d d σ

= + = +
⋅

 (8.50) 

 
where sskeleton and sair denotes the stiffness of the solid frame and the stiffness of the 
enclosed air in the pores, respectively. As shown by the second expression the former 
stiffness is expressed by the dynamic modulus of elasticity and the stiffness due to the 
enclosed air is calculated by assuming isothermal motion. The quantity P0 is the 
barometric pressure and d is the thickness of the porous layer of porosity σ. If the 
thickness of the layer is less than approximately 20 mm, we normally observe that the 
last term will be the dominating one. 
 The standard ISO 9052–1 specifies a method for determining the dynamic stiffness 
of materials intended for floating floors. A square specimen of dimension 200 mm is 
used, loaded by a given mass to make up a simple mass-spring system. Measuring the 
resonance frequency of this system determines the dynamic stiffness. Three principal 
arrangements are specified, of which two are sketched in Figure 8.34. In arrangement a) 
the loading mass is driven dynamically assuming the base is non-moving and in b) the 
base is driven and the differential motion between load and base is measured. A third 
possibility resembles the latter arrangement but now the load mass is driven. In all cases, 
only movements in the vertical direction are assumed. 
 
 
 
 
 
 
 
 
 
 
 
 
 

F
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Figure 8.34 Test arrangement for determining dynamic stiffness according to ISO 9053–1 (some details are 
omitted). 1) Mass loading plate. 2) Test specimen. 3) Base (foundation). a) The mass load being driven, the base 
is fixed; b) Differential measurements of loading mass and base. 
 
 
 A complication concerning these arrangements is the necessary limited specimen 
area. For open-pore porous materials such as mineral wool, the flow resistivity will be a 
determining factor as it will determine whether or not the enclosed air will “escape” 
during the measurement. For high flow resistivity, r ≥ 100 kPa⋅s/m2, one will directly 
measure the total stiffness s. At intermediate values, 10 kPa·s/m2 < r < 100 kPa·s/m2, 
sskeleton is determined by the measurement, and the total stiffness is calculated by Equation 

 



318 Building acoustics 

(8.50). In cases where r < 10 kPa·s/m2, moreover when we cannot assume that sskeleton >> 
sair , the method is not suitable for determining s.   
 Some typical data of the dynamic elasticity modulus are given in Table 8.3, valid 
for a static load of 2 kPa. The dynamic stiffness and dynamic E-modulus are dependent 
on the static load and this dependency will not be the same for different materials. As an 
example we find that the E-modulus of rock wool, having a density in the range 150–175 
kg/m3, is approximately 0.3 MPa at a load of 2 kPa. Decreasing the load to 1 kPa the E-
modulus will decrease by some 20%, whereas it will increase by some 30% with a load 
of 4 kPa.  
  
 

Table 8.3 Dynamic modulus of elasticity. 
 

Material Density 
(kg/m3) 

Dynamic E-modulus (MPa)  
(static load ≈ 2 kPa) 

Glass wool approx. 125 0.11–0.13 
Rock wool 150–175 0.27–0.33 
Rock wool 110–135 0.25–0.30 

Polystyrene foam 10–20 0.30–3.0 
Polyurethane foam 33–72 7–19 

Cork 120–250 10–30 
 
 
Examples As pointed out above, the stiffness of the enclosed air may contribute 
substantially using thin elastic layers. Using a layer of thickness 10 mm only, assuming a 
porosity σ ≈ 1.0, we get sair ≈ 10 MPa/m, which is in the same order of magnitude as 
sskeleton of a very elastic material.  
 A floating floor of 50 mm concrete on an elastic layer of 25 mm glass wool will 
have a resonance frequency of approximately 40 Hz. Using the same elastic layer 
together with a floating floor of type as shown in Figure 8.31, i.e. a combination of 22 
mm chipboard and 13 mm plasterboard, the resonance frequency will now be 
approximately 90 Hz.  

8.4.5 Floor coverings 

Floor coverings such as carpets, vinyl, vinyl combined with felt and linoleum etc. are, as 
opposed to floating floors, purely a means of reducing the impact sound transmission. A 
soft covering changes the shape of the force impact from the tapping machine, thereby 
influencing the mechanical power transmitted to the floor below. The reduction in the 
impact sound power should therefore, in principle, be predicted from the difference in 
transmitted force with and without the covering. It has, however, been difficult to set up 
a good prediction model due to problems of characterizing the properties and behaviour 
of such coverings subjected to this kind of impact.  
 The main feature is that the speed of the hammer will decrease from its initial value 
v0 when hitting the covering layer, to zero at the maximum compression of the layer. 
Thereafter the hammer will return. The time for this process is certainly dependent on the 
effective stiffness of the layer related to the area of the hammer(s) Sh, the latter being 7 
cm2. We may express this stiffness as 
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 h
covering .E Ss

d
⋅

=  (8.51) 

 
The quantities E and d are the E-modulus and thickness of the covering, respectively. 
The questions to be raised here are what types of energy loss mechanism are involved 
and whether the process is linear or not. Here we shall use some measurement results and 
compare these with a simple linear model, a resistance in series with a stiffness given in 
Equation (8.51). The model, proposed by Lindblad (1968), was used by Brunskog and 
Hammer (1999a) to model the interaction between the tapping machine and lightweight 
floors (see section 8.4.2.1).  
 
 
 
 
 
 
 
 
 

a)
mh

v0 mh v0

s

cF

b)

Figure 8.35 a) Floor covering hit by a hammer of speed v0; b) Linear model of covering characterized by a 
spring stiffness in series with a resistance.   
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 Figure 8.36 Time history of force pulses using elastic layer model given in Figure 8.35 b). Solid curve – 
overdamped case, approximately 20 % more than critical. Dashed curve – approximately 60 % less damped than 
critical. 
 
 
 The situation is depicted in Figure 8.35, where the hammer of mass mh and speed v0 
is hitting the covering. We shall assume that the primary floor beneath the covering is 
infinitely stiff. Using the model in b) to calculate the improvement, we must, first, 
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calculate the time function of the force F and thereafter compare this with the 
corresponding force without the covering. 
 The solution to the differential equation based on this model will depend on the 
damping of the system, i.e. the damping being less than critical or overdamped, which 
means we get an oscillation or just a positive pulse. The former case is assumed not to 
happen as the tapping machine has a mechanism for catching the hammers before they 
bounce back again after impact.  It is, however, interesting to calculate the improvement 
assuming that the pulse becomes oscillatory.  
 Examples on calculated pulse forms are shown in Figure 8.36, using a covering of 
stiffness s equal to 3.2⋅105 N/m, giving a resonance frequency f0 of approximately 130 
Hz with a hammer mass of 0.5 kg. One of these pulse forms is slightly overdamped (≈ 20 
%), while the other is less than critically damped (≈ 60 %). Critical damping is obtained 
when the damping coefficient c is equal to π mf0.   
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Figure 8.37 Impact sound improvement of two types of floor covering. Measured data from Homb et al. (1983). 
Predicted improvement with a linear model: stiffness of carpet squares 3.2⋅106 N/m, vinyl covering 5.2⋅106 N/m. 
Thin solid curves – overdamped case. Dashed curves – less than critically damped.  
 
 
 The reduction in the transmitted impact sound may now be determined by 
calculating the ratio of the Fourier transforms representing the actual force pulse and the 
corresponding one obtained without the covering. Figure 8.37 gives two examples of 
measured improvement data, one specimen being soft carpet squares and the other a 
vinyl covering with a felt backing. In the former case, we have assumed that the covering 
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has the same stiffness as used in Figure 8.36, and the improvements are calculated using 
these two pulse forms; the thin solid curves predicted for the overdamped case and the 
dashed curves for the oscillatory case. For the former case, the fit between measured and 
predicted data, as far as the shape of the curves is concerned, is very good, certainly in 
view of the simple model used. The same comment may be made for the vinyl covering, 
where a stiffness of 5.2⋅106 N/m is used, equivalent to a resonance frequency of 
approximately 510 Hz. 
 We may therefore, at least for these two versions of floor covering, conclude that 
the simple linear model is satisfactory when assuming critical damping or slightly more. 
An absolute comparison is however not possible, due to lack of available data for the E-
modulus of these coverings. 
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CHAPTER 9 
 

Sound transmission in buildings. Flanking 
sound transmission  

 

 

9.1 INTRODUCTION 

With some exceptions, we have up to now treated sound transmission through a specific 
building element. A sound reduction index or an impact sound level is then ideally an 
element specification but as pointed out a number of times; the boundary conditions of 
an element may have considerable influence on the result. The type and properties of the 
connections to adjoining constructions are important factors when specifying the 
transmission properties of a given element. An example is the contribution to the total 
loss factor of an element by the vibration energy “leaked” to adjoining structures, making 
it advisable for laboratories following ISO 140 to determine the total loss factor of their 
test specimens. Another example of the importance of the couplings was presented in 
Chapter 8 when dealing with heavy double walls. 
 In this chapter we will deal with the interplay of building elements with the 
objective of predicting the airborne and impact sound transmission in real buildings, in 
which there are normally a number of transmission paths between the source and 
receiver. We shall look for models enabling us to predict the acoustic performance of 
buildings based on the acoustic performance of each element making up the complete 
structure. To prepare such models has been an important task for the European Standards 
Organization CEN and sound transmission inside buildings are covered by the standards 
EN 12354 Part 1 and Part 2. We have referred to these standards before concerning 
predictions of element performance. Here we shall show some examples of the full 
model. 
 The prediction accuracy of such models is obviously dependent on the types of 
element taking part and the complexity of the boundary conditions. Dealing with simple 
heavy constructions such as concrete, the accuracy will be good whereas combinations 
involving lightweight, multilayered elements are always difficult to handle. This should 
not prevent the use of these models in practical design cases, a use that contributes to the 
gathering of a larger information base for these standards. 
 By way of introduction, we shall refer back to Figure 6.3, which sketches a number 
of possible transmission paths between two rooms, one room being excited by a sound 
source. As shown, in addition to the airborne sound transmission through the partition 
wall, there will be energy transmitted by way of the flanking walls, through cracks and 
crannies, by way of the windows or a common ventilation or cable duct etc. We also 
pointed out that we shall reserve the concept of flanking transmission for the energy 
transport in the following way: the source excites the flanking constructions on the 
source side into vibration, thereby causing a part of this vibration energy to be 
transmitted to flanking constructions on the receiver side, which in turn radiates sound. 
Another important transmission path, which is not shown in Figure 6.3, is the 
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transmission via a suspended ceiling common to two neighbouring rooms, i.e. the 
partition wall does not seal off the cavity above the ceiling. This certainly may result in 
some flanking transmission along the suspended ceiling panel, but the airborne sound 
transmission in the cavity between the basic ceiling and the suspended panel is normally 
more important. 
 We shall treat a number of these transmission paths before presenting a model 
where the flanking transmission is included. We shall start with a simple calculation of 
the sound transmission index of a partition made up of a combination of different parts, 
e.g. a wall including a window or door. We may use this result to exemplify the effect of 
non-intentional weaknesses of a partition such as badly sealed cable ducts or direct 
building defects such as cracks (slits) or apertures in the construction. Furthermore, 
sound transmission by way of common ventilation ducts will be looked at and, as an 
introduction to the theme of calculating the apparent sound reduction index, we shall 
treat the subject of sound transmission by way of a suspended ceiling. 
 

9.2 SOUND REDUCTION INDEX COMBINING MULTIPLE SURFACES 

When calculating the sound reduction index of a partition consisting of an assembly of 
two or more parts or surfaces, one normally assumes no interaction between the different 
parts; each part vibrates independently driven by the incident sound pressure. This is 
certainly a simplification but it may be justified by giving a rough and reasonable 
estimate. The total transmission factor τtotal of a number n of partial surfaces Sn having 
transmission factor τn will be given by 
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where S0 is the total area. Expressed by the corresponding sound reduction indices, we 
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An example showing the use of this expression is given in Figure 9.1, where there are 
just two components (n = 2) giving a diagram useful for dimensioning a partition 
containing a door or window. It should be noted that R0 is the sound reduction index 
belonging to the total area S0, i.e. the index before the smaller part of area S1 with 
reduction index R1 is inserted. The explicit expression, certainly assuming S1 ≤ S0, is  
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Figure 9.1 Calculation of the sound reduction index of a composite construction, e.g. a partition containing a 
door or window. The parameter is R0 – R1, the difference in the sound reduction indices.  
 

9.2.1 Apertures in partitions, “sound leaks” 

The results shown above may be used to estimate the influence of unintentional 
weaknesses in a building element, e.g. a partition, examples being badly sealed cable 
ducts or just building defects as slits or apertures. The problem is to find the effective 
transmission factor or the sound reduction index of such apertures, sealed or not. If the 
aperture is open one may, as a starting point, assume that the pertinent area has a 
reduction index equal to zero. However, as we shall see, this is too rough a 
simplification. Intuitively, one should expect that sound waves experience some 
difficulties in passing through apertures where the transverse dimensions are less than the 
wavelength. One should therefore expect such reduction indexes to be frequency 
dependent. A greater problem associated with such apertures is that one will encounter 
resonance phenomena that may in some frequency ranges give reduction indexes of the 
order –5 to –10 dB.  
 Pioneering work for prediction tools in this field were performed by Wilson and 
Soroka (1965) and Gomperts and Kihlman (1967), the latter pair of authors also made 
comparison with full-scale measurements. These works are, however, limited to the 
treatment of apertures as being open, i.e. there is no kind of filling materials or sealing, 
an aspect taken up by Mechel (1986). Vigran (2004) extended the work on open 
apertures by including apertures having a variable transverse shape (conical apertures 
and wedge-shaped slits). The transmission aspects were, however, not the primary 
concern of this work but the design of resonator absorbers using panels having these 
types of perforation. The sound reduction index of an open aperture in a wall of 
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thickness 100 mm is shown in Figure 9.2, illustrating the general frequency dependence 
of the transmission, the typical resonance phenomena (can you predict the frequency of 
these “dips”?) and the effect of shaping the aperture as a conical horn.  
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Figure 9.2 The sound reduction index at normal incidence of a conical aperture in a wall of thickness 100 mm 
as compared with a cylindrical aperture. The entrance radius is 10 mm and the exit radius (in mm) is indicated 
on the solid curves. Dashed curve gives results for a cylindrical aperture of radius 10 mm calculated from 
Wilson and Soroka (1965). After Vigran (2004).  
 
 
 For practical use in sound insulation in buildings, transmission through sealed 
apertures is more relevant and we shall therefore revert to the work by Mechel (1986). 
This is, however, a purely theoretical work but we shall make comparisons with results 
from other sources. The geometry used in calculating the transmission through a 
cylindrical aperture with radius a in a wall of thickness d is shown in Figure 9.3. The 
aperture is filled with a porous material characterized by propagation coefficient Γ and 
complex characteristic impedance Zc. The aperture may also be sealed at one or both 
sides by ideal mass layers having a mass per unit area denoted m. The transmission factor 
for the aperture at plane wave incidence at an angle ϕ is given by 
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The quantity Zr is the radiation impedance, here being the radiation impedance of a 
piston in an infinite baffle (see section 3.4.4). Having a diffuse incident field, Mechel 
gives a simple relationship between the transmission factor for diffuse sound incidence 
and normal incidence, as 
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 diffuse (0).τ π τ=  (9.5) 
 
This implies that the sound reduction index for diffuse incidence will be approximately 5 
dB smaller than for normal incidence.  
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Figure 9.3 Cylindrical aperture in a wall filled with a porous material and sealed by mass layers. 
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Figure 9.4 Sound reduction index at normal incidence. Cylindrical aperture of radius 10 mm in a wall of 
thickness 100 mm. Mineral wool of flow resistivity 5 kPa⋅s/m2. Sealing tape of mass/area 100 g/m2.   
 
 
 We shall illustrate the use of Equation (9.4) by again using a cylindrical aperture of 
radius 10 mm in a wall of thickness 100 mm (see Figure 9.4). The curve giving the result 
for a an open or empty aperture is the same as shown in Figure 9.2, however, now using 
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Mechel’s Equation (9.4), which gives nearly identical results as predicted by Wilson and 
Soroka (1965).  
 Using sealing tape only, we get a mass-spring-mass resonance of a frequency 
which may also be easily calculated. We may also notice the effect of this resonance 
even if the aperture is filled with mineral wool. To calculate the propagation coefficient 
and complex impedance for the mineral wool a model by Mechel is used (see section 
5.5.2). Calculating the reduction index for the case denoted “empty”, we have introduced 
a small energy loss by setting the flow resistivity to 5 Pa⋅s/m2, i.e. to 1/1000 of the one 
used above.  
 Calculation of the transmission factor for a slit shaped aperture becomes much 
more complicated than for a cylindrical aperture. There will be a dependency of the 
azimuth angle as well, in addition to an angle dependency of the impedances on both 
sides of the aperture. Calculating for a diffuse field incidence implies a complicated 
numerical integration. We shall therefore confine ourselves showing predicted results for 
normal incidence only, where we may use the same equations applicable for apertures, 
but where we have to exchange the radiation impedance for a circular piston with the 
proper one for an infinitely long and narrow slit. An analytical formula is available, 
expressed by Hankel and Struve functions (see e.g. Abramowitz and Stegun (1970)), but 
we shall not give it here. It should be noted, however, that the radiation impedance of a 
piston, of any shape (square, triangle etc.) and sitting in a baffle, may be calculated from 
the Fourier transform of the impulse response of the piston, i.e. the response when driven 
by a Dirac pulse (see Lindemann (1974)).  
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Figure 9.5 Test wall of dimensions 2250 mm x 1240 mm (2.8 m2) for measuring the sound reduction index of a 
slit of depth 180 mm. a) Open slit; b) Slit containing 100 mm mineral wool; c) Slit with mineral wool and tape 
on one side.  
 
 
 We shall compare predicted and measured results for a slit, where the latter was a 
laboratory set-up to test the acoustic performance of different sealing methods, according 
to Alvestad and Cappelen (1982). In a test wall of surface area of 2.8 m2 a slit was made 
across the aperture width of the wall, 1240 mm. The slit was formed by two steel UNP 
beams placed against one another, making a slit of adjustable width (see Figure 9.5). 
 In the experiments, a large number of combinations of mineral wool and sealing 
were tested on slit widths in the range 5 to 20 mm. We shall show some results for a slit 
width of 20 mm. When comparing with the predictions, we have in addition to the 
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problem of sound incidence, two other deviations from the assumptions. The mineral 
wool did not fill the entire length of the slit, only approximately half of it. Also, the tape 
used for sealing was not properly specified in the written report. For our calculations, the 
first problem was solved by assuming a lower flow resistivity, approximately 1/6 of the 
one for the mineral wool used, whereas the second problem was eliminated by using a 
tape surface weight of 0.28 kg/m2 measured on a similar brand of tape. 
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Figure 9.6 Sound reduction index of test wall of area 2.8 m2 with slit of area 1240 mm x 20 mm and length 180 
mm. Measuring situations as depicted in Figure 9.5. M – measurements in diffuse field. P – predicted for normal 
incidence.  
 
 
 As shown in Figure 9.6, we arrive at a reasonable fit between measured and 
predicted results using the assumptions mentioned above. The uppermost curve gives the 
reduction index in the case of the slit when completely closed, this reduction index being 
the one for a combined wall, a lower part being a 140 mm concrete slab and the upper 
part a 180 thick lightweight construction. Based on these data and the predicted reduction 
index for the slit, we may use Equation (9.2) to find the resulting reduction index for the 
cases a) to c) depicted in Figure 9.5. The largest discrepancy between measured and 
predicted results is found for case c), which may be attributed to resonance phenomena 
more predominant at normal incidence than when “smeared out” at diffuse incidence.   
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9.2.2 Sound transmission involving duct systems 

Another example where we may assume that the sound transmission takes place by way 
of two or more independent surfaces, are when rooms are connected by a duct system. 
Two possible situations are depicted in Figure 9.7. In the first situation, the rooms are 
connected to the main ventilation duct system by way of the terminal units in the rooms. 
An open transmission path between the rooms is thereby established, indicated in the 
sketch as open-ended ducts.  
 The second situation is more complicated; the sound energy transmission between 
rooms takes place due to airborne sound transmitted through the duct walls in one room 
and a corresponding sound transmission out through the duct walls in the other room. 
This problem may arise when a duct passes through a very noisy room and the 
transmission may certainly affect areas other than the neighbouring room. One may also 
have situations where the neighbouring rooms have terminal units connected to the same 
system. It should also be noted, as indicated in b) that added to the airborne sound inside 
the duct there may also be flanking transmission by way of the solid duct walls.  
 The phenomena connected to transmission through duct walls, which is commonly 
referred to as acoustical break-in and break-out, will not be theoretically described here. 
We shall give a qualitative description only, together with a few examples from the 
literature. A fairly recent review paper is given by Cummings (2001).      
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Figure 9.7 Sound transmission between rooms by way of a common duct system. a) transmission between 
terminal units; b) transmission through duct walls (“break-in” and “break-out”). 
 
 
 As for the situation depicted in a) we are in a position to calculate the necessary 
attenuation, i.e. in the duct system between the terminal units, so as not to reduce the 
overall sound insulation between the rooms. This attenuation, which we shall denote D, 
may be defined as 10⋅lg(1/τ) where τ is the transmission factor for this transmission path; 
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the ratio of the radiated sound power from the terminal in the receiving room to the 
sound power entering the terminal in the source room. The attenuation includes a number 
of different sound energy losses; losses at branches and bends, energy reflected at 
terminal outlets, by silencers inserted in the duct etc. Prediction tools for all types of such 
losses are available in the literature (see e.g. ASHRAE (1999)). 
 Assuming that the area S of the partition is much larger than the area St of the 
terminal unit (grill, diffuser), we may use Equation (9.3) to calculate the necessary 
attenuation D. We may e.g. demand that the sound reduction index R (or R') of the 
partition should not be reduced by more than ΔR when the duct system is connected. This 
implies that 
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 (9.6) 

 
Example Having a partition of area 10 m2 and sound reduction index 40 dB and 
demanding ΔR < 1 dB, we need at least an attenuation D of 19 dB when there is a 
terminal unit of area (10 x 20) cm2. 
 In principle, we should be able to handle the situation depicted in Figure 9.7 b), in 
the same way allocating a sound reduction index and an area to the duct walls. The 
problem is that reduction indexes of duct walls are difficult to predict with satisfactory 
accuracy, as they are dependent not only on the general shape but on details in the 
structure. Ducts with rectangular cross section have the lowest reduction indexes, 
whereas cylindrical ducts with an ideal circular cross section may exhibit very high 
reduction indexes, in particular at low frequencies. This is, however, only part of the 
aperture story. Details in the shape of cylindrical ducts, e.g. flanges, may dramatically 
decrease the reduction index. This may be explained, in the break-out case, by higher 
order vibration modes in the duct walls excited by the internal sound field, thereby 
increasing the radiated sound power. 
 Several definitions are in use concerning sound reduction indexes of duct walls. 
According to Cummings (2001), the most popular definition in the case of break-out is 
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where Wi and Wr are the sound power inside the duct and the radiated power, 
respectively. The quantity Si is the cross sectional area of the duct and Sr is the area of the 
sound radiating duct wall. Correspondingly, one may define a similar sound reduction 
index for sound transmission into the duct as  
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The sound pressure p is the pressure in the assumed reverberant field outside the duct, 
and W is the power transmitted into the duct having a cross-sectional area S. The 
rationale behind the number two in the denominator is that when the power is transported 
in the duct, one-half of it goes each way. Using the reciprocity relation (see section 
6.6.1), assuming a point source being placed in a room outside the duct, thereafter inside 
the duct, one may show that there is a direct connection between these sound reduction 
indexes. Neglecting a possible attenuation of the wave in the axial direction over a duct 
length L, we get 
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where f as usual is the frequency, and U is the outside perimeter of the duct. 
 There remains the problem of finding an expression for one of these reduction 
indexes. As mentioned above, this is not an easy task and it will be outside the scope of 
this book to provide a complete prediction model. We shall, however, give a couple of 
examples on measured and predicted results of the reduction index of ducts having 
rectangular and circular cross sections, respectively, both examples being taken from the 
paper by Cummings (2001). 
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Figure 9.8 Sound reduction index for break-out. Duct with dimensions 457 x 229 mm and wall thickness 0.64 
mm. Solid curve – predicted. Points – measured data in one-third-octave bands. Reproduced from Cummings 
(2001).  
 
 
 Figure 9.8 shows sound reduction index for break-out of a galvanized steel duct of 
cross section 457 x 229 mm and wall thickness of 0.64 mm. Measured results are as 
usual given in one-third-octave bands, showing a very good fit to predicted results using 
a wave solution, taking account of the coupling between the acoustic wave field inside 
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the duct and the structural wave field in the duct walls. It should be noted that the 
reduction index increases only by approximately 3 dB per octave, as opposed to the 6 dB 
dependency of common single partitions in the mass controlled frequency range. The 
duct walls certainly are mass-controlled in the low and middle frequency range but the 
difference is attributed to the radiation factor of the duct, as it is a line-source of finite 
length.        
 Ducts with a circular cross section have in general a much higher reduction index 
than ducts with rectangular cross section. Figure 9.9 shows measured and predicted 
results applying to a “long-seam” circular duct of 1.22 mm galvanized steel having a 
diameter of 356 mm. Measured results are again given in one-third-octave bands and two 
different predictions are given. As pointed out above, not only the shape of the duct will 
be important but also details in its shape, and the duct in question had a single axial seam 
making the duct a little flat on both sides of it. The dashed curve applies to an ideal 
circular duct transporting a plane wave. The duct may then only move as a monopole 
source, making the walls subjected only to membrane stress, which results in a very high 
impedance for the internal plane wave and thereby a high reduction index. 
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Figure 9.9 Sound reduction index for break-out. “Long-seam” circular duct, galvanized steel of wall thickness 
1.22 mm and diameter 356 mm. Dashed curve – predicted for duct of ideal shape. Solid curve – predicted from 
“distorted” circular duct model. Points – measurement results in one-third-octave bands. Reproduced from 
Cummings (2001).  
 
 
 In the predicted result given by the solid curve, allowance has been made for a non-
ideal circular shape, a shape which probably applies to all duct used in building practice, 
e.g. ducts with spiral seams. The internal acoustic wave then excites other vibration 
modes in the duct walls in addition to the pure membrane mode, resulting in an increase 
in the radiated sound and thereby a substantially lower reduction index.  
 In this case as well, plane wave propagation in the duct is assumed thereby giving a 
discrepancy between measured and predicted results when higher order modes may 
propagate. This effect may clearly be seen in the frequency range around 1000 Hz. In 
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addition, one will always get high radiation at frequencies around the so-called ring 
frequency fR, the frequency where the circumference of the duct is equal to the 
longitudinal wavelength of the duct material. Hence, the ring frequency of a circular duct 
of diameter D is given by 

 L
R .cf

Dπ
=  (9.10) 

 
As the material of the duct is steel, for which the longitudinal wave speed cL is 
approximately 5100 m/s, the ring frequency fR will in this case be approximately equal to 
4600 Hz. It should be noted than one may treat the duct walls as ordinary plane surfaces 
when the frequency exceeds the ring frequency.   

9.2.3 Sound transmission involving suspended ceilings 

A phenomenon related to the transmission by way of duct systems is transmission by 
way of suspended ceilings. In many cases, the partition between two rooms just extends 
to the ceiling (see Figure 9.10). The plenum chamber above the ceiling will then be 
suitable for installing building service equipment such as cables and duct systems. 
However, without taking proper precautions, the solution may give unsatisfactory sound 
insulation. Despite the fact that this is a common construction both in schools and office 
buildings, design tools for predicting the sound insulation are not satisfactory. 
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Figure 9.10 Sound transmission between rooms involving a suspended ceiling and a common plenum. The 
ceiling may as indicated include an absorber.  
 
 
 Probably, the first attempt to give a quantitative description was presented by 
Mariner (1959), applying diffuse field models both for the rooms and the plenum. In 
view of the fact that such plenums may have a height in the range 30–100 cm, maybe 
including an absorber, the diffuse field assumption is normally not valid. Several 
attempts have been made, partly by proposing simple corrections to the model of 
Mariner, partly by developing quite different analytical models. Mechel (1995) has 
presented a comprehensive theory, which composes the sound field by a forced wave 
solution and a modal expansion of the field in the plenum. This is analogous to the 
treatment of the duct transmission problem by Cummings (2001) (see the preceding 



Sound transmission in buildings. Flanking transmission. 337 

section). We shall, as above, not reproduce Mechel’s theory, just present one or two 
examples.  
 In addition, it might be interesting to compare these results with predictions based 
on a simpler model based on the diffuse field approach combined with a treatment of the 
plenum as a lined duct. In reality, this concerns two different models developed by 
Mechel (1980), of which we shall just present the one-dimensional variant. 
 The transmission factor for the transmission path by way of the ceiling and the 
plenum may be defined as 
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W
W

τ =  (9.11) 

 
where WS,d and WR,d are the diffuse sound power incident on the ceiling in the sending 
(source) room and the radiated sound power from the ceiling in the receiving room, 
respectively. An alternative definition could also be used by referring to the power 
incident on the partition. This may be a more suitable definition if the task is to add 
contributions from several transmission paths. In this case; referring all transmission 
factor to a common surface area, e.g. the surface area of the partition, we may directly 
add the different transmission factors. The relationship between these alternative 
definitions of the transmission factor is 
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where the extra index p indicates reference to the partition. The quantities LS and HS are 
the length and height of the sending room, respectively (see Figure 9.10). 
Correspondingly, the relationship between the reduction indexes will be 
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9.2.3.1 Undamped plenum (cavity) 

We shall start by showing a comparison between measured and predicted results with the 
aid of Mechel’s (1995) modal theory, where the suspended ceiling is made of 9.5 mm 
plasterboard and no absorbers in the cavity. Mechel does point to the fact that it is often 
difficult to find measured results containing sufficient specifications for materials and 
dimensions. He is therefore using data collected from several sources but even so, some 
data have to be estimated as well. Another problem concerning the sound reduction 
indexes is the reference surface chosen for the incident power. As discussed above, 
different definitions may be used. We shall, in each case, point to the definition used.  
 Another important assumption made in the prediction models is that there is a 
structural break both in the ceiling (and in a prospective absorber) above the partition. 
This implies that there is no direct coupling between the ceilings in the two rooms; there 
is no flanking transmission according to our strict definition. Whether this assumption is 
valid in practical cases is open to discussion but suspended ceilings are often an 
assembly of smaller units that may result in a less stiff structural coupling. 
 Measured and predicted results for the sound reduction index Rcl are shown in 
Figure 9.11, where the length of the ceiling is the same in both rooms, i.e. LS and LR are 
equal to 4.75 metre (see Figure 9.10). As stated above, the ceiling is made of 9.5 mm 

 



338 Building acoustics 

plasterboard and there is no absorber in the plenum. The height h of the plenum is 0.43 
metre. In addition to the measured results and the results according to the model theory 
predicted results are given using the aforementioned one-dimensional model. The latter 
model is outlined in the following section. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9.11 Sound reduction index Rcl of a suspended ceiling of 9.5 mm plasterboard without plenum absorber. 
Measured results and predicted results according to a modal theory, reproduced from Mechel (1995). Predicted 
results by a one-dimensional model by Mechel (1980). See Equation (9.20) (ε =2).  
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    Looking at the results predicted by the modal theory these exhibit quite large 
excursions, presumably due to single frequency calculations, two for each one-third-
octave band. Averaging over a larger number of single frequencies for each band would 
probably make the curve smoother. Apart from giving systematic lower results, the one-
dimensional model is also quite good in this case. 

9.2.3.2 One-dimensional model 

In the model by Mechel (1980) we envisage that the ceiling in the sending room, having 
length LS, is divided into elements of area ΔLS ⋅ b where b is the width of the room. Since 
the model is one-dimensional this width is certainly of no importance. The transmission 
through these elements is assumed to be uncorrelated, and the power transmitted into the 
plenum on the sending side is determined by the transmission factor of the ceiling, made 
up of the transmission factor τS,pl of the ceilings plates and the transmission factor τS,a of 
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the prospective absorber. Similar conditions are imposed on the receiving side, hence we 
may write 
  (9.14) S S,pl S,a R R,pl R,aand .τ τ τ τ τ τ= ⋅ = ⋅

 
There is a major problem using transmission factor data, normally determined for diffuse 
field conditions, in this situation where the sound field on the receiving and sending side, 
respectively, are far from diffuse. Another problem is how the power transmitted into the 
plenum spreads out. One part will be transported in the direction of the partition, another 
goes in the direction of the backing wall, if there is one, and in turn is reflected back. The 
ratio of these two parts is characterized by the quantity sS, a ratio that for lack of better 
alternatives is put equal to 0.5. Both parts will be attenuated during propagation in the 
direction of the partition, attenuation is assumed to take place exponentially as seen in 
the expression 
 S

S, ( ) ,m x
hW x e− ⋅∝  (9.15) 

 
where mS is the power attenuation coefficient (m-1) in the plenum of height h. With an 
absorber the plenum could be considered as a rectangular duct lined on one side with an 
absorber, and we may use routines for finding the complex propagation coefficient Γ or 
the complex wavenumber k´ in such a duct (see e.g. Mechel (1976)). The attenuation 
coefficient is then found from  
  
 { } { }2 Re 2 Im ' ,m = ⋅ Γ = − ⋅ k  (9.16) 
 
where Re and Im denote the “the real part of” and  “the imaginary part of”, respectively. 
 All power contributions are integrated over the length LS to arrive at an expression 
for the total power passing over to the plenum on the receiver side. A similar derivation 
is carried out for the receiving side except for taking account of the attenuation partly 
caused by transmission through the ceiling and into the receiver room. Hence, the 
attenuation coefficient here is expressed as 
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where sR is the ratio mentioned above, applied to the receiver side of the plenum. Now 
assuming that all sidewalls in the plenum are totally reflecting, i.e. the reflection factor is 
equal to 1.0, we get 
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The other extreme situation, assuming the sidewalls are totally absorbing, gives the same 
expression, however without the factor 2 in the exponential terms. In the case of minor 
attenuation in the plenum (mSLS, mRLR << 1), also putting sS = sR = 0.5, we arrive at the 
following very simple expression for the transmission factor 
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The constant ε is equal to 1.0 in the case of totally absorbing sidewalls and equal to 2.0 
for totally reflecting ones. The corresponding sound reduction index for the transmission 
path through the suspended ceiling, assuming minor attenuation in the plenum, is then 
given by 
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 (9.20) 

  
The transmission factors τS and τR are calculated from Equation (9.14). 
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Figure 9.12 Sound reduction index Rcl for transmission by way of a suspended ceiling and plenum. Suspending 
ceiling of 9.5 mm plasterboard with 40 mm thick porous absorber. Calculated sound reduction index of 
plasterboard and absorber is presented by separate curves. The sound reduction index Rcl is also shown for the 
case of no attenuation in the plenum, (Equation (9.20)). 
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Figure 9.13 Sound reduction index Rcl of suspended ceiling of 9.5 mm plasterboard with 40 mm thick porous 
absorber. Measured results and predicted results according to a modal theory, reproduced from Mechel (1995). 
Predicted results by a one-dimensional model by Mechel (1980): Equation (9.18) with sS and sR equal to 0.5. 
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9.2.3.3 Damped plenum (cavity) 

In the paper by Mechel (1995) an example is also given for a case where a 40 mm thick 
porous absorber is placed above the suspended ceiling, comparing measured and 
predicted result using his modal theory. However, before showing these results we shall 
use the full one-dimensional model, expressed by Equation (9.18), to predict the total 
sound reduction index and the single components included in the model as well.  
 Figure 9.12 shows the predicted sound reduction index Rcl using the full one-
dimensional model, setting both sS and sR equal to 0.5, together with the results 
according to Equation (9.20). The latter result includes the reduction index of the 
absorber but the attenuation inside the plenum is not included. The purpose for doing so 
is to show the effect of the attenuation. As expected, the difference between these two 
curves exhibits a maximum when the height of the plenum, which here is 39 mm, is 
approximately equal to one half wavelength. A comment to be added here is that the 
attenuation is calculated for the fundamental mode only, i.e. plane wave propagation in 
the plenum.  
 In addition, the sound reduction index of the plasterboard and the porous absorber 
are shown separately, using material data given by Mechel (1995) and models presented 
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in Chapter 6 (see sections 6.5.2.1 and 6.5.4). The plasterboard had a mass per unit area of 
9.5 kg/m2, a critical frequency of 3250 Hz and a loss factor of 0.1. The flow resistivity of 
the porous absorber was 10 kPa⋅s/m2 (density 20 kg/m3). 
 In the same way as shown in Figure 9.11, where the plenum is without an absorber, 
measured and predicted results for the case when an absorber is added, is shown in 
Figure 9.13. We have also included predicted results using the one-dimensional model as 
shown in Figure 9.12. Comparing with the results for the case without any absorber, both 
measured and predicted results using the modal theory show that the absorber has a 
greater influence in the low frequency range than in the middle and high frequency 
ranges. This is in fact surprising and an explanation is not readily at hand. As also seen, 
the one-dimensional model completely fails at frequencies below approximately 400 Hz, 
giving a reasonable fit with the measured data just over a couple of octaves.    
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Figure 9.14 Sound reduction index of lightweight double leaf partition and apparent sound reduction index 
including suspended ceiling transmission path. Sound reduction indexes for suspended ceiling path are 
measured data from Figure 9.11 and Figure 9.13. 
 

9.2.3.4  Apparent sound reduction index with suspended ceiling 

Apart from being able to predict the sound reduction index for the transmission path 
across a suspended ceiling, our main interest will be the overall sound insulation between 
two rooms; i.e. the resulting apparent sound reduction index. We shall use the case of the 
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suspended ceiling as an introduction to the general case where a number of different 
transmission paths are participating, including flanking transmission in a strict sense. 
 We shall then choose a partition that is reasonably “matched to” the suspended 
ceiling, which means that there is no point in choosing a very good partition if the 
expected transmission by way of the ceiling will be considerably larger than the 
transmission directly through the partition. As we wish to apply the measured results 
presented above, we choose a partition with sound reduction index as shown in Figure 
9.14. This is a lightweight double leaf construction, two layers of 13 mm plasterboard on 
common steel studs, the cavity of 70 mm filled with mineral wool.  
 To calculate the apparent sound reduction index including the transmission path 
across the ceiling using measured data from Figures 9.11 and 9.13, we have to decide on 
the height of the room, i.e. the height of the partition. We may then refer the sound 
reduction index Rcl of the ceiling transmission path to the partition by applying Equation 
(9.13), thereafter summing up the pertinent transmission factors. This procedure is 
followed, giving the results as shown in Figure 9.14, where we can see a substantial 
decrease in sound insulation where there is no absorber present in the plenum. With the 
absorber, however, the sound insulation is only slightly poorer than the one offered by 
the partition alone. 

9.3  FLANKING TRANSMISSION. APPARENT SOUND REDUCTION INDEX 

The prediction of the effective sound insulation between rooms in a building, either 
airborne sound or impact sound; presupposes a model that includes all types of 
transmission path. An important type of transmission involves the flanking constructions 
of the wall or floor in question, and as pointed out several times, we shall reserve the 
notion of flanking transmission for this type of energy transport. In the model used here, 
we shall confine ourselves to neighbouring rooms; two rooms separated by a wall or 
floor. We shall also assume that the transmissions involving the different paths are 
independent and that all wave fields are diffuse. 
 We shall furthermore, primarily be treating airborne sound insulation due to the 
fact that it will normally represent a greater problem for prediction than the impact sound 
insulation. In addition, data used when calculating the apparent sound reduction index, 
e.g. vibration reduction index of junctions, may directly be applied to impact sound 
problems. For each transmission path of airborne sound we shall, as before, allocate a 
transmission factor. Referring these factors to the partition, we may express the apparent 
sound transmission index by 
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The indices “d” and “f” indicate the transmission directly through the partition and by 
way of the flanking constructions, respectively. To complete the picture, two terms are 
added representing the sum of other direct or indirect transmission. The index “dt” 
indicates direct transmission through parts of the partition “added to” the basic wall or 
floor, such as doors, air vents or leaks (apertures, slits etc.). This theme has already been 
treated (see section 9.2) and we may include these factors directly in the transmission 
factorτd if appropriate. The last term includes all types of indirect transmission between 
the rooms, e.g. transmission by way of a duct system or a suspended ceiling, by way of 
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windows in an outer wall etc. A note of warning: Reduction index product data for small 
units such as grills, diffusers etc. is normally referred to a standard area of 1 or 10 m2, not 
to their actual area.  
 In the following we shall go into some details on the transmission expressed by the 
first two terms in Equation (9.21). Figure 9.15 gives an indication on the different 
transmission paths that we shall have to take into account. It should be noted, however, 
that the sketch only indicate what we may denote first order flanking paths; paths 
involving one element in the sending room, one junction or connection and one element 
in the receiving room. Applying the notions from the figure, the transmission factors τd 
and τf may be expressed as 
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 (9.22) 

 
where the number of elements n, m and k will normally be four. The main contribution 
from the flanking transmission will normally be by paths indicated by “Ff”. For multi 
leaf constructions, i.e. a double wall, a floating floor construction etc. other flanking 
paths are possible. The same applies for flanking constructions of such types.  
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Figure 9.15 Sound transmission paths between two rooms. Letters “d” and “f” indicate direct and flanking 
transmission, respectively. Capital letters indicate sending room, small letters receiving room. Adapted from EN 
12354–1.  
 
 
 The most obvious effect of flanking transmission is seen in cases where the 
flanking constructions are lightweight and have no structural breaks at the main partition; 
a partition which have good sound insulation properties as a stand-alone element. The 
requirement “not lightweight” is constantly underrated by builders. A classical example 
is given in Figure 9.16, where the curve shows the measured standardized level 
difference DnT between two rooms for music practice. As shown in the insert to the 
figure, the 50 mm thick floating concrete slab passes unbroken below the partition. The 
situation is not helped by the fact that the partition should be good enough, having a total 
of six layers of 13 mm plasterboard. The sound insulation is a total failure at frequencies 
above 300 Hz. The result here represents approximately the sound insulation predicted 
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for direct transmission through the 50 mm concrete slab, which has a critical frequency 
of about 400 Hz.  
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Figure 9.16 Standardized level difference between two rooms for music practice. Effect of flanking 
transmission by way of a floating concrete slab.  
 

9.3.1 Flanking sound reduction index 

As an example on the calculation of the apparent sound reduction index, where the 
flanking transmission is included, we shall assume that only flanking paths of the type 
indicated by “Ff” on Figure 9.15 are contributing. To make use of the flanking reduction 
index we shall have to express it by relevant and measurable quantities applied to the 
flanking elements involved. We then have a situation as sketched in Figure 9.17, where 
there is a direct transmission through the partition of area SS and reduction index Rd 
together with a transmission path of the type mentioned above.  
 The apparent sound reduction index may then be written 
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The flanking sound reduction index Rf, involving the flanking element of area Si in the 
sending (source) room and the corresponding one in the receiver room of surface area Sj, 
we shall define as 
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 The quantity WS is the sound power incident on the partition, and Wij is the radiated 
power from element j in the receiving room caused by vibration transmission from the 
element i in the sending room. The sound intensity Ii is the intensity at the walls, assumed 
to be the same at all surfaces in the sending room. The intensity Ij, however, is the one 
radiated from the element j.  
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Figure 9.17 Sound transmission between two rooms, direct and flanking transmission paths. 
 
 
 Another choice, may be a more natural one, could be to use the actual area Si in the 
definition given by Equation (9.24) in place of the area SS of the partition. The advantage 
of using the latter, as pointed out in section 9.2.3, is that having a common reference area 
for all transmission paths one may directly sum up the accompanying transmission 
factors. The sound powers WS and Wij may as before be expressed as 
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where the sound pressure in the receiving room, having the total absorbing area AR, is 
caused by flanking transmission only. The brackets indicate, as usual, a space averaging. 
Inserting into Equation (9.24), we get 
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To be able to represent the reduction index Rij by the properties of the flanking elements 
we shall make use of the fact that the power Wij may be expressed by the radiation factor 
of the pertinent element on the receiving side. We shall write 
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0 0 ,ij j j jW c S uρ σ=  (9.27) 

  
which together with the second Equation (9.25) gives us 
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A corresponding equation may be found for the sending room, linking the sound pressure 
level and the velocity ui of the flanking element there, by using the transmission factor τi 
of the flanking element. Hence, we shall write 
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where Wt and Wi denote the transmitted and incident power on the flanking element, 
respectively. In the last expression, we have made use of the fact the sound intensity 
everywhere is the same at all surfaces in the sending room. Using the expression for WS 
(see Equation (9.25)), we get 
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Equations (9.24), (9.25), (9.28) and (9.30) then give 
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where Ri is the sound reduction index of the flanking element (wall or floor) in the 
sending room. Whereas Ri tells us how easily the flanking element in the sending room is 
excited into vibrations, the second term gives us the velocity level difference of the 
respective elements when element i in the sending room is excited. We shall denote this 
term by the symbol Dv,ij.  
 Following the standard EN 12354–1, we may instead define the flanking sound 
reduction index as a mean value from measurements in two directions exchanging the 
sending and receiving rooms. We shall then write 
 

 



348 Building acoustics 

 S
, 10 lg ,

2
i j

ij v ij
i j

R R SR D
S S

⎛ ⎞+
⎜= + + ⋅
⎜
⎝ ⎠

⎟
⎟

 (9.33) 

  
where we have  introduced the direction averaged velocity level difference 
  

 , ,
1 (
2v ij v ij v jiD D D= + , ).  (9.34) 

9.3.2    Vibration reduction index 

Determining data for flanking sound transmission is complicated, both by prediction and 
by measurement. In practice, one is normally compelled to use less accurate data than 
e.g. reduction indexes for walls and floors. Recently, a series of international standards 
has been developed for laboratory measurements of flanking sound transmission, both 
for airborne and impact sound transmission (see ISO 10848). This should contribute to a 
greater understanding of the problem and make more accurate data available.  
 The velocity level difference across a junction, which was introduced above is, as 
opposed to a sound reduction index, not an invariant quantity as it depends on the actual 
energy losses in the receiving element. This is quite analogous to the difference in sound 
pressure level between two rooms which is dependent on the absorption area in the 
receiving room. An invariant quantity for transmission across a junction is defined in EN 
12354–1, being called vibration reduction index having the symbol Kij. From this 
quantity, we may find the velocity level difference between elements i and j by 
correcting for the actual energy losses. We shall present examples below but for a 
complete picture we shall start with a presentation of the “classical” calculations 
concerning bending wave transmission across plate intersections involving three (T-
junction) and four plates (see Cremer et al. (1988)). 

9.3.2.1 Bending wave transmission across plate intersections 

In Cremer’s pioneering work one assumes that a plane bending wave is incident on an 
intersection involving three plates or four plates (see Figure 9.18), showing cross 
sections. All plates are assumed to be of infinite extent and a bending wave in the plate 
of thickness h1 is assumed to be incident normally to the axis of the intersection, which is 
normal to the plane of the paper.  
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Figure 9.18 Cross sections through junctions involving three and four plates.  
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 The reduction indexes calculated are defined by the ratio of the power in the 
bending wave transmitted to the power of the incident wave. These reduction indexes 
need not be identical to the velocity level difference as defined above. It should also be 
noted that the calculations do not account for longitudinal or transversal waves being 
generated at the intersection.  
 Two auxiliary quantities were introduced as follows: 
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which is the ratio of the impedances and the ratio of the wavenumbers of the actual 
plates, respectively. In practice, we shall normally find that the plates in line have 
identical material and thickness. With this assumption one may express the reduction 
indexes using a single parameter, which is the ratio of these auxiliary quantities. We then 
get 
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where cB is the phase speed. If the plates involved have identical material properties, we 
will further find that this ratio is given by the thickness ratio of the plates: 
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The reduction indexes R12 and R13 for a T-junction are then given by 
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The corresponding expressions applied to an intersection involving four plates are 
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 The above equations are depicted in Figure 9.19 assuming that all plates have 
identical material properties. If this is not the case one has to substitute the dimension 
ratio h2/h1 by the quantity (ψ/χ)2/5, the latter with (ψ/χ) expressed by Equation (9.36). As 
pointed out above, these reduction indexes are defined by the bending wave power, i.e. 
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not by the velocities. The consequences are that the reduction index R13 will be equal to 
Dv,13 but we shall have to correct R12 to get Dv,12: 
 
 ( ),12 12 10 lg .vD R ψχ= + ⋅  (9.40) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.01 0.1 1 10 100
h2/h1

0

5

10

15

20

25

30

R
ed

uc
tio

n 
in

de
x 

 (d
B

)

R13 - 3 pl.
R13 - 4 pl.
R12 - 3 pl.
R12 - 4 pl.

 
Figure 9.19 Reduction index of bending waves at intersections involving three and four plates, respectively, as 
a function of plate thicknesses. See Figure 9.18.  
  
 
 The idealized reduction indexes as shown in Figure 9.19 have limitations as to their 
practical applications due to the fact that no account is taken of the generation of other 
wave types at the intersection. Furthermore, the plates are of infinite extent and only 
normal incidence is treated. However, the data have been useful, serving as a first 
estimate in monolithic concrete building constructions. Comparing with the estimates 
given in EN 12354 (see below), we shall find that they are not too different from 
Cremer’s data. Certainly, the former is based on later work by Kihlman (1967), who 
treated the case of random incidence on an intersection of four plates and Gerretsen 
(1979, 1986), who also compared with measurement data.       

9.3.2.2 Vibration reduction index Kij 

This vibration reduction index is an attempt to establish a general invariant quantity 
characterizing the transmission across a joint between finite size elements under diffuse 
field conditions. Determining the index by measurements (see ISO 10848 series) implies 
measuring space time averaged velocities and structural reverberation time of the actual 
elements. The damping of the element, given by the reverberation time, is expressed by 
the equivalent absorption length ai of the element i. The definition is then 
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where lij is the length of the junction between elements i and j. The relationship between 
reverberation time T and absorption length a is 
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The reference frequency fref is chosen to be 1000 Hz.  
 It should be mentioned that one may establish a relationship between Kij and a 
transmission factor (or reduction index) based on bending wave power in conformity 
with Cremer’s definition. However, maybe of more interest due to recent work by 
Nightingale and Bosmans (2003) (see below) a similar relationship between the vibration 
reduction index Kij and the coupling loss factor ηij according to a SEA model may be 
established.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9.20 Vibration reduction index Kij as a function of the mass ratio of elements at an intersection involving 
four plates. After EN 12354–1.    
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 Altogether seven types of structural joints are considered in EN 12354 Part 1, for 
which we shall reproduce data for one type only: an intersection involving four 
homogeneous slabs. These data are shown in Figure 9.20, calculated using the following 
equations 
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where M is the logarithmic ratio 
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It should be noted that these expressions are assumed to be frequency independent. 

9.3.2.3 Some examples of Dv,ij and Kij 
Expressions given in the standard EN 12354 are based on a number of measurement 
results, both from laboratory experiments and from in situ observations. As expected, 
data for massive, heavy constructions are more commonly available than for lightweight, 
multilayered type of constructions. Estimating transmission along lightweight façades 
may be a real challenge. One should expect that the amount of data will increase with a 
prolonged use of prediction models such as given in EN 12354. 
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Figure 9.21 Measured vibration level differences in a test building of aerated aggregate concrete. Elastic layers 
(foam rubber) between wall and floor slabs. After Huse (1972). 
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 Here we shall present results from a couple of special cases where the task is to 
increase the vibration reduction index by adding elastic layers to the joints. This will also 
give a very good illustration as to the effect of flanking transmission on the apparent 
sound reduction index.   
 The first example is taken from experiments on a small test “building”, two rooms 
with floor area of 10 m2, built upon one another. Walls and floors were aerated concrete 
slabs of density 600 kg/m3, of thickness 125 and 150 mm, respectively. The vibration 
velocity differences between wall elements were measured both with direct contact 
between wall and floor elements and with elastic layers placed in the joints (see results 
and insert in Figure 9.21). The elastic layers were foam rubber bands, 7 mm thick and of 
120 mm width.  
 Simultaneous results on Kij cannot be presented as the structural reverberation times 
were not measured in these early experiments. Using the expression for a T-junction in 
EN 12354–1 we arrive at the value 6.9 dB for Kij. What we see here is that Dv,ij is 
frequency dependent having a minimum value of 11 dB. The elastic layers give quite a 
dramatic increase in the velocity level difference, which, as presented in the next section, 
nearly completely offset the effect of the flanking transmission on the sound insulation 
between the rooms.  
 In a NORDTEST project (see Brøsted Pedersen (1993)), aiming to work out a 
standard method for in situ determination of transmission properties of structural joints, 
similar results were obtained. The work included a number of laboratory measurements 
but measurements performed in a two-storey dwelling are maybe of special interest, 
where elastic layers were introduced on both sides of the floor separating two apartments 
(see results with a sketch of the situation in Figure 9.22). The floor was concrete of 
density 1750 kg/m3, the walls being lightweight concrete of density 650 kg/m3. The 
elastic layers are 4 mm thick polyurethane with cement (Sylomer P).  
 Concerning the addition of elastic layers to a joint, a point worth mentioning is that 
it could affect the energy losses from the floor to the connected structures. The total loss 
factor will decrease, which may affect e.g. the impact sound pressure level. This adverse 
effect may probably be of less importance than that which is gained by the decreased 
flanking transmission but the effect should certainly be considered. 

9.3.3 Complete model for calculating the sound reduction index 

Being now in the position to calculate the vibration reduction index, we shall return to 
the model for predicting the sound insulation between two rooms given by Equation 
(9.22). Computer software based on this model is commercially available, e.g. Bastian®, 
which include prediction of airborne and impact sound insulation as well as airborne 
sound insulation against outdoor noise. For airborne and impact sound insulation the 
prediction models found in EN 12354 Parts 1 and 2 are implemented. We shall conclude 
this chapter by presenting a few results of the airborne sound insulation based on this 
software, intended to take into account all transmission paths as sketched in Figure 9.15. 
 For a simple illustration of the principles behind these calculations, we shall set out 
to find the apparent sound reduction index R´ in a case where only transmission paths of 
type Ff are contributing in addition to the direct transmission path. We may then use 
Equation (9.23), which we repeat here: 
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Figure 9.22 Vibration reduction index Kij and velocity level differences Dij with elastic layers on both sides of 
joint. Measurement data from a dwelling by Brøsted Pedersen (1993).  
  
 
 Each of these flanking reduction indexes Rf may be expressed by Equation (9.33), 
which combined with the appropriate vibration reduction index Kij using Equation (9.41) 
gives 
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This expression found in EN 12354–1 was derived in a similar way as outlined in section 
9.3.1. As mentioned in section 9.3.2.2 a relationship between the vibration reduction 
index Kij and the coupling loss factor ηij according to a SEA model may be established. 
Indeed, using the framework of SEA, Nightingale and Bosmans (2003) arrive at an 
identical expression for R´, under the condition that the flanking reduction indexes apply 
to resonant transmission only. The added advantage, by using SEA, is that this enables 
them to formulate criteria to assess the suitability of the expressions in particular 
situations.  
 Besides finding proper estimates for Kij relevant for the actual in situ situation, 
there remains the problem of finding corresponding data for the structural damping given 
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by the absorption length a. As a first approximation, the standard suggests setting these 
equal to the areas S, which gives 
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where l0 is a reference length equal to 1.0 metre. In case of additional linings on the 
flanking elements, the resulting improvements ΔRi and/or ΔRj has to be added to the 
right-hand side of the equation. Before showing some predicted results based on this 
model, we shall return to the experiments which attempt to improve the vibration 
reduction index by applying elastic layers. The reason is that these measured results 
clearly illustrate the fine line between the dimensioning of the partition versus the 
flanking elements. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9.23 Apparent sound reduction indexes by applying elastic layers in the joints. The dashed curve applies 
to the primary construction; 150 mm lightweight concrete without elastic layers. The other curves apply to the 
case of a primary floor with additional floating floor and suspended ceiling. After Huse (1972).   
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 In Figure 9.23 the results from a total of five separate measurements of the apparent 
sound reduction index are shown, which apply to the floor slab in the “building” having 
the measured velocity level difference depicted in Figure 9.21. The lowest curve 
(dashed) applies to the primary constructions without any elastic layers in the joints. The 
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other curves show the result when the floor is improved by adding a floating floor as well 
as a freely suspended ceiling; see the inserted sketch. Without the elastic layers, we may, 
by taking the actual vibration level difference into account, easily estimate that these 
improvements, even when reducing the transmission through the floor to zero, will only 
add around 5–6 dB to our R´. In this case, the transmission between the rooms takes 
place solely by way of the flanking walls. Adding the elastic layers, however, we get, as 
expected from the measured vibration level differences, a greatly improved insulation. 
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

63 125 250 500 1000 2000 4000

Frequency (Hz)

0

10

20

30

40

50

60

70

80

S
ou

nd
 re

du
ct

io
n 

in
de

x 
(d

B
)

Total
Lightweight wall
Brick walls ex/lining
Concrete floor

Figure 9.24 Apparent sound reduction index of a lightweight double leaf wall with flanking brick walls and 
concrete floors. Other curves indicate reduction index based on radiated power from the pertinent elements in 
the receiving room. Predictions after Bastian®. 
 
 
 Finally, as an example on the use of the complete model given in EN 12354 Part 1, 
we shall calculate R´ for a conventional lightweight double leaf wall; two 13 mm 
plasterboard layers with a cavity of 75 mm thickness filled with mineral wool. The area 
of the wall is 15 m2, partitioning two rooms with dimensions 8 x 5 x 3 metres (length x 
width x height) and 6 x 5 x 3 metres, respectively. The floors are 180 mm thick concrete, 
whereas the flanking walls are ½ stone brick, plastered on both sides.  
 Calculations are performed using Bastian®, giving results as shown in Figure 9.24. 
The lowest curve gives the reduction index based on the total transmitted power to the 
receiving room by way of all transmission paths, giving a weighted apparent sound 
transmission index R´w of 44.8 dB. The other curves shows the predicted reduction index 
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based on the power radiated from the various surfaces in the receiving room. The brick 
walls here seems to be the weakest part, accounting for approximately 80% of the power 
transmitted to the receiving room. To improve on the situation, measures have to be 
applied on these walls. 
 As an example, we have added simple linings to these walls; 13 mm plasterboard 
layers with a cavity depth of 50 mm, the cavity being filled with mineral wool. Linings 
are added in both rooms and the results are shown in Figure 9.25. The weighted apparent 
reduction index R´w has now increased to 50.3 dB, and the power transmitted through the 
partition and via the flanking elements is approximately equal. 
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Figure 9.25 Apparent sound reduction index of a lightweight double leaf wall with flanking brick walls with 
linings. 180 mm concrete floors. Other curves indicate reduction index based on radiated power from the 
pertinent elements in the receiving room. Predictions after Bastian®. 
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Cross spectrum see Cross spectral 
 density function 
Cross spectral density function, 35 
 
 
Damping 
 coefficient, 40, 320 
 critical, 320 
Damping controlled, 43 
Damping ratio, 40 
Definition, 109 
Degree of freedom, 48 
Density 
 equivalent, 190 
Diffuse field, 117 
Diffusion coefficient, 138 
Dirac δ-function, 9 
Dirac pulse, 330 
Directivity factor, 67, 124 
Directivity pattern, 67 
Discrete Fourier transform (DFT), 14 
Double wall, 277, 295 
 heavy, 296 
 resonance, 280, 304 
Double leaf partition, 290 
Driving point impedance, 37 
Duct system, 332 
Dynamic stiffness, 317 
 
 
Early decay time, 107 
Early-to-late index, 108 
Edge effect, 159, 183 
Edge losses, 100 
Efficiency, 47 
Eigenfrequency, 40, 52 
Eigenfunctions, 52, 84 
Eigenmode see Natural mode 
End correction, 167, 171 
Energy density, 118 
Energy spectral density, 9 
Ensemble, 12 
Equipartition of energy, 267 
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Equivalent fluid, 82, 178 
Ergodic, 12 
Euler equation, 60 
Excess attenuation, 59 
Eyring’s formula, 121 
 
 
Far field, 70 
Fast Fourier transform (FFT), 16, 19 
FFT analysis, 19 
Finite element method, 53 
Flanking transmission, 211, 229, 343 
Flexural waves see Bending waves 
Floating floor, 306 
 lightweight, 311 
Floor covering, 318 
Flow resistivity, 183, 317 
Footfall noise see Impact sound 
Fourier integral, 8 
Fourier series, 4 
Fourier transform, 4, 8, 320, 330 
Fraunhofer diffraction, 140 
Frequency 
 critical, 91 
Frequency response function, 33 
Fundamental frequency, 4 
 
 
Gaussian noise, 25 
 
 
Haas effect, 107 
Hall radius see Room radius 
Hammer apparatus see Tapping 
 machine 
Hamming, 16 
Hanning, 16 
Helmholtz equation, 56 
Helmholtz-Kirchhoff integral equation, 
 140 
Honeycomb, 298 
Hysteretic energy loss, 122 
Hysteric damping, 41 
 
 
Image-source model, 135 
Impact sound pressure level, 215 
Impact sound, 207 
Impedance, 31 
 acoustic, 165 
 characteristic, 82, 190, 328 

 field, 188 
 mechanical, 165 
 point, infinite beam, 293 
 radiation, 328, 330 
 specific acoustic, 165 
 transmission, 75 
 wall, 75, 205, 242 
Impulse response, 33 
 
 
Junction 
 vibration reduction index, 343 
 
 
Kaiser-Bessel, 16 
Kundt’s tube see Standing wave tube 
 
 
Laplace transform, 33 
Lateral energy fraction, 109 
Leakage, 16, 35 
Locally reacting, 75 
Logarithmic decrement, 41 
Loss factor, 41, 100 
 coupling, 266, 351 
 
 
Mass controlled, 43 
Mass law, 242, 303 
 diffuse field, 246 
Mean free path, 105, 143 
Mean square value, 23 
Mechanical impedance, 37 
Mechanical mobility, 37 
Mineral fibres, 156 
MLS (maximum length sequences), 2, 
 28 
Mobility, 31 
 input, 232 
Modal analysis, 49, 53 
Modal density, 98, 111 
Modal energy, 266 
Modal shapes, 52 
Modal vectors, 49 
Mode 
 axial, 110 
 corner, 225 
 dilatational, 303 
 edge, 225 
 oblique, 110 
 surface, 225 
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 tangential, 110 
Modulus of elasticity, 87, 317 
Moment impedance, 37 
Moment mobility, 37 
Monopole source, 64 
Multipole sources, 66 
 
 
Natural modes, 49, 52, 93 
Near field, 70 
 bending wave, 235, 287, 308 
Nodal 
 point, 111 
 surface, 111 
Nyquist frequency, 14 
 
 
Orthotropic, 89, 303 
Orthotropic plate, 93, 251 
Oscillatory motion, 1 
 
 
Periodic binary sequence, 28 
Periodic signal, 8 
Permeability, 197 
Phase coefficient, 60 
Pink noise, 25 
Piston source, 69 
Plane wave, 57 
Plastic foam, 156 
Plenum (cavity) 
 damped, 341 
 undamped, 337 
Point impedance see Driving point 
 impedance 
Poisson process, 142 
Poisson’s ratio, 87 
Polyester fibres, 157 
Polyurethane foam, 304 
Pore shape factor, 190 
Porosity, 198, 317 
Power attenuation coefficient, 122, 339 
Power spectral density function, 14 
Power spectral density, 35 
Power spectrum see  Power spectral 
 density 
Power transfer coefficient, 266 
Prandtl number, 190 
Precedence effect see Haas effect 
Pressure reflection factor, 74 
Pressure release surface, 77, 167 

Primitive root sequences, 139 
Principle of reciprocity, 72 
Principle of superposition, 31, 47 
Probability density, 23, 142 
 function, 23 
Propagation coefficient, 60, 82, 190, 
 328 
Pseudo stochastic, 2, 25 
 
 
Q factor, 41 
Quadratic residue sequences, 139 
Quantization, 14 
 
 
Radiation efficiency see Radiation 
 factor 
Radiation factor, 66, 73, 218, 293 
Radiation impedance, 72 
Radiation index, 219 
Rayl, 197 
Rayleigh integral, 68 
Rayleigh model, 178 
Ray-tracing method, 134 
Real time analyser, 17 
Reciprocity 
 principle, 85, 243, 257 
 vibroacoustic, 85 
Reference curve, 212 
Reflection factor 
 pressure, 160 
Relaxation phenomena, 122 
Repeatability, 133 
Reproducibility, 133 
Resonator 
 Helmholtz, 164 
Reverberation room, 119, 155, 163 
Reverberation time, 41, 107, 351 
Ring frequency, 336 
RMS-value, 6 
Room constant, 120 
Room radius, 126 
 
 
Sabine’s formula, 121 
Sampling, 14 
Sampling frequency, 16 
Sandwich element, 277, 298 
Scattering coefficient, 138 
Scattering cross section, 142 
Schroeder cut-off frequency, 116 
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Shape function, 230 
Single number rating, 211 
Snell’s law, 82, 205 
Sound 
 airborne, 207 
 structure borne, 207 
Sound intensity, 62 
Sound power, 61 
 level, 63 
Sound pressure level, 1, 57 
Sound reduction index, 208 
 apparent, 210 
 flanking, 345 
 weighted, 211 
Source 
 dipole, 220 
 monopole, 219 
Source strength, 66 
Specific acoustic impedance, 58 
Specific airflow resistance, 197 
Specific heat capacity, 190 
Spectral adaptation term, 213 
Spherical wave, 59 
Standardized level difference, 211 
Standing wave tube, 79, 155, 161 
Standing waves, 83 
Statistical energy analysis, 265 
Stiffness controlled, 43 
Structure factor, 189 
Studs 
 steel, 294 
 wooden, 295 
Surface impedance, 75 
Suspended ceiling, 325, 336 
Swept sine signals, 25, 26, 29 
 
 
Tapping machine, 215, 306 
Thermal conductivity, 190 
Thermal length, 191 
Tortuosity, 189, 199 
Trace matching, 222 
Transfer function, 31, 33 
Transfer impedance, 37 
Transfer matrices, 202 
Transfer matrix method, 164 
Transmissibility, 37, 45 
Transmission factor, 208, 304 
Transmission loss see Sound reduction 
 index 
Transmission path, 211 

 
 
Vibration isolation, 39, 50 
Vibration reduction index, 348 
Viscoelastic layer, 237 
Viscous length, 191 
Viscous skin depth, 199 
 
 
Waterhouse correction, 120, 210 
Wave 
 bending, 89 
 dispersive, 90 
 longitudinal, 86 
 quasi-longitudinal, 87 
 shear, 88 
Wave equation, 56 
Wave number, 56 
 modal, 98 
 bending, 300 
Wavelength, 57 
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