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Preface

Itis well realized that ‘Geotechnical Engineering is an engineering science but its practice is an
art!” Foundations are essential interfaces between the superstructure and the supporting soil at
the site of construction. Thus they have to be designed logically to suit the loads coming from
the superstructure and the strength, stiffness and other geological conditions of the supporting
soil. With an enormous increase in construction activities all over the world, structures and their
foundations have become very sophisticated while the supporting soil has to accommodate
these variations and complexities. This book focuses on the analysis and design of foundations
using rational as well as conventional approaches. It also presents structural design methods
using codes of practice and limiting state design of reinforced concrete (RCC) structures.
This book was evolved from the courses on Foundation Engineering taught by the author
formerly in the Indian Institute of Technology Kanpur, India and presently in the School of
Engineering and IT, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia. Accordingly, the
contents of the book are presented in a user-friendly manner that is easy to follow and practice.

Contents

The book consists of 12 chapters plus appendices. Chapters 1-3 present the engineering
properties, tests and design parameters needed for the analysis and design of foundations.
Chapter 4 discusses the conventional and rational approaches for designing different types of
shallow foundations, including rafts. Methods for exact solutions using beams and plates on
elastic foundations are presented in Chapter 5. Numerical methods of analysis such as finite
difference method (FDM) and methods of weighted residuals (Galerkin, least squares, etc.) are
discussed in Chapter 6. The finite element method (FEM) for foundation analysis is explained
in Chapter 7. The design criteria for shallow foundations are presented in Chapter 8 while
actual design principles are given in Chapter 12 along with structural design details. Chapter 9
discusses the design and construction of deep foundations such as piles, large diameter drilled
piers, pile raft systems and non-drilled piers/caissons. The construction aspects and design of
pile foundations are presented in Chapter 10. The principles of machine foundation design are
discussed in Chapter 11. Chapter 12 summarizes the important provision of RCC design codes
and comparative features of commonly used codes such as the Indian Code, Euro Code, and
ACI Code. As mentioned earlier, detailed examples of structural design of shallow foundations
are also given in this chapter.



XX Preface

Special Features

Every effort has been made to include the background material for easy understanding of the
topics being discussed in the text. Both conventional and rational approaches to analysis and
design are included. For example, the provision of RCC codes, pile design and construction,
vibration theory and construction practices, as well as tests for obtaining the design parameters
are included in the respective chapters. Examples of structural design of foundations are also
discussed in detail. Comparative features of different RCC codes relevant to foundation design
are also examined to help designers. In addition, several examples have been worked out to
illustrate the analysis and design methods presented. Also, assignment problems are given at
the end of each chapter for practice.

The author hopes that this book will be a very useful resource for courses on Foundation
Engineering and Design, Soil-Structure Interaction, and so on, at undergraduate as well as
postgraduate levels, besides being helpful to research, development and practice.

N. S. V. Kameswara Rao
January, 2010
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Introduction

1.1 Foundations, Soils and Superstructures

Foundations are essential to transfer the loads coming from the superstructures such as
buildings, bridges, dams, highways, walls, tunnels, towers and for that matter every engineer-
ing structure. Generally that part of the structure above the foundation and extending above the
ground level is referred to as the superstructure. The foundations in turn are supported by soil
medium below. Thus, soil is also the foundation for the structure and bears the entire load
coming from above. Hence, the structural foundation and the soil together are also referred to as
the substructure. The substructure is generally below the superstructure and refers to that part
of the system that is below ground level. Thus, the structural foundation interfaces the
superstructure and the soil below as shown in Figures 1.1 and 1.2. The soil supporting the
entire structure above is also referred to as subsoil and/or subgrade. For a satisfactory
performance of the superstructure, a proper foundation is essential.

The manmade superstructures or facilities/utilities are expected to become very intricate and
complex depending on creativity, architecture and infinite scope in modern times. However, the
soil medium is mother earth which is a natural element and very little can be manipulated to
achieve the desirable engineering properties to carry the large loads transmitted by the
superstructure through the interfacing structural foundation (which is usually referred to as
the foundation). Further, almost all problems involving soils are statically indeterminate
(Lambe and Whitman, 1998) and soils have a very complex behavior, as follows:

1. Natural soil media are usually not linear and do not have a unique constitutive (stress—strain)
relationship.

2. Soil is generally nonhomogeneous, anisotropic and location dependent.

3. Soil behavior is influenced by environment, pressure, time and several other parameters.

4. Because the soil is below ground, its prototype behavior cannot be seen in its entirety and has
to be estimated on the basis of small samples taken from random locations (as per provisions
and guidelines).

5. Most soils are very sensitive to disturbances due to sampling. Accordingly, their predicted
behavior as per laboratory samples could be very much different from the in situ soil.

Foundation Design: Theory and Practice N. S. V. Kameswara Rao
© 2011 John Wiley & Sons (Asia) Pte Ltd. ISBN: 978-0-470-82534-1
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Figure 1.1 Building with spread foundations.

Thus, foundation design becomes a challenging task to provide a safe interface between
the manmade superstructure and the natural soil media whose characteristics have limited
scope for manipulation. Hence, the above factors make every foundation or soil problem very
unique which may not have an exact solution.

Building/superstructure

Ground level
PSR E SRS AN [ R RETTH,
— —J — —J — Pile cap
lt—— Pile
Soil Substructure

i/ Nz izzzzZR 28z Nz

Figure 1.2 Superstructure with pile foundations.
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The generally insufficient and conflicting soil data, selection of proper design parameters
for design, the anticipated mode for design, the perception of a proper solution and so on
require a high degree of intuition — that is, engineering judgment. Thus, foundation engineering
is a complex blend of soil mechanics as a science and its practice through foundation engineering
as an art. This may be also referred to as geotechnique or geotechnical engineering.

1.2 Classification of Foundations

Foundations are classified as shallow and deep foundations based on the depth at which the load
is transmitted to the underlying and/or surrounding soil by the foundation as follows.

1.2.1 Shallow Foundation

A typical shallow foundation is shown in Figure 1.3(a). If D;/B < 1, the foundations are called
shallow foundations, where D, = depth of foundation below ground level, and B = width of
foundation (least dimension). Common types of shallow foundations are continuous wall
footing, spread footing, combined footing, strap footing, grillage foundation, raft or mat
foundation and so on. These are shown in Figure 4.2.

Superstructure/column
———
G.L
PO LN
Pile cap
~<4— Column D _
6L ! Pile
TRRRIRRT PRSIV VAN s Soil
B
soil  |Pr T
i
— | 1 / /
L Footing Pile foundation

(@) (W)
Figure 1.3 Shallow and deep foundations.

All design and analysis considerations of shallow foundations are discussed in Chapters 4—8
and 12. The shallow foundations are thus used to spread the load/pressure coming from the
column or superstructure (which is several times the safe bearing pressure of supporting soil)
horizontally, so that it is transmitted at a level that the soil can safely support. These are used
when the natural soil at the site has a reasonable safe bearing capacity, acceptable compress-
ibility and the column loads are not very high.
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1.2.2  Deep Foundations

A typical deep foundation is shown in Figure 1.3(b). If D;/B > 1, the foundations are called
deep foundations such as piles, drilled piers/caissons, well foundations, large diameter piers,
pile raft systems. The details of analysis and design of such foundations are discussed in
Chapters 9 and 10.

Deep foundations are similar to shallow foundations except that the load coming from
columns or superstructure is transferred to the soil vertically. These are used when column
loads are very large, the top soils are weak and the soils with a good strength and compress-
ibility characteristics are at a reasonable depth below ground level. Further, earth retaining
structures are also classified under deep foundations.

Foundations can be classified in terms of the materials used for their construction and/or
fabrication. Usually reinforced concrete (RCC) is used for the construction of foundations.
Plain concrete, stone and brick pieces are also used for wall footings when the loads transmitted
to the soil are relatively small. Engineers also use other materials such as steel beams and
sections (such as in grillage foundations and pile foundations), wood as piles (for temporary
structures), steel sheets (for temporary retaining structures and cofferdams) and other
composite materials.

Sometimes, these are also encased in concrete depending on the load and strength
requirements (Bowles, 1996; Tomlinson, 2001).

1.3 Selection of Type of Foundation

While engineering judgment and cost play a very important role in selecting a proper
foundation for design, the guidelines given in Table 1.1 can be helpful (please see also
Chapters 4-12).

1.4 General Guidelines for Design

Following broad guidelines may be useful for foundation design and construction, depending
on site.

1. Footings should be constructed at an adequate depth below ground level to avoid passive
failure of the adjacent soil by heaving.

2. The footing depth should be preferably below the zone of seasonal volume changes due to
freezing, thawing, frost action, ground water and so on.

3. Adequate precautions have to be taken to cater for expansive soils causing swelling pressure
(upward pressure on the footing).

4. The stability of the footing has to be ensured against overturning, sliding, uplift (floatation),
tension at the contact surface (base of the footing), excessive settlement and bearing
capacity of soil.

5. The foundation needs to be protected against corrosion and other harmful materials that may
be present in the soil at site.

6. The design should have enough flexibility to take care of modifications of the superstructure
at a later stage or unanticipated site conditions.
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6 Foundation Design

1.5 Modeling, Parameters, Analysis and Design Criteria

All practical problems need to be reduced to physical models and behavior represented by
corresponding analytical equations. The physical parameters of the system form the inputs in
the mathematical equations for computing the responses. The models used should be simple
enough that the physical parameters needed for computations are accurately and reliably
determined using inexpensive test procedures. For example, in a foundation—soil system, the
foundation can be modeled as rigid, while the soil may be assumed to be elastic. The physical
parameters needed in such a model are the elasticity parameters of the soil, that is. Young’s
modulus of elasticity, E, and Poisson’s ratio, v, of the soil. Naturally E and v have to be

68°E 72°E T6°E 80°E 84° 88° 92° 96°

36°N

36°

"
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Hge ol }
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ry foil 1.3
20° 200
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“ - Rl Moarine deposits 16
L6 iy arine deposits
— —
E Black cotton soils
% WA Laterites and lateritic soils
v EXXEE] Alluvial deposits
1 120
[ Desert soils
% 500 km
8° 8
———
72°E 76 L0 [ 220 92° 96°

Figure 1.4 Soils of India. (Adapted from B.K. Ramiah and L.S. Chickanagappa, Soil Mechanics
and Foundation Engineering, p. 3 (Figure 1.1), Oxford and IBH Publishing Co., New Delhi, India.
© 1981.)
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accurately determined for the soil under consideration as they will be needed for the
computation of the responses of the system. Thus modeling, evaluation of parameters and
analysis are closely linked and the solutions obtained are highly dependent on all these aspects.

The responses thus obtained have to be judged using appropriate design criteria specified
either by codes or evolved from practice and/or experience.

The design process necessarily has two vital components, namely the methods of analysis
and experimental data which have to be integrated with them to yield accurate results.
However, both the methods and data depend entirely on the mechanism chosen for mathemat-
ical idealization of the system components. At this juncture, engineering judgment and
experience is very useful. It may be noted that optimum accuracy in analysis and design can
be achieved only by properly matching the data and analytical methods used. It is also obvious
that any improvement in the data alone or any sophistication in the analytical methods alone
can even reduce the accuracy of the results/predictions (Lambe, 1973).

1.6 Soil Maps

Most countries have prepared maps of soil deposits, based on the geological and geotechnical
data available. These are very useful for a quick assessment of the project and its requirements.
A map of soil deposits in India is given in Figure 1.4 (Ramiah and Chickanagappa, 1981).



2

Engineering Properties of Soil

2.1 Introduction

The physical and engineering properties of soil are necessary for foundation design, as all loads
are ultimately supported by the soil media and occasionally by rock medium if present at the
site. For engineering applications, soils include all earth materials, organic and inorganic,
present in the zone overlying the rock crust of the planet earth.

This chapter presents the engineering properties of soils relevant to foundation design, such
as simple soil properties, strength and compressibility characteristics and so on. The laboratory
and field tests necessary to evaluate the parameters are also discussed briefly.

However, for more detailed discussion, one may refer to classical and recent books on Soil
Mechanics, Geotechnical Engineering, and Foundation Engineering, such as Terzaghi (1943),
Taylor (1964), Terzaghi and Peck (1967), Ramiah and Chickanagappa (1981), Shamsher
Prakash and Sharma (1990), Cemica (1994), Coduto (2001), Tomlinson (2001), Das (2002,
2007) Reese, Isenhower and Wang (2005), Budhu (2006), Salgado (2007). In the case of
foundations on rock, the relevant properties of rock have to be studied, as discussed in standard
rock mechanics books, such as Goodman (1989), Brady and Brown (2006), Jaeger and Cook
(2007).

2.2 Basic Soil Relations

Soil is formed by the weathering of parent rock as a continuous geological process. It may be
identified broadly as residual and/or transported. Residual soils are formed due to weathering of
parent rock at its present location. Usually such soils consist of angular grains of different sizes.
Residual soils are considered good for supporting a foundation. Transported soils are those that
are formed at one location and are transported to their present location by nature, that is, wind,
water, ice or gravity. They are of poor quality and are fine grained with low strength and high
compressibility.

Thus, soils consist of irregular shaped particles of different sizes and shapes, that s, solids. In
addition, there are voids between these particles (pores), which may be filled partly or fully by

Foundation Design: Theory and Practice N. S. V. Kameswara Rao
© 2011 John Wiley & Sons (Asia) Pte Ltd. ISBN: 978-0-470-82534-1
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Vi { Water Wi = Vw tw
W=Vy

W, =V, (or Viy)
= VS GS’YW
v, Solids (or V,G7,)

Figure 2.1 Representation of soil as a three-phase material.

air and water. Thus, the soil mass can be symbolically represented as a three phase material, as
shown in Figure 2.1.The various parameters shown in the figure are defined as follows

V, W = total volume and weight of soil mass respectively
Vs, W = volume and weight of soil solids respectively
Vs W,, = volume and weight of water respectively

V, = volume of gas.

V, =V, + V, = volume of voids
V =V, +V (2.1)
W =W,+W,

The basic parameters used in geotechnical engineering studies are void ratio, e, porosity, »,
water content, w and degree of saturation, S. These are defined as follows

Vv, n
e = — =
Vi 1—n
Vv, e
"= v - 1+e
W, (2.2)
w =
W
Vi
S:
1Z

Besides these parameters, the unit weights of the soil mass and its variations with changes in
water content are important and they can be expressed as follows

) ) W G+ Se
bulk /total unit ht = — = ——,
ulk/total unit weig v 1+ey”'

unit weight of soil solids =

Vi

Vs

==

(2.3)

7,, = unit weight of water = —"

w
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where G = specific gravity of soil solids, which varies between 2.65 and 2.85 for the
majority of soils.
It can be shown from Equation (2.2) that, for a soil mass

Se = wG (2.4)

Hence

) _G+Se Gl +w 1+w
.=

= = ) 25
T M TTe W= T3eh (2.5)

When layers of soils are submerged due to ground water present at site, then the soil mass in
saturated and is subjected to buoyancy. Accordingly, we can define
G
Ysat = saturated unit weight = Tﬂyw (since § = 100% = 1)
e
-1

G
Yo = submerged unit weight (buoyant unit weight) = v ,—7, = myw (2.6)

T1elw (since S = w = 0 for dry soils)
All these soil properties are routinely determined by standard laboratory tests and also by field
tests (Lambe, 1951; Taylor, 1964).

Jary = dry unit weight =

2.2.1 Grain Size Distribution

Grain size distribution (GSD) is also a basic soil property which affects its engineering
properties considerably and is used in most soil classification systems. Mechanical sieve
analysis is used to determine the grain size distribution of coarse grained soils such as sands. For
fine grained soils, hydrometer analysis is used for determining the distribution of grain size
(Lambe, 1951; Taylor, 1964) as grain sizes less than 0.074 mm (sieve size No. 200 BS and US)
are the smallest sizes that are visible to the naked eye and can be mechanically sieved. Typical
sieve sizes used for sieve analysis of coarse grained soils are given in Table 2.1.

Table 2.1 Sieve sizes.

United States British Standard German DIN French

Sieve no. mm Sieve no. mm Sieve no. mm Sieve no. mm

4 4.76 — — —

10¢ 2.00 8¢ 2.057 — 34¢ 2.000

20 0.841 16 1.003 — 31 1.000

30 0.595 30 0.500 500 0.500 28 0.500
36" 0.422 400° 0.400 27° 0.400

40° 0.420 — — —

50 0.297 52 0.295 — —

60 0.250 60 0.251 250 0.250 25 0.250

80 0.177 85 0.178 160 0.160 23 0.160

100 0.149 100 0.152 125 0.125 22 0.125

200 0.074 200 0.076 80 0.080 20 0.080

270 0.053 300 0.053 50 0.050 18 0.050

“Limit between sand and gravel.
bFor Atterberg’s limits.
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100 Curve 3-uniformly : :
. X Sieve analysis
— graded soil
________ [ N o Hydrometer
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graded soil graded soil

Percent finer by weight

Grain size, mm

Figure 2.2 Typical grain size distribution curves.

Also typical grain size distribution curves are shown in Figure 2.2. If the curve is smooth and
is spread evenly with almost constant slope as shown in curve 1, it is called a well graded soil. If
the slope of the curve is wavy as shown in curve 2, it is called poorly graded. If the curve has
very steep slope with most of the soil particles being of almost same size as shown in curve 3, it
is called uniformly graded soil. A commonly accepted method to express the general features of
the GSD curve is due to Hazen (Taylor, 1964) which uses the grain sizes Do and Dgg
(respectively, diameter finer than 10 and 60%) to define the uniformity coefficient, c, as

_ Dy

= 2.7
“= D (2.7)

where D,y = effective size which is used in several engineering applications such as in
permeability studies. For example, Hazen’s formula (Taylor, 1964) for the coefficient of
permeability, & in filter sands is

k = 100 D?, (using units of centimeters and seconds) (2.8)

GSD curves are used in almost all soil classification systems, as shown in Figures 2.3 and 2.4. A
typical classification system of soils using grain sizes of particles is given in Table 2.2 (Das,
2007), besides the ones shown in Figures 2.3 and 2.4.

The general names given to various soils in the above table and figures convey additional
information about their engineering behavior. For example, clays are cohesive with plasticity.

2.0 1.0 0.5 0.25 0.1 0.05 0.005

Very
line Silt Clay
sand

Fine |Course Sand Finc
gravel | sand Han sand

US Bureau of soils classification

2.0 0.6 0.2 0.06 0.02 0.006 0.002 0.0006 0.0002
N . . N X 3 Fine
Course Medium Tine Course Medium Fine Course Medium (colloidal)
Sand Silt Clay

MIT classification

Figure 2.3 Classifications based on grain size (in mm).
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Figure 2.4 United States Bureau of Soils triangular classification chart.

The cohesion of the clay is represented by c. Similarly, sands and gravel are nonplastic with
only frictional properties represented by angle of internal friction, ¢. Silts have low plasticity
and have cohesion and very low friction. These soils can be identified by simple tests like the
dispersion test, shaking test and rolling test (Taylor, 1964).

2.2.2 Plasticity and the Atterberg’s Limits

Plasticity (mainly in clays or cohesive soils) is a predominant feature of fine grained soils such
as clays or cohesive soils. It is defined as the ability of the material or soil to undergo

Table 2.2 General classification of soils.

Soil type Grain size (mm)
Unified AASHTO
Gravel 75-4.75 75-2
Sand 4.75-0.075 2-0.05
Silt <0.075 0.05-0.002

Clay <0.075 <0.002
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deformation/distortion/change of shape without rupture or crack. Water content affects the
physical properties of clays. Atterberg (Taylor, 1964) proposed a series of tests for determining
these effects which are known as Atterberg Limits (also referred to as Consistency Limits). A
lot of useful empirical formulae have been developed over the years to correlate these limits to
strength, compressibility and other important engineering properties of the soil. These are
simple tests and are routinely conducted in the laboratories and throw lot of information on the
soil for soil mechanics and foundation engineering applications. The Atterberg limits are
shown in Figure 2.5.

! Semisolid Plastic : Semiliquid
Solid state | state state state
—

Volume of
the soil-water
mixture

]

]

]

]

[} |

] ]

| [} |
ysmnkage y Plastic y Liquid

]

]

|

1

| limit (SL) , limit (PL) limit (LL)

| 1

l | Moisture
1 1 B content

Figure 2.5 Representation of Atterberg limits.

These are briefly explained below depending on their physical state as functions of water
content. If a lot of water is added to a clayey soil, it may start flowing and behave like a
semiliquid state. The limit at which the soil behaves like a semiliquid is called the liquid limit
(LL). This is determined in the laboratory by Casagrande’s LL device and is defined as the
water content at which a groove closure of 12.7 mm occurs at 25 standard blows.

If the soil is dried gradually, it behaves in a plastic, semi solid or solid state. The limit
between plastic and semi solid states is called the plastic limit (PL), as shown in Figure 2.5. It is
determined in the laboratory as the moisture content at which the soil shows visible cracks/
crumbles when rolled into a thread 3.18 mm in diameter.

The water content limit at which the soil changes from a semi solid to solid state is
called the shrinkage limit (SL). It is also easily determined in the laboratory as the water
content at which the soil does not undergo any further volume change with loss of moisture
(Figure 2.5). The liquid and plastic limits of few well studied clays and silts are given in
Table 2.3.
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Table 2.3 Liquid and plastic limits of clay minerals and clayey soils.

Soil LL PL
Kaolinite 35-100 25-35
Illite 50-100 30-60
Montmorillonite 100-800 50-100
Boston clay 40-45 20-25
London clay 65-70 25-30
Loessial soils of China 25-35 15-20

The following indices are also useful in analyzing the behavior of soils.

Plasticity index = PI = LL—PL

w—w
Liquidity index = LI = ——2
wWL—Wwp
. Iy
Toughness index = L
Flow index = I; = slope of curve for no. of blows vs water content

(Casagrande’s method for determination of LL) (2.9)

where
w = natural water content of the soil
w, = water content at plastic limit
wy = water content at liquid limit.
If LI > 1, it may indicate the possibility of liquefaction, that is, a loss of soil strength after a

few cycles of loading and unloading resulting in liquid like behavior.

2.3 Soil Classification

Based on the Atterberg’s limits and Grain size distribution, soils are classified by several
agencies in most countries, like the AASHTO and Unified systems. The focus in classification
is on the purpose for which the soil is used. The most popular classification is due to Casagrande
and is referred to as the Unified classification. It is presented as a plasticity chart shown in
Figure 2.6; Table 2.4 shows the procedure for assigning symbols for various soils.

2.4 Permeability

Since soil is porous, water can flow through the pores, which is also referred to as seepage. The
ease with which water flows through the soils is represented by the coefficient of permeability
of soils, k. The velocity follows Darcy’s Law as

v = ki (2.10a)

where
v = superficial velocity (assuming water is flowing through the entire cross section
including pores and soil particles)
1 = hydraulic gradient = 7
h = loss of head between any two cross sections of flow
L = straight distance between the cross sections.
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Figure 2.6 Plasticity chart.

k can be determined in the laboratory using constant head permeameter and/or variable head
permeameter (Taylor, 1964). k can also be determined in the field (in situ) by pumping tests.

2.4.1 Quick Sand Condition and Critical Hydraulic Gradient

As the hydraulic gradient increases, the seepage force acting on the soil particles gradually
increases and starts pulling the particles out in the direction of flow. This phenomenon is called
the quick sand condition where the soil particles appear to be boiling. This happens when the
buoyant weight or submerged weight of the soil equals the seepage force when the flow is
opposite to the direction of gravity. This gradient is called critical hydraulic gradient, i. and can
be obtained as

G-1
Seepage force = i,.y,, = submerged unit weight of soil = 1 Yo
e
Hence
G-1
o = 2.10b
R (2.100)

This value generally ranges from 0.8 to 1.3 and it may be taken as 1.0 for average conditions in
the absence of data.

2.5 Over Consolidation Ratio

A soil whose present overburden pressure is the largest pressure ever experienced by this soil is
referred to as normally consolidated soil. If otherwise, it is called an over consolidated soil. The
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ratio of the past effective pressure, g, to the present overburden pressure, o;, is called the over
consolidation ratio (OCR), that is
OCR = & (2.11)
/ .
For normally consolidation soils, OCR = 1. For over consolidation soils, OCR > 1.
If OCR < 1, it has no significance.
If OCR > 1-3, the soils are lightly over consolidated.

If OCR > 3-8 or more, the soils are heavily over consolidated.

OCR has a very significant effect in the behavior of clayey soils though its effect is marginal
in sandy soils. OCR can be determined by the consolidation test (oedometer test) in the
laboratory as described in Section 2.9.

2.6 Relative Density

The degree of compaction in granular soils in the field can be determined by the relative density,
D,, expressed as a percentage as

D, = _Cmax—€ (2.12)

€max —€min
where
emax = void ratio of the soil in the loosest state
emin = void ratio of the soil in the densest state
e = in situ void ratio.

The various void ratios can be determined in the laboratory using standard methods. The
relative density can also be expressed in terms of dry unit weights as

p, = [ Vamin)  Taman 00 (2.13)
Yd(max) ~Vd(min) Va

where

ya = in situ dry density of soil
Yd(max) = dry unit weight in the densest state (corresponding ey,,)
Ydminy = dry unit weight in the loosest state (corresponding ey,ax).

The denseness of the soil is correlated to the relative density, D,, as given in the Table 2.5.

Table 2.5 Denseness of soils.

Denseness D, (%)
Very loose 0-20

Loose 20-40
Medium 40-60
Dense 60-80

Very dense 80-100
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Figure 2.7 Intergranular or effective stress.

2.7 Terzaghi’s Effective Stress Principle

If a soil mass shown in Figure 2.7 is subjected to a total stress, o, then from equilibrium we can
express

=c=(1-au+d (2.14)

|

A\

A,
where a = iy
A, = contact area between solid grains
A = total area of cross section of the soil mass

u = pore water pressure
¢’ = vertical component of stress of the contact (over the unit cross sectional area)

vertical effective stress.

Usually « is negligible in comparison to 1 and hence Equation (2.14) can be expressed as

c=d +u (2.15)



20 Foundation Design

where
o = total stress at any point in the soil mass
o' = effective stress (stress between the solid to solid contact)
u = pore water pressure.

This is called the effective stress principle formulated by Terzaghi (1943) and is one of the
important concepts in soil mechanics and foundation engineering. It can be readily recognized
that stresses and hence strains and displacements (settlements) occur only due to changes in
effective stresses.

2.8 Compaction of Soils

A soil mass can be made denser by compacting with some mechanical energy (static or
dynamic) and its unit weight generally increases. The dry unit weight increases with the gradual
increase of water content and subsequent compaction. This is because the additional water acts
as a lubricant and helps in rearranging the soil particles into a denser state of packing. The dry
unit weight increases with the water content up to a maximum or limiting value beyond which it
decreases with increase in water content, as shown in Figure 2.8.

24—
22 —
Zero air-void curve
o [ G=27)
B 20—
=
= 18—
=
23
B
z
= 16—
g
]
o
a 14 —
@ Standard Proctor Test
” A Modified Proctor Test
10
| | | | |

0 5 10 15 20 25
Moisture content, w%

Figure 2.8 Standard and modified Proctor compaction curves for a fine grained soil.

The moisture content at which the soil reaches its maximum dry density is called the
optimum moisture content (OMC).

The OMC and maximum dry density of soils can be determined by standard laboratory tests
such as the standard Proctor Test (using a 2.5kg rammer and a drop of 305 mm) and the
modified Proctor Test (using a 4.54 kg rammer and a drop of 457 mm; Taylor, 1964; Das, 2002).
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Typical curves from these compaction tests are shown in Figure 2.8. These results are used for
specifying the methods of field compaction. Usually the field compaction is required to achieve a
relative compaction (RC) of 90% or more of the max dry density obtained in laboratory using
either the standard or modified Proctor test (or other tests specified by local codes), that is

_ Vary(field) A

RC =
yd(max) 1 _Dr(l _A)

(2.16)

Y d(min)

where A =
Y d(max)

D, = relative density defined in Equation (2.13)

Another empirical relationship between RC and D, is given by Lee and Singh (Das, 2007) as

RC-80
0.2

D,(%) = (2.17)
The field compaction of soils is done by rollers such as sheep foot rollers, vibratory rollers,
pneumatic rubber tired rollers, smooth wheel rollers.

2.9 Consolidation and Compressibility

When a fine grained soil or cohesive soil is subjected to loads or stresses, some or all the
additional load or stress is supported by the pore water present in the soil mass initially. This
excess pore pressure creates hydraulic gradients in the pore water and the water flows out (due
to the soil permeability) and simultaneously transfers the load or stress to the soil particles
gradually. This amounts to the gradual transfer of pore water pressure to the intergranular stress
or effective stress, until the entire load or total stress becomes effective stress (as per
Equation (2.15)). This simultaneously produces compression/settlement of the soil mass (as
only effective stresses produce settlements). This gradual process involves simultaneously a
slow escape of water, a gradual load transfer and a gradual compression of the soil mass and is
called consolidation. The compressibility and consolidation characteristics of the soil are
determined in the laboratory using a consolidometer/oedometer, as shown in Figure 2.9.

The saturated soil sample (usually 64 mm diameter and 25 mm thick) is placed inside the
metal ring with porous stones at top and bottom to facilitate escape of water, as shown in the
Figure 2.9.

Dial gauge

‘ Water level

SZ

Porous stone

Ring

Soil specimen

Porous stone

Figure 2.9 Schematic diagram of oedometer/consolidometer.
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Aload is applied on the specimen which becomes the total vertical stress, 0. Compression or
settlement readings are taken at 15 s, 1 min, 4 min, 16 min and so on, in time ratios of four, up to
24 h or until no further settlement is noticeable, signifying the consolidation is practically
complete under the present load. Then the load on the specimen is doubled and the test is
repeated for several cycles to include the range of design stresses anticipated in the field. The
results of these tests can be plotted as a graph of void ratio at the end of consolidation
(corresponding to each applied load) versus corresponding vertical effective stress, as shown in
Figure 2.10. While the total effective stress can be directly calculated by dividing the applied
load by the area of cross section of the specimen, the change in void ratio (being directly
proportional to the change in thickness of the sample) can be obtained as

Ae _ A
l+e H

(2.18)

where
Ae = change in void ratio
e = void ratio (initial)
AH = change in thickness of the sample
H = initial thickness of the sample.

G,
23 ¢
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2.1 22—
© 2.0 =C o 2.1 Loading
=) A ]
£ 19 . 520
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= 1.8 ol
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1.7 , > 174 .
1 (€3, 63) .
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Figure 2.10 Compressibility curves for a clayey soil.

Figure 2.10(a) shows the semi log plot of e versus log ¢’ . Figure 2.10(b) shows the e versus ¢’ curve.

After completing the test up to the desired pressure, the specimen can be gradually unloaded
resulting in some recovery of the compression recorded, that is, increase in thickness as shown
in these figures.

2.9.1 Compressibility Characteristics and Settlement of Soils
Following compressibility characteristics can be determined from Figure 2.10:
1. Compression index, C.

The slope of the straight line portion of the e log ¢’ graph (loading part) shown in
Figure 2.10(a) is called the compression index, C..
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Accordingly
c. — Ae B e1—er e
‘" log o,—log o] ~ log o,—log g} B log(a—é)
o

(2.19)

There are several correlations of compression index with the other soil parameters (Bowles,
1996). The most popular one is due to Terzaghi and Peck (1967) and is expressed as

C, = 0.009(LL—10) (2.20)

where LL is the liquid limit of the soil.
2. Swelling index or recompression index, Cj
This is the slope of the unloading portion of the e log ¢’ graph, (Figure 2.10(a)), that is

c, = 274 (2.21)

a()
3

¢ 11
S oo 222
c. 4°5 (222)

In most cases

3. The coefficient of compressibility, a,, and the coefficient of volume decrease, m,.
a, is the slope of the ¢ — ¢’ graph which is idealized as a straight line between the ranges
of ¢’ needed for computations, as shown in Figure 2.10(b).

Accordingly

A _
4y = — o = AT (2.23)
Aoy,  pr—pi

Also, coefficient of volume decrease
Cl+e
Change in the thickness or settlement of the soil sample or layer (AH) of total thickness

(H) is due to primary consolidation, S..
From Equations (2.18), (2.19), (2.23) and (2.24), we can write

(2.24)

ny

. / CH / A /
Se = AH = c loga—zl _C logal Jr/ g (a)
I +e "o 1 +e oy (2.25)
S (6y—0))H = D ACH = mAdH (b)

1 +e 1+e

where e and ] are the initial void ratio at effective stress o] and Agj is the change in effective
stress = 05 —0].

Similarly the increase in thickness during swelling can be calculated using the swelling
index or coefficient of swelling.

4. Preconsolidation pressure, 0';

This may also be called the over consolidation pressure, gj,. This is the maximum past effective
pressure to which the soil specimen is subjected to, as mentioned in Section 2.5. It can be
determined from Figure 2.10(a), as shown there. The preconsolidation pressure can be
determined using Casagrande’s method (Taylor, 1964) as follows.
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i. Locate O on the e log ¢’ curve where the curve has maximum curvature, that is, smallest
radius of curvature.
ii. Draw the line OA horizontally.
iii. Draw the line OB tangentially to the e log ¢’ curve.
iv. Draw the line OC bisecting the angle AOB.
v. Extend the straight line portion of the e log ¢’ curve backward to intersect line OC at D.
The pressure corresponding to point D on the e log ¢’ curve is the preconsolidation
pressure o,.

2.9.2 Time Rate of Consolidation

The one-dimensional consolidation equation (Terzaghi, 1943) for the laboratory soil sample
shown in Figure 2.9 is

*u  ou
— = — 2.26
0z ot (2.26)
where
C, = coefficient of consolidation = Lm

w

u = pore water pressure

z = vertical coordinate of the soil sample

t = time parameter

k = coefficient of permeability
m, = coefficient of volume decrease (Equation (2.24))
7,» = unit weight of water.

The above equation was solved by Terzaghi (1943), and the following curve fitting methods
were developed for determining C,, which is useful for calculating time rate of settlements.
These are:

1. Square root of time (1/7) fitting method (Taylor, 1964)
2. Logarithm of time (log ?) fitting method — Casagrande’s method (Taylor, 1964).

From the exhaustive solution of Equation (2.26) given by Terzaghi, the most important ones
used for settlement calculations are given in Figure 2.11. These are in terms of value of average
degree of consolidation, U (%) versus nondimensional time factors, T where

H
Judz
AH
Ju,‘ dz
0
Cyt

(2.28)
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Figure 2.11 Consolidation curves as per Terzaghi’s theory.

where

u = pore pressure at time ¢

u; = initial pore pressure at t = 0

H = total thickness of the soil layer or sample
vertical coordinate
C, = coefficient of consolidation.

Noting that the solutions shown in Figure 2.11 are close to each other, only curve 1 (case 1) is
used for most of the calculations.

Using these results shown in Figure 2.11, C, is determined using curve fitting methods
developed by Taylor (1964) and Casagrande (Taylor, 1964). Taylor’s method is called the
square root of time (\/ t) fitting method and uses 90% consolidation results from experiments
and theory (Figure 2.11) for comparison; that is, he compares t9o from experiments and
Tyo = 0.848 from theory (Figure 2.11).

Casagrander’s method is called the logarithm of time (log #) fitting method and uses 50%
consolidation results from experiments and theory (Figure 2.11) for comparison; that is, he uses
tso from experiments and 75y = 0.197 from theory (Figure 2.11).

The solution details and several examples are given in all standard books in Geotechnical
Engineering (Taylor, 1964; Bowles, 1996; Das, 2007).
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2.10 Shear Strength of Soils

Engineering materials may generally fail due to tension, compression, shear or a combination
of these factors. However, soils and rocks fail essentially due to shear. The corresponding shear
stress beyond which the soil fails is called the shear strength of the soil and is expressed by
Coulomb’s equation, that is

s=c+otan¢ = ¢ + of (in terms of total stress components) (2.29)
s=c +dtand’ = ¢ + o f (in terms of effective stress components) .

where
s = shear strength of the soil
¢,¢’ = cohesion of the soil
¢, ¢’ = angle of internal friction of the soil
o' = effective stress = o—u (as in Equation (2.15))
= pore water pressure

u
forf' =tan¢ortan ¢’ = coefficient of friction.

Generally shear strength parameters depending on the total stresses, that is, ¢ and ¢ are used
to check the stability of the supporting soil at the end of construction stage, while ¢’ and ¢’
(shear strength parameters of the soil with reference to effective stress) are used for analyzing
long term stability. Hence, most of the following details are presented in terms of ¢ and ¢,
though they equally apply for ¢’ and ¢’.

The cohesion ¢ of the soil is independent of the normal stress. However, the frictional
component between the grains (i.e., f = tan ¢) depends on the normal stress, o. The shear
strength of soils given by Equation (2.29) is shown in Figure 2.12 for different soils, such as (a)
cohesive soils, (b) cohensionless soils (sands and gravels) and (c) purely cohesive soils (clays)
or sometimes for end of construction analysis with ¢ = 0 (Taylor, 1964; Terzaghi and Peck,
1967; Lambe and Whitman, 1969).

S S

5

7 X s=¢C
]
c
c
o c o

(a) Cohesive soils (c,d) (b) Cohesionless soils (¢ = 0) (c) Purely cohesive soils (¢ = 0)

Figure 2.12 Shear strength of soils.
The shear strength parameters of the soils can be determined in the laboratory by:

1. Direct shear test for sandy soils

2. Vane shear test for clayey soils

3. Triaxial shear test for general soils and loading conditions
4. Unconfined compression test for clayey soils.
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‘ Shear stress
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Figure 2.13 Direct shear test for sands.

Some important aspects of these tests are briefly described below while more details can be
obtained from Lambe (1951), Taylor (1964), Das (2002) and other books.

2.10.1 Direct Shear Test

This test is mainly done on frictional soils/coarse grained soils/sandy soils using a shear box,
as shown in Figure 2.13(a). The sandy soil is to be tested in the shear box, which is split into two
halves (Figure 2.13(a)). A normal load N is applied and then a shear force, Q is applied in steps
until the specimen fails along the horizontal plane dividing the two halves of the split shear box.
A plot of normal stress, ¢, versus shear stress, s, is drawn as shown in Figure 2.13(b), where

N 0
- - = 2.30
o= =2 (230)
where A is the area of the failure plane, that is, the cross sectional area of the shear box. From the
graph, it can be noted that

¢ =tan'> (2.31)
o

For sandy soils, ¢ varies from 20° to 45° increasing with relative density D,.

2.10.2 Vane Shear Test

This test can be done both in the laboratory as well as in the field and is applicable more for
cohesive soils. The vane consists of four thin plates welded to a torque rod as shown in
Figure 2.14. A torque is then gradually applied at the top of the torque rod (as shown in the
sketch) and the cylindrical surface of soil of height /2 and diameter d resists the applied torque
until the soil fails. Then, the shear strength (undrained, since practically no drainage occurs
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Figure 2.14 Sketch of vane shear test equipment.

during the test) can be computed by this expression

T
d*h  pd°
”(7 + T)

S =
where
s = undrained shear strength
= cohesion, ¢ (since ¢ = 0 for cohesive soils)
T = torque at failure
d = diameter of the shear vane
h = height of the shear vane

(2.32)

f = afactor depending on the slope of the zone of resistance/shear strength at the periphery of

cylindrical surface
= 1/2 for triangular mobilization
= 2/3 for uniform mobilization
= 3/5 for parabolic mobilization.
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Uniform mobilization factor of 2/3 is commonly used and accordingly s (= c)is calculated as

T
s=e=— (2.33)

&h &
"\ 6

The commonly used laboratory vane size has d = 13 mm and 4 = 25 mm. The field vane is
generally bigger and there are several sizes prescribed by standards such as ASTM (Das, 2002).

2.10.3 Triaxial Shear Test

This is a very comprehensive test that can be conducted on any general soil with cohesion, c,
and friction, ¢, components. The test set up is shown in Figure 2.15.

Piston

[~=——— Lucite chamber

Porous stone

Chamber fluid

Soil specimen

Rubber membrane

Porous stone

-=— Base plate

_—— Valve

Chamber To drainage and/or
fluid pore water-pressure
device

Figure 2.15 Sketch of triaxial test equipment.

In this test, a cylindrical soil specimen of standard size (around 36 mm diameter, 76 mm
long; usually the length diameter ratio is 2.0 to 2.5) confined by a rubber membrane is placed in
a lucite chamber. Then an all round confining pressure, g3, is applied to the specimen using
either water (mostly) or glycerin as the chamber fluid. This is also called hydrostatic stress, all
round pressure or cell pressure, g3. Then a vertical stress, Aoy, is applied in the vertical
direction until failure. This is also called the deviator stress. Thus the normal stress in the
vertical direction at failure becomes 61 = o3 + Aogj.

If drainage is allowed in the test, itis called a drained test. Otherwise, it is called an undrained
test where pore pressures are developed due to the applied deviator stress. The soil specimen is
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usually tested after complete saturation but also can be tested at any desired water content. Out
of the several customized triaxial tests, following three main types of tests are commonly
conducted in the triaxial equipment (Lambe, 1951; Lambe and Whitman, 1969).

1. Unconsolidated undrained test (UU test)
2. Consolidated undrained test (CU test)
3. Consolidated drained test (CD test).

The test results are analyzed using Mohr’s circle, knowing the major and minor principal
stresses, that is, o3 (minor principal stress) and ¢; = o3 + Aoy (major principal stress), as
shown in Figure 2.16. Usually three or four samples are tested at different cell pressures, and a
common envelope is drawn tangential to the circumferences of these Mohr’s circles obtained
for each sample using minor and major principal stresses at failure. This is called the failure
envelope or Mohr—Coulomb failure envelope. These details are shown in Figure 2.16 for the
above types of tests. Noting that the failure envelope represents the shear strength of the soils, as
shown in Figure 2.12, the cohesion, ¢ (or ¢’), and the angle of internal friction, ¢ (or ¢’), can be
determined from these figures, as marked therein.

Shear stress Shear stress
Total stress Total stress
failure envelope failure envelope
(¢=0)
i s=c¢
Total normal Total normal
c stress, ¢ stress, ©
A o3 O G, o o 5, 5,
(a) Undrained test (total stress) (b) Unconsolidated-undrained test
Shear stress . Shear stress
Effective stress e
failure envelope 666@(\\' Z‘; e
(s

Effective normal

]

Total normal I
o

stress, 0’ stress, 0’
oy Gy oy oy oy oy o) o/
(c) Consolidated-undrained test with (d) Consolidated-drained test

pore pressure measurement

Figure 2.16 Mohr’s circles and failure envelopes for different triaxial tests.

Thus, the triaxial test is very comprehensive and versatile with lots of flexibility to customize
the test to simulate the design requirement. The literature available on this test is very
exhaustive (Lambe, 1951; Lambe and Whitman, 1969).

2.10.4  Unconfined Compression Test

The unconfined compression test (also called the UCC test) is more relevant to cohesive soils.
This is a special case of the unconsolidated undrained trixial test with no cell pressure (that is,
g3 = 0, as shown in Figure 2.17(a)), Hence, it is called unconfined compression test since the
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Shear stress . ! strength, Sy
(a) Soil sample
¢ Total normal Degree of
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of saturation

O3=0 o, =AG;

—2u
(b) Mohr’s circle and failure envelope

Figure 2.17 Unconfined compression test.

vertical compression stress, Aa, is applied until failure. The corresponding Mohr’s circle and
failure envelope are shown in Figure 2.17(b). It may be noted that only one Mohr’s circle can be
drawn with g3 = 0 for the same soil sample, and hence only one shear strength parameter can
be determined (as it requires two or more circles to draw a unique envelope tangential to these
circles). Thus only cohesion can be determined as shown. Hence, it is more relevant to cohesive
soils where only cohesion, ¢ exists while friction angle, ¢ = 0. Thus, the major principal stress
o1 = Aoy is the unconfined compression strength of the soil, usually referred to as S,,. Then,
the shear strength

§s=c¢c=— (2.34)

As can be seen from Figure 2.17(b), UCC tests are usually conducted on unsaturated soil
samples. The UCC strength decreases with the increase in degree of saturation as shown in
Figure 2.17(c).

2.10.5 Correlations

There are several well known correlations between the shear strength parameters, plasticity
index (PI), over burden pressure and the results of various field tests (Das, 2007).
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2.10.6  Sensitivity and Thixotropy

Usually the UCC strength is considerably reduced from its natural value when the soils are
tested using remolded (thus disturbed) samples of most natural clays. This is called sensitivity.
This is defined by the sensitivity ratio of the soil as

S, (undisturbed)

s, = 2w IR
Su(remolded)

(2.35)
where S, is the UCC strength, as explained in the previous sections. S, values range from 1.0 to
8.0. The loss of strength is mainly attributed to the destruction of the particle structure of clays
which existed prior to the disturbance or remolding.

In most clays, if a remolded soil specimen is kept in an undisturbed state (i.e., without any
change in water content), it will gradually regain part of its strength with time. This phenomenon
is called thixotropy. Thixotropy is a time dependent and reversible process (Taylor, 1964;
Das, 2002).

2.11 Soil Exploration and Sampling

Foundation loads are supported by the soil below and it is in this context we have to know the
behavior of soil layers existing at the site. This process of identifying the nature of soils and
their physical properties is called soil or subsurface exploration. While carrying out the soil
exploration, disturbed and undisturbed soil samples are collected for carrying out all laboratory
tests discussed in the above sections. Also, some in situ tests are conducted while boring for soil
exploration.

2.11.1 Purposes of Soil Exploration

The purposes for soil exploration are to obtain the general and necessary information needed
for the project:

. Selection of type and depth of foundation to suit the superstructure and soil at site

. Determination of bearing capacity of the foundation

Determination of the settlement of the foundation due to loads

. Locating the ground water level

Determination of the earth pressure against retaining walls, abutments, sheet piles and so on

. To safeguard against construction difficulties

. Assessing the suitability of soil and the degree of compaction of fill for base slabs,

pavements, retaining walls and so on

8. Soil exploration is also needed for investigation of the safety of existing structures, that is,
effect on settlement and carrying out the remedial measures if necessary for the structures to
ensure safety

9. For highways and runways it is necessary for carrying out the following:
a. The location of the roads (and runways)

The location and selection of soils for fills and ground improvement, if necessary

The design and location of ditches, culverts and drains

. The design of highway or runways

The location of local construction materials when adopting them for construction.

N LA W~

oo o
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The planning of a soil exploration should always start by obtaining preliminary information.
For buildings and similar projects, the following information should be obtained first:

1. Available information of soils and existing structures
2. Reconnaissance of the area

3. Requirements of codes

4. Data for preliminary design.

After this information is obtained, a tentative exploration program is worked out. The first
two or three borings should be randomly located around the entire site to disclose the general
characteristics of the subsoils. As the boring operation progresses, the balance of the boring
program may be revised so that the number and types of borings furnish enough data
concerning the arrangement of the successive soil strata. Also sufficient number of soil
samples are taken for laboratory tests from these bore holes. Some field tests are also carried out
to correlate the results with the laboratory tests.

The details of the above phases of exploration are given in Taylor (1964), Teng (1964),
Bowles (1996), Tomlinson (2001), Das (2007) and other books.

2.12 Site Investigation — Boring, Sampling and Testing

The site investigation phase consists of three steps, namely boring, sampling (taking soil or
rock sample from the bore hole) and testing. Testing may be done both in the field and in the
laboratory.

At least one soil sample may be taken at every 1.5 — 2.0 m of depth of the bore hole. A soil
sampler (split spoon, Shelby tube and others) is driven into the ground to take a soil sample. The
sample is visually examined and saved for laboratory test. Then, the bole hole is advanced for
about 1.0 m. During the advancing of the hole, shavings and cuttings of soil brought up by the
boring tools are observed. If soil shavings indicate change in soil characteristics, the depth where
the change occurs needs to be recorded and additional soil samples should be taken. The sampler
is again advanced to take soil sample. In such alternative sequence, the test hole is advanced and
soil samples are taken. In certain critical layers, continuous sampling may have to be done.

While advancing the bole hole, water level in the test holes should be observed. Lack of
information concerning the ground water level will result in inadequate designs and difficulties
in construction.

2.12.1 Minimum Depth of Bore Holes

The rules established by the American Society of Civil Engineers in 1972 (Das, 2007) may be
used for determining the minimum depth of boring required:

1. Determine the net increase in the effective stress, Ag’, under a foundation with depth as
shown in Figure 2.18, using expressions for stress distribution in soils (Chapter 3).

2. Estimate the variation of the vertical effective stress, 0’0, with depth.

3. Determine the depth, D = Dy, at which the effective stress increase Ag’ is equal to (1/10) p
(where p = estimated net stress on the foundation).

4. Determine the depth, D = D, at which A¢’/g], = 0.05.
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Figure 2.18 Minimum depth of bore hole.

5. Choose the smaller of the two depths, D, and D5, as the approximate minimum depth of

boring required, unless bedrock is encountered.

If the preceding guidelines are used, the approximate depths of boring for a building with a

width of 30 m are given below in Table 2.6 (Das, 2007).

The approximate spacing of bore holes is given in Table 2.7 for planning the site

investigation.

Table 2.6 Bore hole depths.

Number of stories in building

Depth of bore hole (m)

O O R S R

35
6

10
16
24

Table 2.7 Spacing of bore holes.

Structure/project

Bore hole spacing (m)

Multistorey building
Industrial plant (single storey)
Highways

Residential colony

Dams and dikes

10-30
20-60
250-500
250-500
40-80
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The literature available on soil exploration and site investigation is extensive in terms of
boring techniques, samplers and sampling techniques and other field techniques. The readers
and practitioners may refer to Hvorslev (1949), Tomlinson (2001) and several other books for
further details.

In addition to the laboratory tests that may be carried out on disturbed and undisturbed
samples described in the earlier sections, several field tests also are carried out while boring is
done at site. Some important field tests are described below. Field tests are generally more
preferable because they are done in situ with the soil being in almost undisturbed state.
However, they require lot of coordination at site and are generally expensive.

2.13 Split Spoon Sampler and Standard Penetration Test

The split spoon sampler is one of the samplers used in the field to obtain soil samples that are
generally disturbed, but still representative. A standard split spoon sampler is shown in
Figure 2.19. The sampler consists of a steel driving shoe, a steel tube that is split longitudinally
in half, with a coupling at the top as shown in the figure. The coupling connects the sampler to the
drill rod. The tube has an inside diameter of 34.93 mm and an outside diameter of 50.8 mm.

Dirilling rod
Head

Water port

Coupling Pin

Ball valve

Split barrel

457.2mm

Threads

shoe

(b) Spring core
catcher

f -4
50.8mm
(a) Sampler

Figure 2.19 Standard split spoon sampler.
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However, samplers having inside and outside diameters up to 63.5 mm and 76.2 mm, respec-
tively, are also used. When a borehole has reached the required depth, the drill tools are removed
and the sampler is lowered to that level. The sampler is then driven into the soil by hammer blows
given at the top of drill rod. The standard weight of the hammer is 622.72 N, and for each blow,
the hammer drops from a height of 0.762m. The number of blows required for the spoon
penetration at three intervals of 152.4 mm are recorded. The number of blows required for last
two intervals are added to give the standard penetration number, N, at the depth. This number is
generally referred to as the N value. The sampler is then withdrawn, and the shoe and coupling
are removed. Then, the soil sample is recovered from the tube and is placed in a container and
brought to the laboratory for testing. This field test is called the standard penetration test (SPT).

The soil sample is usually disturbed due to drilling and hammering. The degree of
disturbance of the soil sample is expressed as

22
Ar(%) = %(100) (2.36)
1
where
Agr = area ratio (ratio of disturbed area to total area of soil)
D, = outside diameter of the sampling tube

D; = inside diameter of the sampling tube.

When the area ratio is 10% or less, the sample generally is considered as undisturbed. For a
standard split spoon sampler, with dimensions shown in Figure 2.19(a)

Ag = 111.5% (2.37)

Hence, these samples are highly disturbed. Split spoon samples generally are taken at intervals
of about 1.5 m. If the material encountered in the field is sand (particularly fine sand below
the water table), recovery of the sample by a split spoon sampler may be difficult. In that
case, a device such as a spring cone catcher may have to be placed inside the split spoon
(Figure 2.19(b)) to recover the sample.

It may be noted that several factors contribute to the variation of the standard penetration
number N at a given depth for similar soil profiles. These are the SPT hammer efficiency,
borehole diameter, sampling method and rod length factor (Das, 2007). A safety hammer and
donut hammer are commonly used in the field. They are dropped by a rope with two wraps
around a pulley.

On the basis of field observations, SPT values are standardized as a function of the input
driving energy and its dissipation around the sampler into the surrounding soil as

Niynphstz
Nep = —————— 2.38
o = I 238)
where
Ngp = standard penetration number, corrected for field conditions to an average energy ratio

of 60%
N = measured penetration number
ny = hammer efficiency (%)
ng = correction for borehole diameter
s = sample correction
ng = correction for rod length.
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Variations of 4, 11, 1 and 17 are summarized by Das (2007) based on recommendations by
Seed et al. and Skempton (Das, 2007). Besides, using it as a sampler, the split spoon sampler is
useful to obtain both the disturbed soil samples for laboratory tests and also the N values (SPT).
These SPT values provide several useful correlations. For example, the consistency of clayey
soils can often be estimated from the standard penetration number, Ngo_as shown in Table 2.8.
However, correlations for clays require tests to verify that the relationships are valid for the clay
deposit being examined.

Table 2.8 Consistency of clays and approximate correlation with Ng.

Standard penetration Consistency Unconfined compression
number, Ngg strength, g, (=S,) (kN/m?)
0-2 Very soft 0-25

2-5 Soft 25-50

5-10 Medium stiff 50-100

10-20 Stiff 100-200

20-30 Very stiff 200-400

>30 Hard >400

There are many correlations between the standard penetration number and the undrained
shear strength or cohesion of clay, c¢,. On the basis of results of undrained triaxial tests
conducted on insensitive clays, Stroud (Das, 2007) suggested that

cy, = KN6() (239)

where
K = constant = 3.5-6.5 kN/m>
Ngo = standard penetration number obtained from the field.

The OCR of a natural clay deposit can also be correlated with the standard penetration
number. On the basis of the regression analysis, Mayne and Kemper (Das, 2007) obtained the
relationship

0.689
N 60) (2.40)

OCR = 0.193 (—,
o
4
where ¢/, = effective vertical stress in MN/m?
In granular soils, the value of N is affected by the effective overburden pressure, ¢/, For that
reason, the value of Ng( obtained from field exploration under different overburden pressures
should be changed to correspond to a standard value of ¢. That is

(N1)go = CnNeo (2.41)

where
(N1)go = value of Ng corrected to standard value of ¢/, (100 kN/m?)
Cy = correction factor
Ngp = value of N obtained from field exploration (Equation (2.38)).
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In the past, a number of empirical relations were proposed for Cy. The most commonly cited
relationships are those of Liao and Whitman, and Skempton (Das, 2007).

In the following relationships for Cy, note that ¢, is the effective overburden pressure and
Po = atmospheric pressure (=100 kN/m?).

Liao and Whitman’s correlation:

1
Cv = ——03 (2.42)
G,
Skempton’s correlation:
2
Cy = (2.43)

where
d’, = effective overburden pressure
Pa = atmospheric pressure (=100 kN/m?)

The other empirical correlation between the corrected standard penetration number and the
relative density of sand is given in Table 2.9. There are several such empirical correlations
available in literature (Das, 2007).

Table 2.9 Correlation between corrected (N,)gg values and the relative
density in sands, D, (%).

(NDeo Approximate relative density, D, (%)
0-5 0-5

5-10 5-30

10-30 30-60

30-50 60-95

The peak friction angle, ¢', of granular soil has also been correlated with Ny and (V)¢ by
several investigators. Some of these correlations are as follows:

1. Peck, Hanson and Thornburn (1974) give a correlation between (N )go and ¢’ in a graphical
form, which can be approximated as

¢'(deg) = 27.1 4 0.3(N})go—0.00054[(N}) ) (2.44)

Schmertmann provided an approximate correlation between Ngo, o, and ¢’ (Das, 2007) as

0.34

B N,
¢ =tan' | —L (2.45)

122 +203%

Da
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where
Ngo = field standard penetration number
d’', = effective overburden pressure
P, = atmospheric pressure with the same units as ¢/,
¢’ = soil friction angle.

~

Although these correlations are approximate, the standard penetration test provides a good
evaluation of soil properties, if interpreted properly. The primary sources of error in standard
penetration tests are inadequate cleaning of the borehole, eccentric hammer strikes on the drill rod,
and inadequate maintenance of water head in the borehole and so on. In addition to the split spoon
sampler, there are a large number of samplers used in site investigation such as thin walled tube
sampler, piston samplers and several other sophisticated samplers (Hvorslev, 1949).

2.14 Cone Penetration Test

The cone penetration test (CPT), originally known as the Dutch cone penetration test, is a
versatile method that can be used to determine the soil profile and estimate the engineering
properties. This is also called the static cone penetration test. In the original version, a 60° cone
with a base area of 10 cm? was pushed into the ground at a steady rate of about 20 mm/s and the
resistance to penetration (called the point resistance) was measured.

The cone penetrometers in use at present measure: (a) the cone resistance (g..) to penetration
developed by the cone, which is equal to the vertical force applied to the cone, divided by its
horizontally projected area, and (b) the frictional resistance (f.), which is the resistance
measured by a sleeve located above the cone with the local soil surrounding it. The resistance
is equal to the vertical force applied to the sleeve, divided by its surface area, which gives the
sum of friction and adhesion.

Two types of penetrometers are used to measure ¢. and f,:

1. Mechanical friction cone penetrometer (Figure 2.20)

The tip of the penetrometer is connected to an inner set of rods. The tip is first advanced
about 40 mm, giving the cone resistance. With further pushing, the tip engages the friction
sleeve. As the inner rod advances, the rod force is equal to the sum of the vertical forces on
the cone and sleeve. Subtracting the force on the cone gives the side frictional resistance.

2. Electric friction cone penetrometer (Figure 2.21)

In this equipment, the tip of the penetrometer is attached to a string of steel rods. The tip is
pushed into the ground at the rate of 20 mm/s. Wires from the transducers continuously
measure the cone and side resistance.

The typical results of penetrometer tests in a soil profile with point and friction resistance
measurements by a mechanical friction cone penetrometer are shown in Figure 2.22.

Several correlations of CPT values with properties of soils have been developed for the point
resistance (q.) and the friction ratio (F,) obtained from the cone penetration tests. The friction
ratio is defined as

frictional resistance ,
F, = , _ (2.46)
cone resistance qc
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Figure 2.20 Sketch of mechanical friction cone penetrometer.

As in the case of standard penetration tests, several correlations have been developed
between ¢, and other soil properties (Das, 2007).

Correlation Between Relative Density (D,) and q. for Sand

The following relationship to correlate D,, g, and the vertical effective stress ¢, is given by
Kulhawy and Mayne (Das, 2007)

1 qe

D, — [ ]8] /p. - (2.47)
305Q0.0CR™ (0’0.5/ ) -

Da
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Cable

Connection with rods

Waterproof bushing

Adjustment ring

Strain gauges

Friction sleeve (150cm?)

Strain gauges

Load cell

Conical point (10cm?2)

Figure 2.21 Sketch of electric friction cone penetrometer.

where
OCR = overconsolidation ratio
P = atmospheric pressure
Q. = compressibility factor.

The values of Q. are recommended as below:

1. Highly compressible sand = 0.91
2. Moderately compressible sand = 1.0
3. Low compressible sand = 1.09

Correlation Between ¢, and Drained Friction Angle (¢') for Sand

A relationship between q./Ngo (Ngo = field standard penetration resistance) versus mean
grain size (Dsp) for various types of soils is shown in Figure 2.23 (Das, 2007). Several
such empirical correlations are available in literatures which are useful for interpretation of soil
data.
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G, (KN / m?)
Nego

Ratio,

Depth (m)

0

Point resistance
q. (kN/m?)
5,000 10,000
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Depth (m)

Friction resistance

0

f, (kN / m?2)
200 400

12—

Figure 2.22 Typical results of cone penetrometer test (CPT).
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Figure 2.23 Correlation of g./Ng, for different soils.
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2.15 Field Vane Shear Test

The vane shear test is described in Section 2.10.2 except that the dimensions of the
field vane (diameter, d, and height, /) are bigger than the laboratory vane dimensions. The
in situ undrained shear strength can be obtained using the field vane test by the
Equation (2.32). However, it may be noted that this test is more suited for predominantly
cohesive soils.

2.16 Other In Situ Tests

In recent times, several other in situ static and dynamic tests are being used to correlate the
engineering properties of the soil with the results of these tests. These are the dilatometer test
(DMT), pressure meter test (PMT) and so on (Bowles, 1996). Plate load test and cyclic plate
load test are also used to obtain the pressure — settlement curves and determine the elastic
properties, coefficient of subgrade reaction, elastic settlements of the soil and these are
described in detail in Chapters 3 and 4 (Kameswara Rao, 2000). Several tests are also adopted
for evaluating the in situ elastic properties of the soil using wave propagation methods, and
correlating them with soil properties of soil layers.

These are geophysical refraction survey methods, cross-hole techniques, SASW
technique and so on and are described in several books on foundation dynamics and
geophysics (Kameswara Rao, 1998, 2002). Ground penetration radar (GPR) is also being
developed to explore the properties of soils using microwave transmission (Kameswara Rao,
1998).

2.17 Summary

Thus, brief descriptions of basic soil properties, laboratory tests, soil exploration, insitu field
tests and correlations with engineering properties of soils are presented in this chapter.

The determination of parameters for the design of foundation, such as bearing capacity,
settlement analysis, stress distribution in soils and lateral pressures are presented in the next
chapter.

2.18 Examples

In all these examples, acceleration due to gravity, g, is taken as 9.8 m/s” and the unit weight of
water, 7,,, is taken as 9.8 kN/m3, unless stated otherwise.

Example 2.1

Derive an expression for w (water content) in terms of ), (Submerged unit weight of soil) and S
(degree of saturation), and G (specific gravity). Find w, y, (bulk unit weight) and y4-, (dry unit
weight) for a soil with § = 85%, y.» = 9.8 kN/m’, G = 2.70.
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Solution:
Se = wG
. _ G—1 . (G_l)yw_ysub
L Vsup = 1+ e))wv .6 = Vb
W= Se _ N |:(G_1)'Vw_y.\‘ub:|
o G G Y sub

S= 085,79, = 12kN/m3, G = 2.70, y,, = 9.8 kN/m?

_ S HG=1)yy=ys| _ 085[[(2.70—1) (9.8)] 12
TG Vsub 270 12

= 0.122

(G=Dpw=vgp _ [(27-1)(9.8)]-12

i - - — 0388
t ¢ Vsub 12
G + Se 27 + 0.85 x 0.388 \
E— = 9.8 = 21.387kN
Poulke = g v 1+0388 /m
G 27%98
=7 5 =772 _ 19.06kN/m?
Tay = T3 o™ = T o03ss — |D00KN/m

Example 2.2

A fine sand has an in-place unit weight of 18.85kN/m® and a water content of 5.2%. The

specific gravity of solids is 2.66. Void ratios at densest and loosest conditions are 0.38 and 0.92,
respectively. Find the relative density.

Solution:
y, = 18.85kN/m’, w = 5.2%, G = 2.66, egense = 0.38,
Cloose = 0.92, 7, = 9.8kN/m’
G(1 G(1 Voo
,yt — (] + W) ,yw7 ..'e — ( + W)/w 71
+e Yt
_ G+ w)ywil _ 2.66(1 + 0.052)(9.8) |~ 0455
Y, 18.85
Cnaz—€ 0.92—0.455
Relative density, D, = = = 0.86 = 86
e ey, o = e 0.92—0.38 %
Example 2.3

A 0.082 m? sample of soil weighs 1.445kN. When it is dried out in an oven, it weighs 1.301 kN.
The specific gravity of solids is found to be 2.65. Find the water content (w), void ratio (e),
porosity (n), degree of saturation (S) and the wet and dry unit weights.
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Solution:
V = 0.082m?, Bulk weight = 1.445kN,

After drying, W, = 1.445kN

W, = 1.445-1.301 = 0.144kN
W,  0.144
cw= = 01 = 11
YT W, T 1301 %
soil weight 1.445 kN 3
¥, = — — 17.62kN
Vi sample volume  0.082 m3 /m
G + Se G(1 + w) 2.65(1 + 0.11)
'.'G = 2‘65 = , = ’\‘7 = ‘8
s Ve TTe 1o M e x9
= 17.62kN/m’
2.65(1 + 0.11
S 2O AN oo 176
1+e
2.65(1 + 0.11)
S T 98| —1 = 0.
g X 98 0.636
0.636
¢ — 039 = 39%

Tl e T 1+0636

Wet unit weight = y, = 17.62kN/m?

G 2.65

Dry unit weight = y,,, = e/ = 150636 x 9.8 = 15.87kN/m’

Example 2.4

A cylindrical sample 3.5 cm diameter and 6.0 cm long weighs 0.91N. S = 43%, G = 2.70,
7,» = 10kN/m>. Determine w. If there had been an error of 10% in measuring the weight of the

sample, what would be the percentage error in w?

Solution:
S = 43%, G = 2.70, 7, = 10kN/m?

3.57
Volume of sample = X X6 = 57.73cm® = 57.73 x 107 m?
0.91 x 1073
Weight = 0.91 x 10 kN, 7, = — > = 1576 kN/m’
5773 x 10
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G + Se ) Gy, (1 + w)—y,
’))I = ’VM"’ e -

l+e . Vi
Sy (1L +e) = (G + Se)y,
sy =S) = Gy
o G _ (27x10)-1576 _ 11.24

= = = = 0.98
V=SV, 15.76—(0.43 x 10) 11.46
Se  0.43 x0.98
Se = wG, .w= = —— = 0.156
e=rn W= 27
S Gy, (1 —1 S Gy, (1 —
W:—e, e — Pl + w) /r7 .'.W=—|: 7wl + w) Vz]
G Yt G Ve
WG’VI = S[G’yw(l + W)_’Vt] = SGV\V(l + W)_SVZ
WG]),—SG’))WW = SG’))W—SW/[
SGVW_S’VI
W _——_—
G’))z_SGVw
ow = [(Gyr_SGyw)(_Sayr)]_[(SGVW_Syt)Ga’VI]
(GVI_SGVW)2
Noting that a 10% error in weight results in a 10% error in y,, we have ay—y" = 0.1
Then
0 —S(Gy,—SGy,,)—G(SGy,,—S 1
S (G7,—5Gy,)—G( Gl Y Bror inw
w (G']),—SG’))W) w
_ o —8(Gy,—S8Gy,,) —G(SGy,,—Sy,) | _ Gy, —SGy,,
t (Gy,—SGy,)? SGy, =Sy,

_ a'yt Ve [_S(GVI_SGVW) —G(SG”/W—SV,)]
Ve (Gy,—SGy,,)(8Gy,,—Sy,)

7 (G —8Gy,)(SGy,,—Sy,)

0.1 x 15.76 x [0.43 x 2.7 x 10 x (0.43-2.7)]
(2.7 x 15.76—0.43 x 2.7 x 10)(0.43 x 2.7 x 10—0.43 x 15.76)

1.576 x 11.61 x 2.27
-~ = —0.2721
(30.94 x 4.9332)

S %error inw = 27.21%
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Example 2.5
An undistributed soil sample has a void ratio of 0.56, water content of 15% and specific gravity
of solids of 2.64. Find the wet (total) and dry unit weights (kN/m?), porosity and degree of

saturation.

Solution:

e =056 w=15% G =264

WG 0.15 x 2.64

- s =1 — 07071 = 70.71
Se = wG §== e 0.7071 = 70.71%
L _GUtw) 26414015 19,07 KN /m?
T T e T T 11056 0T

G 2.64
Vg = ——7y = ————9.8 = 16.58kN/m’
= T T T 05608 = 1098KN/m
0.56
n ¢ — 0359 = 35.9%

“1+e 1+056

Example 2.6

Derive an expression for w (water content) in terms of y,,,;, (submerged unit weight), degree of
saturation, S, and specific gravity, G. Find § and yg. if 74, is 10 kN/m?® and w = 22%.
G = 2.70, y,, = 10kN/m”.

Solution:

G—1
Se = wG, Vsub = 1—+e”/w Yan(l +€) = (G=1)y,

(G_ l)yw 1 = (G_l)%v_ysub
7 sub Y sub

Se S |:(G_1)Vw_ysub:|

WZE:E Vsub

Y = 10kN/m®, w = 22%, G = 2.70, 7, = 10kN/m?
(G_l)yv‘f_y.vub o (27_1)10_10 _

_ _ 0.7
Vsub 10
G 022x27
§=Wo 2t al g8 — 859
e 0.7
G 27

L= poo= 10 = 15.88kN/m’
ydl) 1+€/W 1+0.7X /m
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Exercise Problems

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

2.9

The water content of a 100% saturated soil is 30% and the specific gravity of solids is 2.65.
Determine the void ratio and unit weight (kN/m?).
A soil sample has the following data:

i. Degree of saturation = 46%
ii. Void ratio = 0.8
iii. Specific gravity of solids = 2.70.

Find its water content and unit weight (kN/m3).

A 0.08 m® sample of soil weighs 1.4 kN. When it is dried out in an oven, it weighs 1.3 kN.

The specific gravity of solids is found to be 2.70. Find the water content, void ratio,

porosity, degree of saturation and the wet and dry unit weights.

The unit weight of a soil sample is 18.00 kN/m?. Its specific gravity of solids and water

content are 2.70 and 15%, respectively. Find the dry unit weight, void ratio and degree of

saturation.

A fine sand has an in-place unit weight of 18.75 kN/m® and a water content of 5.0%. The

specific gravity of solids is 2.70. Void ratios at densest and loosest conditions are 0.38 and

0.92, respectively. Find the relative density.

A container with soil sample of completely saturated clay weighs 0.7 N. After drying, the

weight becomes 0.62 N. The container weight is 0.35 N and the specific gravity of the soil

is 2.70. Determine the void ratio, water content and porosity of the original sample.

A moist sand sample has a volume of 464 cm” in natural state and a weight of 8.5 N. The

dry weight is 7.4 N and the specific gravity is 2.68. Determine the void ratio, the porosity,

the water content and the degree of saturation.

i. A dry soil has a void ratio of 0.65, and its grains have a specific gravity of 2.70.
Determine the unit weight.

ii. Sufficient water is added to the sample to give a degree of saturation of 80%. There is
no change in void ratio. Determine the water content and the unit weight.

A completely saturated clay has a water content of 42% and unit weight of 18 kN/m?.

Determine the void ratio and the specific gravity.
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Bearing Capacity, Settlement,
Stresses and Lateral Pressures
in Soils

3.1 Introduction

The soil which is supporting the loads transmitted by the foundation should be capable enough
so that the structure—foundation—soil system is safe and stable besides being serviceable
without excessive settlements. Thus, stability and settlement aspects of soil have to be analyzed
to arrive at the design pressure that can be safely carried by the soil so that the foundation type,
shape, size and other parameters can be selected and designed accordingly. The limiting shear
resistance beyond which the soil collapses or becomes unstable is called the ultimate bearing
capacity (UBC). This is also referred to as soil shear failure and results in distortions in the
superstructure leading to collapse. The foundation sinks into the ground as if there is no
resistance from the soil below. This type of failure is also called bearing capacity failure.

3.1.1 General and Local Shear Failure of Soils

If the soil is generally dense, the settlement of the footing that precedes the ultimate shear
failure is relatively small. It is called general shear failure (GSF) as shown in Figure 3.1(a) and
curve 1 of the load settlement curves. If the soil is loose, then a large settlement precedes the
shear failure as shown in Figure 3.1(b) and curve 2, of the load settlement curve. Such a failure
is called a local shear failure (LSF).

3.1.2  Punching Shear Failure

In some structures like liquid storage tanks and rafts supported on loose soils, there could be a
base shear failure in which the base/foundation undergoes a punching failure as shown in
Figure 3.1c and curve 3 of the load settlement curve.

Foundation Design: Theory and Practice N. S. V. Kameswara Rao
© 2011 John Wiley & Sons (Asia) Pte Ltd. ISBN: 978-0-470-82534-1
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Figure 3.1 Sketches of bearing capacity failures in soil.

3.1.3 Failure Due to Large Settlements

Structural damage can also be caused by excessive settlements of the foundation—soil-system
(without any shear failure of the soil) making the structure unserviceable with cracking, large
distortions and misalignments in various components. The limiting soil pressure for such a
failure due to large settlements is referred to as the allowable soil pressure (ASP).

In modern structures, the settlement failure is more common. The shear failures are reported
mostly from embankments and similar structures/constructions. Punching shear failure is
likely in liquid storage structures and raft foundations founded on soft soils.

3.1.4 Allowable or Design Soil Pressure

The criteria governing the allowable soil pressure depending on the breadth B of the
foundation is shown in Figure 3.2. It can be noted from the figure, that the bearing capacity
governs the allowable pressure up to certain breadth, beyond which it is the settlements that
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Figure 3.2 Relationships between allowable bearing pressure and breadth.

govern the design pressure, the limits, marked by the hatched region in the Figures 3.2(a)—(c)

(Taylor, 1964).
These engineering parameters, that is, bearing capacity, settlement analysis, and elastic
stress distribution in soils, lateral earth pressures are discussed with the focus on the

applications in foundation design.

3.2 Ultimate Bearing Capacity of Shallow Foundations
3.2.1 Prandtl’s Theory for Shallow Foundations

The earliest solution for ultimate bearing capacity (UBC) of soils for shallow foundations
(D < B in Figure 3.3) is due to Prandtl (Terzaghi, 1943; Taylor, 1964; Terzaghi and Peck,
1967) using plastic equilibrium theory with Mohr Coulomb failure criterion for the soil

expressed in terms of shear strength as

s=c+otan¢ (3.1

Width of foundation

B2 B2

Ground surface

Y = Unit weight of soil

Smooth footi g 45" ¢/2 90°- ¢ Rough footing

( Prandtl’s theory and

also Terzaghi’s theory for smooth base) (Terzaghi’s theory for rough basc)

Figure 3.3 Bearing capacity theories of Prandtl and Terzaghi.
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where
s = shear strength of soil
¢, ¢ = cohesion and angle of internal friction of the soil
¢ =normal stress.

The failure zone obtained by Prandtl for continuous or strip footing (two-dimensional cases)
is shown on the left half of Figure 3.3 (keeping symmetry in view). It consists of three zones,
that is, unsheared conical zone I, which moves downwards as a unit (Rankine’s active zone),
zone II, which is plastic with its curved boundary as a logarithmic spiral with its center at A
(radial shear zone) and zone III which is forced by passive pressure upward and outward as
a unit (Rankine’s passive zone). Prandtl expressed the solution for ultimate bearing capacity,

qu» as

c 1 .
Gu = ( + 2yBMK,,) (Kye" ™9 —1) (3.2)

tan ¢

where
¢, ¢ =shear strength parameters of soil that is, cohesion and angle of internal friction
respectively as given in Equation (3.1).
y = unit weight of the soil.

1 +sin ¢

K, = Rankine’s passive earth pressure coefficient = ﬁ
—sin

(3.3)

Prandtl’s solution was originally derived for a weightless soil, except that the term % y By/K,
in Equation (3.2) is added later to account for the strength caused by the overburden pressure. It
may further be noted that Prandtl’s solution assumes that the foundation base (contact surface)
is smooth.

3.2.2 Terzaghi’s Theory for Shallow Foundations

Tergazhi modified Prandtl’s solutions to include the weight of the soil for the foundations with
smooth base as well as rough base (such as concrete foundations). He however assumed that the
general shape of the various zones (I, IL, IIT) remained the same as in Prandtl’s solution, in spite
of the fact that weight of the soil contained in the failure zones are included in the analysis. This
amounts to a superposition of the solution of the analysis with and without body weight, which
is not strictly correct since the failure envelopes in these two cases are slightly different
(Terzaghi, 1943) but acceptable for practical applications. The zones of failure for the smooth
and rough bases are shown on the left and right halves of the Figure 3.3. Only half the failure
zones are shown for comparison in each case, noting that they are symmetric. It can be seen
from Terzaghi’s solution for the smooth base that the failure zones are identical to those of
Prandtl while zones I, IT and III are slightly different for a rough base (as shown on the right half
of the Figure 3.3).

The main difference in the failure zones is the angle the failure plane of zone 1 makes with
the base, that is, ¢ for a rough base as at A’ and 45 + % for a smooth base as at A. Terzaghi then
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considered the equilibrium of the wedge AB’C (for a smooth base) and A’B’C’ (for a rough
base) and expressed the ultimate bearing capacity of a continuous or strip footing as

qu = cN.+gN,+0.5y BN, (3.4)

where
¢ = cohesion of the soil
¢ = angle of internal friction of the soil
y = unit weight of the soil
q = yDy = surcharge at the foundation base level
D= depth of the foundation
N,,N,N, =nondimensional bearing capacity factors which are functions of ¢.

These factors for the rough base are obtained by Terzaghi as

N 62(3n/47¢/2)lan ¢ N1 35
e = cot {20052(45 + <j)/2)} cot ¢(Ny—1) (3:5)

62(3n/4—¢/2)tan ¢

N = S o @+ )2) (36)
1| K,,
N, =3 LOS’; 5 —1] tan ¢ (3.7)

where
Kp,=passive earth pressure coefficient.

For example, for ¢ =0, N. =5.7, N, = 1, N, = 0 as shown in the Figure 3.4. The above
bearing capacity factors are derived by Terzaghi, assuming a general shear failure of the soil
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Figure 3.4 Terzaghi’s bearing capacity factors for general shear failure — rough base.
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(Section 3.1.1). These factors are available in the form of graphs (as shown in Figure 3.4) and
also available in tabular form (Bowles, 1996; Das, 2007).
For local shear failure, Terzaghi modified the above equation as

qu = /N +qN,' +0.5yBN,’ (3.8)
where
d=2/3¢ (3.9)

and N, N,/, N,’ are bearing capacity factors given in Figure 3.4 corresponding to

¢ = tan”! (% tan d)) (3.10)

in which ¢ and ¢ are the shear strength parameters of the soil as determined. The ultimate
bearing capacity for foundations of other common shapes are expressed as follows.

Square foundation:

gu = 1.3 ¢N. +¢gN,+ 0.4y BN, (3.11)
where B is the width of the foundation.

Circular foundation:
gu = 1.3¢N. + gN,+ 0.3y BN, (3.12)

where B is the diameter of the foundation.
For local shear failure, Equations (3.11) and (3.12) are used with N./, N,/, N,’ with ¢’ and ¢’
given by Equations (3.9) and (3.10).

3.2.3 Modified Bearing Capacity Factors for Smooth Base

Based on laboratory and field studies, if the failure surface of zone 1 (Rankine active zone) is
inclined at 45 + %, as may be applicable for smooth base, the bearing capacity factors can be
obtained as (Das, 2007)

Ne = (Ny—1)cot¢p (3.13)
N, = tan’*(45 + ¢ /2) e" ™ ¢ (3.14)
N, = 2(N,+ 1)tan ¢ (3.15)

For example, for ¢ = 0, N. = 5.14,N, = 1, N, = 0 as per these factors.
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3.2.4  Factors of Safety

The allowable bearing capacity g,y for purposes of foundation design is obtained as:

where FS = the factor of safety, usually taken as 3.

Terzaghi’s bearing capacity factors are most commonly used for obtaining the UBC that is,
Guir, assuming rough base while the factors for smooth base and other factors available in
literature are also used depending on the specific requirement. It may be observed that the
differences in values of bearing capacity factors developed by various contributors are
considered minor compared to the variations in soils at the same site whose parameters are
not known unless tested extensively.

3.2.5 General Bearing Capacity Solutions

The basic bearing capacity equation developed by Terzaghi (Equation (3.4)) was modified
by Terzaghi and others for application to general foundations to incorporate the effects of
shape, depth of foundation and inclination of the applied load. The general equation can be
written as

Gu = CheshedreiNe + GlgshqalqiNg + 0.5 Ays Ay lyN, (3.17)

where
Jicss Agss /s = shape factors
Jeed Aqd > /a = depth factors
Jiy Aqi, Ayi = inclination factors
¢ = cohesion of the soil
NN, N, = bearing capacity factors as described in Section 3.2.2 (commonly Terzaghi’s
factors given in Figure 3.4 are used though other factors are also adopted in
specific situations).

These A factors for shape, depth and inclination as given by Meyerhof (Das, 2002) are given
in Table 3.1.

3.2.6 Effect of Ground Water Table

The following modifications have to be made in the computation to take into account the
presence of ground water table depending on its relative location with respect to the depth of the
foundation.

Case 1: If the ground water table is between 0 and Dy, as shown in Figure 3.5(a), then surcharge
term ¢ (second term of the Equations (3.4) and (3.17)) has to be computed as

where ., = Vs —7Vw = submerged unit weight of soil.
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Table 3.1 Meyerhof’s 1 factors for a rectangular footing (B = width, L = length).

Shape factors
For ¢p = 0°: For ¢ > 10°:
\ B B
Jes = 1402 (Z) des = 1+0.2 (z) tan? (45 + %)
, . B
Jgs = 1 Jgs = dgs = 1+0.1 (Z) tan’ (45 + g)
Jps =1
Depth factors
For ¢ = 0°: For ¢ > 10° :
) D D,
fet = 1402 (ff) feg = 1402 (Ef) tan (45 + %)
D
dgd = Fyd =1 dgd = Fpa = 1+0.1 (=L )tan( 45+ ¢
' ! B 2
Inclination factors

a©\?
i = (1= 505
= (1-55)
a©\?
= (1=
= (1-55)

o\ 2
Ai = <1— %) where « is the angle between

5]

the inclined load and the vertical direction.

Also, the unit weight of soil, y that appears in the third term of the bearing capacity equations
should be replaced by yg,5.

Case 2: When the groundwater table coincides with the bottom of the foundation (Figure 3.5(b)),
the magnitude of q is equal to y D, However, the unit weight y in the third term of the bearing
capacity Equations (3.4) and (3.17) should be replaced by v,,,.

Case 3: The groundwater table is at a depth D below the bottom of the foundation (Figure 3.5(c)).
In this case, compute with ¢ = yDy. Also the magnitude of 7 in the third term of the bearing
capacity Equations (3.4) and (3.17) should be replaced by 7,, where

Y=g lD+7(B-D)]  (ForD <B) (3.19)

Vay =7 (ForD > B) (3.20)

3.2.7 Other Factors

There are several other factors which effect the bearing capacity such as eccentric loads,
layered and nonhomogeneous soils. These aspects are presented in Chapter 4.
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Figure 3.5 Effect of the location of groundwater table on the bearing capacity of soils.

3.3 Bearing Capacity of Deep Foundations
3.3.1 Types of Deep Foundations

When a good bearing stratum does not exist near the ground surface or at relatively shallow
depths, the structural loads are transmitted to deeper strata capable of supporting such loads by
means of deep foundations. Thus, deep foundations are those where - > 1 and generally >3-4
(Dyand B are the depth and width of foundation as shown in Figures 3.3 and 3.6). The main
types are: pile foundations, piers or cylinder foundations and wells or caisson foundations. A
pile is a slender structural member of timber, concrete and/or steel, which is driven or bored/
cast in situ into the soil, generally for supporting vertical or lateral loads and moments. A pier is
a vertical column of relatively larger cross section than a pile though similar to a pile. It
transmits structural loads to a hard deeper stratum. A caisson is a hallow box or well which is
sunk through ground with or no water. Subsequently it becomes an integral part of the
permanent foundation.

The details of these deep foundations are discussed in Chapters 9 and 10. The evaluation of
the bearing capacity of deep foundations is discussed below.
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Figure 3.6 Failure zones in deep foundations.

3.3.2 Bearing Capacity

The main difference in the evaluation of bearing capacity of shallow and deep foundation is that
the shear resistance along the boundary of the failure zone is neglected in the case of shallow
foundations while it is included in the case of deep foundations.

The methods available in the literature (Ramiah and Chickanagappa, 1981; Bowles, 1996;
Tomlinson, 2001) are quite numerous and mainly differ in conceptualizing the failure zones
and mobilization of shear resistance along the boundary. The resistance offered by soil due to
applied loads on a pile/deep foundation is shown in Figure 3.6(a). Terzaghi’s theory considers
the pattern of failure zone as shown in Figure 3.6(b) for a slender deep foundation like a pile.
Thus, the bearing capacity at the base of the foundation is called point resistance or point
bearing and is calculated as per shallow foundation theory (as given in Equation (3.4)). But
there is an additional resistance due to friction and cohesion/adhesion along the surface of the
shaft of the foundation (called the shaft resistance or shaft friction and adhesion) in contact with
the surrounding soil which is added to the total capacity. Thus the total capacity of the deep
foundation includes the two components, that is, point resistance and the shaft resistance.
These details are discussed in detail in Chapters 9 and 10.

In a similar way, Meyerhof (Ramiah and Chickanagappa, 1981) assumed the failure zones for
deep foundations as shown in Figure 3.6(c). Meyerhof further suggested that a failure zone based
on Terzaghi’s theory can be conceptualized for general deep foundations as shown in Figure 3.7(a).
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Figure 3.7 General deep foundations.

However, he assumed a general failure zone as shown in Figure 3.7(b) (similar to Figure 3.6(c)) and
expressed the ultimate bearing capacity (UBC) at the base, that is, point resistance as

vB
qp :CNpc+O_oNpq+ %Ny (321)
where
Ny Npg N, =Meyehof’s bearing capacity factors for deep foundations

0, =normal stress on an equivalent free surface as defined by Meyerhof
¢ = cohesion
y = unit weight of soil
Dy=depth of the foundation below ground level
B = width of the foundation.
The factors N, Np,, N, are given in Figures 3.8(a)—(c). The angles f3, o, can be found from
the values of the D/B ratio and ¢ values, as given in Figure 3.8(d).

Meyerhof also further simplified the bearing capacity factors for cohesive and cohesionless
soils separately (Ramiah and Chickanagappa, 1981).

3.4 Correlation of UBC and ASP with SPT Values and CPT Values

The SPT and CPT values and their correlation with soil properties are discussed in Chapter 2.
They are in situ tests and provide good correlation with angle of internal friction, ¢, allowable
soil pressure (ASP), settlements and so on.

3.4.1 SPT Values

The correlation of ¢ and allowable soil pressure for a 25 mm settlement with SPT values, N, are
given in Figures 3.9(a) and (b). It may be noted that ultimate bearing capacity values for sands
can be calculated using Figure 3.9(a) knowing the value of ¢. This is different from the allowable
soil pressure given in Figure 3.9(b) wherein the settlement of 25 mm is the criterion. Ultimately,
the lower of the two values, that is, UBC (with FS of say 3) and ASP has to be adopted as the
design pressure for foundation design. These aspects are further elaborated in Chapter 8.
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Figure 3.8 Meyerhof’s bearing capacity factors.

3.4.2 Correlation to N Values

In saturated very fine or silty sands the values of N may be high if the void ratio is below the
critical void ratio which corresponds approximately to N=15. In such soils the equivalent
value of N (Neguivaient) Should be determined from the following relation, when N is greater
than 15:

1
Nequivalent = 15 + 5 (N—IS) (3.22)

The value of N gives an indication of the probable mode of soil failure under a footing,
(Terzaghi and Peck, 1967). Local shear failure can be assumed if N <5 and general shear
failure if N > 30. For intermediate values of N between 5 and 30, linear interpolation between
the local and general shear failure values of bearing capacity factors may be used.

Gibbs and Holtz (Ramiah and Chickanagappa, 1981) showed that the effective overbur-
den pressure also affects the penetration resistance. It was found that the effect of
overburden on a cohesionless soil tend to increase the penetration resistance. Based on
this finding, it was proposed to modify the penetration resistance near the ground surface to
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Figure 3.9 Correlation with SPT values.

include the effect of overburden pressure since the penetration resistance without this
correction tends to be too small. The modification for air-dried or moist sands proposed by
Gibbs and Holtz is

5
=Ny 2
N N{1.422p+1} (323)

where
N = corrected value of penetration
N’ = actual blow count
p = actual effective overburden pressure in kg/cm? (but not greater than 2.8 kg/cm?).

Similar corrections for N values are also discussed in Chapter 2.

3.4.3 CPT Values

Meyerhof (Ramiah and Chickanagappa, 1981) correlated CPT (Delft type cone) values (that is,
cone penetration resistance or static cone resistance) with SPT values as

qc = 4N (3.24)
where

q.=resistance in kg/cm2
N = SPT values (corrected or equivalent).
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Shmertmann (Bowles, 1996) gave the following correlation of CPT values, ¢., with
Terzaghi’s bearing capacity factors, N, and N,

gc = 0.8N, = 0.8N, (3.25)

where
q. = average cone resistance of the soil between a depth of B/2 and 1.1 B in kg/m?
B = width of the footing in m.

For cohesive soils (D/B < 1.5),

quy for strip footing (kg/cm?) = 28—0.0052 (300—¢,)"” (3.26)

qu for square footing (kg/cm?) = 48—0.009 (300—¢,.)" (3.27)

For clayey soils,

quy; for strip footing(kg/cm?) = 2 +0.28 ¢, (3.28)

qu for square footing (kg/cm?) = 5 +0.34¢, (3.29)

3.5 UBC and Probable Settlements Using Field Plate Load Test

The plate load test is a very useful field test and is described in detail in Section 4.8 (Kameswara
Rao, 2000) for evaluating the modulus of subgrade reaction, coefficient of elastic uniform
compression, spring constant, and modulus of elasticity and other related parameters. This test
can also be used for determining the ultimate bearing capacity, mode of failure (GSF, LSF) and
probable elastic settlements as outlined below.

The plate load test is conducted at site at the proposed depth of the foundation with a standard
size plate of 30 or 75 cm (diameter or side width of a circular or square shape) and at least
25 mm thickness for rigidity. The set-up and details of the test are described in Section 4.8.
Typical test results can be plotted between settlement, s, and bearing pressure, p = 7’;’, as shown
in Figure 3.10(a), where P is the load applied on the plate and A is the area of the plate. The same
results can also be plotted on a log-log scale as shown in Figure 3.10(b).

3.5.1 Spring Constant from Total Deformation

The spring constant represents the force required for unit vertical deformation. In the
case of soil, the value of any parameter analogous to the spring constant will necessarily
depend on the type of soil, its density and moisture content, area, depth, shape of foundation
and so on.

Consider the curve shown in Figure 3.10(a) obtained from the plate load test on a soil. The
initial part of the curve is essentially a straight line or can be approximated to be so. This part at
low bearing pressure represents elastic deformation. Since the applied pressure in most cases
will be within this pressure range, it is reasonably safe to assume this as elastic deformation of
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Figure 3.10 Plate load test results.

100

the foundation—soil system subjected to static loads. The slope of the curve represents spring

constant of the soil.

Of course the plate load test curve represents the elastic characteristics for a single short-term
load application for a particular area of bearing plate. The curve is likely to be different for

different areas of bearing or for repeated loads or for long-term constant loading.

3.5.2 Settlement

It is well known that when two areas of different sizes are loaded, the one with larger area will
show larger deformation for the same bearing pressure.

The relation between the deformation and the area at a given pressure intensity is given by
several empirical expressions as follows:

1. For clays

Sy =851 —

(3.30)
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where B and s; are the width of bearing plate and corresponding settlement at a given
pressure and s, is the settlement of another area with width B, at the same pressure.

Where the modulus of elasticity, E, of a soil is constant, such as saturated clay, the
settlement of area with width B and load intensity ¢ is given by

.6gB
g = 2048 (3.31)
E

2. For sands: The settlements s, of an area with width B, in meters is related to the settlement
s1 of a plate with width B; in meters as

o s [32(31 +0.3)}2 (332)

Bl(Bz+0.3)

Several authors have evolved similar empirical relationships between the settlement and
area at given pressures.

From the plate bearing tests the elastic property of a soil in a given condition is generally
expressed by the modulus of subgrade reaction which is usually the pressure required per unit
deformation calculated at 0.5 in (12.7 mm) of deformation. The units are pounds per cubic inch
in the FPS system (or N/m? in SI units). This term relates the stress to the total deformation.
These parameters are used for carrying out static or pseudo static/dynamic analysis of
foundation soil systems. The details for getting others parameters are given in Section 4.8.

A modified version of the plate load test is the cyclic plate load test which is more relevant for
evaluating parameters that can be used in dynamic analysis of machine—foundation—soil (MFS)
system which relates bearing stress to the elastic (recoverable) part of total deformation. This is
also discussed in Section 4.8.

3.5.3 Ultimate Bearing Capacity

If it is a soil with a probable general shear failure, the p-s curves look like curves 1 and 4 in
Figure 3.10(a). The load corresponding to the steep slope of the curve can be noted as the
ultimate bearing capacity of the soil.

However, if such a steep slope is not evident as in curves 2 and 3, it could be a local shear
failure. In such cases, it is difficult to determine the UBC form these curves. Then, p-s curves
can be plotted in log-log scale as shown in Figure 3.10(b). From the plot, the pressure
corresponding to the point where the two linear parts of the graph intersect, can be noted to be
the ultimate bearing capacity. Of course log-log plots can also be used for soils with GSF for
cross verification of the values of UBC.

These results from the standard plate load tests can be used to extrapolate the UBC,
settlements and other parameters for the actual foundations using several empirical and semi-
empirical relations (Ramiah and Chickanagappa, 1981; Bowles, 1996) and bearing capacity
equations discussed in Section 3.2.
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3.6 Elastic Stress and Displacement Distribution in Soils

Evaluation of stress in soils due to loads transmitted by foundations is necessary in many
geotechnical engineering problems such as in settlement calculation (both elastic and due to
consolidation), pore pressure estimation, stress transmission due to foundation loads, under-
ground constructions and effects on adjacent structures. Following methods are commonly
used to determine the stress distribution in soils due to foundation loads. These stresses will be
in addition to the existing stresses due to overburden pressure and so on.

1. Empirical method: For a quick and approximate estimation of stresses for stability
analysis of footings, the pressure under a footing may be assumed to spread like a
pyramid with a slope of 2 vertical to 1 horizontal as shown in Figure 3.11. Thus, a load
Q acting concentrically on a footing area of B x L is assumed to be distributed over an
area of (B+ Z)(L+ Z) at a depth Z below the footing as shown in Figure 3.11(a). If any
stratum of soil is inadequate to sustain this pressure, the design bearing pressure should
be reduced.

The slopes to be assumed may depend on the soils. In loose soils, the slope can be steeper
and in strong and dense soils, they could be flat. However, for elastic displacements, a
logarithmically decreasing function of depth or similar functions may be used (Vlasov and

Load, O

Size of footing=B x L

Pressure / stress 0

atdepth Z = W

B+Z
(a) Approximate distribution of vertical stress

w,= Surface displacement
of the footing
G.L. | Footing B

Z = Depth

w=we Pz

(b) Approximate displacement distribution with depth

Figure 3.11 Approximate distribution of stresses and displacements below a footing.
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Leontev, 1966), that is, w at depth z = woe~ P where w,, is the surface displacement and f is
a parameter depending on soil as shown in Figure 3.11(b). f# values may range from 0.5 (for
clayey soils) to 2.5 (for sandy soils).

However, for more accurate evaluation, the methods described in (2) may be preferable.
. Methods using theory of elasticity: For settlement and stress analysis, a more accurate
approach based on elastic theory may be used. All elastic methods are developed from the
Boussinesq’s or Mindlin’s solutions (Timoshenko and Goodier, 1951; Taylor, 1964; Harr,
1966; Bowles, 1996). Mindlin’s solution is generally used for applications in piles, deep
foundations, deep excavations and so on and involves intensive computations. However,
Boussinesq’s solution is very simple and easy to compute.

Hence, Boussinesq’s solutions are most commonly used and are presented below.
Westergaard’s Solution which is applicable to anisotropic soils is also presented subse-
quently and is also used in specific situations.

. Boussinesq’s solutions — elastic stresses and displacements:

a. Vertical concentricated load on the surface: The stresses and displacements in a semi-
infinite, homogeneous, isotropic and linearly elastic solid or soil medium caused by a
vertical, concentrated load P applied on the surface at the origin O (Figure 3.12) are obtained
by Boussinesq as follows

3P z3 _3p 1
% = 2R 212 2\ 32
1+ —
(1+5)
3P Z%r
ST
P
G.L. ‘0 (0,0,0)
o X
! V4
R/ i
: z
c,
T
714 e A
A(X.y,2)

Figure 3.12 Stresses in cylindrical coordinates caused by a vertical point load on the surface of soil
medium.
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where
E = Young’s modulus of elasticity
v ="Poisson’s ratio (ranges from 0 to 0.5)
R=112+4z2 = \/x? +y2 + 22 = spherically radial distance oA
1* =/x2 4+ y2 = cylindrically radial distance as shown
X, y, z=Cartesian coordinates of A with respect to the origin O
0 = tan~!'"/,=radial coordinate as shown
u, v, w=displacements of A along the x, y, z coordinates
0,, 09, 0, =normal stresses in the r, 0, z coordinates
T,. = shear stress.

It should be noted that although both the vertical normal stress and shearing stress are
independent of the elastic constants they are very much dependent on the assumptions of
linear elasticity.

The vertical stress, ¢., can be written as

0, = KBZ_2 (3.34)
where
3 2] 2
Kp——|1 (f) 3.35
B 27[{ * z ] ( )

is a dimensionless influence factor. A plot of the coefficient Kp is given in Figure 3.13.
Just as in the two-dimensional case, the effects of a number of forces on the surface can be
accounted for by superposition.

b. Stresses and displacement caused by a uniformly loaded rectangular surface area:
For the case wherein the load consists of a uniformly distributed vertical load of intensity
p over a rectangular area on the surface, Newmark (Taylor, 1964) has derived
expressions for the stresses at a point below a corner of this area by integration of
Equations (3.33). The expression for vertical stress is obtained as

p | 2mnVm? + 2+ 1 m*+n?+2 | 2mnvm?+n2+1

-+ sin
m2 4+ n?+14m2n?

(3.36)

GZZE m24n?+14+m2nPm?4+n?+1
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Figure 3.13 Boussinesq’s and Westergaard’s solutions.

where p is the uniform intensity of surface loading on a rectangle of dimensions mz by nz,
and the stress o, occurs at distance z below the corner of this rectangular area. The second
term within the bracket is an angle in radians; this angle is less than m/2 when
m2+n?+1is larger than m?n?; otherwise it is between 7/2 and 7.

The above expression does not contain the dimension z, and stress depends only on the
ratios m and n and the surface intensity. Newmark also developed charts for calculating
vertical stress at the corner of the rectangular load using Equation (3.36). He has also
developed charts for other stresses and displacements (particularly vertical displace-
ment, w) by integrating Equation (3.33).

When the stress is desired at any point other than the corner, it may be obtained
by superposition of rectangular areas to represent the loaded area, each having the
point as its corner, as illustrated in Figure 3.14(a). Same procedure is applicable for
other stresses and displacements as the principle of superposition is valid for linear
problems.

For a point below any point K inside the rectangular area, the actual loaded area must
be considered to consist of four rectangles, KK;DK,, KK,EK3, KK;BK, and KK,CK,
the point desired being below their common corner, K. Then, the stress at any point below
K is the sum of the stresses due to these four rectangular areas (since K is the common
corner) by the principle of superposition.

For determination of the stress below a point such as A in Figure 3.14(a), due to
loading of the rectangle BCDE, the area may be considered to be composed of four
sections as follows: AHBF —AHEG + AJDG — AJCF. Each of these four rectangles
has a corner at point A, and the stress below point A due to loading on each section may
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Figure 3.14 Stresses at any point below loaded area.

be computed. Superposition of these values, with signs as indicated above, gives the
desired stress.

Out of all the stresses and displacements, the vertical stress ¢, and vertical displace-
ment, w at any point are most commonly needed in geotechnical engineering. The
expressions for point load are given in Equation (3.33). The vertical stress due to
rectangular shaped load is given in Equation (3.36). Charts and expressions are also given
by Newmark and others (Harr, 1966). The vertical displacement at the corner of the
rectangular shaped surface load (p) was obtained by Steinbrenner (Harr, 1966) by
integrating the expression for w due to point load (Equation (3.33)) as

we(z) = @(l_vz) { _ 1—2v3}

2F 1—v
A—l \/1+m2+n2+m+ V1i+m?+nr+1 (3.37)
i V1+m?+nt—-m VTt i1
no m
B=—tan —————
7I nv1+m?+n?
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where
m=b/a,n=z/a
2a, 2b = dimension of the rectangular area
1, = natural logarithm = log to the base e
w.(z) = vertical displacement below the corner

The values of A and B are available in tables (Harr, 1966) for various values of 72 and n.
For calculating the displacements at any point other than the corner of the rectangle,
similar procedure as in stresses using the principle of superposition can be adopted.

For the special case of vertical displacement at the surface, that is, z=0, the above
constants simplify as B=0, n=0 and

w="2(1-v)kK, (3.38)

where K|, is a dimensionless constant.

K, can be obtained from the above tables given in Harr (1966). In particular for a
square shaped load the values of K, for vertical displacement at center, average
displacement (from the center to the edges), and for a rigid footing are 1.12, 0.95 and
0.88 respectively. Some specific values of K, which may be useful are given in
Table 3.2.

Table 3.2 K, values for rectangular foundations.

Shape of the area (2a x 2b) m = b/a K, values
Corner Center Average Rigid foundation

Square, m=1 0.56 1.12 0.95 0.88
Circular with diameter, 2a 0.64 1.00 0.85 0.79
Rectangle

m=1.5 0.68 1.36 1.15 1.08
m=2.0 0.77 1.53 1.30 1.22
m=>5 1.05 2.10 1.83 1.72
m=10 1.27 2.53 2.25 2.12
m=100 2.00 4.00 3.69 —

C.

Stresses and displacements due to uniformly distributed load (UDL) on a circular
area: By integrating the expressions for o, and w, over a circular area, Egorov (Harr,
1966) gave the general expressions and charts. In particular the expressions for
o. and w along the center line of the circular area (r=0) at any depth z can be
obtained as

3/2
(3.39)
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~ 2ap(1—v?) B n
(W), = —F <\/ l+n2—n+ —2(1—v)\/1+—nz> (3.40)

where
a —radius of the circular area
n==:/,
p=UDL on the circular area.

For stress and displacement at the center of the circle on the surface, thatis, r =0, z =0,
the above expressions simplify as

(02),_,0=0DP (3.41)
a, _V2
() e = L) (3.42)

The solution of an annular foundation can be obtained by appropriate superposition
that is, deducting the influence of the inner circle from the total influence of outer
circle.

d. Stresses and displacement for uniform loaded areas of general shape: While strip,
circular, square and rectangular shapes of foundations are more common, occasionally
general shaped foundations such as L-shaped, oval shaped, foundations with cut outs,
triangular and others are also used depending on the requirement. For calculating
stresses and displacements due to such general shaped foundation, Newmark (Harr,
1966) developed circular influence charts using Equations (3.39) and (3.40). A chart for
vertical stress is shown in Figure 3.14(b). The detailed procedure is available in standard
books (Teng, 1964; Harr, 1966; Bowles, 1996).

Besides the above charts, such general problems in elasticity can be solved using
numerical methods and the finite element method. The details of these methods are given
in Chapters 6 and 7.

2. Westergaard’s solutions: Typical clay strata usually have partings or thin lenses of coarser
material within them. The material in such lenses represents the non-isotropic condition that
is so common in sedimentary soils. Hence, it increases resistance to lateral strain.

An elastic solution that is based on above conditions has been obtained by Westergaard
(Taylor, 1964). In this solution, an elastic material is assumed to be laterally reinforced by
numerous, closely spaced, horizontal sheets of negligible thickness but of infinite rigidity,
which prevent the mass as a whole from undergoing lateral strain. This material may,
therefore, be viewed as representative of an extreme case of non-isotropic condition.
Westergaard obtained the solution for the vertical stress caused by a point load as

. 12y
P 2w\
g, = ) 32 (343)
2 [1-2v n (7‘)2
2—2v z
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For v = 0, Equation (3.43) becomes

P i P
0. == n=kKis (3.44)

This expression is similar to Equation (3.34) which represents the isotropic case. A plotof K,,,
as function of 1/z is shown in Figure 3.13.
For stresses below a uniformly loaded rectangular area, an integration of Equation (3.43)

gives
2
P 4 ((d=2v) /1 1 1-2v |
=L ot = s 3.45
7= \/((2—2\1) m? + n? * 2-2v/) m?n? (345)

For v = 0, the above expression becomes

1
—cot \/ 4m2n2 (3.46)

In Equations (3.45) and (3.46), the notations are the same as those used in Equation (3.36),
which is the corresponding formula for the Boussinesq case. A chart that may be used to obtain
g values according to Equation (3.46) is also available (Taylor, 1964).

3.7 Settlement Analysis

The design soil pressure for the foundation analysis has to be taken as the lower of the two
values, that is, allowable bearing capacity (based on shear failure, presented in Section 3.2) and
allowable settlement of the structure (based on settlement analysis or compressibility,
presented in Chapter 2) as brought out in Section 3.1.

Foundations on granular soils will not suffer detrimental settlement if the smaller value of the
two allowable pressures mentioned above is used. Footings on stiff clay, hard clay and other
firm soils generally require no settlement analysis if the design provides a minimum factor of
safety of 3. Soft clays, and other weak soils settle under moderate pressure and hence settlement
analysis is necessary.

The total settlement of a footing on clay may be considered to consist of three parts (Teng,
1964; Bowles, 1996), that is

S=Si+S.+5, (3.47)

where
S =total settlement
S;=1immediate elastic settlement
S. = settlement due to primary consolidation (for clayey soils)
S, = settlement due to secondary consolidation (for clayey soils).
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3.7.1 Immediate Settlement

After the application of load on the footing, elastic compression of the underlying soil takes
place immediately causing elastic settlement of the footing. This amount can be computed by
elastic theory as discussed in Sections 3.5 and 3.6. It is usually very small and can be neglected
for all practical purposes.

3.7.2 Settlement Due to Consolidation

The settlement caused by consolidation is due to the slow extrusion of pore water from
the fine gravel soils. The amount of final consolidation settlement S. can be calculated
using consolidation theory as discussed in Chapter 2. It may be recalled (Equation (2.25))
that

S, = primary consolidation settlement calculated by Terzaghi’s theory (Chapter 2)

= m,ApH
C A
= Hloglopo+ P
1+e Do
(3.48)
where
m,, = coefficient of volume compressibility of the clay, determined by consolidation
test=1%
a, = coefficient of compressibility (slope of the compressibility curve, that is, e vs. p curve,
Chapter 2)

e =void ratio
Ap = vertical stress at the middle of the compressible layer due to load on footing (as per
Section 3.6)
H = thickness of the compressible clay. For very thick layers, the clay thickness should be
divided into several layers to obtain accurate settlement
C,. = compression index, also determined by consolidation test (Chapter 2)
p, = vertical effective pressure due to soil overburden.

The other important expressions which need to be used in settlement analysis in addition to
the details given in Chapter 2 are as follows (Taylor, 1964)

s =US,
Cyt
= H_v2 ~ gU ? for U < 60% (approximate)
T =—-0.93321log,((1-U)—-0.085  for U > 60% (approximate) (3.49)
k
C,=

ywmv
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where
s = settlement at any particular U corresponding to time ¢
S, =ultimate consolidation settlement, that is, when U = 100%
U = average degree of consolidation at any time ¢
H =total thickness of compressible clay layer
H 4, =length of drainage path
= % for two-way drainage and H for one-way drainage
k = coefficient of permeability
C, = coefficient of consolidation
T =nondimensional time period
t =time coordinate
7,» = unit weight of water

3.7.3 Settlement Due to Secondary Consolidation

When an undisturbed soil sample is tested in the consolidometer (or oedometer) the rate of
volume decrease follows consolidation theory for most part of compression as described in
Chapter 2. This is called primary consolidation. However, when the sample is 100%
consolidated (according to the theory of consolidation) the volume decrease does not stop
according to the theory, but instead the sample continues to compress at a reduced but
continuous rate. This slow consolidation that takes place afterwards is called secondary
consolidation. Rheological models are used to predict the secondary consolidation settlement,
S,. This is a continuous and long drawn process. Usually the magnitudes of S; are very small in
comparison to primary consolidation settlement, S. and are not taken seriously. However, S
values could be reasonably large for organic soils and heavy clays with high plasticity.

3.8 Lateral Earth Pressure

Lateral earth pressure determination is needed in the design of many types of structures and
structural members, common examples being retaining walls of the gravity and other
types, sheet pile bulkheads, basement walls of buildings and other walls that retain earth
fills and excavation trenches (Figure 3.15). Often the lateral pressures are difficult to evaluate.
However, lateral pressures can be estimated accurately using earth pressure theories,
such as Rankine’s theory, Coulomb’s theory and other theories (Taylor, 1964; Teng,
1964; Das, 2007).

3.8.1 Fundamental Relationships Between Lateral Pressure and
Backfill Movement

Terzaghi (Taylor, 1964) demonstrated that the lateral force on a wall varies as the wall
undergoes lateral movement. The relationship between the force and the movement is shown in
Figure 3.16. The ordinate of point A represent the force on a wall which has been held rigidly in
place while a soil backfill is behind it. This is called Earth pressure at rest where there is no
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relative movement between the back fill and the soil. This is also called K,, condition where K|,
is the corresponding earth pressure coefficient. K, values are around 0.4-0.5. K, is referred to as
coefficient of earth pressure at rest.

If the wall moves in the direction away from the backfill, the force decreases and after a small
movement reaches a minimum value at point B. This is called active earh pressure. The
corresponding earth pressure coefficient is K4. K4 values are around 1/3 to 1/4.

If the wall is forced against the backfill, the force between the wall and the fill increases,
reaching a maximum value at C. This is called passive earth pressure. The corresponding earth
pressure coefficient K,,. K, values are around 3—4.

The earth pressures and hence the earth pressure coefficients are evaluated using several
earth pressure theories (Taylor, 1964; Bowles, 1996; Das, 2002). The most popular among them
are Rankine’s theory and Coulomb’s theory, which are discussed below. They furnish
expressions for active and passive pressures and thrusts caused by a soil mass which is not
subject to seepage forces. Each applies to the cross section of a long wall of constant section and
gives results per unit of running length. These two theories are discussed in this and the
following sections.

3.8.2  Rankine’s Theory

This theory assumes a conjugate relationship between the vertical pressures and the lateral
pressures on vertical plane within the soil backfill behind a retaining wall. In other words, it is
assumed that the presence of the wall introduces no changes in shearing stresses at the surface
of contact between the wall and the backfill, since the conjugate relationship would hold. The
stresses on the wall would closely resemble those on vertical planes within the infinite slope,
Rankine’s theory would be more accurate were it not for changes in shearing stresses that are
introduced by the presence of the wall.

In its simplest form, Rankine’s method refers to the active pressures and the active thrust on a
vertical wall that retains a homogeneous cohesionless fill. The backfill is at an inclination 7, as
shown in Figure 3.17(a). At any depth z below the surface of the fill, the pressure for the totally

Movement of wall Movement of wall

T a.Backfill o
- (unit weight, )

e

T aBackfill o
2T . (unitweight,p) -
. . te . - N -t

% Intensity line . ",

(a) Active case (b) Passive case

Figure 3.17 Rankine’s earth pressures — inclined backfill.
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active case acting parallel to the surface of the fill is given by

cos i—4/cos? i—cos? ¢ K. (3.50)

PAa =7yzCOSi - -
cos i+ +/cos? i—cos? ¢

The resultant thrust on the wall for either the totally active or the arching-active case is

1 I— ./ 25 2 H2
PAZEVHchSiCOSl cos” i—cos” ¢ e (3.51)

cos i+ +/cos? i—cos? ¢ 2

where
H =height of the wall
7 =unit weight of soil
z =depth coordinate from top of the wall
K4; = active earth pressure coefficient for inclined backfill

. Ccos i—+/cos? i—cos? ¢ (3.52)

= cosi—— _
cos i + v/cos? i—cos? ¢

Since the pressure is of triangular distribution in the totally active case, the thrust acts at a
height of 1/3 H from the base of the wall. The active pressures and the resultant thrust are
expressed by Equations (3.50) and (3.51) and their directions are shown in Figure 3.17(a).

If the backfill is level (horizontal, i=0), Equations (3.50)—(3.52) reduce to a simpler
form

1—sin 1

Pa :yszirl(fb:yztan2<45—2¢> =Kyyz (3.53)
1 l-sing 1 1 y H?
Py=—yH——— =_yH*tan’(45—=¢ | = K 3.54
AT T sing 277 0 2¥ ) (3:54)
where K4 = active earth pressure coefficient for level backfill
—si

_Aosing (a5 @ (3.55)

1+4sin ¢ 2

For this case, the p, P4 and other details are shown in Figure 3.18(a). In Rankine’s Theory,
the failure planes are inclined at an angle of 45 + % to the major principal plane, that is,
horizontal plane in the active case. g, is the major principal stress which is along vertical
direction and ¢ is the minor principal stress which is along the horizontal direction, as
shown in Figure 3.18(a). A totally passive case exists if the retaining wall is pushed in that is,
the wall moves towards the backfill (Figure 3.17(b)). This is Rankine’s passive case
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Figure 3.18 Rankine’s earth pressures — horizontal backfill.
(Figure 3.17(b)). The lateral pressure at depth z is given by

cos i+ y/cos? i—cos? ¢

Pp=7zcOSi =K,iyz (3.56)
cos i—y/cos? i—cos? ¢
The expression for total passive pressure can be obtained as

1 j 2 j—cos? H?

P, =~y H* cos i 8! + ycos izcos” ¢ = Kp,'y (3.57)
2 cos i—+/cos? i—cos? ¢ 2
where
cos i + +/cos? i + cos?

K, = cos i ¢ (3.58)

cos i—+/cos2 i—cos? ¢

The total passive pressure acts at H/3 along the line parallel to the slope of the backfill. For a
horizontal backfill (i =0), Equations (3.56)—(3.58) simplify as

1 +sin¢ 2 1
=yz——— =7zt 4 = = Kpy .
Pr=VE G T VN < 5+2¢>) PV Z (3.59)
1 l4+sing 1 1 v H?
Pr=-yH— "%y Htan?(45+ ~¢ | = Kp 3.60
P gy~ (50 ) (3.60)
where
1 +sin ¢ 2 10) 1
K» — —t 454+ 2 ) = — 3.61
T 1=sin¢ an( +2 Ky (3.61)

K, = active earth pressure coefficient given in Equation (3.55).
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The distribution of p,,, F, and other details are shown in Figure 3.18(b). The major principal
stress ¢ in this passive case is along the horizontal direction (i.e., major principal plane is
vertical) and the minor principal stress o5 is along the vertical direction (i.e., minor principal
plane is horizontal). Hence, the failure planes in Rankine’s passive case are at an angle of
45+ % with the vertical plane (major principal plane) or 45—% with the horizontal plane as
shown in the Figure 3.18(b).

3.8.2.1 Cohesive Soils

For cohesive soils with horizontal backfill, the active and passive earth pressures can be
obtained (Teng, 1964) using Mohr’s circle as

Pa = KA’})Z—ZC\/ KA (362)
VH?

PA = KAT—2C KAH (363)

pp = Kpyz+2cvKp (3.64)
yH? e

Pp :KPT +2c KPH (365)

The p4, P4 and effect of cohesion are shown in Figure 3.19(a). p,, P, and other details are
shown in Figure 3.19(b). The total pressures now can be found out from the areas of earth
pressure distribution shown in Figure 3.19.
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Figure 3.19 Rankine’s pressures for cohesive soils — horizontal backfill.
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3.8.2.2 Tension Cracks in Cohesive Soils (Active Case)

As can be seen from Equation (3.62) and Figure 3.19(a), the cohesion reduces the earth pressure
intensity by an amount of —2¢+/K,. Hence up to z = z,, there is a tension zone in the soil and
the tension cracks develop in the soil. z.. can be obtained from Equation (3.62) as the depth at
which ps4 = 0, that is

(pA)at 7=z, — 0= VZCKA—ZC\/ KA

2¢c 1 2c
7 VEKa ytan(45—%)

2 ¢
= Vtan (45 + 5) (3.66)

JZe =

1
since tan <45 + ?

The total lateral pressures can be obtained by computing the total areas of the earth pressure
diagrams shown in Figures 3.19(a) and (b). However, in the active case, the usual practice is to
neglect the negative pressure due to tensile zone up to z=z. and only calculate the net
compressive pressure from z, to H.

(3.67)

3.8.3 Coulomb’s Theory of Earth Pressure

Coulomb’s theory (Taylor, 1964; Bowles, 1996; Das, 2002) antedates Rankine’s theory. It is
based on the concept of a failure wedge which is bounded by the face of the wall and by a
surface of failure that passes through the foot of the wall. The main assumption is that the
surface of failure is a plane, and the other assumption is that the thrust on the wall acts in some
known direction. Once these assumptions have been made, the resultant thrust on the wall may
easily be determined by simple considerations based on principles of static equilibrium of the
wedge due to the forces acting on it. This can be easily done using graphic statics in which the
polygon of forces has to close for static equilibrium.

3.8.3.1 Active Case — Cohesionless Soils

The three forces acting on the wedge ABC (Figure 3.20) must be in equilibrium. The weight of
the wedge W is a known force for any arbitrarily chosen trial failure plane AB. Since an active
case exists, the resultant force P across plane AB must be at an angle of ¢ with the normal to the
plane AB. The resultant force on the wall P, (active pressure) is assumed, in the most general
form of the Coulomb’s theory, to be at an arbitrarily chosen obliquity «. With W known in
magnitude and direction and the other two forces known in direction, the magnitude of force P4
is easily obtained by drawing the force triangle (Figure 3.20(b)). This lateral force P4 depends on
the choice of failure plane, and the critical value must be found by trial corresponding to the case
when P, is maximum (Taylor, 1964). The force P4 also depends on the angle «.

However, o is usually taken as the wall friction angle, ¢ which is slightly smaller than ¢
(angle of internal friction of soil). In the absence of enough data on the wall friction angle, « can
be taken as ¢’ (i.e., ¢' = ).
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Backfill
(unit weight,y)

3+0-0
B
w
BN ¢
(a) Retaining wall with backfill (b) Force triangle

Figure 3.20 Coulomb’s theory — active pressure.

In addition to the above mentioned trial method using triangle of forces, several methods
such as Rebhann’s method, Engesser’s method, Poncelet method and Culmann’s method are
available in literature (Taylor, 1964; Teng, 1964) to get the critical value, P,. However, the trial
method is very general and can be used for all practical situations of backfills, retaining walls,
surcharge loads, underground loads and so on.

3.8.3.2 Coulomb’s Solution for Active Pressure — Simple Cases

The thrust P, as given by Coulomb’s theory for the simple case shown in Figure 3.21(a) is
as follows

1 csc fsin(f—¢)

P, = —yH?
T g+ ¢)sine—)
sin(f+¢7) + sin(fi—i)

where ¢ is the angle of internal friction of the soil, that is also taken as the wall friction angle.
It is interesting to note that if ff§ equals 90° and ¢’ equal 7, the conditions conforms to the
Rankine’s theory, and Equation (3.68) reduces to Equation (3.51).
A special form of Equation (3.68) is that in which the wall is vertical, the surface of the
backfill is level and o = ¢ = ¢’ (Figure 3.21(b)). Then the simplified solution is

(3.68)

P L (3.69)

2 (1+\/251n(;’>)2
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=
=

(a) General case (b) Special case

Figure 3.21 Coulomb’s solutions for simple retaining walls — active case.

3.8.3.3 Coulomb’s Theory for Passive Cases — Cohesionless Soils

The passive case differs from the active case in that the obliquity angles at the wall and on the
failure plane are of opposite sign, as shown in Figure 3.22 along with the force triangle.
Coulomb’s theory uses the assumption of plane failure for the passive case, as it did for the
active case, but the critical plane is that for which the passive thrust is a minimum. The critical
active thrust is a maximum value. The failure plane is at a much smaller angle to the horizontal
than in the active case. In general the passive thrust is several times larger than the active thrust.

The equation for the passive pressure according to Coulomb’s theory for the simple case
shown in Figure 3.23(a) is

2

po=Loar csc Bsin(B + )

(3.70)

sin (],’)Jroc sm((j)Jri)
\/sin(p \/ Sn(f—1)

with o = ¢’ = ¢.

Backfill
(unit weight,y)

(a) Retaining wall with backfill (b) Force triangle

Figure 3.22 Coulomb’s theory — passive pressure.
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T

Backfill T
(unit weight, y) B ,-“Backfill

,+° (unit weight, )
H ‘ < B

— ) ,»/l\\900

(a) General case (b) Special case

Figure 3.23 Coulomb’s solutions for simple retaining walls — passive case.

For the special case with i =0, o = ¢ = ¢’ and f = 90° (retaining wall with vertical face as
shown in Figure 3.23(b)), Equation (3.70) further simplifies as

1
L .71)

2 (1—\/§sin¢)2

3.8.3.4 Coulomb’s Theory — Active Earth Pressure Due to Cohesive Soils

Determination of the active earth pressure in the case of cohesive backfills (soils with cohesion,
¢, and angle of internal friction, ¢) is generally complex due to the uncertain movements of the
wall relative to the soil. However, the general graphical solution using equilibrium of the failure
wedge as per Coulomb’s theory can be used in such cases of cohesive backfills (Figure 3.24(a)).
All the assumptions are the same as in the case of cohesionless soils except that the shear
strength along the plane of failure consists of both the adhesion component (due to cohesion)
and the friction component (due to friction angle, ¢») and is expressed as per the Mohr—Coulomb
failure criterion, that is

s =c+o,tan ¢

where
s = shear strength
0, =normal stress on the failure plane
¢, ¢ = shear strength parameters of the soil.

While adhesion (due to c¢) along the failure plane (c;4 =c.OG) is taken into account,
adhesion along the soil-wall interface is usually neglected. However, this also can be included
if needed as it can be easily added in the polygon of forces with its magnitude (c,4 = ¢.OA), as
shown in Figure 3.24(a).

Taking any trial wedge OGA (Figure 3.24(a)), the directions of P4 and P, are drawn as
shown in Figure 3.24(a). Since ¢ and o (wall friction angle = ¢’) are known, and since the
wedge fails by sliding down in the active case, the magnitudes and direction of adhesion
along the trial failure plane C,4 (= ¢.OG) and along the well C,4 (= ¢.OA) are known. The
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C,cc.0G
(adhesion)

B |W
\ C,4(may be neglected)
CIA
Polygon of forces
[6)
C,=c. OA (adhesion)

(a) Active pressure case

\

RN

//
="C,=c.0G

(adhesion) Gy

6,, (may be neglected)

C,=c.0A Polygon of forces
2P :

(adhesion) (b) Passive pressure case

Figure 3.24 Coulomb’s theory for earth pressures in cohesive soils — trial wedge method.

polygon of forces can be drawn as shown in Figure 3.24(a). Since the magnitudes of P, and
P, are the only two unknowns, they can be obtained from the polygon of forces. This
gives the active pressure for this trial wedge. The trials are continued and values of P4 in
each case are obtained. The maximum of these P, values gives the actual/critical active
pressure and the corresponding failure plane is the critical failure plane. As mentioned above,
the adhesion along the wall-soil interface may be neglected, in which case C,,4 can be deleted
in the polygon of forces.

3.8.3.5 Coulomb’s Theory — Passive Pressure Due to Cohesive Soils

The trial wedge in this case along with the forces is shown in Figure 3.24(b). It may be noted
that the wedge fails by sliding up in the passive case. Correspondingly, the adhesions C; p and
C,p along the failure plane and along the wall-soil interface are in the opposite direction to
those shown in the case of active failure (opposite to direction of C4 and C,4 shown in
Figure 3.24(a)). Similarly, the passive pressure P, and the resultant pressure due to friction
Prp along the trial failure plane OG are also inclined to the normals of the planes in the
opposite directions by a and ¢ (Figure 3.24(b)) in comparison to the forces P4 and Pr4 shown
in Figure 3.24(a).

Then, the polygon of forces is drawn as shown in Figure 3.24(b) to determine Pp for the trial
wedge. After a few trials, the minimum value Pp is taken as the passive pressure corresponding
to that critical failure plane:
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In this case also, the adhesion along the wall—soil interface can be neglected in which case
C,p can be deleted in the force polygon given in Figure 3.24(b).

3.8.3.6 Coulomb’s Theory for General Cases of Retaining Walls

The above procedure of trial wedges can be used to determine the active and passive pressures
on general retaining structures involving cohesive and cohesionless soils, partly or fully
submerged backfills, layered backfills, surcharge loads including concentrated loads, openings,
irregular wall faces and backfill surfaces and so on (Taylor, 1964; Teng, 1964; Peck, Hanson
and Thornburn, 1974; Bowles, 1996).

3.8.3.7 Point of Action of the Resultant Active or Passive Pressure

The point of action of the resultant pressures (active or passive) is obtained by drawing a
parallel line, GT to the failure plane AB form the center of gravity G of the failure wedge, ABC
(active or passive cases) as shown in Figure 3.25.

Then, the resultant pressure (active or passive) is assumed to act at J. The direction of the
pressure will be at an angle of o« = ¢ = ¢’ taken appropriately that is, anticlockwise (active
case) and clockwise (passive case) from the normal to the face at the point J as shown in
Figure 3.25. This method can be used in the case of all practical problems involving cohesive
and cohesionless soils, partially or fully submerged backfills, layered soils, surcharge loads,
irregular wall faces and backfill surfaces and so on, (Taylor, 1964; Teng, 1964; Peck, Hanson
and Thornburn, 1974; Bowles, 1996).

Gl is parallel to AB
JK is normal to AC

A

Figure 3.25 Direction and point of action of resultant active (P,) and passive (Pp) pressures —
Coulomb’s theory.



86 Foundation Design

3.9 Coefficient of Earth Pressure at Rest
The earth pressure at rest (Section 3.8.1) can be expressed as
o, = K,o, (3.72)

where
oy, = lateral pressure at rest at any point
K, = coefficient of earth pressure at rest
o, = vertical pressure at that point (usually the overburden pressure)
y = effective unit weight of the soil
z = vertical depth of the point below ground level.

It is very difficult to determine K, for various soils and conditions. The formulae for K, can
also be derived from the theory of elasticity (Bowles, 1996) as

K,=—— (3.73)

where v =Poisson’s ratio of the soil (values range from 0 to 0.5).
The formula developed by Jaky (Bowles, 1996) for all granular materials including
agricultural grains is

_ l-sing 2 .
0= m (1 + gSln (i)) (374)

where ¢ = angle of internal friction of the granular material.
The above formula is subsequently simplified for soils as

K, = 1—sin¢ (3.75)

Equation (3.75) is most widely used in geotechnical engineering. There are several other
formulae developed in literature (Bowles, 1996). The range of values of K, is given in Table 3.3.

Table 3.3 Values of K,,.

Soil types Values of K,
Sands and gravels 0.35-0.60
Clays and silts 0.45-0.75
Overconsolidated clays 1.0

3.10 Other Theories of Lateral Pressure

There are several other theories proposed for the evaluation of lateral pressure based on
analysis with assumed failure planes such as log spirals and bilinear surfaces and so on.
Also solutions have been obtained using limiting equilibrium theory and method of
characteristics (Harr, 1966).
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However, the most widely accepted theories are due to Rankine and Coulomb and these have
been discussed in the above sections.

3.11 Examples
3.11.1 Examples in Bearing Capacity (Sections 3.2 to 3.5)

Example 3.1

Compute the bearing capacity per unit area of the following footings (Figure 3.26) on a soil for
which ¢ = 12kN/m?, ¢ = 20°, y, = 17 kN/m? and y,,, = 10 kN/m?. The depth of founda-
tion is 1.0 m and the water table is at a depth of 3.5 m below ground level (GL). N, = 17.69,
N, =744 and N, = 3.64.

1. Strip footing, 3 m wide
2. Square footing, 3 x 3m
3. Circular footing, 3 m diameter

Solution:

c=12kN/m? ¢ =20°, y, = 17kN/m?, 7., = 10kN/m?

Vaverage fOT s0il in cone of depression ABC
Y X254y, x0.5
N 3
17 x25+10x0.5
B 3
= 15.83kN/m?
GL
Df: im
A I\ /I .
\\ // 25
N e 5m
GWL \\ ’/
AN Z 5
\V/ .bm
& .

Figure 3.26 Example 3.1.
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1. Strip footing, 3 m wide

qu = cN.+gN,+0.5y,, BN,
= (12 x 17.69) + (17 x 1 x 7.44) + (0.5 x 15.83 x 3 x 3.64)
= 425.2 kN /m?

2. Square footing, 3 x 3m

qu=1.3cN.+qN,+0.4y,, BN,
=(1.3x12x17.69) + (17 x 1 x 7.44) 4 (0.4 x 15.83 x 3 x 3.64)
=471.6 kN/m?

3. Circular footing, 3 m diameter

qu=13cN.+gN,+0.3y,, BN,
=(1.3x12x17.69) + (17 x 1 x 7.44) + (0.3 x 15.83 x 3 x 3.64)
= 4543 kN/m?

Example 3.2

A square footing and a circular footing are to be designed to carry a load of 120 kN at a depth of
2m below GL in a soil with the following data. y,,; = I8 kN/m?, ¢ = 10kN/m3, ¢ = 20°
(N =17.69, N, = 7.44 and N, = 3.64). Calculate their dimensions. What will be their
bearing capacities if the ground water level (GWL) is 3 m below GL?

Ve = 10kN/m?, F.§ =3

Solution:

¢ =10kN/m*, ¢ =20°, N, = 17.69, N, = 7.44, N, = 3.64, y = 18 kN/m’,

Vsub = IOkN/m3a Df =2m

Ou _
Quir

F.S.,  Qu.=F.5.Qu=3x 120 =360kN

For square footing:

0. 360
“area B2
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qu = 1.3cN.+gN, +0.4yBN,

360

5= (1.3 x 10 x 17.69) 4 (18 x 2 x 7.44) + (0.4 x 18 x B x 3.64)
360

B =497.81+26.21B

26.21B% +497.81B*2—360 = 0

S.B=0.83m
For circular footing:
0. 360

= area B2/,

qy = 1.3¢N.+qN, +0.3yBN,

360

@ = (1.3 x10 x 17.69) 4 (18 x 2 x 7.44) + (0.3 x 18 x B x 3.64)
4

458.4

19.66B> +497.81B>—458.4 = 0
B=094m

Bearing capacity if ground water level is at D =3 m, below GL:

If B < 1 m, then bearing capacity is the same as above.

If B> 1m, then y,yerage 18 to be used in place of y in the third term of bearing capacity
equations thatis, 0.4y,, BN, for square footing and 0.3y,, BN, for circular footing (Figure 3.27).

GL

T

2m

3m
]
. B 4 F

N m

GWL AN // Y
\\ //
AN /
\, 7/
\\ //

Figure 3.27 Example 3.2.
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Example 3.3

Compute the bearing capacity per unit area of a continuous footing 3 m wide on a soil
for which ¢=20kN/m?, ¢ =20°, N.=20,N,=9, N,=5,y=19kN/m?, and
7ap = 12kN/m3. The depth of foundation is 3m and the water table is at a depth of 5m
below GL (Figure 3.28).

GL

| | )
PE—e——

GWL

Figure 3.28 Example 3.3.

Solution:

¢=20kN/m?, ¢ =20°, N.=20, N,=9, N, =5, y = 19kN/m’,
Vsub = lsz/msv Dy =3m

50
[(19 x 2)+12] = 3 = 1667 kN/m® ForD < B

W | =

Yav =

qu = ¢N.+yDyN,+0.5y,,BN,

20x 20419 x3x940.5 x 16.67 x3 x5

1038.025 kN /m?

Example 3.4

Load tests were carried out on a 0.3 m square plate and a 0.3 m diameter circular plate on a
dense cohesionless sand having a unit weight of 17 kN/m>. The plates were tested at a depth
of 0.6m below GL. Failure occurred at 10kN and 7kN for square and circular plates
respectively. The settlement of the square plate was observed to be 1.5cm just before
failure. What would be the failure load per unit area of (1) 0.3 x 0.3 m square footing and
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(2) 1.5 x 3.0 m rectangular footing, both located with their bases at the same depth in the
same soil?

Solution:
Dy = 0.6m, ¢ = 0 (For dense sand)

q, from tests = kN/ m? for square plate

10
0.3x0.3
10

= " _KN/m?for circular plate
/2 < 032V P

1. For square plate: 0.3 x 0.3m,.".B=0.3m

qu = 1.3¢N.+gN, +0.4yBN,

10
(1.3 x0 X N:)+ (17 x 0.6 X Ny) + (0.4 x 17 x 0.3 X N,) =03 %03
0.3 x0.3[(17 x 0.6 x N;) + (0.4 x 17 x 0.3 x N,)] = 10
0.918N, +0.1836N, = 10
2. For circular plate: D=0.3m, B=0.3m
qy = 1.3¢N. +qN, +0.3yBN,
7
1.3 x0x N, 17 x 0.6 x N, 03x17x03xN,))=——F—
( )+( l{)+( )) 7'EXO.32/4
0.3
B2 (17 % 0.6 x Ny)+ (03 x 17 x 03 x Ny)] =7
0.721N, +0.108N, =7
’ 10 0.1836’ ’0.918 10'
7 0.108 0.721 7
Ny = 0.918 0.1836| 6175, Ny = 0.918 0.1836| 23.593
0.721 0.108 0.721 0.108

Failure load of 2 m square footing:

gu = 1.3¢N.+ N, +0.4yBN, (note : ¢ = 0)
qu = (17 x 0.6 x 6.175) + (0.4 x 17 x 2 x 23.593) = 383.8498 kN /m?
0, = ¢, x area = 383.8498 x (2 x 2) = 1535.4kN
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Failure load of 1.5 x 3.0 m rectangular footing:

B
Shape factors, /=1 —|—O‘22 =1.1  (Assuming0 < ¢ <10°)
Ags=1
Jps=1

1.5
gu=1[(17x0.6x1.0%6.175) + <17 x5~ x 23.593 1.0)} —363.8kN/m?

0,=q, x area=363.8 x (1.5 x3) =1637.1kN

3.11.2 Examples in Stress Distribution in Soils (Section 3.6)
Example 3.5

Soil with unit weight of 16 kN/m? is loaded at the surface by a UDL of 200 kN/m? over:

1. Circular area of 2 m diameter
2. Annular area with 3 m outer diameter and 2 m inner diameter.

Calculate the change of vertical stress at a depth of 3 m below surface for the above two cases
(Figure 3.29). What will be the total stress in both cases at that depth (= 3 m)?

GL ¥ ' v 1

Figure 3.29 Example 3.5.

Solution:

7, = 16 kKN/m?,
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1. Circular area:

p=200kN/m? a=1m, z=3m

1 2
7| = 2924KN/m

N2

= 1
-

Total stress = (29.24) + (3 x 16) = 77.24 kN/m?
2. Annular area:

(O-Z)z:Bm =200|1-

p=200kN/m? z=3m,a =1.5m,a=1m

01 = (al)a:]ASm,z:3m =200 |1- = 56.89 kN/m2

,13/2

1 2
5| = 29-24kN/m

(5]

(02) ymdter = T1—02 = 56.89—-29.24 = 27.65 kN/m*

Gy = (az)u:1m72:3m =200|1—

Total stress = (27.65) + (3 x 16) = 75.65 kN/m?

Example 3.6

A 3 x 3m square footing ABCD with its CG at E, carrying a UDL of 250 kN/m? is located at
ground level (GL). Assuming it as an equivalent circular footing, calculate the vertical stress at

a depth of 4 m directly below the following points.

1. Center E of the square ABCD (Figure 3.30)
2. Any corner (say A; Figure 3.31)

3. What will be the stresses at the same points given in (1) and (2), that is, below E and A, if the

above load is treated as a concentrated load acting at E.

Solution:

2250

P:S’><3><250:2250kN,p:3><3

=250kN, z=4m
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A1l

C1

Equivalent circle:

1. Center E of the square ABCD

For circular area

=9

3m B
e 1.5m
%
2%
3m
1.5m E
C
Figure 3.30 Example 3.6.
3m 3m
B1
3m
1.
Al 1.5m B
1.5m
E 3m
D c
Figure 3.31 Example 3.6.

Area =3 x 3 = 9m* = ur?

r= \f: 1.69 m
T
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) potow ar 4 m = 0.219 x 250 = 54.75 kN /m?

2. Corner A (4 m below)
A is the center of the square A;B;CC, and corner of ABCD.

Area of A\B;CCy = 6 x 6 =36 m? = 1’

136
.".Radius of equivalent circle, r = {/— = 3.385m
T

For circle

1 1
.".stress below A due to ABCD = Z‘D x 0.556 = 7 x 250 x 0.556

C.0.4 = 34.75kN/m?

3. Treating it as a concentrated load, P =2250 kN
Boussinesq’s solution
5/2
3P 1 3Pz
0. = 5|3 =——
2nz 14 (f ) 2n R
z

(since R* = /1% + 22)

a. 4m below E

3Pz 3x2250x 43
Vo= 2T 67.14kN/m?
(o:)e 21 RS 2n 43 6 /m

b. 4m below A
r=15V2fromE,z=4m,R> = /2 +22 = /(1.5V2)* +4> = 4.53

Pz 22 43
_OPE 3200 56 04 kn/m?

== 2n a5y
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Example 3.7

A column load of 1600 kN is supported by a circular footing of radius of 4 m at the ground level.
Using the expression for vertical stress at any depth z below the center of the footing, compute
the stress at a depth of 6 m below the center. If the footing is converted to an annular shape with
outer and inner radii as 6 and 4 m, what will be the vertical stress at the same depth of 6 m below
center (Figure 3.32)? Find the vertical stress at 6 m depth below the center if the column load is
treated as a concentrated load using Boussinesq’s equation.

Iy = 0.646

0.424

Figure 3.32 Example 3.7.

Solution:
Circular footing radius, r = 4 m

Area = m” = 1(4)* = 50.27 m?

1600 2
P =554 = 3183kN/m
r=4m,z=6m
(Gz)below center of circle __ 1— 1 = [1— ; =0.424

/ o7 | ol

=0.424p = 0.424 x 31.83

(GZ )below center of circle
= 13.5kN/m?

(az)below center of circle

rpr=6m,mn=4m

Irpforry=6m= |1-——+————| = 0.646.
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1

Ipforr,=4m= [1-—————>| = 0424

32

2
]
NetI; = I —Ip, = 0.646—0.424 = 0.222

AreaA, =’ = 7(6)> = 113.10 m?
AreaA; = m? = n(4)” = 50.27 m?
Annular area = A;—A, = 62.83 m?

1600
=—— =254 2
P=rg3 = PA4TN/m

0. =0.222p =0.222 x 2547 = 5.65 kN/m2

Boussinesq’s solution, concentrated load P at r =0m

5/2
3% 1600

27(6)*

5/2
| /

1+©®°

1
1+ (0)?

3P
0. =——
T 2mz2

Example 3.8

= 21.22 kN/m?

Compute the vertical stress at a depth of 4 m below the center of a circular footing of radius 3 m
subjected to a UDL of 30 kN/m?. What should be the radius of footing if the influence value at a

depth of 6m is 0.37

Solution:

1 1

N 3/2
1 —

0. = 0.488,p = 0.488 x 30 = 14.64 kN /m’
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r 1 1
;L =03"= ||—— |-1=||——|-1=0518

r=0518xz=0518x6=3.11m

Example 3.9

AUDL of 250 kN/m? is acting on a rectangular foundation ABCD shown in Figure 3.33. Find
the vertical stress at a depth of 4 m below the points A, B, C, D, F and G using Newmarks
formula and/or charts.

a=10m
5m
B
Hr — — — —
|
| 1 2 4m|
! b=8m
I F
: 4 3
C
I
|
i
K

Figure 3.33 Example 3.9.

Solution:
Stresses below A, B, C and D:
A, B, C, D are corners of the rectangular footing.

p=250kN/m? a=10m,h=8m,z = 4m.
8
m—=—= 25, n—= Z =2 ~.~If(A,B,C,D) = 0.236

..vertical stress at4 m below the corner A, B, C,D = 0.236 x 250 = 59 kN/In2

Stress below F: (interior point)
F is the corner of the four rectangles 1,2,3,4

Sl =dpof 1+2+3+4
=4 X Iy



Bearing Capacity, Settlement, Stresses and Lateral Pressures in Soils 99

For rectangle 1: ¢;=5m, by=4m, z=4m

5 4
m:Z: 125, l’l:Z: 1 '.-If(A,B,C,D) =0.186

D) =4x0.186 = 0.744
..vertical stress at4 mbelow F = 0.744 x 250 = 186 kN/m2

Stress below G:
G is the corner of the rectangles BHGK, HAJG, CIGK, IGJD. Hence, stress can be obtained by
superposition.

..(Iy) ¢ due to ABCD = (Ir) ; [HGKB-HAJG-CIGK + 1GJD]

(Ipc due HGKB = (Ip);
For rectangle HGKB: a=10 + 4=14m, b=8 + 4=12m, z=4m

14 12

(If)G due HAJG:(If)]]
For rectangle HAJG: a=4m, 5=8 + 4=12m, z=4m
4 12

(I due CIGK = (I
For rectangle CIGK: a=14m, b=4m, z=4m

4 4_

Mm=y : 4

(If)G due IGID = (If)IV
For rectangle IGID: a=4m, b=4m, z=4m

4 4
m=g =1 n=y=1 (), =020

(Ir) due to ABCD = (Ir);—(Ir) =)y + (I )y
= 0.246—-0.205—-0.207 4+ 0.209
() due to ABCD = 0.043
.".Stress at4 m below G (exterior point) = 0.043 x 250 = 10.75 kN/m?

3.11.3 Examples in Settlement Analysis (Section 3.7)
The symbol p is used instead of s to refer to settlement in these examples, that is
p = S7 pu = SC

where S. = ultimate settlement due to primary consolidation
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Example 3.10

After construction, the average settlement for a structure was 5cm after 4 years. The total
settlement was known to be more than 15 cm. Estimate its settlement after 16 years. Calculate
the time taken for the settlement to be 10 cm.

Solution:

oot
(H/2)?
pys=5cm, 1 =4years, p, > 15cm ..U < 60%

p="Up, p,=m,dpH, TZEUZ(U <60%), T =

1. pjg =7, t = 16years

P4:016:U41U16:\/T_41\/T_6:\/a:\/;6
2 5
5:p16:\/1:\/16,Z:—

P16

4
'.'p16:§><5: 10 cm
2. p=10cm,t =7

Example 3.11

The settlement analysis for a proposed structure indicated 5 cm of settlement after 4 years, with
an ultimate settlement of 10cm. Subsequent tests indicated that the actual coefficient of
compressibility (a,) is 20% smaller and the coefficient of consolidation (C,) is 30% smaller
than the values used for the above estimate originally made. Based on these accurate values,
determine the ultimate settlement and the time for 3 cm settlement.

Solution:
p; =5cm, t; =4years, p,; = 10cm, a,p = 0.8a,;, C,p = 0.7¢y1

Pu1 _mvl _avl o 1

Pu nyy ay 0.8
P =08p, =8cm
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pr_Upyr 1 [Cnti /1 \/ﬂ
Pz Uzpyz T2 08 Cptr 08 53

\/::—XOSX\/ 7 =1.1155, —_1 11552,
tn 3 153

5] . 4
1.1155%2  1.1155%

Ll = = 3.21 years

Example 3.12

The settlement analysis of a structure based on preliminary tests indicates 3 cm settlement in
4 years and an ultimate settlement of 10 cm. After detailed investigations it is found that the
coefficient of permeability & is 20% higher than the one in the preliminary tests. What will be
the ultimate settlement, the settlement in 5 years and the time required for 3 cm settlement of
the structure, based on detailed test results?

Solution:

P2 mvdszz B 12 x 1.2H1

= = =72
Py mydpi H, 2H,

Find p,, p, in t, =5 years and #; for p; =3 cm

Pua _ MydpH
' P_?:m dpH ~ L, pp = py = 10cm
py = mydpH
P _y
Pu

T:%Uz (U < 60%)

Gtk t
C(H/2)R vt (HJ2)?

Prpa U2 To_

P P1 Ui T,

P [kt
2 kit
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2. p,=7 in t, =5years

p; =3cm in ¢ =4years

2 katy p, 1.2k 5 I~
L — = —7—: —_- = ]5
01 k]l] 3 kl 4

Spy =3 x V15 =3674cm

3. p3=3cm, =7

p; =3cm in ¢ =4years

oy flon flakn 3
“pl_ klll7 kq 43

1 x4
1.2

S = = 3.33 years

Example 3.13

The settlement analysis of a structure based on preliminary tests indicates 3 cm settlement in
4 years and an ultimate settlement of 10 cm. After detailed investigations, it has been found that
the coefficient of consolidation, C,, is 30% higher than the one in preliminary test. What will be
the ultimate settlement, settlement in 5 years and time required for 3 cm settlement of the
structure based on detailed test results?

Solution:

Cyp =13Cy1, pp =7, p, = 7whent, = 5years
py=3cm in ¢ =4years, p, = 10cm, ¢

t3 = 7 when p; = 3cm

Puz _ MydpH .
&M:E: - 31_2
PP Ui 3}
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7 5
P = pu =10cm,  p, = 1/1.3t—2p1 =/133%3
1

C.pp =3.82cm

1 1
Similarly, p; = \/13 t—3p1 = \/1.323 X py
1

2 2
0y 4 3 4
n= () xZ—(2) xZ =308
3 (pl) “13 <3> “13 years

Example 3.14
The settlement analysis for a proposed structure indicated 5 cm of settlement in 4 years and an
ultimate settlement of 10 cm. The estimated increment of pressure in the clay layer below is

2kN/m?. The following variations are subsequently noticed.

1. A permanent 1 m lowering of the water table will take place.
2. The compressive clay stratum is 20% thicker than assumed in the original analysis.

Compute the modified values of ultimate settlement, settlement after 2 years.

Solution:
py = mydpH
Py
Pu
C,t k t

T
T==-U*U< 60 T = =
3V U= 000, (H/2)  7um (H]2)

py =S5cmint; =4years, p,, = 10cm

Ap, = 2kN/m2, hy
Ap> = 2410 (due to 1 m lowering, reduction in pore pressure, Au = 10 kN/m?)

H, = 1.2H,
P =71, py = 7Twhent, =2years
P2 MydpaHy 12 x 1.2H,

" pw  mydpHy  2H;
i =T2% py =72x10=72cm

=172,
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2. P2 Vb _ Topy_ [Co Hi pio _ \/EEQ
p1 Uipy T\ p, Hj Gt py thHpy

P 2l gy 6\/5
0 1.2 151

2
Py = 6\/:1 x 5=21.213cm

3.11.4 Examples in Lateral Pressures (Sections 3.8 to 3.10)

Example 3.15
A frictionless wall is shown in Figure 3.34. What is the total active earth pressure per meter of
wall, by Rankine’s theory and Coulomb’s theory (with wall friction angle ¢’ = ¢; use the

formulae)?

7 = 17.3kN/m’

¢ = 30°

c=0

Figure 3.34 Example 3.15.
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Solution:
1. By Rankine’s theory (Figures 3.35 and 3.36)

9y =173kN/m’ ¢ =0,i = 15°,¢ = 30°

_cos i—4/cos? i—cos? ¢

Ky =cosi - -
cos i+ v/cos? i—cos? ¢

15°

1 1
3 h h1_r
H
m
10°
[

Figure 3.35 Example 3.15.

15°

b=1.234m

WP Ay
7.3306m H

PA
P

Ah

Figure 3.36 Example 3.15.
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, cos 15°—+/cos? 15°—cos? 30°
K,y = cos 15
cos 15° 4+ v/cos? 15°—cos? 30°

_0.5381
Ka = cos 15" 13557

Ky =0.373

b h
Z=tan10°,h=Ttan 10° = 1.234, 3‘ = tan 15°, h; = 1.234 tan 15° = 0.3306

S.H =7+0.3306 = 7.3306 m
AtH=0,ps =0

AtH =7.3306 m, py = HyKs—2c\/ka
— (7.3306 x 17.3 x 0.373)—0 = 47.3 kN/m?

Total active pressure due to lateral pressure

1 1
Py =S Hps =3 x 47.3 x 7.3306 = 173.37 kN/m?

Py, = 173.37c0s15° = 167.46 kN /m?

Py, = 173.37 sin 15° = 44.87 kN /m?

Soil weight acting on the wall face

1
W= 2 x 1.234 x 7.3306 x 17.3 = 78.25kN/m

.".Total vertical force = P,, + W
= 44.87+478.25

= 123.21 kN/m?

Total horizontal force = P,;, = 167.46 kN/ m?

.. Total resultant force = \/123.122 +167.467
= 207.85kN/m
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2. By Coulomb’s solution (Figure 3.37)
7 =173kN/m> H =7m, f = 100°,i = 15°,¢' = ¢ = 30°

2

P, — %VHz cscfsin(ff—¢)
, sin(¢p+¢")sin(¢p—i
sm(ﬁ—kqﬁ/)—!-\/ ( sin(lz—i)( )
- Q2
= %(17'3)(7)2 S )S?ngg?;;)?))' (30°—15°)
, — sin sin(30°—
sin(100° 430 )+\/ Sin(100°—157)
- 2
1 5 csc(100°)sin(70°) 1 o[ 0.9543 :
= — 1 . =— 1 . P
2< 73)(7) : 0\ i ° 2( 73)(7) 0.87523+0.4743
. _ sin(60°)sin(15°) L
s1n(130 )+ W
= 211.94kN/m

The direction and point of action of P, are shown in the Figure 3.37.

Figure 3.37 Example 3.15.
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Example 3.16

Assume this is a frictionless wall (Figure 3.38). Draw the active pressure diagram and
determine the total active force after the tensile crack occurs.

7 =17.3kN/m’ ¢ = 30°,¢c = 10kN/m?

Solution:

_ l—sing  1-sin30° 1
~ l+sing  1+sin30° 3

K

AtH = OIIl, pa — HyKA—Zc\/KA +(]KA

1 1 1

AtH=T7Tm, ps=HyKs—2c\/Ks+ qKy
1 1 1 )
Pa = 7><17.3><§ —12x 10 x 3 + 15><§ = 33.82kN/m

q=15kN/m2

Ll

Figure 3.38 Example 3.16.

The active pressure diagram is shown in Figure 3.39

33.82 655
7—-H, H.

33.82H, = 6.55(7—H.)
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6.55 x 7
=——————=1.136m = z,
33.82+6.55 m=s
Total active force after tensile crack occurs, P4 = 5.864 x 33.82 x % =99.16 kN/ m?

q =15 kN/m2
6.55 kN/m2

S I O
§ He

7m 7-Hc

33.82kN/m2

Figure 3.39 Example 3.16.

Example 3.17

Avertical wall 7.5 m high supports a level backfill of clayey sand (Figure 3.40). The samples of
the backfill soil were tested, and the following properties were determined:

¢ =20°, c = 12.5kN/m?, y = 19.6 kN/m’

17.5 kN/m?

Z,=1.82m

84.53 kN/m?

Figure 3.40 Example 3.17.
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Draw the active earth pressure diagram, using Rankine theory.

Solution:
PA = ’))ZKA—ZC\/ KA
Pp = "/ZKP + 2C\/ Kp
For ¢p = 20°
l—sin¢g  1—sin20°
Ky = = =0.49
A 1+sin¢ 1+sin20°
Ky — 1+sin¢ 1+sin20° 04

l-sing  1—sin20°
Atz=0, ps=(19.6x0.49 x 0)—(2 x 12.5 x v/0.49) = —17.5kN/m?

Atz=75m, ps=(19.6x0.49 x 7.5)—(2 x 12.5 x v/0.49) = 54.53 kN/m>

17.5

i=—— " —182m
19.6 x 0.49

Example 3.18

A vertical retaining wall 8 m high supports a deposit of sand having a level backfill. Soil
properties are as follows

7 =18.84kN/m? ¢ =35°,¢=0

Calculate the total active earth pressure per meter length of wall and point of application, by
Rankine’s theory and Coulomb’s theory taking ¢’ = ¢ (wall friction angle).

Solution:

1. By Rankine’s theory (Figure 3.41)

l—sing  1-—sin35°

K = =
A7 1+sing 1+sin35°

=0.271

AtH=0, ps=7zKs—2cVKy = (18.84 x 0 x 0.271)—0 = 0

AtH=8m, p4=7zKs—2c/Ky = (18.84 x 8 x 0.271)—0 = 40.85 kN/m’

1
Py = 3 x 40.8 x 8 = 163.2kN/m

Point of application, z =§ =2.67m
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> 163.2 kN/m
N -

Z=2.67m

40.8kN/m?

Figure 3.41 Example 3.18.

2. By Coulomb’s theory (Figure 3.42)
y = 18.84kN/m> H =8m, =90°,i = 0°,¢§ = ¢ = 35°
2
csc fsin(f—¢)
SnF 1 ¢ sin( d)—i—qﬁ )sin( d) )
sin(f+¢7) + \/ sin(f

P _1 H?
A*Z/

csc(90°)sin(90°—35°)

. - - sin(35° + 35°)sin(35°—0°)
sin(90° +-35°) + \/ Sin(90°—0°)

L 18.84)(8)?

\S) |

Figure 3.42 Example 3.18.
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! in(55° 1 8192 12

:_(1884)(8)2 CSC(90)S]H(5 ) :—(1884) (8)2 {L}

2 I [0 )sin(5) 2 0.9051 +0.7342
sin(90°)

=150.55kN/m

The direction and point of action of P, in the retaining wall are shown in Figure 3.42.

Example 3.19

Determine the Rankine active pressure, P, per unit length of the wall shown in Figure 3.43 and
the location of the resultant pressure. The parameters given in Figure 3.43 are

H=6m, H =3m, ¢=15kN/m? y, = I5kN/m’
7, = I8kN/m?, ¢; = 8kN/m?, ¢, = 30°

¢y = 4kN/m? ¢, = 36°

Surcharge = q

A I I O

v1
.- o1

c1

H1

Ground water table

Y2 (Saturated unit weight)
H{ "] ¢
i c2

Figure 3.43 Example 3.19.

Solution (Figure 3.44):
Pressure due to soil:
l-sing  1-sin30° 1

For first layer, Ky = - e
O Yo A = T 6ing  1+sin30° 3
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q=15
_ A 1 l l _4_24/Tensile zone
. p >
L&t g4= 15 P2 0.85m
o f; = 30°
e Y ¢y =8 3m
' 3 Ka1 =1/3 P, 2.15m
= ‘ Ground water table 11.562 0
7 9=18 g,=8 10.76
6m ;_‘. ] =36 K,,=0.26
"‘ C2=4 Ps +
e Pa Ps
Ao \17.8 \
6.28 30
Earth pressure Water pressure
Figure 3.44 Example 3.19.
AtH =0, pa1 = HYKy—2cv Ky +qgKy = 0—(2 X 8 X +/ 1/3) +(15 X 1/3) = —4.24
AtH =3m, Daz = (15 X 3 X 1/3)—(2 X 8 X \/1/3)4—(15 X 1/3) = 10.761<N/m2

l—sin¢g  1-—sin36°
F d layer, K4 = T i
Of SeconC Iayeh B4 = 1 sing 1+ sin36°

paz = (15 x 3 x 0.26)—(2 x 4 x v/0.26) + (15 x 0.26) = 11.52kN/m>

=0.26

AtH =3m,

AtH=6m,  pas=[(15%3)+(8 x 3)] x 0.26)—(2 x 4 x v/0.26) + (15 x 0.26)

= 17.8kN/m?

Water pressure:
AtH =0, AtH=0, p,=0

AtH =3 m, Pw=0

AtH = 6m, Pw =3 x 10 = 30kN/m? (assuming y,, = 10 kN/m?)

At critical depth, z;, pa1 = z.yKa—2¢/Ka +qK4 =0
Ze X 15x 1/3—=2x 8/1/3+5%x1/3=0

2% 8/1/3-15 % 1/3
fo = 2XBVIBZIS X3 s
5% 1/3
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Total Force (kN/m) Lever arm from C Moment (kNm/m)
1 .
Py =5 % ~424x 085 = ~1.802 6— 0_385 —57 ~10.29
1 2.1
Py=5 %215 x10.76 = 11.57 3+ TS =372 +43.04
P; =11.52 x 3 =34.56 1.5 +51.84
1
Py = 3 3 x6.28=942 I +9.42
1
Ps=3%3x30=45 ! +45
S Py = 98.75 SSM = 139.01
139.01
C.zab =———=141
z above C 9875 m

Thus, the resultant acts at a height of 1.41 m above C.

Exercise Problems

Bearing Capacity

31

3.2

33

34

3.5

Compute the bearing capacity per unit area of a continuous footing 2 m wide, supported
on a soil for which ¢ =20kN/m?, ¢ = 18° and y = 19 kN/m”. The depth of foundation is
2 m. The water table is at depth of 5 m below the ground surface. (Use GSF as well as
LSF criteria.)

Compute the bearing capacity per unit area of a square footing 2 x 2 m on dense sand
(¢p =35°), if the depth of foundation is 1, 2 and 5 m respectively. The unit weight of the
soil is 18 kN/m>. (Use GSF as well as LSF criteria.)

A load test was made on a square bearing plate 0.3 X 0.3m on the surface of a
cohensionless deposit of sand having a unit weight of 17 kN/m?>. The load—settlement
curve approaches a vertical tangent at a load of 18 kN. What is the value of ¢ for the
sand? (Use the GSF criterion.)

A load test was made on a square plate 0.3 x 0.3 m on dense cohesionless sand having a
unit weight of 18 kN/m®>. The bearing plate was enclosed in a box surrounded by a
surcharge 0.6 m deep. Failure occurred at a load of 58 kN. What would be the failure
load per unit area of the base of a square footing 2 x 2 m located with its base at the same
depth in the same material? (Use the GSF as well as LSF criteria.)

A structure was built on a square mat foundation 30 x 30 m. The mat rested at the ground
surface on a stratum of uniform clay which extended to a depth of 60 m. If failure
occurred at a UDL of 300 kN/m?, what was the average value of cohesion for the clay?
(Use Tezaghi’s charts as well as Meyerhof’s charts and GSF criterion.)
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3.6

3.7

3.8

3.9

3.10

(Redo problem 3.1.) Load is inclined at an angle of 15° with vertical and GWL is at a
depth of 3m below GL. y,,, = 10kN/m? (Use GSF.)

(Redo problem 3.2.) Dy=3m, depth of GWL =2m, inclination of the load with
vertical = 10°, y,,, = 11 kN/m?.

(Redo problem 3.3.) Depth of GWL =4 m, surcharge on the ground surface g, = 30 kN/
m?, ., = 10.5kN/m?>.

(Redo problem 3.4.) Inclination of the load on a 1.5m square footing is 20° to the
vertical, 7,,, = 11.5kN/m>.

(Redo problem 3.5.) Depth of GWL = 10 m. Inclination of the load is 15° with vertical.
Vsub = 12kN/I1’13

Stress Distribution in Soils

3.11

3.12

3.13

3.14

3.15

A concentrated load of 1500 kN is applied to the ground surface. What is the vertical
stress increment due to the load at a point 5 m below the ground surface at a horizontal
distance of 3 m from the line of the concentrated load?

Soil with a unit weight of 18 kN/m? is loaded on the ground surface by a UDL of
350 kN/m? over a circular area 3 m in diameter. Determine:

a. the vertical stress increment due to the uniform load, at a depth of 4 m under the edge
of the circular area
b. the total vertical pressure.

A 3m by 4 m rectangular area carrying a uniform load of 300 kN/m? is applied to the
ground surface. What is the vertical stress increment due to the uniform load at a depth of
4 m below the corner of the rectangular loaded area?

The L-shaped area shown in Figure 3.45 carries a 200 kN/m? uniform load. Find the
vertical stress increment due to the load at a depth of 8 m below the following points:
(a) below corner A, (b) below corner E, (c) below point G and (d) below point H.

4m
D = ™ C
f
2m
2m |
G 3m
A
} 5m - B
3m
E F

Figure 3.45 Problem 3.14.

Draw Newmark’s circular influence chart with z = unit lengths = 1.0, 1.25, 1.5, 1.75,
2.0cm.
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3.16

317

Using the circular influence chart find the vertical stress ¢, at point A (4 m directly
below the CG of the footing), due to a rectangular footing of 8 x 6 m on the surface
supporting a total load of 1000 kN.

Check this result with the result obtained by Steinbrenner’s chart, Newmark’s rectan-
gular chart and also by analytical expressions given by Newmark.

Settlement Analysis

3.18

3.19

A compressible clay layer 12 m thick has an initial void ratio (in sifu) of 1.04. Test and
computations show that the final void ratio of the clay layer after construction of a
structure is 0.978. Determine the estimated primary consolidation settlement of the
structure.

A foundation is to be constructed at a site where the soil profile is as shown in
Figure 3.46. The base of the foundation, which is 3 m square, exerts a total load (weight
of structure, foundation, and soil surcharge on the foundation) of 1200 kN. The initial
void ratio in situ of the compressible clay layer is 1.058, and its compression index is
0.65. Find the estimated primary consolidation settlement for the clay layer.

Elevation 100m

CNWZZNWZZN NNZZN\WZZDN
o __Watertable__y7 _____FElevation98m _
e [ emxdm | .. Elevationgm__

Y =19 kN/m®
Sand and gravel Elevation 92m

Compressible clay
Y = 18 kN/m®

Elevation 84m

3.20

Figure 3.46 Problem 3.19.

In problem 3.19, tests and computations indicate that the coefficient of consolidation is
6.08 x 10~"m*kN. Compute the time required for 90% of the expected primary
consolidation settlement to take place if the clay layer is underlain by:

a. permeable sand and gravel
b. impermeable bedrock.

Lateral Pressures

3.21

What is the total active earth pressure per meter of the retaining wall in Figure 3.47
Angle of wall friction between backfill and wall is 25°. Use Coulomb’s theory as well as
Rankine’s theory.
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3.22

3.23

3.24
3.25
3.26
3.27
3.28

f
Y = 18kN/m2
4 o =30
< c=0
8m a
i
Pl
R
A
X 80° 100°

Figure 3.47 Problem 3.21.

Avertical wall 7.0 m high supports a cohesionless backfill with a horizontal surface. The
backfill soil’s unit weight and angle of internal friction are 17kN/m® and 31°,
respectively and the angle of wall friction between backfill and wall is 15°. Using
trial wedges, find the total active earth pressure against the wall.

A smooth, vertical wall is 9.5 m high and retains a cohesionless soil with y = 19 kN/m’
and ¢ =20°. The top of the soil is level with the top of the wall, and the soil surface
carries a UDL of 25 kN/m?. Calculate the total active earth pressure on the wall per unit
length, and determine its point of application, by Rankine’s theory as well as by
Coulomb’s theory.

Solve problem 3.21 by Rebhann’s graphical solution.

Solve problem 3.21 by Culmann’s graphical solution.

Find passive pressure in problem 3.21.

Find passive pressure in problem 3.22.

Find passive pressure in problem 3.23.
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Rational Design of Shallow
Foundations

4.1 Introduction

Every engineering structure, whether it is a building, bridge, highway pavement or railway
track, consists of a superstructure (above ground) and a foundation (below ground; Figure 4.1).
The function of the foundation is to transmit the load from the superstructure to the soil or rock
below as the case may be. A proper foundation design has to ensure that no component of either
the superstructure or the foundation experiences distress of any kind in the above process of
load transmission. A description of shallow foundations (also referred to as footings) is given in
Section 4.2.

The conventional method of design of a footing is to assume the footing as rigid and the
distribution of contact pressure at the surface of contact between the base of a foundation and
the supporting soil as planar, that is, uniform or uniformly varying depending upon whether the
foundation supports symmetric or eccentric loading. This assumption of planar contact
pressure distribution is far from reality and therefore, to be realistic in design, the flexibility
of the footing and the soil type (which together give rise to variable contact pressure
distribution) should be considered (Kurian, 1992).

Due to vast growth in computing power and due to the hurdles posed by classical solutions,
numerical methods (finite differences, finite element, etc.) have come to the aid of the
foundation designer in the form of easy to use packages to incorporate this flexibility into
the footing design.

The foundation system comprises of two components: (i) the structural part of founda-
tion such as the footing or pile and (ii) the natural foundation, meant to indicate the soil.
Similarly the design of foundation system consists of two phases. These are referred to as:
(i) geotechnical (GT) design and (ii) structural design. The aim of GT design essentially is
to arrive at the plan dimensions of the foundation, satisfying the soil design parameters, viz
bearing capacity and settlement. The structural design is taken up only after its GT design s
completed, which determines the footing thickness and also the quantum and location of
reinforcement. However the design has to be carried out as per local codes of practice.

Foundation Design: Theory and Practice N. S. V. Kameswara Rao
© 2011 John Wiley & Sons (Asia) Pte Ltd. ISBN: 978-0-470-82534-1
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/ Superstructure

G.L.
22N ERZEA Y
Load

bearing
wall or
column Dy

Footing
(shallow foundation)

l< -
{ B \

Figure 4.1 Shallow foundation (D#B O 1).

4.2 Shallow Foundations

Foundation structures are customarily divided into shallow or deep on the basis of their depth in
relation to their width, the typical divide being the unit value for the ratio (D,/B; Figure 4.1),
that is, DyB < 1 for shallow foundations and DB > 1 for deep foundations.

The real difference between shallow and deep foundations is based on the structural response
as well as the depth to which the foundation is taken. Thus bending (flexure) is the predominant
structural action in the case of shallow foundations. The behavior of deep foundations could
result in axial and lateral loads besides bending moments and torsional moments. The deep
foundation—soil interaction needs a detailed analysis. Shallow foundations or footings can be of
several types (see Figure 4.2) and can be classified further as:

1. Continuous (or Strip Footings)
These footings are primarily used for load bearing walls and are generally of rectangular
cross sections.

2. Independent (Isolated or Spread) Footings
These footings are generally used for individual columns and can be rectangular or
trapezoidal, square or circular in shape.

3. Strap Footings
These footings support more than one column or wall.

4. Combined Footings
These types of footings are used for two or more columns in one row. These are generally
rectangular, trapezoidal or cantilever type with two interconnected footings.

5. Mat Foundations
These foundations support two-dimensional arrays (regular or irregular) of columns.

Rafts are generally used for two or more columns in several rows. These can be rectangular,
square, circular, annular or octagonal in shape. Rafts also may have to be used if the allowable
design soil (contact) pressure is very low.
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Figure 4.2 Common types of shallow foundations.

4.3 Conventional Design and Rational Design

In the conventional design of footings, the soil pressure is assumed to be uniform or linearly
varying depending upon whether the foundation supports symmetric or eccentric loading.
(Figure 4.3)

However the actual contact pressure distribution, which is the result of the soil foundation
interaction, can be far from the assumed uniform or linear distribution. The contact pressure
distribution for flexible footing could be uniform for both clay and sand. The contact pressure
for rigid footings is maximum at the edges in clay and for rigid footings on sand, it is minimum
at the edges. The typical distributions of immediate settlement and contact pressure for flexible
and rigid footings are shown in Figure 4.4.

Hence the assumption of uniform pressure distribution results in a slightly unsafe design for
rigid footings on clays as the maximum bending moment at the center is underestimated. It will
give aconservative design for rigid footings on sandy soils, as the maximum bending moment is
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Figure 4.3 Soil contact pressures in conventional design.

overestimated. Similarly the actual bending moments and shear forces in flexible footings
could be at considerable variance with the design values obtained with the assumption of
uniform contact pressure distribution.

Hence the necessity for developing effective and safe design for foundations based on
realistic distribution of soil pressure, obtained by a rational interaction analysis, known as
flexible or elastic designs, arises from the above drawbacks (Kameswara Rao, 1969, 1971;
Kurian, 1992).

4.4 Procedures for the Design of Footings

Footings may be designed as outlined below:

1.

PN AW

e

11.
12.

Calculate the loads applied at top of footings. Two types of loads are necessary, one for
bearing capacity determination and the other for settlement analysis (Chapter 3).
Sketch a soil profile or soil profiles showing the soil stratification at the site. Draw an
outline of the proposed foundation on the soil profile of the site (Chapter 2).

Mark the maximum water level from the borehole data (Chapter 2).

Determine minimum depth of footings (Section 4.4.1).

Determine the bearing capacity of supporting stratum (Chapter 3).

Proportion the footing sizes (Section 4.4.2).

Check for danger of overstressing the soil strata at greater depths (Section 4.4.3).
Predict the total and differential settlements (Section 4.4.4).

Check stability due to eccentric loading (Section 4.4.5).

Check uplift on individual footings and basement slabs, footings on slopes (Section 4.4.8).
Design the footings (Section 4.5, Chapters 5, 8, 12).

Check for foundation drains, waterproofing or damp proofing (Teng, 1964; Bowles, 1996;
Tomlinson, 2001).
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Figure 4.4 Typical distribution of immediate settlements and contact pressures in soils.

4.4.1 Depth of Footings

1. Footings should be carried below the top (organic) soil, miscellaneous fills, or weak soil. If
the top soil is too deep, alternatives may be used as shown in Figures 4.5(a) and (b).

2. Footings should be carried below the depth of frost penetration. In heated buildings,
the interior footings are not affected by frost, therefore they may be as high as other



124 Foundation Design

GL. GL.
Lean concrete
Top soil or soil pad directly Sand or sand and
with inadequate under footing / gravel compacted
bearing capacity _ Top soil or soil | - / to develop required
L with inadequate T - e / bearing capacity
. bearing capacity Ajz (max)*. N g
“1, <

Inorganic soil /
(a) with sufficient (b)

bearing capacity

- T -~
G.L.
Depth of frost a l;ootmgs on so(;l:l
penetration not to exceed -
Footings on rock:
T b not to exceed a
b
\(/ 1
e L ]
Min 0.6m (footings on rock)
(C) Min 0.9m (footings on soil) (d)

Figure 4.5 Guidelines for minimum depth of footings.

requirements permit. The minimum depths of footings are generally stipulated in the
local building codes or national codes. The damage of footings and of the superstructure,
due to frost action is caused by the volume expansion and contraction of water in the
soil at freezing temperatures. Gravel and coarse sand above water level containing less
than 3% silt, fine sand or clay particles cannot hold any water and consequently are
not subject to frost damage. Other soils are subjected to frost heave within the depth of
frost penetration.

3. Usually footings are not to be on the ground surface even in localities where freezing
temperatures do not occur because of the possibility of surface erosion. The minimum depth
of footings is usually taken as 0.5 m for one- and two-storey buildings and stores and 0.8 m
for heavier constructions.

4. Footings on sloping ground should have sufficient edge distance (min. 0.6-0.9m) as
protection against erosion (Figure 4.5(c)).

5. The difference in footing elevations should not be so great as to introduce undesirable
overlapping of stresses in soil. This is generally avoided by maintaining the maximum
difference in elevation equal to or equal to one-half of the clear distance between two
footings as shown in Figure 4.5(d). This requirement is also necessary to prevent distur-
bance of soil under the higher footing due to the excavation for lower footing.

4.4.2  Proportioning the Size of the Footing

Footing sizes based on allowable bearing pressures are usually satisfactory provided that a
settlement analysis is made. However, the footing sizes have to be revised if the analysis
indicates excessive settlement. Some designers try to minimize the differential settlement due
to varying live loads by proportioning the footings such that all footings will have the same
average bearing pressure under the service load. The service load is the actual load expected to
act on the foundation during the normal service of the structure. In ordinary buildings, it may be
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taken as dead load plus one half live loads. A larger percentage of live load should be used in
warehouses and other storage type floors. This procedure is outlined below.

Let

L; . 4 = liveload 4+ dead load for the column which has the largest live load/dead load ratio.

L, = service load for the same column

q., = allowable bearing pressure as determined by the principles discussed in Chapter 3.

qq = design pressure for all footings except this one with largest live load/dead load
ratio.

Then

A = area of footing supporting the column with the largest live load/dead load ratio.

_ Ll +d (4 1)
4a
L
90 = — (4.2)
Service Load
Area of other footings = erviee 2oad (4.3)

qa

4.4.3 Stress on Lower Strata

1.

To safeguard against overstressing soil strata at greater depths, the following methods can be
used to calculate the stress at any desired depth below ground level (GL). The pressure under
afooting may be assumed to spread out on a slope of 2 vertical to 1 horizontal. Thus, aload Q
acting concentrically on a footing area of B x L is assumed to be distributed over an area of
(B + Z)(L + Z)atadepth Z below the footing, as shown in Figure 4.6. If any stratum of
soil cannot sustain this spread-out pressure, the design bearing pressure should be reduced.
However, for a two layer system of clays, the procedure described in Teng (1964) gives more
reliable results.

. For settlement analysis, the above approximation may not be sufficient, and a more accurate

approach based on elastic theory using Boussinesq’s solution has to be used (Harr, 1966).

This gives the vertical normal stress due to a concentrated vertical load acting on the surface

of semi-infinite elastic half-space (Figure 3.12) as given below.

3Pz3

% = 2nRS

(4.4)

where

0. = vertical stress at any point, A with coordinates x, y, z with reference to the point of
application of surface load, that is, O which is the origin.
P = concentrated vertical surface load at point O (origin).
z = vertical depth of point A below the surface.
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Figure 4.6 Approximate distribution of vertical pressure with depth.

X,y = coordinates along x and y (horizontal axes) of the point with reference to the point of
application of load (with respect to O).

R = /X2+y2+22:’/7'2+22

r = 4/x2? + y? radial distance (in plan) that is, from O to A in plan.

Based on the Boussinesq’s solution, the vertical stresses due to footing of any shape and size
can be computed using integration or Newmark’s influence charts (Harr, 1966; Teng, 1964).
The concept of pressure bulb can also be used to find the vertical pressure at any point below the
surface of the soil (Chapter 10). Further details for the evaluation of stresses are discussed in
Chapters 3 and 9.

4.4.4 Settlement of Footings

Footings on granular soils may not have detrimental settlement if the smaller values of the two
allowable pressures (safe bearing capacity, SBC and allowable soil pressure, ASP) discussed in
Chapter 3 are used. Footings on stiff clay, hard clay, and other firm soils generally require no
settlement analysis if the design provides a minimum factor of safety of 3. Soft clay,
compressible silt, and other weak soils will settle even under moderate pressure, and therefore
settlement analysis is necessary.

The total settlement of a footing on clay may be considered to consist of three parts
(Teng, 1964):

S =S +S.+85, (4.5)
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where
S = total settlement
S; = immediate elastic settlement
S. = settlement due to primary consolidation of clay
S, = settlement due to secondary consolidation of clay

1. Immediate settlement, S;
Soon after the application of load on the footing, elastic compression of the underlying soil
takes place causing an immediate settlement of the footing. This is also called elastic
settlement and can be computed by elastic theory (Scott, 1963, Harr, 1966). However, it is
usually very small and can be neglected for all practical purposes. Further details are given
in Chapter 3.

2. Settlement due to primary consolidation, S,
The settlement caused by consolidation is due to the slow migration of water from the pores
of the clay. The amount of final consolidation settlement s, can be calculated by the
following equation:

So = Sef (4.6)

where
f = the coefficient depending on the geometry of the footing and the loading history of
the clay. Values of f§ (given by Skempton and Bjerrum, 1957) are shown in Figure 4.7
S. = settlement calculated by Terzaghi’s theory of consolidation

= m,Ap H (4.7)
po + Ap

C.
= Hlo 4.8
I +e 210 7 (4.8)

where
m,, = coefficient of volume compressibility of the clay. This value is determined by
consolidation test.

_ay
T l+e
a, = coefficient of compressibility.

e = initial void ratio of the soil at the middle of the compressible layer.
Ap = mean vertical stress at the middle of the compressible layer due to load on footing.
H = total thickness of the compressible layer. For thick layers of clay, thickness should be
divided into several layers for better accuracy.
C. = compression index, also determined by consolidation test.
po = initial vertical effective pressure due to soil overburden at the middle of the
compressible layer.

The computation of settlement due to consolidation is illustrated in Chapter 3. along with
all the details. Terzaghi’s consolidation theory is explained in Chapter 2.
3. Settlement due to secondary consolidation S,
When an undisturbed soil sample is tested in the consolidometer (or odometer) the rate of
volume decrease/settlement checks very closely with the theory. However, even after one
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Figure 4.7 Coefficient . (Reproduced from A.W. Skempton and L. Bjerrum, “A contribution to the
settlement analysis of foundations on clay,” Géotechnique, vol. 7, no. 4, p. 168, © 1957, with permission
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hundred percent consolidation (according to the theory of consolidation), the settlement
does not stop according to theory but continues to increase though at a reduced and rather
constant rate. The amount of consolidation that can be computed by the consolidation theory
is called primary consolidation; whereas the slow consolidation that takes place afterwards
is called secondary consolidation (Chapters 2 and 3).

4.4.5 Design Considerations for Eccentric Loading

A load may become eccentric if applied off-center on the footing or if a concentric load plus a
bending moment or horizontal load is applied on the column/superstructure (Figure 4.8). For the
purpose of determining the pressure under the footing the moment may be removed/replaced by
shifting the vertical load to a fictitious location with an eccentricity e = moment/vertical load. In
the analysis of an eccentrically loaded footing, following aspects have to be considered.
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1. For the purpose of conventional structural design, the pressure against the bottom of the
footing, that is, contact pressure, is assumed to have a planar distribution. When the load is
applied within the kern of the footing area, common flexural formulae are applicable.

0 M. M,
— 24X = 49
=R ELYTLY (4.9)

where
g = contact pressure at a given point (x, y);
Q = vertical load
A = area of footing = L X B
(where L = Length of the footing and B = Breadth of the footing)
x and y = coordinates of point (at which contact pressure is calculated) with respect to
the C.G of contact area.
M., M, = Moments about x and y axes respectively (i.e., My = Qe,, M, = Qe,)
ey, e, = eccentricities of the load along x and y axes respectively.
I,.I, = moments of inertia of footing area about the x and y axes respectively.

Equation (4.9) is applicable for any of the following conditions:

a. The footing is symmetrical about x and y axes.
b. The footing is symmetrical about x axis and e, = 0
c. The footing is symmetrical about y axis and e, = 0.

For rectangular footings, Equation (4.9) may be written in a simpler form:

(@) e ep
==(1x+6—+6— 4.1
9 A( L B) (4.10)

where e; and ¢;, are the eccentricities of the resultant load along the length (L) and breadth
(B) of the footing respectively.

When e, e, or ¢, ¢;exceed certain limits, Equations (4.9) and (4.10) give anegative value
of q which indicates tension between the soil and bottom of footing. Unless the footing is
weighed down by surcharge loads, the soil cannot be relied upon for bonding to the footing
and offering tensile resistance. Therefore, the formulae given by Equations (4.9) and (4.10)
are applicable only when the load is applied within a limited area which is known as the kern
and is shown shaded in Figure 4.8(a). The procedure for determination of soil pressure when
the load is applied outside the kern is simple in principle but laborious. Cases for rectangular
and circular footings have been worked out and the kerns are shown by shaded areas in
Figures 4.8(a) and (b). For footings of other shapes, the graphical method of successive trials
is the simplest for practical solutions as given in Teng (1964).

The graphical method, similar to any other method, is based on the assumption that the
pressure varies linearly with the distance to the neutral axis from zero at the neutral axis to a
maximum at the most remote point and on the requirement of statical equilibrium that the
resultant of the soil pressure should lie on the line of action of the applied load Q. The
procedure is described in Teng (1964).
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(b) Circular footing

Figure 4.8 Contact pressure distribution for eccentrically loaded footings.

For arational/elastic/flexible design the contact pressure has to be computed from the soil
structure interaction analysis using beams or plates on elastic foundation approach
(Section 4.7 and Chapter 5).

2. For determination of ultimate or allowable bearing capacity of an eccentrically loaded
footing, the concept of useful width is also used. By this concept, the portion of the footing
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which is symmetrical about the load is considered useful and the other portion is simply
assumed superfluous for the convenience of computation. If the eccentricities are e; and ey,, as
shown in Figure 4.9, the useful widths are B — 2¢j, and L — 2¢;. The equivalent area (B — 2¢;,)
(L —2e)) is considered as subjected to a central load for determination of bearing capacity.

—— ) f—
V
Q
€
v
B'=B-2e,
B

Figure 4.9 Useful widths.

The above concept simply means that the bearing capacity of a footing decreases linearly
with eccentricity of load as is shown by a straight line in Figure 4.10 (AREA, 1958). In cohesive
soils, this linear relationship fails, but in granular soils, however, the reduction is parabolic
rather than linear (Meyerhof, 1953). Therefore the reduction factor shown in Figure 4.10
should be used for design purposes: The bearing capacity of the footing is first determined on
the basis that the load is applied at the centroid of the footing. Then this bearing capacity is
corrected by multiplying with the factor shown in Figure 4.10.

4.4.6 Inclined Loads

Footings may be subjected to inclined loads due to vertical and horizontal loads transmitted
by the superstructure or inclined columns such as in transmission towers. The conventional
method of stability analysis of footings subjected to inclined loads is as follows: the
inclined load Q is resolved into a vertical component Qy and horizontal component Q. The
stability of the footing against ultimate failure under the vertical load is treated by the same
principles for footings subjected to vertical load only, and the effect of horizontal
component is ignored. Then, the stability of footing against the horizontal force is analyzed
by calculating the factor of safety against sliding which is defined as the ratio between the
total horizontal resistance and the horizontal force. The total horizontal resistance in
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general consists of a passive resistance of soil, P,, and a frictional resistance R (Figure 4.11).
The value of P, can be determined by the principles of lateral earth pressure discussed in
Chapter 3.

G.L.

H

B N

7 O—:.

- = = i
- L - R=fN ph F—W’H R = ¢ x footing area
N = total vertical force acting on the base of footing
Factor of safety against sliding = %
H

Figure 4.11 Footings subjected to inclined loads.

However for minor projects, conservative values such as those given in Table 4.1 may be
used. It should be emphasized that high values of passive earth pressure P, may not be realized
for granular soils unless the backfill is well compacted in layers.

The bearing capacity theory has also been extended to the case of inclined loads
(Meyerhof, 1953; Janbu, 1957). Janbu’s analysis is based on Terzaghi’s theory with the
addition of a factor N, to the Terzaghi’s bearing capacity factors N, N,. and N, (given in
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Table 4.1 Conservative pressure values and parameters for granular and cohesive soils.

Type of granular soil P, psf submerged P, psf dry Coefficient
or moist of friction, f
Sand and/or gravel with <5% silt 210 350 0.55
Sand and/or gravel with 5% or more silt 180 250 0.45
Silt or soils containing more than 30% silt 120 150 0.35
Type of cohesive soil Cohesive strength Unit weight, y pcf
¢ = psf
Very soft clay 200 110
Soft clay 400 120
Medium stiff and hard clay 600 125
Chapter 3) and is expressed below.
+ N, 1
% = Nec + NjD + 3N,7B (4.11)

where
Q
Qh
O,

= inclined load
horizontal component of Q
= vertical component of Q as shown in Figures 4.12 and 4.13.

The notations and values of N, N,, N, and N;, (Janbu, 1957) are shown in Figure 4.12.
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Figure 4.12 Bearing capacity of continuous footings subjected to inclined loads. (Reproduced from
Proceedings of the 4th International Conference on Soil Mechanics and Foundation Engineering, vol. 2,
N. Janbu, “Earth pressure and bearing capacity calculations by generalized procedure of slices,”
pp. 207-213, August 12-24, © 1957, London, England, with permission from Elsevier.)
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Meyerhof (1953) has calculated ultimate bearing capacity of footings subjected to inclined
loads as given in Figure 4.13. The load is assumed to be acting vertically and the bearing
capacity is determined by the normal procedure. Then it is multiplied by the reduction factor R;,
shown in Figure 4.13 to get the design value.

Qv‘7Q

/\/ h
q = ultimate (or allowable) bearing capacity of horizontal footing %

under vertical load

R;= reduction factor, shown in figures below
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Figure 4.13 Bearing capacity of footings subjected to inclined loads.

The bearing capacity and general equations for loads including inclined loads are given in
Chapter 3.

4.4.7 Footings on Slopes

The bearing capacity of footings on slopes may be determined using Meyerhof’s equation
(Meyerhof, 1957) as

1
g = cNyy + 3 7BN,, (4.12)
The values of the bearing capacity factors N, and N, for continuous footings are shown in

Figure 4.14. These factors vary with the slope, the relative position of the footing and the angle
of internal friction of soil.
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Figure 4.14 Bearing capacity of continuous footings on slopes. (Reproduced from Proceedings of the
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Before constructing footings on slopes, the stability of the slope itself must be investigated
(Taylor, 1964; Das, 2001). Footings should not be constructed on slopes which are unstable.
They should also be avoided on slopes where slow creep of the soil may occur. The stability of
slope may be endangered by the addition of loads due to footings.

4.4.8 Uplift of Footings

The resistance of a footing against uplift is computed from the weight of the footing and
the weight of soil above it. For soil below ground water level the submerged weight should
be used.
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As a footing is subjected to upward (pull out) load, a prism of soil is carried by the footing
at the time of failure, as shown in Figure 4.15(a). The shape of the prism depends upon the
characteristics of soil above the footing. Due to lack of conclusive data, no rational design rules
could be developed. However, conventional method assuming a 60° prism, as shown in
Figure 4.15(a) may lead to unsafe results. For footings subjected to a small uplift, the method
shown in Figure 4.15(b) may be used. If a large number of footings are subjected to high uplift
forces, some model tests or full sized field tests may be economically justified, in addition to
detailed analysis using the finite element method (FEM).

Uplift capacity = W + F

SRR /XN 7 %%
/|
F W/l/ F = R f(granular soils)
=cA (cohesive soils)

Varies with type and
[Py characteristics of soil.

* 9[' Conventional assumption of W = weight of soil plus footing
v 0 = 60° may be unsafe in F = friction or cohesion
some cases.
(a) Probable uplift capacity. (b) Minimum theoretical uplift

B = total horiz. earth pressure at
rest acting on the entire vertical surface
= 0.4 x unit wt of soil
f coeff. of friction
0.35-0.55
¢ = cohesion = 9.6 t0 28.7 kN/m”
A = total area of vertical surface
above perimeter of footing

I

Figure 4.15 Uplift capacity of footings.

4.5 Conventional Structural Design of Footings

In practice all individual and wall footings and rafts are designed on the assumption that
the distribution of the soil pressure against the bottom of the footing is linear or planar.
Thus, when the load is applied at the centroid of the footing area, the unit pressure is
equal to the total load divided by the footing area. In case of eccentric load, the pressure
may be calculated by the procedure described in Section 4.4.5, with planar distribution of
contact pressure.

By far the majority of footings are constructed of concrete and the design of such footings
should follow the concrete codes prescribed. The design criteria used in practice are discussed
in Chapter 8 and the principles of structural design are presented in Chapter 12.

Footings with pedestal, grillage foundations and so on are also used in some cases as per
requirement.

If a pedestal is so proportioned that its height is at least equal to twice its width beyond the
face of column, as shown in Figure 4.16, the critical sections for computing bending, bond and
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Figure 4.16 Footings with pedestal.

shear stresses are as shown in Figure 4.17 and there is no need to analyze the stresses in the
pedestal. For pedestals having smaller depth/width ratio, the stresses in the pedestal must be
analyzed. The analysis may be made on the assumption that the bond stress along the entire
embedment of dowels below the top of the pedestal is uniformly distributed. Based on this
assumption, the total stress acting on the bottom of the pedestal is equal to the total stress in the
concrete of the column plus the amount of stress in the column vertical reinforcement
transmitted through bond within the depth of the pedestal. Figure 4.16 illustrates the stresses
acting on each element of the footing.

The members in a steel grillage are designed as cantilever beams subjected to uniformly
distributed soil pressure.

4.6 Foundations in Difficult Soil Formations

There are several situations when foundations have to be constructed in difficult soils
present at the site (Bowles, 1996). Precautions to be taken under a few such cases are
given below.

4.6.1 Sites with Possible Soil Erosion

Foundations for bridges, retaining walls and structures near flowing water must be constructed
at a depth more than the depth of erosion or scour.

4.6.2  Foundations with Susceptibility of Corrosion

If the soil is polluted such as in old garbage dumps and landfills, soils near leaking sewer lines
and industrial plants or backwater areas with dead vegetation, the foundations my get corroded
with time. It may be necessary to use air entrained concrete or sulfate resistant concrete in such
cases. Treated timber piles are preferable to metal piles in such cases.
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Figure4.17 Concrete footings: (a) critical section (a—a) and load area for computing bond and bending

stresses; (b) critical section (b—b) and load area for computing shear stress.

4.6.3 Sites with Water Fluctuation or Near Large-Scale Mining Operations

Special care has to be taken in the above cases due to the following reasons:

1. A raised water table may cause instability due to reduction in effective pressure and (or)
making the structure floating.

2. A lowered water table may cause additional settlements due to increased effective stress.
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3. Waste from ore dumps may cause large-scale subsidence.
4. Areas adjacent to mining sites might become unstable due to removal of overburden for
mining.

4.6.4 Foundations in Loose Sand

Loose sand must be well compacted to improve bearing capacity and control the settlement.
The foundations should be placed at a sufficient depth such that the soil beneath the footing is
confined. A minimum depth as per Rankine’s theory of earth pressure to ensure confinement
can also be used (Taylor, 1964; Teng, 1964), that is

g ( l—sing 2
b -2(m)

where
Dy = minimum depth of foundation required for the stability of adjoining soil.
q = contact pressure
y = unit weight of soil
¢ = angle of internal friction of soil.

The larger of the values given by Equation (4.13) and minimum depth that is, 0.5 m as per
usual practice/codes should be adopted in such cases (Section 4.4.1).

4.6.5 Foundations on Loess or Other Collapsible Soils

Such soils are generally wind blown (aeolin) deposits usually referred to as loess, sand dunes,
and volcanic ash. They are loose but stable with water soluble bonding agent. Hence they
collapse with loading and wetting with water resulting in large settlements. The collapse
potential of such soils can be estimated (Bowles, 1996) and the following remedial measures
can be adopted.

1. Compacting the soil or excavation and replacement of the soil to achieve 4y (dry unit
weight of soil) >15.5kN/m”.

2. Use lime, lime-fly ash or cement as admixture during compaction.

Avoid wetting of such soils if at all feasible.

4. Use piles to avoid zone of collapsible soil and reaching stable stratum.

»

4.6.6 Foundations on Clays or Silts

Silts and clays may vary from very soft, normally consolidated to very stiff and over
consolidated soils. Problems mainly occur in the case of soft deposits. Extra care should be
taken to estimate the design soil pressures in terms of bearing capacity and allowable soil
pressures (from allowable settlement criterion) in such cases.
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4.6.7 Foundations on Expansive Soils

Such soils undergo volume changes due to wetting and drying. These are found mostly in arid
and semi arid regions and contain large clay minerals. Following remedial measures may be
useful in such cases.

1. Alter the expansive nature of the soil by stabilizing the soil with lime, cement or other
admixtures.

2. Control the direction of expansion by allowing it to expand into cavities. A common practice
is to build waffle slabs (Bowles, 1996).

3. Control the water by excavating the soil to such a depth that the weight of the soil will be
sufficient to control the heave, lay a geotextile plastic fabric which is impermeable and then
backfill.

4. Increase the depth of the footing such that the heave does not cause any detrimental effect.
One can use belled piers with the bulged bell of sufficient depth (Bowles, 1996) or use under
reamed piles.

5. Increase the surcharge load on the soil surface to counter the swell pressure caused by
heaving.

4.6.8 Foundations on Garbage Land Fills or Sanitary Landfills

With the shrinking of usable normal construction sites specially in urban areas, it is becoming
increasingly necessary to use former garbage/sanitary landfills for construction. Extra precau-
tions need to be taken to safeguard against excessive settlement and bearing capacity failure. If
these are not possible, pile foundations have to be adopted with noncorroding materials (Bowles,
1996). Adequate environmental protection steps may have to be taken to avoid foul smell,
escaping gases due to gradual degradation of the garbage and corrosion and so on.

4.7 Modeling Soil Structure Interactions for Rational Design of
Foundations

As summarized in Section 4.3, the contact pressure is taken as a uniform/linear/planar pressure
for the conventional design of foundation. While all other requirements and precautions
outlined in Section 4.4 are essentially the same for elastic/flexible/rational design of founda-
tions, the use of a realistic soil-structure interaction model can make the design more rational.
While the footing can be modeled as a beam (one-dimensional) or a plate or a shell (two-
dimensional) and classical bending theories can be used for representing their response, the soil
reaction has to be incorporated in the integrated analysis of soil-structure interaction equation
by modeling the soil appropriately using different models (Crandall, 1956; Timoshenko and
Krieger, 1959; Vlasov and Leontev, 1966; Kameswara Rao, 1969).

4.7.1 Elastic Foundations

The theory of elastic foundations has attracted considerable attention due to its useful
application in various technical disciplines besides foundation engineering. The problems of
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elastically supported structures are of interest in solid propellant rocket motors, aerospace
structures, construction projects in cold regions, and several other fields. While in some
problems, the structure and the elastic support, generally referred to as the foundation, can be
physically identified, in many others the concept of structure and foundation may be of an
abstract nature.

The problem of foundation—structure interaction is generally solved by incorporating the
reaction from the foundation, into the response mechanism of the structure, by idealizing the
foundation by a suitable mathematical model. Even if the foundation medium happens to be
complex in some problems, in a majority of cases, the response of the structure at the contact
surface is of prime interest and hence, it would be of immense help in the analysis, if the
foundation can be represented by a simple mathematical model, without foregoing the desired
accuracy. To accomplish this objective, many foundation models have been proposed and a
comprehensive review pertaining to these has been given by Reissner (1937) and Kameswara
Rao (1969, 1971). These are presented in Section 4.7.3.

4.7.2  Soil-Structure Interaction Equations

The foundation—soil system subjected to external loads is shown in Figures 4.18 and 4.19
depending on the geometry of the foundation that is, beam or a plate. Most of the footings can be
considered as either beams (one-dimensional) or plates (two-dimensional: rectangular,
squares, circular, annular or other shapes).

P
m = o

E

v, = elastic parameters

/ _ o of soil
- w(x) / g\\/ariation of vertical
7 — | | defiection with depth, ¢(2)
- j H = Depth of soil layer above
z Soil ]i hard stratum
E,, % /
7

Figure 4.18 Beam on an elastic foundation.

The differential equation of bending of the beam or plate on an elastic foundation can be
written as follows.

4.7.2.1 Beams on Elastic Foundations

Neglecting friction between beam and the soil medium, the governing equation can be written
from bending theory as

BT = p(v)—q(v) (4.14)
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Figure 4.19 Plate on elastic foundation.

where
El = flexural rigidity of the beam
E = modulus of elasticity of beam material
I = moment of inertia of the beam cross section

3
= 12(fl—\72) per unit strip in the case of a plane strain structure (strip footing) (4.15)
P
v, = Poisson’s ratio of the strip/plane strain structure
p(x) = external load applied on the footing
q(x) = reaction from the supporting soil
w = vertical deflection along z axis
X, y, z = right handed coordinate system
E; = modulus of elasticity of soil
vy = Poisson’s ratio of soil
Ey, vy = elastic parameters of soil defined as

Ey = ]f“vz and vg = lf‘vv for strips (plane strain case) and three-dimensional problems.
s R

The other parameters that can be defined for beams using classical bending theory are as
follows

dw
/ = 0 = 1 = —
w slope . B
M = bending moment = —EI—W
\ dx?
d 4.16
Q = shear force = —EI an ( )
) ] dx3
¢(x) = soil reaction or contact pressure

d*w
= EIW —p(x)
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The conventions from bending theory for bending moment (BM) and shear forces (SF) are
shown below (Figure 4.20)

p/gx) (+ve)

my lo- ], /ﬂ\/

/T‘—IW» T
S M Shear Bending
y N
< ' Sg(x) (-ve) force moment
z soil reaction
Deflection
w (+ve)

Figure 4.20 Convention sketch for bending theory of beams.

4.7.2.2 Plates on Elastic Foundations

Consider a rectangular plate on elastic foundation as shown in Figure 4.19. The assump-
tions usually made in the theory of bending of thin plates will be deemed to apply to this
case. Friction and adhesion between the plate and the surface of the elastic foundation
is neglected.

The differential equation of bending of the plate, in Cartesian coordinates, is

szvzw(xvy) = P(xvy)*CI(X,)’) (417)

where
V? denotes the Laplace operator.

In expanded form

O*w o*w o*w
4 — - JE— - — —
DV*w = D<8x4 + avae 5‘y4) p(x,y)=q(x,y) (4.18)

where
w = w(x, y) = vertical displacements of the plate surface,
p = p(x, y) = distributed load on the plate,

E,h*

D=_""_
12(1-12)

= flexural rigidity of the plate (4.19)

where
E, = modulus of elasticity of plate material
v, = Poisson’s ratio of plate material
h = thickness of the plate
p(x, y) = applied load on the plate
q(x, y) = soil reaction
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Although Equation (4.17) is known as the equation of bending of thin plates, it can be applied
to the analysis of most rectangular plates. Further, the soil properties of an elastic foundation as
shown in Figure 4.19 become

E() = Vo = (420)

where E and v, are respectively the modulus of elasticity and Poisson’s ratio for the material of
the foundation (soil).

After w(x, y) has been determined from Equation (4.17) and the boundary conditions, the
reactions g(x, y) can be found from Equation (4.17). The moments and shearing forces in the
plate (Figure 4.21) can be computed using formulae of the theory of bending of plates as
follows (Timoshenko and Krieger, 1959)

N
a2 gy
*w O*w

My = —l)(a—y2 + Vpﬁ)

M

Pw
My=H = H, = —H, = *D(lfvp)m (4.21)
v pd (T P
A Ox \ 0x2 oy?
o _pd (P, o
r Oy \ Ox2 oy?

Following Kirchhoff (Timoshenko and Krieger, 1959; Vlasov and Leontev, 1966), the
shearing forces N, N,, and the torque H at the plate edges are usually replaced by the reduced

dy
ONy
Ny +—=—=d)
L

"
// /// jH
/ a2 ////§H+5—y@
¢ My+Ma’yi

Figure 4.21 Convention sketch for plate bending.



Rational Design of Shallow Foundations 145

shearing forces Q. and Q, which, for a rectangular plate, are

3 3
0, = _D(8 w T (2-,) ow )

x3 Oxdy?
0, = —D Pw T (2— )83_”’ 2
Y 0y’ ' 0x20y

Equations (4.17) and (4.18) are valid for plates with other geometries such as circular,
annular, and so on, since Lapacean operator is invariant except that its expansion in other
coordinate systems has to be taken for solving the equation. For example for circular plates or
annular plates, the Laplacean operator /2 has the expanded form in a 7,0 coordinate system as
(Figure 4.22)

0* 10 1 0?

2 [ — —_— [ —
V= or? + ror + 2 90*

(4.23a)

M
=
Ml‘

) Q¢ Q
€) ®

Figure 4.22 Convention sketch for circular plates.

If the load is axisymmetric, the 0 coordinate can be omitted in Equation (4.23a), resulting in
? . 10
oz ror
However, the bending moments and shear forces take the following forms in such a situation

(Timoshenko and Krieger, 1959). The convention sketch is shown in Figure 4.22.
Bending moments

V= (4.23b)

T PN _ P (1o 1%
" axz N oo a2 T \rar T R op
*w o*w 1ow 1 &Pw 0*w
M, = -p(L2 2%y — _p|l g, oW 423
: (ayz T 8x2>90 L o TR TV aﬂ] (4-23¢)

Pw 1w 10w
e = 0-002(55),., = 002 (3 3)
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The expressions for shear forces are as follows

0, = —Dg (V2w)
b Z) (4.23d)
_ = 2
0 =55 (VW)

4.7.2.3 Soil Reaction — Contact Pressure

To solve the final form of soil-structure interaction Equations (4.14) and (4.17), the soil
reaction, g(x), has to be incorporated in those equations which are dependent on the beam/
plate and soil characteristics and the bond at the interface. Assuming frictionless contact, and
complete bond at the interface between the beam/plate and the soil, g(x) can be expressed
in terms of soil displacements (mainly vertical displacement for vertical loads) using
different foundation models. A review of these models is given in references by Reissner
(1937), Kameswara Rao (1969, 1971) and others. The important features of these models are
summarized below.

4.7.3  Brief Review of the Foundation Models

The earliest formulation of the foundation model was due to Winkler, who assumed the
foundation model to consist of closely spaced independent linear springs, as shown in
Figure 4.23. If such a foundation is subjected to a partially distributed surface loading, ¢,
the springs will not be affected beyond the loaded region. For such a situation, an actual
foundation is observed to have the surface deformation as shown in Figure 4.24. Hence by
comparing the behavior of theoretical model and actual foundation, it can be seen that this
model essentially suffers from a complete lack of continuity in the supporting medium. The
load deflection equation for this case can be written as

q = kw (4.24)

where k is the spring constant and is often referred to as the foundation modulus, and w is the
vertical deflection of the contact surface. It can be observed that Equation (4.24) is exactly
satisfied by an elastic plate floating on the surface of a liquid and carrying some load which
causes it to deflect. The pressure distribution under such a plate will be equivalent to the force of

_Springs
€9

)//b/////)///)) }////////J/)/

Figure 4.23 Load on Winkler’s foundation.
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Figure 4.24 Deformation of actual foundation.

buoyancy, k being the specific weight of the liquid. With this analogy in view, the first solution
for the bending of plates on a Winkler-type foundation was presented by Hertz (1884).

Also, in such a foundation model the displacements of the loaded region will be constant
whether the foundation is subjected to a rigid stamp or a uniform load as can be seen from
Figure 4.23. However, the displacement for these cases are quite different in actual foundations
as can be noted from Figures 4.24(a) and (b). Though this model leads to some inconsistencies,
being the simplest, it is amenable to an easy analysis. Through the years a large variety of
solutions have been presented on this basis (Winkler, 1867; Reissner, 1937; Hetenyi, 1946,
1950; Timoshenko and Krieger, 1959; Iyengar and Ramu, 1979).

Another approach is to assume the foundation medium to be a continuous elastic solid.
Though this hypothesis closely simulates the physical behavior of an actual foundation, it
makes the analysis unduly complex. Despite several mathematical complexities, solutions
were presented on these bases (Gorbunov-Posadov, 1949; Zimmermann, 1888), which,
however, were limited to relatively simple cases. Also it was observed that the foundation
performance as predicted by this theory differed from the actual behavior, probably due to the
questionable assumptions of elasticity, homogeneity and isotropy of the materials, inherent in
this hypothesis. As an example, in soils it has been observed that the surface displacements
away from the loaded region decreased more rapidly than predicted by this theory (Kameswara
Rao, 1969), and materials like soils and foam rubber hardly satisfy the basic assumptions
stipulated above.

The need for bridging the gap between these two extreme and limiting cases and to arrive at a
physically close and mathematically simple foundation model has been felt for some time.
Several authors have proposed foundation models which involve more than one parameter for
the characterization for the supporting medium.

One such attempt was presented by Filonenko—Borodich (Reissner, 1937), who modified the
Winkler foundation by providing some continuity by connection top ends of the springs by a
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Stretched membrane,
. 9 plate in bending
or shear layer

Figure 4.25 Convention sketch showing various foundation models.

stretched elastic membrane subjected to a constant tension field, 7, as shown in Figure 4.25.
The equilibrium in the vertical direction yields the equation

q = kw—TV?w (4.25)

where
q is the distributed vertical load applied on the surface of the soil
w is the vertical deflection of the surface
V2 is the Laplace operator
k and T are the two parameters characterizing the foundation.

Hetenyi (1946, 1950) achieved the continuity in the Winklers’s foundation model by
embedding an elastic beam in the two-dimensional case and an elastic plate in the three-
dimensional case (Figure 4.25), with the stipulation that the hypothetical beam or plate deforms
in bending only. In this case the relation between the load ¢ and the deflection of the surface w
can be expressed as

q = kw + DV*w (4.26)

where
D is the flexural rigidity of the embedded beam or plate
V4 is the bi-harmonic operator.

By providing for shear interaction between the Winkler’s spring elements, Pasternak
(Kameswara Rao, 1969) presented a foundation model as shown in Figure 4.25. The shear
interaction between the springs has been achieved by connecting the ends of the springs to a
beam or a plate (as the case may be), consisting of incompressible vertical elements, which
hence deform in transverse shear only. The corresponding equation relating the load, ¢, and
deflection, w, can be derived as

q = kw—uV>w (4.27)
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where
u is the shear modulus of the foundation material
V/? is the Laplace operator.

It can be seen that this foundation model also consists of two parameters k and p, and is
equivalent to the models proposed by Filonenko—Borodich (Equation (4.25)) and Wieghardt
(Kameswara Rao, 1969).

Pasternak proposed another foundation model (Kameswara Rao, 1969) consisting of
two layers of springs connected by shear layer in between as shown in Figure 4.26. The
relation between the load ¢, and the deflection w of the surface of the foundation can be
expressed as

(1 + é)q_gvzq = kw—'uvzw (428)

y Shear layer

i h

Figure 4.26 Pasternak’s modified foundation model.

where
¢ and k are the spring constants of the upper and lower layers of springs
u is the shear modulus of the shear layer.

Several contributions based on Pasternak-type foundations are available in the literature.

In all the above models, the Winkler’s model has been modified by providing for some
interaction between the spring elements and hence assuring the continuity of the foundation to
some degree. In contrast to them, starting from the elastic-continuum theory, and introducing
simplifying assumptions with respect to the expected stresses and (or) displacements, some
models were proposed. One such contribution was from Reissner (Kameswara Rao, 1969),
who assumed that the in-plane stresses o, o, and .., are negligible throughout the foundation
layer. Also the horizontal displacements at the upper and lower surfaces of the foundation layer
were assumed to be zero. Proceeding with these assumptions and solving the elastic continuum
equations, the equation relating the applied distributed surface load, ¢, and the resulting surface
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displacement, w, has been derived as
2 2 2
caw—cVow = g——Vq (4.29)
461

where ¢; = £ and ¢, = 2.

E and v are the elastic constants of the foundation material and H is the thickness of
the foundation layer. It can be seen that Equations (4.28) and (4.29) are similar. Also,
for constant and linearly varying loads, this equation can be seen to be mathematically
equivalent to Equations (4.25) and (4.27), thus establishing the similarity of the models. In this
case, neglecting the in-plane stresses, it can be shown that shear stresses 7, and 7, are constant
throughout the depth of the foundation for a given surface point, which is inconsistent with the
actual foundation performance, especially for thick foundation layers.

Vlasov and Leontev (1966) have developed a foundation model starting from elastic-
continuum theory and neglecting the horizontal displacements of the supporting medium.
Using Vlasov’s general variational method, the load—displacement relation can be

derived as
q = kw=2t; V*w (4.30a)

where
q is the distributed surface load
w is the vertical deflection.

k and ¢, are the two parameters characterizing the foundation and can be expressed in terms
of the elastic constants of the material and geometric properties of the foundation layer(Vlasov
and Leontev,1966). In Equation (4.30a), these parameters can be obtained as

H
_ EoB 2
k = s> Jlﬁ (z)dz (4.30b)
0
H
=28 sz(z) d- (4.30¢)
1—v§

where
Ey,vo = E;, v, of the soil respectively to be used for beams on elastic foundation problems
(plane stress problems).
ES vS

However, Ey = 1_—‘)3, Vo = — (4.30d)

for plates and plane strain case (strips and three-dimensional problems)
B = width of the foundation.

W(z) is the assumed distribution function of vertical displacement with depth (preferably
a function with ¥(0) = 1 and easy to integrate (Figure 4.18). y/(z) can be chosen as
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e~ P for infinite soil layers (or layers with large depth), where f is the soil parameter, /8 can be
chosen between 0.5 and 2.5 (0.5 for clayey soils and 1.0-2.5 for sandy soils). ¥(z) can

4

be chosen as HP; , linearly decreasing for soil layers of finite depth.

Comparing Equation (4.30a) and Equations (4.25) and (4.27), it can be observed that, this
model is equivalent to the models proposed by Filonenko—Borodich, Pasternak and Wieghardt.

A close examination of the various models reviewed above, reveals the fact that these
methods fall short for direct application to practical problems, either because the analysis is
cumbersome,or, because the assumptions made for natural foundation media cannot be fully
justified and often lead to some inconsistencies.

To overcome the above inconsistencies of the soil behavior, Kameswara Rao (1969, 1971)
modified Vlasov and Leontev’s model to account for the horizontal displacements in the elastic
foundation and basic equations have been presented using Vlasov’s general variational
method. The resulting model is very close to elastic-continuum hypothesis and is easy for
mathematical analysis and hence is expected to be useful for the solutions of many problems of
practical significance.

4.7.4 Winkler’s Model

After reviewing the various foundation models as outlined in Section 4.7.3, it can be seen that
Winkler’s model is the simplest both in terms of representation of the soil reaction at the footing
soil interface as well as analysis of the resulting soil-structure interaction Equations (4.14)
and (4.18), though it has inherent deficiencies as outlined in Section 4.7.3. It has an added
advantage that the soil parameter used for expressing the soil reaction, thatis, k (Equation (4.24)),
referred to as spring constant (of the idealized springs of the Winkler’s model as shown in
Figure 4.23) is relatively easy to evaluate from laboratory and field experiments (Section 4.8).
Thus Winkler’s model is used for most of the rational analysis and design presented in this book.
Thus using Winkler’s model for representing the soil and using Equation (4.24) for soil reaction ¢
the soil-structure interaction equation can be expressed as follows:

1. Beams on elastic foundations (Equation (4.14))

d*w(x)
EI = 4.31
T k() = p(x) (431)
2. Plates on elastic foundation (Equation (4.18))
DV*w(x,y) + kw(x,y) = p(x,y) (4.32)

in which & = spring or the soil constant, to be evaluated from suitable laboratory and field tests
(Section 4.8).

4.8 Evaluation of Spring Constant in Winkler’s Soil Model
4.8.1 Coefficient of Elastic Uniform Compression — Plate Load Test

The idea of modeling soil as an elastic medium was first introduced by Winkler and this
principle is now referred to as the Winkler soil model. The subgrade reaction at any point along
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the beam is assumed to be directly proportional to the vertical displacement of the beam at that
point. In other words, the soil is assumed to be elastic and obeys Hooke’s Law. Hence, the
modulus of subgrade reaction (k;) for the soil is given by

_ 49 _
k== G, (4.33)

where
q is the bearing pressure at a point along the beam
w is the vertical displacement of the beam at that point.
k is also referred to as the coefficient of elastic uniform compression, C,,.

The main difficulty in applying the Winkler soil model is that of quantifying the modulus of
subgrade reaction (k) to be used in the analysis, as soil is a very variable material. In practical
terms, k; can be found only by carrying out in-situ plate load tests or relating it in some way to
elastic characteristics of the soil. The plate load test is widely used and is described in BS 1377:
Part 9: 1990, IS: 1888—1982 (Jones, 1997) and so on. Plate load test is described in detail in
Chapter 3, while a few important aspects are summarized below. The test set up is also shown in
Figure 4.27.

P
WT 1TrHP 1V VY
Cy =k =gl q=P/A

Figure 4.27 Plate load test set up.

The plate should obviously be as large as possible, consistent with being able to exert the
vertical forces required. The standard plate is either a circular shape of 760 mm diameter
or a square shape 760 x 760 mm, 16 mm thick, and requires stiffening by means of other
circular/square plates placed concentrically above it. Invariably, a large plate does not settle
uniformly. The settlement must, therefore, be monitored by means of three or four dial gauges
equally spaced around the perimeter in order to determine the mean settlement. Supports for
these dial gauges should be sited well outside the zone of influence of the jacking load which
is measured by a proving ring. When choosing a diameter of plate to use for the test, due
consideration should also be given to the limited zone of influence of the loaded plate.
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Typically, the soil will only be effectively stressed to a depth of 1.25—1.50 times the diameter
of the plate. This limitation can be overcome to some extent by carrying out the plate test at
depth in pit, rather than on the surface. Small diameter plates are often used to overcome
the practical difficulties of providing the requisite reaction/vertical forces. Terzaghi used a
305 mm square plate for evaluation.

Figure 4.28 shows a typical plot of ¢ against w that would be obtained from a plate
bearing test.
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Figure 4.28 g-w curve obtained from plate load test.

In Foundation design, as distinct from pavement design, the value of k is the secant
modulus of the graph over the estimated working range of bearing pressure as indicated in
Figure 4.28. The value of the modulus of subgrade reaction (k) obtained from the test
varies according to the size of plate used. Figure 4.29 shows the variation of k, with plate
diameter based on experimental evidence. It is apparent, therefore, that k, depends not only
on the deformation characteristics of the soil but also on the size of contact area between
plate and subgrade. The variation of k; with plate size creates an obvious difficulty in
deciding which plate size should be used as the standard or reference for defining values of
kg for analysis.

Furthermore, due account must also be taken of the size and geometry of the loaded area.
Terzaghi (1955) made several useful recommendations to overcome these difficulties. Basi-
cally, he first proposed reference values of k, for sands and clays based on plate bearing tests
carried out using a 305 mm square plate. He then advocated methods of conditioning these
values to allow for the geometry of the base. His recommendations are presented in
Section 4.8.2. As most plate bearing tests are carried out using circular plates, it is necessary
to relate the performances of circular and square plates in order to follow Terzaghi’s
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Figure 4.29 Variation of subgrade reaction ratio with plate diameter.

recommendations. The theoretical relationship between values of k; obtained from plate
bearing tests using circular and square plates can be derived as follows.

Square Plate

The mean settlement (w,,) is given by
~0.95(1—v})¢B

Wep = E (4.34)
where
v, 1s the Poisson’s ratio of the soil
q is the average bearing pressure under plate
B is the side of square plate
E is the modulus of elasticity of the soil.
Circular Plate
The mean settlement (w,,,) for the same value of ¢ is
0.85(1—v?)¢B
p = ——————— 4.35
Wep E, (4.35)
where B is the diameter of the plate.
It can be noted from Equations (4.34) and (4.35) that
kg = 0.895k,, (4.36)

where the suffixes sp and cp refer to square plate and circular plate respectively.
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Example 4.1

The value of k, obtained from a plate bearing test using a 760 mm diameter plate is 120 kN/m?/
mm. Estimate the value of k, corresponding to a test carried out using a 305 mm square
plate. Assume the soil to be uniform and homogeneous.

Solution:

With reference to Figure 4.29:

k; for circular plate with diameter of 305 mm = 2.2 x 120 = 264 kN/m?/mm
ky for 305 mm square plate k;, = 0.895 x 264 = 236.28 kN/m?/mm.

Horizontal plate load tests can also be carried out in trial pits to obtain corresponding values of
the horizontal modulus of subgrade reaction (k) which is relevant to the analysis of laterally
loaded piles, pile groups and sheet piling. More information about k;, is given in Jones (1997)
and in Section 10.6. The modulus of subgrade reaction corresponding to a 305 mm square plate
will henceforth be referred to as the reference value and will be denoted by k,. Values of k,
proposed by Terzaghi for sands and clays are given in Tables 4.2 and 4.3 respectively.

Table4.2 Terzaghi’s values of k, for sands (305 mm plate test)
in kN/m?*/mm.

Type Loose Medium Dense
Dry or moist sand 15 45 175
Submerged sand 10 30 105

Table 4.3 Terzaghi’s values of k, for clays (305 mm plate test) in kN/m*mm.

Consistency of clay Firm to stiff Stiff to very stiff Hard
Uniform compressive strength (kN/m?) 105-215 215-430 >430
Values of k, 30 50 100

Values of k, for long beams may also be assessed by relating them to the intrinsic parameters
of the soil such as the elastic modulus (Ey), Poisson’s ratio(v,) and the California bearing ratio
(CBR). E, and v,can both be derived from the results of triaxial tests. Salvadurai (1979)
developed the following expressions for k; in terms of E and v, for beams having a length/
breadth (L/B) ratio >10.

0.65 E;

nE
ky = ———> 4.38
2B(1-v})log, (§) (438)
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The two expressions are in close agreement for values of L/B in the range 10-13. Figure 4.30
plots an approximate, empirical relationship between the modulus of subgrade reaction (k)
obtained using the standard 760 mm diameter plate and the CBR for soils that are uniform in
depth (Jones, 1997).
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Figure 4.30 Empirical relationship between k; and CBR value.

Example 4.2

A dense sandy soil is uniform in depth and has a measured CBR of 40%. Estimate the value of
k that is likely to be obtained from a plate bearing test using a 305 mm square plate.

Solution:

1. Figure 4.30 gives k769 = 130 kN/m?/mm (760 mm diameter plate)

2. Figure 4.29 give kzos = 2.2 x 130 = 286 kN/m?/mm (305 mm diameter plate)

3. ..ks corresponding to 305mm square plate (Equation (4.36)) = 0.895 x 286 =
256 kN/m*/mm.

4.8.2 Size of Contact Area

It is evident from Figure 4.29 that the value of modulus of subgrade reaction (k) varies
according to the size of the plate used in the plate bearing test. Similarly &, varies with the
breadth (B) of a continuous beam resting on an elastic subgrade. This fact was first reported
by Engesser (Jones, 1997) when he confirmed that the value of k; decreases with increasing
width (B) of the beam. Terzaghi (Taylor, 1964) also investigated this phenomenon and
derived expressions relating k, k, and B for beams supported by both cohesionless and
cohesive soils as follows.
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0.305 + B\’
Cohesionless soils:  k; = k, (Tf) (4.39)
0.305
Cohesive soils:  k, = k,( 3 ) (4.40)

In Equations (4.39) and (4.40) the units are: k,, k, in kN/m?/mm, B in meters. Both of these
expressions infer that k, for a beam 0.305 m wide is roughly equal to k, obtained from a plate
bearing test using a square plate of a side of 0.305 m.

Vesic (1961) proposed an expression for k, in terms of E; and vy (of the soil) as

(Bowles, 1996):
1 E.B*
ky = — [0.65 {|=
B Efly
where

B, Iy, E; = width, moment of inertia of the cross section and modulus of elasticity of the
footing respectively
E, vy = modulus of elasticity and Poisson’s ratio of the soil.

E,  E
1—v2 - B(1—2)

(4.41)

One can also adopt the expression of k (neglecting #;) from Vlasov’s elasticity model given
by Equation (4.30d) with appropriate choice of Y/(z) (Vlasov and Leontev, 1966).

4.8.3 Winkler’s Soil Medium with or without Tension

The common assumption made in conventional methods of analyzing loaded continuous
beams resting on a horizontal subgrade is that tension is not allowed to develop between the
beam and the underlying subgrade. It is therefore, necessary when using beam on elastic
foundation approach to condition the Winkler soil medium to detach springs which are not in
compression under the action of the applied loading under consideration. However, in most
other applications, tension in the springs is allowed.

Comparisons between the results of analyses carried out using these two conditions for the
same foundation beam problem usually differ by only small amounts (Jones, 1997).

4.8.4 Sensitivity of Responses on k;

When using the beam on elastic foundation concept to analyze geotechnical problems, it is
imperative that a range of values of the modulus of subgrade reaction (k) are tested to ascertain
the sensitivity of soil parameter in the analysis. Usually, the resulting bending moments and
shear forces are not sensitive to changes in the value of k.

4.8.5 Modulus of Subgrade Reaction for Different Plate Sizes and Shapes

The same plate load test results described in Section 4.8.1 can be used for obtaining &, of
different plate sizes and shapes (some of these have been discussed in the above sections) using
theory of elasticity solutions (Kameswara Rao, 2000) as follows.
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For a rigid circular plate of area A on an elastic half space subjected to vertical load

E 1

ky = Cp = 1.13——  —
1—v2 /A

(4.42)

where
E and v are modulus of elasticity and Poisson’s ratio of the soil
C,, = coefficient of elastic uniform compression/modulus of subgrade reaction.

For a rectangular plate of sides a and b on an elastic half space subjected to vertical load, &
can be expressed as

E 1
ki = ¢ for flexible plate 4.43
s f (1 _vz) \/Z p ( )
ky = ¢ E_ 1 for rigid plate (4.44)
TS VA gidp .

where
A = area of the plate = ab
¢s, ¢, = shape constants depending on the flexibility or rigidity of the test plate used
E,v = modulus of elasticity and Poisson’s ratio of the soil medium respectively. The values
of ¢y and c, are given in Table 4.4 for ready reference.

Table 4.4 Coefficients ¢y and c,.

Shape of the plate g cr c,
Circular — — 1.13
Square 1.0 1.06 1.08
Rectangular 1.5 1.07 —
2.0 1.09 1.10
3.0 1.13 1.15
5.0 1.22 1.24
10.0 1.41 1.41

It can be seen from Table 4.4 and Equations (4.43) and (4.44), that the value of k; is not
greatly dependent on the flexibility or rigidity of the plate. It can be further observed from
Equations (4.42) and (4.44) that k is proportional to (A)~"2, that is

ks A
oo 22 4.4
. 1, (4.45)

where kj; is the value corresponding to a bearing plate of area A; and kj, is the value
corresponding to a bearing plate of area A,. From Equation (4.45), it is evident that if the
value of kg corresponding to a plate area A; is known, k, corresponding to any other plate
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area A, can be easily evaluated. It is convenient to convert all the test results and present the
values of corresponding to a bearing plate area of 10m? (Kameswara Rao, 2000).
The average values of k (corresponding to a plate area of 10m?) for different soils are
given in Table 4.5.

These results can also be summarized as presented in Table 4.6 (Kameswara Rao, 2000).

Table 4.5 Average values of k; for different soils (corresponding to a plate area of 10 m?).

Soil description Permissible pressure kg (kN/m3)
on soil (kN/m?)
Gray plastic silty clay with sand 98 137.34 x 10?
and organic salt
Brown saturated silty clay with sand 147.15 196.20 x 10*
Dense silty clay with some sand up to 490.5 1049.67 x 107
(above ground water level)

Medium moist sand 196.2 196.20 x 10

Dry sand with gravel 196.2 196.20 x 10?

Fine saturated sand 245.25 294.30-343.35 x 107

Medium sand 245.25 304.11 x 107

Gray fine dense, saturated sand 245.25 333.54 x 10?

Loess with natural moisture content 204.3 441.45 x 107

Moist loess 196.2 461.07 x 10

Table 4.6 Values of &, and u for different soil categories (assuming vy = 0.3).

Soil Soil description Permissible ¢, forA = 10m® Shear modulus,

category pressure (KN/m?) u (KN/m?)

on soil (kN/m?)

I Weak soils (clay and silty ~ Up to 147.15 98.1 x 10? 100.06 x 10*
clays with sand in a 196.2 x 10? 201.11 x 10?
plastic state) 2943 x 10? 301.17 x 10?

II Soils of medium strength 147.15-343.35 294.3 x 107 301.17 x 107
(clays and silty clays 392.4 x 107 401.23 x 10°
with sand close to 490.5 x 107 502.27 x 10°
plastic limit)

I Strong soils (clays and silty 343.35-490.5 490.5 x 107 502.27 x 10?
clays with sand of hard 583.6 x 10° 602.33 x 107
consistency; gravels 686.77 x 107 702.40 x 10?
and gravelly sand; loess 784.8 x 10 803.44 x 10°
and loessial soils) 882.9 x 10 903.50 x 10

981 x 10 1003.56 x 10°
v Rocks >490.5 >981 x 10 >1003.56 x 10
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4.8.6 Poisson’s Ratio of the Soil Medium

It is possible to evaluate Poisson’s ratio (v) using dynamic test results mentioned in Chapter 2.
Also Poisson’s ratio can be evaluated using some simple soils tests which may result in large
errors. It has been observed that in general Poisson’s ratio varies from about 0.25 to 0.35 for
cohesionless soils and form about 0.35 to 0.45 for cohesive soils which are capable of
supporting foundation blocks. Hence, in the absence of any test data Poisson’s ratio can be
assumed as 0.3 for cohesionless soils and 0.4 for cohesive soils without causing any appreciable
error in the analysis and design of foundations (Kameswara Rao, 2000).

This is further justifiable from the fact that the responses to foundation soil system have been
found to be not much sensitive to the variations in the value of Poisson’s ratio.

4.8.7 Evaluation of Young’s Modulus

While itis ideal to evaluate Young’s modulus (E, or shear modulus x) from dynamic tests, often
it may not be possible to do so due to physical limitations.

However, the same can be evaluated from the results of plate load test. It is obvious that £ can
be calculated (and hence shear modulus ¢ = E/(2(1 + v))) from Equations (4.42)—(4.44).
Knowing the value of k,, and the shape and size of the plate used (flexible or rigid plate solutions
do not make much difference, as can be seen from Table 4.4). Poisson’s ratio can be assumed to
be either 0.3 or 0.4 as mentioned above (Section 4.8.6).

For a square plate of 30 cm side (fairly rigid), the values of shear modulus, y, for different soil
categories listed in Table 4.6, can be computed using Equation (4.44) with ¢, = 1.08 (from
Table 4.4) and v = 0.3. The same are presented in Table 4.6.

4.8.8 k, for Foundations Subjected to Dynamic Loads

For the design of foundations subjected to dynamic loads such as in machine foundations, the
modulus of subgrade reaction, k, (also referred to as the coefficient of elastic uniform
compression, C,), has to be obtained from a cyclic plate load test (instead of a plate load
test) or wave propagation tests (Kameswara Rao, 2000, 1998).

4.8.8.1 Cyclic Plate Load Test

As the name itself indicates, this is a modified version of the standard plate load test as shown in
Figure 4.27. The test is conducted using either standard plate (or square of circular shape of
0.305-0.760 m size or any other size) and involves several loading cycles (loading, unloading,
reloading schedule), as per standard practice (Kameswara Rao, 2000). This facilitates in
separating the elastic (recoverable) part of the deformation from the plastic part (irrecoverable
part or permanent set) which in turn can be related to the Young’s modulus of the soil.

Some Salient Features

The bearing pressure—settlement curve obtained from a typical cyclic plate load test is shown
in Figure 4.31. After each load application, sufficient time is allowed to ensure
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Figure 4.31 Bearing pressure-settlement curve for cyclic plate load test.

that the settlement has attained a final value for all practical purposes at that load level.
InFigure 4.31, the recoverable part of the settlement (during unloading) represents the elastic
part and the nonrecoverable part signifies the plastic settlement (permanent set). The elastic
part of the settlement is plotted as a function of average contact pressure (bearing pressure)
in Figure 4.32 and the relationship is observed to be generally linear. The slope of this curve
is referred to as the modulus of subgrade reaction, k;, or the coefficient of elastic uniform
compression, C,.

Coefficient of Elastic Uniform Compression and Spring Constant

From the curve shown in Figure 4.32, the slope referred to as the coefficient of elastic uniform
compression, C,, (or k), can be expressed as

ks = Cu =

q
: (4.46)

where ¢ is the bearing pressure (load per unit area) and w is the elastic settlement and is
applicable for vertical displacement. Then the spring constant (k) for vertical deformation is
given by

k=CA = kA (4.47)

where A = contact area of plate, that is, bearing area.
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Figure 4.32 Determination of k,/C, from cyclic plate load test data.

All other elasticity solutions discussed in Sections 4.8.5—4.8.7 remain the same except that
in dynamic situations k, (= C,) obtained from cyclic plate load test discussed above has to be
used instead of k, from normal plate load test.

4.9 Soil-Structure Interaction Equations

Thus after adopting suitable foundation model for soil medium to evaluate the soil reaction as
discussed in Section 4.7.3, the equation for soil-structure interaction can be written from
Equation (4.14) for beams and Equation (4.18) for plates. Adopting Winkler’s model due to its
simplicity for analysis as well as evaluation of parameters from laboratory and field tests as
described in Sections 4.7.4 and 4.8, these equations can be written by replacing the soil reaction
¢(x) = kw and are given in Equations (4.31) and (4.32).

These are as follows, for beams on elastic foundations (Figure 4.18, Equation (4.14))

d*w(x)

EI
dx*

+ kw(x) = p(x) (4.48)

where
EI = flexural rigidity of the beam or footing
w(x) = vertical deflection of the beam soil interface
k = spring constant = kB
ks, = modulus of subgrade reaction applicable to beams as described in Section 4.8 (for
example, Equations (4.37), (4.38), (4.41) or (4.30a), whichever may be appropriate)
B = width of the beam cross section
p(x) = vertical load applied on the beam/footing
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For plates on elastic foundations (Figure 4.19, Equation (4.32); this equation is used for
rafts, mats, square foundations, annular foundations and foundations with L/B ratios not
more that 2-3).

DV*w(x,y) + kw(x,y) = p(x,y) (4.49)

where \
D = flexural rigidity of plate = %
E,,v, = modulus of elasticity and Poisson’s ratio of plate material
h = thickness of the plate
V4 = viv2
V? = Laplace operator
k = spring constant for plate
= modulus of subgrade reaction adjusted to the plate size and shape from the results
of the standard plate load test as discussed in Section 4.8.5
w(x,y) = vertical deflection of the plate soil interface
p(x,y) = vertical load applied on the plate/footing.

For dynamic loads on elastic foundations (machine foundations), the modulus of the
subgrade reaction has to be obtained preferably from cyclic plate load test or wave propagation
tests as outlined in Section 4.8.8. The spring constant in such cases can then be obtained using
Equation (4.47).

4.10 Summary

1. The role and types of foundations for transferring the loads to the soil stratum below is
described.

2. The essential features of foundation design using conventional methods as well as rational
method are highlighted.

3. Foundation design practices in difficult soils are outlined.

4. The need for soil-structure interaction analysis for rational design of foundations is
presented.

5. The behavior of beams and plates on elastic foundations is discussed.

6. Various foundation models are discussed.

7. Features of Winkler’s model and evaluation of necessary parameters for design from
laboratory and field tests are outlined.

8. The governing equations for beams and plates on elastic foundations are presented. The
expressions for the determination of all the parameters involved in the equations are
discussed in detail. A few examples for the evaluation of parameters are presented.



S

Analysis of Footings
on Elastic Foundations

5.1 Introduction

As mentioned in Chapter 4, the two approaches for the analysis and design of foundations are:

1. The conventional approach, which assumes the foundation to be rigid and the contact
pressure at the interface to be planar.

2. The rational approach, which incorporates the flexibility of the footing as well as the soil
contact pressure based on elastic theories using modulus of subgrade reaction.

The footing can be idealized as a beam (spread footings, combined footings, strap footings,
wall footings, etc.) or as a plate (mat or raft foundations, circular footings, annular or ring
footings and footings of general shape which are two-dimensional in plan supporting several
loads from columns, walls, etc.). While several models for incorporating soil reaction in the
soil-structure interaction equations (Equations (4.14) and (4.18)) are discussed in Section 4.7,
the Winkler’s model is used extensively in this chapter for detailed solutions and rational
design due to its simplicity in analysis as well as evaluation of the soil parameters. A brief
review of important contributions is presented below.

5.2 Literature Review

Analysis of footings on Winkler foundation model using analytical and numerical methods has
been carried out by several pioneers in this area. Some important contributions are highlighted
in this section.

5.2.1 Analytical Solutions

The earliest classical works on the subject were due to Winkler (1867), Hertz (1884),
Zimmermann (1888), Reissner (1937), Hetenyi (1946), Gorbunov-Posadov (1949), Seely
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and Smith (1952), Timoshenko and Krieger (1959), Vlasov and Leontov (1966), and several
others. Vlasov and Leontev (1966) also gave solutions to a large number of problems of beams,
plates and shells on elastic foundations, idealizing the soil medium as a two parameter model
which ignores the horizontal displacements in the medium. Kameswara Rao (1969, 1971)
presented general solutions to beams and plates on elastic foundations using a discrete
continuum model for soil, which incorporates horizontal displacements also as a modification
to Vlasov’s model. They presented the solutions using the versatile method of initial parameters.

Butterfield and Banerjee (Sridhar, 1999) gave solutions for settlement and contact pressure
for rigid rectangular rafts. Brown (Sridhar, 1999) obtained solutions for contact pressure and
bending moment in rigid, square and rectangular rafts subjected to various combinations of
concentrated loads.

Fletcher and Herman (Sridhar, 1999) analyzed a beam resting on flexible elastic foundation
and determined the applicability of the Winkler model and more mathematically refined
models which included terms involving the derivative of the deflection without resulting in any
mathematical difficulty. A procedure for finding the foundation coefficients when the elastic
constants are known was developed.

Chan and Cheung (Sridhar, 1999) gave values of contact pressure for rectangular and
circular rigid footings due to concentric load and eccentric loading. These solutions enable an
estimate to be made of the bending moment in a rigid footing.

Dasgupta (Sridhar, 1999) considered an axially constrained beam resting on Winkler
foundation and obtained solutions for beam using finite element method as well as the
differential equation method. The two solutions are compared and are in close agreement
to each other.

Some of the exact solutions available for beams and plates on elastic foundations are
presented in the subsequent section (Section 5.3). The method of solution for general loads and
moments acting on the footing, is discussed in detail using the method of initial parameters
(MIP), which is very versatile (Vlasov and Leontev, 1966; Kameswara Rao, 1969, 1971).

5.2.2 Numerical Methods and Finite Difference Method

Several solutions have been presented using numerical methods such as the finite difference
method (FDM), the Runge—Kutta method and iterative methods to take care of the problems
not solvable by exact methods. Of these the most popular is FDM.

Malter (1958) gave solutions of beams on elastic foundations using FDM. Teng (1964)
worked out several examples using FDM. Rijhsinghani (1961) presented detailed solutions for
plates on elastic foundations (PEF) using FDM. There are a very large number of books and
publications on FDM and its applications in soil-structure interaction analysis (Teng, 1964).
Glyn Jones (1997) presented a detailed analysis of beams on Winkler’s elastic foundations
using finite difference theory. He also gave a number of references on the subject. He developed
a software package for beams on elastic foundations (BEF). The details on the application
of these methods to beams and plates on elastic foundations are given in Chapter 6.

5.2.3 Finite Element Method

The analysis of beams and plates on elastic foundations was also analyzed by various authors
using the finite element method (FEM) as summarized below. Further, a detailed discussion is
given in Chapter 7.
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Cheung and Zienkiewicz (Sridhar, 1999) obtained the solutions for square rafts of arbitrary
flexibility. The stiffness of the soil was derived from Boussinesq’s equation and combined with
plate bending finite elements to form a stiffness matrix for the whole system. The displacements
were solved using the FEM method. The method is capable of handling both isotropic and
orthotropic plates on elastic media with general loading using either a semi-infinite elastic
continuum model or a linear Winkler model for the soil medium.

Cheung and Nag (Sridhar, 1999) analyzed plates and beams on an elastic continuum using
the finite element method (FEM). The horizontal contact pressures at the interface between
structure and foundations were incorporated in the analysis. The effects due to separation of
contact surfaces and due to uplift were also investigated.

Svec and Gladwell (Sridhar, 1999) analyzed a thick plate resting on a Winkler foundation
and a homogenous isotropic elastic half space, using FEM. They improved the method of
Cheung and Zienkiewicz by assuming a continuous contact pressure distribution, described
by a third-degree polynomial, under each plate finite element. They also developed a 10-noded
triangular plate bending element specifically for contact problems.

Wood and Larnach (Sridhar, 1999) developed computer programmes using FEM for the
analysis of raft foundations using both linear and nonlinear soil models. It was shown that the
critical edge conditions associated with a stiff raft foundation could be correctly modeled only
if a nonlinear soil analysis is used.

Fraser and Wardle (Sridhar, 1999) presented numerical solutions for the displacements and
maximum bending moments for uniformly loaded raft foundations of arbitrary flexibility on a
homogenous elastic layer of finite thickness overlying a rough rigid base. The solutions were
obtained by FEM with the interaction between raft and finite soil layer being incorporated
through the use of surface elements. Variations in raft rigidity, L/B ratio, soil layer depth and v
(Poisson’s ratio) can markedly effect both displacements and bending moments in raft
foundations.

Ting and Mocry (Sridhar, 1999) developed a stiffness matrix for a beam on elastic foundation
and element load vectors due to concentrated forces, concentrated moments, and linearly
distributed forces. The stiffness and flexibility matrices were derived from the exact solution of
the differential equation. The results of this finite element analysis are exact for Navier’s and
Winkler’s assumptions.

Puttonen and Varpasuo (Sridhar, 1999) applied the boundary element method (BEM) for
plates on elastic foundations. The results obtained by using a small number of boundary elements
compared favorably with the results obtained by finite element mesh using SAP I'V. The study
was conducted by using both direct and indirect BEM, with direct BEM giving better results.

Zekai Celep (Sridhar, 1999) analyzed the behavior of elastic plates of rectangular shape on
a tensionless Winkler foundation. The rectangular plate problem was investigated here by
considering external uniformly distributed loads (UDLs), concentrated loads and moments
without using any assumption on the shape of the contact region. The tensionless character of
the foundation was taken into account by using an auxiliary function. Using Galerkin’s method
the problem was reduced to the solution of a system of algebraic equations.

5.3 Analysis of BEF

The governing equations for the beam—foundation interaction (Figure 4.18, Section 4.7) is
derived as in Equation (4.14) as
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d*w

EIW + kw = p(x) (5.1)
where
w = vertical deflection at the interface of the beam foundation system
EI=flexural rigidity of the beam
k = kb = spring constant of the soil idealizing it as Winkler’s single parameter model
k,=modulus of subgrade reaction to be evaluated from appropriate tests on soil outlined
in Section 4.8
kw = contact pressure/soil reaction
b = width of the beam
h=depth of the beam
p(x) =vertical load applied on the beam.

The Cartesian coordinates X, y, z, conventions of the classical bending theory for shear
force Q, bending moment M, contact pressure g(x) (= kw) are shown in Figure 4.20.

The exact solution for the above problem was presented by Zimmerman (1888) and more
comprehensively by Hetenyi (1946). Some of these classical solutions are presented in the
following sections.

5.3.1 General Solution

The governing Equation (5.1) is an ordinary differential equation (ODE) and can be solved
exactly as follows. The equation can be nondimensionalized as

d*w 4 ‘p(x)
1 4(JL = 2
i AL = (52)
where
k  4/bk
A==/ (unitsof L' :
AE] AEI (units o ) (5.3)
n= % = dimensionless parameter (5.4)

L =unit length for nondimensionalization (can be taken as length of the beam for finite
beams)
x =distance coordinate along the length of the beam
AL = dimensionless parameter of beam characteristics.

The characteristic Equation (ODE theory) (5.2) is
m* + 4L =0 (5.5)

where
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The characteristic roots of Equation (5.5) are
mip34 = :I:A.L(l + l) (56)

where i = +/—1 is an imaginary constant.
The total solution of the ODE (5.1) or (5.2) can be written as

w=wy + W, (5.7)

where
wy, =homogeneous part of the solution
w), = particular integral part of the solution depending on the intensity of the distributed load
p(x) per unit length of the beam.

The homogeneous solution can be written as

wy, = *(Cy cos Ax + C, sin Ax) + e **(C3 cos Ax + Cy sin Ax)

5.8
=M (Cy cos ALy + Cysin ALp) + e *1(C; cos ALy + Cy sin ALy) 58
where C, to C4 are arbitrary constants to be d