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INTRODUCTION TO THE 
SECOND EDITION 

"THE Principlea of Ma.ihematics ". was published in 1903, and moat of 
it was written in 1900. In the BUbaequent yea.n the subjects of 
which it treats hav'ebeen widely discu88ed, and the technique of 

mathematical logic has been greatly improved ; while aome new problems 
have arisen, some old ones have been solved, and others, though they 
remain in a controveni&I condition, have taken on completely new forms. 
In these circumstances, it seemed uaeleBB to attempt to amend this or 
that, in the book, which no longer expresses my present viGws. Such 
interest as the book now posae8ll88 is historical, and oonaiatB in the fact 
that it represents a certain stage in the development of its subject. I 
have therefore altered nothing, but shall endeavour, in this Introduction, 
to say in what respects I adhere to the opinions which it expreuea, imd 
in what other respects subsequent research seems to me to have shown 
them to be erroneoUB. 

The fundamental thesis of the following pages, that mathematics and 
logic are identical, ia one which I have .never since aeen any reuon to 
modify. This thesis was, at 1irst, unpopular, beoall88 logic ia traditionally 
8880Ciated with philosophy and Aristotle, so that mathematicians felt it 
to be none of theb- buainese, and thoee who considered themselves 
logicians resented being asked to master a new and rather difficult 
mathemit,tical technique. But such feelings would have had no lasting 
influence if they had been unable to find support in more aerious reasons 
for doubt. Theee reasons are, broadly speaking, of two opposite kinds : 
first, that there are certain unsolved difficulties in mathematical logic, 
which make it appear leu certain than mathematics is believed to be ; 
and secondly that, if the logical basis of mathematics is acoep~. it 
justifies, or tends to justify, much work, such as that of Georg ~. ·,'. 
which is viewed with suspicion by many mathematicians on account of 
the unsolved paradoxes which it shares with logic. Theae two oppolitie 
lines of criticism a.re represented by the formalists, led by Hilbert, _. 
the intuitionist&, led by Brouwer. · 

The formalist interpretation of mathematics is by no mea.ns new, but 
for our purpoeea we may ignore its older forma. As presented by Hilbert, 
for e:nmple in the sphere of number, it couiats in leaving the integere 

···undejined, but uaerting concerning them auoh axioma u shall make 
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pouibJe the deduction of the usual arithmetica.l propoaitiona. Tha.t is 
to 1&y, we do not U8ign any mea.ning to our symbols 0, l, 2, .. except 
that they a.re to ha.ve cert.a.in propert,iea enumerat.ed in the axiolDIJ. 
These eymbols are, therefoze, to be regarded aa nria.bles. The Ia.ter 
integers may be defined when O is given, but O is to be men,ly something 
having the usigned o.h&raoteristics. .Accordingly tb, symbols 0, 1, 2, ... 
do not repreaent one definite aeries, but any progreeaion whatever. The 
formalists have forgotten that numbers are needed, not only for doing 
8UID8, but for counting. Such proposition, as " There were 12 Apostl~ " 
or " London has 6,000,000 inhabita.nts " cannot be interpret.eel in their 
syatem. For the symbol" 0" may be ta.ken to mean a.ny finite in~, 
without thereby making any of Hilbert'• axioms falae ; and thus every 
number-aymbol becomes infinitely ambiguoua. The formalists are like 
a watchmaker who is ao absorbed in making his watches look pretty that 
he baa forgotten their purpoee of telling the time, and has therefore 
omitted to inaert any works. 

There is another difficulty in the forma.list position, and that is as 
regards existence. Hilbert &11Bumes that if a aet of axioms does not lead 
to & oontradi.ction, there must be some set of objects which satisfies the 
axioms; accordingly, in place of seeking to establish existence theorem'J 
by producing an inst&nce, he devotes himself to methods of proving the 
self-oonaiatency of his axioms. For him, " existence," aa usually under­
stood, is an unneoeaaarily metaphysical concept, which should be replaced 
by the precise concept of non-contradiction. Here, again, he ha.a 
forgotten tha.t arithmetic baa practical uses. There is no limit to the 
systema of non-contradictory axiom• tha.t might be invented. Our 
reasona for being specially interested in the axioms that lead to ordinary 
arithmetic lie outside arithmetic, and ha.ve to do with the application of 
number to empirical material. This application itself forms no part of 
either logic or arithmetic ; but a theory which makea it a priori impoBBib)e 
cannot be right. The logical definition of numbers makee their con­
nection with the actual world of countable objects intelligible ; the 
formalist theory doee not. 

The intuitionist theory, represented tint by Brouwer and Ia.ter by 
Weyl, ia a more S'3rioUB matter. There ia a phil0110pby asaociated with 
the theory, which, for oµr purposes, we may ignore ; it ia only ita bearing 
on logic a.nd mathematics tha.t oonaerna u. The eaaentia.l point here is 
the rafual to regard a proposition u either true or fa.188 unlees some 
method exists of deciding the alternative. Brouwer deniell the Ia.w of 
oxclucM middle where no auch method mat&. This deatroya, for 
example, the proof that there are moze real number& than rational 
numbers, and that, in the aariea of real numben, every progreaaion bM a 
limit. Conaequently ]up part. of an&lyaia, which for oenturies have 
been thought well eetabliehed, are rendeNd doubtlul. 

Aalooiated with this theory ia the doctrine called finitism, which 
aalla in question proposit.iona involving in1lnite oolleotiona or inG.n.i1ae 
eeriee, on the p-ound that such propositions &1'e 1111verifiable. Tbia 
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doctrine ia an aspect of thorough-going empirioiam, and muat, if taken 
aeriously, have conseqoenoea even more destructive than thoae that are 
recognized by its advocat.ea, Men, for example, though they form a 
finite claaR,are, practica.Uy and empirically, just u impoaaible to enumerate 
u if their number were infinite. If the finitist's principle ia admitted, 
we must not make ,_, general at&tement---iru.oh as " All men are mortal " 
-about a collection defined. by its properties, not by actual mention of 
all its members. This would make a clean sweep of all scienoe and of all 
mathematics, not only of the parta wbioh the intuitionista consider 
questionable. Disastrous consequences, however, cannot be regarded. u 
proving that a doctrine is false ; and the finitist doctrine, if it is to be 
disproved., can only be met by a com'plete theory of knowledge. I do 
not believe it to be true, but I think no short and easy refutation of it is 
possible. 

An excellent and very full disoWlllion of the question whether mathe­
matics and logic a.re identical will be found in Vol. III. of Jorgensen'• 
" Treatise of Formal Logic," pp. 57-200, where the reader will 1ind a. 
dispaasionate examination of the arguments tha.t have been adduced 
against this thesis, with a conclusion which is, broadly speaking, the 
same as mine, namely that, while quite new grounds have been given in 
recent years for refusing to reduce mathematics to logic, none of theee 
grounds is in any degree conclusive. 

This brings me to the definition of matbematics which forms the fint 
aentenoe of the " Principles." In this definition varioua changes are 
neoeaaa.ry. To begin with, the form "p implies q" is only one of many 
logical forms that mathematical proposit.ionll may take. I waa originally 
led to emphaaiee this form by the conaideration of Geometry. It was cleu­
that Euclidean and non-Euclidean systems alike must be included in pure 
mathematics, and must not be regarded u mutually inoonsiatent ; we 
must, therefore, only uaert that the axioms imply the propo&itiona, not 
that the axioms a.re true and therefore the propoaitiona are true. Such 
instances led me to lay undue stress on implication, which is only one 
among truth-functions, and no more important than the others. Next : 
when it is 8&id that " fJ and q are propositions containing one or more 
variables," it would, of oourae, be more conect to eay that they are 
propositional functions ; what is Did, however, may be exCUBed. on the 
ground that propositional functions bad not yet been defined, and were not 
yet familiar to logicians or mathematicians. 

I come next to a more serious matter, namely the statement that 
" neither p nor q contains any oonstanta exoept logical oonnanta." I 
poltpone, for the moment, the diaouasion u to what logical oonst&Jlta are. 
Aamming ·this known, my present point is that the &melJ08 of. non-logical 
conat&nta, though • necesary condition for the mathematical ohancw of 
a proposition, is not a mfflcient condiiion. Of tlda, perbapa, the _. 
eumplee are statements ooncerning the number of things in t.he world. 
Take, •Y : " There are at leut ~ thinp · in the world... Thil ia 
eqllivalmt to : "Thereesist objecta z, ,, •• and propertiell 9', •• %, 80Ch ... 
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a: but not y ha.a the property q,,a: but not z ha.a the property 'I', and y but not z 
hall the property x-" This statement can be enunciated in purely logical 
terms, and it can be logically proved to be true of classes of clasaes of claaaes : 
of tbeae there must, in fact, be at leaat 4, even if the univene did not exist. 
For in that caae there would be one class, the null-class ; two claaaes of 
classea, namely, the class of no clasaes and the class whose only member is the 
null class ; and four classes of classes of claaaes, namely the one which is 
null, the one whoae only member is the null class of claaaes, the one whose 
only member is the clus whose only member is the null cl&BB, and the on~ 
which is the sum of the two last. But in the lower types, that of individuals, 
that of classes, and that of classes of classes, we cannot logically prove, 
that there are at least three members. From the very nature of logic, 
something of this sort is to be expect.ed ; for logic aims at independence 
of empirical fa.et, and the existence of the universe is an empirical fa.et. 
It is true that if the world did not exist, logic-books would not exist ; but 
the existence of logic-books is not one of the premisaes of logic, nor can it 
be inferred from any proposition that bas a right to be in a logic-book. 

In practice, a great deal of mathematics is possible without aaswning 
the existence of anything. All the elementary arithmetic of finite integers 
and rational fractions can be constructed ; but whatever involves infinite 
cl&ll888 of int~gers becomes impossible. This excludes real numbers and 
the whole of analysis. To include them, we need the "axiom of infinity," 
which states that, if n is any finite number, there is at lea.at one class having 
n members. At the time when I wrote the " Principles," I supposed that 
this could be proved, but by the time that Dr. Whitehead and I published 
"Principia Mathematica," we had become convinced that the supposed 
proof was fallacious. 

The above argument depends upon the doctrine of types, which, although 
it occurs in a crude form in Appendix B of the "Principles," had not yet 
reached the stage of development at which it showed that the existence of 
infinite classes cannot be demonatrated logically. What is said as to 
existence-theorems in the last paragraph of the laat chapter of the 
"Principles" (pp. 497-8) no longer appears to me to be valid: such 
existence-theorems, with certaili exceptions, are, I should now say, examples 
of propositions which ca.n be mtinciatett in logical terma, but can only be 
proved or disproved by empirical evidence. 

Another example is the multiplicative axiom, or its equivalent, 
Zermelo ·s axiom of selection. This asserts that, given & aet of mutually 
excluaive cl&.Rl!e8, none of which is null, there is at leaat one claaa CODllisting 
of one representative from each clBIIS of the set. Whether this is true or 
not, no one knows. It is eaay to imagine univeraea in which it WOllld be 
true, and it is imposaible to prove that there are poaaible univenea in which 
it would be falae; but it is alao impouible (at leut, 80 I believe) to pro-.e 
that there are no pmsible universes in which it would be falae. I did not 
become aware of the neceesity for this axiom until a -,..r after the 
" Principle& " waa published. Thia book contains, in comequenoe, oeriain 
enom, for example the aaaertion, in §119 (p. 123), t.bat the two definitions 
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of infinity &re equivalent, which can only be proved if the multiplio&tive 
axiom ia &118Umed. 

Such examples-which might be multiplied indefinitely-ehow that a 
proposition may 11&tiafy the definition with which the " Prinoiplee " opena, 
and yet may be incapable of logical or mathematical proof or cliaproof. 
All mathematical propoaitiona are included under the definition (with 
certain minor emendations), but not all propositions that are included are 
ma.thema.tioal. In order "1l&t a. propoeition may belong to mathem.atiClll 
it must have a. further property: according to some it must be 
"tautological," and according to Carnap it must be" analytic." It. is by 
no means easy to get an exact definition of this cha.racteriatic; moreover, 
Carnap baa shown tha.t it is neoeaea.ey to distinguish between " analytic " 
and " demonstrable," the latter bemg a. 1JOmewhat nam>wer concept. 
And the question whether a proposition is or ia not " analytic," or 
" demons~rable " depends upon the a.ppara,tus of premisses with which we 
begin. Unleas,. therefore, we ha.ve some criterion aa to admiuible logical 
premisaee, the whole question as to what a.re logical propositions becomes 
to a very considerable extent arbitrary. This ia a. very Ull8&tiafactory 
conclusion, and I do not accept it a.a final. But before anything more can 
be said on this subject, it is neceasa.ry to discU88 the question of "logical 
constants," which play an esaentia.l part in the definition of mathematica 
in the first sentence of the " Principles." 

There are three questions in regard to logical constants : First, are there 
such things? Second, how a.re they defined! Third, do they oocur in 
the propositions of loipc 1 Of these questions, the first and third are highly 
ambiguous, but their va.rious meanings can be made clearer by a. little 
discussion. 

First : Are there logical constants 1 There is one sense of this question 
in which we can give a. perfectly definite affirmative answer : in the linguistic 
or symbolic expression of logical propositions, there are words or symhola 
which play a constant part, i.e., ma.k.e the aame contribution to the aig­
nificance of propositions wherever they occur. Sucb a.re, for example, 
"or," "a.nd,'' "not," "if-then," "the null-class," "O," " I,'' "2," ... 
The difficulty is that, when we analyae the propositions in the written 
expreuion of which such ayml>ola occur, we find that they ba.ve no 
constituents corresponding to the expreuions in question. In B01De caeea 
this is fairly obvioua : not even the mOllt ardent Platoniat would IUPJIOl8 
tba.t the perfect " or " iB la.id up in heaven, a.nd that the " ('l''a " here on 
ea.rth are imperfect copies of the celestial archetype. But in the case of 
numbers this is fa.r less obvious. The doctrines of Pythagoras, which began 
with a.rithmetical mysticism, influenced all subsequent philosophy and 
ma.thema.tice more profoundly than is genera.Uy realized. Numbers were 
immutable and eternal, like the heavenly bodies; numbers were intelligible: 
the science of numbers was the key to the universe. The last of the&c 
beliefs has misled mathematicians and the Boa.rd of Education down 

,to the present day. Consequently, to say that numbers ,-re symbols 
which mean nothing a.ppea.rs as a horrible form of atheism. (.A.t'the time: 
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when I wrote the " Principles," I shared with Frese a belief in the Platonic 
reality of numbers, which, in my imagilllltion, peopled the t.imeleas realm 
of Being. It was a oomforting faith, which I later abandoned with regret. 
Something must now be said of tJie Rteps by which I was Jed to abandon it.\ 

In Chapt.er IV of the " Principles " it, is said that " every word 
occurring in a aentence must have 80fflfl meaning " ; and again " Whatever 
may ~ an object of thought, or may occur in any true or false proposition, 
or can be counted as one, I call a term. . . . A man, a moment, a number, 
a clau, a relation, a chimlff&, or anything else that can be mentioned, 
is sure to be a term ; and to deny that such and such a thing is a 1lerm 
must always be false.'' This way of underata.nding language turned.out 
to be mistaken. That a word "must have aome meaning "-the w~rd, 
of coune, being not gibberish, but one which has an intelligible w.­
. is not always true if ta.ken as applying to the word in isolation. What is 
true is that the word contributes to the meaning of the aentence in 
which it occurs ; but that is a very different matter. 

The first step in the prooeBB was the theory of descriptions. According 
to this theory, in the proposition "Scott is the author of Waverley,'' 
there is no constituent corresponding to "the author of Waverley": 
the analysis of the proposition is, roughly: "Scott wrote Waverley, and 
whoever wrote Waverley was Scott"; or, more accurately: "The, pro• 
positional function ' x wrote W airerley is equivalent to x ia Scott ' is true 
for all values of x." (This theory swept away the contention-advanced, 
for instance, by Meinong-that there must, in the realm of Being, be such 
objects as the golden mountain and the round square, since we can talk 
about them., "The round square does not exist" had always been a 
difficult propoaition ; for it was natural to ask " What is it that does not 
exist T ·• and any p<>1111ible aJ111wer had seemed to imply that, in some 
eense, there is such an object as the round square, though this object has 
the odd propert,y of not existing. The theory of descriptions avoided 
thia and other difficultiee. 

The next step wu the abolition of cl&8888. This step was taken in 
"Principia Mathematica," where it is said: "The eymbols for clasaes, 
like those for descriptions, are, in oqr system, incomplete symbols ; 
their uu ·are defined, but they themaelvea are not 888Umed to mean 
anything at all. . . . Thus c1&1!1188, ao far as we introduce them, are merely 
symbolic or linguistic conveniences, not genuine objects " (Vol. I, pp. 71 ·2). 
Seeing that cardinal numbers had been defined as claaaea of classes, they 
also became " merely symboJic or linguistic conveniencea. '.' Thua, for 
example, the proposition " I + I =2,'' aomewhat simplified, becomes the 
following : " Form the propositional function ' a is not b, and wh&tevw 
z may be, z ia a y ia always equivalent to z ia t.1 or :,e ia 6 ' ; form also the 
propositional function' a iB a y, and, whatever :e may be, :,e 11 o y bid ia 
IIOI a ia always equivalent to :,: 11 b." Then, what.ever y may be, t.be 
&llllert,ion that one of theae propoaitional functions ia not alwaya falae 
(for different values of a and b) is equivalent to the &lllllriion that the other 
is not alw&)'M false." Here the numben 1 and ! have entirely diMppeared.. 
and a aimUar ana.lyHis can be applied to any aritbmetical propoeitiion. 
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Dr. Whitehead, at thia stage, persuaded me to abs.ndon point& of. 
space, instant.s of time, and particles of matter, substituting for them 
logical constructions composed of event.a. In the end, it Beel'Ded to 
reault that none of the raw material of the world has amooth logical 
properties, but that whatever appears to have such properties is con• 
structed artificially in order to have them. I do not mean that atatements 
apparently about points or instants or numbers, or any of the other 
entities0 which Occam's razor abolishes, are false, but only that they need 
interpretation which shows that their lingwatic form is misJeading, and 
that, when they are rightly analysed, the pseudo-entities in question a.re 
found to be not mentioned in them. "Time oonsiats of inatants," for 
example, may or may not be a true statement, but in either case it 
mentions neither time nor instants. It may, roughly, be interpreted 
as follows : Given any event x, let us define as its " contemporaries " 
those which end after it begins, but begin before it ends ; and among 
these let us define as " initial contemporaries " of x those which are not 
wholly later than any other contemporaries of x. Then the statement 
" time consists of instants " is true if, given any event x, every event 
which is wholly later than some contemporary of x is wholly later than 
some initial contemporary of x. A simila.r process of interpretation is 
necessary in regard to most, if not all, purely logical constants. 

Thus the question whether logical constant.a occur in the propositions 
of logic becomes more difficult than it seemed at first sight. It is, in 
fact, a question to which, as things stand, no definite answ:flr can be given, 
because there is no exact definition of •• occurring in " a proposition. 
But something e&n be said. In the first place, no proposition of logic 
can mention any particula.r object. The statement" If Socrates is a man 
and all men are mortal, then Socrates is mortal " is not a proposit.ion of 
logic ; the logical proposition of which the above is a pa.rticular case is : 
•' If x has the property of rp, and whatever has the property rp has the 
property '1/J, then z has the property '1/J, whatever x, 'P, ¥' may be." The 
word " property," which occurs here, disappe&rB from the correct 
symbolic statement of the proposition ; but " if-then," or something 
serving the same purpoae, remains. After the utmost effort.a to reduet't 
the number of undefined elements in the logical calculus, we shall find 
ouraelves left with two (at least) which seem indispensable : one ie 
incompatibility ; the other is the truth of all values of a propositional 
function. (By the " incompatibility " of two propoaitions is meant that 
they a.re not bo~ true.) Neither of theae looks very substantial. What 
was ll&id earµ.. about •• or " applies equally to incompatibility i and it 
1fould -- absurd to say that generality is a conatituent of a general 
propollition. 

Logical conatants, therefore, if we are to be able to eay anything 
definite about them, muat be treated u put of the la.ngua.ge, not u pan of 
what the language apea.b about. In this way, logic becomea much more 
linguiatic than I believed it to be at the time when I wrote the 
" Principles.., It will etiU be true that no COJ'l8t.aa.t.e o:oept logical 
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constant. occur in the verbal or symbolic expreasion of logical propositiona, 
but it will not be true that these logical conatants are namea of object&, 
aa " Socrates " ia intended to be. 

To define logic, or mathematics, ia therefore by no means eaay except 
in relation to some given aet of premisaea. A logical premiaa must have 
cerlain characteriatica which can be defined : it muat have complete 
generality, in the aenae that it mentiona no particular thing or quality ; 
and it muat be true in virtue of its form. Given a definite aet of logical 
premisses, we- can define logic, in relation to them, aa whatever they 
enable us to demonatrate. But (1) it is hard to aay wha.t ma.kt!ls a 
proposition true in virtue of ita form ; (2) it is difficult to aee any way of 
proving that the system resulting from a given aet of premiaaea is 
complete, in the aenae of emhl'acing everything that we should wish 
to include among logical propositions. Aa regards this aecond point, it 
has been customary to accept current logic and mathematics aa a datum, 
and seek the fewest premiases from which this datum can be reconatructed. 
But when doubts arise-as they have a.riaen---<loncerning the validity of 
certain parts of mathematics, this method leaves us in the lurch. ' 

Jt seems clear that there must be some way of defining logic otherwise 
than in relation to a particular logical language. The fundamental 
characteristic of logic, obviously, is that which is indicated when we say 
that logical propositions are true in virtue of their form. The question of 
demonstrability cannot enter in, since every proposition which, in one 
system, is deduced from the premisses, might, in another system, be 
itself ta.ken aa a premiss. H the proposition is complicated, this is 
inconvenient, but it cannot be impossible. All the propositions that 
are demonatrable in any admissible logical system must share with the 
premisses the property of being true in virtue of their form ; and all 
propositions which are true in virtue of their form ought to be included in 
any adequate logic. Some writers, for example Ca.map in his "Logical 
Syntax of Language," treat the whole problem aa being more a matter of 
liguistic choice than I can believe it to be. In the above-mentioned work, 
Ca.map baa two logical languages, one of which admits the multiplicative 
axiom anc! the axiom of infinity; while the other does not. I cannot 
myself regard such a matter as one to be decided by our arbitrary choice. 
It seems to me that these axioms either do, or do not, have the character­
istic of formal truth which characterizes logic, and that in the former 
event every logic must include them, while in the latter every logic 
must exclude them. I confeas, however, that I am unable to give any 
clear account of what is meant by saying that a proposition ia " true in 
virtue of its form." But this phr&Be, inadequate aa it ia, point,-, I think, 
to the problem which must be solved if an adequate definition of logic 
is to be found. 

I come lina.lly to the question of the contradictions and the doctrine 
of types. Henri Poincare, who conaidered mathematical logic to ,be 
no help in discovery, and therefore sterile, rejoiced in the conuadictions : 
" La. logistique n'est plus sterile ; elle engendre ~ contradiction ! " 
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All that mathematical logic did, however, wu to make it evident that, 
contndiotiona follow from premina81 previomly aooepted by all logician&, 
however innocent of matbematiotl. Nor weae the contradictiona all new ; 
aome dated from Greek times. 

In the " Principles," only three contradictions are mentioned : 
Bura,li Forti'• concerning the great.eat ordinal, the contradiction con­
cerning the great.eat ca.rdina.l, and mine oonoerning the 0111811811 that a.re 
not, memben of themselves (pp. 323,366, and 101). What is aid u to 
p01111ible aolutiona may be ignored, except Appendix B, on the theory 
of types ; a.nd this itself HI only a rough sketch. The literature on the 
contradictions is vut, a.nd the subject is still oontroveraia.J.. The moat 
complete treatment of the subject known to me is to be found in Cam&p'a 
·• Logical Syntax of Language " (Kegan Paul, 1937). What he a&ya 
on the subject seems to me either right or so difficult to refute that a 
refutation could not possibly be attempted in a short apace. I shall, 
therefore, confine myself to a few genera.I remarks. 

At fl.rat sight, the contradictiona seem to be of three aorta : those that 
are mathematical, those that a.re logical, and those that may be suspected 
of being due to aome more or leu trivial linguistic trick. Of the defthltely 
mathematical contradictions, thoee concerning the great.eat ordinal and 
the greatest cardinal may be taken aa typical. 

The finrt, of thele, Burali J.,'"orti'a, is as follows: Let ua arrange all 
ordinal numbers in order of magnitude; then the Jaat of theae, which we 
will call N, ia the great.eat of ordinala. But the number of all ordinals 
from O up to N is N+l, which ia greater than N. We cannot eaoape 
by suggeeting that the aeriea of ordinal numbers ha.a no last term ; for in 
that case equally this aeries it•lf ha.a an ordinal number greater than any 
term of the aeries, i.e., greater than any ordinal number. 

The aecond contradiction, that concerning the greatest ca.rdinal, ha.a 
tl,e merit of malting peculiarly evident the need for some doctrine of 
types. We know from elementary arithmetic that the number of 
combinations of a things any number 11.t a time is 2", i.e., that a clua 
of a terms hu 2" sub-clauea. We can prove that tbis proposition 
remains true when n is infinite. And Cantor proved that 2" is always 
greater than n. fff'nce tbere can be no greate.t cardinal. Yet one would 
have supposed that the claaa containing everytl1ing would have the 
greatest pnll8ible number of termK. Since, however, tih.e number of 
cl&1111e8 of th.inga exceeds the number of things, clearly cluaea of thinp 
are not things. (l will explain lliortly what this statement can mean.) 

Of the obviously logical contradiction■, one ia diacu■l8d in Chapter X : 
in the linguiatic group, the moet famou, that of the liar, waa invented by 
the Greeks. It is aa follow■ : Suppoee a man ■ays " J am lying.'' JI be 
ii lying, his trt.atemeut ill true, and tlu,refore .be ia not lying : if he it no\ 
lying, then, -..·hen \u, aayl! he ia lying, he iii lying. ThW& either hypothelia 
implies its contradictory. 

·· The logical and matbt'lmatical conwadicti.ona, &11 might be expected, 
att not. really diMti11~uW111hle ; but the linguiatio group, acoordi111 to 
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Ramsey•, can be aolved by what m&y be called, in a broad aenae, Jingoilltic 
considerations. They are diatinguished from the logical group by the 
fact that they introduce empirical notions, such as what eomebody asaerte 
or means ; and since these notions a.re not logical, it is poeaible to find 
solutions which depend upon other than logical oonaiderations. This 
rend.en possible a great simplification of the theory of types, which, as 
it emerges from Ramaey's diacuseion, oeaees wholly to &ppe&T unpla.UBible 
or artificial or a mere ad. Aoc hypo'1leeia deaigned to avoid the 
contradictions. 

The technical essence of the theory of types ia merely this : Given 
a propositional function " rpz " of which all values are true, there are 
expresaions which it is not legitimate to substitute for" z." For example: 
All values of " if z ia a man ;,: is a mortal " are true, and we can infer 
"if Socrates is a ma.n, Socrates is a mort&l" ; but we cannot infer "if the 
law of contradiction is a. ma.n, the law of contr&diction ia a mortal." 
The theory of types declares this latter set of words to be noll881U1e, and 
gives rules as to permiBBible values of "z" in "q>z." In the detail 
there are difficulties a.nd complications, but the genera.I principle is 
merely a more precise form of one that hu always been recognized. 
In the older conventional logic, it was customa.ry to point out that such 
a form of words as " virtue ia triangular " ie neither true nor false, but 
no attempt was ma.de to arrive at a definite aet of rules for deciding whetber 
a given aeries of words was or was not aignifica.nt. Thia the theory of types 
a.ohieves. Thus, for example I stated above tha.t " claBSeB of things are 
not things." This will mean : " If • z ia a member of the claaa a ' is a 
proposition, a.nd 'rpx' is a. proposition, then ',pa.' is not a proposition, 
but a. meaningleu collection of aymbola." 

There are still ma.ny controversial questions in mathematical logic, 
which, in the above pages, I have made no attempt to aolve. l have 
mentioned only those matters as to which, in my opinion, there ha.a been 
aome fairly definite a.dva.nce since the time when the " Prilll'iplea " watt 
written. Broadly apeaking, I still think tl1ia book ia in the right where it 
disagrees with what bad been previously held, but where it agrees with 
older t;heoriea it is apt to be wrong. The cha.nges in philoaophy which 
seem to me to be called for are partly due to the technical advances of 
n1&thematical logic in the intervening thirty•fouT years, whicli have 
simplified tl1.e a.pparaws of primitive ideaa and propositions, and have 
swept away many apparent entities, such as cl&8M'B, points, and instants. 
Broadly, the :result ia an outlook which is lees Platonic, or lees rea.list in tile 
mediaeval aenae of the word. How far it ia poaaible to go in the direction 
of nominaliam remains, to my mind, an unaolved question, but one which, 
whether completely soluble or not, can only be adequately investigat.ed 
by means of mathematical logic. 

P'nuudat,ion• of M11themat,i8. .K.p,1 P1111J, 1131, p.to ff. 
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THE present work hu two main object:s. One of these, the proof 
that all pure mathematics deals exclusively with concepts definable 

in terms of a very small number !)f fundamental logical concepts, and 
that all its propositions are deducible from a very small number of 
fundamental logical principles, is undertaken in Parts 11.-VII. of this 
Volume, and will be estahlillhed by strict symbolic reasoning in Volume 11. 

'l'he demonstration of this thesis has, if I am not mistaken, all the 
certainty and precision of which mathematical demonstrations are capable. 
As the thesis is "ery recent among mathematicians, and i11 almost 
universally denied by phiJosophers, I have undertaken, in this volume, 
to defend its various parts, as occasion arose, against such adverse 
theories &11 appeared most widely held or most diflk-ult to disprove. 
I have also endeavoured to present, in language as untechnical &11 

possible, the more important stages in the deduti.ions by which the 
thesis is established. 

'I'be other object of this work, which occupies Part I., is the 
explanation of the fundamental concepts which mathemati01 accepts 
as indefinable. 1iiis is a purely philosophical task, and I cannot flatter 
myself that I ·have done more than indicate a vast field of inquiry, and 
give a sample of the methods by which the inquiry may be conduc:ted. 
The dillCU88ion of indefinables-which fonns the chief part of philosophical 
logic-is the endeavour to see clearly, and to make others aee clearly, 
the entities concerned, in order that the mind may have that kind of 

aaiuaintance with them which it has with redness or the taste of a 
pineapple. Where, as in the present case, the indefinables are obtained 
primarily as the necessary nsidut! in a process of analysis, it is often 
easier to know that there must ~ such entities than actually to pen.'eive 
them ; there is a pnx-esa analogou11 to that which nsulted in the discovery 
of Neptu~, with the difference that the 6nal statJe-tbe eearch with a 
mental teleacope for the entity which baa been inferred-is often the 
mott difficult part of the ~king. In the caae of claases, I must 
confess, I have failed to pereeive any concept fulfilling the conditiona 
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requisit.e (or the notion o( clan. And the <.'Ontradiction disc,'Ulllled in 
Chapter x. proves that KOmething is amillll, but what this is I have 
hitherto (ailed to discover. 

1.'he second volume, in which I have had the great good fortune 
to aecure the c.-ollaboration o( Mr A. N. Whitehead, will be addressed 
exclusively to mathematicians; it will contain chains o( dedm,-tions, 
from the premisses o( symbolic logic through Arithmetic, finite and 
infinite, to Geometry, in an order similar to that adopted in the present 
volume; it will also contain various original developments, in whiqh the 
method o( Professor Pea.no, as supplemented by the Logic o( Relations, 
has shown itself a powerful im1trument of mathematical inve11tigation. 

The present volume, which may be reb"arded either as a commentary 
upon, or as an introduction to, the second volume, is addressed in equal 
measure to the philosopher and to the mathematician ; but some parts 
will be more int.eresting to the one, othel"H to the other. I should advise 
mathematicians, unless they ai-e specially interested in Symbolic Logic, 
to begin with Part IV., and only refer to earlier parts as occasion arises. 
1'he following portions are more 11pec.-ially philosophi<"al : Part I. 
(on1itting Chapt.er 11.); Part II., Chapters XI., xv., XVI., XVII.; Part III.; 
Part IV., § 207, Chaptel"H xxv1., xxvn., xxxI.; Part V., Chapters XJ.I., 
x1.n., XLIII.; Part VI., Chapters L., LI., J.11.; Part VII., Chapten 1.111., 

1.1v., 1.v., LVlI., Lvm.; and the two Appendices, which belong to Part I., 
and should be read in connection with it. Professor Frege's work, which 
largely anticipat.es my own, was (or the most part unknown to me when 
the printing of the present work began ; I had HeeD. his Grun<J,guelze 
der ..4rithmdik, but, owing to the great difficulty of his symbolism, I had 
(ailed to gr&11p its importance or to understand its contents. The only 
method, at so late a stage, of doing jURtit-e to his work, was to devote 
an Appendix to it; and in some pointli the ,·iews contained in the 
Appendix differ from those in C.,'hapter VI., eHpecially in I 71, 78, 74. 
On 11uestfons diflClllllled in the11e sections, I discovered errors after p&1111ing 
the sheets (or the p,iss ; thette en-ors, of which the chief are the denial 
of the null-clMB, and the identification o( a term with the cl&IIH whose 
only member it ifi, arc rectified in the AppendiceK. 'The subjec.-ts 
treated are so diffic."Ult that I feel little confidence in my present 
opinions, and regard any t-ondm1iom1 which may he advocated as 
essentially hypotht!llell. . 

A (ew word11 RII to the origin o( the pmient work may Hel'Ve to 
Khow the importan~ of the quections dit1eu11Med. .About 11ix years ago, 
I began an inve11tigation into the philosophy of I>yn1,mics. I waa 
met by the difficulty that, when a partide iR icubject to HCveral fo~ 
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no one of the component accelerationa actually occur-. but ·· only 
the resultant acceleration, of which they are not parts; thi• fad 
rendered illWIOrf such cau•tion of particulan by partieulal."11 , .aa ii 
affirmed, at firat sight, by the law of gravitation. It appeared also that 
the difficulty in regard to absolute motion ia insoluble on a relational 
theory of space. From these two questions I wq led .to a re.:exarnination · 
of the principles of Geometry, thence to the philosophy of continuity 
and infinity, and thence, with a view to discovering the meaning of the 
word any, to Symbolic Logic. 'The final outcome, as regards the 
philoeophy of Dynamics, is perhapi rather slender; the reason of this 
is, that almost all the problems of Dynamics appear to me empirical, 
and therefore outside the 8(,'0pe of such a work as the pre8t!llt, Many 
very interesting questions have had to be omitted, especially in Part.a 
VI. and VII., as not rele,·ant to my purpose, which, for fear of 
misunderstandiDgs, it may be well to explain at this stage . 

• When actual objects are counted, or when Geome:try and Dynamics 
are applied to actual space or M,-tual matter, or when, in any other way, 
mathematit.-al :reasoning is applied to what exists, the reasoning employed 
has a form not dependent upon the obja-ts to which it is applied being 
just those obja-ts that they are~ but only upon their having certain 
general properties.• In pure mathematk"S, &<,-tual objects in the. world 
of existence will never be in question, but only hypothetical objects 
having those general properties upon which depends whatever deduction 
is being considered ; and these general properties will always be 
expressible in terms of the fundamental concepts which I have called 
logical coni1tants. Thus when space or motion is spoken of in pure 
mathematics, it is not u-tual space or actual motion, as we know them 
in experience, that are spoken of, but any entity p08llelllling those abstl'a(.'1; 
general properties of spat.-e or motion that are employed in the reasonings 
of geometry or dynamics. The question whether theae propertiec belong, 
as a matter of fact, to actual space or actual motion, is irrelevant t.o pure 

.· mathematics, and therefore to the preaent work, being, in my opinion, 
a purely empirical ,question, to be investigated in the laboratory or the 
observatory. Indirec:,-tly, it is true, the diMCU88iom1 connected with pure 
mathematicll have a very important bearing upon such empirical <Jue&tionst 
sincie mathematical 11pace and n1otion are held by man.v, perhaps moat, 
philosophera to be Helf-eontradietory, and therefore necessarily diff'erent 
from .•tual •ttpace and motion, whcrea.s. if the views advocated in the 

. following pages be valid, no eoch Mell-contradictions de ,to be found in 
mathematical 11pac,e and motion. But extra-matheroatical eoneiderati~ 
.al this kind have been almocd wholly e,u.~tuded from the pNMmt work.. 
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On fundamental questiona of philoaophy, my position, in all it.a chief 
features, is derived from Mr G. E. Moore. I have accept.ed ti.>m him 
the non-existential nature of propmitions ( except such u happen to 
uaert esiatence) and their independence of any knPing mind; alao 
the pluralism which nprd.1 the world, both that of existent.a and 
that of entities, u compoaed of an infinite number of mutually 
independent eutitiea, with relations which are ultimate, and not 
reducible to adjectives of their terms or of the whole which these 
compoae. Before learning these views from him. I found my.elf· 
completely unable t.o conatn1ct any philosophy of arithmetic, wWreu 
their acceptance brought about an immediate liberation from a large 
number of difficulties which I believe t.o be otherwise insuperable. 
The doctrines j1111t mentioned are, in my opinion, quite indispemable 
to any even tolerably 11&tisfactory philosophy of mathematics, u I hope 
the following pagea will show. But I must leave it to my read.en to 
judge how far the reasoning 888Umes these doctrines, and how far it 
supports them. Formally, my premislles are simply 888umed; but the 
fact that they allow mathematics to be true, which moat current 
philosophies do not, is surely a powerful argument in their favour. 

In Mathematics, my chief' obligations, as is indeed evident, are to 
Georg Cantor and Profe880r Peano. If I had become acquainted 
800ner with the work of Profesaor Frege, I should have owed a 
great deal to him, but as it is I arrived independently at many 
results which he had already establi11hed. At every stage of my work, 
I have been assisted more than I am expl'e811 by the suggeations, the 
critici1111s, and the generous encouragement of Mr A. N. Whitehead; 
he alao has kindly read my proofs, and greatly improved the final 
~preaaion of a very large number of pauages. Many uaeful hints 
I owe aLio to Mr W. E. Johnson; and in the more philOIOphical parts 
of the book I owe much to Mr G. E. Moore besides the general position 
which underlies the whole. 

1Jt the endeavour to cover 80 wide a field, it hu been impouible to 
acquire an exhaustive knowledge of the literature. There are doubtleu 
many important works with which I am unacquainted ; but where the 
~ of thinking and writing neceuarily absorba ao much time, 1uch 
ignorance, however regrettable, aeems not wholly avoidable. 

Many words will be found, in the COW'lle of diacW1Sion~ to be defined 
in aen1e9 apparently departing widely from eommon utap. Such 
departures, I must ask the teader to believe, are never want.on, but have 
been made with great reluctance. In philoaophical matt.en, they have 
been neceasitat.ed mainly by two eawiea. Fint, it often happens tbat 
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two cognat.e uotiona are both to be conaidered, and that language hu 
two names for the one, but none for the other. It is then highly 
convenient to diatinguish between the two names eommonly uaed u 
aynonyma, keeping one for the UIIU&l, the-other for the hitherto namel• 
aeme. The other caUBe arises from pbiloaopbieal dill8iffl!lllelit with 
received views. Where two qualities are commonly auppoad ineeparably 
conjoined, but are here :regarded as aeparable, the name which hu 
applied to their combination will usually have to be restricted to one 
or other. For example, propositions are commonly regarded as (l) true 
or falae, (I) mental. Holding, aa I do, that what is true or false is not 
in general mental, I require a name for the true or falae as such, and 
this name can scarcely be other than propoaition. In such a cue, the 
departure from uuge is in no degree arbitrary. As regards mathematieal 
terms, the nece1111ity for establishing the existence-theorem in ea.eh case­
i.e. the proof that there are entities of the kind in question-has led to 
many definitions which appear widely different from the notions U8Ually 
attached to the tenns in question. Instances of this are the definitions 
of cardinal, ordinal and complex numbers. In the two former of these, 
and in many other cases, the definition as a claaa, derived from the 
principle of abstraction, is mainly re,;iommended by the fact that it 
leaves no doubt u to the existence-theorem. But in many instances of 
such apparent departure from usage, it may be doubted whether more 
has been done than to give precision to a notion which had hitherto 
been more or less vague. 

For publishing a work containing 110 many unsolved difficulties, my 
apology is, that investigation revealed no near proepect of adequately 
resolving the contradiction discmsed in Chapter x., or of acquiring a 
better insigl1t into the nature of cla.es. The repeated discovery of erron 
in solutions which for a time had satisfied me caused these problems to 
appear such as would have been only concealed by any seemingly •tis­
factory theories which a slightly longer reflection might have produced ; 
it seemed better, therefore, merely to state the diflicolties, than to wait 
until I had become penuaded of the tzuth at some elmoet cert.ainly 
erroneous doctrine. 

My thanks are due to the Syndics of the Univenity Pre., and to 
their Secretary, Mr R. T. \\:right, for their kiDdnefl8 and courtAlly 
in regard to the preaent volume. 
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CHAPTER I. 

DEFINfflON OF PURE MATHEMATI03. 

1. Puu Mathematics is the. class of all propositions of the fonn 
"p implies q,,. where p and q are propositions containing one or more 
variables, the same in the two propositions, and neither p nor q contaiu 
any constants except logical comtants. And logical constant.. are all 
notions definable in terms of the following : Implication; the relation 
of a tenn to a class of which it is a member, the notion of "°' llatd, ' 
the notion of relation, and such further notions as may be involved 
in the general notion of propositions of the above fonn. In addition 
to these, mathematics UIJt8 a notion which is not a conetitqent of the 
propositions which it considers, namely the notion of truth. 

9. 'The above definition of pure mathematics is, no doubt, ll>rlle­
what unusual. Its various parts, nevertheless, appear t.o be capable of 
exact justification-a justification which it will be the object of the 
present work to provide. It will be shown that whatever has, in' the 
past, been regarded as pure mathematics, is included in our definition. 
and that whatever else is included possesses those marks by which,, 
ma.thematics is commonly though vaguely distinguished from other 
studies. The definition professes to be, not an arbitrary decision w 
1111e a common word in an uncommon signification, but rather a ~ 
analysis of the ideas which, more or less uncomciously, are implied in 
the ordinary employment of the tenn. Our method will therefore be 
one of analysis, and our problem may be called phil080phical-in the, , 
aense, that is to say, that we seek to pui from the complex to the 
simple, from the demomtrable to its indemonstrable premiwa But , 
in one respect not a fe'W' of our discussions will differ ,from thoee tbat 
are U8U&lly called philOIIOphical. We shall be able, thanks to the laboun, 
of. the mathematicians themselves, to &rive a.t, certainty in regard to 
mmt ,0, the queat:ions with which we shall be eoncerned; and ...... , 
thole capable of an exaet, solutioD we shall find many of the problem• 
w'bich, in the ~ have been involved in all the tndjtional' ~ty ' 
of 'philoeophical mile. The nature of' number, of., b;iflnity, of ,pace, 
~ ,and motion, and of ~~ intenmce i-1f, are all .q~ ,: 
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to which, in the present work, an answer professing itself demomtrable 
· with mathematical cert.ainty will be given-an answer which, however, 
consists in reducing the above problems to problems in ~ logic, 
which last will not be found satisfactorily solved in what follows. 

3. 'The Philosophy of Mathematics has been hitherto as con­
troversial, obscure and unprogressive as the other branches of philosophy. 
Although it was generally agreed that mathematics is in some sense 
true, philosophers disputed as to what mathematical propositions really 
meant : although something was true, no two people were ~- as to 
what it was that was true, and if something was known, no ~ knew 
what it was that was known. So long, however, as this was dqubtful, 
it could hardly be said that any certain and exact knowledge was' to be 
obtained in mathematics. We find, accordingly, that idealist:$ have 
tended more and more to regard all mathematics as dealing with mere 
appearance, while empiricists have held everything mathematical to be 
approximation to some exact truth about which they had nothing to 
tell us. This state of things, it must be confessed, was thoroughly 
unsa.tisfactory. Philosophy asks of Mathematics: What does it mean? 
Mathematics in the past was unable to answer, and Philosophy answered 
by introducing the totally irrele\>'ant notion of mind. But now 
Mathematics is able to answer, so far at least as to reduce the whole 
of its propositions to certain fundamental notions of logic. At this 
point, the discussion must be resumed by Philosophy. I shall endeavour 
to indicate what are the fundamental notions involved, to prove at 
length that no others OCl.'lll' in mathematics, and to point out briefty 
the philosophical diffic,,'Ulties involved in the analysis of these notions. 
A complete treatment of these difficulties would involve a treatise on 
Logic, which will not be found in the following pages. 

4. There was, until very lately, a special difficulty in the principles 
of mathematics. It seemed plain that mathematics consists of deductions, 
and yet the orthodox accounts of deduction were largely or wholly 
inapplicable to existing mathematics. Not only the Aristotelian 

· syllogistic theory, but also the modern doctrines of Symbolic Logic, 
were either theoretically inadequate to mathematical reasoning, or at 
any rate required SQ.eh artificial forms of statement that they could not 
be practically applied. In this fact lay the. strength of the Kantian 
view, which asserted that mathematical :reasoning is not strictly formal, 
but always uses intuitions, i.e. the a priori knowledge of space and 
time. Thanks to the progress of Symbolil' Logic, especially • treated 
by l'rofessor Peano, this part of the Kantian philosophy is now capable 

. ,of a final and irrevocable refutation. By the help of ten principles 
of deduction and ten other premisses of a geneml logical natute 
(e.g. "iiµplication is a relation"), all mathematics can be strictly ana 

. :formally dedu• ; and all the entities that occur in mathematic:ar. cail;,. 
, .·be~ in terms of those-~ occur in the above twenty prem--.: .. 

Downloaded from https://www.holybooks.com



In this stat.ement, Mat.h.etnatica includt!S not only Arithmeti~ · and · 
Analysis, bat also Geometry, Euclidean and non-Euclidean, · ta.tioaal : 
Dynamics, and an indefinite number of other studies still unborn or in. 
their infancy. The fad; that all Mathematics is Symbolic Logic is one . 
of the gre.test discoveries of our age; and when this fact. bas, been 
established, the remainder of the principles of mathematics ~sists in. 
the analysis of Symbolic Logic itself. · 

I. The general doctrine that all mathematics is deduction by 
logical principles from logical principles was strongly advocated by 
Leibniz, who urged constantly that axioms ought to be proved and 
that all except a few fundamental notions ought to be defined. But 
owing partly to a faulty logic, partly to belief in the logical necessity 
of Euclidean Geometry, he was led into hopeless errors in the endeavour 
to carry out in detail a view which, in its general outline, is now known 
to be correct•. The actual propositions of Euclid, for example, do not 
follow from the principles of logic alone ; and the perception of this fact 
led Kant to his innovations in the theory of knowledge. But since · 
the growth of non-Euclidean Geometry, it has appeared that pure 
mathematics has no concern with the question whether the axioms 
and propositions of Euclid hold of actual space or not: this is a quefltion 
for applied mathematics, to be decided,· so far as any decision is possible, 
by experiment and observation. What pure mathematics asserts is merely · 
that the Euclidean propositions follow from the Euclidean axiorns--i.e. 
it asserts an implication: any space which has such and such properties 
has also such and such other properties. Thus, as dealt with in pure 
mathematics, the Euclidean and non-Euclidean Geometries are equally 
true: in each nothing is affirmed except implications. All propositions 
as to what actually exists, like the space we live in, belong to experi­
mental or empirical sd.ence, not to mathematics; when they belong to 
applied mathematics, they arise from giving to one or more of the , 
variables in a proposition of pure mathematics some constant value 
satisfying the hypothesis, and thus enabling us, for that value of the 
variable, actually to assert both hypothesis and consequent instead of 
asserting merely the implication. We assert always in mathematica . 
that if a certain assertion p is true of any entity x, or of any set of 
entities ;r, !/, z, ... , then some other assertion 9. is true of those entities; 
but we do not 8888rl either p or q separately of our entities. We assert 
.a relation between the assertions p and 9., which. I shall calljormql 
::_,,.,,.-• _.,-!'"'"",_ion. ' 

,6. . Mathematical propositions are not only cba.racteri,.ed by the· 
fact that they a.ssert implications, but also by ·the fact that they contain . 
~. The notion of the ,variable is one of the most difficult with 

. ~eh Logic has to .deal, and in the p~nt work a satisfactory theory 
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u to ita · nature, in spite of much diacussitm, will hardly be found. 
For the present, I only wish to make it plain that there are variablea 
in all mathematical propositions, even where at first sight they might 
eeem to be absent. Elementary Arithmetic might be thought to form 
an exception: 1 + 1 • 2 appean neither to contain variables nor to 
aasert an implication. But 88 a matter of fact, as will be shown in 
Part II, the true meaning of this proposition is: " If z is one and 
1/ is one, and z differs from y, then .r and y are two." And this 
proposition both contains variables and asaerts an implication. We 
shall find always, in all mathematica.l propositions, that the w~~ /J'1if/ 
or Mmie occur; and these words are the marks of a variable and a. :formal 
implication. Thus the above proposition may be expressed in th,:ifonn: 
"Any unit and any other unit are two units." The typical propqeition 
of mathematics is of the fonn "4' (.r, y, z, ... ) implies ,y (.r, y, 2r, ... ), 

whatever values .r, y, z, . . . may have,, ; where ff, (.r, y, ,:, ... ) and 
· V' (.r, y, z, ... ), for every set of values of .r, !/, ,:, ... , are propositions. 
It is not asserted that <f, is always true, nor yet that ,fr is always true, 
but merely that, in all cases, when ff, i11 false as much as when 4' is true, + follows from it. 

The distinction between a variable and a constant is somewhat 
obllcured by mathematical usage. It is customary, for example, to speak 
of parameters as in some sense constants, but this is a usage which 
we shall have to reject. A constant is to be something absolutely 
definite, concerning which there is no ambiguity whatever. Thus 1, 2, 
8, e, .,,., Socrates, are constants; and so are man, and the human race, 
past, pl"ellent and future, considered collectively. Proposition, implica­
tion, class, etc. are constants ; but a proposition, any proposition, some 
proposition, are not constants, for these phrases do not denote one 
definite object. And thus what are called para.meters are simply 
variables. Take, for example, the equation a.x+by+c=O, considered 
88 the equation to a straight line in a plane. Here we say that :rand !I 
are variables, while a, b, c are constants. But unless we are dealing 
with one absolutely particular line, •y the line from a particular point 
in London to a particular point in Cambridge, our a, b, c are not 
definite numbers, but stand for any numbers, and are thllti also variables. 
And in Geometry nobody does deal with actual particular lines ; we 
always discuss a1,y line. The point is that we collect the various 
couples a:, y into classes of claMes, each cllUIS being defined as thoee 
oouples that have a certain fixed relation to one tiiad (a, b, c). But 

. from cl&dl'I to cla.'i.'I, a, b, c also vary, and are therefore properly variables. 
'1. It i11 C\Jljtomary in matbematic:a to regard our variables • 

re.trieted to certain cl&Nle8 : in Arithmetic, . for instance, they are 
lllpposed to stand for numbers. But this only · naeans that if ,they 
mnd for numberM, they satisfy some formula, i.e. the hypo~ that. 
they ate numbers implies the fonauJa. This. then, is what :is really 

Downloaded from https://www.holybooks.com



8-8] Defimtion, of Pure JC~ f 

888e1'ted, and in this propoaition it is no longer nec:ie..ry· that out 
variables should be numbers: the implication holds equally when they· 
ate not so. Thus, for example, the proposition ":e and 11 are numbers 
implies (x+y)'•.r'+!&y+g'" holds equally if for :e and 1/ we aubm-

""--.tute Socrates and Plato•: both hypothesis and conaequent, in this eaae. 
be false, but the implication will still be true. Thus in every 

ition of pure mathematics, when fully sta.ted, the variables ha• 
bsolutely unrestricted field: any conreiva.ble entity may be subeti-

for any one of our variables without impairing the t.ruth of our 
. ition. . . 

· 8. We ca.n now understand why the constants in ma.thematics are 
to be restricted to logical constants in the sense defined abo\'e, The 
process of transforming constants ·in a. proposition into variables leads 
to what is called generalization, and gives us, as it were, the formal· 
essence of a. proposition. Mathematics is interested exclusively in 'IIP'' 
of pt'OpOSitions ; if a proposition p containing only constants be propoeed, 
and for a certain one of its terms we imagine others to be successively 
substituted, the result will in general be sometimes true a.nd sometimes 
false. 'Thus, for example, we have "Socrates is a man"; here we turn 
Socrates into a variable, and consider "a: is a man." Some hypoihesea 
aa to x, for example, "x is a Greek," insure the truth of "x is a. man~; 
thus ".r is a Greek" implies ":r is a man," and this holds for all values of 
:r. But the statement is not one of pure mathematics, because it depend• 
upon the particular nature of Greek and man. We ma.y, however, vary 
these too, and obtain: If a and b are classes, and a is contained in 6, 
then "a: is an a""' implies "x is a b." Here at last we have a proposition 
of pure mathematics, containing three variables and the constants clan, 
ccmtaiined in, and those involved in the notion of formal implications with 
variables. So long as any term in our proposition ea.n be tumed into 
a variable, our proposition can be generalized; a.nd so long as this is 
possible, it is the business of mathematics to do it. If then, are ae-feral 
chaim of deduction which differ only as to the meaning of the symbol., 
so that propositions symbolically identical become capable ot several 

. interpretations, the proper course, piathematically, is to form the elaaa of 
meanings which may attach to the symbols, and to aeaert that the 
formulfl. in question follows from the hypothesis that the symbols belong 

. :to the class in question. In this way, symbols which stood fQt const.ante 
becoine transformed into variables, and new constants are subttitut.ed• 
consisting of claases to which the old coaist.ants belong. C88E!I of. suclt. 
generalir.ation a.re 10 frequent that many will occur at once to ~-, 
mathematician, and innumerable instanee,s will be given in the pre.ent 
work. Whenever two sets of terms ha,·e mutual relations of the aame 

. . . 
* It, ia neoeuar, to suppoee arithmetical ~ ancl multipliea.tkut defined (• 

may be euily done).• that the abcn'e formula.~ ~eant •• .r an4, ato •.n-•:- . . 
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type, the same fo~ of deduction will apply t.o both. For ex.ample, the 
mutual relations of Points in a Euclidean plane are of the same type u , 
those of the complex numbers; hence plane geometry, C01111idered ae a 

· branch of pure mathematics, ought not to decide whether its variables 
are points or complex numbers or some other set of entities having the 
same type of mutual relations. Speaking generally, we ought ,to deal, 
in every branch of mathematics, with any cl888 of entities whose mutual 
relations are of a speci6ed type; thus the class, as well as the particular 
term considered, becomes a variable, and the only true constants are the 
types of relations and what they involve. Now a type of relati~ is to 
mean, in this discUS8ion, a class of relations characterized by ~•, above 
formal identity of the deductions possible in regard to the ''1lrious 
members of the class; and hence a type of relations, as will appe~ more 
fully hereafter, if not already evident, is always a class definable in 
terms of logical constants•. We may therefore define a type of relations 
as a class of relations defined by some property definable in terms of 
logical constants alone. 

9. Thus pure mathematics must contain no indefinables except 
logical <--onstants, and consequently no premisses, or indemonstrable 
propositions, but such as are concerned exclusively with logical constants 
and with variables. It is precisely this that distinguishes pure from 
applied mathematics. In applied mathematics, results which have been 
shown by pure mathematics to follow from some hypothesis as to the 
variable are actually asserted of some constant satisfying the hypothesis 
in question. Thus terms which were variables become constant, and a 
new premiss is always required, namely: this particular entity satisfies 
the hypothesis in question. Thus for example Euclidean Geometry, as a 
branch of pure mathematics, consists wholly of propositions having the 
hypothesis "S is a Euclidean space... If we go on to: "The space 
that exists is Euclidean," this enables us to assert of the space that exists 
the consequents of all the hypotheticals constituting Euclidean Geometry, 
where now the variable S is replaced by the constant actual space. But 
by this-step we pass from pure to applied mathematics. 

10. 'l'he conne<."tfon of mathematics with logic, according to the 
abo,·e account, is exceedingly close. The fact that all mathematical 
constants are logical constants, and that all the premisses of ma.thematics 
iue concerned with these, gives, I believe, the precise statement of what 
philosophers have meant in asserting that .mathematics is a priori. The 
fact is that, when once the apparatus of logic has been accepted, all . 
mathematics neceS88.rily follows. The logical coMtants themselves. are 
to be defined only by enumeration, for they are so fundamental that a~ 
the properties by which the class of them might be defined presuppose 

* One-one, many-one, transitive, eymmetrical, are instances ot types of relatkml. 
·. ~ which wuha,11 be often concerned. · · · 
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some terms of the class. But practically, the method of discovering the 
logical constants is the analysis of symbolic logic, which will be the 
business of the following d1&pters. The distinction of mathematics from 
logic is very arbitrary, but if a distinction is desired, it may be ma.de aa 
follows. Logic consists of the premisses of mathematics, together with 
all other propositions which are concerned exclusively with logical 
constants and with ,·aria.hies hut do not fulfil the above definition of 
mathematics(§ 1). Mathematics consists of all the consequences of the 
above premisses which assert formal implications containing variables, 
together with such of the premisses themselves as have these marks. 
Thus some of the premisses of mathematics, e.g. the principle of the 
syllogism, "if p implies q and q implies r, then p implies r,'" will 
belong to mathematics, while others, such a.., "implication is a relation," 
will belong to logic but not to mathematics. But for the desire to 
adhere to usage, we might identi~y mathematics and logic, and define 
either as the cl&.'!S of propositions containing only variables and logical 
constants ; but respect for tradition leads me rather to adhere to the 
above distinction, while recognizing that certain propositions belong to 
both sciences. 

From what has now been said, the reader will perceive that the 
present work has to fulfil two object'!, first, to show that all mathematics 
follows from symbolic lobric, and secondly to discover, as far a.~ p011Sible, 
what are the principles of symbolic logic itself. The firHt of these objects 
will be pursued in the following Parts, while the second belongs to 
Part I. And first of all, as a preliminary to a critical analy1,1is, it will 
be necessary to give an outline of Symbolic Logic considered simply as a 
branch of mathematics. This will occupy the following chapter. 
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CHAPTER II. 

SYMBOLIC LOOIC. 

11. S11110uc or Formal Logic-I shall uae these terms 88 

synonyms-ii the study of !he varioUB general types of deduction. 
The word ,g,nbolic designat.es the subject by an accidental ch~t:eriatic, 
for the employment of mathematical symbols, here 88 elsewhere, is merely 
a theoretically irrelevant convenience. The syllogism in all it.a figures 
belongs to Symbolic Logic, and would be the whole subject if all 
deduction were syllogistic, 88 the scholastic tradition supposed. It is 
from the recognition of asyllogistic inferences that modem Symbolic 
Logic, from Leibniz onward, has derived the motive to progress. Since 
the publication of Boole's La• of Thought (1854~ the subject has 
been pursued with a est.a.in vigour, and has att.ained to a very consider­
able technical development•. NevertheleM, the subject achieved almost 
nothing of utility either to philosophy or to other branches of mathematics, 
until it was transformed by the new methods of Professor Peanot, 
Symbolic Logic has now become not only absolut:ely essential to every 
philoeophical logician, but also necessary for the comprehension of 
mathematiC!I' generally, and even for the succeasful practice of mt.ain 
branchea of mathematics. How uaeful it is in practice can only be 
judged by those who have experienced the increaae of power derived 
from atttttiring it; it.a theoretical functions mUBt be briefty set forth in 
the preaent chapt:ert 

* By far the moat complete account of the non-Peaneaque methods will be foUDd 
i11 the three volumea of Schroder, Vorl,.1ungn iblr die ..u,m..,. ¥, IAipsig, 
1880, 1891, .1896. 

t See Fonaultrire de JlatAimlt,p11, Turin, 1896, with eubaequent edition& in 
lit.er ye&ni alao he tle JlatAlrnaliflll, Vol. vu, No. 1 (1900). The editiona of 
the 111rmulatN will be quoted u F. 1895 and eo on. The ""1u, di ~, 
,rhicb wu originally the Rinilta di Jfatelllltiel, will be referred to u R. d. JI. 

t In what follows tbe main outli1111 are due t.o Profeaor Pea.no, except, 11 
nptu reJationa; evtD in thoee ealle8 where I depart from hia vien, the problana 
OOlllidered have been nggeat.ed to ID8 by Ilia worke. 
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11. Symbolic Logic is eaentially concerned with infenmce in 
general•, and is distinguished from various special brancbel of mathe­
matics mainly by its generality. Neither rnathematiee nor symbolic 
logic will study such spedal relations as (say) temporal priority, but 
mathematics will deal explicitly with the class of relatiODII pomeesing 
the fonnal properties of temporal priority-properties which ue 
summed up in the notion of continuityt. And the formal properties 
of a relation may be defined as those that can be expressed in te:nm 
of logical constants, or again as those which, while they are preaerved, 
permit our relation to be varied without invalidating any inference in 
which the said relation is regarded in the light of a variable. But 
symbolic logic, in the narrower aense which ia convenient, will not 
investigate what inferences are pgssible in respect of continuous relatiom 
(i.e. relations generating continuous series); this investigation belonga 
to mathematics, but is still too special for symbolic logic. What 
symbolic logic does investigate is the general rules by which inferences 
are made, and it requires a classification of relations or propositions 
only in so far as these general rules introduce particular notions. The 
particular notions which appear in the propositions of symbolic logic, 
and all others definable in terms of these notions, are the logical 
constants. The number of indefinable logical <-'Oll8tants is not great : 
it appeani, in fact, to be eight or nine. These notions alone form the 
subject-matter of the whole of mathematics : no others, except such 
as are definable in terms of the original eight or nine, occur anywhere 
in Arithmetic, Geometry, or rational Dynamics. For the technical 
study of Symbolic Logic, it is convenient to take as a single indefinable 
the notion of a formal implication, i.e. of such propositions as um is 
.a man implies :r is a mortal, for all values of :r "-propositions whoee 
general type is: "(/, (:r) implies + (:r) for all values of z," where (/, (.r), 
,fr (x), for all value!l of .r, are propositions. The analysis of this notion 
.of formal implication belongs to the principles of the subje<.'t, but is not 
required for its fonnal development. In addition to this notion-, we 
require as indefinables the following: Implication between propositions 
not containing variables, the relation of a term to a class of which it 
is a member, the notion of 61.l,Cl,, tliat, the notion of relation, a.nd-truth. 
By means of these notions, all the propositions of symbolic logic can be 
.stated. 

13. The subject of Symbolic Logic oonsms of tb.rt,e parts, the 
,calculus of propositions, the calculus of classes, and the calculus of 
relations. Between the first two, there is, within limits, a certain 
parall~lism, which arises as follows: In any symbolic espreasion, the 

* I may aa well aay at once that I do not disti11gui1h between inferenoe and 
deduction. What is c:alled induction appears to me to be either tlMgUilled dedoetiou 
.or a mere method of making plausible pellNII 
. t See below, Part V, Chap. xxxv1. 
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letters may be interpreted as classes or as propositions, and the relation 
of inclusion in the one case may be replaced by that of formal implication 
in the other. Thus, for example, in the principle of the syllogism, if 
a, b, c be classes, and a is contained in b, bin c, then a is contained in c; 
but if a, b, c be propositions, and a implies b, b implies c, then a implies c. 
A great deal has been made of this duality, and in the later editions of 
the Formul.aire, Peano appears to have sacrificed logical precision to its 
preservation•. But, as a matter of fact, there are many ways in which 
the calculus of propositions differs from that of classes. Consider, 
for example, the foil owing : " If p, q, r are propositions, and p. implies 
q or r, then p implie11 q or p implies r." This proposition is true; but 
its correlative i11 false, namely : " If a, b, c are classes, and a is contained 
in b or c, then a i11 contained in b or a is contained in t· • ., For example, 
English people are al1 either men or women, but are not all men nor yet 
all women. The fact is that the duality holds for propositions asserting 
of a variable term that it belongs to a cla.~, i.e. such propositions as 
'' x is a man," provided that the implication involved be formal, i.e. one 
which holds for all values of x. But " x is a man" is it.Helf not a 
proposition at all, being neither true nor false ; and it is not \\ith such 
entities that we are concerned in the propoKitional calculus, but with 
genuine propositions. To continue the above illustration : It is true 
that, for all values of :r, ":r is a man or a woman., either implies " x is a 
man., or implies "x is a woman." But it is false that "x is a man or 
woman., either implies "x is a man., for all values of x, or implies 
"x is a woman" for all values of x. Thus the implication involved, which 
is always one of the two, is not formal, since it does not hold for all values 
of x, being not always the same one of the two. The symbolic affinity 
of the propositional and the class logic is, in fact, something of a snare, 
and we ha\'e to decide which of the two we are to make fundamental. 
Mr l\ft,.-Coll, in an important series of paperst, has <.-ant.ended for the 
view that implication and propositions are more fundamental than 
inclusion and claHMeS ; and in this opinion I agree with him. But he 
does not_ appear to me to real~ adequately the distinction between 
genuine propositions and such as contain a real variable : thus he is led 
to sp_eak of propositions as sometimes true and sometimes false, which 
of course is impoiisible with a genuine proposition. As the dilltinl."tion 
involved is of very great importance, I shall dwell on it before proceeding 
further. A p~position, we may say, is anything that iK true or that is 

* On the points where the duality break• down, cf. Schroder, op. cit., Vol. 11, 

Lecture 21. 
t Cf. "TIie Caleulu1 of Equivalent, Statement■," ProcetJding, qf IIN Londor, 

Jlatltematieal Socidg, Vol. 1x and 1ubaequent volume1; "Symbolic Reuoning," Jrmd, 
Jan. 1880, Oct. 1807, and Jan. 1000 ; "La Logique Symbolique et ■es Application-." 
Bi61iGtA,?pll du <Jongrh lRtflf'fUltio,,ul di PAUet,opltie, Vol. ru (Pari1, 1901). I ahall in 
future quote the proeeedinga of the above CopgreM by the title eon,,w. 
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false. An expression such as ":r is a man" is therefore not a proposi­
tion, for it is neither true nor false. If we give to tr any constant value 
whatever, the expression becomes a proposition : it is thUB as it were a 
schematic form standing for any one of a whole class of propositions. 
And when we say " x is a man implies ir is a mortal for all values of (11,"' 
we are not asserting a single implication, but a class of implications ; 
we ha,·e now a genuine proposition, in which, though the letter :r appears, 
there is no real ,·ariable : the variable is absorbed in the same kind of 
way 88 the x under the integral sign in a definite integral, so that the 
result is no longer a function of x. Peano distinguishes a variable which 
appears in this way as apparent, since the proposition does not depend 
upon the variable ; whereas in " :r is a man " there are different proposi­
tions for different values of the variable, and the variable is what Pea.no 
calls real•. I shall speak of propositions exclusively where there is no 
real variable : where there are one or more real variables, and for all 
values of the variables the expression involved is a proposition, I shall 
call the expression a propoaitional function. The study of genuine 
propositions is, in my opinion, more fundamental than that of classes ; 
but the study of propositional functions appeal'K to be strictly on a 
par with that of classes, and indeed scarcely distinguishable therefrom. 
Peano, like McColl, at first regarded propositions as more fundamental 
than classes, but he, even more definitely, considered propositional func­
tions rather than propositions. }'rom this criticism, Schri.ider is exempt: 
his second volume deals with genuine propositions, and points out their 
formal differences from cl88ses. 

A. The Propositional Calculu.t. 

14. The propositional calculus is characterized by the fact that 
all its propositions have as hypothesis and as L-onsequent the assertion of 
a material implication. Usually, the hypothesis is of the form "p im­
plies p;" etc., which (§ 16) is equivalent to the assertion that the letters 
which occur in the consequent are propositions. Thus the consequent& 
consist of propositional functions which are true of all propositions. 
It is important to observe that, though the letters employed are symbols 
for variables, and the consequents are true when the variables are given 
values which are propositions, these values must be genuine propositions. 
not propositional functions. The hypothesis "p is a proposition" ia 
not satisfied if for p we put ":r is a man," but it is satimed if we put 
" Socrates is a man ., or if we put " :r is a man implies tll is a mortal for 
all values of tll." Shortly, we may say that the propositions repreaented 
by single letters in this calculus are variables, but do not contain 
variables-in the case, that is to say, where the hypotheses of the 
propositions which the calculus asserts are satisfied. 

* F. 1901, p. 2. 
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18. Our calculua studies the relation of ~ between 

propo11itiona. This relation must be diatinguiahed from the relation 
of .for,,,81 implication, which holds between propoaitional functiODS 
when the one implies the other for all values of the variable. Formal 
implication is also involved in this calculus, but is not explicitly 
1tudied: we do not consider propollitional functions in general, but 
only certain definit.e propoeitional functiona which occur in the propo-
1itiona of our calculus. How far formal implication is definable in 
tenns of implication simply, or material implication u it may be 
called, is a difficult question, which will be discu&aed in Chapter w. 
What the difference is between the two, an illustration will explain. 
'l1ie fifth propo11ition of Euclid follows from the fourth : if the fourth 
is true, 80 is the fifth, while if the fifth is false, 80 is the fourth. 
This is a cue of material implication, for both propo11itiona are abeohtte 
constant.a, not dependent for their meaning upon the BS8igning of a 
value t.o a variable. But each of them dalea a fonnal implication. 'The 
fourth states that if :e and y be triangles fulfilling certain ronditiom, 
then :e and !J are triangles fulfilling certain other conditions, and that 
this implication holds for all values of :e and g ; and the fifth states that 
if :e is an iaoticelea triangle, :e hu the angles at the base equal. The 
formal implication involved in each of these two propositions is quit.e 
a different thing from the mat.erial implication holding between the 
propoeitions as wholes; both notions are required in the propollitional 
calculus, but it is the study of material implication which specially 
distinguishes this 1ubject, for formal implication OCCU1"II throughout the 
whole of mathematim. 

It baa been customary, in treatiles on logic, t.o confound the two 
kinda of implication, and often t.o be really con■idering the formal kind 
where the material kind only was apparently involved. For example, 
when it i1 1111id that "Socrates is a man, therefore Socrat.e■ i1 a mortal," 
Socrat.ea is felt aa a variable: he is a type of humanity, and one feel■ that 
any other man would have done as well. If, instead of tke,efore, which 
implie■ ~ truth of hypothesi1 and eo111equent, we put "Socrates is a 
man implie■ Socrates is a mortal," it appean at ,once that we may 
aubatitut.e not only another man, but any other entity what.ever, in the 
place of Socrat.ea. Thus although what i1 explicitly stat.ed, in 1uch a 
cue, i1 a material implication, what is meant is a formal implication ; and 
aome effort is needed t.o confine our imagination to material implication. 

18. A definition of implication is quite impoesible. If p implies 
q, then if p is true q is true, i.e. p's truth implie■ g's truth ; also if q is 
false p is falae, i.e. q's falsehood implies p'• falsehood•. Thus truth and 
falaehood give us merely new implicatiom, not a definition of implication. 

* The ~ i■ recommeuded t.o oblerve that the maiu impliaatiom in theae 
ltat,elnel\t■ are formal, i.,. "p implie■ 9 .. .,.,_.a, iniplie■ "p'■ trut.h im,U. 9'• 
truth," while the 111horclinate implicuiom are material. 
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If p implies q, then both &1'e false or both true, or p is false and 9 true ; 
it is impossible to have q false and p true, and it is neceuary to have 
q true or p false•. In fact, the aasertion that q is true or p false tUJ'lll 
out to be strictly equivalent to "p implies q"; but 811 equivalence means 
mutual implication, this still leaves implication fundamental, and not 
definable in terms of disjunction. Disjunction, on the other hand, is 
definable in terms of implication, 811 we shall shortly eee. It follows 
from the above equivalence that of any two propositions there must be 
one which implies the other, that false propositions imply all propositiom, 
and true propositions are implied by all propositions. But these are 
results to be demonstrated; the premisses of our subject deal exclusively 
with rules of inference. 

It may lie observed that, . although implication is indefinable, 
propo,ition can be defined. Every proposition implies itself, and 
whatever is not a proposition implies nothing. Hence to say "p is a 
proposition,, is equivalent to saying "p implies p"; and this equivalence 
may be used to define propositions. As the mathematical sense of 
tJ4inition is widely different from that current among philosophers, 
it may be well to observe that, in the mathematical sense, a new 
propositional function is said to be defined when it ii; stated to be 
equivalent to (i.e. to imply and be implied by) a propositional function 
which has either been accepted as indefinable or has been defined in 
terms of indefinables. The definition of entities which are not 
propositional functions is derived from such as are in ways which will 
be explained in connection with classes and relations. 

17. We require, then, in the propositional calculus, no indefinables 
except the two kinds of implication-remembering, however, that fonnal 
implication is a complex notion, whose analysis remains to be undertaken • 

. As regards our two indefinables, we require certain indemonstrable 
propositions, which hitherto I have not succeeded in reducing to less 
than ten. Some indemonstrables there must be; and some propositions, 
such as the syllogism, must be of the number, since no demonstratidn 
is possible without them. But concerning others, it may be doubted 
whether they are indemonstrable or merely undemanstrated; and it 
should be observed that the method of supposing an axiom falae, and 
deducing the consequences of this 888Umption, which has been found 
admirable in such cases 811 the axiom of parallels, is here not universally 
available. For all our axioms are principles of deduction; and if they 
are true, the consequences which appear to follow from the employment 
of an opposite principle will not really follow, so that arguments from 
the supposition of the falsity of an axiom are here subject to · special 
fallacies. Thus the number of indem~ble propositions may be 
capable of further reduction, and in regard to some of the1n I know of 

• I may u well atate onoe for .U that tbe alternativee of a disjunction will never 
be oonsitlered •• mutually u:cluaive 'IUlle11 a:pNlllly Did to be so. 
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·no grounds f'or regarding them as indemonstrable except that they have 
hitherto remained undemonstrated. 

18. The ten axioms are the following. (1) If 'P implies q, then 
p implies q•; in other words, whatever p and q may be, "p implies tf' 
is a proposition. (!) If' p implies q, then p implies p; in other words, 
whatever implies anything is a proposition. (S) If p implies q, then q 
implies q; in other words, whatever is implied by anything is a proposition. 
(4) A true hypothesis in an implicati"on may be dropped, and the 
consequent asserted. This is a principle incapable of' formal symbolic 
statement, and illustrating the essential limitations of formaJ•sm-a 
point to which I shall return at a later stage. Before p~ing 
further, it is desirable to define the joint assertion of two propositions, 
or what is called their logical product. This definition is highly artificial, 
and illustrates the great distinction between mathematical and philo­
sophical definitions. It is as follows: If p implies p, then, if q implies q, 
pq (the logical product of' p and q) means that if p implies that q implies 
r, then r is true. In other words, if p and q are propositions, their joint 
assertion is equivalent to saying that every proposition is true which is 
such that the fil'llt implies that the second implies it. We cannot, with 
formal correctness, state our definition in this shorter form, for the 
hypothesis "p and q are propositions" is already the logical product of 
"p is a proposition" and "q is a proposition." We can now state the 
six main principles of' inference, to each of which, owing to its importance, 
a name is to be given; of these all except the last will be found in 
Peano'11 accounts of the subject. (5) If p implies 1' and q implies q, 
then pq implies p. This is called aimplYication, and asserts merely that 
the joint assertion of two propositions implies the assertion of the first 
of' the two. (6) If p implies q and q implies r, then p implies r. This 
will be called the 8'!Jllogi8'1Tl. (7) If q implies q and r implies r, and 
if p implies that q implies r, then pq implies r. This is the principle of 
importation. In the hypothesis, we have a product of three propositions; 
but this can of course be defined by means of the prodm,-t of two. 
The principle states that if p implies that q implies r, then r follows 
from the joint assertion of p and q. For example: "If I call on so-and­
so, then if she is at ~ome I shall be admitted .. implies "If I call on 
so-and-so and she is at home, I shall be admitted... (8) If p impliea 
p and q implies q, then, if pq implies r, then p implies that q implies r. 
This is the com·el'l!le of the preceding principle, and is called e:rporlationt. 
The previous illustration reversed will illustrate this principle~ (9) If 
p implies q and p implies r, then p implies qr: in other words, a 

* Note that the implication■ denoted by if and tlum, in theM axioms, are formal, 
while thoae denoted by imp/ie• are material. 

t (7) and (8) cannot (I think) be deduced from the definition of the logical 
product, becauae they are required for passing from "If p ia a proJIOSitioo, then 'f is 
a prupoaition' impliea et.c." to "If p and 9 are proJIOllitio1111, then etc." 
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proposition which implies each of two propositions implies them both. 
This is called the principle of composition. (10) If p implies p and 
q implies q, then '"p implies q' implies p" implies p. This is called 
the principle of reduction; it has less self-evidence than the previo1111 
principles, but is equivalent to many propositions that are self-evident. 
I prefer it to these, because it is explicitly concerned, like its predecessor&, 
with implication, and has the same kind of logical character as they 
have. If we remember that "p implies q" is equivalent to "q or not-p," 
we can easily convince ounielves that the 11.bove principle is true; for 
'"p implies q' implies p" is equivalent to "p or the denial of 'q or not­
p,'" i.e. to "p or 'p and not q,'" i.e. top. But this way of persuading 
ourselves that the principle of reduction is true involves many logical 
principles which have not yet been demonstrated, and cannot be 
demonstrated except by n.-duction or some equivalent. The principle is 
especially useful in connec·tion with negation. Without its help, by 
means of the first nine principles, we can prove the law of contradiction; 
we can prove, if p and q be propositions, that p implies not-not-p; that 
"p_ implies not-q" is equivalent to "q implies not-p" and to not-pq; 
that "p implies q" imp1ies "not-q implies not-p"; that p implies that 
not-p implies p; that not-p is equivalent to "p implies not-p"; and that 
"p imp1ies not-q" is equivalent to "not-not-p implit.-s not-q." Hut we 
cannot prove without reduction or some equivalent (so far at least as 
I have been able to discover) that p or not-p must be true (the law of 
excluded middle); that every proposition is equivalent to the negation 
of some other proposition; that not-not-p implies p; that "not-q implies 
not-p" implies "p implies q"; that "not-p implies p" implies p, or that 
"p implies q" implies "q or not-p." F.ach of these assumptions is 
equivalent to the principle of reduction, and may, if we choose, be sub­
stituted for it. Some of them-especially excluded middle and double 
negation-appear to have far more self-evidence. But when we have 
seen how to define aisjunction and negation in terms of implication, we 
shall see that the supposed simplicity vanishes, and that, for fol'mal 
purposes at any rate, reduction is simpler than any of the possible 
alternatives. For this reason I retain it among my premisses. in 
preference to more usual and more superficially obvious propositions. 

19. Disjunction or logical addition is rlcfined as follows: "p or q" 
is equivalent to "'p implies q• implies q." It is easy to persuade 
ourselves of this equivalence, by remembering that a false proposition 
implies every other; for if p is false, p does imply q, and therefore, 
if "p implies q" implies q, it follows that q is true. But this argument 
again uses principles which have not . yet been demon11,trated, and is 
merely designed to elucidate the definition by anticipation. From this 
definition, by the help of reduction, we can prove that "p or <i'' is 
equivalent to "q or p." An alternative definition, deducible from the 
above, is: "Any proposition implied by p and implied by q is tme," or. 
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in other words,"' p implies a' and 'q implies a' together imply a, whatever 
a may be." Hence we proceed to the definition of negation: not,p is 
equivalent to the assertion that p implies all propositions, i.e. that 
"r implies r" implies "p implies r" whatever r may be•. From this 
point we can prove the laws of contradk-tion and excluded middle and 
double negation, and establish all the formal properties of logical 
multiplication and addition-the associative,commutative and distributive 
laws. Thus the logic of propositions is now complete. 

Philosophers will object to the above definitions of disjunction and 
negation on the ground that what we mean by these notions i• some­
thing quite distinct from what the definitions assign as their me,.nings, 
and that the equivalences stated in the definitions are, as a ma\ter of 
fad, significant propositions, not mere indications as to the vt.!'-Y in 
which symbols are going to be used. Such an objection is, I think, well­
founded, if the above account is advocated as giving the true philosophic 
analysis of the matter. But where a purely formal purpose is to be 
served, any equivalence in which a certain notion appears on one side 
but not on the other will do for a definition. And the advantage of 
having before our minds a strictly formal development is that it pro­
vides the data for philosophical analysis in a more definite shape than 
would be otherwise possible. Criticism of the procedure of formal logic, 
therefore, will be best postponed until the present brief account has been 
brought to an end. 

B. Tke Calculw ef Claaaea. 

20. In this calculus there are very much fewer new primitive pro­
positions-in fact, two seem sufficient-but there are much greater 
difficulties in the way of non-symbolic exposition of the ideas embedded 
in our symbolism. These difficulties, as far as possible, will be postponed 
to later chapten. For the present, I shall try to make an exposition 
which is to be 88 straightforwaro. and simple 88 possible. 

The calculus of classes may be developed by regarding as fundamental 
the notion of clau, and also the relation of a member of a class to its 
class. This method is adopted by Professor Peano, and is perhaps more 
philosophically correct than a different method which, for formal pur­
poaes, I have found more convenient. In this method we still take as 

* The principle that false propositions imply all propositions aolvea Lewla 
CMTOU's logical paradox in Mind, N. 8. No. 11 (1894). The auertion made in that 
paradox ia that, if p, q, ,. be propositions, and 9 impliea "• while p impli• that 
9 implies not-r, then, must be false, on the 1Upposed ground that "q impliea r" aud 
"9 impliee not-r" are incompatible. But in virtne of our definition of neption, if 
q be false both these implications will bold : the two together, in fact, what­
ever propoeition ,. may be, are equivalent t:o not-q. Thus the only inference 
warranted by u,n Carroll's pNlDUllle8 is that if p be true, q muat be false, i.e. that 
p impliel not-t; and thla ia the conclµeion, oddly enough, which common aenae would. 
have tlrawn in the puticular cue which he diac~. 
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fundament.al the relation (which, following Peano, I ,ball denote bye} 
of an individual to a class to which it belongs, i.e. the relation of Soerate. 
to the human race which ii expreued by 11&ying that Socratea it a man. 
In addition to this, we take u indefinables the notion of a propositional 
function and the notion of aucla tlaal. It it these three notion, that 
cbaraderize the clasa-calculus. Something must be said in esplanation 
of each of them. 

11. The imistence on the distinction between • and the relation of 
whole and pa.rt between classes is due to Peano, and is of very great 
importance to the whole technical development and the whole of the 
applications to mathematics. In the scholastic doctrine of the syllogism, 
and in all previous symbolic logic, the two relations are confounded, 
escept in the work of Frege •. · The distinction is the same aa that 
between the relation of individual to species and that of species to 
genus, between the relation of Socrates to the clus of Greeb and the 
relation of Greeks to men. On the philosophical nature of this distinc­
tion I shall enlarge when I come to deal critically with the nature of 
classes; for the present it is enough to obse"e that the relation of 
whole and part is transitive, while e is not so : we have Socrates is a 
a man, and men are a class, but not ScK.Tates is a clus. It is to be 
observed that the clasa must be distinguished from the class-concept 
or predicate by which it is to be defined : thus men are a class, while 
man is a class-concept. The relation e must be regarded u holding 
between Socrates and men considered collectively, not between Socrates 
and man. I shall return to this point in Chapter VI. Peano hold, 
that all propositional functions cont.aining only a single variable are 
capable of espression in the form "z is an a," where a is a constant 
class ; but this view we shall find reason to doubt. 

n. The nest fundament.al notion is that of a propositional func­
tion. Although propositional functions OC<'ur in the calculus of pro­
positions, they are there each defined (LS it occurs, BO that the general 
notion is not required. But in the class-calculus it ia necessary to intro­
duce the gener&l notion esplicitly. Peano,does not require it, owing to 
his aasumption that the form O :r is an 0,"' is general for one variable, and 
that extensions of the same f0t111 are available for any number of 
variables. But we must avoid this assumption, and must therefore 
introduce the notion of a propositional function. We may aplain (but 
not define) this notion u follows: +z is a propoeitional function if. for 
every value of "'' +z is a proposition, determinate when z is given. 
Thus " z is a man" is a propositional function. In any pn>poirition, how­
ever complicated, which contains no real variables, we may imagine one 
of the terms, not a verb or adjective, to be replaced by other terms: inatead 
of "Socrates is a man" we may put t' Plato is a man," "the number I 

* See Id•~. Halle, 1878, and a,_,,,__ w .AritAnNfik, Jena, 1893, 
P• I, 
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is a man," and so on*. Thus we get sucressive propositions a1l agreeing 
except as to the one variable term. Putting {I' for the variable term, 
" :r is a man " expresses the type of all sul'h propositions. A pro­
positional function in general will be true for some values of the variable 
and false for others. The instances wht-re it is true for all values of the 
variable, so far as they are known to me, 1111 express implil'ations, such as 
" :i: is a man implies II) is a mortal"; but I know of no a priori reason for 
asserting that no other propositional functions are trut- for all values of 
the variable. 

28. This brings me to the notion of auch that. The vah.«!11 of :i: 
which render a propositional function ,f,.1: true are like the root• of an 
equation-indeed the latter are a particular case of the former-and we 
may consider all the values of {t whi('h are such tliat <J,:i: is true. In general, 
these values form a claa.,, and in fact a <'lass may be defined as all 
the terms satisfying some propositional func-tion. There is, however, 
some limitation required in this statement, though I have not been able to 
discover precisely what the limitation is. This results from a l'ertain 
<'ontradietion which I shall discuss at length at a later stage (Chap. x). 
The reasons for defining cl«RIJ in this way are, that we require to provide 
for the null-t'lass, whi<'l1 prevents our defining a class as a term to 
which some other has the relat.ion e:, and that we wish to be able 
to define classes by relations, i.e. all the terms which have to other 
terms the relation Rare to form a dass, and such cases require somewhat 
complicated propositional fmtctions. 

M. With regard to these three fundamental notions, we require 
two primitive propositions. The first asserts that if rr belongs to the 
class of terms satisfying a propositional function </,iE, then <J,rr is true. 
The second asserts that if~ and I/Ja: are equivalent propositions for all 
values of ;r, then the dass of ol''s such that </,a: is true is identfoal with 
the class of ol''s such that t/Jol' is true. Identity, which occurs here, is 
defined as foUows: ,7: is identical with 11 if y belongs to e,•ery class to 
which ol' belongs, on other words, if " II' is a u " implies "y is a u " for 
all values of u. With regard to the primitive proposition itself, it is to 
be observed that it decides in favour of an extensional view of classes. 
Two class conc-epts need not be identical when their extensions are so: 
man andfeatherleaa biped are by no means identical, and no more are even 
prime and integer between l and 8. These are class-concepts, and if our 
axiom is to hold, it must not be of these that we are to speak in dealing 
with classes. We must be concerned witb the actual assemblage of 
terms, not with any concept denoting that assemblage. For mathe­
matical purposes, this is quite essential. Consider, for example, the 
problem as to how many combinations can be formed of a given set 

* Verba and adjectiVl'II 0Cll'l1m111 aa 1uch are diltlnguilbecl by the fact that. If 
they be taken aa variable, the 1eaultin1 funeUon la only a propoaltfon for llflllMI vall.K'II 
of the variable, i.e. for 1ucb aa aie wtbl or adjectlvea l'ellpeetively. See Chap. 1v. 
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of tenns taken any number at a time, i.e. as to how many clall8e8 are 
contained in a given class. If distinct classes may have the same ex­
tension, this problem becomes utterly indetenninate. And certainly 
common usage would regard a cltLSS as detennined when all its tenns are 
given. The extemional view of cla.11ses, in some fonn, is thus essential to 
Symbolic Logic and to mathematics, and its necessity is expressed in the 
above axiom. But the axiom ib1elf is not employed until we come to 
Arithmetic ; at le&11t it need not be employed, if we choose to distinguish 
the equality of classes, whkh is defined as mutual inclusion, from the 
identity of individuals. Formally, the two are totally distinct: identity 
is defined 11.'! above, t'quality of a and b is defined by the equivalence of 
"x is an a" and "re is a b" for all values of .r. 

25. Most of the propositions of the class-calculus are easily 
deduced from those of the propositional calculus. 'fhe logical product 
or c,-ommon part of two clas~ a and b is the class of :r's such that the 
logical product of ".r is an a" and "x is a b" is true. Similarly we define 
the logical sum of two classes (a orb), and the negation of a da.~s (not-a). 
A new idea ii, introduced by the logical product and sum of a class of 
cla.'1.'lell, If k is a cla..~s of cla.~ses, its logical product is the cllUl!I of tenns be­
longing to each of the classes of k, i.e. the class of terms re sucih that "u 
is a k" implies "re is a u" for all values of u. The logical sum is the class 
which is contained in every class in which every class of the class k is 
contained, i.e. the class of terms re such that, if "u is a k" implies "u is 
contained in c" for all values of u, then, for all values of c, re is a c. 
And we say that a class a is contained in a class b when "re is an a" 
implies ":r: is a b" for all values of :c. In like manner with the above 
we may define the product and sum of a cllll!H of propositions. Another 
very important notion is what is called the e.xiatence of a class-a word 
which must not be supposed to mean what exh1tence means in philosophy. 
A clas.~ is said to exist when it has at least one term. A formal defini­
tion is as follows: a is an existent class when and only when any 
proposition is true provided ":r is an a" always implies it whatever value 
we may give to :r. It must be understood that the proposition implied 
must be a genuine proposition, not a propositional function of :c. A 
cla..'IS a exists when the logical sum of all propositions of the fonn "x is 
an a" is true, i.e. when not all such propositions are false. 

It is important to understand clearly the manner in which pro­
positions in the cla.'lll-calrulus are obtained from those in the pro­
positional calculus. Consider, for example, the eyllogism. We have 
"p impliesq" and "q implies r" imply "p implies r." Now put ":c is 
an a," ".i· is a b," ",": is a c"' for p, q, r, where re must have some definite 
value, but it is not necessary to decide what value. We then find that 
if, for the value of :r in question, :r is an a implies :r is a b, and :r ie a b 
implies z is a c, then :r is an a implies- :r is a c. Since the value of z it 
irrelevant, we may vary :r, and thus we find that if a is contained in b, 
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and b in c, then a is contained in c. Thia ia the claaa-l}'llqgism. But in 
applying this p:roceM it i11 neoeuary to employ the utmoat caution, 
if fallacies are to be 8UCCletlllfully avoided. In this connection it will 
be instructive to examine a point upon which a dispute baa arillen 
bl:,tween Schroder and Mr McColl•. Schroder 8llflel'ta that if p, q, rare 
propositions, "Pl impliea r"' is equivalent to the diajunction "p impliea r 
or q impliea r." Mr McColl admit& that the disjunction impliea the 
other, but deniea the converse implication. The reason for the diver­
gence is, that Schroder is thinking of propositions and material im­
plication, while Mr McColl is thinking of propositional functions and 
formal implication. As regards propositions, the truth of the J:li.nciple 
may be easily made plain by the following consideration11. If Pl implies 
r, then, if either p or q be false, the one of them which is false implies r, 
because false propositions imply all propositions. But if both ~ true, 
pq i11 true, and therefore r is true, and therefore p implies r and ~ im­
pliea r, because true propositions are implied by every proposttion. 
Thus in any case, one at least of the propositions p and q muat 
imply r. (This is not a proof, but an elucidation.) But Mr McColl 
objects: Suppose p and q to be mutually contradictory, and r to be the 
null proposition, then Pl impliea r but neither p nor q implies r. HeJ."e 
we are dealing with propositional functions and formal implication. A 
propositional function is &&id to be null when it is false for all values of 
z ; and the class of :r's satisfying the function is called the null-dass, 
being in fact a class of no terms. Either the function or the class, 
following Peano, I shall denote by A. Now let our r be replaced by A, 
our p by cf,.x, and our q by not-cf,.x, where cfJ.x is any propositional function. 
Then Pl is false for all values of :r, and therefore implies A. But it is 
not in general the case that cfJ.x is al ways false, nor yet that not-cf,.x is alwa,ys 
false; hence neither always implies A. Thus the above formula can only 
be truly interpreted in the propositional calculus : in the class-calculus 
it is false. 1.'his may be easily rendered obvious by the following 
considerations: Let "'3:, ,;:r, x:r be three propositional functions. Then 
" (/,a:. ,;:r implies x:r" implies, for all values of z, that either (/,a: implies 
x,:r or ,f,-.r implies x:r. But it does not imply that either t/,IIJ implies -x,:r 
for all values of :r, or ,f,.r implies x.r for all values of :r. The disjunction 
is what I shall call a variable disjunction, as opposed to a constant one: 
that is, in some caaes one alternative is true, in others the other, whereas 
in a constant disjunction there is one of the alt.ernatives (though it is not 
stated which) that is always true. Wherever disjunctions occur in regard 
to propositional functions, they will only be transformable into statement.a 

· in the c18ll8-calculus in cases where the di~junction is constant. Thi& is 
a point which is both important in itself and instru<--tive in it.a bearings. 
Another way of stating the matter is this: In the proposition: If 

· •·Schroder, A~ tkr Logik, Vol. n, pp. 2.58-9; McColl, "Calculus of 
Equivalent St.atementa, .. fifth paper, Proo. lmtd. JlaU&. &c. Vol. :uvm, p. 182. 
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~. y:r _imp~ies_ -x:r, then ~ther it,.r ~plies x:r or +-:r implies -x,z, the 
lDlphcation indicated by if' and tkn 11 formal, while the aubordinat.e 
implications a.re material; hence the subordinate implication& do not 
lead t:o the inclusion of one class in another, which results only from 
formal implication. 

The formal laws of addition, multiplication, tautology and negation 
are the same as regards classes and propositions. The law of tautology 
states that no change is made when a class or proposition is added t:o or 
multiplied by itself. A new feature of the cl1L88-calculus is the null-class, 
or class having no terms. This may be defined as the class of t.erms that 
belong to every class, as the class which does not exist (in the aenae 
d~fined above), as the class which is contained in every class, as the 
class A which is such that the propositional fundion ":r is a A" is falae 
for all values of :r,. or as the class of :r's satisfying any propositional 
functioti tf,.r which is false for ell values of :r. All these definitions are 
easily shown to be equivalent. 

18. Some important points arise in connection with the theory of 
identity. We have already defined two terms as identical when the 
second belongs to every class to which the first belongs. It is easy to 
show that this definition is symmetrical, and that identity is transitive 
and reflexive (i.e. if :rand g, '!I and" a.re identical, ao are :rand"; and 
whatever :r may be, :r is identical with :r). Diversity is defined as the 
negation of identity. If :r be any term, it is necessary to distinguish 
from :r the class whose only member is :r : this may be defined as the 
class of terms which are identical with .r. The necessity for this 
distinction, which results primarily from purely formal considerations, 
was discovered by Peano ; I shall return to it at a later stage. Thus 
the class of even primes is not to be identified with the number !, and 
the class of numbers which are the sum of 1 and ! is not to be identified 
with 8. In what, philosophically speaking, the difference conaists, is a 
point to be considered in Chapter v1. 

C. TAe Cakulua qf Re1ationa. 

11. The calculus of relations is a more modem subject than the 
calculus of classes. Although a few hints for it are to be found in 
De Morpn•, the subject was fin,t developed by C. S. Peireet. A careful 
analysis of mathematical :reMOning shows (as we shall iind in the course 
ot the present work) that types of relati01l8 are the true subject-matter 
diacusaed, however a bad phraseology may disguise this fact; hence the 
logic of relations has a more immediate bearing on mathematics than 

• a.6. PAU. Tram. Vol. x, "On the Syllogism, No. 1v, and on the Logic of 
BelatiOIIB," Cf. ib. Vol. IX, p. 104; also his Jwmal Logic (London, 18'7), P· ao. 

+ See especially his articles on the Algebra of Logic, .AfllfflCtln Journal ,f 
~, Vola. 111 and vu. The eubject ia treat.ed at length by C. S. .Pei•• 
~ in Schroder, ap. cU., Vol. m. · 
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that of classes or propositions, and any theoretically correct and adequate 
expl'e88ion of mathematical truths is only possible by its means. Pei~ 
and Schroder have realir.ed the great importance of the subject, but 
unfortunately their methods, being based, not on Peano, but on the 
older Symbolic Logic derived ( with modifications) from Boole, are so 
cumbrous and difficult that most of the applications which ought to be 
made are practically not feasible. In addition to the defects of the old 
Symbolic Logic, their method suffers technically (whether philosophically 
or not I do not at present di8CUSS) from the fact that they regard a 
relation e1111entially as a class of couples, thus requiring elaborate 
formulae of summation for dealing with single relations. Th~ view is 
derived, I think, probably unconsciously, from a phil080phical E!rror: it 
has always been customary to suppose relational propositi~ns less 
ultimate than claiis-propositions (or subject-predicate propositio~, with 
which class-propositions are habitually confounded), !ind this has led 
to a desire to treat relations as a kind of classes. However this may 
be, it was certainly from the opposite philosophical belief, which I 
derived from my friend Mr G. E. Moore•, that I was led to a different 
formal treatment of relations. This treatment, whether more philo­
sophically t.-orrect or not, is certainly far more convenient and far more 
powerful as an engine of discovery in actual mathematicst. 

98. If R be a relation, we express by :rRy the propositional function 
":r has the relation R toy . ., We require a primitive ( i.e. indemonstrable) 
proposition to the effect that :rRy is a proposition for all values of :r 
and y. We then have to consider the following classes: The class of 
terms which have the relation R to some term or other, which I call the 
cl&S11 of referent& with respect to R ; and the class of terms to which 
some term has the relation R, which I call the class of relata. Thus if 
R be paternity, the referents will be fathers and the relata will be 
children. We have also to consider the correRponding classes with 
respect to particular terms or classes of terms: so-and-so's children, or 
the children of Londoners, afford illustrations. 

The intensional view of relations here advocated leads to the result 
that two relations may have the same extension without being identical. 
Two relations R, R' are said to be equal or equivalent, or to have the 
same extension, when :rRy implies and is implied by :cR'y for all values 
of 31 and y. But there is no need here of a primitive proposition, as 
there was in the case of cl&SReS, in order to obtain a relation which is 
detem1inate when the extension is determinate. We may replace a 
relation R by the logical sum or product of the cl&S11 of relations 
equivAlcnt to R, i.e. by the assertion of some or of all 111uch relatiODII; 
and thi111 is identical with the logical sum or product of the claas of 
ft!lations equivalent to R', if R' be equivalent to R. Here we Utle 

* See hie artiele "On the Nature of Judgment," Jlind, N. 8. No. BO. 
t See 1117 article■ it1 R. "• •· Vol. TH, No. 2 and ,ubaequent numben. 
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the identity of two claues, which results from the primitive propoaition' 
as to identity of claaaea, to establish the identity of two reJationa­
• procedure which could not have been applied to cl&lllle9 themaelvea 
'1rithout a vicioU8 circle. · 

A primitive proposition in regard to relation• is that every relation' 
baa a convene, i.e. that, if R be any relation, there is a relation H BUCh. 
that zRy is equivalent to yR' z for all values of z and y. Following 
Schroder, I shall denote the converse of R by i. Greater and lesa, 
before and after, implying and implied by, are mutually oonvene 
relations. With BOme relationa, such as identity, divenity, equality, 
inequality, the converse is the same as the original relation: BUCh 
'!'elations are called ll'!Jmmelrical,. When the convene is incompatible 
with the original relation, as in such cues as greater and less, I call the 
-relation aaymmetrical ; in intermediate cases, not-8!J111melrical. 

The most important of the primitive propositions in this subject ii 
that between any two terms there is a relation not holding between any 
two other terms. 'l'his is analogous to the principle that any term is 
the only member of some class; but whereas that could be pro,·ed, 
owing to the extensional view of clas11es, this principle, so far as I can 
discover, is incapable of proof. In this point, the extensional dew of 
relations has an advantage ; but the advantage appears to me to be 
outweighed by other considerations. When relations are con1idered 
intensionally, it may seem possible to doubt whether the above principle 
is true at all. It will, however, be generally admitted that, of any two 
terms, some propositional function is true which is not true of a certain 
given diff'erent pair of terms. If this be admitted, the above principle 
follows by considering the logical product of all the relations that hold 
between our first pair of terms. Thus the above principle may be 
replaced by the following, which is equh·alent to it : If :rRy implies 
tr'Ry', whate,·er R may be, 80 long as R is a relation, then z and le', 
!/ and y' arc respectively identical. But thi11 principle introduces a 
logieal difficulty from which we have been hitherto exempt, namely a 
variable with a restricted field ; for unleM R is a relation, ~By us not a 
propasition at all, true or false, and thus R, it would seem, cannot take 
all values, but only such aa are relatiom1. I shaU tetum to the discueaion 
of this point at a later stage. · 

29. Other &Sl'lumptions required a.re that the negation of a relatioa., 
is a relation, and that the logical product of a class of relatiom (i.e. the 
allllet'tion of all of them simult.aneously) is a relation. AlllO the relam¥ 
prodiict of two relations must be a relation. The relath-e product of two , 
relations R, S is the relation which hold" between z and z whenever 
there is a term y to which ~ has the relation R and which hu to It tlw ' 
,?elation S. Thus the relation of ·a matemal grandfather to bi11 grandaon , 

: ·• the relative produc-t of father and mother; that of a paternal, graad~ . 
. ~ .~ ~ p,ndson .i• the relative prod~~ of _mother arid&~.;,.. 
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that of grandpa.rent to grandchild is the relative product of parent and 
parent. The relative product, as these instances show, is not in general 
commutative, and does not in general obey the law of tautology. The 
relative product is a notion of very great importance. Since it does not 
obey the law of tautology, it leads to powers of relations: the square of 
the relation of parent and child is the relation of grandparent and 
grandchild, and so on. Peirce and Schroder consider also what they call 
the relative sum of tw.1 relations Rand S, which holds between :rand z, 
when, if !I be any other term whatever, either x has to y the relation R, 
or g has to z the relation S. This is a complicated notion, whicl; I have 
found no occasion to employ, and which is introduced only in ~er to 
preserve the duality of addition and multiplication. This dualitj has a 
certain technical charm when the subject is considered as an indepepdent 
branch of mathematics ; but when it is considered solely in relation to 
the principles of mathematics, the duality in question appears devoid of 
all philosophical importance. 

30. Mathematics requires, tm far as I know, only two other 
primitive propositions, the one that material implication is a relation, 
the other that e (the relation of a term to a class to which it belongs) is 
a relation•. We can now develop the whole of mathematics without 
further assumptions or indefinables. Certain propositions in the l~gic 
of relations deserve to be mentioned, since they are important, and it 
might be doubted whether they were capable of formal proof. If u, v 
be any two classes, there i1:1 a relation R the 8.S!lertion of which between 
any two terms :r and y is equivalent to the assertion that :r: belongs to u 
and y to v. If " be any class which is not null, there is a relation which 
all its terms have to it, and whirh hold11 for no other pairs of terms. If 
R be any relation, and u any class contained in the class of referents 
with respect to R, there is a relation which has ft for the class of its 
referents, and is equivalent to R throughout that class; this relation is 
the same as R where it holds, but bR.11 a more restricted domain. (I use 
domai·n as synonymous with claaa of referent.,.) From this point onwards, 
the development of the subject is technical : special types of relations are 
considered, and special branches of mathematics reiult. 

D. Pea11o'a Symbolic Logic. 

31. So much of the above brief outline of S_ymbolic Logic is 
inspired by Peano, that it seenu1 desirable to discuss hi1-1 work explicitly, 

. justifying by criticiMm the point:R in whit~h I have departed from him. 
The question as to which of the notions of .symbolic logic are to be 

taken as indefinable, and which of the propositions &'I indemonstrable,. 
· is, as Profei;sor Peano ha.'I im1ii-,-ted t, to 110me extent arbitrary. But it is . 

t There ie a difficulty in refl'Rnl to this primitive proposition, diacueaed iu §§ 53, ; · 
94 below. . . . . · 

t B,g. F. 19011 p. 6; E'. ltlO'T, Part I, pp. 6W. 
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important t.o est.abliah all the mutual relations ot the simpler notiOQI 
of logic, and t.o examine the consequence of taking varioua notion& u 
indefinable. It is necessary t.o realize that definition, in mathen:aatiea, 
does not mean, as in philosophy, an analysis of the idea to be defined 
int.o constituent idees. This notion, in any case, is only appliQLble t.o 
concepts, whereas in mathematics it is possible to define terms which ·. 
are not concepts•. Thus also many notions are defined by symbolic 
logic which are not capable of philosophical definition, since they are 
simple and unanalyr.a.ble. Mathematical definition consists in pointing 
out a fixed relation to a fixed term, of which one term only is capable: 
this term is then defined by means of the fixed relation and the fixed 
tenn. The point in which this difFel'8 from philosophical definition , 
may be elucidated by the remark that the mathematical definition does 
not point out the term in question, and that only what may be called · 
philoeophical insight reveals which it is among all the terms there are. 
This is due to the fact that the term is defined by a concept which 
denotu it unambiguously, not by actually mentioning the term denoted. 
What is meant by deootrng, as well as the different ways of denoting. 
must be accepted as primitive ideas in any symbolic logict: in this 
respect, the order adopted seems not in any degree arbitrary. 

32. For the sake of definiteneu, let us now examine some one , 
of Professor Peano's expositions of the subject. In his later expositions+ · 
he has abandoned the attempt to distinguish clearly certain ideas and 
propositions as primitive, probably because of the realir.a.tion that any 
such distinction is largely arbitrary. But the distin<.-tion appears Ulleful, 
as introducing greater definiteness, and as showing that a certain set _ 
of primitive ideas and propositions are sufficient; so far from being, 
abandoned, it ought rather to be made in every possible way. I shall,, . 
therefore, in what follows, expound one of his earlier expositions, that 
of 1897§. 

The primitive notions with which Pea.no starts are the following: 
Class, the relation of an individual to a class of which it is a meinber, . 
the notion of a term, implication where both propositions contain the . 
same variables, i.e. formal implication, the simultaneous affirmation of ·, 
two propositions, the notion of definition, and the negation of a pro-, 
position. From these notions, together with the division of a comples .. 
proposition into parts, Pea.no profesaes to deduce all symbolic logic by, . 
meem of certain primitive propositions. Let UB examine the deduction ' 
in outline. ' 

We may observe, to begin with, t.hat the simultaneous afflnnation • 
of tlllO proJ>08itions might seem, at first sight, not enough to take M • : ,: 

primitive idea. For although this can be ext.ended, by wooessive atepe, '.: 
to the eimult&neous affirmation of any tlnite number of propoeitioae, . · 

, .• . See Chap. IY. ♦ See Chap. •~ . , ,.., 
~ P. 1901 and B. l._ JI. VoL ru, No. 1 (1000). f F. 1~, Part J. · . , · . ' · 
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yet this is not all that is wanted ; we require to be able to affirm 
simultaneously all the propositions of any class, finite or infinite. But 
the simultaneous aHSertion of a cl888 of propositions, oddly enough, is 
much easier to define than that of two propositions (see§ 84, (8)). If k 
be a class of propositions, their simultaneous affirmation is the assertion 
that "p is a k" implies p. If this holds, all propositions of the class are 
true; if it fails, one at least must be fal<ie. We have st.>en that the 
logical product of two propositions cau be defined in a highly artificial 
manner ; hut it might almost as well be taken a.oi indefinable, RiQce no 
further property can be proved by means of the definition. Wt may 
observe, also, that formal and material implication are comhin~ by 
Peano into one primitive idea, whereas they ought to he kept sepa~te. 

33. Before giving any primitive propositions, Peano prm·eeds to 
some definitions. (1) If a is a class, ".r and ,1/ are a's" is to mean 
":z: is an a and y is an a." (2) If a and b are cla.o;;ses, "every a. iR a l," 
means ".r is an a implies that x is a b." If we ace,-ept formal implication 
as a primitive notion, this definition seems uno~jectiona.hle; hut it may 
well be held that the relation of inclusion between classes is simpler than 
formal implication, and should not be defined by its meani,;. This is a 
difficult question, which I reserve for subsequent dis,:ussion. A formal 
implication appears to he the R.Hsertion of a whole cla.-.s of material 
implications. The complication introduced at this point arises from 
the nature of the variable, a point which Peano, though he has done 
very much to Rhow its importance, appears not to have hi1m~elf suffi­
ciently considered. The notion of one proposition containing a variable 
implying another such proposition, which he takes as primitive, is 
complex, and should therefore he separated into its constituents ; from 
this separation arises the necessity of considering the Rimultaneous 
affim1ation of a whole class of propositions before interpreting such 
a proposition as ".r is an a implies that :r is a b." (S) ,ve come next 
to a perfectly worthless definition, which ha.'1 been sine,-e abandoned•. 
This iR the definition of 8'UCh that. The .r's such that :r i:-1 an a., we are 
told, are fo mean the cla.-.s a. But this only gives the meaning of such 
that when placed before a proposition ·of the type ":r is an a." Now 
it is often nece11sary to consider an :r such that some proposition is true 
of it, where this proposition is not of the form " :r is an a." Peano holds 
(though he doeR not lay it down as an axiom) that every proposition 
containing only one variable is reducible to the fomt ":r is an at." 
But we shall 11ee (Chap. x) that at lea.oit one such proposition is not 
:reducible to this form. And in any case, the only utility of RUCh that 
is to efFect the reduction, which cannot therefore be assumed to be 
al~y effected without it. The fact is that 8UCk that (,'Ontains a primi-' 
tive idea, but one which it is not easy clearly to disengage from other ideas. 

* ll'l conaequenoe of the criticisma of Padoa, R. d. M. Vol. v1, p. ll2. 
t R. d • .JI. VoL vu, No. 1, p. 2.5; F. 1901, p. 21, § 2, Prop. 4. o, Note. 
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In order to grasp the meaning of .rucA tAat, it is neceesary to observe, 
first of a.II, that what Peano and mathematicians generally call ow 
proposition containing a variable is really, if the variable is apparent, . 
the conjunction of a certain class of propositions defined by aome 
constancy of form ; whi]e if the variable is real, so that we have a 
propositional (unction, there is not a proposition at all, but merely 
a kind of schematic representation of' any proposition of a certain type. 
'' 'fhe sum of the anglei of a triangle is two right angles," for example, 
when stated by meanff of a variable, becomes : Let .r be a triangle ; then 
the sum of the angles of :c is two right angles. This expresses the 
conjum .. -tion of all the propositions in which it is said of particular 
definite entities that if they are triangles, the sum of their angles is 
two right ang]es. But a propositional function, where the variable is 
real, represents any proposition of a certain form, not all such proposi­
tions (see §§ 59-62). There is, for each propositional function, an 
indefinab]e relation between propositions and entities, which may be 
expressed by saying that all the propositions have the same form, 
but different entities enter into them. It is this that gives rise to­
propositional func.-tions. Given, for example, a constant relation and 
a constant tenn, there is a one-one correspondence between the propo-, 
sitions &11Serting that various terms have the said relation to the said 
term, and the various terms which occur in these propositions. It is 
this notion which is requisite for the comprehension of 8t1Ck that. Let 
x be a variable whose values form the class a, and let / (.r) be a one­
valued funt--tion of x which is a true proposition for all values of .r within 
the class a, and which i11 false for all other values of .r. Then the terms 
of a are the cl8SS of terms sttek thatf(:c) is a true proposition. This 
gives· an explanation of 81.ICh that. But it must always be remembered 
that the appearance of having one proposition /(x) satisfied by a 
number of values of .r is fallacious: f(tl!) is not a proposition at all, 
but a propositional function. What is fundamental is the relation of 
various propositions of given form to the various terms entering 
eeveral]y into them as arguments or values of the variable; this 
relation is equally required for interpreting the propositionttl function · 
/(:c) and the notion ll'UCh that, but is itself ultimate and inexplicable. 
( 4i) We come next to the definition of the logical product, or 
common part, of two classes. If a and b be two cl&S8E!II, their common 
part consists of the class of terms /I! such that m is an a and :r ia a b. 
Here already, as Padoa points out (loc. cit.), it is neceua.ry to extend the 
meaning of ,uck that beyond the case where :,ur proposition auerts 
membership of a class, 11ince it is only by means of the definition that 
the common part is shown to be a class. 

M, The remainder of the definitions preceding the primitive 
, propoeitions are less important, and may be. passed over. Of the · 
. p~mitive p:ropositiOJlll, some appear to be merely concemed lrith the 
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symbolism, and not to express any real properties of what is symbolized ; 
others, on the contrary, are of high logical importance. 

(1) The fil'Bt of Peano•s axioms is "every class is contained in 
itself." This is equivalent to" every proposition implies itself." There 
seems no way of evading this axiom, which is equivalent to the law of 
identity, except the method adopted above, of using self-implication 
to define propositions. (2) Next we have the axiom that the product 
of two classes is a class. This ought to have been stated, as ought also 
the definition of the logical prodm,t, for a class of classes ; f~ when 
stated for only two classes, it cannot be extended to the logical 13roduct 
of an infinite class of classes. If clQ,/18 is taken as indefinable, it is a 
genuine axiom, which is very necessary to reasoning. But it" might 
perhaps be somewhat generalized by an axiom concerning the · terms 
satisfying propositions of a given form : e.g. "the terms having one 
or more given relations to one or more given terms form a <!lass." 
In Section B, above, the axiom was wholly evaded by using a generalized 
form of the axiom as the definition of clwB. (8) We have next two 
axioms which arc really only one, and appear distinct only because Peano 
defines the common part of two cl&11SeS instead of the common part of a 
class of classes. These two axioms state that, if a, b be classes, their logical 
product, ab, is contained in a and is contained in b. These appear as 
different axioms, because, 88 far 88 the symbolism shows, ab might be 
different from ba. It is one of the defects of most symbolisms that they 
give an onler to terms which intrinsically have none, or at least none 
that is relevant. So in this case : if K be a class of classes, the logical 
product of K consists of all tmms belonging to every class that belongs 
to K. With this definition, it becomes at once evident that no onler 
of the terms of K is involved. Hence if K has only two terms, a and b, 
it is indifferent whether we represent the logical product of K by ab 
or by ba, since the order exists only in the symbols, not in what is 
symbolized. It is to be observed that the corresponding axiom 'with 
regard to propositions is, that the simultaneous assertion of a class of 
proposit~ons implies any proposition of the class ; and this is perhaps 
the best form of the axiom. Nevertheless, though an 11..xiom i11 not 
required, it is necessary, here as elsewhere, to have a means of connecting 
the case where we start from a class of classes or of propositions or of 
relations with the case where the class results from enumeration of its 
tenns. Thus although no order is involved in the product of a cl<u, of 
propositions, there is an order in the product of two definite proposi­
tions p, q, and it i11 significant to assert that the products PI and qp are 
equivalent. But this can be proved by means of the axioms with which 

. we began the calculus of propositions (§ 18). It is to be observed that 
this proof is prior to the proof that the class whose terms are p and g ia 
identical with the class whose terms are q and p. (4) We have Deltt 
two forms of syllogism, both primitive propositions. The first uae.rta 
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that, if a, b, c be eLi.sses, and a is contained in b, and :r is an a, then 11: is 
a b ; the second asserts that if a, b, c be classes, and a is contained in b, 
b in c, then a is contained in c. It is one of the greatest of Peano's 
merits to have clearly distinguished the relation of the individual to its 
class from the relation of inclusion between classes. The difference is 
exceedingly fundamental: the former relation is the simplest and most 
essential of all relations, the latter a complicated relation derived from 
logical implication. It results from the distinction that the syllogism 
in Barbara has two forms, usually confounded: the one the time-honoured 
assertion that Socrates is a man, and therefore mortal, the other the 
assertion that Greeks are men, and therefore mortal. These two forms 
are stated by Peano's axioms. It is to be observed that, in virtue of the 
definition of what it1 meant by one clRlls being contained in another. 
the first form reimlts from the axiom that, if p, q, r be propositions, and 
p implies that q implies r, then the product of p and q implies r. This 
axiom i11 now substituted by Pea.no for the first form of the sylJogism •: 
it is more general and cannot be deduced from the said form. The 
second form of the syllogism, when applied to propositions instead of 
classes, asserts that implication is transitive. This principle is, of course, 
the very life of all chains of reasoning. (5) We have next a principle 
of reasoning which Peano calls comJ)Oltition : this asserts that if a is 
contained in b and also in c, then it is contained in the common part 
of both. Stating this principle with regard to propositions, it asserts 
that if a proposition implies each of two others, then it implies their 
joint assertion or logical product; and this is the principle which W8II 

called composition above. 
36. From this point, we advance successfully until we require the 

idea of negation. This is taken, in the edition of the Formulaire we are 
considering, as a new primitive idea, and disjunction is defined by its 
means. By means of the negation of a proposition, it is of course easy 
to define the negation of a class: for "x is a not-a,, is equivalent to "31 

is not an a.,, But we require an axiom to the effect that not-a is a 
class, and another to the effect that not-not-a is a. Peano gives also a 
third axiom, namely: If a, b, c be classes, and aiJ is contained in c, and 31 

is an a but not a c, then x is not a b. This is simpler in the form : If p, 
q, r be propositions, and p, q together imply r, a9d q is true while r is 
false, then q is false. This would be still further improved by being put 
in the form: If q, rare propositions, and q implies r, then not-r implies 
not~q ; a form which Peano obtains as a deduction. By dealing with. 
propositions before cl8Bllell or propositional functions, it .is possible, as we 
saw, to avoid treating negation tlB a primitive idea, and to replace all 
axioms respecting negation by the principle of reduction. 

We come next to the definition of the disjunction or logical sum of 
two claseee. On this subject Peano has many times changed his 

* See e.g. F. 1901, Part I, § 1, Prop. 3. 3 (p. 10). 
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procedure. In the edition we are considering, " a or b., is defined 88 the 
negation of the logical product of not-a and not-b, i.e. 88 the class or 
terms which are not both not-a and not-b. In later editions (e.g. F. 1901, 
p. 19), we find a somewhat less artificial definition, namely: "a or b .. 
consists of all terms which belong to any class which contains a and 
contains b. Either definition seems logically unobjectionable. It is to 
be observed that a and bare classes, and that it remains a question for 
philosophical logic whether there is not a quite different notion of the 
disjunction of individuals, as e.g. "Brown or Jones.., I shall consider 
this question in Chapter v. It will be remembered that, when we ;begin 
by the calculus of propositions, disjunction is defined before ne~~ion; 
with the above definition (that of 1897), it is plainly necessary tq take 
negation first. 

36. The connected notions of t~ null-class and the existence ·of a 
class are next dealt with. In the edition of 1897, a class is defined as 
null when it is contained in every class. When we remember the 
definition of one cla.o;s a being contained in another b (" :r is an a .. 
implies ":r is a b,.. for all valueR of .r), we see that we are to regard 
the implication as holding for all values, and not only for those values 
for whic·h :r really is an a. This is a point upon which Peano is not 
explicit, and I doubt whether he has made up his mind on it. If the 
implication were only to hold when :r really is an a, it would not give a 
definition of the null-class, for which this hypothesis is false for all values 
of .r. I do not know whether it is for this reason or for some other that 
Pea.no has sim.-e abandoned the definition of the inclusion of classes 
by means of formal implication between propositional functim:,is : the 
inclm1ion of classes appears to be now regarded as indefinable. Another 
definition which Peano has sometimes favoured (e.g. F. 1895, Errata, 
p. 116) is, that the null-clas.<i is the product of any class into its 
negation-a dt!finition to which similar remarks apply. In R. d. M. v11, 
No. 1 (§ 3, Prop. 1. 0), the null-class is defined as the class of those terms 
that belong to every class, i.e. the class of terms .r such that " a is a 
clas1:1"' implies " x i11 an a,, for all values of a. There are of course no 
1mch terms x ; and thcl'e is a gra,·e logical difficulty in trying to interpret 
extensionally a cla.<11> which has no extemion. This point i11 one to which 
I shall return in Chapter ,·1. 

J.<"rom this point onward, Peano's logic proceeds by a smooth develop­
ment. But in one respe<--t it is 11till defective : it does not recognir.e as 
ultimate relational propositions not asserting membership of a class. 
J.<'or this n.'ll80n, the dcfinitionH of !' function• and of other essentially 
relational notions are deft.dive. But this defect is easily remedied by 
applying, in the manner explained above, the principles of the 
Formttlaire to the logic of relationst. 

* E.g. I'. 1001, Part I, § 10, Props. 1. 0. 01 (p. 33). 
+ See my article" Sur la logique dell relations," R. d. JI. Vol. •~ t.(1901). 
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CHAPTER III. 

IMPLICA'l10N AND FORMAL IMPLICATION. 

37. IN the preceding chapter I endt>Avourcd to present, briefly and 
uncritically, all the data, in the shape of fonnally fundamental ideas 
and propositions, that pure mathematics requires. In subsequent Part.s 
I shall show that these are all the data by giving definitions of the 
various mathematical concepts-number, infinity, continuity, the various 
spaces of geometry, and motion. In the remainder of Part I, I shall 
give indications, as best I can, of the philosophical problems ariHing in 
the analysis of the data, and of the diredions in which I imagine these 
problems to be probably soluble. Some logical notions will be elicited 
which, though they seem quite fundamental to logic, are not commonly 
discussed in works on the subject ~ and thus problems no longer clothed 
in mathematical symbolism will be presented for the consideration of 
philosophical logicians. 

Two kinds of implication, the material and the fo1·mai were found to 
be essential to every kind of deduction. In the present chapter I wish 
to examine and distinguish these two kinds, and to discuss some method11 
of attempting to analy1.e the second of them. 

In the discussion of inference, it is common to permit the intrusion 
of a psychological element, and to consider our at'quisition of new 
knowledge by its means. But it is plain that where we validly infer one 
proposition from another, we do so in virtue of a relation which holds 
between the two prop0.'litions whether we perceive it or not : the mind, 
in fact, is as purely receptive in inference u common sense supposes it to 
be in perception of sensible object.'!. The relation in virtue of which it 
is possible for us validly to infer is what I call material implication. 
We have already seen that it would be a viciou.'I circle to define this 
relation as meaning that if one proposition is true, then another is true, 
for if and then already involve implication. The relation holds, in fact, 
when it does hold, without any reference to the truth or falsehood of the 
propositions involved. 

But in developing the consequences of our assumptions as to impli­
eation, we were led to conclusions which do not by any means agree with : 
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what is commonly held concerning implication, for we found that any 
false proposition implies every proposition and any true proposition is 
implied by every proposition. Thus propositions are formally like a set 
of lengths each of which is one inch or two, and implication is like the 
relation "equal to or less than" among such lengths. It would certainly 
not be commonly maintained that "2 + 2 = 4" can be deduced from 
"Socrates is a man," or that both are implied by "Socrates is a triangle." 
But the reluctance to admit such implications is chiefly due, I think, to 
preoccupation with formal implication, which is a much more faµiiliar 
notion, and is really before the mind, as a rule, even where m&.terial 
implication is what is explicitly mentioned. In inferences from "Socrates 
is a man," it is customary not to consider the philosopher who vexer). the 
Athenians, but to regard Socrates merely as a symbol, capable of being 
replaced by any other man; and only a vulgar prejudice in favour of 
true propositions stands in the way of replacing Sot.Tates by a number, a 
table, or a plum-pudding. Nevertheless, wherever, as in Euclid, one 
particular proposition is deduced from another, material implication is 
involved, though as a rule the material implication may be regarded as a 
particular instance of some formal implication, obtained by giving some 
constant value to the variable or variables involved in the said formal 
implication. And although, while relations are still regarded with the 
awe caused by unfamiliarity, it is natural to doubt whether any such 
relation as implication is to be found, yet, in virtue of the general 
principles laid down in Section C of the preceding chapter, there must 
be a relation holding between nothing except propo1:1itions, and holding 
between any two propositions of which either the first is false or the 
second true. Of the various equivalent relations satisfying these 
conditions, one is to be called. implication, and if such a notion seems 
unfamiliar, that does not suffice to prove that it is illusory. 

38. At this point, it is necessary to consider a very difficult 
logical problem, namely, the distinction between a proposition actually 
asserted, and a proposition considered merely as a complex concept. 
One of our indemonstrable principles was, it wilJ be remembered, that 
if the hypothesis in an implication is true, it may be dropped, and the 
consequent asserted. This principle, it was observed, eludes formal 
statement, and points to a certain failure of formalism in general. The 
principle is employed whenever a proposition is said to be proved; for 
what happens is, in all such cases, that the proposition is shown to be 
implied by some true proposition. Another form in which the principle 
is constantly employed is the substitution of a constant, satisfying the 
hypothesis, in the consequent of a formal implication. If f/,.x implies t.z-

. for all values of z, and if a is a constant satisfying cf,:,:,' we e&n assert. 

. to, dropping the true hypothesis t/)a. Tms oocurs, for example, when­
ever any of those rules of inference which employ the hypothesis 
that the variables involved are propositions, are applied to particular 
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propositions. The principle in question is, therefore, quite vital to any 
kind of demonstration. 

The independence of this principle is brought out by a consideration 
of Lewis Carroll's puzzle," What the Tortoise said to AchiJies•." The 
principles of inference which we accepted lea.cl to the proposition that, if · 
p and q be propositions, then p together with '' p implies q" implies q. 
At first sight, it might be thought that this would enable us to assert q 
provided p is true and implies q. But the puz1Je in question shows that 
this is not the case, and that, until we have some new principle, we shall 
only be led into an endless regress of more and more complicated impli­
cations, without ever arriving at the assertion of q. We need, in fact, 
the notion of therefore, which is quite different from the notion of implir./1, 
and holds between different entities. In grammar, the distinction is that 
between a verb and a verbal noun, between, say," A is greater than B" 
a.nd "A's being greater than B." In the first of these, a proposition is 
actually asserted, whereas in the second it iis merely considered. But 
these are pisychological terms, whereas the difference which I desire to 
express is genuinely logical. It is plain that, if I may be ~llowed to 
use the word a.,sertiun in a non-psychological sense, the proposition 
"p implies q" as,wrta an implication, though it does not aaaert p or q. 
The p and the q which enter into this proposition are not strictly the 
same as the p or the q which are separate propositions, at least, if they 
a.re true. The question is: How does a proposition differ by being 
actually true from what it would be a.s an entity if it were not true? It 
is plain that true and false propositions alike are entities of a kind, but 
that true propositions have a quality not belonging to false ones, a 
quality which, in a non-psychological sense, may be called being 
aaaerted. Yet there are grave difficulties in forming a consistent theory 
on this point, for if assertion in any way changed a proposition, no 
proposition which can possibly in any context be unasserted could be · 
true, since when asserted it would become a different proposition. But 
this is plainly false; for in "p implies q," p and q are not asserted, and 
yet they may be true. Leaving this puzzle to logic, however, we must 
insist that there is a diWerence of some kind between an asserted and an 
unasserted propositiont. When we say therefore, we state a relation 
which can only hold between asserted propositions, and which thus 
differs from implication. Wherever therefore occurs, the hypothesis 
may be dropped, &nd the conclusion asserted. by itself. This seems to 
be the first step in answering Lewis Carroll's puzzle. 

39. It is commonly said that an inference must have premiSlleS 
and a conclusion, and it is held, apparently, that two or more premisses 
are necessary, if not to all inferences, yet to most. This view is borne 
out, at 6rst sight, by obvious facts : every syllogism, for example, is held 

* Mind, N. S. Vol. rv, p. 2'78. 
t Frep (/oc. cit.) has a special symbol to denot.e 11111ertlon. 
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to have two premisses. Now such a theory greatly complicate.-. the 
relation of implication, sinc-c it renders it a relation which may have any 
numhcr of terms, and i~ symmetrical with respect to all but one of them, 
but not. \Ylllmctricnl with respect to tl111t one (the l'o11clusion). This 
complic·ation is, howt•vt>r, unnecessary, first., because every :-imultancous 
as~ertiou of a number of propositions is itself 11. single proposition, and 
i;ec·ornlly, because, by the rule whieh we callt'tl t:Jp<rrtaticm, it is always 
posr-.ihle to t•xhibit an implil'ation expli<"itly as holding between single 
propositionr-.. To tah the first point first: if k he a clm,s of proposi­
tions, all the propositio11s of the das1, k arc asM•rtecl by the single 
proposition "for all , alucs of ,r, if .i· implies x, then '.r i:-. 11 k' implies 
:r,'' or, in mort• ordinary langnagt•, "every l,; is true." And as n·gurds 
the st'eoml point, whieh 11ssuml'S the m1111bcr of pn•mi:-.:-c~ to ht• finite, 
"pq implil•r-, r" is equivalent, if q ht· a proposition, to "p implies thut q 
implies r," in whil'h latter form the implil'ations hold explic·itly between 
Hingk· proprn,ilion:,,. Ht•nc•p Wl' may safrly hold implication to he a 
n•lation bl'lwl•eu two propo,-,it.ion,,, not. a rdation of an arbitrary number 
of prl'ruir-.ses to a singll· c-ondu,..ion. 

40. I t'Ollll' now to formal implit·ation, whi<'h is a for more difli<·ult 
notion than material implimtion. In order to avoid the gt·nl'rnl notion 
of propo,,itional fundion, h·t us begin hy tlw di-;c•w,sion of a particular 
instit11t'l', s11y ".i· i., 11 nmn implil•-.. ;r- i, a mortal for all valm•s of .r." 
This proposition is ec1uivale11t to "all men are morbil" "en•ry man is 
mortid" and '' an_v 1111m i:-. mortal." Bnt it 1>et·111s highly doubtful 
whether it is the Sllllll' proposition. It is also eom1ccted "ith a purely 
inl.ensionul propor-,ition in whieh man is a .. o;sertt-d to he a t"omplc•x notion 
of whieh 111ort11,l ir-, a l'011stihll'nt, but this propo:,,ition is quite di ... tinct 
from tlll' one wc• are disl'UM,ing. Indeed, sueh inh•nr-,ional propositions 
are not alwayr-, pn•sent when• om• cla,-..s is inch11led in anotht·r: in general, 
either l'h,,-, um_v ht• ddinecl hy rnrious diffrrcnt predicate,.., and it is hy 
no means neces;.ary that t'H'ry prt•dimtc of the :-..umllt•r ela.ss should 
contain t•very p1,-dil'ate of Uw larger class a:,, a faetor. huleed, it may 
very wl'll happen that both prl'dil'ates are philosophically simpk•: thus 
cowur and 1·.1·i.vtt•nt appear to he both i.imple, _wt the dass of colours is 
pa.rt of the dass of l'Xisknts. The intensional vil·W, dcriVl"<l from 
predicntes, is in the mai11 irrcl<•vant to Symbolic Logil' and to Mathe­
matics, and I shall not l'Onsider it further at pr<•sent. 

41. It HIil)' be douhtL"<l, lo begin with, whether ":c: is a man 
implies .r is a mortal"' i1, to lw regardt>d as as:-..erh-d strictly of all possible 
terms, or only of such tt-rms as are men. Peano, though ht• i~ not explicit, 
appears to hold the lattt•r viL·w. Hut in this case, the hypothesis l'eases 
to be significant, and bceomes a mere definition of :r:: x is to mean any 
man. Thl' hypothesis then becomes a mere assertion concerning the 
meaning of the symbol .l', and the whole of what is asserted. concerning 
the matter dealt with by our symbol is put into the c·onclusion. The 
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premiss says: .r is to mean anv man. The rondusion SR\"S: .1· is mortal. 
But the implication is mere]~· ·c-om·cming the symbolism; sinre ttn~• man 
is mortal, if :r dmotes an~· man, :r is mortal. Thus formal implil'11.tiou, 
on this view, ha.~ wholly disappeaml, leaving us the proposition "any 
m11.n is mort11.l"' as cxpres~ing tht• whole of what is n•lt•v11.nt in the 
proposition with a mriablt•. It would now onlv remain to l'Xll.minc 
the propo~ition "any man is mortnJ;• and if' p<;s.,ihlP to l'xplain this 
proposition without. n·introducing th<· \ariahlt• and formal implimtion. 
It must hl' confossl-<l tlmt Mum• gmvc ditlicultit·, an· avoi1k«I hy this 
view. C'onsid1•r, for l'Xnmplc, tlw ~imult.ant•ous asst•rtio11 of all the 
proposition~ of somP 1·111..-.s k: this i~ not l'X)ITl""•t-11 hy "'.1· is a k' implies 
:r for all valt1cs of .r." For as it stands, thi~ propo,ition dot•s not l'XJJI-c•ss 
what i~ llll'1mt, silll'l', if a· hl' not a proposition, ".1· is n k" mnnot imply 
.r; hl•m·t• til<' rangl' of \'arinhility of .,· 11111,.,t Ix· 1·1111fi1ll'1l to propositious, 
uulPss w1· pn·fix (as aho\'c•, § :m) tlw hypotlll',.,i,., ",,. impJil·,., .r." This 
rm111rk applies 1-,rcm•rully, throughout tlw propo~1tim11tl 1·uk11l11:-., to nil 
<'ttSl's whl'rt' Un• 1·m1C"l11.,io11 is rl'pn·:-.1·nll·d b~· a ,ing-lt• Id ll•r: 1111Jl:,.,,., the 
letkr dol':-. aC"tuall_v n·pn"ll'lll n propo-;it ion, thl' impli<"at ion 1N,1·r1.l•d will 
hP fnJ,.,l·, :-.illl'l' 011ly propo:-.ition, l'llll hl• i111plil•1l. Tlw point i:-. that, if .t· 

he.· our variahk•, .1· itsl·lf' i,., a propo,.,ition for all rnl1w:-, of .1· \\ l11d1 nre 
propn,.,ition.,, hut uot for otlwr vahH·"· Thi, mal..<•,. ii plain what the 
limitation,., an• to whil'h our ,ariahh• is :-.uh,il'l'l: it 11111:-,f \'Ill'_\' only" ithin 
tlw ranw.• of vallll'" for whid1 tlw two :-.irll'" of t hl' pri1ll'ipal impli<"ution 
un· propo,.,itio11,, in ollil'r \\orrl,.,, tlw t"o ,.,id1·,, wl11·11 tlll' ,arinbh· i:-. not. 
rq,lal'1·d Ii~ a 1·011shml, 11111st. hl• g-1•1111i1w proprn,ihonal funl'liow,. If this 
n•:-.tri1·tio11 j,., not ohs1•rH·d, fal11t<'ll':-. quH"kl~ hl·1.6n to appmr. It should lH.• 
notil'l'll that th1·n· may lw un~ 11u111bl'r of !-olllmrdi11ull' implit·11tiom "hil'h 
do not r1·q11in· that tlwir ll•rm:-. ~hould l>l' propo,ition,: it i,., onl_v of the 
prin<"ipal i111pli1·11tio11 that this is n·qnin·il. Tal..1·, for c·xn111pll·, tlw first 
prim·ipll· of i11f'1•rl'lll'l': lf p impliPs q. tllt'n p implil•s q. Thi,., hold11 
l'<(llllll_v whl'lhl'r p and 'I hl' proposition-. or not; for if' l•itlll'r is 11ot. 1\ 

propo:-.ition, "p implie-; 'I" hel'OIII<'" fol,1•, hut dol'~ 11ot l'('IL-.i• to he I\ 

proposition. In fad., in "irt.11l• of tlll' <fpfi11itio11 of ll propo:-,ition, our 
pri11('iplc• :-,lat1•s tlmt '• p impliP-; 'I" is a propm,it ional fundio11, i.1'. t.lu1t 
it j,., 1t propo~it.io11 for nil \'lllut•,., of p arnl '/· But if Wl' nppl,v t.he 
priu<'iplc of importation to t,his propo:-.it.ion, so 1L, to ohUt.in "' p implici'I 
q,' togl'ther with p, implie!-o q," wt• h1t\'(' a formula whirh is only true 
when p and q nn• proposition,;: in orill•r to mak,• it true universally, we 
mu,.,t prcfru·t· it hy tht• h~·potht•.,is •• p impli,,,., p and q impliC'!I q." In this 
w11.v, in manv <'a.,;(•s, if not in all, thC' rc:-.tridiou on tlw ,·ariahilitv of t.he 
va;iahle l'lln°bt• removt'<l; thu~, iu tlw a .. scrtion of thl' login1l pr~,dm·t of 
a cll\.o;.'I of propo,.,itions, the formula "if J' implil''I J', then 'x i!I a k' 
implies .r" appears unohj<--ctionablc, and allows J' to vary without rcst.ric. 
tion. Here the -;ubordinate implicatiorn, iu the pn·mis.~ and the 1·ondm,ion 
are material : only the principal implication is formal. 
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Returning now to ":x is a man implies a: is a mortal," it is plain that 
no restriction is requirro in order to insure our having a genuine pro­
position. And it is plain that, although we might restrict the values of 
a: to men, and although this seems to be done in the proposition 
" all men are mortalt yet there is no reason, so far as the truth of our 
proposition is con('("rned, why we should RO restrict our a:. Whether a: 
he a man or not, ":r is a man,. is always, when a constant ii,i substituted 
for :r, a proposition implying, for that value of a:, the proposition ":r. is 
a mortal."· And unless we admit the hypotheiiis equally in the cases 
where it is false, we shall find it impo!!Sible to deal satisfa.ctorily with the 
null-class or with null propositional functions. We must, therefore, 
allow our :r., wherever the truth of our formal implication is thereby 
unimpaired, to take all values without. exception; and where any 
restriction on variability is required, the implication is not to be 
regarded a.11 fonnal until the said n•strietion has been removed by bc·ing 
prefixed a.11 hypothl'sii,,, (If ya: be a proposition whl·never :x satisfies c/>,t', 
whPrc c/,r is a propositional function, and if y:r., whenever it ill a pro­
position, implies :xa·, then "y.1: impliC11 x.r" is not a forn1al implication, 
hut" c/,x implies that y..r implies :xr" iii a formal implieation.) 

42. It is to he oht1erved that ".r is a man implies ,1: is a mortal"' 
is not a relation of two propositional functions, hut is it'lelf a single 
propositional function having the elegant property of being always 
true. For "a: is a man" is, as it stands, not a proposition at all, 
and does not imply anything; and we 111m1t not first vary our :r. in 
":r is a man," and then independently vary it in ":r. is a mortal," 
for this would lead to the proposition that "e.vcrything is a man" 
implies "everything is a mortal," whic·h, though true, is not what wa.<i 
meant. This proposition would have to be expressed, if the language 
of variable11 were retained, by two variable.-;, as "a: is a man implies 
y iK a mortal." But this formula too is unsatisfactory, for its natural 
meaning would be: "If anything is a man, then everything is a mortal." 
The point to be emphasized is, of course, that our a-, though variable, 
mUKt he the MR.me on both sides of the implication, and thiK requires 
that we should not obtain our formal implication by fint varying (say) 
Socrates in "SocrateK is a man," and then in "Soc.·rates is a mortal,,. 
but that we should start from the whole proposition "Socrates is a 
man implies Socratei,i iK a mortal," and ,·ary Socrates in this proposition 
as a whole. Thus our formal implication a.-;serts a cla.'!s of implications, 
not a single implication at all. We do not, in a word, have one im­
plication containing a variable, but rather a variable implication. We 
ha,·e a class of implications, no one of which contains a variable, and 
Wt! assert that every member of this class is true. This is a first step 
towardK the analysis of the mathematical notion of the variable. 

But, it may be asll:ed, how comes it that Socrates may be varied 
in the proposition "Socrates is a man implies Socrates is mortal"? In 
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virtue of the fal't that true propositions are implied by all others, we 
have" Socrates is a man implies Socrates is a philosopher"; hut in this 
proposition, alas, the variability of Socrates is sadly restrided. This 
seemii to show that formal implit'ation involves something over and 
above the relation of implication, and that 110me additional relation 
must hold where a term <·an be varit-d. In tlw <·a.-.c in question, it is 
natural to say that whnt is involn-d is the relation of indusion between 
the cla11ses nu:n and mm-faLf- the wry relation whid1 was to be dt'fined 
and explained b_v onr formal implimtion. Hut this view is too simple 
to meet all cases, and is tht'rcfore not requin·d in any <·ase. A larb,er 
number of <'ast's, though still not all mses, <·an be dealt with by the 
notion of wh11t I shall mll ,i.v.vati,ms. This notion must now be briefly 
explained, leaving it. .. critil'al discus~ion to Chapter v11. 

43. It ha.., always been cmtonuu") to dividP propositions into 
subject and 1m·dimte; hut this divi.,ion has the defl•ct of omitting the 
vcrh. It is true that 11 griu-eful <·onepssion is sometime,- madt• hy loose 
talk about the copula, but tlll' verh ,it-.,cnes for more r<·spect than is 
thus paid to it. We may say, hroadly, that 1•vt•ry propoi.ition may be 
divided, some in only one vrny, some in sewml ways, into a term (the 
subject) and something whid1 is said about the subjt'Ct., whieh something 
I Hhall call the tt.\wcrtion. Thus "Sol'mtes is a man.,., 111ay be divided 
into .\'orrate.v and ·iN II mnn. Tlw verh, whirh is th(' distinguishing mark 
of propositions, remains with the assert.ion; hut the assertion itself, 
being robh<.•d of its suhjt•d, is neither true nor false. In logiml dis­
cus.,;ions, thl· not.ion of a.,;sertion often oceurs, hut as the word prozx,.,iti,m 
is use<l for it, it does not obtain separate eom,ideration. Consider, for 
example, the best statement of the identity of indi~eernihles: "If .r and y 
be any two diverse entities, some ai;.-.ertion holds of :r whi<·h does not 
hold of y." llut for t.hc worcl a .. v.vertum, which would ordinarily be 
replaced by proposition, this ~tatement. is one whid1 would commonly 
pa.o;;s unchallenged. Again, it might be said: "Socrates wa.-. a philo­
sopher, and the same is true of Plato." Such statement .. require the 
analysis of a proposition into an assertion and a subjed, in order that 
there may be something identical which t'an he said to be affirmed of 
two subje<:to;;. 

44. \Ve can now see how, where the analysis into su~ject and 
assertion is legitimate, to distinguish implications in which there is a 
term which <·an be varied from others in which this is not the ca.'le. Two 
ways of making the distinct.ion may be suggested, and we shall have to 
decide between them. It may be said that there is a relation between 
the two a.'isertions "is a mar;" and "is a mort,11," in \'irtue of which, 
when the one holds, so does the other. Or again, we may analy1.c the 
whole proposition "Socrates.is a man implies Socrates is a mortal" into 
Socrates and an assertion a.bout him, and say tha.t the a.'isertion in 
question holds of all terms. Neither of these theorit.-s replaces the above 
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analysis of ":r is a man implies :r is a mortal " into a class of material 
implications ; hut whichever of the two is true carries the analysis one 
step further. The first theory suffers from the difficulty that it is 
esr,;ential to the relation of assertions involved that both assertions 
11hould be made of the aame subject, though it is otherwise irrelevant 
what subject we choose. The second theory appears objectionable on 
the hrround that the sughrested analysis of "Socrates is a man implies 
Socrates is a mortal" seems scarcely possible. The proposition in 
question consists of two terms and a relation, the terms being "Socrates 
is a man" and "SOl·rates is a mortal"; and it would seem that when a 
relational proposition is analyrr.ed into a subjt.'<'t and an assertion, the 
subject must be one of the terms of the relation which is asserted. This 
objection seems graver than that against the former view; I shall 
therefore, at any rate for the present, adopt the former view, and regard 
formal implication as derived from a relation between assertions. 

\\' e remarked above that the relation of inclusion between classes is 
insufficient. This re1mlts from the irredul'ible nature of relational 
propositions. Take e.g. "Socrates is married implie~ Socrates had a 
father." Here it is affirmed that lx·cause Socrates has one relation, 
he must have another. Or lx•tter still, take "A is before B implies B is 
after A." This is a formal impliC'.a.tion, in which the assertions are 
(superficially at lea. .. t) concerning different subjects; the only way to 
avoid this is to say that both propositions have both A a11d B as 
subjed;s, which, by the way, is quite difli.•re11t from saying that they 
have the one subject " .A and B.,, Such instances make it plain that 
the notion of a propositional function, and the notion of an a.'!sertion, 
are more fundamental than the notion of clas.,, and that the latter is 
not adt.-quate to explain all cases of formal implication. I shall not 
enlarge upon this point now, as it will be abundantly illustrated in 
subsequent portions of the present work. 

It is important to realize that, acrording to the above analysis of 
formal implication, the notion of et•ery term is indefinable and ultimate. 
A formal implication is one whi<·h holds of every term, and therefore 
eve,y cannot he explained by means of formal implication. If a and b 
be clas.'le.'I, we can explain "every a is a b" by means of ":r is an a 
implies x is a b"; hut the et•e,y which occurs here is a derivative and 
subsequent notion, presupposing the notion of every term. It seems 
to be the very essenee of what may be called a fanrwl truth, and of 
formal reasoning generally, that some assertion is affirmed to hold of 
every term ; and unless the notion of every term is admitted, formal 
truths are impossible. 

¼15. The fundamental importance of formal implication is brought 
out by the consideration that it is involved in all the rules of inference. 
This shows that we cannot hope wholly to define it in terms of material 
implication, but that HOme further element or elements must be involved. 
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We may observe, however, that, in a particular inference, the rule 
according to which the inference proceeds is not required as a premiss. 
This point has been emphasi7.ed by Mr Bradley'; it is closely t.'Onnected 
with the principle of dropping a true premiss, being again 11 respect 
in which formalism breaks down. In order to apply a rule of inference, 
it is formally nece&Mry to have a premiss as.~rting that the pN4e11t 
case is an instance of the rule; we 11hall then need to affinn the rule by 
which we can go from the rule to an instant.-e, and ah,o to aflinu that here 
we have an instance of this rule, and so on into an endle11s proce11S. 
The fact is, of coul'liC, that any implication warranted by a mle of 
inference does adually hold, and is not merely implied by the rule. 
This is simply an instance of the non-formal principle of dropping a 
true premiss: if our rule implies a certain implication, the rule may be 
dropped and the implication as.'ll!rted. But it remains the case that the 
fact that our rule does imply the said impli<-ation, if intr<Xluced at all, 
must he simply pereeil'ed, and is not guarantt-ed by any formal deduction; 
and often it is just as easy, and const'<)Ut'ntly ju!,t as lt•gitimatc, to perceive 
immooiately the implil·ation in question a.,; to pem•ive that it is implied 
by one or more of the rult>s of inference. 

To sum up our discm,sion of formal implication : a formal implication, 
we said, is the affirmation of every material implication of a certain 
cla.,;s; and the da.i,s of material implications involvl'<l is, in simple cases, 
the cla.'IS of all propo~itions in whirh a given fixed assertion, made con­
cerning a certain subject or subjects, is aflirnll'd to imply another given 
fixed assertion conceming the same snhje<·t or suhjrcts. Where a formal 
implication hold11, we agreed to regard it, wherever pos!iiblc, as due to 
some relation between the assertions concerned. This theory raises many 
formidable logical problems, and rec1uires, for its defence, a thorough 
analysis of the constituents of propositions. To this task we must now 
addI'e!is oun;elves. 

* l,ogic, Book 11, Part I, Chap. 11 (p. 227). 
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CHAPTER IV. 

PROPER NAMES, ADJECTIVES, A~D VERBS. 

46. IN the present chapter, certain questions are to be discussed 
belonging to what may be called philosophical grammar. The study 
of grammar, in my opinion, is capable of throwing far more light on 
philosophical questions than is commonly supposed by philosophers. 
Although a grammatical distinction cannot he uncritically assunwd to 
correspond to a genuine philosophical diffcren<·e, yet the one is pri11ul 
fade evidence of the other, and may often be most usefully employed 
as a source of discovery. Mon.mer, it must be admitted, I think, that 
every word OC('urring in a sentence must have ,Yome meaning: 11 perfectly 
meaningless sound could not he employed in the more or less fixed 
way in which languahre employs words. The correctness of our philo. 
sophical analysis of a proposition may therefore be usefully che<.·ked 
by the exen·ise of assigning the meaning of each word in the sentence 
expressing the proposition. On the whole, !{rammar seems to me to 
bring us much nearer to a correct logic than the current opinions of 
philosophers; and in what follows, grammar, though not our master, 
will yet be taken as our guide•. 

Of the parts of speel'h, thn.-e are specially important: substantives, 
adjectives, and verbs. Among substantives, some are derived from 
adjectives or verbs, as humanity from human, or sequence from follmcs. 
(I am not speaking of an etymological derivation, but of a logical one.) 
Others, such as proper names, or space, time, and matter, are not 
derivative, but appear primarily as substantives. What we wish to 
obtain is a classifil'ation, not of words, but of idea.-, ; I shall therefore 
call adjectives or predicates all notions whil'h are <'apahle of being such, 
even in a form in whiC'h grammar would call them substantives. The 
fact is, as we shall see, that human and h1mumit;1J denote precisely 
the same l'oncept, these words being employL>d respL-dively according to 
the kind of relation in which this concept stands to the other constituents 
of a proposition in which it 0<.·<·urs. The distinction which we require 

* The excellence of grammar as a guide is proportional to the paucity of 
inftexions, i.e. to the degree of analysis effected by the language considered. 
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is not identical with the grammatical distindion between substantive 
and adje<."tive, sim-e one single c.-oncept may, according_ to circumstances, 
be either substantive or adjective: it is the distinction between proper 
and general names that we require, or rather between the objects in­
dicated by such names. In every proposition, aH we saw in Chapter 111, 

we may make an analysis into something asserted and something about 
which the a11Sertion is made. A proper name, when it occurs in a 
proposition, is always, at least according to one of the possible ways 
of analysis (where there are RCveral), the 1mbjel·t that. the proposition 
or some subordinate constituent proposition is about, and not what is 
.said about the imbject. Adjecfo·c.>s and verbs, on the other hand, 
are capable of occurring in propositions in which they l'annot be 
regarded as subject, but only as parts of the assertion. Adjectives 
are distinguished by capacity for denoting-a term which I intend 
to use in a technical sense to be clit1Cm1sed in Chapter v. Verba 
are disting11h1hed by a special kind of connection, exceedingly hard 
to define, with truth and falsehood, in virtue of which they dis­
tinguish an asserted proposition from an una.'iSerted one, e.g. "Caesar 
died" from "the death of Caesar." These distinctions mm,t now be 
amplified, and I shaH begin with the distinction between general and 
proper names. 

47. Philosophy is familiar with a certain set of distinctions, a.II 
n1ore or le.'!s etJUivalent: I mean, the distinctions of subject and pre­
dfoate, substance and attribute, subittantive and adjt..'l~tive, thia and 
-what•. I wish now to point out briefly what appears to me to be the 
truth concerning these cognate distinctions. The subject is important, 
since the is1mes between monism and monadism, betwt..-en 'idealism and 
empiricism, and between those who maintain and thOMC who deny that 
all truth is concerned with what exi11ts, all depend, in whole or in part, 
upon the theory we adopt in regard to the present question. But the 
subject is treated here only because it is essential to any dodrine of 
number or of the nature of the variable. Its bearings on general 
philosophy, important as they are, will be left wholly out of account. 

Whatever may be an obja·t of thought, or may occur in any true 
or false propoi;ition, or can be counted as mie, I call a term. This, 
then, is the widest word in the philosophical vocabulary. I shall use 
as synonymous with it the words unit, individual, and entity. The 
first two emphasize the fact that every term ii. one, while the third is 
derived from the fact that every term has being, i.e. ia in some sense. 
A man, a moment, a number, a class, a relation, a chime.era, or anything 
else that can be mentioned, is sure to be a term ; and to deny that such 
and such a thing is a term must always be false. 

It might perhaps be thought that a wotd of such extreme generality 
rould not be of any great use. Such a view, however, owing to certain 

• This laat pair of terms is due to Mr Bradle). 
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wide-spread philosophical doctrines, would be erroneous. ~ term is, 
in fact, posseHSed of all the properties commonly a.ssigned to substances 
or substantives. Every term, to begin with, is a logical subject: it is, 
for example, the subject of the proposition that itself is one. Again 
every term is immutable and indestructible. What a term is, it is, and 
no change can be conceived in it which would not destroy its identity 
and make it another term•. Another mark which belongs to terms 
i11 numerical identity with themselves and numerical diversity from all 
other terms+. Numerical identity and diversity are the soun..-e of unity 
and plurality ; and thus the admiS11ion of many terms destroys monism. 
And it Heems undeniable that every ronstituent of' every proposition can 
be <."Ountcd H.'l one, and that no proposition contains less than two 
constituenl!I. Term i11, therefore, 11. useful word, sin<.-e it marks dissent 
from various philosophies, H.'l well a.<1 bc,-cause, in many statementM, we 
wish to 11pe11.k of a11y term or some term. 

48. Among terms, it is prn,sible to distinguish two kinds, which 
I shall call respectively things and com:ept.v. The former are the terms 
indicated by proper names, the latter those indicated by all other wonlti. 
Here proper names 11.re to be understood in a somewhat wider sense than 
ill usual, and thingN also arc to be understood a.._ embra<'ing all par­
ticular points and instants, and many other entities not C'ommonly <'ailed 
thinhrs. Among ronct!pts, again, two kinds at least mrn,t be distingui!,hed, 
namely those indicated by adjective~ and those indiC'ated hy verbs. The 
former kind will often be mlled predicates or class-concepts; the latter 
are always or almost always relations. (In intram,itiw wrhs, the notion 
expressed by the verb is complex, and usually asserts a definite relation 
to an indefinite rclatum, as in "Smith breathes.") 

In a large da..'ls of propositions, we agreed, it is possible, in one or 
more ways, to distinguish a subject and an assertion about the subject. 
The RM11t.•rtion mmit alw11.ys cont.a.in a verb, but except in this respect, 
assertions appear to have no universal properties. In a relational 
proposition, say "A is greater than B,'" we may regard .A 8.'I the subject~ 
and " is greater than B" as the assertion, or B &'I the subject and ".A is 
greater than" &'I the assertion. There are thus, in the case proposed~ 
two ways of analyzin~ the proposition into subject and a.'isertion. 
Where a relation ha.'I more than two tenns, as in ".A is here nowt," 
there will be more than two way11 of making the analysis. Rut in 
some propositions, there is only a single way: these are the subje<.i-

* The notion of a term here !let fortl1 is a modification of Mr G. E. Moore's 
notion of a f'OTU"ept in his article "On the Nature of Judgment," Mind, N. S. No. 30, 
from which notion, however, it dift'el'II in HOme important respects. 

t On identity, see Mr G. E. Moore's article in the Pl'OCf'edi11g• qf the AriRtotelian 
Society, l!l00-1!101. 

l Thi11 proposition means "A is in thi11 place at this time." It will be shown in 
Part VII that the relation expre.ed is not reducible to a two-term relation. 

Downloaded from https://www.holybooks.com



47-49] Proper Name.I/, Aqjectives, and Yerbs 

predicate propositions, such as "Socrates is human." The proposition 
"humanity belongs to Socrates," which is equivalent to '' Socrutes is 
human," is an assertion about humanity; but it is a distinct propo­
sition. In "Socrates is human," the notion expn.'SSt.'<l by human occurs 
in a different way from that in which it tK'CUl'!I when it is called 
humanity, the differenc,-c being thut in the latter ca.-ie, but uot in the 
former, the proprn;ition is itbout this notion. This indit·ates that 
humanity is a concept, not a thing. I shall spc·ak of the term., of a 
proposition as those terms, however m1111emus, whid1 Ol'l'Ur in a propo­
sition and may he regarded 11..-; subjects ahout whi<"h the proposition is. 
It is a characteristit· of the ter1m1 of 11 proposition that any one of 
them may he replaced hy any other entity without our c·t.•1tsing to hu,·e 
a proposition. Thus we shall say that "Socrn.ks is human .,, is a 
propm,ition having only one term; of the rcnmining l'omponents of 
the propm,ition, OllC' is the verb, the other is a pralimtt'. \Vith the sense 
which i., has in this proposition, we no longer h1tvc a proposition at all 
if we replace human hy something otht•r than a pretlimte. Predicates, 
then, are concepts, other than vcrh~, whic·h occur in proprn,itions having 
only one term or suhjel't. Socrates is a thing, lwmuse Socrates r.an 
never occur otherwise than as tcnn in a proposition : Socrntes is not 
rapahle of that curious twofold use· which is involwd in h11mn11 and 
hu111anit,y. Points, instants, hits of rm1tter, particular st.utes of mind, 
and particular cxistents gt•nerally, arc things in the ahovt> sc•11se, and 
so arc many terms whid1 do not exist, for exmnplc, tl1t• points in a 
non-Euclidean space and the psc•udo-t•xisknts of a 11ovl'I. All classes, 
it would seem, as numhers, men, spaces, etc., when taken as single terms, 
are things ; hut thi,. is a point for Chaptc·r v1. 

Predicates are distinguished from othc•r terms by a number of very 
interesting properties, t·hief among which is their co1111cction with what 
I shall call denoting. One prcdieatc always gives rise to a host of 
cognate notions: thus in addition to !tu.man and lmm,wit,11, whic~h 
only differ grammatically, we have man, a man, .vome nuui, a11;11 mnn, 
ever.1/ man, all men•, all of which appear to be genuim•ly distinct one 
from another. The study of these various notions i:,, absolutely vital 
to any philosophy of mathematics; and it is on account of them that 
the theory of predicates is important. 

49. It might be thought thut a distinction ought to he made 
between a concept as such and a concept UsL-d as a term, between, 
e.g., such pairs B-" iY and being, lmman and liumanit_lj, one in such a 
proposition as "this is one" and· 1 iu " 1 is a number." But inex­
tricable difficulties will envelop us if we allow such a view. There is, 

* I use all men as collective, i.e. as nearly sy11011ymo11M with thP huma11 race, but 
diff'ering therefrom by being rnauy and not one. I shall always use all collectively, 
confining myself to every for the distributive seni<e. Thus I ~hall say "every man is 
mortal," not" all men are mortal." 
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of course, a grammatical difference, and this correKponds to a difference 
as regards relations. In the first case, the concept in question is used 
as a l'Oncept, that is, it is actually predicated of a tenn or asserted to 
relate two or more terms ; while in the second case, the concept is 
itself said to have a predicate or a relation. There is, therefore, 
no difficulty in accounting for the grammatical difference. But what 
I wi11h to urge is, that the difference lies 11olely in external relations, 
and not in the intrinsic nature of the terms. For suppose that one 
as adjective differed from l as term. In thi11 statement, one as 
adjective has been made into a tenn ; hen<.-e either it has become 
1, in which ca.o;e the supposition is self-eontradictory ; or there is some 
other differenee between 01w and 1 in addition to the fact that the 
first denotes a concept not a term while the second denotes a concept 
which is a term. But in this latter hypothesis, there must be propo­
sitions concerning one as term, and we shall still have to maintain 
propositions <.-oncerning one as adj<--ctive as opposed to one a.'! term; 
yet all such propositions must be false, sim·e a proposition about one 
as adjective makes one the subject, and is therefore really about one 
as term. In short, if there were any adjectives which could not be 
made into substantives without change of meaning, all propositions 
concerning such adjeetives (since they would ne<.-essa.rily turn them into 
substantives) would be false, and so would the proposition that all 
such propositions are false, since this itself turns the adjectives into 
substantives. But this state of things is self-contradictory. 

The above argument proves that we were right in saying that terms 
embrace everything that can OC<'Ur in a proposition, with the possible 
exception of complexes of terms of the kind denoted by an;'I/ and cognate 
words•. For if A oc-curs in a proposition, then, in this statement, 
A is the 1.mbjeet ; and we have just seen that, if A is ever not the 
subject, it is exactly and numeric-ally the same .A whic-h is not subject 
in one proposition and is subject in another. Thus the theory that 
there are adjectives or attributes or ideal thin1,,rs, or whatever they may 
be called, which are in some way less substantial, less self-subsistent, 
Jess self-identi<:al, than true substantives, appears to be wholly erroneous, 
and to be easily reduced to a contradiction. Terms whieh are concept.s 
differ from those which are not, not in resped: of rself-subsistence, but 
in virtue of the fact that, in certain true or false propositions, they 
occur in a manner which is different in an indefinable way from the 
manner in which subjects or terms of relations occur. 

GO. Two cont-epts have, in addition to the numerical diversity 
which belongs to them as terms, another special kind of diversity 
which may be c·alled conceptual. This may be characterized by the 
fact that two propositions in whic·h the concepts occur otherwise than 
as terms, even if, in all other respects, the two propositions are identical, 

* See the next chapter. 
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yet differ in virtue of the fact that the concepts whic.·h occ.·ur in 
them are conceptually diverse. Conceptual diversity implies numerical 
diversity, but the converse implication does not hold, since not all 
terms are con<·epts. Numerical divel'!lity, as it" name implies, is the 
source of plurality, ,md conceptual dh·ersity is less important to 
mathematics. But the whole possibility of making different assertions 
about a given term or set of tt'nns depends upon c·onttplual diversity, 
which is therefore fundamental in general logic·. 

51. It is interesting and not unimportant to examine ,·ery briefly 
the connection of the aboYe d0<·trine of adjectiYes with certain traditional 
views on the nature of propositions. It is cm1tomary to regard all 
propositions as haYing a suhjel'l and a predicate, i.e. as having an 
immediate tl1i.¥, an<l a general concept attached t.o it by way of description. 
This is, of course, an account of the theory in question which will strike 
its adherents as extremely crude; but it will serve for a general indication 
of the view to be discus!ied. 'l'his doctrine devdops by internal logical 
necessity into the theory of Mr Bradley'11 Logic, that all word11 stand for 
ideas having what he calls meaning, and that in every judgment there 
is a something, the true subject of the judgmcnt, which is not an idea 
and does not have meaning. To have meaning, it seems to me, is a 
notion confm,edly compounded of logical and psychological elements. 
Worda all have meaning, in the simple sense that they are symbols 
which stand for something other than themselves. But a proposition, 
unless it happens to he linguistic, does not itself contain words : it 
contains the entities indicated by words. Thus meaning, in the sense 
in which words have meaning, is irrelevant to logic. But such concepts 
as a man have meaning in another sense: they are, so to speak, symbolic 
in their own logical nature, because they have the property which I call 
denoting. That is to say, when a man occurs in a proposition (e.g. 
" I met a man in the street "), the proposition is not about the concept 
a man, but about something quite different, some actual biped denoted 
by the concept. Thus concepts of this kind have meaning in a non­
psychological sense. And in this sense, when we say" this is a man," 
we are making a proposition in which a concept is in some sense 
attached to what is not a concept. But when meaning is thus under­
stood, the entity indicated by John does not have meaning, as Mr Bradley 
contends• ; and even among concepts, it is only tho11e that denote that 
have meaning. The confusion is largely due, I believe, to the notion 
that worda occur in propositions, which in tum is due to the notion that 
propositions are essentially mental and are to be identified with cognitions. 
But these topics of general philosophy must be pursued no further in 
this work. 

82. It remains to discuss the verb, and to find marks by which 
it is distinguished from the adjective. In regard to verbs also, there. is 

* Logic, Book I, Chap. 1, §§ 17, 18 (pp. 68-60). 
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a twofold grammatical form corresponding to a difference in merely 
external relations. There is the verb in the form which it has as verb 
(the various inflexions of this form may be left out of account), and 
there is the verbal noun, indicated by the infinitive or (in English) the 
present participle. The distinction is that between " Felton killed 
Buckingham"' and "Killing no murder." By analyzing this difference, 
the nature and function of the verb will appear. 

It is plain, to begin with, that the concept which occurs in the verbal 
noun is the very same as that which oc-curs as verb. This results from 
the previous argument, that every constituent of every proposition must, 
on pain of self-contradiction, be capable of being made a logical subject. 
If we say "kill,¥ does not mean the same as to kill," we have already 
made kill,¥ a subject, and we <·annot say that the concept expressed by 
the word ki/,l,¥ cannot he made a subject. Thus the very verb which 
occurs as ,·erb can occur also as subject. The question is: What logical 
difference is expres~l by the difference of grammati<·al form ? And it 
is plain that the difference must he one in external relations. But 
in rchrard to verbs, there is a further point. By trnnsforming the verb, 
as it occurs in a proposition, into a verbal noun, the whole proposition 
can be turned into a single logiml subjeet, no longer asserted, and no 
longer containing in it,.,df truth or falsehood. Hut here too, there seems 
to be no possibility of maintaining that the logical :-ubject which results 
is a difforent entity from the proposition. "Caesar died" and "the 
death of Caesar" will illustrate this point. If we ask : \Vhat is asserted 
in the proposition "Caesar dit'<l "? the answer must he "the death of 
Caesar is asserted." In that case, it would seem, it is the death of Caesar 
whi<·h is true or false; and yet neither truth nor falsity belongs to 
a mere logical suhje<·t. The answer here seems to he that the death of 
Caesar has an extt•rnal relution to truth or falsehood (as the case may 
be), whereas "Caesar dit.'<l" in some way or other contains its own truth 
or falsehood as an element. But if this is the cmTed analysis, it is 
ditfit·ult to set.~ how "Caesar died" differs from "the truth of' Caesar's 
death" in the cai,,e where it is true, or "the falsehood of Caesar's death" 
in the other <·asc. Yet it is quite plain that the latter, at any rate, is 
never t•quivalent to "Caesar died." There appears to he an ultimate 
notion of a.,;sertion, gi, en by the verb, which is lost as soon as we 
substitute a verbal noun, and is lost when the proposition in question 
is made the suhjed of some other proposition. This docs not depend 
upon grammatiml form; for if I say "Caesar dinl is a proposition," 
I do not assert that Caesar did die, and an element which is present in 
"Caesar died" ha.11 disappeared. Thus the contradiction which was to 
have hem avoided, of an t.>ntity which cannot. be made a logi1:al subject, 
appears to have hen• become im·,·itable. This difficulty, which seems to 
~inherent in the very nature of truth and falsehood, is one with which 
l do not know how to deal satisfactorily. The most obvious course 
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would be to say that the difference between an asserted and an unasserted 
proposition is not logical, but psychological. In the sense in which 
false propositions may be asserted, this is doubtless true. But there 
is another sense of assertion, very difficult to bring clearly before the 
mind, and yet quite undeniable, in which only true propositions are 
asserted. True and false propositions alike are in some sense entities, 
and are in some sense capable of heing loE,rical subjects; hut when 
a propo.<1ition happens to be true, it has a further quality, over and 
above that which it shares with false proposition11, and it is this further 
quality whieh is what I mean by assertion in a logical RS opposed to 
a psychological senst>. The nature of truth, however, belon!,,rs no more 
to the priueiples of mathematic·s than to the prim·iplc•11 of everything 
cl'le. I therefore leave this quei;tion to the logicians with the above 
brief indi<'.ation of a difficulty. 

63. It may be askt-d whether t•verything that, in the logieal lll'nse 
we are <•om·crned with, is a Ycrb, express('!; a relRtion or not. It seems 
plain that, if we weft' right in holding that "Socrates is human., is a 
proposition ha,·ing only one term, the i., in this proprn~it.ion cannot 
expreAA a relation in the ordinary sense. In fad, suhjL>ct-predicate 
propositions are di11ting1.1ished by just this non-relational character. 
Nevertheless, a relation between Socrates and humanity is <'erlainly 
i,npliRd, and it is very difficult to conceiw the proposition as expres.11ing 
no relation at all. \'Ve may perhaps say that it is a relation, although 
it is distinguished from other relations in Huit it does not pt·rmit ibff!lf 
to be regarclt'<l as an R.'1-~rtion concerning either of it11 tenm indifferently, 
but only as an w.sertion concerning the referent. A similar remark may 
apply to the proposition •• A is," which holds of every tem1 without 
exception. The is here i11 quite different from the i., in "Socrates is 
human"; it may be rehl'B.nled a.,; complex, and BK really predicating 
Being of A. In this way, the true logical verb in a proposition may be 
always regarded as a.'!Serting a relation. But it i11 so hard to know 
exactly what is meant by relatum that the whole quc11tion is in danger 
of becoming purely verbal. 

64. The twofold nature of the verb, a.,; actual verb and as verbal 
noun, may be expressed, if all verbs are held to be rele.tion11, a.s the 
difference between e. relation in itself and a relation actually relating. 
Consider, for example, the proposition "A differs from B.,, The 
com,tituents of this proprn;ition, if we e.nalyze it, appear to be only A, 
difference, B. Yet thei;e constituents, thms placed side by i.;de, do not 
reconstitute the proposition. The differenc,-e which occurs in the 
proposition actually relates A and B, whereas the difference after 
analysis is a notion which has no connection with A and B. It may 
be said that we ought, in the analysis, to mention the relations which 
difference has to A and B, relations which are expressed by ;.., and .from 
when we say " A is different from B." These relations consist in the 
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fact that A is referent and B relatum with respect to difference. But 
" A, referent, difference, relatum, B ,, is still merely a list of. terms, not 
a proposition. A proposition, in fact, i11 essentially a unity, and when 
analysis has de11troyed the unity, no enumeration of constituents will 
restore the proposition. The verb, when used as a verb, embodies the 
unity of the proposition, and is thus distinguishable from the verb con­
Bidered as a term, though I do not know how to give a clear account of 
the precise nature of the distinction. 

H. It may be doubted whether the general concept differe11ce 
occurs at all in the proposition ".A diffel'!I from B,'" or whether there is 
not rather a specific difference of A and B, and another specific d;fference 
of C and D, which are respectively affirmed in ".A differs from B" and 
"C differs from D."' In this way, dfffern,c,· becomes a class-concept of 
which there arc as many instances as there are pairs of different terms; 
and the instances may be said, in Platonil· phrase, to partake of the 
nature of difference. As this point is quite vital in the theory of 
relations, it may be well to dwell upon it. And fin;t of all, I must 
point out that in " A diffi.•rs from B"' I intend to consider the bare 
numerical difference in virtue of which they are two, not difference in 
this or that respect. 

Let us first try the hypothesis that a difterenl'C is a l"omplex notion, 
compounded of difference together with some special quality distinguishing 
a partil"ular difference from every other particular difference. So far as 
the relation of difference itself i& concerned, we are to suppose that 
no distinction can be made between different cases; but there are to be 
different a.~sociated qualities in different cases. But since cases are 
distinguished by their terms, the quality must be primarily associated 
with the terms, not with difference. If the quality be not a relation, it 
can have no special conned:ion with the difference of A and B, which it 
was to render distinguishable from bare difference, and if it fails in this 
it becomes irrelevant. On the other hand, if it be a new relation 
between A and B, over and above difference, we shall have to hold that 
any two terms have two relations, difference and a specific difference, the 
latter not holding between any other pair of terms. This view is a 
combination of two othel"!I, of which the fil"llt holds that the abstract 
general relation of differenc.,-e itself holds between A and B, while the 
second holds that when two terms differ they have, corresponding to 
this fact, a specific relation of difference, unique and unanalyzable and 
not shared by any other pair of terms. Either of these views may be 
held with either the denial or the affirmation of the other. Let us· see 
what is to be said for and against them. 

Against the notion of specific differences, it may be urged that, if 
differences differ, their differences from each other must also differ, and 
thus we are led into an endless process. Those who object to endless 
processes will see in this a proof that differences do not differ. But in 
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the present work, it will be maintained that there are no contradictions 
peculiar to the notion of infinity, and that an endless process is not to 
be objected to unless it arises in the analysis of the· actual meaning of a 
proposition. In the present case, the process is one of implications, not 
one of analysis; it must therefore be regarded BM harmless. 

Against the notion that the abstract relation of difference holds 
between .A and B, we have the argument derived from the analysis of 
"A differs from B," which gave rise to the present diK<.'ltssion. It is to 
be observed that the hypothesis which combint.>s the hFCneral and the 
specific difference must suppose that tht.>re are two distim·t propositions, 
the one affirming the general, the other the spL'Cific· diffi:-rem-e. Thm, if 
there cannot be a general difference between .A and B, this mediating 
hypothesis is also impossible. And· W(' saw that t.he attl'mpt to avoid 
the failure of analyi,is by including in the 1'1Rm1ing of" A diffcl'!I from B" 
the relations of difference to A and R was vain. This attempt, in fact, 
leads to an endless process of the inadmissible kind ; for we shrtll have to 
include the relations c,f the said relations to A. and B and difference, and 
so on, and in this continually increasing c·omplexity we are supposed 
to be only analyzing the meaning of our original proposit.ion. Thi11 
argument c•stablishes a point of very great irnportan<'e, namely, that 
when a relation holdi, between two terms, the relations of the relation to 
the terms, and of these relations to the relation and the terms, and so 
on ad ir!fi11itmn, though all implied hy the proprnsition affirming the 
original relation, form no part of the mnming of this proposition. 

But the above argument cloe11 not suffice to prove that the relation 
of A to B cannot he abstract diflerc>nce: it remains tenable that, as 
was suggei,ited to begin with, the true solution lies in n•garding every 
proposition as having a kind of unity which analysis cannot pr:!serve, 
and which is lost even though it be mentioned hy analysis a.~ an element 
in the propo11it.ion. This view has doubtless its own difficulties, but thf' 
view that 110 two pairs of terms can have the same relation both contains 
difficulties of its own and fails to solve the clifli<'ulty for the sake of which 
it was invented. For, even if the difference of A and B be absolutely 
peculiar to .A and B, still the thrL-e terms A, B, difference of .A from B, 
do not reconstitute the proposition "A. differH from B," any more than 
.A and B and differen<--e did. And it i,eem11 plain that, even if differences 
did differ, they would still have to have something in common. But 
the most general way in which two terms can have something in common 
is by both ha,•ing a given relation to a given term. Hence if no two 
pairs of _terms can have the same relation, it follows that 110 two terms 
can have anything in common, and hence different differences will not 
be in any definable sense i11,stancea of difFP.rence •. I conclude, then, that 

* The above argument appears to prove that Mr Moore's theory of univenials 
with numerically diverse i1111tances in his paper on Identity (Proceeding• of tha 
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the relation affirmed between .A and B in the proposition ".A differs 
from B,, is the general relation of difference, and is precisely and 
numerically the same a11 the relation affirmed between C and D in 
"C differs from D.,, And this doctrine must be held, for the same 
reasons, to be true of all other relations; relations do not have instances, 
but are strietly the same in all propositions in whieh they occur. 

We may now sum up the main points elicited in our discussion of 
the verb. The verb, we saw, is a l'Ont-ept which, like the adjective, may 
Ol'<'Ur in a proposition without being one of the terms of the proposition, 
though it may also be ma.de into a logical subject. One verb, and one 
only, mm1t occur as verb in every propm,ition; hut every proposition, 
by turning its verb into a verbal noun, can be ehanged into a single 
logical ,mhjcet, of a kind which I shall eall in future a propositional 
concept. Every verb, in the logical 11ense of the word, may be regarded 
&H a relation ; when it occurs as ,·erh, it actually relates, hut when it 
occurs a.~ verbal noun it is the bare relation considered independently of 
the tenns which it relates. Verbs do not, like adjectives, ha,·e instances, 
but are identical in all the cases of their occurrem·e. Owing to the way 
in which the verb actually relates the terms of a propoiiition, every 
proposition has a unity which renders it distinct from the sum of its 
constituenbi. All thl'!le points lead to logical problcm11, which, in a 
treatise on lobric, would deserve to be fully and thoroughly discussed. 

HavinK now given a general sketch of the nature of verbs and 
adjectives, I shall proct>ecl, in the next two chapters, to discussions 
arising out of the rorn,ideration of Rdjectives, and in Chapter vn to 
topics conneded with verbs. Broadly speaking, da~s are connected 
with adjectives, while propositional functions involve verbs. It is for 
this reason that it has been necessary to deal at such length with a 
subject which might seem, at first sight, to be somewhat remote from 
the principle. of mathematics. 

AriAtott'lian Sotit'ty, 1000-HIOl) must not be applied to all concepts. The relation of 
an instance to its uni\'ersal, at any rate, must be actually and numerically the same 
in all cases where it occurs, 
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CHAPTER V. 

DENOTING. 

66. Tm,; notion of denoting, like must of the notions of logic, has 
been obscured hitherto by an undue 1uhuixture of psyt·hology. Then• is 
a sense in which we denote, when we point or describe, or employ words 
as symbols for concepts; thi~, however, is not the sense that I wish to 
discuss. Uut the fact that description is possible-that. wt· are able, hy 
the employment of conrepts, to drsignate a thing which is not a concept 
-is due to a logieal relation between some c·011cepts and soml• terms, in 
virtue of which sueh concepts inherently and logically dt'1wte sueh terms. 
It is this sense of denoting whirh is here in c1uestion. This notion lies 
at the bottom ( I think) of all theories of !'!Ubstance, of the suhject­
predicate logi<', and of the opposition between things and ideas, 
discursive thought and immediate perception. These various develop­
ments, in the main, appear to me mistaken, while the fundamental fact 
itself, out of which they huve grown, is hardly ever clisrussc.-d in ib; 
logieal purity. 

A ('Ont'ept d1·1wt,u when, if it occun, in a proposition, the proposition 
is not ahol/,t the roncept, but about a term ,·ormected in a l'crlain 
peculiar way with the ('oncept. If I baJ "I met a man," the proposition 
is not about a man: this i~ a concept which does not walk the streets, 
hut lives in the l'lhadowy limbo of the logic-hookis. What I met was a 
thing, not a concept, an actual m,m with a tailor and a hank-account or 
a puhlic-houi.e and a drunken wifr._ Again, the proposition "any finite 
number is odcl or even" is plainly true; y,,t the toru:ept "any finite 
number"' is neither odd nor even. It is only partieular numbers that are 
odd or even; there is not, in addition to these, another entity, a:ny 
number, which is either odd or even, and if there were, it is plain that it 
could not he odd and could not he even. Of the concept "any number," 
almost all the propm,itions that contain the phra.ve "any number" are 
false. If we wish to speak of the concept, we have to indicate the fact by 
italics or inverted rommas. People often assert that man is mortal ; 
but what is mortal will die, and yet we should be surprised to find in the 
"Times" such a notice as the following : " Dil-d at his residence of 
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Camelot, Gladstone Road, Upper Tooting, on the 18th of June 19-, 
Man, eldest son of I>eath and Sin."' Man, in fact, does not die; hence 
if "man is mortal" were, as it appears to be, a proposition about man, 
it would be simply fal!!e. The fact is, the proposition is about men; 
and here again, it is not about the roncept men, but about what this 
concept denotes. The whole theory of definition, of identity, of classes, 
of symbolism, and of' the Yariable is wrappt.-d up in the theory of 
denoting. The notion is a fundamental notion of logic, and, in spite 
of its difficulties, it is quite e11sential to be as clear about it as possible. 

57. The notion of denoting may be obtainecl by a kind of logical 
genesis from subject-pn.><licatc propositions, upon whirh it seems more or 
less dependent. The simplest of propositions are those in which one 
predicate occurs otherwise than as a term, and there i11 only one term of 
which the predicate in question is asserted. Such propositions may be 
c.a.lled subject-predicate proprn,itions. lnstane,-es are: .A is, .A is one, 
.A is human. Com-epts which are predicates might also be called dass­
conceptll, because they hrive rise to ,·lasses, hut we shall find it necessary 
to distinguish between the words predicate and C'lfMH'oru:ept. Propositions 
of the subject-predicate type always imply and are implied by other propo­
sitions of the type which a.~serts that an individual belongs to a dA..~. 
Thus the above instances are t.'<luivalent to: .A is an entity, .A is a unit, 
.A is a man. These new propositions are not identical with the previous 
ones, since they have an entirely different form. To begin with, ia is now 
the only concept not U!!ed a.~ a term. A mrm, we shall find, is neither 
a conc-cpt nor a term, hut a certain kind of combination of ecrlllin terms, 
namely of those "hich are human. And the relation of Socrates to 
a man is quite different from his relation to humanity; inclced "Soc1·ates 
is human" must hc held, if the above view is correct, to be not, in the 
most usual 11ense, a judgment of relation between Socrates and humanity, 
sinc.-e this view would make l111ma1t occur as tc•rm in "Socrates is human." 
It is, of ,·ourse, undeniahlt• that a relation to humanity is implied by 
·• So<'l'atcs is human," namely the relation expressed by "Socrates has 
humanity" ; and thi~ l'dittion conversely implies the subject-predicate 
proposition. But thl' two proprn.itions ,·an be dearly distin1,,"'-1isht.'ll, and 
it is imporbu1t to the theory of da.•ises that this should be done. Thus 
we have, in thl• <'Hsc• of every predicate, three types of propositions 
whid1 imply one another, namdy, "Socrates is human," "Socrates has 
humanitv," and "Socl'ab-s ii; a man." The fit-st <•ontains a term and 
a pn.-dit·~tc, the MCcond two terms ancl a relation (the Sl·c·ond term being 
identical with the predi<·atl.' of the first propo~ition)•, while the thinl 
contains a tenn, 11. relation, 11.nd what I shall c·all a disjunL't.ion (a term 
whi<·h will be explaint.-d shortly)t. The dass-cone,-ept differs little, if at 

• Cf. § 49. 
t There are two allietl propositions expreSAetl by tl1e same words, namely 

"Socrates is a-man " and "Socrates is-a man." The abm·e remarks apply to the 
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all, from the predicate, while the class, as opposed to the <.·les.'1-<.'onccpt, is 
the sum or conjunction of all the terms which have the given predicate. 
The relation which ocmrs in the 1,1econd type.(Socrates hRM humanity) is 
characterized completely by the fa.et that it impli<.•s and is implied by a 
proposition with only one term, in which the other tt>rm of the rt>lation 
has become a predicate. A da.11s is a C"e>rtai11 <.'Omhination of termH, a 
class-concept is do:,d~· akin to a prt'<li<·ate, and the lt.•rms whose com­
bination forms the da~s are determinc,d by the> dass-c·om>t•pt. Predicates 
are, in a certain scn~c, the simpl<.•i,;t typt• of <·om·cpto;, i.inn• they ()(·c·ur in 
the simpfost type of propo:..ition. 

58. There is, c01meC'led with l'\'t•ry p1'l•dic·11te, 11 gre1\t ,·arict.y of 
closely allied <·om·t•pts, whic·h, in so far a" thl·~· l\l'l' distinct, it ji,; 
important to di:.tinguish. St11rting, for '-'"1unplP, with l111man, wt• have 
man, men, all nll'n, l'Vl'IT man, 1111v 1111111, tlu- human rtu·<•, of whid1 all 
except the first lll'l' hwfi.,ld, 11 cll·n;,ting <·onc·t•pt nnd 1111 ohj<.·c·t oenoh'<l; 
we h,we also, le:,.; drnwl~· 11nalogous, tht• notions "a man" 11nil "some 
man," which again denote ohjedi.• otlw1· tlmn tlwmsel\'l's, This ,·11.st 
apparatus ,·onnec·ted with every prcdi('/\te 11111st h,• born<.• in mind, 11.nd 
an endeavour mm,t. he made to give an 111111.l_vsis of all t.he ahm·e not.ions. 
But for the pm,l'nt, it ii. the pmpc•rty of clt•11oting, ratlll'r than the 
variou" denoting t·oncl'pts, that we 11.re c·om·c·ruc•d with. 

'l11e c·omhin11tion of l'Olll'l'ph ai. Mll'h to form Ill'\\' (•onc·c·pti., of h'1'l'ah•r 
(•omplexity th1111 thl'ir l'<mstituents, i1, 11 s11hj1•l'l 11po11 whid1 wrilc•n; on 
logic have said many things. But the c·mnhin11.tio11 of h-rim, a.o.; t.UC'h, 
to form what h_v annlog_v ma_v ht· <·11.llc'<l c·omplt•x terms, is a 1-onhjc•ct 
upon which logicians, old and m•w, give us only the M'llnti<.•st dis,·usi.ion. 
Severthe}e:,i., tlu- i.ul~jc•l't is of \'ital importanc•e t.o tlw philosophy of 
mat.hc•matics, since thl' nature hot.h of number and of t.lll' ,·ariahlc turns 
upon jut.t this point. Six wordt., of <·onst1111t cx·<·nrt'l!nc'e in daily life, 
are also c·h11.raC"t1:"1ist.ic· of mat.ht•mati<·s : these 11.rc the words aJ,l, et•tTJI, 
,,n.1/, ll,, .wnnr and tlu·. :For corrertness of reasoning, it is c•t.i.t•ntial th11.t 
these words should lX' i.ha.rply distinguished one from another; hut 
the imbject hrisllt..-s with difficultiL-s, and is almost wholly 11cilcctecl by 
logil·ians t. 

It is plain, to begin with, that a phrase <·ontaining one of the above 

former; but in future, unJeq,o; the contrary i11 indicated by a hyphen or otherwiRe, 
the latter will always lll' in questirm. The former ex11re11~t'R the identity of ::,ocrate11 
with au ambiguous indivi<lual ; the lattl'r expn.-sM«~R a relation of ~rate!! tn the 
clas&-eoncept r,urn. 

* I shall ucie the word ohject in a wider MellKC thau term., to cover both l'li11gular 
and plural, and alRO cn.'!l's of ambiguity, such a,; "a man." The fact that a. word cau 
be framed with a wider meaning than tP-rrn raise11 ~ave logical problem,;. Cf. § 47. 

t On the indefinite articll', Home l{lllld remark11 are ma1le by Meimmg, 
"Abstro.hiren unrl Vergleichen," Zeit111·hrifl fiir P11_y1:hologie 1tnd Ph1111fologie dt!r 
8inReNOrgane, Vol. x,uv, p. 6.1. 
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six words always denotes. It will be convenient, for the present 
discuSt!ion, to diMtinguish a class-concept from a predicate: I shall call 
human a predicate, and man a class-concept, though the distinction is 
pe1·haps only verbal. The characteristic of a cla.'1!1-concept, as distin­
guishL-d from terms in general, is that "x is a 11" is a propositional 
function when, and only when, u is a class-concept. It must be held that 
when u is not a class-concept, we do not have a false proposition, but 
simply no proposition at all, whatever value we may give to x. This 
enables us to distinguish a class-concept belonging to the null-class, for 
which all propositions of the above form are false, from a term which is 
not a class-concept at all, for which there are no propositions of the 
above form. Also it makl's it plain that a class-concept is not a term 
in the proposition ":r is a u," for u has a restricted variability if the 
formula is to remain a proposition. A denoting phrase, we may now say, 
consists always of 11 class-concept preceded by one of the aboYe !>ix words 
or some synonym of one of them. 

li9. The question which fin-t meets rn, in regard to denoting is 
this: Is tlwrc one way of denoting six differt>nt kind» of objel'ts, or are 
the ways of denoting different? ~\.nd in the latter ca.~e, is the object 
denoted the same in all six eases, or does the ohjed differ as well as the 
way of denoting it? In order to answer thil-> 11uestion, it will he first 
nt,'('<'ssary to explain the diffi.,rences hetwt·l'n the six_ words in question. 
Here it will he convenient to omit the word the to begin with, sinc,-e this 
word is in a different position from the othcn-, and is liable to limitations 
from which they are exempt. 

In ea.o;es where the class defined by a dass-con<"ept has only a finite 
number of terms, it is possible to omit the dass-com·ept wholly, and 
indil'ate the various object!' denoted by enumerating the terms and 
connecting them by means of and or or as the case may be. It will 
help to isolate a part of our problem if we first consider this case, 
although the lack of subtlety in language renders it difficult to grasp the 
difference hetwt'ell objl.'('ts indicated by the same form of words. 

Let us begin by <'m1sidering two terms only, say Brown and ,Jone1>. 
The object..-; dcnotL,d by all, e1•rry, a11.1J, a and .wmc• arc respel'tively 
involved in the following the pmpositions. (1) Brown and Jones are 
two of Miss Smith's suitors; (~) Brown and Jones an· paying court to 
Miss Smith; (3) if it wns Brown or ,Jones you met, it wa~ a ,·crv ardent 
lO\·cr; ( 4) if it was one of :\-Iiss Smith'; suitors, it nrnst lu{ve been 
Brown or ,Jones; (5) Miss Smith will man-y Brown or ,Toni's. Although 
only h1 o forms of words, Brown mul J01;c11 and Bmw11 or Jo11es, are 
involved in these prnpositions, I maintain that fi,-e different combination:,; 
are involved. The distinctions, some of which arc rather subtle, may be 

-II- l iutend to distinguish betwee11 a and 11onu, in a way 11ot warranted by language; 
the di11ti11ctio11 of 11// aud etY'ry is a!!'lo a straining of usage. Both are necessary to 
a1·oid circumlocution. 
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brought out by the following considerations. In the first proposition, it 
is Brown and Jones who are two, and this is not true of either separately; 
nevertheless it is not the whole compo,;ed of llrown and Jones which is 
two, for this is only one. The two a.re a genuine combination of Brown 
with Jones, the kind of ('omhination which, as we shall sec in the next 
chapter, is ('haracteri,.,tic of das,-e,.,_ In the "l'l'<md proposition, on the 
contrary, what is a.~serted is true of Brown and ,Jones Sl'wrally; the 
proposition is equivalent to, though not (I think) ideutil·al with, "Brown 
is paying court to 1\liss Smith and Jones is paying court to Mis.-i Smith." 
'fhus the combination indimtl'd l,~· a111/ is not the ~ame here 1is in the 
first case: the first case coneerne,i all of them eolkctivcly, whill' the 
second concl'rns all distrihut.in~lv, i.e. ead1 or ewrv one of tlwm. f'ur 
the sake of di,.,tinction, we nui~: eall the tirst a 11;m,criml conjunction, 
since it give" rise to numher, the sel'ond a propositu111al ('011,iunction, 
since tht• proposition in whil'h it occurs is eqninih·nt to a <"011junc·tion of 
proposition". (It ~hould be uhst'l'\'l'd that the l'onjunction of propo­
sitions in que,,tion is of a whollv diffen•nt kind from anv of tlw cmn­
hinations we nre eon,.,idering, hl'i;1g in fad of thl· kind ,~•hi<"h is (0alll'<l 
the logical product. The propo~itio11s arc combined qua propositions, 
not qua term:-..) 

The third propo,.,ition gin-" the kind of (·onjunl'tion by \\ hid1 fUI// is 
defowcl. There is some difficultv about thi" notion, "hid1 Sl'l'III" half-way 
betwl.'en a conju11et.ion 1tm! a cii,.,ju11dion. This notion may hl' further 
explairn•d as follow:-.. LPt a and b be two different prnposil.ions, 
each of which implie~ 11 third propo~itio11 ,·. Then tlw cfo,junetion 
"fJ, or b" implies c. :--.ow let a and b hl' proposition" a;.,.,igning the 
same pn•di('ah- to two diffi~1-ent "uhjech, then thc•re is a c-omhiuation 
of the two sul~jects to whieh tlw gi\'l'll pr<'di(·ate ma_v lw assigned so 
that the resulting propo,,ition i,, e11uivalent to the di,-,jum·tiou "a or b." 
Thus suppo:-.e ,1e have" if you met Brown, you met 11 very ardent. lover," 
and "if _vou met ,Jones, you met a wry ardent lon•r." Hence we infer 
"if you met Brown or if you met ,Jones, you met a very ardent lover," 
and we regard this as equivalt•nt to "if you met Brown or Jone,,, l•lc." 
The combination of Brown am] ,Jones here indicated is the ,,ame as that 
indicated by either of thl'm. It differi, from a disjunc-tion by the fact 
that it implie" and is implied by a ~tatement <·onl'erning both ; but in 
some more complicated imtance", this mutual implication fails. The 
method of' <·ombiuation i", in fact, different from that indicated hy both, 
and is also different from both forms of disjunction. I shall call it the 
variable conjunction. The first form of disjunction is given by ( 4): this 
is the form which I shall denote by a suitor. Here, although it must 
have been Brown or ,Jonc>s, it is nut true that it must have been Brown, 
nor yet that it must luive been Jones. Thm; the propo,.,ition iN not 
equi;alent to the di!tjunction of propositions" it must have been Drown 
or it mui;t have been Jones." The propo,.,itiou, in fact, i~ not capable of 
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statement either as a disjunction or as a conjunction of propositions, 
except in the very roundabout form : " if it was not Brown, it was 
Jones, and if it wa.-i not Jones, it wa.'! Brown," a form which rapidly 
l>e<·oml's intolerable when the number of terms is increased beyond two, 
and hec·omes th<.-<>retically inadmissible when the number of terms is 
infinite. Thus this fori~ of disjunction denotes a variable term, that 
is, whichever of the two terms we fix upon, it does not denote thi11 term, 
and yet it cloe11 denote one or other of them. This form ru:cordingly I 
shall call the 1•ariabk clisjunl'lion. }'inally, the second form of dii,jundion 
is given by (5). This is what I shall call the co11.,ta11t di11junction, 1,ince 
here c_•ither Urown is denoted. or Jones is denoted, but the altemative 
is un<ll•<·idecl. That is to :-.ay, our proposition is now equivalent. to a 
disjmwtion of proposit.io1111, uamdy "Miss Smith will marry Brown, or 
sh<• will mR.rry ,Jones." She will marry .rome one of the two, and the 
disjunction denotes a particular one of them, though it may denote 
either partil'lllar one. Thus all the five ('()nJbinations arl' distinct. 

It is to be observed that these fh·e {'Ombinntions yil'ld neither term11 
nor l'Om'C•pb;, but strictly and only {'Olllhinat.ions ol terms. The first 
yields 1111111,v terms, while the others yield something absolut.d_v pec·uliar, 
whirh is ,wither one nor many. The combinations are c-omhinations of 
wrms, cffi.•ctc_,d without. the use of n•lnt.ions. CmTC:-.ponding to each 
comhination there is, at least if the terms c·ombined form a das:-., a 
perfec·tly definite concept, whi<·h drnotr.s the various terms of the eombi­
nation <·nmhined in the spet·itied manner. To explain this, let us repeat. 
our distinctions in ll c•a..,e where the terms to ht· combined are not 
enumt•rakd, as above, hut arc defiiwcl 1ts tht• terms of a c·ert.ain dass. 

60. ,vhen a dass-concept "· is given, it must he held that the 
\'arious knns belonging to the da.-.:-. arc also given. That is to sa~·• any 
term being proposed, it. c·an he de<·idt.'fl whet.her or not it belongs to the 
cla.>1:-.. In this way, a t·ollcc-tion of te11n:-. l'an be given ot.ht•rwi11e than by 
enunwmtion. Whether a colle<:tion c·an be given otherwise thnn by 
enumemtion or h,v a dn.ss-concept, is a question whic·h, for the present, 
I lea\'e uml<·tcrmined. Ifot the po:-.i,ihilit_y of gil'ing a c·ollec:tion b_v a 
d11..-is-c:om·cpt is highly important, sinl'C it ennblei,, us to deal with infinite 
collt-ctions, w; we shnll sc_-e in Part V. For the present, I wi:-.h to examine 
the meaning of sm·h phra...es 11.."I all a's, et't'rJJ a, m1,1J a, ,m a, and ,'Imm: a. 
All a's, to begin with, denows 11. numeri<·al conjunct.ion; it is defiuite as 
t-oon aH '" is briven. The l'oncept. all t1's is a perfeC'tly definite single 
concept, which denotes the ter11111 of a taken all together. The terms 
so taken hn.\'e a number, whid1 may thm; be regardt..-d, if we choose, as 
a propert~· of the cla.ss-<·om·ept, since it is determinate for any given 
dn.,;s-<·oucept. Euer,11 a, on tht• c·ontrary, though it still denotes all the 
<t's, denote11 them in a different way, i.e. se\·erally instead of collectively. 
A11,'I a denotes only one a, but it is wholly irrele\'ant which it denotes, 
and what is said will be equally true whichever it may be. Moreover, 
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atny a denotes a variable a, that is, whatever partil'nlar a we may fasten 
upon, it is certain that any a does not denote that one ; and yet of that 
one any proposition is true which is true of any a. An a denotes a 
variable disjun<'tion: that is to &ay, a proposition whi<·h holds of an a 
may be false <'oncerning each parfo·ular a, so that. it is not redu<'ihle to 
a disjun<'tion of propositions. l'or <•xamplt', a point lies het.ween any 
point and any other point; but. it would not he• true of any one 
particular point that it. lay h<•hn't'n 11.ny point und any other point.. 
sim-e there would he many pairs of point.-. bl.'twt'Cll whi,·h it did not lie. 
This bringi; us filllllly to ,yom,· ti, the c·on:-.tant disjundion. This ,lt·m,te11 
just one term of the da.'ls a, hut the tl•rm it denotes may b1.· any ti·rm 
of the dnss. Thu-. "~ome momt·nt does not follow 1tnv 11101111.·nt" woult.l 
mean t.hat there wa.-. 1\ tirwt. momt•nl- in tiim•, while "1~ n101111.•nt prt't't'«l<•s 
any moment" mt•1ms the exact opprn,ite, 11amely, that. evt•ry mom<·nt hns 
prcde,·essor~. 

61. In the ease of n da,s II whid1 has 1t tinik numlwr of h-l'ms­
sav u., a., a,., .. a,., wt• c,m illm,trnfr the~e ,·ariou~ notion, aw follows: 

· (1) All a's dt•nofps fli 11ud aJ nml ... and 1111 • 

(~) E1•t·r11 n. dcnoft•s a 1 and dt•not.Ps "" and ... 11.1111 dt>tmtt.•l'I fl 11 • 

(3) A11.'J a clcnotc•s ai or a, or ... or a,., ,~here or hm, the 11Jt•1U1ing 
that it ii'> il'rl'leHmt whi<·h w1.• takt•. 

(4) An u dt•r10tP~ a.1 or a, or· ... or a,., wlll'rl' or ]mi,, tlw mt•nning 
that no om• in p1trtieular must h,· takeu, just Ill'> in all a\ wt• must not 
take any one in partil'ulm·. 

(5) ,\'0111R ll clcuoh•i,, a 1 or denoh·s a~ or ... or dcnoll•i,, fl,., wh1.•rt• it is 
not irre)pvant whid, j,; taken, but 011 the t·tmtmry Mnne ont· partil·ular ci 

must bt· tak£•n. 
As the nature and propertiei,, of tht• \.ILriom, ways of c·tm1hining tt•rms 

an• of ,·it.al impnrtant·e to the principlei,, of mathematics, it nuty he well 
to illustrate tlwir propt·rt.ies hy Uw following important cxamplt•s, 

(a) Ll:'t a he• n dnss, and h a dm,s of dnsscs. \Ve then ohtain 
in all six pos,;ihk• relations of a. to b from variorn1 combinations of "".1/, 
" and .vom.c. All nnd ezicr_lJ do not, in thii,, ('ll.<,t•, int.rodm·t' ,mything m·w. 
'I'hc six <·asei,, arc a,., followloo. 

(1) Any tt hclonhr:,, lo any daM, belonging to b, in olhl·r worcb, the 
cla!IK tl is wholly eontaim.-d in the t·ommon part or logiral prmluc·t of 
the vn.riom, cla.-,scs belonging to b. 

(2) Any fl bl'iongi,, to a b, i.e. the clai,,s a is conbtinl'd in any 
cla.'ls which <·ontairn, all the b\, or, is contained in the logical sum of 
all thl' b 's. 

(S) Any ti helon~rs t.o some b, i.e. there is a class bl'longing to b, 
in which the class ri ii'> c·ontained. The differcm·e between this ea.-,£> and 
the seeond arii.es from the fact that here there is one /, to which c,•c•,·y 
a belongs, wherew. before it wa.., only decided that every ll belonged t.o 
a b, and different tt's might belong to different /,'.,,_ 
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(4) An a belongs to any b, i.e. whatever b we take, it ha.'! a part 
in common with a. 

(5) An a belongs to Rb, i.e. there is a b which ha.<1 a part in common 
with a. This is equivalent to "some (or an) a belongs to some b." 

(6) Some a belongs to any b, i.e. there is an a which belongs to 
the common part of all the b's, m· a and all the b's ha,·e a common part. 
These are all the cases that arise here. 

(~) It is instruc·tive, a.., showing the generality of the type of 
relations here c·onsiclered, to c-ompare the above l'ase with the following. 
Let ti, b be two series of real numbers; then i.ix pJ'el'isely analogous 
ca.,;es arise. 

(1) Any a is less than any b, or, the series a is contained among 
numheni le11s t.han every b. 

(2) Any a is less than 11. b, or, whatewr a we take, there is a l, 

which is greatt•r, or, thl' series a is contained among numbers less than 
a ( variablt•) tenn of t.he series b. It dot's not. follow that some term of 
the series h is greater than all the u 's. 

(:J) An~· a is lt.'ss t.han some h, or, there ii. a term of b whic-h is 
grcab•r than all the a.'11. This c·ast• is uot t.o be confounded with (2). 

(4) An a is le:.s than any/,, i.f. what.cvl'r b we take, there is an 
a which is lc•ss t.han it. 

(5) An a is lei.s thun 11. b, i.t·. 
sm·h t.hat the a i11 ki,.'I than the b. 
gl'l'ah-r than any 1,. 

it is possible to find an a and a b 
This merely denies that any a is 

(H) 8ome tt is k'lls than any b, i.,,. there is an 11 whit·h ii. less than 
all the l,'s. This was not impliL'<.1 in (4), where the a wa.'I variable, 
whereas here it is l'Ont.lant. 

In this case, R.l'tual mathematic·s ha\'e compelled the dii.tinction 
between the variable and the constant disjunction. Hut in other ea!ies, 
where mathemlltics have uot ohtai1wd sway, the distinction has been 
neglet·t.ed; ancl the matht>ma.til'ians, as wa.~ nl\tural, have not in\'esti­
gated the logicnl nature of the di~junl'tive notioni; which they employed. 

(,y) I shall give one other im,lance, &.'I it brings in the difference 
hetwt.-cn auy l\nd ez1,·1:1J, which has not been relevant in the previous 
ca.'lt's. Let ,,, ancl b be two da.,.;ses of da.~st•t.; then twentv different 
relationi. between them arise from different combinations o{ the terms 
of their ternu1. The following lt.>l·hnical termi. will he useful. If a be 
a class of classes, its logil·n.l sum l'Onsists of all terms belonging to any 
a, i.e. all terms such that there is an a to which tht•y belong, while 
ill! logil·al pmdud; l~onsists of all terms belonging to every a, i.e. to the 
common part of all the a's. ,-ve have then the following l'ascs. 

(1) Any t.em1 of any,, belongs to every b, i.e. the logil'al sum of 
a is contained in the logic-al product of b. 

(2) Any term of any a belongs to a b, i.e. the logical sum of a 
is e,-ontained in the logical sum of b. 
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(S) .Any term of any a belongs to some b, i.e . . there is a b which 
contains the lobrical sum of a. 

(4) Any term of some (or an) a belongs to every b, i.e. there is an 
a which is contaim.-d in the prcxluct of b. 

(5) Any term of some (or an) a belongs to a b, i.e. then! is an a 
which is containl'd in the sum of b. 

(6) Any term of some (or an) a belongs to some b, i.e. then> is I\ 

b which contain,; one class belonging to a. 
(7) .A tenn of any a belon~ to any h, i.e. any dass of a and any 

dass of b haw a (·ommon part. 
(8) A term of any a lJt>longi, to a b, i.1'. any class of a hns a part 

in common with the logical sum of b. 
(9) A term of any a lx·longs to some b, i.e. there is a b with which 

any a ha~ a part in common. 
(10) A term of an a belon~rs to every b, i.e. the logical sum of a 

and the logical product of b haw a 1·ommon part. 
(11) A tenn of an a belo111,,I'!, to any b, ·i.e. given any b, an a l'an 

be found with which it ha.., a l.'Ollllllon part. 
(Hl) A term of an a belongi. to a b, i.t:. the lohril'o.l sums of a and 

of b have a common part. 
(13) Any term of every a belongs to e\'cry h, i.e. the logical 

product of a is contained in the logi(·al produet of b. 
(14) Any term of ewry a belongs to a b, i.e. the logical prcxluct 

of a is contained in the logieal sum of b. 
(15) Any term of every a belongs to some b, i.e. there ii, a term 

of b in which the logical pmduct of a iti contained. 
(16) A (or i,;ome) term of e\'cry ll belongs to every b, i.e. the logical 

product-; of a, and of b have a common part. 
(17) A (or some) tem1 of every a bdongs to 11 b, i.e. the logical 

product of a and the logical sum of I, have a common part. 
(18) Some term of any a belongs to e\'ery b, i.e. any a ha.'i a part 

in common with the logical product of b. 
(19) A term of some a belongs to any b, i.e. there is some term 

of a with which any b has a common part. 
(20) A term of every a belongs to any b, i.e. any h ha.11 a part in 

common with the logical product of a. 
The above examples sh9w that, although it may often happen that 

there is a mutual impli(•ation (which ha.'I not always been statl'd) of 
corresponding propositions concerning .w111e and a, or conceming any 
and every, yet in other ca.-ies there is no such mutual implication. Thus 
the five notions discussed in the present t·hapter arc genuinely distinct, 
and to confound them may lead to perfedly definite fallacies. 

62. It appears from the above discu.~sion that, wJ1ether there are 
different ways of denoting or not, the ohject<1 denoted by o1l men, every 
man, etc. are certainly distinct. It seems therefore legitimate to say 
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that the whole difference lies in the objecb, and that denoting iblelf is 
the same in all ca.<ies. There are, however, many diffirult problems 
connected with the subject, cspc.-cially as regards the nature of the 
ohjceb1 denoted. All men, which I shall identify with the da.'11! of men, 
11ee111s to he an unambiguous object, although grammatically it is plural. 
But in the other CIISl's the question is not so simple: we may doubt 
whether an ambiguous object is unambiguously denoted, or a definite 
objec·t a111hi1,.,11.10usly denoted. Consider again the proposition "I met 
a man." lt is quite l'c•rtain, and is implied by this propo11ition, that 
what I rnd wall an unambiguous perfectly definite man: in the te,:hnical 
language whic·h is here adoptc-d, the proposition is expres.'!Cd by "I met 
somt' man." Hut the lll0tual man whom I met forms no part of the 
proposition in 11uC11tion, and is nut spt>cially denotc-d by .wme man. 
Thus the concrete event whieh happened is not asserted in the proposi­
tion. What is asserted is mcrelv that some one of a cl11i1s of conerete 
event,; took plac-c. The whole hinuan ml'C is involved in my a..•u;crtion: 
if any mR.n who ever cxi11tc-d or will exist had not existed or been going 
to exist, the purport of my proposition would have been different. Or, 
to put. the same point in more intensional language, if I sub.-ititutc for 
man any of the other dass-c·om·epts applic-able to the individual whom 
I hacl the honour to meet, my proposition is chan1,.,red, although the 
individual in question is just a.~ mm·h denoted as before. What this 
prove!, is, that ,¥<¥me man mui1t not he regarded a.-i actually denoting 
Hmith and ac·tmilly denoting Brown, and MO on: the whole procession 
of human bcin1,.,rs throughout the R.gt-s is always relevant to e,·ery pro­
position in whic·h .mme num occurs, and what is denoted is essentially 
not c•ach i1eparate man, but a kind of combination of all men. Thi1:1 
is more evident. in the case of' el'rr!J, a11,'I/, and a. 1.'here is, then, a 
definite something, different in each of the five cases, which must, in 
11. sense, he R.n ol~jc.-ct, hut is charaderized a.-i a Met of terms combined 
in a l't!rtain way, which something i1:1 denotl.-d by all men, t•z•ery/ man, 
any nm11, a m.mt or ,rome man. and it is with this very paradoxical 
ohjeet that proposition11 are c•onljlnted in which the mrresponding 
c·onc·ept is used as denoting. 

63. It rc•mains to disc·uss the notion of the. This notion has 
bt-en symbolic·ally emphru.ized by Peano, with very great advantage to 
his calculus; hut here it is to be discussed philosophically. The use 
of idc,ntit.y and the thl.'<>ry of definition are dependent upon this notion, 
which has thus the very highest philosophical importance. 

Thl' word the, in the singular, is L'Orrectly employed only in relation 
to a class-c·oncl'pt of whic·h there is onl)· one instance. We speak of 
the King, tlte Prime Minister, and so on (understanding at the preaent 
ti111e) ; and in such cases there is a method of denoting one single definire 
tenn by means of a conc,-ept, which is not given us by any of our other five 
wo1-ds. It is owing to this notion that mathematics can give definitions 
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of terms which are not concepts--a possibility which illustrates the 
difference between mathematical and philosophical definition. Every 
term is the only instance of .Yome class-concept, and thus every term, 
theoretically, is capable of definition, provided we have not adopted 
a system in which the said term is one of our indefinables. It is 11. 

curious paradox, puzzling to the symbolic mind, that definitions, theo­
retically, are nothing but statements of symbolic abbreviations, irrelevant 
to the reasoning and inserted only for pradit'lll <·onveniem-c, while yet, 
in the development of a subject, they always requi1-c a very large amount 
of thought., and often l'mhody Mlme of the great.est ad1icw111ents of 
analy,,is. This fact "eems to be explai1wd by the theory of denoting. 
An objeet may be prc,,ent to the mind, without our knowing any conct.'pt 
of whi<·h the said o~ject is the insta1u-e; and the disl'overy of :ml'h a 
concept is not a mere improvement in notation. Till' rea ... on why this 
appears to be the c·ase is that, us soon as the dPfinition is found, it 
becomes wholly unnecessary to the reasoning to remember the a<·tual 
object. defined, sinc·e only conecpb are relevant to our dcdul'tions. In 
the moment of discoverv, the definition is seen to be true, because the 
object. to be defined wa~ aln•ady in our thoughts ; but as part of our 
reasoning it is not true, hut mert'ly symbolic, sin('c what tht• reasoning 
requires is not that it should deal with that object, but mc•n•ly that 
it should deal with the object. denoted by the definition. 

In most actual definitions of mathematics, what is defined 1s a c/a//,f 

of entities, and the notion of the dues not then explicitly appear. But 
even in this · case, what is really defined is the class satisfying eertain 
conditions; for 11 da.-;s, a-; we shall >,t'e in the next chapter, is always 
a term or i:onjundion of' terms and never a concept. Thus the notion of 
the i~ always relevant in definitions; and we may observe generally that 
the adequacy of com·ept.s to deal with things is wholly dependent upon 
the unambiguous denoting of a single term whic·h this notion gives. 

64. The i:onnection of denoting with the nature of identity is 
important, and helps, I think, tu solve some rather serious problems. 
The question whether identity ii, or is not a relation, and even whether 
there is such a concept at all, is not easy to answer. For, it may be 
said, identity cannot be 11. relation, since, where it is truly asserted, 
we have only one term, whereas two terms are required for a relation. 
And indeed· identity, an objector may urge, cannot be anything at all: 
two terms plainly are not identi('al, and one term cannot be, for what 
is it identical with? Nevertheless identity must he something. We 
might attempt to remove identity from terms to relations, and i,ay that 
two terms are identi<·al in some respect when they have a given relation 
to a given term. But then we shall have to hold either that there is 
strict identity between the two cases of the given relation, or that the 
two cases have identity in the sense of having a given relation to a given 
term ; but the latter view learui to an endless process of the illegitimate 
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kind. Thus identity must be admitted, and the difficulty as to the 
two terms of a relation must be met by a sheer denial that two different 
terms are ne<-essary. There must always be a referent and a relatum, 
but these need not be distinct ; and where identity is affirmed, they are 
not so•. 

Hut the question a.rises : Why is it ever worth while to affirm 
identity? This question is answered by the theory of denoting. If 
we say "Edward VII is the King," we e.o;sert an identity; the muion 
why this assertion is worth making is, that in the one case the a.l'tual 
term occurs, while in the other a denoting concept takes its place. 
(l<'or purposes of discussion, I ignore the fa.et that Edwards form e. 
dass, and that seventh Edwards form a cl&.1:1s having only one term. 
Edward VII is practic·ally, though not formally, a proper name.) Often 
two denoting concepts oc.•cur, n.nd the term itself is not mentioned, as 
in the proposition "the present Pope is the la..,t i,urvivor of his genera­
tion." When a term is given, the asM!rtion of its identity with itself, 
though true, is perfectly futile, and is never made outside the logic­
books; but where denoting concepts are introduced, identity is at once 
seen to he significant. In this ea..e, of course, there is involved, though 
not H.SSerted, a relation of the denoting concept to the term, or of the 
two denoting coneepts to each other. But the i.r which occurs in such 
proposition11 does not itself state this further relation, but states pure 
identityt. 

65. To sum up. When a class-concept, preceded by one of the 
six words aJJ,, e,_,ery, any, a, 80'1TI£, the, occurs in a proposition, the 
proposition is, as a rule, not about the c-oncept formed of the two words 
together, but about an object quite different from this, in general not 
a concept at all, but a term or complex of terms. This me.y be seen by 
the fa.et that propositions in which such concepts occur are in general 
false concerning the concepts themselves. At the same time, it is 
possible to consider and make propositions about the concepts them­
selves, but these are not the natural propositions to make in employing 
the roncepts. "Any number is odd or even., is a perfectly natural propo­
sition, whereas ".Any number is a variable conjunction"' is a proposition 
only to be made in a logical discussion. In such cases, we say that the 
concept in question derwtes. We decided that denoting is a perfectly 

* On relations of terms to themselves, "· inf. Chap. 1x, § 96. 
t The word i11 is terribly ambiguous, and great care is necllilll&ry in order not to 

confound its various meanings. We have (I) the sense in which it asserts Being, as 
in "A is"; (2) the sense of identity; (3) the sense of predication, in "A ia human"; 
(4) the sense of "A is a-man" (cf. p. 64, note), which is very like identity. In 
addition to these there are less common uses, as "to be good is to be happy," where 
a relation of assertions is meant, that relation, in fact, which, where it exists, gives 
rise to formal implication. Doubtleas there are further meanings which have not 
occurred to me. On the meanings of u, cf. De Morgan, Formal ~. pp. 49, 60. 
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definite relation, the same in all six cases, and that it is the nature of 
the denoted object and the denoting concept which distinguishes the 
cases. ,v c discuS1Jed at some length the nature and the differences of 
the denoted o~jL'<-1.s in the five l'ases in which these object'! arc l'Om­
binations of terms. In a full discussion, it would he net·L-ssary ali,;o to 
discu!!S the denoting concepts : the actual IDl'R.Iling.i of these c·o~l-epts, as 
opposed to the nature of the objeds they dmotc, have not heen dis,·u11sed 
above. But I do not know that then• woulrl he anything further to say 
on this topir. Finally, we dis,·m,sed tht·, R.Ild showed that this notion 
is essential to what mathematrci: calls definition, a.'! well as to the 
possibility of uni11uely determining a tenn by meam1 of 1-oncepl,.; the 
8.l0tual use of' identity, though not its meaning, wn.11 also found to depend 
upon this way of denoting a single tt>rm. l◄'rom this point we ran 
advance to the discussion of cla.r,ses, thereby continuing the development 
of the topics ronnected with adjectives. 
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CHAPTER VI. 

CLASSES. 

66. To bring clearly before the mind what is meant by class, and 
to distinguish this notion from all the notions to which it is allied, is 
one of the most difficult and important problems of mathematical 
philosophy. Apart from the fact that da.vs is a very fundamental 
concept, the utmost care and nicety is required in this suhjed on 
account of the contradiction to be discussed in Chapter x. I must 
1111k the reader, therefore, not to regard as idle pedantry the apparatus 
of somewhat subtle diseriminations to be found in what followil. 

It has been customary, in works on logic, to distinguish two stand. 
points, that of extension and that of intension. Philosophers have 
usually regarded the latter as more fundamental, while Mathematics 
has lx.'t'n held to deal specially with the former. M. Couturat, in his 
admirable work on Leibniz, states roundly that Symbolic Logic can only 
be built up from the standpoint of extension• ; and if there rea11y were 
only these two points of view, his statement would be jm;tified. But as 
a matter of fact, there are positions intermediate between pure intension 
and pure extension, and it is in these intermediate regions that Symbolic 
Logic has its lair. It is essential that the classes with which we are 
concerned should be composed of terms, and should not be predicates or 
concepts, for a class must be definite when ib terms are given, but 
in general there will be many predicates which attach to the given 
terms and to no others. We eannot of coul'l\e attempt an intensional 
definition of a class &'I the class of predicates attaching to the terms 
in question and to no others, for this would involve a vicious circle ; 
hence the point of view of extension is to some extent unavoidable. 
On the other hand, if we take extension pure, our class is defined by 
enumeration of its terms, and this method will not allow us to deal, as 
Symbolic Logic does, with infinite classes. Thus our cla.'lSeS mu8t in 
general be regarded as objects denoted by concepts, and to this extent 
the point of view of intension is essential. It is owing to this con~ 

* La Logique de Lei/mi•, Paris, 1901, p. 387. 
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sidcration that the theory of denoting is of such great importance. In 
the present chapter we ha\·e to spel'ify the prec·ise dcgn..>e in which 
extension and iutension respectively enter into the definition and em­
ployment of classes; and throughout the discussion, I must ask the 
reader to remember that whatever is said has to he applicable to infinite 
as well a.-; to finite classes. 

67. \'Vhen an ohjel't. is unnmhiguously denoted by a c·o11cept, I shall 
speak of the concl'pt a.-; a c·om·cpt ( or sometimes, loosely, as tl1e cmu·ept) 
of the object iu qll(•stion. Thus it will be m•<•c:,,snry to distinguish the 
cmwcpt of a dass from a class-concept. \I\' l' agreed to c·all man a dass­
l'Olll'l'pt, hut ma11 does not., in its usual employment, dl•note anything. 
On the othl'r hand, men and all mt'II (whieh I :-.hall regard as synonyms) do 
cll'note, and I shall C'Ontend thnt what they ck·note is the da.-;s composl'<i 
of all men. Thus 111a11 i:-. the <·lass-com·ept, men (the l'ot1C'ept) i:-, tlw 
concept of the c-la-;:-., and mcu (the object denoted hy th<• l'Olll'l'pt 11u·11) 
are tlw clas:-.. It is no doubt eonfm,ing, at first, to Usl' cla.v.v-co111·,,pt and 
cmu·q,t '![ a cltJ.¥8 in different senses ; but so many di:-.tindion:- are 
requirl'd that some i-.training of language seems m111,·oidahlc. In 
the phraseology of the prel'ecling chapter, Wl' may :-.ay that a l'hL-;:-. is a 
numerical conjunction of terms. This is the thesis whieh is to he 
established. 

68. In Chapter u we regarded elasses a.., derived from 11:-1,ertions, 
i.e. as all the entities :-.ntisfying some assertion, whose form was left 
wholly vague. I :-.hall dis<-m,s this view critically in the next chapter; 
for the present, we may confine ourselves t.o elasses a,, lhl'_y arc deriVl'd 
from predicates, leaving open the question whctl1er every assertion is 
equivalent to a pn•dicution. We 111uy, then, imagine a kind of genesis 
of classes, through the su<·ccssive stages indieat.ed by the typical propo­
sitions "Socrate~ is human,"' "Socrates has humanity," "Socrates is a 
man," "Socrates is one among men." Of these propositions, the last 
only, we should say, expli<·itly contains the clas.-; as a constituent; hut 
every subject-predicate proposition gives rise to the other three equivalent 
propositions, and thus every predicate (provided it c-an be sometimes 
truly predicated) gives rise to a class. This is the genesis of cln.sses from 
the intcnsional standpoint. 

On the other hand, when mathematicians deal with what they call e. 
manifold, aggregate, Menge, ensemble, or some equivalent. name, it is 
common, especially where the number of terms involVl.'Cl is finite, to regard 
the object in question (which is in fact a class) as defined by the enumera­
tion of its terms, and a.'l consisting possibly of a single term, which in 
that c.a...e is the class. Here it is not predicates and denoting that are 
relevant, but terms conneded by the word a11d, in the sense in which 
this word stands for a nu111£r'ical, conjunction. Thus Brown e.nd Jones 
are a class, and Brown singly is a class. This is the extensional genesis 
of classes. 
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69. The best formal treatment of classes in existence is .that of 
Peano•. llut in this treatment a number of distinctions of brrcat 
philosophical importance arc overlooked. Peano, not I think quite 
('()nsciously, identifies the class with the da.,a;s-cmwept; thus the relation 
of an individual to it-; class is, for him, expressed by i., ci. For him, 
"2 is 11 number" is a proposition in which a tenn is said to belong to 
the class nmnbcr. Nt!vcrtheless, he identifies the cqudity of cla.-;ses, 
which consists in their having the samt! terms, with identity-a pro­
L"t-cding which is quite illegitimate when the class is regarded as the 
cla.~:.-concept. In order to perceive that rnan and fmthcru.ws biped are 
not identical, it is quite unnecessary to tRke a ht•n and deprive the poor 
bird of its feathers. Or, to take a less complex instance, it is plain that 
even pnrn,t• is not identical with integr·r ru•.rt 1ifter 1. Thus when we 
identify the class with the class-concept, we must admit that two ela-.;scs 
may be equal without hcing identical. Nevertheless, it i-. plain th1tt 
when two da..,1-,-concepts are equal, some identity is involVL-d, for we say 
that they hnve the sa,1rw terms. Thus there is home object which is 
positively identical when two class-concepts are equal; and this object, 
it would seem, is more properly r~1llcd the class. Ncgleding- the plucked 
hen, the class of featherless bipeds, every one would say, is the smm: as 
the cla.,;:s of' men ; the class of even prime-; is the ,m111f a-; the elass of' 
integers next after l. Thus we must not identify the elass with the 
da.,;s-concept, or reganl " Socrates is a man,., as exprebsing the relation 
of lln individual to a cla...;s of which it is a member. This has two 
consequences (to be established presently) which prevent the philosophical 
acceptance of <"ertain points in Peano's formalism. The first consl'quence 
is, that there is no h1.J.ch thing IL'i the null-class, though there 1tre null 
cla.-1s-concepts. The second is, that a rla...;s having only one term is to 
he identified, contrary to l'ca110\ usage, with that one term. I should 
not propose, however, to alter his pradice or his notation in consequence 
of t•ither of these points; rather I should regard them a.,; proof-.; that 
Symbolie Lobiil· ought t,o concern itself, a,., far as notation goes, with 
dass-,·onL-cpt.o; rather than with cla-.;ses. 

70. A class, we have seen, is neither a predicate nor a class­
l"Oneept, for different predicates and different cla.-;s-coucepts may corre­
spond to the same class. A class also, in one sense at lea.-,t, is distinct 
from the whole compohL'<l of its terms, for the latter is only and essentially 
one, while the former, where it ha.., many term:., is, as we shall see later, 
the wry kind of ohjcd of whieh rna,1;1} is to be asserted. The distinction 
of a dass a.., many from a dass as a whole is often made by language: 
11pace and points, time and instants, the army and the soldiers, the navy 
and the sailors, the Cabinet and the Cabinet Ministers, all illustrate the 
distinction. The notion of a whole, in the sense of a purt: aghrrebrate 

• Neglecting f'rege, who is diRCu .. sed in the Appendix. 
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which is here relevant, is, we shall find, not always applicable where the 
notion of the class as many applies (see Chapter x). In such east.'S, 
though tem1s may be said to belong to the clas.<i, the class must not he 
treated as itself a single logie.al subject•. But this case never arises 
where a class can he generated by a prcdieate. Thus we may for the 
present dismiss this eomplic·ation from our minds. In a das,'I as many, 
the component terms, though they have some kind of unity, have le11s 
than is required for a whole. They have, in fac·t, just so much unity 
as is required to make them many, and not enough to prevent them from 
remaining many. A furthl•r reason for distinguishing wholes from 
c1asses as many is that a class as one may he one of the ternu1 of itself 
as many, a8 in "classei, arc one among cl11..-,8e:-." (the extensional equi­
valent of "class is a clasi.-com-ept "t, whel"l!as a complex whole can never 
be one of it., own eom,tituentis. 

71. Claas may be defined eithf'r exbmsionally or intensionally. 
That is to say, we may define the kind of object whil~h i!, 11 class, or the 
kind of roncept which denotes a cla.-,s: thii, is the pn•c•i1,e meaning of 
the opposition of extension and inu-nsion in this ronnec·tion. But 
although the general notion can be defined in thii. two-fold munuer, 
particular dasses, except when they happPn to be finite, can only he 
dcfinL-d intensiomJly, i.e. as thl' objel"ls denoted by i.U<·h and stl<'h l'OJl­
ccpts. I believe this distinction to bt! purdy psychological: logically, 
the extensional definition appeari. to he l'«J111tlly applicable to infinite 
classes, but practically, if we were to attempt it, Dt~1tth would cut short 
our hmdablc endcaYour before it had attained its goal. Logically, 
therefore, extension aud iutension seem to be on a par. I will begin 
with the extensional view. 

\Vhen a da.'Ss is regardL-d as defined by the enunwration of its terms, 
it is more naturally called a collel'tio11. I shall for the moment adopt 
this name, as it will not prejudge the q1wstion whether the objects 
denoted by it arc tl'llly classL'S or not. H~· a collection I mean what is 
conveyed by" A and B" or" A and Ba.ml C," or any other enumeration 
of definite terms. The collection is defined hy the actual mention of 
the termM, 1111d the terms are connected hy and. It would seem that 
and represents a fundamental way of l"omhining terms, and that just 
this way of combination is essential if anything is to result of which a 
number other than I t·an be asserted. Collections do not presuppose 
numbers, 11inl"e they result simply from the terms together with a,,il: 
they could only presuppose numbers in the particular ca...e where the 
terms of the collection themselves pre,mpposl'<l numbel"!I. The1-e is a 
grammatical difficulty which, 11ince no method exii;ts of avoiding it, 
must be pointed out' and allowed for. A collection, grammatically, is 

• A plurality of terms is not tl1e logical l!uhject when a number is ~rted of it: 
such propositions have not one subject, but many subjects. See end of§ 74. 
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singular, whereas A and B, A and B and C, etc. are essentially plural. 
'l'his grammatica1 difficulty ariS<.'11 from the logical fact (to be discuMed 
presently) that whatever is many in general forms a whole which is 
one ; it is, therefore, not removable by a better choice of technical 
terms. 

The notion of a,ul was brought. into prominenre by Bol7..ano•. In 
ordl'r to undcn.tand what infinity is, he says, "we muHt go back to one 
of the simplest. conceptions of our undersbmding, in order to reach e.n 
a,.,rrrernent conc·erning the word that wc are to use to denote it. This is 
the com"t•ption which underlil's the conjunction tmd, whic·h, howe,·er, if 
it is to stand out 11.s dearl.v a."I is required, in many cases, both by the 
purp011cs of ma.thematic•,, and by those of philosophy, I helic•ve to be best 
expressed by thl' woTils: 'A syi.tcm (J.11beg1-j//") of certain things,' or 
'a whole consisting of <"ertain parts.' !Jut we must add that every 
arbitrary objec·t A can he combined in a system with any others 
B, C, ]), ... , or (speaking still more corredly) already forms a system 
hy itt.clft, of whi,·h 11ome more or less important truth can lX' enunciated, 
provi1fod only that end1 of tlll' prescntn.tions A, B, C, JJ, ... in fact 
rcpresc•nb1 a tljffamt ohjc<"t, or in so far a.'I none of' the propositions 
'A is thl' same a.o; R.' ' .A is the same as C,' '.A is the same a;, JJ,' t'k., 
is true. Por if r.g. A is the samt• as R, then it is certainly unreasonable 
to sy>1.•11.k of a system of the things A nnd B." 

Thl' 11.bovt• p11.ss11.gc, go1xl 11.s it is, neglects several distind.iomi which 
wt• have• found nt'l'<:!>sarv. Pirst nnd foremost, it does not distinhruish 
the many from the whoit• which thl'y form. Sec·ondly, it does not appear 
to ohst'fve that the method of t>numeration is not practimlly applic·ablc 
to infinitl• syslt•ms. Thirdly, and this is mnnec·ted with the second point, 
it docM not make any 1m•ntio11 of intcnsioual definition nor of the notion 
of a dass. ,vhat we havl' to t·tmsidcr is the difference, if any, of a class 
fnnn I\ l'Ollt'<·t.ion on the one hand, and from the wholc formed of the 
t•olll'l"tion on the other. Bnt let us first examine further the notion 
of' and. 

Anything of whit·h a finite number othl'r than O or l Cll.n be asse1-ted 
would he connnonl)· said to he many, and many, it might be s11.id, arc 
alwav11 of the form "..4 and JI aiul (' and . . ...... Here A, B, C, ... are 
eru_.h· one and H.1-c all different. To s1tv that A is one !ll.'l'ms to amount 
to nmc·h the 1111.ml' as t.o say that ..4 is ·not of the form "A1 and A2 H.lld 

A3 and .... " To sa,· that ;, , B, C, ... are all <lifFerent secms to amount 
only to 11 <"omlitio~ ns reg,u,ls the symbols: it should. be held that 
"A and A ,, iis IDl'RTlingless, so that diversity is implit.-d by and, and neoo 
uot be spe<"in.lly statt.-d. 

A tenn .A whi<"h is one may be l'ebranled a.11 a partirnlar case of a 

• Pan1do.rie11 dt:11 U111mdli1·he11, Leip:i:ig, 18,54 (2ud ed., .Berlin, 188!1), § 3. 
t i.e. the combination of A witl1 IJ, U, JJ, ••. already forms a system. 
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collection, namely as a collection of one term. Thus every collection 
which is many presupposes many (.,'Ollections which are each one: A a11d 
B presupposes A and presupposes B. Conversely some collections of 
one term presuppose many, namely tho.-;e whil'h are complex: thus 
"A differs from B"" is one, but presupposes A a,ul diJl"enrU"f an,l B. 
But there is not symmetry in this rcspe<·t, for the ultimate presupposi­
tions of anything arc always simple h•rms. 

Every pair of terms, without. exception, can he <"ombined in the 
manner indil·atcd by A an<l B, and if neitlwr A nor B be many, then 
A and B are two. A and /J may be an_v l'Olll'eivable l'ntities, any 
possible objects of thought, they may hl• points or numhc.•rs or true or 
false propositions or events or people, in short. anything that t·an he 
l,'OUnted. A te1Lo;pom1 and the numbt.•r 3, or a l'himaeru 1md a four­
dimensional spaee, are ecrtainly two. Thus 110 n•stril'tion whakwr is 
to be plaC"ed on A and B, eX<'{'pt that. neither is to be many. It should 
he observed that A and B need not exist, but must, like anything that 
can be mentioned, have Ht.'ing. The distinction of Being and existence 
is important, and is well illustrat.t•d by the pr()(·ess of counting. What 
can be counted must ht• something, and must l't•rtainly be, though it 
need by no meam-1 be possessed of the furthrr privilege of' existc•nce. 
Thus what. wc demand of tltt> tem1s of our l'Ollcl'tion is merely that each 
should be an entity. 

The qucstion may now be asked : \Vhat is meant hy A cuul B ? 
Does this mean anything more than the juxtaposition of A with IJ? 
That is, does it contain any element over and above that of' A and that 
of IJ? ls mul a separate concept, whil·h O<"l'Urs be1,idci. A, lJ? To 
either answer there are objections. In the first place, and, we might 
suppose, cannot be a new conl·ept, for if it were, it would have to be 
some kind of' relation between A and B; A and B would then be a 
proposition, or at lc1Lo;t a propositional concept, and would he one, not 
two. MoreO\·er, if there are two C'OJl('epts, there are two, and 110 third 
mediating conct•pt seems ne<·essary to make them two. Thus and would 
seem meaningless. But it is difficult to maintain this theory. To begin 
with, it seems rash to hold that any word is meaningless. '\Vhen we use 
the word and, we do not seem to be uttering mere idle breath, but some 
idea seems to correspond to the word. Again some kind of combination 
seems to be implied by the fact that A a11d B arc two, which is not true 
of either separately. When we say "A and Bare yellow," we can replace 
the proposition by "A is yellow" and "B is yellow"; but this cannot 
be done for" A and Bare two"; on the c·ontrary, A is <me and Bis one. 
Thus it seems best to regard and as expressing a definite unique kind of 
combination, not a relation, and not combining A and B into a whole, 
which would be one. This unique kind of combination will in future be 
called mldition qf irulividual.y, It is important to observe that it applies 
to terms, and only applit.-s to numbers in consequen<.-e of their being 
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terms. Thus for the present, 1 and !! are two, and 1 and 1 is 
meaningless. 

As regards what is meant by the combination indicated by and, it is 
indistinguishable from what we before called a numerical conjunt,-tion. 
That i11, A and B is what is denoted by the t,•tmcept of a class of which 
A and Bare the only memhcni. If " he a class-concept of which the 
propositions " A is a 11 " " lJ is a 1t ,, are true, but of which all other 
prop011itions of the same form are false, then "all u's" is the concept of 
a daMs wh<>Ke only terms arc A and lJ; this conct>pt denote3 the terms 
.II, B mmhint><l in a certain way, and "A and B" art: those tenns oom­
bim .. '<l in just that way. Thus '' A and B" are the class, but are distinct 
from the clMs-co11(.'cpt and from the concept of the clru.s. 

The notion of aml, however, does not enter into the 1ru.•aning of a 
clH.H.'4, for a single term is a class, although it i& not a numerical 
conjunction. If u he a class-concept, ancl only one proposition of the 
fonn "J" ii. a 11" he trm•, then "all u's" is a c·onccpt denoting a single 
term, and this tenn ii. the cl11Ji8 of which "all u's" is a concept. Thus 
what i.eems essential to a da.~., ii; not the notion of m,d, but the being 
denotro by some concept of a da.-iH. :.t-'his brings us to the intensional 
view of cla..,ses. 

72. We agn.'t.'<i in the prcc·t"<ling chapter that there are not 
different ways of denoting, hut only different kinds of denoting concepts 
and correspondingly diffel'<'nt kinds of denoted objects. We have 
discus.'ied the kind of denott'<l object which constitutes a cla..'is; we have 
now to consider the kind of denoting concept. 

The consideration of clas.'il's which results from denoting concepts 
is more general than the extensional consideration, and that in two 
respect'!. In the first place it allows, what the other practically 
excludes, the admis..,ion of infinite clll.8Ses ; in the second place it 
introduces the null com·ept of a class. Hut, before ditieussing these 
matters, there is a purely logical point of some importance to be 
examined. 

If u be a class-<'om·ept, is the concept "all tt's" analyzable into two 
constituents, all and u, or is it a new concept, defined by a certain 
relation to u, and no more <'Otnplex than u itself? We may observe, 
to begin with, that " all 11's" is synonymous with ",,'s," at least according 
to a very common use of the plural. Our question is1 then, as to the 
meaning of the plural. The word all ha." certainly some definite 
meaning, hut it seems highly doubtful whether it means more than 
the indication of a relation. "All men" and "all numbers"' have in 
common the fact that they both have a t.-ertain relation to a class­
conccpt, namely to man and number respeetively. But it is very difficult 
to i!JOlate any further element of all-ne88 which both share, unless we 
take a.,; this element the mere fact that both are concepts of classes. 
It would seem, then, that "all u's" is not validly analyzable into all 
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and u, and that language, in this case as in some others, is a misleading 
guide. The same remark will apply to every, ar,y, aume, a, and the. 

It might perhaps be thought that a class ought to be considered, 
not merely as a numerical conjunction of terms, but as a numerical 
conjunction denoted by the concept of a class. This complication, 
however, would serve no useful purpose, ex<-ept to preserve Peano's 
distinction between a single term and the class whose only term it is­
a distinction which is easy to grasp when the clllSII is identified with the 
clas.'1-concept, but which is inadmissible in our view of classes. It is 
evident that a numerical conjunction ronsidered as denoted is either 
the same entity as when not so com1idered, or else is a complex of 
denoting together with the object denott.>d ; and the obj('('t denoted is 
plainly what we mean by a cla.'ls. . 

With regard to infinite classes, say the da.'l.'I of numbers, it is to he 
observed that the l-'Oncept rdl nmnbrrs, though not itNclf infinitely 
complex, yet denotes an infinitely complex object. This is the inmost 
secret of our power to deal with infinity. An infinitely complex 
concept, though there may he such, can certainly not he manipulated 
by the human intelligence ; but infinite collections, owing to the notion 
of denoting, can be manipulated without introducing any <·oncepts uf 
infinite complexity. Throughout the discm1sions of infinity in later 
Parts of the present work, this remark Khould be borne in mind : if 
it is forgotten, thL'l'C is an air of magic which cauKeS the results obtained 
to Heern doubtful. 

73. Great difficulties are associated with the null-class, and 
generally with the idea of nothing. It is plain that there is such a 
concept as nfJthing, and that in some sense nothing is something. In 
fact, the proposition "nothing is not nothing" is undoubtedly capable 
of an interpretation which makes it true-a point which gives rise to 
the contradictions di1-1Cussed in Plato's Sophist. In Symbolic Logic 
the null-class is the class which has no terms at all; and symbolically 
it i11 quite necessary to introduce some such notion. \Ve have to 
con11ider whether the contradietions which naturally arise can be 
avoided. 

It is neces..'l&ry to realize, in the first plat.-e, that a concept may 
denote although it does not denote anything. This occuni when there 
are propositions in which the said concept occurs, and which are not 
about the said concept, but all such propositions are false. Or rather, 
the above is a first step towards the explanation of a denoting concept 
which denotes nothing. It is not, liowever, an adequate explanation. 
Consider, for example, the proposition "chimaeras are animals,, or 
"even primes other than !! are numbers." These propositions appear 
to be true, and it would seem that they are not concerned with the 
denoting concepts, but with what these concepts denote ; yet that is 
imp<>HBible, for the concepbl in question do not denote anything. 
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Symbolic Logic says that these concepts denote the null-class, and that 
the propositions in question assert that the null-clll.8s is contained in 
certain other clMses. But with the strictly extensional view of classes 
propound(.--d above, a cla.-;s which ha!! no terms fail!! to be anything at 
all : what is merely and solely a collection of terms cannot subsist when 
all the terms arc removed. Thus we must either find a different 
interpretation of cla.'lses, or else find a method of dispensing with 
the null-class. 

The above imperfect definition of a coneept which denotes, but 
does not denote anything, may be amended as follows. All denoting 
concepts, as we saw, are derived from class-concepts; and a is a cl&11S­
mncept when "x is an a"' is a propositional function. 'l'he denoting 
concepts .8.'isociatcd with a will not denote anything when and only 
when ":x is an a"' is false for all values of .i·. This is a complete 
definition of a denoting concept which does not denote anything; and 
in this case we shall say that a is a null da.'ls-conccpt, and that "all a's" 
is a null C'onccpt of a class. Thus for a system !juch as Peano's, iu 
which what are called dasses are really class-concepts, technical difficulties 
na-d not arise ; but for us a genuine logical problem remains. 

'l'he proposition "chimaera.-; are animals" may be ea.<;ily interpreted 
by means of formal implication, ais meaning "x is a chimaera implies 
x is an animal for all values of ,r." But in dealing with classes we 
have been Msuming that propositions containing <Jl or any or et•ery, 
though equivalent to formal implication!., were yet distinct from them, 
and involved idea.,; requiring independent treatment. Now in the ca.o;e 

of chimaera.-., it is easy to substitute the pure intensional view, according 
to which what is really stated is a relation of predicates: in the case in 
question the adjective animal is part of the definition of the adjective 
chimerir<J (if we allow ourselves to use this word, contrary to usage, 
to denote the defining predicate of chimaeras). But here again it is 
fairly plain that we are dealing with a proposition which implies that 
chimaeras are animals, but is not the same proposition-indeed, in the 
present case, the implication is not eVl'n reciprocal. By a negation 
we can give a kind of extensional interpretation: nothing is denoted 
by a chimaera which is not denoted by an anim<d. But this is a very 
roundabout interpretation. On the whole, it seems most corred. to 
reject the proposition altogether, while retaining the various other 
propositions that would be equivalent to it if there were chimaeras. 
By symbolic logicians, who have experienced the utility of the null­
class, this will be felt as a rea<."tionary view. But I am not at present 
discussing what should be done in the logical calculus, where the 
established practice appears to me the best, but what is the philo­
sophical truth concerning the null-clas,<;. We shall say, then, that, 
of the bundle of normally equivalent interpretations of logical symbolic 
formulae, the class of interpretations considered in the present chapter, 
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which are dependent upon actual classes, fail where we are concerned 
with null class-concepts, on the ground that there is no actual null-class. 

We may now reconsider the proposition "nothing is not nothing"­
a proposition plainly true, and yet, unless carefully handled, a souroe of 
apparently hopeless antinomies. Nothing is a denoting concept, which 
denotes nothing. The concept which denotes is of COUl'!le not nothing, 
i.e. it is not denoted by itself. The proposition which looks MO para­
doxical means no more than this: Nothing, the denoting concept, is 
not nothing, i.e. is not what itself denote11. But it by no means follows 
from this that there is an actual null-class: only the null class-concept 
and the null concept of a class are to be admitted. 

But now a new difficulty has to be met. The equality of class­
concepts, like all relations which are reflexive, symmetrical, and transitive, 
indicates an underlying identity, i.e. it indicates that every dass-mncept 
ha.'4 to some term a relation which all equal da.'ls-c·oncepls a.Jim have to 
that term-the term in question being different for different sets of 
equal class-concepts, but the 1111.me for the various members of a single 
set of equal class-concepts. Now for all clas.o;-conccpts which are not 
null, this term is found in the corresponding class ~ hut where are we 
to find it for null clW!!l-concepts? To this question several answeI'!I may 
be given, any of which may be adopted. For we now know what a 
class is, and we may therefore adopt a.11 our term the class of all null 
class-concepts or of all null propositional functions These a.1-e not null­
classes, but genuine cla.'i!ies, and to either of them all null cla.'IS-concepts 
have the same relation. If we then wish to have an entity analogous 
to what is elsewhere to be called a cla.'ls, hut corresponding to null 
class-concepts, we shall he forct..>d, wherever it is neeessary (as in counting 
cla.'ISes) to introduce a term which iK identical for equal clRS!!-concepts, 
to substitute everywhere the class of cla!!s-concepbl equal to a given 
class-concept for the class c·orresponding to that clR.S11-concept. The 
class corresponding to the class-concept remains logically fundamental, 
but need not be actually employed in our symbolism. The null-class, 
in fact, is in some ways analogous to an irrational in Arithmetic : it 
cannot be interpreted on the same principles a.'! other cl8S!ieS, and if 
we wish to give an analogous interpretation elsewhere, we must substitute 
for clruises other more complicated entities-in the present case, certain 
correlated classes. The object of such a procedure will be mainly 
technical ; but failure to understand the procedure will IP.ad to in­
extricable difficulties in the interpretation of the symbolism. A very 
closely analogous procedure OCCUl'!I comitantly in Mathematics, for 
example with every generalization of number; and so far as I know, 
no single case in which it occurs ha& been rightly interpreted either by 
philosophers or by mathematicians. So many instances will meet us 
in the course of the present work that it is unnecessary to linger longer 
over the point at present. Only one possible mi1,1understanding must 
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be guarded against. No vicious circle is involved in the above account 
of the null-clas11 ; for the general notion of c"laaa is first laid down, is 
found to involve what is called existence, is then symbolically, not 
philosophically~ replaced by the notion of a class of equal class-concepts, 
and i1.1 found, in this new form, to be applicable to what corresponds to 
null cla.'ls-concepts, since what corresponds is now a class which is not 
null. Between cla.'lses .'limpliciter and classes of equal cla.,;s-concepts 
there i11 a one-one correlation, which breaks down in the sole case of the 
class of null class-concepts, to which no null-cla.,;s corresponds; and this 
fact is the rea.'lon for the whole (..'Olllplicatiou. 

74. A que11tion which is very fundamental in the philosophy of 
Arithmetic must now he dist-u'l.'led in a more or less preliminary fashion. Is 
a cl&11s which ha.'I many terms to he regardl.-d &.'I itself one or many? Taking 
the da.'ls a.'I equivalent 11imply to the numerical (..'Onjum·tion "A and B 
and C and ek.," it 11Cl•ms plain that it i11 many; yet it is quite necessary 
that we should he able to count classes as one ea.eh, and we do habitually 
speak of a cla.'ls. Thus clas.'les would seem to he one in one 11cnse and 
manv in another. 

'i'here is a <'t'rtain temptation to identify the class as many and the 
class as one, e.g., all mm and the ltuman rare. Nevertheless, wherever 
a class consists of IIIOl"t' than one term, it can be proved that no such 
identification is permissible. A <·onCl'pt of a class, if it denotes a cle.'l.'I 
as one, is not the same as any <'Onl'ept of the cla.'ls which it denotes. 
That is to i,,ay, daasrs qf all mtio11al a,iimals, which denotes the human 
race 11.'I one term, is different from 11um, which denotes men, i.e. the 
human rac·e as many. But if the human race were identical with men, 
it woulcl follow that whatever denotes the one mul'lt denote the other, 
and the above difference would be impossible. \Ve might be temptt.>d 
to infer that Peano's distinction, hetwet>n a term and a dn.ss of which 
the said term is the only member, must be maintained, at least when the 
term in quel'ltion is a d~,;s•. But it is more <'orreet, I think, to infer an 
ultimate distinction between a de.,;s as many and a class &.'I one, to 
hold that the manv are only many, and are not al110 one. The cl1111S 11.-i 

one may be idcmtified with the wl;ole l"ompo11t,,d of the terms of the cla.'ls, 
i.e., in the case of men, the clm,s as one will he the human race. 

But can we now avoid the contradiction always to be fean.>d, 
where there is something that c·annot be made a logical subject? 
I do not myself' 11ee any wa~· of eliciting a precise contradiction in this 
ca..'IC. In the ea .. 1e of' <·on<.-ept11, we were dealing with what was plainly 
one entity ; in the present <·ase, we are dealing with a complex el'lsentially 
capable of analysis into units. In such a proposition &11 "A and Bare 
two," there is no logical ,mbject: the &l,18Crtion is not about .A., nor 

* Tiii11 conclueion i11 actually dra" 11 by 1''rege from an a11alogoue argument : 
.A.rcAivfiJr "71llt. Phil. 1,. p . .W-1. See Appendix. 
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about B, nor about the whole L'Omposed of both, but strictly 1md only 
about A and B. Thus it would seem that assertions IU"C not necessarily 
alxmt single su~jects, but may be about many ,mbjccts; and this remon~ 
the contradiction whi<·h arose, in the l'll.'le of l'Onl·epts, from the im­
possibility of making n..'iscrtions about them unless .they were t.umto 
into subjects. This impossibility being here absent, t.he contrll<liction 
which was to he feared does not arise. 

75. ,ve may ask, a.-; suggested by the above diSl·ussion, what is to be 
said of the objects denoted by a 11um, 1·1wr.11 mnu, .vomi: 111,w, and any mm,. 
Are these ohjc.,,c•ts one or many or neither? Gram1111u· tt,:at-; them all AA 

one. But to this \·iew, the natural o~jcction is, whi<'h mw? Certainly 
not Socrates, nor Plato, nor any other particular person. Can we 
conclude .that no one is denoted? · As "ell might we l"ondudc that 
every one is denok..I, which in fact is true of the concept n1er11 m1in. 
I think one is denoted in every c11.s;e, hut in an impartial distributive 
manner. An.1/ number is neither 1 nor 2 nor any other particular number, 
whence it is ea..,y to conclude that any number is not any one number, 
a proposition at first sight contradictory, hut really resulting from an 
ambiguity in auy, and more c·orrectly cxpressc.,'Cl by "an,y number is not 
some one number." 'There are, however, puzzles in this suhj<."<·t which 
I do not yet know how to solve. 

A logical difficulty remains in regard to the nature of the who]e 
composed of a11 the terms of a class. Two propositions appear self­
evident: (1) Two wholes composed of different terms must be different; 
(2) A whole composed of one term onl_v is that one term. It followi,i 
that the whole composed of a class considered as one term b1 that cl8.SI! 
considered as one lerm, and is therefore idenlil·al with the whole 
composed of the terms of the class ; but this result t'Ontradicts the 
first of our supposed self-evident principles. The answer in this case, 
however, is not difficult. The first of our principles is only universaJly 
true when all the terms composing our two wholes are simple. A given 
whole is capable, if it has more than two parts, of being analyzed in a 
plurality of ways; and the :resulting constituents, so long as analysis 
is not pushed as far 11.~ possible, will be different for different ways of 
analyzing. This proves that different sets of constilucnfa may constitute 
the same whole, and thus disposel! of our difficulty. 

76. Something must be said as to the relation of a term to a class 
of which it is a member, and as to the variom1 al]jed relations. One of 
the allied relations is to be caJled E, and is to be fundamental in Symbolic 
Lobric. But it is to some extent optional which of them we take as 
11ymbolically fundamental. 

Logically, the fundamental relation is that of su~ject and predicate, 
expressed in "Socrates is human,, -a relation which, as we saw in 
Chapter 1v, i11 peculiar in that the relatum cannot be regarded as a tenn· 
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referents and relata with respect to R, and these classes are unhesita­
tingly admitted in such words o.s parents !illd children, masters and 
servants, husbands and wives, and innumerable <>ther instances from 
daily life, as also in lobrical notions such as premis11es and conclusions, 
causes and effects, and so on. All such notions depend upon the class 
of propositions typified by .xRy, where R is constant while .x and y are 
variable. Yet it is very difficult to regard .xRy as analyzable into the 
assertion R concerning a: and y, for the very sufficient reason that this 
view destroys the sense of the relation, i.e. its direction from .x to .1J, 
leaving us with some assertion which is symmetrical with respect to 
:x and y, such a,., "the relation R holds between .x and y." Given a 
relation and its terms, in fact, two distinct propositions are possible. 
Thus if we take R itself to be an assertion, it becomes an ambiguous 
assertion: in supplying the term,-, if we a.re to avoid ambiguity, we 
must decide which is referent and which relatum. \Ve may quite 
legitimately regard .. . Ry as an assertion, as was explained before; but 
here y has become constant. We may then go on to vary y, considering 
the class of assertions .. . Ry for different values of '!/; but this process 
does not seem to be identical with that which is indicated by the 
independent variability of .x and y in the propositional function .xRy. 
Moreover, the suggested prol·css requires the variation of an element 
in an &.'lsertion, namely of yin .. . R.11, and this is in itself a new and 
difficult notion. 

A curious point arises, in this connection, from the consideration, 
often essential in actual Mathematics, of a relation of a term to itself. 
Consider the propositional function :xR.r, where R is a constant relation. 
Such functions ":re required in considering, e.g., the class of suicides or 
of self-made men ; or again, in considering the values of the variable 
for which it is equal to a certain function of itself, which may often be 
nel·essary in ordinary Mathematil·s. It seems exceedingly evider.t, in 
this t·a.~, that the proposition contains an element which is lost when 
it is analyzed into a term :r and an assertion R. Thus here again, the 
propositional function must be Rd.mitted as fundamental. 

83. A difficult point arises as to the variation of the concept in a 
proposition. Consider, for example, all propositions of the type aRb, 
where a and b are fixed terms, and R is a variable relation. There 
seems no reason to doubt that the class-concept "relation between a 
and b" is legitimate, and that there is a cmTesponding class; but this 
requires the admission of such propositional functions as tiRb, which, 
moreover, are frequently required in actual Mathematics, as, for example, 
in counting the number of many-one relations whose referents and relata 
are gi,·en classes. But if our variable is to have, as we normally 
require, an unrestricted field, it is necessary to substitute the pro­
pOMitional function " R is a relation implies aRb."" In this proposition 
the implication involYed is material, not formal. If the implication were 
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formal, the proposition would not be a (unction o( R, but would be 
equivalent to the (necessarily false) proposition: "All relations hold 
!>etween a and b." Generally we have some such proposition 88 "aRb 
implies 4> (R) provided R is a relation," and we wish to tum this into a 
formal implication. If t/, (R) is a proposition for all values o( R, our 
object is efFected by substituting " If ' R is a relation • implies ' aRb,' 
then ff,(R)." Here R can take all values•, and the if and then is a formal 
implication, while the implies is a material implication. If (/>(R) is not 
a propositional fum·tion, but is a proposition only when R satisfies 'lfr(R), 
where '1/r (R) is o. propositional function implit.>d by "R is a relation" for 
all values of R, theu our formal implication can be put in the form "If 
'R is a relation' implies aRb, then, for all values of R, t (R) implies 
4> (R),"' where both the subordinate iinplieations are material. As regards 
the material implication "' R is a relation• implies aRb," this is always 
a proposition, whereas aRb is only a proposition when R is a relation. 
The new propositional funetion will only he true when R is a relation 
which does hold betw~n a and b: when R ii; not a relation, the ante­
cedent is fruse and the consequent is not a proposition, so that the 
implicatio11 is falNC • "hen R is a relation whil·h does not hold between 
a and b, the antecedent is true and the consequent fal.11e, so that again 
the implication is fali;e. only when both are true is the implication true. 
Thus in defining the clRSs of relations holding between rt and b, the 
formally eorrect eourse is to define them as the values satisfying·" R 
is a relation implies aRb "-an implication which, though it contains a 
variable, is not formal, but material, being satisfied by some only of the 
possible \'alucs of R. The ,•ariable R in it ii;, in Peano's language, real 
and not apparent. 

The general prindple involved is : If rf,:r is only a proposition for 
110me \'aloes of .r, then "' tf,:r implies f/,.r • implies q,.x" is a proposition 
for al,l values of :r, and is true when and only when tf,.r is true. (The 
implications involved are both material.) In some cases, "4>:r impliei,; rf,.r~ 
will be equivalent to some 11impler propo11itional fundion t,r (11uch a.<1 "R is 
a relation" in the above instance), which may then be substituted for itt. 

Such a propositional function as " R is a relation implies aRb" 
appears even lei;11 capable than previous instances of analysis into Rand 
an assertion about R, sint.-e we should have to assign a meaning to" a ... b," 
where the blank spa<,-e may be filled by anything, not necessarily by a 
relation. There is here, however, a suggo,tion of an entity which has 
not yet been considered, namely the couple with sense. It may be 
doubted whether there is any such entity, and yet such phrases 88 

* It is necessary to assign BOme meaning (other tl1a11 a proposition) to 1111b when 
R is not a relation, 

t A propositional function, though for every value of the variable it is true or 
false, is not itself true or false, being what is denoted by "any proposition of the 
type in 4111estion," which is not itself a proposition. 

Downloaded from https://www.holybooks.com



88 7'ke Indefinables ef Matke'lllatics [CHAP. VII 

"R is a relation holding from a to b .. seem to show that its rejection 
would lead to paradoxes. Thi~ point, however, belongii to the theory 
of relations, and will be resumed in Chapter 1x (§ 98). 

From what has been said, it appears that propositional functions 
must be &<,-cepted as ultimate data. It follows that formal implication 
and the inclusion of classes cannot be generally explained by means of a 
relation between assertions, although, where e. proJ)Oflitional function 
&.'ll!erbi a fixed relation to a fixed term, the analysis into su~ject and 
assertion is legitimate and not unimportant. 

84. It only remains to i,;ay a few words cont·eming the derivation 
of clas11es from prop<>Ritional functions. ,vhen we consider the .x's 81.teh 

that t/,3:, where t/,.r is a propositional function, we are introducing a 
notion of which, in the calculus of propositions~only a very shadowy use 
is made-I mean the notion of truth. ,v e are considering, among 
all the propositions of the type t/,.r, those that are true: the corre­
sponding values of :r give the da.11s defined by the function tl,.r. It must 
be held, I think, that every propositional function which is not null 
defines a cl8.!IH, which is denoted by ".2·'11 such that 4>.i::" There is thus 
always a concept of the clw,s, and the claH.-i-con<•ept corresponding will 
be the singular, ":r such that efJ.r." But it may be doubted-indeed the 
contradfotion with which I ended the pre<-eding chapter giYes reMOn for 
doubting-whether there is always a defining predicate of such classes. 
Apart from the contradiction in question, this point might appear to be 
merely verbal: "being an .r such that lf,,r,"" it might he 1,1aid, may alway11 
be taken to be a predicate. But in view of our contradiction, all 
remarks on this subject must he viewed with caution. This subject, 
however, will be resumed in Chapter x. 

85. It is to be observed that, according to the theory of pro­
positional functions here advocated, the 4> in tp.x is not a separate and 
di11tingui11hable entity: it lives in the propositions of the form tl,.r, and 
cannot survive analysis. I am highly doubtful whether such a view does 
not lead to a contradiction, but it appeal"!! to be fon.-ed upon us, and it 
h&.11 the merit of enabling us to avoid a contradiction arising from the 
opposite vft'!w. If 4> were a distinguishable entity, there would be a 
proposition &11serting ff, of itself, which we may denote by ff, ( 4>); there 
would also be a proposition not-4> ( 4> ), denying ff, ( q, ). In this proposi­
tion we may regard ff, a., Yariable ; we thus obtain a propositional 
function. 'The question arises: Can the assertion in this propositional 
function be asserted of ibielf? The assertion is non-assertibility of self, 
hence if it can be asserted of itself, it cannot, and if it cannot, it can. 
1.1\is contradiction is avoided by the recognition that the functional 
part of a propositional functio~ i11 not an independent entity. AB the 
contradiction in question is clb.'iely analogous to the other, concerning 
predicates not predicable of themselves, we may hope that a similar 
solution will apply there also. 
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CHAPTER VIII. 

THE VARIAHLE. 

86. Tm: discussions of the prereding chapter elicited the funda­
mental nature of the variablt· ; no apparatmi of assertions enables us to 
dispense with the consideration of the varying of one or more elemenbi 
in a proposition while the other elements remain unchangt-d. The 
variable is perhaps the most distinctively mathematical of all notions; 
it is certainly also one of the most clifficu1t to understand. The attempt, 
if not the deed, belongs to the present chapter. 

The theory as to the nature of the variable, whirh re11ults from our 
previous discussions, is in outline the following. When a given term 
occurs~~ term in a proposition, that term may be l'eplaced by any other 
while the remaining terms are unchanged. 'fhe class of propo11itions 
so obtained have what may be called constancy of form, and this con­
stancy of form must be taken as a primitive idea. The notion of a cllUIII 
of propositions of constant form is more fundamental than the general 
notion of clll,,Ya, for the latter can be defined in tenns of the fonner, 
but not the fonner in terms of the latter. Taking any tenn, a certain 
member of any class of propositions of constant form will contain that 
term. Thus x, the variable, is what is denoted by any term, and ct,.r, 
the propositional function, is what is denoted by the propmiition of the 
form tf, in which x occurs. We may say that a· is the x is any ct,.r, where 
~ denotes the class of propositions resulting from different values of x. 
Thus in addition to propositional functions, the notions of any and of 
denoting are presupposed in the notion of the variable. This theory, 
which, I admit, is full of difficultie11, is the least objectionable that I 
have been able to imagine. I shall now set it forth more in detail. 

87. Let us observe, to begin with, that the explicit mention of 
any, 8fllne, etc., need not occur in Mathematics : formal implication will 
express all that is required. Let us recur to an instance already dis­
cussed in connection with denoting, where a is a clas!i and b a class 
of classes. We have 

" Any a belongs to any b .. is equivalent to " 'x is an a' implies that 
'u is a b' implies 'x is au,,'; 
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"Any a belongs to a b"' is equivalent to "':r is an a' implies 'there 
is a b, say u, such that :r is au"'•; 

"Any a belongs to some b"" is equivalent to "there is a b, say u, such 
that' x is an a' implies ':r is au"'; 

and so on for the remaining relations considered in Chapter v. The 
<ruestion arises: How far do these equivalences constitute definitions of 
any, a, 80'TTU:, and how far are these notions involved in the symbolism 
it8elf? 

The variable is, from the formal standpoint, the characteristic notion 
of Mathematics. Moreover it is the method of stating general theorems, 
whic·h always mea11 something different from the intensional propositions 
to which such logicians as Mr Bradley endeavour to reduce them. That 
the meaning of an assertion about all men or any man is different from 
the meaning of an equival(•nt a.'!sertion about the concept man, appears 
to me, I must confess, to be 11. !>elf-evident truth-as evident w; the fact 
that propositions about John arc not about the rw.me ,John. This point, 
then•fore, I shall not argue further. That the variable characterizes 
Mathematics will be brencrally aclmitted, though it is not generally 
pt•1u•ivcd to be• present in elementary Arithml'tic. Elementary Arith­
metic, as taught to children, is charR.<·teriZl.-d by the fact that the numbers 
Ol'('llrring in it are constants; the am,wer to any schoolboy's sum is 
obtainable without propositions concerning any number. But the fact 
that this i!> the ca.-ie can only be pnwed by the help of propositions 
about an,11 number, and thus we are led from schoolboy's Arithmetic to 
the Arithmetic which uses letters for numbers and proves general 
theorems. How very different thi!> subject is from childhood's enemy may 
be seen at om-e in sueh work11 as those of Dedekind t and Stolzf. Now 
the diflercrl('e c·onsists simply in this, that our numbers have now become 
variables instead of being c·onstants. \I\' e now prove theorems concern­
ing n, not concerning 3 or 4 or any other partimlar number. Thus it is 
absolutely essential to any theory of Mathematics to understand the 
nature of the variable. 

Originally, no doubt, the variable was conceived dynamically, as 
something which changed with the lapse of time, or, as is Mid, as some­
thing which successively assumed all values of a certain class. This 
view cannot be too soon dismissed. If a theorem• is proved concerning 
n, it must not be supposed that 11 is a kind of arithmetical Proteus, 
which is 1 on Sundays and 2 on Mondays, and so on. Nor must it be 
supposed that n simultaneously assumes all its values. If n stands for 
any integer, we cannot say that n is 1, nor yet that it is 2, nor yet that 

* Here "there is a c," where c is auy cl11S11, is defined as equivalent to "If p 
implies p, and '~ is a c • implies p for all values (If :r, then p is true." 

t W U8 Mind u,id 1111U aolleu die Zuhlen Y Brunswick, 1893. 
t Allgtrnei1111 Arithmetik, Leipzig, 1885, 
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it is any other particular number. In fad, n jui;t denotes any number, 
and this is something quite distinct from each and all of the numbers. 
It is not true that 1 is any number, though it is true that whatc,·er 
holds of any number holds of 1. The variable, in short, n-quires the 
indefinable notion of a11,1J which was explained in Chapter v. 

88. ,ve may distinguish what ma_v be called the true or formal 
variable from the restridcd variable. A 11,1/ term is a l'Oncept denoting 
the true variable; if 1, be a dass not c·ontaining all terms, an;,J u denotes 
a restricted variable. The terms induded in the objed denott'<l by the 
defining concept of a variable are ca1led the 11flliu·.v of tht• variable: thus 
every value of a variable is a constant. There is a certain difficulty 
about such propositions 1ts "any numhcr is a number." Interp1't•h><l by 
formal implic1ttion, they offi.-r no ditfi<"ulty, for they assert merely that 
the proprn,itional funl'tion ".r i,-, n numl~r implil·s ,l' is ll numlx•r" holds 
for all values of ,l'. But if "anv number" ht· taken to he a definite 
objed, it is plain that it is not id~nti<·al with 1 or !-.? or g or any number 
that mav he meutioned. Yet the,-,p are all the nmnlll'rs thc•1,:• are, so 
that "a~y number" cannot be a number 1tt 1tl1. The fal't is that the 
concept ,; any number" does denoh• ont· numher, but not a partil'ular 
one. This is just the di;.tind,ive point nhout an;y, that it denotes a term 
of a elnss, but in an impartial di:-.trihutive manner, with no preft>n·m·e 
for one term m'l'r another. Thus although .r is a number, and no one 
number ii. J', yet there i:-. here no contradirtion, so i,oon as it is rccogni1.c•d 
that .r is not one detinite h•rm. 

The notion of the restricted variable ran be avoided, exc·Ppt in regard 
to propositional functions, h_v the introdurtion of a suitahle hypothesis, 
namely the hypothesis expre;.sing tl1e n•stril'tion itself. But in respect 
of propositional fundions thi:,, is not possihk•. The a· in cfi.r, where q,.i• 
iM a propositional function, is an unrci-.tricted variable ; but the <j,,r itself 
is restricted to the da.-.s which we may call cf,. (It is to he remembered 
that the cla.vs is here fundamental, for. we found it impossible, without a 
vicious circle, to discover any c·ommon characteristic by which the class 
could be defined, since the statement of anv common characteristic is 
itself a propositional fund.ion.) By making <;ur J' alway:,, an unrestricted 
variable, we can spl'ak of the variable, which is conceptually identical in 
Logic, Arithmetic, Geometry, and all other formal subject'!. The terms 
dealt with are always all terms; only the complex concept.., that occur 
distinguish the various branches of Mathematics. 

89. ,ve may now return to the apparent definability of an,11, somti, 
and a, in terms of formal implication. Let a and b he class-concepts, 
and consider the proposition " any a is a b . ., This is to he interpreted 
as meaning "x is an tL implict1 .1: is a b." It is plain that, to begin with, 
the two propositions do ,not mean the same thing: for a11:y a is a concept 
denoting only a's, whereas in the fom1al implication x need not he an a. 
But we might, in Mathematic,-s, dispense altogether with " any a is a b, .. 
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and content ourselves with the formal implication : this is, in fact, 
symbolically the best course. The question to be examined, therefore, 
is: How far, if at al1, do any and some and a enter into the formal 
implication ? (The fact that the indefinite article appears in " :r is 
an a"' and ".r is a b" is irrelevant, for these are merely taken as typical 
propositional functions.) We have, to begin with, a class of true 
propm,itions, each &'lserting of some constant term that if it is an a it is 
a b. We then l"Onsider the restricted variable, " any proposition of this 
class." We assert the truth of any term included among the values of 
this restrided variable. But in order to obtain the suggested formula, 
it is necessary to transfer the variability from the proposition as a whole 
to itH variable term. In this way we obtain "a· is an a implies a· is b."' 
But the gene11is remains essential, for we are not here expressing a 
relation of two propo11itional functions ":r is an a., and ":r is a b." If 
this Wl•rc expreSNt..-d, we 11hould not require the same :r both times. Only 
one propositiona1 function is imolved, namely the whole formula. Each 
proposition of the clRs11 expresse11 a relation of one term of the pro­
positional function ".i• is an a" tu one of ":r is a b..,; and we may say, 
if we choose, that the whole formula expresses a relation of an,y term of 
" .T is an a" to ,'ll.1me term of "a· is a b." \Ve do not so mul'h have 
an implication containing a mriable ns a variable implication. Or 
again, we may say that the first ,1• is any term, but the second is IJO'llte 

term, namely the first ,r•. ,ve have a dass of implications not l'ontaining 
variables, aml we c·onsider ,m,11 member of thil> d11ss. If a11y member 
is true, the fuct is indicated by introducing a typic·al implication l'on­
taining a Yariahle. This typical implil·ation is what is called a formal 
implimtion: it is a11,1/ member of a class of materiul implil·ations. Thus 
it would seem that '"".'/ is presupposed in mathematil'al formalism, but 
that Ntmu· and a may be legitimately replaced by their equivalents in 
terms of formal implications. 

90. Although so11u· 11w,11 be replal'ed by its equivalent in terms of 
au.1/, it is plain thnt this docs not give the meaning of some. There is, 
in fRl't, a kind of duality of "".'I and somR: given a l'ertain propositional 
function, if all terms belonging to the propositional function are 11.Sl!erted, 
we have a11u, while if ont· at least i1t a.,1te1-ted (whil·h gives what is called 
an exish.•n('C-tlworem), we 1,,ret ,¥Cm1e. The proposition q,.r a.-1se1-ted with­
out conmtl'nt, as in ".,. is a man implies .i· is a mortal," is to be taken 
to mean that q,;,· il> true for tlll valuei,. of ,l' (or for a11y value), but it 
might ec1ually well haw been taken to mean that q,;,· is true for some 
value of x. In this way we might construct a calculus with two kinds 
of variable, the conjunctive and the disjunctive, in which the latter 
would occur wherewr an existence-theorem was to be stated. But this 
method does not appear to pos11ess any practical awYantages. 

91. It is to be obsened that what is fundamental is not particular 
propositional functions, but the dass-concept propositional functwr,. A 
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propositional function is the dass of all propo8itions which 1trise from 
the variation of a single term, but this is not to be considered 11s a 
definition, for reasons explained in the prel'eding ch11pter. 

92. From proprn,itional functions 1tll other c-Ia.,ses l"an be dt>rived 
by definition, with the help of tht> notion of such t!,,nt. Given a pro­
positional function cp.r, the terms such that, when .r· is identified with 
any one of them, q,;z• is true, are the d!lss defined by q,.r. This is the 
class as many, the class in extension. It is not to be H$SUmL-d that every 
class so obtained has a defining predicate: this subjcd will be discussed 
afresh in Chapter x. Hut it must he nss1111wd, I think, that a elass in 
extension is defined by auy propositional function, and in particular 
that aU terms form a cla.,s, since many propositional functions (e.g. 
all formal implications) are true of all terms. Hl·rc, a.., with formal 
implications, it is nft•essa.ry that the whole propositional function whose 
truth defines the rlas!. should be kept intact, and not, even where this 
is possible for every value of .r, divided into separate propositional 
functions. For example, if a and b be two dasses, defined by q,.r and ,f,-.r 
respectively, their common part is defined by the product <J,.r, '1r.x, where 
the product h1ts to he made for l•wry value of .r, and then .1' varied 
afterwards. If this is not done, we do not 1w<·essarily have the .,ame 
.x in cf,,x and V'.1'. Thus we do not multiply propositional functions, but 
propositions : the new propositional funl'tion is the da~s of products 
of corresponding propositions belonging to the preYious functions, and 
is by no means the product of <J,.r and '1r.r. It is only in virtue of 
a definition that the logical product of the classes defined by q,,x and '1r.x 
is the class defined by <J,.r. '1r.x, And wherever 1t proposition containing 
an apparent variable is asserted, what is asserted is the truth, for all 
values of the variable or variables, of the propositional function corre­
sponding to the whole proposition, and is never a relation of propositional 
functions. 

93. It appears from the above discussion that the variable is a 
very complicated logical entity, by no means easy to 1tnalyze correctly. 
The following appears to be as nearly correct as any analysis I can make. 
Given any proposition (not a propositional function), let a be one of 
its terms, and let us call the proposition ,f> (a). Then in virtue of the 
primitive idea of a propositional function, if .x be any term, we can 
consider the proposition ,f> (.r), which arises from the substitution of .x 
in place of a. We thus arrive at the class of all propositions ,f> (.x). 
If all are true, ,f> (.x) is asserted simply: q, (.x) may then be called a 
farmal, truth. In a formal implication, q, (.x),for every value qf :r, states 
an implication, and the assertion of q, (.x) is the assertion of a cl°"ll of 
implications, not of a single implication. If q, (.x) is sometimes true, 
the values of .x which make it true form a class, which is the class defined 
by q, (.r): the class is said to exitJt in this case. If q, (.x) is false for all 
values of .r, the class defined by ,/) (.x) is said not to exist, and as a 
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matter of fact, as we saw in Chapter n, there iK no such class, if classe." 
arc ta.ken in cxtc•nsion. Thus :,· is, in some sense, the objed denoted by 
m1,1j term; yet this can hardly be strictly mainta.iued, for different 
,·1triabk'S may occur in a proposition, yet the object denoted by tlll!J 

term, one would suppose, is unique. This, however, elicits a new point 
in thl· theory of denoting, naml:'ly that any term does not denote, 
prOJK•rly 11pL•11king, an assemblage of terms, hut denotes one term, only 
not on!.! partic·ular defiuite term. Thus a11_1j term may denote different 
tc•rms in diffol't'nt plal-es. \Ve may say: any term has some relation to 
any ttirm ; and this h, quite a diffl't't'nt proposition from : any te1·m has 
M>me relation to itself. Tlnu, variables have a kind of indh·idualitv. 
This 11risci;, as I have tried to show, from propositional functio~s. 
\Vhen a propositional fundion has two variables, it must he regarded 
as obbtim.'<l by suc·c·cssivc steps. If the propositional func·tion c/> (:r, .'/) 
is to he tL';serted for all values of :I' and .'/, we must com,irler the assertion, 
for all values of .1/, of tlu• propositional function eh (a, .11), ,~here a is 
a coru,tant. Thi:. dOC'!-> not inrnh-e .'/, and may he reprcscntl-d by ,fr (a). 
\Ve then mry a, and assert ,fr (.1·) for all ,·aim•~ of' :,·, The process is 
analogous to double integration; and it is uet'el:lsary to prove formally 
that tht! order in whil'h the mriatiom1 an• made makes no difference 
to the result. ThL• iudividuality of variables appeaTh to be thus ex­
plaint-d. A variable is not a11,11 term simply, but any term as entering 
into a propo:..itionnl function. \\Te ma_r say, if q>:l' be a propositional 
f'mwtion, that :t· i!-i tl,c term in all,lj proposition of' the class of proposi­
tions whose t.ypt• is cf>.1·. It thus appears that, al, regiuds propositional 
function~, the notions of da.-.s, of' dl'noting, and of any, 11.l'C fundamental, 
hl'ing presupposed in the symbolism employed. With this conclusion, 
the Rlllllysis of formal implication, which has been one of the principal 
prohlt•ms of Pait I, is c·11rried Its far as I am able to ca1Ty it. May 
1.mmc reader sU<'<'l'C<l in rendering it more complete, and in answering the 
numy questions whil'h I haw had to leave unanswered. 
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CHAPTER IX. 

RELATIONS. 

94. NEXT after subject-pn.>clicate propositions come two types of 
propositions which appear equally simple. These are the propositions 
in which a relation is asserted between two terms, and those in which 
two terms are said to be two. The latter class of propositions will be 
considered hereafter; the former must be considered at once. It has 
often been held that every proposition can be reduced to one of the 
subject-predicate type, but this view we shall, throughout the present 
work, find abundant reason for rejecting. It might be held, however, 
that all propositions not of the subject-predicate type, and not asserting 
numbers, could be reduced to propositions containing two terms and 
a relation. This opinion would he more difficult to refute, but this too, 
we shall find, has no good grounds in its favour•. We may therefore 
allow that there are relations having more than two terms ; but as these 
are more complex, it will be well to consider first such as have two 
terms only. 

A relation between two tenns is a concept which occurs in a 
proposition in which there are two terms not occurring as conceptst, 
and in which the interchange of the two terms gives a different pro­
position. This last mark is required to distinguish a relational 
proposition from one of the type " a and b are two," which is identical 
with "b and a are two,,,, A relational proposition may be symbolized 
by aRb, where R is the relation and a and b a.re the terms; and aRb 
will then always, provided a and b are not identical, denote a different 
proposition from bRa. That is to 11ay, it is characteristic of a relation 
of two terms that it proceeds, 80 to speak,.from one to the other. This 
is what may be called the sense of the relation, and is, as we shall find, 
the source of order and series. It must be held as an axiom that aRb 
implies and is implied by a relational proposition bR'a, in which the 

* See inf., Part IV, Chap. xxv, § 200. 
t This description, as we saw above (§ 48), excludes the pseudo-relation of subject 

to predicate. 
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relation K proceeds from b to a, and may or may not be the same 
relation as R. But even when aRb implies and is implied by bRa, 
it must be strictly maintained that these are different propositions. 
We may di11tinguish the term from which the relation proccec!K as the 
referent, and the term to which it proceeds as the reudum. The sense 
of 11. relation is a fundamental notion, which is not capable of definition. 
The relation which holds between b a.nd a whenever R holds between 
a a.nd b will be called the converse of R, and will be denoted (following 
Schroder) by ii. The relation of R to R is the relation of oppositeness, 
or difference of sense; and this mtL~t not be defined (as would seem a.t 
first sight legitimate) by the above mutual implication in any single 
case, but only by the fR.<'t of it11 holding for all ca.'ies in which the given 
relation <K"CUl'M. 'l'b.e grounds for this view a.re derived from certain 
propositions in which terms are r'-'lated to themselves not-symmetrically, 
i.e. by a relation whosc ronven;e is not identical with it,;elf. These 
propositions must now be examined. 

96. There is a. certain temptation to affirm that no term can be 
related to itself; and there is a still Rtronger temptation to affinn that, 
if a term can be related to itself, the relation must be symmetrical, 
i.e. identical with its converse. But both these temptations must be 
resisted. In the first place, if no term were related to itself, we should 
never be able to assert self-identity, sin('e this is plainly a relation. 
But 11ince there is such a notion as identity, and since it seems undeniable 
that every term is identical with itself, we must allow that a term may 
be related to itself. Identity, however, is still a symmetrical relation, 
and may be admittt.'Cl without any great qualms. The matter becomes 
far worse when we have to admit not-svmmetrica.l relations of terms 
to themi;elves. Nevertheless the following propositions seem undeniable ; 
Being is, or hM being; 1 is one, or has unity ; concept is conceptual : 
term i11 a term ; class-concept is a cla.,;s-concept. All these are of one 
of the three equivalent types which we distinguished at the beginning of 
Chapter v, which may be called respectively subject-predicate proposi­
tions, propO!iitions a.-.serting the relation of predication, and propositions 
asserting membership of a cla.'18. \Vhat we have to consider is, then, 
the fact that a predicate may be predicable of itself. It is necessary, for 
our present purpose, to take our propositions in the second form (Socrates 
has humanity), since the subject-predicate form is not in the above sense 
relational. We may take, as the type of such propositions, "unity has 
unity." Now it is certainly undeniable that the relation of predication 
is asymmetrical, isince 11ub,iechi cannot in general be predicated of their 
predicat.e11. Thus " unity ha.-. unity "' a.~o;erts one relation of unity to 
itself, and implies another, namely the converse relation: unity has 
to it.Helf both the relation of imbject to predicate, and the relation of 
predicate to subject. Now if the referent and the relatum are identical, 
it is plain that the relatum has to the referent the same relation as the 
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referent has to the relatum. Hence if the converse of a relation in 
a particular case were defined by mutual implication in that particular 
case, it would appear that, in the present case, our relation has two 
oon\'erses, since two different relations of relatum to referent are implied 
by "unity has unity." We must therefore define the ronverse of a 
relation by the fact that alib implies and is implied by bRa whatezier 
a and b mav be, and whether or not the relation R holds between them. 
'l'hat is to ·say, a and b are here essl'ntially variables, and if we give 
them any eonstant value, we may find that aRb implies and is implied 
by bR'a, where R' is some relation other than ii. 

Thus three points must he noted with rebrard to relations of two 
terms: (1) they all have sense, S!) that, provided a and b are not 
identical, we can distinguish aRb from bRa; (!t) they all have a 
converse, i.e. a relation ii such that aRb implies and is implied by 
bRa, whatever a and b may he; (S) some relations hold between a 
term and itself, and such relations are not necessarily symmetrical, 
i.e. there mav be t.wo different relations, whic·h are eaeh other's con­
verses, and ~hic·h both holcl between a term and itself. 

96. :For the general theory of relations, especially in ib1 mathe­
matical developments, certain axioms relating cl&Hses and relations are 
of great importance. It is to be held that to have a briven relation to a 
given term is a predicate, so that all terms having this relation to this 
term form a class. It is to be held further that to have a given relation 
at all is a predicate, so that all referent.'! with respect to a given relation 
form a cla.'!s. It follows, by considering the converse relation, that all 
relate. also form a class. These two classes I shall call rei,pec-tively the 
domain and the conver,w: domain of the relation ; the logical sum of the 
two I shall call the.field of the relation. 

The axiom that all referent.,,; with respect to a given relation form a 
class seems, however, to require some limitation, and that on acmunt of 
the contradiction mentioned at the end of Chapter v1. This contra­
di<--tion may he stated B.H follows. We saw that some predicate11 can be 
predicated of themselves. Consider now those of which this is not the 
ca..'IC. These are the refen•nts (and also the relate.) in what seems like 
a complex relation, namely the e,-ombiuation of non-predicability with 
identity. But there is no predicate which attaches to all of them and 
to no other terms. For this predicate will either be predicable or not 
predicable of itself. If it is predicable of itself, it is one of those 
referents by relation to which it was defined, and therefore, in virtue 
of their definition, it is not predicable of itself. Conversely, if it is not 
predicable of itself, then again it is one of the said referents, of all of 
which (by hypothei,is) it is predicable, and therefore again it is predicable 
of itself. This is a. contradiction, which shows that all the referents 
considered have no exclusive common predicate, and therefore, if defining 
predicates are essential to classes, do not form a class. 
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The matter may he put otherwise. In defining the would-be cla."111 of 
predicare,, all thOHe not predicable of theml'lelvei; ha,·e been used up. 
'fl1e common predicatt- of all theise prt.'dieates cannot be one of them, 
since for each of them there is at lee.,;t one predic·ate (namely itself) of 
which it is not prcdic11.hle. But again, the supposed common predicate 
cannot be any other predicate, for if it were, it would he predicable of 
itself~ i.e. it would be a member of the suppost.'<l cla.>11, ofpredicah•s, since 
tllL'se wct"l' defined a.-. those of" which it is predicable. Thus no prt.-d.icate 
is left over which could attn.ch to all the predicates considered. 

It follows from t.he above that not every definable collection of 
terms forms a cla1,s defined by a common predi~ate. This fact must be 
home in mind, and we must endeavour to dis<·m·er what propertie:-1 a 
colle,·tion mu1,t h11.vc in ordl·r to form such a de.,-;. The cxaet point 
established by the above contradiction may he stah-d a.>1 follo,1·1,: .A pro­
position apparimtly eontaining only one rn.riable may not he ec1uivalent 
to any proposition as.'ICrting that the variable in question has a certain 
predicate. It remains an open qm.•1,tion whether every da.-.s must have 
a defining predicate. 

That all terms having a given relation to a given term form a dRlis 
defined by an exclusive common predicate results from the doctrine of 
Chaptl•r vn, that the proposition aRb can be analyZt.-d into the subject 
a and the as.'!ertion Rb. To he a term of which Rb can he asserted 
appears to be plainly a predicate. But it does not follow, I think, 
that t.o he a term of which, for some value of y, R;I/ can he R."S.'i<!rte<l, is 
a pl"l.-dicate. The doctrine of propositional functions requires, however, 
that all terms having the latter property should form a class. This 
cla.>1s I shall call the domain of the relation R e.11 well a,., the cla.,;s of 
referents. The domain of the converse relation will he also calll!d the 
converse domain, a.'I well a.'i the da."ls of relata. The two domains 
to~thcr will be ,·alled the .fiel,d of the relation-a notion chiefly im­
portant as regards Kt'rics. Thus if paternity be the relation, fathers form 
its domain, children its converse domain, and fathers and children 
together its field. 

It 11111.y be doubted whether a proposition llRb can be regaroed as 
&"1..'ICrting aR of b, or whether only Ra can be asserted of b. In other 
wonls, is 11 relational proposition only an assertion concerning the 
refereut, or also an assertion concerning the relatum? If we take the 
latter view, we shall have, connected with (say) "a is greater than b,"" 
four 11.SHertions, namely "is greater than b,"' "r1. is greater than, .... "is less 
than a" and "bis less than." I am inclined myself to adopt this view, 
but I know of no argument on either side. 

97. We can form the logical sum and product of two relations or 
of a class of relations exactly as in the case of classes, except that here 
we have to deal with double variability. In addition to these ways of 
combination, we h1we alKO the relRtive prodm·t, which is in general non-
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commutative, and therefore requires that the number of factors should 
be finite. If R, S be two relations, to say that their relative product 
RS holds between two terms .r, z is to say that there is a term ,1/ to 
which :r has the relation R, and whi<~h itself has the relation S to;;. Thus 
brother-in-law is the relative product of wife and brother or of sister 
and husband : father-in-law is the relative product of wife and father, 
whereas the relative product of father and wife is mother or 11tep-mother. 

98. There is a temptation to regard a relation as definable in 
extension as a class of couples. This has the formal 1uh-antage that it 
avoids the na-essity for the primiti"e proposition asserting that every 
couple has a relation holding between no other pair of term11. But it ii. 
necessary to give sense to the couplt•, to distinguish the referent from the 
relatum: thus a couple becomes essentially distinl't from a cle.,;s of two 
terms, and must itself be introduced e.-i a primiti\'C iclea. It would seem, 
viewing the matter philosophically, that sense c·an only be derin'tl from 
some relational proposition, and that the a.,ser'.ion that a is I'C'fet"l'nt and 
b relatum already involves a purely relational proposition in which a and 
b arc terms, though the relation e.,;scrted is only the general one of 
referent to relatum. There are, in faC't, concepts such as greater, which 
occur otherwise than as terms in propositions having two terms(§§ 48, 54); 
and no doctrine of couples can evade suc-h propositions. It sL>ems tht>re­
fore more correct to take an intem,ional view of relations, and to identify 
them rather with cle.-is-concepts than with cla.-ises. Thi1:1 pTOl·edure is 
formally more convenient, and seems also nearer to the logical facts. 
Throughout Mathematics there i11 the same rather curious relation of 
intensional and extensional points of view : the symbols other than 
variable terms (i.e. the variable de.'!s-concepts and relations) stand for 
intensions, while the actual objects dealt with are always extensions. 
Thus in the calculus of relations, it is cla.,;;ses of couples that are relevant, 
but the symbolism deals with them by means of relations. This is 
precisely similar to the state of things explained in relation to classes, 
and it seems unnecessary to repeat the explanations at length. 

99. Mr Bradley, in Appearam·e a11d Reality, Chapter m, he.'! based 
an argument against the reality of relations upon the endless regress 
arising from the fact that a relation which relates two terms must 
be related to each of them. 'l'he endles11 regress i11 undeniable, if 
relational propositions are taken to he ultimate, but it is ,·ery doubtful 
whether it forms any logical difficulty. We have already had OCC11.Sion 
(§ 55) to distinguish two kinds of regress, the one proceeding merely to 
perpetually new implied propositions, the other in the meaning of a 
proposition itself; of these two kinds, we agreed that the former, since 
the solution of the problem of infinity, has cea.-ied to be objectionable, 
while the latter remains inadmissible. We have to inquire which kind 
of regress occurs in the present im1tance. It may be urged that it is 
part of the very meaning of a relational proposition that the relation 
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involved should have to the terms the relation expressed in saying that 
it relates them, and that this is what makes the distinction, which we 
formerly (§ 54) left unexplained, between a relating relation and a relation 
in iblelf'. It may be urged, however, against this view, that the assertion 
of' a relation between the relation and the terms, though implied, is no 
part of the original proposition, and that a relating relation is dis­
tinguished from a relation in ib;elf by the indefinable element of assertion 
whil'h distinguishes a propo11ition from a concept. Against this it 
might be retorted that, in the concept "difference of a and b," difference 
relatl'K a and b just as much 8J! in the proposition "a and b differ": but 
to this it may be rejoined that Wl' found the difference of a and b, except 
in so far as some specific point of difference may be in question, to be 
indistinguishable from bare difference. Thus it seems impossible to 
prove that the endless regre11s involved is of the objectionable kind. 
We may distinguish, I think, betwcl'n "a exceeds b" and "a i& greater 
than b,'" though it would be abmrd to deny that people usually mean 
the Kil.Ille thing by these two proprn,itions. On the principle, from which 
I can see no escape, that every genuine word must have some meaning, 
the is ancl than must form part of "a is greater than b," whic·h thus 
contains more than two terms and a relation. The is st.-ems to state 
that a has to gre,lter the rdaliou of referent, while the than states 
similarly that b has to grt"ater the rdation of relatum. But "a cxc-eeds 
b'" may be held to expm1s solely the relation of a to b, without in­
cluding any of the implications of further relations. Hence we shall 
have to conclude that a relational proposition aRb d0t>s not include 
in it."' memii11g any relation of a or b to R, and that the endless regress, 
though undeniable, is logica.lly quite harmless. With these remarks, 
we may leave the further theory of relations to later Parts of the present 
work. 
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CHAPTER X. 

THE CONTRA DIC'fIO:S. 

100. BEFOIU<: taking leave of fundamental question~, it is necessary 
to examine more in detail the singular l'Ontradiction, already mentioned, 
with regard to predicates not predil'ahle of themselves. Before 1tttl'mpt­
ing to sohe this puzzle, it will he wt•ll to make some deductions l'Onnecb.-d 
with it, and to stale it in various different form,,. I may mention that I 
was led to it in the n1dearnur to rt'<"llll<'ile Cantor's prm;f that there can 
he no greatest cardinal numhf'r with the wry plausihlt• supposition that 
the clm,s of all term-; (whieh we have :..ecu to he essential to all formal 
propositions) has necessarily the grmfrst pos~ible 11ur11bcr of nwmbcrs•. 

Let w be a dass-l'Ofl('ept which mn he as~erted of itself: i.l'. such that 
"u• is a w." Instances arc rlas.Y-1·011apt, and the negations of ordinary 
class-l·oncepts, "·ff· not-man. Then (a) if w he contained in another clai;s 11, 

since w is ll w, w is a v; eonse'lucntly there is a term of ?7 which is 
a elass-conccpt that nm hl' asserted of itsdf. Hence by contraposition, 
(/3) if 'II he a daf.s-concept none of whose mcmlwrs are cla.-;s-l·oncepts 
that l"an be asserted of themselves, no cla.-;s-conccpt l'ontaincd in u can 
be ai;scrted of itself. Hence furthl•r, (,y) if u be any cla.-;~-coneept what­
ever, and 1/ the class-l'om·ept of those members of' 11 whiel1 are not 
predicable of themselvc5, this cla~1Honc·ept is contain£>d in itself, and 
none of its members arc prcdicablt· of themsclve!>; henl'e by (8) 11' is not 
predicable of itself. Thus u' is not a 11', and i!< therefore not a u ; for 
the terms of u that are not terms of u' are all prL'<licable of themselves, 
which u' is not. Thus (o) if u be any cla.-,s-concept whatever, then• is a 
cla.,;s-concept contained in u which is not ll member of u, and is also one 
of those class-concepts that are not predicable of thems<'lvcs. So far, our 
deductions seem scarcely open to que~tion. llut if we now take the last 
of them, and admit the da.'ls of those class-l'OHl'epts that c1111not he 
asserted of themselve;,, we find that this class must contain a class-mncept 
not a member of itself and yet not belonging to the cl1tss in question. 

\Ve may observe also that, in virtue of what we have proved in (fJ), the 
class of cla.'is-concepts which cannot he asserted of themselves, which we 

* See Part V, <:hap. nm, § 3-!4 ff. 
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will call w, cont.ains as membem of itself all its sub-classes, although it is 
easy to prove that every class has more sub-classes than terms. Again, 
if !J be any term of w, and w' be the whole of w except y, then w', being 
a sub-dass of w, is not a w' but is a w, and therefore is y. Hence each 
class-concept which is a term of w has all other terms of w as its 
extension. It follows that the concept buycle is a teaspoon, and teatl'{JOO'T', 
is a bicycle. This is plainly absurd, and any number of similar 
absurdities can be proved. 

101. Let us leave these paradoxical consequences, and attempt the 
exac-t statement of the contradiC'tion itself. We have first the statement 
in terms of predicates, whil'h has been given already. If x be a predicate, 
a· may or may not be predi<·able of itself. Let us assume that "not­
prcdicable of oneself" is a predicate. Then to suppose either that this 
predicate is, or that it is not, predicable of itself, is self-contradictory. 
The <'onclusion, in this case, seems obvious : " not-pn,>dicable of oneself" 
is not a prcdi<·ate. 

Let us now statt• the same contradiction in terms of class-concepts. 
A class-concept may or may not be a term of its own extension. "Class­
concept. which is not a term of its own extension" appears to be a class­
com·ept.. But if it is a term of its own extension, it is a class-concept 
which is not 1t term of its own extt,nsion, and trice t•ersii. Thus we must 
conclude, against appeamnees, that "class-concept which is not a term of 
its own extension" is not a class-eoncept. 

In terms of classes the contradi<•tion appears even more extraordinary. 
A ch1.~s as one may be a term of itself as many. Thus the dass of all 
classes is a class; the class of all the terms that are not men is not a man, 
and so on. Do all the cl1tsses that have this property form a clas.~? If 
so, is it as one a member of itsdf as many or not? If it is, then it is 
one of the classes which, as ones, arc not members of themselves as many, 
and z,i,l'e versa. Thus we must conclude again that the cla.,~ses which as 
ones are not members of themselves as many do not form a class--or 
rather, that they do not form a class as one, for the argument cannot 
show that thev do not form a do.s~ as many. 

102. A similar result, whil'h, however; does not lead to a contradic­
tion, may be proved eoncerning any relation. Let R he a relation, and 
consider the class zo of terms which do not have the relation R to them­
selves. Then it is impossible that there should be any term a to which 
all of them and no other tc1·ms haw the relation R. For, if there were 
sm·h a h•rm, the propositional funetion "x does not have the relation R 
to x" would be equivalent to "x }ms the relation R to a." Substituting 
a for ,r throughout, whil'h is legitimate since the equivalenee is formal, 
we find a contradiction. \Vhen in pln.ce of R we put 1:, the relation of 
a term to a class-concept which l'an be asserted of it, we bret the above 
<·ontrru:liction. The re11son that a contradiction emerges here is that. 
we have taken it as an axiom that any propositional function containing 
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only one variable is equivalent to asserting membership of a class defined 
by the propositional function. Either this axiom, or the principle that 
every da.•,s co.n be taken as one tenn, is plainly false, and there i11 no 
fundamental objection to dropping either. But having dropped the 
former, the question arises: \Vhich propositional functions define das11CS 
which are single terms as well as many, and which do not? And with 
this question our real difficulties begin. 

Any method by which we attempt to establii..h a one-one or many­
one correlation of all terms and all propositional functions must omit at 
lea.,t one propositional func-tion. 8uch a method would exist if all 
propoi.itional funetions <"<mld be expres.o;ed in the form ... Ell, sim:c• this 
form t·or1,•l1ttes 11 \\ith ... m. But the impossibility of any sm·h corr<•la­
tion i, provl'd as follows. Let 'P:r he a pmpositional funl'lion <'orrelR.tl'd 
with :,.•; then, if' the con·elRtion t·on-rs 1111 terms, the dt•ni11l of cf,., (x) will 
he a pmpositional fuuction, since it is H. proprn,ition for all rnluei,, of x. 
nut it cannot be induded in the c·orrclation; for if it were t•orrdnted 
with a, <t>,.(.1·) uoulcl hl• 1•quivalcnt, for all rnlues of .2·, to tlw denial of 
q,., (,1•); hut thii. l01p1irnlem·e is impossihle for tlw mlue 11, 11im·<• it 11111.kes 
'Pn (11) equivalent to its own denial. It follows that there art• more 
propm,itional fmwtions than tenm,-a rei.ult \\hich i.ee1m, plainly impm1-
sible, although the proof i,, a.,; <·onvinl·ing m, any iu 1\fathemnlit·i,,, \Ve 
i,,lulll shortly see how the imprn,sihility is removed by thP dm·trinl• of 
logiml types. 

103. The first method whit·h suggest,; itself is to se1:·k an ambiguity 
in the notion of E. But in Chapter \'I we distinguished the various 
meaninhrs ai,, far as any distinc-tion seemed possible, and we ha,·e just 
seen that ,~ilh eaeh meaning the same c-ontradirtion emerges. Let us, 
howcwr, attempt to state the l'ontradil'tion throughout in term:, of 
propositional furll'tioni,. Every propositional function whirh is not null, 
we supposed, defines a class, and every clll.-is c·an ('ertainl_y he detim-d by 
R. propoi,,itional fun<'tion. Thus to say that a class &K one is not a 
membe1· of itself 11.s mll.Ily is to 1,ay that the da.'is &'i one cloes not satisfy 
the fum·tion by which itself' as many i11 dt'fined. Sinee all propositional 
funetions ex<.'C'pt such as arc null define dasses, all will he ust.-d up, in 
considering all classes h11.ving the above propl'rty, except such as do not 
have the above property. If any propositional funl'lion ~ere HR.tisfied 
by every dass ha,·ing thl' abm·e property, it would therefore ne<."t·ssarily 
be one satisfied also by the class tc' of all such clR.hscs considered as a. 
11ingle term. Hen<.·e the l'l8.S8 w does not it.-.clf belong to the cllll!S w, 
and therefore there must be some propositional function satisfied by the 
tenns of w but not by w ib1elf. Thus the contradiction rc-emergl'li, and 
we mu11t suppose, either that there is no such entity as 10, or that there 
is no prop08itional function i.atisfied by its tem1s and by no othel'l,I. 

It might he thought that a 110lution c,'Ouid be found by denying the 
legitimacy of variable propositional functions. If we denote by k+, for 

Downloaded from https://www.holybooks.com



104 'l'he Indefinables of Mathematics [CHAP. X 

the moment, the class of values satisfying 4>, our propositional function 
is the denial of q, (k4,), where q, is the variable. The doctrine of 
Chapter vn, that q, is not a separable entity, might make such a variable 
seem illegitimate; but this objection can be overcome by substitut­
ing for 4> the class of propositions 4>:r, or the relation of 4>:r: to x. 
Moreover it is impO!!sible to exclude variable propositional functions 
altogether. Wherever a variable class or a variable relation occurs, 
we have admitted a variable propositional function, which is thus 
es..'!ential to assertions about every clw.s or about every relation. The 
definition of the domain of a relation, for example, and all the general 
propositions which constitute the calculus of relations, would be swept 
away by the refusal to allow this type of variation. Thus we require 
some further characteristic by which to distinguish two kinds of varia­
tion. This characteristic is to be found, I think, in the independent 
variability of the function and the argument. In general, 4>:r: is itself 
a function of two variables, q> and .i:; of these, either may be given a 
constant value, and either may be varied without reference to the other. 
But in the type of propositi~nal functions we are considering in this 
Chapter, the argument is itself a function of the propositional function : 
instead of cf,:r, we have cf, !f(cf,)), wheref(l/>) is defim·d as a function of 
q,. Thus when 4> is varied, the argument of which 4> is asserted is 
varied too. Thus ".r is an x" is equivalent to: "4> can be asserted of 
the class of terms satisfying 4>," this class of terms being :r:. If here 
q> is varied, the argument is varil'd at the same time in a manner 
dependent upon the variation of if>. .For this reason, q> !f(ct,)), though 
it is a definite proposition when ;i,· is assigned, is not a propositional 
function, in the ordinary sense, when J' is variable. Propositional 
functions of this doubtful type may be called quadratu- .forms, because 
the variable enters into them in a way somewhat analogous to that in 
which, in Algebra, a variable appears in an expression of the second 
degree. 

104. Perhaps the best way to state the suggested solution is to say 
that, if a collection of terms can only be defined by a variable pro­
positional function, then, though a class as many may be admitted, 
a cla..',S as one must be denied. When so stated, it appears that propo­
sitional functions ma_y be varied, provided the resulting collection is 
never itself made into the subject in the original propositional function. 
In such cases there is only a class as many, not a class as one. We took 
it as axiomatic that the class as one is to be found wherever there is 
a class as many; but this axiom need not be universally admitted, 
and appears to have been the source of the contradiction. By denying 
it, therefore, the whole difficulty will be overcome. 

A class as one, we shall say, is an object of the same type as its 
terms; i.e. any propositional function 4> (x) which is significant when one 
of the terms is substituted for x is also significant when the class as one 
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is substituted. But the class as one d0e11 not always exist, and the cllLss 
as many is of a different type from the terms of the class, even when the 
class has only one term, i.e. there are propositional function11 q,(u) in 
which u may be the class as many, which are meaningless if, for u, we 
substitute one of the terms of the class. And so "x is one among :,/s" 
is not a proposition at all if the relation involved is that of a term to its 
class as many; and this is the only relation of whose prcsenl-e a pro­
positional function always assures us. In this view, a class as many may 
be a logical subject, but in propositions of a different kind from those in 
which its terms are subjecti;; of any object other than o. singlt• term, the 
question whether it is one or many will have different answers according 
to the proposition in which it oct·urs. Thus we have "Socrates is one 
among men," in which men are plural; but'' men are one among species 
of animals," in which men are singular. It is the clit1tinction of logieal 
types that ii. the key to the whole mystery•. 

105. Other ways of evading the contradirtion, whid1 might be 
suggesb..-d, appear undesirable, on the ground that they destroy too 
many quite nece11sary kinds of propositions. It might be :mgbrested 
that identity is introduced in ":r is not. an .r" in a way whit·h is not 
permissible. But it has been already sho\\n that relations of terms 
to themselves are unavoidable, and • it may be obtiervt'<l that suicides 
or self-made men or the heroes of Smiles's Seif-llelp are all defined 
by relations to themselves. And generally, identity enters in a very 
similar way into formal implit·ation, so that it is quite impossible to 
reject it. 

A natural suggestion for esraping from the contra.diction would be 
to demur to the notion of all terms or of all classes. It might be 
urged that no such sum-total is conceivable; and if all indicates a whole, 
our escape from the contradiction requires us to admit this. But we 
have already abundantly seen that if this view were maintained against 
any term, all formal truth would be impoS11ible, and Mathematics, whose 
characteristic is the statement of truths concerning a11y term, would be 
abolished at one stroke. Thus the correct statement of formal truths 
requires the notion of any term or every term, but not the collective 
notion of all terms. 

It should be observed, finally, that no peculiar philosophy is involved 
in the above contradiction, whil'h springs directly from common sense, 
and can only be solved by abandoning some common-sense assumption. 
Only the Hegelian philosophy, which nourishes itself on contradictions, 
can remain indifferent, because it finds similar problem11 everywhere. In 
any other doctrine, so direct a challenge demands an answer, on pain 
of a confession of impotence. Fortunately, no other similar difficulty, 
so far as I know, occurs in any other portion of the Principles of 
Mathematics. 

• On this subject, aee Appendix. 
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106. \-Ve may now briefly review the conclusion& arrived at in 
Part I. Pure Mathematics w&11 defined as the cJass of propositions 
aKSerting form1:1.l implicatiom; and containing no comitant.11 except logical 
com1tants. And logical com,tants are : Implication, the relation of a 
tem1 to a class of which it is 11. member, the notion of RUCh that, the 
notion of relation, and such further notiom, as are involved in formal 
implication, which we found (§ 93) to be the following: propositional 
function, dMs•, denoting, and any or every term. This definition brought 
Mathematics into very close relation to Logic, and made it practically 
identical with Symbolic Logic. An examination of Symbolic Logic justi­
fied the above enumeration of mathematical i"ndcfinables. In Chapter Ill 

we distinguished implimtion and formal implil'ation. The former holds 
bctwet•n any two propm,itions provided the first be false or the se(·oml 
true. The latter is not a relation, but the as-;ertion, for every value 
of the variable or variables, of a proprn,itional function which, for every 
value of the variable or variables, a.-;serts 11.n implication. Chapter JV 

distinguis}ll'd what may be c·nlled thi11g.v from p1"C'dicates and rel11.tions 
(including the i., of pt"t•dimtions among relations for thii, purpose). It 
wai, shown that this dii.tind.ion i,- c·otmL'<'h.'<l with the dcx·trinc of 
1mbsbuwc aml attributes, but does not k·ad to the traditional results. 
Chapters v and VI de\'Cloped the theory of pn'flicates. In the former 
of these chapteri. it was shown that certain concepts, derived from 
preclic·ates, oc.·c·ur in propositions not about thenu,clves, but about com­
hinatiom1 of termi., such &"I arc indicated by al,l, n•ery, a11y, a, .vom1:, and 
the. Concepts of this kind, we found, are fundamental in Mathematic,-s, 
and enable us to cleal with infinite classus by means of propositions of 
finite c·omplexity. In Chapter VI we distinguished predic·ates, class­
c·onceph,, concepti. of da.11ses, dru.ses a.,; many, and classes a.-; one. We 
agreed that single terms, or such combination!! &'I result from a11d. are 
classes, the latter being classes a,; many ; and that classei, a.-; many 
are the objct'ts denott.'<l by l'Oncepts of classes, which are the plurals 
of dasR-t'om·epts. nut in the prci.ent l'haptcr we decidt.'<I that it is 
nece11mry to tli11tinguish a. singll' term from the c\w,s whose only member 
it is, and that l'Ollsequently the null-class may he admitted. 

In Chapter ,·11 we resumed the study of the verb. Subject-predicate 
propositions, and such a.,; exprei,.11 a fixed relation to a fixed term, could 
be anal.w.ed, we found, into a subj~ct and an assertion ; but this analysis 
bc{,'Omes impossible when a gi\'cll term enters into a proposition in a 
more c·omplicated manner than a.,; referent of a relation. Hence it 
became necL'Ss&ry to take propo11itionlll .fiml'tum as a primitive notion. 
A propoi;itional fum·tion of one ,·ariable ii; an.v proposition of a set 
detint.'<l by the \'ariation of a single term, while the other terms remain 

* The notion of ,·lt11111 in general, we decided, could be replaced, as au indefinable, 
by that of the class of propo11itio1111 defined by a propositional function. 
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constant. But in general it is impossible to define or isolate the 
constant element in a propositional function, since what remains, when 
a certain term, wherever it occurs, is left out of a proposition, is in 
general no discoverable kind of entity. Thus the term in question 
must be not simply omitted, hut replaced by a mriable. 

The notion of the variable, we found, is l'Xc,-ecdingly complicated. 
The :r is not simply any term, but any term with a certain individuality; 
for if not, any two variables would hl' indistinguishn.ble. We agreed 
that a variable is any term qua term in a certain propositionn.l function, 
and that variables are distinguished by the propositional functions in 
which they occur, or, in the cnsl' of several variables, by tlw plm-e they 
occupy in a given multiply variable propm,itional function. A variable, 
we said, is the tenn in any proposition of the set clcnoll•il by a girnn 
propositional fum·tion. 

Chapter ix pointed out that rdn.tional propositions are ultimate, 
and that they all have .,e,ute: i.,·. the rc•lation bring the ('()nct•pt as snt·h 
in a proposition with two terms, tht'n.· is another proposition containing 
the same terms and the saml' coucl'pt as such, as in " .A is greatl•r 
than B., and " B is greater than A." Tht•se two propositions, though 
different, contain precisely the same com,tituents. This is a dmracteristic 
of relations, and an instam-e of the loss resulting from analysis. Rela­
tions, we agreed, are to be taken intt'm,ionally, not IL'I dasses of t·ouples•. 

Finally, in thl' present chapter, we examined the contradict.ion re­
sulting from the apparent fact that, if w be the c·l11.,;s of all cla.'lscs which 
a.~ single terms are not members of themselves as many, then 'W as one 
can be proved both to be and not to be a member of itself 8.11 many. 
'l"he solution suggested wa.'I that it is necessary to distinguish various 
types of objects, namely terms, cla.'!ses of term~, cl11.'lsC!! of d11.'lses, classes 
of couple.'l of terms, and so on ; and that a propositional function </,:r in 
general requires, if it is to have any meaning, that :x should belong to 
some one type. Thus :xe:r was held to be meaningless, because E requires 
that the relatum should be a class composed of objects which are of the 
type <,>f the referent. The class as one, where it cxii..ts, i'I, we said, of the 
same type as its constituents~ but a quadratic propositional function in 
general appears to define only a cl11.'1s as many, and the c,-ontradiction 
proves that the class as one, if it ever exists, is certainly sometime11 
absent. 

• On this point, however, see Appendix. 

Downloaded from https://www.holybooks.com



Downloaded from https://www.holybooks.com



PART II. 

NUMBER. 

Downloaded from https://www.holybooks.com



Downloaded from https://www.holybooks.com



CHAPTER XI. 

DEFINITIO~ OF CARDI~AL ~lTMllERS. 

107. W1,: have now hridly rcviewPd the apparatus of b'Cnl•ral logical 
notions with whid1 Mathematics opemh•s. In tht> J)l't.'Sl.'nt Part, it is to 
be shown how this apparatus suffices, without m.•w indefinables or new 
postulates, to establish the whole theory of l'llrdinal intt•gers as a spedal 
branch of Logie•. No mathematiea.l suhjl'Ct has nuule, in recent ycal'!l, 
greater advances than the tht•or) of Arithmetic. The movenll'nt in 
favour of correctness in deduction, inauhl'\J.ratcd by Weierstra..,s, ha.1o1 been 
brilliantly coutinucd by Dcdekind, Cantor, Frcbrc, and Pea.no, and attains 
what seems its final goal by mcl\ns of the logic of relations. As the 
modern matlwmatical theory is but imperfectly known even by most 
mathematicians, I shall begin U1is Part by four chapten; setting forth 
it.o;; outlines in a non-symbolic form. I shall then examine the proce&til 
of deduction from a philosophical standpoint, in order to discover, if 
possible, whether any unperccivl'<l asl\umptiomi have covertly intruded 
themselves in the course of the argument. 

108. It is often held that both number and particular numbers are 
indefinable. Now definahility il-1 a word which, in Mathematil's, has a 
precise sense, though one which is relative to some given set of notionst. 
Given any set of notions, a term is definable by means of these notions 
when, and only when, it is tht' only term having to certain of these 
notions a certain relation which itself is one of the said notions. 13ut 
philosophically, the word tk.finition has not, as e. rule, been employt..-d in 
this sense ; it has, in fact, been restricted to the analysis of an idea 
into its constituents. This usage i!, inconvenient and, I think, rn~eless; 
moreo,·er it seems to overlook the fact that wholes are not, as a 

* Cantor has shown that it iA necessary to separate the study of Cardinal and 
Ordinal numberM, which are distinct entities, of wl1ich the fonner are Rimpler, but of 
which both are essential to ordinary Mathematir.s. Ou Ordinal numbers, cf. Chaps. 
xxrx, xxxvm, infra. 

t See Peano, F. 1001, p. 6 f. and Padoa, "Theorie Algebrique des Nombres 
EntierA," fJong,.;.R, Vol. m, p. 314 ff. 

Downloaded from https://www.holybooks.com



112 Numher [cHA.P. XI 

rule, determinate when their constituents are given, but are ~emselves 
new entities (which may be in some sense simple), defined, in the 
mathematical sense, bv L-ertain relations to their constituents. I shall, 
therefore, in future, ignore the philosophical sense, and speak only of 
mathl•matic·al definability. I shall, however, restrict this notion more 
than is done by ProfosHor Peano and his disciples. They hold that the 
various branches of Mathl'matics have variom1 indefinables, by means of 
which the remaining irll•u.s of the said subjects are defined. I hold­
and it is an important part of my purpoi;e to prove-that all Pure 
Mathem11tin1 (inducling Geometry and even rational Uynamics) contains 
only one set of indefinables, namely the fundamental logical com-epts 
di1K·u-.scd in Part I. When the various logical <·onstauts have been 
enumerated, it is somewhat arbitrary which of them we regard as 
indefinable, though there are apparently some which must he indefinable 
in any theory. Hut my contention is, that the indefinRbles of Pure 
Mathematics a.re all of this kind, and that the presence of any other 
indl'finables indicates that our subject helougi,; to Applied Mathematics. 
Mon•over, of the three kinds of definition Rdmitted by Pcano-the 
nominal definition, the dt•finition by postulates, and the definition by 
abstraction •-I rccogni1.e only the nominal : the others, it would seem, 
are only necl'sxitatcd by Peano's refusal to regard relations as part of the 
fundamental apparatus of logic, and by his somewhat undue ha.-.te in 
regarding as an individual what is really a class. These remarks will be 
best explained by considering their application to the definition of 
cardinal num hers. 

109. It has bel'n common in the past, among those who regarded 
numbers a . .; definable, to make an ex<·eption a.-. regards the number 1, 
and to define the remainder by its means. Thus !! was 1 + I, 8 was 
!! + I, and so on. This metho;_l was only applicable to finite numbers, 
and made 11. tiresome differenre between 1 and other numbers ; moreover 
the meaning of + wa.., <·ommonly not explained. We are able now-a­
days to improve grt'atly upon this method. In the first place, since 
Cantor ha.o,; shown how to deal with the infinite, it has bt'come both 
desirable and prn1sible to deal with the fundamental properties of numbers 
in a way whieh is equally applicable to finite and infinite numbers. In 
the seeond place, the logi<·al calculus has enabled us to give an exact 
definition of arithmetical Rddition ; and in the third place, it has ba-ome 
as easy to define O and 1 a.-, to define any other number. In order to 
explain how this is done, I shall first set forth the definition of numbers 
by abstraction ; I shall then point out formal defects in this definition, 
and replace it by a nominal definition. 

Numbers are, it will be admitted, applicable es..~ntially to classes. 
It is true that, where the number is finite, individuals may be enumerated 

* Cf. Burali-l<'orti, "Sur lee dift'erentes definitions du nombre reel," Cong~•, m, 
p. 2W ft'. 
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to make up the given number, and may he c·ounted one by one without 
any mention of a class-concept. But all finite collec·tions of individuals 
form clas.,,;es, i.o that what results is after all the number of a class. 
Ar"d where the number is infinite, the individuals cannot be enumerated, 
but must he defined by intcnsion, i.e. by some common property in 
virtue of whil'h they form a class. Thus when any class-conet>pt is 
given, thPre is a certain uumhcr of individuals to which this clas,;-concept 
is applicable, and the number may therefore he l'('garded as a property 
of the cla.~s. It is this view of mnnbers which has rendered possible the 
whole theory of infinity, since it relieves us of the• necessity of enume­
rating the indiYiduals whose number is to be considered. This view 
depends fundamentally upon tlll' notion of all, thP numerieal conjunction 
as we agreed to eall it(§ .59)'. All mrn, for example, denotes men con­
joined in a eertain way ; aud it is a.'i thus denoted that tlwy have a 
number. Similarly all number.v or all J'U'ints denotes numbers or points 
conjoined in a c·ertain way, and as thus conjoined numbers or points have 
a number. Numlx•rs, tht•n, are to he regardccl a.-; propeities of cla.<ises. 

The next question is: lTnder what eircmnstanccs do two cl8.8ses have 
the same number i' The answPr is, that they have the same number 
when their h•rms t·1m he <"orrelated one to one, so that any one term of 
either corresponds to one and only one term of the other. This requires 
that there should be some one-one relation whose domain is the one 
class and whose eonverse domain is the other class. Thus, for example, 
if in a community all the men and all the women are married, and 
polygamy and polyandry are forbidden, the number of men must be the 
same as the number of women. It might be thought that a one-one 
relation could not be defined except by reference to the number I. But 
this is not the case. A relation is one-one when, if x and :r' have the 
relation in question to .11, then :r and :r' are identical ; while if x has the 
relation in question toy and y', thl'n ,'I/ and y' are identical. Thus it is 
possible, without the notion of unity, to define what is meant by a one­
one relation. But in order to provide for the case of two cla.~ses which 
have no terms, it is necessary to modify slightly the above account of 
what is meant by ~aying that two classes have the same number. :For if 
there are no terms, the terms t·am1ot he correlated one to one. We 
must say: Two classes have the same number when, and only when, there 
is a one-one relation whose domain includes the one cla.<1s, and which is 
such that the class of correlates of the terms of the one class is identical 
with the other class. From this it appears that two classes having no 
terms have always the same number of terms; for if we take any one­
one relation whatever, its domain includes the null-class, and the class 
of correlates of the null-class is again the null-clas.'l. When two classes 
have the same number, they are said to be similar. 

Some readers may suppose that a definition of what is meant by 
saying that two clRSl!CS have the same number is who!ly unneceSll&l"J. 
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The way to find out, they may MY, is to count both classes. It is 11uch 
notions as this which have, until very recently, prevenfed the exhibition 
of Arithmetic as a branch of Pure Logic. Pol' the question immediately 
arises: What is meant by counting? To this que.<ition we usually get 
only some irrelevant psychologi<"al answer, as, that counting consists in 
successive acts of attention. In order to count 10, I suppose that ten 
acts of attention are required: certainl_v a most useful definition of the 
number 10 ! Counting has, in fact, a brood meaning, which is not 
psychological. But this meaning is highly complex ; it is only applil"able 
to classes which c-an be well-ordered, which are not known to be all 
cl.a,sses; and it only givet1 the number of the dass when this number is 
finite- a rare and exceptional case. We must not, therefore, bring in 
counting where the definition of numbers is in quei;tion. 

The relation of similarity between clRSses has the three properties of 
being reflexive, symmetrical, and tran11itive; that is to say, if u, v, w be 
classes, u is similar to itself; if u be 11imilar to v, t• is similar to u; and 
if u be similar to v, and v to w, then u is simile,r to w. These properties 
all follow easily from the definition. Now these thn-e properties of a 
relation are held by Pea.no and rommon sense to indic-ate that when the 
relation holds between two terms, those two terms have a c-ertain l"Ommon 
property, and trice ver,Ya. This common property we call their number•. 
This is the definition of numbers by abstraction. 

110. Now thi11 definition by abstraction, and generally the process 
employed in sm·h definitions, 11uflers from an absolutely fatal formal 
defed;: it does not show that only one object satisfies the definitiont. 
Thus instead of obtaining 011,e common property of similar classes, which 
is tM number of the cla.<ises in question, we obtain a c:la11., of such 
properties, with no means of deciding how many tern111 this class c·ontains. 
In order to make this point clear, let us examine what is meant, in the 
present instance, by a c.'Ommon property. What is meant is, that any 
class has to a certain entity, its number, a relation which it has to nothing 
else, but which all similar c-lasses (and no other entities) have to the said 
number. That is, there is a many-one relation which every class has to 
ib number and to nothing else. Thus, so far a.-. the definition by 
abstraction can show, any set of entities to each of which some cla.'ls has 
a c.-ertain many-one relation, and to one and only one of whid1 any given 
class has thh1 relation, and which are sul'h that all classes similar to a 
given clar;s ha\'e this relation to one and the same entity of the set, 
appear as the set of numbers, and any entity of this set i~ tlw number of 
some clas.<i. If, then, there are many such seb. of entities-and it is ear;y 

* Cf. Peano, 1''. 1001, § 32, ·o, Note. 
t On the necessity of this condition, cf. Padoa, loc. cit., p. 324. Padoa appears 

not to perceive, however, that all definitions define the single individual of a class: 
when what ia defined is a class, this must be tl1e only term of some cl&l!II of claeaes. 
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to prove that there are an infinite number of them-every dn.l1s will 
h1\\'e many numbers, and the definition wholly fails to define tlu· numlx>r 
of n. da.-is. This argument ii. 1x.-rfl'<'tlJ general, and shows that dl'finition 
by ahi.traC"tion i:. IIP\'cr a logimlly mlid prc>l'es.-i. 

111. Then.• arc two \\ll~s in whic-11 we may attempt to remedy this 
defect. Om• of these c·1111i.ist,; in denning as tht' numlx•r of a da."ls the 
whole das:. of l'ntitil•s, d10sc11 one from l'lld1 of tlw nhove sets of l·ntitics, 
to whid1 itll da,;ses i,irnilar to the gi\'l'n dass (ancl no otlll'rs) have some 
umn_v-one rd1ttion or other. But thi:. met.hod is pmetimlly usch·ss, sim-c 
all c·ntitics, \\ ithout l'Xl'eption, belong to l'n-ry :<m·h du . .,:<, :.o that e\'et-y 
dass will lmw as ih numhL·r the das:. of all t•ntitit•s of t•n·rv sort ancl 
desc·ription. The other rc•ml'd~· is more pr1wtimhll•, and ap[;lil•s to all 
the casei. in whil·h 1'1•ano 1•111ploy:'I definition by ab,,tmction. This 
method is, to clefinc as till• numhl•r of ll dw,s the dass of nil d11.-ise11 
similar to the giwn da."li.. l\h•mher,,hip of this dai,:. of d1w,ci, (l'Onsidcl'l'fl 
as a p1-cclic·11tl') i" ll c·ommon property of all the similar classes and of no 
others; 111orpm•c•1· e,·c•ry dass of tlw i,ct of i,imil11r d11sses has to the set 
a relation whic·h it ha~ to nothing l'lsl', and whid1 every da."li', hu.-. to its 
own i,,ct. Thus thl· l'Omlitioni. are completely fulfilled hy this da.,s of 
dasst•I',, and it ha.-. the mnit of being dl•lt•rminate when u clw.s is given, 
and of being different for two 1·!11.ssei, which 11n· not similiir. This, then, 
is an im•proad1abl(• dl'finit.ion of the number of a dai,s in purely logical 
tenm1. 

To rcgiu·d a m1111her as a da.-,s of dasscs must appc~ar, at first sight, 
a wholly imlefonsible paradox. Thus Pl·ano (F. 1901, §:32) remarks that 
" we cannot identify the· number of r a class] 1£ with the dass of cla.-ii'>l"S in 
question f i.e. the dass of dassei, similar to a], for these objects have 
different prnpl'rtiei,." He docs not tell us what these properties are, and 
for my part I am nrnlble to disc·over them. Probably it appeared to him 
immediatelv c\'ident that a number is not. a clm1s of dasi,l'II. But some­
thing may 0be said to mitigate the appearam·c of paradox in this view. 
In the first place, i,ud1 a won.I ai. m11plt: or trio obviously d,x•s denote a 
class of clas11es. Thus what we ha\'c to say is, for example, that "two 
men" meanH "logic·al produc-t of' dass of men and c·ouple," and "there are 
two men" mcam; "then.· is a c·]a."ls of men whid1 is also a <·cmplc." l11 the 
SE.'t·ond plac·e, whc•n we re111e111hcr that a da.,;s-com·ept is not itself a col­
lection, but a property by whieh a collection is defined, we sec that, if we 
define the nmnber a" the da.,s-c·onccpt, not the da.-i!!, a numlwr is rea1ly 
defined a,., a c·ommon propt•rty of a set of i,imilar classes and of nothing 
else. This vit•w n•moves till' appearance of paradox tu a great degree. 
There is, however, a philosophi,·al difficulty in this view, and generally in 
the connection of da.-.scs and prcclic·ates. It may be that there are many 
predicates common to a certain colledion of o~ject-; and to 110 others. In 
this case, these pl'(.•dicate.R arc all regarded by Symbolic Logk as e<1uivalent, 
and any one of them is said to be equal to any other. 'l'hu11 if the 
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predicate were defined by the collection of objects, we should not obtain, 
in general, a single predicate, but a class of predicates; for this class of 
prediC'ate11 we should re11uire a new class-com·ept, and so on. The only 
available class-con1,-ept would be "predicability of the given collection of 
terms and of no others." But in the present case, where the 1,-ollection is 
defined by a 1·crtain relation to one of it11 terms, there is some danger of 
a logical error. Let u be a class; then the number of u, we said, is the 
elass of dasHCS similar to u. But "similar to u" cannot be the actual 
roncept which com1titutes the number of u; for, if v be similar to u, 
"similar to 1!'' defines the same cla..,s, although it is a different concept. 
Thus we require, a.-; the defining predicate of the claHs of t1imilar cllll!ses, 
some concept which docs not have any special relation to one or more of 
the constituent classes. In regard to e,·ety particular number that may 
be mentioned, whether finite or infinite, 1mch a predicate is, as a matter 
of fact, discoverable; hut when all we arc told about a number is that it 
is the number of some class u, it is natural that a special reference to u 
should appear in the d,,finition. This, however, is not the point at issue. 
'The real point is, that what is defined is the same whether we use the 
predi,·ate "similar to It" or "similar to v," providl'd u is similar to v. 
This shows that it is not the clas.'1-concept or defining predicate that is 
defined, hut the class itself whose terms are the va1·ious l'lai,ses whil'h are 
similar to u or to v. It is sm·h classes, therefore, and not predicates such 
a.<1 "similar to it," that must be taken to constitute numbers. 

Thus, to sum up: Mathematically, a number is nothing hut a cla.,;s of 
similar clasi,es: this definition allows the deduction of all the usual 
properties of numbers, whether finite or infinite, and is the only one (110 
far as I know) which is pos11ible in tcrm11 of the fundamental concept!! of 
general logic. But philosophically we may admit that e\'ery collection 
of 1,1imilar clasHes has some common predicate applicable to no entities 
except the clu.•,ses in quest.ion, and if we can find, by in11pection, that 
there is a certain class of imch common predicate11, of which one and only 
one applies to each collection of similar classes, then we may, if we see 
fit, call this particular class of predicates the class of numbers. For my 
part, I do not know whether there i11 any such class of predicates, and 
I do know that, if there be such a class, it is wholly irrelevant to Ma­
thematics. When.•ver Mathematics derives a common property from a 
reflexive, symmetrical, and transitive relation, all mathematical purposes 
of the supposed common property are completely served when it is 
replaced by the class of terms having the given relation to a given term; 
and this is precisely the case presented by cardinal numbers. For the 
future, therefore, I shall adhere to the above definition, since it is at 
once precise and adequate to all mathematical uses. 
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CHAPTER XII. 

ADDITION A~D MlTI:rIPLICA'l'ION. 

112. IN most mathematic-al arl'Onnts of arithmcti,·al opl•rations we 
find the error of t•111leavouring to give at onre a definition whil'h i;hall be 
appliC'llble to mtionals, or even to n•11l numbt•rs, without dwl'lling al 
imffiricnt length upon the theory of inh•gc•rs. For the pr<'sl'llt, inh•t,,J't.•rs 
alone will oc·c·up)· w,. The definition of intchrcrs, given in the pr<'rL•ding 
c·hapter, obviously dol'S not admit of extension to frad.ions; and in fiu·t 
the ah:,;o]ute dift'crem·c hebH•en intc•gcrs and fradions, l'Vcn hctwl'Cll 
intc1,,rcrs 11.nd fmdions whost• denominator is unity, cannot. possibly be too 
strongly emphasized. What rational folC'tions are, and what real numbers 
are, I shall endeavour to explain at a li1ter stage; pm,itive and negative 
numbers ah,o arc at present c•xC"ludcd. The int.c•gcrs with which we are 
now <·oncerned arc not positive, hut signk·lls. And !IO the addition and 
multiplication to be dcfitlC'd in this du1pter arc only applicable to integers; 
but they hare the merit of lx•ing equally applic-ahle to finite and infinite 
integers. Indeed, for the pre1-,ent, I shall rigidly exclude all propositions 
which involve either the finitude or the infinity of the numbers considered. 

113. There is only one f'undamental kind of atldition, namely the 
logical kind. All other kinds ran he dcfin<'d in terms of this and logical 
multiplication. In the present chapter the 1Uldit.ion of integers is to be 
defined by its mcam,. Logic:al addition, as wa.i; explainL'<l in Part I, 
is the same a.'! disjmwtion, if p and q are propositions, their logical 
sum is the proposition '' p or q," and if it and 11 are cle.'l.11es, their 
logical sum is the class "u or 11," i.e. the class to which belongH every 
tcnn which either belongs to u or belongs to t', The logical 'iUm 
of two classes u and v may be defined in terms of the logical product 
of two propositions, &1 the class of terms belonging to every' class 
in which both u and v are contained•. This definition is not es.'len­
tially confined to two classes, but may be extended to a class of 
classes, whether finite or infinite. Thus if k be a cla.'!s of classes, the 
logical sum of the cla.-;scs composing k (called for short the sum of k) is 

* F. 1001, § 2, Prop. 1-0. . 
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the class of terms belonging to every clas.<i which contains every class 
which is a term of k. It is this notion which underlies arithmetical 
addition. If k be a class of classes no two of whkh have any common 
term11 (called for short an exclusive clas.~ of da.'ISes), then the arith­
metical sum of the numbers of the various classes of k is the number of 
tenns in the lobri.cal sum of k. 1.'hh, definition is absolutely general, and 
applies ec:1ually whether k or any ot' its constituent clMses be finite 
or infinite. In order to assure ourselves that the resulting number 
depends only upon the mt1nber., of the various classes belonging to k, and 
not upon the particular class k that happens to be chosen, it is necessary 
to prove (a11 is easily done) that if k' be another exclusive class of cl11.tL~s, 
similflr to k, and every member of k ii! similar to its correlate in k', and 
vice versa, then the number of terms in the sum of k is the same as the 
number in the sum of k'. 'l1ms, for example, supprnie k ha.<i only two 
terms, u and v, and suppose u and v have no common part. Then the 
number of terms in the logia1l sum of" and r, is the sum of the number 
of terms in u and in z•; and if 1t' be 11imilar to u, and z•' to v, and u', v' 
have no common part, then the sum of u' and z,' is similar to the 
sum of u and t•. 

114. With rebrard to this definition of a sum of numbers, it is to be 
observed that it cannot he freed from reference to classes which have the 
numbeni in question. The number obtained by summation is essentially 
the number of the logical sum of a certain class of classe11 or of' some 
similar class of 11imilar classes. The nec,-essity of this reference to cllU!SeS 
emerges when one number occurs twi<--e or oftener in the summation. It 
is to be observed that the numbers eon<.-emed have no ortkr of summation, 
so that we have no i.uch proposition as the commutative law : this pro­
position, as introduct.-d in Arithmetic, re,u)ts only from a defective 
symbolism, which c11.u11Cs an order among the symbols which has no 
correlative order in what is symboli1.t.>d. But owing to the absence of 
order, if one number occurs twice in a t1ummation, we cannot distinguish 
a fint and a st."t~ond oc,-cun-cnce of the said number. If we exclude a 
reference to classes which have the said number, there is no sent1e in the 
suppOKition of ib, ol'Curring twice: the 11ummation of a class of numbers 
,·an be defined, but in that case, no number can be repeated. In the 
above definition of a sum, the numbers concerned are defined as the 
numbers of certain da.•,.'les, and therefore it i11 not necessary to dedde 
whether any number is repeated or not. But in order to define, without 
reference to particular classes, a sum of numbers of which some are 
repeated, it is necesHary first to define multiplication. 

ThiH point may be made clearer by cont1idering a special ease, 1mch as 
1 + 1. It i11 plain that we cannot take the number 1 itself twice over, 
for there i11 one number 1, and there are not two instances of it. And if 
the logical addition of 1 to itself were in question, we should find that 
1 and 1 is 1, acc,-ording to the general principle of Symbolic Logic. Nor 
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can we define 1 + 1 as the arithmetical sum of a certain class of numbers. 
This method can be employed as regards 1 + 2, or any sum in which no 
number is repeated; but as regards 1 + 1, the only class of numbers 
involved is the cla.ss whose only member is 1, and since this class has one 
member, not two, we cannot define 1 + 1 by its means. Thus the full 
definition of 1 + 1 is as follows: 1 + 1 is the number of a class w which 
is the logical sum of two classes u and v which have no common term 
and have each only one term. The chief point to be observed is, that 
logical addition of classes is the fundamental notion, while the arith­
metical addition of numbers is wholly subsequent. 

115. The general definition of multiplication is due to Mr A. N. 
Whitehead•. It is as follows. Let k be a dass of classes, no two of 
which have any term in common. Form what is called the multiplicative 
class of k, i.e. the class each of whose terms is a cla."IK formed by choosing 
one and only one term from each of the da.-,ses belonging to k. Then 
the number of terms in the multiplicative dass of k is the product of all 
the numbers of the various cla.~ses composing '!.·. This definition, like 
that of addition given above, has two merits, which make it preferable 
to any other hitherto suggested. In the first plaee, it introduce."! no 
ordt-r among the numbers multiplied, so that there is no need of the 
commutative law, which, here a.'! in the case of addition, is com·erned 
rather with the symhols than with what is symbolized. In the isecond 
place, the above definition does not require us to decide, concerning any 
of the numbers involved, whether they are finite or infinite. Cantor has 
givent definitions of the sum and product of two numbers, which do not 
rec:1uire a decision a."I to whether these numbers are finite or infinite. 
These definitions can be extended to the sum and product of anv finite 
number of finite or infinite numbers; but they do not, as they stand, 
allow the definition of the sum or product of an infinite number of 
numbers. This grave defect is remedied in the above definitions, which 
enable us to pursue Arithmetic, as it ought to be pursued, without 
introducing the distinction of finite and infinite until we wish to study 
it. Cantor's definitions have also the formal defect of introducing an 
order among the numbers summed or multiplied : but this is, in his 
case, a mere defect in the symbols chosen, not in the idea.o;; which he 
symboli7.ea. Moreover it is not practically desirable, in the case of the 
sum or product of two numbers, to R.void this formal defect, since the 
resulting cumbrowmess becomes intolerable. 

116. It is easy to dcdu<--e from the above definitions the usual 
connection of addition and multiplication, which may be thus stated. 
If k be a class of' b mutually exclusfre clas.-;es, each of which contains 
a terms, then the logical s~m of k contains a x l, terms!. It is also 

* .American Journal q.f M11thl!ffll1tic11, Oct. 1002. 
t .Moth . .Annakn, Vol. xLvr, § 3. ! See Whitehead, loc. cit. 
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easy to obtain the definition of ab, and to prove the a.'isociative and dis­
tributive laws, and the formal laws for powers, such as ab<f = a1*. But 
it is to be observed that exponentiation is not to be regarded as a new 
independent operation, since it is merely an application of multipli­
cation. It is true that exponentiation can be independently defined, 
8.8 is done by Cantor•, but there is no advantage in so doing. Moreover 
exponentiation unavoidably introduces ordinal notions, since ab is not in 
general equal to IP. 1"or this rea. .. on we cannot define the result of an 
infinite number of exponentiations. Powers, therefore, arc to be regarded 
simply as abbreviations for products in which all the m1111hers multiplied 
together are e11 ual. 

J<'rom the data which we now possc1-is, all thrn,e propositions which 
hold equally of finite and infinite numbers can be deduC'ed. The next 
step, therefore, is to eonsider the distinction between the finite and the 
infinite. 

* Lm·. rit., § 4. 
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CHAPTER XIII. 

:FINITE AND INI◄'ISITR 

117. Tu.E purpose of the present chapter is not to dis<·uss t.lw philo­
sophical diffieulfas <'Oll('t.'flling the infinitl', which arc poslpmwd to 
Part V. for t.hr pm,ent I wish merely t.o Sl't forth hrictl_r Uu• mathe­
matieal throry of finite and i11finib• as it. appl'IU'li in the tlll'ory of 
rardinal numhen,. Thi,;; is its most fundamental form, and must he 
understood before thl· ordinal infinite <·1111 he adnptatel)' l'Xplaitll'd •. 

Let u be any c·la!.s, and let u' be 11 da.,i,; forml'd hy tuking away one 
term .1· from u. Then it may or may not happen that II i!i similar to tt'. 

l◄'or example, if u he the dnss of all linik numbers, and 11 1 the• da.,s of 
all finite numbers excl•pt 0, the tcrmi,; of 11' an• ohtai1ll'il hy adding l to l•arh 
of the term!! of -u, and thi:-. correlates onP tl-rm of ·u with one of u' and tiice 
ver.~lt, no term of either being omitted or btkcn twire ovt•r. Thmi 1t' is 
similar to u. But if u consists of all finite numbers up to 11, wlwre n is 
wme finite number, and u' consists ot' nil these except O, then 11,' ii; not 
similar to u. If there is one term x which l'l\ll he t.akl•n away from u to 
leave a similar class u', it is ea.,;ily proved that if auy other krm .1/ is 
taken away instead of :r we also get a rla!ls similar to 11. When it is 
possible to take away one term from u and leave u cla.'is ,,/ similar to u, 
we say that u is an i1ifi,riitr dass. When this is not possible, we KltJ that 
u is a.finite class. Prom these definitions it follows that the null-claS8 is 
finite, since no tem1 can be takrn from it. It il'I ali.o eat-iy to prove that 
if u be a finite class, the clnsR forml-d by adding one term to u is finite ; 
aud conversely if this class is finite, so is u. It follows from the drfinition 
that the numbel'!I of finite daisscs other than the null-class are altered 
by subtracting 1, while those of infinite da.11!,(•s are unaltered by this 
Op<'ration. It is easy to prove that the same holds of the addition of I. 

118. Among finite da.,..es, if one is a proper part of another, the 
one has a smaller number of terms than the other. (A proper part ii; 
a part not the whole.) But among infinite cla.o;.OJes, this no lon~'<!r holds. 

* On the present topic cf. Cantor, Math. Amialm, Vol. xr.v,, §§ IS, II, where 
most of what followa will be found. 
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This distindion is, in fact, an essential pa.rt of the a.hove definitions of 
the finite and the infinite. Of two infinite classes, one me.y have e. 
greater or a smaller number of terms than the other. A class u is said 
to be greRter than a class u, or to have a number greitter than that of v, 
when the two are not similar, but v is similar to a proper part of u. It 
is known that if u is similar to a proper part of v, and v to e. proper 
part of u (a case which C'An onlv arise when u and v are infinite), then u 
is similar to v; hence "u is g;-eater than v,. is inconsistent with "v is 
greater than 1,... It is not at present known whether, of two different 
infinite numbers, one muHt be greater and the other less. But it is known 
that there is a least infinite number, i.e. a number which is lei;s than any 
different infinite number. This is the number of finite integers, which 
will be denoted, in the present work, by a0 •. This number is capable of 
several dcfinitiorn, in which no mention is made of the finite numbers. In 
the first pla(-e it may be defined (as is implicitly done by Cant.ort) by means 
of the principle of mathcmatiral induction. This definition is a.,; follows: 
a. is the number of anv dass u which is the domain of a one-one relation 
R, whose converse do;;min is contained in but not coextensive with u, 
and whit·h is suC'h that, calling the term to whiC'h .r has the relation R 
the succt.~.wr of .i-, if .v be 1tny da..'i8 to which belongs a term of u which is 
not a suc·,·essor of any other term of u., 1md to which belongs the successor 
of every term of II which belongs to .v, then ever_v term of II belongs to s. 
Or agitin, we may define a. a.,; follows. Let P he a transitive and asym­
metrical relation, and let any two different terms of the field of P have the 
relation P or its converse. Further let any ela.~s u contained in the field 
of I' and having successors (i.e. terms t<,.which every term of u ha.o,; the 
relation P) have an immediate sm·cessor, i.e. a term whose predCC"essors 
either belong to u or preC'ede some term of 11 ; let there be one tl'rm of 
the field of P which has no predecessors, but let every term which has 
prede,·essors have successors and also have an immediate predecessor; 
then the number of terms in the field of P is a0 • Other definitions may 
be suggt--stcd, but as all are equivalent it is not necessary to multiply 
them. The following characteristic is important : Every class whose 
number is a0 can be arranged in a series having consecutive terms, a 
beginning but no end, and such that the number of predecessors of any 
term of the series is finite; and any series having these characteristics 
has the number a". 

It is very ea.-;_y to show that every infinite cla.-;s contains classes whose 
number is a0 • For let u be such a class, and let r 0 be a term of u. 
Then " is similar to the class obtained by taking away .x0 , which we will 
call the class tt1• Thus 111 is an infinite cla.'i.'-l. :From this we can take 

* Cantor employs for this number the Hebrew Aleph with the suffix o, but this 
notation is inconvenient. 

t Mut/1 • .A.r,1111l,m, Vol. xi.vr, § 6. 
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away a term Zu leaving an infinite class u,, and so on. The 11eries of 
terms Zu .ru . . . is cont.ained in tt, and is of the type which has the 
number ao. From this point we can advance to an R.ltemative definition 
of the finite and the infinite by means of mathemati('l1l indud.ion, which 
must now be explained. 

119. If n be any finite number, the number obtained by adding 
1 to n is also finite, and is different from n. Thus beginning with 0 
we can form a series of numbers by :meces11ive addition11 of 1. We 
may define finite numbers, if we choose, as tho11e numbers that can be 
obtained from O by such steps, and that obey mathematiral indud.ion. 
That is, the dass of finite nmnhen, is the da.'ls of numbers whieh is 
contained in every cl11HS II to whirh helon1,.rs O and the 11ut·ces.-.or of every 
number belonging to s, where the su<·ce11Sor of a number iis the number 
obt.ainl-d by adding 1 to the gin-n number. Now a0 is not. such a 
number, since, in virtue of propofiiitions ah'l'ady proved, no sm:h number 
is similar to a part of it:.elf. Henel' also no number 1,.'Tl'Rter than a0 

is finite aeeording to the new definition. Uut it i:-. l'8.'lJ to prove that 
every number less than a0 is finite with the new dl'finition ru; with the 
old. Hence the two definitions are equi\·alent. Thm, we may define 
finite numben; either 1u1 those that can he n•aC"hed by mathematical 
induction, starting from O aud inrreasing hy 1 at c·al·h ~tep, or a8 those 
of classes which are not similar to the part'i of thl'msdves obtained by 
taking away single tcn1111. These two definitions an• both frequently 
employed, and it is important to realize that either is ll com,cquem·e 
of the other. Both will orrupy us much hem1.fkr; for the pl'e81:'nt 
it is only intended, without controversy, to set forth the hare outlineR 
of t.he mathematical theory of finite and infinite, letl\'ing tht> details to 
he filk-d in during the course of the work. 
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CHAPTER XIV. 

THEOHY OF FINITE NUMBERS. 

120. HAVIXG now dl'arl_y distingui;.hPd the finite from the infinite, 
wt• <·an devote oursclve;, to the c-on~ideration of finite numbers. It. is 
customary, in thl" hl"st treatises 011 the element;. of Arithmdi<"*, not to 
define m1111bl'r or parti<"ular finite numbn-s, but to begin with certain 
axioms or primitive propositions, from which all the ordinary n•sults 
an• shown to follow. This method makes Arithmeti<" into an in­
tlPpl•mk-nt ;.tud_v, instead of regarding it, as is done in the present 
work, as llll'rel_y a dcvelopml"nt, without new axioms or indefinables, of a 
<'<•rtuin hrand1 of general Logie. For this reason, the metl1od in question 
Sl'l"llls to indil'ate a less dl"gn't' of ana]y;.is than that adopted here. I 
shall nc,·t•rt hdPss hegin b_v an <•xpo;.ition of the more u;.ual method, 
n.nd t.lwn pro<-ced t.o definitions and proofs of what are usually taken 
a.-. indl'finahll's and indemonstrables. For thi;, purpose, I shall take 
Pen.no';, exprn;ition in the Form11lairet, which is, so far as I know, 
the best from the point of view of a<Tumcy and rigour. This exposition 
has the inestinmblt• nlt'rit of showing that all Arithmetic can he de­
veloped from thn'e fundamental notions (in addition to those of general 
Logie) and five fundamental propositions con<·erning these notions. It 
proves also that., if the three notions he regarded as dett'rmincd by the 
fiw propositions, these fi\'e proposition:. are mutally independent. This 
is shown by finding, for ead1 set of four out of the five propositions, 
an interpretation which rmclerl'l the remaining proposition false. It 
therefore only rt•mn.ins, in order to eonned Peano's theory with that 
here adopted, to give a definition of the three fundamental notions and 
a demonstration of the five fundamental propositions. \Vhen once this 
has been al·cmnplished, we know with certainty that everything in the 
theory of finite integers follows. 

;,. 1':xcept Frege's arundgt'11Plze der ArilhmPlik (,Jena, 189:J). 
t J,~ 1001, Part JI and P. 1891!, § 20 ff'. P. 1901 differs from earlier editions in 

making "number is a class" a primitive proposition. I regard this as unnecessary, 
since it is implied by "O is a number." I therefore follow the earlier editions. 
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Peano's three indefinables are O, .finite intr.grr•, and auc«,YJtar <Jf 
It is assumed, as part of the idea of sm.'t.'t'IISion (though it would, 
I think, be better to state it as a separate axiom), that every number 
has one and only one su<.-cessor. (By succeasor is meant, of <-'OUJ"lie, 
immediate suc·cessor.) Peano's primitive proprn1itions an• then the 
following. (1) 0 is a number. (2) If a is a numlx•r, the successor of 
a is a number. (3) If two numhel"II have the same successor, the two 
numbel"II arc identil'al. (4) 0 is not the sut·ct•ssor of any number. 
(5) If II be a class to which belon1,,rs O and also the Slll'<-'CKsor of every 
number hl'lon1,,ri.ng to s, then every number belongi, to s. The last of 
thei,;e proposition:-. is the principle of mathematical indud.ion. 

121. The mutual indept•ndem·e of tht•se five propositions has been 
demonstrated by Peano and Padon· 11..'I followst. (1) Giving the usual 
meanings to O and ,'l'ltt'Cf,Y,far, hut denoting h_v number finite integers 
othl'r than 0, all the above proprn,itions exl·ept the first are true. 
(2) Giving the usual meanings to O and ,Yllc:rr.,.,or, but denoting by 
number only finite inll-hrers less than 10, or lt•ss than any other s11e<·ified 
finite integer, all the above propositions arc true except the sel'Ond. 
(3) A series which begins by an untiperiod and then become11 periodic 
(for example, the digits in a decimal which be<·omes n•ctm·ing aft.er a 
certain number of places) will satisfy alJ the above propositions ex<--ept 
the third. (4) A periodic series (sm·h as the hours on the cl<K·k) 
satisfies all except the fourth of the primitive propositiorn1. (5) Giving 
to sucusaor the meaning greater l,y 2, so that the sucl'essor of O is !, 
and of 2 i11 4, and so on, all the primitive propositions are satisfied 
except the fifth, which is not satisfied if' s be the cla....,., of even numbers 
including 0. Thus no one of the five primitive propositions can be 
deduced from the other four. 

122. Peano points out (loc. cit.) that other classes besides that of 
the finite integel'!:, satisfy the above five propositions. What he says 
is as follows: "There is an infinity of systems satisfying all the primitive 
propositions. They are all verified, e.g., by replacing number and O by 
number other than O and 1. All the systems which satisfy the primitive 
propositions have a one-one correspondence with the number11. Number 
is what is obtained from all these systems by ab11traction ; in other 
words, number is the system which has all the properties enunciated 
in the primitive propositions, and those only." This observation appears 
to me lacking in logical correctness. In the first place, the question 
arises : How are the various systems distinguished, which agree in satis­
fying the primitive propositions? How, for example, is the system 
beginning with 1 distinguished from that beginning with O ? To this 

* Throughout the rest of this chapter, I sh•ll use number as synonymous with 
jiniu integer. 

t F. 18119, p. 30. 

Downloaded from https://www.holybooks.com



126 Number [CHAP. XIV 

question two different answers may be given. We may say that O and 
1 are both primitive idea..,, or at least that O is so, and tliat therefore 
0 and 1 can be intrinsically distinguished, R.'i yellow and blue are dis­
tinguished. But if we take this view-which, by the way, will have to 
be extended to the other primitive ideas, number and succ·ession-we 
shall have to say that these three notions are what I call constants, 
and that there is no need of any such process of abstraction as Pea.no 
speaks of in the definition of number. In this method, 0, number, and 
succe11!-.ion appear, like other indefinables, as ideas which must be simply 
recohrnizecl. Their recognition yields what mathPmaticians rail the 
existence-theorem, i.e. it assures us that there really arc numbers. 
But this process leaves it doubtful whether numben. are «>gical constants 
or not, and therefore makes Arithmeti<", ac<'ording to the definition in 
Part I, Chapter 1, primafaL·ie a branch of Applied Mathematics. More­
over it is evidently not the process whid1 Pea.no has in mind. The 
other answer to the question c·orn,ists in regarding 0, number, and 
1mccession a.., a da.'ls of three ideas belonging to a certain class of trios 
defined by the five primitive propositions. It is very easy so to state 
the matter that the five primitive propositions become transfon11ed into 
the nominal definition of a certain class of trios. There are then no 
longer any indefinables or indemonstrable!' in our theory, which has 
become a pure piec·e of Logic. But 0, number and succession become 
variables, since they are only determined as one of the clas.'i of trios: 
moreover the existence-theorem now becomes doubtful, since we cannot 
know, except by the discovery of at least one actual trio of this class, 
that there are any such trios at all. One actual trio, however, would 
he a constant, and thus we require some method of giving constant 
values to 0, number, and succession. What we can show is that, if there 
is one such trio, there are an infinite number of them. Por by striking 
out the first term from any cla.<1s sRtisfying the conditions laid down 
concerning number, we always obtain a class which again satisfies the 
conditions in question. But even this statement, since the meaning of 
number is still in question, must be differently worded if circularity 
is to he avoidL-d. Moreover we must ask ourselves: Is any process of 
abstraction from all systems satisfying the five axioms, such as Pea.no 
contemplates, logically pos.<1ible? Every term of a class is the term it 
is, and satisfies some proposition which becomes false when another term 
of the class is sub.'!tituted. There is therefore no term of a class which 
ha.~ merely the properties defining the class and no others. What 
Peano's pJ'O(.-ess of abstraction really amounts to is the consideration of 
the class and variable members of it, to the exclusion of constant 
members. Por only a variable member of the class will have only the 
properties hy which the cla.'IS is defined. Thus Pea.no does not succeed 
in indicating any constant meaning for 0, number, and succes.<iion, nor 
in showing that any constant meaning is possible, since the existenc.-e-
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theorem is not proved. His only method, therefore, is to say that at 
least one such <-onstant meaning can be immediately perceived, but is 
not definable. This method is not logically unsound, but it is wholly 
different from the impos11ible abstraction which he suggests. And the 
proof of the mutual independence of hi11 five primitive propositions is 
only na-essary in order to show that the definition of the clas.'I of trios 
determined by them is not redundant. Redundancy is not a logical 
error, but merely a defect of what may be <"ailed style. My object, in 
the above account of cardinal numbers, ha.11 been to prove, from general 
Logic, that there is one <·orn,tant meaning which sati11fies the above five 
propositions, and that this <·<mstant meaning 11hould be <·ailed number, 
or rather finite l'ardinal number. And in this way, new indefinables 
and indemonstrables are wholly avoided; for when we have shown that 
the class of trios in c1uestion has at lce.11t one member, and when this 
member has been m1ed to define number, we easily 11how that the class 
of trios ha.., an infinite number of members, and we define the cl8811 
by means of the five properties enumerated in Peano's primitive proposi­
tions. For the comprehension of the l'onnl'<1:ion betw(.>ell Mathematics 
and Logil', this point is of very great importanl-e, and similar points will 
oc<·ur constantly throughout the present work. 

123. In order to bring out more clearly the difference between 
Peano's procedure and mine, I shall here repeat the definition of the 
class sati11fying his five primitive propositions, the definition of finite 
number, and the proof, in the c.&He of finite numbers, of his five primitive 
propositions. 

The da.'111 of classes satisfying his axioms is the same as the class of 
cla.'!Se!I whose cardinal number is a,,, i.e. the class of classes, according to 
my theory, which i8 a.i. It is most simply defined as follows: a0 is the 
class of cla.'ISC!I u each of which hi the domain of some one-one relation R 
(the relation of a term to its suecessor) which is such that there is at 
least one term which su<.'l.-eeds no other term, every term which succeeds 
has a successor, and " is contained in any clas.'I a which contains a term 
of u having no predecCllsors, and also contains the su<.-ct.'IIIIOr of every 
term of u which belongs to a. Thii. definition includes Peano's five 
primitive propositions and no more. Thus of every such class all the 
usual pmpositions in the arithmetic of finite numbers can be proved: 
addition, multiplication, fractions, etc. can be defined, and the whole of 
analysis can be developed, in so far as <.-omplex numbers are not involved. 
But in this whole development, the meaning of the entities and relations 
which occur is to a certain degree indeterminate, since the entities and 
the relation with which we start are variable members of a certain class. 
Moreover, in this whole development, nothing shows that there are such 
classes as the definition speaks of. 

In the logical theory of cardinals, we start from the opposite end. 
We first define a certain clasR of entities, and then show that this claas 
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of entities belongs to the class a. above defined. This is done as follows. 
(1) 0 is the cles11 of clW1ses whose only member is the null--cla.'1.'i. (2) A 
number is the class of all classes similar to any one of themselves. (3) I is 
the class of all classes which are not null and are such that, if ;r belongs to 
the dass, the class without .r is the null-clllS!I; or such that, if .r and y 
belong to the class, then.randy are identical. (4) Having shown that 
if two cl1L-.ses be similar, and a class of one term he added to each, the 
sums are similar, we define that, if n be a number, 11. + I is the number 
resulting from adding a unit to a class of n terms. (5) Finite numbers 
arc those belonging to every cla.,,;s II to which belongs 0, and to which 
11 + 1 belongs if n belongi.. This completes the definition of finite 
numbers. We tht'n ha,·e, a.'I regards the five propositions which Peano 
asimmes: (I) 0 is a number. (2) Meaning 11 + I by the slll'<'essor of n, 
if n be a number, t.hen n + l is a number. (3) If n + 1 = m + 1, then 
n = m. (4) If n be any number, 11 + 1 is different from 0. (5) Ifs be 
a cla.-.s, and O belongs to this cllll!s, and if when 11 belongs to it, n + 1 
belongs to it, then all finite numbers belong to it. Thus all the five 
esMential properties arc satisfied by the class of finite .numbers &.'I above 
defined. Hence the class of classes a0 has members, and the class .finite 
number i11 one definite member of a0 • There is, therefore, from the 
mathematical standpoint, no need whatever of new indefinables or 
indcmonstrablcs in the whole of Arithmetic and Analysis. 
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ADDITION OF TERMS AND ADDITION OF CLASSES. 

124. HAVING now briefly 11et forth the Jl}athematical theory of 
cardinal numbers, it is time to turn our attention to the philosophical 
questions raised by this theory. I shall begin hy a few preliminary 
remarks all to the distinl'tion between philosophy and mathematics, and 
a.'! to the function of philosophy in such a 1mbjt.'Cl a.s the foundations of 
mathematics. The following observations are not net~ssarily to be 
regarded as applil'able to other branches of philosophy, since they are 
derived specially from the consideration of the probll'ms of logic. 

The distinction of philosophy and mathematics is broadly one of 
point of view: mathematics is constructive and deductive, philosophy i11 
critical, and in a certain impersonal senHC controv,:rsial. Wherever we 
have dednctive reasoning, we have mathematics; but the principles of 
deduction, the recognition of indefinable entities, and the distinguishing 
between such entities, are the busine88 of philosophy. Philo11ophy is, in 
fact, mainly a que."ition of insight and pt>r<-eption. :Entities which are 
pen.-eived by the so-called sensei,, such as colours and sounds, are, for 
some reason, not commonly regarded as c·oming within the scope of 
philosophy, except as regards the more ab.11tract of their relations; but 
it seems highly doubtful whether any such exclusion can be maintained. 
In any case, however, since the present work is essentially unconcen1ed 
with seruiible objects, we may confine our remarks to entitie11 which are 
not regarded a.11 existing in space and time. Such entities, if we are to 
know anything about them, must be also in some sense perceived, and 
must be distinguished one from another ; their relations also must be 
in part immediately apprehended. A certain body of indefinable entities 
and indemonstrable propositions must form the starting-point for any 
mathematical reasoning ; and it is this starting-point that concerns the 
philosopher. When the philosopher's work has been perfectly accom­
plished, its results can be wholly embodied in premiS11eS from which 
deduction may proceed. Now it follows from the very nature of such 
inquiries that results may be disproved, but can never be proved. The 
disproof will consist in pointing out oontradictions and inconsistencies ; 
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but the absence of these can never amount to proof. all depends, in 
the end, upon immediate perception ; and philosophical argument, 
strictly speaking, coni~ists mainly of an endeavour to cause the reader to 
perceive what h8.II been perceived by the author. The argument, in 
short, is not of the nature of proof, but of exhortation. Thus the 
question of the present chapter : Is there any indefinable set of entities 
commonly called numben, and different from the set of entities above 
defined ? is an essentially philosophical question, to be settled by in­
spection rather than by accurate chains of reasoning. 

125. In the present chapter, we shall examine the question whether 
the above definition of cardinal numbers in any way presupposes some 
more fundamental sense of number. 'lnere are several ways in which 
this may be supposed to be the case. In the first pla(,-e, the individuals 
whic·h eompose classes seem to be each in some sense one, and it might 
be thought that a one-one relation could not be defined without in­
troducing the number 1. In the second place, it may very well be 
questioned whether a clas.'I which has only one term can be distinguished 
from that one term. And in the third pla(,-e, it may be held that the 
notion of claaa presupposes number in a 11ense different from that above 
defined : it may be maintained that cl&11Ses arise from the addition of 
individuals, as indicated by the word and, and that the logical addition 
of classes is subsequent to this addition of individuals. These questions 
demand a new inquiry into the meaning of one and of class, and here, 
I hope, we shall find ourselves aided by the theories set forth in Part I. 

As reganl11 the fact that any individual or term is in some sense one, 
this is of course undeniable. But it does not follow that the notion of 
one is presupposed when individuals are spoken of: it may be, on the 
contrary, that the notion of term or individual is the fundamental one, 
from which that of one is derived. This view was adopted in Part I, 
and there seems no reason to reject it. And as for one-one relations, 
they are defined by means of identity, without any mention of one, as 
follows : R is a one-one relation if, when :r and .x' have the relation R to 
y, and .r has the relation R to .'I and y', then :r and :r' are identical, and 
so are y and y'. It is true that here :r, .'I, :r, y' are each OM term, but 
this i11 not (it would seem) in any way presupposed in the definition. 
This di11poses (pending a new inquiry into the nature of classes) of the 
first of the above objections. 

The next question is as to the distindion between a class containing 
only one member, and the one member which it contains. If we could 
identify a class with its defining predicate or class-concept, no difficulty 
would arise on this point. When a certain predicate attaches to one 
and only one term, it is plain that that term is not identical with the 
predicate in question. But if two predicates attach to precisely the 
same terms, we should say that, although the predicates are different, 
the classes which they define are identical, i.e. there is only one class 
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which both define. If, for example, all featherless bipeds are men, and 
all men are featherless bipeds, the dl188ell men and featlierlea11 bipeda are 
identical, though man differs from ftatkerk11a IJiprd. This shows that a 
clas.'I cannot be identified with its class-concept or defining predicate. 
There might seem to be nothing left except the &l'tual lt.>rms, so that 
when there is only one term, that term would have to be identical with 
the class. Yet for many formal reasons this view cannot give the 
meaning of the symbols which stand for cln..'llles in symbolic logic. For 
example, l'onsider the ela!iti of numbers which, added to S, give 5. This 
is a cla.'i.'I containing no terms exeept the number 2. But we can say 
that 2 is a member of this class, i.e. it has to the d11.~'I that peculiar 
indefinable relation whic·h terms have to the dassl.'!I they belong to. 
'l'his Ket.>ms to indicn.te that the dass is different from the one term. 
'fhe point is a prominent one in Pcano's Symbolic Logic, and ii; con­
nected with his distinction between the relation of an individual to its 
dass and the relation of a class to another in which it is contained. 
Thus the class of numbers which, added to 8, give 5, i11 contained in the 
class of numlx!rs, but is not a number; whereas 2 is a number, but is 
not a class contained in the class of numbers. To identify the two 
relations whieh Pee.no distinguishes is to cause havoc in the theory of 
infinity, and to destroy the formal pn.-cision of many arguments and 
definitions. It seems, in fact, indubitable that Peano's distinction is 
just, and that some way must he found of discriminating a term from 
a cla.'ls containing that term only. 

126. In order to decide this point, it is necessary to pass to our 
third difficulty, and reconsider the notion of l'laaa itself. 'l'his notion 
appears to Ix! connected with the notion of de1u,ting, explained in Part I, 
Chapter v. We there pointed out five ways of denoting, one of which 
we l'alled the numerical t-o,yunction. This was the kind indicated by all. 
ThiM kind of conjunction appears to be that which is relevant in the 
case of clllllse.'I. :For example, man being the cl1111S-concept, all men will 
be the da.ss. But it will not be all men quii concept which will be the 
clal'l.11, but what this concept denotes, i.e. certain terms combined in the 
particular way indicated by all. The way of combination is esKeDtial, 
since a11y man or 110111£ man is plainly not the cl8.88, though either denotes 
combinations of precisely the 11&me terms. It might seem as though, if 
we identify a class with the numerical conjunction of its terms, we must 
deny the distinction of a tem1 from a class whose only member is that 
term. But we found in Chapter x that a class must be always an object 
of a different logical type from its members, a.nd that, in order to avoid 
the proposition XEX, this doctrine must be extended even to classes 
which have only one member. How far this forbids us to identify 
classes with numerical conjunctions, I do not profess to decide ; in a.ny 
cue, the distinction betwE.-en a term and the class whose only member 
it is must be made, and yet classes must be taken extensionally to the 
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degree involved in their being determinate when their members are 
given. Such clas.~e11 al'f' called by :Fre!,,re Werthverlii,ife; and cardinal 
numbers are to be regarded as classes in this sense. 

127. There is still, however, a certain difficulty, which is this: a 
dass 11eema to be not many terms, but to be itself a single term, even 
when many termi; are members of the class. This difficulty would seem 
to indicate that the dass cannot be identified with all its membel's, but 
is rather to be regarded as the whole which they compose. In order, 
however, to state the difficulty in an unobjectionable manner, we must 
exclude unity and plurality from the statement of it, since these notions 
were to be defined by means of the notion of clas.,. And here it may be 
well to dear up a point which is likely to occur to the reader. Is the 
notion of one presupposed every time we speak of a term? A term, 
it may be said, means 011e term, and thus no statement can be made 
concerning a term without presupposing one. In some sense of ane, this 
propmiition seems indubitable. Whatever is, is one: being and one, as 
Leibniz remarks, are convertible terms*. It is difficult to be sure how 
far such statements are merely b'Tammatical. :For although whatever 
is, is one, yet it is equally tnw that what.ever are, are many. But the 
truth st.>ems to be that the kind of object which is a class, i.e. the kind 
of object denoted by all men, or by any concept of a class, is not one 
except where the class has only one term, and must not be made a single 
logical subject. There is, as we said in Part I, Chapter v1, in simple cases an 
associated single term which is the class as a whole; but this is sometimes 
absent, and is in any case not identical with the class as many. But in 
this view there is not a contradiction, as in the theory that verbs and 
adjectives cannot be made subjects; for assertions can be made about 
classes as many, but the subject of such assertions is many, not one only 
as in other assertions. "Brown and Jones are two of Miss Smith's 
suitors" is an assertion about the class "Brown and Jones," but not 
about this clas.<i considered as a single term. Thus one-ness belongs, in 
this view, to a certain type of logical subjects, but classes which are not 
one. may yet have assertions made about them. Hence we conclude that 
one-ness is implied, but not presupposed, in statements about a term, 
and " a term " is to be regarded as an indefinable. 

128. It seems necessary, however, to make a distinction as regards 
the use of one. The sense in which every object is one, which is 
apparently involved in speaking of an object, is, as Frege urgest, a very 
shadowy sense, since it is applicable to everything alike. But the sense 
in which a class may be said to have one member is quite precise. 
A clas..~ u has one member when u is not null, and "x and y are u's" 
implies "x is identical with y." Here the one-ness is a property of the 

* Ed. Gerhardt, 11, p. 300. 
t Grundlagen der Arithmetik, Breelau, 1884, p. 40. 
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class, which may therefore he called a unit-class. 'l'he :r which is its 
only member may be itself a class of many terms, and this shows that 
the sense of cn,e involved in one term or a term is not relevant to 
Arithmetic, for many terms &'I such may be a single member of a class 
of d&!l!les. One, therefore, is not to be asserted of terms, but of cl&MSeS 
having one member in the above-definecl sense; i.e. "u is one," or better 
"u is a unit" means "u is not null, and 'x and y are u's' implies' :r 
and y are identical'." The member of zt, in thi11 ca.'IC, will itself be none 
or one or many if u is a class of classes ; but if u is a cl&!lS of terms, 
the member of u will be neither none nor one nor many, but simply 
a term. 

129. The commonly rec..-eived view, as l"t'gards finite numben,, is that 
they result from counting, or, as tiome philosophers would p1-efer to 
say, from synthesizing. Unfortunately, those who hold thi11 view have 
not analyzed the notion of counting : if they had done 110, they would 
have seen that it is very complex, and presupposes the very numbers 
which it is supposed to b,cnerate. 

The pro<.·ess of l'Ounting has, of course, a psychological u.-.pcct, but 
this is quite irrelevant to the theory of Arithmetic. What I wish now 
to point. out is the logical process involved in the act of counting, which 
is a.-. follows. When we say one, two, three, etc., we are nece11sarily 
com,idcring some one-one relation which holds between the numbers used 
in counting and the objects counted. What is meant by the "one, two, 
three" is that the objects indimted by these numbers are their correlates 
with respect to the relation whil·h we have in mind. (This relation, by 
the w1ty, is usually extremely complex, and is apt to invoh-e a reference 
to our state of mind at the moment.) Thus we correlate a class of objects 
with a cla.'ls of numbers; and the class of numbers consist.'! of all the 
numbers from 1 up to some number n. The only immediate inference to be 
drawn from this correlation is, that the number of objects is the same as 
the number of number& from 1 up ton. A further pl'Oeetls is n.,quired to 
show that this number of numbers is n, which is only true, as a matter 
of fact, when n is finite, or, in a certain wider sense, when n i11 «. (the 
smallest of infinite numbers). Moreover the process of counting gives us 
no indication as to what the numbers a1-e, as to why they form a series, 
or as to how it is to he proved (in the cases where it i11 true) that there 
are n numbers from 1 up to n. Hence counting is irrelevant in the 
foundations of Arithmetic; and with this conclusion, it may be dismissed 
until we come to order and ordinal numbers. 

130. Let us return to the notion of the numerical conjunction. It 
is plain that it is of such objects as ".A and B;' ".A and B and C,'" 
that numbers other than one are to be asserted. We enmined such 
objects, in Pa.rt I, in relation to classes, with which we found them to 
be identical. Now we must investigate their relation to numbers and 
plurality. 
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The notion to be now examined is the notion of a numerical 
conjunction or, more Hhortly, a collection. This is not to be identified, 
to begin with, with the notion of a claaa, but is to receive a new and 
independent treatment. By a collection I mean what is conveyed by 
".A and B" or ".A and B and C,"' or any other enumeration of definite 
terms. The collection is defined by the actual mention of the terms, 
and the terms are connected by and. It would seem that and represents 
a fundamental way of combining terms, and it might be urged that 
just this way of combination is essential if anything is to result of which 
a number other than 1 is to be asserted. Collections do not presuppose 
numbel'!l, since they result simply from the terms together with and: 
they could only pre,mppoae numbers in the particular (•ase where the 
terms of the collection them!!Clves presupposed numbers. There is a 
grammatical difficulty which, since no method exists of avoiding it, 
mm1t be pointed out and allowed for. A collection, grammatically, is 
one, whereas .A and B, or .A and B and C, are essentially many. The 
strict meaning of collection is the whole composed of many, but since a 
word is needed to denote the many themselves, I choose to use the word 
collertion in this sense, so that a collection, according to the usage here 
adopted, is many and not one. 

As regards what is meant by the combination indicated by and, it 
gives what we called before the numerical conjum-tion. That is A and 
B i11 what ii, denoted by the concept of a dai.s of which .A aud B are 
the only terms, and is pre<.·isely .A. and B denoted in the way which is 
indicated by all. We may say, if u be the cla.,;s-concept rorresponding 
to a da.'18 of which .A. and B are the only terms, that "all 1t's" is a 
cone,-cpt which denotes the termi, .A., B combined in a t-ertain way, and 
.A and B are those terms combined in precisely tluit way. Thus .A. and 
B appears indistinguishable from the da.~s, though distinguishable from 
the clas1;i-c•o11cept and from the concept of the class. Hence if u be a 
clai.s of more than one term, it seems neces!l8.ry to hold that u is not 
one, but many, sin<'l' u is dii;tinguished both from the class-concept and 
from the whole composed of the terms of u•. Thus we are brought back 
to the dependenL'l' of numbers upon dasses ; and where it is not said 
that the clas11es in question are finite, it is pral't.ically necessary to begin 
with class-concepts and the theory of denoting, not with the theory of 
and which ha.<1 ,im~t been given. The th<.'<>ry of and applies praetil'ally 
only to finite numbers, and gives to finite numbers a position which is 
different, at le&Mt psychologically, from that of infinite numbers. There 

* A conclusive reason 81f8imrt identifying a claM with the whole composed of it.s 
term& is, that one of these terms may be the class itself, as in the ca.,e "cl888 is a 
cl111111," or rather •' classes are one among cluaes." 111e logical type of the cu cla• 
ia of an infinite order, and therefore the uaual obja-tion to ".z,.11" does not apply in 
thia eue. 
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are, in short, two ways of defining particular finite classes, but there is 
only one practicable way of defining partiC"ular infinite classes, namely 
by intension. It is largely the habit of considering cl1111ses primarily 
from the side of extension which has hitherto stood in the way of e. 
correct logical theory of infinity. 

131. Addition, it should be carefully observl'<l, is not primarily e. 
method of forming numbers, but of forming classes or collections. If 
we add B to A, we do not obtain the number 2, but we obtain A and B~ 
which is a collection of two terms, or a C"ouple. And a couple is defined 
as follows : u is a couple if u has terms, and if, if .r be a term of u, there 
is a term of u difft:'rent from .x, hut if .x, y be different terms of u, and z 
differs from ;r and from ;,J, then every class to whic·h z bdo111,,I'!! differs 
from u. In this definition, only diversity o<·curs, togetht:"r with the 
notion of a class having terms. It might no doubt be objected that we 
have to take just two terms .x, .Y in the above definition: hut as a 
matter of fad any finite number can be define-cl hy indul'tion without 
introducing more than one term. For, if 11 has been defined, a claKs it 

has n + 1 terms when, if .x be a term of u, the numher of terms of u 
which differ from .r is n. And the notion of the arithmetical ~um n + 1 
is obtained from that of the logical sum of a <'lass of n terms and a class 
of one term. \\'hen Wt' say I+ 1 = 2, it is not possihlP that we should 
mean I and I, sinee there is only one 1 : if wt• take I as an individual, 
1 and 1 is nonsense, while if we ·take it as n class, the rule of Symbolic 
Logic applies, according to which 1 and 1 is 1. Thm, in the corresponding 
logical proposition, we have on the left-hand side terms of which 1 can 
be a.~serted, and on the right-hand side we have a couple. That is, 
1 +I= 2 means "one term and one term are two terms,"' or, stating the 
proposition in terms of variables, " if u has one term and t' has one 
term, and u differs from t1, their logic:a.1 sum has two ter,m,."' It is to be 
obserwd that on the left-hand side we have a numerical <'onjunction of 
propositions, while on the right-hand side we have a proposition con­
cerning a numerical conjunction of terms. But the tnie premiss, in the 
above proposition, is not the conjunction of the three propositions, hut 
their logical product. This point, however, ha.'l little importance in the 
present connection. 

132. Thus the only point which remains is this: Does the notion 
of a term presuppose the notion of 1 ? For we have seen that all 
numbers except O involve in their definitions the notion of a term, and 
if this in turn involves 1, the definition of 1 become!! circ·ular, ancl 1 will 
have to be allowed to he indefinable. This objection to our procedure 
is answered by the doctrine of § 128, that a term is not one in the 11Cnse 
which is relevant to Arithmetic, or in the sense whil'h is opposed to 
many. The notion of any term is a logical indefinable, presuppoSL'<l in 
formal truth and in the whole theory of the variable ; but this notion is 
that of the variable conjunction or' terms, which in no way involves the 
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number 1. There i11 therefore nothing circular in defining the number 1 
by means of the notion of a tenrt or of any term. 

To sum up: Numbers are clai;ses of classes, namely of all classes 
similar to a given clai;s. Here cl&8Se8 have to be understood in the 
sense of numerical conjunctions in the case of classes having many 
tt•rms; but a class may have no terms, and a class of one term is distinct 
from that term, so that a class is not simply the sum of its terms. Only 
classes have numbers; of what is commonly called one object, it is not 
true, at least in the sem,e required, to say that it is one, as appears from 
the fact that the object may be a clas .. 11 of many terms. "One object,, 
seems to mean merely "a logical subject in some proposition." Jl'inite 
numbers are not to be regal'(fod a.-; generated by e,-ounting, which on the 
<'ontrn.ry presuppost!S them ; and addition is primarily logical addition, 
first of propositions, then of cla.'ises, from whil'h latter arithmetical 
addition is derivative. The a.-;sertion of numhefll depends upon the fact 
that a da.'is of many terms can be a logi<·al suhjed without being 
arithmetiro.lly one. Thus it appeared that no philosophical argument 
could oVl'rthrow the mathematiral theory of cardinal numbers Het forth 
in Chapters x1 to xiv. · 
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CHAPTER XVI. 

WHOLE AND PAUT. 

133. Pou the compreht'llsion of analyi.i11, it is lll'C't'ss1u-y to invc.>stigate 
the not.ion of whole and part, a notion which hru, lx.>cn wrapped in 
obscurity-though not without ce11aiu more or less valid logic·al 
reasons-by the writers who may be roughly t·allt-d Hegelian. In the 
present chapter I shall do my best to set forth 1t stmightforward and 
non-my&tical theory of thl' subject, leaving c·ontro\'cffly as far a.'I possible 
on one side. It may he well to point out, to begin with, that I shall 
use the word rd1ole as strictly correlative to parl, so that nothing will 
be called a whole unless it ha.-. parts. Simple terms, such 8.'I points, 
im,tants, colon)"!,, or the fundamental concepts of logic·, will not be called 
wholes. 

Tenns which are not cl.asses may he, R/1 we KRW in the preceding 
chapter, of two kinds. The 6nit kind are simple : these may be 
characterized, though not definoo, by the fact that the propositions 
asserting the being of such tenns have no presuppositions. The second 
kind of terms that are not rlasses, on the other hand, are complex, and 
in their ca.11e, their being presupposes the being of certain other ter1m1. 
Whatever is not a class is called a unit, and thus unib are either simple 
or complex. A complex unit is a whok; its parts a.re other units, 
whether simple or complex, which arc presupposed in it. Thi1, sugge11ts 
the possibility of' defining whole and part by means of logical priority, 
a suggestion which, though it must be ultimately rejected, it will be 
necesMry to examine at length. 

134. Where\·er we have a one-sided formal implication, it may be 
urged, if the two propositional functions involved are obtainable one from 
the other by the variation of a single constituent, then what is implied 
is simpler than what implies it. Thus "Socrates is a man" implies 
"Socrates i11 a mortal," but the latter proposition does not imply the 
former: also the latter proposition is simpler than the former, since 
man is a cont-ept of which mortoJ forms part. Again, if we take 
a proposition asserting a relation of two entities ..4 and B, this 
proposition implies the being of ..4 and the being of B, and the being of 

Downloaded from https://www.holybooks.com



188 Nu111her [CHAP. XVI 

the relation, none of which implies the proposition, and each of which is 
simpler than the proposition. There will only be equal complexity­
according to the theory that intension and extension vary inversely as 
one another-in cases of mutual implication, such &.'i ".A is greater 
than B" and "Bis less than .A." Thus we might be tempted to 11et up 
the following definition : A is said to be part of B when B is implies 
A iR, but A is doo,i not imply B i8. If this definition could be main­
tained, whole and part would not be a new indefinable, but would be 
derivative from logical priority. There are, however, reasons why such 
an opinion is untenable. 

The first objection is, that 1ogical priority is not a Kimple relation : 
implication is simple, but lobrical priority of A to B requires not only 
"B implies A," but also "A does not imply B." ( For convenience, 
I shall say that A implies B when A is implies B i.,.) This state of 
things, it is true, is realized when .A is part of B ; but it seems necessary 
to regard the relation of whole to part as something simple, which must 
be different from any possible relation of' one whole to another whid1 is 
not part of it. This would not result from the above definition. 1''or 
example, ".A is greater and better than B" implies "Bis less than .A," 
but the converse implication does not hold : yet the latter proposition is 
not part of the former•. 

Another objection is derived from sm·h l'&.'leS 11.S redness and colour. 
These two c·onl't'pb, appear to be equally simple: there is no 11pccific·ation, 
other and simpler than redness itself, which can be added to colour to 
produc·e rcdnes.'i, in the way in which spec·ifications will him 1nortal into 
-man. Hence A u, red is no more complex than .A is cowured, although 
there is here 11. one-sidt.-d implication. Iledness, in fact, appeal'!I to be 
(when takl'll to mean one particular shade) a simple concept, whic·h, 
although it implies c·olour, does not c·ontain colour as a constituent. 
The in\'en;e relation of extension and intension, therefore, docs not hold 
in all l'a.~'!I. }<'or these reasons, we must reject, in spite of their \'ery 
do11e connection, the attempt to define whole and part by means of 
implil'lttion. 

135. Having faik-d to define wholes by logical priority, we shall 
not, I think, find it pos11ible to define them at all. The relation of 
whole and pait is, it would seem, an indefinable and ultimate relation, 
or rather, it is t11.•veral relations, often l'Onfoundcd, of whi<'h one at lea.-it 
is indefinable. The relation of a pa1t to a whole must be differently 
dii.c•ussed ac'Cording to the nature both of the whole and of the parts. 
Let us begin with the simpleiit case, and proc.-eed gradually to thosL· that 
are more elaborate. 

(1) Whenever we have any collection of many tenus, in the sense 
explai1u . .J in the preceding chapter, there the term11, prO\·idt.-d there is 

* See Part IV, Chap. xxvu. 
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some non-quadratic propositional function which they all Mtis~y, together 
form a whole. In the preceding t·hapter we regarded the clasR as formed by 
all the terms, but usage seenu1 to show no reason why the dass should not 
equally be regarded WI the whole compost.-d of all the terms in those cases 
where there is such a whole. 1.11e first is the class as many, the !ll"(.'Ond 
the class as one. Each of the terms then has to the whole a c·ertain 
indefinable relation•, whic·h is one meaning of the rt'lation of whole and 
part. The whole is, in this case, a whole of n. partic•ular kind, which 
I shall call an aggregate : it differs from wholes of other kinds by the 
fact that it is definite as soon as its constituents arc known. 

(2) But the above relation holds only betwt.-en the aggregate and 
the single terms of the colle,·tion composing tlw aggrt•g11.te: the relation 
to our aggregate of aggregates containing soml' hut not all the terms 
of our aggregate, is a difft-rent relation, though Riso one whil-h would be 
commonly callt>d a rt'lation of part to whole. For c•xampk·, the relation 
of the Greek nation to the human race is difft•rent from th11.t of Socrates 
to the human race ; and the relation of the whole ot' the primes to the 
whole of the numbeni is different. from U111.t of 2 to the whole of the 
numbers. This most vital distinction is due to Peanut. The relation 
of a. subordinate aggregate to one in whi<~h it is rontaincd c,m be defint>d, 
as was explained in Part I, by means of implication and thl' first kind of 
relation of part to whole. If ,,, z• he two aggrcbrat.es, 11.nd for every 
value of :r "x is a u" implies ".r is a z•," then, provided the con\·erse 
implication does not hold, 11 is n proper part (in the second sem1e) of v. 
This sense of whole and part., therefore, is derivative and definable. 

(3) Uut there is another kincl of whole, which m11.y be called a unity. 
Such a whole is always a proposition, though it ll<..'t->d not he an OJtaerted 
proprn;ition. 1-'or ex11.mpll·, "A differs from B," or "A's difference from 
B," is a complex of which the part'! are A and B and cliflerence; but 
this sense of whole and part is different from the previous sensc1:1, since 
"A differs from B" is not an 11.ggrcgate, ancl ha.'! no parti. at all in the 
first two t1Cnses of parts. It is parts in this third 11ense th1\t a.re chiefly 
considered by philosophers, while the fin;t two sensei. a.re thoKC usually 
relevant in symholic logic and mathematics. This third senMC of part is 
the 11Cnse which correspond,, to analysis : it appeal'!I to he indefinable, 
like the first sense--i.e., I know no way of defining it. It must be held 
that the three senSC!I are always to he kept distinct: i.e., if A is part 
of B in one sense, while B is part of C in another, it mlU\t not be 
inferred (in general) that .A is part of C in any of the three senseH. But 
we may make a fourth general senire, in which anything which is part in 

• Which may, if we choose, he taken as Peano'e •· 1'be ohjedion to this 
meaning for • is that not e\'ery propositional function definlll! a whole (If the kind 
re11uired. lne whole diffen from the cl&III! as mauy by being of the ll&ll1e type as its 
terms. 

t Cf. e.g. I'. 1901, § 1, Prop. -'· l, note (p. 12). 
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any sense, or pa.rt in one sense of part in another, is to be called a. pa.rt. 
This sense, however, has seldom, if ever, any utility in a.ctua.l discussion. 

136. The difference between the kinds of wholes is important, 
and illustrates a fundamental point in Logic. I shall therefore rept.'11.t 
it in other words. Any collection whatever, if defined by a. non-<1ua.dratic 
propositional function, though a.s such it is many, yet composes a whole, 
whose parts are the terms of the collection or any whole composed of some 
of the terms of the collection. It i11 highly important to realize the differ­
ence between a whole and all its parts, even in this case where the difference 
is a. minimum. The word coUertwn, being singular, applies more strictly 
to the whole than to all the parts; but convenienc.-e of expression ha.s led 
me to neglect b'Ta.mma.r, and speak of all the terms as the collection. 
The whole formed of the tenns of the collection I ea.II an aggregate. 
Such a whole is completely spe<"ified when all its simple constituents are 
specified; its parts have no direct connection inter ae, but only the 
indirect connection involved in being parts of one and the sa.me whole. 
But other wholes occur, which contain relations or what mav be called 
predicates, not oc'Curring simply as terms in a. collection, but ~ relating 
or qualifying. Such wholes are always propositions. These are not 
completely spec·ified when their parts are all known. Take, as a simple 
instance, the proposition ".A differs from B;" where A and B are simple 
tem1s. The simple parts of this whole are .A and B and difference; but 
the enumeration of these three doe., not specify the whole, since there 
are two other wholes composed of the same parts, namely the aggregate 
formed of .A and B and difference, and the proposition "B differs 
from .A • ., In the former case, although the whole was different from 
all its parts, yet it was completely specified by speci(ving its parts; but 
in the present c,ase, not only is the whole different, but it is not even 
specified by specifying its parts. We cannot explain this fact by saying 
that the parts stand in certain relations whic·h are omitted in the 
analysis; for in the above case of ".A differs f'rom B,"' the relation was 
incl~ded in the analysis. The fact seems to be that a. relation is one 
thing when it relates, and another when it is merely enumerated as a. 
term in a collection. There are certain fundamental difficulties in this 
view, which however I leave aside as irrelevant to our present purpose•. 

Similar remarks apply to .A is, which is a whole composed of .A and 
Being, but is different from the whole formed of the collection .A and 
Being. .A is <me raises the same point, and so does .A and B are two. 
Indeed all propositions raise this point, and we may di&tinguish them 
among complex terms by the fact that they raise it. 

Thus we see that there are two very different cl8.'llleS of wholes, of 
which the first will be called aggrrgates, while the second will be called 
unities. ( Unit is a word having a quite different application, 11ince what-

* See Part I, Chap. 1v, esp. § 64. 
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ever is a class which is not null, and is such that, if x and y be members 
of it, x and y are identical, i11 a unit.) Each class of wholes consists of 
terms not simply equivalent to all their parts; but in the case of unities, 
the whole is not even specified b)· its parts. For example, the parts .A, 
greater than, R, may compose simply an a.gbrregate, or either of the 
propositions "A is greater than B," "R is greater than .A." Unities 
thm, involve problems from which ag1,,rregates are fn~. As aggregates 
are more speeially relevant to mathematics than unities, I shall in 
future generally confine myself to the former. 

137. It is important to realize that a whole is a new single term, 
distinct from each of its parts and from all of them: it is one, not many•, 
and is related to the parts, but has a being distinet from theirs. The 
reader may perhaps be inclined to· doubt whether thl'TI.' is any need of 
wholes other than unities; but the fo11owing reasons seem to make 
aggregates logically unavoidable. (I) Wl1 speak of one colll'ction, one 
manifold, etc., and it would seem that in all these cases there really is 
something that is a single term. (2) The theory of fractions, as we shall 
shortly see, appears to depend partly llpon aggregates. (3) We shall find 
it necessary, in the theory of' extensive quantity, to assume that aggregates, 
even when they are infinite, have what may be called m~rnitude of 
divisibility, and that two infinite aggregates may have the same number 
of terms without having the same magnitude of divisibility: this theory, 
we shall find, is indispensable in metrical geometry. For these re&!lons, 
it would seem, the aggregate must be admitted as an entity distinct 
from all it:, constituents, and having to each of them a certain ultimate 
and indefinable relation. 

138. I have already touched on a very important logical doctrine, 
which the theory of whole and part brings into prominence-I mean the 
doctrine that analysis is falsification. Whatever can be analyzed is a 
whole, and we have already seen that analysis of wholes is in some 
measure falsification. But it is important to realize the very narrow 
limits of this doctrine. We cannot conclude that the parts of a whole 
are not really its parts, nor that the parl'i are not presupposed in the 
whole in a sense in which the whole is not presupposed in the parts, nor 
yet that the logically prior is not usually simpler than the logically 
subsequent. In short, though analysis gives llil the truth, and nothing 
but the truth, yet it can never give us the whole truth. This is the 
only sense in which the doctrine is to be accepted. In any wider senKe, 
it becomes merely a cloak for laziness, by giving an excuse to those who 
dislike the labour of analysis. 

139. It is to be observed that what we called classes as one may 
always, except where they contain one term or uone, or are defined by 
quadratic propositional functions, be interpreted as aggregates. The 

* I.e. it is of the same logical type ae it.& simple parts. 
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logical product of two classes as one will be the common p_art (in the 
second of our three senses) of the two aggregates, and their sum will 
be the aggregate which is identical with or part of (again in the second 
.sense) any aggregate of which the two given aggregates are parts, hut is 
neither identical with nor part of any other aggregate•. The relation 
of whole and part, in the second of our three senses, is transitive and 
asymmetrical, but is distinguished from other such relations by the fact 
of allowing logical addition and multiplication. It is this peculiarity 
which forms the basis of the Logical Calculm; as developed by writers 
previous to Peano and Frege (including Schnider)+. But wherever infinite 
whole11 are concerned it is necessary, and in many other cases it is 
practil'ally unavoidable, to begin with a dass-concept or predicate or 
propositional function, and obtain the aggregate from this. Thus the 
theory of whole and part is less fundamental logica11y than that of 
predicates or dass-concepts or propositional functions ; and it is for 
this reason that the consideration of it has lx.•tm postponed to so late 
a stage. 

* Cf. Peano, F. 1901, § 2, Prop. I ·O (p. 19). 
t See e.g. his Algel,ra der Logik, Vol. 1 (Leipzig, 18!10}. 
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CHAPTER XVII. 

INFINITE WHOLES. 

140. Ix the pre1-1ent chapter the special difficulties of infinity are 
not to he mnsidered: all thelil' are postponed to Part V. My object 
now is to consider two questions: (1) Are there any infinite wholes? 
(2) If so, must an infinite whole which contains parts in the sel'Ond of 
our three senses be an aggregate of parts in the fin;t sense ? In order to 
avoid the reference to the fil'llt, second and third senses, I propose hem.,-e­
forward to use the following phraseology: A part in the finit sense is to 
be calk>d a term of the whole•; a part in the sef.'Ond sense is to be called 
a part simply ; and a part in the third sense will be called a c011J1tit1,ent 
of the whole. Thus terms and parts belong to aggregates, while con­
stituenbi belong to unities. The l'onsideration of aggregates and unities, 
where infinity is l'Onremed, must he separately ~nducted. I shall begin 
with aggregates. 

An infinite aggregate is an aggregate corresponding to an infinite 
class, i.e. an aggregate which has an infinite number of terms. Sm~h 
aggregak'S are defined by the fac:-t that they contain parts which have 
as many terms as themselves. Our first question i11 : Are there any such 
aggregates ? 

Infinite aggregates are often denied. Even Leibniz, favourable as 
he was to the actual infinite, maintained that, where infinite classes are 
concerned, it is possible to make valid statements about any term of the 
cl888, but not about all the terms, nor yet about the whole whieh (as he 
would say) they do Mt composet. Kant, again, has been much criticised 
for maintaining that space is an infinite gh·en whole. Many maintain 
that every aggregate must have a finite number of tem1s, and that 
where this condition is not fulfilled there is no true whole. But I do 
not believe that this view can be sucressfully defended. Among those 
who deny that space is a given whole, not a few would admit that what 
they are pleased to call a finite space may be a given whole, for instance, 

" A part in this aenae will all!O be sometimes called a Bimple or indimibk part. 
t Cf. Phil. Werlce, ed. Gerhardt, 11, p. 311>; alBO 1, p. 338, v, pp. 144---5. 
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the space in a room, a box, a bag, or a book-case. But such a space is 
only finite in a psychological sense, i.e. in the sense that we can take it 
in at a glance : it is not finite in the sense that it is an aggregate of a 
flnite number of terms, nor yet a unity of a finite number of <-'Onstituents. 
Thus to admit that such a space can be a whole is to admit that there 
are wholes which are not finite. (This does not follow, it should be 
observed, from the admission of material objects apparently occupying 
finite spaces, for it is always possible to hold that such objects, though 
apparently continuous, consist really of a large but finite number of 
material points.) With respect to time, the same argument holds: to 
say, for example, that a certain length of time elapses between sunrise 
and sunset, i8 to admit an infinite whole, or at least a whole which is not 
finite. It is customary with philosophers to deny the reality of space 
and time, and to deny also that, if they were real, they would be 
aggregates. I shall endeavour to show, in Part VI, that these denials 
are supported by a faulty lobric, and by the now resolved difficulties of 
infinity. Since science and common sense join in the opposite view, it 
will therefore he ac<--epted ; and thus, since no argument a priori can 
now he adduced against infinite aggregates, we derive from space and 
time an argument in their favour. 

Again, the natural numbers, or the fractions between O and 1, or the 
sum-total of all colours, are infinite, and seem to be true aggregates : 
the position that, although true propositions can be made about an,'lj 
number, yet there are no true propositions about all numbers, could be 
supportt--d formerly, as Leibniz supported it, by the supposed contra­
dictions of infinity, but ha.<i become, since Cantor's solution of these 
contradictions, a wholly unnecessary paradox. And where a collection 
can be defined by a non-quadratic propositional function, this must be 
held, I think, to imply that there is a genuine aggregate composed 
of the terms of the collection. It may be observed also that, if there 
were no infinite wholes, the word Universe would be wholly destitute of 
meaning. 

141. We must, then, admit infinite aggregates. It remains to ask 
a more difficult question, namely : Are we to admit infinite unities? 
This question may also be stated in the form: Are there any 
infinitely complex propositions? This question is one of great logical 
importance, and we shall require much care both in stating and in 
discussing it. 

The first point is to be clear as to the meaning of an infinite unity. 
A unity will be infinite when the aggregate of all its constituents is 
infinite, but this scarcely constitutes the meaning of an infinite unity. 
In order to obtain the meaning, we must introduce the notion of a 
simple constituent. We may observe, to begin with, that a constituent 
of a constituent is a constituent of the unity, i.e. this form of the 
relation of pa.rt to· whole, like the second, but unlike the flrst form, is 
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transitive. A simple constituent may now be defined as a constituent 
which itself has no constituents. We may assume, in onler to eliminate 
the question concerning aggregates, that ·no constituent. of our unity is 
to be an aggregate, or, if there he a constituent which is an aggregate, 
then this constituent is to be taken as simple. (This ,·iew of an aggre­
gate is rendered legitimate by the fact that an aggregate is a single term, 
and does not have that kind of complexity which belongs to propositions.) 
With this the definition of a simple l'Onstitnent is completed. 

\Ve may now define an infinite unity as follows: A unity is finite 
when, and only when, the aggregate of its simple l'onstitucnts is finite. 
In all other cases a unity is said to be infinite. \Ve have to inquire 
whether there are any such unities•. 

If a unity is infinite, it is possible to find a constituent unity, which 
again contains a constituent unity, and so on without end. If there be 
any unities of this nature, two eases are prirna.facie possible. (1) There 
may he simple constituents of our unity, hut these must be infinite in 
number. (2) There may be no simple C'Onstituents 11t all, but all 
com1tituents, without exception, may be complex; or, to take a slightly 
more complicated case, it may huppen t.hut, although there are some 
simple constitucnl.,, yet these and the unities composed of them do not 
constitute all the constituents of the origim1l unity. A unity of either 
of these two kinds will be called infinite. The two kinds, though 
distinct, may be c,-onsidcred together. 

An infinite unity will be an infinitely complt•x proposition: it will 
not be analyzahlc in any way into 11 finite number of constituents. It 
thus differs radically from assertions about infinite aggregates. For 
example, the proposition "any number ha."l a succei,sor" i11 composL-d of 
a finite number of constituents: the number of concepts entering into it 
can be enumerated, and in addition to tlwse there is an infinite aggregate 
of terms denoted in the way indicated by an,1J, which counts as one 
constituent. Indeed it may be said that the logical purpose which is 
served by the theory of denoting is, to enable propositions of finite 
complexity to de.al with infinite cla.'ises of terms : this object is effected 
by all, any, and every, and if it were not effected, every general pro­
position about an infinite cla.'is would have to be infinitely <·omplex. 
Now, for my part, I see no possible way of deciding whether propositions 
of infinite complexity are possible or not; but this at lea.._t is clear, that 
all the propositions known to us (and, it would seem, all propositions 
that we can know) are of finite complexity. It is only by obtaining 
such propositions about infinite classes that we are enabled to deal with 
infinity ; and it is a remarkable and fortunate fact that this method is 
successful. Thus the question whether or not there are infinite unities 
must be left unresolved; the only thing we can say, on this subject, is 

* In Leibniz's phil0110phy, all contingent things are infinite unities. 
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that no such unities occur in any department o( human knowledge, and 
there(ore none 11uch are relevant to the (oundations o( mathematics. 

142. I come now to our second question : Must an infinite whole 
which contaim1 parts be an aggregate o( terms ? It is often held, for 
example, that spaces have parts, and can be divided ad lih., but that 
they have no aimple parts, i.e. they are not aggregates o( points. The 
same view is put forward as regards periods o( time. Now it is plain 
that, i( our definition of a part by means or terms (i.e. of the second 
sense o( part by meam1 of the first) was correct, the present problem can 
never ariMC, since parts only belong to aggregates. But it may be urged 
that the notion of part ought to be taken as an indefinable, and that 
therefore it may apply to other whok"ll than aggregates. 111is will 
require that we should add to aggregates and unities a new kind o( 
whole, corresponding to the second sense of pllrt. This will be a whole 
which has parts in the second sense, but is not an aggregate or a unity. 
Such a whole seems to be what many philosophers are fond of calling a 
continuum, and space and time are oft.en held to afford instanl'es of sm·h 
a whole. 

Now it may be admitted that, among infinite wholes, we find a 
distinction which aee,n,11 relevant, but which, I belie,·e, is in reality 
merely psychological. In some cases, we feel no doubt a.,; to the terms, 
but great doubt as to the whole, while in others, the whole seems 
obvious, but the terms seem a precarious inference. The ratios between 
0 and 1, for instance, are certainly indivisible entities; but the whole 
aggregate of ratios between O and 1 seems to be or the nature of a 
construction or in(erence. On the other hand, sensible b-paces and times 
seem to be obvious wholes ; but the in(erence to indh·isible points and 
instantK is 110 ornicure as to be often regarded as illegitimate. This 
distinction seems, however, to have no logil·al basi11, but to be wholly 
dependent on the nature of our senses. A slight (amiliarity with co­
ordinate bl'{.'<>metry suffices to make a finite lenbrth seem strictly analogous 
to the stretch of (ro.<:tions between O and 1. It must be admitted, 
nevertheles.'\, that in cases where, as with the fractions, the indivisible 
parts are evident on inspect.ion, the problem with ,vhich we are con­
L-erned does not arise. But to in(er that all infinite wholes have 
indivisible parts merely because this iii known to be the case with some 
or them, would certainly be rash. The general problem remains, 
there(ore, namely: Given an infinite whole, is there a universal reason 
for supposing that it contain11 indh·isible parts ? 

143. In the first place, the definition of an infinite whole must not 
be held to deny that it has an assibri1able number o( simple parts whieh 
do not reconstitute it. }'or example, the strekh of frRCtions Crom O to 1 
has th1"t.-e simple parts, !, ½, f. But these do not reconstitute the 
whole, that is, the whole has other parts whi,·h are not parts of the 
assigned partK or or the sum or the assigned parts. Again, iC we form a 
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whole out of the number 1 and a line an inch long, this whole Ct'rtainly 
has one simple part, namely l. Such a case as this may be excluded by 
asking whether e,·ery part of' our whole either is simple or contains 
simple parts. In t.his aise, if our whole be formed by adding ,,, simple 
terms to an infinite whole, the n simple tem1s can be taken away, and 
the que.'ltion can be a.>1ked concerning the infinite whole whi<'h is left. 
But again, the meaning of our question seems hardly to be: Is our 
infinite whole an a<"tual aggregate of innumerable simple parts ? This is 
doubtless an important question, hut it is subsequent to the question we 
are a.'lking, which is: Are there always simple parts at all? ,ve may 
observe that, if a finite number of simple parts be found, and taken 
away from the whole, the remainder is always infinite. For if not, it 
would hnve a finite number. and hin·ce the term of two finite numbers is 
finite, the original whole would then he finite. Hence if it can be 
shown that e\'ery infinite whole contaim1 one simple part, it follows that 
it <'ontains an infinite number of them. Por, taking away the one 
simple part, the remainder is an infinite whole, and therefore has a new 
simpfo part, and so on. It follows that every part of the whole either is 
simple, or l'Ontains simple parts, provided that every infinite whole has 
at leai,t onl' simplt• part. But it seems as hard to prove this as to prove 
that evl'ry infinite wholl' is an aggregate. 

If an infinib• whole be divided into a finite number of parts, one at 
least of these parts must be infinite. If this be again divided, one of its 
parts must he infinite, and so on. Thus no finite number of divisions 
will n..oduce all the parts to finitude. Successive divisions give an endless 
11erics of parts, and in such endleKS series there is (as we shall see in 
Parts IV and V) no manner of <·ontradiction. Thus there is no method 
of proving by actual division that every infinite whole must be an 
aggregate. So far as this method can show, there is no more rea.'lon for 
simple constituents of infinite wholes than for a first moment in time or 
a last finite number. 

But perhaps a <.-ontradiction may emerge in the present case from the 
connection of whole and part with logical priority. It certainly seems a 
greater paradox to maintain that infinite wholes do not have indivisible 
parts than to maintain that there is no first moment in time or furthe11t 
limit to space. This might he explained by the fact that we know many 
simple terms, and some infinite wholes undoubtedly composed of simple 
tem1s, whe1-eas we know of nothing suggesting a beginning of time or 
spa<--e. But it may perhaps have a more solid basis in logical priority. 
For the simpler is always implit.•d in the more complex, and therefore 
there can be no truth about the more complex unlt'lls there is truth 
about the simpler. Thus in the analysh1 of our infinite whole, we arc 
always dealing with entities which would not be at all unless their 
constituents were. This makes a real difference from the time-seriCH, for 
example: a moment does not logically pre.uppORe a previom1 moment, 
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and if it did it would perhaps be self-contradictory to deny a fir.t 
moment, RS it has been ht'ld (for the same reason) HClf-contradictory to 
deny a Pil'!lt Cause. It S(.>enu1 to follow that infinite wholes woul«1 not 
have lJcing at all, unlns there were immmerahle simple lleinhrs whose 
]king is presupposoo in that of the infinite wholcs. For whl'l'l' the 
pn•supposition is false, the c·<mscquem·e is fal~e also. Thus there seems 
a spedH.I rca.-ion for completing the infinite regress in the <'H.se of infinite 
wholes, which does not exist w}wre other asymmetriml transitive relations 
arc concerm-d. This is another instance of the peculiarity of the relation 
of whole and part: a relation so import11nt and fundamcntal that almost 
all our philosophy depends upon the theory wc adopt in l'l'gard to it. 

The same aq,rument may be otherwise statcd hy a.-.king how our 
infinite wholl•s are to be defined. The definition mtL.'lt not he infinitely 
complex, sinc:e this would require an infinite unity. Now if thl•re is any 
definition which is of finite complexity, this l"lmnot be obtained from 
the parts, Hince these are either infinitely nnml'rous (in the c•a.-;e of an 
aggregate), or themselves as complex as the whole (in the case of a 
whole0 \vhich is not an aggregate). But any definition whic-h is of finite 
complexity will necessarily be intensional, i.e. it will give some character­
istic of a c·ollection of terms. There seems to be no other known method 
of defining an infinite whole, or of obtaining such a whole in a way not 
involving any infinite unity. 

The above argument, it must be admith.-d, is less conclusive than 
could be wished, considering the great importance of the point at issue. 
It may, however, be urged in support of it that all the arguments on 
the other side depend upori the supposed difficulties of infinity, and are 
therefore wholly fallacious; also that the procedure of Geometry and 
]}ynamic·s (as will be shown in Parts VI and VII) imperatively demands 
points and instants. In all applications, in short, the results of the 
doctrine here advocated are far i.impler, less paradoxical, and more 
logically KR.tisfactory, than those of the opposite view. I shall therefore 
11.SSume, throughout the remainder of this work, that all the infinite 
wholes with which we shall have to deal are aggregates of terms. 
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CHAPTER XVIII. 

RATIOS AND FRACTIONS. 

144. Tin: pn•sent chapter, in so far as it deals with relations of 
integeri-., is essmtially confined to .finite integers : those that are infinite 
have no relations strictly analogous to what are usually called ratios. 
But I !\hall distinguish mtios, as relations between intebrcrs, from 
fraetions, whi<'h arc relations between aggregates, or rather between 
their magnitudes of divii.ihility; and fractions, we shall find, may 
exprehs relationh whieh hold where both aghrregates are infinite. It will 
be nc<'essary to begin with the mathematical definition of ratio, before 
proceeding to morr general t·onsidemtions. 

Ratio is commonly associated with multiplication and division, and 
in this way bernmes indi~tinguishahle from fractions. But multiplication 
and divihion are equally applicable to finite and infinite numbers, though 
in the t·ase of infinite numbers they do not have the properties which 
connect them with ratio in the 6nite ca.i;e. Hence it herome!l desirable 
to develop a theory of ratio whi{·h shall be independent of multiplication 
and division. 

Two finite numbers arc said to be consecutive when, if u be a dass 
having one of the numbers, and one term be added to 1.t, the resulting 
class has the other number. To be consecutive is thus a relation which 
is one-one and a.-;ymmctrical. If now a number a ha.~ to a number b 
the nth power of this relation of consecutiveness (powers of relations 
being defined by relative multiplication), then we have a+ n = b. This 
equation expresses, between a and b, a one-one relation which is deter­
minate when n is given. If now the mth power of this relation holds 
between a' and b', we shall have 0: + mn = b'. Also we may define mn as 
0 + mn. If now we have three numbers a, b, c such that ab = c, this 
equation expresses between a and c a one-one relation which is deter­
minate when b is given. Let us call this relation B. Suppose we have 
also a' b' = c. Then a has to a' a relation which is the relative product 
of Band the converse of B', where B' is derived from b' as B was derived 
from b. This relation we define as the ratio of a' to a. This theory 
has the advantage that it applies not only to finite integer.-, but to 
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all other series of the same type, i.e. all 11eries of type the which I call 
progressions. 

146. The only point which it is important, for our present purpose, 
to observe as regards the above definition of ratios is, that they are 
one-one relationK between finite integers, which are with one exception 
asymmetrical, which BJ-e such that one and only one holdK between any 
specified pair of finite integers, which are definable in terms of consl.'CU­
tiveness, and which themselves form a 11eries having no first or last term 
and having a term, and therefore an infinite number of terms, between 
any two specific.-d terms. From the fact that ratiO!I are relRtions it 
resulbl that no ratios are to be identified with integers : the ratio of 2 to 
1, for example, is a wholly different entity from 2. When, therefore, 
we speak of the series of ratios as containing integers, the integel"l! said 
to be contained are not cardinal numbers, but relations which have a 
certain one-one correspondence with cardinal numbers. The same remark 
applies to positive and negative numbers. The 11th power of the relation 
of conse<'utiveness is the positive number + n, which is plainly a wholly 
different concept from the cardinal number n. The confusion of entities 
with others to which they have some important one-one rdation is an 
error to which mathematicians are \'ery liable, and one which has 
produred the greatest havoc in the philO!lOphy of mathematics. We 
shall find hereafter innumerable other instances of the same e1TOr, and it 
is well to reali7.e, a.~ early as pOS!,ihk•, that any failure in t1ubtll'ty of 
distinctiont1 is 11ure, in this subject at least, to cause the mm1t dit1Rstrous 
consequen<,'t.'ll. 

'There is no difficulty in conm.'Cting the above theory of ratio with 
the w;ual theory derived from multiplication and di\'ision. But the 
usual theory does not show, as the pl"Ctlent theory does, why the infinite 
integers do not have ratios strictly analogous to those of finite integers. 
The fact is, that m.tio depends upon rom1ecutivenel!S, and consecutivenes..~ 
as above defined doeH not exist among infinite integers, since these are 
unchanged by the addition of 1. 

It should he observed that what is called addition of ratios demands 
a new 11et of relations among ratios, relations which may be calfod 
poiiitive and negative ratios, juKt as certain relations among integers are 
positive and negati\'e integers. 'This subject, however, need not be 
further de,·eloped. 

146. The above theory of ratio has, it must be confessed, a highly 
artificial appcaram-e, and one which maket1 it seem extraordinary that 
ratio11 should occur in daily life. The fact is, it is not ratiOt1, but 
fractions, that Ol'Cur, and fractions are not purely arithmetic."8.l, hut 11.re 

really <'t>m:crnt.'(I with relations of whole and part. 
PropositionK &.'iHJ!rting fractions show an important differem.-e from 

thOKe asserting intq.,rers. · \Ve can say A iK one, A and B al'e two, and 
so on ; but we cannot say A is one-third, or A and B are two-thirds. 

Downloaded from https://www.holybooks.com



Ratios and Fraction, 151 

There is always need of some second entity, to which our first has some 
fractional relation. We MY A is one-third of C, A and B together are 
two-thirds of C, and so on. Fractions, in short, are either relations of 
a simple part to a whole, or of two wholes to one, another. But it 
is not necessary that the one whole, or the simple part, should be part 
of the other whole. In the case of finite wholes, the matter seems 
simple: the fraction expresses the ratio of the number of parts in the 
one to the number in the other. But the consideration of infinite 
whole11 will show us that this simple theory is inadequate to the facts. 

147. There is no doubt that •he notion of half a l~rt1e, or half 
a day, is a lt>gitimate notion. It i11 therefore necessary to find 11ome 
sense for fractions in which they do !lot essentiRlly depend upon number. 
For, if a given period of twenty-four hours is to be divided into two 
c,-ontinuous portions, each of whic·h is to be half of the whole period, 
there is only one way of doing this: but CRntor ha.<i 11hown that every 
possible way of' dividing the period into two eontinuous portion11 di\'ides 
it into two portions having the 11ame number of tl'rms. There must be, 
therefore, some· other respect in which two period:,; of' tweh·e hours are 
ec:pial, whill· a period of one hour ancl another of twenty-thrt .. 't' hours 
an• unequal. I shall have more to say upon this subject in Part III; 
for the present I will point out that what we want is of the nature of a 
magnitude, and that it must lx• essentially a property of ordcl't.'(l wholes. 
I shall ,·all thi11 property m,,p1tit11,d,e ef tliz,iaibility. To MY now that ..4 is 
one-half of B means: B is a whole, and if B Ix! di,·ided into two similar 
parts whid1 have both the i;ame magnitude of divi1,ihility as e~h other, 
then A ha.'I the i;ame magnitude of divisibility as each of theSl' parts. 
We may interpret the fraction ½ somewhat more simply, by reganling 
it as a relation (analogous to ratio 110 long &.'I finite wholei; are concerned) 
between two magnitudes of divisibility. Thus finite integral fractions 
(11uch a.,; n/1) will measure the relation of the divisibility of an aggregate 
of n. terms to the divisibility of a single term; the converse relation will 
be l/11. Thm, here again we have a new dass of entities which is in 
danger of being confuRed with finite cardinal integers, though in reality 
quite distinct. Fraction11, as now interpreted, have the advantage (upon 
which all metrical geometry depends) that they introduce a diserimina­
tion of greater and smaller among infinite aggregates having the same 
number of terms. W c shall see more and more, as the logic·al inarlequacy 
of the usual &L-counts of measurement is brought to light, how absolutely 
essential the notion of magnitude of dh·isibility really is. l'rH.Ctions, 
then, in the sense in which they may express relations of infinite 
aggregates-and this i11 the sense which they usually have in daily life­
are really of the nature of relations between magnitudes of divisibility; 
and magnitudes of divi11ibility are only mea.,cured by number of parts 
where the aggregates conc,-emed are finite. It may al110 be obtterved 
(though this remark i11 antil'ipatory) that, whereas ratios, as above 
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defint.-d, are essentially rationa], fractions, in 
them, are also t~apable of irrational va1ues. 
this topic must be left for Part V. 

[CHAP. XVIII 

the sense. hei:e brivcn to 
But the development of 

148. We may now sum up the results obtained in Part II. In the 
first four t·hapters, the modem mathematical theory of cardinal integer.;, 
aH it re1m]l11 from the joint laboun, of arithmeticians and symbolie 
lugicians, was briefly set forth. Chapter x1 explained the notion of 
similar clas.'lell, and 11howed that the usua1 formal properties of integers 
result from defining thC'm as cla.'IS(.'S of similar classei.. In Chapter xn, 
we showed how arithmetical addition anti multiplication both depend 
upon lobrical addition, and how both may bt• cfofined in a way which 
applies equally to finite and infinite numheri;, and to finite and infinite 
sums and products, and which moreover introd.m-cs nowht>re any iclea of 
order. In Chapkr xm, we 1-,rave the strict definition of an infinite das.-i, 
u one whid1 is similar to a da.'!!i resulting from taking away one of it:K 
terms ; and we 11howed in outline how to connect this definition with the 
definition of finite• numhel"II by mathematica1 induction. 'l11e !>pedal 
theory of finite integeri; was discm1scd in Chapter xiv, and it w11..,; shown 
how the p1·imitivc propositions, which Pcanu prove11 to bt\ sufficil•nt in 
this 11u~jt.•d, can all he dcdut"t..-d from our definition of finite cardinal 
integers. This confinnecl us in the opinion that Arithmetic contains nu 
indefinab]es or inclemonstrables beyond those of bteneral logic. 

We then aclvanced, in Chapter x,·, to the corn~ideration of philoso­
phical qut.-stions, with a view of te11ting <·ritirally the above mathematical 
deduct.ions. We decided to regard both tenu and ti term 8.li indefinable, 
and to define the number 1, as well as all other numbeni, by means of these 
indefinables (tobrether with eertain othen;). We a]so found it neceKSary 
to distin1,,•11ish a class from it.'4 cla.'l.'1-concept, 11ince one cla.'!.'4 may have 
ireveral different cla...s-conl-cpts. We dedded that a class consiKt.., of all 
the terms denoted by the cla.'lll-concept, denoted in a certain indefinable 
manner; but it appeared that both common US8.bre and the majority of 
mathematical purposes would allow us to identi(y a cl,w with the whole 
fornwd of the terms denoted by the class-co0<'ept. The only rca.'«lns 
againKt this view were, the na-es1,1ity of distinguishing a clas.'4 eontaining 
only one term from that one term, and the f8.(..-t that some cln.'4St.'s are 
members of themselves. We found also a distindion between finite and 
infinite da.-.ses, that the former can, whi1e the latter cannot, be defined 
extensionally, i.e. by ac..-tua1 enumeration of their terms. We then 
pl"Ol-eedl-<l to dist.-uss what may be callt.-d the addition of individuals, 
i.r. the notion involved in "A and B..,; and we found that a more or l~ 
independent theory of .finite integers can be bS.Hed upon this notion. 
But it appeared finally, in virtue of our ana]ysis of the notion of l"laaa, 
that thi11 theory was rca1ly imlistinguishablc from the theory previously 
expoundt.-d, the only difference being that it adopted an extensiona1 
definition of classes. 
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Chapter xn dt'alt with the relation of whole and part. We found 
that there are two indefinable senses of this relation, and one definable 
11ense, and that there are two l'OIT('Spondingly different sorts of wholt.'l'I, 
which we called unities and aggregatl-!i l'('SIX.'('tively. We saw ahm that, 
by extending the notion of aggregates to single terms and to the null­
d11.•11;, we could regard the whole of the traditional calc·ulus of Symlx,Iic 
Logic IL'I an algehm specially appli,·ahlc to the relations of wholes ancl 
parts in the definable sense. \Vt• considt•n.-d uext, in Chapter xv11, the 
notion of an infinite- whole. It appeared that infinite unitit•!'J, t•ven if 
they he logimlly posl'oihle, 1\t any rate never appear in anything acc·l'ssiblc 
to human knowledge. Hut infinite ~"l'l'gate'I, we fomul, must ht• ad­
mittc-d; and it st'l'med that all infinite wholt•s which arc not unities 
mul'ot be nggrcgat.es of h!rrm,, thouglr it is by no means 1wct>s"lllry that t.hc 
ll•rms should he l'oimple. (Thl'y must, however, owing to the exdusion 
of' infinite unitil's, be as.•mmc.><l to be of,li11itr complexity.) 

In Chupter xvrn, finall_v, we considered ratios and fral'tiorn,: tht• former 
were found tu he ~omewhat complimkd rdations of finite intcgt·rs, while 
the latkr were relations between thl' divisibilities of 11.gl,{rcg11tes. Tlu'llc 
divisibilities lwing magnitudt-s, their furthl'r dim1ssion lx•longs to Pait III, 
in which the general nature of quantity is to be considered. 
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CHAPTER XIX. 

THE MEANING O:F MAGNITUDR. 

149. AMONG the traditional problems of mathematical philosophy, 
few 11re more important than the relation of quantity t.o number. 
Opinion as to this n'lat.ion has undergone many revolutions. }~udid, 
ns is evident from his definitions of ratio and proportion, and indeed 
from his whole pro('eclul'(>, wa.., not penmaq(-d of the appli<'Ability of 
numbers to spatial magnitmles. When Des Cartes and Victa, by the 
introduction of co-ordinate Geometry, ma.de this appli(·abilit.y a funda­
mental postulate of their systems, a new method was foundl-d, which, 
ho,H•,cr fruitful of re!lults, involn-d, like most mathematical wh·anccs of 
tlw :-cvent('enth century, a diminution of lohrical precision and a loss in 
!iuhtkty of clislindion. What was meant by measurement, and whether 
all spati11.I ma1,rnitmlC's were susceptible of a numerical measure, were 
<jlll'!itions for whose deri!iion, until very lately, the net~!IHR.ry mathe­
matical instrument was la(•king ; and even now much remairn~ to be 
doue before a (·omplete answer t·an he given. The view prevailed that 
number and quantity were the object... of mathematical investigation, 
and that the two were so similar as not to require careful separation. 
Thus number was applied to quantities without any hesitation, and 
c·onverscly, where existing numbers were found inadL-quate to measure­
ment, new ones were (·rcatl•d on the sole ground that every <tuantity 
must have a numeric·al measure. 

All t.his is now happily rhanged. Two different lines of arbrument, 
condul'ted in the main by different men, have laid the foundat.ions both 
for large generali1.ations, and for thorough accuracy in detail. On the 
one hand, Weiersh'ass, Dcdekind, Cantor, and their followel'II, have 
pointed out that, if iiTational numbers are to he significantly employed a.~ 
mea.'lures of quantitative fractions, they must be defined without referenee 
to quantity; and the same men who showed the necessity of such a 
definition have supplil-d the want which they had created. l1i this way, 
during the last thirty or forty years, a new subject, which has addt>d 
quite immeasurably to theorcti<'Al correctnes.~, has been created, whieh 
may legitimately be Mlled Arithmetic; for, starting with integers, it 
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succeeds in defining whatever else it requires-rationals, limits, ir­
rationalro1, continuity, and so on. It results that, for all Algebra and 
Analysis, it is unnecessary to assume any material beyond the integers, 
which, a.'I we have seen, can themselves be defined in logical terms. 
It is this science, far more than non-Euclidean Geometry, that is really 
fatal to the Kantian theory of a priori intuitions as the be.'lis of 
mathematics. Continuity and irrationals were formerly the strongholds 
of the 11chool who may be c·alled intuitionist.,;, but these stronghold11 are 
theirs no longer. Arithmetic has grown 110 as to include all that can 
strictly be called pure in the traditional mathematic11. 

150. But, concurrently with this purist's reform, an opposite advance 
has been effected. New branche11 of mathematics, which deal neither 
with number nor with quantity, have been invented; suc·h are the 
Logical Calculus, Projective Geometry, and-in its esirence-the Theory 
of Groups. Moreover it has appeared th,tt measurenumt-if this means 
the correlation, with numbel'll, of entities which are not numbers or 
aggregates-is not a prerogative of quantities: some quantitie!> cannot 
be measured, and some things which llre not quantities (for example 
anhannonic ratios projectively defined) can be mea.-.ured. Mea.-.urement, 
in fact, as we shall see, is applicable to all series of a certain kind-a kind 
which excludes imme quantities and includes some things which are 
not quantities. The separation between number and quantity i11 thus 
complete: eac·h is wholly independent of the other. Quantity, moreover, 
has lost the mathematical importance whic·h it used to possess, owing to 
the fact that most theorems concerning it can be generalized so as to 
become theoremR concerning order. It would therefore be natural 
to discuss order before quantity. As all propositions concerning order 
can, however, be established independently for partic·ular instances of 
order, and as quantity will afford an illustration, requiring slightly less 
effort of abstraction, of the principles to be applied to series in general; 
as, further, the theory of distance, which forms a part of the theory of 
order, pretmppoi1es 11omewhat <·ontroversial opinions as to the nature 
of quantity, I shall follow the more traditional course, and <"onsider 
quantity first. My aim will be to give, in the present chapter, a theory 
of quantity which does not depend upon number, and then to show the 
peculiar relation to number which i11 poM8CSsed by two special cla."'lt.'K of 
quantities, upon which depends the mea11urement of quantities wherever 
thi11 is possible. The whole of this Part, however-and it il'I importnnt 
to realize this-is a concession to tradition; for c1uantity, we shall find, 
is not definable in terms of logic·al constants, and is not properly a 
notion belonging to pure mathematics at all. I shall di11Cuss quantity 
becau11e it is traditionally supposed to 0<·cur in mathematics, and because 
a thol'Ough discusi.ion is J'e<Juired for di11p1'0,·ing thi11 supposition; but 
if the supposition did not exist, I should avoid all mention of any such 
notion a.'I quantity. 
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1Gl. In fixing the meaning of such a term a.s qua,itity or magr,itmle, 
one is faced with the difficulty that, however one may define the word, 
one must appear to depart from usage. This difficulty ari!le!I wherever 
two characteristics have been commonly 1mppost.-d inseparable which, 
upon closer examination, are discovered to be capable of existing apart. 
In the case of magnitude, the usual meaning appears to imply (1) a 
capacity for the refations of greater and leas, (~) divisibility. Of thel!e 
characteristics, the first is supposed to imply tht> second. Dut as I 
propose to deny the implication, I must either admit that some things 
which are indh•isible are magnitudes, or that some things which are 
greater or less than others are not magnitudes. As one of these de­
partures from m1a.ge is unavoidable, I shall choose the former, which 
I believe to be the less se1;ous. A 1nagnitude, then, is to hl' defined u 
anything which is greater or less than something else. 

It might be thought that equalit.1J should he mentioned, along with 
greater and less, in the definition of magnitude. We shall see rellllon 
to think, however-paradoxical as such a view may appear-that what 
can he greater or less than some term, can never be equal to any term 
whatever, and rfre versa. This will require a distinction, whose net·essity 
will bcc-ome more and more evident a."l we proceed, between the kind of 
terms that can he equal, and the kind that can be greater or le1s. The 
former I 11hall call q11a11titie.¥, the latter magnitudes. An actual foot.­
rule is a quantity: its ll·nbrth is a magnitude. Magnitudes are more 
abstract than quantities : when two quantities are equal, they have the 
aame magnitude. The necessity of this abstraction is the first point to 
be established. 

152. Setting aside magnitudes for the moment, let us consider 
quantities. A quantity i, anything which is capable of quantitative 
equality to !lomething else. Quantitafo·e equality is to be distinguished 
from other kinds, !>Uch &."I arithmetical or logical L'<luality. All kinds 
of equality have in common the three properties of being reflexive, 
symmetrical, and transitive, i.e. a term which has this relation at all 
has this relation to itself; if A has the relation to B, B ha.'1 it to A ; 
if A has it to B, and B to C, A has it to c•. What it is that dis­
tinguishe!! quantitative equality from other kinds, and whether this 
kind of equality is analyzable, ii, a further and more difficult question, 
to which we must now procet-d. 

There are, so far a!I I know, three main views of quantitative 
equality. There is (J) the traditional view, which denie..,; quantity a.'I 

* ( )n the independence of these three propertiesi, Ree J>eano, Remle d, MftfMmatiq1te, 
vu, p. 22. The reflexive property is not strictly nel·essary; what is properly nec011sary 
and what is alone (at first 11ight at any rate) true of quantitative equality, is, that there 
exists at least one pair of tenns having the relation in queRtion. It follows then from 
the other two properties that each of these terms ha11 to itself the relation in 
question. 
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an independent idea, and asserts that two tem1s are equal when, and 
only when, they have the same number of parts. (2) There is what may 
be called the relative view of quantity, according to which equal, greater 
and less are all direct relations between quantities. In this view we 
have no need of magnitude, since sameness of magnitude is replaced 
by the symmetrical and trarn1itive relation of equality. (3) There is 
the absolute theory of quantity, in which equality is not a dire<"t relation, 
but is to be analyzed into possession of a ,·ommon magnitude, i.e. into 
sameness of relation to a third term. In this case there will be a special 
kind of relation of a term to its magnitude; between two magnitudes 
of the same kind there will be the relation of greater and less; while 
e<JUal, greater and less will apply to quantities only in virtue of their 
relation to magnitudes. The difference between the se<"ond and third 
theories is exactly typical of a differcm·e which arises in the case of many 
other series, and notably in regard to r,,pace and time. The decision 
is, therefore, a matter of very considerable importam·c. 

163. ()) The kind of e<1uality which consists in having the same 
number of part11 has been already discussed in Part II. If this be 
indeed the meaning of quantitative ec:1uality, then 11uantity introduces 
no new idea. But it may he shown, I think, that greater and less have 
a wider field than whole and part, and an independent meaning. The 
arguments may be enumerated as follow11: (ex) ,ve must admit indi­
visible quantities; (fJ) where the number of simple parts is infinite, 
there is no generalization of number which will give the recognized 
results as to inequality; ('y) some relations must he allowed to be 
quantitative, and relations are not even conceivably divisible; ( S) even 
where there is divisibility, the axiom that the whole is greater than the 
part must be allowl.'d to be signifi<·ant, and not a result of definition. 

(a) Some quantities are indivisible. 1''or it is generally admitted 
that some piiyt·hical cxistents, such as pleasure and pain, are quantitative. 
If now equality means sameness in the number of indivisible parts, we 
shall have to reganl a pleasure or a pain a.<i consisting of a collection 
of units, all perfe<"tly simple, and not, in any significant sense, equal 
foter ae ; for the equality of compound pleai-m'l.'S results on this hypothesis, 
solely from the number of simple ones entering into their composition, 
so that equality is formally inapplicable to indivisible pleasures. If, on 
the other hand, we allow pleRsure11 to be infinitely divisible, so that no 
unit we can take is indi\'isiblc, then the number of units in any given 
pleasure is wholly arbitrary, and if there is to be any equality of 
pleasures, we shall have to admit that any two units may be significantly 
called equal or unequal•. Hence we shall require for equality some 
meaning other than sameness as to the number of parts. This latter 

* I ■hall ne,·er 1111e the word u11rqual to mean merely riot equal, but alway11 to 
mean gnater or lu•, i.e. not equal, though of the same kiud of quantities. 
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theory, howe\"er, seems unavoidable. For there is not only no re&'lon 
to reganl pleasures a.~ t•onsisting of definite sums of indivisible units, 
but further-a.~ a candid eonsideration will, I think, oonvim-e anyonl'­
two pleasures t·an alrm.'IJ·' he signitit·1mtly judged equal or unequal. 
However small two plca.~ures may be, it must alwayM be sihrnificant to 
say that they are equal. But on the theory I am combating, the judg­
ment in question would suddenly ('('aMC to be signifimnt when both 
plea.~ures were indivisible units. Such a vit•w seems wholl~• nnwarrant­
ablc, and I eannot believe that it has been consciously held hy those• 
who hM·e advocated the premisses from whit·h it follows. 

(.8) Somr quantities are infinitely divisible, and in these, whatevt•r 
definition we take of infinite number, L><1uality is not <·11t•xtl•nsini with 
!lllmeness in the number of parts. · In tht> first pl!l.l-e, 1><1uality or 
inequality must always be definik: t·om'Cming two quantitit•s of the 
same kind, ont• answer must. be right and the other wrong, though it is 
often not in our power to dt'l.·ide t.11<' altemative. Pnnn this it follows 
that, when• quantities mnsist of 1\11 infinite number of parts, if L'<JURlity 
or inequality is to he reduced to number of parts at all, it must be 
n.><lnred to number of aimple parts; for the number of <·omplt·x parts 
that may he taken to make up the wholl' is wholly nrhitrary. But 
e<Juality, for example ii, Geometry, is far narrower than sameness in the 
number of parts. The ranlinal number of parts in any two <'Ontinuous 
portions of spat·e is the same, as we know from Cantor; even the ordinal 
number or type is the same for any two len1:,rths whate\'er. Hem-e if 
tl1ere is to be any spatial ine11uality of tht' kind to whil'l1 Geometry and 
common-sense have accustomed us, we must lll>ck some other meaning for 
equality than that obtained from the number of part.~. At this point 
I shall he told that the meaning is very obvious: it is obtained from 
superpo.~ition. Without trl'nrhing too far on diseus.,ions whieh belong 
to a later part, I may obMCrve (a) that superpo.~ition applies to matter, 
not to space, (l,) that as a LTiterion of equality, it presupposes that the 
matter superposed is rigid, (c) that rigidity means constancy a.~ regard.R 
metrical properties. This shows that we cannot, without a vicious 
circle, define spatial L'quality by superposition. Spatial 111a1:,rnitude is, in 
fact, as indefinable as every other kind; and number of parts, in this <'ll!ie 

as in all others where the number is infinite, is wholly inadt'<juate even 
a.~ a criterion. 

(,y) Some relations are quantities. This is sugge.~ted by the above 
discussion of spatial magnitudes, where it is very natural to ha.~e equality 
upon distances. Although this view, as we shall see hereafter, is not 
wholly adequate, it is yet partly true. There appear to be in certain 
spaces, and there certainly are in some series (for instance that of the 

• E.g. Mr Bradley, "What do we mean by the Intensity of Psychical 8tate&?" 
Mind, N. S. Vol. 1v; see esp. p. 6. 

I 
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rational numbers), quantitative relations of distance among the various 
terms. AlKo similarity and difth·ence appear to he quantities. Consider 
for example two shades of colour. It seems undeniable that two Khade11 
of n'<l are more similar to ea.c:·h other than either -i11 to a shade of blue~ 
yet there is no common property in the one case which is not found in 
the other also. Red is a mere L·ollective name for a certain 11eries of 
shades, and t.hc only reason for giving a collective name to this series 
lies in the close resemblance between it-; terms. Hence red must not be 
regarded as a common property in ,·irtue of which two shR.1\es of red 
resemble ea.c:·h other. And since relations an• not even conceivably 
divisible, greater and less among relations cannot depend upon num~r 
of part.-;. 

(c'l) Finally, it is well to consider directly the meanings of grl•11.te1· 
and less on the one hand, and of whole and part on the other. :Euclid's 
axiom, that the whole is greater than the p11.rt, seems undeniably sibrni­
ficant; but on the traditional view of quantity, this axiom would he 
a mere tautology. This point is again connected ~·ith the question 
whether superprn1ition is to be taken as the meaning of equality, or as a 
mere criterion. On the latter view, the axiom must he signifil·ant, and 
we cannot identify magnitude with number of parts•. 

154. (2) There is therefore in quantity immething over and above 
the idea.,; which we have hitherto discussed. It remains to decide between 
the relative and absolute theories of m~'ltitude. 

The relative theory regards equal quantitiei as not pos.'lessed of any 
common property ov~r and above that of unequ11.l quantities, but a.-; 
distinguished merely by the mutual relation of e1.1uality. There is no 
such thing as a m~111itude, shared by equal quantities. We must not 
say : This and that are both a yard long; we must say: This and that 
are equal, or are both equal to the standard yard in the Exche1.1uer. 
Inequality L'! also a direct relation between quantities, not between 
magnitudei:1. There is nothing by which a set of equal quantities are 
distinguished from one which is not equal to them, except the relation of 
equality itself. 'l'he course of definition is, therefore, as follows: We 
have fir11t a tJuality or relation, say pleasure, of which there are various 
instance11, specialized, in the case of a quality, by temporal or spatio­
temporal po.-;ition, and in the case of a relation, by the terms between 
whi,·h it holds. Let us, to fix ideas, <'Onsider quantities of pleasure. 
Quantities of pleasure consist merely of the complexe11 plea.,ure at S1JCk a 
time, and plea.mre at suck another tirne (to which place may be added, if 
it be thought that pleasures have position in sp&L-e). In the analysis of 
a particular pleasure, there is, according to the relational theory, no 
othe1· clement Jo be found. But on comparing these particular pleasures, 

* Compare, with the above di11Cussion, Meiuong, i•e#Jtlr dil' Redeutung dea Weber'-
11Jlum Gtl8et!tl'N, Hamburg and Leipzig, 1806 ; C11pecially Chap. 1, § 3. 
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we find that any two have one and only one of three relatiom,, equal, 
greater, and less. Why some have one relation, some another, is o. 
question to which it is· theordiC'ally and stridly imposi;ible to give o.n 
answer; for there is, ex hypothtwi, no point of differcm·e except temporal 
or spatio-temporal position, which is obviom,ly irrelevant. J<:qual lJUan­
tities of pleasure do not. agree in any respcrt. in which unequal ones 
differ: it merely happens that some have one rclntion and some another. 

This state of things, it must be admitted, is l 0urious, and it becomes 
still more so when we examine the indl•m011:-;trablc axioms which the 
relational theory obliges us to assume. They arc the following (A, B, C 
being all quantities of one kinrl): 

(a) A= B, or A is greater th~n R, or A is less than R. 
(b) A being given, there is always a B, whil'h may be identical 

with A, such that A= B. 
(c) If A =B, then B=A. 
(d) If A= Band B = C, then A= C. 
(t'} If A is greater than B, then B is less than A. 
(j') If A is greater than B, and B is greater than C, then A is 

greater than C. 
(g) If A is great.er than R, and B = C, then A is greater than C. 
(h) If A= B, and Bis h'Teater than C, then A is wcater than C. 

From (b), (r), and (d) it follows that A= A•. From (e) and (f) it 
follows that, if' A is less than B, and B is less than C, then A is less than 
C; from (c), (e), and (h) it follows that, if A is ll'ss than 11, and B = C, 
then A is less than C; from (c), (e), and (g) it follows that, if A = R, and 
B is le.s than C, then A is less than C. (In tltt' plaec of' ( b) we may put 
the axiom: If A he a quantity, then A =A.) These axioms, it will he 
obserYed, lead to the l'onl'lu~ion that, in any proposition ,1. .. serting 
equality, exl'ess, or defeet, an equal c1uantity may he substituted any­
where without affh·ting the trnth or falsehood of the proposition. 
Further, the proposition A = A is an essential part of the theory. Now 
the first of these fact~ strongly suggests that what is relevant in qun.nti­
tative propositions is not the actual quantity, but some property which 
it shares with other e<Jual quantities. And this suggestion is almost 
demonstrated by the second fact, A =A. For it may be laid down that 
the only unanalyzable symmetrical and transitive relation which a term 
can have to itself is identity, if this be indeed a relation. Hence the 
relation of equality should he analy1.ahle. Now to 1m.y that a relation is 
analyzahle is to say either that it consists of two or more relations 
between its terms, which is plainly not the case here, or that, when it is 
said to hold between two terms, there is some third term to which both 
are related in ways which, when compouudc.>d, give the 01iginal relation. 

• This does not follow from (r) and (d) alone, since they do not assert that A is 
ever equal to B. See Peano, toe. cil. 
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Thus to assert that A is D's grandparent is to assert that there is some 
third person C, who is A's son or daughter and H's father or mother. 
Hen<·e if equality be analy1.ahle, two equal terms must both be related to 
some third term ; and sim.-c a term may be equal to itself, any two equal 
terms must have the sa'TTW relation to the third term in question. But 
to admit thi!! is to admit the absolute theory of magnitude. 

A direct im1pection of what we mean when we say that two terms 
are ec:1ual or UDl'(]Ual will reinforee the objections to the relational 
theory. It l!l>ems prepostcrou!I to maintain that equal quantities have 
abmlutcly nothing in common beyond what is shared by unequal 
quantitie!I. Moreover unl-qual quantities are not merely different: they 
are different in the specific manner exprcssed by saying that one is 
greater, the other les.'I. Such a difference seems quite unintelligible 
unle!l.'I there is some point of difference, where unequal <1uantitie11 are 
cont'l•med, which is absent where quantitieK aJ'l' equal. Thus the rela­
tional theory, though apparently not abKolutely self-contradictory, is 
compli<·atcd and paradoxical. Both the complieation and the paradox, 
we shall find, are entirely absent in the absolute theory. 

155. (3) In the absolute theory, there is, belonging to a set of 
equal <1uantities, one definite eoncept, namely a certain magnitude. 
Magnitude11 are distinguished among coneepts by the fact that they 
have the relatiom, of greater and less (or at lea.~t one of them) to other 
terms, which are therefore also magnitudes. Two 1118.J.,•nitudcs mnnot 
be l'<Jmtl, for equality belongs to quantities, and is defined 1U1 pos!ll>si1ion 
of the same magnitude. .Every magnitude is a t1i111ple and indefinable 
eon<·ept. Not any two me.gnitude11 are one gn•ater and the other less ; 
on the contrary, 1-,rivl•n any magnitude, thot1e which arc greater or less 
than that magnitude form a certain definite cJa..,s, within which any two 
are om· 1-,"l'Cater and the other ll'S!I. Such a dass is <·a.lied a ki11d of 
magnitude. A kind of mRJ,•nitude may, howeYer, be ah10 defined in 
another way, which has to be l'onneeted with the above by an axiom. 
1<:vt>ry magnitude is a magnitude ef something-pleasure, distant-e, area, 
ete.-aml has thus a certain specific relation to the something of which 
it is a 1118.f.,"llitudc. This relation is very peculiar, and appears to he 
incapable of furthl'r definition. All magnitudes which have thi11 relation 
to one and the same something (e.g. pleasure) are magnitude!I of one 
kind; and with this definition, it becomes an axiom to say that, of two 
magnitudes of the same kind, one is greater and the other.less. 

156. An objection to the aboYe theory may be based on the 
relation of a magnitude to that whose magnitude it i1-1. To fix our 
ideas, let us consider pleasure. A magnitude of pleasure is so much 
pleasure, such and such an intensity of plea.'!ure. It seems difficult to 
regard thi11, as the absolute theory demands, as a simple idea : there 
Reem to be two constituents, pleasure and intensity. Intensity need not 
be intem1ity of pleasure, and intensity of pleasure is distinct from 
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abstract pleasure. But what we require for the constitution of a certain 
magnitude of pleasure is, not intem,ity in general, but a certain spt-'t·ific· 
intensity; and a ,Ypecific intensity cannot be indifferently of pleasure or 
of something else. \Ve cannot fir.1t Hettie how much we will haVl', and 
then dL'Cide whether it is to be pleasure or mass. A spt-'<.'ific intensity 
must be of ll specific kind. Thus intensity and pleaimrc are not in­
dependent and coordinate elements in the definition of a given amount 
of pleasure. There are different kinds of intensity, and different magni­
tudes in each kind; but magnitudl•S in differl'llt kindli must he different. 
Thus it !,eems that the common t•lcment, indicated by the term intl'll,vit.1J 
or mn1;11it11de, is not any thing intrinsic, th11.t c·11.n be discovered by analysis 
of a single term, but is mcrdy the fad of being one tl'rm in a relation of 
ine<fuality. :\fagnitudes arc defined by the fad that they have this 
relation, and they do not, ~o far as the definition showH, agree in any­
thing l'h,e. The dass to whieh they all belong, like the married portion 
of a eo1111111111ity, i!, defined hy mutunl relation,-, among its terms, not hy 
n. eo111111on relation to some outside term-unless, indeed, i1wquality 
ib,clf were tah•n as sueh a term, n hich would he llll'rely an unnccessnry 
l'Omplimtion. It is necessary to l'<msider whut may he mlled thl• 
extern,ion or field of a rdation, as well as that of a dass-coneept: and 
magnitude i~ the dass whil'h forms the exte11sio11 of inequality. Thus 
magnitude C!f plai.vure is complex, bl'cause it comhines magnitude and 
pll·m,ure; hut a particular magnitude of pleasure is not complex, for 
magnitude doe"' not euter into its concept at all. It is only a magnitude 
because it is greater or le~~ than certain other terms; it is only a magni­
tude of pu•a,v1tre because of u <·ert11i11 relation which it has to pleasure. 
This i!-> more ea~ily uuderstood where the particular magnitude has a 
speeial name. A yard, for instam·e, is a magnitude, because it is greater 
than a foot; it is a nuthmitnde of length, because it is what is called 
tl length. Thm, all magnitudes arc simple eoneepb,, and are classified 
into kinds by their relation to i.ome quality or relation. The quantities 
which are im,tances of a magnitude arc particularized by spatio-temporal · 
position or (in the case of relations whieh arc quantities) by the terms 
between whil-h the relation holds. Quantities arc not properly greater 
or less, for the relations of greater and less hold between their 
magnitudes, whil'h arc distinct from the quantitie:--. 

\Vhen this theory is applied in the enumeration of the necessary 
axioms, we find a very not.able simplification. The axioms in which 
equality appears haYc all become demonstrable, and we require only the 
following (L, ,ll, N being magnitude!-> of one kind): 

(a) So magnitude is greater or le!!s than itself. 
(b) L is greater than.Mor Lis less than ,lf. 
(c) If L is greater than M, then Mis less than L. 
(d) If L is greater than ill and M is greater than N, then L ui 

greater than N. 
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The difficult axiom which we formerly called (b) is avoided, u are the 
other axioms concerning equality; and those that remain are simpler 
than our former 11et. 

167. The decision between the absolute and relative theories cau 
be made at onre by appealing to a certain general principle, of very 
wide application, which I propose to call the principle of Abstraction. 
This principle a11M!rts that, whenever a relation, of which there are 
instances, has the two properties of being symmetrical and transith·e, 
then the relation in question is not primitive, but is analyzable into 
sameness of relation to some other term ; and that this <."Ornmon relation 
is 11uch that there is only one term at most to which a given term can be 
so relakd, though many ter1m1 may he 110 related to a given tenn. 
(That is, the relation is like that of son to father: a. man may have 
many :sons, but can have only one father.) 

This principle, which we have already met with in l'<>nnection with 
cardinals, may 11<-'t'IU somewhat ela.bomte. It is, however, capable of 
proof, and is merely a careful statement of a very common a.-,sumption. 
It ili bJ'Cnerally held that all relation:s arc analyz11blc into identity or 
diveNity of l'Ontcut. Though I entirely rl:'jel't thi:. view, I retain, so far 
as 11ymmctrical transitin• rclation11 arc cmwemed, what is really a 11ome­
wh~t modifietl 1,tatt .. ment of the traditional doctrine. Suc·h reiations, to 
adopt more usual phra."leology, are always l'Onstitutcd by po11session of' 
a common propl'rty. But a common propeity is not a Vl'ry precise 
con(,'<'ption, and will not, in mo1,t of its ordinary signitit·ations, formally 
fulfil the function of analyzing the relations in question. A l'ommon 
quality of two krms is usually regarded as a predil·atc of those terms. 
But the whole dol'trim• of subject and predil'ak, ns the only form of 
which propo1,itions nrc ,·apabll.', and the whole denial of the ultimate 
reality of relations, arc rcjeru-d by the logic adrnC"atcd in the present 
work. Abandoning the word pretlimte, we may say that the most 
general sensti whi,·h can he given to a C'ommon propl•rty is this: A 
common propc1ty of two tt•rms is any third term to whi,·h both ha,·e 
one and the same rdation. In this general sense, the posscS8ion of 
a l'ommon property i11 symmetrical, but not n<-'l·e:ssnrily transitive. In 
order that it may be tmnsitil"c, the relntion to the common property 
must be sm·h tlmt only one term at most ,·an he the property of any 
given tenn •. Such is the relation of a quantity to ib magnitude, or of 
an event to thl' time 11t whil·h it Ol'Clll'II: gi\"Cu one term of the relation, 
nanwly the referent, tlw other is detl'rmiuatc, but given the other, the 
one ii. by no ml'ans determinate. Thus it i8 capable of demom,tration 
that the pos.'ICssion of a. t·ommon property of the t~·1ie in question always 

• 'J11e proof of thei;;e M!ll!rtious is mathematical, 111111 depends upon the Logic 
of llelnticmR ; it will be fouud in my article " Sur la Logiq ue des H.elatious," 
Ji. d. JI. ,.,,, No. 2, § 1, J'rops. 6. 1, aud 6. ::!. 
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leads to a symmetrical transitive relation. What the principle of 
abstradion a..,serts is the converse, that such relations only spring from 
com1~on properties of the above type•. It should be observed that the 
relation of the terms to what I have called their common property c.an 
neve'. be that whieh is usually indic·Rtcd by the relation of subject to 
predicate, or of the individual to its dass. For no subject (in the 
rec.·eived view) ran hllve only one p1~dic·ate, and no individu~I can belong 
to only one da.~s. The relation of the terms to their c·ommon property 
is, in !,Yeneral, different in different cases. In the prcsi•nt l'll.,,;e, the 
<p1antity is a eomplex of which the magnitude forms an dcment: the 
relation of t.hl' quantit.~· to the magnitude is furth<•r defined by the 
fact that. the magnitude has to hdong to a eertain class, namely that of 
magnitudes. It must then be taken a.,,; an axiom (as in the case of 
colours) that. two magnitudes of the same kind eannot. eocxi"t in one 
bpatio-tempoml pliH·<·, or suh!->i,-t. as relations bctwePn the sam<· pair of 
terms; and this supplie,- the rcquirl'cl uniqm·m•ss of tht• magnitude. It 
is sud1 synthetic judgm<•nts of i1wompatibilit.y that lracl to negative 
judgments; hut thi,- is a purt•ly logi<'al topic, upon whil'h it. is not 
neecssar,v to enlarge in this t·onm•l'tion. 

158. \Ve 1111ty now !>Hill up the ahow dis('Ussion in a hril.'f' statement 
of n.•,-ults. Tlll'rc arc a certain pair of indefinable rdations, <'ailed 
~rmfn· ancl le.v.Y; thc,,..e relations are asymnlt'tril'al and traw,it.in•, and 
are inC'o11sish-11t t.hP one \\ ith the other. Ead1 is tht• <'0ll\'l'l'Sc of the! 
other, in the sense that, whenever the one holds hetw<•en A and B, the 
other holds between B and A. The terms whi<·h are l'apahle of these 
relations are 111tl{!;11itmk.Y. Every magnitude ha.."I a certain peculiar 
relation to some c·onL-ept., cxprc,-sccl hy 1,aying that it. is a magnitude qf that 
con<'ept. Two magnitudes which have this relation to the same concept 
arc said t.o be of the same kind : to be of the same kind is· the necessary 
and sufficient. condition for the relations of greater and les.'I, When a 
magnitude can be partieularized by temporal, spatial, or spatio-temporal 
position, or when, being a relation, it can be particularb:ed by taking 
into a consideration a pair of term11 between which it holds, then the 
magnitude so particularizL-d is <'allcd a quantity. Two magnitudes of 
the same kind can never be particularized by exactly the same specifi­
cations. Two quantities which result from particularizing the same 
magnitude are said to be eq1m.l. 

Thus our indefinables are (1) greater and less, (l'l) every particular 
magnitude. Our indemonstrable propositions are : 

• The principle is proved by showing that, if R be a 11ymmetrical ~ran_sitive 
relation, and a a term of the field of R, a has, to the cl&RS of terms to wh1cl1 it has 
the relation R taken D.11 a whole, a many-oue relation which, relationally multiplied 
by itM converse, i11 equal tn R. Thus a magnitude may, so far as formal arguments 
are concerned, be identified with a class of equal quantities. 
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(1) ]•:very magnitude has to some term the relation which makes 
it of a ccl'tain l..iml. 

(fl) Any two 111a1-,rnitudcs of the same kind arc one greater and the 
othl·r les:-.. 

(3) Two magnitudes of the same kind, if capable of occupying space 
or time, mnnot both have the same spatio-temporal position; if relations, 
l'll.11 m·n•r he both relation:-. between the same pair of tt·rn1s. 

( 4) ~o magnitude is 1-,•Tcater than ib.clf. 
U>) If A is greater thau B, B i:-. les,; than .A, aml z•ict 1•cr,Ya. 
((i) If .A is greRter than R and B i:-. grmter than C, then .A is 

greatl'I' than c•. 
Further axiom:,, l'l1arRderi1.c •,arious species of ma1,rnitmfo,, hut the 

above seem alone lll'l,'<.'ssary to magnitude in general. ~one of them 
depend in any WRY upon number or nieasurcment; hence we may he 
muli:-.ma_wd in the prese1wc of magnitude:-. which mnuot be dfrided m 
measm·cd, of which, in the next dtapter, we shall find an aburnlancl• of 
iustitnccs. 

Note to Clwpfrr .XL\". The work of Herr l\feinong 011 \Vehcr's Law, 
already alluded to, is one from whil'h I haw learnt so n1111:h, and with 
which I so largl'ly agrc.-c, that it seems 1k·:-.irable to jm,tify myself on 
the points in which I dt>part from it. This work begins (§ l) by a 
characterization of magnitude as that \\hich ii. limited towards zero. 
Zero is understood as the negation of 11111.gnitude, and after a discussion, 
the following statement is adopted (p. 8): 

"Thn.t is or has magnitmle, which allows the interpolation of tem1s 
between itself and its c·ontrn.dictory opposite." 

\Vhether thii, constitutes 11. definition, or a mere criterion, is left 
duuhtful (ib.), but in either case, it appears to me to be umll•sirahle as 
a fumlRmental characterization of magnitude. It deri\'es support, 11.~ 

Herr l\frinong points out (p. 6 11.), from it1, similarity to Kant\ 
"Anticipations of Perception t." Hut it i:,,, if I am not mistaken, liable 
to several gra,·e objections. In the fit-i;t pl1we, the whole theor_y of zero 
is moi-t difficult, and sc.,-cms subsequent, rather than prior, to the theory 
of other magnitudes. Aud to regitrd zero 1L, the contradidory opposite 
of other magnitudes seems enoneous. The phrase should denote the 
da.-;s obtained hy negation of' the class "magnitudes of sud1 and such 
a kind"; but this obviously would not yield the zero of' that kind of' 
magnitude. \Vhatever interpretation we gi,•e to the phra.-;c, it would 
seem to imply th1tt we must regard 1..ero 1\8 not a magnitude of the kind 
whose zero it is. But in that ea.~ it is not less than the lllll{,'nitudes of 
the kind in question, and there sc.,-ems no particular meaning in saying 

* It is not necessary iu (ii) and (H) to allrl "A, II, (,' being magnitudes," for tl1e 
abm·e relatio11s of greater and leRM are what define magnitudes, and the adrlitiou 
would tl1erefore be tautologit"al. 

t Rn11~ 1·,.r111111J1, ed. llartenstei11 (lllfii), p. l!ill. 
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that a lesser magnitude is between zero and a greater magnitude. And 
in any case, the notion of between, as we shall see in Part IV, demands 
asymmetrical relations among the tenns conce11wd. These relations, it 
would i;eem, are, in the case of magnitude, none other than greater and 
/,ea,,, which are therefore prior to the betweenness of magnitudes, ttnd 
more suitable to definition. I shall endeavour at a later stage to give 
what I conceive to Ix.• the true theory of zero; and it will then 11.ppear 
how difficult this su~jcct is. It can hardly he wise, therefore, to introduce 
zero in the first account of magnitude. ( )ther ohjt>ctions might lx) urgt-id, 
as, for insmncc, that it is doubtful whether all kinds of muguitudc ham 
a 1.cro; that in discrete kinds of magnitude, zero is u11i111portunt; 11ml 
that among distances, where the 1.cro i11 simply identity, thert• is luml1y 
the same relation of zero to negatioll or non-existt.•nct.· a.; in the l'l\."it.' of 
qualitk,, such as pleasure. llut the main rca..;on must be tht.• lol,{ical 
inversion in\'olved in the introdul'tion of between before any us_ymmctriml 
relations have been specified from which it C'ould arisl'. This subject 
will be resumed in Chapter xxn. 
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CHAPTER XX. 

THE RANGE OF QU ANTI'fY. 

159. THE questions to be discuRSed in the present chapter are these: 
What kinds of terms a1-c there which, by their common relation to a 
number of magnitudes, constitute a class of quantities of one kind ? 
Have all such terms anything else in common? It! there any mark 
which will ensure that a term is thllll relatecl to 11. set of magnitudes? 
What sorts of terms are capable of degree, or intensity, or greater and 
less? 

The traditional view rega.nls divisibility a.'! a eommon mark of all 
tenns having magnitude. We have already seen that there is no 
a priori ground for this view. We are now to examine the question 
inductively, to find as many undoubted instances of quantities as possible, 
and to inquire whether they all have divisibility or any other common 
mark. 

Any term of which a greater or les11 degree is poS11ible contains under 
it a collection of megnitudL>s of one kind. Henc.-e the comparative-form 
in brrammar i11 primli. fw evidenc.-e of quRntity. If this evidence were 
conclusive, we should ha,·e to admit that all, or almost all, qURiities are 
susceptible of magnitude. The praises and reproaches addressed by 
poets to their mistres.'leS would afti.>rd c,-omparatives and superlatives 
of most known adjectiv<.'!I. But some circumspection is required in 
using evidence of this grammatical nature. There is always, I think, 
amne quantitative comparison wherever a comparative or superlative 
oe<.'Urs, but it is often not a comparison a.<i regards the quality indicated 
by grammar. 

"0 ruddier than the cherry, 
0 sweeter than the berry, 
0 nymph more bright 
Than moonshine light," 

are lines containing three comparatives. As regards sweetness and 
brightness, we have, I think, a genuine quantitative comparison ; but u. 
regards ruddiness, this may be doubted. The comparative here-and 
generally whe~ colours are concerned-indicates, I think, not more of a 
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given colour, but more likeness to a standard colour. Various shade1 of 
colour are supposed to be arranged in a series, such that the diftel'l!nce 
of quality is greater or less according as the distance in the iteries is 
greater or less. One of these shades is the ideal " ruddiness,., and others 
are called more or less ruddy according as they are nearer to or further 
from this shade in the series. The same explanation applies, I think, 
to such terms as whiter, blacker, "d,kr. The true quantity involved 
seems to be, in all the11e cases, a relation, namely the relation of 11imilarity. 
The diff'erenL-e between two shades of colour is L-ertainly a difference of 
quality, not merely of magnitude; and when we say that one thing is 
redder than another, we do not imply that the two are of the same 1,1hade. 
If there were no difference of sh~e, we should probably say one was 
brighter than the other, which is quite a different kind of compari11on. 
But though the diff'erenc,-e of two shadL>s is a diftcren<--e of quality, yet, as 
the possibility of serial arrangement shows, thi11 diftercnc,-e of qua.lity is 
iblelf 11usceptible of degrees. Each 11hade of colour seems to be simple 
and unanalyzable; but neighbouring <·oloun. in the spectrum are certainly 
more similar than remote colour.,;. It is this that givCI! c,-ontinuity to 
colom"!I. Between two shades of colour, A and B, we should say, there 
is alwavs a thinl colour C; and this means that C resembles .A or B 
more than B or A does. But for 11uch relatiom1 of immediate resemblance, 
we should not be able to arrange coloul'!I in series. The rc!!emhlance 
must be immediate, since all 11hadc11 of colour are unanaly1.able, M appears 
from any attempt at description or definition•. Thus we have an 
indubitable case of relatiom1 which have lll8brnitude. The difference or 
J"e!lemblancc of two colour.,; iH a relation, and i11 a magnitude ; for it is 
greater or less than other differences or re11emblances. 

160. I have dwelt upon this case of colours, since it is one instance 
of a very important class. When any number of terms can be arranged 
in a serieK, it fret1uently happens that any two of' them have a relation 
which may, in a generali?.ed sense, be called a tliatam:e. This relation 
suflicell to generate a serial arrangement, and i11 alway11 necessarily a 
magnitude. In all such C&Se!I, if the tenns of the series have names, and 
if these names have comparatives, the comparatives indicate, not more 
of the term in question, but more likeness to that term. 'l'hus, if we 
suppose the time-11Cries to be one in which there iM di11tance, when an 
event is said to be more recent than another, what is meant is that its 
distance from the present was less than that of the other. Thus rec-entness 
is not itself a qn&lity of the time or of the event. What are quantitatively 

* On the subject of the resemblances of colonl'l'I, see Meinong, "Abstrahiren und 
Vergleichen," ZeitNChrifl f. Pitgch. u. Phy11. d. ,'li1111eaorgm111, Vol. xx1v, p. 72 ff. 
I am not sure that I agree with the whole of Meinong's argument, but hi11 general 
conclusion, "da8s die Umfang,icollective des Aelmlichen Allgemeinheiten dal'lltellen, 
an denen die Abstraction wenigstens unmittelbar keinen Antheil hat" (p. 78), 
appears to me to be a correc.1. and important logical principle. 
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compared in such cases are relations, not qualities. The case of colours 
is convenient for illustration, because colours have names, and the 
difference of two colom'8 is generally admitted to be qualitative. But 
the principle i11 of very wide application. The importance of this cla...;s 
of magnitudes, and the abimlute necessity of clear notions as to their 
nature, will appear more and more as we proceed. The whole philosophy 
of space and time, and the doctrine of so-called extensive magnitudes, 
depend throughout upon a clear understanding of series and distance. 

Distance must be distinguished from mere difference or unlikeness. 
It hold11 only between terms in a series. It is intimately <·mmected with 
order, and implies that the terms between which it holds have an ultimate 
and simple difference, not one capable of analysis into constituents. 
It implies also that there is a more or less continuous pa.<1sage, through 
other terms belonging to the same serieR, from one of the distant terms 
to the other. Mere difference per .re appears to be the bare mi11im11111 of 
a relation, being in fact a precondition of almost all relations. It is 
always absolute, and is i1wapable of de!,'Tees. Moreover it holds between 
any two terms whatever, and is hardly to be distinguished from the 
a!.sertion that they arc two. Hut distance holds only between the 
membe1"N of certain series, and its existem·e is then the source of the 
series. It is a specific relation, and it has ,yense; we can distinguish 
the distance of .A from B from that of B from .A. This la.'lt mark 
alone suffices to distinguish distance from bare difference. 

It might perhaps be supposed that, in a series in which there is 
distance, although the distance .AB must be greater than or less than .AC, 
yet the distance BJJ need not be either greater or less than .AC. For 
exampll', there is ob,·iously more difference between the pleasure 
derivable from 1-15 and that derivable from £100 than between that 
from .l}5 and that from .,£J!t?O. But need there be either equality or 
inec1u11.lity between the difference for £1 and £120 and that for £5 and 
£100? This question must be answered affirmatively. 1''or AC is 
greater or less than BC, and BC is greater or less than BD; hence AC, 
BC and also BC, BD are magnitudes of the same kind. Hence .AC, BD 
are magnitudes of the same kind, and if not identical, one must be the 
greate1· and the other the less. He11<'e, when there is distance in a series, 
any two distances arc quantitatively <'omparable. 

It should be ohser\'ed that all the magnitudes of one kind fonn 
a series, and that their distances, therl'fore, if they have distances, are 
again magnitudes. But it must not be supposed that these can, in 
general. he obtained by subtraction, or are of the same kind as the 
magnitudeR whose differenl'es they express. Subtraction depend-,, as a 
rule, upon divisibility, and is therefore in breneral inapplicable to 
indivisible quantities. The point is important, and will be treated 
in detail in the following chapter. 

Thus nearne&'I and distance are relations which have magnitude. 
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Are there any other relations having magnitude? Thi11 may, I think, 
be doubted•. At least I am unaware of any other such relation, though 
I know no way of disproving their existence. 

161. There is a difficult class of tenns, usually regarded as mag­
nitudt-s, apparently implying relations, though certainly not always 
relational. These are differential (·oefficients, such a.-; vchx·ity and 
&-celeration. They must he borne in mind in all attempts to b-rc1mralize 
about magnitude, but owing to their complexity they require a spec·ial 
discussion. This will be given in Part V; and we shall then find that 
differential <.'oefficients are never magnitudes, but only n.'al numlx•rs, or 
segments in some KCries. 

162. All the magnitudes dealt with hitherto han- hem, stric·tly 
speaking, indivisible. Thus the que1<tion arise11: Are there 11.ny di\'isihle 
magnitudes? I-fore I think a distinction must ix~ made. A mngnitude 
i11 e11sentially one, not many. Thus no magnitude is c·orrl"<'tly expl'l'NSl>O. 
as a number of terms. But may not the quantity whic-11 hnt1 magnitude 
be a sum of part.;, and the magnitude a magnitude of divisibility? If so, 
every whole consisting of part11 will be a single term prn1sessed of the pro­
perty of divisibilitJ·· The more part-; it c·onsists of, the greal<'r is its 
divisibility. On this supposition, divisibility is a magnitude•, of whid1 we 
may have a brn•ater or less deJ_rree; and the deb'l"l"e of divisibility c·orrespomls 
exactly, in finite wholes, to the number of part11. But though the whole 
which ha.'I divisibility is of course di\'isible, yet its dh·isibility, which alone 
is strictly a magnitude, is not properly speaking divisiblt,. The di\'isihility 
doe1-, not it'l£'lf consist of parts, but only of till' property of having parbi. 
It is net-essary, in order to obtain divisibility, to take the whole stril'tly 
as one, and to regard divisibility a.,; its adjt-ctive. Thus although, in 
this CW!e, we have numerical measurement, and all the mathematical 
consec1uences of division, yet, philosophically speaking, our Dlft.bl"Ilitude is 
11till indivisible. 

There are diffil'ulties, however, in the way of admitting divisibility as 
a kind of mllE,l"Ilitude. It seems to be not a property of the whole, but 
merely a relation to the parl!i. It is difficult to decide this point, but a 
good deal may be said, I think, in support of divisibility aH a i1imple 
quality. 'The whole has a certain relation, which for c-onvcnience we may 
call that of inclusion, to all its parl'I. This relation is the same whether 
there be many parts or few; what distinguhjhe; a whole of many parts is 
that it has many such relations of inclusion. But it seems re&Honablc to 
suppose that a whple of many parts differs from a whole of few parts in 
some intrinsic l'espect. In fact, wholes may be an-11.nged in a series 
according as they have more or fewer part.s, and the serial arran1,rement 
implies, &'I we have already 11een, some series of properties differing more 
or les.~ from each other, and agreeing when two whoJt..11 have the same 

• Cf. Mei11011g, Ueber die &deutung de• Weber'11ehen Guetze•, Hamburg and 
Leipzig, 1896, p. 2.'3. 
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finite number of part.'1, but distind from number of parts in finite 
wholes. These properties can be none other than greater or lesis degrees 
of di,·isibilit_v. Thus magnitude of divisibility would appear to be a 
11i111plc property of a whole, dir;tinct from the number of p1ut-, included 
in the whole, hut <·orrelated with it, pro\'ided this number be finite. If 
this view can he maintained, divisibility may he allowed to remain as a 
numcri<·ally measurable, but not di\'iHible, class of magnitude!!. In this 
class we :-.hould have to place lengths, areas and volumes, hut not 
di:-.tancl'8. At a later stage, however, we shall find that the divisibility 
of infinite wholes, in the sense in which this is not measured by cardinal 
numbe~, must he derived through relations in a wa_v analogous to t.hat 
in which distance is derived, and mu,;t he really a property of relations•. 

Thus it would appear, in any case, that all magnitudes are in­
divi11ihle. This is one common mark which they all possess, and so far 
as I know, it i11 the only one to be added to those enumerated in 
Chapter x1x. Concerning· the range of quantity, there seems to be no 
further general proposition. Very many simple non-relational tenns 
have magnitude, the principal exceptions being colours, point-., instants 
and numbers. 

163. Finally, it is important to remember that, on the theory 
adopted in Chapter x1x, a given magnitude of a given kind is a simple 
concept, having to the kind a relation analobl'OUS to that of inclusion in 
a clas..<1. When the kind is a kind of existent.-;, such a.-; pleasure, what 
actually exists is never the kind, but various pa1ticular magnitudes of 
the kind. Pleasure, abiitractly taken, does not exist, but various amounts 
of it exist. This degree of abiitraction is essential to the theory of 
quantity : the1-e must be entitie11 which differ from each other in nothing 
except magnitude. The b-'Tounds for the theory adopted may ~rhaps 
appear mo1-e clearly from a furthPr examination of this case. 

Let us start with Bentham's famous proposition: "Quantity of 
pleasure being equal, pushpin is as good as poetry." Here the qualita­
tive differenc..-e of the ple11.>1ures is the very point of the judgment; but in 
order to be able to say that the quantities of pleasure are equal, we 
must be able to abstract the qualitative differences, and leave a certain 
magnitude of pleasure. If this abstraction is legitimate, the qualitative 
difference must be not truly a difference of quality, but only a difference 
of relation to other terms, a.<1, in the present case, a difference in the 
causal relation. :For it i11 not the whole pleasurable states that are 
compared, but only--as the form of the judgmcnt aptly illustrates­
their quality of pleasure. If we suppose the magnitude of pleasure to 
be not a Keparate entity, a diffic·nlt_y will arise. For the mere element of 
plea.•mre must be identical in the two c·a.-.es, whereas we require a possible 
differe1we of magnitude. Hence we can neither hold that only the 
whole concrete state exil'lb1, and any part of it is an abstraction, nor that 

* See Chap. x1.v11. 
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what exists is abstract pleasure, not magnitude of pleasure. Nor can we 
say : We abstract, from the whole states, the two elements magnitude 
and pleaimre. For then we should not get a quantitative compari110n of 
the pleasures. The two states would agree in being pleasures, and in 
being magnitudes. But this would not gh-e us a magnitude of pleasure; 
and it would give a magnitude to the states as a whole, which is not 
admissible. Hence we cannot ahi;trnct magnitude in general from the 
states, since as wholeR they have no magnitude. And we have seen that 
we must not abstract bare pleasure, if we are to have any possibility of 
different magnitudes. Thus what we have to abstract is a magnitude of 
pleasure R.'I a whole. This must not he analy1,ed into ma,.,rnitude and 
pleasure, but must be abstracted as a whole. And the magnitude of 
pleasure must exist ax a part of the whole pleasurable states, for it i!l 
only where there is no difference save at most one of magnitude that 
quantitative comparison is possible. Thus the di11<·ussion of this parti­
cular case fully confirms the theory that every magnitude is unanalymble, 
and ha.-. only the relation analogom1 to inclusion in a class to that 
abstract quality or relation of which it is a magnitude. 

Having seen that all magnitudes are indivisible, we have next to 
consider the extent to which numbers can be used to express magnitudes, 
and the nature and limits of measurement. 
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CHAPTER XXI. 

NUMBERS AS EXPRESSISG MAGNITUDES: 
MRASURI•~MENT. 

164. h is one of the 1L'lll11mptions of educated common-sense that 
two magnitudes of the Mme kind must he numerically comparable. 
People are apt to say that they are thirty per c-ent. healthier or happier 
than they were, without any suspicion that such phrases are destitute of 
meaning. The purpose of the present chapter is to explain what is 
meant by mea.surt!ment, what are the clas.'leS of magnitudes to which it 
applies, and how it is applied to tho11e cla.'ll!es. 

Measurement of magnitudes is, in its most breneral sense, any method 
by which a unique and rec-iprocal correspondence is established between 
all or some of the magnitudes of a kind and all or some of the numbers, 
integral, rational, or real, as the ea.ore may be. (It might he thought 
that complex numbers ought to be included ; but what can only be 
measured by complex numbers is in fact always an aggregate of magni­
tmle!I of different kinds, not a single magnitude.) In this general sense, 
measurement demands some onc-0ne relation between the numbers and 
magnitudes in question-a relation which may be direct or indirect, 
important or trivial, accoroing to circumstan<--es. Measurement in this 
sense c·an be applil-d to very many classes of magnitudes; to two great 
cl11.11Ses, distanl-es and divisibilities, it applies, as we shall see, in a more 
important and intimate sense. 

Concerning measurement in the most general sense, there i11 very 
little to be said. Since the numbers form a se1ies, and since every kind 
of magnitude also fm'Jns a !lCries, it will be desirable that the order of 
the IDa{.rnitudes measun.-d should mrre11pond to that of the numbers, i.e. 
that all rclatiom; of between 11hould be the 1111.me for magnitudes and their 
mea."lures. \Vherc\·er there is a 1.ero, it i11 well that this should be 
measnn.'<l by the number zero. These and other conditions, which a 
meL'IUre should fulfil if pos11ible, may be laid down; but they ·are of 
practical rather than theoretical importanc,-e. 

161S. There are two general metaphysical opinions, either of which, 
if acrepted,· shows that nll m~'11itudes are theoretically capable of 
measurement in the abm·e iieDl!C. The first of these is the theory that 
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all evenbl either are, or are correlated with, events in the dynamical 
causal series. In regard to the so-called ReCondary qualities, this view 
has been so far acted upon by physical science that it has prm·ided most 
of the so-called intensive quantities that appear in space with spatial, 
and thence numerical, mea.'lures. And with regard to mental quantities 
the theory in quc.-stion is that of psyc·hophysical parallelism. Here the 
motion which il'I c·orrdatcd with any psychical quantity always theoreti­
cally affords a means of measuring that quantity. The other metaphJ•sical 
opinion, which leads to unh·enial measurability, is one suggested by 
Kant's "Anticipations of Perception•," namely that. among intensive 
magnitudes, an increase is always ac."<·ompank-d by an increase of reality. 
Reality, in this c.-onnection, seems_ 11ynonymous with existence; henc·e 
the doctrine may be stated thus: Existence ii1 a kind of intensive 
magnitude, of which, where a greater magnitude exii1ts, there is always 
more than where a less magnitude exii1b1. (That this ii1 exactly Kant's 
doctrine 11eems improbable; but it is at least a tenable view.) In this 
ca.'le, since two instances of the same magnitude (i.e. two equal quantities) 
mm1t have more existenc.-e than one, it follows that, if a single magnitude 
of the same kind can be found having the same amount of existence as 
the two equal quantities together, then that magnitude may be ('8.lled 
double that of each of the equal quantities. In this way all intensh·e 
magnitudes become theoretically capable of measurement. That this 
method has any practical importance it would be absurd to maintain ; 
hut it may contribute to the appearam-e of meaning belonging to trc>ire 
as happy. It gives a sense, for example, in which we may l!&Y that a 
child derives as mueh pleasure from one choeolatc as from two acid 
drops; and on the ba.11is of such judgments the hedonistic Calculus 
could theoretica11y he built. 

There is one other general obl!ICrvation of some importance. If it be 
maintained that all series of magnitudes are either continuom1 in Ce.ntol''s 
sense, or are similar to series whfoh can be choi;en out of c·ontim10u11 
series, then it is theoretically pcwiible to correlate any kind of magnitudes 
with all or some of the real numbers, 110 that the :r.eros corrci.-pond, and 
the greater magnitudes c·orrespond to the J,rre&ter numbers. But if any 
series of magnitudes, without being continuous, contains continuous 
series, then such a serie11 of magnitudes wiU be strictly and theoretically 
incapable of measurement by the real numbent. 

168. Leaving now these somewhat vague generalities, let us examine 
the more wmal and concrete sense of measurement. ,vhat we require is 
some sense in which we may say that one magnitude is double of another. 

• &i,u, Vemu'!ft, ed. Hart. (1867), p. 160. The wording of the fint edition 
illuirtratell better than that of the second the doctrine to which I allude. See e.g. 
Erdmann'• edition, p. 161. 

t See Part V, Chap. XXXIII ff. 
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IS.-INITY, THE IN.FINITI~SIMAL, AND CONTINlTJTY. 

179. A1.Mos'f all mathematical ideas prei;ent one great difficulty : 
the diffirulty of infinity. This is usually regarded by philosophers as 
an antinomy, and as showing that the propositions of mathematil's are 
not mt:!taphysi(•ally true. }'rom this receivL-d opinion I am l'Ompelled to 
disi,ent. Although all apparent antinomiL-s, exrept !!Uch as are quite 
easily disposed of, and such as belong to the fundamentals of logi(•, are, 
in my opinion, redudble to the one difficulty of infinite number, yet this 
diffil'ulty itself appears to he soluble hy a correct philosophy of an.11, and 
to have been generated very largely by l'lmfusions due to the ambiguity 
in the meaning of finite intet,,rers. The problem in gt-neral will he 
dis(·ussed in Part V ; the purpose of the present chapter is merely to 
show that quA.ntity, which ha.11 been regarded as the true home of infinity, 
the infinitesimal, and rontinuity, must give place, in this respect, to 
order; while the statement of the difficulties whid1 arise in regard to 
quantity can be made in a form which is at once ordinal and arithmetical, 
but involvL-s no rcferenre to the special peculiaritie1-1 of <1uantity. 

180. The three problems of infinity, the infinitesimal, and con­
tinuity, a."1 they Ol'C:Ur in connection with quantity, are closely related. 
None of' them can be fully di1-1cui..,~ed at this i;tage, Hinre all depend 
essentially upon order, while the infinitesimal depends also upon number. 
The question of infinite quantity, though traditionally consiclerL-d more 
formidable than that of zero, is in reality far less so, and might be 
briefly di1-1posed of, but for the brreat devotion commonly shown by 
philrn1opheI"R to a proposition which I shall c:all the axiom of finitudc. 
Of some kinds of magnitude (for example ratios, or distanL-es in space 
and time), it appears to be true that there is a magnitude brreatcr than 
any gi\'en magnitude. That is, any 1119.b'llitudc being mentioned, another 
can be found whil'h is greater than it. The deduction of' infinity from 
this fact is, when roffCl•tly performed, a mere fiction to fadlitate com­
pression in the statement of results obtained by the method of limits. 
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Any dass u of magnitudes of our kind being defined, three eases may 
arise: (I) There m11.y be a cla.ss of terms greater than any of our cla.'is u, 
and this new class of terms may have a smallest member; (2) there may 
he such a class, but it may have no smallest member; (3) there may be 
no magnitudes whid1 arc greater than any term of our dass u. Suppos­
ing our kind of ma{,,l'JJitudes to he one in whit·h there is no greatest 
mab"Tlitude, l'ase (2) will always arise wht•rc the dR.ss u. contains a finite 
number of krms. On the other hand, if our series be what. is t·alled 
co11dl"f1,ml in it.vdf, casl' (2) will m•ver arise when u is an infinite class, 
and h11.., no grPah•st h•rm ; and if our serit-s is not l'ondensed in itself, 
but does have a term lX'twcen any two, another whi,·h hR.s this property 
can R.lways be obtained frorn it•. Thus all infinite st•rics which hRve 
no gn·at;st term will have limits, cxl'cpt in case (/}). To A.void cir­
cumloeutiou, case (S) is defined a~ that in whil'h thl• limit is infinite. 
But this is a mere device, and it is geuerally admittl'd by n111.thema­
tici11us to he such. Apart from special circumstanct•s, tht•re is no 
rc11.o,;on, merely because a kind of magnitudes has no maximum, to 
admit that there is an infinite magnitude of the kind, or that there 
arc many sm•h. When magnitudes of a kind ha,·ing no maximum 
arc capable of numerical measurement, they very often olx-y the axiom 
of An·himcdes, in virtue of which the ratio of an,v two magnitudes of 
the kind is finite. Thus, so far, there might appear to be no problem 
connected with infinity. 

llut at this point the philosopher is apt to step in, and to declare 
that, by all true philosophic principles, every well-definc1.l series of krms 
must hllw a last t1.•rm. If he insists upon creating this ]a.,;t term, and 
calling it infinity, he easily deduces intolerable contradictions, from which 
he infers the inadequacy of mathematics to obtain absolute tnith. For 
my part, however, I see no reason for the philosopher's axiom. To show, 
if possible, that it is not a necessary philosophic principle, let us under­
take its analy:sis, and see what it really involves. 

The problem of infinity, as it ha.~ now emcrgL'li, i!> not propt'rly a 
quantitative problem, but rather one cont·crning order. It is only 
be<:ause our magnitudes form a series having no last term that the 
problem arises: the fac-t that the series is composed of ma1,,rnitudes is 
wholly irrelevant. With this remark I might leave the subject to a 
later i,,tage. Hut it will be worth while now to elicit, if not to examine, 
the philosopher's axiom of finitude. 

181. It will be well, in the first place, to show how the problem 
concerning infinity is the same as that concerning continuity and the 
infinitesimal. :For this purprn,e, we shall find it convenient to ignore the 
absolute rero, and to mean, when we speak of any kind of magnitudes, 
all the magnitudes of the kind except zero. This is a mere change of 

* This will be further explained in Part V, Chap. Xll xvi. 
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diction, without which intolerable repetitions would be necessary. Now 
there certainly are some kind.'! of magnitude where the three following 
axioms hold : • 

(I) If A and B be any two magnitudes of the kind, and .A is 
greater than B, there is always a third mo+,rnitucle C imch that .A 
is greater than C and C greater than B. (This I shall call, for the 
present, the axiom of continuity.) 

(2) There is always a mahrnitude less than any given magnitude B. 
(3) There is always a mabrnitude greater than any given magni-

tude A. 
Prom these it follow11 :-
(I) That no two magnitudes of the kind are consecutive. 
(2) That there is no lea.'4t rn~"llitude. 
(3) That there is no hrreatest magnitude. 
The above propositions Rre <-ertainly true of some kinds of magni­

tude; whether they are true of all kinds remaim1 to he exRmim!<l. The 
following three propositio1111, which directly contra.did the previous three, 
must be always tme, if the philosopher's axiom of finitude is to be 
&C<"<•ptl.J: 

{ti) There arc consecutive magnitudes, i.e. magnitudes such that 
no other magnitude of the same kind ii, greater than the les11 and less 
than the greater of the two given magnitudes. 

(b) 'There is a magnitude smaller than any other of the same kind. 
(c:) There is a magnitude greater than any other of the same 

kind•. 
As these three propositions directly contradict the previous three, it 

would seem that both sets cannot be true. We have to examine the 
grounds for both, and let one set of alternatives fall. 

182. Let us begin with the propositiom1 (a), (b), (r), and examine 
the nature of their hrrounds. 

(a) A definite magnitude .A. being given, all the magnitudes greater 
than .A form a series, who~ differences from .A are magnitudes of a new 
kind. If there be a magnitude B consecuth·e to A, its differenc·e from A 
will be the least magnitude of its kind, provided equal stretehei, cor­
respond to equal distances in the series. And conversely, if there be 
a smalle11t difference between two magnitudes, .A., B, then the11e two 
m8f:,rnitudes must always be consecutive; for if not, any intennediate 

* Those Hegelians who search for a chance of an antinomy may proceed to 
the definition of zero and infinity by means of the above propositions. When (2) 
and (b) both hold, they may say, the magnitude satisfying (b) is called zero; when 
(3) and (c) both hold, the magnitude satisfying (c) is called infinity. We have seen, 
however, that zero is to be otherwise defined, and has to be excluded before (2) 
becomes true ; while infinity is uot a maguitude of the· kind in question at all, but 
merely a piece of mathematical shorthand. (Not iufiuity in general, that is, but 
b1finite magnitude ia the cases we are diseussing.) 

Downloaded from https://www.holybooks.com



181, 182] lnjinif.lJ, tlte l11finitesima.l, and Continuity 191 

magnitude would have a smaller differcm·c from .A than B has. Thus 
if (b) ill unive11;ally true, (a) must also be true; and conversdy, if (a) is 
true, and if the 1Seriei. of magnitudes he sm·h that equal stretches <·or­
respond to equal distances, then (b) is true of thl· distances between the 
magnitudes considered. \Ve might rest content with the rl-duction of 
(a) to (b), and proceed to the proof of (b); hut it i'lt.'Cllls worth while 
to offer a direct proof', sul·h as presumably the finitist philosopher has in 
his mind. 

Between A and B there is a <·ertain tlumber of magnitudes, unless A 
and B arc consc<·utive. The intermediate magnitudci, all have order, so 
that in passing from A to B all the intcmwdiate magnitudes would 
be met wilh. In such au enumeration, there must he ,yomc magnitude 
which comes next after any magnitud~ C; or, to put the matter other­
wise, since the enumeration has to begin, it must begin somewhere, and 
the term with whi<"h it begins must be th<i magnitude next to A. If 
this were not the case, there would be no definite series ; for if all the 
terms have an order, some of them must be <·onseentive. 

In the above argument, what is important is its dependt>nec upon 
number. The whole argument turns upon the prin<"iplc by which infinite 
number is shown to he ~If-contradictory, namely: .4 giv,·11 ,:ollectwn 
qf man,'1/ terrn.Y mu.vt rmitai11 :tome .finite number qf terms. We say: All 
the magnitudes between A and II form a given collection. If there 
are no such magnitudes, A and B are consecutive, and the quciition 
is de<·idcd. If there are such magnitudes, there must be a finite 
number of them, say n. Sinee they form a series, there is a definite 
way of' a.-,signing to them the ordinal numbers from 1 to n. The mth 
and (m+l)th are then consecutive. 

If the axiom in italit·s be denied, the whole argument collapses; and 
this, we shall find, is also the <'II.Se as regards (b) and (c). 

(b) The proof' here is precisely similar to the proof of (a). If there 
are no magnituclt·s less than A, then .4 iis the lea.-;t of its kind, and the 
question is dccidL-d. If there are any, they form a definite collection, 
and therefore (by our axiom) have a finite number, say n. Since they 
form a series, ordinal numbers may be a1Ssigned to them growing higher 
as the magnitudes become more distant from A. Thus the nth magni­
tude is the smallest of its kind. 

(c) The proof here is obtained as in (b), by considering the collection 
of magnitudes greater than A. Thus eYcrything depends upon our 
axiom, without which no case can be made out against continuity, or 
against the absence of a greatest and lea.~t magnitude. 

As regards the axiom itself, it will be seen that it has no particular 
reference to quantity, and s.t fil"llt Night it might seem to have no 
reference to order. nut the word .finite, which occurs in it, requires 
definition; and this definition, in the form suited to the present dis• 
cm1sion, has, we shall find, an essential reference to order. 
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183. Of all the philosophers who have inveighed again!!t infinite 
number, I doubt whether there iH one who has known the differem•e 
between finite and infinite numbcrii. The diffcrenc:.i is simply this. 
Pinite numbers obey the law of mathematical induetion; infinite 
numhel'!I do not. That is to i,ay, given any numbc1· n, if ,i belongs 
to every cla!ls a to which O helonhrs, and to whil·h belongs also the 
number next after any number which is an .v, then 11 is finite; if not, 
not. It is in this al,(mc, and in its conse11uences, that finite and infinite 
numbers differ•. 

The prineiple may he otherwise stated thus : If every propo~ition 
which holds concerning 0, ancl ah,o holds conl·erning the innnL'<liate 
succes11or of e,·ery number of whil·h it hold11, holds concerning the number 
n, then n i!! finite; if not, not. This is the precise sense of what may he 
papularly express('(l by saying that every finite number can be reached 
from O by Slll'l'e!i."iive steps, or by sucl-essive additions of l. This is the 
principle whit·h the philosopher must be held to lay clown as obviou11ly 
applicable to all numbers, though he will have to admit that the more 
precisely his principle is 11tated, the less obvious it bel'llmes. 

184. It may he worth while to 11how exactly how mathematical 
induction enwrs into the above proofs. Let us take the pmof of (a), 
and suppose there are 11 magnitudes between ..4 and B. Then to begin 
with, we suppm;ed these magnitudes capable of enumeration, i.e. of an 
order in which there are l'Onsecutive terms and a fil'llt term, and a term 
innnediat.ely pre<"t..'Oing any term exc·ept the first. This property pre­
supposes mathematkal induction, and wai, in fact the very property in 
dispute. Henc·e we must not presuppose the possibility of enumeration, 
which would be a petitit, principii. But to come to the kernel of the 
argument : we supposed that, in any series, there must be a definite way 
of a.ssibrning ordinal numbers to the terms. This property belongs to 
a series of one term, and belongs to every 11eriei. having m + I terms, 
if it belonhrs to every Rcries having m terms. Hence, by mathematical 
induction, it belongs to all series having a finite number of terms. But 
if it be allowed that the number of terms may not be finite, the whole 
argument collapses. 

Ai. regards (b) and (t'), the argument is similar. Every Keries having 
a finite number of terms can be shown by mathematical induction to 
have a first and la."lt term ; but no way exists of proving this c-onceming 
other serieH, or of proving that all series are finite. Mathematical 
induetion, in short, like the axiom of parallels, is useful and <·onvenient 
in its proper pla(.-e; but· to suppose it always true is to yield to the 

* It m1111t, however, be mentioned that one of these co1111equences gives a logical 
dift'ereuce betw·een finite and infinite numbers, which may be taken as an inde­
pendent dt>finition. This has been already explained in Part 11, Chap. xm, and will 
be further diacu1111ed in Part V. 
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tyranny of mere prejudice. The philOROpher's finitist arguments, there­
fore, rest on a principle of which he is ignorant, which there is no reason 
to affirm, and every reason to deny. With this conclusion, the apparent 
antinomies may he com1idered solved. 

185. It r;mains to ronsider what kinds of magnitude satisfy the 
propositions (1 ), (!l), (3). There is no genernl prindple fnm1 which 
these can he proved or disproved, but there a.J'l' certainly ases where 
they are true, and others whrre they are false. It 1!1 generally held by 
philosophers that numbers are essentially dii;crete, while magnitudes are 
essentially continuous. This we shall find to be not the case. Real 
numbers posse!'is the most complete continuity known, while many kinds 
of magnitude posse11s no <-ontinuity• at all. The word rontinuit,11 has 
many meanin~rs, but in mathematics it has only two--<>ne old, the other 
new. For present purpose!! the old meaning will suffice. I therefore 
set up, for the present, the following definition : 

Continuity applies to series (and only to series) whene,·er the.'!e are 
such that there is a term between any two given terms•. "'hatever is 
not a series, or a compound of series, or whatever is a seriei; not fulfilling 
the above condition, is discontinuous. 

Thus the scriei; of rational number11 is continuous, for the arithmetic 
mean of two of thrm is always a third rational number between the two. 
The letters of the alphabet ~I"(' not continuous. 

We have seen that any t.wo terms in a series have a distance, or a 
stretch whirh has magnitude. Since there are certainly discrete series 
(e.g. the alphabet), there are certainly discrete magnitudes, namely, the 
distances or t.he stretches of terms in discrete series. The distance 
between the letters A and C is greater than that between the letters 
..A. and B, but there is no magnitude which is greater than one of these 
and less than the other. In thi11 ca.~e, there is ah,o a greatest possible 
and a least possible distance, Ro that all three propositions (1), (2), (3) 
fail. It must not be supposed, however, that the three propositions 
have any necessary connection. In the case of the integers, for example, 
there arc consec-utive distances, and there is a least possible distance-, 
namely, that between consecutive integers, but there is no greatest 
possible distance. Thus (8) is true, while (1) and (2) are false. In 
the ea.~ of the series of notes, or of colours of the rainbow, the series 
has a beginning and end, so that there is a greate&t distance ; but there 
is no least distance, and there is a term between any two. Thus (1) 
and (2) are true, while (3) is false. Or again, if we take the series 
composed of zero and the fractions having one for numerator, there is a 

* The objection to this definition (as we shall see in Part V) is, that it does not 
give the usual properties of the existence of limits to convergent series which are 
commonly 1111SOCiated with continuity. Series of the above kind will be called 
compact, except in the preeent diacU88ioo. 
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greatest dist.ance, but no least dist.ance, though the series is discrete. 
Thus (i) is true, while (1) and (3) are false. And other combinations 
might be obtained from other series. 

Thus the three propositions (1), (!!), (S), have no necessary connection, 
and all of them, or any selection, may be false as applied to any gi,·en 
kind of magnitude. We <'&nnot hope, therefore, to prove their truth 
from the nature of magnitude. If they are ever to be true, this must be 
proved independently, or discovered by mere inspection in each particular 
ca.~e. That they are sometimes true, appears from a com1ideration of 
the dii,tances between terms of the number-continuum or of the rational 
numbers. Either of thelll' series is continuous in the above sense, and 
has no first or last te11n (when zero is excluded). Hence its distances 
or stretches fulfil all three conditions. The same mi~ht be infem.-d 
from space and time, but I do not wish to anticipate what is to be said 
of these. Quantitiei. of divisibility do not fulfil these conditions when 
the wholes which are divisible consist of a finite number of indivisible 
part... But where the number of parts is infinite in a whole class of 
differing magnitudes, all three conditions are satisfied, as appeal"ll from 
the properties of the number-continuum. 

We thus see that the problems of infinity and continuity have no 
essential eonnection with quantity, but are due, where magnitudes 
prct1ent them at all, to characteristics depending upon number and 
order. Hem·e the discussion of these problems can only be undertaken 
aft.er the pure theory of order has been set forth•. To do this will 
be the aim of the following Part. 

186. \Ve may now sum up the l'ellults obtained in Part III. In 
Chapter XIX we determined to define a magnitude ru; whatever is either 
greater or less than something else. We found that magnitude has no 
nece1,1sary connection with divisibility, and that greater and less are inde­
finable. Every magnitude, we saw, has a certain relation-analogous to, 
but not identical with, that of inclusion in a dass-to a certain quality 
or relation ; and this fact is expressed by saying that the magnitude 
in question is a magnitude ef that quality or relation. We defined a 
qua11tit.11 as a particular contained under a magnitude, i.e. as the complex 
consisting of a magnitude with a certain spatio-temporal position, or with 
a pair of tenns between which it is a relation. We decided, by means of 
a general principle concerning transitive symmetrical relations, that 
it is impossible to content ourseh-es with quantities, and deny the 
further abstraction imolved in magnitudes; that equality is not a direct 
relation between quantities, but consists in being particularizations of 
the same magnitude. Thus equal ,1ua11tities are instances of the same 

j * Cf. Couturat, "Sur la fk'jinition du Co,itim1," Revue de Metaph!Jltique et de 
7rale, 1000. 
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magnitude. Similarly greater and less are not direct relations between 
quantities, but between magnitudes: quantities are only greater and 
less in virtue of being instances of greater and less magnitudes. Any 
two magnitudes which are of the same quality or relation are one 
greater, the other less; and greater and less are asymmetrical transitive 
relations. 

Among the terms which have magnitude are not only many qualities, 
but also asymmetrical relations by which l-ertain kinds of series are 
constituted. These may be called distances. When there are distances 
in a series, any two terms of the series have a distance, which is the same 
as, greater than, or less than, the distance of any two other tenns in the 
series. Another peculiar clas..'I of m~gnitudes discussed in Chapter xx is 
constituted by the degrees of divisibility of different wholes. This, we 
found, is the only case in whi<'h quantitie'I are divisible, while there is no 
instance of divisible magnitudes. 

Numerical measurement, which was dii;cussed in Chapter xx1, required, 
owing to the decision that most quantities and all magnitudt."S are in­
divisible, a somewhat unusual treatment. The problem lie!!, we found, 
in establishing a one-one relation between numbers and the magnitudes 
of the kind to be mea.'lured. On rertain metaphysical hypothest>s ( whi<·h 
were neither accepted nor rejected), this wa.'I found to be always theo­
retically possible a., regards existents actual or possible, though often 
not pmctically fea.'lible or important. In regard to two dasses of 
magnitudes, namely divisibilities and distances, measurement was found 
to proceed from a very natural convention, which d<>fines what is 
meant by saying (what <'an never have the simple !-!Cnse which it ha.,; in 
connection with finite wholes and part.'1) that one such magnitude is 
double of, or n times, another. The relation of distan<-e to stretch 
was discussed, and it wa.'I found that, apart from a i;pecial axiom to 
that effect, there was no a priori rea.'lon for regarding equal distances as 
colTellponding to equal stretches. 

In Chapter xxn we discm1sed the definition of zero. The problem 
of zero was found to have no connection with that of the infini­
tesimal, being in fact closely related to the purely logical problem 
as to the nature of negation. \Ve decided that, just a.<i there are the 
distinct logical and arithmetical negations, so there is a third funda­
mental kind, the quantitath·e negation ; but that this is negation of 
that quality or relation of which the magnitudes are, not of m9t,1111itude 
of that quality or relation. Hence we were able to regard :r.ero as one 
among the magnitudes contained in a kind of magnitude, and to dis­
tinguish the zeroes of different kinds. We showed also that quantitative 
negation is connected with logical negation by the fact that there cannot 
be any quantities whose magnitude is zero. 

In the present Chapter the problems of continuity, the infinite, and 
the infinitesimal, were shown to belong, not specially to the theory of 
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quantity, but to those of number and order. It wa.11 shown that, though 
there are kinds of magnitude in which there is no greatest and no least 
magnitude, this fact does not l'e(1uirc us to admit infinite or infinitesimal 
magnitudes ; and that there is no contradiction in supposing a kind of 
magnitudes to form a series in which there is a term between any two, 
and in which, consec1uently, there is no term ronsecutive to a given term. 
The supp~cd contradil't.ion was 11how11 to result from an undue use of 
mathematical induc·tion-a principle, the full discus.'lion of which pre­
supposes the philosophy of order. 
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CHAPTER XXIV. 

THE GE~ESIS <W SEIUES. 

187. Tim notion of order or series is one with which, in l'Onnel'tion 
with distiml'e, and with the order of magnitude, we haw already 
had to deal. The disc·ussion of C'ontinuity in Uie last c-hi1pter of 
Part III showed us that thii. is properly an ordinal notion, and 
prepared tu, for the fundaml'lltal importanl'e of order. It is now high 
time to examine this c·onc·ept on its own Rcemmt. The imporbu11·e of 
order, from a purely mathenmtil'al standpoint, hlL~ hem immeasumbl,v 
inl'rl•a:-.c·d h,v many modem devdopments. Dedckind, Cantor, and Peano 
ha,·e shown how to base all Arithmetic and Analysis upon sPries of a 
(·e1fain kind-i.c. upon tho:-,e properties of finitl- numbers in virtue 
of which Uu.•.v form what I shall eall a prot:r,·s.~ion. lmi.tionali. are 
defined (as we shllll :-.cc) l•ntirely by the help of order; and a new 
da.-.s of transfinite ordinal:. is introduced, hy whid1 the most important 
and interesting n•sults are obtained. In Geometry, von Staudt's quadri­
lateral ('onstrudion and Pil'ri's work on Projt'din· Geometry have shown 
how to ~ive points, lines, and planes an order independent of metrical 
considerations and of quantity; while descriptiw Gl'omctry proves that 
a rery large part of Gco111t:~try demands only the possibility of serial 
arrangement. Moreover the whole philosophy of space and time depends 
upon the view we take of order. Thus a disl·ussion of order, which 
is lacking in the current philosophi('s, has beeome essential to any 
understanding of the foundations of mathcmatirs. 

188. The notion of order is more t·omplex than any hitherto 
an11.lyzcd. Two terms e1mnot ha\'e an order, and even thrt•l· eannot 
have a cy1·1ic order. Owinl{ to this complexity, the logical analysis 
of order presents considerable difficulties. I shall therefore approach 
the problem gradually, eonsiclering, in this chapter, the circu1111Stance~ 
under which order arises, and reserving for the second chapter the 
discussion as to what order really is. Thi-; analysis will raise i,everal 
fundamental points in general lohric, which will demand ronsiderable 
discussion of an almost pmely philosophical nature. From this I shall 
pass to more mathcmatic1tl topics, such as the types of serieH and 
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the ordinal definition of numbers, thus gradually preparing the way for 
the discussion of infinity and continuity in the following Part; 

There are two different ways in whieh order may arise, though we 
shall find in the end that the second way is n-ducible to the firNt. In 
the finit, what may be called the ordinal element consists of thrt!e terms 
a, b, c, one of which (b say) is betweeu the other two. This happens 
whenever there is a relation of a to b and of b to ,., which is not a 
relation of b to a, of c to b, or of c to a. This is the definition, or 
better perhaps, the ne<,-cssary and sufficient condition, of the proposition 
"b is between a and "·" But there ru-c other cases of order where, at 
first sight, the above conditions arc not satisfied, and where betzceen 
is not obviously applicable. These are ca-.es where we have four terms 
a, b, c, cl, as the ordinal clt•ment, of whi<·h we c·an say that " and c are 
separated by b and cl. This reln.tion is more complicated, hut the 
following 11Cerns to eharacterize it: a and C' an• separatt'<.l from /, and d, 
when there is an asymmetrical relation whid1 holds hetwl•en a and b, 
b arid c:, c and cl, or bctw(•cn a and d, cl and ,·, ,. ancl b, or between 
c and d, d and a, a and b ; while if we have the first case, the i;ame 
relation must hold either betwl'en cl and a, or else between both a 
and ,., and a and cl; "'ith .. imilar 1\si;umptions for the other two mses •. 
(No further special assumption is n-quircd as to the relatio . hchn.-cn 
a and ,. or between l, and cl; it is the absence of sm·h an a.-ssumption 
which prevents our n,-ducing this case to the former in a simple manner.) 
There are cases-notably where our S<·ries is dost.'<.1-in which it Jil't'tnN 

formally impossible to reduce this second case to the first, though thi11 
appt>aranc,-c, a.-s we shall sec, is in part decl•ptive. \Ve have to show, 
in tht• present chapter, the prirwipal ways in which scril•s arise from 
collections of sud1 ordinal demcnts. 

Although two terms alone cannot have an order, we must not 
a.'lsumt• that order is possible excq>t whet't! there arc relations between 
two tt•rms. In all 1«.•rics, we shall find, there are asymmetriml relations 
betwt.'Cn two terms. Hut an a."lymmetrical n•latio0n of which the1·e is 
only 011c im,tancc does not constitute order. \Ve require at least two 
instam-es f'or bc-twem, and at leo."lt three for sepn.ration of pairs. Thus 
although order is a rt'lation hc.•twe<·n thn-c or four terms, it is only 
pos!jible where there are otht!r relations which hold between pairs of 
terms. These relations may he of \'arious kinds, giving diffi..•rcnt wa_ys 
of generating series. I sha11 now cnume1·ate the principal ways with 
which I am act1uaintt.-d. 

189. (1) The simplest method of generating a serit.'11 is as follows. 
Let there be a collt'Ction of terms, finite or infinite, such that every 
term (with the pos.>1ible ex<·eption of a i.ingle one) ha.-; to one and only 

* This gives a auflicieut but not a 11ece88ary condition for the separation 
of couples. 
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one other tenn of the colla·tion a certain asymmetrical relation ( which 
must of coul'!le be intransitive), and that e~ery term (with again one 
possible exception, which must not be the same WI tlu.• term formerly 
exceptt..-d) has also to one and only one other term of the l'Ollection 
the rdation which is the com·ersc of the former oue•. Further, let 
it be assumed that, if a hRll the first relation to b, and b to c, then c 
does not have the first relation to a. Then every term of the collection 
except the two peculiar terms has one relation to 11 sec·<md term, and 
the ronvcrse relation to a third, while thL"Ne tel'ms themseh·es do not 
have to eac:h other either of the rdations in question. ( 'tmsL'<JUently, 
by the definition of betw,•,•,i, our first tt·rm is bet WCl'II our st'<'ond and 
third terms. The term to whid1 a gi,·en tt•rm has one of the two 
relations in 11uestion is <~llt•cl 1w.i·t ajkr the giv<•n term; the term to 
which the given term has the c·om·en.e relation is l'l\llcd 111·.1·t IH:fore 
the given term. Two ttmns hetwL-en whic·h the relut.ions in quL•stion 
hold arc ca.lk'<l c011.Yemfo•e. The exc·eptionn.l terms (when they exist) 
are not lx-twcen any pair of terms; Ull'y arc callt•d the two ends of 
the series, or one is called the beginning and the other tllC' md. The 
existence of the one docs not imply that of the othc!1·-for t·xample 
the natuml numbers hnvc a beginning but no c•ncl-and neither nL-t.'<l 
exist-for exn.mple, the posit.in-! and negative intci-,rers togethe1· ha,·e 
neithcd. 

The abm·c method may perhapi. become dl•llr hy a fonual exhibition. 

Let R be one of our relations, and let ib, c·onversc be denoted by lit. 
Then if' e be any term of our set, there an• two terms ,1, f, 11m·h that 
e Rd, t' R.f, i.e. such that d 1l r, e Rf ~inc·c\ CIU'h term only he.'I the 
relation R to one other, Wl· c·atmot have d 1l f; and it wa.~ one of 
the initial &'!sumptions that we were not to have f 1l d. Hence e is 
between d andf §. If a be a term which ha.~ only the relation R, then 
obviom1ly a is not lx-twecn imy puir of terms. We may extend the 
notion of l,d,ween by defining that, if c be between b and d, and d 
between ,. and ,., then ,: or d wil1 be said to be also between b and e. 
In this way, unless we either reach an end or come ba<·k to the term 
with which· we starlL'<l, we <·an find any number of tenns between which 
and b the term c will lie. llut if the total number of terms be not 
IC!IS than seven, we cannot show in this way that of a-n,y tlm.-c terms 
one must be between the other two, since the collection may consist 

• 111e cmwerse of a relation is the relation which must hold between y aud z 
when the given relation hold11 between z aud y. 

t The above iR the only method of generating series given by Bolzauo, "Para­
doxien de11 IJnendlichen," § 7. 

! Thi11 i11 the notation adopted by Profe11sor RchriJder. 
§ The denial of d Rf is only 11ece1111ary to this special method, but the denial ot 

f Rd is essential to the definition of between. 
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of two distinct series, of which, if the collection is finite, one at least 
must be closed, in order to avoid more than two ends. 

This remark Rhows that, if the above method is to gh·e a single 
series, to which any term of our collection is to belong, we need a 
further condition, which may be expressed by saying that the collection 
must be ron11ectecl. We shall find means hereafter of expressing this 
condition without reference to number, but for the present we may 
content ourselves by saying that our collection is connected when, given 
any two of itH terms, there iR a certain finite number (not necessarily 
unique) of 11teps from one term to the next, by which we can pass 
from one of our two terms to the other. When this condition is 
fulfilled, we are assured that, of any three terms of our colled.ion, one 
must be betwL-en the other two. 

Assuming now that our collection is connected, and therefore forms 
a single series, four cases may arise: (a.) our series may have two ends, 
(b) it may have one end, (c) it may have no end and be open, (d} it may 
have no end and be dosed. Concerning (a), it is to be observed that 
our series mm,t be finite. For, taking the two ends, since the t·olll!(·tion 
is connected, there is some finite number 11 of steps which will take 
us from one end to the other, and hencli n + 1 is the number of terms 
of the 11l'ries. Every term ext-cpt the two ends is between them, and 
neither of them is between any other pRir of terms. In msc (b), on 
the other hand, our collection must be infinite, and this would hold 
even if it were not connected. Por suppose the end which exists to 
have the relation R, hut not R. Then every other term of the l'ollection 
hll.8 both relations, and <·an never have both to the same term, since R 
is asymmcti-ic'lll. Hence the term to which (say) t· has the relation R is 
not that to which it hacl the relation .R, but is either some new term, 
or one of c:'s predece11sors. Now it cannot be the end-term a, since 

a does not have the relation R t.o any term. Nor can it be any term 
whic·h <~n be reached by :.mccessive steps from a without passing 
through e, for if it were, this term would have two predecessors, 
contrary to the hypothesis that R is a one-one relation. Hence, if 
k be any term whic'.h can be reached by succeSllive steps from a, 
k ha.<i a successor which is not a or any of the terms between a 
and k; and hem-c the collection is infinite, whether it be connel'ted 
or not. In case (l'), the collection must again be infinite. Por here, 
by hypothesis, the series is opcn-i.e., starting from any term e, no 
number of steps in either direction brings us back to e. And there. 
cannot be a finite limit to the number of pm,sible steps, sinl'e, if there 
were, the series would have an end. Here lli,rain, it is not neL-essary to 
suppose the series c,-onnectt.-d. In C&ie (d), on the contrary, we must 
assume connection. By saying that the series is closed, we mean that 
there exists some number n of steps by which, starting from a certain 
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term a, we shall be brought back to a. In this ca.<1e, n is the number 
of tenm1, and it makes no differen<--e with which term we start. In this 
case, between is not definite except where three terms are consecutive, 
and the series contains more than three terms. Otherwise, we need the 
more complicated relation of separation. 

190. (2) The above method, as Wl' ha,·e seen, will give either open 
or closed series, but only sm·h &'I have con!ll.>cutive terms. The second 
method, which is now to be dii;<'llssecl, will give 1K•rie1> in whit·h there 
are no conse("utive terms, but wiU not give cloSl-d i;eries•. In this 
method we have a transitive asymmetric.al relation J>, ,md a collection 
of termK any two of which are· such that either J·P,11 or yP:r. When 
these conditions are satisfied our tenns necessarily form a single series. 
Sinl-e the relation is asymmetrical, we c·an distinguish :1·Pt/ from yP:r, 
and the two cannot both subsistt. Sim-e P is transitive, .,·Py and yPz 
invohe :1•Pz. It follows that P is ah,o a.,;ymrnetrical and tmrn~itive!. 
Thus with rci;pcl·t to any term :r: of our collection, all other terms of 
the c:ollec-tion fall into two classes, those for whic·h il'l',11, and those for 
whic·h zP.r. Calling these two dnsses Tr,l' ancl 'TT,I.' rei;pel'lively, we st.-e 
that, owing to the transitivenc1's of J>, if ,'I/ belongis to the class 7fx, 
71"// ii; l'Ontained in Ti:r; and if ;; belon1-,J"S to tht• dass 7TJ', 7rZ is contained 
in 7r;r,. Taking now two terms ,r, ,'I/, for whid1 J'P:1/, all other terms fall 
into three da.,;.-,cs: (I) Those belonging to 7TJ', and therefore to -rr;11; 
(2) those belonging to 71"//, and therefore to w.1·; (3) those belonging to 
7f:r hut not to 71"//· If z be of the first da.-,s, we havl' zP.r, zP11; if u be 
of' the se<"Ond, :rPv and !JPv; if w be of the third, .rPro and "'l~'lj- The 
ca~e yPu and uP.r is exduded: for :rPy, .11Pu imply :l'l'u, which is in­
consistent with uP:r:. 'I'hus we have, in the three CH.IK.'11, (1) :r: is between 
z and ,1/; (2) y is between :r: and 11; (3) w is betwE.-eu :r: and ,1/· Hence 
any three terms of our collection arc sm·h that one is between the other 
two, and the whole collection forms a single series. If the class (3) 
contains no terms, :r: and y are said to be l'Oll!l(.'Cutive; but many rela­
tions P can be &'!signed, for which there arc e.lwayi.; terms in t.he class (3). 
If for example P be befcrre, and our collection be the moments in a 

* 111e following method is the only one given by Vivanti in the Formu.Jaire de 
Muthhi111tique11, (18!1,5}, VJ, § 2, No. 7; also by Hilman, "On the properties of a on&­
dimensioual manifold," Mind, N.!,. Vol. r. We 11hall tind that it is general in 
a sem1e in which none of our other method11 are so. 

t I use the term u11ymnwtrical as the contrary, rather than the contradictory, 
of 81/mmetriml. If 3:J'y, and the relation is symmetrical, we have alway11 yP.1:; if 
asymmetrical, we never have yl~r. ~ome relatim1M-e,g. logfoal implicatiou-are 
neither symmetrical nor asymmetrical. lm4ead of 111111umi11g P to be 1111ymmetrical, 
we may make the equivalent ruvmmption that it is what Profl'll!IOr Peirce cullK an 
aliore1'1five, i.e. a relation which no term has to itself. (This assumption is not 
equivalent to asymmetry in ~neral, but only when combined with tmnsitivenl!III!.) 

t P may be re&1l tn"t'cede,, and P may lie read follow, provided no temporal or 
spatial ideas are allowed to intrude tl1emselves. 

Downloaded from https://www.holybooks.com



Order [CHAP. XXIV 

certain interval, or in all time, there is a moment between any two of 
our collection. Similarly in the case of the ma,.,rnitudes which, in the 
last c·hapter of Part III, we called continuous. There is nothing in 
the pn..'Sent method, as there was in the first, to i.how that there must 
be c·onsecutive terms, unless the total number of terms in our collection 
be finite. On the other hand, the present method will not allow do:!ed 
series; for owing to the transitiveness of the relation P, if the series 
were closed, and 3: were any one of its terms, we should hM·e 3.'Px, whil'h 
is impos."lible lx.•ca.usc P is a11ymmetrical. Thus in a dosed series, the 
generating relation clln never be transitive•. As in the fornier method, 
the !iCries may have two t•nds, or one, or nonP.. In the first c•ase only, 
it may he finite ; but even in this ea.'«.' it mfl,1J be infinitt·, and in the 
other two cases it must be so. 

191. (3) A 11eries may be genemted by means of distances, as was 
already partially explained in Part III, and as we shall see more fully 
hereafter. In this ca.<1e, "tarting with a c·ertain term 3•, we ,u~ to have 
relations, which are magnitmk-s, between x and a number of other terms 
y, z.. .. According as these relations are hl"f('llter or Jes'-, W(• mn order 
the ('Orrcsponding terms. If the1~ are no similar relations bctwec·n the 
remaining terms y, z, ... , we require nothing further. nut if these 
have relations which are magnitudes of the same kind, c·e1t11in axioms 
arc nec'Ci.sary to insure that the order may he independent of the 
p1utic·ul1u- term from which we start. Denoting by 3.'Z the distam·e of 
:i: and :;, if 3•:; is less than .rw, we must have .11--= less than .1J'll'. A con­
setiuenl.'l', whic·h did not follow when :r was the only h-rm that had 
a distan<'l', is that the distances must be asymmell'ic·al relations, and 
tho!.e whid1 lune one sense must be c•tmsid~red less than zero. l◄'or 
".r:: is less than xrc•" must involve "w;; is less than 'lt•·w," i.l'. m-:: is less 
than 0. In this way till' present c·asc is practically t'l•dm:ed to the 
second; for every pair of terms ,r, y will lx• sud1 that :r,11 is 1ehs than 0 
or else X'// is g1i.•atcr than O; a.ml we may put in the fir"t l'llse yP.i·, 
in the Sl.'l"oml 3•P,1J. Hut we rt'<ptirc one further axiom in ordt•r that 
the arranhrcment may be thus cffoeted unambiguously. If .1·::: = ,1/W, and 
:::10'= :1:IJ, 10 and re•' must be the same point. \Vith this further axiom, 
the redul'tion to ca."le (2) lx.1.·omes c·ompletc. 

192. (4) Co.."ICs of triangular relations are c•apablc of gi,·ing rise to 
order. Let there be a relation ll which holds between y and (x, z), 
between z and (,1/, u), between u and (z, u•), and so on. Brtwee11 is itself 
such a relation, and this might therefot'C seem the most direct and 
natural way of generating order. \Ve "l10uld say, in such a case, that y 
i11 between x and z, when the relation JI holds between y and the couple 
:r, z. \Ve should need a.s."lumptions cont-crning R which i;hould hhow 
that, if .'I/ is between .z· and z, and z between !J and u•, then 9 and:: are 

* l:"or more precise statements, !lee Chap. xxvm. 
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each between x and w. That is, if we have ,'1/R (z, z), zR (.y, re,•), we must 
ha\·e yR (.r, w) and zR (a·, rt•). This is a kind of thn,>e-term transitivene!IS. 
Also if y he between x and z,,, and z between y and r,•, then z must be 
between :r and w, and y lx\twcen .r and z: thRt is, if ,'ljR (.r, w) and 
zR (Jj, w), then ;;R (.r, zt•) and yR (.r, .::). Al110 yR (x, z) must be equi­
valent to yR(z, .r)•. \\'ith theSI' ru,1,umptions, an unambiguous order 
will be generated among any number of tern111 11m·h that any triad has 
the relation R. Whether such a 1,tate of thing11 c·an ever be incapabfo of 
further ana}y1,i11, is a c1uestion which I lean! for the next chapter. 

193. (5) \Ve 111:1.\"e found hitherto no way of generating dosed 
continuous series. There are, however, instam-cs of i.uch series, e.g. 
angles, the elliptic straight line, the c·omplex numbers with a given 
modulus. It is therefore nec·essary to have 11ome theory which allows of 
their possibility. In the c·ase where our terms are asymmetrical relations, 
as straight lines are, or are C'orrclated uniqul'ly 1uul reciprocally with 
such relations, the following theory will effect this object. In other 
<'ases, the sixth method (below) seems adequate to the end in view. 

Let .r, y, s: ••• be a set of asymmetrical rel11tion1,, and let R be an 
asymmetrical relation whic·h holds between any two x, y or y, x except 
when ,'I/ is the converse relation to .r. Also let R be such that, if it holds 
between .r and y, it holds between y and the converse of .x; and if x be 
any term of the collection, let all the terms to which .x has either of the 
relations R, R be terms of the c·ollection. All thc11c conditions are 
satisfied hy angles, ancl whenever they are satisfied, the re1mlting 11Crie11 is 
closed. }'or .rR,'IJ implies yRr, and hence zRy, and thence !}Rx; Mo 
that by means of relations R it is possible to travel f'rom .r back to :r. 
Al1,o there i11 nothing in the definition to show that our !leril.-s cannot be 
continuous. Since it is closed, we cannot apply univenially the notion of 
between; but the notion of separation can he always applied. The 
reason why it is necessary to i.uppose that our term11 either are, or are 
correlated with, asymmetrical relations, is, that such series often have 
antipodes, opposite terms as they may be called; and that the notion of 
oppo.,ite seems to be es.,;entially bound up with that of the converse of an 
asymmetric:al relation. 

194. (6) In the same way in which, in (4), we showed how to 
construct a series by relations of between, we can construct a series 
directly by four-term relations of separation. For this pu11mse, as 
before, certain axioms are necessary. The following five axioms have 
been shown by Vailatit to be sufficient, and by Padoa to pos.'less ordered 
independence, i.e. to be 1mch that none can he deduced from its pre­
decessors!, Denoting "a and b separate c from d" by abjjcd, we must 
have: 

* See Peano, I Prineipii di <kometria, Turi11, 1889, Axioms vm, 11c, x, XJ. 

t Rifliata di Jlatematica, v, pp. 76, 183. l Ibid. p. 18.5. 
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(11) abllcd i11 equivalent to cdllab; 
(#) ab II cd is e<Juivalent to ah II de; 
(,y) ab II cd excludes ac II bcl; 

[CHAP. XXIV 

( 6) }'or any four terms of our collection, we must have ab II cd, or 
ac II bcl, or (lll II bc ; 

( E) If ab II cd, and ac II be, then ac II de. 
By meam1 of these five 8.llSumptions, our terms a, b, c, d, e ... acquire 

an unambiguous order, in which we start from a relation between two 
pairs of term11, which i11 undefined except to the extent to which the 
above assumptions define it. The further consideration of this cruie, as 
generally of the relation of separation, I postpone to a later stage. 

The above six methods of generating series are the principal ones 
with which I am arquainted, and all other methods, so far as I know, 
are reducible to one of these six. The last alone gives a method of 
generating closed continuous series whose terms neither are, nor are 
correlated with, &."iymmetrical relations•. This la..;;t method should there­
fore be applied in ·projective ancl ellipti(' Geometry, where the correlation 
of the points on a line with the lines through a point appears to be 
logically 1mbsequent to the order of the points on a line. But before we 
can decide whether these six methods (esperially the fourth and sixth) 
arc irrcdurible and independent, we must discuss (what has not hitherto 
been analyzcd) the meaning of order, and the logical constituents (if any) 
of which this meaninK is compounded. This will be done in the following 
chapter. · 

* Ree Chap. xxvm. 
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CHAPTER XXV. 

THE MEA~ING OF ORDER. 

195. WE have now seen under what circumstium.•s tlu•rc is an onler 
among a set of terms, and by this means we haw aeqnii'l'd a rertain 
indudivc familiarity with the nature of order. But we lmvc not yet 
fal'ed the qm•!,tion: What is order? This is a difficult <tU('stion, and 
one upon which, so far as I know, nothing at all ha.'\ been written, All 
the authors with whom I am 1u·quainted are content to l'Xhibit the 
genesis of order; and sinre mrn,t of them give only one of the six 
methods enumerated in Chapter xx1v, it is easy for tht.•m to ronfouud the 
genei.is of order with its nature. This confusion is rendered cvitlent to 
us hy the multiplicity of the above methods; for it is evident that we 
mean by order something perfectly definitt.•, whirh, being generated 
equally in all our l'liX cases, is clearly cli!>tinct from each and all of the 
ways in which it may be generated, unle!'ls one of thel'lc ways 11hould turn 
out to be fundamental, and the others to he reducible to it. 'f o elicit 
thil'I common element in all serit:"s, and to hroaeh the logical disrussions 
connected with it, is the purpose of the present <·hapter. This tlist.·ussion 
is of purely philosophical interest, and might he wholly omitted in a 
mathcmatieal treatment of the sul~jl'Ct. 

In order to approach the subject gradually, let us separate the 
dh1cussion of betwce11 from that of separation of <·ouples. When we have 
decided upon the nature of each of these separately, it will be time to 
combine them, and examine what it i11 that both have in common. 
I shall begin with between, as being the simpler of the two. 

196. Between may be characterized (a.'1 in l:hapter xx1v) as a relation 
of one term y to two others z and z, which hold:,; whenever z has toy, and 
y has to z, 1mme relation which y does not have to z, nor z toy, nor z to z•. 

* The condition that z does not have to x the relation in queRtion is comparatively 
inessential, being only required in order that, if y he between x and z, we may not 
have x between y and z, or z between x and y. If we are willing to allow that in 
such cases, for example, as the angles of a triangle, each is between the other two, 
we may drop the coudition in question altogether. The other four conditions, on 
the contrary, aeem more essential. 
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These conditions are undoubtedly au.fficicnt for betweenness, but it may 
be questioned whether they are 'TU!cesaary. Several possible opinions 
must be distingui11ht..'<l in this respect. (1) We may hold that the above 
conditions give the very mf'aning of betw~n, that they constitute an 
actual analysis of it, and not merely a set of conditions insuring it.s 
presence. (2) We may hold that betweni is not a relation of the terms 
:r, y, z at aJI, but a relation of the relation of ,1/ to :r to that of y to z, 
namely the relation of difference of sense. (3) We may hold that 
IJetwem is an indefinable notion, like greatrr and kaN; that the above 
conditiom1 allow us to infer that y is between x and z, but that there 
may be other circumstant-es under which this occuni, and even that it 
may O<'.cur without involving any relation exrept dh·el"llity among the 
pain; (.r, y), (y, z), (.r, z). In order to decide between these theories, it 
will be well to develop eat"h in turn. 

197. (1) In this theory, we define" ,1/ is between.rand z" to mean: 
"There is a relation R such that .rRy, yR z but not yRx, zR.1J"; and it 
remains a question whether we are to add "not zR.r." We will suppose 
to begin with that this addition is not made. The following propositions 
will be generally admitted to be self-evident: (a) If y be between :rand z, 
and z between .1J and w, then .1J is between :r and w; (.8) if y be between 
:r and z, and w between :z· and y, then .1J is between wand z. For brevity, 
let us express "y is between :z• and z" by the 11ymhol :ryz. Then our two 
propositions are: (a) .ry:-: and yzw imply :r:yzo; (/3) :ryz and .xwy imply 
wyz. We must add that the relation of betu•een is symmetrical so far as 
the extremes are concemed : i.e . .i:yz implies zy.r. This condition follows 
directly from our definition. \Vith regard to the axioms (a) and (/3), it 
is to be observed that between, on our present view, is always relative to 
some relation R, and that the axioms are only assumed to hold when it 
ifl the same relation R that i1:1 in question in bc;th the premissei.. Let us 
Mee whether these axioms are conscquent.-es of our definition. For this 
purpotie, let us write R for not -R. 

:xyz means :z·Ry, yllz, yR.r, zfl,y. 
yzro means yRz, zRrc•, zR,lJ, wRz. 
Thus yzrc• only adds to .i-,11z the two conditions zRw, wRz. If R is 

transitive, these conditions insure :ryw; if not, not. Now we have seen 
that some series are generated by one-one relations R, which are not 
transitive. In these ,·1uie1:1, howeYer, denoting by R 1 the relation between 
,'l' and z implied by :rR_y, vHz, and !lo on for higher powers, we can 
substitute a transitfre refation H' for R, where R' means "some positive 
power of R." In this way, if :ryz holds for a relation which is some 
definite power of R, then :ryz holds for R', provided only that no positive 

power of R is equivalent to R. For, in this latter event, we should 
have yR':r whene,·er :z·R'y, and R' could not be substituted for R in the 
explanation of :ryz. Now this condition, that the converse of R is not 
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to be a positive power of R, is equivalent to the condition that our 

series is not to be dosed. Por if R = /l'', then RR= R'•+1 ; but sinl'e R 
is a one-one relation, RR implies the relation of identity. 'l'hus n + 1 
steps bring us hal'k from .r to .r, and our sc·ries is a dosed series of' 
11 + 1 terms. -Sow we have agreed aln.•ady that b,:twt•,•r, is not properly 

applil'ahle to dosed series. Henn· this <·omiition, that R is not to 
be R p(mcr of Ji, impo:..es only sueh rcstri<·tions upon om· axiom (a) as 
we should cxpcet it to lw :,uhjcet to. 

\Vith regard to (,d), we have 

J~IF~ = .rR_11. ,'l}llz. yli.1·. zH;,J . 
. n,:11 = .1·1iw. wll;IJ . wli.r. ,11Rw. 
The <"RM! ('ontemplated by this axiom is only possible if R be not 

a Olll'-one relation, si11('e Wl' have .rl(l/ and .rllw. The dcdm·tion ,oyz 
is here an immediate c·m1sequenl'c of the definition, without the need of 
anv fmthcr ('Onditions. 

· It n·nmins to examine whether we can di~penst.• with the c-ondition 
zR.r in tlw definition of brtween. If we suppose Jl to be a one-one 
relation, and zli.r to be satisfied, we shall have 

;r_ljZ = xll;'I}. yRz. zl(1J .. 1JR.r, 

and we have further hy hypothesis :-:R.r, and ;.ince R is one-one, and 
xR,IJ, we have .rRz. H1•11(·t·, in virtue of the definition, we have ,1JZ,T; 
and similarly we :,hall obtain ;~.TJ/· If we now adhere to our axiom (a), 
we shall haw .r;::,r, whic-h is impossible; for it is <'ertninly part of the 
meaniug of brtwt·t11 that tlw three terms in the rdation should be 
different, and it is impo~sible that a term should be hetwL'Cn x and x. 

Thus we must either insert om· l'ondition ;dl.r, or we must st•t up the 
new eondition in the definition, that .1· and z arc to be different. (It 
should be obserwd that our definition implies that .r is diftc•rent from !I 
and !I from z; for if not, ,1·R.'IJ would invohe yRa-.·, and yRz would 
involve zR,y.) It would seem preferable to insert the condition that x 
and z are to be different: for this is in any case necessary, and is not 
implied by zk.r. This condition must t.hen be added to our axiom (a); 
,ryz and yzw are to imply J.'//W, unless .i· and ro are id1•ntical. In axiom 
(/3), this addition is not necessary, since it is implied in the premisses. 
Thus the condition ::R:i· is not necessary, if we arc willing to admit that 
:r:yz is compatible with yzx-an admission which such ca."les as the 
an~les of a triangle render posl'Jible. Or we may insert, in place of 
zR.r, the condition which we found ne(:essary before to the universal 
validity of our axiom (a), namely that no power of R is to be ecp1ivalent 
to the converse of R: for if we have both 37;z and yz.x, we shall have (Ho 

far at least as x, y, z llre concemed) ll' = R, i.e. if xR!J and yRz, then 

Downloaded from https://www.holybooks.com



2l0 Order [CHAP. XXV 

zR:r. This last course seems to be the best. HenL-e in all cai:;e11 where 
our first instance of between is defined by a one-one relation R, we i1hall 
suhKtitutc the relation R', which means "1mme po.ciith·e power of R.'" 
The relation R' is then tra.m1itive, and the condition that. no positive 
power of R i11 to be <-'<JUivalent to H. is eq uh·alent to the condition that 
R' is to be asymmetrical. Hence, finally, the whole mattel' is simplified 
into the following : 

'l'o say that '!J is between :r and z i11 equivalent to saying that there 
is Komc transitive asymmetrical relation which relateK both :randy, and 
y ancl z. 

This short and simple statement, a.'I the above len1,.,rthy argument 
shows, contains neitht•r mol'e nor less than our original definition, to­
gether with the emendations which we gradually found to be necessary. 
The <JUestion remains, however: Is this the meaning of between? 

198. A negative instam·e can be at once established if we allow the 
phra.'le : R i11 a relation betwren :r and ,'I/· The phrase, a.'I the reader will 
have observed, has b<.-cn with difficulty excluded from the definitions of 
betroeen, which its introduction would have renden.-d at lea.'lt verbally 
circular. The phra.cie may haw none hut a linguisli<· importance, or 
again it may point to a real insufficiem·y in the above definition. Let 
us examine the relation of a relation R to its terms :r and y. In the 
first plaL-e, there certainly is such a relation. To be a term which has 
the relation R to some other term is certainly to have a relation to R, 
a relation which we may express as "belonging to the domain of R:_' 
Thus if :rRy, :r will belong to the domain of R, and '!/ to that of R. 
If we expTC!ls this relation between x and R, or between y and ii, by E, 
we shall have ,1•ER, yER. If further we express the relation of R to ii 
by I, we shall have RIR and RIR. Thus we have :rER, ,yEIR. Now 
EI i11 by no means the converse of E, and thus the above definition of 
betwee11, if' for this rea.cion only, does not apply; also neither J; nor El 
is transitive. Thus our defiuit.ion of between is wholly inapplicable to 
such a ca.'le. Now it may well be doubted whether betwcm, in this case, 
has at all the Mme meaning a.11 in other ca.<ieli. Certainly we do not in 
this way obtain !!Cries : :i· and y are not, in the same sense a.'I R, between 
R and other terms. MoreO\·er, if we admit relation11 of a term to itself, 
we shall have to admit that such relations are between a tenn and 
itself, which we agreed to be impossible. Hence we may he tempted 
to regard the use of betzoeeri in this case as due to the linguistic accident 
that the relation is usually mentioned between the subjec::t and the 
object, as in" .A is the father of B." On the other hand, it may he 
urhred that a relation does have a very peculiar relation to the pair of 
tenns which it relates, and that between 11hould denote a relation of one 
term to two others. To the ohjeL·tion l'Om-cming relations of a term 
to ib1elf, it may he answered that sueh relations, in any system, con-
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stitute a grave logical difficulty; that they would, if po!!.ciihle, he denied 
philosophic validity ; and that even where the relation a.sHertcd is 
identity, there must be two identic·al terms, which are therefore not 
quite identical. As this raises a fundamental difficulty, which we cannot 
discuss here, it will be prudent to allow the answer to pass•. And it 
may he further urged that use of the same word in two connections 
points always to some analogy, the extent of which should be carefully 
inclil'atoo by tho,e who dt·ny that the meaning is the same in both 
cases; and that the analogy here is certainly profounder than the mere 
order of words in I\ sentenc·e, which is, in any case, far more variable 
in this rci,,pect than the phrase that a relatfon is between its terms. 
To these remarks, however, it may. be retorted that the objedor has 
himself indicated the precise extent of the analogy: the relation of a 
relation to its terms is a relation of one term to two others, just as 
betroee11 is, and this ii. what makes the two cases similar. This last 
retort is, I think, valid, and we mav allow that the relation of a relation 
to it,; terms, though involving a· mrn,t important logical problem, is 
not the i.ame as the relation of betroeen by which order i11 to be con­
&titute<l. 

Neverthelci..", the above definition of betroeen, though we 11hall be 
ultimately forced to accept it, seems, at first sight, scarcely ad1..><1uate 
from a philosophical point of view. The reference to aome asymmetrical 
relation is vague, and seems to require to he replac-ed by some phra.8e 
in whic·h no sm·h undefined relation appears, hut only the terms and 
the betweenness. This brings us to the second of the above opiniom, 
concerning between. 

199. (2) Between, it may be said, is not a relation of three terms 
at all, but a relation of two relations, namely difference of sense. Now 
if we take this view, the first point to he observed is, that we rt.-quil'(. 
the two opposite relations, not merely in general, but a.'I particularized 
by belonging to one and the same term. This distinction is already 
familiar from the ca.cie of magnitudes and quantities. Before and afle1 
in the abi,,trac-t do not constitute betweeri: it is only when one and the 
same term is both before and after that between arises : this term is 
then between what it ii,; before and what it i11 after. Hent.-e there is 
a difficulty in the reduction of betwee11 to differem-e of sense. The par­
ticularized relation is a logically puzzling entity, which in Part I {§ 55) 
we found it necessary to deny; and it is not quite ea.~y to di11tinguish 
a relation of two relations, particularized as belonging to the same term, 
from a relation of the term in question to two others. At the same 
time, great advantages are secured by this reduction. We get rid of 
the necessity for a triangular relation, to which many philosophers may 
object, and we assign a common element to all cases of betrtJcen, namely 
difference of sense, i.e. the difference between an asymmetrical relation 
and its converse. 

* Cf. § 95. 
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200. The question whether there l'&n be an ultimate triangular 
relation is one whose actual solution is both difficult and· unimportant, 
but whose precise statement is of very great importanee. Philosophers 
seem usually to assume-though not, so far as I know, explicitly-that 
relations never have more than two terms ; and even such relations they 
reduce, by force or guile, to predi<~ations. Mathematieians, on the other 
hand, almost invariably speak of relations of many terms. ,ve cannot, 
howewr, settle the c1uestion by a simple appeal to mathematical instanl'eK, 
for it remains a question whether these are, or are not, sus<.-eptihle of 
analysis. Suppose, for example, that the projel'tive plane has been 
defined as a relation of three points: the philosopher may alwa_p1 say 
that it should have been defined as 11. relation of 11. point and a line, 
or of two intel'IIC.'Cting lines-a ehange whi<·h makes little or no mathe­
matieal differem·e. Let us see what is the precise meaning of the question. 
There are among terms two radically different kinds, whrn1e difference 
constitutes the truth underlying the doctrine of substance and attribute. 
There are tem1s which can never occur ex<.-ept as terms; such are points, 
inst11.nb1, <·olours, sounds, bits of matter, and generally terms of the kind 
of whid1 existeuts consist. There are, on the other hand, terms whid1 
can occur otherwise than as terms; such are being, adj<.>ctives generally, 
and relations. Such tcmu-; we agreed to call coneepb, •. It is the presence 
of concepts not uc<•urring as terms whieh distinguishes propositiom1 from 
nwre concept..,; in every proposition there is at least one more <·oncept 
than there are terms. The traditional view-whieh may be c·alk-d the 
subjl•<·t-predicate theory-holds that in ew.•ry proposition there is one 
term, the subjel't, and one concept which i11 not a term, the predicate. 
Thii.. view, for many reasons, must he abandoned t. Thl• s11111.lll•11t 
departure from the traditional opinion lies in holding that, where 
propoi..itiom1 arc not reducible to the suhjeC"t-predil·ate form, there are 
always two terms only, and one concept whi<·h is not a term. (The 
two terms may, of course, be complex, and may ea.eh <.-ontain conc·epts 
whil·h are not terms.) This gives the opinion that relation11 are alwayti 
between only two terms; for a relation may be defined a.~ any coneept 
whid1 OCl'Urs in a proposition containing more than one term. But 
there seem11 no ,, priori reai.on for limiting relations to two terms, 
and there are instances which lead to au oppm,ite view. In the first 
place, when the concept of a number is asserted of a collection, if the 
col1t.'C'tio11 has n terms, there a.re n terms, and only one eoncept (namely 
n) which is not a term. In the second place, such relations as those 
of an existent to the place and time of its exit1tence are only redudble 
by 11. ,•cry c·umbrous method to relations of two termst. If, however, 
the reduction be held essential, it tieems to be always formaJJy possible, 

* Kee Part I, Chap. 1v. 
t See The Philoliophy qf Leibniz, by the present author, Cambridge, 1000; 

Chapter 11, § 10. 
t ti\le 1•11rt VII, l'hap. 1.1,•. 
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by compounding part of the propo11ition into one complex term, and 
then asserting a relation behR-en this part and the remainder, which 
can be similarly reduced to one term. There may be cases where this 
is not possible, but I do not know of them. The question whether such 
a formal reduction is to be always undertaken is not, however, so far 
as I have been able to disco\"er, m;e of any great practical or theoretical 
importance. ' 

201. 'l11ere is thus no nlid a priori reason in favour of analyzing 
betroeen into a relation of two relations, if a triangular relation seems 
otherwise preferable. The otht>r reMon in favour of the analysis of 
between is more considerable. So long as betwern is a triangular relation 
of the terms, it must be taken either a.s indefinable, or as involving a 
referen<·e to somt· transitive asymmetril·al relation. But if we make 
betroeen com,ist l"!lsentially in the opposition of two relations belonging 
to one term, there seems to be no longer any undue indeterminll.tcness. 
Against this view we may urge, however, that no rca.son now appeal"!I 
why the relations in qul'stion should have to be transitive, and that­
what is more important-the Vl'ry nwaning of betwem involves the< 
terms, for it is they, and not their relatiom,, that have order. And 
if it were only the n;:lations that were relevant, it would not be necessary, 
as in fact it is, to partil·nlarize them by the mention of the ternu1 
between which they holcl. Thus on the whole, thl• opinion that bt'tween 
is not a triangular relation mm,t be abandoned. 

202. (3) \l\,'e come now to the view that brtwet:n i11 an ultimate 
and indefinable relation. In favour of this view it might be urged that, 
in all our ways of generating open series, we could see that C8.Se8 of 
between did arise, and that we could apply a test to suggested definitiom1. 
This seems to show that the suggei,;ted definitions were merely conditions 
which impl~· relations of between, and were not true definitions of this 
relation. The question : Do such and such conditions insure that .1/ 
shall be between .r and z? is always one whit·h we c11n answer, without 
having to appeal (at least consciously) to any previous definition. And 
the unanalyzable natm"C of betwe.en may he supportL'<l by the fact that 
the relation i!> symmetrical with re11pect to the two extremes, which was 
not the ease with the relations of pairs from which between wll.S inferred. 
There is, however, a very grave difficulty in the way of such a view, and 
that is, that sets of terms have many different ordel"ll, so that in one we 
may have .1/ between .r and z, while in another we have x between 
y and z•. 'l'his seems to show that between essentially involves reference 
to the relations from which it is inferred. If not, we shall at least have 
to admit that these relations ,ue relevant to the genesis of series; for 
series require imperatively that there should he at most one relevant 

• This ca11e i11 illustrated by the rational numbel'II, which may be taken in order 
of magnitude, or in one of the orders (e.g. the logical onler) ·,u which they are 
denumerable. The logical order i11 the order 1, 2, 1/2, a, 1/:3, 2/!J, -l, ..•.•• 
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relation of betu,een among three terms. Hence we must, apparently, 
allow that between i8 not the sole source of series, but must alwavs be 
supplemented by the mention of some transitive a.,;ymmetrical relation 
with respect to which the betweenness arii;es. The most that can be 
Mid is, that this transitive a.o;ymmetrical relation of two terms may 
itself be lobrically suhsec1uent to, and derived from, some relation of 
three terms, suc·h as those comiidered in Chapter xx1v, in the fourth way 
of generating series. When suc-h relations fulfil the axioms which were 
then mentioned, they lead of themselvei, to relations betwt•en pairs of 
terms. For we may say that b pre<..-edes c when ,u·d implies bed, and 
that b follows r when ,1,bd implies dxl,, where a and d are fixed term!I. 
Though such relations are merely derivative, it is in virtue of them 
that betfve,:n occun; in such cascH. Hence we seem finally c-ompelled to 
leave the referenc-e to an a.o;ymmetrical relation in our definition. We 
shall therefore 11ay: 

A term '!I is between two terms :rand z with reforcm·c to a transitive 
a."lymmetricRl relation R when :rRy and yRz. In no other ,·ase ,·au .'I/ 
· be said properly to be between :r and z; and thii, definition brives not 
mere1y a criterion, but the very 111ea11i11g of betweenness. 

203. We have next to consider the meaning of separation of 
couples. This is a more complil·atcd relation than between, and was 
but littJc considered until elliptic Geonwtry brought it into prominence. 
It ha."I bt.-en shown by Vailati • that this relation, like bctwem, always 
involves a transitive a.-;ymmetrical relation of two terms; but this rela­
tion of a pair of terms is itself relative to three other fixed terms of the 
set, as, in the c·ase of betwee11, it was relative to two fixed terms. It is 
further suffic-iently evident that wherever there is a transitive a."lymme­
trical relation, which relates every pair of terms in a collection of not 
less than four terms, there there are pairs of couples having the relation 
of separation. '11ms we shall find it possible to express separation, as 
well aK betwee11, by means of transitive a.-1ymmetrical relation::1 and their 
terms. But Jet us first examine directly the meaning of separation. 

We may denote the fact that a and c arc separated by b and d by 
the symbol tlbcd. If~ then, a, b, c, cl, e be any fiye terms of the set we 
require the fo1lowing properties to hold of the relation of separation ( of 
which, it will be observed, only the last im-okei,; five 
termll): 

1. 
2. 
3. 
4. 
5. 

alx'tl = bad,·. 
abctl = 1.1.d,·b. 
alx·tl ex.eludes acbd. 
VVe must ha\'e abrcl or a"'lb or a,lbt.·. 
abctl and ac<k together imply abdet. 

* llitoi11ta di .lfatn11t1tir.11, v, pp. 75-iB. See aleo Pieri, I Principii tklla G110111etna 
di l'ol,i:rio1le, Turin, 181)8, § 7. 

+ These five properties are taken f'rom Vailati, lac. cit. and ib. p. 18.'J. 
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These properties may be illustrated by the consideration of five 
points on a circle, as in the accompanying figure. Whatever relation 
of two pairli of terms possesses these properties we shall l-all a relation 
of separation between the pail'$. It will be seen that the relation is 
symmetrical, but not in general transitive. 

204:. Wherever we have a transith·e asymmetrical relation R be­
tween any two terms of a set of not less than four terms, the relation of 
separation necessarily arises. Por in any series, if four terms have the 
order abcd, then a and care separated by b and cl; and every transitive 
asymmetrical relation, as we have seen, provided there are at ll•a.o;t two 
consecutive instanc·es of it, gives rise to a series. 'l'hus in this ease, 
separation is R mere extmsion of betu•re,i : if R be asymmctrieal and 
transitive, and aRb, bHc, cRd, then iJ and c are separated by b an~ d. 
The existence of such a relation is therefore a sufficient condition of 
separation. 

It is also a nece!.sary condition. Por, suppose a relation of separation 
to exist, and let a, b, r, d, e be five terms of the set to whieh the relation 
applies. Then, c·on!>iclering a, b, c as fixed, and d and r as variable, 
twcln• c-ases may arise. In virtue of the five fundamental propcrtil•s, we 
may introduce the symbol abnle to denote that, striking out. any one 
of thci.e five letters, thl' remaining four have the relation of separation 
which is indic-atL><l by the resulting symbol. Thus by the fifth property, 
olx:d and acde imply ttbnlr•. Thus the twelve rases arise from permuting 
d and 1•, while keeping a, b, r fixed. (It should be observed that it 
makes 110 difference whether a letter appears at the end or the beginning: 
i.e. abcde is the !,8.llle case as mbrd. We may therefore decide not to put 
either d ore before a.) Of these twelve case11, six will have d before e, 
and six will have e before d. In the first six CB.bes, we llRY that, with 
respect to the sense abc, d precedes e; in the other six cases, we say that 
e precedes d. In order to deal with limiting ea.ires, we shall say further 
that a precedes every other term, and that b precedes et. \Ve shall then 
find that the relation of preceding is asymmetrical and transitive, and 
that every pair of terms of our set is such that one preeedes and the 
other follows. In this way our relation of separation is reduced, formally 
at least, to the combination of "a precedes b, .... "b precede11 c," and ",: 
precedes d."" 

The above reduction is for many reasons highly interesting. In the 
first place, it shows the distinction between open and closed series to be 
somewhat superficial. For although our series may initially be of the 
sort which is c-Alled cloi,,ed, it becomes, by the introduction of the above 
transitive relation, an open series, having a for its beginning, but having 

* The argument is somewhat tedious, and I therefore omit it. It will be found 
in Vailati, lac. cit. 

t Pieri, op. rit. p. 32. 
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possibly no last term, and not in any sense returning to a. Again it is 
of the highest importance in Geometry, since it shows how order may 
ariMe on the elliptic straight line, by purely projee,-tive considerations, 
in a manner which is far more satisfactory than that obtained from 
von Staudt's com;truction•. And finally, it is of great importance as 
unifying the two sources of order, between and separation; sine,-e it 
shows that transitive asymmetrical relations are always present where 
either occurs, and that either implie11 the other. 1''or, by the relation of 
preceding, we can say that one tem1 is between two others, although we 
started solely from separation of pairs. 

205. At the same time, the above reduction (and also, it would 
seem, the correRponding reduction in the case of between) cannot be 
allowed to be more than formal. That is, the three terms a, b, c by 
relation to which our tramiitivc a.11ymmetrical relation was defined, are 
cs.'ICntial to the definition, and cannot he omitted. The reduction shows 
no rea.'IOn for supprn1ing that there is any transitive asymmetrical relation 
indt>pendent of all other terms than those related, though it is arbitrary 
what other terms we choose. And the fact that the term a, which is 
not essentially peculiar, appears as the beginning of the series, illustrates 
this f8.l-t. Where there are transitive asymnwtril-al relations independent 
of all outside reference, our series cannot have an arbitrary beginning, 
though it may have none at all. Thus the four-term relation of sepa­
ration remains logically prior to the resulting two-term relation, and 
cannot be analyzed into the latter. 

206. But when we have said that the reduction is formal, we have 
not said that it is irrelevant to the genesis of order. On the contrary, 
it is just because such a n,,duction is posi;ible that the four-tenn relation 
leans to order. The resulting llllymmetrical transitive relation is in 
reality a relation of five term!!; but when three of these are kept fixed, 
it becomes asymmetrical and transitfre as regards t.he other two. Thus 
although between applies to such series, and although the essence of 
onfor t·om1ists, here as elsewhere, in the fact that one term has, to two 
others, converse relations which a.re asymmetrical and transitive, yet 
such an order c.an only arise in a collection containing at least five terms, 
bt,'(·ause five tenmi are net..Jed t'or thl' characteristic relation. And it 
should be observed that all se1il's, when thmi explained, a.re open series, 
in the 11ense that there is some relation betwc.-en pairs of terms, no power 
of which i11 equal to ib1 com·en,;e, or to identity. 

20'7. Thus finally, to sum up thi11 long and complicated di11cu.'1Sion: 
The six methods of J.,l't'nel'l\ting series cnumeratecl in Chapter xxn· are all 
genuinely di11tinct ; hut the se(.'Ond is the only one which is fundamental, 

"' 111e advantages of this method are e,·ident from l1ieri's work quoted a\10ve, 
where many thinp 11·hich 1,11eemed incapable of projecth•e proof are ripdly deduced 
from projective premil!Ses. See Part \'I, Chap. xu·. 
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and the other fh·e a1,.rree in this, that they are all reducible to the MeCOnd. 
Mureon•1·, it is solelv in virtue of their redudhility to the lll'l'ond that 
they gh·e rise to order. The minimum ordinal p~opoi.ition, whil-h can 
alway11 be made where,·cr there is IUl order at all, i11 of thl' form: "y ill 
between ,1' and z., ; and this proposition meam~ ; " 'l11cre ii1 11omc 
a.-cymmetri<·al transifo·c relation which huld11 between .r 1111d ."/ and 
betwet!n y anrl z." Thii. ,cry i;implc conclusion might ha,·c lx~n gueKst.>d 
from the beginning; hut it \\IL'i only by discussing all the apparently 
exceptional cases that the l'onclui.ion could he solidly established. 
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CHAPTER XXVI. 

ASYMMETRICAL RELATIONS. 

208. W 1-; have now set'n that all order depends upon transitive 
asymmetrical relations. A11 such rell\tions are of a kind which traditional 
logic is unwilling to admit, and as the refusal to admit them is one of 
the main sources of the contradictions which the Critical Philosophy has 
found in mathematk'll, it will be desirable, before proceeding further, to 
make an excursion into pure logic, and to set f'orth the brrounds which 
make the admission of such relations necessary. At a later stage (in 
Part VI, Chap. 1.1 ), I shall endea.,·onr to ani,wl'r the general oqjertions 
of philm1ophers to relations ; for the pre11ent, I am roncemed only with 
asymmetrical relations. 

Relatiorn1 may be divided into four da..,,,;es, at-cm-ding a1:1 they do 
or do not possess either of' two attributes, tl'1u1i-iti\'ene!olb• and s~·mmetry. 
Relations ,mch that :l'll,'lj always impliei-. .tJR,1· are called s,'}mmetriml; 
relations 1.nwh that a·Ry, yRz to~ther always imply ,t'Rz arc called 
trm1sitiz1e. Relations which do not posses1.1 the first property I shall 
call ,wt s,11mnu•triml; relatiom1 which do po11sess the opposite property, 
i.e. for whic·h .rR;lj always excludes yRJ•, I shall rall a:wrnmetriml. 
Helations which do not posi,ess the second property I shall call not 
tra11sititie; those which po11.-reliiK the p1-operty that J.·Ry, yRz always 
exclude .i·Rz I shall call intra11sitive. All these CRSeS may be illus­
tratccl fmm human rcll\tionships. The relation brother or sister is 
symmetrical, and is transith-e if we allow that a man may be hill 
own ln-other, and a woman her own sister. The relation brotl1a is not 
liiJlllmetrieal, but is trarn,itivc. Haif-bmtl,er o,· lut{f-NiKter is symmetri,-al 
but not transitive. SjHlllllt.' is symmetrical but intran1:1iti\'e; dcacelltlt111t 
is asymmetrical but transiti\'e, Haf-brotl,er ill not symmetrical and not 
transith·e; it' third marri1tges were forbidden, it would be intransiti\·e. 
S01t-i11-larc is asymmetrical and not tram1ith-e; if !leC.'ond mRITiages were 
forbidden, it would be intra111:1itire. Bmther-i,z-lnro ill not symmetrical 

* 111is term appears to ha\·e been fir11t u11ed in the present sense by De l\lorgau ; 
see <'t1111b. Phil. Tru11,. 1x, p. 104 ; x, p. :J.W. 'l'he tenn is n.ow in ifenml ue. 
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and not transitive. Finally,father is both a.<1ymmetrical an-:1 intransitive. 
Of not-tmusitive but not intransitive relations there i11, so far as I know, 
only one important instance, namely diversi(1J; of not-symmetrical but not 
asymmetrical relations there seems to be similarly only one important 
instance, namely implication. In other l'R..~es, of the kind thRt usually 
occur, relations are either transitive or intransitive, and either sym­
metrical or asymmetrical. 

209. Relations which are both symmetrical and transitive Rre formRlly 
of the nature of equality. Any term of the field of such a relation ha.-i the 
relation in question to itself, though it may not have the relation to any 
other term. For denoting the relation h_y t.he sign of ec:1uality, if a be 
of the field of the relation, there is. i,onw tt>rm b such that. a= b. If 
a and b be identical, then a= a. But if not, then, since the relation 
is symmetrical, b =a; since it is transitive, H.nd we have a= b, b = a, 
it follows that a= a. The property of a relation which insures that 
it holds between a term and itself is called by Pt•ano rt;jle.1·i1,e11e.VN, and 
he has shown, contrary to what WI\S prt>viously belieVl'd, t.h1tt this 
property cannot he inferred from symmetry and transitiveness. Por 
neither of these properties asserts that there is I\ b sm·h that a= b, but 
only what follows in case there is such a b; and if there is no such b, 
then the proof of a= a fails•. This property of reflexivl'ness, however, 
introduces some difficulty. There is only one relation of which it is true 
without limitation, and th11.t is idcntitv. In all other cases, it holds 
only of the terms of a certain cla.,;,."I. Qu~ntitative equality, for example, 
is only reflexive as applied to quantities; of other terms, it is absurd 
to assert that they have quantitative equality with themselves. Logical 
equality, again, is only reflexive for classes, or propositions, or relations. 
Simultaneity is only reflexive for events, encl so on. Thus, with any 
given symmetrical transitive relation, other than identity, we can only 
assert reflexiveness within a certain class: and of this cla.'ls, apart from 
the principle of abstraction (already mentioned in Part III, Chap. x1x, 
and shortly to be discussed al length), there need be no definition 
except a.<1 the extension of the transitive symmetrit·al relation in que11tion. 
And when the class is so defined, reflexiveness within that class, M we 
ha,·e seen, follows from transitiveness and symmetry. 

210. By introducing what I have called the principle of abstraction t, 
a somewhat better account of reflexiveness bel--omes possible. Peano has 
defined! a proc-ess which he calls definition by abstract.ion, of which, as 
he shows, frequent m,e is made in Mathematics. This process iN as 

* See e.g. Revue df. Mathrmatique11, T. vn, p. 22 ; Notutio1111 de Logique M11the­
matiq1111, Turin, 1894, p. 4li, 1''. 1901, p. 193. 

t An axiom virtually identical with this principle, but not Rtated with the 
necessary precision, and not demonstrated, will be found in De Morgan, Camb. Phil. 
Tram. Vol. x, p. 34-~. 

? NotatiOJlB de Logique Mathemutique, p. 45. 
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foHows: when there is any relation which is transitive, symmetrical and 
(within its field) reflexive, then, if this relation holds between u and t•, 
we define a new entity cf, (u), which is to be identical with cf, (v). Thus 
our relation is analy?.ed into sameness of relation to the new term 
,/) (u) or ,/) (v). Now the legitimacy of this process, as 11et forth b_v 
Peano, :ret1uire11 an axiom, namely the axiom that, if there is any 
instance of the relation in que!ltion, then there is such an entity as 
4> (rt) or cf, (z•). This axiom is my principle of abstraction, which, 
preci11ely stated, is 8.11 follows: " Every transitive symmetrical relation, 
of which there i!I at least one instance, is analyzable into joint posses.ion 
of a new relation to a new term, the new relation being such that1 no 
term can have this relation to more than one term, but that its comrerse 
does not have this property." This principle amounts, in common 
language, to the assertion that transitive symmetrical relations arise 
from a common prope1ty, with the !Uldition that this property stands, 
to the terms which have it, in a relation in which nothing eli;e stands 
to thoie terms. It gives the prccii,e 11tatement of the principle, often 
applied by philosophers, that symmetrical transitive relation11 always 
spring from identity of content. Identity of t·ontent is, however, an 
extremely vague phrase, to whit·h t.he above proposition gives, in the 
present caKC, a preci11e signification, but one whieh in no wa~· answers 
the purpose of the phrase, which is, apparently, the reduction of relations 
to adjt."Ctives of the related terms. 

It is now possible to give a clearer lll't.'ount of the reflexh·e property. 
Let R be our symmetrical relation, and let S be the asymmetrical 
relation which two terms having the relation R must have to some 
third te1,n. Then the proposition :i.'R!J is equhalt>nt to this: "There 
is some term a such that :rSa and ySa."' Hence it follows that, if :r 
behmhrs to what we ha,·e calk-d the domain of S, i.e. if there is any 
tenn a sut·h that ,i·Sa, then :rR.1·; for .rR.r is merely .1-Sa and .1•SfJ,. It 
doeR not of course follow that there is any other term y sm·h that :rRy, 
and thus Peano's objections to the usual proof of reflexiveness are valid. 
But by means of the analysis of symmetrical transiti\"e relations, we 
obtain the pmof of the reflexive property, together with the exact 
limitation to "hil•h it is subject. 

211. "'c l'an now see the re1L'lon fur excluding from our f\L't'ounts 
of the methods of brencmting series a seventh method, which some 
readers may have expedcd to find. 'l'his is the method in which 
p<>11ition is merely relath·e-a methcxl which, in Chap. x1x, § 154, 
we rejccll-d a.11 regards quantity. As the whole philosoph~· of sp&l-e 
and time is boumt up with the ,1uestion as to the legitimac:y of this 
method, whid1 is in fact the question a.11 to absolute and relRth-e 
p011ition, it may be well to gi,·e an RCCount of it her~, and to show 
how the prindple of ahsbac:tion leads to the absolute theory of J)Ollition. 

If we consicler such a series as that of e,·enbl, and if we refuse to 
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allow absolute time, we shall have to admit three fundamental relations 
among events, namely, simultaneity, priority, and posteriority. Such a 
theory Ill&)' be formally stated Ill! follows: Let the,~ be a clu'I of terms, 
i,;uch that any two, .r and !/, have either an asyunnetri<!Al b-ansitive 
relation P, or the com•cJ'hC relation P, or a i.vmmctri<·al tram1iti\•e 
relation R. Also let .rRy, yPz imply :rPz, and let· .rP_,1, yR:: imply :rPz. 
'!'hen all the terms <·an be arranged in a tieries, in which, howe\'er, there 
may be many terms which ha\'e the !i&nte pln<.-e in the seriei,;. This 
place, according to the relational theory of position, is nothing but 
the transiti"e symmetrical relation R to a numbt-r of other terms. But 
it follows from the prindple of abstr11.1.-tion that there ii1 110me relation S, 
such that, if .rR,IJ, there is 11ome one .entity t for which :rSt, ySt. \Ve 
11hall then find that the different entities t, corresponding to different 
groupi, of our original tenns, also f'orm a seties, but one in which 
any two different terms have an asymmetrical relation (formally, the 
product SRS). These terms t will then be the absolute posit.ions of 
our .1·'11 and .1/'N, and our supposed seventh method of gt-nerating series 
is redul'ed to the fundamental second method. Thus there will be no 
series ha\'ing only relative position, but. in all serie11 it is t.he positions 
themtteh-cs that constitute the series•. 

212. i,\V c are now in a position to nu.-et the philosophic dislike of, 
relations. The whole a<x:ount of order given above, and the preHent 
argument l'l>lll'eming abstraction, will be ne<.-essarily objected to by 
those philosophers-and they are, I fear, the major part-who hold 
that no relations can posse.'!.'! absolute and metaphysical validity. It 
is not my intention here to enter upon the general question, but merely 
to exhibit the objedions to any analysis of a.<cymmetrical relations. 

It is a t·ommon opinion-often held unconsciomi1y, and employed 
in argument, even by those who do not explicitly advocate it-that 
all proprn,itions, ultimately, consist of a subject and a predicate. When 
this opinion is confronted by a relational proposition, it hat1 two waytt 
of dealing with it, of which the one may be called monadistic, 
the other monistic. Given, say, the proposition aRb, where H is some 
relation, the monadistic view will analyse this into two propositions, 
which we may call ar1 and bru which gi,·e to a and b raipectively 
adje<.-til·es 1-upposed to be together etJuivalent to R. The monistic 
"iew, on the contrary, regards the relation &11 a pmpcrty of the whole 
compoi,ed of a and b, and as thus equh·aleut to a proposition which 
we may denote by (ab)r. Of these views, the first is represented by 
Leibniz and ( on the whole) by Lotze, the llel'ond by :Spinoza and 
M.r Bradley. Let us examine these views succL'Sllively, &11 applied to 

* A fonnal treabnent of relative position is giveu by !olchriider, ::iur une e.rtmaion 
d• l'idh1 d'ordn, Cot1gre11, Vol. m, p. 2..15. 
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asymmetrical relations ; and for the Hake of definiteness, let us take 
the relations of greater and le1111. 

213. The monadistic view is stated with admirable lucidity by 
Leibniz in the following pasKage• : 

" The ratio or proportion between two lines L and M may be 
conreived three several ways; as a ratio of the greater L to the 
lest1er .J.ll; a..~ a ratio of the lesser M to the greater L; and lastly, as 
wmething abstracted from both, that hi, as the ratio between L and M, 
without considering which i11 the antecedent, or which the <·onse«1uent ; 
which the subject, and which the object .... In the first way of considering 
them, L the greater, in the 1-1econd M the lesser, is the subject of that 
accident which philosophers call relation. But which of them will be 
the t1ubject, in the third way of con11idering them? It cannot be said 
that both of them, L and J.ll together, are the subject of such an 
accident; for if so, we should have an accident in two subjects, with 
one leg in one, and the other in the other; which is contrary to the 
notion of accidents. Therefore we must say that this ·relation, in this 
third way of considering it, is indeed md <if the subjects; but being 
neither a substance nor an accident, it must be a mere ideal thing, 
the consideration of which is nevertheless useful." 

214. The third of the above ways of considering the relation of 
greater and less is, roughly speaking, that which the monists advocate, 
holding, as they do, that the whole composed of L and M is one subject, 
so that their way of eom,idering ratio does not compel us, as Leibniz 
supposed, to place it among bipeds. }'or the present our <-'Oncern is only 
with the first two ways. In the first way of considering the matter, we 
have "L is (greater than M)," the words in brackets being considered 
a.~ an adjective of L. But when we examine this adjective it is at once 
evident that it is <-'Omplex : it consists, at least, of the parts greater 
and M, and both the11e parts are essential. To say that L is greater 
does not at all convey our meaning, and it is highly probable that M is 
al1So greater. The supposed adjective of L involves some referenc,-e to M; 
but what can be meant by a reference the theory lee.ve11 unintelligible. 
An adjective im-olving a reference to Mis plainly an adjective which is 
relative to M, and this is merely a cumbrous way of describing a relation. 
Or, to put the matter otherwise, if L has an adjed:ive corresponding 
to the fact that it is greater than M, this adjective is logically sub­
setiuent to, and is merely derived from, the direct relation of L to M. 
Apart from M, nothing appears in the analysis of L to differentiate it 
from M; and yet, on the theory of relations in question, L should differ 
intrinsically from M. 'l"hus we should be forced, in all cases of Mym­
metrical relations, to admit a specific difference between the related 
terms, although no analysis of either singly will reveal any relevant 

• IJJ&il. Werh, Gerhardt'• ed., YoL vu, p. 401. 
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property whit·h it posst"SBes and the other lacks. }'or the monadistic 
theory of relations, this constitutes a contradiction ; and it is a contra­
diction which l'ondemns the theory from which it springs•. 

Let us examine further the application of the monadisti,· theory to 
quantitative relations. The prop011ition "..4 is greater than B,, is to be 
analy:r.able into two propositions, one giving an adjective to ..4, the 
other giving one to B. The a.d,·Ol·at.e of the opinion in que1>tion will 
probably hold that ..4 and B are quantities, not magnitudes, and will 
say that the adjectives requin.-d a1-e the magnitudes of ..4 and B. But 
then he will have to admit a relation between the magnitudes, which 
will be WI ai,ymmetrical as the relation whit·h the magnitudes were to 
explain. Hence the magnitudes will. need new adjectives, and so on 
ad i1!fi.ttitum; and the infinite pr<>l-ess will have to be complek-d before 
any meaning can be a.,;signed to our original proposition. This kind 
of infinite process is undoubtedly ohjectionabk•, sinee it.s 11ole object 
is to explain the meaning of a t-ertain proposition, and yet none of its 
steps bring it any nearer to that meaningt. Tims we cannot take 
the magnitudes of ..4 and B as tht• requin-d adjectives. But further, 
if we take any adjectives whatever except such as have each a referenc..-e 
to the other tenn, we shall not be able, even formally, to give any 
account of the relation, without asimming ju11t such a relation between 
the adjectives. lt'or the mere fact that the adjectives are different will 
yield only a symmetrical relation. Thus if our two terms have different 
colours we find that ..4 has to B the relation of differing in colour, 
a relation which no amount of careful handling will render asymmetrical. 
Or if we were to recur to magnitudes, we could merely say that ..4 and 
B differ in magnitude, which gives u11 no indication as to which is 
the greater. Thus the adjectives of ..4 and B must be, as in Lcibniz's 
analysis, adjectives ha,·ing a reference each to the other term. 'l'he 
adjective of ..4 must be "greater than B," and that of B must be" less 
than ..4." Thrni ..4 and B differ, sim.-e they have different adjectives­
B is not greater than B, and ..4 is not less than ..4-but the adjed;ives 
are extri1111ic, in the !ll'nse that ..4's adjecth·e has refel'ence to B, and 
B's to ..4. Hence the attempted analysis of the relation f'ails, and we 

* See a paper 011 !"The Relatio11s of Number and Quantity," Mind, N.S. No. 23.) 
This paper was written while I still a1lhered to(the monadistic theory of relations:) 
the contradiction in question, therefore, was regarded as inevitable. The following­
pa!IIBIJI! from Kant raises the same point : " Die rechte Hand ist der liuken iihnlieh 
und gleich, uud wenn man blos auf eiue denelben allein sieht, auf die Proportion 
der Lage der Theile unter eiuander und auf die Gr01111e des Gan:.en, l!O mUBII eine 
vollstiindige Beschreibung der einen in allen 8tlicken auch von der anden1 plten." 
(Von der,i eraten tlrund6 d6a U11fer1chiede11 d6r fhge,1de,1 im Raunie, ed. Hart.,Vol. 11, 

p. 380.) 
t Where an infinite process of this kind i11 required we are necessarily dealing 

with a propoaition 11·hich ill an infinite unity, in the 11e1111e of !>art II, Uhap. xvu. 
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are forced to admit what the theory wa.~ designed to a,·oid, a MO-c:allt..-d 
" external" relation, i.e. one imp1ying no complexity in eitlter of the 
related terms. 

The Ha.me result may be proved of asymmetrical relations generally, 
sin<.-e it dt•pends so1e1y upon the fact that both identity and di\'cn.ity 
are symmetrical. Let a and b have an ai..ymmctric·al relRtion II, so 
that aRb and bRri. Let the 1mpposed a<ljcl·th-t..>s (which, 11..'I we have 
seen, must each have a referenC'e to the otht·r term) be denoted hy fJ 
and « respectively. Thm1 our terms lx•t•ome a/3 and ha.. a. iurnln~s 
a reference to a, and fJ to b; and « and fJ differ, sinc-e the rd11.tion 
i!i asymmetrical. But a and b have no intt-insit· diffcre11<."es corresponding 
to the relation R, and prior to it; or, if they have, tht• points of 
different-e must themselves have a relation analogous to H, so that 
nothing is gained. Either « or /3 exprt•sst•s a diffcrcn<.-e between a 
and b, but one whic-h, since either « or f3 invohes rt'ft•ren<.-c to a term 
other than that whose adjective it is, so far from being prior to R, 
is in fac·t the relation R itself. And sinc-e a 11.nd fJ both presuppose H, 
the diffi•rence between a and fJ cannot be U!icd to supply an intrinsic 
differenl'C hetWCt'll a and b. Thus we have again a diffcrenc·e without 
a prior point of difference. This shows that some Rsymmetrical rela­
tionR must he ultimate, and that at least one such ultimate a. .. ymmetrical 
relation must be a component in any asymmetrica1 relation that mRy be 
suggested. 

It is cRSy to criticize the monadistic theory from a general stand­
point, by developing the t·cmtradictions which spring from the relations 
of' the tl'rms to the adj<.-ctives into which our first relation ha.~ been 
analyzt-d. The11e consideratiom1, which have no special connection with 
asymmetry, belong to hreneral philosophy, and have been urged by 
advocah•!i of the monistic theory. Thus Mr Bradley says of the mona­
distic theory•: "We, in brief, are led by a principle of fisi;ion which 
conducti. us to no end. Every <1uality in relation has, in l'om1equence, 
a diversity within its own nature, and this diversity cannot immediately 
be asserted of the quality. Hence the quality must exchange its unity 
for an internal relation. But, thus Het free, the diven;e aspects, bt.'CRURC 
each MOmething in relation, must each be something al110 beyond. This 
dh·er!iity is fatal to the internal unitv of each ; and it demands a new 
relatio~, and so on without limit." it remains to be seen whether the 
monistic theory, in avoiding this difficulty, does not bt.-come subject to 
others quite as serious. 

21D. The monistic theory holds that every relational propo,.<1ition 
aHb is to be resolved into a proposition concerning the whole which 
a and b <.'Ompose-a proposition which we may denote by (ab)r. This 
view, like the other, may be examined with special reference to asym-

Appeanu,,,,. and B.eality, 1st edition, p. 31. 
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metrical relations, or from the standpoint of general philosophy. We 
are told, by those who advocate this opinion, that the whole contains 
diversity within itself, that it synthesizes differences, and that it performs 
other similar feats. Por my part, I am unable to attach any precise 
significan<.'(' to these phra.,1es. But let us do our best. 

The proposition "a is greater than b," we are told, does not really 
say anything about either a orb, but about the two together. Denoting 
the whole whil·h the_y compose by (ab), it Mys, we will suppose, •• (ab) 
l'Ontains diversity of magnitude." Now to this statement-neglecting 
for the present all brt'lle1"11l arguments-there is a special objection in 
the case of asymmetry. (tib) is symmetrical with regard to a and b, 
and thus the property of the whole _will be exactly the same in the C&!le 

where a is greater than b as in the case where b is greater than a. 
Leibniz, who did not ac<-ept the monistic theory, and had therefore 
110 reason to render it pla.m1ible, dearly pert,-cived thi11 fact, as appears 
from the above quotation. 1-'or, in his thinl way of regarding ratio, 
we do not consider which is the antecedent, which the consequent; 
and it is indeed sufficiently evident that, in the whole lab) as 1mch, 
there is neither antecedent nor consequent. In order to distinguish 
a whole (ab) from ll whole (ba), as we must do if we are to explain 
asymmetry, we shall be forced back from the whole to the part.'! and 
their relation. Por (ab) and (ba) consist of precisely the same parts, 
and differ in no respect whatever save the sense of the relation between 
a and b. "a is greater than b., and" b is greater t.han a., are proposi­
tions containing precisely the same constituenb1, and giving rise therefore 
to precisely the same whole; their difference lies solely in the fact that 
greater is, in the first case, a relation of a to b, in the second, a relation 
of b to a.. Thus the distinction of sense, i.e. the distinction between an 
asymmetrical relation and its converse, is one which the monistic theory 
of relations is wholly unable to explain. 

Arguments of a more general nature might be multiplied almost 
indefinitely, but the following argument seems peculiarly relevant. The 
relation of whole and part is itself an asymmetrical rclatio_n, and the 
wholc-a.'I monists are peculiarly fond of telling us-is distinct from all 
its parts, both severally and c,-ollectively. Hence when we say "a is 
part of b,.., we really mean, if the monistic theory be correct, to assert 
something of the whole composed of a and b, which is not to be 
confounded with b. If the proposition concerning this new whole be not 
one of whole and part there will be no true judgments of whole and 
part, and it will therefore be false to say that a relation between the 
parts is really an adjective of the whole. If the new proposition is one 
of whole and part, it will require a new one for its meaning, and so on. 
IC, as a desperate measure, the monist asserts that the whole composed 
o( a and b is not distinct from b, he is compelled to admit that a whole 
is the sum (in the sense of Symbolic Logic) of its part&, which, besides 
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being an abandonment of his whole position, renders it inevitable that 
the whole should be symmetrical 88 regards its parts-a view which we 
have already seen to be fatal. And hence we find monists driven to 
the view that the only true whole, the Absolute, has ·no parts at all, 
and that no propositions in regard to it or anything else are quite 
true-a view which, in the mere statement, unavoidably contradicts 
itself. And surely an opinion which holds all propositions to be in the 
end self-contradictory is sufficiently condemned by the fact that, if it 
be accepted, it also must be self-contradictory. 

216. We have now seenf-t~~ .asymmet?cal relations a~_ unip­
telligible on both the usual theones of l'elation•. Hence, since such 
re1atlonit ·are· involved fu Nu1nber~- Qtiantfty, Order, Space, Time, and 
Motion, we can hardly hope for a satisfactory philosophy of Mathematiai 
so long as we adhere to the view that no relation can be " purely 
external."' As soon, however, as we adopt a difl'erent theory, the logical 
puzzles, which have hitherto obstructed philosophers, are seen to be 
artificial. Among the terms commonly regarded as relational, those 
that are symmetrical and transitive--such 88 equality and simultaneity­
are capable of reduction to what has heed vaguely called identity of 
content, but this in turn must be analyzed into sameness of relation 
to some other term. For the so-called properties of a tern1 are, in fact, 
only other terms to which it stands in some relation ; and a common 
property of two terms is a term to which both stand in the same 
relation. 

The present long digression into the realm of logic is necessitated 
by the fundamental importance of order, and by the total impossibility 
of explaining order without abandoning the most cherished and wide­
spread of philosophic dogmas. Everything depends, where order is 
concerned, upon asymmetry and difl'eren<"e of sense, but these two concepts 
are unintelligible to the traditional logic. In the next chapter we shall 
have to examine the connection of difference of seni;e with what appears 
in Mathematics as difference of sign. In thi'i examination, though some 
pure logic will still be requisite, we shall approach again to mathematical 
topics; and the11e will occupy us wholly throughout the succeeding chapters 
of this Part.~ 

./ * The grounds of these theories will be examiued from a more geueral point of 
view in l\rt VI, Chap.~ 
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DIFFERENCE OF SENSE AND DIFFERENCE OF SIGN. 

21'1. WE have now seen that order depends upon asymmetrical 
relations, and that these always have two senses, as before and after, 
greater and less, east and west, etc. The d ift'erence of sense is closely 
connected (though not identical) with the mathematical difference of 
sign. It is a notion of fundament.al importance in Mathematics, and 
is, so far as I can see, not explicable in terms of any other notions. 
The first philosopher who realized its importance would seem to be Kant. 
In the Versur.h den Begrijf der ru:gatiue,i Groaae in die WeltweilAtit 
einzujuhren (1768), we find him aware of the difference between logical 
opposition and the opposition of positive and negative. In the discussion 
Von dem eraten Grunde dea Unterachiedea der Gegmden im RaurM (1768), 
we find a full realimtion of the importance of asymmetry in spatial 
relations, and a proof, b8Sl'd on this fact, that space cannot be wholly 
relational•. But it seems doubtful whether he realized the connection of 
this asymmetry with difference of oign. In 1768 he certainly was not 
aware of the connection, since he regarded pain as a negative amount of 
pleasure, and supposed that a great pleasure and a small pain can be 
added to give a less pleasuret-a view which seems both logically and 
psychologically false. In the Prokgomena (§ 18~ as is well known, 
he made the asymmetry of spatial relations a ground for regarding space 
as a mere form of intuition, perceiving, as appears from the discussion 
of 1768, that space could not consist, as Leibniz supposed, of mere 
relations among objects, and being unable, owing to his adherence to 
the logical objection to relations discussed in the preceding chapter, 
to free from contradiction the notion of absolute space with asym­
metrical relations between its points. Although I cannot regard this 
later and more distinctively Kantian theory as an advance upon that 
of 1768, yet credit is ,undoubtedly due to Kant for having first called 
attention to the logical importance of asymmetrical relations. 

* See eapecially ed. Hart, Vol. II, pp. 386, 391. 
t Ed. Hart, Vol. II, p. 83. 
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118. By difference of sense I mean, in the present discussion at least, 
the difference between an Rliymmetrical relation and its com·erse. It is a 
fundamental logical fact that, given any relation R, and any two terms 
a, b, there are two propo11itions to be formed of these elements, the one 
relating a to b (which I call aHb), thP other (bRa) relating b to a. The11e 
two propositions are always different, though sometimes (a.., in the ca.'le 
of diversity) either implies the other. In other C8.!les, such as logical im­
plication, the one does not imply either the other or its negation; "bile 
in a third set of case!I, the one implies the negation of the other. It is 
only in ca.'IC!i of the third kind that I shall speak of difference of sense. 
In these CR!leS, aRb excludes bRa. But here another fundamental logicA.l 
fact becomes relevant. In all cases where aRb does not imply bRa there 
is another relation, related to R, which must hold between band a. That 
is, there is a relation R such that aRb implies bRa; ancl further, bRa 
implies aRb. The relation of R to R is difference of sense. This 
relation is one-one, symmetrical, and intransith-e. Its existence is the 
source of series, of the distinction of signs, and indeed of the greater 
part of mathematics. 

219. A question of considerable importance to logic, and especially 
to the theory of inference, may be raised with regard to differen<.-e of i.ense., 

Are aRb and bRa really different propositions, or do they only differ 
linguistically? It may be held that there is only one relation H, and 
that all necessary distinction1t can be obtained from that between aRb 
and bRa. It may be said that, owing to the exigencies of speech and 
writing, we are compelled to mention either a orb first, and that this gives 
a 11eeming difference between " a is greater than b., and "b is less than 
a.,; but that, in reality, these two propositions are identical. But if 
we take this view we shall find it hard to explain the indubitable 
distinction between greater and leaa. These two words have certainly 
each a meaning, even when no terms are mentioned as related by them. 
And they certainly have nifferent meanings, and are certainly relations. 
Hence if \\'e are to hold that "a is greater than b., and " b is less than a., 
are the same proposition, we shall have to maintain that both greater 
and lea,1 enter into each of these propositions, which seems obviously 
false; or else we shall have to hold that what really 0<."Clll'8 is neither 
of the two, but that third abstract relation mentioned by Leibniz in the 
passage quoted above. In this case the difference between greater and 
leaa would he one essentially involving a reference to the terms a and b. 
But this view cannot be maintained without circularity ; for neither the 
greater nor the less is inherently the antecedent, and we can only say 
that, when the greater is the antecedent, the relation is greater ; when 
the less, the relation is le1111. Hence, it would seem, we must admit that 
R and Rare distinct relations. We cannot escape this concl\lsion by 
the analysis into adjectives attempted in the last chapter. We there 
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analyzed aRb into a/:J and b«. But, corresponding to every b, there will 

be two adjectil·es, fJ and §, and corresponding to every a there will also 
be two, « and i'. Thus if R be greater, « will be "greater than .A " 
and 'i "less than .A," or z•ice versa. But the difference between « and ii' 
presupposes that betwet:!n greater and less, between R and ii, and therefore 
cannot explain it. Hem·e Rand R must be distinct, and "aRb implies 
bRa" must be a genuine inforence. 

I l'Ome now to the eonnection between diffel'ence of St"nse and 
difference of sign. We shall find that the latter is derivati\'e from the 
former, being 11. difference whic·h only exists between terms whic·h either 
are, or 11.re ('()rre)atetl with, asymmet!'it'al relations. But in c-ertain t'aseK 
we shall find some complications of detail which will demand diSt'us11ion. 

The differem-e of signs belongs, tl'aditionally, only to numbers and 
magnitud~, and is intimately a1osO<"iatcd with addition. It may be 
allowed that the notation Cl\nnot he usefully employed where there 
i1o no addition, and even that, where distim·tion of 1,ign is possible, 
addition in some !iernre i11 in general also posi;ible. Hut we shall find 
that the difference of &ign ha.,; no ,·ery intimate connection with addition 
and ttubtradion. To make this dear, we mllilt, in the first place, 
clearly realize that numbers and magnitude11 which have no i;ign are 
radimlly different from such as are positive. Confusion on this point is 
quite fatal to any ju!lt theory of sign&. 

220. Taking first finite numbers, the positive and negative numbers 
arise as followi.•. Denoting hy R till' relation between two integers in 
virtue of which the i.et'ond i!, next after the first, the proposition 111Rn 
is e<p1ivalent to what ii; usually expre!>sed by m + I = n. But the present 
theory will apply to progrei.sions brenerally and does not depend upon 
the logical theory of cardinals developed in Part II. In the proposition 
mR11, the integel'!I m and 11 are considered, &'I when they result from the 
logical definition, to be wholly destitute of sign. If now 1nBn and nRp, 
we put 1nlrp; and so on for higher powel'8. Every power of R i11 an 
asymmetrical relation, and its convenre is easily shown to be the same 

power of R as it is itself of B. Thus niR"q is equh-alent to qR"'m. 
Thci.e are the two propositions which are commonly written m + a=- q 
and q - a = m. Thus the rclatiom1 B•, R• al'e the true positive and 
negative intebrers; and theise, though a.'ISOCiated with a, are both wl\olly 
distinct from it. Thus in this case the connection with difference of 
sense is obvious and straightforward. 

221. As regards magnitudes, several cases mw~t he distinguished. 
\Ve have (1) magnitudes which are not either relations or stretches, 
(2) stretches, (S) magnitudes which are relations. 

• I gfre the theory briefty here, as it will be dealt "'ith more fully and generally 
in the chapter ou Progressions, § 2a:J. 
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(1) Magnitudes of this class are themselves neither positive nor 
negative. But two such magnitudes, as explained in Part Ill, determine 
either a distance or a stretch, and these are always positive or negative. 
These are moreover always capable of addition. But since our original 
magnitudes are neither relations nor stretches, the new magnitudes thus 
obtained are of a different kind from the original set. Thus the differ­
ence of two pleasures, or the collection of ple&11ures intermediate between 
two pleasures, is not a pleasure, but in the one case a relation, in the 
other a clll.llll. 

(2) Magnitudes of dhrisibility in general have no sign, but when 
they are magnitudes of stretches they an:1uire sign by correlation. 
A stretch is distinguished from other collections by the fact that it 
consists of all the terms of a series intermediate between two given 
terms. By combining the stretch with one sense of the asymmetrical 
relation which must exist between its end-terms, the stretch itself 
acquires sense, and becomes asymmetrical. That is, we can distinguish 
(1) the collection of terms between a and b without regard to order, (2) 
the terms from a to b, (3) the terms from b to a. Here (2) and (S) are 
complex, being compounded of (1) and one sense of the constitutive 
relation. Of these two, one must be called positive, the other negative .. 
Where our series consists of magnitudes, usage and the connection with 
addition have dedded that, if a is less than b, (2) is positive and (3) is 
negative. But where, as in Geometry, our series is not composed of 
magnitudes, it becomes wholly arbitrary which is to be positive and 
which negative. In either case, we ha,·e the same relation to addition, 
which is as follows. Any pair of collections C'an be added to form a new 
collection, but not any pair of stretches can be added to form a new 
stretch. For this to be possible the end of one stretch must be con­
secutive to the beginning of the other. In this way, the stretches ab, be 
can be added to form the stretch QC, If ab, be have the same sense, QC is 
greater than either; if they have different senses, QC is less than one 
of them. In this second case the addition of ab and be is regarded 
as the subtraction of ab and cb, be and cb being negative and positive 
respectively. If our stretches are numerically measurable, addition or 
subtraction of their measures will give the measure of the result of 
adding or subtracting the stretches, where these are 11Uch as to allow 
addition or subtraction. But the whole opposition of positive and 
negative, as is evident, depends upon the fundamental fact that our 
series is generated by an asymmetrical relation. 

(3) Magnitudes which are relations may be either symmetrical or 
asymmetrical relations. In the former case, if a be a term of the field 
of one of them, the other terms of the various fields, if certain conditions 
are fulfi]led•, may be arranged in series according as their relations to a 
are greater or smaller. This &1T&11gement may be different when we choose 

•cc.§m. 
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so~e term other than a; for the present, therefore, we shall suppose a to 
be chosen once for all. When the terms have been arranged in a series, 
it may happen that some or all places in the series are occupied by more 
than one term; but in any case the assemblage of terms between a and 
some other term m is definite, and leads to a stretch with two senses. 
We may then combine the magnitude of the relation of atom with one 
or other of these two senses, and so obtain an asymmetrical relation of 
a to m, which, like the original relation, will have magnitude. Thus the 
case of symmetrical relations may be reduced to that of asymmetrical 
relations. These latter lead to signs, and to addition I\Ild subtraction, 
in exactly the safne way as stretches with sense; the only difference being 
that the addition and subtraction are _now of the kind which, in Part III, 
we called relational. Thus in all ca.<les of magnitudes having sibrn, the 
difference between the two senses of an asymmetrical relation is the 
SOUl"(,'e of the difference of sign. 

The case which we discussed in connection with stretches is of 
fundamental importance in Geometry. ,ve have here a magnitude with­
out sign, an asymmetrical relation without magnitude, and some intimate 
connection between the two. The combination of both then gives a 
magnitude which has sign. All geometrical magnitudes having sign 
arise in this way. But there is a curious complic·ation in the case of 
'\"olumes. Volumes are, in the first instance, signless quantities; but in 
analytical Geometry they always appear as positive or negative. Here 
the asymmetrical relations (for there are two) appear as terms, between 
which there is a symmetric.al relation, but one which yet has an opposite 
of a kind verv similar to the converse of an asvmmetrical relation. 
This relation,· as an exceptional case, must be h;re briefly discussed. 

222. The descriptive straight line is a serial relation in ,·irtue of 
which the points of the line form a series•. Either sense of the descriptive 
straight line may be called a ray, the sense being indicated by an 

' y 
arrow. Any two non-coplanar rays have one or other of two relations, 
which may be called right and left-handedness respectively t. This 
relation is symmetrical but not transitive, and is the es11ence of the usual 
distinction of right and left. Thus the relation of the upward vertical 
to a line from north to east is right-handed, and to a line from south to 

* See Part VI. 
t The two cases are illustrated in the figure. The difference is the 11&111e as that 

between the two llOrt& of coordinate axes. 
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east is left-handed. But though the relation is symmetrical, it is 
changed into ib oppoiiite by changing either of the termii of the relation 
into its converse. That is, denoting right-handednesi; by H, left-handed-

ness by I. (which is not R), if A and B be two rays which are mutually 
right-handed, we shall have 

ARB, lJ.B, AI.ii, ARB, BRA, BLA, BL.i, BRA. 

That is, every pair of non-coplanar straight line11 gives rise to eight !luch 
relations, of which four are right-handed, and four left-handed. The 
difference between I. and R, though not, as it stands, a difference of 
sem1e, is, nevertheless, the difference of positi\'e and negRtive, and is the 
reason why the volumes of tetrahedra, as given h)· determinants, always 
have signs. But there is no difficulty in following the plain man's 
redU<·tion of right and left to a.'lymmetrical relations. Tht> plain man 
takes one of the rayi,i (~y A) a.'I fixed-when he is sober, he takes A to 
be the upward ,·ertical-and then regards right and left as prnpcrties of 
the single ray B, or, what ,·omes to the tiame thing, as relations of any 
two points which determine R. In thi!> way, right and left heeomc 
asymmetrical relations, and e\'en hfwe a limited degree of transith-eness, of 
the kind explained in the fifth way of generating series (in Chapter xxl\·). 
It is to be obsened that what is fixed mu!lt be a ra)·, not a mere straight 
line. F'or example, two planes which are not mutually perpendicular 
are not one right and the other left with regard to their line of inter­
section, hut only with regard to either of the rR)'S belonging to this 
line.• Hut when this i11 home in mind, and when we eonsider, not 
semi-planes, but complete planes, through the ray iu question, right and 
left become a.'lymmetrical and each other's con\'erM!s. Thu,; the signs 
associated with right and left, like all other signs, depend upon the 
asymmetry of relatiom,. This condm,ion, therefore, may nuw he allO\H..'ti 
to be geneml. 

223. Difference of sen'!e i!t, of course, more general than difterelll."C of 
sign, since it exists in ('alll.'S with which mathematics (at least at present) 
is unable to deal. .And different'e of sign seems scarcely applicable to 
relatiom1 which are not tmm1itive, 01· are not intimately ("01mected with. 
some transitive relation. It would be ab!lurd, for example, to regard the 
relation of an C\'cnt to the time of its 0t·cur1-ence, or of a qmmtit_,. to its 
ma,,rnitude, as conferring a difteren('C of sign. These relations 1u~ what 
Pl'Ofessor Schriider calls e1·acl1i1!ftt, i.r. if they hold bet"'een a and b, 
they can neve1· hold between band some third term. Mathematit"alh·, 
their square is null. These 1-elations, then, do not gi\·e riiie to difteren~ 
of sign. 

* This requires that the pBll@la,re from tl1e one 11l1111e to the other should l,e made 
oi,2 one of the acute angle" made hy their inte~tion. 

t ..d.lg,!bm der Logilt, \'ol. lll, I'· :l:?H. l'rofet1$0r Peirce cnlle such rel11ti111111 11m1-

npr.uti11g (refere11ce in 8chriider, ;/,.). 
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All magnitudes with sign, so the above account has led us to believe, 
are either relations or compound concepts into which relations enter. 
But what are we to say of the usual instances of opposites: good and 
evi1, pleasure and pain, beauty and ugliness, d~ire and a,·ersion? The 
last pair are very complex, and if I were to attempt an analysis of them, 
I should emit some uni\'el'll&lly condemned opi11io1111. With regard to 
the others, they seem to me to ha\'e an opposition of a very different 
kind from that of two mutually con\'crse asymmetrical relations, and 
a11alogoU11 rather to the opposition of red and blue, or of two different 
magnitudes of the same kind. From these oppositions, whic·h are con­
stituted by what may be called synthetic incompatibility•, the oppositionM 
above mentioned differ only in the fact that there are only two incom­
patible terms, in11tead of a whole series. The inrompatihility consisb 
in the fact that two terms which are thu!\ incompatible c·annot coexist in 
the same spatio-temporal place, or cannot be predirates of the same 
existent, or, more generally, cannot both enter into true propositions of 
a certain form, whirh differ only in the fact that one contain1, one of the 
incompatibles while the other contains the other. This kind of incom­
patibility (which usually belongs, with respect to 11ome dass of proposi­
tions, to the terms of a given series) is a most important notion in 
general logic, but is by no mean11 to be identified with the difference 
between mutually converse relations. This latt.er i", in fact, a special 
case of such incompatibility; but it is the sprcial ca..'M! onl~· that gives 
rise to the difference of sign. All difference of sign-so we may conclude 
our argument-is primarily derived from transith·e asymmetrical rela­
tions, from which it may be extended by correlation lo terms variously 
related to such relationst; but such extensions are always subsequent to 
the original opposition deri,·ed from difference of' sense. 

11 See The Pl&ilo,ophy of Leibniz, by the present autl1or ((;ambridge 1900), 
pp. rn, 20. 

t Thus in mathematical Economics, pleasure and pain may be taken as positive 
and negative without lottical error, by the theory (whOAe p~ychological correctneas 
we need not examine) that a man mm,t be paid to endure pain, and muat pay to 
obtain pleasure. The opposition of pleasure and pain is tlrn4! correlated with that of 
money paid and money recein,cl, wbich is au opposition of ~ith·e and negative in 
the St111se of elementary Arithmetic. 
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CHAPTER XXVIII. 

ON THE DIFFERESCE BETWEEN OPEN AND 
CLOSED SERIES. 

224. WE have now come to the end of the purely logical discussions 
concerned with order, and can turn our attention with a free mind to 
the more mathematil•al aspects of the subject. As the solution of the 
most ancient and respectable contradidions in the notion of infinity 
depends mainly upon a correct philosophy of order, it has been necessary 
to go into philosophical questions A.t some length-not so much because 
they are relevant, as because most philosophers think them so. But we 
shall reap our reward throughout the remainder of this work. 

The <1uestion to be discussed in this chapter is this: Can we ulti­
mately distinguish open from closed series, and if so, in what does 
the distintiion consit1t? We have seen that, mathematically, all series 
are open, in the sense that all are generated by an asymmetrical transi­
tive relation. But philosophically, we must distinguish the different 
ways in which this relation may arise, and especially we must not 
confound the case where this relation invoh-es no reference to other 
terms with that where such tenns are essential. And practically, it is 
plain that there is some difference between open and closed series­
between, for instance, a straight line and a circle, or a pedigree and a 
mutual admiration society. But it is not quite easy to express the 
difference precisely. 

22G. Where the number of tern1s in the series is finite, and 
the series is generated in the first of the ways explained in 
Chapter xx1v, the method of obtaining a transith·e relation out of the 
intransitive relation with which we 11tart is radically different according 
as the series is open or closed. If R be the generating relation, and n be 
the number of terms in our series, two case11 may arise. Denoting the 
relation of any term to the next but one by R\ and so on for higher 
powers. the relation R" can have only one of two values, zero and 
identity. (It is assumed that R is a one-one relation.) }'or starting 
with the first tenn, if there be one, R11-1 brings us to the last tenn ; and 
thus R11 gives no new term, and there is no instance of the relation 
R11• On the other hand, it may happen that, starting with any t.erm, 
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Jl'I brings us back to that term again. These two are the only possible 
alternatives. In the first case, we call the series open ; in the second, we 
call it closed. In the first case, the series has a definite beginning and 
end ; in the second case, like the angles of a polygon, it has no peculiar 
terms. In the first case, our tmnsith·e asymmetrical relation is the 
disjunctive relation "a power of R not greater than the (n- l)th." 
By substituting this relation, which we may t·all R', for R, our series 
becomes of the second of the six types. But in the second case no 11uch 
simple reduction to the second type is possible. Por now, the relation 
of any two terms a and m of our series may be ju11t II.!! well taken to be 

a power of R. as 11 power of R, and the question which of any three terms 
is between the other two becomes whollJ arbitrary. We might now intro­
duce, first t;he relation of separation of four terms, and then the re1mlting 
five-term relation explained in Chapter xxv. We should then regard 
three of the terms in the five-term relation as fixed, and find that the 
:resulting relation of the other two is transitiw and asymmetrical. But 
here the fin.t term of our series is wholly a.-bitra:ry, which was not the 
case before; and the generating :relation is, in reality, one of five terms, 
not one of two. There is, howe,·er, in thl' case contemplated, a simpler 
method. This may he illustratro as follows : In an open seril'11, any two 
terms a and m define two senses in which the series may be described, 
the one in which a l'Omes before m, and the other in ;,.-hich m comes 
before a. ,ve can then say of any tno other terms r and g that the 
sense of the order from c to g is the same a.11 that of the order from 
a to m, or different, as the ca.-.e may be. In this way, considering 
a ancl m fixed, and c and g Yariable, we get a transith·e a.'lymmetl'ical 
relation between c and g, obtained from a transith-e symmetrical relation 
of the pair r, g to the pair a, m (or m, a, as the case may be). But thi11 
transitive symmetrical relation can, by the principle of ahitraction, be 
analyzed into possession of a common property, which is, in this case, 
the fact that a, 111 and t·, g ha,·e the generating relation with the same 
sense. Thus the four-term relation i11, in this case, not essential. But in a 
closed series, a and m do not define e. sense of the series, even when we 
are told that a is to precede m : we can start from '" and get to m in 
either dire<.-tion. But if now we take a third term cl, and decide that we 
are to start from a and reach 1n taking cl on the way, then a sen11e of the 
series is defined. The stretch adm includes one portion of the series, but 
not the other. Thus we may go from England to Sew Zealand either 
by the east or by the west; but if we are to take India on the way, we 
must go by the east. If now we consider any other term, say k, this 
will have some definite position in the series which staits with a and 
reaches m by way of d. In this series, k will come either between a and 
d, or between d and m, or after m. Thus the three-term relation of 
a, d, m seems in this case sufficient to generate a perfa-tly definite series. 
V ailati's five-term relation will then consist in this, that with regard to 
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the order adm, k c-omes before ( or after) any other term l of the collection. 
But it is not necessary to call in this relation in the present case, since the 
three-term relation suffices. This three-term relation may be formally 
defined as follows. There is between any two terms of our ,·ollection a 
1-elation which is a power of R less than the 11th. Let the relation between 
a and d be R"', that between a and m RII. Then if x is less than y, we 
assign one sense to adm ; if x is greater than y, we assign the other. 

There will be also between a and d the relation R"-"', and between a and 

m the relation Rfl-lJ. If x is less than y, then n - x is greater than n - y; 
hence the asymmetry of the two cases corresponds to that of R and R. 
The terms of the series are simply ordered by correlation with their 
numbers x and y, those with smaller numbers pren~ding thm,e with 
larger ones. Thus there is here no need of the five-term 1·elation, every­
thing being effected by the three-term relation, which is itself reduced to 
an asymmetricai transitive relation of two numbers. But the closed 
series is still distinguished from the open one by the fact that its first 
term is arbitrary. 

226. A ,·ery similar discussion "ill apply to the c.ase where our 
series is generated by relations of three terms. To keep the analogy 
with the one-one relation of the above case, we will make the following 
assumptions. Let there be a relation B of one term to two others, and 
let the one term be called the mean, the two others the extremes. Let 
the mean be uniquely determined when the extremes are given, and let 
one extreme be uniquely determined by the mean and the other extreme. 
Further let each term that occurs as mean OC('Ur also as extreme, and 
ca<·h term that occurs as extreme (with at most two exceptions) Ol.'CUr 
also as mean. :Finally, if there be a relation in which c is mean, and b 
and dare extremes, let there be always (except when b or dis one of the 
two possible exceptional terms) a relation in which b ii; the mean and c 
one of the extremes, and another in which d is the mean and c one of the 
extremei;. Then band ,. will occur together in only two relations. Thii; 
fact constitutes a relation between b and c, and onlv one other term 
besides b will have this new relation to c. By means ~f this relation, if 
there are two cx<..-eptional terms, or if, our collection being infinite, there 
is only one, we can con11truct an open series. If our two-term relation be 
a. .. ymmeb·ical, thh, ii,; sufficiently evident; but the same result can be 
proved if our two-term rel:1tion is symmetrical. J<'or there will be at 
either end, say a, an asymmetrical relation of a to the only term which is 
the mean between a and some other term. This relation multiplied by 
the nth power of our two-tenn relation, where n + I i.~ any integer less 
than the number of terms in our collection, will give a relation which 
holds between a and a number (not exceeding n + 1) of terms of our 
collection, of which terms one and only one is such that no number less 
than ri gives a relation of a to this term. Thus we obtain a correlation 
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of our terms with the natural numbeN, which generates an open 
series with a for one of its ends. If, on the other hand, our colle<·­
tion has no exceptional tenns, hut is finite, then we shall obtain 
a dolled series. Let our two-tenn relation be P, and first suppose it 
symmetril'al. (It will be symmetrical if our original three-tenn relation 
was symmetrical with regard to the extremes.) Then every term f of 
our collection will ha\'e the relation P to two otherR, which will have 
to each other the relation P'. Of all the relatiom1 of the form pm 
which hold between two given terms, there will he one in which m is 
lea11t: this may be called the principal relation of our two terms. Let 
the number of terms of the collection be "· Then everv tenn of our 
collection will ha\'e to every other a Jirincipa.l relation P", where :r is 
some integer not greater than ni'l, Given any two terms c and g of the 
collection, provided we do not ha,·e ,:P"Jtg (a case which will not arise 
if 11 be odd), let us have cP"'g, where :r is less than n/2. This as.~umption 
defines a sense of the series, which may be shown u follows. If cP•k, 
where y is also less than nj2, th1-ee cases may arise, BIISUming y is greater 
than :r. We may have gP•-"k, or, if :r+y is less than n/'l., we may 

" have gP" + •k, or, if :r + y is greater than n/2, we may have gP1 - • - 'k. 
(We choose always the principal relation.) These three cases are illus­
trated in the accompanying figure. We shall say, in these three cases, 

,: ,: 0 

A: 

,:' c· 

that, with regard to the 11ense cg, (1) k comes after c and g, (2) and (S) 
k comes before c and g. If ,'I/ is less than z, and kP"-•g, we shall MY 
that k is between c and g in the sense cg. If n is odd, this covers all 
possible cases. But if n is even, we have to consider the term c', which 
iM such that cP 1111c'. This term is, in a certain sense, antipodal to c; we 
may define it as the first term in the series when the above method of 
definition is adopted. If n is odd, the first term will be that term of 
class (S) for which cPtn-llflk. 'Thus the series acquires a definite order, 
but one in which, as in all closed series, the first term is arbitrary. 

22'1. The only remaining case is that where we start from four-term 
relations, and the generating relation has, strictly speaking, five terms. 
This is the case of projective Geometry. Here the series is necessarily 
closed ; that is, in choosing our three fixed terms for the five-term 
relation, there is never any restriction upon our choice ; and any one of 
these three may be defined to be the first. 
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228. Thus, to sum up: Every series being generated by a transith·e 
asymmetrical relation between any two tenns of the series, a series is 
open when it has either no beginning, or a beginning which is not 
arbitrary; it is closed when it ha.~ an arbitrary beginning. Now if R 
be the constitutive relation, the beginning of the seiies is a term having 
the relation R but not the relation R. Whenever R is genuinely a 
two-tenn relation, the beginning, if it exists, must be perfectly definite. 
It is only when R involves some other tenn (which may be considered 
fixed) beMides the two with regard to which it is transitive and asym­
metrical (which are to be regarded a.~ \'ariable), that the beginning <¥1,n 
be arbitrary. Hence in all cases of closed series, though there may be 
an &1ymmetrical one-one relation if the series is discrete, the tranaitfoe 
asym~1etrical relation must be one involving one or more fixed tenns 
in addition to the two variable terms with rega1-d to which it generates 
the series. Thus although, mathematiC'ally, every closed series c·an be 
rendered open, and e,·e1-y open 11eries closed, yet there is, in regard 
to the nature of the generating relation, a genuine distinction between 
them-a distinction, howe,·er, which is of philosophiC'al rather than 
mathematical importance. 
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CHAPTER XXIX. 

PROGRESSIO~S AND ORDINAL NUMBERS. 

229. h is now time to consider tlie simplest type of infinite series, 
namely that to which the natural numbers themselves belong. I shall 
postpone to the next Part all the supposed diffiC'ultie11 arising out of 
the infinity of such series, and concern myself here only to give the 
elementary theory of them in a form not prempposing numbers•. 

The 8(:'ries now to be ronsidered are those which can be correlated, 
term for term, with the natural numbers, without requiring any change 
in the order of the terms. But 11ince the natural numbers are a 
particular case of such 11eries, and sinre the whole of Arithmetic and 
Analysis can be developed out of any one such series, without any 
appeal to number, it is better to give a definition of progressions which 
involves no appeal to number. 

A progression i11 a discrete series having conse<.'Utive terms, and a 
beginning but no end, and being also connec~ed. The meaning of 
connedion was explained in Chapter xxn· by mean11 of number, but this 
explanation cannot be given now. Speaking popularly, when a series 
is not connected it falls into two or more parts, each being a series 
for itself. Thus numbers and instants together fonn a 11eries which 
is not connected, and so do two parallel straight lines. Whenever 
a series is originally given by means of a transiti\'e asymmetrical rela­
tion, we can express connection by the condition that any two terms 
of our series are to have the generating relation. But progression!! 
are series of the kind that may be generated in the first of our six 
ways, namely, by an a.-,ymmetrical one-one relation. In order to pass 
from this to a transitive relation, we before employed nwnbers, defining 
the transitive relation as any power of the one-one relation. This 
definition will not serve now, since numbers are to be excluded. It 
is one of the triumphs of modem mathematics to have adapted an 
ancient principle to the needK of this case. 

* The present chapter closely follows Peauo's Arithmetic. See Formulain di! 
Mathtmatiqur.,, Vol. II,§ 2. I ha,•e given a mathematical treatment of the subject 
in RdM, Vols. Vil and Vlll. The subject is due, in the main, to Dedekiml and 
Georg Cantor. 
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The definition whi(•h we want is to be obtained from mathematical 
induction. This principle, which used to be regarded as a mere -;uhter­
fuge for eliciting results of which no other proof was forthcoming, has 
gradually grown in importance as the foundations of mathematics have 
been more closely investigated. It is now seen to be the principle upon 
which depend, so far as ordina]s are roncemed, the commutative Jaw 
and one form of the distributive law•. This principle, which b•fres 
the widest possible extension to the finite, is the distinguishing mark 
of progressions. It may be i.tated ai. follows: 

Given any class of terms a, to which be]ongii the first term of any 
progression, and to which be]ongs the term of the progression next after 
any term of the progression be]onging to "• then every term of the 
progression belongs to s. 

We may state the same prindple in another form. Let rt,(;r) be 
a propositional function, which i11 a determinate proposition as soon 
as :,: is given. Then cl> (.r) is a funl'tion of :r, and will in genera] be 
true or false &(,'Cording to the value of x. If .x be a member of a 
progression, let self x denote the term next after .r. Let cl> (.r) be true 
when x is the first term of a certain progres.'lion, and let ff, (seq .r) 
be true whenever cl> (.r) is tme, where .r is any term of the progression. 
It then follows, by the principle of mathematical induction, that 4,(x) 
is always true if x be any term of the progression in question. 

The complete definition of a progression is as follows. Let R be 
any asymmetrical one-one relation, and u a dass such that every term 
of 1t has the relation of R to 11ome term also bel.Jnging to the dass u. 
Let there be at least one term of the class u whi(•h does not have 
the relation R to any term of u. Let s be any class to which belongs 
at least one of the terms of u which do not have the relation R to anv 
term of u, and to which belong; also every term of u which has the 
relation R to 11ome term be]onging to both u and s ; and let u be such 
tui to be wholly contained in any class ., satisfying the above conditions. 
Then u, considered as ordered by the relation R, is a progressiont. 

230. Of such progressions, e,·erything relevant to finite Arithmetic 
can be proved. In the first place, we show that there can only be 
one term of u which does not have the relation R to any term of u. 
\V c then define the term to which .r ha.11 the relation R as the successor 
of .r (.r being a u), which may be written 11eq .r. The definitions and 
properties of 11.ddition, 11ubtrad.ion, multiplication, di\'ision, positive and 

* Namely (n + fj)y = afj + ay. The other form, a(/j + y) = afJ + ay, holds also 
for infinite ordinal numbers, and is thus independent of mathematical induction. 

t It should be observed that a disc~te open series generated by a transitive 
relation can always be reduced, as we saw in the preceding chapter, to one generat.ed 
by an asymmetrical one-one relation, provided only that the aerie1 is finite or a 
progression. 
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negative terms, and rational fractions are easily given~ and it is ea.<1ily 
shown that between any two rational fractions there is always a third. 
}'rom this point it is easy to advance to irrationals and the real 
numbel':i•. 

Apart from the principle of mathematical induction, what i11 chiefly 
interesting about this prO<'t'ss is, that it shows that only the serial or 
ordinal properties of finite numben. are used by ordinary mathematics, 
what may be '-'alle<I the logi'-'al propertil'S being wholly irrelevant. Dy 
the logical properties of numbers, I mean their cletinition by means of 
purely logical ideas. This proceKS, whieh has oc-en explained in Part II, 
may be here briefly rt.'<'apitulated. We show, to begin with, that a one­
one correlation can he c-fft'<'ted betwt.-en any two null dwises, or between 
any two classes u, 11 whid1 are such tliat, if x is a u, and .r' differs from 
:r, then ,r' c-annot be a tt, with a like eondition for t•. The poii.-iibility 
of su'-'h one-one <'Orrt'lation we ,·all 11imilarity of the two da.'lses u, v. 
Similarity, being !lymmctri<'al ancl transitive, ~ust be analy:r.able (by the 
prim·iple of abstraction) into po'lsei;!ooion of a common property. This 
we define as the number of either o( the da.'l11es. When the two cla.-ises 
11, v have the alx,w-cletined property, we say their number is one; and 
so on for higher numbers; the general definition of finite numbers 
demanding mathemittical induction, or the non-similarity of whole and 
part, hut being always given in purdy logi,:al terms. 

It is numbers so defim.-d that arc used in daily life, and that are 
essential to anv a.,sl't1:ion of' numhel'll. It iM the fad that numbers have 
the!te lo~rical propertil'11 that makes them important. But it is not 
theKC properties that ordinary mathematies employs, and numbers might 
be bereft of them without any injury to the truth of Arithmetic and 
Analysis. What is relevant to mathematics is solely the fact that 
finite numbers form a progression. Thi11 is the reason why mathe­
matit·ians-e.g. Helmholtz, Dedckind, and Kronecker-have maintained 
that ordinal numbers are prior to canlinals; for it is solely the ordinal 
properties of number that are relevant. But the eonclusion that or­
dinals are prior to '-'ardinals seems to have n.."llulted from a confusion. 
Ordinal11 and cardinal11 alike form a progression, and have exactly the 
same ordinal properties. Of either, all Arithmetic can be proved 
without any appeal to the other, the propositions being 11ymbolically 
identi'-'al, but different in meaning. In order to prove that ordinals 
are prior to cardinals, it would be nel"essary to show that the cardinals 
can only be defined in terms of the ordinals. But this is false, for the 
logical definition of the cardinals is wholly independent of the ordinalst. 
There seems, in fact, to be nothing to choose, as reganls logil"al priority, 
between ordinals and cardinals, except that the existence of the ordinalll 

* See my article on the Logic of Relations, RdM, VII. 
t Professor Peano, who has a rare immunity from error, baa recognized this fact. 

See Formulaire, 1898, 210, note (p. 39). 
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is inferred from the series of cardinals. 'l'he ordinals, as we Khall see 
in the next paragraph, can be defined without any appeal to the 
cardinals; but when defined, they are seen to imply the cardinals. 
Similarly, the cardinals can be defined without any appeal to the 
ordinal11; but they essentially form a progression, and all progressions, 
as I shall now show, necessarily imply the ordinals. 

231. The correct analysis of ordinals has been prevented hitherto by 
the prevailing prejudice against relation11. People speak of a series as 
consisting of L-ertain terms taken in a certain order, and in this idea 
there is commonly a psychological element. All sets of terms ha,·e, 
apart from psychological considerations, all orders of which they are 
capable; that is, there are serial relations, whose fields are a given set of 
terms, which arrange those terms in any possible order. In 110me cases, 
one or more serial relations are specially prominent, either on account of 
their simplicity, or of their importanl-e. Thus the order of magnitude 
among numbers, or of before and after among instants, 11t.-ems emphati­
cally the 11atural order, and any other seems to be artificially introduL-cd 
by our arbitrary choice. But this is a sheer error. Omnipotence itself 
cannot give terms an order which they do not posse.is already: all that 
is psychological is the con.nderation of such and such an order. Thus 
when it is said that we can arrange a set of terms in any order we please, 
what is really meant is, that we can consider any of the serial relations 
wh011e field is the given set, and that these serial relations will give 
between them any combinations of before and after that are compatible 
with transitiveness and connection. From this it results that an order 
is not, properly speaking, a property of a given set of terms, but of a serial 
relation whose field is the given set. Given the relation, it.'I field is given 
with it; but given the field, the relation is by no means given. The 
notion of a set of terms in a given order is the notion of a set of tenns 
considered as the field of a given serial relation ; but the consideration 
of the terms is superfluous, and that of the relation alone is quite 
sufficient. 

We may, then, regard an ordinal number as a common property of 
aet.s of serial relations which generate ordinally similar series. Such 
relations have what I shaU call likeness, i.e. if P, Q be two such relations, 
their fields can be so correlated term for term that two terms of which 
the first has to the second the relation P will always be correlated with 
two terms of which the first has to the second the relation Q, and 
vu:e tier.,8.. As in the case of cardinal numbers•, so here, we may, in 
virtue of the principle of abstraction, define the ordinal number of 
a given finite serial relation as the cla..,~ of like relations. It is easy to 
show that the generating relations of p1-ogn.'S8ions are all alike ; the 
cla..o;s of such relations will be the ol'dinal number of the finite integers 
in order of magnitude. When a d&SM is finite, all series that can be 

*(.;f.§ 111. 
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formed of its tenm1 are ordinally similar, and are ordinally different from 
series having a different cardinal number of terms. Hent.-e there is a 
one-one correlation of finite ordinals and cardinals, for which, a.'I we 
shall see in Part V, there is no analogy in respt.'<'t of infinite num hers. VVe 
may therefore define th<> ordinal number n as the da.'IS of serial relations 
whose domains ha\'e 1t terms, where n is a finite cardinal. It is necessary, 
unless 1 is to be excluded, to take domains inskad of• fields here, for no 
relation whil·h implies di,·e1'!lity can have one tenn in its field, though it 
may have none. This ha.11 a practical inconveniem-e, owing to the fact 
that n + I mui.t he obtained by adding mu· term to the field; but the 
point im·olved is one for l'om·entions as to notation, and is quite 
destitute of philosophical importance. 

232. The above definition of onlinal numbers is di~d and simple, 
but does not yield the notion of "nth," which would usually be reganled 
a.-; tl,e onlinal number. This notion is far more complex : a term is not 
intrinsil·ally thl' nth, and does not become so by the mere 111>ecific11tion 
of TI - 1 othet termi1. A term is the 11th in respect of n. certain serial 
relation, when, in rl>sJ>ect of that relation, the term in question has n - I 
predel·essor~. This is the definition of "nth," showing that this notion 
is relative, not merely to predecessors, but also to a spec.·ified 11Crial 
relation. Uy induction, the various finite ordinals can he defint.-d 
without mentioning the cardinah1. A finite serial relation is one which 
is not like (in the above sense) any relation implying it but not e11uivalent 
to it; and a finite ordinal is one 1·onsisting of finite serial relations. If 
n be a finite ordinal, n + I is an ordinal such that, if the last term• of 
a series of the type n + I be cut off~ the remainder, in the !lllme order, is 
of the ty}>e n. In more technical language, a serial relation of the ty}>e 
n + 1 is one whil-h, when confined to its domain instead of its field, 
becomes of the type n. This gives by induction a definition of every 
particular finite onlinal, in which cardinals are never mentioned. Thus 
we cannot say that ordinals presuppose cardinals, though they are more 
complex, sint.-e they pre,mppose both serial and one-one relations, whereas 
cardinals only prc11uppose one-one relations. 

Of the ordinal number of the finite ordinals in order of magnitude, 
several equivalent definitiomi may be given. One of the simplest is, 
that thi11 number belongs to any serial relation, whic·h is such that any 
class contained in its field and not null ha.-; a first term, while every 
term of the series ha.11 an immediate successor, and every term ext.-ept the 
first has an immediate predecessor. Here, again, cardinal numbers are 
in no way presupposed. 

Throughout the above discussions our serial relations are taken to be 
transitive, not one-one. The one-one relations are eal!ily derived from 

* The last term of a series (if it exim) ia the term belonging to tl1e converse 
domain but not to the domain of the generating relation, i.e. the term which ia after 
but not before other terms. 
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the transitive onCI', while the ron,·erse derivation is somewhat complicated. 
Moreover the one-one relations are only adequate to define finite 11eries, 
and thus their use cannot be extended to the study of infinite Reries 
unless they are taken as derivative from the transitive ones. 

233. A few words concerning posifo·e and negative ordinals seem to 
be here in place. If the first n terms of a progression be taken away 
(n being any finite number), the remaincler still form a progression. 
With regard to the new progre..Rion, negative ordinals may be &.'!signed 
to the terms that have been abstracted; but for this purpose it is 
convenient to regard the beginning of the smaller probrre'!Sion as the 
0th term. In order to have a se1i~ giving any positive or negative 
ordinal, we need what may be called a double progression. Thi11 is a 
series such that, choosing any term :r out of it, two progressions start 

from :r, the one generated by a serial relation R, the other by ii. 1'o 
:r we shall then assign the ordinal 0, and to the other terms we shall 
a..'lsign positive or negath·e ordinals according &Ii they belong to the one 
or the other of the two progressiom, starting from z. The positive and 
negative ordinals themselves form such a double progression. They 
expn'SII eHSentially a relation to the arbitrarily chosen origin of the two 
progressions, and + n and - n express mutually converse relations. 
'fhus they have all the properties which we recognize in Chapter xxvn 
&.'I characterizing terms which have signs. 
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CHAPTER XXX. 

DEDEKIND'S THEORY 01'' NUMBER. 

234. THE theory of progressions and of ordinal numbers, ~ith which 
we have bt-en occupied in the la.-,t chl\pter, is due in the main to two 
men-Dedekind and Cantor. Cantor's contributions, being specially 
conrenwd with infinity, need not be considered at present; and 
Dl•dekind's theory of irrationals is also to he postponed. It i11 his thl~ry 
of integer11 of which I wish now to give an account-the theory, that is 
to say, whi('h is eontai11ed in his" Wauiml wul wa.v .wllen die ZahlenP"• 
In reviewing this \\Ork, I shall not adhere 1:1trictly to DL-dekinrl's 
phra.~eolog_v. He appears to have been, at the time of writing, un­
acquainted with symbolic logic; l\nd although he invented as much of 
this subject as was relevant to his purpose, he naturally adopted phrases 
which were not usual, and were not always so convenient as their con­
ventional equivalents. 

The fuu<lamcntal ideas of the pamphlet in question are these+: 
(l) the representation (Ahbild,mg) of a system (21); (2) the notion of a 
chain (37); (8) the chain of an element (44); (4) the generalized form 
of mathematical induction (59); (5) the definition of a singly infinite 
system (71). From these five notions Dedekind deduces numbers a11cl 
ordinary Arithmetic. Let us first explain the notions, and then examine 
the deduction. 

235. (1) A repm1e11tation of a class n is any law by which, to every 
tenu of u, say J', l'orresponds some one and only one term <f,(.x). No 
assumption is made, to begin with, as to whether cf,(J·) belong.; to the 
clas.-, u, or llS to whether <f,(J') may be the same as <f,(y), when x and y 
are different terms of tt. The definition thus amounts to this: 

A repre.ventation of a class u is a many-one relation, whose domain 
contains tt, by which terms, which may or may not also belong to u., are 

* 2nd ed. BrunsM"ick, 18tl3 (1st ed. 188i). The principal contents of tbis 
book, expressed by the Algebra of Uelatious, will be found in my article in RdM, 
VII, 2, 3. 

t The numbers in brackets refer, not to pages, but to the small sections into 
which the "·ork ii! divided. 
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correlated one with each of the terms of u•. The repl'ellentation is 
similar when, if :r differs from y, both being u's, then tf,(.r) differs from 
,f,(y); that is, when the relation in que11tion is one-one. He shows that 
similarity between cla.11ses is reflexive, 11ymmetrical and transitive, and 
remark!! (!34) that clas.11e11 can be da.,11ified by similarity to a given class­
a sug1-,restion of' a.n idea which ill fundamental iu Cantor's work. 

236. (2) If there exists a relation, whether one-one or many-one, 
which correlates with a cla.,;s 11 only terms hcloni,•ing to thRt class, then 
this relation is said to com1titute a rcpresmtation of 11 in itHl'lf (36), 
n,nd with rcs)>l'ct to this relation u i11 <"ailed n chA.in (37). That is to 
say, Rny dasK tt i11, with rcsix--ct to any many-one relation, a chain, if 1t is 
contaim.-d in the clomnin of the relation, and the correlate of a u is 
always itKClf a u. The collection of l'on-clat.cs of a d&Ks iK called the 
imft.brc (Bild) of the cl1L'i11. Thus a chain is a d&Ks whose imabrc is 
part or the whole of itself. For the benefit of the non-mathematical 
reader, it may he uot supcrffuom, to remark thRt a chain with regard to 
a 011e-011e relation, provided it ha.11 any tt.•rm not bclonbring to the image 
of the <:ha.in, cannot be finite, for such a ,·hain must contain the same 
number of terms &K a proper pH.rt of it.o;elft. 

237. (3) If a be any term or collt-ction of terms, there may be, 
with rl'IIJX,'<-"t to a given many-one relation, many chains in which a is 
contained. The common part of all these chains, which is denotl-d by ti0 , 

is what lledekind <"alls the dutin <if a (44). 1"or example, if a be the 
number 11, or any set of numbers of which 11, is the least, the ehain of a 
with regard to the relation "less by l" will be all numbeni not let1s 
than 11. 

238. (4) Dcdekind now proCCOOti (59) t.o a theorem which is 
A. gcnemli1.ed f'onn of mathematical induction. Thit1 theorem is as 
follows: Let tt be any term or i.et of terms containL'<l in A. class .v, and let 
the im111,,re of the ,·onm10n part of a and the chain of a be Also contained 
in ,Y ; then it follows that the chain of tl is cont.ainL'll in .Y. Thi11 some­
what complicated theorem may OC'l'omc clearer by being put in other 
languA.gC, Let us call the relation by which the chain is generated ( or 
rather the converse of this relation) sucL'C!lsion, so that the correlA.te or 
imllf:,re of a tenn will be it.s successor. Let a be a term whi<•h ha.,; a 
suel'essor, or a colll'ction of such terms. A l'hain in general (with rt!brard 
to llllL't'<->SSion) will he any set of tcrmK such that the 1-1Ul'cessor of any 
one of them also belongs to the MCt. The chain of a will be the <."Ommon 

* A many-one relation is one in which, 1111 in the relation of a quantity to its 
m11gnitu1le, the ri1tht-hand term, to which the relation is, i11 uniquely determined 
when the left-hand term i!I ~ven. Whetl1er tl1e cim,·enie holds is left undecided. 
'1111111 11 011&-(me relation i11 a particular Clllle of a many-one relation. 

t A pn11w.r part (Echter Theil) is a phl'ILSe analogom1 to "proper fraction"; it 
ml'ans a part not the whole. 
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part of all the chains containing a. 'I'hen the data of the theorem 
inform us that a is contained in 11, and, if any term of the chain of a be 
an 11, so is its successor; and the conclusion is, that every term in the 
chain of a is an 11. This theorem, as is evident, is very similar to 
mathematical induction, from which it differs, first by the fact that a 
need not be a single tenn, secondly by the fact that the constitutive 
relation need not be one-one, but may be many-one. It is a most 
remarkable fact that Dedekiud's previous assumptions suffice to demon-
11trate this thL'Orem. 

239. (5) I come next to the definition of a singly infinite system 
or cla.~ (71 ). This is defined as a class which can be represenfod in 
itself by means of a one-one relation, and whu:h is further such as to be 
the l'hain, with regard to this one-one relation, of a single term of the 
da.-;s not contllined in the imab'e of the cl8.SII. Calling the class N, and 
the one-one relation R, there are, as Dedekind remarks, four point-; in 
this definition. (1) The image of N is l'ontained in N; that is, every 
term to whieh an N hfUI the relation R is an N. (i) N is the chain of 
one of it.-; tenus. (S) This one term i11 such that no N h&11 the relation 
R t.o it, i.e. it is not the image of any other term of N. (4) The 
relation R is one-one, in other word11, the representation is similar. The 
abstrad system, defined Kimply RS possei,sing theke properties, is defined 
h_y Dedekind a.,; the ordinal numbeni (73). It is evident that hi.~ singly 
infinite system is the 118.Ull' a..; what we called a progre111tion, and he 
pmeeeds to deduee the various properties of progre11sions, in particular 
mathen111.tical incluction (80), which follows from the ahm·c brenerafo,.ed 
form. One number nz is said to be less than another u, when the chain 
of' 11, i11 contained in the image of the chain of m (89); and it is shown 
(88, 90) that of two different numbers, one must, be the le11S. Prom thiii 
point everything proree<ls simply. 

240. The only further point that 11t.>ems important for our pl"C!lent 
purpase i11 the definition of cardinal!!. It is 11hown (13!t) that all singly 
infinite 11ystems are similar to eaeh other and to the ordinal11, and that 
l"om1crscly (133) any system which is similar to a singly infinite system 
is singly infinite. When a system is finite, it is similar to i;ornc system 
Z,u where Z,. means all the numben from 1 to 1, both inclusive; and 
.,_,i,·r t•er.,li (160). There is only one number n which has this property 
in regard to any 1-,ri,·cn finite system, and when considered in relation 
t.o thi11 property it ii1 call eel a c:ardinal 1mmln!T, and ii-1 said to be the 
number of elements of which the said 11y!ltem consi11b! (161). Here 
nt last we reach the canlinal numbers. 'I'heii- dependence on ordinals, 
if I may venture to interpret l}t.,,dekind, is as follows : owing to the 
order of the ordinals, every ordinal n defines a cl&.'!."1 of onlinals z., 
con11isting of all that do not sueceed it. They may be defim .. -d wi all 
that are not contained in the im&b,e of the chain of n. This d&1111 of 
ordinals may he 11imilar to another cl&SK, which i11 then said to have the 
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canlinal number 11. But it is only lx.-cause of the onler of the ordinalM 
that e1u·h of' them dcfine11 a cla.,,11, and thus this onler is pre1mpJlOlll--d in 
obtaining can.1inals. 

241. Of Um merits of the above dl-dudion it is not IU?cesKB.ry for 
me to speak, for they n.re unh·ersall.v at·knowlc..-dbred, But KOme points 
call for dii;cu11. .. ion. In the fin;t t"I\.-.C, Dcclekind pmz,,:11 mathematical 
indul"tion, while Peano rcgan:111 it Ill! an axiom. Thi'I gives U<.-dckind 
an apparent 11uperiority, which must be exami1wtl. In the Sl.-cond pln.ce, 
the1-e i11 no rea.-;on, merely hc('ause the n11111hc1'!. "hich D<.-dl'kind obtains 
l,az•e an onll•r, to hold that they are orclinal uumhcn.; in the third 
plac~, hiK definition of ('n.rdinals i,i unneccs,;:irily ro111plit·11.ted, and the 
dcpemlem.-c of t·m"<linali-. upon m-der is only apparent. I shall take these 
points in tum. 

As regard:,,. the proof of mathematical indm·tiou, it ii-. to be observed 
that it makc11 the pradi('All_v c11ui,·alent assumption that number.. fom1 
the dmin of 0lll' of them. Either can be deduced from the other, and 
the t·hoit·e as to whic·h is to he 11.11 axiom, whic·h a t.heorem, is mainly 
a matte1· of tai.tc. On tht• whole, though the consideration of chain11 
i11 most inbre11ivu11, it is i-.t>mt•what difficult, and has the disadvantabre 
that thL'<>rcms t·m1c·erning tlw finite class of numbers not greater than 1& 

as a rule have to be dc•duced from t·orrei.ponding theorems concerning 
the infinite da.,s of numhcri. ~rC11tcr than 11. For these J"CASons, and 
not hccauKC of any logi,:al :-.upcriority, it seems simpler to begin with 
mathematical induction. And it 11ho11ld he obi.ervt.'<l that, in Peano's 
method, it i11 only when thc01-c1m1 a1-c to be proved con<.-cming any 
number that mathematical imlm:tion is required. The elementary 
Arithmetic of our childh,x,d, which diS('llSSt.'11 only particular numbers, 
is wholly indt·pendcnt of mathematit:al induction ; though to prove that 
thiK i11 IK> for et"'Y pa1tit·uln.r number would itself l"l.'<)Uirc mathematical 
induction. In D...Jckind'11 method, on the other hand, propoi;itions 
con(.-erning particular numbcn;, like b-em•1-al proposition:-., demand the 
consideration of chain11. Thu11 there is, in Pcano's method, a dii,tinct 
advantage of simplicity, and a dearer 11eparation between the particular 
and the 1,reneral propo11itions of Arithmetic. But from a purely logical 
point of view, the two methods st.-em e11ually 11ou111l; and it i11 to be 
remembcn.-d that, with the logical theory of canlinal .. , hoth Pcauo's and 
Dedckiml'11 axiomM lx.'COmc demom,b-able •. 

242. On the second point, there iii Home defi,·icncy of clea111<.'ll.'I in 
what Dcdekind KB.JM. Hi11 words arc (7:J): "If in the contemplation 
of a Mingly infinite 11y11tem N, ordered by a rcp1'C.-ientatio11 cf,, we di11rc~'llrd 
entirely thci peculiar nature of the elements, retaining only the pot;.'libility 
of distinguishing them, and considering only the relations in which they 
are pla(.-ed by the ordering representation tf,, then these clemenb1 are 
called 11atural 1m1t1ber11 or orrliHal number& or simply nmnbL'1·11." Now 

• Cf. t:1,ap. xm. 
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it is impossible that this ar.~-ount Hhould he quite corre<..-t. 'For it implies 
that the terms of all progre11.-;ions other than the ordinals are complex, 
and that the ordinals are elements in alJ :mch terms, obtainable by 
abstraction. Hut thi:s is plainly not the ca:se. A progre!lllion t·an be 
formed of points 01· in:stants, or of transfinite ordinals, or of cardinals, 
in which, as we shall i;hortly see, the ordinals arc not elements. More­
over it i11 impoi;sible that the ordinals :should he, as l>edekind suggests, 
nothing but the terms of such rclationH as constitute a progrt·:ssion. 
If they are to be anything at all, they must be intrinsically something; 
they must differ from other t•nt.ities as points from instants, or colom-s 
from sounds. \Vhat l>c.-dl•kiud intended to inclit·ate was probably a 
definition by 111e1ms of the prim·iplc of abstradion, such as we at.tcmpfod 
to give in t.hc prct·L-ding chapter. But R definition so nuule always 
inditall's some cla.,;!, of entitil•s h11ving (or lll'ing) a geunine nature of 
thL·ir own, and not logimlly tlependent upon the manner in whi,·h they 
lune bel'Jl 1h·fint"<l. The entities defined should he visibk•, 1tt lca.>1t to 
the 111iml'l'> l'YC; what the prim·iple H.s!-ierl-. is t.h1Lt, under t'l•t-L,in t·on­
ditiow,, there arc sud1 t•ntitics, if only wt• knew where.• to look for them. 
Uut whctlwr, when we have found thl'll1, they will he ordinals or 
t·anlinals, or even something <1uitc difforent, i!t not to be decided 
off-hand. And in any mse, Dedckind does not show us wluLt it is 
that all progressions have in ,·ommon, nor give llllY rca.,on for supp08ing 
it to be the ordinlll numbers, cx,·ept that all progn.•ssions obey the same 
laws as ordinals do, which would prove L"<JUally that a,iy a.'lsib'lll'<l 
progression is what all progressions h1n-e in common. 

243. This brings u11 to the third point, namely the definition of 
cardinals by means of ordinals. I>edcl..ind remarks in his prcfa<·c (p. ix) 
that many will not rccogni:i:e their old friends the natural numhc1"l! in 
the shadowy shapes which he introdm,-es to them. In thh1, it Sl.'l'nu1 

to me, the suppOSl-d perNons are in the right-in other words, I am one 
among them. \Vha.t I>edekind presents to us is not the numbcl'S, 
but any progression : what he says is true of all pro1,,rrcssions alike, 
and his demonstrations nowhere-not even where he comes to ca.nlinals­
involve any property <listinguil1hing numhct'1'1 from other progi-c1:1sions. 
No evidence is brought forward to show that numbers are pl'ior to 
other progres.'lions. We are told, indeL"tl, that they are what all pro­
gresi,ions have in common; but no reason i1:1 given for thinking that 
progrc,.-ions have anything in common beyond the properties R.'>llignL"tl 
in the definition, which do not themselves conbtitute a new progression. 
The fact is that all depends upon one-one relations, which lk"tlckind 
ha.'I lK..-en using throughout without perceiving that they alone 1mffice 

for the definition of cardinals. The relation of :.imilarity between 
clw1ses, which he employs consciously, combined with the principle of 
abstraction, which he implicitly ai1.-iu111L'II, suffk-e for the definition of 
cardinals ; for the definition of ordinals these do not 1mffice ; we 
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require, as we saw in the preceding chapter, the relation of. likeness 
between well-ordered serial relations. The definition of particular 
finite ordinals is effe<--ted explicitly in terms of the corresponding 
cardina1'1: if n be a finite cardinal number, the ordinal number n is 
the class of serial relations which have n terms in their domain 
(or in their field, if we prefer this definition). In order to define 
the notion of "nth," we nt--ed, besides the ordinal number 11, the 
notion of powers of a relation, i.e. of the relative produd. of a rela­
tion multiplied into it.'«!lf a finite number of times. Thus if R be any 
one-one serial relation, generating a finite series or a progression, the first 
term of the fielcl of R (which field we will call r) is the term belonging 
to the clomain, but not to the converse domain, i.e., ha,·ing the relation · 
R but not the relation R. If r ha.,; n or more terms, where n is a finite 
numbl•r, the nth tt'rm of r is the term to which the first term has the 
relation R 11-1, or, again, it is the term ha,•ing the relation R11- 1 but not 
the relation jjn_ Through the notion of powers of a relation, the 
introdu<'lion of cardinals is here unavoidable; and ,u. powers are definecl 
by mathematical includion, the notion of nth, 11<·cording to the above 
clcfinition, <·annot he exknded beyond finite numher-s. We <·an howl•ver 
extend the notion by the following dt•tinition: If P be A. transitive 
aliorclative generating a well-orden.-d series p, the nth term of p is the 
term ,r such that, if P' be the relation P limited to ,l' and its pre­
dcce1111ors, then P' ha.,,; the ordinal number n. Here the dependence 
upon c11rdinals re11ults f'mm the fac.-t that the ordinal n can, in hreneral, 
only be defined by means of' the <·ardinal 11. 

It is important to observe that no 11et of tenns has inherently one 
order rather than another, and that. no term is the 11th of a 1>et except 
in relation to a particular generating relation whose field i11 the set or 
part of the set. For example, 11ine,-e in any progression, any finite 
number of consl.'<.'ntive terms including the first may be taken away, 
and the remainder will i.;till form a progression, the ordinal number 
of a term in a progn'K11ion may be diminii.hecl to any smaller number 
we chooi.;c. Thus the ordinal number of a term is relative to the series 
to which it helonh'N. Thi11 may be rt--duct.-d to a relation to the first 
term of the series ; and lest a vicious t·irclc should be suspected, it may 
be explainecl that the.fir.YI term can always be defined non-numerically. 
It is, in l>edekind's singly infinite 11ystcm, the only term not contained 
in the imRgC of the system; and 1:,rencra.lly, in any lll'rie11, it is the only 
term whit·h ha.-. the constitutive relation with one i,;ense, but not with 
the other•. 'l'hus the relation exprellHt'Cl by 11th is not only 11 relation 
to 11, but also to tht' first term of' the serie11; and ,firat itself depends . 

* "l11ough when the 11erie11 has two end11, we have to make an arbitrary selection 
as to which we will call linit, which )Mt. The obviou11ly 11011-numerical nature of' 
la«t illuatr11teH that of' its correlative, fir11I. 
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upon the terms included in the series, and upon the relation by which 
they arc orden.-d, so that what was first may cease to be so, and what 
wa.c; not first may become so. Thus the first term of a seriei must be 
a.11signcd, as is done in Dedekind's view of a progl'C811ion a.c; the t·hain 
of ifa first term. Hence nth expresses a fonr-comen.-d rl'lation, betwL-cn 
the term which is nth, an a.'lsigned term (the first), a bl'l'ncrating serial 
relation, and the t·ardinal number 11. Thus it is plain that ordinals, 
either as clM'les of like 11erial relations, or as notions like "uth," arc 
more complex than cardinals ; that the logit·al theory of ,·ardinals is 
wholly indt•pcndent of the 1,,renern.1 theory of progressions, requiring 
independent development in order to show that the l'!lrdina1H form a 
progrc,;sion; and that Dcdekiml's ordinalH arc not esHcntially either 
on.lina1s or t·ardinals, but. the membc1"H of any pl'Ogrcssion whatc\'er. 
I havt! dwelt on this point, as it is important, and my opinion is at 
varimll'e with that of most of the best authoriticH. If DcdL·kind's view 
Wl-'re l'l>rrect, it would have been a logical erl'Or to ht.·gin, as this work 
does, with the theory of' cardinal numhet'll rn.ther than with order. 
!<'or my part, I clo not hold it an nbsolute error to fx,gin with order, 
since thl' propt•rties of pro1,,rressions, 11ml even most of the propcrtil·s of 
RCril•s in general, seem to be largely independent of number. But 
the properties of number must he capable of proof without appenl to 
the general properties of progressions, since cardi111il numbers t·an he 
independently definL-d, ancl must be seen to form a progrcs~ion before 
thl'orc1rn, cont·eruing prngrcssions can he applied to them. I le1we the 
question, whl'tht·t· to begin with order m· with numht•t·s, rcsolvcH itiic]f 
into one of C'ouvenience and simplicity; and from this point of view, 
the ,·1mlinal nmnher,; seem naturally to prcct.-dc the Yery diffi,·ult l'On­
sidcratious a,; to series which have occupierl us in the prc1oent Part. 
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CHAPTER XXXI. 

DISTANCE. 

244. Tm; notion of distan<·e is one which is often supposed essential 
to series•, but whirh sc]dom receh·es precise definition. An emphasis on 
distance characterii.es, generally speaking, those who believe in relative 
position. Thus Leibniz, in the course of his controversy with Clarke, 
remarks: 

"A,o; for the objection, that space and time are quantities, or rather 
thin#,1'!1 endowl-d with quantity, and that situation and onler are not 
so: I answer, that order also ha.'I its quantity; there is that in it which 
goes before, and that which follows; there is di8tance or interval. 
llelative things have their quantity, as well as absolute ones. Por 
instance, ratios or proportions in mathematics have their quantity, and 
arc measured by logarithms; and yet they are relations. And therefore, 
though time and space consist in relations, yet they have their 
quantity+." 

In this pasKRgC, the remark: "There is that which goo, before, and 
that which follows; there is distance or interval," if considcrt..-d as an 
infl'rem'<', is a non aequitur; the mere fact of order does not prove that 
there is distance or interval. It proves, as we have seen, that there 
arc stretches, that these are rapable of a special form of addition 
closely analohrous to what I have called relationnl addition, that they 
have sign, and that (theoretically at lea.'lt) stretches whi<·h fulfil the 
axioms of Archimedes and of linearity arc always capable of numerical 
mea.'lurement. But the idea, as Meinong rightly points out, is entirely 
distim~t from that of stretch. Whether any particular series does or 
does not l'ontain distances, will be, in most compact series ( i.e. such as 
have a term between any two), a question not to be decided by argument. 
In discrete seril'K there must be distance; in others, there may be­
unlcss, indeed, they are series obtained from progl'essions as the 
rationalli or the real numbers are obtained from the integers, in whirh 

* E.g. by Meinong, op. cit. § 17. 
t Phil. Werke, Gerhardt's ed. Vol. v11, p. 404. 
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case there must be distance. But we shall find that stretches are mathe­
matically sufficient, and that distances are c.-omplicated and unimportant. 

246. 'l'he definition of distance, to begin with, is no easy matter. 
What has been done hitherto toward11 this end is chiefly due to non­
Euclidean Geometry•; something al!IO has been done towards settling the 
definition by Meinongt. But in both these e&'ll'M, there is more c·onrem for 
numeric·al measurement of distance than for ib, actual definition. Never­
theless, distance is hy no means indefinable. l.t•t us endeavour to brenera­
lize the notion as much a.'> possible. In the first place, distanc~ need not 
be a.-,ymmetrical; but the other properties of distam·c always allow us to 
render it so, and we may therefore take it to he 110. Sec·onclly, a distance 
need not be a quantity or a magnitude; although it is usually taken to 
be such, we shall find the taking it so to be irrelevant to its other 
properties, and in particular to ibi numerical me,umrement. Thirdly, 
when distance is taken asymmetrically, there must be only one term to 
which a given term ha.'l a given distanc.-e, and the convcl'!le relation to the 
given distance must be a distance of the 1u1.me kind. (It will be observed 
that we must first define a kintl of distance, and proceed thenc.-e to the 
general definition of distance.) Thm1 every distance is a one-one 
relation; and in respel't to such relations it is convenient to respect the 
converse of a relation as its -Ith power. Purther the relative product 
of two distam.-es of a kind must be a distance of the same kind. When 
the two distances are mutually converse, their product will be identity, 
which is thus one among distances (their zero, in fa<·t), and must be the 
only one which is not a.<1ymmetrical. Again the product of two distances 
of a kind must he commutative!, If the distances of a kind be magni­
tudes, they must form a kind of magnitude-i.e. any two must be equal 
or unequal. If they are not magnitudes, they mu11t still form a series 
generated in the st.-cond of our 11ix way11, i.e. every pair of different 
di11tances must have a certain asymmetrical relation, the same for all 
pairs exc.-ept as regards sense. And finally, if Q be this relation, and 
R1 QR'l (Ru R" being distances of the kind), then if Ha be any other 
distanc.-e of the kind, we must have R1 Ra QR9 R3• All these properties, 
so far as I can discover, are independent; and we ought to add a 
property of the field, namely this: any two terms, ea.eh of which belongs 
to the field of some distan<.-e of the kind (not nt-cessarily the same for 
both), have a relation which is a distance of the kind. Ha\·ing now 
defined a kind of distance, a distance is any relation belonging to some 
kind of di11tance; and thus the work of definition seems completed. 

The notion of distance, it will be seen, is enormously complex. The 
properties of distances are analogous to those of stretches with sign, but 

* See e.g. Whitehead, Uniaer,al Algebra, Cambridge, 1898, Book v1, Chap. 1. 
t Op. cit. Section 1v. 
t This is an independent property ; consider for instance the dHFerence between 

"maternal grandfather" aud "patemal grandmother." 
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are far less capable of mutual deduction. 'J.'he properties of stretches 
corresponding to many of the above properties of distances are capable 
of proof. The dift'erence is largely due to the fact that stretches can be 
added in the elementary logical (not arithmetical) way, whereas distances 
:require what I have called relational addition, which is much the same as 
relative multiplication. 

246. The numerical measurement of di11tances has already been par­
tiaJJy explained in Part III. It requires, as we saw, for its full application, 
two further postulates, which, however, do not belong to the definition of 
distam-es, hut to certain kinds of distances only. These are, the postu­
late of Archimedes : given any two distances of a kind, there exists 
a finite intebrer n such that the nth power of the first distance is greater 
than the second di!1ta.nce; and Du Bois Reymond's postulate of linearity: 
Any di11tance has an nth root, where n is any integer (or any prime, 
whence the n'tlult follows for any integer). When these two postulates 
are Kati11fied, we can find a meaning for nz, where R i11 a distance of the 
kind other than identity, and x is any real number•. Moreover, any 
distant·e of the kind is of the form R"', for some value of :r. And :r is, 
of course, the numerical measure of the distance. 

In the case of series brenerated in the ti:n.t of our six ways, the various 
powers of the generating relation R give the distances of terms. Tlu,'8e 
various powers, as the reader can see for himself, verify all the above 
characteristics of dii.-tanccs. In the ca..,;;e of series generah.>d from pro­
greHSions &11 rationals or real numbers from integers, there are always 
distances; thus in the e&11e of the rationals themselves, which are one­
one relation11, their differences, which are again rationals, measure or 
indicate relations between them, and these relations are of the nature of 
distanres. And we shall sec, in Part V, that the.'le dista.nce11 have some 
importam-e in t·onnection ,with limits. l<'or numerical measurement in 
some form is e11sential to certain theorems about limits, and the nume­
rical measurement of distam,-es is apt to be more practically feasible than 
that of 11tretches. 

247. On the general question, however, whether series unconnected 
with number-for instance spatial and temporal series-are such as to 
contain di!ltances, it is diffi,•ult to speak positively. Some thinbrs may 
be said against this view. In the first place, there must be stretches, and 
thel'le must be magnitudes. It then bet.-omes a sheer assumption-which 
must be set up as an axiom-that equal stretches correspond to equal 
dista.nl-e~. This may, of t.-ourse, be denied, and we might even seek an 

* The powel'l'I of distances are here understood in the sense resulting from relative 
multiplication; thus if a and I, have the 881Tle distance as 6 and c, this distance is the 
square root of the distance of a and c. The postulate of linearity, whOBe expression 
in ordinary language is: "e,·ery linear quantity can be divided into 71 equal parts, 
where 71 i11 any integer," will be found in Du Bois Reymond's .AllgemeiJUJ J'unctionn­
theorie (l'ii bingen, 11182), p. 46. 
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interpretation of non-Euclidean Geometry in the denial. We might 
reb'ard the usual coordinates 1111 expressing stretches, and the logarithms 
of their anharmonic mtios as expressing distances; hyperbolic Geometry, 
at least, might thus find a somewhat curious interpretation. Herr 
Meinong, who regards all series as containing distan<.-es, maintains an 
analogous principle with regard to distance and stretch in general. The 
distance, he thinks, increai;es only as the logarithm of the stretch. It 
may be observed that, where the distance itself is a rational number 
(which is possible, i;ince rationals are one-one relations), the opp011ite 
theory can be made fonnally convenient by the following fact. The 
square of a distance, as we saw generally, is said to be twice 1111 great as 
the distance whose square it is. We might, where the distanL-e is a 
rational, say instead that the stretch is twice as great, but that the 
di,stance iK truly the square of the former distance. Por where the 
distance is already numerical, the usual interpretation of numerical 
measurement conflicts with the notation Jli. Thus we shaJI be com­
pelled to regard the stretch as proportional to the logarithm of the 
distance. But since, outside the theory of progressions, it i11 usually 
doubtful whether there are distanL-es, and since, in almo11t all other 
seriei1, stretches seem adequate for all the results that are obtainable, the 
retention of distance addK a complication for which, as a rule, no 
necessity appears. It is therefore generally better, at least in a philo­
sophy of mathematics, to eschew distances except in the theory of 
progresi1ions, and to mea.,;ure them, in that theory, merely by the 
indices of the powers of the generating relation. There is no logical 
reason, so far w, I know, to suppose that there are distances elsewhere, 
except in a finite space of two dimeni1ions and in a projective spaoo ; and 
if there are, they are not mathematically important. We shall see in 
Part VI how the theory of space and time may be developed without pre­
supposing distance; the distances which appear in projective Geometry are 
derivative relations, not required in defining the properties of our space; 
and in Part V we shall see how few are the functions of distance with 
regard to series in general. And as against distanL>e it may be remarked 
that, if every series must contain distances, an endless regress becomes 
unavoidable, since every kind of distance is itself a series. This is not, 
I think, a logical objection, since the regress is of the logically permis­
sible kind ; hut it shows that great complications are introduL-ed by 
regarding distances as essential to every series. On the whole, then, it 
seems doubtful whether distances in general exist; and if they do, their 
existence seems unimportant and a source of very great complications. 

248. We have now completed our review of order, in so far as is 
possible without introducing the difficulties of continuity and infinity. 
We have seen that all order involves a.~ymmetrical transitive relations, and 
that every series as such is open. But closed series, we found, could be 
distinguished by the mode of their generation, and by the fact that, 
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though they always have a first term, this term may always be selected 
arbitrarily. We saw that asymmetrical relations must be sometimes 
unanalyzable, and that when analyzable, other a.symmetrical relations 
must appear in the analysis. The difference of sign, we found, depends 
always upon the difference between an asymmetrical relation and it..'I 
com·ersl'. In discussing the partirular type of series which we called 
progre11sions, we saw how all Arithmetic applies to every such series, and 
how finite ordinals may he defined by means of them. Hut though we 
found this theory to be to a certain extent independent of the cardinals, 
we saw no rea.~n to agree with Dedekind in regarding cardinals as 
lobrically subsequent to ordinals. Finally, Wl' agret•d that distance is 
a notion which is not essential to series, and of little importance outside 
Arithmetic. With this equipment, Wl' shall be able, I hope, to dispose 
of all the difficulties which philosophers have usually found in infinity 
and continuity. If this can be accomplished, one of the greatest of 
philosophical problems will have been solved. 'fo this problem Part V 
is to be devoted. 
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CHAPTER XXXII. 

THE CORRELATION OF SERIES. 

249. WE come now to what has been generally considered the 
fundamental problem of mathematical philosophy-I mean, the problem 
of infinity and ('Ontinuity. This problem has undergone, through the 
lahoura of Weierstrass and Cantor, a complete transformation. Since 
the time of Newton and Leibniz, the nature of infinity and continuity 
had been sought in discussions of the so-called Infinitesimal Calculus. 
But it ha.'l Ix-en shown that this Calculus is not, as a matter of fact, 
in any way concerned with the infinitesimal, and that a large and most 
important bran('h of mathematics is logically prior to it. The problem 
of continuity, moreover, ha.c; been to a great extent separated from that 
of infinity. It was formerly supposed-and herein lay the real strength 
of Kant's mathematical philosophy-that continuity had an essential 
reference to space and time, and that the Calculus (as the word ftw:ion 
suggests) in some way presupposed motion or at least change. In this 
view, the philosophy of space and time was prior to that of continuity, 
the Transcendental Aesthetic preceded the Transcendental Dialectic, and 
the antinomies (at least the mathematical ones) were essentially spatio­
temporal. All this has been changed by modern mathematit's. What 
is called the arithmetization of mathematics has shown that all the 
problems presented, in this respect, by space and time, are already 
present in pure arithmetic. The theory of infinity has two forms, 
cardinal and ordinal, of which the former springs from the logical 
theory of number; the theory of continuity is purely ordinal. In the 
theory of continuity and the ordinal theory of infinity, the problems 
that arise are not specially conc.-erned with numbers, but with al1 series 
of certain types which occur in arithmetic and geometry alike. What 
makes the problems in question peculiarly easy to deal with in the case 
of numbers is, that the series of rationals, which is what I shall call a 
compact series, arises from a progression, namely that of the integers, and 
that this fact enables us to give a proper name to CVerJJ term of the 
series of rationals-a point in which this series differs from others of the 
same type. But theorems of the kind which will occupy us in most of 
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the following chapten, though obtained in arithmetic, have a far wider 
application, since they are purely ordinal, and involve none of the 
logical properties of numben. That is to say, the idea which the 
Gennans call Anzahl, the idea of the number of terms in some class, 
is irrelevant, save only in the theory of transfinite cardinals-an 
important but very distinct part of Cantor's contributions to the theory 
of infinity. We 11hall find it possible to give a general definition of 
continuity, in which no appeal is made to the mass of unanalyzed 
prejudice which Kantians call " intuition"; and in Part VI we shall 
find that no other continuity is involved in space and time. And we 
shall find that, by a strict adherence to the dt)ctrine of limits, it · is 
possible to dispense entirely with the infinitesimal, even in the definition 
of continuity and the foundations of the Calculus. 

250. It is a singular fact that, in proportion &11 the infinitesimal 
has been extruded from mathematics, the infinite haFi been allowed 
a freer development. l<'rom Cantor's work it appears that there are 
two I"ellptds in whieh infinite numbel"!I differ from those that are finite. 
The first, which applies to both cardinals and ordinals, is, that they do 
not obey mathematical induction-or rather, they do not form part of 
a serit.>s of numbers beginning with 1 or 0, proceeding in order of 
magnitude, containing all numbers intermediate in magnitude between 
any two of its terms, and obeying mathematical indudion. The 
second, which applie11 only to cardinals, is, that a whole of an infinite 
number of terms always contains a part com1isting of the same 
number of terms. The fil'llt respect constitutes the true definition 
of an infinite series, or rather of what we may call an infinite 
term in a series : it gives the essence of the ordinal infinite. The 
second gives the definition of an infinite collection, and will doubtless 
be pronounced by the philosopher to be plainly self-contradictory. But 
if he will condeS<,-end to attempt to exhibit the contradiction, he will 
find that it can only be proved by admitting mathematical induction, 
so that he has merely established a connection with the ordinal infinite. 
Thus he will be compelled to maintain that the denial of mathematical 
induction is self-contradictory; and as he has probably reflected little, 
if at all, on this subject, he will do well to examine the matter before 
pronouncing judgment. And when it is admitted that mathematical 
induction may be denied without eontradiction, the imppobed antinomies 
ot' infinity and continuity one and all dih&ppear. This I shall endea,·our 
to prove in detail in the following chapters. 

2Gl. Throughout this Part we shall often have oc..'C&Sion for a 
notion which has hitherto been scarcely mentioned, namely the correla­
tion of series. In the preceding Part we examined the nature of 
isolated series, but we RCarcely considered the relations between different 
series. These relations, however, are of an importance which philo­
sophers have wholly o\"erlooked, and mathematicians ha,·e but lately 
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realized. It ha.., long been known how much could be done in Geometry 
by means of homography, which is an example of correlation; and it 
has been shown by Cantor how important it is to know whether a series 
is denumerable, and how similar two series capable of l'orrelation are. 
But it is not usually pointed out that a dependent \'ariable and its 
independent variable are, in most mathematical cases, mcrelv correlated 
series, nor has the general idea of correlation been adeq{iately dealt 
with. In the present work only the philosophical a.<ipet:b, of the subject 
are rcle\'ant. 

Two aerie., s, s' llre said to he correlated when there is a one-one 
relation R coupling every term of ,Y with a term of s', and z•i,·,· zwr.vii, and 
when, if ,'l', ,'I/ be terms of.,, and :i· precL"'lles y, then their correlates .i1, .1/ in 
.,' are such that ;i1 precedl·s ,1/. Two ,·la,.,.,e1,· or colll•l'lions are n,rrelatt-d 
whenever there is a one-one relation lwtwecn the tt•rms of the one and 
the terms of the other, none being left over. Thus two series may be 
correlated as dasseR without being correlated as series ; for correlation 
a.,; d1tsses involve~ onlv the same cardiua.l number, whereas correlation 
as series involves ah;o the same ordinal type-a distinction whose 
importance will he explained hereafter. In. order to distinguish these 
cases, it will be well to speak of' the l'Orrelation of dass<!s as l"ot1't'lation 
simply, and of the correlation of series a.~ ordinal correlation. Thus 
whenever corrdation is mentioned without Rn adjecti,·e, it is to he 
understood ru. being not necessarily ordinal. Correlated classcli will be 
l·allcd ,timilar; con·clated series will he called ordi11all,y .virnilar; and 
their generating relations will be said to have the relation of 
like,u:s.v. 

Correlation is a method hy which, when one series is given, others 
may he generated. If there be any series who!,e generating relation 
itS P, 1tnd any one-one relation which holds betwL>en any term :r of the 
series and some term which we may call .ra, then the cla."s of terms 
:i.·a will form a ~eriL-s of the same type lls the clru;s of terms a·. For 
suppose .1/ to be any other term of our original serie~, and assume ,rPy. 
Then we have xaR.i·, ;i:J~'I/, and !/R;t/B· Hence .1·aRPR!JR• Now it may 
be i,hmrn • that, if P be transitive and a.,;ymmctril'al, so i11 RP R; hence 
the correlates of terms of foe P-serieis f~rm it series whose generating 
relation is RPR. Between these two series there is ordinal correlation, 
and the series ha,·e complete ordinal similarity. In this way a· new 
series, similar to the original one, is hrenernted by any om•-one relation 
whose field indndes the original fll'ries. It l'Rll also be shown that, 
conversely, if P, P be the generating relations of two similar serieR, 
there is a one-one relation R, whose domain is the field of P, which 
is sm·h that P' = RPR. 

* !See my article in llllM, Vol. vm, No. 2. 
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2152. We can now understand a distinction of great importance, 
namely that between self-sufficient or independent series, and series by 
correlation. In the cMe just explained there is perfect mathematical 
symmetry between the original series and the series by correlation; for, if 
we denote by Q the relation RPR, we shall find P = RQR. Thus we may 
take either the Q-series or the P-series as the original, and regard the 
other a.'I derivative. But if it should happen that R, instead of being 
one-one, is many-one, the terms of the field of Q, which we will call q, 
will have an order in which there is repetition, the same term occurring 
in different positions corresponding to its different correlates in the field 
of P, whi<'h we will call p. This is the ordinary ca.'ie of mathematical 
functions which are not linear. It is owing to preoccupation with such 
series that most mathematicians fail to reali:r..e the impossibility, in an 
independent series, of any recurrence of the same term. In every 
sentence of print, for example, the letters acquire an order by correlation 
with the points of sp8.l'e, and the same letter will be repeated in different 
positions. Here the series of letters is eSHentially derivative, for we 
cannot order the points of space by relation to the letters : this would 
give us several point.-; in the same position, im,tead of one letter in several 
pmiitions. In fact, if P he a serial relation, and R he a many-one relation 
whose domain is the field of P, and Q = RP R, then Q has all the character­
istics of a serial relation except that of implying diversity; but RQR is 
not equivalent to P, a11d thus there iK a lack of symmetry. It is for 
this reason that inverse functions in mathematics, such as sin-1 x, are 
genuinely distinct from direct fum~tions, and require some device or 
convention before they become unambiguou11. Series obtained from 
a many-one correlation as q was obtained above will be called series 
by correlation. They are not genuine series, and it is highly important 
to eliminate them from discussions of fundamental points. 

253. The notion of like11e11a t·orresponds, among relations, to 11i111ilarity 
among classes. It is defined as follows : Two relations P, Q are like 
when there is a one-one relation S such that the domain of S is the field 
of P, and Q = SPS. 'l'his notion is not confined to Herial relations, but 
may be extended to all relations. \Ve may define the relatio1t-m1111lN-r 
of a relation P as the clM!I of all relations that are like P; and we cnn 
proceed to R. very genera.I subject which may he calfod relation-arithmetic. 
Concerning relation-numbers we can prove those of the formal laws of 
addition and multiplication that hold for tmn11finite ordinals, and th1111 
obtain an extension of a part of ordinal arithmetic to relations in 
general. By means of lil..ent."!ls we can define a finite relation as one 
which is not like ,my proper part of it.'IClf-a proper part of a relation 
being a relation which implie!i it but is not t.'<)uil·alcnt to it. In this 
way we can completely emancipate oul"!leh·es from t·ardinal arithmctfo. 
Mon.'Over the properties of like11e11S are in themselves inten-sting and 
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important. One curious property is that, if S be one-one and have the 
field of P for its domain, the above equation Q = SPS is equivalent to 
~-nm~~=h~ _ 

254. Since the correlation of series constitutes most of the mathe­
matical examples of functions, and since function is a notion which is 
not often dearly explained, it will be well at this point to say something 
concerning the nature of this notion. In its most general form, function­
ality does not differ from relation. l◄'or the present purpose it will be 
well to recall two technical terms, which were defined in Part I. If x 
ha.<i a certain relation to .1/, I shall call :r the referent, and .'1/ the relatum, 
with regard to the relation in question. If now x he defined as belonging 
to some cla."s contained in the domain· of the relation, then the relation 
defines ,1/ as a function of x. That is to say, an independ~nt variable 
is constituted by a collection of terms, each of whid1 can he referent 
in regard to a certain relation. Then each of these terms has one or 
more relata, and any one of these is a certain function of its referent, 
the function being. defined by the relation. Thus father defines a 
function, provided the independent variable be a cla."s contained in that 
of male animals who have or wiU have propagated their kind; and 
if A be the father of B, B is said to be a function of A. What is 
essential is an independent variable, i-.e. any term of some class, and 
a relation whose extension includes the variable. Then the referent 
is the independent Yariable, and its function is any one of the cor­
responding relata. 

Hut this most general idea of a function is of little use iu mathematics. 
There are two principal ways of particularizing the function: first, we 
may confine the relations to be considered to such as are one-one or 
many-one, i.e. such as give to every referent a unique relattufl; 11econdly, 
we may confine the independent variable to series. The second par­
ticulari:1.ation is very important, and is specially relevant to our present 
topics. Hut a.-1 it almost wholly excludes functions from Symbolic 
Logic, where series have little importance, we may as well postpone it for 
a moment while we c·onsider the first particulari:t.ation alone. 

The idea of function is so important, and has been so often con­
sidered with exclusive reference to numbers, that it is well to fill our 
minds with instarn·es of non-numerical functions. Thus a very important 
class of functions are propositions containing a variablet. Let there he 
some proposition in which the phrase "any a" occuf!I, where a is some 
clas11. Then in place of "any a" we may put x, where x i1:1 an undefined 
member of the clMS a-in other words, any a. The proposition then 
becomes a function of .r, which is unique when .r is given. This pro­
position will, in general, be tme for !IOme valu~ of .r and false for others. 

* On this subject see my article in RdM, Vol. vm, especially Noe. 2, 6. 
t These are what in Part I we called propositional fum.-tions. 
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The values for which the function is true form what might be called, 
by analogy with Analytic Geometry, a logical" c·urve. This breneral 
view may, in fact, he made to include that of Analytic Geometry. The 
equation of a plane curve, for example, i11 a propositional function which 
is a function of two variables :rand .'I/, and the curve i11 the assemblab'e of 
poinl8 whic·h give to the variables values that make• the proposition true. 
A proposition containing the word any is the assertion that a certain 
propositional function is true for all values of the variable for which it is 
sib'nificant. Thus " any man is mortal ., asserts that " ;r is a man implies 
:r is a mortal., is true for all vo.lues of :1· for which it is significant, which 
may be called the admissible values. Propositiono.l functions, such as 
":r ii; a number," have the peculiarity that they look like propositions, 
and aeem capable of implying other propositional functiom1, while yet 
they are neither true nor false. The fact is, they are propositions for all 
admit,sible values of the variable, but not while the variable remains a 
variable, whose value is not assigned; and although they may, for every 
admissible value of the variable, imply the corresponding value of Kome 
other propm,itional function, yet while the ,·aria.hie remains Ill! a variable 
they can imply nothing. The question concerning the nature of a 
propositional function a.<1 opposed to a propoHition, and generally of a 
function as oppOlll:'d to its value1, is a difficult om·, whit·h can only be 
solved by 11.11 analysis of the nature of the variabk-. It is important, 
however, to ob11erve that propositional functions, as wa11 shown in 
Chapter vu, are more fundamental than other functions, or even than 
relatiom1. For most purposes, it is convenient to identify the function 
and the relation, i.e., if y = f(:r) is equivalent to .:rRy, where R is a 
relation, it is convenient to speak of R as the function, and this will be 
done in what foJlows ; the reader, however, should remember that the 
idea of functionality is more fundamental than that of relation. But 
the investigation of these points has been already undertaken in Part I, 
and enough has lx.>en said to illustrate how a proposition may be a 
function of a variable. 

Other instanl"es of non-numeric·al functions are afforded by diction­
aries. 'l'he French for a word is a funclion of the :English, and vice 
veraa, and both are funetions of the term which both designate. The 
pffilll-mark of a book in R. library catalogue is a function of the book, 
and a number in a cipher is a funetion of the word for which it stands. 
In all these <'&o;es there is a relation by which the relatum becomes unique 
(or, in the case of lanbruages, generally unique) when the referent 
is given; but the terms of the independent variable do not form a 
series, exl.-ept in the purely external order resulting from the alphabet. 

255. Let us now introduce the second specification, that our 
independent variable is to be a series. The dependent variable is then 
a series by correlation, and may be also an independent series. For 
example, the positions occupied by a material point at a series of inst.ants 
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form a series by L-orrelation with the instanbl, of which they are a 
function ; but in virtue of the L'Ontinuitv of motion, they also form, 
as a rule, a geometrical serie.'I indt•pend~nt of all refore1iL-e to time. 
Thus motion affords an admirable example of the t'<>rrelation of ireries. 
At the same time it illustr11tes a most important mark by whic.-h, when it 
is present, we ean tell that 11. seril'i. ii. not indt.•pcndent. \Vhen the 
time is known, the position of a material partidc is uniqucl)' rlc·termined; 
but \\hl•n the position iis 1,•fren, thc're IIIR_\' he Hl'\·ernl mmuent'I, or even an 
infinitt· nmnbt•1· of them, corre~ponding to till' givt!II position. (There 
will he 1m infinite number of sud1 moments if, RS is c·ommonly said, the 
particle has bt'f.'n at. rest in the position in <1ue~tion. Hn,t is a loose and 
ambiguous expn•s.-iion, but I defor its c:onsidern.tion to P1trt VII.) Thus 
the rel11.tion of the tim(' to the poisition is not stric·tly mll'-one, but may 
be many-one. This was a ,·ase c·cmsidl"rt.•d in our general 1u·c·mmt of 
correlation, 11.s giving rise to dependent sc.-ries. \Ve• inferred, it will 
be renwmherc•d, thRt two correlated indepc•ndent st•ries are mathemati­
eall.v on the same• lc•vel, OC'<'llll!IC if P, Q he their gt>nerating relations, and 
R the c·orrelating relation, we infer P = RQR fmm (.J = RP R. Uut 
this inferenc·e fails as soon as H is not strictly one-on<•, since then we no 
lo11ge1· have RR containL-d in l', where l' means identity. I◄'or example, 
my father\. son need not be my11elf, though my son's father must be. 

This illustrates the fact that, if R be a manv-one rc•lation, RR and RR 
must he carefully distinguished: the latter f11 eonbi.ined in idl'lltity, but 
not the former. Renee whenever R i11 a many-one relation, it may be 
used to form a i;eries hy l'on·clation, but the s~ries so Conned eanu~t be 
independent. This i11 an important point, which is 11h-mlutcly fat.al to 
the relational theory of time•. :For the pre!ll'nt let u11 return to the 
ea.ore of motion. When a particle de11cribes a dosed t'Urve, or one 
which hw. double point-i, or when the particle is sometimes at rest 
during a finite time, then the serie!I of Point:. whid1 it 0<:cupies 
is essentially a series by mrrelation, not an indl'pcndent series. But, 
as I remarked above, a c·ur,·e i!I not only obtainable by motion, 
but i11 also a purely geometrical figure, which can be dl'fined without 
reference to any suppost.-d material point. \Vhen, however, a curve is 
so defined, it must not contain points of rest: the path of a material 
point which sometimes moYes, but is sometime11 at rest for a finite time, 
is different when l'Onsidered kinematically and when considen.-d l-treometri­
cally; for J,rt.'Omebi.cally the point in which there i11 rest i11 one, whereas 
kinematically it corresponds to many terms in the 11eries. 

1."he above discull!lion of motion illustrate:., in a non-numerical 
instance, a case which normally occurs among the func·tions of pure 
mathematic111. These functiom1 ( when they are functions of a real 

• See my article "111 position in Time aud Space absolute or relative?" Mind, 
July 1901. 
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variable) usually fulfil the following conditions: Both the indepef!dent 
and the dependent variable are classes of num~rs, and the defining 
relation of the function is many-one•. This case covers rational 
functions, circular and elliptic functions of a real variable, and the 
great majority of the din'ct functions of punt mathematics. In all such 
cases, the independent variable is a series of numbers, which may be 
n•stricted in any way we please-to positive numbers, rationals, integers, 
primes, or any other class. The dependent variable consists also of 
numbers, but the order of these numbers is determined by their relation 
to the l'Orrl'spouding term of the independent variable, not by that of 
the number.; forming the dependent variable themselves. In a large 
class of functions the two orders hRppen to coincide; in others, again, 
where there are maxima und minima at finite intervals, the two orders 
coincide throughout a finite stretch, then they become exactly opposite 
throughout another finite ·stretch, and so on. If x he the independent 
v1triahle, ,1/ the dependent variable, and the constitutive relation he 
many-one, the same number .1/ will, in general, be a function of, i.e. 
corre;.pond to, several numbers .x. Ht•ncc the y-series is essentially by 
conelation, 1tnd cannot he taken as an independent series. If, then, we 
wi;.h to consider the inver.;e funetion, whieh is defined by the converse 
relation, we need cert1tin devices if we arc still to have correlation of 
seril's. One of these, which sec•ms the most important, consists in 
dividing the values of .z• co1Tcsponding to the same value of ,1/ into 
classes, so that (what may happen) we can distinguish (&ay) n different 
x's, each of whil'h has a distinct one-one relation to ,1/, and is therefore 
simply rcvl•rsible. This is the usual course, for example, in distinguish­
ing positivt~ and negative s<1uarc roots. It is possible wherever the 
generating relation of our original function is formally capable of 
exhibition as a disjunction of one-one relations. It is plain that the 
disjun('tive relation formed of none-one relations, each of which contains 
in its domain a ce1tain class 11, will, throughout the class u, be an 
n-one relation. Thus it may happen that the independent variable 
can be divide<l into n classes, within each of which the defining relation 
is one-one, i.e. within each of which there is only one x having the 
defining relation to a given '!/· In such cases, which are usual in pure 
mathematic.,;, our many-one relation can be nmde into a disjunction of 
one-one relations, eac·h of which separately is reversible. In the case of 
complex functions, this is, mutati., mutancli.~,. the method of Riemann 
surfaces. But it must he dearly remembered that, where our function 
is not naturally one-one, the y which appears 11.<1 dependent variable is 
ordi11ally distinct from the !/ which appears as independent variable in 
the inverse f'un<"lion. 

The above remarks, which will receive illustration as we procL-ed, 

* I omit for the present complex variables, which, by introducing dimensions, 
lead to complications of an entirely distinct kind. 
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have shown, I hope, h~w intimately the correlation of series is associated 
with the usual mathematical employment of functions. Many other 
cases of the importance of correlation will meet us as we proceed. It 
may be observed that every denumerable class is related by a one-valued 
function to the finite integers, and vice ver.,a. A~ ordered by correlation 
with the integers, such a class becomes a series having the type of order 
which Cantor calls Ca>, The fundamental importance of correlation to 
Cantor's theory of transfinite numbers will appear when we come to the 
definition of the transfinite ordinals. 

266. In connection with functions, it seems desirable to say some­
thing concerning the necessity of a formula for definition. A function 
was originally, after it had ceased to be merely a power, essentially 
something that l'Ould be expressed by a formula. It was mmal to start 
with some expression containing a variable :r, and to i;ay nothing to 
begin with as to what :r was to be, beyond a usually tacit assumption 
that x was some kind of number. Any further limitations upon x were 
derived, if at all, from the formula itself; and it was mainly the desire 
to remove such limitations which led to the various brencralizationi1 of 
number. This algebraical generalization• ha.~ now been superireded by 
a more ordinal treatment, in which all cla.~ses of numbers are defined by 
means of the integers, and formulae are not relevant to the process. 
Nevertheless, for the use of functions, where both the independent and 
the dependent variables arc infinite classes, the fonnula has a certain 
importance. Let us see what is its definition. 

A formula, in its most general sense, is a propo11ition, or more 
properly a propositional function, containing one or more variables, 
a variable being any term of some defined class, or even any term 
without restriction. The kind of formula which is relevant in connection 
with functions of a single variable i~ a formula containing two variables. 
If both variables are defined, i,;ay one as belonging to the cla.sM u, 
the other a,<, belonging to the class t', the formula is true or false. It is 
true if every u hRll to every v the relation expressed by the formula ; 
otherwise it is false. But if one of the variables, say x, be definecl as 
belonging to the cla.'is u, while the other, y, is only defined by the 
formula, then the formula may be regarded as defining y as a function 
of a:. Let us call the formula P Z1i· If in the class 1t there are terms x 
such that there is no term ,1/ which makes P Z1I a true proposition, then 
the fonnula, a.~ regards those terms, is impossible. We must therefore 
assume that u is a class every term of which will, for a suitable value 
of y, make the proposition P,.11 true. If, then, for every term x of u, 
there are some entities y, which make P q true, and others which do not 
do so, then P ZII correlates to every :r a certain class of terms .1/· In 
this way y is defined a.~ a function of :r. 

* Of which an excellent account will be fouud iu Couturat, De I' lnftui Mat/i,!ma­
tique, Paris, 1896, Part I, Book 11. 
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But the usual meaning of formul,a in mathematics involves another 
element, which may also be expressed by the word law. It is difficult to 
say precisely what this element is, but it seems to consist in a certain 
degree of intensional simplicity of the proposition Pz,r In the case of 
two languages, for example, it would be said that there is no formula 
connecting them, except in 1mch cases as Grimm's law. Apart from the 
dictionary, the relation which correlates words in different languages is 
Mmeness of meaning; but this gives no method by which, given a word 
in one language, we can infer the corresponding word in the other. 
\Vhat is absent is the possibility of cakulation. A formula, on the 
other hand (say ,1/ = 2.r), gives the nwans, when we know .r, of dis­
covering .11· In the case of languages, only enumeration of all pairs 
will define the dependent variable. In the ea.'le of an algebraical 
formula, the independent variable and the relation enable us to know 
all about the dependent variable. If fun<"tions are to extend to infinite 
classes, this st.atc of things is essential, for enumeration has bt-c-ome 
impossible. It is therefore essential to the correlation of infinite dasses, 
and to the study of fundions of infinite classes, that the formula P ZII 

should be one in which, given .r, the dass of terms .1/ satis(ying the 
formula should be one which we c·an dis<·ovcr. I am unable to give 
a logical aC"count of this condition, and I suspeC"t it of being purely 
psychological. Its practical import.ancc is great, hut its theoretical 
importance seems highly doubtful. 

There is, however, a logical condition eonnectcd with the above, 
though perhaps not quite identical with it. Given any two terms, 
there is some relation whid1 holds between those two terms and 
no others. It follows that, given any two dasses of terms u, v, 
there is a disjunctive relation which any one term of u has to at 
least one term of v, and which no term not belonging to tt has 
to any term. By this method, when two da.-.ses are both finite, 
we can carry out a correlation (which may be one-one, many-one, or 
one-many) which c·orrelates terms of these dasses and no others. In 
this way any set of terms is theoretically a function of any other; and 
it is only thus, for ex1unple, that diplomatic ciphen; are made up. But 
if the number of terms in the cla.Ns constituting the independent variable 
be infinite, we cannot in this way practic·ally define a function, unless 
the disjunctive relation c·onsists of relations developed one from the 
other by a law, in whic·h c•ase the formula is merely transferred to the 
relation. This amounts to saying that the defining relation of a function 
must not be infinitely complex, or, if it be so, must be itself a function 
defined by some relation of finite complexity. This condition, though 
it i11 itself logical, ha.-. again, I think, only psychological necessity, in 
virtue of which we can only master the infinite by means of a law of 
order. The discussion of this point, however, would involve a discussion 
of the relation of infinity to order-a question which will be resumed 
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later, but which we are not yet in a pD11ition to treat intelligently. In 
any case, we may 11&)' that a formula containing two variables and 
defining a function must, if it is to be pra<."tically useful, give a relation 
between the two variables by which, when one of them is gh·en, all the 
corresponding \'alues of the other can be found ; and this seems to 
constitute the 11111.thematil'al e11.'ff!nce of all formulae. 

257. '!'here remains an entirely distinct logical notion of much 
importanee in connedion with limit.<1, namely the notion of a com­
plete series. If R he the defining 1-elation of a series, the series 
is complete when there is a term x belonging to the serie11, 1mch 
that every other tenn which has to x either the relation R or the 

relation R belongs to the series. It 111 ,vrmet"te,l (as wa11 explained in 
Part IV) when no other terms belong to the series. Thus a romplete 
series consists of those terms, and onl)' those terms, which have the 
generating rl'lation or its convel'lll' to some one term, together with that 
one term. Since the generating relation is transitive, a series which 
fulfil!, this condition for one of its term11 fulfils it for all of them. 
A series which is l'Olmected but not complete will be called incomplete 
or partial. In11tances of complete series are the r.ardine.l integers, the 
positive and negative integen; and zero, the rational numbeni, the 
moments of time, or the points on a straight line. Any seled,ion from 
such a seriCM is incomplete with respect to the generating relations of the 
above complete 1,1eriC11. 'fhus the positive numbers are an incomplete 
series, and so are the rationals between O and 1. When a series is 
complete, no term can come before or after any term of the series 
without belonging to the series; when the series is incomplete, this is 
no longer the <·e.se. A series may be complete with re11pect to one 
generating relation, but not with re!!pect to another. Thus the finite 
intebrers a.re a complete series when the series is defined by powers of 
the relation of consecutiveness, as in the di!lcussion of progressions in 
Part IV ; but whrn they are ordered by correlation with whole and part, 
they form only part of the series of finite and tram1finite intef,rer11, as we 
shall see hereafter. A complete series may be regarded as the extension 
of a term with respect to a given relation, together with this term itself; 
and owing to this fact it ha.'i, a.<1 we shall find, some important differences 
from ordinally similar incomplete series. But it can be shown, by the 
Logic of Relations, that any incomplete series can be rendered complete 
by a change in the brenerating relation, and vice versa. The distinction 
between complete and incomplete seriC!i is, therefore, essentially relative 
to a given generating relation. 
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CHAPTER XXXIII. 

REAL NUMBERS. 

2158. THE philosopher may he surprised, after all that has already 
been said concerning numbers, to find that he is only now to learn about 
real numbers; and his surprise will be turned to horror when he learns 
that real is opposed to ratumal. But he will be relieved to learn that 
real numbers are really not numbers at all, but something quite different. 

The series of real numbers, a.~ ordinarily defined, consists of the 
whole &Rsemblage of rational and irrational numbers, the irrationals 
being defined as the limib, of such series of rn.tionals as have neither 
a rational nor an infinite limit. This definition, however, introduces 
grave difficulties, whi,·h will be ,~onsidcred in the next chapter. I◄'or my 
part I see no rea.<1011 whatever to suppose that there are any irrational 
numbers in the above !iCnse; and if there 1:1.re any, it st'ems ,·ertain that 
they cannot be greater or less than rational number,-;. When mathema­
ticiam; have effected a generali1.ation of number they are apt to he unduly 
modest about it-they think that the difleren<·e between the wneralized 
and the original notions is less than it really is. We have already seen that 
the finite cardinals are not to be identified with the positive intebrers, nor 
yet with the ratios of the natural numbers to 1, both of which express 
relations, which the nature.I numbers do not. In like manner there is a 
real number as11ociated with every rational number, but distinct from it. 
A real number, so I shall <..-ontend, is nothing hut a certain clas." of 
rational numbers. Thus the clas11 of rationals less than ½ is a real 
number, a.'fsociated with, but ob,·iously not identical with, the rational 
number l· This theory is not, KO far as I know, explicitly advocated by 
any other author, though Peano suggests it, and Cantor comes very near 
to it•. My grounds in favour of this opinion are, first, that such classes 
of rationals have all the mathematical properties commonly assigned 
to real numbers, secondly, that the opposite theory presents logical 
difficulties which appear to me insuperable. The second point will be 
discussed in the next chapter ; for the present I shall merely expound 

* (,'f. Cantor, JlatA. Annalm, Vol. xLv1, § 10; Peano, Riuiata di Matematiea, 
Vol. VJ, pp. 126-1'0, esp. p. 133. 
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my own view, and endeu·our to show that real numbers, so understood, 
have all the requisite characteristics. It will be observed that the 
following theory is independent of the doctrine of limits, which will only 
be introdm,-ed in the next chapter. 

259. The rational numbers in order of magnitude form a series in 
which there is a term between any two. Such series, which in Part III 
we provisionally called continuous, must now receive another name, since 
we shall have to reserve the word t·ontinuous for the senHe which Cantor 
has given to it. I propose to call such series rompm.·t•. The rational 
numbers, then, form a compact series. It is to be observed that, in a 
compact series, there are an infinite number of tenm1 between any two, 
there are no consecutive terms, and the 11tretrh between any two terms 
(whether thl'SC be included or not) is again a compact 11eries. If now we 
consider any one rational numbert, 11ay r, we can define, by relation to r, 
four infinite dasses of rationals: (1) those less than r, (2) those not 
greater than r, (S) those greater than r, (4) those not less than r. 
(2) and (4) differ from (1) and (3) l't'spectively solely by the fact that 
the former contain r, while the lattl'r do not. But thi11 f&L-t leadH to 
curious differen<.'l'B of properties. (2) ha.,;; a last term, while (l) has 
none; (I) is identical with the clasM of rational numbers less than a 
variable term of (I), while (2) does not have this chara.cterii;tic. Similar 
remarks apply to (3) and (4), hut these two classes have less importance 
in the present case than in (1) and (2). Cl&Sl!es of rationals having 
the properties of {I) are called segments. A segment of rationals may 
he defined as a dass of rationals which is not null, nor yet coextensive 
with the rationals themselves (i.e. which contains some but not all 
rationals), and which is identical with the class of rationals less than a 
(variable) term of itself, i.e. with the class of rationals :r such that there 
is a rational .'I/ of the said class such that :r is less than y!. Now we shall 
find that segments are obtained by the above method, not only from 
single rationals, but also from finite or infinite classes of rationals, with 
the provi110, for infinite classes, that there must be some rational greater 
than any member of the class. This is very simply done &!I follows. 

Let " be any finite or infinite class of rationale. Then four classes 
may he defined by relation to u§. namely (I) those le88 than every u, 
(2) those less than a. variable u, {S) those greater than every u, (4) those 
greater than a variable u, i.e. those sueh that for each a term of u <~n be 
found which is smaller than it. If u be a finite class,it must have a maximum 
and a minimum term ; in this case the former alone is relevant to (2) 
and (S), the latter alone to (1) and (4). Thus this case is reduced to 
the fom1er, in which we had only a single rational. I shall therefore 

• Such series are called by Cantor aberall dieAt. 
t 1 shall for simplicity confine myself entirely to rationals without sign. The 

extension to such as are positive or negative presents no difficulty whatever. 
t See Formulain de Jlat/Jhnatique11, Vol. n, Part 111, § 61 (Turin, 1899). 
§ .Eight c1- may be defined, but four are all that we need. 
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a.AAUme in future that tt i11 an infinite class, and further, to pre,·ent 
reduction to our former clllle, I 11hall assume, in considering (!!) and (3), 
that 1t ha!! no maximum, that is, that everv term of u is lei..,; th,m some 
other term of 1t ; and in con11idel'ing (I) a~d ( 4 ), I shall assume that u 
ha.'I no minimum. l<'or the pre11ent I confine myself to (2) and (3), and 
I a.'4!1ume, iu addition to the ab8ence of a maximum, the existence of 
rationals greater than any "• that i11, the existence of the da.,s (3). 
Under thei;c circumstanc-es, the cla.'ls (2) will he a segment. For (2) 
consi11ts of all rationals whi(•h are less than a variable u ; hence, in the 
finit place, 11ince ,, ha.<1 no maximum, (2) contains the whole of u. In the 
11econd place, since every term of (2) is less than some tt, which in turn 
belongs to (2), every tenn of (2) is less than some other term of (2); 
and every term less than some term of (2) is a fartiori less than some u, 
and is therefore a term of (2). Hence (2) is identit·al with the da.'is of 
terms less than some term of (2), and is therefore a segment. 

Thus we have the following conch111ion : If u be a single rational, or 
a clllllll of rationals all of which are les.<1 than some fixt,,d rational, then 
the rationals less than u,, if tt he a single term, or less than a variable 
term of u, if 11 be a class of terms, always form a segment of rationals. 
My contention is, that a segment of mtionals is 11. real number. 

260. So far, the method employt•d ha.-. been one which may be 
employed in any compact serie11. In what follows, some of' the theorems 
will depend upon the fact that the rationals are a denumerahfo scrie'I. 
I leave for the present the di11entangling of the theorems dl•p<mdent 
upon this fact, and proceed to the properties of 11cgmenb, of rationals. 

Some segments, as we MVe seen, consist of the rationals le~s than 
some given rational. Some, it will be found, though not so defined, are 
nevertheless capable of being so defined. For example, the rationals 
less than a variable tenn of the series ·9, ·99, ·999, etc., are the same as 
the rationals less than 1. But other 11egment.'I, which COJTl,'l!pond to 
what are usually called irrationals, are incapable of any sm·h definition. 
How this fll.C't he.s led to irrationals we shall see in the next c·hapter. 
For the present I mt-rely wish to point out the well-known fact that 
segments are not capable of a one-one correlation with rationals. There 
are cla.~ses of rationals defined as being composed of all terms less than 
a t1ariable term of an infinite ela.~i, of rationals, which are not definable 
as all the rationals less than some one definite rational•. l\.lorc<)\'er 
there are more segment-; than rationals, and hen(-e the series of segments 
has continuity of a higher order than the rationals. Segments form a 
series in ,·irtue of the relation of whole and part, or of lobrical inclu11ion 
(excluding identity). Any two segments are such that one of them 
is wholly contained in the other, and in virtue of this fact they form 
a series. It can be easily shown that they form a compact series. 
What is more remarkable i11 this: if we apply the above pJ"OCe8S to the 

* Cf. Part I, chap. v, p. 110. 
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series of segments, forming segments of segments by reference to 
cla.'lSes of segments, we find that every segment of segments can be 
defined as all scbrments contained in a etirtain definite segment. 'fhus 
the Kegment of segments defint-d by a class of segments is always 
identic-al with the segment of segments defined by some one segment. 
Also e,·ery !ll'gment defines a segment of segments which can be defined 
by an infinite class of segments. Thei.e two properties render the 
11eries of segments peifect, in Cantor's l11.ngu111,,rc; but the explanation of 
this term must he left till we <·ome to the dodrine of limits. 

We might have defined our segments as all rationals greater than 
some term of a class " of rationals. If we had done this, and inserted 
the conditions that u was to have no minimum, and that there were to 
be ration11.lt. less than every u, we should have obtained what may be 
c·alled upper se~ments, a.-. distinguished from the former kind, which 
may be (·ailed lower segment-.. We i,hould then ha,·e found that, corre­
sponding to every upper segment, there is a lower segment which contains 
all rationals not contained in the upper segment, with the occasional 
exception of a single rational. Thl•re will be one rational not belonging 
to either the upper or the lower segment, when the upper segment 
can be defined as all rationals b"l'C&.ter than a. single rational. In this 
case, the corresponding lower segment will consist of all rationals lCSB / 
than this single rational, which wiJJ itself belong to neither segment. 
Sim.-e there is a rational between any two, the class of rationals not 
greater than a given rational cannot ever be identical with the cl8.ffll of 
rationals lei;M than Mlllll! other; and a cla.~s of rationals havi.ag a 
maximum can never be a segment. Henee it is imposllible, in the case 
in que..'ltion, to find a lower segment containing all the rationals not 
belonging to the given upper segment. But when the upper i.egment 
cannot lxi defined by a single rational, it will always be possible 
to find a lower 11egment oontaining ,all rationah1 not belonging to the 
upper segment. 

Zero and infinity may be introduced as limiting c11ses of l!legments, 
but in the case of zero the sebrment must be of the kinrl which we 
called (1) above, not of the kind (2) hitherto discuKscd. It i11 e.a."iy to 
construct a cla.,;s of rationals such that some term of the cla1111 will be less 
than any given rational. In this case, the class ( 1) will contain no terms, 
and will be the null-class. This is the real number zero, which, however, 
is not a segment, since a segment was defined as a class which is not null. 
In order to introduce zero as a class of t~ kind which we called (!), we 
should have to start with a null c~ rationals. No rational is le111 
than a term of a null class of rationa d thus the clas.'I (!!), in such a 
case, is null. Similarly the real n her infinity may be introduced. 
This is identical with the whole s of rationals. If we have any 
class u of rationals such that no/ratio'nal is greater than all u's, then 
every rational is contained in the class of rationals less than some 
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u. Or again, if we have a class of rationals of which a term i11 less than 
any as11igned rational, the resulting class (4) (of terms greater than 
some u.) will contain e\'ery rational, and will thus be the real number 
infinity. Thus both zero and infinity may be introduced a.-i extreme 
terms among the real numbers, but neither is a segment according to the 
definition. 

261. A given segment may be defim.-d by many different clasire1, of 
rationals. Two such classes u and v may be reg&i:fod as having the 
segment as a common property. Two infinite classes u and v will define 
the same lower segment if~ given any u, there is a v greater than it, at1d 
given any v, there is au greater than it. If each cla..'ls ha.-; no maximum, 
this is also a -necea,Yary condition. The classes u and v are then what 
Cantor calls coherent (zusammengehorig). It can be shown, without 
considering segments, that the relation of being coherent is symmetrical 
and transitive•, whence we should infer, by the principle of abstraction, 
that both have to some third term a common relation which neither has 
to any other term. This third term, a.,; we see from the preceding 
discussion, may be taken to be the segment which both define. We 
may extend the word coherent to two classes u and v, of which one 
define!! an upper segment, the other a lower segment, which between 
them include all rationals with at most one exception. Similar remarkli, 
,nutati.¥ m.utandis, will still apply in this e&'le. 

We have now SC'en that the usual propertiel! of real numbers belong 
to segments of rationals. There is therefore no mathematical reason for 
distinguishing such segments from real numbers. It remains to set 
forth, first the nature of a limit, then the current theories of irrational.,, 
and then the objections which make the above theory seem preferable. 

Note. The above theory is virtually contained in Professor Peano's 
article already referred to (" Sui Numeri ln·azionali," Rivista di Mate­
matica, n, pp. 1~6-140), and it wa.'i from this article, as well as from the 
Formulaire de Mathematiquea, that I wa.,; led to adopt the theory. In 
this artide, sep.1.rate definitiom1 of real numbers (§ i, No. 5) and of 
segments (§ 8, ·O) 11.re given, whil'h makes it seem as though the two 
were distinguishL-d. But after the definition of segments, we find the 
remark (p. 133) : " Segments so defined differ only in nomenclature from 
real numbers." Profel!&or Peano proceeds first to give purely technical 
reasons for distinguishing the two by the notation, namely that the 
addition, subtraction, etc:. or real numbers is to be differently conducted 
from analogous operations -.:hich are to be performed on segment.s. 
Hence it would appear that t~ \ whole of the view I have advocated is 
contained in this article. At"' ~e same time, there is some lack of 
cleamei;s, since it appe11.1'8 from tfl~efinition of real numbers that they 
arc regarded as the limits of clas11,;,, of rationals, whereas a segment is 

* ('f. Cantor, ..lftlfh. A1mal1m, xr,VI, and h,,,j,,/u di Mat1mu1ti1:11, v, pp. 1.'i8, 150. 
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in no sense a limit of a class of rationals, Also it is nowhere suggested.­
indeed, from the definition of real numbers the opposite is to he 
inferred-that no real number can be a rational, and no rational can be 
a real number. And this appears where he poinb out (p. 184) that 1 
diffe1'S from the class of proper fractions ( which is no longer the case &!I 

regards the real number 1, when this is distinguished both from the 
integer 1 and from the rational number 1 : 1), or that we say l is less 
than ,/'J. (in which case, I should say, 1 must be interpreted as the cla.'18 
of proper fractions, and the assertion must be taken to mean : the 
proper fractions are some, but not all, of the rationals whose square 
is less than 2). And again he says (ib.): "The real number, although 
determined by, and determining, a segment u, is commonly regarded as 
the extremity, or end, or upper limit, of the segment"; whereas there is 
no reason to suppose that segments not having a rational limit have a 
limit at all. Thus although he confesses (ib.) that a complete theory 
of irrationals ran be constructed by means of segment'!, he dot'S not 
seem to percei,·e the reasons (which will be given in the next chapter) 
why this m1ut be done-reasons which, in fact, are rather philosophic'&} 
than mathematical. 
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CHAPTER XXXIV. 

LIMITS AND IRRATIONAL NUMBERS. 

262. Tm-: mathematical treatment of continuity rcsb; wholly upcn 
the doctrine of limits. It has been thought by some mathematiciaus 
and some philoi;ophers that this doctrine had been i;upersC'ded by the 
Infinitesimal Calculm,, and that this has shown true infinitesimals 
to be presupposed in limits•. But modern mathematics has shown, 
conclusively as it seems to me, that such a view is- erroneous. The 
method of limitH has more and more emerged as fundamental. In this 
Chapter, I shall fin,t set forth the genera] definition of a limit, and 
then examine its application to the creation of irrationals. 

A compact series we defined as one in whieh there is a term between 
any two. Hut in such a series it is always pot~sible to find two claRses of 
terms whieh have no term between them, aud it is always possible to 
reduce one of these classes to a single term. J<'or example, if P be the 
bl't.•nerating relation and :r any term of the series, then the cla.~s of terms 
having to :r the relation P is one between which and :i· there is no termt. 
The cla.,s of terms so defined is one of the two segments determined 
by :r; the idea of a segment is one which demands only a series in 
general, not neces11ariJy a numerical series. In this case, if the series be 
compact, x is said to be the limit of the class ~ when there is such a. 
term as :r, the segment is said to be terminated, and thus every 
terminated segment in a compact series has its defining tem1 as a limit. 
But this does not constitute a definition of a limit. To obtain the 
general definition of a limit, consider any cllUIS " contained in the aerie& 
generated by P. Then the class u will in general, with respect to any 
term x not belonging to it, be divisible into two classes, that whose 
terms have to :r the relation P (which I shall call the class of terms pre-
<."l.·•ding :r), and that whose terms have to :r the relation P (which I shall 
call the class of terms following :r). If :r be itself" a term of" u, we 

* This is the view, for instance, of Cohen, DtU Princip der 1,Jjiniteaimal­
Jleth«k und lf.i1w. Ge11ehichte, Berlin, 1883; see pp. I, 2. 

t It ia perhape superfluous to explain that a term ia bet11·ee11 two claasea u, 11, when 
it baa the relation P to every term of u, and the relation P to every term of "• or 
trice tier-ad. 
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consider all the terms of u other than .r, and these are still divisible into 
the above two classes, which we may call ,r,..r and W"u,r respectively. 
If, now, ,r,,x be such that, if y be any term preceding .r, there is a term 
of ,r,,x following y, i.e. between :rand ,1/, then :r is a limit of 'IT'u:l.', Similarly 
if w,..r be such that, if z be any term after :r, there is a term of w u.l' 

between ,r and z, then :r is a limit of w,,x. We now define that :r is 
a limit of u if it is a limit of either ,r,,.x· or w, .. r. It is to he observed that 
u may have many limits, and that all the limits toE,,rether form a new 
class contained in the series generated by P. This is thl• cla..'!s (or rather 
this, by the hdp of l'ertain further assumptions, becomes the d&..'1.'l) 

which Cantor designates as the firi;t deri"ative of the da..'ls u. 
263. Refore proceeding further, it may he well to make some 

general remarks of an elementary d1aral'ter on the subject of limits. 
In the first place, limits belong usually to <·]a..-;ses ('()ntaincd in compact 
series-dass<•s which may, as an extreme t'&..'il', be identical with the 
compact series in question. In the second place, a limit may or may 
not belong to the class u of which it is a limit, but it always belongs to 
some series in whieh 11 is contained, and if it is a term of 11, it is still a 
limit of the cla.-;s eonsisting of all terms of u exl'ept itself. In the 
third place, no da.-.s can have a limit unless it ,·ontains an infinite 
number of terms. For, to revert to our former di,·ision, if 11, he finite, 
,r,,x and Tr'uX will both he finite. Hence eal'h of' them will have a term 
nearest to x, and betwt.'Cll this term and .i· no term of u will lie. He,we 
x is not a limit of 11; and since x is any term of' the series, u wiU have 
no limiti, at all. It is ('()nJIIIOn to add a theorem that every infinite 
class, provided its te1·ms an• all contained between two specified. terms 
of' the- series generated by P, must have at lea..o;t one limit; but this 
theorem, we shall find, demands an interpretation in terms of segments, 
and ill not true as it stands. In the fourth place, if 1t be co-extensive 
with the whole compal'l series generated by I', then every term of this 
series is a limit of u. There can be no other terms that are limits 
in the same sense, sinee limits have only been defined in relation to this 
compact series. To obtain other limits, we should have to regard the 
series generated by P as forming pa.rt of some other compact series-a 
cMC which, &..'i we shall sec, may arise. In any case, if u be any compact 
series, every term of u is a limit of u; whether u has also other limib;, 
depends upon further circmm1tances. A limit may he clefim.-d generally 
as a term which immediately follows (or precedes) some class of tenns 
belonging to an infinite series, without immediately following (or 
preceding, as the case may be) any one term of the i1eries. In this way, 
we shall find, limits may be definl.-d generally in all infinite series which 
are not progressions-as, for instance, in the series of finite and trans-
finite integers. · 

264. \Ve may now proceed to the various arithmetical theories of 
irrationals, all of which depend upon limits. We shall find that, in the 
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exact form in which they have been given by their inventors, they all 
involve an axiom, for which there are no arguments, either of philo-
110phical necessity or of mathematical convenience; to which there are 
grave logical objections; and of which the theory of real numbers given 
in the preceding Chapter is wholly independent. 

Arithmetical theories of irrationals could not be treated in Part II, 
since they depend essentially upon the notion of order. It is only by 
means of them that numbers become continuous in the sense now usual 
among mathematicians ; and we shall find in Part VI that no ot¥r 
sense of continuity is required for space and time. It is very importa~t 
to realize the logical reasons for which an arithmetical theory Qf 
irrationals is imperatively necessary. In the past, the definition of 
irrationals was commonly effected by geometrical com1iderations. This 
procedure was, however, highly illogical ; for if the application of 
numbers to space is to yield anything but tautologies, the numbers 
applied must be independently defined; and if none hut a geometrical 
definition were possible, there would be, properly speaking, no such 
arithmetical entities as the definition pretended to define. The alge­
braical definition, in which irrationals were introduced as the roots 
of algebraic equations having no rational roots, was liable to similar 
objections, since it remained to be 11hown that such equations have 
roots; moreover this method will only yield the so-called algebraic 
numbers, which are an infinitesimal proportion of the real numbers, and 
do not have continuity in Cantor's sense, or in the sense required by 
Geometry. And in any case, if it is possible, without any further 
BSRumption, to pass from Arithmetic to Analysis, from rationals to 
irrationals, it is a logical ad,·ance to show how this can be done. 
Th{ generalizations of number-with the exception of the intro­
duction of imab•ina1·ies, whit"h must be independently effected-are all 
necessary <.-onsequences of the admission that the natural numbers form 
a progression. In every progression the tenns have two kinds of 
relations, the one constituting the general analogue of positive and 
negative integers, the other that of rational numbers. The rational 
numbers form a denumerable l"ompact series ; and segments of a denumer­
able compact serie1, as we saw in the preceding Chapter, form a series 
which is continuous in the stridest sense. Thus all follows from the 
assumption of a progression. llut in the present Chapter we have to 
examine irrationals as based on limits ; and in this sense, we shall find 
that they do not follow without a new assumption. 

There arc several l.40mewhat similar theories of itT&tional numbers. 
I will begin with that of Dedekind•. 

266. Although rational numbe1"8 are such that, between any two, 
there is always a third, yet there arc many ways of dividing all rational 

* /!ltetigkt!it N11d irrati,male Zall.l,m, 211d ed., Bru111wick, 180'.Z. 
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numbers into two cla.'ISeS, such that all numbers of one class come after 
all numbers of the other cla..<JS, and no rational number lies between the 
two cla.'!.~, while yet the first class has no first term and the !le<'ond has 
no last term. For example, all rational numbers, without exception, 
may be classified according as their squares are greater or les11 than 2. 
All the terms of both classes may be arranged in a single serie~, in which 
there exist<; a definite section, before which comes one of the claHliK~, 
and after which comes the other. Continuity 8t'em., to demand that 
some term should correspond to this sec.·tion. A number which lies 
between the two classes must be a new number, since all the old numbers 
are classified. This new number, which is thus defined by it-; position in 
a series, is an 1rratimial number. When these numbel'li are introdut·L-d, 
not only is there alway11 a number between any two numbel"II, but there 
is a number between any two da.'l!le11 of which one comes wholly aft.er the 
other, and the first has no minimum, while the second has no maximum. 
Thus we ran extend to numbers the axiom by which Dedekirul definL'II 
the continuity of the straight line (op. rit. p. 11) :-

" If all the points of a line t·an he dividL-d into two dasses sm·h that 
every point of one class is to the left of every point of the other clas11, 
then there exists one and only one point whit·h bringi,, 11ho11t this 
division of all points into two dassei., this section of the line into 
two parts." 

266. This axiom of Dl'dekind's is, however, rather loosely worded, and 
requires an emendation suggested by the derivation of irrational numbeni. 
If all the points of a line are divided into two classes, no point is left 
over to represent the SL'Ction. If all be meant to exclude the point repre­
senting the section, the axiom no longer characterizes continuous 11eries, 
but appliC!l equally to all serit.-s, e.g. the series of integers. The axiom 
must be held to apply, as regards the division, not to all the points of the 
line, but to all the point!! forming some compact series, and distributed 
throughout the line, but consisting only of a portion of the points 
of the line. When this emendation is made, the axiom becomes ad­
missible. If, from among the terms of a series, some can be chosen 
out to form a compact series which is distributed throughout the 
previous series; and if this new series can always he divided in 
Dedekind'11 manner into two portions, between which lies no term of 
the new series, but one and only one term of the oribrinal series, then 
the original series is continuous in Dedekind's sen11e of the word. The 
emendation, however, destroys entirely the self-evidence upon which 
alone Dedekind relies (p. 11) for the proof of his axiom RH applied 
to the straight line. 

Another somewhat less complicated emendation may be made, which 
gives, I think, what Dedekind meant to state in his axiom. A series, 
we may say, is continuous in Dedekind's sen11e when, and only when, 
if all the terms of the series, without exception, be divided into two 
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cl&lll1ell, 1ml'h that the whole of the first class precedes the whole of 
the second, then, howe,·er the division he effected, either the first class 
has a last term, or the se,·ond cla.'ls has a first term, but ne,·er both. 
'l'his term, which <"Omes at one end of one of the two classes, may then 
be used, in Dedekind'11 manner, to define the section. In discrete 11eries, 
such as that of finite integel'H, there is both a last term of the first 
cla.,;s and a fil'llt term of the second class•; while in compact series 
such 11.'I the rationals, where there is not c011tinuity, it sometimes 
happens (though not for every possible division) that the first class 
hll.!I no la.,;l term and the last da.11s has no fin1t term. Both the!!C ca.~r, 
are exclud1..'Cl by the above axiom. But I cannot sec any vestige ()f 
self-evidem·e in sm·h an axiom, either as applied to nmnbel'!! or a.11 applied 
to spa<1..•. 

267. Ll•aving asicle, for the moment, the general problem of con­
tinuity, let m,; return to Uedckind'li definition of irrational numbel'!I. 
The fil'!!t. 11ue11tion that arises i~ this: \Vhat right have we to a.-1sume 
the existence of snl·h numll<'rs? \Vhat rea.11011 have we for supposing 
that there mm,t he a po~ition between two classei; of which one is wholly 
to the right of' the other, and of which one has no minimum and the 
other no maximum? This iii not true of seriei,i in general, sim-e many 
Sl'ries are discrete. It is not denum,fod by the nature of order. And, 
as we have seen, continuity in a certain sense is po!iSihle without it. 
Why then should we postulate such a number at all ? It must be 
reml•mhcred that the algebraical and geometrical problems~ which ir­
rational11 arc intended to solve, must not here he brought into the 
account. The existence of irrationals ha.11, in the past, been inferred 
from 1mch problems. The equation ~ - 2 = 0 must ha,·e a root, it was 
arguetl, bel·ause, as ;i,• grows from O to 2, ,r' - 2 inerease11, and is first 
negative and then positive; if :r changes continuousl_y, so does .1· - 2; 
hem'l' .xl-2 must a.~sume the ,·alue O in passing from negative to positive. 
Or again, it wa.-i argued that the diagonal of unit squa1-e has evidently a 
precise and definite le111,,rth .r, and that this length i11 such that ,1.1 - 2 = 0. 
llut such arguments were powerless to show that ,i; is tntly a number. 
They might equally well be reganfod M showing the inadet1uacy of 
numbers to Algcb1·a and Geometry. The present theory iii designed 
to prove the arithmetical existem-e of irrationals. In its design, it i11 
pn•forahll• to the previous theorie11; but the execution seemli to fall short 
of the de11ign. 

Let us examine in detail the definition of J2 b,· Dcdeki11d'11 method. 
It is a liingular fad that, although a rational nm;1bcr lit.'1-1 between an~· 
two single rational numbers, two dasses of rational numbers may be 
defined 110 that no rational number lic11 behR-en them, though all ot 

* If the serie11 contains a proper part whid1 i,. a progrl!!OSiou, it is only trne i11 
geneml, not without exeeption, that the fint clllSM 11111st have a last term. 
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one class are higher than all of the othe1·. It is evident that one at 
least of these clas.~ .. must consist of an infinite number of term11. Por 
if not, we ,-ould pick out the two of opposite kinds which were m•arest 
together, and insert a new number between them. ThiN one would be 
between the two cla.'llres, contrary to the hypothei;is. But wheu one of 
the classes is infinite, we may arranb?e all or some of the ter1m1 in a series 
of terms continually approal'hing the other dnss, without reaching it, 
and without having a laiit term. Let us, f'or the moment, suppose our 
infinite class to be dcnumerahle. We then obtiiin a denumerablt• serie11 
of numbers an, all belonging to the one cla.~ .. , but continually approaching 
the other class. Let B be a fixed number of the other clu .. ~. Then 
between nn a1,1d B there ii; alwavi; another rntional number; but this 
may be l'hosen to be another of t}1e a•s, 11ay a,.+ 1 ; and sim"C the series of 
a•s is infinite, we do not necessarily obtain, in this way, any 1111mber not 
belonging to the series of a's. In the definition of irrationa)i;, the seriei; of 
b'.,; is also infinite. Moreover, if the b's also be denumerable, any rational 
number between an and bm, for suitable values of p and q, either is n,11 -t-P 
or bm+q• or else lies between Un+p and an+r,+i or betwt.>en b,,.+,,and b,n+q+i• 
In fact, an+p al\\ays lies between a,. and b,,.. Uy sucressive sll!pi., no term 
is obtained which lies between all the b\; and all thl· a's. Nevertheles. .. , 
both the a's and the b's an- conwr&rcnt. For, let the a•s inc·reast•, while 
the b's diminish. Then b" - a,. and b,. - an+i continually diminish, and 
therefore a,.-t-1 - ""• which is less than either, is le11s than a l"ontinnally 
diminishing number. Moreover thi11 number diminii.hes without limit; 
for if bn-an had a limit E, the number it,.+ E/2 \\ould tinu.lly lie between 
the two classes. Hence an +i - a,. heL-omes finally less than uny nssigncd 
number. Thus the a's and b's are both c·onvergent. Since, moreover, 
their difforence may be made IC11.'I than any assigned number e, they have 
the same limit, if they haYe any. llut thi11 limit cannot Ix· a rational 
number, since it liei; between all the a's and all the b's. Such seems 
to be the argument for the exiKteuce of irrational11. I◄'or example, if 

:r = .;'1. + 1, ,rl- 2.r-1 = 0. 

Thus " 1 / 2 1 1 l 1 1 1 1 1 :r = ,., + :r = + '1. + .x, am :r - = + 2 + 2 + ; = etc. 

The succes11ive convergcnts to the l.-ontinued fraction 1 +} }-,,.1 -,.,+,.,+,.,+ ... 
are such that all the odd convergcnt-i are leS11 than all the eVL'll c·on­
vergenb1, while the odd convcrgents continually grow, and the even 
ones continually diminish. Moreover the differenL-e betwcl'n the odd 
and the next even convergent continually dimini11hes. 'l'hu11 both 
series, if they have a limit, have the same limit, and this limit is 
defined as ,J'J.. . 

But the existence of a limit, in this case, iR evidently a sheer as­
BUmption. In the beginning of thiit Chapter, we saw that the exilltence 
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of a limit demands a larger series of which the limit forms part. To 
t,Teate the limit by means of the series whose limit is to be found would 
therefore be a logical error. It is essential that the distance from the 
limit should diminish indefinitely. But here, it is only the distance of 
consecutive terms which is known to diminish indefinitely. Moreover 
all the a's are less than b.. Hence they continually differ'. Jess and less 
from b.. But whatever n may be, bn cannot be the limit of the a's, 
for b,.+1 lies betw'!t!n b,. and all the a's. This cannot prove that a limit 
exists, hut only tha; if it existed, it would not be any one of the a's or 
l,'s, nor yet any other rational number. Thus irrationals are not proved 
to exist, hut ma,y be merely convenient fictions to describe the relation~ 
~h~~h . 

268. The theory of Weierstrass concerning irrationals is somewhat 
similar to that of Dedekind. In Weiel"lltrass's theory, we have a series 
of terms 11i, a0 •• , a,., .. , su<"h that I a,., for all valueis of n, is less 
than some given number. This case is presented, e.g., by an infinite 
decimal. The fr&l"tion 3·14159 ... , however many ternis we take, 
remains leKS than 3·1416. In this method, as Cantor pointK out•, the 
limit it1 not. created by the 11ummation, but must be supposed to exi11t 

already in order that I a,. may be defined by means of it. This is the 
1 

same 11tate of things 11.K we found in Dedekind's theory : serie11 of rational 
numbeni cannot prove the exi11tenl-e of irrational number11 as their limits, 
but can only prove that, if there is a limit, it must be irrational. 

'Thus the arithmetical theory of irrationals, in either of the above 
fonns, is liable to the following obj«tioms. (1) No proof is obtained 
from it of the existenl-e of other than rational numbel"!I, unless we 
act-ept some axiom of continuity different from that satisfied by 
rational numbers; and for such an axiom we have as yet seen no 
ground. (2) Granting the existence of irrationals, they are merely 
SJX.>cified, not defined, by the Keries of rational nmnher11 whoHC limits 
they are. Unless they are independently postulated, the series in 
question l'annot be known to have a limit ; and a knowledge of the 
irrational numher which is a limit ii. presuppo11t.-d in the proof that 
it is a limit. Thus, although without any appeal to Geometry, any 
ghen irrational number c·an be BJN'<i.fictl by means of an infinite series 
of rational numbers, yet, from rational numbers alone, no proof can 
be obtained that therl' are imitionl\l mnnhe1·s at all, and their existence 
must be proVl'd from a new and independent postulate. 

Another ohjed,ion to the abo\'e theory is that it supposes rationals 
and in·ationals to fonn pa1t of one and the same series gt>nerated by 
relations of greater and less. This rail'll's the Mme kind of difficulties as 
we found to result, in Part II, from thl' notion that integeni are greater 

* Mu1111i,•l1fultigkrit11/,.l,rr, p. lh!. I quote WeieJ"11lrus'11 theory from the aooount 
in St.ol", t't1rlt1t11,ig,-11 iiht-r t1lf!Jf'llll'i11r ~ rithmtfik, 1. 

Downloaded from https://www.holybooks.com



267-269] Limits and Irrational Numbers 283 

or less than rationals, or that some rational!f are inte1-,reni. Rationals 
are essentially relations between integers, but irrationals are not such 
relations. Given an infinite series of rationals, there may be two 
integers whose relation is a rational which limits the series: or there 
may be no such pair of intt•gers. The entity postulated as the limit, 
in this latter case, is no longer of the same kind a.o; the terms of 
the series which it is supposed to limit; for each of them is, while 
the limit is not, a relation between two integers. Of such hetero­
genc>ous terms, it is difficult to suppose that tht•y can have relations 
of greater and lei;s; and in fad, the const.itut,iw relation of gn•ater 
and lesi-, from which the series of rationals springs, has t.o rect•ive 
a new definition for the case of two "irr11tio11als, or of 11 mtional and 
an irrational. This definition is, that an irrational is f,TJ"(!ater than a 
rational, when the irrational limits a st·ries containing terms 1-,rrt•ater 
than the given rational. But what is really given here is ll relation 
of the given r11tional to a class of rationals, namel_v the rl'lntion of 
belonging to the segment defined by the series whose limit is the given 
irrational. And in the case of two irrationals, one io; tlt,fiued to be 
greater than the other when its defining series contains terms greater 
than any terms of the defining serieb of the other-a condition which 
amounts to saying that the segment corresponding to the one eontains 
as a propl'r part the segment eorrl'sponcling to the other. These 
definitions define a relation quite difformt from the inequality of two 
rationals, namely the logieal relation of inclusion. Thus the irrationals 
cannot form part of the st•ries of rationals, hut new terms corn•sponding 
to the rationals must be found before a single series can be constructed. 
Such terms, a.-; we saw in the lai,,t chapter, are found in i-egments; but 
the theories of Dedekind and Weierstra.,;s leave them still to sL-ck. 

269. The theory of Cantor, though not expressed, philosophically 
speaking, with all the requisite clearnes.,;, lends itself more ensily to the 
interpretation which I advocate, and is specially designed to proue 
the existence of limits. He remarks• that, in his theory, the existcnl~ 
of the limit is a stridly demonstrable propoi;ition; and he shongly 
emphasizei. the logical error involved in attempting to deduce the 
existence of the limit from the series whose limit it is (ih., p. 22)+. 
Cantor starts by considering what he calls fundamental series (which 
are the same as what I have called progres.o,;ions) rnntained in a larger 
series. :Each of these fundamental series is to be wholly ascending or 
wholly descending. Two suc·h series are called coherent (zuaammen~­
horig) under the following circumstances:-

* Op. rit., p. 24. 
t Vant.or's theory of irrationals will be found in op. dt., p. 23, and in Stolz, 

Vorl118ungen ul,er allgemeine Arithmelik, i, 7. I shall follow, to begin with, a later 
account, which seems to me clearer; this forms§ 10 in au article contained in Math. 
Annaler1, xLV1, and in Ri,'li"ta di Matemuti,-a, v. 
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(1) If both are ascending, and after any term of either there is 
always a tcnn of the other; 

(2) If both are de!K'ending, and before any term of either there is 
alwayi; a tenn of the other; 

(8) If one i11 asc,-ending, the other descending, and the one wholly 
precedes the other, and there is at moat one term whieh i11 between the 
two fundamental 11eries. 

The relation of being coherent is 11ymmetrical, in virtue of the 
definition ; and Cantor show11 that it is transitive. In the article from 
which the above remarks are extracted, Cantor is dealing with mote 
general topic:-; than the definition of irrationals. But the above general 
account of coherent serie11 will help us to understand the theory of 
im1tionals. This theory is set forth as follows in the Mannichfaltig­
keit.vkhre (p. 23 ff'.):-

.A fundamental series of rationals is define.ad as a denumerable series 
such that, gi\'en any number e, there are at mrn1t a finite number of 
terms in the series the absolute values of whose differences from sub­
i.cquent tl•rms ex<'t't.'d e. That is to say, given any number e, however 
small, any two terms of thl' 11eriei; which both l'ome after a c.-ertain term 
have a difference whil·h lici. between + e and - E. Sm:h i.;c1-ie11 must be 
of one of three kinds: (1) Any number e being mentiom .. 'fl, the absolute 
,·alues of the terms, from 11mne term onwards, will all be less than e, 
whatever e may he; (2) from some term onwards, all the tenm1 may be 
greater than a certain positive number p ; (3) from some term onwards, 
all the terms may be less than a <·ertain negative number - p. A real 
number b is to be defined by the fundamental 11eries, and is !laid in the 
fir11t case to be zero, in the second to be posith·e, and in the third to 
be negative. To define the addition, etc., of these new real numbers, 
we observe that, if "•• a: be the vth terms of two fundamental series, 
the 'series whose vth term is a.+ a.' or a. - a.' or a. x a; is also a funda­
mental KCrics; while if the real uumber defin<.-d by the series (a,)• is 
not :r.ero, (a:/ a.) also defines a fundamental series. If b, b' be the real 
numbers defined by the series (a.), (a.'), the real numbers defined by 
(a.+ a.'), (a. - a.'), (a. x a.') and (a.'/ a.) are defined to be b + b', b - b', 
bx b' and l,' f b respcctiwly. Henee we proc-eed to the definitions of equal, 
greater and less among real numbers. We define that b=b' means b-b'=O; 
b > b' means that b - b' is posith·e ; and l, < b' means that b - b' is 
negatil"e-all terms which ha,·e been already defined. Cantor remarks 
further that in these definitions one of the numbers may be rational. 
Thi11 may be formally justified, in part, by the remark that a denu­
merable serie11 whose tenns are all one and the Mme rational number is 
a fundamental series, al-cm-ding to the definition ; hence in constructing 

• The t1ymbol (11,) denotes the whole 11eries whose ..th term is a,, not this term 
alone. 
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the diflercnceM a. - a:, by which b-1,' i11 defined, we may put 11omc fixed 
rational a in place of a.' for all values of v. Uut. the t"onscquem.-e that 
we can define b - a does not follow, aud that for the following reason. 
There i11 absolutely nothing in the above definition of the real numbers 
to show that a is the real number defined by a fundamental serit•s whose 
te1·ms are all equal to ti. The only reason ~-hy this !leellls sl'lf-evident is, 
that the definition by limits is um·om,ciom,ly present, making us think 
that, sinc·e .a is plainly the limit of a series whose terms are all e<1ual 
to a, therefore a must he the real number dc•fined by such a 11erie11. 
Since, howc\'er, Cantor iusists-1·ight]y, as I think-that his nll'thod 
is independent of limits, whic·h, on the c·ontrar_y, an.• to be dt'Cluc·ed from 
it (pp. 24-5), \\C must not allow thi~ prc,·onl'Cpt.ion to weigh with us. 
And the prec·om•eption, if I am not mii<taken, is in fac•t crro11com1. 
There is nothing iu t.lU' definitions above c•m1111c•r11.tl'Cl to show that a 
real numlwr and a mtio1111.l number t·an ever he t•ither equal or 1111e,p111l, 
and there arc vt•ry strong rc11.sons for supposing the ,·ontrary. llcm,e 
also we mw,t rt•jct·t the pmposition (p. 24) that, if b be the real number 
ddined b_v a fund1u11cntal scrit•s (a.), tlll'n 

Lima.=b. 

Cant.or is proud of the suppo11t•d fal't. that his theory rt'llclcl'!I this pro­
position st.ridly demonstrable. But, fL,; we have seen, there is nothing 
to show that a mtiona.l <·110 llC' subtrw:lcd from 11. real number, and 
hem'<· the suppos1.-d proof i!4 fallm·ious. \Vhat is true, and what has 
all the 11111.t.hemat.iml adl'anta+,rcs of the 1thovc tht~orcm, is this : Con­
ne,·tecl with every rational ri theni is a real number, namdy that defined 
by thl• fundamental 11eries whose terms are 1tll e<pml to a ; if b he the 
real number defined by a fnndmnental series (n.) and if b. he the real 
number defint.'<l h,v a ft;m!R.mental 1,erit'II whose terms arc all eqmLl to a., 
tlu.•n (b.) is a fundamental series of real numbel'!l whose limit is b. Hut 
from this we <'annot infer, a.,; Cantor supposes (p. ~4), that Lim a. exi!>ts; 
this will only he true in the case where (ri.) ha11 a rational limit. The 
limit of a series of rationals either docs not exist, or is rational ; in no 
ea~ is it a real numlx•r. But in all cases 11. fundamental series of 
rationals tlt;fi11es a real number, which is never identi<"al with any 
rational. 

270. Thus to sum up what has lx•en said on Cantor's theory: By 
proving that two fundamental serie11 may have the relation of being 
coherent, and that this relation is symmetrical and transitive, Cantor 
11hows, by the help of the principle of abi1tra.ctiou (which it1 tacitly 
assumed), that two such series both have some one relation to one third 
term, and to no other. This term, when our series consist of rationals, 
we define as the real number which both determine. We can then define 
the rules of operation for real numbers, and the relations of equal, 
greater and less between them. But the principle of abstraction leaves 
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us in doubt as to what the real numbers really are. One thing, however, 
seems certain. They cannot form part of any series containing rationals, 
for the ratioqals are relations between integers, while the real numbers 
are not KO ; and the constitutive relation in virtue of which rationals 
form a Heries is defined solely by means of the integers between which 
they arc relations, so that the same relation cannot hold between two 
real numbel'!I, or between a real and a rational number. In thi11 doubt 
as to what real numbers may he, we find that 11egments of rationals, as 
defined in the preceding chapter, fulfil all the requirements laid down 
in Cantor's definition, and also those derived from the principle \Of 
abstraction. Hence there is no logirAl ground for distinguishing se~­
ments of rationals from real numbel'!I. If they are to he distinguished, 
it mm1t he in virtue of NOme immediate intuition, or of some wholly new 
axiom, such as, that all series of rationals must have a limit. But this 
would be fatal to the uniform development of Arithmetic and Analysis 
from the five premisses which Pea.no has found sufficient, and would he 
wholly contrary to the spirit of those who have invented the arithmetical 
theory of irrationals. The above theory, on the contrary, requires no new 
axiom, for if there are rationals, there mu.'lt be segments of rationals ; 
and it removes what seems, mathematically, a wholly unnecessary 
complication, since, if segments will do all that is required of irrationals, 
it 1H.>ems superfluous to introduce a new parallel series with precit1ely the 
same mathematical properties. I conclude, then, that an irrational 
actually is a segment of rationn.ls which does not ha,·e a limit ; while 
a real number which would be commonly identified with a rational is a 
segment which does have a rational limit; and this applies, e.g., to the 
real number defined by a fundamental series of rationals whose terms 
are all equal. This is the theory which was set forth positively in the 
preceding Chapter, and to which, after examining the current theorie11 of 
irrationals, we are again brought back. The greater part of it applies to 
compact series in general ; but some of the uses of fundamental series, 
as we shall see hereafter, presuppose either numerical measurement of 
distances or stretches, or that a denumerable compact series is contained 
in our series in a certain manner•. The whole of it, however, applies to 
any compact series obtained from a progression as the rationals are 
obtained from the integers ; and hence no property of numbers i11 
involved beyond the fact that they form a progression. 

• See Chapter xxxv1. 
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CHAPTER XXXV. 

CANTOR'S FIRST DEPlNI'l'IOS <W CONTINUITY. 

271. Tm: notion of (0011tinuity has been trcakd by phil011ophers, as 
a 111le, a,., though it Wl'I'l! iul·npablc of aualysiK. They have i;aid many 
thinJ.,rs 11hout it, including tlw Hegelian dictum that everything dist•rcte 
is also coutiuuous and r,il't' t•rr,ya•. Thi11 remark, WI being an l!Xemplifi­
t·ation of Hegcl's usu11.l habit of combining opposite,,;, ha.'I been tamely 
repeated by all his followen,. But as to what they meant by continuity 
and disrl'l'tcnel'ib, they preht'l'\'lid a discreet and continuous silence; only 
one thing was l•,·ideut, that whatever they did mean could not be 
1-elevant to mathematks, or to the philosophy of spat-e and time. 

In the lMt chapter of Part III, we agrt't'd provisionally to call a 
series continuous if it had a te1111 bt-t.ween any two. This definition 
usually Mtisficd Leibnizt, and would have been generally thought 
sufficient until the revolutionary discoveries of Cantor. Nevertheles.11 
thell' was reason to surmise, before the time of Cantor, that a higher 
order of continuity is p08sible. Por, ever since the disrovery of incom­
mensurables in Geometry-a discovery of whirh iH the proof set forth in 
the tenth Book of Eurlid-it was probable that space had continuity of 
a higher order than that of the rational numbe1"K, which, nevertheless, 
have the kind of continuity defined in Part III. The kind which belongs 
to the rational numbers, and com1iKt.'! in having a term between any two, 
we have agreed to call rompact11e11a; and to avoid confusion, I shall never 
again speak of this kind 8.11 continuity. But that other kind of con­
tinuity, which was l!CCn to belong to space, was b-eated, as Cantor 
remarks t, as a kind of religious dogma, and wa.'I exempted from that 
com-eptual analytJiii which is requisite to ib t'Omprchension. Indeed it 
was often held to show, CHpecially by philosophel'II, that any subject­
matter possessing it was not validly analyzable into elements. Cantor 
has shown that thi11 view is mistaken, by a precise definition of the kind 

* Logic, Wallace's Tra111latio11, p. 188; We,ke, v, p. 201. 
t Pliil. Werk,, Gerhardt'& ed., Vol. 11, p. 5111, But cf. C1111Sirer, Leibniz' Sg,tem, 

Berliu, 1001, p. 18.'J. 
l Man,iicltfiutigkeitfltlm1, p. ~-
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of continuity which mu.'lt belong to space. This definition, if it ii,; to 
be explanatory of space, must, as he rightly urges•, be effected without 
any appeal to space. We find, accordingly, in his final definition, only 
ordinal notions of a general kind, which c-an be fu11y exemplified in 
Arithmetic. The proof that the notion so defined is precist'ly the kind 
of continuity belonging to space, mm,t be postp<ml.>d to Pa.rt VI. Cantor 
has given his definition in two forms, of whic·h the e11rlie1· is not f11tre~fj 

ordinal, but involveH also either number or quantity. In the present 
chapter, I wish to translate this earlier dl'finition into la.nb,ua.ge as 
simple and untechnical WI poHsible, and then to show hnw series which 
are continuous in this sense occur in Arithmetic, and generally in the 
theory of any progression whatever. The later definition will be given 
in the following Chapter. 

272. In order that a series 11hould be c·ontinuous, it must have two 
characteristiu;: it must be perject and colteNive (zmuunuwnh:ingend, 
bien ench.aint'.-e)t. Both the11e terms have a technic·al meaning requiring 
com1iderable explanation. I 1o1hall begin with the latter. 

(1) Speaking popularly, a series i8 c-ohl'sive, or h11.-, cohesion, 
when it c-ontains no finite gaps. The prec.-isc definition, as briven by 
Cantor, is 8.8 follows: "We call 1' a. ml,c.,i·ve collection of points, if for 
any two pointi,; t a.ud t' of T, for a. number E given in advanL-e and as 
small as we plea.~e, there are always, in several ways, a finite number of 
poinb ti, t., ... t., belonging to T, such that the distances ttu t1t20 t,t., ... 
t,t' are all le11s than t:."t This t·onrlition, it will be seen, has essential 
reference to distance. It is not necessary that the collection consirlen>d 
11hould oonsist of numbers, nor that E sh~uld be a number. AU that is 
neressary is, that the collection should be a. series in which there a.re 
distam•cs obeying the axiom of Archimedes and having no minimum, 
and that E should be an arbitrary distance of the kind presented by 
the series. If the series be the whole fieJd of :some a.symmetrical 
tra.n11itive relation, or if it be the who]e of the terms having a <.-erta.in 
a.symmetric-a] transitive relation to 11. given term, we may substitute 
11trctch for di11ta.nce; and even if the series he only pa.rt of' such a. serk'S, 
we may substitute the 11tretch in the complete 11erit.'tl of which our series 
forms pa.rt. But we must., in order to give any meaning to cohesion, 
have something numerically mca.'lura.ble. How far this eondition is 
nec<.'IIMry, and what can be done without it, I shall show (lt a. later 
sta.bre. ·It is through this c·ondit.ion that our discussions of quantity 
and ml.'asurement, in Part III, become relevant to the discussion of 
continuity. 

* Act,i Math. 11, p. 40.'J. 
t Arta Math. n, pp. 40~, 406; Mannichfaltigkeitslehre, p, 31. 
l The words "in several ways" seem superfluous. 'They are omitted by Vivanti: 

see Fornu1laire ,u MathlmatiquBII, Vol. 1, v1, § 1, No. 22, 
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If the distan<.-es or stretches in our series do not obey the axiom of 
Archimedes, there are some among them that are incapable of a finite 
numerical measure in terms of some others among them. In this case, 
there is no longer an analogy of the requisite kind with either the 
rational or the real numbel'8, and the series is ne<.-essarily not 
cohesive. For let o, tl be two distanc.-es; let them be such that, for any 
finite number 11, 110 is less than d. In this case, if o be the distam-e E, and 
cl be the distanL-e tt', it is plain that the condition of L-ohesion cannot 
be satisfied. Such ca.~s actually occur, and-what 1oeems paradoxical­
they can be created by merely interpolating terms in certain cohesive 
series. l'or example, the lll'ries of segments of rationa.ls is cohesive; 
and when these segments have rational JimitR, the limits are not 
contained in them. Adel now to thl' series what may be c.alled the 
mmpletrd segments, i.e. the segment-. having rational limits together 
with their limits. These are new terms, forming part of the same serie11, 
since they have the relation of whole and part to the former terms. But 
now the difference between a segment and the corresponding completed 
segment consh,b, of a single rational, while all other differences in the 
series consist of an infinite number of rationals. Thus the axiom of 
Archimedes fails, and the new :;cries is not cohesive. 

The condition that di8tances in the series are to have no minimum is 
satisfied by t"t'al or rational numbers; and it is ne<.-essary, if cohesion 
is to be extended to non-nume1ical series, that, when any unit distance 
is selected, there should be distant-es whose numeric·al measure is less 
than E, where E is any rational number. For, if there be a minimum 
distance, we l'am1ot make our distances tti, tit, ... less than this minimum, 
which is contrary to the definition of cohesion. And there must not 
only be no minimum to distan<."eS in general, hut there must be no 
minimum to distanL-es from any given term. Hence every c·ohesive series 
must be C'ompact, i.e. must have a term between any two. 

It must not be supposed, however, that every compact series is 
cohesive. Corn;ider, for example, the series formed of O and !! - ni/n, 
where m, n are any integers such that 7/t is less than n. Here there 
is a tem1 between any two, but the distance from O cannot be 
ma.de less than 1. Hen<1e the series, though compact, is not co­
hesive. This series, however, is not complete, being part only of the 
series of rationals, by means of which its distances are measured. In 
a complete series, the conditions are somewhat different. \Ve must 
distinguish two cases, according as there are or are not distances. 
(a) If there are distances, and equal distan<.-es do not correspond to 
equal stretches, it may happen that, though the series is compact, the 
distances from some term never become less than some finite distanc.-e. 
This case would be presented by magnitudes, if we were to accept 
Meinong's opinion that the distance of any finite magnitude from zero 
is always infinite (op. cit. p. 84). It is presented_ by numbers, if we 
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measure distances (u there are many reasons for doing) by log :i·/y. 
Thus in this case, with regard to distant.-es, the series is not; cohesh·e, 
though it is complete and compact. (b) If there are no distances, 
but only stretches, then, assuming the axiom of Archimedes, any stretch 
will be lellS than ne, for a suitable value of n. Hence, dividing 
the stretch into n parts, one at least of these will be les.'I than e. But 
there is no way of proving that all can be made leSK than e, unless we 
assume either the axiom of linearity (that any stretch can be divided 
into n equal parts), or a more complicated but more general axiom, to 
the effect that a stretch d can be divided into n parts, ead1 of whit·h is 
greater than d / (n + 1) and le11s than d / (n -1 ), whatever integer 11 may 
be. \Vith this axiom and the axiom of Archimedes, a complete l'llmpact 
series mulit be cohesive; but these two axioms together render l'OIU­

pleteness superfluous and compactne11s redundant. Thus we see that 
cohesion is in almost all cases a condition distim·t from compactness. 
CompA.Ctness ii, purely serial, while cohesion has essential reference to 
numbers or to the conditions of numerical me11.Murement. Cohesion 
implic.'I compactness, but l'Ompal'tness never implies t·ohesion, cx<·ept 
in the sole case of the complete series of rationals or real numhel'!I. 

273. (2) To explain what is meant by a 1H!1:f,:ct series is more 
difficult. A series is perfect when it coinc·ides with it'I fil'llt derivative•. 
To explain this definition, we must examine the notion of the dt>rimtives 
of a seriest, and this demands an explanation of a li111·iti11g-poi11t of a 
series. Speaking generally, the tern111 of a series are of two kinds, those 
which Cantor calls i.,olated points, and those which he calls limiting­
point:H. A finite series has only isolated points; an infinite serics must 
define at least one limiting-point, though thi11 need not belong to the 
series. A limiting-point of a 8eries is defined by Cantor to be a term 
such that, in any inter,·al containing the term, there are an infinite 
number of tenns of the series (ib. p. 343). The definition is given iu 
terms of the poinb on a line, but it has no essential reference to spare. 
The limiting-point may or may not be a term of the original series. 
The assemblage of all limiting-point.11 is called the Jinit derivative of the 
series. The first deri\'ath·e of the first derivative is called the second 
derivative, and so on. Peano gives the definition of the first derivative 
of a class of real numbers as follows: Let u be a class of real numbers, 
and let :r be a real number (whieh may or may not be a u) such that the 
lower limit of tht> absolute values of the differences of :r from terms of u 
other than :r is zero ; then the class of tem1s :r satisfying this condition 
is the first derivative of tt!. 1.'his definition is virtually identical with 
that of Cantor, but it brings out more explicitly the connection of the 
derivative with limits. A series, then, is perfect. when it consists of 

* Acta Nat/a. 11, p. 40.5. t lb. pp. 341-4. 
t FormulaiN, Vol. u, No. 3 (1899), § 71, l ·O and 4·0. 
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exactly the same terms as its first derivative, i.e. when all its points are 
limiting-points, and all its limiting-poinbi belong to it. 

274. nut with regard to the latter point, namely, that all limiting­
points of the series must belong to it, some explanation is nee,-essary. 
Take, for example, the series of rational numbers. Every rational 
number is the limit of some series of rational numbers, and thm1 the 
rationals are contained in their first derivative. But as regards those 
series of rationals which do not have a rational limit,, we Rgrt,>t.>d in the 
prcc<,oing chapter that they do not have a limit at all. Hence all series 
of rationals whi<·h have a limit have a rational limit, and therefore, by 
the letter of the definition, the ration~ls should form a perfect series. 
But this is not the case. Cantor, as we saw in connection with irrationals, 
believes, what we were compelled to regard as erroneous, that every series 
fulfilling certain conditions, which may be called tlw <'onditiom1 of con­
verhren<'y, must have a limit. Hence he regards those series of rationals 
which ha,·e no mtional limit as having an irrational limit, and as therefore 
having a limit not belonging to the series of rationals; and therefore the 
series of rationals dot'S not contain all the terms of its tiri,;t derivRtive. 
In fact, the first derivative of the rational numbers is held to be the real 
numbers. llut when we regard the real numbers as segments of rationals, 
it is impossible to take this view, and when we deny the existence­
theorem for limits, it is necessary to modify Cantor's definition of 
perfection•. This modification we must now examine. 

What we must say is, that a series is perfect when all its points are 
limiting-points, t1nd when further, any series being chosen out of our 
first series, if this new series is of the sort which is usually regarded as 
defining a limit, then it actually has a limit belonging to our fil'llt series. 
To mt1ke this statement precise, we must examine what are the condi­
tions usually considered as defining a limit. In the case of denumerable 
series, they are simple, and have already been set forth. They come to 
this, that, given any distance e, however small, all the terms of our series 
after some definite term, say the mth, are such that any two of them 
have a difference whose absolute value is less than e. This statement, 
it will be seen, involves either number or quantity, i.e. it is not purely 
ordinal. It is a curious fact that, though the supposed condition for 
the existence of a limit cannot, by our present method, be stated in 
purely ordinal terms, the limit of a denumerable series, if there be one, 
can always be defined in purely ordinal terms. I shall distinguish 
Cantor's fundamental series in a compact series into progressions and 
regressions, according as earlier terms have to later ones always the 

relation P, or always the relation P (where P is the generating relation 
of the compact series in which the said progressions and regressions are 

• This point is ably diac11811ed by Couturat, Ritmul de Met. et de Morak, March, 
IDOO, p. 167. 
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contained). The compact series is further assumed to be complete. A 
term :r is then the limit of a progreAAion, if every term of the progression 
has to x the relation P, while every term which ho.~ to x the relation P 
also ha11 this relation to some term of the progression. This definition, 
it will be R('en, i" purely ordinal~ and a similar definition will apply to a 
regrc.'8sion. 

Let us examine next what are the usual t·onditions for the existe,we 
of a limit to a non-denumerable series. \\'hen we come to examine 
non-numerical serie11, we shall find it inconn-nient to be restricted to 
denumerable i;eries, and therefore it will he well to c·onsider other 11eries 
at once. I-fore, of t·oun.e, if any denumerable r-eries containl'<l in our 
larbrt!r series fulfils the c·onditions for a limit, there will bt· a corresponding 
definition of' a limiting-point in our l,ubrer M"ries. Aml the upper or 
lower limit of the whole or part of onr larger series, if there is one, may 
be defined uactly 1u1 in the t·a..,e of a progression or a regression. Uut 
gem•ral conclitions for the t'xistem·e of a limit cauuot he laid down, 
excl'pt by reference to dt•numerahle series cuntainc<l in our larger series. 
And it will he ohservt'(l that Cantor\. definition of a limitiug-poiut 
a.'!sumes the exit,tl•nce of sm·h a point, and mnnot he tume<l into a 
definition of the conditions under which there are i.uch points. This 
illustrate11 the great importam·e of f:antor's fundamcnlitl serie!,. 

The method of segment1> will, howewr, throw some light on thi11 
matter. "re saw in Chapter xxx111 that any da.'is of terms in a series 
defines a segment, and that thi11 segment sornetimes c·an, but sometimes 
cannot, be definl"1 by a single term. When it can be so defined, this term 
is its upper limit; ancl if thi11 term doe11 not belong to the class b~· which 
the se1-,rtnent was defined, then it is also the upper limit of that dass. 
But when the segment ha.s no upper limit, then the da.-is by which the 
segment wa."' defitwd also has no upper limit. In all ca.11es, howe,·cr­
and thi11 is one of the t·hief ,·irtues of' segmcnt-1-thc seb1111ent defim.'<.l hy 
an infinite class which hn.'I no upper limit is the upper limit of the 
Hegmmts defined by the sc\'cral members of the da.'111. Thus, whether 
or not the dass has 11.11 upper limit, the 11cgments which its various 
terms defirw always have ouc-prO\·ide<l, that ii., that the compa<"t series 
in whid1 the.• clas11 is <·ontitim.-d ha."i tenns t-oming after all terms of 
the cla.'ls. 

,ve can now express, without nssuming the existence of limits in 
ca.'ICs where this i11 not demonstrable, what is meant by a series containing 
its fin;t derivative. \Vhen any dass of terms i11 contained in a compact 
seric."S, the conditions which are commonly said to insure the existence 
of an upper limit to the cla&, though they do not insure this, do insure 
an upper limit to the clasi, of segments defined by the several members 
of the cla.'ls. And a11 regitrds lower limiti., the same proposition holds 
concerning what we called upper segments. Hence we may define: A 
class u of tern111 forming the whole or part of' a seril'!i is perfect when 
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each of the terms of u is the upper or lower limit of some class contained 
in u, and when, if t' be any class contained in 11, and the lower segments 
defined by the several members of v have an upper limit, or the upper 
segments have a lower limit, this limiting segment is one of those that 
can be defined by a single term of 11, i.r. ha,·c a term of' 11 for their 
upper or lower limit respectively. This definition, it must be admitted, 
is more complicated than Cantor's, hut it is free from the unjm,tifiable 
assumption of the exii,tence of limits. 

,ve may repeat the defi11itio11 of perfection in what ii- perhaps less 
diffieult langua!,re, Given nny sn·ies, and any dass of terms ·11 containecl 
in this series, there arc an uppc1· and a lowt•r i-<•gment <'orrespomling to 
every term of 11. Any infinite set of terms v being chosen out of u, 
tlwrc arc certain conditions "hid1 are commonly s1tid to insure Umt t' 

hns an upper limit, \\hid1, it is ndmittcd, may bt-long neither to u, nor 
to th<· :,cries in which II is l'Olltaincd. \Vhat these conditions do insure, 
howen~r, is that the class of lower segment,. corresponding to 1• has an 
upper limit. If tlw series is pl•1fect, t' will have an upper limit whenever 
the l'OITChponding dass of sl·gments has 01w, and this upper limit of v 
will he a term of u. The definition of perfection requires that this 
should hold both for upper arnl lower limits, and for any claMs v <·on­
taincd in u. 

275. As the question l'onceming the existence of limits, whil'h has 
neecsi,,itated the above complication, is one of some philosophical im­
portance, I shall repeat the arguments against assuming the existence 
of limits in the class of series to whieh the rational nmnherM belong. 
\!\'here a i-.eries is imperfect, while its first derivative is perfect, there 
the first derivati,·e is logieally prior to its own formation. That is to 
say, it is only by presupposing the pc1fect series that it can he shown 
to Ix• the derivative of the imperfect series. ,ve have already seen that 
this is the case with indfridual irrational numbers; it is easy to see 
that the principle is genernl. \Vherevcr the derirntive contains a term 
not belonging to the original series, that term is the limit of some 
rlenmuerable series forming an integral part of the first series. If thi!l 
series with a limit have the general term a,., then-wording the defi­
nition so as not to apply ouly to series of numbers-thl•re is always a 
definite number m, for any specifit-'<I distance £, howe,·er small, such 
that, if' 11 is greater than m, the distam·e between On+i• and a,. is less 
than £, whatever positfre integer p may he. F'1·0111 this it is inferred 
that the series (an) has ll limit, and it is shown that, m many cases, 
this limit cannot belong to the series out of which the series (a.,.) was 
chosen. But the inference that there is a limit is pre<'arious. It may 
be supported either by previom, knowledge of the term which is the 
limit, or by some axiom necessitating the existence of such a term. 
When the term which is the limit is independently known, it may be 
easily shown to be the limit. But when it i-s not known, it cannot be 
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proved to exist at all, unle!IS we introduce some axiom of continuity. 
Such an axiom is introdm,-ed by Dedekind, but we sa.w that his axiom 
is ummtisfactory. The principle of abstraction, which shows that two 
coherent series have something in common, is fully satisfil.-d by segments. 
And in some cases, among which is that of the rationa.ls, it seems that 
the constitutive relation of the imperfect "cries t·annot hold between any 
terms not belonging to thi11 series, so that the existence of limit.,; not 
belonging to the ireries i11 wholly impossible. :For a limit mm1t have 
a t.-ertain position in a series of which the series which it limits forms 
part, and this requires some constitutive relation of which the limit, as 
well as the terms limited, must he capable. An independent complete 
Meries, 11uch 11s the rationals, cannot, in fact, have any limiting-points 
not belonbring to it. For, if R he the constitutive relation, and two 
terms a, b, have the relation R, any third term c, whi<·h ha.,; this relation 
or its converse to either, and the~fore both, of the terms a, b, belongs 
to the same series 8.!i a and b. But the limit, if it t>Xists, must have the 
eonstitutive relation to the terms which it limits; hence it must belong 
to the complete series to which they belong. Hence any l'!Cries which 
has actual limiting-points not belonging to it is only part of some 
complete series; and a complete series which is not perfect is one in 
which the limits defined iu the usual way, hut not belonbriug to the 
series, do not exist at all. Hence, in any compk·te series, either some 
definable limit" do not exist, or the series contains its first derivative. 

In order to render the arbitrariness of assuming the existence of 
limits stil1 more evident, ,let us endeavour to set up an axiom of con­
tinuity more irreproachable than Dedekind's. We i,hall find that it can 
still he denied with perfect impunity. 

When a number of positions in a series l"ontinuall.v differ lesR and 
less from each other, and are known to be all on one side of some given 
position, there must exist (so our axiom might run) same position to 
which they approximate indefinitely, so that no distance can be specified 
so small that they will not approach nearer than by this distance. If 
this axiom he admitted, it will follow that all imperfect series, whose 
first derivatives are perfeet, presuppose these first derivatives, and are to 
he regarded as seledions from them. Let us examine the consequenees 
of denying our axiom in the case of a series of numbers. In this 
c&4e, the unwary might suppose, the position next to all the terms 
a,a, but not belonging to them, would be (say) p, where p-a.,, is 
greater than e, for a suitable value of e, whatever n may be. But 
if our series is compact, there is a term between p and p - e, say p'. 
Thus p' - a,. is less than p - a,., whatever n may be. Thus p' is 
nearer all the a's than p is, contmry to the hypothesis. But the 
above denial was not direct, and the fact that it seemed correct 
illustrates the fallacies which in this subject are hard to avoid. The 
axiom is: There is a tem1 to which the a's approach as near as we like. 
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The denial was : There is a tenn nearest to the a's, but at a finite 
distance. The denial should have been: There is no term to which 
the a's approach as near as we like. In other words, whatever tenn we 
spetify, say p, there is some finite distance E, such that p- a,. is greater 
than E, whatever a.. may be. This is true in the case of series of rational 
numbers whirh have no rational limit. In this case, there is no tenn 
nearest to the a's, but at a finite distance. while also, whatever term 
beyond all the a 's we specify ( except where our series has a rational 
limit), none of the a's approach nearer to thi11 term than by a certain 
finite distance e. }~very term beyond the a's is at more than some 
finite distance from a.II of them, hut there is no finite distance which 
every term beyond the a'~ exceeds. 1'he introdlll·tion of irrationals 
introduces symmett·y into this odd state of thi~gs, so that there is a 
term to which the ll,'s approach indefinitely, a.-1 well as a series of terms 
inclefinitely approaching the ,i's. When irrationals are not admitted, 
if we have a term p after all the a's, and a small distance E, then, if f 

be spedfied, p can be chosen so that p - tin is le'ls than f, whatever n 
may be: hut if p be spet'ified, an f can always he found ( except when 
the limit is rational) so that p-ll,1 is greater than,, whatever 11 may be. 
This stnte of things, though curiom1, is not self-contradirt.ory. The 
admiS!lion of irrationals, a.Ii opposed to segments, h-1 thus logically un­
necessary; as it j., also mathematir.ally superfluous, and fatal to the 
throry of rationals, there are no reasons in its favour, and strong reasons 
against it. Henre, finally, any axiom designed to show the existence 
of limit'l in ca.11es where they cannot otherwise be shown to exist, is 
to he rejected ; and Cantor\; definition of perfe<·tion must he modified 
as above. This condm;ion will, in future, he regarded as established. 

Having now analyzed Cantor,s earlier definition of continuity, I shall 
proceed to examine his later ordinal definition, and the application of 
its various portions to seriL'S more general than those of numbers, 
showing, if possible, the exact point, in which tht'Se various portions 
are required. 

Downloaded from https://www.holybooks.com



CHAPTER XXXVI. 

ORDINAL CONTINUITY•. 

276. Tm: definition of continuity which we examined in the pre­
ceding chapter wru;, as we saw, not purely ordinal; it demanded, in at 
least two points, some reference to either numbers, or numerically 
measurable magnitudes. Nevertheless continuity seems like a purely 
ordinal notion ; and this has led Cantor to construct a definition which 
is free from all elements extraneous to ordert. I shall now examine 
this definition, as well as others which may be sughrested. We shall find 
that, 1,0 long as all referem·es to number 11.nd quantity are excluded, there 
are theorems of great importance, especially as regards fundamental 
series, which, with any suggested ordinal ddinition except that of 
Cantor, remain indemonstrable, and are presumably sometimes fah.e!­
a fact from which the merits of Cantor's definition, now to bt> given, are 
apparent. 

277. Cantor's definition of the continuum in his Inter article§ is as 
follows. We start (§ 9) from the type of series prei'lented by the rational 
numbers greater than O and less than 1, in their order of magnitude. 
This type we l 0all '1/· A series of this type we define hy the following 
marks. (1) It is denumerable, that is, hy taking- it~ terms in a suit.able 
order (which, however, must be diffh-ent from that in which they are 
giren), we can give them a one-one correi-pondcnt-e with the finite 
integeri,. (2) The series has 110 firi,t or last te1·111. (3) There is a term 
between any two, i.l'. the series is compA.Ct ( iibaall ,lidtf). It is then 
proved thnt these three chnracteristicl'I completely define the type of 
order presented by the rationals, that is to say, there is a one-one 
correspondetH"e, between any two series having these three properties, in 
which earlier terms correspond to earlier terms, and later ones to later 
ones. This is establisht.'Cl bv the use of mathematil'al inrluction, whi('h 
is 1ipplimblc in virtue of th~ fact that series of this type arc denumer-

* 111e present chapter deal~ with the ~ame suhject ac: M. Couturat's article, "Sur 
la drtiuitiou du Contiuu," Rmw r/11 .Wtt1ph.11,,·iq11e et de .l!ol'l1le, ;\larrh, 1000. I ~ree 
iu the main with this article, iu which mul'11 of 1rhat I said in the preceding chapter, 
aud t1hall say in this, will be fnu111l. 

+ Mt1th . .-t1m11/1m, xu-1. 
+ Mathematical proofs of sul'l1 theoremR as are not ah·eady well known will be 

found in lldM, vu, ~I. 
§ M"th. A11nul1m, xr.n, § 11. 
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able. Thus all series which are denumerable, endless•, and compact, 
are ordinally similar. ,ve now proceed (§ 10) to the consideration of 
fundamental series contained in any one-dimensional series ~v. \Ve 
show (as has been already explained) what is meant by calling two 
fundamental series coherent, and we give an ordinal definition of the 
limit of a fundamental series, namely, in the case of a progression, the 
limit comes after the whole progression, hut every term before the limit 
comes before 1.ome term of the progression; with a corre!lponding 
definition for the limit of a regression. We prove that no fundamental 
series can have more than one limit, and that, if a fundamental serie!I 
has a limit, this is also the limit of all coherent series; also that two 
fundamental series, of which one is part·of the other, are coherent. Any 
term of M which is the limit of some fundamental series in ~v is called 
a pri11cipal term of M. If all the tenns of M are principal terms, M is 
called condeWJed in itseif (insichdicht), If el"ery fundamental series in 111 
has a limit in M, M is called do,ved (abgeschlossen)t. If M is both 
closed and condensed in itself, it is peifect. All these properties, if they 
belong to M, belong to any series which is ordinally similar to M. 
With these preparations, we advance at last to the definition of the 
continuum (§ 11 ). Let 6 be the type of the series to which belong the 
real numbers from O to 1, both inclm;ive. Then 8, a.~ we know, is a 
perfect type. But this alone does not characterize 8. It has further 
the property of containing within itself a series of the type '1/, to which 
the rationals belong, in such a way that between any two temu,1 
of the 8-series there are terms of the "I-series. Hence the following 
definition of the continuum : 

A one-dimensional continuum M is a series which (1) is perfect, 
(2) contains within itself a denumerable series S of which there are 
terms between any two terms of M. 

In this definition, it is not necessary to add the other properties 
which are required to show that S is of the type 7/· For if Shad a first 
or last term, this would be also the first or last term of M; hence we 
could take it away from S, and the remaining series would still satisfy 
the condition (2), but would ha,·e no first or last term; and the 
condition (2) together with (1) insures that S is a compact series. 
Cantor proves that any series M satisfying the above conditions is ordi­
nally similar to the number-continuum, i.e. the real numben; from Oto 1, 
both inclusive; and hence it follows that the above definition includes 
precisely the same cla.'!s of series a.'! those that were included in his 
former definition. He does not assert that his new definition is purely 
ordinal, and it might be doubted, at first sight, whether it is so. Let 
us see for ourselves whether any extra-ordinal notions are contained in it. 

* I.e. having neither a beginning nor an end. 
t Not to be confounded with the elementary 11e1111e of a clOled aeries diacullled in 

Part IV. 
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278. The only point 88 to which any doubt could arise is with 
regard to the condition of being denumerable. To be a denumerable 
collection is to be a collection whose terms are all the terms of some 
progression. This notion, so far, is purely ordinal. But in the case 
supposed, that of the rationals or of any ordinally similar series, the 
terms forming the series must be capable of two orders, in one of which 
they form a compact series, while in the other they form a progression. 
To discover whether or not a given set of terms is capable of these two 
orders, will in general demand other than ordinal conditions; never­
theless, the notion itself is purely ordinal. Now we know, from the 
similarity of all such series to the series of rationals (which involves only 
ordinal ideas), that no such series is perfect. But it remains to be seen 
whether we can prove this without appealing to the special prope1ties 
of the rationals which result from there being a series in which there is 
distance. We know, as a matter of fact, that no denumerable series can 
be perfect•, but we want here a purely ordinal proof of this theorem. 
Such a proof, however, is easily gi,·en. For take the terms of our 
denumerable compact series S in the order in which they form a 
progression, and in this order call them u. Starting with the first in 
this order, which we will call .1'0 , there must be one which, in the other 
order S, follows this term. Take the first such term, .1'1 , a.'l the second 
in a fundamental series t'. This term has a finite number of predecessors 
in the progression u, and therefore has successors in S which are also 
successors in u; for the number of successors in S is always infinite. 
Take the first of these common successors, suf .r-2 , as the third term of 
our fundamental series v. Proceeding in this way, we can construct an 
ascending fundamental series in S, the terms of which have the same 
order in u as in S. This series cannot ha,·e a limit in S, for each term x,. 
succeeds, in S, every term which precedes it in u. Hence any term of' S 
will be surpassed by some tenn x,. of our fundamental series v, and 
henc-e this fundamental series has no limit in S. The theorem that a 
denumerable endless series cannot be perfect is, therefore, purely ordinal. 
From this point onwards there is no difficulty, and our former theory of 
segments enables us to state the matter simply. Given a denumerable, 
endle11S, compact series S, construct all the segment!, defined by funda­
mental series in S'. These form a perfect series, and between any two 
terms of the series of segments there is a segment whose upper (or 
lower) limit is 11. term of S. Segments of this kind, which may be called 
rational segments, are a series of the same type 88 S, and are contained 
in the whole series of segments in the required manner. Hence the 
ordinal definitiou of the continuum is complete. 

279. It must not be supposed that continuity as above defined can 
only be exemplified, in Arithmetic, by the devious course from integers 
to rationals, a.nd thence to real numbers. On the contrary, the integers 

* Acta Mathematica, n, p. 409. 
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themt1elves can be made to illustrate continuity. Consider all possible 
infinite classes of integers, and let them be arranged on the following 
plan. Of two classes u, t•, of which the smallest number in u is less thau 
the smallest in v, 1t comes first. If the first n terms of 1t and v are 
identical, but the (n + l)th terms arc different, that which has the 
smaller (n + l)th term is to come fii'llt. This series has a first term, 
namel~·, the whole cla.,;s of the integers, hut no last tem1. Any completed 
segment of the series, however, is a <'Olltinuous series, as the reader can 
easily see for himself. The denumerable compact. series contained in it 
is composed of those infinite classes which contain all numbers greater 
than some number, i.e. those c·ontaining all hut a finite numher of 
numbers. Thus classes of finite inteJ,,.;1-s alone suflic·e to generate con­
tinuous series. 

280. The ahow definition, it will he observc<l., depends upon pro­
gressions. As progressions are the very a.'4Sence of discreteness, it seems 
paradoxical that we should require them in defining continuity•. And, 
after all, as it is c-erh1in that people have not. in the pa.<it. associated any 
precise idea with the wonl mnti11uity, the definition we adopt is, in some 
degree, arbitrary. Series having the properties enumerated iu Cantor's 
definition would generally be called continuous, but so would many others 
which his definition excludes. In any ca.'le it will be a \'Rluable inquiry 
to ask \\ hat can he done by compact series without progressions. 

Let ll be any end)e:,s compact series, whose generating relation is P, 
and concerning which nothing further is known. Then, by means of any 
term or any cla.<i1:1 of terms in u, we can define a segment of u. Let us 
denote by U the cla.'11:1 of all lower segments of tt. A lower 11egment, it 
may be well to repeat, is a class t• of terms contained in 1t, not null, 
and not coextensive with u, and such that v has no llll:lt term, and 
every term preceding a v is a v. In the converse case, when v has 
no fii-st term, and every tenn following a 11 is a v, v is called an 
upper segment. It is then easy to prove that every segment consists 
of' all the terms preceding (or following} either some single term of u, or 
a variable term of some class of terms of 1t ; and that every sing]e term, 
and every clas1:1 of tem1s, defines an upper and a lower segment in this 
manner. Then, if V denote the cla.<i!I of upper segments, it it1 easy to 
pro,·e that both U and V are again endless compact ~ries, whose 
generating relation is that of whole or part; while if u has one or two 
end11, so have U and V, though the end-terms al'e not segments according 
to the definition. If we now proceed to the consideration of segments 

* Mr Whitehead has shown that the following simpler definition is equivalent 
to ('ant.or's. A series iJ:I continuous when (I) every segment, upper or lower, has a 
limit, and the series has a first and a last term ; (2) a denumerable compact series is 
contained in it in such a way that there are terms of this latter series between any 
two terml!I of our original series. In this definition, progreuious are relevant only 
in defining a denumerable aeries. 
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in U or V ( U say), we shall find that the segment of (Fs defined by any 
class whatever of U's can always be defined by a single U, which, if the 
class is infinite and has no last term, is the upper limit of the class, and 
which, in all cases, is the logical sum of all the members of the class­
members which, it must be remembered, are all themseh·es classes 
containL-d in u•. H1mce all classes contained in lJ and ha,·ing no last 
term have an upper limit in lT; and also (what is a distinct proposition) 
all classes contained in U and having no first term have a lower limit 
in U, except in the case where the lower limit is the logical zero or 
null-class; and the lower limit is always the logical product of all t~e 
cla.'lses composing the class which it limits. Thus by adding to U the 
null-clas11, we insure that lJ shall be a closed series. There is a sense 
in which U is condenSL-d in itself, namely, this: e,·ery term of U is the 
upper limit of a suitably chosen class contained in U, for every term is 
the upper limit of the sebl'Jllent of (I's which it defines ; and e,·ery term 
of U is a lower limit of the class of those (Fi; of which it is a proper 
part. Uut there is absolutely no proof, so far at lettst as I have been 
able to discover, that every term of U is the upper or lower limit of a 
jinulamcntal 11eries. 'l11erc is no a priori reason why, in any series, the 
limit of anv clas!! should always be also the limit of a fundamental 
series; this ·seems, in fact, to ~ a prerogative of series of the types to 
which rationals and real numbers respectively belong. In our present 
case, at least, though our lleries is, in the above general sense, condensed 
in itself, there seems no rea.~on for supposing its terms to he all of them 
limits of fundamental series, and in this special sense the series may not 
he condensed in itself. 

281. It is instructive to examine the result of confining the terms 
of U to such segments a,., can be defined by fundamental series. In this 
ca.<;e it is well to consider, in addition to upper and lower segments, their 
supplements, as they may be called, of which I shall shortly give the 
definition. Let 11. compact series t' be given, generated by a transitive 
a.'lvmmetriral relation P, and let 11 be anv fundamental t1eries in 1:,. If 
c~rlier terms of u have to later ones th~ relation P, I shall call u a 
pro1,,.,..,.t:,Yrrio11; if the relation J•, I shall call u a 1·egre.vsion. If now w be 
11.ny dass whatever containt.'<l in t', w defines, as we have already St.>en, 
four other da.'ises in 1,, namely (1) the ela.'lS of terms before every w, 
which I shall call 'lO'II'; (2) the cla.-;s of terms after every w, which I shall 
call wir; (S) the cla.'IH of terms before some w, which I shall call '17'2'0; 

( 4) the class of terms afte1· some w, which I shall call :;fw. The classes 
(3) and ( 4) are lower and upper segments respectively; the classes (1) and 

* The definition of the logical sum of the members of a class of classes, in a form 
uot involving finitude, is, I believe, due to Peano. lt is as follows : Let w be a class 
of classes; then the logical sum of the members of w is the class of terms x such that 
there is some class belonging to w, to which x belougs. See Pormulaire, Vol. 11, 

Part l (1897), No. 401. 
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(2) are supplements to (4) and (S) respectively, and I shall call them 
supplemental segments. When w has an upper limit, this is the first term 
of rcir, and thus wir is not a segment, since no upper segment hRB a first 
term. But when w has no upper limit, then, whether w be finite or 
infinite, wir is a segment. Similar remarks apply to lower limits. If w 
has a last term, this belongs neither to 71"fO nor to rtiif, hut all other terms 
of z• belong to one or other dass ; if w has no Ja.o;t term, all terms of v 
belong to 71"'W or rt'W. Similar remarks apply to W7r and ww: Applyin!l 
these general definitions to the cases of progressions and regre.'l..'lions, 
we shall find that, for a progression, only the classes (2) and (3) are 
important ; for a regression, only the dRS11e11 ( l) and ( 4 ). The question 
where a progression begins or a regression ends i11 lJUite unimportant. 
Sinre a progre!'ISion has no la.'lt tenn, and a regression no fin1t term, 
the segment defined by either, together with ito; supplement, contains 
every term of v. \Vhether progressions and regressions in v have limits 
always, sometimes, or never, there seems no way of deciding from the 
given premisses. I have not been able to discover an instance of a 
c-omp,u.·t series where they never have limits, but I cannot find any proof 
that i.uch an instance is impossible. 

Proceeding now to classes of iregments, as we proca>dcd before to our 
class U, we have here four such classei. to eonsider, namely : (1) The class 
V7r, eaeh of whose term11 is the clas.<i 1171" defined by some regression u, 
i.e., the terms of v which come before all the term11 of KOme regression in 
t•; (2) the clasM vw, l'Onsisting of' all the classes uw defined by pro­
grea11i01UJ u; (3) the class 71"V, whose tenns are 71"1', where u is some 
pn1{rl"e1taion; (4) the dass vw, whose terms are U71", where tt is some 
regre.,aum. }ach of these four dw,ses is a class of classes, for its term11 
are classes contained in t•. Each of the four is itself a compact 11eries. 
There i11 no way of proving, so far as I know, that (1) and (3), or (2) 
and (4), have any common terms. Each pair would have a common 
term if v contained a progression and a regI"Cll!lion which were coherent, 
and had no limit in v, but there is no way of discovering whether this 
case ever arises in the given series v. 

When we come to examine whether the four classes thus defined are 
L-ondenKCd in themselves, we obtain the most curious result<i. Every 
fundamental series in any one of the four classe11 has a limit, hut not 
necessarily in the 11eries of which its terms are composed, and conversely, 
every term of each of our four classes is the limit of a fundamental 
series, but not necessarilv of a series contained in the same cl11St1 to whi,·h 
the limiting term belongs. The state of things, in fact, is as follows : 

Every progression in v,r or 'll'V has a limit in ,rv. 
Every progres.'lion in z,;f or wv has a limit in wv. 
Every regression in V7I" or 7rV has a limit in V71". 

Every regression in vii or =in, has a limit in vii. 
E,·ery tenn of V7I" is the limit of a re~rression in tiff' and of one in ,rv. 
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Every term of w is the limit of a regression in v,r and of one in :;;,t,. 
Every term of ,rv i11 the limit of a progression in 1,.,,. and of one 

in 'lt'V, 

Every term of ,rv 1s the limit of a progrt.'S11ion in v,r and of one 
in irt,. 

Hence t•,r i11 identical with the cla..;s of limits of regressions in V'lt' or ,rv; 
vir is identical with the class of limib; of regre!illions in t•w or '7fv; 
'lt'V is, identical with the clal!S of limits of progre11Sions in V'lt' or 'ITV; 

irv is identical with the cla.'111 of limits of progressions in irt, or w. 
Thus each of our fom· classe11 has a kind of one-sided perfection ; 

two of the four are pcrfed on one side, the other two on the other. 
But I cannot prove of any one of the four classes that it is wholly 
perfect. We might attempt the combination of z,.,,. and ,rv, and al110 of 
v,r and wv. 1"or l''lf' and ,rt• together form one series, whose generating 
relation is still whole and part. This series will be perfect, and will 
contain the limits alike of progressions and of regressions in itself. But 
this scril.'S may not be compact; for if there be any progression u and 
regret1sion u' in 1,, which both have the same limit in v (a case which, as 
we know, occurs in some compact series), then ,ru and u'.,,. will be 
consecutive term11 of the series formed of ,rv ancl v,r together, for u'.,,. 
will contain the common limit, while 'lt'U will not contain it, but 
all other terms of v will belong to both or to neither. Hence when our 
series is compact, we cannot show that it is perft.-ct ; and when we have 
made it perfect, we can show that it may not be compact. And a 
series which is not compact can hardly be calfod continuous. 

Although we can prove that, in our original compact series v, there 
are an infinite number of progressions coherent with a given progression 
and having no term in common with it, we cannot prove that there is 
even one regression coherent with a given progression; nor t·an we 
prove that any progression or regression in 11 has a limit, or ~hat 
any term of v is a limit of a progression or regression. We cannot 
prove that any progression u and regression u' are such that 7r1l = u'.,,., 
nor yet that ,ru and u'.,,. may differ by only a single term of v. Nor, 
finally, can we prove that any single progression in V'lt' has a limit in V'lt', 

with similar propositions concerning the other three classes vir, 'ITV, ,ri•. 
At least., I am unable to discover any way of proving any of these 
theorems, though in the absence of instances of the falsity of some 
of them it seems not improbable that these may be demonstrable. 

If it is the fact-as it seems to be-that, starting only from a 
compact series, so many of the usual theorems are indemonstrable, 
we see how fundamental is the dependence of Cantor's ordinal theory 
upon the condition that the t."<»mpact series from which we start is to be 
denumerable. As soon as this assumption is made, it becomes easy 
to prove all those of the above propositions which hold concerning the 
types 'I and IJ respectively. This is a fact which is obviously of con-
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siderable philosophical importance ; and it is with a view of bringing it 
out clearly that I h1we dwelt so long upon compact scrieii which 
are not assumed to be denumerable. 

282. The remark which we made just now, that two compact 
~ries may he com hincd to form one which 1mmetime11 has conseeutive 
terms, is rather curious, and applies equally to c·<mtinuity as defined by 
Cantor. Segment~ of rationals form a eontinuous series, and so do 
('Omplcted scgmenbl (i.,,. segmenb; togcthl'r with their limits); but the 
two tohrether form a series whic·h is not eompal'l, and therefore not 
continuous. It is certainly <·ontrary to the usm\l idea of' continuity 
that a continuous series should <·ea.'IC to. be so merely by the interpolation 
of new h-rms between the old ones. This should, ,u•cm-ding to the mmal 
notion11, make our t1eries still mun· co11tinuou11. It might be 11uggestt.>d 
that, philosophi<·ally 1ipeaking, a scrie:. <·annot he ('ailed l'Ontinuom1 unless 
it is completr, i.t·. contains 11 <"t·rtain tl•t·m together with all the terms 
having to the given term a specifil·d a.-;ymmctri<·al tramsitivc relation or its 
l'onn·rse. If we add tbii, l'Ondition, the scrics of segments of mtionllls is 
not complete with reglli-d to the rdation by which we have hitheito 
regarded it a.'I hrcnerated, since it does not l'Onsist of all clR.'lses of 
rationals to whirh a given segment. has the relation of whole and part, 
and eal·h of whi('h contains all tcr1111i less than any one of its terms­
this condition is also satisfied by completed segments. Hut every sc•ries 
is complete with regard to some relation, simple or complex. This is 
the rca.-;on why completeness need not, f'rom R mathemiitieal standpoint, 
be mentioned in the definition of continuity, :.incc it can always be 
immred by a suitable choicc of the brcnerating relation. 

\Ve have now seen in what Cantor'11 definition of continuity consists, 
and we have seen that, while instanc-es fulfilling the definition may 
be found in Arithmetic, the definition itself is purely ordinal-the only 
datum required is a denumerable compact series. Whether or not the 
kind of serie11 which Cantor defines ru; continuum; i11 thought to be the 
most similar to what has hitherto been vaguely denoted by the word, 
the definition itself, and the steps leading to it, must be acknowledged 
to be a triumph of analysis and generalization. 

Before entering upon the philosophical questions raised by the 
continuum, it will be well to continue our review of Cantor's most 
remarkable theorems, by examining next his transfinite cardinal and 
ordinal numbers. Of the two problems with which this Part is 
concerned, we have hitherto considered only continuity ; it is now time 
to consider what· mathematics has to say concerning infinity. Only 
when this has been accomplished, shall we be in a position adequately 
to diS<.'USS the closely allied philosophical problems of infinity and 
continuity. 
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CHAPTER XXXVII. 

TRANSFINITE CARDINALS. 

283. THE mathematical theory of infinity may almost be said 
to begin with Cantor. The Infinitesimal Calculus, though it cannot 
wholly dispense with infinity, has as few dealings with it as possible, 
and contrives to hide it away before facing the world. Cantor has 
abandoned this cowardly policy, and has brought the skeleton out of its 
cupboard. He has been emboldened in this course by denying that it 
is a skeleton. Indeed, like many other skeletons, it was wholly 
dependent on its cupboard, and vanished in the light of day. Speaking 
without metaphor, Cantor has established a new branch of Mathematics, 
in which, by mere correctness of deduction, it is shown that the 
suppo.'!ed contradictions of infinity all depend upon extending, to the 
infinite, results which, while they can be proved concerning finite 
numbers, are in no sense necessarily true of all numbers. In this theory, 
it is neressary to µ-eat separately of cardinals and ordinals, which are 
far more diverse in their properties when they are transfinite than when 
they a.re finite. Following the same order a.11 previously-the order 
which seems to me to be alone philosophically correct-I shall hewn 
with transfinite cardinals•. 

284:. The transfinite canlinals, which are also called powera, may be 
defined in the first place so as to include the finite cardinals, leaving it 
to be investigated in what respects the finite and the transfinite are 
distinguished. Thus Cantor gives the following definitiont. 

"We call the power or cardinal numbe1· of M that general idea 
which, by means of our active fe.eulty of thought, is deduced from the 
collection 1V, by ab.11tracting from the nature of its diverse elements and 
from the order in which they are given."' 

This, it will be seen, is merely a phrase indicating what is to be 
spoken of, not a true definition. It presupposes that every collection 

* Thi11 is the order followed in Math. Annalen, nv1, but not in the llannich­
jaltigkeiuld&n. 

t Jlalh . .Annalen, XLV11 § 1. 
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has some such property as that indicated-a property, that is to 
11ay, independent of the nature of its terms and of their order; depend­
ing, we might feel tempted to add, only upon their number. In fact, 
number is taken by Cantor to be a primitive idea, and it is, in his theory, 
a primitive proposition that every collection has a number. He is 
therefore consistent in giving a specification of number which i11 not a 
formal definition. 

By means, however, of the principle of abstraction, we can give, as 
we saw in Part II, a formal definition of cardinal numbers. Thi1_o1 
method, in eHSential11, is given by Cantor immediately after the above 
informal definition. W c have already ~en that, if two classes be called 
aimilar when there is a one-one relation which couples every term of 
either with one and only one term of the other, then similarity is sym• 
metrical and transitive, and is reflexive for all classes. A one-one relation, 
it should be observed, can be defined without any reference to number, 
as follows: A relation is one-one when, if :r: has thl' relation toy, and .r' 
differs from .x, y' from y, then it follows that x' does not have the 
relation toy, nor .x toy'. In this there is no reference to number; and 
the definition of similarity also is therefore free from such referenee. 
Since similarity is reflexive. transitive, and symmetrical, it can he 
analyzed into the product of a many-one relation and its converse, and 
indicates at least one common property of similar classes. This property, 
or, if there be sevt>ral, a certain one of these properties, we rnay call the 
cardinal number of similar cla.~ses, and the many-one relation is that of 
a dass to the number of its terms. In order to fix upon one definite 
entity as the cardinal number of a given class, we decide to identify the 
number of a dass with the whole class of classes similar to the given 
class. This class, taken as a single entity, has, as the proof of thl' 
principle of abstraction shows, all the properties required of a cardinal 
number. The method, however, is philosophically subject to the doubt 
resulting from the contradiction set forth in Part I, Chapter x. • 

In this way we obtain a definition of the cardinal number of a CfflSl'I. 
Since similarity is reflexive for classes, every class has a cardinal number. 
It might be thought that this definition would onl_y apply to finite 
classes, since, to prove that all terms of one class are correlated with oJ,l 
of another, complete enumeration might be thought necessary. This, 
however, is not the case, as may be seen at once by substituting QIR,!J for 
all-a word which is generally preferable where infinite classes are 
concerned. Two classes u, v are similar when there is some one-one 
relation R such that, if .r be any u, there is some t.erm y of v such that 
a:Ry; and if y' be any t•, there is some term al of u such that a:'Ry'. 
Here there is no need what.ever of complete enumeration, but only of 
propositions concerning any u and any v. For esample, the points on 
a given line are llimilar to the lines through a given point and meeting 

* See Appeudix. 
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'l'he definition of powers of a number (a•) iK also effected logically 
(ib. § 4). l<'or thi11 purpose, Cantor first defines what he callH a covering 
(Belegu11g) of one class N by another M. This is a law by which, to 
every element n of N is joined one and only one element m of M, but 
the same element m may be joined to many elements of }'t{. That is, 
a Belegu:ng is a many-one relation, whose domain includes N, and 
which correlates with the terms of N always terms of M. If a be the 
number of terms in M, b the number in N, then the number of all such 
many-one relations is defined to he a". It is ea.-iy to see that, for finite 
numhel'M, this definition agrees with the mmal one. For transfinite. 
numbers, indices have still the mmal propertie11, i.e. 

abao = aHc, aobC = (ab)o, (a")o = a"°. 

In the case where a= 2, a• is capable of a simpler definition, deduced 
from the above. If a= !, 2" will be the number of ways in which 
b term11 can be related each to one of two terms. Now when those 
which are related to one of the two are given, the rest are related to 
the other. Hence it is enough, in each case, to specify the class of 
terms related to one of the two. Hem-e we get in each case a class 
cho.11en out of the b tem111, and in aH cases we get aJl such cl11.11SeS. 
Hence 2" is the number of da.'llff!S that can be formed out of b terms, 
or the number of combinations of b thingis any number at a time-a 
familiar theorem when b is finite, but sti11 true when b is transfinite. 
Cantor has a proof that 2" is always brreater than b-a proof which, 
however, leads to difficulties when b i11 the number of all classes, or, 
more generally, when there is some collection of b term11 in which all the 
sets chosen out of the b terms are themNClves single terms of b•. 

The definitions of multiplication given by Cantor and Vi\'anti re­
quire that the number of fad:ors in a product should be finite; and 
this makes it necessary to give a new and independent definition of 
powers, if the exponent is allowed to be infinite. Mr A. N. Whiteheadt 
has given a definition of multiplication which is free from this restri<-tion, 
and therefore allows powers to be defined in the ordinary way as pro­
ducts. He has also found proofs of the formal laws when the number 
of summands, brackets, or factors is infinite. The definition of a product 
is as follows: Let k be a cla.'18 of classes, no two of which have any terms 
in common. C'hoose out, in every possible way, one term and only one 
from each of the cla.'lses composing k. By doing this in all possible 
ways, we get a class of classes, called the multiplicative class of k. The 
number of terms in this clai,;s is defined to be the product of the numbers 
of terms in the various classes which are members of k. Where k has 
a finite number of' members, it is easy to see that this agrees with the 
usual definition. Let u, v, w be the members of k, and let them have 
respectively a, {j, 'Y terms. Then one term can be chosen out of u in 

* See C,'bapter xr.111, i,ifra. t .Amffimn Journal qf JfatAematiu, lac. di. 

Downloaded from https://www.holybooks.com



286, 28'1] Tranlfli11ite Cardinal.a 809 

a ways: for every way there are fJ ways of choosing one term out of v. 
and for every way of choosing one term out of u and one out of v, there 
are 'Y ways of choosing one out of re. Hence there are a. fJ 'Y ways of 
chooaing one term out of each, when multiplication is undergtood in its 
usual sense. The multiplicative cl8.811 is an important notion, by means of 
which transfinite cardinal Arithmetic can be carried a good deal further 
than Cantor ha11 earned it. 

287. All the above definitions apply to finite and transfinite integers 
alike, and, a.'I we 11ee, the formal laws of Arithmetic still hold. Trans­
finite integers differ from finite ones, however, both in the properties of 
their relation to the cll1.'l.'!CS of which they are the numbers, and also in 
regard to the properti~ of clas!leS of the integers themsel \"CS. Classes of 
numbers have, in fact, wry different propertiC!I accorcling &8 the numbers 
are all finite or are in part at least tmmfinite. 

Among transfinite cardinals, ROme are part.ieularly important, 
especially the number of finite numbers, and the number of the con­
tinuum. The number of finite numbers, it illl plnin, i11 nc~t itself a 
finite number; for the class finite 1mmber is Himilar to the cla!IH t•ven 

finite 11umber, which is a part of itself. Or again the same eonclu11ion 
may he prO\·ed by mathematical induction-a prim·iple whil'h also 
ser,·es to define finite numbers, but which, being of a more ordinal 
nature, I !!hall not C'Onsider until the next chapter. The numher of 
finite numbers, then, is transfinite. This number Cantor denotes by 
the Hebrew Aleph with the suffix O ; for us it will be more c-onvenient 
to denote it by a.,,. Cantor prove.~ that thi11 is the lcaHt of all the 
transfinite cardinals. 1.'his result" from the following theorems (l,oc. 
cit. § 6): 

(A) Every transfinite collection contains othel"!I as part11 whose 
number is a.0 • 

(B) Every tram1finite collection which i11 part of one wh011e 
nwnber is a0 , also ha~ the number a0 • 

( C) No finite colkction i11 similar to any proper part of itself. 
(D) E,·ery transfinite collection is similar to 11ome proper part of 

itself•. 
From these theorem~ it followK that no transfinite number is less than 

the number of finite numbers. Collections which have this number are 
said to be denumerable, because it is always p<>sKiblc to t:ount such 
colle<·tions, in the sense that, given any term of such a collection, there 
is some finite number n such that the given term is the ,ith. This 
is merely another way of saying that all the tem1s of a denumerable 
collection have a one-one rorrelation with the finite numbers, which again 
i11 equivalent to 11&.ying that the number of the collection is the 11&.me 
as that of the finite numbers. It is easy to see that the even numbers, 
the primes, the perfed squares, or any other class of finite numbeni 

* Theorems C aud D require tliat the finite should be cjefined by mathematical 
induction, or else they become tautologous. 
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having no maximum, will form 11. denumerable series. For, arranging 
any such d&Jo1s in order of magnitude, there will be a finite number of 
termM, llll.V 11, before any given tenu, whic·h will thus be the (n + l)th 
term. \Vhat is more remarkable is, that all the rationals, and even 
all real roots of equations of a finite degree and with rational eo­
effic·icnts (·i.e. all algebraic numbers), fonn a denumerable series. .And 
even an 11-1li111ensional scrie.,; of such termi;, where n is a finite number, 
or the Mmallcst transfinite ordinal, is still denumerable*. That the 
rational numhel"ll are denumerable can be e1u,ily seen, by a1Tanging them 
in the order in whic·h those with i;maller sum of numerator and denomi­
nator prcc·edc those with larhrer sum, and of tho-.e with equal !.lllns, thd,,;e 
with the smalle1· numerators prec..-ede those with larger oncs. Thus we 
get the 11erics 

1, 1/2, 2, 1/3. 3, 1/4, 2/3, 3/2, 4, 1/5 ... 

This is R clis(.'retc !.cries, with a beginning and no end ; ,•voy rational 
number wiJI orcur in thii; series, ttnd will hRn· a finite number of pre­
decessors. In the other rasei; the proof is rather more diffirult. 

All denumerable series l11t,•e the !.B.IIIC c·ardinal number a0 , liowe~r 
different they 11111.J appcar. Hut it 11111st not be supposed that there is 
no number greater than a 0 • On the c·ontmr_v, there is an infinite series 
of such nmnberst. The transfinite c·ardi11als Rre a.'lserted bv C'antor to 
be well-ordered, thRt is, such thnt Pver_v 0111.• of them except thP last of 
all (if there he a lai;t) has 1m innnl'diate :-.uc·c•e:,,.-;or, and i;o ha!, every 
clai;s of them which ha.s am· numbe1-i; at all nfkr it. But they do not 
all have an immedinte pred~c·essor; for exampll•, a 0 iti;elf has ~o imme­
cli11.te predl'l'eNliOl'. For if it had one, thi-; woulcl lutve to he tlw last of 
the finite numbcri,; hut we know thRt there i!, no last finite number. But 
Cantor's grounds for hii; asi;ertion that the c-11.rclina},; are wdl-orc:lert>d i;eem 
immflicient, so that for the present thii; must rt•main an open 11ucstion. 

288. Of the transfinite m1111bers other than a., the moi;t importnnt 
is the numb1.·r of the l'ontinuum. Cllntor ha.,; proved that thii; number 
is not u0t, and hope:-. to prm·e that it ii; a 1§-a hope which. though 
he ha.'! long c·herii;hed it, rem11.ins unfulfilled. Hl' ha.,; shown thnt the 
number of the continuum is 2 ... 11-n most c·urioui; theorem : but it 
mui;t still remain douhtful whether thi:-. number is ai, though there 
&1-c n•asons whit·h n•nden.'<l this prohnhle~. As to the definition of 111 

" t:.\t>e At:lr, .1l11fhn1mfi1·11, 11, pp. :JOli, :ll~l, :1:W. 
t See Juhr,•N/wrid,t rll'r ,,,.,,,,,,.,,,.,, .V11fhf'11mtikl'r- Vn°t'i1tigu11g I, 18!1:?; Jii1,i11fa di 

.Mufe11111ffo11, JI, pp. rn.'>-7. C.'nntor'11 11~sertion that there is 110 greatest transfinite 
cardinal i1,1 open to question. Set> Chap. xuu, i11/h1. 

! .A1·t,1 M,1tl1. JI, p. :1011. ~ /6. p. 40-l. a 1 i~ the number uext after "u· 
11 .•1,,n, . .A111111t1•11, x,.,.,, § -1, note. 

'II See Couturut, /~ f'J,1ffoi .V11flu'm11tiq11,., Paris, 18116, p. 65,'>. The ground 
alll!ffl'd by C"autor for identifying the l!le'ccmd po"er with that of the continuum is, 
that every infinite linear collection of points l1a.t1 eithl'r the fint power, or that of tl1e 
coutinuum, whence it ,rnulcl seem to follow tlmt the po•·er of the continuum must 
be the next after the first. (.V11th •• -1111111/t'n, !3, p. 488; i,,ee also .4rl11 ,ll11lh. vn.) But 
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and of the whole succes11ion of transfinite cardinals, this is a matter 
which is better postponed until we have discussed the transfinite ordinals. 
It must not be supposed that we can obtain a new transfinite cardinal 
by merely adding one to it, or even by adding 11.ny finite number or a0 • 

On the contrary, such puny weapons cannot disturb the tmnsfinite 
cardinals. It is known that in the case of a. and a certain class of trans­
finite cardinal11, e. number i11 equal to its double; also that in the e.ase of 
lllo and a presumably different clas,,,; of transfinite cardinals, a number is 
equal to its S<JUare. The sum of two numbers belonging to the former 
of the11e cla.'ises i11 equal to the greater of the two numbel'I!. It i11 not 
known whether 11.ll transfinite cardinal11 belong to one or both of these 
cl8.8Ke11•. 

289. It may be e.skt.•d : In what respect do the finite and transfinite 
cardinals tobrcther fonn a single 11eries ? 1H not the 11erit.'II of finite 
numbers complete in it11elf, without the po1111ihility of extending it'I 
brenerating relation ? If we define the seriei; of inte1,,rcrs by means of 
the gem•rating reJ11.tion of differing by one-tl1e method which is 
most natural when the r.eries is to be considered O.'i a proE,rn..-Hi;ion­
then, it mu11t he l'Onfessed, the finite integers fonn a complete series, 
and there i11 no po11sibility of adding tem1s to them. l:Jut if, as is 
appropriate in the theory of <·ardinals, we <:onsider the series as ari11ing 
by c·orrdation with that uf whoJe and part among clas.<ie11 of whil'h the 
integers can be asserted, then we 11ee that this relation doe.., extend 
beyond finite numbers. There are 11.n infinite numher of infinite classes 
in which any given finite class is l'ontained ; ancl thus, by correlation 
with these, the nmnber of the given finite clAAs pl'C(.-ede.'i that of any one 
of the infinite da.'ises, Whet.her there is any other sense in whic•h all 
intc1,,rcl'li, finite and tran11finite, form a single i,eries, I leave uncle<·ided; 
the 11.bo\'l' sl'nse would be sufficient to 11how that there iR no logical 
em>r in l'l'h'nnling them as a 11ingle serie11, if it were known that of 
any two cn.rdinnls one mm,t be the greater. But it is now time to tum 
our attention to the transfinite ordinals. 

the inferenl'e 11eemA "omewhat P""''"rioul!. ConHider, for example, the following 
analog-y : i11 a compact serie11, the stretch determined by two term11 consilltll either of 
an infinite number of terms, or, when the two term'! coincide, of one term only, and 
ue,•er of a finite nnmhl-r of term11 other than oue. But finite stretches are pre11e11ted 
by other types of Herillll, r.g. progreHAions. 

111e tl1eorem that the number of the continuum is ::!•o re11ult.s very Rim ply from the 
pn1pO!lition of ( 'ha11ter xxxv,, tl1at infinite cluses of finite integers fonn a continuom1 
serie11. 'J11e numherofall clus.'!ell o£finite integel'fl i!l 2-.(1:idl! 11upra), and the number of 
finite clniuies is a0 • Heuce the number of all infinite cla8111!8 of finite integel'fl is 2ao for 
the subtr11ctio11 of a11 does 11ot diminish any number greater than ao; 2-. is therefore 
the number of the oonti11uum. To pm,·e that thi11 number i11 a1 it would therefore 
be sufficient to show that the number of infinite cl111111es of finite integers is the same 
1111 tbe number of types of series that can be formed of all the finite integers; for the 
latter number, as we shall see in the next chapter, i11 a1 • 

* Cf. Whitehead, /oc. cit. pp. 392-4. 

Downloaded from https://www.holybooks.com



CHAPTER XXXVIII. 

TRANSFINITE ORDINALS. 

290. THE transfinite ordinals are, if possible, even more interesting 
and remarkable than the transfinite canlinals. Unlike the latter, they 
do not obey the commutative law, and their arithmetic is therefore quite 
different from elementary arithmetic. For every transfinite canlinal, or 
at any rate for any one of a certain class, there is an infinite collection 
of transfinite ordinals, although the rardinal number of all ordinals is 
the same as or less than that of all cardinals. The ordinals which 
belong to series whose cardinal number is ao are called the second class 
of ordinals ; those corresponding to a1 arc called the third class, and 
so on. The ordinal numbers are essentially classes of series, or better 
still, classes of generating relations of serie~ ; they are defined, for the 
most part, by HOme relation to mathematical induction. The finite 
ordinals, also, may be conceived as types of lll'ries: for example, the 
ordinal number n may be taken to mean "a Kerial relation of n tem1s;" 
or, in popular language, 1i terms in a row. This is an ordinal notion, 
distinct from "nth," and logically prior to it•. In this sense, n is the 
name of a class of serial relations. It is this sense, not that expressed 
by "nth," which is generalized by Cantor so as to apply to infinite 
series. 

291. Let Wi begin with Cantor's definition of the second class of 
ordinal numberst. 

"It is now to be shown," he says, "how we are led to the definitions 
of the new numbers, and in what way are obtained the natural sections, 
which I call rl<uaea 'If numbera, in the absolutely endless seriet1 of real 
integers.... 1'1ie series (1) of positive real whole numbers 1, !, 8, ... 11, ••• 

arises from repeated positing and combination of units which are pre­
supposed and regarded as equal ; the number II is the expression both for a 
certain finite amount (A nzahl) of such KUcceRSive positing,i,and for the com­
bination of the units posited into a whole. Thus the fonnation of finite 

* Cf. np,a Part IV, Chap. nix, §§ 231, 232. 
t Jlamdcltfalligl,eilll,l&n, § 11, pp. 32, 33. 
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real whole numbers rest.-; on the addition of a unit to a numlx•1· which 
has already been formed; I call this moment, which, a.-; we shall 11ee 
immediately, also plays an essential part in the formation of the higher 
integers, the .firat principle qf formatim1. The amount (.A11zahl) of 
possible numbers JI of the da.'IS (1) is infinite, and there i11 no greatest 
among them. Thus however contradic·tory it would be to speak of 
a greatest nmphcr of the cla.-;s (1 ), there is yet nothin~ objectionable 
in imagining a new number, whic·h we wilJ <·all C1J, whi<·h is t.o express 
that the whole collection (1) is gi\'en by its law in its natural order 
of i,uc·reKSion. (In the i-ame way ai,, JI expres.-;ci, thl· <.'tn11bination nf a 
certain finiil' amount of units into a whole.) It is enm pcrmisi-ible to 
think of the fl('wly ct-eatl'<l numbt-r ·Cll as a limit, towanls which the 
numbers JI tend, if by this nothing t-li.t• is 1111d1•n,t.ood but that Cl) is 
the first integer which follows all the numhl't-:. J1, i.t·. is to he called 
greater than each of the numbers JI, H~· allowing- further additions 
of units to follow thL• positing of tht• number w we obtain, by tlw help 
of the.fir.vt prim·iple of formation, t.he fm1:ht•r numbers 

Cl)+l, C1J+2, ......... Cl)+JI, ......... ; 

Sinl'e hel'e again we come to no ~•reatest nmuhcr, we imagine a new one, 
whieh we may call 2C1J, and whil·h is to be the firi.t after all previous 
number!, v and w + v. 

"'ftll' logil·al function whieh ha.-; givl'n us th<• two numbers Cll and 2Cll 

is e,·idt-ntly different from the fir.vt principle of formation ; I call it the 
second pri11c-iple qf furnwt-ion of real integen., and dt"fine it more exactly 
a., follows: If' we have any determinate suc·c•c'flsion of definl.-d real integers, 
among which there is no greatest numlx•r, by mean11 of thi11 second 
principle of formation a new number is created, which is regarck-d as 
the limit of those numberi,, i.e. ii. defined a.-; the next uumber greater 
than all of them." 

The two principles of formation will he made clearer hy corn,idering 
that an ordinal number is merely a type or class of series, or rather 
of their brenerating relations. Thus if we have any series which has 
no l11.11t term, every pa11: of such a series which can be defined as all 
the termi- up to and indudiug a certain term of the 11eries will have 
a ]a!lt term. But since the series itself has no la.'!t term, it i11 of a 
different type from any such part or segment of' itself. Hence the 
ordinal number representing the serie11 a.-; a whole must be different 
from that representing any such 11egment of ib,elf, and must he a 
number having no immediate predecessor, since the series has no last 
term. Thus ,., is simply the name of the clasi- progression, or of the 
generating relations of series of this class. The second principle of 
formation, in short, is that by which we define a certain type of series 
having no last term. Considering the ordinali- preceding any ordinal 
« which is obtained by the second principle ai,; ~presenting segments 
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of a series represented by «, the ordinal « itself represents the limit 
of such segments; and as we saw before, the segments always have a 
limit (provided they have no maximum), even when the original 8eries 
h8.11 none•. 

In order to define a class among transfinite ordinals (of whic·h, as 
is evident, the sue,'Cession is infinite), Cantor introduces what he C'alls 
a principle of limitation (Hemm,m~11pri1U·ip)t. According to this 
principle, the .,ecorul das11 of ordinals is to consist only of those who:,;e 
predecessor.,;, from I upwards, form a series of the first power, i.e. a series 
whoi-e cardinal number is a0 , or one whose terms, in a isnitahlc m,l'°r, 
have a one-one relation to the finite integers. It is then shown that 
the power, or cardinal number, of the second dass of 01,linnls as a 
whole, is different from a0 (p. ~35), and is further the very 1wxt ('ardi1rn.l 
numher after a0 (p. 87). What is meant b_y the next cardinal nurnl.>er 
to a0 results clearly from the following proposition (p. 38): "If ,lf be n11y 
we11-defined collcdion of the power of the sc,-cond da.~s of numbers, 
and if any infinite portion .1.V of 1.V be taken, then either the ('ollel'tion 
M' c.an he c·onsidcrcd 11.'i a simply iufinit.c series, or it is possible to 
estah]ii;h a u11iquc and rcciprol'al c·orrespondencc between ,.V and M'." 
That is to 811.Y, any part of a <·olk-ction of the st'corul power is either 
finite, or of the first power, or of the second ; and hence there is no 
power hctwcen the first and second. 

292. Before pro<·eeding to the addition, multipli<"ation, etc., of 
ordinals, it will be well to take the abt1\'e propositions, as far as posl:lihle, 
out of their mathematit·al dress, and to state, in ordinary language, 
exadly what it is thL•y 111ean. As for the ordinal w, this is l>imply the 
name for thl• class of generating relations of progressions. \\Te have 
seen how a progression i:-. defined: it is 11 scrieis whi<·h ha.,; a fir1-,t term, 
and a term next after each term, and whil'h obeys 111ntlw111at.iml imliw­
tion. Hy 1111tthe111atil'lll indul'lion itsdf we• <·1U1 show thnt every part 
of a prohrn-ssion, if it hm, n last term, has some finite m,linal 1111111ber 11, 

where II denotes the diu;s of series 1·011-;isting of n terms in orill'l'; while 
m·ery pn.rt whid1 has no last term is itself IL progression ; also we l'll.11 

show ( what is i111lt'e<l ohvious) th1tt no finite ordinal will rcp1,..sent. a 
progression. Now progreo;sions lll"l' a perfodly definite da.,:-. of series, 
and the principle of a.hstriu·tion show:-. that tht're is some entity to 
which all of them haw a rdation which thl'.Y have to nothing else­
for all progres.-.ions are on:linally i,imilar (i.e. have a one-one relation 

* 011 the 1<egme11ts of wl'll-ordererl se,·ieR !-lee Cantor'" article in M1ttl1. A111111lr11, 
xux, § la. It i11 important to 11b1~erve that the ordinals above explaiuei\ are 
aualogouR, in their genl'!<iR, to the real numhen, co11si1lered as MCgIT1ents (tiide ( 'hap. 
xxxui, 1r11p'l'a). Here, 1\11 there, the exi!ltence of "' is not open to que11tinn when 
the Keg1T1ent-theory is a1lopteil, wherelL'I 011 1my other theory the existence-theorem 
is iudemo1111trable and uuplamiible. 

+ Ma1mfo/1Jitltigkeit1tlehrl', p. :U. 

Downloaded from https://www.holybooks.com



291-298] Transfinite Ordinals 315 

such that earlier terms are correlated with earlier ones, and later with 
later), and ordinal similarity is symmetrical, transitive, and (among 
series) reflexive. This entity, to which the principle of abstraction 
points, may be taken to be the type or class of serial relations, since 
no series can belong to more than one type of series. The type to 
which progressions belong, then, is what f'..antor calls QI. Mathematical 
induction, starting from any finite ordinal, can never reach "'• sinc..-e 
QI is not a member of the dass of finite ordinals. Indeed, we may define 
the finite ordinals or cardinals-and where serie1t are l'oncern~.J, this 
seems the best definition-as theme which, starting from O or 1, c•an be 
reached by mathematical induction. This prinl'ipll•, therefore, is not to 
be taken as an axiom or postulate, hnt as the definition of finitu<le. It 
is to be ohsen'ed that, in virtue of the prim·iplc that e\"ery number has 
an immediate successor, we c:an proz•e that any asi,;ihrnecl number, 14RY, 
10,937, is finite-provided, of com'lie, that the number a.'lsignt.'<l i11 a 
finite number. That is to say, every proposition l'Oncerning 10,937 
can be proved without the ui,;c of mathematical indm·tion, which, as 
most of us can remember, was not mentioned in thl• Arithmetic· of our 
childhood. There is therefore no kincl of logical em>r in using the 
principle as 11 definition of the cla.'ls of finite numbers, nor is there a 
shadow of a reason for supposing that the principle appliC!I to all 
ordinal or all cardinal numbers. 

At thi11 point, a word to the philosophers may be in 11eason. Most 
of them seem to suppose that the distinction between the finite and 
the infinite is one whose meaning is immediately evident, and they 
re&'!on on the 1,uhject as though no precise definitions were neecled. 
But the f8.l·t is, that the distinction of the finite from the infinite is 
by no means easy, and has only been brought to light by modem 
mathematicians. The numbers O and 1 are capable of logical definition, 
and it can be shown logically that every number has a suc..'l.-esROr. \Ve 
can now define finite numbers either bv the fact that mathematical 
induction can reach them, starting from o· or 1-in Dedekind's language, 
that they form the chain of O or 1-or by the fact that they arc the 
numhcl'll of collection:. such that no proper part of them ha.'I the Kame 
number &'I the whole. These two conditions may be easily shown to be 
equivalent. But they alone preci11cly distinguish the finite from the 
infinite, ancl any cli11cus11ion of infinity which neglects them must be more 
or le1111 frivolous. 

293. With regard to numbel'!! of the !leCOnd class other than o>, 

we may make the fo1lowing remark. A coUe<.-tion of two or more 
tenns i11 alway11, except possibly for MOme very large infinite collections, 
the field of more than one serial relation. Men may be arranged by 
their rank, age, wealth, or in alphabetical order : all these relations 
among men generate series, and each places mankind in a different 
order. But when a collection is finite, a11 possible orders give one and 
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the tiame ordinal number, namely that corresponding to the cardinal 
number of the collection. That is to say, all series which can be formed 
of a certain finite number of terms are ~>rdinally similar. With infinite 
series, this is quite different. An infinite colleetion of terms which is 
capable of different orders may belong, in its various orders, to ·quite 

, different types. We have already seen that the rationals, in one order, 
form a compRct series with no beginning or l'T1d, while in another order 
they form a progression. These are series of entirely different types; 
and the same possibility extends to all infinite series. The ordinal type 
of' a S<'ries is not changed by the interchange of two consecutive tei\Jns, 
nor, <"Onsequeutly, in vi1tue of mathematical induetion, by any fi~ite 
number of' such interchanges. The general principle is, that the type 
of a ~eries is not changed by what may be eallcd a ptrrnutttti,m. That 
is, if P be a serial relation by whieh the term" of II arc ordered, R a 
one-one relation whose domain and whose conn-1-i;c domain arc both u, 

then RPR is a sl·rial relation of the same type as P; mul all serial 
relations whose field is u, and which arc of the same type as P, arc of 
the above form RPR. Ilut hy a rearrangement not redueiblt· to a 
permutation, the type, in general, is chnnged. Consider, for l'Xamplc, 
the natural numbers, first in tlll'ir natuml order, arHl then in the order 
in whi<"h 2 l'Ollle~ first, then all the higher numbers iu their natural 
order, and last of all 1. In the fir~t order, the natural numbers form 
a progression ; in the sel"ond, they form a progression together with 
n. last term. In the sel·ond form, mathematiml incluction uo longer 
applies; there are propositions which hold of 2, and of evPr_v subsequent 
finite number, but not of 1. The first form is the type of any funda­
mental st'ries of the kind we considered in Chapter xx:-.v1; the scl"ond is 
the type of any sm·h series together with its limit. Cantor hRs shown 
that every denumerable collection <"an be given an order whid1 corre­
sponds to any a.-;sigm.-d ordinal nmnbcr of the seeond dass•. Hem,-e 
the second da.-,s of ordinal numbers may lw defined as all the types 
of well-ordt•red series in whil·h any one given denumerable collection can 
be arranged by means of different generating relations. The possibility 
of sm·h different types depends upon the fundamental property of infinite 
colleC'tions, that an infinite part of an infinite collection can always 
be found, which will have a one-one correlation with the whole. If 
the original collection was a serie~, the part, by this correlation, becomes 
a series ordinally similar to the whole: the remaining terms, if added 
after all the terms of the infinite part, will then make the whole 
ordinally different from what it wast. 

* Acta ltl"th. n, p. 3!N. 
t 'fl1e remaining terms, if tl1ey be finite in number, will often not alter the type 

if added at the beginning; but if they be infinite, they will in general alter it even 
then. This will soon be more fully explained. 
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We may assimilate the theory of ordinals to that of l'ardinals as 
follows. 'l;wo relations will be ~id to be like when there is a one-one 
relation S', whose domain is the field of one of them (P), and whiC'h 
is such that the other rl'lation ii, l;P.",'. If P be a well-orden><l relation, 
i.e. one whiC'h generates a well-ordere<l st•ries, the dass of relations like 
P may be defined a...; the ordinal number of P. Thui, ordinal numbers 
result from likeness among relations 11!, cardinals from similarity among 
clRS!ies. 

294. \Ve cRn now understand the rules for the addition and multi­
plil'ation of transfinite ordi11als. Both operations obey the associative, 
but not the l'Otnmutative law. The l~istributive law is tnie, in genera.I, 
only in the form 'Y ( a + /3) = ,ya + ,y/3, 
where a+ /3, a, f1 1ue multiplieni•. That addition does not obey the 
commutative law nuiy be easily i-een. Take for example "'+ 1 and 
1 + <I). The first denotes a progn•ssion followed hy a single term : 
this is the type presented hy a progm,sion and its limit, which is 
different from a simple progression. Hence "'+ 1 is a different ordinal 
from w. But 1 + w denotes a progression 11receded by a single term, 
and thi~ is again a progression. Ifrnce l + w = ro, hut 1 + w does not 
equal w + 1 t. The numhef!, of the second claHs are, in fad, of two 
kinds, (1) those which have an immediate predecessor, (2) those which 
have none. ~umbers such as ro, w. 2, w. 3, .. . w2, w• .. . ro"' ... have no 
immediate predecessor. If any of thest• numbers he added to a finite 
number, the same transtinite number reappears; but if a finite number 
be adde,'ll to any of these numbers, we get a new number. The numbers 
with no predel'essor represent series which have no encl, while those 
which have a predecessor represent series which have an encl. It is 
plain that terms added at the beginning of a series with no end leave it 
endless; but the addition of a terminating series after an endless one pro­
duces a terminating series, and therefore a new type of order. Thus there 
is nothing mysterious about the...e rules of addition, which simply express 
the type of series re:,.ulting from the combination of two given series. 

Hence it is easy to obtain the rules of subtraction!. If a is less than 
f3, the etJuation a + E = f1 
has always one and only one solution in E, which we may represent by 
f3- a. Thh1 gives the type of series that must be added after a to 
produce /3. But the equation 

* Mam1ichfaltigkeitaleh'l'e, p. 39; a+ fj will be the type of a series consisting of 
two parts, namely a part of the type a followed by a part of the type 8; ya will be 
the type of a series consisting of a series of the type a of series of the type 'Y· Thus 
a series composed of two progressions is of tbe type .., . 2. 

+ Math. Annalen, XLVI, § 8. 
i Manniclifaltigkeitalehn, p. 39. 
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will Kometimes have no solution, and at other times an infinite number 
of solutions. Thus the equation 

E+,,,=r.,+l 
ha.'! no solution at all : no number of terms added at the beginning of 
a progression will produce a progrt."!!Sion tohrether with a la."lt term. In 
fact, in the equation E + « = fJ, if a represents an endle11s type, while fJ 
represent,; a terminating type, it. is 11ufficiently e\'ident that te1·11111 addt.-d 
before « can never produce a terminating type, and therefore can never 
produce the type fJ. On the other hand, if we l·on11idcr the t.'(JUati_on 

E+OJ=l'IJ.2 
this will be satisfied by f = OJ+ n, where n is zero or any finite number. 
For n before the second w will coalesl-e with thii> to form w, and thus 
w + n + w = w. 2. In this case, therefore, E ha.'I an infinite number of 
values. In all such cases, however, the pOllllible values of E have a 
minimum, which i11 a sort of principal value of the difference between fJ 
and «. Thus subtraction it1 of two kinds, according as we seek a 
number which, added to «, will give /:J, or a number to which a may be 
added so as to give fJ. In the fil"Kt case, provided « is less than fJ, there 
is always a unique 110lution; in the 11econd case, there may be no 
solution, and there may be an infinite number of 11olutions. 

295. 'l'he multiplication of ordinals is defined as follows•. Let 
M and N be two serie11 of the typtis a and fJ. In N, in plat.-e of each 
element n, substitute a series M,. of the type a ; and let S be the series 
formed of all the terms of all 11eries M,., taken in the following onler: 
(1) any two elements of S whil'h belong to the Ra.me series Mn are to 
preserve the order they had in ~vn; two elements which belong to 
different series Jin, Mn' are to have the order which n and n' have in N. 
Then the type of S dependii only upon « and fJ, and is defined to be 
their product af:J, where « is the multiplicand, and fJ the multiplicator. 
It is easy to see that products do not. always obey the <-'Ommutative law. 
For example, 2 . OJ is the type of series pre&ented by 

eu J;; -e., f.; e1 , f.; ... e.,f,,; ..... . 

which is a progression, so that 2. w = OJ. But r.,. 2 is the type 

eu e., e, ... e., ... ; J;, f., f,, ... f.,, ... 
which is a combination of two progressions, but not a single probrre88ion. 
In the former series, there is only one term, ei, which has no immediate 
predecessor ; in the latter there are two, e1 and .fi. 

Of division, as of subtraction, two kinds must be distinguished t• H 
there are three ordinals a, fJ, -y, such that fJ = a-y, then the equation 
fJ = flf has no other solution than E = ,y, and we may therefore denote 

* .Math. Anna/en, Xl,VI, § 8. 
t Jlannit:ltfaltigkeilllkhn, p. 40. 
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'Y by fJJa.•. Hut the etpiation fJ = fa., if soluble at all, may have several 
or even an infinity of roots; of which, however, one is always the 
smalle11t. This smallest root is denoted by #//a.. 

Multiplication of ordinals is the p1-oceMS of representing a series of 
series as a single seric,,, each series being taken as a whole, and preNerving 
il,; pl8.l-c in thl' seril'l'i of 11eries. Division, on the other hand, is the 
proce-.s of splitting up a single series into a i-.erics of serie..'4, without 
altering the order of il'4 h•rms. Hoth these prt:K-essei-i have some im­
portance in <·mmection with dimensions. Division, as is plain, is only 
po11 .. ihle with some types of series; those with which it is not possible 
may be calll'rl priml'll. The theory of primes i11 interesting, but it is 
not ne<·es.'l1Lry for m, to go into it t. 

296. En!r_v rational integral or exponential function of "' is a 
number of the second clas11, even when sueh numbers &'I "'"'• &1..-, etc., 
oe<.·m·!- llut it must not be suppoSL,d that all types of denumerable 
St>Iies are capahfo of 1meh a form. For example, the type "I, which 
reprl·scnts the rationali. in order of magnitude§, is wholly ine.apable of 
expl"(•i.1iion in h·r1111i of "'· Such a type is not (·ailed by Cantor an 
ordinal number. The term ordinal number is reHCr,·ed for well-ordered 
scril>s, i.,·. i.uch a.-i have the following two properties!!: 

I. There is in the series F 11. first term. 
II. If' F' is a p1trl of F, and if F posses.'les one or more terms which 

<"<>me after all the terms of F', then there is a term f' of 
F whi<·h immediately follows F', i,;o that there is no term of 
F beforef' and after all terms of F'. 

All possible functions of "'and finite ordinals only, to the exclusion of 
other types i.uch as that of the rationals, represent well-orderl,d series, 
though the converse does not hold. In every well-ordered series, there 
is a term next after any given term, except the last term if there be 
one; and provided the 11Crie11 is infinite, it alwayi. contains parts which 
are progrcssioni.. A tcnn which comes next after a progression has 
no imml,diate prede<,-essor, and the type of the sebrment formed of its 
predeces'iors is of what is called the second 11pecies. The other terms 
have immediate predecessors, and the types of the segments formed of 
their predecessors are said to be of the first species. 

* Cantor has changed his notation in regard to multiplication: formerly, in a. f!J, 
a was the multiplicator, and fj the multiplicand; now, the opposite order ia 
adopted. In following older work&, ucept in actual quotations, I have altered the 
order to that now adopted. 

t See Man11ichfaltigkeil1rkhre, p. 40. 
! On the exponential function, see Math. Annalen, xr.rx, §§ 18-20. 
§ Math. Annalen, xLv1, § 9. 
I\ Math.. An,1alen, x1.1x, § 12. The definition may be replaced by the following, 

which is equivalent to it: a aeries is well-ordered if every class contained in the 
aeries (except of course the null-elass) has a fint term. 
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297. The eom;ider11.tion of series which are not well-ordered is im­
portant, though the re!'.n]ts have far less 11.ffi11ity to Arithmetic than in 
the t'lil'IC of well-ordered i.eric"I, Thu,, the type .,, iM not expressible as a 
function of w, t!im·e all functions of w represent series with a first term, 
whereas "I has no first term, and all fundions of w represent series in 
which every term hll."I 1m immediate 1,uccessor, which again is not the 
e&.Ne with '1/· Even the series of negative 11.nd positive integers and zero 
cannot be express1.,,d in terms of w, since this series has no beginning. 
Cantor defines for this purpose a serial type • w, which may he taken as 
the type of a rebrrt'.vsion ( ib. § 7). The definition of a progression, ~ 
we have seen, is relative to some one-one aliorelative Pt. \Vhen P 

generates a progression, this progression with respect to P is a regression 
with respect to P, and iti, type, considered as generated by P, is denoted 
by • w. Thus the whole beries of negative and posith·e integers is 
of the type •w + w. Such a series can be divided anywhere into two 
progrei,sions, generated by converse relations; but in regard to one 
relation, it is nut reducible to any combination of progressions. Such a 
series is completely defined, by the methods of Part IV, as follows: P is 

a one-one aliorelativc; the field of P is identical with that of P; the 
disjunctive relation "some finite positive power of P" is transitive and 
a.'>ymmetrical; and the series consists of all terms having this relation 
or its converse to a given term together with the given term. The class. 
of series corresponding to any transfinite ordinal type may always be 
thus defined by the methods of Part IV; but where a type cannot be 
express1.,,d as a function of w or •w or both, it will Wiually be necessary, 
if we are to define our type completely, either to bring in a reference to· 
some other relation, in regard to which the terms of our series form a pro­
gression, or to specify the behaviour of our series with respect to limits. 
Thus the type of the series of rationals is not defined by specifying that 
it is compact, and has no beginning or end; this definition applies also, 
for example, to what Cantor calls the semi-continuum, i.e. the continuum 
with its ends cut off'. \Ve must add that the rationals are denumerable, 
i.e. that, with respect to another relation, they form a progression. 
I doubt whether, in this case, the behaviour of the rationals with 
regard to limits can be used for definition. Their chief characteristics 
in this respect are : (1) that they are condensed in themselves, i.e. every 
term of them is the limit of ce1tain progressions and regressions ; 
(~) in any interval, a progression or a regression which has no limit is 
contained. But both these characteristics belong to the series of 
irrational numbers, i.e. to the series obtained by omit.ting all rationals 
from the series of real numbers; yet this series is not denumerable. 

t An aliorelative is a relation which no term can have to it.self. Thie term is due 
to Pierce. See Schroder, Algebra u. Logik der Rdatiw, p. 131. 
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Thus it would seem that we t·annot define the type .,,, to which the 
rationals belong, without refcrenl-e to two generating relations. The 
type "I is that of emlleNs t·ompad i,,eriei, whose terms, with referem-e t<> 
another relation, form a progrc,,i.ion. 

Prom the Ja. ... t I'l'mark, we st•e dearly the importam·e of the correlation 
of series, with whi<·h wc began the discussions of Part V. Por it i11 only 
by meani, of correlation that th<• type of the rational.<1, and hence the 
continuum, c,1.11 ht• defined. Until we bring in wme other relation than 
that by whid1 the ordt·r of magnitude among ratio11al11 arises, there 
ii,, nothing to distinguish the type of the rationals f'rom that of the 
irrational ... 

298. Thl· consideration of ordinals not t'Xpressible a.-. fum·tions of 
c.> show,, clearly that ordinals in genera1 arc to be ,·om~idered-as I 
suggei,ted at the beginning of this chapter-a.-; classes or types of 
serial relation", and to this view Cantor himself now apparently adheres; 
for in the article in the ,llatht-ntati.,clU' Annalen, Vol. xi.v1, he speaks of 
them nlwa_y,, as type" of order, not a,.., numbers, and in the following 
artidl• (Jlatli. A.111wle11, x1.1x, § 12), he clefinitely restrid.s ordinal numbers 
to well-milen•d scrie". In his earlier writings, he confined himself 
more tn functions of c.>, whil·h bear many analogies to more familiar 
kind,, of numbf:•rs. The11e are, in fad, types of order which may be 
pl'ei.ented by seriei, of finite and transfinite cardinals which begin with 
some cllrclinal. But other types of order, a.-. we have now seen, have 
wry little rescmbla11ce to numbef!I. 

· 299. It is worth while to repeat the definitions of general notions 
invol\'ed in tenns of what mav he called relation-arithmetic•. If P, Q he 
two rt'lations sul'h that the~ is a one-one relation S whoHe domain is the 

field of P and which ii, such that Q = SPS, then P and Q are said to be 
like. The das11 of relationi, like P, which I denote by >..P, is called 
P's relfltim1-111i1nbe1·. If the fields of P and Q have no common terms, 
P + Q i" defined to he P or Q or the relation which hold!. between any 
term of' the field of' P and anv term of the field of Q, and between no 
other term". Thus P + Q is· not equal to Q + P. Again >..P + >..Q is 
defined as >.. (P + Q). For the summation of' an infinite number of 
relation,,, we require an aliorelativc whose field is c,-omp01K.'(l of' relations 
whose fields 11.n' mutually exdusive. Let P be such a relation, p its 
field, so that p is a cliu,s of relation,.. Then I.JiP i~ to denote either one 
of the relatiom, of the class p or the relation of any term belonging 
to the field of some relation Q of the class p to a term belonging to the 
field of another relation R (of the class p) to which Q has the relation P. 
(If P be a Nerial relation, and pa c\as.-; of serial relations, I.ip will be the 
generating relation of the 11um of the various series generated by terms 
of p taken in the order brenerated by P.) ·we may define the sum 

• ('f. Part IV, Chap. xxrx, § 231. 
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of the relation-numbers of the various terms of p as the relation-number 
of 'Iyp. If all the terms of p have the 11ame relation-number, i;ay 11, 

and if /3 be the relation-number of P, a x f3 will be defined to be the 
relation-number of Iyp. Proceeding in this way, it is easy to prove 
generally the three formal laws which hold of well-ordered Neries, 
namely: 

a. (/3 + ,y) = a/3 + a.7 

( 11./3),y = a (/37 ). \ 

'l'he proo£'1 are very closely analogonli to those discovered by Mr White.: 
head for cardinal numbers (.Amn. Journal qf Mat/,., Vol. xxav); but 
they differ by the fact that no method has yet been discovered for 
defining an infinite product of relation-numbers, or even of ordinal 
numbers. 

300. It iii to be observed that the merit of the above method is 
that it allowk no doubt as to existence-t.heoremM-a point in which 
Cantor's work leaves something to be desired. Ai,; this iii an important 
matter, and one in which philosophen; are apt to be sceptical, I shall 
here repeat the argument in outline. It ma,v be shown, to begin with, 
that no finite clasx embraces all terms: this results, with a little care, 
from the fact that, since O is a t·ardinal number, the number of numbers 
up to and including a finite number 11 i1-1 11 + 1. Purther, if 11- be a 
finite number, ,1 + I is a new finite number different from all iti,; prede­
cessors. Hence finite canlinals fonn a progression, and therefore the 
ordinal number"' and the cardinal number a0 exist (in the mathematical 
sense). Henc-e, by mere rearrangements of the 11eries of finite cardinals, 
we obtain all ordinals of C..antor's second dass. We may now define the 
ordinal number o,1 as the class of serial relations such that, if u be a class 
contained in the field of one of them, to !18.Y that " ha.., successors impJies 
and is implied by saying that u has a,, terms or a finite number of terms; 
and it is easy to show that the series of ordinals of the first and second 
classes in order of magnitude is of this type. Hence the existence of 1»1 

is proved; and 11.1 is defined to be the number of terms in a 11eries 
whose generating relation is of the type "'Jo Hence we can advance to 
o,1 and a9 and so on, and even to "'• and a.,, whOKe existence can be 
similarly proved : o,., will be the type of generating 1-elation of a series 
such that, if u be a cl&11S contained in the 11erie11, to say that " has 
successors is equivalent to 11aying that u is finite or has, for a suitable 
finite value of 1,, a. terms. 'l'his pl'O(,'eMS give!l us a one-one correlation 
of ordinals with cardinal11 : it is evident that, by extending the process, 
we can make each cardinal which ('8.Il belong to a well-ordered series 
correspond to one and only one ordinal. Cantor as.11umC11 al! an axiom that 
every class is the field of some well-ordered series, and deduces that aJ,l 
ai.rdinals can be correlated with ordinals by the above method. This 
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assumption Reems to me unwarranted, espa·ially in view of the fa.et that 
no one has yet sue<-eeded in arranging a da.'4.'I of 2•• terms in a well­
ordered series. We do not know that of any two different cardinal 
numbers one must be the greater, and it m~y be that !!■• is neither 
greater nor lell.'1 than a:1 and ~ and their llUl'l'eS/IOl'N, which may be l'alled 
well-ordered cardinals because they apply to well-ordered classes. 

301. There is a difficulty &.'I n•ga.rds the type of the whole 11eries of 
ordinal numhcr11. It i11 ea.'ly to prove that every segment of thi11 11erie11 
i11 well-orderL-d, and it i11 natural to 11uppose that the whole 11erieH is also 
well-ordered. If so, its type would have to be the greate11t of all ordinal 
number,,, t'or the ordinals leH!! than a given onlinal form, in order of 
magnitude, a series whose type is the given ordinal. But there cannot be 
a greatl'St ordinal number, because every onlinal is increased by the 
Rd.dition of 1. l•'rom this contradiction, M. Burali-J<'orti, who d.is­
l'Overed it.' infel'll that of two different ordinals, &.'I of two different 
cardinals, it is not necessary that one should he greater and the 
other less. In this, however, he l'OJ18cioU11ly contradil·ts a theorem of 
Cantor's which affirms the opp011itet. I have examined this theorem 
with all pm,sihle ca1·e, and h&\'c failed to find any flaw in the proof!. 
But there i:. another premisN in M. Bunili-Forti'1,1 argument, which 
appears to me more capable of denial, and that is, that the K1.•ries of all 
ordinal numbers is well-onlered. This does not follow fl'Om the fact 
that all ib, segments are well-ordered, and must, I think, be rejeeted, 
since, so far as I know, it is incapable of proof. In this way, it would 
seem, the contradiction in 11uestion can be avoided. 

302. We may now return to the subject of the succeM11ive derivativ~ 
of a. series, already briefly discuS11ed in Chapter xxxn. Thi1,1 forms one of 
the most interesting application11 of those ordinals which a.re f'unl'tion11 
of 01, and may even be used &'4 an independent method of defining them. 
,ve have already seen how, from a serie11 P, its first derivative i11 
obtained§. The first derivative of P, whil'h is denoted by P', i11 the 
clasll of it'I limiting point'!. P", the sL-cond derivath·e of P', consist11 of 
the limiting-points of P', and 110 on. Every infinite collection has 
at lea.'lt one limiting-point: for example, 01 is the limit of the finite 
ordinals. By induction we l"a.n define any derh·ative of finite order P,,. 
If P,, consists of a finite number of point'!, P•+i nnishes; if this happerui 
for a.ny finite number v, P ii, sa.id to be of the bt genus and the vth 

* "[Tua questione sui uumeri trausfiniti," R1mdit-0111i del ,1,"r.f}/fl .lll11l1mwtir.o di 
Pale,•1110, Vol. xr (189i). 

t Theorem N of§ 13 ofl'antor'11 article in M11tl1. A111ud1111, Vol. xr.rx. 
! I have repl'Olluced the proof in symbolic form, in which error11 are more ea11ily 

1letected, in lldM, Vol. Ym, Prop. 5.47 of my article. 
§ Wl1at follon is extracted from .-lt-ta M11th. 11, pp. :i-n-:MiO. I Rhall Bl!llllme for 

l'implicity that all definable limits exist, i.e. that.a series has a limit whenever tl1e 
corresponding aegmeuts have one. I have shown in Chapter xxxv1 ho'II· to 11tate re~ului 
i,o as to avoid this 118811mptio11 ; but the nece&llaJ'y circumlocution jQ tire1111111e. 

Downloaded from https://www.holybooks.com



824 Infinity nnd Continuity [ CHAP. XXXYIII 

ipecies. But it may happen that no P,, vanii;heK, and in thiK c·a..,e 
all finite deri\'atives may ha\·e common points. The points whid1 all 
ha,·e in common form a c·oJlection whil'h is defined as P... It h, to he 
obsern.-d that P,,, is thm1 defined without requiring the definition of "'· 
A tt•rm .r helon1,,,i;, to P,,, if, whate,·er finite integer v may he, .r belongs 
to P,,. It i-; to be observed that, though P' may C'ontain poinb, not 
helon1:,ring to P, yet subsequent derivatives introduce no new points. 
Thi" illustrates the c.-reath-e nature of thl' method of limit", or rather of 
11egment-, : when it is fil'llt applied, it may yield new term", hut later 
applieations give no further terms. That is, there is an intrinsic differ­
en<.'t' between a series which has been, or may have been, obtained as the 
derivative of some other 11eries, and one not 0so obtainable. E,·ery 11Criei,; 
which contains its fir11t derivative is itself the derivative of an infinite 
number of other series•. The successive derivatives, like the segments 
determined by the various terms of a regression, form a series in which 
each term is part of each of it,; predecei;softl ~ hem:e pw, if it exists, i11 the 
lower limit of all the derivatives of finite order. 1''rom P"' it is easy to go 
on to P.. + •, P,,- ll, etc. Series can be actually construl'ied in which any 
AAsigncd deri\'ative, finite or transfinite of the second cla.~~, is the first to 
,·anish. When none of the finite derivatives ,·anishes, P is said t.o be of 
the second genus. It must not be inferred, however, that P is not 
denumerable. On the contrary, the first derivative of the rationals is 
the number-continuum, which is perfect, so that all it-; derivatives are 
identical with itself; yet the rationali;, as we know, are denumerable. 
But when J>r vanishes, P is always denumerable, if v be finite or of 
the second class. 

The theory of deri\'atives is of great importance to the theory of 
reRl functionst, where it practically enablei; us to extend mathematical 
induction to any ordinal of the second cla..'ls. But for philoi;ophy, it 
Keems unneceMS&ry to say more of it than is contained in the above 
remarks and in those of Chapter xxxv1. Popularly speaking, the first 
derh·ative conKists of all points in whose neighbourhood an infinite 
number of terms of the collection are heaped up; and subsequent deriva­
th·es give, as it were, different degreet1 of concentration in any neigh­
bom·hood. Thus it is easy to see why derivatives are relevant to 
continuity : to be continuous, a collection must be as concentrated as 
pMSible in every neighbourhood containing any terms of the collection. 
But such popular modes of expression are incapable of the precision 
whi<·h belongs to Cantor's terminology. 

* J,'ormulairr. de Jlatladmatique•, Vol. 11, Part 111, § 71, 4-8. 
+ See Dini, TIM!orie Iler Functionen, Leipzig, 1892; esp. Chap. xm and 

Translator's preface. 
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CHAPTER XXXIX. 

TH}: l~PISITESI:\1AL CALCllL\TS. 

903. Tm: Infinitesimal Cal<·ulus is the traditional 111u11e for the 
differential and integral <·akulm, to(.,rethcr, H.nd a., s1l('h I have rt"taincd 
it; although, as we shall shortly sl'C, there is no allusion to, or implica­
tion of, the infinitesimal in any part of thi~ brnm·h of mathemati<"s. 

The philm,ophil·al theory of the Calculus ha.'! been, ever sint-e the 
subjed was invenll'<l, in a somewhat di11gracl!fn\ condition. Leibniz 
himself--who, one would have ~uppoSl-d, should have been competent 
to give a corre<·t acl'ount of his own invention-had ideas, upon this 
topic, which c·an only be described as extremely <·rude. He appears 
to have held that, if metaphysical subtleties are left aside, the 
Calculus is only approximate, hut is jm,tifit-d practirally by the fact 
that the errors to whil'h it gives rise are less than tho11e of observa­
tion•. When he wa.'i thinking of Dynamics, his belief in the 11.ctual 
infinitesimal hindered him fl'Om discovering that the Cakulu~ m,ts 
on the doctrine of limit!>, and made him regard his d.r and c(y as 
neither zero, nor finite, nor mathematic·al fictions, hut as l'Cal1v 
representing the units to which, in his philosophy, infiniti. di\'i~ioi1 
was suppo!>t!d t.o leadt. And in his mathematic·al expositions of the 
subject, he avoided giving careful proof.,;, co11tenting himself with 
the enumeration of rule!,~. At other times, it is true, he definitely 
rejeds infinitesimals a,,; philosophically \·11lid§; but he failed to show 
how, without the use of infinitesimals, the results obtained hy means 
of the Calrulrn, could yet he exact, and not approximate. In thiK 
respect, ~ewton i!> preferable to Leibniz: his Lemmas II give the tme 
foundation of the Calrulus in the doctrine of limits, and, assuming the 
continuity of spa(-e and time in Cantor\; sense, they give valid proofs 

• Cf. .Vttthematic11l Works, tlerhardt'11 ed. 1v, pp. !.11-!).'J; Phil. Work11, 
Gerhardt's ed. 11, p. 282. 

t See Math, Works, Gerhardt's ed. v1, pp. 2:1,~, 24i, 21i2. 
t See Math. WorkN, Gerhardt's ed., \'ol. v, pp. 220 ff'. 
§ E.g. Phil. Wo,·kN, Uerhardt'H ed., u, p. 00,'>. ('f. ('wirer, J,eib11iz' •".11111,111, 

(Marburg, 190'2), pp. 206--i. 
II l>ri11ripia, Part I, Section 1. 
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of iti.1 rules so far as 11patio-temporal magnitudes are concerned. But 
Newton was, of course, entirely ignorant of the fact that his Lemma~ 
depend upon the modem theory of continuity ; moreover, the appeal 
to time and <·hange, which appears in the word fluxion, and to space, 
which appears in the Lemmas, was wholly unnecessary, and served 
llll'l'Cl)I to hide the fa<'t that no definition of continuity had been 
gin-11. Whether Leibniz arnided this error, seems highly doubtful: 
it iK at imy ratl• ce1tain that, in his first published account of the 
Calrulus, he defined the differential coefficient by means of the tangent 
to a <'lllTe. And by his emph11.sis on the infinitesimal, he gave a wrong 
diredion to speculation as to the Calculus, which misled all mathe­
matit·iam, before Weierstrass (with the exception, perhaps, of De 
Morgan), and all philosophen; down to the present day. It is only 
in the la."lt thi1t~· or f'oity years that mathemati<·ians have provided the 
re<1uisite 111athen111ti<0RI foundations for a philosophy of the Calculus; and 
these fmmdRtions, a."I is natural, are as yet littlt- known among philo­
sophers, ext·ept in l•'rance•. Philosophi<·Rl works on the subject, such 
as Cohen',. Pri,wip ckr I,!finifr.vinuilmt'thode 1111d .w:ine Ge.,cl1id1tl't, are 
,·itiated, II.Ii regan:l~ the <·onstructiw theory, by an undue mysticism, 
inherited from Kaut, and lt•Rding to ~uch resulti; as the identification of 
intensive 1TI8{."nitude with the extensive infinitesi111alt. I shall examine 
in the next chapter the <·onception of the infinitesimal, whit·h is essential 
to all philosophical theories of the Calculus hithe1to propounded. For 
the present, I am onlJ concerned to give. the constructive theory as it 
resulb1 from modern mathematics. 

304. The differential coeffit·ient depends essentially upon the notion 
of a <·ontinuous fum·tion of a continuous variable. The notion to he 
defined is not purely on:linal; on the contrar.v, it is applie1tble, in the 
finit instam·e, onh- to series of numbers, and thenc(, bv extension, to 
series in whieh dis0tam·cs or stretches Rre numericallv mc~-;ureable. But 
first of nil we must define R l'Ontinuous fmwtion. · 

\Ve have alreRd_y seen (ChRp. xxx11.) what is mcRnt hy a fmwtion of R 
,·ariable, and what is meant by a continuous vRriRble (Chap. xxxn.). If 
the fum·tion is one-\'alucd, and is onlv ordered bv t·onelation with the 
variable, then, when the rnriable is l'Ol;tinuous, th~re is 110 st>nse in a~king 
whether the f'un<'lion is ·t·ontinuow, ; for s11<'h a scric~ hv <·orrelation is 
always on:linRll~· similar to its prototype. But when, as where the nuiahle 
and the field of the fmwtion are both dasses of numbers, the funl'tio11 
has au order independent of correlRtion, it may or may not happen that 
the Ya.lues of the function, in the 01-der ohtRined bv con-elation, form a 
continuous se1;es in the independent order. ,vhe~ they do so in any 
intl•rml, the function i:-. said to he continuous in thRt inte1·val. The 

* See ( '011tur11t, /Jt, I' l11ji11i illfltlu'1111rtiq111,, pa.qsim. 
t Herliu, IIUl:l. ·n,P hii;ctorit•al part of tl,i,. \l'ork, it 11houlrl he i:.aid, is ndmirahle. 
! Op. dt. p. J .i. 
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precise definitions of continuous and discontinuous functions, where both 
:r aud f(x) are numerical, are given by Dini• as fo1lo"·s. 'l'he inde­
pendent variable :r i11 <-om1idered to consist of the real numben;, or of all 
the real numbers in a <-ertain interval ; f(:r:), in the interval <--onsidered, 
is to he one-,·alued, even at the end-points of the interval, and is to be 
also composed of real number.-. We then have the following definitions, 
the fum·tion being defined for the inten-al between ex and fJ, and a being 
some real number in this interval. 

" \Ve call f(.r) cYmti1111m1a for .r = <t, or in the point a, in which it 
has the value .f(a), if for every positive number u, different from 0, 
but a. .. small a.~ we ple11.11e, there exi11tR a positive number E, different 
f1um 0, sll(•h that, for all values of S which are numerically les11 than E, 

the difference f(a + o) -f(a} is mnneril·ally less than u. In other 
words,f(.r) is <·ontinuous in the point :r = a, where it has the valuef(a), 
if the limit of its values to the right and left of a is the same, and 
equal to .f(a)." 

"Again, .f(:r) is diHmntimwu.y for .r· = a, if, for anyt positive value 
of u, there is no corresponding positive value of E sm·h that, for all 
\'alues of o which are numerically less than E, f(a + S) - f(a) is always 
less than u; in other words, ./(.1·) is discontinuous for x = a, when the 
\'a)uesf(a + h) of f(.r) to the right of a, and the values f(a -h) of.f(x) 
to the left of a, the one and the other, have no determinate limib1, or, if 
they have such, these are different on the two sides of a; or, if they are 
the same, they differ from the \·alue f(a.), which the function has in tlw 
point a." 

These definitions of the l'Ontinuity and discontinuity of a function, it 
mm1t be {'(lnfessed, are hOmewhat complicated; hut it s<->ems impoSKible to 
introduce an_v simplification without loss of rigour. Roughly, we may 
say that a function is continuous in the neighbourhood of tt, when iti-1 
values 11..'I it approaches a approach the value f(a), and have f(a) for 
their limit both to left and right. But the notion of the limit of a 
function is a somewhat more complicated notion than that of a limit in 
general, with which we have bt.-cn hitherto concerned. A function of a 
perfectly brene1-al kind will ha\·e no limit as it approaches any given 
point. In order that it should have a limit a.~ x approaches a from the 
left, it ih na-essary and suffkient that, if any number E be mentioned, 
any two values of f(.r), when :i.· is sufficiently near to a, but lel!II than a, 
will differ by less than E ; in popular language, the value of the function 
doe8 not make any sudden jumps &.'I x approachei; a from the left. 
Under !iimilar circunuitan<-es, f(x) will have a limit 1111 it approaches a 
from the right. But these two limits, even when both exist, need not be 
equal either to each other, or to f(a), the value of the fun<--tion when 

* Op. cit. § :JO, pp. liO, Iii. 
t The German (not the Italian) h1111 et'"!I instead of any, but this is a 11lip. 
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:r = a. The precise condition for a determinate finite limit may be thus 
stated•: 

" ln order that the values of y to the right or left of a finite number 
a (for instance to the right) should have a determinate and finite limit, 
it is necessary and sufficient that, for every arbitrarily small positive 
number <T, there should be a positive number f, such that the difference 
}la.+.-'!la.+a between the value .'I/a.+• of y for .r=a+E, and the value 
!Ja+ a, which corre;ponds to the value a + 6 of .:1·, should be numerically 
less than <T, for every 6 which is greater than O and less than E." 

It is pos..,ible, instead of thm1 defining the limit of a function, and 
then discussing whether it exist.s, to define generally a whole dass o( 
limit.sf. In this method, a number z belongs to the class of limits of .'I 
for :r = a, if, within any interval containing n, howcYer :.mall, y will 
approach nearer to z than by any given differenc,-e. Thus, for example, 
sin 1/:r, as :r approaches zero, will take every value from - 1 to + 1 (hoth 
inclusive) in every finite interval containing zero, however small. Thus 
the interval from - 1 to + 1 forms, in this <·ase, the cla.~., of limits 
for .:1,•= 0. This method has the advantage that the clUJ1s of limits always 
exists. It is then easy to define the limit as the only member of the 
clas.-, of limits, in case this class should happen to have only one member. 
'rhis method seems at once simpler and more general. 

301>. Being now agreed a.11 to the meaning of a continuous f'um1.ion, 
and of the limit of a function, we can attack the qul'i.tion of the 
derivative of a function, or differential coefficient. It was formerly 
,mpposed that all continuous functions could be differentiated, hut this 
is now known to be erroneous. Some c-an be diftel"t'ntiated evcrvwhere, 
others everywhere except in one point, othe1'!I ha,·e everywhere a ,iifforen­
tial on the right, but sometimes none on the left, others contain an 
infinite number of points, in any finite interval, in whic·h they cannot 
be differentiated, though in an infinitely greater number of points they 
can be differentiated, others lastly-11.nd these are properly the most 
#.reneral cla..'ls-cannot be difft.•rentiated anywhere at all!- Hut the 
L'Onditions under whic-h a function may be differentiated, though they 
are of some importan'-'e to the philosophy of' spac-e and of motion, need 
not greatly con<-em us here • and in any case, we must first know what a 
differential is. 

If f(:r) be a function which is finite and continuous at the point ,r, 
then it may happen that the fraction 

Lf<.r + 8) - f<:r>Jf 8 
h6 a definite limit a.'S 8 approa'-'hes to :r.ero. If this does happen, the 

* Dini, op. cit. p. :JU. 
t See Peano, Ritti11ffl di M11tm1uti,-a, u, pp. ii-i!I; Pon111tlt1if"I', Part m, § ;:1, 1.0. 
! Hee I>ini, op. 1:it. ChapR. x, x1, xu; t:1,c.'llrlr,p,1dil' der mutli. Wi1111r.1111t:l111flt'l1, 

&nd 11, Heft 1 (Leipzig, IB!JIJ}, e11p. pp. 20-l!l!. 
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limit is denoted by /'(:r), and is called the derivative or differential of 
.f(z) in the point :r. If, that is to say, there be some number z t.uch 
that, gh·en any number E however small, if 8 be any number less than 
110me number 71, but positive, then 1/(.r ± 8) - .f (:r)}/ ± 8 differs from 
z by lel!S than e, then z iN the deri,·ati\·e off (.r) in the point :r. If the 
limit in question d<>e11 ·not exist, then f(.r) hRS no derivative at the point 
:z•. If f(.r) be not continuous at this point, the limit doeK not exist: 
if f(.r) be continuous, the limit may or may not exist. 

306. The only point which it is important to notice at present iN, 
that there is no implication of the infinitesimal in this definition. The 
number 8 is always finite, and in the definition of the limit there is 
nothing to imply the contrary. In faet, {f (.r + 8) - f(.r)J/8, regarded 
as a function of 8, is wholly indeterminate when 8 = 0. The limit of a 
fundion for a ghcu value of the independent variable is, ai; we ha\'e 
11een, an entirely different notion from it.11 value for the said value of the 
independent variable, and the two may or may not be the same number. 
In the present case, the limit may be definite, but the value for 8 = 0 can 
have no meaning. Thus it is the doctrine of limits that underlies the 
Calculus, and not any pretended use of the infinitesimal. This is the 
only point of philosophic importance in the present subject, and it ii'l 
only to elicit this point that I have dragged the reader through ll(l nnll'h 
mathematics. 

307. Before examining the infinitesimal on itH own account, it 
remains to define the definite integral, and to show that this, too, doel4 
not inmlve the infinitesimal. The indefinite integral, which ii+ the 
mere eom·erse of the differential, is of no importance to us ; but the 
definite integral has an independent definition, which must be briefly 
examined. 

Just a.11 the derivative of a function is the limit of a fraction, NO the 
definite integral is the limit of a sum•. The definite integral ma~· be 
defined as follows: Let f(:r) be a function which is one-valued and 
finite in the intern! a. to fJ (both inclusive). Divide this interval into 
any n portions by means of the (11- l) points .ru Zv, ••• .r,._u and denote 
by 81, 8,., ... 8,. the n intervals Z 1 - a, .z•1 - Zu ••• /:l - Xn-i• In el\t"h of 
these inten·als, 8., take any one of the values, say f(r,), which f(.1·) 
8118Ume11 in this inter\'al, and multiply this value by the inter,·l\l 8,. 

Sow fonn the sum I J(r.) 8,. 'l'his sum will always he finite. It" 
l • 

now, as it incre&'!ell, this sum tend11 to one definite limit, however f(t.) 

ff The definition of the definite int.egral dHfers little in diff'erent modem wurkw. 
l'p. Dini, op. t:it. §§ 178-181; Jordan, <Jour11 d"Analy«, Vol. 1 (Paris, 1811:J), Chap. 1, 

f§ .n-&8; E-m:y/t/op,1dif! der 11111tlumll1tiltr:/ui,i WutllffflllCAq/l1J11, 11, A. 2, § :n. ·me 
, definition 8111 the limit of a sum is more co11aona11t with Leib11il&'11 views than tliat 1111 

the Inverse of a derivative, but was ha11i11bed by Hen1oulli and l!:uler, a.ml ouly 
. brou,ht hack by Cauchy. ~ references i11 the last--meutioned plat-e. 
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may be cho,1cn in it.H inte1·,·al, and however the intervals be chosen (pro­
vided only that all are leKs trum any as.11igned number for 1mfficiently 
1,ri-eat ,·aluei-i of ·,i)-then thii. one limit ii,, calloo the definite integral 
of /(.r) from rz to /3. If there is no 1111ch limit,/(.r) i11 not integrable 
from rz to /3. 

308. A11 in the <:RIie of the deri"ath·e, there f,- only one important 
remark to make about this definition. The definite integral inrnlve11 
neither the infinite nor the intinite,-imal, and is it'IClf not a 11um, but 
only and 11-tridly the limit of a llllm. All the tenns which O<'<!Ur in the 
11u111 whost! limit h1 the definite intebl'J.'lll are finite, and the sum it~lf 
is finite. If we were to 11uppose the limit artually attained, it i11 t1e, 
the number of intervals would he inflnite, and the magnitude of eacl, 
would be infinite11imal; hut in this ca"le, the sum becomes meaningles11. 
'l'hui; the sum must not be regarded &.'I actual1y attaining its limit. But 
thi,, iii a l'(,'Hpet°t in whi<·h 11e1ies in general agree. Any series which 
alwavs nsrends or always des('ends and ha.11 no last tenn rannot reach its 
limit; other infinite ~ries mtl;'lj ha\'e IL term equal to their limit, hut if 
110, this i11 a mere accident. The hreneral mle is, that the limit does not 
belong to the 11erie11 whirh it limib1 ; and in the definition of the deriva­
tive and the definite integral we have merely another instanl'e of this fac.1:. 
'l'he so-called infinitesimal l'alculus, therefore, h8.1! nothing to do with 
the infiniteHimal, and ruLII 0111~· indircrtly to do with the infinite-ib 
com1ec.·tion with the infinite being, that it inrnh-l:'11 limibl, and only 
infinite 11eriei, have limit... 

The above definitions, sim-e they inrnh·c multiplication and di\'i~ion, 
are eNMCntiallv aritlimetical. Unlike the clefinitio1111 of limits and con­
tinuit~-, they 0cannot be rende1-ed purely ordinal. Hut it i11 e\'ident that 
they may be at onre extended to any numerically measurable magnitudes, 
and therefore to all series in whieh 11tretehe11 or di11tances can be measured. 
~i1l<'e spat~, time11, and motiom, are included under this head, the Cal­
<·11)111 iK applicable to Gam1etry and Dynamics. As to the axioms 
involval in the &.'1.'IUmption that h,eometrical and dynamical functions 
t•an be difterentiate<l and integrated, I 11ha.ll ha,·e something to 11ay at a 
lRter stage. Pm· the present, it is time to make a critical examination of 
the infinitesimal on ib, own 8.l'<'Ollllt. 
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CHAPTER XL. 

THE INFINITESIMAL AND THE IMPROPER INFINl'l'F.. 

309. U~·r11. recent times, it Wllb unh·el'!l&lly belien.-d that continuit)·, 
the derivative, and the definite integral, all invoked adual infinitesimals, 
i.e. that even if thf' definitiom1 of these notions could he formally freed 
from explicit mention of the infinitesimal, yet, where the defi"nition11 
applied, the actual infinite,imal must alwayi, he found. Thi11 helit>f il'I 
now generall,· abandoned. The definition11 which have been gh·en in 
previous chapteni do not in any way imply the infiniteKimal, and thi11 
notion appears to have become mathematically useles11. In the preitent 
chapter, I shall first gire a definition of the infinitesimal, and then 
examine the ca.-res where this notion arist.'8. I shall end by a critical 
di11Cu1111ion of the belief that <'Ontinuity implie11 the infinitetlin;al. 

'l'he infinitei,;imal ha."', in general, been ,·ery vaguely defined. It hR.'1 
been regarded a.., a number or magnitude which, though not :r.ero, i11 lesM 
than any finite number or magnitude. It has been the d.r or c(y of the 
Calculu11, the time during which e. ball thrown vertically upwards iK at 
rest at the highe11t point of it11 course, the di11te.nce between a point on 
a line and the next point, etc., etc. But none of these notiom1 are at 
all precise. 'l'he d.r and <('I/, as we saw in the last chapter, are nothing 
at all : dy/cl..:r i11 the limit of a fraction whose numerator and denominato1· 
are finite, but i11 not itself a frac:tion at all. The time during which a 
ball is at rest at its higheMt point i11 a very complex notion, im·oh-ing 
the wholt> philosophic theory of motion : in Part VII we shall find, 
"'hen thi11 theory hM been de,·eloped, that there is no such time. 'The 
diste.nce between l'onsecutive point,; pn!fiupposes that there are con­
secutive pointK-a. "iew which there is every rea.11on to deny. And !Kl 

with most im,tances-they afthrd no precise definition of what is meant 
bv the infinitesimal. 
· 310. There is, 110 far as I know, only one pre,:ise definition, which 

rendel'II the infinitesimal a purely relative notion, correlath·e to some­
thing arbitrarily asRumed to be finite. When, inetead, we regard what 
had been taken to be infinitesimal as finite, the correlati\'e notion is 
what Cantor calls the improper infinite ( Cntige11tlicl1-Unendlit-lw). The 
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definition of the relation in question is obtained by denying the axiom 
of Archimedes, just as the transfinite was obtained by denying mathe­
matical induction. If P, Q be any two numbers, or any two measurable 
magnitudes, they are said to be finite with respect to each other when, 
if P he the les11er, there exists a finite integer n such that nP is greater 
than Q. The existence of such an integer constitutes the axiom of 
.ArchimedL-s and the definition of relative finitude. It will be .observed 
that it presuppo11es the definition of absolute finitude among numbers­
a definition which, as we have seen, depends upon two points, (1) the 
connection of 1 with the logical notion of simplicity, or of O ~th 
the logical notion of ·the null-class; (2) the principle of mathema~ir,al 
induction. The notion of relative finitude is plainly distinct from that 
of ab1mlute finitude. The latter applies only to numbers, classes and 
divisibilities, whereas the former applies to any kind of measurable 
magnitude. Any two numbers, classes, or divisibilities, which are both 
absolutely finite are also relatively finite; but the converse does not 
hold. Por example, w and w. 2, an inch and a foot, a day and a year, 
are relatively finite pairs, though all three l'Onsist of terms whic·h are 
absolutely infinite. 

The definition of the infinitesimal and the improper infinite is then 
as follows. If P, Q be two numbers, or two measurable magnitudes of 
the same kind, and if, n being any finite integer whatever, nP is always 
less than Q, then P is infinitesimal with respect to Q, and Q is infinite 
with respect to P. ,vith regard to numbers, these relative terms are 
not required; for if, in the case supposed, P is absolutely finite, then Q 
h1 absolutely infinite; while if it were possible for Q to he absolutely 
finite, P would be absolutely infinitesimal-a case, however, which we 
shall see rea..,on to regard as impossible. Hence I shall assume in future 
that P and Qare not numbers, but are magnitudes of a kind of which 
some, at lea.-1t, arc numerically measurable. It should be observed that, 
a!i regards magnitudes, the axiom of Archimedes is the only way of 
defining, not only the infinitesimal, but the infinite also. Of a magni­
tude not nunll'ricall_v mcRsurable, there is nothing to he said except that 
it is greater than some of its kind, and less than others; but from such 
propositions infinity cannot be obtained. Even if there be a magnitude 
gr<;ater than all others of its kind, there is no reason for regarding it a..'l 
in6nite. Finitude and infinitv are essentiallv numerical notions, and 
it is only by relation to nmubers that these· terms can be applied to 
other entities. 

311. The next question to be discussed is, \\That instances of in­
finitesimals are to be found ? Although there are far fewer instances 
than wa..., formerly supposed, there are yet some that are important. To 
begin with, if we have been right in regarding divisibility as a magni­
tude, it is plain that the divisibility of any whole ('Ontaining a finite 
number of simple part.., is infinitesimal a.., <·ompared with one containing 
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an infinite number. The number of parts being taken as the measure, 
every infinite whole will be greater than n times every finite whole, 
whatever finite number n may be. 'i'his is therefore a perfectly clear 
instance. But it must not be supposed that the ratio of the divisibilitiei 
of two whole;, of which one at least is transfinite, can he mewmred by 
the ratio of the cardinal numben. of their simple parts. There are two 
reasons why this cannot be done. The first is, that two transfinite , 
cardinals do not have any relation strictly analogom1 to ratio; indeed, 
the definition of ratio is effected by means of mathematical induction. 
The relation of two transfinite cardinals a, ,y expressed by the equation 
a.fJ = "I hears 11. certain re11emblance to integral ratios, and a{J = ,y8 may 
be used to define other ratios. But ratios so defined are not very similar 
to finite ratios. The other reason why infinite divisibilities must not be 
meR.Hured by transfinite numbers is, that the whole must alway11 have 
more divisibility than the part (provided the remaining part is not 
relatively infinitesimal), though it may have the same transfinite number. 
In short, divisibilities, like ordinals, are equal, so long as the wholes are 
finite, when and only when the cardinal numbers of the wholes are the 
same ; but the notion of magnitude of divisibility is distinct from that 
of cardinal number, and separates itself visibly as soon &.'I we come to 
infinite wholes. 

'l"wo infinite wholes may be such that one is infinitely less divisible 
than the other. Consider, for example, the length of a finite straight 
line and the area of the square upon that straight line ; or the length 
of a finite straight line and the length of the whole straight line of 
which it fonns part (ext-ept in finite spaces); or an area and a volume; 
or the rational numbers and the real numbers; or the collection of 
points on a finite part of a line obtainable by von Staudt's quadrilateral 
construction, and the total collection of points on the Raid finite part•. 
AU these are magnitudes of one and the same kind, namely divisibilities, 
and all are infinite divisibilities ; but they are of many different orden. 
The points on a limited portion of a line obtainable by the quadrilateral 
construction form a collection which is infinitesimal with respect to the 
said portion; this portion is ordinally infinitesimal t with respect to any 
bounded area ; any bounded area is ordinally infinitesimal with respect to 
any bounded volume; and any bounded volume (except in finite spaces) is 
ordinally infinitesimal with respect to all space. In all theiie cases, the 
word infinitesimal is Wied strictly according to the above definition, 
obtained from the axiom of Archimedes. What makes these various 
infinitesimals somewhat unimportant, from a mathematical standpoint, is, 
that measurement essentially depends upon the axiom of Archimedes, and 
cannot, in general, be extended by means of transfinite numbers, for the 
reasons which have just been expJained. Hence two divisibilities, o( 

* See Part VI, Chap. XLV. t See Part VI, ~•hap. x.1.vu, § 397. 
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which one is infinitesimal with respect to the other, are regarded usually 
8H different kind11 of magnitude ; and to regard them as of the 1111me kind 
giveR nn advantage save philosophic correctne1111. All of them, however, 
are strictly inKtanl-es of infinitesimals, and the 11Crie1 of them well illuK­
tmte11 the relath·ity of the term i1~finiteaimaJ • 

.An interesting method of comparing certain magnitudes, analogoui. 
to the divisibilitieK of any infinite collection11 of points, with those of 
c-ontinuous stretches is given by Stolz•, and a very similar but more 
general method is given by Cantort. These methodi. are too mathe­
maticaJ to be fully explained here, but the gist of Stolz'11 method may 
be briefly explained. Let a collection of points ,tl be c,-ontained in some 
finite interval a to b. Divide the interval into any number n of parts, 
and divide each of theKC parts again into any number of parbi, and so 
on; and let the 1mcce!l8ive divi11ion11 be HO effected that all parts become 
in time le11s than any KS11igned number B. At each stage, add together 
all the parts that contain points of J:. At the mth 11tage, let the 
:resulting 11um be S,,.. Then Kubsequent division11 may diminish this 11um, 
but cannot increase it. Henl-e a.-i the number of di'Visiom1 increases, 
S,. must approach a limit L. If ii: is <--ompact throughout the interval, 
we 1Jhall have L = b - a; if any finite derivative of J: vanishes, L = 0. 
L obviously hears an analogy to a definite integral; but no conditions 
are required for the exiKtence of L. But /, t·annot be identified with 
the divisibility ; for !IOtne <--ompact seriet1, e.g. that of rationals, are 
less divisible than others, e.g. the continuum, but give the Mme value 
of L. 

312. The case in which infinitesimal11 were fonnerly 11upposed to be 
peculiarly evident iK that of compact 11eries. In this case, howe\'er, it iK 
possible to prove that there can be no infinite11imal ~nents!, provided 
numetil"&l mea1mrement be possible at all-and if it he not poS11ible, the 
infinitesimal, 11.!1 we have seen, is not definable. In the finit place, it is 
e,·ident that the 1o1egment contained between two different terms is always 
infinitely dh·isible; for since there is a term t: between any two a and b, 
there is another ,l between a and t·, and so on. 'l'hus no terminated 
Negment can conl.iiin a finite number of terms. But segments defined by 
a dlUIS of ter11111 may (as we saw in Chapter xxxn·) have no limiting term. 
In thi11 case, however, provided the 11egment does not consist of a single 
tenn a, it will eontain some other term b, and therefore an infinite 
number of tenm,. Thu11 all segment!I are infinitely divisible. The next 
point i11 tu define multiples of segments. 'l'wo terminated segment.~ can 
he added by placing a iregment equal to the one at the end of the other 
to form a new segment. and if the two were equal, the new one is said 

* M11th. Ammie,,, 2:3, "Ueber einen z11 einer unemllichen Punktmenge gehiirigen 
(~renxwerth." 

t II,. "Ueber unendliche liueare Punktmaunigfaltigkeiten," No. fi. 
! See Peauo, 1ii,ti11lti di Malt'ltUJtfoa, Vol. 11, pp. ,\8-62. 

Downloaded from https://www.holybooks.com



311-318] Tke lnfi,nitesimal and tke l11ipr,per Infinite 386 

to be double of' each of them. But if the two segments are not termi­
nated, this prore111 cannot be employed. Their sum, in this case, i11 
defined by Profe11SOr Peano 11.11 the logical sum of all the segments obtained 
by adding two terminated seb1111enb, contained J'ellpe<,'1:ively in the two 
segments to he added•. Having defined thi!! sum, we can define any 
finite multiple of a segment. Hen(.-e we can define the class of tenm1 
L-ontained in aome finite multiple of our segment, i.e. the logical sum of 
all its finite multiples. If, with respect to all greater segments, our 
segment obeys the axiom of Arehimedes, then this new class will mntain 
all terms that come after the origin of our segment. But if our segment 
he infinitesimal with respect to any other segment, then the cla&'I in 
question will fail to l"Ontain some points of this other 11egment. In this 
case, it is shown that all transfinite multiples of our segment are equal 
to each other. Hence it follows that the cl&RS formed by the logical 
11um of all finite multiple11 of our segment, which may he called the 
infinite multiple of our l'legment, must be a non-tenninated segment, 
for a terminated Megment is always increased by being doubled. "Each 
of these results," 110 Professor Peano concludes," is in contradiction with 
the usual notion of a segment. And ti·om the fact that the infinitesimal 
segment cannot he rendered finite by means of any actually infinite 
multiplication, I conclude, with Cantor, that it cannot be an element 
in finite magnitudes'' (p. 62). But I think an even stronger conclusion 
is warranted. For we have 11een that, in compact series, there is, cor­
responding to every segment, a segment of segmentK, and that this it.t 
always terminated by its defining segment; further that the numerical 
measurement of segments of' segment.'! is exactly the 11ame as that of 
simple segments ; whence, by applying the above result to segments of 
segments, we obtain a definite contradiction, since none of them <'&11 be 
unterminated, and an infinitesimal one cannot be terminated. 

In the case of the rational or the real numbers, the complete know- · 
ledge which we p08Se118 concerning them renders the non-existence of 
infinitesimals demonstrable. A rational number is the ratio of two 
finite integers, and any such ratio is finite. A real number other than 
zero is a segment of the seriet.t of rationals; hence if'.r be a real number 
other than zero, there is a class u, not null, of rationals such that, 
if y is a u, and z i11 less than y, z is an :r, i.e. belongii to the segment 
which is .r. Hence every real number other than zero is a class con­
taining rationals, and all rationals are finite; consequently every real 
number is finite. Consequently if it were possible, in any sense, to 
speak of infinitesimal numbers, it would ha,·e to be in lH>me radically 
new sense. 

813. I come now to a very difficult question, on which I would 
gladly say nothing-I mean, the question of the orders of infinity and 
infinitesimality of functions. On this question the greatest authorities 

* Loe. cit. p. 01, No. 9. 
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ai-e divided : Du Bois Reymond, Stolz, and many othen, maintaining 
that these form a special class of magnitudes, in which &<'tual infi­
uih."Simals oc'Cur, while Cantor hold11 11trongly that the whole theory 
i11 erroneous•. 'J'o put the matter as simply as poHNible, consider a 
fundionf(.r) wh011e limit, as .r approache11 zero, iii zero. It may happen 
that, for some finite real number 11, the ratio f(.i:)/.r- hM a finite limit 
M ,l' approache11 7.ero. There can be only one imch number, but there 
may be none. Then 11, if there is such a number, may be called the 
order to which f(.r) becomeK infinitesimal, or the order of smallness of 
f(.i·) A..'4 :r approaches zero. But for HOme functiom~, e.g. I/log .r, the~ 
is no ,iuch number 11. If II be any finite real number, the limit of 
1/~ log :r, as a· approacheK zero, is infinite. That iK, when :r is suffi­
ciently small, 1/.x-log:r is ,·ery large, and may be made larger than any, 
assigned number by making :r sufficiently i;mall-and this whatever 
finite number II may be. Hence, to expre1111 the order of smallness of 
1/log.r, it is necessary to invent a new infinitesimal number, which may 
be denoted by 1/g. Similarly we shall need infinitely great numbers to 
express the order of smallness of (say) r 11z as .r approaches zero. And 
there is no end to the suc:,-cession of these ordel'II of smallnCH11 : that of 
I/log (log :r), for example, is infinitely smaller than that of I/log :r, 
and so on. Thus we have a whole hierarchy of magnitudes, of which 
all in any one class are infinitesimal with respect to all in any higher 
cla1111, and of which one clas.'I only is formed of all the finite real 
numbers. 

In this development, Cantor finds a vicious circle ; and though the 
quei.tion i11 difficult, it would seem that Cantor is in the right. He 
objects (loc. c:it.) that such magnitudes cannot be introduced unle11s we 
have reason to think that there are such magnitudes. The point is 
similar to that concerning limits ; and Cantor maintains that, in the 
prelit!nt case, definite contradictions may be proved concerning the 
supp<>NOO infinitesimals. If there were infinitesimal numbers j, then 
e,·en for them we should have 

Limz-o 1 / (log :r: • .zi) == 0 

sim·e zJ must ultimately exceed j. And he shows that even continuous, 
diffel"entiable, and unifonnly growing functions may have an entirely 
a111biguou11 order of smallness or infinity : that, in fact, for some such 
functiom~, thi11 order oscillates between infinite and infinitesimal values, 
ucm-d.ing to the manner in which the limit is approached. Hence we 
may, I think, conclude that these infinitesimals are mathematical fictions . 
.And this may be reinforced by the consideration that, if .the1-e were 

· infiniteHimal numbeni, there would be infinitesimal segments of the 
number-continuum, which we have just seen to be impossible. 

• ~ Du Bois Reymond,. Allgti11iei11e Fu11etionentlaeorie (1882), p. 270 IF. ; 8tolii, 
,Allgenieim1 Arithnietik, Part 1 (Leipzig, 188-5), Section 1x, Anhang; Cantor, .H.ifflllta 

di .V11t1mmtica, v, pp. 1(~. 
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314. Thus to sum up what has been said concerning the in• 
finitesima.l, we see, to begin with, that it is a. relative term, and that, 
as regards magnitudes other than divisibilities, or divisibilities of wholes 
which are infinite in the absolute sense, it is not capable of being other 
than a relative term. But where it has an absolute meaning, there this 
meaning is indistinguishable from finitude. w· e saw that the infini• 
tesimal, though completely useless in mathematics, doc.>s occur in certain 
instances-for example, lengths of bounded straight lines are infinitesimal 
as compared to areas of polygons, and these again as compared to volumes 
of polyhedra. But such genuine cases of infinitesimals, as we saw, are 
always regarded by mathematic-s as magnitudes of another kind, because 
no numerical comparison is possible, e~n by means of transfinite numbers, 
between an area and a length, or a volume and an area. Numerical 
measurement, in fact, is wholly dependent upon the axiom of Archimedes, 
and cannot be extended as Cantor has extended numbers. And finally 
we saw that there are no infinitesimal segments in compact series, and­
what is closely connected-that orders of smallness of functions are not 
to be regarded as genuine infinitesimals. The infinitesimal, therefore 
-so we may conclude-is a very restricted and mathematicaJ.iy very 
unimportant conception, of which infinity and continuity are alike 
independent. 
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CHAPTER X LI. 

PHILOSOPHICAL ARGUMENTS CONCERNlSG 
THE INFINITESIMAL. 

315. W•: have now completed our summary review of what mathe­
matiL'N has to say concerning the continuoms, the infinite, and the 
infinitesimal. And here, if no previous philosophers had treated of 
these topics, we might leave the discussion, and ·apply our doctrines 
to space and time. For I hold the paradoxical opinion that what 
can be mathematically demonstrated is true. As, however, almost all 
philosophers disagree· with this opinion, and as many have written 
elaborate arguments in favour of views different from those above 
expounded, it will be necessary to examine controven;ially the principal 
types of opposing theories, and to defend, as far as possible, the points 
in which I differ from standard writers. Por this purpose, the work of 
Cohen already referred to wilJ be specially useful, not only be<·ause it deals 
explicitly with our present theme, but also because, largely owing to 
its historical 1::xcellence, et>rtain very important mathematical errors, 
whil'h it appears to me to contain, have Jed astray other philosophers 
who have not an acquaintance with modern mathematil's at firist hand•. 

316. In the above exposition, the differential appeared as a philo­
sophically unimportant application of the doctrine of limits. Indeed, 
but for its traditional importance, it would scarcely have deserved even 
mention. And we saw that its definition nowhere imokes the in­
finitesimal. The dx and t('I} of a differential are nothing in themselves, 
and dy/dr is not a fraction. Hence, in modem works on the Cal<·ulus, 
the notation f' (.t·) has replaced dy/dx, since the latter form suggei.ts 
erroneous notions. The notation f' (.r), it may be obser,·ed, is m01-e 
similar to Newton's fj, and its similarit_v is due to the fa<·t that, on 
this point, modem mathematil's is more in harmony with Newton than 
with Leibniz. Leibniz employed the form tly/dx because he believed 
in infinitesimals ; Newton, on the other hand, definitely a.o;serts that 
his fluxion is not a fraction. "Those ultimate ratios," he says, "with 

* For example, J\lr Latta, in his article "On the Relations of the Philosophy of 
s.,inoza and that of Leibniz," Mi11d, N. S. No :U 
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which quantities vanish are not truly the ratios of ultimate quantities, 
but limits towards which the ratios of quantities decreasing without 
limit do always converge, and to which they approach nearer than by 
any given differen<.-e•." 

But when we turn to such works as Cohen•s, we find the tk and 
the dy treated as separate entities, as real infinitesimals, u the intensively 
real elements of which the <·ontinuum is (.'()JDposed (pp. 14, 28, 144, 147). 
'l"he view that the Cal<·ulus re<1uires infinitesimals is apparently not 
thought open to queKtion; at any rate, no arguments whatever are 
brought up to support it. This view is certainly &.'Illumed as self-evident 
by most philosophers who di11Cuss the Calculus. Let us see for ourselves 
what kind of ground11 can be urged in its favour. 

317. Many arguments in favour of the view in question are 
derived by most writers from space and motion-arguments which 
Cohen to some extent countenances (pp. 34, 37), though he admits 
that the differential l'an be obtained from numbel'II alone, which however, 
following Kant, he regards as implying time (pp. !!O, !I). Since the 
analysis of space and motion is still to come, I shall confine myself for 
the present to such arguments a.11 can be derived from purely numerical 
instances. For the sake of definiteness, I shall as far as possible extract 
the opinions to be controverted from Cohen. 

318. Cohen begins (p. I) by a.-;serting that the problem of the 
infinitesimal is not purely logical: it belongs rather to :Epistemology, 
which is di11tinguished, I imagiue, by the fll<'t that it depends upon the 
pure intuitions as we]) &.'I the categmies. 1.'his Kantian opinion is wholly 
opposed to the philosophy which underlies the pTC!lent work ; but it 
would take us too far from our theme to di11em1s it here, and I mention 
it chiefly to explain the phraseology of the work we are examining. 
Cohen proceeds at once to reject the view that the infinitesimal calculus 
can be independently derived by mathemati<"s from the method of limits. 
This method, he says (p. I), "consi!ibi in the notion that the elementary 
conception of <.-quality must be eompleted by the exact notion of the 
limit. Thus in the first plaee the conception of equality is pre11up­
posed. ... Again, in the Mecond place, the method of limib preimppolleS 
tbe <.-onception of magnitude.... But in the presupposed conception of 
magnitude the limiting magnitude is at the ume time presupposed. 
'!'he equality which is defined in the elementary doetrine of 1118.f,l'Jlitude 
pays no attention to these limiting DL8brnitudes. For it, magnitudes 
count as equal if and although their difference consists in a limiting 
magnitude. Hence the elementary conception of equality must he­
this is the notion of the method of limits-not so much ,:ompl,eted 811 

* Pri,wipia, Bk 1, Section 1, Lemma xr, Sclwlium. The whole Scholium i1 
highly import.ant, thougli portions of it are leaa free from error than the paauge 
11aoted in the text. 
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correcled by the exact conception of the limit. Equality is to be 
regarded as an earlier atage of the limiting relation•." 

319. I have quoted this passage in full, because its errors are 
typical of those to which non-mathematicians are liable in this question. 
In the first place, equality has no relevance to limits. I imagine that 
Cohen has in mind such cases 111'1 a circle and the inscribed polygon, 
where we cannot say that the circle is equal to any of the polygons, 
but only that it is their limit; or, to take an arithmetical instance, 
a convergent series whose sum is w or ,,/'l. But in all such inKtances 
there is much that is irrelevant and adventitious, and there are many 
unnecessary complication11. The absolutely simplest instance of a limit, 
is c., considered a., the limit of the ordinal numbel'll. There is here 
certainly no kind of equality. Yet in all t·ases where limits are defined, 
by progressions-and tht.'Se are the usual ca.~es-we have a series of the 
type presented by the finite ordinals together with (.I). Consider, for 

example, the series 'l-! together with 'l, the n being capable of all 
'7£ 

positive integral finite values. Here the series is of the same type as 
before, and here, as before, '1, is the limit of the series. But here-and 
this is what has misled Cohen-the difference between 2 and the. 
successive terms of the series becomes less than any assigned magnitude, 
and thus we seem to have a sort of extended quality between '1, and the 

lat.e t.erms of the series 2 - ! . But let us examine this. In the first 

" place, it depends upon the fact that rationals are a series in which 
we have distances which are again rationals. But we know that distances 
are unnecessary to limits, and that stretches are equally effective. Now 

considering stretches, 2 is the limit of '1, - ! because no rational comes 
n 

between 2 and all terms of the series 2 - ! -preciselv the sense in which n ~ 

co is the limit of the finite integers. And it is only bec.~ause !! - ! forms 
n 

a progression, i.e. is similar to the series of finite integers, that we know 
its limit to be 2. The fact that the terms, as we advance, differ little 
from 2, depends either upon our having a series in which there is 
distant. .. , which is a fortuitous and irrelevant circumstance, or upon the 
fact that the isut.-cessive stretchc11 up to 2 may be made less than any 
&.'lllibrned stretch up to 2, which follow11 from the notion of a limit, 
but has nothing to do with e'luality. And whenever our series which 
is to have a limit is part of a Neries which iK a function of (.I)' the stretch 
from any term to the limit iis alway11 infinite in the only sense in which 
such series have infinit.e stretches; and in a very real sense the stretch 

* Or ratio : the German ill Gnmtm1rAllltniu. 
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grows no smaller as we approach the limit, for both the ordinal and 
the cardinal number of its terms remain constant. 

We have seen so fully already in what sense, and how far, magnitude 
is involved in limits, that it seems unnecessary to say much on this 
subject hen:. Magnitude is certainly ,wt involved in the sense, which 
is undoubtedlv that intended by Cohen, that the limit and the terms 
limited must ·be magnitudes. .f~very probrression which forms part of 
a series which is a function of w, and in which there are terms after 
the progression, has a limit, whatever may be the nature of the terms. 
Every endless series of segment.'! of a compact serie,- has a limit, what­
ever may be the nature of the compact series. Now of course in all 
series we have magnitudes, namely the divisibilities of streh-hes; but 
it is not of these that we find the limit. Even in the casl' of segments, 
the limit is an actual segment, not the magnitude of a segment; and 
what is relevant is only that the segments ar<! classes, not that they 
are cp111ntitit•s. But the distindion of quantities and magnitudes is, of 
course, wholly foreign to Cohen's order of idea.-;. 

320. Hut we now come to a greater error. The com·eption of 
magnitude, Cohen says, whic-h is presupposed in limits, in turn pre­
supposes limiting magnitudes. By limiting magnitudes, e.-; appears 
from the <'ontext, he means infinitesimals, the ultimate diffcrerwes, 
I suppose, between the tenns of a series and its limit. What he means 
seems to be, that the kinds of magnitude whi<'h lead to limits are 
<:ompact series, and that, in compact series, we must have infinitesimals. 
]~very point in this opinion is mistaken. Limits, we have just seen, 
need not he limits of magnitudes ; segmenb of' a compact series, 1111 we 
saw in the preceding chapter, cannot be infinitesimal ; and limits do not 
in any way imply that the series in which they occur arc <-c:nnpact. 
These points have been so fully proved already that it is unnecessary 
to dwell upon them. 

321. But the crowning mistake is the supposition that limits intro­
duce a new nwaning of equality. Among magnitude1,, equality, as we 
saw in Part III, has an absolutely rigid and unique meaning: it applie11 
only to quantities, and means that they have the same magnitude. 
'fhere is no question of approximation hPre: what is meant i11 simply 
absolute logical identity of magnitude. Among numbers (which Cohen 
probably regards as magnitudes), there is no such thing as equality. 
'l'here is identity, and there is the relation which is usually expressed by 
the sign of equality, as in the ectuation 2 x 3 = 6. 'l'his relation 
had puzzled those who endearnured to philosophize about Arithmetic, 
until it was explained by Professor Peano •. When one term of the 
ec.1uation is a single number, while the other is an expression composed 
of two or more numbers, the equation expn..'Sses the fact that the class 

11- See e.g. Riti. di Mut. \"11, p. 3.'> •• 
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defined by the expreasion contains only one term, which is the single 
number on the other side of the equation. Thi11 definition again is 
absolutely rigid : there is nothing whatever approximate in it, and it is 
incapable of any modification by infinitesimalM. I imagine that what . 
Cohen means may be expres.~ as follows. In forming a differential 
coefficient, we consider two numbers x and x + dx, and two others y and 
y + d.'IJ· In elementary Arithmetic, x and x + d.r would count as equal, 
but not in the Calculm1. There are, in fact, two ways of defining 
equality. Two terms may be 118.id to be equal when their ratio is unity, 
or when their difference is 7.ero. But when we allow real infinitesimals 
d.r, :r and :r + dx will have the ratio unity, but will not have zero for 
their difference, since d:r is different from absolute 1.ero. This view, 
which I imggest as equivalent to Cohen's, depends upon a misunder• 
standing of limits and the Calculus. There are in the Calculus no such 
magnitudes as d:r and dy. There arc finite differences fix and t:J.y, but 
no view, however elementary, will make x equal to x + fix. There are 
ratios of finite difforenceK, t:J.y/t:J.x, and in C8.Se!l where the derivative of 
y exists, there is one real number to which t:J.y/t:J.x can be made to 
approach as near as we like by diminiKhing t:J,.;r and t:J.y. This single 
real number we choose to denote by '~1J/d.1:; hut it is not a fr8.(.-tion, and 
d:r and dy are nothing but typographical part.'I of one symbol. There is 
no c.-onTction whatever of the notion of equality by the doctrine of 
limits; the only new element introduced is the t.-onsideration of infinite 
classes of terms chosen out of a series. 

322. As regards the nature of the infinitesimal, we are told (p. 15) 
that the differential, or the inextensive, is to be identified with the 
intensive, and the differential is regarded as the embodiment of Kant•s 
category of reality. 'l'his view (in so far as it is independent of Kant) 
is quoted with approval from Leibniz; but to me, I must confess, it 
seems destitute of all justification. It is to be observed that rk and d_y, 
if we allow that they are entities at all, are not to be identified with 
single terms of our series, nor yet with differences between consecutive 
terms, but must be always stretches containing an infinite number 
of terms, or distances con'e!lponding to such stretches. Here a dis­
tinction must be made between series of numbers and Keries in which we 
have only measurable distances or stretches. 'rhe latter is the case of 
space and time. Here d.r and dy are not points or instants, which alone 
would be truly inextem,ive; they are primaI"ily numbers, and hence 
must t-orrespond to infinitesimal stretches or distances-for it would be 
prepoisterous to assign a numerical ratio to two points, or-as in the 
case of velocity-to a point and an im1tant. But d:r and dy cannot 
represent the distances of consecutive points, nor yet the stretch fo~ed 
by two consecutive points. Against this we have, in the first place, the· 
general ground that our series must be regarded as compact, which 
precludes the idea of consecutive terms. 'l'o evade this, if we are 
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dealing with a series in which there are only stretches, not distances, would 
be impoasible: for to say that there 11re always an infinite number of 
intermediate points except when the atretck consists of a finite number 
of terms would be a mere tautology. But when there is distance, it 
might be said that the distance of two terms may be finite or in­
finite1>imal, and that, as regard11 infinitesimal distances, the stretch is not 
compact, but consisbl of a finite number of terms. This being allowed 
for the moment, our cLx and d!J may be made to be the distancefl of 
consecutive pointH, or else the stretchl."11 composed of consecutive points. 
But now the distance of consecutive poinbl, Hupposing for example that 
both are on one straight line, would seem to be a constant, which would 
give dy/d.r = ± I. We cannot suppose, in cases where .randy are both 
continuous, and the function y is one-valued, as the Calculus requires, 
that .r and ;r + d.r are consecutive, but not .1/ and y + d!J; for every 
value of y will be correlated with one and only one value of x, and t,h·e 
veraa ; thus y cannot skip any supposed intermediate values between 
y and y + d.1/· Hence, given the values of x and y, even suppt>."ling the 
distant·es of consecuti\'c terms to differ from place to place, the ,·alue 
of dy/d.r will he determinate; and any other function y' which, for 
some value of .x, is equal to .'#/, will, for that value, have an l.'<)Ulll 
derivative, which is an abiurd L-ondusion. And leaving these mathc­
matical, arguments, it is e,·ident, from the fact that dy and d.r 11.1-e to 
have a numerical ratio, that if they he intensive m~111itudes, as is 
suggt.'Sted, they must he numeri<'ally measurable ones: but how thii; 
mea..;urement is effected, it is certainly not ea.<1y to see. This point may 
~ made clearer by confining oul'llelYes to the fundamental ca.<ie in which 
both :r and y are numbers. If we regard .x and .r + d:r as com,ecutive, 
we must suppose either that '!/ and y + dy are consecutive, or that 
they are identical, 01· that there are a finite number of terms between 
them, or that there are an infinite number. If we take stretches to 
measure d.r and dy, it will follow that dy/cl.1: must he always zero, or 
integral, or infinite, which ii; abisunl. It will even folJow that, if 
y is not constant, dy/dz mui;t be ± 1. 'fake for example ,'I/ = :r2, where 
:candy are positi"e real numbers. As .r passes from one number to the 
next, y mut1t do so likewise; for to every value of y correKponds one 
of :r, and y grows as .r brrows. Hence if y skipped the number next to 
any one of its values, it could never come back to pick it up ; but 
we know that every real number is among the valuCK of y. Hence '!J 
and y + dy must be con!l(.>cuti,re, and dy/d.r =-1. If we measure by 
distances, not stretches, the distance dy must be fixed when y iK given, 
and the distance d:r when :c is given. Now if .r = 1, y =- 1, dy/d.r = 2 ; 
but, since :randy are the same number, d.r and dy must be equal, since 
ea.eh is the distance to tl\e nerl number: therefore dy/d.r = 1, which 
is absurd. Similarly, if we take for y a decreasing function, we shall find 
dy/d:r--1. Hence the admission of comecutive n~mben is fatal to the 
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Calculus ; and since the Calculus must be maintained, the Calculus is 
fatal to consecutive numbers. 

323. The notion that there must be consecutive numbers is rein­
forced by the idea of continuous- change, which is embodied in calling 
:rand ,1/ "variables." Change in time is a topic which we shall have to 
discuss at a later stage, but which has, undoubtedly, greatly influenced 
the philosophy of the Calculus. People picture a variable to them­
selves-often unconsciously-as successively assuming a series of values, 
as might happen in a dynamical problem. Thus they might Sl!,Y : 
How can x pass from :r1 to .1·2 , without passing through all intermedij\te 
values? And in this passage, must there not be a next value, which \it 
assumes on fir.st leaving the value .x1 ? Everything is conceived on the 
analogy of motion, in which a point is supposed to pass through all 
intermediate positions in its path. Whether or not this view of motion 
is correct, I do not now decide: at any rate it is irrelevant where a 
fundamental point in the theory of continuous series is concerned, since 
time and the path of motion must both be continuous series, and the 
properties of such Reries must be decided before appealing to motion to 
confirm our views. For my part, to return to Cohen, I must confess, it 
seems evident that intensi,re magnitude is something wholly different 
from infinitesimal extensive magnitude: for the latter must always be 
smaller than finite extensive magnitudes, and must therefore be of the 
same kind with them ; while intensive magnitudes seem never in any 
sense smaller than any extensive magnitudes. Thus the metaphysical 
theory by which infinitesimals are to be rescued seems, both mathe­
matically and philosophically, destitute of grounds in its favour. 

324. We cannot, then, agree with the following summary of 
Cohen's theory (p. f.?8): "That I may be able to posit an element i·n 
and few itNeif, is the desideratum, to which corresponds the 111strume11t of 
thought reality. This instrument of thought must first be set up, in order 
to be able to enter into that combination with intuition, with the con­
acio'll,me.,a qf bein,r.r ghie11, which is completed in the principle qf inte11aitie 
magnitude. This prompposition of intensive reality is latent in all prin­
ciples, and must therefore be made independent. This preauppo,vition ia 
the meaning qf reality and tlie .,ec-ret qf tlie c·o11cept cj" the dijfere11tial." 
What we can agree to, and what, I belie,·e, confusedly underlies the 
above statement, is, that every continuum must consist of elements 
or terms; but these, as we have just seen, will not fulfil the function of 
the d.r and dy which occur in old-fashioned a(-counts of the Calculus. 
Nor can we agree that "this finite,., (i.e. that which is the object of 
physical scienre) "can be thought as a sum of those infinitesimal inten­
sive realities, as- a de_finite i11tegral" (p. 144). The definite integral is 
not a sum of elements of a continuum, although there are such elements : 
for example, the length of a curve, as obtained. by 'integration, is not the 

· sum of its points, but strictly and only the limit of the lengths of 
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i118t'libed polygons. The only sense which r.an be gh·en to the sum of 
the points of the curve is the logical class to which they all belong, i.e. 
the eune itiielf, not its length. All length11 are ma,.,rnitmfos of divisi­
bility of stretches, and all 11tretches corn,ist of an infinite number of 
pointii; and any two terminated stretchl's ha\'e a finite ratio to eA.Ch 
other. There is no such thing 8.'l an infinitesimal sb-etch ; if there 
were, it would not be an element of the eontinuum ; the Cakulus does 
not require it, and to suppose its existenl'e leads to contradictions. And 
as for the notion that in every series there mm,t be l'OnH('('uth·e tennH, 
that was 11hown, in the lut Chapter of Part III, to invol\'e an illegiti­
mate u11e of mathematical induction. Hence inflnite11i111afa a11 explaining 
continuity mu11t he regarded M unn·a-essa1·y, en-oneous, and self-con­
tl'adictory. 
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CHAPTER XLII. 

I 

THE PHILOSOPHY OP THE CONTINUUM. I 
·, 

325. THE word m1ttinuit,1j has home among philosophers, esperially 
since the time of Hegel, a meaning totally unlike that giren to it by 
Cantor. Thus Hegel says•: "Quantity, as we saw, has two sources: 
the exclusive unit, and the identification or equalization of the1e units. 
When we look, therefore, at its immediate relation to self, or at the 
characte1istic of self.,;ameness made explicit by abstraction, quantity is 
Continuous magnitude; but when we look at the other characteristic, 
the One implied in it, it is Discrete magnitude." When we remember 
that quantity and magnitude, in Hegel, both mean "cardinal number," 
we may conjecture that thi11 assertion amounts to the following : " Many 
terms, considered A.S having a cardinal number, must all be members 
of one cla.'I..,; in so far as they are each merely an instance of the 
class-concept, they are indistinguishable one from another, and in this 
aspect the whole whi(·h they comJ>Olie is called ,vntinuotta; but in order 
to their maniness, they must be different instant-e.., of the class-concept, 
and in this aspect the whole which they compose is called discrete.,, 
Now I am far from denying-indeed I 11trongly hold-that this opposi­
tion of identity and diversity in a collection constitutes a fundamental 
problem of Logic--perhaps even the fundamental problem of philosophy. 
And being fundamental, it is certainly relevant tt, the study of the 
mathematic.al continuum as to everything else. But beyond this general 
conne<'tion, it has no special relation to the mathematical meaning of 
(-ontinuity, as may be seen at once from the fact that it has no reference 
whatever to order. In this chapter, it is the mathematical meaning that 
is to be discus.~. I have ·quoted the philosophic meaning only in 
order to state definitely that this is ,wt here in question; and since 
di11putes about words are futile, I must a."lk philosophers to divest 
themselves, for the time, of their habitual associations with the word, 
and allow it no signification but that obtained from Cantor's definition. 

328. In confining ourselves to the arithmetic.al continuum, we conflict 
in another way with common pret'Onceptions. Of the arithmetical con-

• Smaller Logic, § 100, Wallace's Translation, p. 188. 
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tinuum, M. Poincare justly remarks•: "The continuum thus conceived 
is nothing but a collection of individuals arranged in a <--ertain order, 
infinite in number, it is true, but external to ea,:h other. This is not 
the ordinary conception, in which there is supposed to be, between the 
elements of the continuum, a sort of intimate bond which makes a whole 
of them, in which the point i11 not prior to the line, but the line to the 
point. Of the famous formula, the continuum i11 unity in multiplicity, 
the multiplicity alone subllists, the unity has disappeal'l.-d." 

It ha.11 always been held to be an open que11tion whether the 
continuum is C'Omposed of elements; and even when it has been allowed 
to contain elements, it has been often 11.llebred to be not mrnpo.,ed of 
these. This latter view was maintaihed even by !IO stout a supporter 
of elements in everything as Leibnizt. But all the11e views are only 
possible in regard to such continua 11..11 those of 11pace and time. The 
arithmetical continuum is 1111 object sek-ckd by definition, consisting of 
elements in virtue of the definition, and known to be emhodk•d in 
at least one irn1tan<--e, namely the segments of the rational numbel"ll. 
I shall maintain in Part VI that spaces affonl other im,tam-es of the 
arithmetit·al c-ontinuum. The chief reason for the elaborate n.ml para­
doxical theories of space and time and their eontinuity, whid1 have 
been constru<·ted by philosophers, has been the suppos<--<l coutriulictions 
in a continuum composed of elements. The thesis of the prehent 
chapter is, that Cantor's continuum is free from co11tradictiorn1. This 
thesi11, as is evident, mu11t be firmly established, befi>re we <•an allow 
the pos.-.ibility that spatio-temporal continuity may be of Cantor's kind. 
In this arbrumcnt, I shall ll!lsume as pn>\'ed the thesis of the preceding 
chapter, that the continuity to be discussed doe11 not involve the 
admission of actual infinitei;imals. 

327. In this capr·icious world, nothing is more c·apricious than 
posthumous fame. One of the most notable victimH of posterity's lack 
of judgment is the Eleatic Zeno. Having im·ented four arguments, 
all immea. .. urably subtle and profound, the grol!ISness of 11ubtequent 
philosophers pronounced him tu be a mere ingenious juggler, and his 
arguments to be one and all sophismii. After two thousand years of 
l.-ontinual refutation, these sophi1m1s were rein11tated, and made the 
foundation of a mathematical renai8!18.nce, by a German profes11or, who 
probably never dreamed of any connection between him11elf and Zeno. 
Weierstrass, by stridly banishing all infinitesimals, has at last shown 
that we live in an unchanging world, and that the arrow, at every 
moment of its flight, is tr-uly at rest. The only point where Zeno 
probably erred was in infening (if he did infer) that, because there 
is no change, therefore the world mWlt be in the same state at one 
time as at another. This consequence by no means follows, and in 

• &vue de Mrt11pAyi,i911.e et de Morak, Vol. ,, p. 26. 
t See Tu PAilolloph11 qf Leibniz, by the preaent •'!thor, Chap. rx. 
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this point the German professor is more conHtructive than ,the ingenious 
Greek. W eier11tr&11s, being able to embody hi11 opinions in mathematiCM, 
where familiarity with truth eliminates the vulgar prejudice11 of common 
sense, ~ bt>en able to give to hi11 propo11itions the re11pectable air of 
platitudes ; nnd if the result is less delightful to the lover of reason 
than Zeno's bold defiance, it is at any rate more calculated to appease 
the mass of academic mankind. 

Zeno's arguuumts are specially concerned with motion, and are not 
therefore, as they stand, rele,·ant to our present purpOHe. Hut it is 
im,trudh·e to translate them, so far M possible, into arithmetical 
language•. 

328. -The first argument, that of dichotomy, asserts: "'!'here is 
no motion, for what moves mm1t reach the middle of its course before 
it reaches the end." That is to say, whatever motion we as .. mml' to 
have taken place, this pre,mpposes another motion, and this in turn 
another, and 110 on ad i'!Jinit1111t. Hence there is an endless regress 
in the mere idea of any 888igned motion. 'l'his argument can be put 
into an arithmetical form, but it appears then far less plausible. 
Consider a variable :r which i11 capable of all n-al (or rational) values 
between two assigned limib1, say O and l. The clftllS of its values i11 
an infinite whole, whose parts are logically prior to it: for it has partH, 
and it cannot subsist if any of the parts are lacking. Thus the numbers 
from Oto l presuppoiie th.Olle from O to 1/~, these presuppose the numbers 
from O to 1/4, and so on. Hence, it would st.-em, there is an infinite 
regrel!S in the notion of any infinite whole; but without such infinite 
wholes, real numbers candot be defined, and arithmetical continuity, 
which applie11 to an infinite series, b:reak11 down. 

This argument may he met in two ways, either of which, at first 
sight, might 11eem sufficient, but both of which are really necessary. 
Finit, we may dit1tinguish two kinds of infinite regre11ses, of which one 
is harmlc11s, St.'COndly, we may distinguish two kinds of whole, the 
collecfo·e and the distributive, and assert that, in the latter kind, 
parts of equal complexity with the whole are not logically prior to 
it. These two points must be separately explained. 

ffl. An infinite regresH may be of two ki11d11. In the objectionable 
kind, two or more propositions join to constitute the 11waning of some 
proposition; of these com1tituents, there is one at least whose meaning 
is Himilarly compounded; and so on a,d i1!ft1tit11m. This form of rebrress 
commonly :resulU from cireular definitiom1. Such definitions may be 

111 Not being a Greek 1ehnlar, I pretend to 110 finrt.-hand authority 88 to what Zeno 
really did say or mean. The form of his four arguments which I shall employ is 
derived from the i11tere11ting article of 1\1. Noel, "Le mouvement et lea arguments de 
Zenon d'Klee," Revu.11 de .Mt'tuplty11iqu.11 ,., de Jlorule, Vol. 1, pp. 107-12-'i. These 

; : ; argumeuta are in any cue well worthy of cousidel'lltion, and 88 they are, to me, 
· · merely a text for diaeu1111io11, tlaeir hiatorical oorrectueu i1 of little importauce. 
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expanded in a manner analogous to that in which continm,,d fractions 
are developed from quadratic equations. But at every t1tagc the term 
to be defined will reappear, and no definition will J'{..'8Ult. Take for 
example the following: "Two people are said to have the .vmrU' idl'a 
when they have ideas which are similar; and ideas are similar when 
they ('ontain an identical part." If an idea may have a part which 
is not an idea, such a definition is not logically objcdionable; but if 
part of an idea is an idea, then, in the set·ond place where identity 
of ideas occurs, the definition mmrt be substituted; and so on. Thus 
wherever the meaning of a proposition is in question, an infinite regreHs 
is objectionRhle, sin<·e we never reach a proposition which ha.'I a definite 
meaning. But many infinite regresses are not of this form. If A be 
a proposition whose meaning is perfectly definite, and A impli<-s R, 
B implies C, and so on, Wt! have an infinite regrt'Ss of a quite un­
objectionable kind. This depends upon the fact that implic•ation i11 
a syntht>til· relation, and that, although, if A he an aggregate of 
propositions, A implies any proposition which is part of A, it by no 
means follows that any proposition which A implies is part of A. 'l'hm1 
there is no logical nel·essity, as there was in the previous case, to 
complete the infinite regress before A acquires a m~ning. If, then, 
it can be shown that the implication of the parts in the whole, when 
the whole is an infinite class of numberH, is of thi11 latter kind, the 
regress suggesk>d hy Zeno's argument of dichotomy will have lo11t 
its sting. 

330. In order to 11how that this is the case, we must distinguish 
whole11 which are defined exteusionally, i.e. hy enumerating their terms, 
from such as arc defined intensionally, i.e. as the clas.'I of tenns having 
some given relation to some given term, or, more 11imply, as a cl.Ms 
of terms. (For a class of terms, when it forms a whole, is merely all 
terms having the class-relation to a class-concept•.) Now an extensional 
whole-at least so far as human powers extend-is na-essarily finite: 
we cannot enumerate more than a finite number of parts belonging 
to a whole, and if the number of parts be infinite, this must be known 
otherwise than hy enumeration. But this is precisely what a cla.-;s­
eoncept effects : a whole who!le parts are the terms of a class is completely 
defined when the class-com,-ept ii, specified; and any definite individual 
either belongs, or does not belong, to the cla.~s in question. An 
individual of the cla.'IS iM part of the whole extension of the clas11, and 
is logically prior to this exten~ion taken collectively; but the extension 
itself is definable without any reference to any specified individual, 
and subHists as a genuine entity even when the clllliS contains no tenn11. 
And to say, of such a class, that it is infinite, is to say that, though 
it has terms, the number of these terms is not any finite number­
a proposition which, again, may be established without the impossible 

* For precise statements, v. 11upra, Part I, Ch!IP8· vr and x. 
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proceu of enumerating all finite numbers. And this is precisely the 
case of the real numbers between O and 1. They form a definite class, 
whose meaning is known as ROOD as we know what is meant by real 
number, 0, 1, and lK:t'Wl'en. The particular members of the class, and 
the smaller classes contained in it, arc not logically prior to the i:Iass. 
'l'hm1 the infinite J'eb'l't'Ks consi11b1 merely in the fact that every Re#,Plllent 
of real or rational numbers ha.11 p,u-t.K which are again segments; but 
the11e parts are not lobrically prior to it, and the infinite regress is 
pe1fectly harmless. Thus the solution of the difficulty lies in the 
theory of denoting and the intensional definition of a class. With thq1 
an answer is made to Zeno's first argument a.~ it appears in Arithmetic., 

331. The second of Zeno's arguments is the most famous: it is 
the one which concerns Achilles and the tortoise. "The slower," it 
say11, "will never be overtaken by the 11wifter, for the pursuer must 
first reach the point whent-e the fugitive is departed, so that the 
slower must always necessarily remain ahead." When this argument is 
tram1lated into arithmetical language, it is seen to be cont-emed with 
the one-one correlation of two infinite clas.11e11. If Achilles were to 
overtake the tortoise, then the course of the tortoise would be part 
of that of Achilles ; but, since each is at eat·h moment at some point 
of his course, simultaneity establishes a one-one correlation between 
the positions of Achilles and those of the tortoise. Now it follows 
from this that the tortoise, in any given time, visits just as many 
plac.-es a.,; Achilles does ; hence-so it is hoped we shall conclude­
it iH impMsible that the tortoise's path 11hould be part of that of 
Achilles. This point is purely ordinal, and may be illustrated by 
Arithmetic. Consider, for example, I + 2.z, and !t + :r, and let :r lie 
between O and 1, both indusive. Por each value of I + !!.r there is 
one and only one value of 2 + :r, and vi<-e vrr.,d. Hence as :r grows 
from O to I, the number of values assumed by 1 + !tr will be the same 
as the number assumL-d bv !! + :r. But 1 + !!or started from 1 and ends 
at 8, while 2 + :r started from ! and ends at 3. Thus there should be 
half a.<i many values of 2 + :r a.'I of I + !!.x. This very serious difficulty 
hM been resoked, as we ha,·e seen, by Cantor; but as it belongs rather 
to the philosophy of the infinite than to that of the e,-ontinuum, I leave 
its further discussion to the next chapter. 

332. The third argument is e,-one,-emed with the arrow. "If every­
thing is in rest or in motion in a space equal to it.'lelf, and if what moves 
is always in the instant, the arrow in its flight is immovable." This 
hM u11ually been thought so monstrous a paradox as scarcely to 
deserve serious discus.'lion. To my mind, I must confess, it seems a very 
plain statement of a very elementary fact, and its neglect has, I think, 
caused the quagmire in which the philosophy of change has long been 
immersed. In Part VII, I shall set forth a theory of change which may 
be called atatu:, since it allows the justice of Zeno's remark. For the 
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present,.I wish to divest the remark of all reference to change. We shall 
then find that it is a very important and very widely applicable plati­
tude, namely : " Every possible value of a variable is a constant." If :r 
be a variable which can take all values from O to 1, all the ,·alues it 
<'.&n take are definite numbers, su<'h as 1/'J. or 1/3, which are all absolute 
constants. And here a few words may be inllt'rted concerning ,·ariables. 
A variable is a fundamental concept of logi,-, as of daily life. Though 
it is always ,·onnected with some das11, it is not the clasi;, nor a particular 
member of the class, nor yet the whole das11, but any member of the 
da.'111. On the other hand, it is not the c-o,,cept " any member of the 
cla.'ls," but it is that (or those) which thi11 concept denotes. On the 
logical difficulties of this con<'eption, I net>d not now enlarge; enough 
has been i1aid on thi11 subject in Part I. The usual x in Algebra,· 
for example, does not stand for a particular number, nor t'or all numbers, 
nor yet for the class number. This may be e11.sily Sl.'Cll by comiidering 
some identity, say 

(.r + 1)2 = .r2 + 2.r+ ]. 

This certainly dol.-s not mean what it would become if, say, 391 were 
substituted for .r, though it implies that the result of such a. substitution 
would be a true proposition. Nor does it mean what re1mlb1 from 
11ub;;tituting for x the dass-concept number, for we cannot a.dd l to this 
concept. For the same reason, x does not denote the ,·oncept any 
number: to thi11, too, I cannot be added. It denote11 the disjunction 
formed by the variom, numbers; or at lea.'lt this view may be taken as 
roughly corrL>ct•. The values of.rare then the term11 of the disjunction; 
and eA.ch of these is a constant. This simple logical fact seems to 
com,titute the essence of Zeno's contention that the arrow is 11.lways 
at rest. 

333. But Zeno's arbrument contains an element which is 11pecially 
applicable to continua. In the ca.'IC of motion, it denies that there 
is such a thing as a state of motion. In the general case of a continuous 
variable, it may be taken as denying actual infinitesimals. F'or in­
finitesimals are an attempt to extend to the valU£a of a variable the 
variability which belongH to it alone. When on<'e it is firmly reali,.ed 
that all the values of a variable are constants, it bel.-omes easy to see, by 
taking any two such values, that their difference. is always finite, and 
hence that there are no infinitesimal differences. If :r be a variable 
which may take all real values from O to 1, then, taking any two of 
these values, we see that their difference is finite, although :r is a con­
tinuous ,·ariable. It is true the difference might have been less than 
the one we chrnre ; but if it had been, it would still have been finite. 
The lower limit to possible differences is zero, but all possible differences 
are finite ; and in this there i11 no shadow of contradiction. This static 

* See C.'hap. vm, esp. § 00. 
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theory of the variable is due to the mathematicians, and its absence 
in Zeno's day led him to suppose that continuous change was impos.<iible 
without a state of change, which involves infinitesime.ls and the contra­
diction of e. body's being where it is not. 

334. The last of Zeno's arguments is that of the measure. This is 
closely analogous to one which I employed in the preceding chapter, 
against those who regard dx and d_y e.s distances of consecutive tenns. 
It is only applicable, e.s M. Noel points out (loc. cit. p. 116), against 
those who hold to indivisibles among stretches, the previous arguments 
being held to have sufficiently refuted the partisans of infinite divis~ 
bility. We a.re now to 1mppose e. set of discrete moments and discrete 
places, motion consisting in the fact that e.t one moment e. body is in 
one of these discrete places, in another at another. 

Imagine three parallel lines compo!IOO of the 
points a, b, c, d; a', b', c', d'; a", b", c", d" 
respectively. Suppose the second line, in one 
instant, to move all its points to the left by one 
place, while the third moves them all one place 
to the right. Then although the instant is 
indivisible, c', which was over ,:", and is now 
over a", must have passed b" during the in­
stant; hence the instant is divisible, co11tra 
hyp. This argument is virtually that by which 
I proved, in the preceding chapter, that, if there 
a.re consecutive terms, then dy/th- = ± 1 e.lwe.ys; 
or rather, it is this argt~ment together with e.n 

a b c d 

a' b' c' d' 

a" b" c" d" 

a b c d 

a' b' c' J: 

a" b11 c'' d" 

instance in which dy/dx = 2. It may be put thus: Let y, z be two 

functions of x, and let dy/th- = 1, dz/d:z: = -1. Then di (y-z)=2, which 

contradicts the principle that the value of every derivative must he ± 1. 
To the argument in Zeno\; form, M. Evellin, who is an advocate of 
indivisible stretches, replies that a" and b' do not cross each other 
at e.Il •. l<'or if instant.'! are indivisible-and this is the hypothesis-all 
we can say is, that at one instant a' is over a'', in the next, c:' is over a''. 
Nothing has happened between the instants, and to suppose that a" 
and b' have crossed is to beg the question by a covert appee.l to the 
continuity of motion·. This reply is ve.lid, I think, in the case of 
motion ; both time and 11pace may, without positive contradiction, be 
held to be di11crete, by adhering strictly to distances in addition to 
stretches. Geometry, Kinematics, and Dynamics become fe.lse; but 
there is no very good reason to think them true. In the case of 
Arithmetic, the matter is otherwise, since no empirical question of 
existen<--e is involved. And in this case, as we see from the above 

* Rewe ,u Mitaphyaique t1, ,u Ml>rtlie, Vol. 1, p. 386. 
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argument concerning derivatives, Zeno's argument is absolutely sound. 
Numbers are entities whose nature can be established beyond question; 
and among numbers, the various forms of continuity which occur 
cannot be denied without positive contradiction. For this reason the 
problem of continuity is better discuMed in <'onnection with numbers 
than in connection with spat.-e, time, or motion. 

336. We have now seen that Zeno's all,ruments, though they prove 
a very great deal, do not prove that the continuum, as we have become 
acquainted with it, contains any contradictions whatever. Since his 
day the attack!! on the continuum have not, so far as I know, been 
conducted with any new or more powerful weapons. It only remains, 
therefore, to make a few general remarks. 

The notion to which Cantor gives the name of continuum may, of 
course, !>e called by any other name in or out of the dictionary, and it 
is open to every one to assert that he himself means something quite 
different by the continuum. But these verbal questions are purely 
frivolous. Cantor's merit lies, not in meaning what other people mean, 
but in telling us what he means himself-an almost unique merit, where 
continuity is concerned. He has defined, accurately and generally, a 
purely ordinal notion, fn.>t, as we now !ICC, from contradictions, and 
sufficient for all Analysis, Geometry, and Dynamics. This notion was 
presupposed in existing mathematics, though it wa.'I not known exactly 
what it was that was pre11upposed. And Cantor, by his almost un­
exampled lucidity, has successfully analyzed the extremely complex 
nature of spatial series, by which, as we ,shall see in }>art VI, he has 
rendered possible a revolution in the philosophy of space and motion. 
The salient points in the definition of the continuum are (1) the 
connection with the doctrine of limits, (2) the denial of infinitesimal 
segments. These two points being home in mind, the whole philosophy 
of the subject becomes illuminated. 

338. The denial of infinitesimal segments resolves an antinomy 
which had long been an open scandal, I mean the antinomy that the 
continuum both does and does not consist of elements. \Ve see now 
that both may be said, though in different senses. Every continuum 
is a series consisting of terms, and the terms, if not indivisible, at any 
rate are not divisible into new terms of the continuum. In this sense 
there are elements. But if we take consecutive terms together with 
their asymmetrical relation as constituting what may be called (though 
not in the aense of Part IV) an ordi,ial element, then, in this sense, our 
continuum has no elements. IC we take a stretch to be essentially 
serial, so that it must consist of at least two terms, then there are no 
elementary stretches; and if our continuum be one in which there is 
distance, then likewise the~ are no elementary distances. But in neither 
of these cases is there the slightest logical ground for elements. The 
demand for consecutive terms springs; as we saw .in Part III, from an 
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illegitimate use of mathematical induction. And as regards distance, 
small distances are no simpler than large ones, but all, as we saw in 
Part III, are alike simple. And large distances do not presuppose small 
ones: being intensive magnitudes, they may exist where there are no 
smaller ones at all. Thus the infinite regress from brreater to smaller 
distances or stretches is of the harmless kind, and the lack of elements 
need not cause any logical inconvenience. Henre the antinomy is re­
solved, and the continuum, so far at least as I am able to discover, is 
wholly free from contradictions. 

It only remains to inquire whether the same conclusion hol4s 
concerning the infinite-an inquiry with which this Fifth Part wi'l 
come to a close. 
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CHAPTER XLIII. 

THE PHILOSOPHY 014' THE INFINITE. 

337. b: our previous discussions of the infinite we have been 
compelled to go into so many mathematical points that there baa 
been no adequate opportunity for purely philosophical treatment of 
the question. In the present chapter, I wish, leaving mathematiat 
aside, to inquire whether any contradiction ran be found in the notion 
of the infinite. 

Those who have objected to infinity have not, as a rule, thought 
it worth while to exhibit precise contradictions in it. To have done 
so is one of the great merits of Kant. Of the mathematical antinomies, 
the second, which is concerned, CHsentially, with the question whether or 
not the continuum has elements, was resolved in thl' preceding chapter, 
on the supposition that there may be an actual infinite-that is, it wu 
reduced to the question of infinite number. The first antinomy is 
concerned with the infinite, but in an essentially temporal form ; for 
Arithmetic, therefore, this antinomy is irrelevant, except on the Kantian 
view that numbers mu.11t be schematized in time. This view is supported 
by the argument that it takes time to count, and therefore without 
time we could not know the number of anything. By this argument 
we can prove that battles always happen near telegraph wires, because 
if they did not we should not hear of them. In fad., we can prove 
generally that we know what we know. But it remains cont-eivable that 
we don't know what we don't know; and hence the necessity of time 
remains unproved. 

Of other philosophers, Zeno has already been examined in connection 
Y.ith the continuum ; and the paradox which underlies Arhilles and the 
tortoise will be examined shortly. Plato's Parmenidea-which is perhaps 
the best collection of antinomies ever made-is scarcely relevant here, 
being ooncemed with difficulties more fundamental than any that have 
to do with infinity. And as for Hegei he cries 'IIJOlf so often that when 
he gives the alarm of a contradiction we finally cease to be disturbed. 
Leibniz, as we have seen, gives as a contradiction the one-one correlation 
of whole and part, which underlies the Achilles. This is, in fact, the 
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only point on which most arguments against infinity turn.. In what 
follows I shall put the arguments in a form adapted to our preient 
mathematical knowledge; and this will prevent me from quoting them 
from any cla.11sic opponents of infinity. 

338. Let us first recapitulate briefty the prn;itive theory of the in­
finite to which we have been led. A<--cepting as indefinable the notion 
propoaitimi and the notion C01U1tituent ef a propositimi, we may denote 
by (/,(.a) a proposition in which a is a constituent. We can then trans­
form a into a va1-iable :r, and consider (/,(.:r), where cf,(.r.) is any proposition 
differing from (/,(a), if at all, only by the fact that some other ob).!ct 
appears in the place of a; (/,(:r) is what we called a propo.,itionalfu11di"11, 
It will happen, in general, that (/,(..r) is true for some values of :r ahd 
false for others. All the ,·alues of :r, f'or which (/,(r) is tn1e, form what 
we called the claa., defined by (/,(.:r); thus every propositional function 
defines a class, and the actual enumeration of the members of a class 
is not necessary for its definition. Again, without enumeration we can 
define the similarity of two cla.'l!ICS : two clas.<1es u, v are similar when 
there is a one-one relation R such that ".r i11 a u,.,, always implies "there 
is a v to which :r ha11 the rdation R,"' and "y is a v., always implies 
"there is a rt which has the relation R to !J·., Purther, R is a one-one 
relation if .rRy, :rRz together always imply that y is identical with z, 
and :rRz, yRz together always imply that :r is identical with y; and 
'":r is identical with y" is defined 118 meaning "every propositional 
function which holds of :r also holds of y." We now define the cardinal 
number of a class u as the cl8.SII of all classes which are similar to "; 
and every cla.'111 has a cardinal number, sin<--e "u is similar to v,, is a 
propositional function of v, if v be variable. Moreover " itself is 
a member of it11 canlinal number, since every class is similar to itself. 
'rhe above definition of a cardinal number, it should be observed, is 
based upon the notion of propositional fundions, and nowhere involves 
enumeration; consequently there is no re&'lon to suppose that there 
will be any difficulty as regards the numbers of classes whose terms 
cannot be counted in the usual elementary fa.-shion. Classes can be 
divided into two kinds, &:cording as they are or are not similar to 
proper parts of themselves. In the former case they are called inji,iite, 
in the latter finite. Again, the number of a clas.'I defined by a pro­
positional function which is alway11 false is called O; l is defined as 
the number of a class n such that there is a term :r, belonging to u, 
such that "y is a u and y differs from .r., is always false. and if n 
be any number, n + 1 is defined as the number of a class u which has 
a member :r. such that the propositional function "y is a u and y 
differs from :r" defines a class whose number is n. If .,, is finit.e, 
n + 1 differs from 11 ; if not, not. In thh, way, starting from O, we 
obtain a progreSKion of numbers, since any number n leads to a new 
number n + 1. It is easily proved that all the numbers belonging to 
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the progression which starts from 1 and is generated in this way are 
different; that is to say, if n belongs to this progression, and m be 
any one of its predecessors, a clRSS of ,i tem1s cannot have a one-one 
correlation with one of m terms. The progression so defined is the 
Aeries of finite 11umber.,. But there is no ree.-;on to think that all 
numbers can be so obtained ; indeed it is capable of formal proof 
that the number of the finite numbers them11elves cannot be a term 
in the progression of finite numbers. A number not belonging to 
this progression is called ;,,finite. The proof that n and n + 1 are 
different numbers prm"eeds from the fact that O and 1, or 1 and 2, 
are different numhen;, by means o{ mathematical induction ; if " and 
n + 1 be not terms of this progression, the proof fails ; and what is 
more, there is dired proof of thl• contrary. But since the previous 
proof depended upou mathematical indm·tion, there is not the slightest 
reat10n why the theorem should extend to infinite numben;. Infinite 
numbers cannot be expressed, like finite ones; by the decimal system 
of notation, but they l·an he distinguished by the cla.,ses to which they 
apply. The finite numbers being all defined by the abt.n·c progres.'lion, 
if 11. class rt has terms, but not anv finite number of tcnns, then it has an 
infinite number. This is the prniitive theory of infinity. 

339. That there A.re infinite classt.'il i11 so evident that it will scarcely 
be denied. Since, howe,·er, it i11 l'apahle of fonnal proof, it may be as 
well to prove it. A ,,ery 11imple proof is that SU!;b"t.'Sted in the Parmerii<ka, 
which is as follows. Let it be granu.-d that there i11 a number 1. Then 
1 i11, or ha., Being, and therefore there is Being. But 1 and Being are 
two: hence there is a number 2; and so on. Pormally, we have proved 
that 1 is not the number of numbers; we prove that 11 is the number 
of numbers from 1 to n, and that these numbers together with Being 
form a cla.,;s which has a new finite number, so that ·n is not the number 
of finite numbel"8. Thus 1 is not the number of finite numbers; and 
if n - 1 is not the number of finite numbers, no more i11 n. Hence the 
finite numbers, by mathcmR.tical induction, are all contained in the cl8.88 
of things whkh are not the number of finite numbers. Since the relation 
of similarity is reflexive for classes, every class has a number; therefore 
the class of finite numbel"ll ha..; a number whieh, not being finite, is 
infinite. A better proof, analogou.~ to the above, is derived from the 
fact that, if " be any finite number, the number of numbers from O up 
to and including n is ll + 1, whence it follow11 thR.t n is not the number 
of numbers. Again, it m11.y be proved directly, by the correlation of whole 
and part, that the number of propositions or com-epb1 i11 infinite•. 1''or 
of every term or conL-ept there is an idea, different from that of which 
it is the idea, but again a term or concept. On the other hand, not 
c~ery term or concept is an idea. The~-e are tables, and ideais of tables ; 

* Cf. Bolzano, P11r,1do.rim du linrndlirliet1, § 13; Dedekiud, Wa• ,r,ind und -• 
,alien dill Zulile,1 1 No. 6'1. 
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numbers, and ideas of numbers ; and so on. Thus there is a one-one 
relation between terms and ideas, but ideas are only some among terms. 
Hence there iH an infinite number of terms and of ideas•. 

340. 'The possibility that whole and part may have the same 
number of terms is, it must be confessed, shocking to common-sense. 
Zeno's Achilles ingeniously shows that the opposite view also has 
shocking const.'qUences; for if whole and part cannot be correlated 
tenn for term, it does strictly follow that, if two material points 
travel along the same path, the one following the other, the one 
which is behind c·an never catch up: if it did, we should have, co~­
relating simultaneous p~itions, a unique and reciprocal correspondence 
of all the term11 of a whole with all the terms of a part. Common­
sense, therefore, is here in a very sorry plight ; it must choose between 
the paradox of Zeno and the paradox of Cantor. I do not propose to 
help it, Hince I com1icler that, in the face of proof..,, it ought to commit 
1midde in despair. Hut I will give the paradox of Cantor a form re- ' 
sembling that of Zeno. Tristram Shandy, as we know, took two years 
writing the hiHtory of the first two days of his life, and lamented that, 
at this rate, material would accumulate faster than he l'ould deal with 
it, so that he c·ould never come to an end. Now I maintain that, if 
he had lived for ever, and not wearied of his task, then, even if his 
life had continued a,., eventfully RH it began, no part of hi11 biography 
would have remained unwritten. This paradox, whi<·h, 8.'i I shall show, 
is strictly correlative to the Achilles, may be called for convenience the 
TriHtram Shandy. 

In <'.aseR of this kind, no <'are is superfluous in rendering our arguments 
formal. I shall therefore set forth both the Achille11 and the Tristram 
Shandy in strict logical shape. 

I. (I) For every position of the tortoise there is one and only one 
of Ad1illes; for every position of Achilles there is one and only one of 
the tortoise. 

(2) Henre the Keries of positions OC.';('Upied by Achilles has the 
same number of terms as the series of positions occ·upied by the tortoise. 

(3) A part has fewer tern111 than a whole in which it is contained 
and with which it is not c-oextensive. 

( 4) Henl--e the series of positioni1 <>C<'upied by the to1toise is not 
a proper part of the series of positions occ·upied by Achilles. 

II. (1) Tristram Shandy writes in a year the e,·ents of a day. 
(2) The series of days and years has no last tenn. 
(3) The events of the 11th dRy are written in the 11th year. 
(4) Any M,igned day i11 the nth, for a suitable value of ,1. 
(5) Hence any assigned day will be written about. 

* It is not necessary to suppose that the idea, of all tenns t.1.i11t, or form part of 
110me mind ; it is enough that they are entities. 
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(6) Hence no part of the biography will remain unwritten. 
(7) Since there is a one-one correlation between the times of 

happening and the times of writing, and the former are part of the 
latter, the whole and the part have the same number o( terms. 

Let us express both these paradoxes as abstractly as pos.<1ible. For 
this purpose, let u be a compact series of any kind, and Jet x be a 
variable which can take all values in u after a certain value, which we 
will call 0. Letf(.:r) be a one-v11lued function of :r, and x a one-valued 
function of f(:r); also let all the values of f(:r.) belong to"· Then the 
arguments are the following. 

I. Let f(O) be a term preceding O; let f(.r) grow a.<1 :r. grows, i.e. if 
xPx' (where P is the generating relation), letf(.x) Pf(.r'). Further 
letf(x) take all valuCM in tt intermetliate between any two values of f(:r.). 
If, then, for some value a of :r., such that OP a, we have f(a) = a, then 
the series of values of f(:r) will he all terms Crom f(O) to a, while that 
of x will be only the terms from Oto a, which are a part of those from 
f(O) to a. Thus to suppm1ef(a) = a is to supp011e a one-one correlation, 
term for term, of whole and part, which Zeno and common-sense pro­
nounre impossible. 

II. Let f(x) be a function which is O when :r. is O, and which grows 
uniformly a.'l :r grows, our series being one in which there i11 measurement. 
Then if :i: takes all values after 0, so does f (x) ; and if f (.r) takes all 
such values, so does .r. The cla.'!s of values of the one is therefore 
ident~cal with that of the other. But if at any time the value of x 
is greater than that of f(x), since f(x) grows at a uniform rate, x will 
always be greater than f (x). Hence for any assigned value of x, the 
cla.'ls of values off (x) from O to f(x) is a proper part of the values 
of .z• from O to x. Hence we might infer that all the values o( f (x) 
were a proper part of all the values o( :r; but this, as we have seen, is 
fallacious. 

These two paradoxes are correlative. Both, by reference to segments, 
may be stated in terms of limits. The Achilles proves that two variables 
in a continuous series, which approach equality from the same side, 
cannot ever have a common limit; the Tristram Shandy proves that 
two variables which start from a common term, and proceed in the 
same direction, but diverbre more and more, may yet determine the same 
limiting class (which, however, is not necessarily a segment, because 
segments were defined 1111 having terms beyond them). The Achilles 
assumes that whole and part cannot be similar, and deduces a paradox; 
the other, starting from a platitude, deduces that whole and part may 
be similar. For common-sense, it must be confessed, this is a most 
unfortunate state of things. 

341. There is 110 doubt which is the correct counre. The Achilles 
must be reja-ted, being directly contradi<.-ted by Arithmetic. The 
1.nstram Shandy must be accepted, since it does ~ot involve the axiom 
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that the whole cannot be similar to the part. This axiom, as we 
have seen, is essential to the proof of the Achilles; and it is an axiom 
doubtless very agreeable to common-sense. But there is no evidence 
for the axiom except supposed self-evidence, and its admiBBion leads to 
perfectly precise contradfotions. The axiom is not only useless, but 
positively destructive, in mathematics, and against its rejection there 
is nothing to be set ex<--ept prejudice. It is one of the chief merits of 
proofs that they instil a <.-ertain scepticism as to the result proved. A11 
soon as it was found that the similarity of whole and part could be 
proved to be impossible for every finite whole•, it became not unplausib\e 
to suppose that for infinite wholes, where the impoHSibility could not~ 
proved, there was in fact no such impossibility. In fact, as regards 
the numbers dealt with in daily life-in engineering, astronomy, or 
accounts, even those of Rockefeller and the Chancellor of the Exchequer­
the similarity of whole and part ia impossible ; and hence the supposition 
that it is always impossible is easily explained. But the supposition rests 
on no better foundation than that formerly entertained by the inductive 
philosophers of Central Africa, that all men are black. 

34:2. It may be worth while, as helping to explain the difference 
between finite and infinite wholes, to point out that whole and part . 
are terms capable of two definitions where the whole is finite, but of 
only one of these, at least practically, where the whole is infinitet. 
A finite whole may be taken collectively, as such and such individuals, 
A, B, C, D, E say. A part of this whole may be obtained by 
enumerating some, but not all, of the terms composing the whole ; 
and in this way a single individual is part of the whole. Neither the 
whole nor its parts need be taken as classes, but each may be defined 
by extension, i.e. by enumeration of individuals. On the other hand, 
the whole and the parts may be both defined by intcnsion, i.e. by 
class-con('epts. Thus we know without enumeration that Englishmen 
are part of Europeans ; for whoever is an Englishman is a European, 
but not vice 'ileraa. Though this might be established by enumeration, 
it need not be so established. When we come to infinite wholes, thi11 
twofold definition disappears, and we have only the definition by in­
tension. 1.'he whole and the part must both be classes, and the definition 
of whole and part i11 effected by means of the notions of a variable 
and of logical implication. If a be a class-concept, an individual of a 
is a term having to a that specific relation which we call the cl&SH­
relation. If now b be another class such that, for all valuei1 of :r, ":r 
is an a" implit.'8 ":r i11 a b," then the extension of a (i.e. the variable .r) 
is aaid to be part of the extension of bt. Here no enumeration of 
individuals iH required, and the relation of whole and part has no longer 

* The finite being here defined by maU1ematical induction, to avoid tautology. 
t Cf. § 330. 
i See Peano, llillirta di Ma.temuru:a, vn, or Formulain, Vol. 11, l,art I. 
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that simple meaning which it had where finite parts were concerned. 
To say now that a and b are similar,. is to say that there exists some 
one-one relation R fulfilling the following conditions : if .r be an a, 
there is a term y of the cl1L11S b such that zRy. if y' be a b, there is 
a term .r' of the class a such that .r'Ry. Although a is part of b, 
11uch a state of things cannot be proved impossible, for the impOBSibility 
could only be proved by enumeration, and there is no l'e&'IOn to sup­
pose enumeration possible. The definition of whole and part without 
enumeration is the key to the whole mystery. The above definition, 
which is due to Professor Peano, is that which is naturally and neces.sarily 
applied to infinite wholes. For example, the primes are a proper part 
of the integers, but this cannot be proved by enumeration. It is de­
duced from "if :r be a prime, :r is a number," and "if :r be a number, 
it does not follow that :r. is a prime." That the class of primes 11hould 
be similar to the class of numbers only see1m1 impossible because we 
imagine whole and part defined by enumeration. As !IOOn &11 we rid 
ourselve..'! of thi11 idea the supposed contradiction vanishes. 

343. It is very important to realize, as rebrard11 ,., or er., that neither 
has a number immediately preceding it. This characteristic they 11hare 
with all limits, for the limit of a series is never immediately preceded by 
any term of the series which it limits. But ,., is in some sense logically 
prior to other limits, for the finite ordinal numbel'II together with ,., 
present the formal type of a progre.,sion together with its limit. When 
it is forf,POttcn that ,., hall no immL-diate predecessor, all ROrts of conti-a­
dictions emerge. For suppose n to be the last number before,.,; then 
,i is a finite number, and the number of finite numbel'II is n + 1. In fact, 
to say that m has no preda'eslior is merely to say that the finite numbers 
have no last tem1. Though o, is preceded by all finite numbers, it is 
not prect.-ded immL-diately by any of them: there is none next t~ 01. 

Cantor•s transfinite numben have the peculiarity that, although there 
i11 one next after any assignL-d number, there is not always one next 
before. 'fhus there seem to be gaps in the series. We have the series 
1, 2, S, ... v, ... , which i11 infinite and has no last term. We have 
another series m, a,+ 1, 6J + 2, ... ,., + v, ... which equally is infinite and 
has no last term. This second series comes wholly after the fil'llt, though 
there is no one term of the first which ,., immediately succeed1,1. 1.'his 
state of things may, however, be paralleled by very elementary series, 
such as the series whOIIC general terms are 1-1/v and 2-1/11, where 
11 may be any finite integer. The sa-ond series comes wholly after the 
first, and has a definite first term, namely 1. But there is no term 
of the first series which immediately precedes 1. What is necessary, 
in order that the second series should e,-ome after the first, is that there 
should be 110me series in which both are contained. It' we call an '11"dinal 
part of a series any series which can be obtained by omitting some ot' 
the terms of our series without changing the order of the remaining 
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terms, then the finite anrl transfinite ordinals all form one series, whose 
generating relation is that of ordinal whole and part among the series 
to which the various ordinals apply. If "be any finite ordinal, series of 
the type II arc ordinal parts of progressions; similarly every series of the 
type ea,+ 1 contains a progression as an ordinal part. The relation 
ordinal, part is transitive and asymmetrical, and thus the finite and 
transfinite ordinals all belong to one series. The existence of ea, (in 
the mathematical sense of existe1we) is not open to question, since ea, 

is the type of order presentt_,d by the natural numbers themselves. To 
deny ea, would be to affirm that there is a last finite number-a tjew 
which, as we have seen, leads at once to definite contradictions. .A\nd 
when this is admitted, ea,+ 1 is the type of the series of ordinals in­
cluding ea,, i.e. of the series whose terms arc all series of integers from 1 
up to any finite numher together with the whole series of integers. 
Hence all the infinite hierarchy of transfinite numbers easily follows. 

344. The usual objections to infinite numbers, and classL'S, and 
series, and the notion that the infinite as such is self-contradictory, 
may thus be dismisSL-d as groundless. There remains, howl'ver, a very 
grave diffi<·ulty, connectL-d with the contradiction discussed in Chapter x. 
This difficulty does not <·oncern the infinite a." such, but only certain 
very large infinite da.-.ses. Briefly, the difficulty may be stated a.<; 
follows. Cantor has given a proof• that there can he no greatest 
cardinal number, aud when this proof is examined, it is found to state 
that, if 'It be a cla.-.s, the number of cla.-..<;es contairwd in tt is greater than 
the number of terms of u, or (what is equivalent), if a be any number, 
i• is bJTeater than a. But there are certain cla.'ises concerning which it 
is easy to give an apparently valid proof that they h1we as many terms 
as possible. Such are the cla.,;s of all tenns, the l'lass of all classes, or 
the class of all propositions. Thus it would 11ecm as though Cantor's 
proof 11111st contain some assumption which is not verified in the case 
of such classes. Hut when we apply the reasoning of his proof to the 
ca.-.es in question, we find ourselves met by definite contradictions, of 
which the one discussed in Chapter x is an examplet. The difficulty 
arises whene,'er we try to deal with the class of all entities absolutely, 
or with any equally numerous class; but for the difficulty of such a 
view, one would he tempted to say that the conception of the totality 
of thinbrs, or of the whole universe of entities and existents, is in some 
way illegitimate and inherently contrary to logic. But it is undesirable 
to adopt so desperate a measure a.'! long as hope remains of some less 
heroic solution. 

It may be observed, to begin with, that the class of numbers is not, 

* He has, as a matter of fact, offered two proofs, but we shall find that one of 
them is not cogent. 

t lt WIIII in this way tl1at I discovered this contradiction ; a similar one is given 
at the end of Appendix B. 
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as might be supposed, one of those in regard to which difficulties occur. 
Among finite numbers, if n were the number of numbers, we should 
have to infer that n - 1 was the greatest of numbers, so that there 
would be no number n at all. But thi11 is a pemliarity of finite numbers. 
The number of numbers up to and including a,, is a,,, but this is also 
the number of numbeffl up to and including a11 , where /J i11 any finite 
ordinal or any ordinal applicable to a denumerable well-ordered series. 
Thus the number of numbers up to and inducling a, where « is infinite, 
is usually less than «, and there is no rea.Kon to suppose that the number 
of all numbers is the greatest number. The number of m1mlx•ffl may he 
less than the greatest number, and no contradiction ariHe11 from the fact 
(if it be a fact) that the number of indh·idual!I is hrreater than the number 
of numbers. 

But although the class of number!! cau11es no difficulty, there lll'C 

other classes with which it is Yery hard to deal. Let us tinit examine 
Cantor'11 proof11 that there is no greatest t·ardinal number, and then 
discuss the cases in which eontradiction11 arise. 

346. In the first of Cantor's proofs•, the argument depends upon 
the supposed fact that there is a one-one correspondence between the 
ordinals and the cardinalst. We saw that, when we consider the car­
dinal number of the series of the type represented by any ordinal, an 
infinite number of ordinals correspond to one cardinal-for example, all 
ordinal11 of the second class, which form a non-denumerable collection, 
001TeSpond to the single cardinal «0 • But there ii. another method of 
con-elation, in which only one ordinal corresponds to each cardinal. 
This method results from considering the series of cardinals itself. In 
this series, «0 corresponds to a,, «1 to a,+ 1, and so on: there is always 
one and only one ordinal to deHCribe the type of series presented by the 
ca1-dinals from O up to any one of them. It seems to be assumed that 
there is a cardinal for eYery ordinal, and that no cla.ss can ha,re so 
many ternu1 that no well-ordered series can have a greater number of 
terms. }'or my part I do not see any grounds for either supposition, 
and I do see definite grounds against the latter. }'or every tcm1 of 
a series must be an individual, and must he a different individual (a 
point often oYerlooked) from every other term of the series. It must 
be different, because there are no instances of an individual: each 
individual is absolutely unique, and in the nature of the case only 
one. But two terms in a series are two, and are therefore not one 
and the same individual This most important point is obscured by 
the fact that we do not, as a rule. fully deRCribe the terms of our series. 
When we say: Consider a series a, b, c, d, b, d, e, a, ... , where terms 
are repeated at intervals-such a series, for example, as is presented by 
the digits in a decimal-we forget the theorem that where there is 
repetition our aeries is only obtainable by correlation, that is, the 

* Mannichfultigkeit•lt1Are, p. 44. 
t er. ntpra, (,'hap. xxxvm, § 300. 
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terms do not themselves have an order, but they have a one-many 
(not one-one) relation to terms which have an order•. Hence if we 
wish for a genuine series we must either go back to the series with 
which our terms are correlated, or we must form the complex terms 
compounded of those of the original series and those of the correlated 
series in pairs. But in either of thei.e series there is no repetition. 
Hence every ordinal number must correspond to a HCries of individuals, 
each of whil·h diffel'K from each other. Now it may be doubted whether 
all individuals form a series at all: for my part I cannot dismver any 
transitive asymmetrical relation which holds between ever.I/ pair of teJ\ms. 
Cantor, it is true, regards it aH a law of thought that every definite 
aggregate can he well-ordered ; but I see no bJ'found for this opinion. 
But allowing this view, the ordinals will have a perfectly definite 
maximum, namely that ordinal which represents the type of serieli 
formed by all terms without exceptiont. If the colledion of all 
terms docs not form a series it is impossible to prove that there 
mm1t be a maximum ordinal, which in any l"ase there are rea..,ons for 
denying!. But in this case we may legitimately doubt whether there 
are as many ordinals ai; there are cardinals. Of course, if all cardinals 
form a well~ordered series, then there must be an ordinal for each cardinal. 
But although Cantor profes.-,es that he ha..., a proof that of two different 
l'Ardinals one must be the greater (1Jllltli . .A,makn, x1.v1, § 2), I cannot 
persuade myself that he does more than prnve that there is a series, 
whose terms are cardinals of which any one is greater or less than any 
other. That all cardinals are in this i.eries I see no reason to think. 
There may be two classes such that it is not possible to correlate either 
with a pa1t of the other; in this ,·ase the cardinal number of the one 
will be neither equal to, greater than, nor less than, that of the other. 
If all terms belong to a single well-ordered serie., this is impossible; 
but if not, I rannot see any wa_v of showing that such a case cannot 
arise. Thus the fi:rRt proof that there is no cardinal which cannot be 
increased seems to break down. 

346. The second of the proofs above referred to§ is quite different, 
and is far more definite. The. proof is interesting and important on its 
own ac,·mmt, and will be produced in outline. The article in which 
it ocellffi L'<msists of th1't->e points: (1) a simple proof that there are 
powers higher than the first, (2) the remark that thil'< method of proof 
can be applied to any power, (3) the application of the method to prove 
that there are powers higher than that of the continuum II- Let us 

* See Chap. xxxu, 1<1tpru. 

t On the maximum ordinal, ~ee Hurali-J<'orti, "Uua questione soi numeri 
trausfiniti," R,mdit-onti d,-1 rirrolo ,11afl'mr,tiro di Palermo, 1KU7. Also my article in 
R1JM, Vol. vm, p. 4-1 notl'. 

t ()f. Chap. xxxvm, § :'IOI. 
§ Jahrt1NIJl'Ti1·ht dl'r dl'UtNf'lltm M11then111tilter- J't1rmnigung, 1. (1002), p. 77. 
II .Power is 11y11onymou11 with ,"t1rdi1ml n11,11l>M: the tint power is that of the finite 

integers, i.e. a0 , 
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examine the first of the above points, and then see whether the method 
i11 really general. 

Let m and w, Cantor say11, be two mutually exclusive characters, and 
consider a collec:-tion .,l/ of elements E, whet"l' eac·h element E is a 
denumerable collection, .Xu .rn ... .r,., ... , and each .r i11 either an m or a w. 
(The two chara.ctcl'8 m and w may be considered respectively a.-. 1-,rreater 
and less than 1mme fixed term. 'Thus the .:r'11 may be rational numbers, 
each of whil'h is an m when it is 1-,rreater than 1, and a ro when it is ll>s!I 

than 1. These remarks are lob'ically irrele,·ant, but they make the 
argument ea."lier to follow.) The colll'<"tion Mis to cm1si11t of all possible 
eleml'nts E of the above description. _ Then .,1[ is not denumerable, i.,•. 
is of a power higher than the first.. 1''or let WI take any denumerable 
l'Ollection of E'11, whit·h are defined a.-1 follows : 

E1 = (au, a1u 

E.= (a,11 , nr.i, 

a,_,., ... ) 
a,,,., ... ) 

where the ,1'1:1 are each an m or a w in some determinate manner. (For 
example, the fint p terms of Ep might be m'11, the rest all w's. Or any 
other law might be suggested, which immres that the Es of our 11erie11 
are all different.) Then however our series of }J .. s be chosen, we can 
alway11 find a term Ea, belonging to the collection M, but not to the 
denumerable !!eries of .E\1. :For let Ea be the series (bi, bu- .. b,., . . ), 
where, for every n, b,. is different from a,.,.-i.e. if a,.,. is an m, b,. is a w, 
and vice tJeraa. Then every one of our dfmumerable series of Es 
contains at least one term not identical with the corresponding term 
of E 0 , and hence Ea is not any one of the terms of our denumerable 
series of E,"'s. Hence no such 11eries can contain all the Es, and 
therefore the Es are not denumerable, i.e. M has a power higher than 
the tirMt. 

We need not stop to examine the proof that there is a power higher 
than that of the continuum, which is easily obtained from the abo,·e 
proof. ,ve may proceed at once to the general proof that, given any 
collection whatever, there is a collection of a higher power. This proof 
is quite as simple as the proof of the parti<·ular case. It pro<-eoos 
as follows. Let rt be any class, and consider the clas.-s K of relations 
such that, if R he a relation of the dass, every term of the class tt 

ha."I the relation H either to O or to 1. (Any other pair of terms 
will do as well as O and 1.) Then the class K has a higher power 
than the class u. 'fo prove this, obllerve in the first place that K 
has certainly not a lower power; for, if .:r be any ,,, there will be a 
relation R of the class K such that every u except :,• ha."I the relation 
R to 0, but .:r has this relation to 1. Relations of thiH kind, for the 
various values of .r, form a class having a one-one correlation with 
the terms of 11, and contained in the class K. Hence K has at least 
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the same power as u. To prove that K has a greater power, consider 
any clas.~ contained in K and having a one-one correlatio11 with u. 
Then any relation of this class may be called R.,, where :r is some u-the 
suffix :r denoting correlation with :r. Let us now define a relation K 
by the following conditions : For every term .r: of it for which x has 
the relation R., to 0, let x have the relation R' to 1 ; and for every term 
y of u for which y has the relation R'II to 1, let y have the relation 
K to 0. Then R' is defined for all terms of u, and is a relation of the 
class K; hut it is not any one of the relations R.,. Hence, whate'.\·er 
class contained in K and of the same power RS 11 we may take, there 
is always a term of K not belonging to this class ; and therefore K has 
a. higher power than u. 

347. We may, to begin with, somewhat simplify this argument, 
by eliminating the mention of O and 1 and relations to them. Each 
of the relatiorn1 of the class K is defined when we know which of the 
terms of u have this relation to 0, that is, it is defined by mean:,; of 
a. cla:,is contained in u (including the null-da.ss and u it~elf). Thus 
there is one relation of the class K for every dass contained in u, 
and the number of K is the same as that of classes contained in u. 
Thus if k be any dass whatever, the logical prodm·t ku is a class 
contained in u, and the number of K is that of ku, where k is a variable 
which may be any class. Thus the argument is reduced to this: that 
the number of classes (~ontained in any class exceeds the number of terms 
belonging to the class•. 

Another form of the same argument is the following. Take any 
relation R whic·h has the two properties (1) that its domain, which we 
will l'all p, is equal to it.-1 conven;e domain, (fl) that no two terms of the 
domain have cxaC"tly the same set of relata. Then hy means of R, any 
term of p is <·orrcla.ted with a class contaim.-d in p, naml'ly the class 
of relata to which the said term is referent; and this correlation is 
one-one. \Ve have to show that at least one clas.,; contained in p 
is omitted in this correlation. The class omitted is the class w which 
consists of all terms of the domain which do not have the relation R 
to themselves, i.e. the class w which is the dom11.in of the logit·al product 
of R and diversity. For, if .1/ he any term of the domain, and therefore 
of the converse domain, y belongs to w if it does nut belong to the class 
correlated with .1/, and does not belong to w in the contrary case. Hence 
re is not the same class a,'l the correlate of y ; and this applies to what­
ever term y we select. Hence the cla.-,s w is necessarily omitted in the 
correlation. 

348. The a.hove argument, it must be confessed, appears to contain 
no dubitable W!SUmption. Yet there are certain cases in which the 
conclusion seems plainly false. To begin with the dllSs of all terms. 
If we W!sume, as was done in § 47, that every constituent of every 

• The number of classes contained in a cla.<111 which bas a members is 2a; thus 
the argwnent shows that 2• is always greater than a. 
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proposition is a term, then classes will be only some among terms. And 
conversely, sinc,-e there is, for every term, a cla.,;;s consisting of that 
term only, there is a one-one correlation of all terms with some classes. 
Hence the number of cla. .. ses should be the same a.~ the number of 
terms•. This ca...e is adequately met by the doctrine of typest, and 
so is the exactly analogous case of classes and classes of classes. But 
if we admit the notion of all objects! of every kind, it becomes evident 
that clru.ses of object-. must be only some among objeets, while yet 
Cantor's argument would show that there are more of them than there 
are objt'Cts. Or again, take the class of propositions. Every object 
can oc<·ur in some proposition, and i~ seems indubitable that there are 
at least as many propositions as there are objects. :For, if u be a fixed 
cla.'is, " X is a u,, will be a different proposition for every different value 
of x; if, according to the doctrine of types, we hold that, for a given u, 
.t· has a restricted range if "x is a u" is to remain significant, we only 
have to vary u suitably in order to obtain propositions of this form for 
every possible .:r, and thus the number of propositions must be at least 
as great as that of objects. But clll.Hses of prop011itions are only some 
among objects, yet Cantor's argument shows that there are more of 
them than there are propositions. Again, we can e11.Sily prove that 
there are more propositional functions than objects. Por 1mppose a 
correlation of all objects and some propositional functions to have been 
affected, and let q,., be the correlate of x. Then "not-q,.,(x)," i.e. "4,., 
does not hold of .:r," is a propositional function not contained in the 
correlation; for it is true or false of x according as q,., iM false or true 
of x, and therefore it diftel"l! from q,(I) for every value of x. But this 
case may perhaps be more or less met by the doctrine of types. 

349. It is instructive to examine in detail the application of Cantor's 
argument to such cases by means of an actual attempted correlation. 
In the case of tenns and classes, for example, if ,r be not a class, let us 
correlate it with ix, i.e. the class whose only member is :1:, but if x be a 
class, let us correlate it with itself. (This is not a oue-one, but a 
many-one correlation, for x and ix are both rorrelated with i.x; but 
it will serve to illustrate the point in question.) Then the class which, 
according to C',antor's argument, should be omitted from the correlation, 
is the class w of those classes which are not members of themselves; 
yet this, being a class, should be correlated with itself. But w, as we 
saw in Chapter x, is a self-contradictory clB.'iS, which both i11 an<l i11 not 
a member of itself. The contradiction, in this case, can be solved by 
the doctrine of type;;; but the case of propositions is more difficult. 
In this case, let us correlate every class of propositions with the 

* This results from the theorem of Schroder and Bernstein, according to which, 
if u be similar to a part of v, and v to a part of u, then u aud v must be similar. 
See Borel, Uf071111rur la Theorie de11 Fo1u:tio1u, (Paris, 1898), p. 102 ff. 

t See Chapter x. and Appendix B. 
t 1''or the use of the word object - p. 66, note. 
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proposition which is its logical product ; by this means we appear to have 
a one-one relation of all classes of propositions to some propositions. 
But applying Cantor's argument, we find that we have omitted the 
class 'ID of those propositions which are logical products, but are not 
members of' the cl8.Slle8 of' proposition.'! whose logical products they 
are. This class, according to the definition of' our con-elation, should 
be correlated with its own logical product, but on examining this 
logical produc.-t, we find that it both is and is not a member of' the 
class w whose logical product it is. \ 

Thus the application of Cantor's argument to the doubtful casb 
yields contradictions, though I have been unable to find any point ii_l 
which the 8.J'b'1.lment appears faulty. The only solution I can suggest 
is, to &L-cept the conclusion that there is no greatest number and the 
doctrine of types, and to deny that there are any true propositions 
c·oncerning all objects or all propositions. Yet the latter, at least, 
seems plainly false, since all propositions are at any rate true or false, 
even if' they had no other common properties. In this unsatisfactory 
state, I reluctantly leave the problem to the ingenuity of the reader. 

3GO. To sum up the discussions of this Part: We saw, to begin 
with, that irrationals are to be defined 88 those se~ments of rationals 
which have no limit, and that in this way analysis is able to dispense 
with any special axiom of continuity. We saw that it is possible to 
define, in a purely ordinal manner, the kind of continuity which belongs 
to real nun,bers, and that continuity so defined is not self-contradictory. 
We found that the differential and integral calculus has no need of the 
infinitesimal, and that, though some forms of infinitesimal are admissible, 
the most usual form, that of infinitesimal segments in a compac.-t series, 
is not implied by either compactness or continuity, and is in fact 
self-contradictory. Finally we discussed the philosophical questions 
concerning continuity and infinity, and found that the arguments of 
Zeno, though largely valid, raise no sort of 11erious difficulty. Having 
grasped clearly the twofold definition of the infinite, as that which 
cannot be reached by mathematical induction starting from 1, and as 
that which has parts which have the same number of terms as itself­
definitions which may be di11tinguished as ordinal and cardinal re­
spec..-tively-we found that all the usual arguments, both 88 to infinity 
and as to t.-ontinuity, are fallacious, and that no definite contradiction 
can be proved conceming either, although certain special infinite classes 
do give riSP to hitherto unsolved contradictions. 

It remains to apply to space, time, and motion, the three chief re­
sults of this discut111ion, whkh are (1) the impOS11ibility of infinitesimal 
segments, (2) the definition of continuity, and (3) the definition and 
the consistent doctrine of the infinite. These applications will, I 
hope, persuade the reader that the above somewhat lengthy discussions 
have not been superfluous. 
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CHAPTER XLIV. 

Dll\lF.NSION~ .A~D COMPLEX NI rMURIUt 

351. 'l'HI': dis<'UKSions of the prceeding Parb1 haw lx.-en cont't•rned 
with two 1111\in themes, the logical thcor~· of numbers and the theory 
of one-dimensional series. In the first two Parts, it. was shown how, 
from the indii,,pensahle apparatm~ of general logical notiom1, the theory 
of finite iute1-,ren; and of rational numbel"H without sign could be de­
veloped. In the third Part, a particular ea.'le of order, namely the 
order of mllhl'llitude, was examined on its own account, and it was found 
that most of the problems arising in the theory of ,,uantity arc purely 
onJinal. In the fourth Part, the general nature of' one-dimensional 
series was set forth, and it was shown that all the arithmetical propo­
sitions obtained by means of the logic.al theory of finite numbers muld 
also be pn,ved by assuming that the finite integers form a Hl•ries of the 
kind which we called a progre!!11ion. In the fifth Pai-t, we examined 
the prohle1m, raised by endleHS series and by compaet series-problems 
which, under the names of infinity and continuity, have defied philo­
sophers ever sinc..-e the dawn of abstrad. thought. The diMCussion of 
these problems led to a c·ombination of the logical and ordinal theories 
of Arithmetic, and to the rejection, as univen;ally valid, of two connected 
principles which, following Cantor, we regarded &'I definitions of the 
finite, not B.H applic·able to all c·ollections or serieK. These two principlert 
were: (1) If one elMs be wholly c·m1tained in, but not coextensive with, 
another, then the one ha.'I not the 1111me number of term11 RR the other; 
(2) mathen111.tical induction, which is purely ordinal, and may be i,,tatecl 
as follows : A 1,1erie1,1 generated by a one-one relation, and having a 
finst term, ii,, such that any propei-ty, belonging to the fil"Ht term and 
to the succes1,1or of any posses.'IOr of the property, belonbrs to e\'ery term 
of the serit.'11, These two principle11 we regarded IL., definitiom1 of finite 
cla.'ISCll and of progres11io1111 or finite serie11 rt.'llpectively, but as inapplicable 
to some cla.'ISCK and some 11erieH. This view, we found, resoh·e11 a11 the 
difficulties of infinity and continuity, except a purely logical difficulty 
as to the notion of all d1U1Ke11, With this result, we completed the 
philosophical theory of one-dimensional scrieii. 
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312. But in all our previous discu88ions, large branches of mathe­
matil'S have remaim.-d unmentioned. One of the generalizations of 
number, namely l-'Omplex numbers, hAs been exduded completely, and 
110 mention }t8J,i been made of the imaginary. The whole of Geometry, 
also, has been hitherto foreign to our thoughts. These two omissions 
were oonnected. Not that we are to &Cl--ept a geometrical, i.e. spatial, 
theory of complex numbers : this would be as much out of place as 
a geometrical theory of irrationals. Although this Part i1S called SPfe, 
we arc to remain in the region of pure mathematics: the mathemati~ 
entities dis<"Ussed will have <,-erlain affinities to the space of the acl1¥U 
world, but they will he disc·m1sed without any logical dependence upon 
thc11e affinities. Geometry may be considered as a pure a 1mori science, 
or &.'I the study of actual 11pat.-e. In the latter sense, I hold it to he 
an experiment-Al scie1U"e, to he condm·ted by means of careful measure­
ments. But it is not in this latter sense that I wish to discuss it. 
As a bram·h of pure mathematit'II, Geometry is strid1y dedud.h·e, 
indifferent to the choice of its premisses and to the question whether 
there exist (in the strict sense) 1mch entities as its premisse11 define. 
Many different and even inl'onsistent sets of premiH11Cs lead to propo­
sitions which would be called geometrical, but all such sets have a 
common element. This element is wholly summed up by the statement 
that Geometry deals with series of more than one dimension. The 
question what may be the actual terms of such series i11 indifferent 
to Geometry, which examines only the ronsequences of the relations 
which it postulates among the terms. These relations are always such 
as to generate a series of more than one dimension, but have, so far 
as I can see, no other genera] point of agreement. Serie,,; of more than 
one dimension I shaU call multipk series : th011e of one dimension will 
be called simple. What is meant by dimensions I shall endeavour to 
explain in the course of the present chapter. At present, I shall set 
up, by anticipation, the following definition : Geometry ia the study ef 
aeriu ef two or more dimell8Wn8. This definition, it will be seen, causes 
complex numbers to form part of the subject-matter of Geometry, since 
they constitute a two-dimensional series; but it does not show that 
ron1plex numbers have any logical dependence upon actual space. 

The above definition of Geometry is, no doubt, somewhat unusual, 
and will produce, especially upon Kantian philosophers, an appearance 
of wilful misuse of words. I believe, however, that it represents 
<,-orrectly the present usage of mathematicians, though it is not necessary 
for them to give an explicit definition of their subject. How it has 
come to bear this meaning, may be explained by a brief historical 
retrospect, which will illustrate also the difference between pure abd 
applied mathematics. 

313. Until the nineteenth century, Geometry meant Euclidean 
Geometry, i.e. a certain system of propositions deduced from premisses 
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which were supposed to d~l·ribe the space in which we lhe. The 
subject was pursm.--d ,·cry larbrely because (what is no doubt important 
to the enb•ineer) its result,, were practil'ally applic·able in the existent 
world, and embodit--d in themselves scientific truths. But in 01-der to 
he sure that this was so, one of two thinbri,; wa,, nece"-..ary. Either 
we must be certain of the truth of the premis.-.c" on their own ac·count, 
or we must be able to ,.how that no other set of premi!llles would give 
rcsulh! consistent with expt.•riem-e. The first of these alternatives wa11 
adopted by the idealists 111111 was t-'Spcc·ially adrncah>d by Kant. The 
second alternati\·e represents, roughly, the position of empiricists before 
the non-Euclide1m period (1unong whom we mu,.,t include Mill). But 
objL'Ctions we1-e raised to both ultt•r1iative!-.. l•'or the Kantian view, 
it w1:1.s neccs.,.arv to maintain that all the axiom,. are ,.,clf-e,·ident--a vil•w 
whit·h honest ilCOple found it hard to extend to the t\xiom of parallels. 
Hence arose a sear1·h for mm-e plam,ible axioms, whi,·h might he dc­
clured a. priori truths. Hut, though many such axioms were suggested, 
all could sanely he doubted, and the se11reh only led to s<-cpticism. 
The second altc>mative-the \'iew that no other axiorm1 would give 
l't'sults consistent with experiem·c-1·ould only be testt.>d by a brreater 
mathematical ability than falls to the lot of most philo1-1ophers. Accord­
ingly the test was wanting until Lobatchewsky and Bolyai developed 
their non-Euclidean system. It was then provt--d, with all the cogency 
of mathematical demon,;tration, that premisses other th11.11 Euclid's 
could give results empirically indistinguishable, within the limits of 
observation, from those of the orthodox system. Hence the empiri1·11l 
argument for Eudid was also destmyed. Hut the investigation producL,d 
a new spirit among Geometers. Having found that the denial of 
Em·lid's axiom of parallels led to a different system, which was self­
c·ousistent, and possibly true of the actual world, mathematic·ians ~me 
interested in the de,·elopment of the t•om;equences flowing from other 
set.'! of axiom11 mo1-e or leti.'I re11emhling }~uclid's. HenL-e Rroi;e a large 
number of' Geometries, inconsistent, as a rule, with each other, but 
each internally self-consistent. The resemblance to Euclid required in 
a sugl,,J't.'llted set of axioms has gradually grown foss, and possible 
dcdm·tive syi;tems hRve been more and more investigated on their 
own acc>ount. In this way, Geometry has bet•ome (what it wa11 formerly 
mistakenly called) a branch of purt' mathematics, that is to sa.v, a suhja-t 
in which the ru;se11ions are that such and such consequence,; follow from 
11m·h and such premisses, not that entitiC!l such a.._ the premiHHl.-'S dl•scribe­
actually exist. That is to say, if Euclid'11 axiomi. be t·alk-d A, and P be 
an_v proprn1ition implit->d by A, then, in the Geometl)' which preceded 
Lobatchewsk_v, P itself would be userted, 11ince A was 1U1Kert('(l. But 
now-a-days, the geometer would only W1Sert that A impliei,; P, leaving 
A anrl P themi;elves doubtful. Ancl he would have other Met~ of axioms, 
A., A, ... iinplying P., P~ ... reNpectively: the impl~mJi,11111 would belong 
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to Geom()try, hut not A 1 or P1 or any of the other aetue.l aximm, and 
prop<>Hitions. 'J1m11 Geometry no longer throws any direct light on 
the nature of actual space. But indirectly, the increased ane.lysit1 and 
knowledge of po.,i.ibilitieis, resulting from modem Geometry, ha.ii thrown 
i1111nem1e light up<m our actual 11pace. Moreover it is now proved (what 
is fatal to the Kantian phil080phy) that every Geometry is rigidly 
deductive, and dcJCN uot employ any forms of reasoning but imch 11.8 

apply to Arithmetic and all other deductive science11. My aim, in what 
follows, will he to set forth first, in brief outlinC11, what is philosophically 
important in the deductions which constitute modem Geometry, a1\d 
then to prcx"l.'00 to those que11tion11, in the philosophy of spa<."t', upon which 
m11.the1111tti,·s thmws light. In the first i.e<·tion of this Part, though 
I shal1 he discm1siug Geometries a11 branches of pure mathematics, I 
shall 11efoct for dis("UH.-;ion only those whi,·h throw the most light either 
upon actual spa.<"e, or upon the nature of mathematil"al rc11.'lo11i11g. A 
treatitll' 011 non-Euclidean Geometry is neither ncces11ary nor dcsira.hll· in 
a general work sud1 as the pre11ent, and will therefore not. he found in 
the following chapten.. 

354. Geometry, we said, is the study of seriC11 which have more 
than one dimem1ion. It is now time to define dimensiom1, and to 
explain what is meant by a multiple iseric11. The rclevan<-e of our 
definition to Geometry will appear from the faet that the mere defini­
tion of dimem1ion11 leadi, to a duality closely analogou11 to that of 
projective Geometry. 

Let u11 begin with two dimensions. A series of two dimensions 
arist.'11 WI follows. Let there be some asymmetrical transitive relation P, 
whit:h ~nerates a series 111• Let e,·ery term of u1 be itself an asym­
metrieal transitive relation, which general~ a series. Let all the field 
of P form 11. simple !'!Cries of asymmetrical relations, and let each of these 
have a 11imple HCries of tern111 for its field. Then the class Uia of terms 
forming the field11 of all the relation11 in the series brenerated by P 
is a two-dimen11ional series. In other words, the total field of a cla11s 
of 11.11ymmetrical transitive relations forming a simple series is a double 
KCrieH. Hut instead of starting from the 11.Symmetrieal relation P, we 
may start from the tenns. Let thera be a cl&.IIS of tem1s tti,, of whil"h 
any given one (with poNSibly one ext.'eption) belongs to the field of one 
and only one of a L-ertain clus u1 of serial relations. That is if :r be a 
term of ,1,i, :r is also a tenn of the field of some relation of the dass u1 • 

Now further let u1 be a scrie11. '11,en u., will be a double 11Cries. This 
11eems to constitute the definition of two-dimensional 11eries. 

To obtain three dime1111ions, we ha,·e only to suppONC that flt it11C)f 
consisb of series, or of asymmL-trice.l transitive relations. Or, starting 
with the terms of the three.dimensional series, let any term of a certain 
class u, belong to one and only one series (again with one po.'lliible 
e:z:l.lL-ption, which may belong to many 11ericM) of a t-ertain dll.88 Uia• l..et 
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every term of tt,i be a term of some series belonE,ring to a clas.s !'·i of serieis, 
and let u, it-;e)f be a i-imple serie11. Then ,,, is a triplt> 11eries, or a se1;ei,; 
of three dimensions. Proceeding in this way, we obtain the definition 
of n dimensions, which may be given as follows: Let there be some 
series 7t1 whose terms are all themselves serial relations. If .r1 be any 
term of ui, and .t·~ any term of the field of ,l'i, let .r1 be again a serial 
relation, and so on. Proceeding to .x., .r., etc., lt•t .r,._u howe\'er 
obtained, be alway1-, n relation generating a simple series. Then all the 
terms .r11 belonging to the field of any serial relation ;rn-i, fonn an 
11-dimcnsional series. Or, to give the definition which start,, from the 
h-r1m,: Let u,. be a <'lass of lt!rms, any one of whi,·h, ;r,. say, belongs to 
the field of some serial relation, .r,._; say. whi,·h itself belongs to a 
definite class n,._, of serial relationi-.. Let each lt·rm .r,. in genei-al 
belong to the field of only one Neria) relation ,'.l'n-, (with exceptions 
which need not be discussed at present). Let "n-i lead to a new 
dass Un-• of serial relations, in exactly the way in whil'!1 1111 led to· 11,._ 1• 

Let this proceed until we reach a l'lass u1 , and let u1 be a simple series. 
Then u11 is a series of n dimensions. 

355. Uefore proeeeding further, ,-ome orn;ervationi-. on the above 
definitions ma_y be useful. lq the first place, we ha\"e ju!->t Sl't•n that 
nlternative definitiom; of dimensions suggest thl·mselves, which have a 
rdation analogom, to what is called duality in projedi\·e Geometry. 
How far thi~ anlllogy extends, is a 11ut..-stion which we cannot discuss 
until we have examined projective Geometry. In the second place, 
cvcrv series of II dimensions involves serit..'S of a11 smaller numbers of 
dim;nsions, but a series of ( n - 1) dimensions does not in b,eneral 
imply one of 11 dimensions. 111 the second form of the definition of n 
dimem,ions, the cla.~s 11,._ 1 is a series of (n -1) dimensions, and J.,,enerally, -
if m be less than 11, the class Un-m is a series of (n-11,) dimem1ions. 
And in th,· other method, all pO!ll!iblc terms Xn-i together form a series 
of (n -1) dimensions, and so on. In the third place, if n be finite, a 
l'ln.-.s which is 1m n-dimensional series is also a one-dimensional 11eriel'l. 
Thi:s may he established by the following rules: In the class lti, which 
i,. I\ simple series, pre11erve the order unchanged. In 11-,, keep the in­
krnal order of eaeh serie:s unchanged, and place that series before whid1 
l'Ollll'S before in 11 1, and that after which comes after in lt1. 'Thus u, is 
mnverted into a simple series. Apply now the same pr<K•ei,s to u3 , and 
so on. Then by mathematical indudion, if n be finite, or be any infinite 
ordinal number, Un CAD be converted into a simple series. This remark­
able f'act, which wai; di:,,eovered, for finite numbers and r.,, by Cantor•, 

• Vautor has proved, not ouly that a simple series can be eo fonned, but that, 
if n be not greater thau "'• and the constituent series all have the Mme canliual 
number, this i11 also the canlinal number of the re11ultant serie11: i.r. an ,t-tlime11Mio11al 
space b1111 the same cardinal number of points 8H a finite portion of a line. ~ 
.Acta Math. 11, p. 314 IF. 
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ha.'I I\ very important bearing on the foundations of Geometry. In 
the fourth plR.Ce, the definition of n dimensions can be extended to 
the <'Me where 11 is Ii>, the fi~t of the transfinite ordinals. For thi11 
purpoHC, it is only necessary to suppotie that, whatever finite number m 
Wl' may take, any ttm will belong to some simple serieii of series fl,n+•; 

11ml that the !letlllence of da.-1...eK of series 110 obtained obeys 11111thematica.l 
induction, and is therefore a progre,ision. Then the number of dimen-
11ion!I i11 Ii>. Thi~ ca.'IC h1ingi, out, what does not appear so clearly from 
the cQ.lle of a finite number of dimensions, that the number of dimensions 
ii,i an onlinal number. \ 

3158. There are very many wayl! of genera.ting multiple series, a.-. 
there a1-e of breneratiug simple series. The discussion of these various 
ways is not, howeve1·, of gt-eat importance, 11ince it would follow closely 
the di11euS11iou of Part IV, Chapter xx1v. lm,tances will meet us in the 
<'OUr!le of our examination of the various Geometries; and this exam­
im,tion wilJ give opportunities of testing our definition of dimen11ion:;. 
For the present, it is only important to observe that dimensions, like 
onler and continuit_y, are defined in purely abstract tenns, without any 
reference to actual :;pace. Thus when we say that space has three• 
dimensioni;, we a.re not merely attributing to it an idea which can 
only be obtained from 11pa<-e, but we are efl'ecti11g part of the actual 
loginil aualy11h1 of space. This will appear more clearly from the 
applicability of dimension11 to complex numbeni, to which we must 
now turn our attention. 

357. The theory of imaginaries WM formerly considered a very. 
important branch of mathematical philosophy, but it ha.,; lost its 
philosophical importam-e by ceasiitg to be controven,ial. The ex-
1u11inatio11 of ima1,,rina1·ics led, on the Continent, to the Theory of 
l◄'mll'tions-a subject which, in spite of its overwhelming mathematical 
importam-e, appeari. to have little inh~t-est for the philosopher. But 
among our11eh·e-. the same examination took a more abstract direction : 
it led to 1u1 examination of the principles of i.ymbolism, the formal 
lRws of addition and multiplication, and the general nature of a 
Calculus. Henc,-e aroi;e a freer 11pirit towards ordinary Algebra, and 
the possibility of re~rarding it (like ordinar_v Geometry) as one speciei; 
of R gcnm,. This wa.-1 the guiding spirit of Sir \Villiam Hamilton, 
De Mol'gl\n, ,le\"lms and Peirce-to whom, as regardi. the result, 
though not 11..-1 regards the motive, we must add Boole and Gra.-;smann. 
Hem-c the philosophy of imaginaries became merged in the far 
wider ancl more interesting problems of ( 1 ni ve1'Sl\l Albrehra •. These 
problems cannot, in my opinion, be.- dealt with by starting with 
the genus, and asking ou~lves: what /\re the es..;ential prindples of 
any Calculus? It is llL'CC!\sary to adopt a more inductive method, and 

• See Whitehead, U11irlf'r1<t1/ Algebra, C'amhridge, 1808; especially Hook I. 
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examine the ,·arious species one by one. The mathematical portion of 
this t.ask has been admirably perfom1ed by Mr Whitehead: the philo­
sophical portion i11 ~ttempted in the present work. 'l'he possibility of a 
dt.-ductive Universal Algebra is often based upon a suppoittd principle of 
the Permanence of }'orm. 'l'hus it ill Mid, fm· example, that <.-omplex 
numbers must, in ,irtue of thiH principle, obey the same law11 of addition 
and multiplit·ation. as real numbers obey. But RM a matter of fact there 
i11 no such principle. In Universal .Algebra, our i;ymbolll of operation, 
1mch as + and x, are variab)ei;, the hypothesi11 of any one Algebra being 
that th<-"!le 11ym bols obey certain p~ribed l'Uleii. In order that 1mch an 
Algebra should be important, it i11 ne<."t.'IIM&ry that there should be at 
least one instant-e in which the 11u~W ruleii of operation are verified. 
But e,·en this r<-"Btriction doc'!! not enable u11 to make any general formal 
statement llll to all p01111ible rufos of operation. The prin<·iple of the 
Permanence of Fonu, therefore, must be regarded as 11imply a mi11take : 
other opcration11 than arithmetical addition may have 11ome or all of ib 
formal properties, but operation11 can easily be suggested which lM·k some 
or all of these properties. 

368. Complex number11 fil'llt appeared in mathematics through tbe 
algebraical generalimtiou of number. The principle of this generalim­
tion is the following: Gh·en some dll88 of numbers, it is required that 
numbers should be di1.«.-overcd or invented which will render soluble any 
<-'<)uation in one variable, whose 1-oeflicient. .. are chosen from the said 
cla.'18 of numbel"ll. Starting with posith·e integers, this method leads 
at on<.-e, by meam1 of simple equations alone, to all rational numbers 
pu..~itive and negative. F.quatiom1 of finite degrees will give all the 
M>-calk-d algebraic.· numberi,, but to obtain trar111t-endent numbers, such 
a. .. e and ,r, we need et1uatiom1 whi<'h are not of any finite degree. In 
this respel't, the algebraical b'enerali,.ation is ,·ery inferior to tlu.! arith­
metical, sinl.'e the latter gh·es all irrational11 by a uniform method, 
where.as the fonucr, strictly 11peaking, wilJ ~,fre only the alb,ebraic 
numbers. But with regard to l."Omplex numbers, the matter is other­
wise. No arithmetical problem leadR to these, and they are wholly 
incapable of arithmetical definition. But the attempt to soh·e such 
equationH &.'j zS + 1 ... 0, or ,J!J + :r + 1 = O, at on1-e demands a new clas,i 
of numbel'M, since, in the whole domain of real numbers, none can be 
found to satilify these equatiom1. To meet such CBll(.'11, the algebraical 
generali1.ation defined new numbel'II by means of the equatiom1 whOHC 
roots they were. It showed that, llllBUming the11e new numberR to obey 
the usual laws of multiplieation, ea.eh of them fell into two parts, one 
real, the other the product of MOme real number and a fixed number of 
the new kind. Thi11 tixetl number could be t·hosen arbitrarilv, and w1111 
always taken to be one of the 11(1uare roots of -1. Numbers thus 
t.-olllpoi,;ed of two parts were called complex nmnbel'II, and it was shown 
that no algebmit• operation upon them t•ould I~ to any new clSIIII of 

Downloaded from https://www.holybooks.com



878 Space [ CHAP, Xl,IV 

numbers. What iK still more remfLrka.ble, it w&11 proved that any further 
genenuization must lead to numbel'K diRObeying some of the fomu1.l laws 
of Arithmetic•. ·Uut the algcbraiCfLl J.,'Cnerali1.ation was wholly unable 
(11.11 it wa..;, in truth, at every previous stage) to prove that there l\re 
such entitic.o,; as those which it postulated. l.f the HB.id t.'<Juatiom1 have 
1·oobl, then the roobl have such and such properties; this is all that 
the albrcbrttieal method allows us to infer. There is, however, no law 
of' nature to the effect that e,·ery equation mit.d have a root ;1 on 
the contrary, it i11 <1uite essential to he able to point out fL<'lual 
entities which do lui.ve the pmpertics dl'ma.nded h.v the 11.lgebr11.,t·al 
generali1.ation. ', 

369. The discovery of stll'h t•ntitics is only to he obtained by 
means of the theory of' dimensions. ( )rdiuary t·omplex numlx•rs fonn 
a series of two dimensions of' a <--crtain type, which happen to <K:cur 11.11 

roots of equatiom, in which the eocffit·ients are real. Complex numht•rs 
of 11. higher order repre11ent a certain type of' 11-dimensioual series, hut 
here there is no algebraical pn1blem concerning real numheri,; which they 
are rec1uired to soh·e. As a matter of fa.et, however, thl' algebminJ 
gener11.li1.ation, 8.H we have K(,'Cn, does not tl'll us what our new cntitit.'8 
a.re, nor whether they a.re entitiei. 11.t all : moreo\"cr it encollragt'l'I the 
erroneoui,; view that t·omplex nmnbers whoKC imaginary part vani!iheM 
are real numbers. This ermr is analogous to that of supposing that 
some real numbers arc r11.lion11.l, some rationals integral, and positive 
integers identfoal with signless integers. All the above crror!i ha,·ing 
been exposed at lenJ.,rth, the reader will probably be willing to admit 
the corresponding error in the present ca...e. No complex number, then, 
is a real number, but ea.eh is a term in some multiple scriL•s. It is not 
worth whifo to examine !ipecially the usual two-dimen!iional complex 
numbers, whOHC claims, 11.,,; we ha,·e sl-cn, are purely tec:hnit·al. I shall 
therefore p1-oct.-cd at once to systems with n unit.-;. I !ihall hrive first the 
m1ual purely formal definition+, then the logit·al objtictioui,; to thi11 
definition, and then the definition whil·h I propose to ,mbKtitute. 

Let 1t different entitie11, t'i, e0 ...... e,., whit-h we may call elcmentK 
or units, be given ; and let each be <"Bpahle of a.'ll!Ociation with any real 
nnmber, or, in 11pecial l'8.'lell, with any rational or any integer. In this 
wn.y let entitie!i a,er ariMC, where ct., is a number, nnd a,r, <liffcni from a~. 
unless r =.,and err= r,.1 • That is, it' either the numerical or the non­
numerical parts of a.,e, and cr,,e. he different, then the whok"' are different. 
Further, Jet there he a way of t'Ombining ct1f'u ¥ 2 , ••• , a,ae,., for l'ach 
Net of value11 !ll1 , a0 ••• fin, to form 11. new entit~-- (The da.'111 who.,;e 
memben. are ~,en ¥u ... ctne,. will be smih an cntit~·.) Then the <·11111-

bination, whit·h may he written 11.s 
a= a,e, + ase~ + a,h + ... + et,,e ,u 

* See 8tolr&, .dllgmtei11f' Arithmt'tilr, 11, Section I, § 10. 
t !.<lee Stol•, ihitl. 11, ~ion 1, § !I. 
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il'I a complex number of the 11th onler. The an·angcment of the 
component ter11111 «1eu ¥u . .. cr,.e,. may or may not be essential to 
the definition; but the only thing alwayR eSHential is, that the com­
bination Rhould be such that a differen<.-e in any one or more of the 
numbel'!I 111, llu • • • cz,. insures a differen<.-e in the re1111lting complex 
number. 

360. The above definition 1mffe1'!, from the defect that it doeii not 
point out any one entity which ii; tl,e l'Omplex number defined by a 11et 
of real numhel'II. Given two real numhel'S, tt, b, the two l'omplex numbel'!I 
a+ i/J, b + ia are determinate ; anrl it is de11irRble that sueh determinate­
ne1111 11hould appear in the breneral definition of <.'Omplex 11umber11 of any 
order. But the e\, in the Rbove d~finition Rre variable11, and the 
sum,rested l'Omplex number is only detem1inate when the ,·'s are 11:pel'ilied 
a,; well as the 11's. Where, ai. in metrical Gt.'Ometry or in the Dynami<."K 
of a finite system of partides, the1-e are important mellninwi fo; the e's, 
we may find that complex numbers in the abo\"e scnst' are important. 
Hut no i.pel·ial inte1·p1-ctation l'an give 11s tl,e l'Dmplex number &."l!lociafod 
with a gh·en set of real numl:x."!'S. \\Tc might take ru, the complex 
number the da.~s of all ,mch entities a., tilt' abo,·e for nil possible valueR 
of the e's; but i,,m•h a class would be too general to ~en·e our purpoHCll. 
A better method seems to be the following. 

We wish a l'omplex number of the 11th order to be spedfic.'<l by the 
enume1"Rtion of' 11 real numbers in a l't'rlain onler, i.e. b\' the numbers «u 
cz., ... 11,., where tht' order i11 indicated by the ,mflix.' nut we cannot 
define a complex number a.-i a seruw of II real numbers, because the same 
real number may recur, i.e. 11,, and er, need not be different whenever r 
and II arc different. Thu11 what define11 a real number is a one-many 
relation whoi1e domain coni;ii1t,; of real numbel'!I and whOMe convel'Me 
domain <.'t11111i11ti; of the first " intehrcrs (or, in the ea~ of a complex 
number of infinite order, of all Ute integers); for the KUffix in ex,. indicates 
correlation with the intebrer 1·. ~uch one-many relations may he defined 
to l,e the complex numbers, and in thi11 way a pure)~· arithmetic•al defi­
nition is obtained. The 11-dimensional 11eril'II of complex numben; of 
order " r<.'llult.-; fnnn arranging all complex numbe1-s which differ only 
1111 to (say) a,. in the onler of the 1-eal numbers whil·h are a,. in the 
various CIISCII. 

In onler that complex mnubeni in the 11Cnse defined by 8tolx should 
have any importanc.-e, there mu11t he HOme moth·e for c.·01111ideri11g 
11a111emhlftbres of ~r11111 HClcctell out of continua. Suc·h a motive exi11bl 
in a metrical spac.-c of II dimensions. owing to a i;i1'l'llmHtancc which i11 
eRHelltial to the utility, though not to the definition, of complex 
numbcni. Let a collection of entitie, (poinbi) be gi\"ell, each of which 
1"1811 to each of the entitie11 t'1 , e., ... ,.,. a m1mcricallv mca.,;u1·able relation 
(distance), and let each be uniquely defined by th~ 11 1-elati11n11 which it 
has to eu e0 ... e,.. Then the t'pmplex number tJ will 1-epre11Cnt one of 

Downloaded from https://www.holybooks.com



380 Space [OW.P, XLIV 

this collection of entities, and the elements eu ft, ... e,. will themselves 
be t.erms of the collection•. 'Thus there is a motive for considering the 
numbers a, which in the general case i11 practically absent+. But what 
is essential to observe, and what applies equally to the usual complex 
numbers of Algebra, is this : our numbers are not purely arithmetial, 
but involve essential reference to a plurality of dimensions. Thu.11 we 
have definitely passed beyond the domain of Arithmetic, and this w~ 
my reason for postponing the consideration of complex numbel'II tf thi11 
late stage. 

* 111 is not identical with l x 111 + 0 11 e2 + . . .. The former is a point, the lat~r a 
complex number. 

t Ju geometrical applications, it is ullual to consider only the ratio, a1 : as : ... : a,. 
u relevant. In this case, our aeries has only (11 -1) dimensions. 
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CHAPTER XLV. 

PROJECTIVE GEOMETRY. 

361. THE foundations of Geometry have been subjected, in recent 
times, to a threefold scrutiny. First came the work of the non­
Euclideans, which showed that various axioms, long known to be 
,mfficient for certain result.Ii, were also necessary, i.e. that results in­
co1111istent with the usual results but consistent with each other followed 
from the denial of those axioms. Next came the work of Dedekind 
and Cantor on the. nature of continuity, which showed the necesaity 
of investigating carefully the prerequisites of analytical Geometry. 
Lastly, a great change has been introduced by the Italian work on 
closed series, mentioned in Part IV., in virtue of which we are able, 
given a certain type of relation between .four points of a line, to 
introduce an onler of all the points of a line. The work of the 
non-Euclideans has, by this time, produced probably almost all the 
modifications that it is likely to produce in the foundations, while 
the work of Dedekind and Cantor only becomes relevant at a fairly 
advanced stage of Geometry. The work on closed series, on the contrary, 
being very recent, has not yet been universally recogniR<l, although, as 
we shall see in the present chapter, it has enormously increased the 
range of pure projective Geometry. 

382. In the discussions of the present Part, I shall not divide 
Geometries, as a rule, into Euclidean, hyperbolic, elliptic, and 80 on, 
though I shall of course recognize this division and mention it whenever 
it is relevant. But this is not 80 fundamental a division as another, 
which applies, generally speaking, "·itbin each of the above kinds of 
Geometry, and corresponds to a greater logical difference. The above 
kinds differ, not in respect of the indefinables with which we 111:art, 
nor yet in respect of the majority of the axioms, but only in respect 
of comparatively few and late axioms. The three kinds which I wish 
to diSCWlll differ both in respect of the indefinables and in respect of the 
axioms, but unlike the three previollll kinds, they are, roughly speaking, 
mutually compatible. That is to say, given a certain body of geo­
metrical propositions concerning a certain numbe! of entitiee, it is more 
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or less arbitrary which of the entities we take as indefinable and which 
of the propositions a.CJ indemonstrable. But the logical differen<.-es which 
result from different selections are very great, and the systeins of de­
du<.-tionK to which different seledions lead mm1t he separately discussed. 

All Geometries, as commonly developed, agree in starting with 
points as indefinables. That is, there i11 a certain da8S-<.-oncept point 
(which need not be the same in different Geometries), of which we 
a.<isume that there are at lea.-1t two, or thl't"C, or four instances, according 
to circumstance11. :Further instances, i.r. further points, result f~m 
special wisumptious in the various cases. \Vhere the three great types 
of Geometry begin to diverge iii as regard11 the straight line. Pmjet-tipe 
Geometry begins with the whole straight line, i.r. it asserts that aro­
two points determine a certain class of' points which is also determined 
by any two other members of the da.~11. If thiK cla. .. s he regank-d as 
determined in virtue of 11. relation betwt..>en the two points, then this 
relation i11 symmetrical. What I shall ,·all /)e.wriptille Geometry, on 
the contrary, begins with an a.<iymmetrical relation, or a line with sense, 
which may be called a ray ; or again it may begin by regarding two 
points as determining the 11trekh of points between them. Metrical 
Geometry, finally, takes the straight line in either of the above sen!leS, 
and adds either a second relation between any two points, namt>ly 
distance, which i11 a magnitude, or else the mnsideration of 11tr-etches 
11.11 magnitudes. Thm; in regard to the relations of two points, the 
three kinds of Geometry take different indefinables, and have cor­
responding difterem-es of axioms. Any one of the three, by a 11uitable 
choice of axioms, will lead to any n.-quired Budiclean or non-Euclidean 
11pace ; but the first, as we 11hall 11ee, is not ea.pa.hie of yielding as many 
propositions as rt•11ult from the se<-ond or the third. In the present 
chapter, I 11.m going to assume that set of axioms whi,·h gives the 
simplest form of proj<.'<:tive G<.•ometry; and I shall call any collection 
of entities 11atisfying the11e axioms a prqjectitie space. We shall see in 
the nnt chaptel" how to obtain a 11et of entities forming a projective 
•11pa.<."t! from a 11et forming a Euclidean or hyperbolic space ; projl."Ctive 
space itself is, so far a.s it goes, indistingui11hable from the polar form 
of elliptic space. It is dl'fined, like all mathematical entities, solely by 
the formal nature of the relations between its constituents, not by what 
those constituent.N arc in themselveN. Thus we shall Kee in the foilowing 
chapter that the " points., of a projt>Cfo·e space may ea<.·h be an infinite 
.('}ass of 11b-aight lines in a non-proj<.'<--tive 11pat,-e. So long tu1 the 
"points" have the J"l.'qUisite type of mutual relations, the definition 
i11 satisfil.>d. 

363. Projective Geometry a,,sum<..-'!I a class of entities, called pointa, 
to which it a.ssibrns <.-crtain properties•. In the first place, there arc to 

* ha what follows, l am mainly indebted to Pieri, I Pri,u:ipii delltt flfJMMtria di 
PairbiORfl. Turin, Ul98. This is, i11 my opinion, the best work on the preaent 
1ubject. 
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be at le&!lt two different points, a and b say. These two points are 
to determine a certain class of points, their straight line, which we 
will call al~. '!'his class is determined by band a, as well as by a. and b, 
i..e. there is no order of a and b invoked; moreover a (and therefore b) 
is itself a member of the class. Further, the class contains at least 
one point other than a and b ; if c be any such point, then b belongs to 
the class tu:, and every point of ac belongs to ab. With these a.,;sump­
t~ons it follows• that, if c, d bt• any points of ah, then cd and ab 
coirwide-i.e. any two points of a line determine that line, or two lines 
coincide if they have two points in common. 

Before proc-eeding further, let us consider for a moment what is 
meant by saying that two poinb! dl'termine a cla..'lS of points. This 
expression is often thought to require no explanation, hut as a matter 
of fact it is not a perfectly preei~c statement. The prec:ise statement 
of what is meant is this: There is a certain definite relation (K say) 
which holds hetween any couple of points and one and only one cor­
responding cla.-.s of points. ,vithout some such definite relation, there 
could he no question of two points determining a cla.'ls. The relation K 
may be ultimate and indefinable, in which ca.,;e we need the above 
properties of the class ab. We may obtain, however, a derivative 
relation between two points, b and r say, namely that of being both 
collinear with a given point a. Thii. relation will be transitive and 
s~·mmetrical, but will always involve reference to a term other than 
those (b and c) which are its terms. This suggests, as a simplification, 
that instead of a relation K between a couple of points and a class 
of points, we might have a relation R between the two points a and b. 
If R be a symmetrical aliorelative, transitive so far as its being an 
aliorelative will permit (i.e. if aRb and bRc imply a.Re, unless ti and c 
are identical), the above properties of the straight line will belong 
to the class of terms having to a the relation R together with a itself. 
This view seems simpler than the former, and leads to the same rt?sults. 
Since the view that the straight line is derived from a relation of two 
points is the simpler, I shall in general adopt it. Any two points a, 
b have, then, a relation Rab; a, ,. have a relation Rae• If Rab and R,,,,, 
are identical, while b and c differ, R,., is identical with both Ra6 and 
R,io; if not, not. It is to be observed that the formal properties of any 
such relation R are those belonging to the disjunction of an asym­
metrical transitive relation and its converse-e.g. greater or less, before 
or after, etc. These are all symmetrical aliorelatives, and are transitive so 
far as their being aliorelatives will permit. But not all relations of the 
type in question are analyzable into a transitive asymmetrical relation 
or its converse; for diversity, which is of the above type, is not so 
analyzable. Hence to assume that the straight line can be generated 

* Pieri, op. cit. § 1, prop. 26. 
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by an asymmetrical relation and its converse ia a• new aaaumption, 
characteristic· of what I shall call Descriptive Geometry. For the 
preaent, such an 88&umption would be out of plac:e. We have, then, 
two indefinables, namely point, and the relation R or x•. No others 
are required in projective apace. 

386. 'l"he next point is the definition of the plane. It is one of 
the merits of projective space that, unlike oth~r spaces, it allows a very 
simple and ea,.y definition of the plane. For this purpose, we n~ 
a new axiom, namely : If a, b be two distinct points, there is at l~t 
one point not belonging to ab. Let this be c. Then the plane is t11e 
class of points lying on any line determined by c and any point z of 4b. 
That is, if :r be any point of ab, and y any point of c:r, then y is a point 
of the plane cab ; and if y be a point of the plane cab, then there is 
some point z in ab such that y is a point of c:r. It is to be observed 
that this definition will not apply to the Euclidean or hyperbolic plane, 
since in these two line11 may fail to intersect. 'l"he excl1111ion of Euclidean 
and hyperbolic space results from the following axiomt: "If a, b, c be 
three non-collinear points, and a' be a point of be other than b and c, 
b' a point of ac other than a and c, then there is a point common to na' 
and bll."' By means of this axiom we can prove that the plane cab is 
the same as the plane abc or bac, and generally that, if d, e,f be any 
three non-collinear points of abc, the plane dif coincides with the plane 
abc; we l"&n also show that an,• two lines in a plane intersect. 

3815. We can now proceed to the harmonic range and von Staudt\1 
quadrilatt..'1"8.l construction. Given three collinear points a, b, c take any 
two points u, v l-ollinear with c but not on ab. Construct the point.,; of 
intersection au . bv and av . m, ; join these points, and let the line 
joining them meet ab in d. This construction is called the quadrilateral 
construction. If we now as,mme that outside the plane abu there is at 
least one point, we can prove that the point d is independent of u and v, 
and is uniquely determined by a, b, c. The point d is called the 
harmonic of e with respect to a and b, and the four points are said to 
form a harmonic range. The uniquenell'li of the above constru<--tion­
the proof of which, it should be observed, requires a point not in the 
plane of the constructionll-is the fundamental proposition of projective 
Geometry. It gives a relation which may hold between four points of a 
line, and which, when two are given, is one-one as regards the other 

• We llhall see in Chap. xr.ix that theae notiona, which are here provisionally 
undefined, are themaelvea variable members of defi11ahle clueea. 

t Pieri, op. eit, § 3, p. D. 
! The proof of the uniquen .. of the quadrilateral eonlltruction ,rill be found in 

any tut-book of Projective Geometry, e.g. in Cn,mona's (Oxford 1800), Chap. vru. 
II A proof that this proposition requires three dimensions is easily derivable from 

a theorem given by Hilbert, Grundla,- d.n- ~, p. 61 (Gaua-Weber Feat­
achrift, Leipzig, 1890). 
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two. Denoting "(' and d are harmonic with respect to a and 6" by 
t'HaJP, the following properties of the relation are important: (1) cH..,I 
implies dHalf:, i.e. H,.,, is symmE'trit'al; (i) cHarP implies aH«/1, i.e. 
the relation of the pairs ab, cd is symmetriC"Al; (8) L'HolP implies that 
c and d are different points, i.e. H,.,, is an a.liorelath·e. This last 
property is independent of the others, and has to be introduced by an 
axiom•. 

Having obtained the harmonic range, we may pnx.-ced in two 
clifferent directioni,;. ,v e may regard the harmonic relation as a re­
lation of two pa.in of points : hence, by keeping one of the pairs fixed, 
we obtain what ii,; called an involution. Or we may regard the harmonic 
relation, as in the symbol c·H.,,J,, as a relation betwet:n two poinb, 
which in\'ol\'eR a reference to two othel'll. In this way, regarding a, b, c·, 
1u1 fixed, we obtain thrt.-e new points d, e, f on the line ab by the 
relations cH.,/1, aH,,,e, bHa,f Each of the11e may be used, with two 
of the previom1 point", to determine a fourth point, and so on. I'hi.., 
leads to what Mi>biust ca1ls a net, and fom1s the method by which 
Klein! introdm.-es projective L'OOrdinate11. 'fhis c·onstruction gives also 
the method of defining an harmonit· ratio. These two directions in 
which projective Geometry may be developed must be separately pursued 
to begin with. I shall take the former first. 

366. By means of the harmonic relation, we define an invol,ctiort. 
'l"his com1ists of all pail"II of points which are harmonic conjugates with 
l'ellpect to two fixed pointsll. 'l.'hat is to MY, if a, b be the two fixed 
points, an involution is composed of all pairs of points :r, .'I such that 
:rH,.,,y. If four points :r, y, :r', y' be given, it may or may not happen 
that there exist two points a, b such that :rH,.,,y and .r' H,.,,_y'. 'The 
possibility of finding such points a, b constitutd a certain relation of 
:r, y to :r', y'. It is plain that this relation sometimes holds, for it 
holds when :c, y are respectively identical with 31, y·. It is plain also 
that it sometimes does not hold; for if :randy be identical, but not Ill 
and y', then the relation is impoBBible. Pieri§ has shown how, by means 
of certain axioms, this relation of four terms may be used to divide the 
11traight line into two segments_ with respect to any two of its points, 
and to generate an order_ of all the poinb on a line. (It must be home 

• See Jo'ano, Giornale di JlatimaticAe, Vol. 30; Pieri, op. cit. § 4, p. 17 ancl 
Appendix. J,'ano has proved the necessity of the above axiom iu the only conclDBive 
manner, by constructing a ll)'Btem •ti&fying all the previou■ axiom,, but not thhl 
one. The diacovery of its nece1111ity ia due to him. A simpler but equivalent axiom is 
that our spaee contain• at least one line on which there are more than three points. 

t Ba,yoentrvclta- Cakul, Section 11, Chap. VJ. 

t Jlath. .Anntillm, 4, 6, 7, :r;; Vorluun,e11 iihr nicAt-Buklidiat:Ae Geom.et,;,,, 
C'.ottingen, 189-'J, Vol. 1, p. 308 ft'. 

II In what follows, only involutions with real double pointll are i.ta question. 
§ Op. cit. §§ 6, 6, 7. Pieri'• method wu preiiumably auggaate4 by von Staudt 

(,'f. G«mlarie • Lage, § 16: eapecially No. 216. 
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in mind that, in proje<.-tive ~metry, the pointR of a line do not 
have an 01-der to begin with.) This projective order is obtained M 

followt1. 
387. Given any three different point,; a, b, r on a line, consider the 

cla.'111 of point,; ;i,• such that a and,., band a: are each harmonic L'Onjugates 
with respect to some pair of' points y, y'-in other words, a and ,:, 
b and :c are pairs in an involution wh08l' double point'! are y, .,/. Here 
y, y' are supposed variable: that is, if any such points can be found, 
,r is to oolon~ to the cla.'ls comiiclered. Thit1 class contains the point b, 
but not a or t·. Let us call it the Hegment (,Jx:). Let us denote t~e 
relation of b to .r (a and ,. being fixL-d) by bQ,u3:. Then Q,.,, is syn\­
metrical, and also bQ,.,,:r implil'II aQb:,,£". We have here a relation of 
four points, fnm1 which, 11.'I we Haw in Part IV, Chapter xxrv, an order, 
will result if t-ertain further axioms are fulfilled. Three such axioms are 
requii'l-d, and are given by Pieri &.'I follows. 

(1) If dis on the line tib, hut does not belong to the segment (alx·), 
and does not coincide with a or with ,., then d must belong to the 
Heg111ent (bca). (If tl coincides with ,., we know already that d belongs 
to the segment (bca). This case i11 therefore excluded from the axiom 
to avoid a superfluity of assumptions.) In virtue of this axiom, if a, 
b, c, d be distinct points on a line, we must have either bQ,.,,d or t·Q,.,,d. 
It follows that we must have either bCJa,µ or aQ,,,µ. Thus a.t least two 
Q-relations hold between any four distinct collinear point'I. (!) If 
a, b, c be dititinct collinear points, and d be a point belonging to both 
the segment,; (bca) and (cab), then d cannot belong to the segment (abc). 
That is, of the three segments to which d may belong, it never belongs 
to more than two. From this and the previous axiom it result., that, if 
d he distinct from a, b and ,., then d belongs to two and only two of 
the three segment., defined by a, b and c. (S) If a, b, c be dit1tinct 
collinear points, and d a point, other than b, of the segment (abc), and 
e a point of the segment {atlc), then e i11 a point of the 11egment (abt:). 
(Here again, the condition that dis to be other than bis required only 
to avuid superfluity, not for the truth of the axiom.) In terms uf Q, 
this axiom states that bQ,,,µ and dQ,.,1: imply bQ,.,1:; that is, Q'" i11 
transitive. W c sa.w already that Q,,c is symmetrical. We can now 
pr<>ve that, by means of thi11 relation, all points of the line except a 
and r. are divided into two cla.'ISeS, which we may call (ac)1 and (ac)1 • 

Any two points in the Kame c·lass have the relation Q°"' any two in 
different clBIISCS have not. The divisiun into two classes ret1ult11 from 
the fact that, if we do not have bQJJ,, nor yet dQ,.,1: (b, d, e being points 
other than a and c), then we do have bQJ. That is to say, Q,.,, haH 
the formal properties of sameneii.'I of sign, and divides the line into 
two classes, just aH sameness of sign divides numbers into positive and 
negative. 

The opposite of Q,u, which I shall denote by T00 corresponds in like 
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manner to diff'erencti of Mign. T.0 is not to denote the mere negation 
of Q.,,, hut the fad of helonbriug to different 11egments. That is, bT ,Jl 
meanM that d doc11 not c..-uincide with a or c·, that cl lies in the Jine at', 

but not in the segment (ltbc·). Then bT0 ,d may he taken 1111 meaning 
that b and cl arc 11Cparatt-d by a and ,.. It i11 a relation whit·h hM the 
formal propcrtie11 of 11eparation of ,•ouples, as enumerated in Part IV, 
Chapter xx1v. If "• b, ,·, tl, e be fin! clist.itll't points in one straight line, 
we have the following properties of the 1'-relation. ( 1) b1',..d is 
<-'<Juiv11.lent to dTa,l,, a1'bd,·, cTIHJlr, cTdl/1, ck. (2) \Vl• have one and 
only one of the three relations t11'i,,1l, aTl,d(,·, ll1'.,,b. (3) dT ,,,,b implies 
d1'.,e or eT ,.,,b•. 

By comparing thc abo\·e propertit.'ll of T with those of separation 
of couples, it will he SCl'n that T foads to,, closed series (in the Mense of 
Part IV), i.e. to a series in whieh there i11 a finit term, hut thiM fil'llt 
te1·m is arbitrary. The definition of the brenerating relation of the 
21eries (whirh involves, as in the general e.a.'le, three fixed points) is 
given hy Pieri w,; follow11. With regard to the natuml order ahc, a 
pl"l.•cedes every other point of the line ; ,. precetlt."11 every point d not 
belonging to (t1bt:) and not coinl'iding with a or c, i.e. every point ,l 
such th11t dT0 ,b; a genernl point d precc..-dL-s a gerll'ral point e if dQ.,,b 
and eQ11,1c, or if d1'a.,}J and eT a,1c, i.e. if d belongs to the Hegment (abc) 
and e to the segment (Q,l'd), or if b and d are separated by a and,., and 
likewise ,. and e by ,i and d. It is then 11hown, that of any two points 
of the line, one preet.•des the other, and that the relation is transitive 
and asymmeb;cal ; hence all the points of the line tlC(JUil'l' an Ol'der. 

Having now obtained an order among our poinh, we can introduce 
an axiom of continuity, to which Pierit gives a form analogous to that 
of l>edckind'11 axiom, namely: If any 11egment (abc) be divided into 
two parts k and k, 11m·h that, with regard to the order alx·, every 
point of' h prL'<'edc11 every point of k, while It and k ea<·h contain at 
lea11t one point, then there must be in (a/x·) at le&11t one point x 11nch 
that every point of (a/x·) which prec..-ed.CK J.' belonb'll to It, and every point 
o( (abc) whil"h follows .r belongs to k. It follow11 from this axiom that 
e,·ery infinite dass contained in (ab<') and having no last (or fil'Nt) term 
hM a limit, which is either a point of (alx·) or r (or a); and it is ea.'ly to 
prove that, when /, and k arc given, there c.an be only one 11ul·h point as 
.r in the axiom. 

Hy means of the projccth·e segment, it iM ea.'ly to define trianglcs and 
tetrahedra. Thl'ee points dett•rmine four triangle11, which between them 

* 'lnis last property affords an instance (almORt the only one known to me) 
where Peirce'& relative addition OCCUl'II outside the Algebra of ltelativea. "dT,.,,e or 
eT,.Ji" is the relative 11um of T •• aud r .. , if d, e, and I, be variable. Thi11 property 
result.II formally from reganling Ta, HS the negation of the transitive relation Q...,. 

t <Jp. dt. § 9, p. 7, ' 
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contain all the points of the plane, and have no common points except 
the angles. AlllO we t'&n define harmonic tra.n11formation11, and pro,·e 
their properties without any further 11.xiom•. Only one other axiom 
is required to complete our Geometr)", namely : A plane and a line not 
in the plane alway11 have a common point. Thi11 amounts to the axiom 
of three dimensions. Nothing i11 altered, in what precedes, by denying 
it, and proceeding to a 11pace of 1t dimensions or of an infinite number 
of dimensiom1. Thi11 last, in fact, requires fewer axioms than a spa.Je of 
three dimem,ionst. \ 

388. Let us now resume the other direction in which proj~ive 
Geometry may he dcwloped, in which we start from three fixed points 
on a line, and examine all the points obtainable from these three by 
l!Ul"<'ef!Hive quadrilateral mn11tructiom1. We do not here, as in the 
development we have been examining, n.'<JUire any new axiom. but 
there iK a corresponding restriction in the re11ults obtainable. In order 
to give projective Geometry it11 fullei;t poi;i;;ible development we must 
combine the re,mlts of both directions. 

Confining oul'lleh·es, to begin with, to one straight line, let U8 lll'e 

how to construd; a net and introdm,-e projective coordinates. Denoting 
by aH,Jl, 811 before, the proposition "a and d are ham10nic conjugates 
with respect to band c,"" we can, by the quadrilateral construction, when 
a, b, c are given, determine the only point d 11ati11fying this proposition. 
We next construct the point e for which bHJ, thenffor which dH..f, 
g for which eH41g, and so on. In this way we obtain a progression of 
points on our line, such that any three consecutive points, together with 
c, form a harmonic range. With our former definition of a segment, 
all these points will belong to the segments (abc) and (bca). We may 
number these points, beginning with a, O, I, 2, .•. , n, . . . . Since c 
does not belong to the progression, we may assign to it the number 00 t. 
Consider next the points obtained as follows. Let d' be such that 
d'HaJI:, let e'H,111:b,f'H,,,."l', and 80 on. We have thUB a new progres.'lion 
of points, such that any three consecutive points together with a form 
a harmonic range, and all belonging to the segments (abc), {cab). To 
these points let us assign the numbers 1/n in order. Similarly we can 
construct a progression belonging to the two segments (cab), (lN:a), and 
&1111ign to them the negative integers. By proceeding in a similar 
manner with any triad of points 80 obtained, we can obtain more and 
more points. '.rhe principle adopted in 1111Signing numbers to points 
(a principle which, from our present standpoint, has no motive save 

• Theee developments will be found in Pieri, lac. cit. §§ 8, 10. 
t Pieri, § 12. 
i We muat not ll8Bigri to c the definite number .. , since we cannot aaume, without 

further axioms, that c i■ the limit of our progn■aioo. Indeed, ao long as we exclude 
Pieri'■ three axioma above mentioned, we do not know, to begin with, that c hu auy 
orclioal relation to the term■ of our progrea■ioo. 
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convenienc,e) is the following: if p, q, 1· be the numbers &M..'ligned to 
three points already constructed, and II be the number to be assigned 
to the harmonic conjugate (supposed not previously constructed) of the 
q-point with respect to the p-point and the ,·-point, then we are to 

p-q 'p-11 have --/--- = - 1. In this manner, we can find one and onlv one 
r-qi r-11 -

point of our line for each rational number, posith·e or negative•. 
'l'hus we obtain a denumerable endless l'ompact series of points on 
our line. Whether these are all the points of our line or not, we 
cannot decidt- without a further axiom. If om· line is to be a con­
tinuous series, or a collection of the power of the continuum, we must 
of course assume points not obtainable by quadrilateral constructiom1, 
however often repeated, which start with three given elements. But 
as the definition of our space is optional, we may, if we like, <;ontent 
ourselves with a rational space, and introduce an axiom to the effa·t 
that all points of om· line can be obtained from three given points. 

369. Before proceeding further, it may be well to point out a 
logieal error, which is very apt to be committt.ad, and has been <-'Om­
mitted, I think, e,·cn by Klein t. So long as Pieri's three axioms abo\'e 
enumerated are not assumoo, our points have no order but that which 
results from the net, whoMC construction has just been explained. Hence 
only rational points (i.e. such as, starting from three given points, have 
rational c·oordinates) can have an order at all. If there be any other 
points, there can be no sense in which these can be limits of serie11 of 
rational points, nor any reason for M'ligning irrational coordinates to 
them. For a limit and the series which it limit'I mm1t both belong 
to some one series; but in this case, the rational points form the whole 
of the series. Hence other points (if there be any) cannot be assigned 
a.., limits of series of rational points. The notion that this can be done 
springii 1nerely from the habit of assuming that all the points of a line 
form a series, without explicitly stating thi!! or its equivalent 1111 an 
axiom. Indeed, jufolt a .. , we found that series of rationals properly ha,re 
no limit except when they happen to have a rational limit, so serieH 
of points obtainable by the quadrilateral construction will not have 
limits, qua terms of the se1ies obtained from the quadrilateral con­
struction, except where they happen to have a limit within this series, 
i.e. when their coordinates have a rational limit. At this point, there­
fore, it ill highly desirable to introduce Pieri's three axioms, in virtue of 
which all the points of a line have an order. We lihall find that, in 
the natural order cab, the order of the rational points, resulting from 
Pieri's axioms, is the same as that of their coordinates assigned on the 

• On this subjel.'t., 11ee Klein, rorleltu,ige,, iil,er nicht-J:ukfidi•ilw Gtl0,ru,irl11, 
p. 338 ff., where proofs "'ill be found. 

t e.,. Up. cit. p. 344. 
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above principle•. Thui; we have only to 8!1Sume that all infinite serieK 
of rational points ha\·e limits, as parbi of Pieri's 11eries, add that all 
points are either· rational or limits of rational !!eries, in order to show 
that our straight line has continuity in Cantor'i. 11en11e. In this case we 
shall a&'lign to non-rational point, the irrational numbers corresponding 
to the series which such pointi. limit. 

370. Returning now to the c1uadrilateral construction, we define as 
the ,mlmrmonu: ratio of four points whose coordinat~ are p, q, r, 11 

the number P =-.!i.../P - ·9 • It can be shown that this number is in- . 
r-q r-a \ 

dependent of the choice of our three original points a, b, c. It expresses \ 
the i;eries of quadrilateral con11tructio11s required to obtain ,¥ when p, ' 
q, rare given, and thus expresses a purely projective relation of the four 
pointi;. By the introduction of irrational points, in the manner jui;t 
explainl'<l, it follows that a11y four points on a line ha,·e 11.n anh11.r111onil· 
ratio. (ThiH cannot possibly he proved without Pieri's three axioms or 
some equivalent to them.) The 11.nharmonic- ratio is unaltered by any 
linear transform11.tion, i.e. by substituting for every point :x the point 
whose coordinate is ( a.r + f1}/( ,yx + o), where !l, 8, 'Y, o are any fixed 
numbc1·,i such that a:o - f)-y is not zero. Fmm thill point we can at 
last adva.111.,-e to what was formerly the beginning of projective Geometry, 
namely the operation of projection, to which it owe:-. its name. 

It can be shown that, if p, r be harmonic conjugates with respec·t to 
q, a, and p, q, ,., /J be joined to some point o, ancl if op, oq, or, OR Ull'et 
any line in p', q', r', t/, then p', r' are harmonic l'onjugatcs with respel.'t 
to q', t/. Hence we t'an show that all anharmonic ratios are unaltert'<l 
by the above operation. Similarly if l be any straight line not c-oplanar 
with pqr,Y, RJtd the pl11.nes lp, u;, lr, 111 nll'ct an~· line not coplanar with 
l in p', q', r', .¥', these four points will ha,·e the same anharmonil' ratio 
as p, q, r, 11. Thc,ie facts are expressed by saying that anharmo11ic­
ratio ii,; unR.ltered by projection. .F1"0111 this point we l·an proceed to 
the assignment of coordinates to ,my point in spwet. 

371. To begin with a plane, take thret• points a, b, c not in one 
straight line, and a:1.-;ign rnordinates in the above 11111.1mer to the points 
of ,w, ,u·. Let p he 11.n_v point of the plane ab,·, but not on the line IH-. 
Then if cp meets nb in p,, and bp meets tu· in p2 , and x, ;,J are thl• 
coordinateH of p,, p~ respectively, let (.r, y) be the two coordinates of p. 
In this way all points of the plane not on bc ac<1uire c-oor<linates. To 
avoid this restric-tion, let us introduc-e three homo#,rcneous coordinates, 
&'! follows. Take an.'' four points 11, b. c, t' in a pl,me, no three of 
which are colline,u; let ae ml-et Ix: in t'u be meet ea in 1•2, ce meet ab 

* This hBM the one exception that,. came )11Mt in the order of the quadrilateral 
construction11, and coml'8 lirst iu l'ieri's order. This may be remedied by the simple 
device of giving r. the coordinate- co instead of cc . 

t See PMCh, NtJutJre aeo11wtrir, § :!2; Klein, Muth • .411111,t,,,,, :J7, 
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in e1• Assign coonlinates to the pointK of br, ra, ab as before, gh•ing 
the coordinate I to e., e., e., and in al, giving O to ,,,, and 00 to b, and 
similarly for the other sides. In place of the single e,-oordinate :r of any 
point of he, Jet us introduce the homogeneoUll coonlinateH .r,, .r., whel'e 
.r=.rJ:r,. If now p be any point of the plane abt·, let ap meet Ix: inp19 

bp meet ea in p,, and ''P meet al, in p3 • Let .r., x1 he the homogeneous 
coordinates of p 1 , .z·,, .l'1 those of p2 ; then .r1 , .r2 will he th011e of p8 •. 

Hen<.'e we may a.'illign .r0 :r., .z·1 w, homogeneous coordinatei. of 1'· In 
like manner we can assign four homogem.>ous c,-oordinates to any point 
of' 11pace. ,ve can al110 assign mordinate11 to the lineK thmugh a point, 
or the planes throu~h 11. line, or all the pJ11,nes of i-pace, by means of the 
anharmonit· ratio11 of lines and plant..>st. It i11 eai;y to Khow that, in 
point-coordinatei;, a plane ha.'I a linear L'(Jlllltion, t1.ncl a linear l'<JUation 
represents a plane; and that, in plrme-<.'oordinates, 11. point ha.., a linear 
t..-quation, and a linear L'<fU&tion repreKentK 11. point. 'l'hus we Kt..'l:ure 11.ll 
the advantages of analytical Geometry. F1·om this point. onwanl11, the 
i-u~jel·t is purely technical, and l.'C&Ke!i to have philm,ophil· intere11t. 

372. It is now time to a.'lk ourseh-cs what portiom1 of the Geometry 
to whi<.'h we arc &L'CUNtomed A.re not includt..-d in pro,ieetin• GL'Oml'lry. In 
the first pie.cc, the !.cries of pointN on a line, being obtainL-d from a 
four-term relation, is dosed in the sense of Part IV. That is, the order 
of poinb, rec:1uires three fixed points to be given before it can be rlefim•d. 
The practical effect of this is, that given only thn-e points on a line, 
no one of them is between the other two. Thi11 is a definite difference 
between projl."Ctive spat·e and Euclidean or hyperbolic space. But it is 
easy to exaggerate this different·e. We saw in Part IV that, wherever 
a series is brenerated h.v 11. two-ten11 relation, there i:-1 also the four-term 
relation of i,,eparation of ('()UplcN, by which we c·an f.,'<.'nerate a closed 
~rieK consiNting of the Kame tcrmi-;. Hence in thii-1 resped. the difference 
doe11 not amount to 11.11 in<.'onsistency. Eu<.'lidean and hyperbolic 11paceii 
t'Ont.ain what projative i;pace contaim;, and KOmething more besides. 
We !111.W that the relation by which the projecth·e i-traight line is clefint'<i 

ha'I the formal properties of "P or P," where P ii. transith·e and H.llym­
metrical. If the lillid relation he a<.'tuidly of this form, we HhaJI have 
an open series with rcspe<.'t to P, and of ihree c,•ollineal' points one will 
he between the other two. It iH to be ol>Herved that, whe1~ the 11traight 
line is taken to be CH.'ientially clONed, as in elliptic space, betwee,i muKt he 
excluded where three points onl,v are given. Henc,-e elliptic spH.l-e, in 
thi11 respect, is not only com1ii;tent with the projecth·e axioms, but 
,·onto.ins nothing more than they do. 

It i11 when we come to the plane that actual int·onsh;tencies ariHe 

* See Pucb, ltM:. cit. 
t The auharmonic ratio of four lines thmugl1 a point or of four plaue11 t11rouich a 

line ia that of the four poi11t11 in-which they meet any line. 
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between projective Geometry and Euclidean or hyperbolic Geometry. 
In projective space, any two lines in a plane intersect ; in the Euclidean 
and hyperbolic Geometries, this does not Ol'CUI". In elliptic Geometry, 
any two lines in a plane inte1'!1eet. but in the antipodal form they 
intene<.-t twice. Thus only the polar form wholly 11&tillfies the projective 
axioms. Analogous considerations apply to the intersection of two 
p1anes, or of a line and a plane. These differe1l(.'es render the proja-th·e 
definition of a plane inapplicable to Eudidean and hyperbolic spaces, 
ancl render the theory of these spaces far more complicated than that of 
projedive space. i 

Finally, in metrical Geometry it is assumed either that two p~'nbi 
ha,·e a quantitative relation <~led distance, whil'h is detennined hen 
th<' poinb1 are given, or that stretchet!i satisfy axioms in ,·irtue of w ich 
their divisibilities become numerically mee.'lurable. In this point, even 
elliptic space diffel'II from projective space, though the difference is · of 
the nature of an addition, not an inconsi11tencv. But this matter cannot 
be discussed until we hu·e examined metricai Geometry, when we shall 
he in a position to examine also the projective theory of distance to 
more advant&gt! than ii. at preient possible. 

373. A few wordN may be added conceminl( the principle of dualit~-. 
1i1i11 principle states, in three dimension11, that the cl&SM of planes is also 
a pr~jective spat"e, the interMect:ion of two planes being, as before, the 
straight line, and the intersection of three non-<.'Ollinear planes taking 
the plaee of the point. In ,i dimensions, similarly, a projective spa<-e 
reiults from all sub-de.'llles of (11 -1) dimensions. Sut•h a duality, as we 
saw in Chapter xuv, belongN always to 11-dimensional series AA sul'h.. It 
would seem (though this is only a <'Onjecture) that projeetirn Geometi-~· 
employ11 the smalleit number of axioms from whit·h it is pos.'lible to 
generate a iceries of more than two dimensions, and that projecth·c 
duality therefore flow11 from that of dimensions in general.. Other 
spl\Celt have properties additional to those required to make them 
11-dimensional se1ies, nnd in other spaces, act·m-dingl~·, du11lity is liable 
to variom1 limitations. 
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DESCRIPTIVE GEOMETRY. 

374. THE subject which I ha\·e· called desrriptive Geometry is not, 
a, a rule, sharply distinguished from projective Geometry. The11e two 
terms, and the term '' Geometry of Position," arc commonly used Rs 

:.ynonyms. But it seems improper to include in projective Geometr~· 
any property which is not unalten..'CI by projection, and it is by the 
introduction of one such property that I wish to define the !lubject of 
the pn..-sent thapter. We have seen that, in projective space, three 
points on a line are not such thitt a definite one of them is between the 
other two. 'l'he simplest pO!lsihle proposition involving between, in 
pr~je<-tive Geometry, requireR four points, and is as follows: "If a, 
b, r be distinct tollinear points, and d is on ac, but docs not belong 
to the segment (abc), nor yet coincide with a or c, then, with regard to 
the order abf, c is between band d." When we reflect that the definition 
of the ~gment (abc) involves the quadrilateral construction- which 
demands, for its proof, a point outside ib! own plane, and four pai~ 
of triangles in perspective-we shall admit that the projective method 
of generating order is somewhat complicated. But at any rate the 
ordinal propo.,,;itions which result are unaltered by projection. The 
elementary sense of between, on the ('()ntrary, which iK to be introduced 
in the present chapter, is in general not unaltered by projection•. 

In descriptive Geometry, we start, as before, with points, and a.11 

before, any two points determine a clMs of points. Hut this class now 
consists only of the points between the two given points. What is to 

* The present subject is admirably 11et forth by Pasch, Nm.tere <leometrie, Leiy.tig, 
1882, with whose empirical peeudo-philO!IOphical re&ROne for preferring it to pro­
jective Geometry, however, 1 by no means agree (see Ei11leitung and § 1). It is 
carried further, especially as regards tl1e definition of the plaue, by Peano, 
I Prinripii di Gtometria logicnmtmte 611pf1Nli, Turin, 18tl9. ••or the definition of the 
whole line by means of its various se,gments, see Peano'11 note in Ri1'i11t,1 di 
.tlatematit:11, n, pp. Ml-#12. See also hiH 11rticle "Soi fondamenti della Geometria," 
ib. 1v, p. 51 ff., and \'ailati, "~ui Principi fondamentali della Geometria della retta," 
m,,. d. Mat. 11, pp. 71-7,~. Whatever, in the following pages, is not controversial, 
will be found in the above l!Ources. 
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be understood by betwe,m i11 not explained by any writer on thi11 subj!!t-t 
except \"ailati, in terms of a transitive asymmetrical relation of two 
poinbl ; and Vailati'11 explanation i11 condemned by Peano •, on the 
ground that between is a relation of three points, not of two only. 
This ground, as we know from Part IV, is ina<foquate and even ir­
relevant. But on the subject of relation11, even the be11t mathematician11 
go astray, for want, I think, of familiarity with the Logic of Relations. 
In the present cR.HC, as in that of' projective Geometry, we may starf: 
either with a relation of two points, or with 11. rcln.tion betwt!en a pair 
and a class of point.ii: either methcxl is equally legitimate, and leads to 
the same results, hut the former is f,ir simpler. Let us examine ~r11t 
the method of P11 ... ;ch and Peano, then that of' \'ailati. \ 

3715. We start, in the former method, with two indefinables, po}ut, 
and lN1tJi}{'f'n. If a, b, c bt.· thrL'l' points, and c· is beb·L-en a and b, \\ e 
MY that ,. i11 an ab, or belongs to the class of points ab. Profe,.sor 
Peano has em1111eratl><l, with hit, mm1tl l'are, the postulates 1'1.'<]Uired Rs 
regards the class al.it. In the fir-t plat·e, the points a and I, must be 
distinl't., and when thl'J are so, thc1'l' ahH\ys is a point between them. 
If ,. is between a and b, it is al"'> hetWl'Cll I, and a: " it11elf' (and there­
fore b) is not betwL>t;II a aml b. \Ve now introdm'(;' a new definition. 
If a, b be uny two di-;tind point", then n'l, iii the da.•1s of all point"' 1· 

sm·h that l, is between II and 1·. ~imilarly //a will he the cla. .... , of 
points d sm·h that II is between b and ,/. · \Ve then proceed to new 
postul11te11. If fl, and b be distinct paints, tt' b must c·ontain at lea.o;t one 
point. If a, b,. c, tl be points, and ,. is between " and d, b between 11 

and 1·, tlll'n /, is betwt'<.'11 a and d. If b and c be between tt and d, b is 
betwL-cn ,, aml r, or idt•ntic·al with ,·, or betwt..-en ,. nml d. If 1·, d belong 
to ,lb, then either ,. and d are idcntil'al, 01· 1· is betwl•en I, and d, or cl 
is beh\'l't.'11 b ancl 1·. If I, is between tt and 1·, and ,. is between band d, then 
,. is between ti 11nd d. This makes in nll nine postulates with rehrard to 
b,•ti,'t't'II. Pc1mo l'<111fei1.,;es! that he il> UURble to prove that all of them 
al'C independl•ut: hence they tl.l'e onl,,· shown to be stlffic·ient, not lle<,'t'lllllll'Y. 
'1"11t• <·omplt·te straight line (ub) i, defined 1U1 //a and " 11.ml "I., aml I, 
and a'b; that i11, (1) paints betwt't'll whi<·h and b the point a lies; 
(!'.!) the point "• (:J) point.-; between " uncl b. (4) the point b; (5) points 
betwl't!ll which and II the point I, lie11. 

Conl'l'l''lling this method, we may oh...e1'\·e to begin with that it is 
very <'Olllplicated. In the sel'mul pla<·e. we must remark, as befm"t', that 
the phrmie " two points det1·r111im• 11 da."I.~ of points" must he cxpamfod 
llli follows : "There is ll t·ertain spel'ifit· relation A', to whcMle domain 
belongs e,·ery C'ouple of clistim·t points. K is a man~·-one 1·elation, and 
the relatum, <·01·1-c»ponding to a l'ouple of points a.-; t't'ferent, is a clB.KS of 
points." In the thii,l plac.'l', we may ol>se1·,·e that the points of the 

* Ril-. di !Jui. I\', p. fl:Z. ! ,,,. p. 62. 
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line only acquire order by relation to\ 'le segments which they terminate, 
and that these acquire order by the relation of whole and part, or 
logical inclusion. Let a, b be a.ny two points, a.nd consider the clR211S 
of points al, or b or a'b. Let r, d be a.n.v two distinct points of this 
class. Then either ac is a. proper part of ad, or ad is a proper pRrt 
of ac. Here oc and ad may be calll.-d segments, a.nd we lil.'l' that segments 
whose origin is a a.nd whose limiti, belong tu ab orb or a'b fo1·m a ·serie'i 
in virtue of the transitive asymmetril·al relation of whole and pa.rt. By 
e,-orrela.tion with these 11egments, their extn•mitie11 a.hm al'quirc an order; 
and it is easy to prove that this ordl'r ii. und1anbred when we 1mbstitutc 
for a any point of ab'. But the on:lc1· still t'l'llttlts, a.., it always must, 
from a transitl\"l' &11ymmetrical 1-elation of two tenm,, and nothing i11, 
gained by not admitting 1mch a relation immediatl'ly between points. 

376. Pa..'ISing now to what I haw (•ailed \'ailati's tht!ory, we find 
a very great simplification. Wt.' may l<ltall• the present theory (whil·h 
ii. not in e\'erv detail identical with thnt of Vailati) 8.11 folJows. There il, 
a certain rliu,~, whil'h Wl' will (·all K, of tranl<liti\'e a.symmetrical relatiom,. 
Between an~· two pointh there ii. one and only one ,,;Iation of the dllS!I K. 
If R be a relation of th(! cl11.-.11 K, R is also a relation of this cl&KS. 
Every sueh relation R defines a straight line; that is, if a, b be two 
points such that 11Rb, then a belongs to the straight line p. (I u11e the 
corre~ponding Greek letter to denote the domain of a relation; thus 
if S be a relation, r1 is the class of terms having the relation S to some 
term or other.) If aRh, then there is some point t· 11uch that aRc and 
c-Rh; also there is a point d such that bRd. .Further, if a, .I, be any two 
distinct points belonging to p, then either llRb or hRa. With thiK 
apparatus we have all that we ret:1ui1-e. 

We may do well to enumerate formally the above definition of the 
class K, or rather the p011tulates l"Otll"erning itl<I members-for K itself 
is not defim'<l. I may remark to begin with that I define the field of a 
da.'I.~ of relations ai, the logi<·al sum of the field11 of the constituent 
relations ; and that, if A' be the dass, I denott- ibi field by k. 'l'hen the 
axioms we n.-q uire are a.-; follows. 

(1) There i11 a da.-..., of relations K, whose field is defined to be the 
da.'J.., poi11t. 

(i) There is at least one point. 
If R be anv tenn of K we have, 
(3) R is ;n aliorelative. 

(4) Risa term of K. 
(5) RJ=Jl. 
(6) ji (the domain of R) ih <·ontained in p. 
(7) Between any two point!\ there i11 one and only one relation 

of the clas11 K. 
(8) If a, b be poin~ of p, then l 0ither aRb or bRti. 
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'J'he mutual independence of these axioms i11 easy to see. But let 
u11 fint brieffy sketch the proof that they give all the required results. 
Since there is, by (!), at le&Mt one point, and since by (1) this point 
has some relation of the cll\liS K, and since by (8) all relations of the 
clasx K are aliorelatives, it follows that there is some tenn, other than 
the one point, to which thi11 one point has a relation R of the class K. 
But since R, by ( 4 ), is a relation of the class K, it follow11 that the tenn 
to which the one point is so related is also a point. Henre there are 
at leai;t two distinct points. Let a, b be two distinct points, an4 let 
R be the one relation of the class K between a and b. Thus we have 
aHb. But we do not have bRa, for if we did, since R•=R, by\(5), 
we should have aRa, which contradicts (8). Thus R and R are al~ay11 
different, i.e. ea.eh is &11ymmetrical. Sint-e H 2 = R, aRb and bRc imply 
,,He, i.e. H ii,, transitive. Hence the points which have to a the relation 
H or H, together with a itself, form a series. Since R = R•, aRb implie11 
that there is some point c sul"h that aR,·, cRb ; i.e. the series gener.ated 
by H i1o1 compact. Since, by (6), p is contained in p, aHb implies that 
there ii. some point c such that hRc. Applying the same argument 
to R, there ii; a point cl such that dRa. 'l'hus we have p = ;,, and the 
field of R ha.,; no begirmin,c or end. By (8), the field of R i,i 
what, in Part IV, we called a connected series, that is, it does not 
fall apart into two 01· more detached portions, but of" any two of it11 
terms one is before and the other after. By (7), if there he more than 
one relation of the dass K, the fields of two such relations cannot, 
unle11.o; one is the c·onvcl"!ll' of" the other, ha,·e more than one point 
m l"Ommon. The field of' one relation of the class Ji is called a 
Ktmigl,t li11,·; and thus (7) assm'l>s us that two straight linc11 have at 
nu>i,t onc <·omumn point, while (8) asi;ure11 us that, if ab, l'tl be the same 
line, so are ac and bcl. Thu11 it ii. pro'"cd that our axioms nre sufficient 
for the 1-,reomctry of a liue, while (7) goes beyond a single line, but is 
i1111erted here bet'ftUIIC it docs not imply the e,1-iate11ce of points outside 
a Hingle line, or of more than one relation of' the dass K. It is most 
important to ollllCn·e that, in the 11.bm·e enumeration of fundamentals, 
there is onlv one i11dctin11.hle. namelv K, not two 8.11 m Peano's system. 

3'17. \'\rith re1,,rard to tlw muiunl indt•pendcncc of the ~ioms, it 
it1 to be obser,·ed that (I) is not propcrl~· au axiom, but the a.'!Smnption 
of our indefinable K. (2) ma,· olwiouslv be denied while all the others 
arc maintained. If (3) be den°il-d, and H be taken to be the s~·mmctrical 
relation of projecth·c Geometry, together with identity with some term 
of p, we obtain pmjecth·c Geometr~·, which is different from the present 
HVHtem, but i,ielf-com1iMtent. If (4) be denied, all the n.>Mt can be main-
blint.'<l ; the on)~- diffic·ulty is 118 reb1m-ds (7), for if aHb, and R is not 
a term of K, b will uot ha,·e to a au~· relation of the dRNII K, unlCIIS 
indeed it has one which iM not R, which seems to be not t•ontradidory. 
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A11 regards (5), we may deny either that R is contained in H•, or that H' 
i11 contained in R. To deny the former makes our series not compact, to 
which there is no logical object.ion. 'l'he latter, but not the former, is 
false as reganls angles•, which can he made to M&ti11fy a.II the other axioms 
here laid down. (6) will become false if our lines have last tenm,: thu11 
the space on the left of a plane, tobrether with this plane, will sati11~v 
a.II the axioms except (6). As rega.nls (7), it i11 plainly independent 
of all the rest; it consists of two parts, (a) the &!l!lertion that between any 
two points there is at least one relation of the cla.'lll K, (b) the assertion 
that there is nut more than one 11uch relation hetwt>en two given points. 
If we l.'Onsider a Euclidean and a hyperholit· space together, all the 
axioms will be true except (a). If we ,·omhinc two.different da.'llleM /J.'19 K. 
of relations of the above kind, such· that 1.-1 = k., (b) alone will be fal11e. 
~evertheleS11 it seems plain that (b) ,·annot be deduced t"rom the othl'r 
axioms. As regards (8), it alone is false if we take for K the das11 of 
dir·cctions in }~udidean spat-e, in whic·h a set of parallel lines all ha,·e 
the imme direction. Thus the net"ell,o;it)· of all ext-ept one of our axioms 
is strictly proved, and that of thit1 one is highly probable. 

378. We saw that the above method enabled us to content ourselves 
with one indefinable, namely the cl8.118 of relations K. But we may go 
further, and dispense a.ltogether with indefinables. The axioms L'On­
<-erning the class K were all <'apable of statement in terms of the logic 
of relations. Hence we can define a class C of classes of' relation11, such 
that every member of C is a class of relations satisfying our axioms. 
The axiom11 then become parts of a definition, and we have neither 
indefinables nor axioms. If K be any member of the class C, and 
k be the field of K, then /,: is a descriptive space, aud every term of 
k i11 a deiCriptive point. Here every con<--ept is defined in terms of general 
logical concepts. The same method can be applied to projective space, 
or to any other mathematical entity except the indefinables of logic. 
This is, indeed, though grammatically inconvenient, the true way, 
philosophically speaking, to define mathematical notions. Outside logic, 
indefinables and primitive propositions are not required by pure mathe­
matics, and should therefore, strictly speaking, not be introduced. This 
subject will be resumed in Chapter x1.1x. 

379. The two ways of defining the 11traight line-that of Pasch and 
Peano, and that which I have just explained-seem equally legitimate, 
and lead to the same consequenCCM. The choice between them is 
therefore of no mathematical importance. The two methods agree in 
enabling us, in terms of two points only, to define three parts of a 
11traight line, namely the part before a (h'a), the part between a and b 
(ab), and the part after b (,lb). This is a point in which descriptive 
Geometry differs lrom projective Geometry : there we had, with regpect 

* See Part IV, chap. :ii:xn·. 
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tu a and b, only two 11egmenb1 of the Ktraight line ah, and th~ could 
not be defined without reference to another point ,. of the line, and 
to the quadrilateral construction. 

'I'hc straight line may bt· rcgardt..-d either WI the clasK of pointi; 
fom1ing the field of a relation R, or 8.11 this relation itself. l•'or 
the sake of di11tinction, it will be well to call the relation R a ray, 11im.-e 
thi11 word Sllgf.,reHb. a senKe; R will then he the oppo.,;ite ray. In 
<.'tmsidering a nnmbcl' of lines all pas.-;ing through one point 0, it will 
be well to give the name of m,1/ also to the da.~s of points to which 
0 ha.'I some relitt.ion R, i.e. to thosc points of 11. line through O whi<·h 
lie on one side of' O. Those on the other side of O will then he the 
opposite ray. The context will show in whieh sense the word i1o used. 

380. I come now to the pla11.e. Easy as it is to define the plane 
in projective spiu."e, its definition when the line is not 11. dost.>d ~ries, 
or rather, when we wi11h t.o call coplanar some pairs of' lines which 
do not intersect, i11 a matter of some diffieulty. Pm1ch • take11 the plane, 
or rather a finite portion of the plane, as a new indefinable. It is, 
however, capable of dl•finition, a.,;, following Pe,mo, I shall now show. 

We nt..>t..-d, to begin with, some new axioms. Pirst, if p be any 
.straight line, there is at lea.-1t one point not belonging to p. Next, 
if a, b, c: be thn..-c points not in mm straight line, and tl be a point 
of Ix: betwt..>en h and ,., e a point of ad between a and tl, then be will meet 
IU' in a pointf and e will be betwt..>t•n b andf,fbetween a and c. Again, 
a, b, ,., d being a.-1 before, iff be a point between ,,, and c, then ad and Id' 
will intersect in a point e between tJ. and tl a.ml hctwt•en b 11.ndft. We 
now define what may be regardt..-d as the proc.lul"t (in a breometrical sense) 
<>f' a point and a figure. If a hl• any point, and k any figure, ttk i11 to 
denote the points which lie on the variouK segments between a and the 
points of k. That i11, if JI be any point of k, ancl .r any point of the 
Kegment ap, then .z· hdon1,,s to the cl11ss ak. This dl'finit.ion may be 
applit-d even when a i11 a point. of k, and k is a straight line or part 
of one. The figure ak will thl•n be the whole line or some l'<>ntinuous 
portion of it. Peano now proVL>s, by purely logical tran11t,,rmations, 
that, if ti, b, c be distinct non-collinear points, a (Ix·)= b (at·). This 
figure is called the tri11ngle ttlH·, and is thus wholly determined by its 
three defining points. It is ulso shown that, if p, q he.• points of the 
11egnwnts t1h, at' respc.•t·tiwly, the sl'gment pq is wholly l'ontaint..-d in 
the triangle aht·. After some more theorems, we t·ome to a new defini­
tion. If " be a point, and k any figure (i.,:. d11.NS of' points), a'k is 
to denote 1111 the points between whi<'h mul a lies some point of' k, that 
is, as Peano remarks, the whole shadow of k if 11, be au illuminated 
point. Thus if a, b, c be non-t·ollinmr points, tt' (be) will represent the 

-dtt.S!I of points beyond Ix· and hounded by ab, m· proclul-cd. This 

* (Ip. r.it. § :!. t Rill. di M,,,. IV, p. 64. 
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ennbles UK to define the plane (alN-) 11.<1 consii;tiug of the 11traight lines 
Ix·, m, ah, the triangle alN·, and thl• figun.~ a'IK:, Ilea, ,·'ah, llr'a, ,:'a'b, 
t1.'l/c•. It is then ea.<1y to Khow that any other three pointK of the plane 
define the Ke.me planl', and that the line joining two pointK of a plane 
lies \\holl_v in the plane. But in place of the proposition that 11.ny two 
lines in a pl11ne inten,ect, we have a more complit·ated propo11ition, 
namely: It' a, b, c, tl be t·oplanur points, no three of which are 
collinear, then either the line-. ub, ctl inter...ed, or ,u·, btl do IIO, or 
ml, Ix· do so. 

381. Having suct-es.'jfully detined tht.• plane, we can now atJvance 
to 110lid Gemm·try. Fm· thii,, we nL>t.-d, to begin with, the axiom : 
Given any plane, there ji,, at le11.1t ont' point outside the plane. We 
can then define a tetrahedron exactly a..; we defined a triangle. Uut 
in order to know that two plarw-., which have a point in common, 
lul\e a line in common, wt• need a new axiom, whid, i.howK that the 
space we are dealing with ha.<1 tlm-e dinll'ni,,ions. In projective spat-c, 
this axiom was simply that a line and a plane always have at leaNt one 
point in common. But here, no such simple axiom hold11. The following 
is given by Pcano (loc. cit. p. 74): If 11 be a plane, and " a point 
not on p, and b a point of a'p (i.e. a point such that the segment ab 
,·ontains a point of p, or, in common language, a point on the other 
sidl' of the plane from a), then if' ,1: be any point, either :r. lies on the 
plane, or the segment a:r contain11 a point of the plane, or else the 
11egment b.1' contains a point of the plane. By adding to this, finally, 
an axiom of continuity, we have all the apparatus of three-dimensional 
descriptive Geometryt. 

382. UC11Criptive Geometry, a11 above defined, applies L-qually to 
Rndidean and to hyperbolic space : none of the axioms ml'ntioned 
discriminate between these two. Elliptic space, on the contrary, which 
WA.II included in projective Geometry, is hen.> excluded. It is impossible, 
or rather, it has hitherto proved so, to set. up a general set of axioms 
which will lead to a general Geometry applying to all three space11, 
for at some point our axionu1 must lead to either an open or a clollt!d 
Keries of points on a line. Such a general Geometry l"an be com1tructed 
symbolically, hut this n-sulb1 from briving different interpretations to 
our symbols, the indefinables in one interpretation being definable in 
another, and vice ver8a. This will become plain by examining the method 

* 'J11e figure ll (c'a), or llc'o, repr~cnt.11 the angle between IHJ aud ,.,, both 
produced, as may be seen from tlae definition. 

t I confine myself Ill! a rule to three dimensions, since a further extemiion hu 
little theoretic interest. Three dimensions are far more interesting than two, 
because, as we have seen, the greater part of projective Heometry-i.e. everything 
1lependent upon the quadrilateral construction-is impossible 11ith less than threo 
dimensions, u11le1111 the uniqueness of the quadrilateral construction be taken aa an 
axiom. 
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in which proja-tive Geometry is made applieable to the spw.-e abm·e 
defined, which, for want of a better name, I 11hall call descriptive spB.l'c. 

383. When we try to apply projective Geometry to descripth-e spa<~, 
we are met by the difficulty that some of the points required in a co1111tru<·­
tion may not exi11t. Thus in the quadrilateral construction, gil'en th1'l.-e 
points a, h, c, the fourth point d may not exi1,1t at all. \I\' e can pt'<n·e a." 
before that, if it exists, it is unique, and M> with other projecth·e proposi­
tions : they bt.>rome hypotheti<·al, sint-e the construction indicated is not 
always possible. This has led to the introduction of what are callerl 
iikal elemenlK (points, lines and planei,), by means of which it becon1es 
prn1sible to state our projective theorems gem.•1-ally. TheKC ideal elementi. 
ha\'e a certain analogy to complex numbel'M in Algebra-an analo~· 
whic·h in analytic·al Geometry becomes ,·ery close. Before explaining 
in detail how theKC elemenb1 arc introduced, it may be well to state the 
logical nature of the process. By means of the points, lines and planes 
of descriptive Geometry, we define a new set of entitieM, 11ome of whi<·h 
correspond (i.e. have a one-one relation) to our points, lines and planci. 
reKpectively, while others do not. 'I'hesP new entities· we call ideal 
points, lines and planes ; and we find that they ha\'e all the properties 
of projec:tive points, lines and planes. Hence they L-Onstitute a projet·­
tive space, and all projedive propositions apply fo them. Since our 
ideal elements are defined by means of the elements of descriptive spw.-e, 
projective propositions con<."erning these ideal elements are theorem11 
concerning descriptive space, though not rom·eming its actual points, 
lines and planes. Pasch, who has given the best account of the way in 
which ideal elements are to be defined•, has not perceived (or, at an~· 
rate, does not state) that no ideal point is an actual point, even where 
it has a one-one relation to an actual point, and that the same hold11 of 
lines and planes. This is exactly the same remark as we have had to 
make concerning rationals, positive numbers, real numbers, and complex 
numbers, all of whic.h are Kupposed, by the mathematician, to contain 
the cardinals or the onlinals, whereas no one of them l'an ever be 
one of the cardinals or ordinals. So here, an ideal element is ne\"er 
identical with an actual point, line or plane. If this be borne in mind, 
the air of magic which surrounds the usual expasitions disappears. 

384. An ideal point i11 defined a11 follows. Consider first the class of 
all the lines passing through some paint, called the ,·ertex. Thi11 clRAA 
of lines is called a 11heqf of lines (Straklenhii.ndel). A sheaf so definl'<I 
has certain properties which can be stated without referem .. -e to the 
vertext. Such are, for example, the following: Through any point 
(other than the vertex) there is one and only one line of the sheaf; and 
any two lines of the sheaf are coplanar. All the properties of a 11heaf, 

... Op. cit. §§ fl-8. 
t Theae are enumerated by Killing, Gru.n.dlugen dPr Geomdrit!, Vol. n (Paderboni, 

1898), p. 82. 
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which can be st.ated without reference to the ,·ertex, are found to belong 
to certain clas.'le& of lines ha,·ing no vertex, 11.nd such that no two of 
the class intersect. For these 11. simple construl'tion t•11.n be given, 1\11 

follows•. Let l, m be any two lines in one plane, .A 11.ny point not in 
this plane. Then the planes .Al, .Am have 11. line in common. The da11."I of 
such lines. for 11.ll pos!lible points .A outiiide the plane Im, has the propertie; 
above alluded to, and the word aheaf is extended to all cl11.11ses of line11 
so defined. It is plain that if l, m intersect, the sheaf has ll ,·ertex ; 
if not, it has none. Thus, in Euclidean spa<-e, all the lines parallel to 
a gi,•en line fonn a shellf whic·h ha.-. 110 vertex. \\Then our sheaf has no 
vertex, we define an idml JH>i1,t by means of the sheaf. But this must 
not be 1mpposed to be really a point : it is merely another name for the 
11heaf ibielf, and so, when our sheaf·has a vertex, if we are to make 
propositions in whic·h ideal points occur, we must substitute the sheaf 
for it!! vertex. That is, an ideal point i11 simply a sheaf, and no sheaf ;a 
an actual point. 

Concerning sheaves of lines we may observe the following points. 
Any two 11traight lines in one plane unic1ucly dctennine a shcaf. Two 
sheaves both having a vertex alwa.ys dcterminc a line, namely that 
joining the verticeN, which is common to both 11hcavcs. Three sheavt.'R, 
of which one at lea11t has a Yertex, determine a plane, unles11 they are 
collinear. A line and a plane always have a common 11hcaf, and 110 have 
three planes of which two at least have a common point. 

385. Thus sheaves of lines have some projective properties, in 
relation to lines and planes, which are lacking to points. In order to 
obtain entities with further projective properties, we mui1t, to begin 
with, replace our lines by ideal lines. Por this purpose we mui.t fil'llt 
define pencils of planes (axial pencils, Ebenenbiuchel). An axial pencil 
com1ists, in the first instance, of all the planes through a given 
straight line, called the axis. But as in the case of sheaves, it is 
found that such a figure ha.<i many properties independent of the 
axis, and that these properties all belong to certain other clas11CS of 
planes, to which the name of pencil is therefore extended. These 
figures are defined as followst. Let .A, B be two sheaves of lineR. 
Let D be a point not on the line (if there be one) common to the two 
11heaves .A, B. Then .A, B, D determine uniquely a plane, which we 
may call .A.BD, or P (!18.y). This will be the plane containing those 
lines of .A and B that pass through D. Any other point E, not in the 
plane P, will determine a different plane .ABE, or Q. The claM of 
planes so obtained, by varying D or E, is & pencil of planes, and haM all 
the properties of 11. pencil having a real axiR, ext'ept those in which the 
axis is explicitly mentioned. Any two planes P and Q belonging to the 
pencil complet.ely determine it. Moreovl!l', in place of .A and B abo,·e, 

* Puch, op. cit. § 6. t Puch, op. r:it. § 7. 
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we may substitute any other sheaves of lines .A', B', belonging to both 
P and Q. {A sheaf belongs to a plane when one of its lines lies in the 
plane.) Any two sheaves belonging to both P and Q wilJ serve to 
define the pencil of planes, and will belong to every plane of the pencil. 
Hence if, in place of actual points, we substitute ideal points, i.e. sheaves 
of lineN, every pencil of planes has an axis, consisting of a certain 
collection of sheaves of lines, any two of which define the pencil. Thi11 
collection of sheaves is called an ideal line•. 

386. Substituting ideal points and lines for actual ones, we ~nd 
that we have now made a further advance towards projective splice. 
Two ideal points determine one and only one ideal line; a given pl1¥1e 
it, determined by any three of its ideal poinl-, which do not belong 't,o 
one ideal line, hut three ideal points do not always determine a plan'e. 
Two ideal lines in a plane always have a ,·ommon ideal point, and so 
have a plane and an ideal line. Also two planes always have a common 
ideal line, and three planes always have either a common ideal point or 
a ('.ommon ideal line. The only point where our spa<-c is not 1,trictly 
projective is in regard to planes. There is a plane· through any two 
ideal points and one actual point, or through an ideal point and an 
actual line. If there is a plane at all through thn.~ non-collinear ideal 
point.'I, or through an ideal line and an ideal point not on the line, then 
there is only one such plane; but in some cases there is no such plane. 
To remedy this, we must introduce one more new class of entities, 
n11.mely ideal planes. 

The definition of ideal planest is comparatively simple. If A, B, C 
he any three ideal point.", D an ideal point on the ideal line A B, and 
E on AC, then the ideal line DE hat, an ideal point in common with 
BC, whether there be an actual plane determined by A, B, C or not. 
'J'hus if B, C, D be any three ideal points, and E any other ideal point 
such that BD, CE intersect, then BC, DE intersect, and so do BE, CD. 
Hence, if B, C, D be not collinear, we define the ideal plane BC]) as 
that cla.'18 of ideal points E which are such that the ideal lines BD, CE 
intersect. 

For the sake of clearness, let us repeat this definition in terms of 
our original points, lines land planes, without the use of the word ideal. 
Given three sheaves of lines B, C, D, which are not all contained in 
a common pencil of planes, let E be another sheaf of lines such that 
there is a sheaf of line11 common to the two pencils of planes BD, CE. 
Then the class of all sheaves E satisfying this condition i11 called the 
ideal plane BCD. 

* t'or logical purpo.qes, it is better to define the ideal line as the class of ideal 
points 8ll80Ciated with a sheaf of planes, than as the sheaf itself, for we wish a line to 
be, as in projective Geometry, a clau of pointa. 

t Pasch, op. cit. § B. 
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The usual properties of planes are easily proved concerning our new 
ideal planes, a.s that any three of their points determine them, that 
the ideal line joining two of their ideal points is wholly contained in 
them, and so forth. In fact, we find now that the new points, lines 
and planes constitute a projective spat-e, with all the properties described 
in the pret-cding <'hapter. The elementary order of points on a line, 
with which we began, has disappeared, and a new order has to be 
generated by means of the separation of c·ouples•. Thus all projective 
Geometry bel'Omes available ; and wherever our ideal points, lines and 
planes correspond to actual ones, we have a mrresponding pmjective 
propc>Rition concerning the latter. 

387. I have explained this deveJopment at length, partly because 
it shows the very wide appliU1.hility of projt.-ctive Geometry, partly 
bec•1u1se it affords a good im,tan<'e of the emphasi11 which mathematics 
layi.. upon relatioms. To the mathematician, it is wholly irrelevant what 
hii, entities are, IIO long ai.. they have relations of a specified type. It is 
plain, for example, that an instant is a very different thing from a point; 
but to the mathematic·ia.r1 IL'I suc·h there i!l no relevant dhitinction between 
the· instants of time and the points on a line. So in our pre11ent in-
11ume,-c, th<' highly c·omplex notion of a sheaf of li11e11-an infinite dass 
of' infinite cla..~sei..-is philosophically very widely dissimilar to the simple 
notion of a point. Hut since clasS('II of sheaves can he formed, having 
the same relations to their c.·omitituent sheaves that projective lines and 
plam.'11 have to projective points, a 11heaf of lines in descriptive space ia, 
for mathematical purposes, a projec:·tive point. It is not, however, even 
for mathemati<'al purpost>S, a point of desc•riptive space, and the above 
tmnsformation clearly shows that descriptive space is not a species of 
projective space, but a radically distinct entity. And thiM is, for philo­
M>phy, the principal result of the present chapter. 

It is a remarkable fact, which the above generation of a projective 
spare demonstrate11, that if we remove from a projective space all the 
points of a plane, or all the points on one side of a closed quadrict, 
the remaining points form a descriptive space, Euclidean in the first 
case, hyperbolic in the second. Yet, in ordinary metrical language, the 
projective space is finite, while the part of it which is descriptive is 
infinite. 'fhis illustrates the comparatively superficial nature of metrical 
notions. 

* See Pasch, t>p. rit. § II. 
t J,'or the projective definition of a surface of the second order (quadric) in a 

projet~live space cf. Reye, Geom11lrie der Laga (Hanover, 18('18), Part 11, Lecture v. 
A qua.rlric is closed if there are points not on it such that all straight lines through 
tht>m 1•ut the quadric. Such points are within the quadric. 
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CHAPTER XLVII. 

METRICAL GEOMETRY. \ 
I 

388. 'fHE subject of the pre11ent chapter is elementary Geometry, as 
nted by Euclid or by any other author prior to the nineteenth century. 
This su~ject includes the wmal analytical Geometry, whether Euclidean 
or non-Euclidean; it. is diHtinguished from projective and descriptive 
Geometry, not by any opposition corresponding to that of Euclid and 
non-Euclid, but by its method and its indefinables. The question 
whether itM indefinables can, or cannot, be defined in terms of those 
of projective and descriptive Geometry, is a very difficult one, which 
I postpone to the following chapter. For the present, I shall develop 
the subject straightforwardly, in a manner a.~ similar to Euclid's as 
is consistent with the requisite generality and with the avoidance of 
fallacies. Metrical Geometry is logically 1mbsequent to the two kinds 
which we have examined, for it net'ellllarily a.-,sumes one or other of 
these two kinds, to which it merely adds further specifications. I shall, 
as a rule, assume descriptive Geometry, mentioning projective Geometry 
only in connection with points in which it shows important mctri<"al 
differences from descriptive Geometry. In the former case, all the fhi;t 
twenty-six propORitions of Euclid will hold. In the latter, the first, 
seventh, sixteenth, and seventeenth require modification ; for these pro­
positions Msume, in one form or another, that the straight line is not 
a closed Keriei;, Propositiom, after the twenty-sixth-or, with a suitable 
definition of pamllel11, after the twenty-eighth-depend, with few ex­
ceptions, upon the postulate of parallels, and are therefore not to be 
a.,suml'll generally. 

389. Since Euclid still ha.., popularly, and even with mathematidans, 
a reputation for ribl'()Ur, in virtue of which his circumlocution and long­
windedness are condoned, it m11.y be worth while to point out, to begin 
with, a few of the errorN in his first twenty-six propositions•. To 
begin with the fiJ'llt propo.-.ition. There i11 no evident-e whatever that 
the cirdes whit"h we are told to construct inten;ect, and if they do not, 
the whole proposition fails. Euclid's problemK are often regamed M 

* Cf. Killing, op. cit. Vol. 11, Section 5. 
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existence-theorems, and from this point of view, it is plain, the as­
sumption that the circles in question intersect is precisely the same 
&.'I the assumption that there is an equilateral triangle on a given hue. 
And in elliptic space, where the straight line is a closed aeries, the 
conKtruction fails when the length o( the base exceeds half the length 
of the whole straight line. As regards the second and third prop011itions, 
there is nothing to be said, except that they are not existence-theorems. 
1"he l-orresponding existenct?-theorem-i.e. on any straight line, in either 
direction from a given point on the line, there is a point whose distan<.-e 
from the given point is equal to a gh•en distanee-is et:Juivalent to the 
postulate concerning the circle, and ii-1 thus prior to the second and 
third prop<>1'itions. With regard to the fourth, then- is a great deal 
to be Kaid ; indeed Euclid's proof iti so bad that he would have done 
better to a.~ume this propollition as an axiom•. As the is.'IUCII raised 
b)· this proof are of great important-e, both to mathematics and to 
philosophy~ I shall set forth ibi fallacie11 at some lenbrth. 

390. The fourth proposition is the finit in which :Euclid employs 
the method of imperposition-a method whit·h, since he will make any 
detour to avoid itt, he evidently dislikes, and rightly, since it has no 
logical validity, and strikes every intelligent child as a juggle. In the 
first place, to speak of motion implies that our triangle!! are not spatial, 
but material. For a point of space is a position, and can no more 
cha~ its position than the leopard can change his spots. The motion 
of a point of space is a phantom directly contradid;ory to the law of 
identity : it i11 the supposition that a given point can be now one point 
and now another. Hence motion, in the ordinary sense, is only posKible 
to matter, not to space. But in thi11 case superposition proves no 
geometrical property. Suppose that the triangle .ARC is by the 
window, and the side AB coni1iists of the column of mercury in a 
thermometer; suppose also that DEF is by the flre. Let UH apply 
A BC to D EF a.., Euclid directs, and Jet .A B just <'over DE. 'l'hen 
we are to conclude that .A.BC and DEF, before the motion, were equal 
in all respet'ts. But if we had brought DEF to .A.BC. no such result 
would have followed. But how foolish! I shall be told; of course 
.A.BC and DEF are to he both rigid bodieK. Well and good. But 
two little difficulties remain. In the first plat,-e-and for my opponent, 
who is an empirical philosopher, this point i11 Neriou11-it ii,; &.'I oortain &11 

anything can he that there are no rigid bodies in the univeJ"Ne. In the 
second place-and if my opponent were not an empiricist, he would 
find this objection far more fatal-the meaning of rigidity presupposes 
a purely spatial metrical equality, logically independent of matter. For 

• This coune is ac.-tually adopted, as regard11 the equality of the remaining angles, 
by Hilbert, Gru,id/agffl dw Geometrie (lo'e11tachrift zur Feier der Enthilllu:1g de11 
Gan111-Weber Denkmals, Leipzig, 189'J), p. 12. 

t ('f. Killing, loe. eit. § 2. 
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what is meant by a rigid body ? It is one which, throughout a <-'On­
tinuous portion of time, preserves all its metrical properties unchanged. 
Hence we incur a most fatally vicious circle if we attempt to define 
metrical propertie11 by rigidity. If a.f:J7 be a material triangle, which 
occupies at one time the space .A.BC, at another the space A'B'C', to 
say that a.f),y i11 rigid means that, however the two times be «.0h011en 
(within some 888igned period), the'triangles .A.BC, .A'B'C' are equal in 
all respects. If we are to avoid this conclm,ion, we must define rigidity 
in some wholly non-geometrical manner. We may say, for example, 
that a rigid body meana one which is made of steel, or of brass. But 
then it ba-omes a logical error to ~,ard brass eternal &11 slave to mo~ 
rage; and if we define equal spaces RS those which can be oe<iupil-d rY 
one and the same rigid body, the propositions of metri,·al Geometry 
will be one and all false. 

The fact is that motion, as the word i11 uMed by geometers, has a 
meaning entirely different from that which it has in daily life, just as 
a variable, in mathematics, is not something which changes, but is 
usually, on the contrary, something incapable of t·hange. So it is with 
motion. Motion is a certain class of one-one relations, each of whi<"h 
b8II every point of space for its extension, and each of which has a 
converse al110 belonging to the class. That is, a motion is a one-one 
relation, in which the referent and the relatum are both points, and 
in which every point may appear a... referent and again as relatmn. 
A motion is not this only: on the contrary, it ha.'I this further charac­
teristic, that the metrical properties of any clas.'I of 1-eferenb; are identical 
with those of the corre11ponding cl8118 of relata. This characteri1<tic, 
together with the other, defines a motion as used in Geometr~·, or 
rather, it defines a motion or a reflexion ; but this point need not be 
elucidated at present. What is clear is, that a motion prc,;uppost•s the 
existent-e, in different parts of space, of figures ha,·ing the same ml'tri,·al 
properties, and cannot be used to define those properties. And it is 
this 11eni;e of the word motio11, not the usual matcriRI st•n11e, whic·h i11 
relevant to ]~uclid's use of superposition. 

391. Retm·ning now to :Euclid'i,; fourth prop01,ition, we see that 
the Ruperprniition of A BC on JJEF im•olves the following nKKumptions. 
(I) On the line DE there i11 I\ poiut E, on either t1ide of D, sud1 that 
DE= AB. This is provided for by the postulate about the ,·irde. 
(!) On t•ither side of' the ray DE, tht•re is a ray JJF suc·h that the 
angle EDF is ec.1ual to the angle BAC. This is m1uired for thl· pos­
sibility of a triangle DEP i.ud1 a.-1 the enunciation demands, but no 
axiom from whic·h this follows can be found in Budid. The problem, 
to eonstrud; 11.n angle EJJF l'I.JURI to B.tlC, does not <X·cur till I. !!S, 
and there I. 4 ii. u!led in the proof. Hent'f.' the pl'('Mt'ut a.'ll!umption 
mu11t be &<ldl-d to :Euclid'l!I axioms. It no" follows that on lJF the1-e 
is a point F sm·h that lJF = AC. Hen«.-e t.hc possibility of two su,·h 
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triangles 8Jl the enunciation demands is established. But in onler to 
prove that DEF is equal in a.II respect.-. to ABC, we need a further 
axiom, namely: \Vith one angle at D, one side along the ray l)E, and 
the other side to the right (or left) of IJE, there exists a triangle whil•h 
is equal in all respeds to the triangle ABC•. This is, in fact, the 
exact &11sumption which is concealed in the method of superposition. 
~Vith this &N!!Umption, it finally becomes pOSRible to provl' that DEF 
111 the triangle satisfying the above condition11 and ec.p1al in all respects 
to ABC. 

The next remark coucer1111 I. 6. Here Em·lid fil'llt employs an axiom 
of which he is wholly unconscious, though it is very et1SCntial to his 
system, namely: If OA, <>B, OC be three ray11 whit·h meet 1l 11traight 
line not pas11ing through O in .A, B, (1 rehpectivdy, and if B he between 
A and C, then the angll' A OB is less than the angle AOC. This axiom, it 
will be MCen, ih not appliellble in projec:·tivl' splll-e, Ninee it presupptl!ll'K 
that the line is not a dotred series. In I. 7, if this proposition is to 
apply to hyperbolic· space, we require further the axiom: It' three non­
intef!lecting lint!s in one plane mel't two lint!s in .A, H, C; A', B', C', 
respectively; and if B he betwl-en .4 and C; then B' is hetwt.>cn A' 
and C'. .-\)so it may ht• observed that Rudid gives no definition of the 
two 11icles of a line, a notion whil'h again pn'lluppo11es that tlw straight 
line is not 1t dosed hl!ril'h. And with regard to angleK, I. 7 re<p1ii·eK 
sufficient axiom11 to hhow that they are ll series of the kind explained 
in Part IV, Chapter xxn·; or eli,,e we must assume the descriptin• axiom 
of the last chapter, to the dth·t that, if A, B, C, l> be coplanar poinbi, 
no three of which 11.re collincllr, there i11 a point common to the Kb-etches 
AB, CD, 01· to AC, BIJ, or to .4.1), RC. All these assumptions will he 
found implidt in I. 7, a." may he seen by attempting a 11.vmholic proof 
iu which uo figure i!I Ust.'<l. 

Similar remark" apply to I. 16. In I. 12 it is 11..'l!!Umed that a. drde 
must meet a line in two points, if at a.II. But enough ha.11 been said to 
Khow that Euclid ih not faultless, and that hiR explicit a.xioml'I are very 
insufficient. Let UK, then, make an independent examination of metricru 
Geometry. 

392. Metrical Geometry is usually 11&id to be di11tinguisht.-d by the 
introduction of c1uantity. It i11 l'IUfficient for the charact.eri7.ation of 
metrical Geometry to observe that it introduces, between every pair of 
pDints, a relation ha,·ing certain propertie'I in virtue of which it i11 
numericall.v me&11urable-i.e. such that numben. can he gi,·en a one-one 
correspondence with th~ various relations of the cl&MM in c1uestion. The 
cl&!ll of relation11 i11 called distaru:e, and will be regank-d, though thi11 h1 
not stril--tly necessary, as a class of magnitudeH. Some of the propertie11 
of distance are &.'I follow.,;. 

• 8ee P,11,ch, op. rif. § l:J, (irundaatz 1x. 'l11e whole § ilJ excellent. 
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(1) Every pair of points has one and only one distance. 
(2) Distances are symmet.rical relations. 
(8) On a given 11traight line through a given point, there are two 

and only two point.'! at a given distance from the given point. 
(4) There is no maximum distance. 
(5) The diKtance of a point from itself is zero•. 
(6) There is no minimum to the distance between distinct points. 
(7) If d, 1i be two given distances, and A0 , A 11 A~, ... A,., . 1• be 

distinct poinL, on a straight line, whose distance.'! one from the next are 
all o, then for some value of n, A0 A,. is greater than d. \ 

(8) If A 0 , A,. be any two points, there exist 11 - 1 distinct point.'I 
(whatever integer n may be) on the straight line A0 A,., such that the 
di:-1tam•ei. of each from the next, of A 0 from the first, and of A,. from 
the last, are all equalt. 

393. It may be observed that, if we admit the axiom that the whole 
is greater than the part, the propertiE's (1), (4), (5) and (6) belong to 
stretches, while (2) becomes admissible by abstracting from the sense of 
a stretch. With regard to the remaining properties, (3), (7) and (8), 
there is nothing in descriptive Geometry to show whether or not they 
belong to stretches. Hence we may, if we choose, regard these three 
properties as axioms regarding stretches, and drop the word di.da1U·e 
altohrether. I believe that this represents the simplest course, and, as 
regards actual space, the most correct. At the same time, there is no 
contradiction in regarding distances as new relations distinct from 
stretches!. If we identify distance and stretch, what distinguishes 
metrical from descriptive Geometry is primarily the three additional 
axioms (3), (7) and (8), applied to a new indefinable, namely, the 
magnitude of divisibility of a stretch. This is not properly a notion of 
pure mathematics, since it cannot be derivl'<l from our original apparatus 
of logical notions. On the other hand, distanc.-e is not indefinable, being 
a class of one-one relatiorn1 with l·ertain assignable properties. On this 
point either <.'OUl'lle is logically pennis.,;ible, but only distance can be 
introduced into pure mathematic.-s in the strict sense in which' the word 
is ulled in thi!1 work. 

The above axioms arc required for showing that all distances are 
numerically mea.~urable in terms of any standard distance§. It is not 
nec.-e11SRry that dista1wes should be mRg11itudes, or even relations ; all 
that is essential is that distances !!hould form a series with certain 
properties. If the points of a line form a continuous series, then 

* Set' Put Ill, Chap. xxu. 
t J<'urther properties of distance will he added later on. 
! Strekhe11 are, of course, not properly relations; but this point is irrelevant in 

tl1e present discuSBion. 
§ See Part IV, Chap. xxx,. 
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distances do so also, in virtue of (3); thus all signleAA real numbers will 
be required for their measurement. 

39'. Assuming that distanl-e and strekh are di11timit, it may be 
a..iked whether distanl-es do not suffil-e for generating onier on the.• 
11traight line, without the need of anv &S\'mmetric-al transiti\'e relation of 
points. This represenh,, I think, t"he {i,;u1\l view of philosophers; but 
it is by no means easy to dl>c:·ide whether it repl"l'scnts 11 tenable view. 
It might perhaps be thought that (i) might he dropped, H.ml distan<'l' 
regarded a-. an asymmetril·al rl'lation. So long 111"1 Wl' confine our 
attention to one line, this view "a•ms unobjel't.ionahle. But al'! "oon ru. 

we consider the fact that dil'ltam·t-S m1 different JiJw,, m1l~' he l'lJUal, we 
Sl-e that the difft.•renl'e of se111"1e hetWl'l'II .All and BA j,. not. rcll•,·11nt to 
di,,tanee, sinl-e there is no such diffel't'il('e bctwl'l'II distam·t'!> on difli.•rent 
lines. Thus if CD be a distam'l' on nnothe1· linP, ( '/) mu~· hl• l'11ual both 
to A.B and B.A, and hem·e .AH and BA must he l'l)llll.l, not opposite, 
distam,-es. Auel the li&llle thing 11111)' he made l~vidl•nt by 1·onsideri11g 
a sphere. For this ce1tainly l'Om,ii.ts of points at a gi,en 1li .. t1mt·e from 
the l"entre; and lhus points at opposite ends of a diameter must haw 
the ,,,une dishtm'l' from the l"enh'l'. Dii.t.anee, then, is "ymnll'trical ; hut 
it rloes not follow that the onler on a line eannot bt.· 1-,rencrated b~· 
distance. Let .A, B be gi,·cn points on a line, and let C, C' he two points 
011 AB whose di,,tanc-cs from A are e11ual, nnd les" than A B. If Wl' now 
:!et up the axiom that either Ill' or JlC' is less than All, while the other, 
B(" or BC, i"' greater than .A IJ, Wl' shall, I think, after somt• further 
axioms, he ahle to generate order without any ot.her l'l'lation th,m distam·e. 
If .t, B, (' he three <:oJlinear points "ud1 that thP distancC'" .AC, CB 
arc both lt•s" than AJJ, then we shall sa,· that C i!, hct\\l't'II A and B. 
If .1, B, (" he points sud1 that AC', AiJ are both less than BC', then 
wt• "hall ~R\· that .A ji,; between B and l". If, fiualh·, A, B, (."' he 
points -.tll'h "that All, Bl'" arc both less t.han .A('", we ~haJl say that B 
is between A and C''. It remains to Sl'e whether, a.-. the generation of a 
series Ji.'llllire"', one of thc1>e always happens. Let A, B, C be any three 
collinear point:,. First suppm,e, if possible, that the distant·t•,. All, BC, 
CA arc all e1p1al. This l'a.'14! is not t•xdmled by an)·thing hitherto 
a,,sumL'<I; we re1Juil'e, therefm-e, the furt.hl•r axiom that, if AJJ, BC he 
e11111,I, AC j,, not ec1u11l to either of them; and I think it will be pl'Udent 
to aM.'IUllle that AC it- w·eatl•t· than either. Thu,. the case of two et1ua) 
<lii-,tam·L-:. and one Jess than either is exclucled. Of tlm th1'l•e dii;tauccs 
AB, IJ(', AC, therefore, one must he the 1-,rreatest: let thii. he .AC. 
'l'hl.'n in ,·irt.ue of thl· definition, B will he between A and C. Uut our 
diffiC'Ultit.--. are not at an eud. 1''01· we requii-e further that any point 
between A. and Jl shall he between .A. ancl (.' ; and that, if A. be hetw<->cn 
D an<l C, B shall be between /J and C. \1\'ith regani to the first 
point, if E be betwl'Cll .A and B, .AE and Ell 11.1-c les!I than AR, and 
therefore less than .A C. But nothing Rll"Ureli u11 that EC i!I le11.,; than 
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.AC. J<'or thi11 purpoee we need a new axiom, which will be just what we 
Net out to prove, namely: If AE, EB be both less than .AB, and .AB, 
BC be both leii11 than .AC, then EC i11 lei.-. than AC. l'inally, to pro,·e 
that, if A be between IJ and C, and B between A and C, then B i11 
lx!tween D and C. Here DA, AC are less than DC, and AB, BC are 
less than ,,4 C. Henre BC is leis than DC; but nothing prove11 BD less 
than /JC. }'or thi11 we shall need a new axiom, and then at last our onler 
will be definite. But the proc:~, as is evident, is extremely compJicated. 

390. Moreover we still need a method of defining the straight l,ine. 
Pieri h&11 11hown, in an admirable memoir•, how to deduc:e meb1il'al 
geometry by taking point A.nd ,notio11 &11 the only indefinables. In§~<}(), 
we objec.-ted to the iniroduction of motion, a.-. usually effected, on_Jhe 
b'I-Ound that its definition presupposes metrical properties ; but Pie1i 
eKCapes thi11 object.ion by not defining motion at all, except through t):ie 
p011tulate11 assumed <"on<-eming it. The str1tight lint• joining two points 
iK the clRSH of points that are unchan1,.Yl'd b_v a motion which leaves the 
two points fixed. The 11phere, the plane, perpendicularity, the order of 
points on 1t line, etc. are e11t1ily defined. This proredurc is logieally 
unimpeac·h1tble, and i11 probably the 11implest possible for elementary 
geometry. But we must now retum to the l-on11ideration of other 
11uggested syMtems. 

There i11 a method, invented by Leibniz+ 11.nd reviwd by Fri!ichauf! 
and Peano§, in which distan1-e alone is fundamental, and the straight 
line i11 defined bv its mea.1111. In this method distanl'ell arc given 
to begin with &11 ~ class of relations which are the field of a certain 
transitive uymmeb-ical relation (greater and 1m1aller); if we a.~ume thi11 
relation to be c•ontinuom1, distam·es will be measurRble ; all distanres 
have the 11&me domain and the same c.·onverse domain, namely all the 
poinbl of the spat."e in <1uestion ; the locm1 of points ec:1uidistant from two 
fixed points is called a plane, and the inte1"Se<·tio11 of two non-eoincident 
planei;, when it is not null, is called a atraigl1t li11e. (The definition of 
the straight line given by Peanol! is as follows : 'l'he 11traight line ah is 
the dass of' points ,t• imch that any point U, who11e distant.-e11 from a and b 
are respeeth·ely equal to the di11tanees of :r. from" and b, must be coinci­
deut with .i•.) Leibniz, who im·ented this method, failed, &el-ording to 
l'outurat, to pro,·e that there a.re straight lineK, or that a Ktm.ight line is 
dctennined by any two of ib point!!. Peano has not, 110 far as I am 
aware, 11uc-ceeded in proving eithe1· of these pmpOKitions, but it i11 of 
c.•.ounic posgible to introdm .. -e them by meam, of Rxioms. l<'ri!ll'hauf 
profesMell to demonKtrate them, but his prooft1 are very informal, and it 

• JWla gtNJ11l#tlria l'llnnn1lnf't'- romr, ltillltinw ipnll'firo dt'dultiro, Turin, lffll!). 
t ('f. Couturat, La l,ogique dr .Ltlibnitz, Paris, UIOl, ('hap. rx, eap. p. ~:ID. 
! Abllollltti G«n11«riti narl, Joi,,,,,,, Bol!Jfli, J11/,,1ug. 
§ Acc,1d,.,.;,, RN/, drll,, .~·i,m::r di Tori110, l!,O-.?-:J, " La Ueometria buata "ulle 

idee di puuti, e dilltanza." II /II(', rit. 
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i11 difficult to know what axioms he is assuming. In any cue, however, 
the definitions prove that, by a Huflil'ient u11e of axiomR, it is possible to 
constru<.t a geometry in which distanl-e is fundamental, and the straight 
line derivative. The method i11 so complicated as to be not practically 
desirable ; but its logical pOM.'libility is neverthele1111 important. 

398. It is thus plain that the 11traight line must be independent 
of distanc..-e, whifo di11tanee may be independent of the straight line. 
Taking both &.'I synunetric-al relation11, we t.·an, by a very complic..-ated 
Keries of axioms, succeed in generating order 011 the straight line and 
in explaining the addition and meuurement of distanlu. But this 
complication, in most spac..-es •, is logically unnecesR&ry, and is wholly 
avoided by deriving distanc.es from stretchl'S. We now Htart, a.,; in 
descriptin• Geometry, with an AAymmet:rical tran11itive relation by which 
the straight line is both defined and 14hown to he a series. We define as 
the diNtanl'e of two points A and B the magnitude of dh-iHibility of the 
stretch from A to B or B to A-for divisibility is a 11ignles11 magnitude. 
Divisibilit.v being a kind of m~rriitude, any two diKtances will be equal 
or une1:1ual. As with all divisibilities, the sum· of the divisibilities of 
AB and EF is the divisibility of the logical sum of the classes .AB and 
EF, provided these clMses have no eommon part. If they have a common 
part, we substitute for EF a stretch E' F' equal to it and having no 
part in <·ommon with AB. The difference of the diHtanc..-eR All, EF 
(supprn;ing .AH the greater) is the divisibility of a 11tretch CD which, 
added logically to EF, and having no part iu common with EF, 
produ(-ei, 11, sb-ctch equal to AB. It follows at once that, if A, B, C be 
collinear, and H be hehn.-en .A and C, AB +BC =AC and AC-AB = BC. 
No further axiom i111 required. for these proposition11. For the propc>Rition 
that, if AB=A'B', and CD=("/1, then AB+CIJ=A'B'+l"JJ', we 
require only the general axiom, applicable to all divisibilities, th11,t the 
sums of equRIH are equal. Thus by the help of the axioms (3), (7), (8) 
above, we ha,·e e,•erything that is required for the numeriCA.l me&'IU1'e• 
ment (theoretically speaking) of all distanc..'t'.ll in terms of any given 
distance, 11,ncl for the proof that <·han1,,e of unit involves multiplication 
throughout by a mmmon factor. 

397. With 1-egard to magnitude of dh-isibility, in the NCOKI.' in 
which this is relevant to metrical Gc.-ometry, it is important to realize 
that it is an ordinal notion, expreHSing a property of relatiom,, not of 
their ficld11. We wish to 811.V that a stretch of two inchet1 hlUi twit-e 88 

much divisibilitv as a stretch of one inch, and that an a1-ea i." infinitelv 
more divisible "than a stretch. Now, if we are dealing (as will lK! 
ummed in this d.iKCussion) with a continuom1 space, every stretch, area 
01· volume i11 a class of 2"" terms ; and considered as a cl&M, it i11 the field 
of an infinite number of relations beside that (or thO!re) belonging to it 

.., 1'he only exception11 known to me are finite ,paces or t,rn dimensiom,. ~ 
(,'1,ap, XIJX, 
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in resped of the i'lpace we are L'On11idering. The habit of allowing the 
imagination to dwell upon aL-tual space has made the order of points 
appf..'ar in some way intrin11ic or essential, and not merely relative to 
one of many p08sible ordering relations. But thi11 point of view is not 
logical: it a1is<.'II, in regard to actual space, only from the fact that the 
1,iencrating relation11 of actual 11pace ha,·e a quite peculiar L-onnection 
with our perceptions, and, through the continuity of motion, with time. 
J:c'rom the standpoint of logic, no one of the relations having a given field 
ha..., n.ny preeminetu-e, and the points of actual space, like any othert··la11& 
of ~0 • tcrnu,, form, with regard to other ~is of generating relat ons, 
other sorts of continuous spaCCK-indeed any other continuous s -e, 
ha,·ing any finite number of dimensions, or even ,.., dimensions, can\ be 
formed of' the points of a Euclidean space by attending to other 
generating relations. 

:From this it follows that magnitude of di,·isibility, if it is to 
distingui11h a long i.tretch from a short one, or an area from a. stret<-h, 
must he a propt.•rty of the relations inrnlwd, not of thc dasi. of pointi. 
comprn,ing the area or the 11tretch. It is not quite easy to define the exac,-t 
property which is required; for any two 11trekht>s are ordinally similar. 
Wc l'e<Juin.• some sense for the e.1uality or im .. -quality of' the relations 
who11e ficlcli. 11re the given 11tretches. \\'here cocm::linah•s (i.e. a corre­
lation of the points of a line with the real numbers) have been already 
introdul't'd, we may define the magnitude of a strekh m, the difference 
of thc coordinates of its end-points or its limits (at'l'ording H..., the strekh 
hR."1 l'nd11 or not); but if this ii' done, the magnitudes of strekhes will 
depend upon the neeessarily more or less arbitrary plan upou which we 
ha\'(' introduced our <·om-diuatci.. Thi11 ii. the l'OUrse adoptt.-d in the 
pl'OjL'<0tivc thL'Ory of distance-a l·ourse which has the merit of making 
metrical G1."t,111ctry a logil'al de,·elopment from projediw axioms alone 
(1,ec next d1apter). The other t·oun;c that may he 1ulopted is, to 
assume that the generating relations of any two strekht-i. lu\\'c either a 
symmcb'it·al transitfrc relat.ion (cqualit_r), or 1m ni.ymmctrical transith-e 
relation or its t'Oll\'l'J"Se (greater 01· ll•ss). Certain axiomi,, will be required, 
a.~, for example, that if the points .A, R, l', 1) 1uc l0ollim•ar, und .AC is 
g1-eatcr than .4.JJ, then BC is greater than RD*. The J't'lations of equal, 
~rreakr and less ma_r he regan.ll-d as dl•finL'<i b_r thl•se axioms, and the 
eommon property of tlw ~rermrating relations of those sh'l't<-hes that are 
equal to a giwn strekh may be defined as the lllll{,rnitude of divi11ibilit)· 
of the said generating relations. The sense in whic·h an Rrca ha.~ 
infinitely more divisibility than a stretch is that, if II be any finite 
integer, and II stretches ec.1ual t.o a given i.trctch be remon.-d fnnn an 
area, there always remaim1 an art•a, howe,·cr great II may be. \\7hat is 
important to ob;en·c, in the above disL'llssion, ii. that the logical parity 

* Stretches are here ~arded as having sign, so that, if .-IC is Kl'tlater than .,tf), 
CA. U1 11:'88 than J)A. 
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of all the omel'li of which a dass of terms is capable makes it necesAAr~· 
to regard the magnitudes with which metrical Geometry deals as 
belonging to relations or dasses of relations, not, as is commonlv 
supposed, to the ~lass of points forming their fields. · 

398. In clliptil· space, where the straight lint• is a cloK<.>d st•ries, 
the attempt to make distam·e independmt of stretch leads to still 
further complications. ,ve now no longer have the axiom that, if 
A, B, C be collinear, we cannot ha,·e AB =BC= CA; and we haw to 
recognize two distances between every pair of points, whil·h, when 
distance is taken a., fundamental, bet·oml•s extl"l'melv awkward. "'e 
may howe\'er rtrnid admitti11g two distarll'es by refusfng to n•gard the 
greater of the two a.-; properly a distance. This will then be only a 
stretch. If two disbu1l'es are admittod, om• is always greater than the 
other, except in a limiting l'tt,;e, when both are tlw lowl•r limit of the 
greater distanl'es rmd the upper limit of the lesser distruwes. .Further 
if a, b, c, d lw any four distinct points, the greater of the two disbm<·es 
ul, i,- always greater than tlw lesser of the two distam·es ed. Thus the 
whole class of greater distam·cs may bt.• banished, and only hrreater 
stretches he admitted. 

"'e must now proceed a. .. follows. Distances arc a cla."iM of sym­
metril'al n•l1ttions, which are magnitudes of one kind, h1tving a maximum, 
whid1 is a one-one relation whose field is all points, and a minimum, 
whil'h is the distanl·c of any point from itself. Every point on a given 
line has a given distance other than the maximum or minimum from 
two and only two other points on the line. If a, b, c, d he four distinct 
points on one line, we shaU say that a and care separated by band din 
the following four cases, of which (1) and (2) and also (3) and (4) are 
not mutually exclusive: 

( 1) If ab < ru: . be< a,c . ,ul > ac. 

(2) If a/1 < ac . br < ac . de > ac. 
(S) If ab > ac. ad< ,u:. de< al·. 
(4) If bc:>ac.ad<ac.df'<ac. 

We then need Vailati's five axioms enumerated in Part IV, Chap. xx1v, 
in ordl'r to generate a closed series from the separat.ion of coupk•s so 
defined. Thus it is possible, though by a somewhat complicated process, 
to generate a dosed series of points on a line by means of the symmetrical 
relation of distance. 

I shall not work out in further detail the consequences of thiti 
hypothesis in elliptic space, but procec-d at once to the hypothe1'1is 
that distances 1tre the magnitudes of stretches. ,vhen the number of' 
,limcnsions exceeds two, the polar form of elliptir i.pace is rnerdy 
projective space together with the necessary metrical axioms. the 
antipodal form is a space in which two antipodal poinb. together hM·e 
the properties of 11. single projed:ive point. Neglecting the latter, to 
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whit·h similar remarks will apply, I shall confine myself to the polar 
folin. Sin<.-e this is a projective spac.-e, every pair of poinbl detennineii 
two 11egment.-i on the line joining the points. The sum of these two 
segments, together with the two pointff, is the whole line, and therefore 
com1tant. It iK an axiom that all complete 11traight lineti have the 1111me 
diviKibility. The divisibility of either 11egment iK a distance between 
the two points: when the two distances are equal, either may be c·alled 
the distan(.-e; when they are unequal, it will be convenient to call the 
smaller the distance, except in spt..'Cia.l pmblems. The whole theoI"y then 
pruc:ceds BK in the case of descriptive 11pace. But it i11 importallt to 
obiierve that, in elliptic spac-e, the quadrilateral com1tructio11 and\ the 
generation of order, being prior to stretcheM, are prior to distan<.-eK, fnd 
are presupposed in metrical Geometry. , 

399. So far, therefore, metrieal Geometry introduces three new 
axiom11, and one new indefinable. The stretch in every/ 11eriei,; · is 
a cpmntity, and metrical Geomctr)· merely introducets 11uch axioms as 
make all stretches of point.'I me&Kurablc. A few words may be u11eful 
as to the 11ense in which, in a theoretical disc,'ll11Sion, the word mea.nlreme,1.t 
i11 to be understood. 'l'he actual application of the fc,ot-rule i11 here 
not in question, but only those properties of pure space which are 
presuppoKed in the use of the foot-rule. A set of magnitude11 is tluro­
rdictd('I measurable when there i11 a one-one relation betweeu them and 
some or all numbers; it is prarlicully measurable when, given any 
magnitude, we can di11<."0ver, with a certain margin of elror, what the 
number is to which our magnitude has the relation in question. But 
how we are tu discover this is a subtK.'C1uent question, presuppo11ing that 
there is such a proposition to he di11covered, and soluble, if at all, 
by empirical means to be invented in the laboratory. With practical 
measurement, then, we are not at all concerned in the present dis­
cussion. 

400. I come now to a more difficult question than distance, namely 
the question as to the definition of angle. Here, to begin with, we 
must deal with rays, not with whole straight line1. The ray may 
be taken either as an asymmetrical relation, or as the half-line on 
one side of a given point on a line. 'l'he latter usage is very convenient, 
and I shall frequently employ it. Elementary Geometry &11Sumes that 
two rays starting from the same point determine a certain magnitude, 
called the angle between them. ThiK magnitude may, however, be 
defined in various ways. In the first place, we must observe that, 
since the rays in a plane through a point form a closed series, every 
pair of rays through a point define11 two stretches of rays. Of these, 
howc,·er, one stretch contains the oppo11ites of both rays, while the other 
stretch (.-Ontains the opposites of ueither-except, indeed, in the one 
ca11e where the two rays are each othel0'K opposit.el. Thi11 case i11 met 
by }~uclid's postulate that all right a.ngfos are equal-a potitulat.e, 
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however, which is now known to be demonstrable•. Omitting thi11 
CaKe, the angle between two rays may be defined as that stretch of rays 
through their intersection which is bounded by the two ravs and does 
not contain the opposite of either, i.e. if A, B be the 1-ay~, and A, B 
their opposites, the angle is the class of rays C which are separated 
from A or B by A and B. We might alim, but for an objection to 
be meutioned shortly, define the angle &.'I all the points on such rays. 
A definition equh·alent to this la.<1t, but 11implcr in form, and avoiding 
the mention of the opposite rays, is the following+. Let a, b be any 
two points of the rayi,. A, B, and let c be any point of the stretch ah. 
Then the da.,;s of points ,·, for all prn;sible positions of a ,md b on their 
respective rays, is the angle between. A and R. That is, every pair 
of intersecting rays divide,., the plane of the rays into two parts: the 
part defined as abon· is the angle. Or rather, the part 1,0 defined is the 
angle a.-. a quantity : the angle a.,; a m9+.rnitude is the divisibility of 
this part. But to these latter definitions we shall find fatal objections, 
and we ,.hall find it necessary to adhere to the definition as a stretch 
of rays. 

401. Thus angle, like distance, is not a new indefinable, but like 
distance, it requires sonw new axioms. The angle between a ray A 
11.nd its opposite A' cannot he defined as above, but may be defined 
as the lobri<·al sum of the angk"' between A and B, Band A' rcspe<:tively. 
This limiting angle is J,J'J'eater than any other at the point, being in fact 
the whole half of the plane 011 one side of the straight line AA'. If the 
angles between A and H, H and A' are equal, each is called a right 
angle. (That there are such angles, can be proved it' we assume 
contiuuity.) Two intersecting straight lines make four angles, which 
arc equal in pairs. The order of a collection of rays through a point 
in a plane may be obtained by correlation with the points where these 
rays intersect a given straight line, provided. there is any straight line 
which all of them intersc-ct. Hut since rays through a point in a plane 
form a closed series, while the points on a line do not, we l"C(JUire a 
four-term relation for the former order. The following definition seems 
adt.,quate. Given four rays OA, 0B, OC, OD through a point O and 
in one plane, if these all meet a certain straight line in A, B, C, D 
respectively, and A and C are separated by Band 1), then OA and OC 
are said to be separated by OB and OD. In projective space thi11 
suffices. But in descripth·e space we must provide for other C8.llell. 

Thus if OA, OB. OC meet the given line, and Bis between OA and OC, 
while OD does not meet the given line, then OA and OC a.re a.gain 
,.aid to be separated by OR and OJ). If, finally, O.A' and OB' be the 

* See e.g. Killiug, fJp. dt. \'ol. u, p. 171. A strict proof will be fow1d i11 

Hilbert, op. cit. p. 16. 
t Killing, op. rit. 11, p. Hl!J. 
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opposites of OA and OB, then 0..4 and OA' are separated by UB 
and OH. In virtue of the deS<"ripth·e axioms of the preceding cnapter, 
the order among the ray11 so obtained will be unambiguous, i.e. in­
dl•pendent of our choic..-e of the line ARC, and will cover all cases. 

Rut now we need axioms a.nn.logous to those which, in the ease 
of di11lant·c, were numbered (3), (7) and (8). At any gfren point in 
a given ray, there must be, in a given plane, two and only two rays, 
on opposite sides of the given ray (i.,•. 11eparated from each other 
by the given ray ancl its opposite), whi,·h make a given angle "'.ith 
the given ray ; an<l angles must obey the axioms of Archimedes and 
of linearitv. Rut in addition to these axioms, which insure that an~les 
shall hl' ,iumcrically mea.11urahle, \\C must have some method of ~~n­
nccting thl' meruiure of anglPK with that of clista.nces, such as is ret1uired 
for the solution of ttianglt•s. Does this l'l'<Jllire a new axiom ? Euclid 
appears to obtain this, hy means of I. 47, II. 12, and II. 13, without 
any fre11h axiom. For this result we depend upon the propositions on 
the <xmgruence of triangles (I. 4, 8, 26), whi,·h demand only, 11.s we Kaw, 
the axiom that, with one angle at a given point, and one side along 
a given ray through that point, there exist two and only two triangles 
in a given plane through the ray (one on each side of the given ray), 
which are equal in all rcspet·ts to a given triangle. Thus it would seem 
that no f~h axioms are required for angles in a plane. 

402. \Vith regard to the definition of an angle as a portion of 
a plane, it is Dl'CCSll!lry (as in many other <·ases), if we retain thi11 
definition, somewhat to restrict the axiom that the whole is greater than 
the part. If a whole .A hai, two parts B, C, which together t·onstitnte 
A, and if C he infinitesimal with respect to A, then B will he equal 
to A. This ca11e occ.·urs in a plane under the following circumstances. 
Let 0, O' he any two points, OP, (}' P' lines in one plane and making 
e<1ual augles with the ray Oo'•. Then in Eudidean or hyperbolic space 
these line11 OP, O' P' will not intersel't ; thus the angle between 00' and 
O'P' will be part of the angle O'OP. Hence the above restriction 
is na-es1,11.ry as regards the axiom that the whole i11 greater than the part. 

In Euclidean spare this answer is suffil'ient, since, if OP makC!l 
with 00' a less angle than O' P' does, OP and ()' P' will intcrsed,. But 
in hyperbolic space, OP and O' P may not intersect e,•en then. Hence 
if we adhere to the above definition of angle, we shall have to hold that 
the whole may be less than the part. This, however, is intolerable, and 
11hows that the definition in question must be rejected. \Ve may, how­
e\'er, still regard angle as the stretch of rays ; for the rays in the angle 
at O' arc not. part of the rays in the angle at 0. Hem.-e it hi only 
Ma stretch of rays, or as the mabrnitude of Kll<'h a stretch, that an angle 
c-an be properly defined. 

* •n1e 1mp;le between the rRys 0<1, <II"' is what Eoclirl would call the angle 
between 0<1 produced and (1 P. 
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As showing, in a curiollll manner, the increased power of deduction 
whi(•h resulb from the aho,·e axioms l'onremiug di11tances and angles, 
we may remark that tlw unittUl'nc11s of the quadrilateral c-onstruetion, 
which before muld not he prol'ed without three dimensions, c·an now 
be proved, A.II rcgard11 all l'<>n::1truction11 in one plane, without RIIY 

assumption of point11 oulsidl' lhA.t plane. Sothing is easier than to 
pro\'e thi11 proposition by thl' methods of l'll'mcnlllry eoordinatl' G·eomt·hJ. 
Thus although projedivc (h•ometry, as an independent seicnee, 1-ec1uirt.'lt 
three dimensions, any projedive proposition con<.,'l'rniug plane figun.•11-
ean he metric!&lly provt"<l, if tht• abon- axioms hold, for a two-dimensional 
space. 

403. ~\s regards figures of three climension:,,, anglc•s betw(.,'Cll plant'K 
and solid angll's c·an be defined t•xal't.l)' I.L'I redilim.•ar 1mgle11 wt•n.• defiiwd . 
. Moreover fresh axioms will not he r(.,'<tllil't.'<l, for tilt' llll'll..'lllrcmcnt of sud1 
angles can be deduced from the data we lllrcady po.,,;Sl•11s. 

With regard to al-ells and volumes some n•11111rh Sl't.'111 lll'C.'l'llsH.r_y. 
ArelL'I and ,·olunws, like angles, are claHses of' points "hen tn.ktm 1L>1 

quantitieH, and divisibilitie:,, when taken 1\s mabrnitudeti. .For arell!I 
and volumes we do not re1p1ire afresh the axiom!-! of Ar('himl'lles and 
of' linearity, but. w1• n·11uire one axiom apil'l'C to gi\'e 11. c·rih-riou of 
l'<]Ual areas and volume:,,, i.e. to connet•t t.hcir e1111ality with that of 
rlistances H.nd angle!,. Sm·h an axiom is supplied, as reganls areRs, by 
the axiom that two 1·tmgr1wnt triangles hRvt• t.he same arctt, aml 11.H 

regards volumes, by tht• t·orrcsponding axiom com·t•ming h·tmhedra. 
Hut the existem-e of tungment tetraheclra, likc that of t·onbrrucnt 
triangles, demands an axiom. 1-'or this purpo:,,c, Pasch• gives the 
following hrcneral axiom: If two figul"C.'I are 1·onbrruent, and 11 new 
point be n.dded to one of them, a new point e.an be adcll-rl to the other 
so that the two new figures are congruent. Thi11 axiom allows us to 
infer eongrueut trtrahedra from conbrruent triangle11 ~ and hl'm-e the 
meBHuremcnt of vohtml's prm•(.,•eds smoothly. 

404. In three dimen'lions, a ('Urious fact hBH to he taken ll(,'l.'Olmt of, 
namely, the disjunction of right and left-hn.ndedncKS, or of clockwi11e 
and t·mmtcr-dockwisc. This fact iii itself of a d1!Scriptive nature, and 
may be defined 11,.>1 followH. Between two non-coplanar rays, or hel\\·(.,'Cll 
four non-coplanar points taken in an a.'ISignt-d order, there is alway1,1 one 
of two opposite relations, which may be callt.'<l right and left. The 
f1?m1al properties of the'IC relations have been explain(.,-d in Part IV(§ 222). 
for the present I am concerned with their brcometrical consC<1uence11. 
In the fin;t place, they cause volume11 to become magnitudes with si1,,rn, 
in exactly the way in which distances on a straight line have 11ign when 
compounded with their sense. But in the case of distanceH, since not 
all are on one straight line, we could not thus compound distance and 
sense generally: we should require, for a compound, some more general 

* Op. cit. p. 109. 
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notion than sense, such as vectors supply. Here, on the contrary, ~inl--e, 
in a three-dimensional space, all volumes have one or other of two 
senses, the compound can be made for all ,·olumes. Thus if the volume 
of the tetrahedron ahcd has one sibrn, that of bacd will have the opposite 
sign. This is the familiar geometrical fact that the detenuinant giving 
the volume of a tetrahedron al>ed has one or other sign according w; the 
Mense of ahcd is the same as or different from that of OXYZ, where O is 
the origin and X, Y, Z any positive poinbi on the axes. It is this fal·t, 
alim, which gives 1o1igns to angular momentum in Dynamics. The ~m­
portance of the fact (which itself seems to he an independent axi~m) 
i11 this, that it makes a distinction between two figuK-s whose metrip1J 
properties are all identical. It i11 this distind:iou which pur.lled K1itit, 
who, like most of his contemporariers, impposed all geometrical facts to 
be metrical. In itself, the fact would be no more pu:,;:,;ling than the 
di1o1tinction between the stretches AB and BA, which are metricalh 
indi11tinguishable. But it becomes pu:,;zling when metrical e<1uality i)<I 
tmppo!!OO to result from motion and superposition. In om former 
definition of motion (§ 390) Wl' omitted (as was then ohsened) a con­
dition essential to its definition. Not only must two <·ongmcnt figures lx· 
metrically equal, but there must be a continuou:, sl'rie:, of equal figures 
leading from the one to the other. Or, what amount:- to the same 
thing, if a, b, c, d and a', I/, c', d' he homologous non.coplanar points 
in the two figures, the tetrahedra abl'd, ,lb'c'd' must ha\'e the same sense. 
In the case of equal and opposite tetrahedra, the.-1e l'on<litions fail. For 
there is no gradual transition from dock wise to counter-cl<K·kwise; thus 
at !IOnu· point in the series a sudden jump would he ncl'essary. ~o 
motion will transform abctl into a tetrahedron metrically e1p1al in all 
respec..-ts, hut with the opposite sense. In this fact, however, there 
11eems, to my mind, to be nothing mysterious, hut me1·ely a result of 
confining oUl'selves to three dimensions. In one dimension, the 11a111e 

would hold of distances with opposite senses ; in two dimensions, of 
areas. It is only to those who regard motion a.-i ei;sential to the notion 
of metrical 1.-quality that right and left-handedness form I\ difficulty. in 
our theory, they are rather a confirmation than a stumbling.block. 

With this we may end our brief review of metrical Geometry, leaving 
it to the next chapter to discuss its relation to projedi\·e Gl•omett-y anti 
the projective theory of distanc..-c and angle. 
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CHAPTER XL VIII. 

REL.ATIO~ OF METRICAL TO PROJECTIVE AND 
DESCRIPTIVE GROMI<~'l'RY. 

405. h. the pre11ent chapter I wish to discuss two questions. l4'irst, 
can p1·ojective and descriptive Geometry be el4tablished without any 
metrical preRuppositiorn~, or even without implying metrical properties? 
Secondly, cau meb·ical Geometry he doouced from either of the othen1, 
or, if' not, what Ullll.voidable noveltie11 does it introduce? The previou11 
exposition has already dogmatically assumed <·ertain answers to theie 
que~tions, but we are uow to examine critically the various poKKible 
answcn;. 

The distim·tion between projective and de,c1iptive Geometry iK very 
ret·ent, aud is of an l'S11entially ordinal nature. If we adopt the view­
whi<·h, as we 11aw, is the simpler of two legitimate views-that the 
straight line is defined by a certain relation between any two of itR 
points, then in projet.'1:ive Geometry this relation is symmetrical, while 
in descriptive Geometry it is asymmetrical. Beyond thi11 we have the 
diWerence that, in projective Geometry, a line and a plane, two planes, 
or two lines in a plane, always intersect, while in descriptive Geometry 
the que11tion whether this is the case or not is left open. But these 
different-es are not very impartant for our present purpose, and it will 
therefore he ronvenient to speak of projective and desctjptive Geometry 
togethe1· as non-quantitative Geometry. 

The logical independence of non-quantitative Geometry i11 now 
scartely open to question. We have seen, in Chapters x1.v and x1,Vl, 

how it may be built up without any reference whatever to quantitative 
corn;iderations. Quantity, iu fact, though philosophers appear still to 
regard it as very essential to mathematict!, does not OCt'\tr in pure 
mathematics, and does occur in many cases not at present amenable 
to mathematical treatment. The notion which does occupy the place 
traditionally assignoo to quantity i11 urder; and this notion, we 11&w, is 
present in both kinds of non-quantitative Geometry. But the purity 
of the notion of order has been much obscured by the belief that all 
order depends upon di11tance-a belief which, though it is entertained 
by so ext-ellent a writer u Meinong, we have seen to be faliie. Di1.1tance 
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being esKentially quantitative, to admit that 11eries depend upon di11tKm.-c 
is to admit that order depends upon quantity. But thi11 view lead.11 at 
on<.-e to an endlt."Hs regrel!S, since distance11 h,we an order of magnitude, 
which would have to be derived from new distances of di11ta11ceh, and 
so on. And positively, an asymmetrieal tram,itive relation suffi,•ei, to 
generate a series, but does not imply distance. Hence the fact that 
the points of a line form a 11eries does not show that Geometr_v must 
have metrical presuppositiom1, and no such presuppositions appear in the 
detail of projective or descriptive Geometry. 1 

406. Hut although non-quantitative Geometry, as it now exiilts, ii, 
plainly independent of e,·erything metrical, the historical develop~•cnt 
of the subject has tended greatly to obscure thii.. independem-e. A brief 
historical review of the subject may he useful in showing the relation of 
the more modern to the more traditional method!>. 

In Euclid, and in Greek geometefli generally, h,mlly any desc-riptiw 
theorem11 are to be found. One of the earliei,t dist·o,·erit.."H of an im­
portant desc:riptive theorem WOJI the one 1111.mc.'fl after Pasml •. Gradually 
it was found that propo1>itio118 which assert points to be collinear or 
lines to lX' t·oncm'Tl'nt, or propositions concerning tangents, pole:, and 
polal'II, and 11imilar matters, were unaltered by projc.dion ; that i", ,my 
1mch propt•rty belonging to a plane figure would belong also to the 
projedion or shadow of this figure from any point on to any plar1e. 
All such properties (a.'l, f'or instance, thO!!t' common to all t·oui,·s) were 
calfod projecti\'e or descriptive. Among thei,e propertic.,; wa-1 anharmonic 
ratio, which wa."I defined 8.11 follows. If ..4, ll, C, /) be four poiut.. 011 

one straight line, their an harmonic ratio ii, 1: / {t; if 0..4, OB, 

OC, OD be four line:, thl'Ough a point, their anhan11onic ratio is 

sin.AOB/11i11..40D I t'h I , t k d .. G 
sin 'c.:iiB 11in COD• II ' llo'i ess !,'Tell wor Oil eS<·npbve eouwtry, 

and e\'en in m0t1t re<.-ent works (such a.-; Cremona's projL"<0th·e Geomeh·~·), 
this definition will be found at a very early 11tage in the development of 
the subject, tobrether with a proof that anharmonic ratio is unaltm .. -d by 
projection. But such a definition is itself metrical, and cannot therefore 
be used to fouJid a 11ubje<·t independent of metrical Geometry. With 
other portions of what used to be called det1eripth·e or projective 
Geometry, the same lack of independem-e will be found. Consider, 
for example, the definition of a conic. 'l'o define it as a curve of 
the second degree would require projective eoordinate11, which there 
was no known method of introducing. To define it as a cul"\'e meeting 
any straight line in not more than two point.'! would require the dis­
tinction of real and imaginary points, tor if we confine ounieh·es to 

• If a hexagon 1,e inscribed iu a conic, the three paini of opposite sides i11tened 
in collinear poiuta. 
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real points there are innumerable t·urvl!ff other than conics whit'h 11&ti11fy 
the definition. But imaginary points are, in ordinary metrical Geometry, 
imaginary coordinates, for which there is no purely geometrical inter­
pretation; thus without projective coordinates, our definition again fails. 
'fo define a conic as the locLu1 of point.'I P for which the ,mharmonic 
ratio of P.A, PB, PC, PI) (where .A, B, C. [) are fixed points) is 
constant, llf,.r&in inn,h-cs metrical t·om1iderations, i,;o long as we ha,·e 
no projective definition of anharmonic ratio. And the same dependen<.-e 
upon metrical Geometr.v appears as regard11 any other projective or 
deHcriptive theorem, so long as the traditional order of ideas is 
adhered to. 

The true founder of non-quantit_ath·e Geometry is von Staudt•. It 
wai,, he who introdut-ccl the definition of 11. harmonic range by means 
of the quadrilateral construction, and who rernh·red it possible, by 
repetitions of this eonstmction, to give projediv<' definitions of all 
rational anharmonic ratiO!lt. These definitions indicate the suc<•ession 
of quadrilateral eonstruct.ions 1-e<1uired in order to ohtain a fourth point 
from thn·e given poinbi; thus, though they are es.11entially numerical, 
they have no reforen<-c what.ever to quantity. But there remained one 
fmthcr titep, hcfore projective Geometry could be contiidcn.-d L-Omplete, 
11.ml this step wa-; taken by Pieri. In Klein'11 account, it remaim1 doubtful 
whether a/,l set. .. of four collinen.r point11 have an anharmonic. ratio, and 
whl'ther any meaning <'an be as.'ligned to irrationa] anharmonic ratios. 
J<'or this purpose, we require a method of generating order among all 
the points of a Jinl'. J<'or, if then• be no order hut that ohtained from 
Klein's method, there is no sense in whic·h we can regard a point not 
obtained by that method as the Jimit of a series of points which are so 
obtained, sim-c the limit and the 11eries which it limits must alway11 both 
belong to some one i,,eries. HenC'e there will be no way of 8.!lSigning 
ir1·ational coordinRtes to the poinb, which do not ha\'c rational <'0-
ordinates. There is, of t·onrse, no projective reason for supposing that 
there are 11uch point..,; but there are metrical rell.!lons, and in any case 
it ii,, well, if pos11ible, to he able to deal projecth•ely with a c:ontinuous 
11pat"t.'. Thii. i11 effech-d by Pieri, with the help of <--erte.in new axioms, 
but without any new indefinables. Thus at last the long proce!18 by 
which proj<-'<·tiw Geometry has purified itself from every metrical taint 
is eompleted. 

407. Project.ive Geometry, having achieved its own independence, 
hll.!l, however, embarked upon a career of foreign &gbl'fRndisement; and 
in this we shall, I think, though on the whole favourable, be obliged 
to make some slight reservationH. The l'IO-called proje<·tive theory of 
distance aim11 at proving that metrical is merely a branch of projective 

* flM111f'frit1 der I.Age, Niiruberg, 184i; Heitrilge zar Geometrie der Luge, ib. 1866, 
18->i, 1800. 

t This step, I belie,•e, is due to Klein. See Jlfllh . .d.11111,1/1111, V1>IB. 1v, v1, xuvn. 
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Geometry, and that distances are merely logarithms of certain an­
harmonic ratiOK. It' this theory be correct, there is not a special 
subject of metrical Geometry, and the axioms by whieh, in the pre­
ceding chapter, we distinguished this subject, must be consequences of 
projective axiom11. Let us examine the manner in which this l'ellult 
is obtained•. 

We have already seen how to assign coordinates to every point of 
a line in projective i;pace, and how to define the anharmonic ratio of 
any four points. We have seen also how to obtain a projective from 
a descriptive space. In a dei;criptive i;pace, when an ideal point has a 
real correlative (i.e. when it is a sheaf of lines which has a ,·ertex~ we 
assign to the real point the coordinate which belongs to the ideal point 
considered as belonging to a projective space. In thi11 way, the coordillRte 
Geometry of the two spaces lx.'COmei; very similar, the differenl-e being 
that, in projective space, every real 11et of coordinates gives a real point, 
whereas, in deKCl'iptive spR.l.-e, this holds of each <,-oordinate only within 
certain limits (both of which limits are excluded). .In what follows, 
therefore, remarks concerning projedive sp8,(,-e will apply also to det«.·rip­
tive space except when the contrary is expressly stated. 

Let us consider the anharmonic ratios of all rangeR a:rlr!J, where "• b 
are fixed points and x, y variable points on our line. Let «, E, /3, ,, be 

the coordinates of these poinhl. Then t = z / : = p will be tht- 11.n­

harmonic ratio of the four points, which, sint,-e «, /3 are t,'Onstanhl, may 
be <,-onveniently denoted by (f71). If now , be the coordinate of any 
other point s:, we have 

c,..,)(.,,t') = <E,>-
Hence log ( E11) + log ( 11t') = log ( Et'). 
Thus the logarithm of the anharmonic ratio in quest.ion has one of the 
essential properties of distance, namely additiveness. If :ry, y::, .rz be 
the distances of :r, y, z taken a.'I having sign, we m0t1t have 

:ry +yz=:rz. 

We have also log(ff)=O and log(f'l)=-log(..,~), whieh arc two further 
properties of distance. From these properties ( of which the third follows 
from the other two) it ii; ea.<1y to show that all propertieH of distam-es 
which have no reference to the fixed points a, b belong to the logarithm 
in question. Hen<,-e, if the distances of poinb1 fl'Om ,,, and I, can also be 
made, by a suitable ehoice of a and b, to agree with thOKe de1ived from 
the logarithm, we shall be able to identify distan<.-e with this logarithm. 
In this way-so it is <'Ontended-metrical Geometry may be wholly 

* The projective theory of distance and angle is due to Cayley (Si.rt/& Jlrmoir 
u,an Quantic•, 1859) and to Klein (M11th.. Ann,ile,11 Vol11. 1v, \'I, v11, xxxvn). A fuller 
dilcu•ion than the following will be found iu my Fo1mdntiM111q/'fit10m«try, Cambridge, 
1897, §§ 30-,18. 
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brought under the projective sway ; for a similar theory applies to 
angles between lines or planes. 

408. Let us oonsider first the case where our projective points are 
the ideal points of a descriptive space. Let :r be considered fixed, and 
distinct from a and b. Let y be moved so that .,, becomes more and 
more nearly equal to /3. Then as .,, approaches /3, log(Er,) will be 
always finite, hut will assume values exceeding any that may be assigm,,d. 
This is mathematically expressed by saying that, if f be any number 
other than a and {3, then log (f/3) iii infinite. (If f be ec.1ual to II or /j, 
log (fa) and log (f/3) are indeterminate; this case will therefore be 
supposed exduded in what follows.) Hence a and b must he at an 
infinite distance from every point except each other; and their distance 
from ea.eh other is indeterminate. AE,ra.in .r and // must not be separated 
by a and b, i.e. y must belong t.o t.he segment ru:b, if we wi11h the distance 
to be real; for if E- a and E- fJ have the 11&me sign, .,, - a and .,, - fJ 
must also have the same sign, but if E - a and E - {3 have different 
signs, "I - a and "I - fJ must also have different signs; and these con­
ditions amount to the same as the condition that y must belong to 
the segment a.Tb. Hence if we insist that ,my two real points (i.e. pointll 
which arc not merely ideal) are to have a real distance (i.e. a distance 
measured by a number which is not complex or purely imaginary), 
we shall re<Juire a and b to fulfil the following conditions: (1) they must 
be ideal points to which no real ones correspond ; (2) they must be the 
two limits of the seril.'S of thOMe ideal points to which real points do 
correspond. These two conditions inc-lude all that has been said. For, 
in the first pla<.-e, there is no real distance of any point from II or fJ ; 
hence a and /3 must not be coordinates of real points. In the second 
place, on one of the two segments defined by a and b, there is a real 
dh,tance :ry however near E or .,, may approach to a or fJ ; hence a and b 
are the limits of the ideal points to which real ones correspond. In the 
third place, it follows from the last proposition that all ideal points 
to which real ones correspond belong to one of the two segments ab, 
and all ideal points to which no real ones correspond (except a and 6 
themselveti) belong to the other of the two segmenbl ab. When these 
conditions are satisfied, the function log(E11) will have al1 the properties 
which are required for a measure of distance. 

The above theory is only applicable to descriptive space, for it is 
only there that we have a distinction between ideal and actual points. 
And in descriptive !!pace we begin with an asymmetrical transitive 
relation by which order is generated on the straight line. Before 
de\'eloping a theory which is applicable to pure projective space, let 
us examine a little further the above theory, which may be called the 
de,criptive theory of distance. . 

In the first place, the ideal points to which l'eal one11 correspond, 
which for shortness I shall call proper points, form part of the whole 
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Heries of ideal points, which is closed. The proper points are a semi­
t-ontinuous portion of this cloSPd series, i.e. they have all the properties 
of A. continuum except that of hn.ving two ends. It may happen that 
there ii. only one ideal point which is not proper, or it ma_y happen 
that there are many. In the fonner ca.-re, the one purely ideal point 
will be the limit of the proper points in both directions. This is 
the ca.~e of Euclidean spa<·e, for in Euclidean 11pace there iK only one 
sheaf of lines to which a given line belong.,; and which has no vertex, 
namely thl· sheaf of lines parallel to the given line. Hence ini this 
case the points a and l, must be taken to be iclcutical. The fun~tion 
log ff"7) is then zero for all values of f and 'T/, and is therefore u~lcss 
as a measure of distance. But by a familiar process of proceeding 
to the limit, we ran, in this cru;e, obtain the value f- "7 for tbc 
distanre•. This is the usual mea11ure of elementary Geometrv; and for 
the distance of two points in a plane or in spat~ we ,,houl;l similarly 
obtain the usual formula in this case. We sec hl•rc Utt• exact meaning 
of t.he c·ommon phrase that, in Eudidean "pace, + xi is the same as - oo , 
or that the two ends of a linl' t·oim·ide. The fact is, of course, that the 
line has 110 ends, but that it determines only one ideal point which is 
not proper, and that this is the limit. of proper ideal points in both 
directions: when it is added to the proper ideal points, we obtain a 
closed continuous series of sheave:, to whirh the li1ll' in qm•,;tion belongs. 
In thii. way, a sonwwhat ayptic expression is found to have a very 
simpk· interpretation. 

But it may happen also-and this is the e11.~e of hyperbolic spal'e-­
that then• are many improper ideal points on a line. In this case, 
the proper ideal points will have two different limits; these will he the 
sheaves of Lohakht•wsky's parallels in the two directions. In this case, 
our function log (f11) requires no modification, but expre~ses distance a.-i 
it stands. The ideal points a and b are distind, whit·h is commonly 
expressed h_y saying that our line has two real and distind points at 
infinity. 

Thus in dL-scriptivc space, in which out· coordinates are obtained 
by l'orrdatiou with those of the derived projective spa<·e, it is always 
po.;i;ible to define a <·ertain function of our projedivc <·oordinatL-s which 
will fulfil the conditions rc<1uired for n. measure of distance. These 
conditions may be enumeratt-d as followst. (1) Every pair of' real 
points i.; to have a distance whose nwasurc is real and finite, and vanishes 
only when the two points coincide. (2) If .1·, ;,J, ;; arc collinear, and .1/ 
lies hetwl'en if' aud ;;, the sum of the nwasures of ,r:1/ and .7p is to he the 
me11.,;m~ of ,r;;. (fj) As the ideal point corresponding t.o ,1/ approaches 

* 1',ep, 11.g. Klei11, l'rn-lt-111m{P'11 iif,l'I· tti,·f,t f:11klidi11ch11 r;eumr.trie, Giitti11ge11, 180:J, 
Vol. ,, pp. 1/H If. 

t ( If. Whitehead, ll11i1,er-,ul Algef1rC1, Hk. ,.,, Vhap. 1. I confine myself in the 
text to distances on one 111:raight line. 
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the ideal point which is the limit of proper ideal point.'I, while a· 
remains fixed, the absolute value of the mea.'lure of .ry is to grow without 
limit. 

It mav well he asked, howeYer, whv we should dl'Mirc to define a 
function ~,f two variable points posse~-;ing these properties. If the 
mathematil'ian replies that his only objl•<·t is 1unuscment, his procedure 
will he 101-,rically irreproachahle, bnt extreme!~· frivolous. He will, how­
c,ver, s<·arcel_v make this reply. ,ve have, as a matter of fad, the notion 
of n strekh, nnd, in virtue of tlw KCneral axiom that en•ry class ha.,;; 
some magnitude of di\·ii;ihility, wt• know that the stretch ha..-. lllllf.,•nitude. 
Uut wt• do not know, without n speC'ial assumption to that effeC't, that 
tht· ~ti'l'kh fultils the axioms of Archimedc~ and of lincaritv. ,ivhen 
ouc·c these an• assumed, the ahove proiJertit'll of the ml'asurc c;f distam•e 
l>c<'Ollle properties whi<"h must bdong to tht\ 111ens11rc of stretch. But. 
if these two axioms arc not assumed, there is no reason why there 
should ht• auy magnitude having a measure pos~essing the above four 
du\raderist.ic~. Thus the desc·riptive theory of distiuwc, unless we regard 
it as purely frh·olous, does not dispt•ust.• with the need of the above 
axiom~. \Vhat it does show-and this fact is extremely remarkable­
is that, if !,trekhes arc numerit·ally 111ea1mrable, then they are memmrcd 
by a c·onstnnt multiple of tht> logarithm of the anhRrmonic ratio of the 
two ideal points a.~soriatcd with the ends of the strekh together with 
the two ideal points which limit the i-;eries of proper idea.I points; or, in 
('l\.'le tlw latter pair are identit·al, the ~tretch is measured by a function 
ohtaint-d as the limit of the above wht>n the said pair approach to 
ideutih and tlw constant. factor increases without. limit. This is a 
most <:urious result, but it docs not obviate the nct.>d for the axioms 
which disting11i11h metriml Geometry. The same condusion follows as 
regards metric·al Geometr)· in a plane or in three dimern;ions; but here 
new complieatiom, arc introclm·ecl, which are irrelevant to the pre!!t!nt 
is~ue, and will therefore not be discussed. 

It is important to realize that the referem,-e to two fixed ideal point-;, 
iutrodm,'t->d by the deseriptivc theory of distan<-e, has no analogue in the 
nature of distance or stretch it1!elf. This reference is, in fat·t, a con­
venient device, but nothing more.•. The stretch, in descriptive space, is 
eompletely defim,,d by its end-poinh1, and in no way requin..-s a referem-e 
tu two further ideal points. And as descripth-e Geomt>try starts with 
the stretch, it would he a needless complication to endeavour subse<1uently 
to obtain a definition of l-ltrctch in terms of four point:;. In short, e,·cn 
if we had a projecth·e theory of distance in descripth·e i.pa<-e, this would 
Jo1till be not purely projective, since the whole p~j(.,><.·tive space t'Ompose<l 
of' ideal element-; is de1ived from axioms whid1 do not hold in projecth-e 
space. 

409. It remains to examine the projec.:tive theory of distanee in 
projecth·e space. The th(.,'Ory we have hitherto examined, 11ince it used 
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the distinction of real and ideal elements, was descriptive, not projective; 
we have now to examine the corresponding theory for pure projective 
Geometry. Here there are no ideal element.'! of the above sort &880Ciated 
with our line ; if, therefore, « and /3 be real and distinct numbers, they 
will be the coordinates of real and distinet poiRts. Hence there will be 
real poinbi :r, g which will be separated by a and b, and will have an 
imaginary measure of distance. 1.'o this there could be no objection. 
but for the fact that we wish 001· measure to be the measure of a stretch. 
Th.is is the reason why it is desired that any two real point!i should have 
a real measure of distance. In order to immre this result in la pure 
projective 11pacc, it i11 necessary that « and /:J should not be tpe co­
ordinates of points at all, but should be conjugate complex nu~bers. 
It is further neceSMry that the constant multiple of the logarithm should 
be a pure imaginary. We then find that the distance of two real pointi. 
always has a real me&!ure, which is an inverse eosine•. In a projt.'Ctive 
space, the l~ndition (!!) of p. 4!!4 introdul.-es complications, since between 
has not, a11 in descriptive Sp&l.-e, a simple meaning. The definition of" 
between in this case is dealt with fully by Mr Whitehead in his Univer11ol 
Algebra (§ !WG). 

4.10. But if such a function is to be properly geometrical, and to 
give a truly projective theory of distance, it will be necessary to find 
some geometrical entity to which our ronjugate complex numbers r:r 
and /3 correspond. This can be done by means of involutions. Although~ 
in a projective space, there are no ideal points, yet there are what may 
be called ideal point-pail'II. In Chapter xLv we considered involutions 
with real double points : if a, b be two points on a line, all point-pairs 
11:, tc' such that tc, :.I are harmonic conjugates with respect to a, b form 
an involution. In this case, tc and :r' are said to be conjugate; a and b 
are each self-conjugate, and are called the double points of the in,·o­
lution. But there are also involutions without real double points. The 
general definition of an involution may be given as follows (substituting 
the relation of :r to :r' for the pair :r, .r') : An involution of points is 
a symmetrical one-one relation, other than identity, wh0&e domain and 
converse domain are the same straight line, and which is such that any 
class of referents is projectively similar to the corresponding class of 
relate.. Such a relation is either strictly an aliorelative, or is a self­
relative as regards two and only two points, namely the double points 
of the involution. For e,·ery pair of distinet points on the line as 
double points there will be one and only one involution : oil point­
pairs ( using this expression 110 M to exclude the identity of the two 
points of the pair) have a one-one correlation with 8Mfle involutio1111. 
Thus involutions may be called ideal point-pairs: thOtJe that correspond 

• This is the form originally given by Cayley hi the 8ixth Memoir upon 
Qoantlca. The simpler loprithmic form is due t.o Kleiu. 
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to an actual point-pair are called hypn-bolk, the others eUipti(·. ThllB 
an ideal point-pair is one and indivi11ible, being in fact a one-one 
relation. Two proper ideal point-pain. have an anharmonic ratio 
defined by their respective double points : two improper ideal point­
pail"ll, or a proper and an improper ideal point-pair, have an analogous 
projective relation, which iM measured by the function obtain~I as 
above from the 1mppoi,;ition that IX Md {!J are conju1,,rate complex 
numbers. This function may be ea.lied the anharmonic ratio of the 
two ideal point-paini. If one be fixed and improper, the other variable 
and proper, an imaginary multiple of the logarithm of the resulting 
anhannonil· ratio h&11 the properlit!!! required for a me&foiure of the 
dista.nt.-e of the actual point-pair ,·orresponding to the proper ideal 
point-pair. This gh·es the pure projective theory of di11tanl'C. Hut to 
this theory, 1111 anything more than a k-chnical development, there are 
the H&me objedions a.11 in the l-ase of dC!K-riptive 11p&l-e; i.e. unles11 there 
be KOme magnitude detcnnined by every actual point-pair, there i11 no 
reason for the pnx.-esM by whi("h we obtain the above measure of distanl>e; 
and if there iM 11ueh a magnitude, then the above process givet1 merely 
the measure, not the definition, of the magnitude in question. 1.'hUH 
stret:ch or di11tance remains a fundamental entity, of which the pro­
perties are surh that the above meth()(l gh·es 11. me&11ure of it, but not a 
definition•. 

,11. There is howevt>r another and a simpler way of introdudng 
metri,:al notions into a projectiw spatie, and in this way distance 
becomeH a natural accompaniment of the introdu<."tion of eoordinates. 
Let p, q, r be three fixed points, ,we 11. line not passing through p or q 
or r but in the plane P'Jr, Let qr pa."ls thnmgh a, rp through b, pq 
through t·. Let R 1 be the relation which holdM between :r and y when 
these are points on alx·, 11.nd :rr, yq meet on ap; and let R., R1 be 
11imilarly dl'fined. Then a :Mobius net may be regarded &11 t-on11tructed 
by repetitionK of the relation,; Ru Ru R1 • We 11hall have, if .rR,!J, yR1z, 
then :rH4 .,,z. We ,·1111 define the !KJUare root of Ru or any power of R1 

whose index is a positive or negative power of 2. Further, if II iM any 
point of qr, 11.nc:l :rRi'y means that :r and y are on nbt· and .rr, y11 meet 
on Dip, then R1Ri' = R1' R1• From thCMe propoiiitions, which are proved 
by pure projective methods, it followM that if IX and 8 be numben., we 
may define Rt+/J to mean R1•R11J, provided R1• and R11J have been already 
defined ; whence, sinre Rt can be defined if n is a. posith·e or negative 
integer, all rational powers of R1 can be defined, and irrational powers 
can be defined a.s limits. Hen<.-e, if ,.,. be any real number, posith·e or 

negative, we can define R1s, for we may identify R 1-s with ii1s. We 
may now take this relation Rl~ as the didan,·e of any two points between 

* 011 the above methocl of introducing imaginaries in projective Get1metry, 1188-

VDJJ Staudt, BflitrllgtJ "" f.J,omt'lrit df!t' IA~, ,, § 7. 
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which it holds, and regard :r as the measure of the distance. We shall ' 
find that distances so defined have the usual properties of Euclidean 
distances, except that the distance of a from any other point is infinite. 
Thus on a projective line any two point-i do actually have a relation 
which may be called distance, and in thi11 11ense a projective theory of 
metrical properties can be justified. But I do not know whether this 
method can be extended to a plane or to space. 

'l'o sum up : Although the usual so-called projective theory of 
distance, both in desc.Tiptive and in projec.-tive space, is purely tec~nical, 
yet such spaces do nec..-essarily possess metrical properties, which fn be 
defined and deduced without new indefinables or indemonstrables. 1 But 
metrical Geometry, as an independent subject, requires the newi idea 
of the magnitude of divisibility of a se1ies, which is indefinable, and does 
not belong, properly speaking, to pure mathematit"K. This idea i11 applied 
to stretches, angle11, areru,, ctl'., and it is as1mmed that all the magnitudes 
dealt with ohey the axioms of Archimedes aud linearity. Without these 
axioms, many of the mmal metrical prop011itions cannot be proved in 
the usual metrical manner ; with these axioms, the usual kind of 
elementary Geometry bel·ome11 possible, and 1md1 result" as the unique­
ness of the quadrilateral construction can be proved without three 
dimensions. 'l'hus there is a genuinely distinct science of metrical 
Geometry, but, sinl-e it introdut-es a new indefinable, it does not belong 
to pure mathematic11 in the sense in which we have used the word in 
this work. It doei; not, as is often supposed, require distant-es and 
angles as new relations between points or line1, or planes, hut stretches 
and magnitudes of divisihiJity suffic-e throughout. On the other hand, 
projec·tive and descriptive Geoml'try are both independent of all metrical 
a.11Nmnption1,, and allow the development of metrical properties out of 
them~lves; hent-e, since the11e 1mbjec.-ts belong to pure mathematics, the 
pure mathematirian i1hould adopt their theory of metrirR.l matten;. 
There iK, it is true, another metrical Geometry, which does work with 
distances, defined a.'I one-one relations ha\"ing certain properties, and this 
subject is part of pUl'e mathematics; hut it is teITibly complicatL'Cl, and 
requires a bewildering number of axioms. Henc..-e the deduction of 
metrical properties from the definition of a projective 01· descriptive 
spal-e has real importance, and, in spite of appearanc..-es to the contrary, 
it affhrds, from the point of "iew of pure mathematics, a genuine simpli­
fication and unification of method. 
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CHAPTER XLIX. 

n.gPJ~I'J'IOSS 01" VARIOL'~ SPAC}~. 

412. IN the prel'l,'fling disc·usi.ions of different Geometries, I have 
nsuRlly, for the sa~e of l'Oll\'eniem-c, adhered to the clistinC'tion between 
definition,- and indefinable.-. on the one hand, and axiomN or postulates 
on the othl•r. Hut this distinction, in pure mathemati<"S, has no validity 
except a.11 regards the ideas and propositions of Logic. In pure ma.the­
me.fas, all the propositions state logical implil·ations <'Ontaining a 
mriahle. 'l11is is, in fact, the definition, or part of the definition, of 
pure mathematics. 'fhe implications stated must flow wholly from the 
propositions of Logic, which are prior to those of other brancheii of 
mathematics. l.ogit· and the reHt of pure mathematics are diHtinbruished 
from applied mathematit'l, by the fact that, in it, a1l the ,·om1tanb1 are 
definable in terms of :,;omc eight fundamental notions, which we agreed 
to call logical constant:,;. What distinguishe11 other branches of mathe­
mati<-'11 from Logic is merely complication, which usually takes the form 
of a hypothesi1, that the \'ariablc bclonbl'li to some rather <"ornplit·ated 
class. Such a claHs will usually be denoted by a 11ingle symbol; and the 
statement that the daHs in que:,;tion is to be repl'l'HCnted by such and 
such a symbol if!l what mathematiciam1 call a d,jiniti,m. That is to MY, 
a definition is no part of mathematics at all, and does not make any 
statement concl·rning the entities dealt with by mathematil'8, but is 
11imply and solely a statement of a symbolic abhre\'iation: it is a pro­
position concerning Kymbols, not concerning what is symbolized. I do 
not mean, of cout'lie, to affinn that the word dttfinuion has no other 
meaning, but only that this is its true mathematical meaning. All 
mathematics i11 bui1t up by combinations of a certain number of primitive 
ideas, and all its propositions can, but for the length of the resulting 
fonnulae, be explicitly stated in terms of these primitive ideas; henre 
all definitions are theoretically superfluous. But further, when Logic is 
extended, as it Khould be, so as to include the general theory of relations, 
there are, I believe, no primitive ide&.11 in mathematics exeept sueh as 
belong to the domain of Logic. In the previous chapters of this Part, 
I have spoken, as m08t authors do, of certain indefinableii in Geometry. 
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But this wu a eonce1111ion, and 11m11t now be redi6ed. In mathematics, 
two cl111111e11 of entitie11 which have internal relations of the ame logical 
type are equivalent. Hence we are never dealing with one particular 
c)&1111 of entitie11, but with a whole claiis of c11188t!H, namelv, with all cluses 
ha,·ing internal relations of tK>me 11pecified type. And by the ty}'e of 
a !'elation I mean its purely logical properties, such 8.11 al'e denoted by 
the wo1-d.M one-one, traruiitive, symmetrical, and so on. 1nu11 for example 
we defined the cl&1111 of' cl8.811e!i <.-ailed progreuwn by certain logical 
chal"A.<.-teristics of the internal relations of terms of any d&M whic~ is 

. a pl'Ogression, and we found that finite Arithmetie, in Ill, far as it deal11 
with numbers, and not with the ter1m1 or clM..es of which numbel.'!I ~at~ 
be a11.,ierted, applies equally to all probrreMRions. And when it i11 reali~ 
that all mathematical ideas, except thOHe of Logic, can be defined, 1it 
i11 Meen al!H> that there are no primitive proposition11 in mathematits 
except thOKe of Logic. 'lne !IO-l-alled axiomt1 of Geometr)·, for example, 
wbl'n Geometry i11 con11idered a.,; a bmm·h of pure mathemati<."H, are 
mel'ely the prota.Kis in the hypothetieals which c'Onstitute the science. 
111ey would be primitive propositio1111 if, &11 in applied mathe111atic11, 
they were themselves 11.1111erted; but sl> long &11 we only &.'lsert hypo­
thetic:als (i.e. propositions of the form "..4 impliet1 B") in whil·h the 
supposed axiomi. appear 11.M protA.sis, there i11 no re&.'1011 to R-"!llert the 
prot11."li11, nm·, conHl.-quently, to admit genuine axiomK. My objed in 
the present chapter is to execute the purely formal ta.,;k imposed by 
theHt: eonsiderations, and to set forth the strfot definitions of various 
11plll.-es, from which, without indefinableH and without primitive pro­
prn,itioni., the ,·a1iou11 GeometriL'M will follow. I shall l'Ontent myself 
with the definition of 11ome of the mol'e important 11paces, 11in<.-e my object 
i11 d1iefly to 11how that 11uch definitions are p<»Rllihlc. 

"13. ( 1) Projet:tive Space of three dinumsio11s. A projective space of 
thl'ee dimem1ion11 is any class of entities 11uch that there are at leat1t two 
members of the clas.,;; betwt.-en any two distinct memben theJ"e is one 
and only one symmetrical aliorelative, which i11 connected, and i11 tran­
sitin• so far as it11 being an ali01-clative will permit, and has further 
pt'OJ>erties to be enumerated shortly; whatever such aliol'elath·e may ·be 
taken, there i11 a tenn of the projective spat.-e not belonging to the 
fielrl of the said aliorelative, whic·h field i11 whoJly rontain<.-d in the 
pmje<.tive space, ~d is called, for shortness, a draigllt lim·, and i11 
denoted by ah, if a, b be any two of itM terms; every straight line 
which contains two term11 contains at least one other term ; if a, b, r. be 
auy three terms of the projective 11pace, such that c does not belong to 
the cl888 ab, then there is at least one tenn of the projective 11pa<.-e not 
belo111,ring to w1y class a, where :i: is any tenn of ab; under the Mme 
circumstan<.'ell, if a' be a term of be, b' a term of tJL•, the clR118e8 aa', 
bll have a <.-ommon part ; if d be at1y tem1, other tlw.11 u and b, 
of the clas.~ ab, and u, t' any two terms 1mch that d belongs to the 
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cl8ll8 uv, but neither " nor v belongs to the cl&1111 ab, and if g be the 
only term of the common part of au and bi•, ;: the only tenn of the 
common part of av and. bu, .r the only term of the L-ommon part of 
,tp, and oh, then z i11 not identical with d (under these circumstances 
it may be proved that the term z iR independent of u and v, and is 
uniquely determined by a, b, d; hence .t' and d have a symmetrical 
one-one relation which may be denoted, for brc,·ity, by zH.,µ; if g, e 
be two further terms of the projedivc space, belonging to the class zd, 
and such that there are two terms g, h of the clB1111 .rd for which we have 
gHmh and gllw,,h, then we write for Khortness ;,1Q.e to expre1.18 this 
relation of the four ternu; :r, d, y, e); a projective spat.-e hi 1mch that 
the relation Q,,,11, whatever terms of the space .t' and d may be, is tran­
sitive; also that, if a, b, c, d be any four dii.tinct termK of one straight 
line, two and only two of the propoiiitiom1 aQ,,,,tl, aQwc, aQJ, will hold; 
from the11e properties of proja-tive IIJ>&l'e it results that the terms of a 
line form a series ; this sc1ies is t.-ontinuous in the sense defined in § 277 ; 
finally, if a, b, c, d, e be any fi,·e tenns of a projective spat.-e, there will 
be in the cl&!l8 ,re at lea.'!t oue term z, and iu the cla.11-1 ,:d at leut one 
term y, such that .t' belongs to the clM'I by. 

This is a formal definition of a projL"C.·tive 11p&--e of three dimensions. 
,vhatever cla.~ of entities fulfils this definition is a p1-ojeL-tive space. 
I have enclosed in brackets a passage in which no new properties of 
projt.'Clive space are introdnL-ed, which serves only the purpose of con­
venience of language. There is a whole cla111, of projective spaces, and 
this class has an infinite number of memben1. The existence-theorem 
may be proved to begin with, by constructing a projective space out of 
complex numbent in the purely arithmetical senKe defined in § 360. 
We then know that the class of projeL-tive spaces has at least four 
membem, since we know of four sub-clasKeS contained under it, each 
of which has at least one member. In the fintt place, we have the 
above arithmetical space. In the second plac.,-e, we have the projective 
space of descriptive Geometry, in which the term" of the projective 
space are sheaves of lines in the descriptive space. In the third 
place, we have the polar fonn of elliptic space, which is distinguished 
by the addition of certain metrical properties of stretches, consistent 
with, but not implied by, the definition of projective space; in the 
fourth place, we have the antipodal form of elliptic Geometry, in 
which the terms of the projective space are pairs of terms of the said 
elliptic space. And any number of varieties of projeL-tive Kpace may be 
obtained by adding properties not inconsi11tent with the definition-for 
example, by insisting that all planes are to be i-ed or blue. In fact, 
every cl&11H of 2-. tem1s (i.e. of the number of terms in a continuous 
series) is a projeL-tive space; for when two cla&ies are similar, if one is 
the field of a certain relation, the other will be the field of a like relation. 
Hence by correlation with a projective space, any cl8811 of !'o tel'lll8 
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becomes itself a projective space. The fact iis, that the staudpaint of 
line-Geometry is more fundamental where de,finition is cont-erned : a 
projectil·e space would be best defined as ~_,cla!ls K of relations whose 
tields are straight lines satisfying the ab~e conditions. This point i., 
strictly analogous to the subi;titution of 'serial relations for series which 
we found desirable in Part IV. Whe1i a set of terms are to be regarrled 
ll..'1 the field of a dass of relations, it is convenient to drop the tenns and 
mention only the class of relations, since the latter involve the former, 
but not the former the latter. , 

It is important to observe that the definition of a space, as of ~no~t 
other entities of a certain complexity, is arbitrary within certain Ji~1its. 
Por if there be any property which implies and is implied by on~ or 
more of the properties used in the ddinition, we may make a substitution 
of' the new property in place of the one '-?r more in question. For ex­
ample, in plaee of defining the line by a relation between point[',, it is 
possible to define the line as a class having a certain relation to a couple 
of point"l. In such cases, we can only be guided by motiws of simplicity. 

It seems scarcely necessary to give a formal definitioh of desC'ripth·e 
or metrical space, since the above model serws to show how such a 
definition might he constructed. I shall instead give a definition of 
Euclidean space. This I shall give in a form which is inappropriate 
when .Euclidean space is considered as the limit of certain non-Euclidean 
spaces, but is very appropriate to quaternions and the \'edor Calculus. 
Thi11 form ha.'I been 11.dopted hy Pe11.no •, and leads tu a very simple 
Recount of the Euclidean axioms. I shall not strictly follow Peano, but 
my account will be very similar to his. 

414. (f.!) Euclidt:an ,1paff qf three dirnen.tion.,. A Eudiclean space of 
three dimensions is a clas.,; of terms containing at least two members, and 
11uch that any two of them have one and only one 11.SJmmetrical one-one 
relation of a dass, which will be l"alled the class of vectors, defined by 
the following charaderisticst: the converse of a vector, or the relative 
product of two vector:;, is a vector; if a given vector holds between a ancl b, 
,. and d, then the vector which holds between a and c is the same as that 
which holds between b and d; any term of the space has any assigned 
relation of the class to at least one term of' the space ; if the 11th power 
( where n is any integer) of any vector of the class is identity, then the 
,·cctor itself is identity; there is a vector whose nth power i11 a given 
vector; any two vectors have one and only one symmetrical relation of 
a certain cla.<1s having the following properties: the relation of any two 
vectors is measured by a real number, positive or negathe, and is such 

* "Analisi della Teoria dei vettori," Turin, 1800 (Act:fldemia Rellk delle Stien::e 
di Torino). 

t For the convenience of the reader, it may be well to observe that this relation 
corresponds to that of having a given distance in a given direction-direction being 
taken iu the sense in which all parallel lines have the same direction. 
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that the relation of a ,redor to ibelf is always measured by a poidttw 
number, and that the mea.-.ure of the relation of the relative produl't of 
two vecto1'S to a thin:1 \'(,'<•tor i11 the sum of the mcR.o;urei; of thcii· KC\'cral 
relations to the third vec.·tor; there is a n'l·tor sati11(ving the definition 
of an irrational power of a \'t.>ctor gi,·en below; there are ,·crtors whid, 
are not relative product11 of powers of two gin•n ,·eetm'S; if i, ,;, I.· be 
three ,·edor11, no one of which is a rl'IRtivc pnKlm·t of powt•rs of one 
or both of the othen., then all wet.on, are rclutiw producb, of powe1i; of 
i, j, k. 

The only points (•alling for explanation here a.re the notion of au 
irrational power of a vet'tor and the meaMurahlc rclation of two ,·t.don;. 
All rational powers arc 1lcfinite; for every ,·t.>ctor h,u, iu1 11th root, and 
the nth root has an mt.h power, whid, i11 the rn/11th power of the original 
vector But it docs not follow that real powcrK whi,·h an• not rational 
can be defined. The definition of limits of d11.11.'ll.'!I of vet't.ol'II given hy 
Peano• is, when tra1111latro into relational language, the following. Lc.•t 
"' be a clas:-. of real numbers, .:r0 a number belonging to the derivative 
of u. .Let !!Omc one-one relation 1mbsist behn•en all ·tt's and some or 11ll 
vccton;; and let t• he the daMs of wdol'II ,·orrclativc to "· Then the 
vector " is said to bt· the limit of the class v as :i.· u.pproacheH .1·,1 in 
the dMS tt, when the limit of the mewmre of the relation to iblelf of the 
vector whi,·h, multiplied relatively into ti, will giw the correlate to .1· 

in the da88 v, is zero. The point of this definition is thl' use of the 
order obtained among vectors by means of the measurable reliition whieh 
each has to it.Nelf. Thus suppose we have a progression r 1, .T2- ••• • x,., ... 
of rational numbers, ,md suppose these to be m-ipcl'tively the measures of 
the relations to themsches of the Vl.'Ctors Iii, a.H ... a,., . . . . Then if .1· he 
the limit of ,ri, x,. ... .x,., ... , there is to be a vector whoi;e relation to 
it.self is measured by :r., and thi11 is to be the limit of the va-tol'!I aa, a.,., ... 
ti,., ... ; and thus irrational powers of a vector beL'Ome definable. 'l'he 
other point to be examined is the mewmrahle relation between two 
vectors. Thi~ relation mcRNurcs, in terms of elementary Geometry, the 
produd: of the two 11trct.che11 represented by the vectol'l'i into the cOMine 
of the angle between them : it is, in the language of the cak'Ulu11 of 
extension, the internal product of the two vedors. To SR.Y that the 
relation ii; mewmrable in terms of real numbers means, in the Mense in 
which this 11tatement is employed, that all such relations have a one-one 
relation to some or all of the real numbers; hence, from the existence of 
irrational powers, it follows that all such relations form a <.-ontinuotbl 
series ; to say that the relation of a vector to it.self is always measured 
by a potiitive number meaui; that there exisb, a section (in l>cdekind'~ 
8CU&e) of the continuom+ series of relations, such that all those relatiom, 
that vectors can have to them11elves appear on one Hide of the HC<--tion !. 

* Up. cit. p. 22. 
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while it can be proved that the relation which defines the section is that 
which the vector identity bas to itself. 

This definition i11, of <.'OUrMe, by no means the only one which can 
be given of Euclidean space, but it is, I think, the simplest. f'or this 
reason, and also becalllle it belongii to an order of ideas which, being 
essentially Euclidean, is foreign to the methods of previous chapters, 
I have thought it worth while to insert it here. 

41&. A11 another example which may serve to enlarge our ideas, 
I 11hall take the space invented by Cliffonl, or rather the space whifh i11 
formally analogous to his 1mrface of zero curvature and finite exb\nt •. 
I 11hall first briefly explain the nature of this sp,we, and then p~ 
to I\ fonnal definition. Space11 of the type in lJUestion may have any 
number of dimem1ion11, but for the sake of 11implicity I shall confine 
myself to two dimensions. In this 1-1p1u:e, most of the usual Euclidean 
properties hold 8.H regard11 figures not ex<.'et'Cling a certain si,.e : that is 
to say, the 11um of the angles of a triangle is two right angles, and there 
are motions, which may be called translations, in which all painb; travel 
along straight lim.'S. But in other re;iwcts, the 11pace· is very different 
from J<~uclidean spu-e. To begin with, the 11traight line is a closed 
tieries, and the whofo spat-e has a finite area. In the second place, every 
motion i11 a translation: a dreular transformation (i.e. one which p1-e­
serves di11tancei from a certain fixed point unaltered) is never a motion, 
i.e. never leave11 every distance unaltered : but all tran11lation11 can, a11 

in Euclidean space, be compounded out of translations in two fixed 
dired,ions. In thiK space, as in J<~uclid, we have parallel11, i.e. 11traight 
lines which remain at a constant distance apart, and can be simul­
taneou11ly described in a motion : also straight line11 can be represented 
by linear cquation11. But the formula for distan<.-e is quite unlike the 
Euclidean formula. Thus if "Irk be the length of the whole straight line, 
and (.r, y), (.x', .'/) be the coonlinates of any two points (choosing a 
system in which the straight line h1111 a linear equation), then if ,.., be 
the angle between the lines :r = 0, y = O, the distance of the two points 
in question is d, where 

cost= cos (z-.x') co.<1 (y- y') - cos ,.., sin (,i- - .x') 1-1in (]J-U'). 

and the fonnula for the angle between two li11e11 i1J Himilarly complicated. 
We may, in onler to lead to these results, set up the following definition. 

t8) ClYford'a lfj}ace oJ t'IDO dimenaio11..9. A Clifford's space of two 
dimensions is a class of at least two terms, between any two of which 
there are two relations of different classes, called respectively distance 

" On the general subject of the llpat:llll of which tbill i,- the 11implest example, see 
Klein, llaU.. Anna/e,i xxxvu, PI•· 6M-'ifl6, and Killiug, t,rundlaflffl dlJr f:JeoNlrie, 
Vol. 1, Chap. av. 
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and direction, and possessing the following properties: a dirmion is a 
symmetriaal aliorelative, transitive so far as its being an aliorelative will 
permit, but not connected ; a tenn of the space together with all the 
tenns, to which the said term has a given relation of direction form what 
is calk-d a straight line ; no straight line contains all the tcnn11 of the 
space ; every term of the spac.,-e haK any assigned relation of direction to 
some but not all other terms of the 11pace ; no pair of terms has more 
than one relation of direction ; duta,u:es are a cl11SS of symmetrical 
relations fom1ing a continuous 11eriCM, having two ends, one of which 
is identity; all distances except identity are intransitive aliorclatives; 
every tenu of the space has any a&'ligned relation of distance to !\Ome 
but not all of the term11 of the space; any given term of the space has 
any given di11tance and direction from bo and only two other terms 
of the spac.-e, unless the given di11tance be either end of the series of 
distan<'ell; in this ca11e, if the given di11ta11ce be identity, there is no term 
having this distance and also the given direetion from the gh·en term, 
hut if the distant.-e be the other end of the series, there is one and only 
one tcm1 having the given di11tance and the given din.-ction from the 
given term; di11tances in one stmight line have the propertic11, mentioned 
in Chapter x1,v11, required for generating an order among the tcrn111 of one 
11traight line; the only motions, i.e. one-one relatiom1 whose domain and 
convenie domain are each the space in question and whic·h leave all 
di11ta11t.'e-i among the relata the same 1111 those among the correHponding 
referents, are such M consist in eombining a given di11tance, a briven 
direction, and one of the two senses of the serit.'S constituting a straight 
line; and every such combination is equivalent to the relative product 
of some distance in one fixed direc..-tion with some distance in another 
fixed direction, both taken with a imitable sense; finally all possible 
diredions form a single closed continuous 11eries in virtue of mutual 
relationK. 

'l"his completes, I think, the definition of a ClifFord's space of two 
dimensiom1. It is to be observed that, in this space, distance cannot be 
identified with stretch, because (1) we have only two dimen11ions, so that 
we cannot generate a clO!!ed series of terms on a line by means of pro­
jective methods•,(!) the line is to be closed, so that we cannot generate 
order on the straight line by the descriptive method. It is for similar 
reason11 that both direc.-t:ions and distan<lell have to be taken as liym­
metrit-al relations. thus it is only after an order has been generated on 
a line that we aan distinguish two sen11e1, which may be associated with 
direction to render it asymmetriaal, and with distanceK in a b-iven 
direction to give them signs. It is important to obiierve that, when 

* Mr W. E. Johnson hu pointed out to me that thi11 difficulty might be over­
come by introduciug the w1ique11e1111 of the quadrilateral conatructiou by a lpC!Cial 
axiom-a method which would 1ierhap& be air.1pler than the above. 
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distance is taken as independent of the straight line, it becomes Dect>!i.'i&l')', 

in order to distinguish different spaces, to assign some property or pro­
perti~ of the one-one relations or transformatiom1 whirh leave distances 
unchanged. This method has been adopted by Lie in applying to 
Geometry the theory of continuous groups•, and has produced, in his 
hands and those of Klein, remlb of the greatest interest to non­
Euclidean Geometry, But since, in most spaces, it is unnecessary to 
take distance as indefinable, I have been able, ext.-ept in this instance 
of Clifford's spacet, to adopt a simpler method of specifying spaees. 
For thiK reason, it was important to consider briefly some such (,;pat-e 
as Clifford's, in order to 1-,~ve an instance of the use of distance, a~d of 
what geometers call motion, in the definition of a space. \ 

Enough ha.11 now been said, I hope, to show that the definition of a 
kind of space is always possible in purely logical tenm1, and that new 
indefinables are not required. Not only arc the actual terms compostng 
a spa(.'e irrelevant, and only their relations important, hut even the 
relations do not n•quirc individual determination, but only specification 
as members of certain logical classes of relations. The11e l01,,~ral classes 
are the elements used in geometri(.'al definitions, and these are definable 
in terms of the small colleetion of indefinables out of' which the logiral 
t'al(.'ulm1 (including that of relations) is built up. Thib result, which 
hold11 throughout pure mathemati(.'s, was the principal object of the 
present <)hapter. 

• Leipzig,1r /Jerichte, 18DO. 
t If I l1ad defined an elliptic space of two dimem1ionR, I ~hould have had to take 

distance as distinct from Rtretch, becaulle the projective generation of onler faih1 in 
two ,limenAions. 
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CHAPTER L. 

THE COSTISUl'J'Y OF SPACK 

416. h has been mmmonly supposed by philosophers that the 
l'Ontinuit~· of spal'c was something i,l('apahle of further analysis, to be 
l'Cl,'Rl'dcd Ri-i It mystel'J', not t·ritically im,pertl-d hy the profane intelled .. 
In Part ,·, I as. .. erte<l that Cantor's continuity is all that we l'l,'<ptire in 
dealin~ with spare. In the present chapter, I wish to make good thi11 
ai1sertio11, in i-io far al> il, posbihle without raising the question of absolute 
and t·elative position, whi,·h I reserve for the nrxt chapter. 

Let us begin with the l'ontinuity of projedive space. We have 11een 

that the points of dcsl·riptive space arc ordinally similar to those of a 
semi-,·ontinuous portion of a projective spa<'c, namely to the ideal points 
whi,·h have real l'OJTclatives. Ht•n<·e the <·ontinuity of descriptive Rpace 
ii1 of the sa1m.• kind Ks that of projective space, and need not, there­
fore, he sepamtcly considered. Hut metril·al space will l'l'<jllirc a new 
discussion. 

It i11 to be obsern!d that Geometries, as they are treated now-a-days, 
do not begiu h,r assuming Kpaces with an infinite number of points; in 
fact, i,pacc is, a., Pea.no remarks•, a word with which Geometry can very 
easily dispenSt!. Geometries begin by as.,uming a cla.'l!!-coneept point, 
together with certain axioms from which conclusions can oo drawn 8.11 

to the number of points. So, in projective Geometry, we begin with the 
a.~umption that then· are at least two points, and that any two point.'! 
dewrmine a dass of point,, the i;tmight line, to which they and at 
leai;t one other point belong. Hem·e we have three points. We now 
introdure the new ai,snmption that there i11 at least one point not on 
any gi\'en straight line. This hrivc11 us a fourth point, and sine,-e there 
must he points on the line.~ joining it to our pre,·ions points, we obtain 
three more points-sc,·en in all. Hence we can obtain an infinite deuu­
mcrahle series of' points and linL'II, but we cannot, without a further 
N111umption, 11ro\'e that there are more than three point~ on any one 
line. Four point.~ on a line result from the assumption that, if b and d 

t /lit•. di Jlal. Vnl. IV, p. -'i2. • 
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be harmonic with respect to a and c, then b and d are distinct. But in 
order to obtain an infinite number of points on a line, we need the 
further 811Kumptions from which the projective order results•. 1.'heee 
1U11.1umptions nece88itate a denumerable series of points on our line. 
With these, if we chose, we might be content. Such a series of 
points iH obtained by successive quadrilateral conRtructions; and if we 
chose to define a space in which all points on a line could be obtained 
by sut.-ces11ive quadrilateral constructions starting with any three poin~s 
of the line, no contradiction would emerge. Such a 11pace would ha~e 
the erdinal type of the positive rationals and zero : the poinbi on I a 
line would fom1 a e,-ompact denumerable Keries with one end. The 
extension, introdut.-ed by assuming that the series of points i11 <-'OD• 

tinuous, is only nece81!8.ry if our projective space is to possess the usual 
metrical properties-if, that is to MY, there i~ to be a stretch, with. 
one end and its stmight line given, which is to be a1ual to any given 
stretc-h. With on]y rational points, this property (which is Eudid's 
postulate of the existence of the cin·lc) cannot hold universally. Hut 
for pure projective purposes, it is irrelevant whether our i;pace possesses 
or does not po&'lesll this property. The axiom of t.-ontiuuity itself may 
be stated in either of the two following forms. (1) All points on a 
line are limits of series of rational points, and all infinite series of· 
rational poinbi have limits; (2) if all pointt. of a line be divided into 
two clR11Het1, of which one wholly precedeK the other, then either the first 
class has a last term, or the last has a first term, hut both do not 
happen. In the first of these wayli, the continuity which reNults is exactly 
Cantor's, but the second, which is Dedekiud's definition, is a neoesN&ry, 
not a sufficient, condition for Cantor's continuity. Adopting thili tint 
definition, the rational points, omitting their fil"iit term, form an endless 
compact denumerable series ; all points · form a perfect serieH ; and 
between any two points there is a rational point, which is p1-e<·isely 
the ordinal definition of continuity t. 'l'hus if a proje<-1;ive spat.-c is 
to have t.-ontinuity at all, it must ha,·e the kind of t.-ontinuit~· which 
belongs to the real numbers. 

417. Let us l"Onsider next the <.-ontinuity of a metrical spa<.-c ; and, 
for the sake of definiteness, let us take Euclidean space. The question 
is here more difficult, for continuity is not usually introduced by an 
axiom ad h0t·, but appea1'K to J't'8ult, in some sense, from the axioms of 
distance. It wa.~ already known to Plato that not all length11 are 
commensurable, and a 11trict proof of this fact is contained in the tenth 
book of Eudid. Hut this dOl'S not take u11 very far in the dil-ection 
of Cantor's l-ontinuity. The gist of the 8.8Kertio~ that not all lengths 
are commemmrnbll', tobrether with the poHtulate of the circle, ma~· be 
expreKlll.-d 11.11 follow11. If .AB, Al' bt- two lenb'ths along the Mme 11traight 

* Cf. Pieri, op. rit. § IJ, Prop. 1. t t.lee Part \', Chap. xxxvt. 
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!ine, it may happen that, if .AB be divided into m equal parts, and .AC 
mto n equal parts, then, however m and n may be l:hosen, one of the 
parts of .AB will not be equal to one of the parts of AC, but will be 
greater for some values of m and 11, and les11 for others. also lengths 
equal to either may be taken along any given line and with any given 
end-points•. But this fact by no means proves that the points on 
a line are not denumerable, since all algebraic numbers are denumerable. 
Let us see, then, what our axioms allow us to infer. 

In Greek Geometry there were two great soun-es of irrationals, 
namely, the diagonal of a square and the circumferenre of a circle. But 
there could be no knowledge that these are irrationals of different kinds, 
the one being measured by an algebrai<' number, the other by a tran­
S<..-endent number. No general method wa.'I known for L'Onstructing 
any assigned algebraic numbed, still less for constructing an assigned 
tr&nS<,-endcnt number. And so far as I know, such methods, en-ept 
by means of limits, are still wanting. Some al~hraic and some tran­
scendent numben, can be constructed geometrically without the \lilt! of 
limiti., but the construd.ions are isolated, and do not follow any general 
plan. Hence, for the present, it cannot be inferred from Eudid's axiomi; 
that space has l'Ontinuity in Cantor's sense, or that the points of spac-e 
are not denumerable. Since the introduction of analytic Geometry, 
some equivalent assumption has been alwayt. tacitly made. For example, 
it has been assumed that any equation which is sati1died by real values 
of the variablci; will represent a figure in space; and it seem:- even to be 
universally supposed that to every set of real Cartesian coordinates a 
point must correspond. The11e assumptions were made, until quite recent 
times, without any discussion at all, and apparently without any con­
sciousness that they were a.Hsumptions. 

When on<--e these assumptions are recognized as such, it become11 
apparent that, here as in projective space, continuity must be introduced 
by an axiom ad lwt:. But a.~ against the philosophers, we may make the 
following remark. Cantor's continuity is indubitably autftcu.:nt to satisfy 
all metrical axioms, and the only question is, whether existent space 
need have continuity of so high an order. In any case, if measurement 
is to be theoretically possible, space mm1t not have a greater continuity 
than that of the real numbers. 

1.'he axiom that the points on a line form a continuous series may be 
put in the form which results from amending Dedekind, or in the form 
that a line is a perfect series. In the first form, every section of the 
line is definable by a single point, whil'h is at one end of one of the parts 
produced by the section, while the other part has no end. In the 1.recond 

* A length is uot synonymous with a segment, since a length is regarded u 
essentially terminated. But a length is, for present purposes, synonymous witl& 
a stret.eh or a dist.ance. 

t 1''or shortness, l shall identify numbers with the length11 which they measure. 

Downloaded from https://www.holybooks.com



4:40 Space [CHAP. L 

form, which is preferable beeause, unlike the first, it <.-ompletely defines 
the ordinal type, every infinite serieK of pointR has a. limit, and every point 
is a limiting point. It is not necesKary to add that the line has cohesion•. 
for thiH results t'rom the axioms of Archimedes and of linearity, which 
are in any case essential to measurement. Whether the axiom of con­
tinuity be true as regardt1 our actual space, is a question which I see no 
means of deciding. :For any such que!ltion must be empirical, and it 
would be quite impossible to distinguish empirically what may be ealled 
a rational space from a continuout1 space. But in any C8.lle thet: is 
110 reason to think that space ha.'I a higher power than that of, the 
continuum. \ 

418. The axiom of eontinuity enables us to dispeuse with the 
prnitulate of the cirde, and to substitute for it the following pair. 
(1) On any straight line there is a point whose distance from a gi\'en 
point on the line is le1111 than a gi\'en distance. (2) On any straight 
line there is a poiut whose distance from a given point on or off' the line 
is greater than a given distanee. 1''rom these two assumptions, together 
with continuity, the existenee of the c·irde c·an ™ proved. Since it it1 
not pm1siblc, conversely, to deduce continuity from the eirde, and since 
much of analytie Geometry might be false in a discontinuous space, it 
seems a distinct advance to banish the cirde from our initial assumptions, 
and substitute coutinuit.v with the above pail- of axiom~. 

419. There is thus no mystery in the continuity of spaee, and no 
need of any notions not definable in Arithmetic·. There is, however, 
among most philosophers, a notion that, in ~pare, the whole is prior to 
the parli! t ; that although every length, area, or volume can be divided 
into lengths, area.'l, or volumes, yet there are no indivisibles of which 
such entitie11 are comp08ed. Accm·ding to this view, points 11.re mere 
fictiom;, and only volume11 are genuine entities. Volumes are not to be 
rebrarcfod 8-"i clas..<1es of points, but as whole11 containing parts which are 
never simple. Some such \'iew as this is, indeed, often put forward 
as givin,c the very essem'l' of what should be called <.-ontinuity. Thi11 
question is di11tinct f'rom the question of absolute aqd re]11.tive position, 
whic·h I shall discu11s in the following chapter. Por, if we regard 
position a!I relatil'c, our pre11ent question will arise again concerning 
continuous portion!! of matter. Thi11 present question is, in fact, 
e11,o;entially concerned with continuity, and mo.y therefore be appro­
priately diHCussed here. 

The 11erie11 whieh a1·ise in Arithmetic, whethei· C"ontinuous or not, 
are cSMCntially <.'Ompoli(.-d. of tem1s-integcrs, r11.tionals, real numbers, etc. 
And where Wt! l'0me nt!ar to the continuity of' spo.ec, M in the ca.o;;e of 
tht• real uumben-, eal'h real number is a segment or infinite clasR 

* See Part V, Chap. xxx,·. 
t Cf. Leibniz, Phil. Werlte (Gerhardt), 11, p. 379; 1v, p. 491 ; also my PAiloM>p/ag 

qf' Leifmisa, Chap. 1.x. 
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of rationals, and no denial that a segment is t-'Omposed of elementx 
ii-; possible. In tpis case, we start from the elements and gradually 
t·onstrul't variou:-. infinite wholes. But in the case of spac·e, we are 
told, it is infinite wholes that are gh·en to begin with; tht.· elements 
a1-e onlv inferred, Md the inferenc,-e, we are llSsm-ed, is very rash. This 
qucstio;1 i" in the main one of Logit·. Let u" St.-e how the above \'iew 
is i'!Upporte<l. 

Those who 1kny indivisible point» a.-1 constituents of spac.c have had, 
in the pa.-1t, two lines of argument by whi<·h to maintain their denial. 
They had the cliffi<'nlties of continuity and infinity, and they had the 
way in which space i-1 pl'esented. in what, m·cordiug to their school, they 
<·ailed iutuitio11 or :-.e11sation or per<·eptiou. Tht• diffi<·ulties of l'<>ntinuity 
and infinit,v, a" we ~w in Part V, al'c it thing of the past; ht•nc·l· this 
line of argument i" no longer opt•n to thos1• who dt!llY points. As 
regard" the otlwr argument, it i:-, <·xtremcl.v difticult to giw it a prt•C'is1• 
fm·m-indPcd I suspect that. it i" impos,,ihle. \\'t• mny take it. as agn•ed 
that everything 1-opatial, of who:-.e existen<·t• \\l' bt•co111c imnll'diat.cly awtll'l' 
in :-.ensation or intuition, is complex a11d divisible. Thus the c•mpiril'al 
prcmis:-., in the investigation of space, is the existc111·c of clivisihlt• entities 
with C'ertain propcrtiPs. But here it may bt· well to 111ak1• 1t litt.lt­
digrc~~ion into the meaning of an l·mpiriml prcmis~. 

420. An cmpirieal premi~s is a proposition whi<'h, for 1-oOllll' reason or 
fur no rea~ou, I heliew, and whil'h, wt.• 11111)' add, is cxi,,tential. Having 
agt'l'ed to acc-cpt this proposition, we shall usmllly find, on examination, 
that it i;. cmnplex, and that there nre one or more !lets of simpler 
propo-.itions from which it may be dedul'ed. If P he the empirical 
premiss, let A hL· thl• dass of Sl'ts of propositions (in their simplest. form) 
from whiC'h P nrn.v he dedul'cd; and Id two members of th<· da.-1s A be 
considered cqui,·~leut when they imply one another. Prom the truth 
of' P we infer the tr11th of one set of the cla.-1s A. If A has only one 
member, that uwmher must be tme. But if then• are many members 
of the das~ A, not all equivalent, we• endea\·om· to find some other 
empirical premiss P', implied by all set:-, of' simple proprn1ition:-, of the 
class A'. If now it should happen that the d1U1scs A and A' have only 
cml' C'Ollllnon member, and the other members of A arc incon1-oistcnt with 
the othl·r member, of A', the common member must be true. If not, we 
seek a uew cmpiriml prcmi1-o)o P", and so on. This is the e~sen<-e of 
indudion •. The l'lllpirical premiss is not in any essential sem,c Jl 
prc111is", but ii', a proposition whil'h we wish our deduction to a1Tive at. 
In l'hoosin~ th(• premissl'" of our dL'Clm·tion, we are only gnidl·d by 
1ogic·a1 ,iimplicit~· and the dedm·ibilit_v of our empirical premiss. 

421. Applying the!>e remark11 to Geometry, we see that the common 
,le-.;ir<• for ~lf-e\'ictcnt axioms is entirely mistaken. This de!!irt• is due to 

* l'f. ('onturat, /,11 'f,1,giq111, dP. /,.,ilmi:t, l'aril', 1!101, p. 2iO. 
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the belief that the Geometry of our actual space is an a priori science, 
baaed on intuition. If this were the case, it would be properly deducible 
from self-evident axioms, as Kant believed. But if we place it along 
with other sciences con<.-erning what exists, as an empirical study based 
upon observation, we see that all that can be legitimately demanded is 
that observed facts should follow from our premi811e8, and, if possible, 
from no set of premisses not equivalent to those which we 888Ume. No 
one ohjectR to the law of gra,itation as being not 11elf-e,·ident, and 
similarly, when Geometry is taken as empirieal, no one can legitin;tatt-1.v 
object to the axiom of parallels-except, of counie, on the ground! that, 
like the law of gravitation, it need only be approximately true in ~rder 
to yield observed facts. It cannot be maintained that no pre~isses 
except those of Euclidean Geometry will yield obsened n.'Sults ; · but 
others which are permissible mu,it dosely approximate to the Euclid.can 
premisses. And im it i11 with continuity : we eannot prove that our 
actual space must be continuous, but we ~nnot prove that it is not so, 
and we can prove that a continuous 1o1pace would not differ in any dis­
coverable manner from that in which we live. 

422. 'fo return from this digreision : we agreed that the empiricnl 
premiKSCS, as regards the continuity of space, are com .. -erned always with 
divisible entities which have dh·isible parts. The question before us is 
whether we are to infer from this that the 1,ogicol premisses for the 
Hcience of exi11ting space (i.e. the definition of existing 1.1pace) ma~· or 
must he concerned with divisible entities. The question whether our 
premisHes must be concerned with divisible entities is fully answered, in 
the negative, by actual Geometry, where, by means of indivisible point&, 
a space empirically indistinguishable from that in which we live is eon­
structed. The only re11.MOn1:1 hitherto alleged by philosophers against 
regarding this answer as satisfactory, are either such as were derin~d 
from the diflieultie1:1 of infinity and L-ontinuity, or such as were bast-cl 
upon a l't'rtain logil-al theory of relatiom1. The former ha,·e been already 
disproved; the latter will be diMCussed in the next chapter. The question 
whether our premi11sei, ma,y be conl-erned with divisible entitie11 is far more 
difficult, and can be answered only by means of the lo~rical discussions 
of Part II. Whatever is complex, we then deeided (§ 143), must be 
mmposed of simple elements; and thi11 conclusion earries us a long way 
towards the dedsion of our pffl!Cnt question. But it does not •1uite 
end our doubts. \\'e distinguiKhed, in Part II, two kinds of wholt1, 
namely aggregrat~ and N11ilies. The fonner may be identifiecl, at any 
rate for pre,ient purp<>l'ICB, with d&S11eS, while the latter seem to be in­
distinguishable fro111 propositions. Aggregates L-om1i11t of units from 
wh<>11e addition (in the sense prempposed in Arithmetic) they result; 
unities, on the rontrary, are not n.'C.~nstituted by the additiou of their 
constituenta. In all unities, one term at least is either a predieated 
predi,~te or a relating relation ; in aggregates, there is no :mch term. 
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Now what ia really maintained by thoae who deny that apace is rom­
poaed of points ia, I imagine, the ,iew that apace ia a unity, whoae 
constituents do not reconstitute it. I do not mean to aay that this 
view ia contlciously held by all who make the denial in question, but 
that it seems the only view which renden the said denial reasonable. 

Before discUSBing this opinion, it is neceasary to make a distint•tion. 
An aggregate may be an aggregate of unities, and need by no means be 
an aggregate of simple terms. The question whether a space is an 
aggregate of unities 01· of 11imple tenns is mathematically, though not 
philosophically, irrelevant. the difference of the two cases U1 illu11trated 
by the difference between an independent projective space and the pro­
jective space defined in terms of the. elementK of a descriptive space. 
For the present, I do not wish to discuss whether points are unitie11 or 
simple terms, but whether space is or is not 11.n aggregate of points. 

This que.11tion is one in which confusions are very liable to occur, 
and have, I think, actually occun-ecl among those who have denied that 
a space is an aggregate. Relations are, of counie, quite essential to a 
space, and this has led to the belief th1.1.t a space u, not only its t.erma, 
but also the relations relating them. Here, however, it is easy to see 
that, if a space be the field of a certain dass of relations, then a space 
is an aggregate • and if relations are essential to the definition of a 
space, there must be some class of relations having a field which is 
the space. The relations e11Sential to Geometry will not hold between 
two spatially divisible terms: there is no straight line joining two 
volumes, and no distanre between two surfaces. Thus, if a space is 
to be .defined by means of a class of relations, it does not follow, as 
is suggested, that a space is a unity, but rather, on the contrary, that 
it is an aggregate, namely the field of the Mid class of relations. And 
against any view which starts from volumes or surfaces, or indeed any­
thing except points and straight lines. we may urge, with Peano •, that 
the distinction between curves, surfaces, and volumes, is only to be 
effected by means of the straight line, and requires, even then, the moo 
elaborate developmentst. There is, therefore, no poMibility of any 
definite Geometry without points, no logical reason against point11, and 
strong logical reasons in their favour. We may therefore take it as 
proved that, if we are to construct any self-consistent theory of space, 
we must hold space to be an aggregate of points, and not a unity which 
is indefinable as a class. Space is, in fact, essentially a class, since 
it cannot be defined by enumeration of its termK, but only by means 
of its relation to the cla..•-concept point. Space is nothing but the 

• Riv. di Mat. 1v, p. 63. 
+ Cf. Peano, "Sur une coarbe qui remplit toute une aire plane," Matlt. 

..trmale", :w::u:v1, where it is ahowo that • continuous curve can be made to pua 
through all the points of the area of• 1qaare, or, lor that matter, of the volume 
of a cube. 
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extension of the l"oncept point, a.~ the British anny is the extension 
of the concept B1-itiah M1l,dier; only, since the number of points is in­
finite, Geometry is unable to imitate the Army-List by the issue of a 
Spat-e-List. 

Space, then, is l--ompOlled of points ; and if analytical Geometry is to 
be possible, the number of points must be either equal to, or less than, 
the number of the continuum. If the number be less, some propositions 
of the accepted Geometry will be false; but a space in which the number 
of points is equal to the nnmbe1 of finite numbers, and in whicfi the 
point.N of a line form a series ordinally similar to the rationals,', will, 
with iiuitable axioms, be empirically indistinguishable from a conti~uous 
space, and may be actual. Thus Arithmetic, as enlarged by Cantor, is 
undoubtedly ade<1uate to deal with Geometry; the only <1uestion is, 
whether the more elaborate parts of its mac·hine1·y are required. It is 
in number that we be<·ome certain of the continuum ; among actual 
existcnts, so far as present evidence showi,,, t'Ontinuity is possible, but 
cannot be rendered ,-ertain and indubitable. 
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LOGICAL .ARGC:!\IENT~ AGAINST POINT~. 

423. h hru; been 11.11 11.lmost unh·~rs11.I opinion ,unong philosophl'I"', 
ever :.inn· thl' time of Lcilmii, tl111.t 11. :..pm·e ,·ompo"cd of pointi. is logimlly 
imposi.ihle. It h, mainblinl'd that the i.patial n•lations with whi,·h Wl' 

ha\'e been l'Oncerned do not hold between spatial poinb., which essentiall.v 
and timelesi..ly have thl• relations whid1 they do ha\·,i, hut lx•twL•en 
material point'i, which are ,·ape.hie of motion, i.e. of a chan1,,re in their 
spatial relations. This is t·Rllcd the theory of rdative po!i!ition, wherca."' 
the theory of spatial points is t·11.lled the tht•ory of 11h11ol11te p<»1it.io11. 
Those who advoeate relative position usually ah,o maintain that mntwr 
and 11patial 1·elat.ion8, on Rl'l"OUllt of certain contradictions 1111pp<>NL'<l to 
he found in them, a.re not real, but belong only to the wot"ld of appear­
ance. Thii.. is, however, a fmther point, which need not be explicitly 
discussed in what follows. .Apart from this point, the i111me between 
the absolute and n-lative theories mav bl' stated as follows: The absolute 
theory hold'! that there are true pr~positiom1 in which spatial relations 
are 1111sc1tt.'Cl to hold timelessly hetwt.-en c"l.'rtain tt-rms, which may be 
called spatial points ; the relational tl1eory holds that CVl'lJ true pro­
position a.-.scrting a spatial relation involves a time at which this relation 
holds betwc..-en its terms, 110 that the simplest spatial propo.'iitions 1U1HCrt 
triangular relatioru; of a time and two term11, which may be <·ailed 
material points. 

The question as to whil'h of these two thc..'Ories applie11 to the a.c-tual 
world is, like all questio1111 concerning the actual world, in itself irre­
levant to pure mathematit,;•. But the argument agaim,t absolute pm-it.ion 
usually takes the form of maint.aining that a itpacc composed of poinb1 i11 
101,,rically inadmissible, and hence i11.•mes are raised which a phil011ophy of 
mathematici. must discmss. In what follows, I am concerned onlv with 
the question: Is a space composed of' points self-eontradict.ory ?. It i11 
true that, if tliis <1uestion be answered in the negati\·e, the 110le f,l'l'Ollllcl 

"' Some argumeut,, on thi11 point will be found in the earlier part of my 1iaper, 
"Is pclllition in 'lime and t-ipace absolute or relative?" Mit1d, N.~., No. :m; tht' later 
portions of thi1< paper are here reprinted. 
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for denying that such a space exists in the actual world is removed ; but 
this i11 a further point, which, being irrelevant to our subject, will be 
left entirely to the sagacity of the reader. 

4:M. The arguments against the absolute theory are, in my opinion, 
one and all fallat.'ious. They are best collected in Lotze's Metaphyaic 
(§ 108 ft:). They are there confused with arguments for the subjectivity 
of space-an entirely distinct question, as should have been evident 
from the fact that Kant, in the C~, appears to have advocated the 
theory of absolute position•. Omitting argument." only bearing on piis 
latter point, we have the following summary of Lotze's arguments against 
absolute space. \ 

(1) Relations only are either (ci) as pl"el!entations in a relating 
consciousneAS, or (fJ) as internal states in the 1-eal elements which are 
said to stand in these relations(§ 109). 

(!) The being of empty spare iH neither the being which works 
effeds (which belongs to a thing), nor the mere validity of a truth, nor 
the fad of being presented by us. What kind of being i11 it then ? 
(§ 109). 

(S) All points are exactly alike, yet every pair have a relation 
peculiar to themselves; but being exactly like every other pair, the 
relation should be the same for all pairs (§ 111 ). 

(4) The being of every point must consist in the fact that it 
distinguishes itself from every other, and takes up an invariable position 
relatively to every other. Hence the being of 11pace consists in an active 
mutual conditioning of its various points, which is really an interaction 
(§ 110). 

( 5) If the relations of points were a mere fact, they could be 
altered, at le&Ht in thought ; but this is impossible : we cannot move 
points or imagine holes in spa<,-e. This impossibility is easily explained 
by a subjective theory (§ 110). 

(6) If there are real points, either (a) one point creates others in 
appl'Opriate relations to it'lelf, or (fJ) it brings already existing points 
into appropriate relations, which are indifferent to their natures(§ 111). 

dG. (1) All these arguments depend, at bottom, upon the first, the 
dogma conL-eming relations. As it is of the essence of the absolute theory 
to deny this dogma, I shall begin by examining it at some length t, 
" All relations, .. Lotze tells us, " only are as presentations in a relating 
consciousness, or as internal states in the real elements which, as we are 
wont to say, stand in these relations." This dogma Lotze regards as 
self-evident, as indeed he well may; for I doubt if there is one 
anterior philosopher, unless it be Plato, who does not, consciously or 

• Cf. Vail1inger, Commn,tar, pp. 189-100. 
t 'fhe logical opinion• which follow are in the main due to Mr G. E. Moore, to 

whom I owe alao my first perceptiou or the dillicultiell in the relational theory or 
apace and time. 
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unconsciom;ly, employ the dogma u an essential part of his system. To 
deny it, therefore, is a 80mewhat hardy undet1a,king. Let us, neverthe­
less, examine the consequences to which the dogma leads us. 

It would seem that, if we accept the dogma, we must distinguish 
two kind of relations, (11) those which are presentations in a relating 
consciousness, and (,8) those which are internal states of the elements 
supposed to be related. These may be ultimately identical, but it will 
be safer in the mean time to treat them 811 diffurent. Let us begin with 
those which are only presentations in a relating consciou1111ess. These 
prci.entatiomi, we must Huppase, are beliefs in propoKitions tlSllerting 
relations between the terms which appear related. For it must be 
allowL'tl that there are beliefs in such proposit.ions, and only such beliefs 
seem capable of being regarded as presentation!! in which relations have 
their being. · But these beliefs, if the relations believed to hold have no 
being eXL-ept in the beliefs themselves, are necessarily false. If I believe 
A to be H's father, when thii,; is not the case, my belief is erroneous; 
and if I believe ..4 to be west of B, when westerliness in fact exists only 
in my mind, I am a.gain mistaken. Thus this first class of relations has 
no validity whatever, and consists merely in a collection of mistaken 
belief.'!. The objects concerning which the beliefs are entertained are 811 

a matter of fact wholly unrelated ; indeed there cannot even be ohjel'ta, 
for the plural implies diversity, and all beliefs in the relation of diversity 
must be erroneous. There cannot even be one object distinct from 
myself, since this would have to have the relation of divel'l\ity to me, 
which is impossible. Thus we are committed, so far 8.11 this class of 
relations goes, to a rigid monism. 

But now, what shall we say of the second class of relations, those 
namely which are reducible to internal states of the apparently related 
objects ? It must be observed that this class of relations presupposes a 
plurality of objects (two at least), and hence involves the relation of 
diversity. Now we have seen that, if there be diversity, it cannot be 
a l'elation of the first class; hence it must itself be of the second class. 
That is, the mere fact that ..4 is different from B must be reducible to 
internal states of .A and B. But is it not evident that, before we can 
distinguish the internal states of .A from those of B, we must first dis­
tinguish .A from B? i.e . .A and B must be different, before they can have 
different states. If it be said that .A and B are precisely similar, and 
are yet two, it follows even more evidently that their diversity is not 
due to differen~e of internal states, but is prior to il Thus the mere 
admission that there are internal states of different things destroys the 
theory that the essence of relations is to be found in these states. We 
are thus brought back to the notion that the apparent relations of two 
things consist in the internal state-i of on.e thing, which leads us again 
to the rigid monism implied in the tint type of relation. 

'Thus the theory of relations propounded by Lob.e is, in fact, ll 
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theory that there a.re no relations. 'I'his has been recognised by the 
most logical adherents of the dogma--e.g. Spinoza and Mr Bradley­
who have 8S8e1"ted that there is only one thing, God or the Absolute, 
and only one type of proposition, namely that &icribing predicates to 
the Absolute. In order to meet this development of the above theory 
of relations, it will be necessary to examine the doctrine of subject and 
predicate. 

'26. Every proposition, true or false-HO the pre11ent theory con­
tends--Ml'ribe11 a predicate to a subject, and-what is a (.-orollary. from 
the above-there i11 only one subject. The corn,equen(.-es of thii. doctrine 
are so 1t1trange, that l cannot believe they h,we been rcaliKed by those 
who maintain it. The theory is in fact 11elf-contradictory. l•'or if the 
Absolute has predicates, then there are predil'ates; hut the proposition 
"there are predicate11,.. i11 not one which the present theory can admit. 
We cannot escape by saying that the predicates merely qualify the 
.Absolute; for the Absolute cannot he qualified hy nothing, so that 
the proposition " there are predic·ates" is logit•ally prior to the pro­
position "the Absolute has predicate&." Thus the theory itself demands, 
as its logical priw1, a proposition without a subject and a predicate ; 
moreover this proposition involves di,·ersity, for e\'en if there be only 
one predicate, thi11 must he different from thl• one suhjel·t. Again, 
since there is a predicate, the predicate is an entity, and its predic-a­
bility of the Absolute ii; a relation between it and the Absolute. Thm, 
the very propoi;ition which was to he non-relational turns out to be, 
after all, relational, and to expresi; a relation which current philosophit•al 
langullbre would dei;crihe a."I purely external. }<'or both subject and 
predicate are simply what they are- neither is modified by its relatiou 
to the other. To he modified by the relation could only be to have 
11ome other predicate, and hen(.-e we should be Jt..d into an endless regres11. 
In short, no relation ever modifies either of its terms. For if it holds 
between .A and B, then it is between .A and B that it holds, and to say 
that it modifies .A and B is to say that it really holds between different 
terms l' and JJ. To 118.V that two term11 which are related would be 
different if they were not related, i11 to K&Y something perfectly barren; 
for if they were different, they would be other, and it would not be the 
terms in que11tion, but a different pair, that would he unrelated. The 
notion that a term can be modified arises from neglect to observe the 
eternal self-identity of all terms and all logical coneepbl, which alone 
form the constituent11 of proJ)Ollitions•. What is called modification 
consists merely in having at one time, but not at another, some specific 
relation to 11ome other specifi,· term; but the term which l\ometimes has 
and 110metimes has not the relation in question must be unchanged, 

* Kee )Jr G. E. Moore'11 paper 011 "The Nature of Judgmeut," Mind, N.8., 
\'ol. vm. Also ""P"'' §§ 47, 4U, where the view adopted differ11 >10mewhat from 
llr Moore'11. 
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otherwiRe it would not be lhat term which had ceased to have the 
relation. 

The general objection to Lobe's theory of relations may be thus 
summed up. 'l'he theory implies that all propositions consist in the 
BH!ription of a predicate to a subjel't, and that this ascription i11 not 
a relation. 'l'he objection is, that the predicate is either l!Omething 
or nothing. If nothing, it cannot be predicated, and the pretended 
proposition collapses. If HOmething, predication expresst.'M a relation, 
and a relation of the very kind which the theory was designed to avoid. 
Thus in either e&'le the theory stand11 t.-ondemned, and there is no re&MOn 
for regarding ~lations as all reducible to the su~ject:-predil'.ate form. 

427. (2) I come now to the se«:(?nd of Lotze'11 objections to empty 
space. This is again of a somewhat abitract l<>ftil·al character, hut it 
is far easier to dispose of, since it depends upon a view mon• or ICM11 

peculiar to Lotr.e. There are, it 1111.ys, three and only three kind1,1 of 
being, no one of which belon1,1'8 to spa<-e. ThCHe are (11) the tx•ing 
of thingi,, whi<·h consists in activity or the power to produ<-e dfi.'Cts; 
(~) the validity of a truth; (,y) the being which helongii to thl• <'«>ntents 
of our presentations. 

The answer t.o this is, that there is only one kind of being, naml'ly, 
being .,impliriter, and only one kind of existen~, namely, existence aim­
plil'iter. lloth being and existence, I belie\'l•, belong to empty space; 
but being alone is relevant to the refutation of the relational theory­
existent.-e belongs to the question whic·h Lobe confounds with the above, 
namely, as to the reality or subjectivity of spu.-e. It may he welJ first 
to explain the distinction of lx-ing and existmt'e, and then to return to 
Lotze's three kinds of being. 

Bt>ing is that which belong11 to e\'ery con<-eiva.ble tem1, to every 
possible object. of thought-in short to everything that l"an poHSibly 
occur in any proposition, true or false, and to all such proposition11 
thcmse]\'es. Being helonbrs to whatever <"an be rounted. If .A be any 
term that can be counted as one, it is plain that .A i11 something, and 
therefore that .A is. ".A i11 not" must alwa_vs be either false or meaning­
lcs11. For if .A were nothing, it l.'Ould not be 11aid not to be • " .A is not ., 
implies that there is a term .A whose being is denied, and hence that 
.A is. Thus unless ".A i11 not,. be an empty 110und, it must be false­
whatever .A may be, it certainly is. Numbers, the Homeric gods, 
1-elations, chimera.~ and four-dimensional spaces all have being, for if 
they were not entities of a kind, we could make no propositions about 
them. Thus being is a general attribute of everything, and to mention 
anything i11 to 11how that it is. 

&ilte111:e, on the l.'Ontrary, is the prerogative of KOme only amongiit 
beinbl'll, To exist is to have a specific relation to existence-a relation, 
by the way, which existence itself does not have. This 11howa, ind­
dentally, the weakness of the exi1,1tential theory of judgment-the theory, 

Downloaded from https://www.holybooks.com



460 Space [CHAP. LI 

that ia, that every proposition ia concerned with aomething that ~•ta. 
FOT if this theory were true, it would still be true that existence it.sell 
is an entity, and it must be admitted that existence does not exist 
Thus the consideration of existence itself leads to non-existential pro­
positions, and so contradicts the theory. The theory seems, in fact, to 
have arisen from neglect of the distinction between existence and being. 
Yet this distinction is essential, if we are ever to deny the existence of 
anything. For what does not exist must be something, or it would be 
meaningless to deny its existence ~ and hence we need the conau>t of 
being, as that which belongs even to the non-existent. , 

Returning now to Lotze't1 three kinds of being, it is suflici~ntly 
evident that his views involve hopeless confusiont1. \ 

(a) The being of things, Lotze thinks-following Leibniz here as 
elsewhere-consists in activity. Now activity is a highly complex notion, 
which Lotze falsely supposed unanalyzable. But at any rate it is plain 
that, if there be activity, what is active must both be and exist, in 
the !lenses explained abcive. It will also be conceded, I imagine, that 
existence is conceptually distinguishable from activity. A<.-tivity may 
be a universal mark of what exists, but can hardly be synonymous with 
existence. Hence Lotze requires the highly disputable proposition that 
whatever exists must be active. The true answer to this proposition 
lies (1) in disproving the grounds alleged in its favour,(!!) in proving 
that activity implies the existence of time, which cannot be itself active. 
For the moment, however, it may suffice to point out that, sin<.<e existence 
and activity are logically separable, the supposition that something which 
is not active exists cannot be logically ab11urd. 

(II) The validity of a truth-which is Lotze's second kind of being­
is in reality no kind of being at all. The phrase, in the first place, is 
ill-chosen-what is meant is the truth of a truth, or rather the truth of 
a proposition. Now the truth of a p1-oposition consists in a certain 
-.111.tion to truth, and presupposes the being of the proposition. And 
as regards being, false propositions are on exactly the same level, since 
to be false a proposition must already be. Thus validity ia not a kind 
of being, but being belongs to valid and invalid propositions alike. 

(,y) The being which belongs to the contents of our presentations ia 
a subject upon which there exists everywhere the greatest confusion. 
This kind is described by Lotze as "ein Vorgmelltwerden durcla """·" 
Lotze presumably holds that the mind is in some sense creative-that 
what it intuits acquires, in some sense, an existence which it would not 
have if it were not intuited. Some such theory is essential to every 
form of Kantianism-to the belief, that is, that propositions which are 
believed solely because the mind is so made that we cannot but believe 
them may yet be true in virtue of our belief. But the whole theory 
rests, if I am not mistaken, upon neglect of the fundamental distinction 
between an idea and its object. Misled by neglect of being, people 
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have 11upposed that what doe11 not exist is nothing. Seeing that numben, 
relations, and many other objects of thought, do not exi11t out.,.ide the 
mind, they have suppolled that the thoughts in which we think of these 
entities lll'tually lTeate their own object.'I. Every one except a philo­
sopher can 111Ce the difference between a ~t and my idea of a p011t, 
but few Ree the difference between the number 2 and my idl'a of the 
number 2. Yet the distin<'tion is as neces,;arv in one <'.&He 8.11 in the other. 
The argument that 2 is mental requi~ tha"t. 2 should be e111u.•ntially an 
existent. But in that <'.&!IC it wonld be partieular, and it would be 
impos.'lible for 2 to be in two minds, or in one mind at two time11. Thus 
2 must be in any case an entity, which will have being even if it is in no 
mind•. But further, there are reason11 for denying that~ i11 created by 
the thought which think11 it. l<'or, in lhi11 l'Me, tht-1-e l.'Ould m•ver be two 
thoughts until some one thought so; hence what the pen«>n 110 thinking 
supposed to he two thoughts would not have been two, and the opinion, 
when it did arise, would be erroneous. And applying the Mme doc-trine 
to l; there l:&nnot be one thought until 110me one thinks 110. Hence 
Adam\ first thought mu11t have been l"Oncerned with the number 1, 
for not a single thought could precede this thought. In short, all 
knowledge must be recognition, on pain of being mere delusion; Arith­
metil· must be diKCovcred in just the same sense in whil·h Columbus 
disco,·ercd the \l\7eKt Indies, and we no more create numbefll than he 
created the Indiam1. The number 2 is not purely mental, but is an 
entity which may Ix• thought of. Whatever can he thought of h&11 
being, and its being i11 a precondition, not a remit, of its being thought 
of. As regards the existenee of an objel't of thought, however, nothing 
can be inferred from the fad of its being thought of, since it <,-ertainly 
does not exist in the thought whieh thinks of it. Henl.-c, finally, no 
special kind of being belongs to the objects of our presentations as such. 
With this condusion, Lotze's second argument is disprnied of. 

US. (S) Lotze's third argument has been a great favourite, ever 
since Leibniz introduced it. Al] points, we arc told, are exactly alike, 
and therefore any two must have the same mutual relation as any 
other two; yet their mutual distances must differ, and even, according 
to Lotze (though in this, in the sense in which he seems to mean it, 
he iR mistaken), the relation of every pair must be peculiar to that 
pair. This argument will be found to depend again upon the subject­
predicate logic which we have already examined. To be exactly alike 
can only mean-as in Leihniz's Identity of lndiscemibles-not to 
have different predicates. But when onl--e it is recognised that there 
is no t.'S!lelltial distinction between subjects ancl predicates, it iH 11een that 
any two simple terms simply differ immediately-they are two, and 
this is the sum-total of . their differences. Complex terms, it is true, 
have differences which can be revealed by analysis. 1.'he constituents 

• CC. l:<'rege, r,1,.,ndg,Ht,,. dlJr .Aritlametilt, p. xviii. 
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of the one may be ...4, B, C, D, while tho..e of the other are ...4, E, F, G. 
But the differences of B, C, D from E, F, G arc still immediate dif­
ferences, and immediate differences must be the sourre of all mediate 
differenceH. Indeed it iH a 11heer lobrical eITor to suppo!iC that, if there 
were an ultimate distinction between 11ubjects and predicates, subjects 
could be distinguiHhed by differences of predicates. For before two 
subjects can differ as to predicates, they must already be two; and 
t,hus the immediate diversity is prior to that obtained from diversity 
of predicates. Again, two tenns cannot be distinguished in the first 
instance by difference of relation to other terms; for difference of relation 
presupposes two di11tinct terms, and cannot therefore be the ground of 
their distinctnC1o1S. Thus if there is to be any diven.ity at all, there must 
be immediate diversity, and thiH kind helongM to points. 

Again, points have also the 1mbHe<J_uent kind of diversity consisting in 
difterence of rela~ion. They differ not only, a.o; Lobe urgeti, in their 
relations to each other, but alHO in their relations to the objec-t& in them. 
Thus thl'y seem to be in the same position as colours, sounds, or smells. 
Two colours, or two simple smells, have no intrinsic differenre save im­
mediate divet'l!ity, but have, like points, different relations to other terms. 

Wherein, then, lies the plam1ibility of the notion that all points are 
exactly alike ? This notion is, I believe, a psychological illusion, due to 
the fact that we c-annot renwmber a point, so a.-. to know it when we 
mel't it again. Among Himullaneously presented points it is ee.-iy to 
distinguish; but though we are perpetually moving, and thm1 being 
brought among new points, we are quite unable to detect this fact by 
our sensl'11, and we n.-cogni11e plaL-es only by the objects they ("ontain. 
But this i;cems to be a mere blindnes11 on our part-there is no difficulty, 
so far 11.!1 I c.an set', in supposing an immL-diate differenl.-e between points, 
as between (·olours, but a differem·e which our senses are not constructed 
to be aware of. Let us take an analogy : Suppose a man with a very 
bad memory for faces: he would be able to know, at any moment, 
whether he saw one face or many, but he would not be aware whether 
he had ever seen any of the face..,; before. 'l'hus he might be led to 
define people by the room11 in which he saw them, and to suppo11e it 
self-contradictory that new people should l"Ome to his lectures, or old 
people cease to do so. In the latter point, at least, it will be admitted 
by lecturers that he would be miHtaken. And as with faces, so with 
points-inability to recognise them must be attributed, not to the absence 
of individuality, but merely to our incapacity. 

"29. ( 4) Lobe's fourth argument is an endeavour to effect a red,u:tio 
ad abaurdttm, by proving that, on the abRolute theory, points must inter­
act. The being of e,,ery point, Lob.e contends, must consist in the 
fact that it distinguishes itself from every other, and takes up an 
invariable position relatively to every other. Many fallacies are con­
tained in this argument. In the fint place, there is what may be called 
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the ratiocinator's falla<"y, which consists in supposing that everything 
has to be explained by showing that it is something el11e. Thus the 
being of a point, for Lotze, must be found in its difference from other 
points, while, 11s a matter of f11.Ct, its being i& simply its being. So far 
from being explained by something else, the being of a point is pre­
supposed in all other propositions about it, as e.g. in the proposition 
that the point diffen, from other points. Again, the phrase that the 
point distinguishes ihelf from all other points seems to be designed to 
imply some kind of self-assertion, as though the point would not be 
different unle~s it chose to differ. This sughrestion helps out the con­
dusion, that the relation~ between points are in reality a form of 
interaction. Lotze, bdieving as he does that activity is essential to 
existenee, is unable to imagine auy other relation bt-tween existents 
than that of inter11ction. How hopelessly inapplicable sm·h a \'iew is, 
will appear from an analysis of interaction. Interaction is an enormously 
complex notion, presupposing a host of other relations, ancl involving, in 
ih. usual form, the distinction of a thing from its qualities-a distinction 
dependent on the subject-predicate logic already critieizPd. Interaction, 
to begin with, is either the simultaneous action of A on Band Bon A, 
or the action of the present states of A and B c·cmjointly on their states 
at the next instant. In either case it implies action. Action hrenerally 
mav be defined as a <·ausal relation between one or more states of one or 
mo~e thing;, at the present instant and one or more states of the i;ame or 
different things at a subsequent instant. When there is only one thing 
in both cases, the action is immanent if the thing be the same in cause 
and effect, transient if the cause be in one thing and the effect in 
another. In order to speak of action, rather than <"ausality simply, it 
is necessary to suppose things enduring for a certain time, and having 
changing state.... Thus the notion of interaction pres11pposes the fol­
lowing relations: (1) diversity between things; (2) diversity between 
the states of things; (3) simultaneity; (4) succession; (5) causality; 
(6) the relation of a thing to its states. This notion, involving, as 
a moment's inspection shows, six simpler relations in its analysis, is 
supposed to be the fundamental relation ! No wonder absurdities are 
produced by such a supposition. But the absurdities belong to Lotze, 
not to spat,-e. To redut,-e the relations of points to interactions, on the 
ground that interaction is the type of all relations, is to display a com­
plete incapacity in the simpk-st problems of analysis. The relations of 
points are not interactions, any more than before and after, or diversity, 
or greater and less, are interactions. They are eternal relations of 
entities, like the relation of l to 2 or of interaction itself to causality. 
Points do not assign positions to each other, as though they were each 
other's pew-openers: they eternally ha,·e the relations whi<-h they have, 
just like all other entities. The whole argument, indeed, rests upon an 
absurd dogma, supported by a false and scholastic logic. 
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'30. (5) The fifth argument seems to be designed to prove the 
Kantian apriority of space. There are, it 11ays, nece&8&r)' propositions 
concerning space, which show that the nature of 11pace is not a " mere 
fact:• We are intended to infer that space is an a priori intuition, 
and a p.'lychological reason is given why we l"annot imagine holes in 
space. The impossibility of holes is apparently what is called a na"e11.<1ity. 
of thought. This 8Jl,J'llment again involves much purely logical dis­
cussion. Concerning neeessities of thought, the Kantian theory 11eems 
to lead to the curious result that whatever we cannot help believing ; 
must be false. What we cannot help believing, in this ca.o;e, is wmething •. 
88 to the nature of space, not a.,; to the nature of our minds. The ' 
explanation offered is, that there is no space outside our minds ; whence 
it iK to be inferred that our unavoidable beliefi1 about 11pac:e are all 
militaken. Moreover we only push one stage farther bat-k the region 
of "mere fact," for the constitution of our minds remains still a 
mere fact. 

The theory of necessity urged by Kant, and adopted here by Lotze, 
appeal'II radically vicious. Everything iii in a sense a mere fact. A 
prop0t1ition is said to be proved when it is deduced from premisses; but 
the premi11&es, ultimately, and the rule of inference, have to be simply 
assumed. Thus any ultimate premiss is, in a <.-ertain sense, a mere fact. 
On the other hand, there seems to be no true proposition of which there 
is any sense in saying that it might have been false. One might as well 
say that redne!IS might have been a taste and not a colour. What is 
lrue, is true; what is false, is false; and concerning fundamentals, there 
is nothing more to be said. The only logical meaning of neceSBity seems 
to be derived from implication. A proposition iii more or less na-essary 
according 88 the class of propositions for which it is a premi11S is greater 
or smaller•. In this sense the propositions of logic have the greatest 
necc!lsity, and those of geometry have 1:1. high degree of necessity. But 
this sense of necessity yields no valid argument from our inability to 
imagine holes in space to the conclusion that there l'&Dnot really be any 
space at all except in our imaginations. 

431. (6) The last argument may be shortly disposed of. If points 
be independent entities, Lobe argues-so I interpret him-that we l'&n 
imagine a new point coming into existence. This point, then, must 
have the appropriate relations to other point.ii. Either it create11 the 
other points with the relations, or it merely creates the relations to 
already exi11ting points. Sow it must be allowed that, if there be real 
points, it is not Kelf-eontradictory to suppose some of them non-existent. 
But strictly speaking, no single proposition whatever is self-contradit-tory. 
The nearest approach would be " No proposition is true," since this 
implies its own truth. But e,·en here, it is not strictly self-contradictory 

* Cf. G. E. Moore, "Neceaaity," Mind, N.S., No. :la. 
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to deny the implication. Everywhere we come upon propositions ac­
cepted becauae they are self-evident, and for no other reason: the law 
of contradiction it.self is such a proposition. 'The mutual implication of 
all the points of space seems to be another; the denial of some only 
among points is rejected for the same re&~on as the assertion that such 
and such a proposition is both true and fah1e, namely, because both are 
obviously untrue. But if, per impoaaibile, a point previously mi11sing 
were to come into existence, it would not create new points, but would 
have the appropriate relations to already existing points. The point, 
in fact, would have already had being, and a.~ an entity would have 
eternally had to other points the 11ame relations as it has when it comes 
into existence. Thus Lobe's argument on this, 1111 on other points, 
depends upon a faulty logic, and is easily met by more correct views 
as to the nature of judgment. 

I conclude, from the above dif!Cussion, that ah.olute position i11 not 
logically inadmissible, and that a space compoSL-d of points i11 not self­
contradictory. The difficultiei. which used to be found in the nature 
of infinity depended upon adhercnl'e to one definite axiom, namely, that 
a whole must have more terms than a part; tho11C in the nature of 
space, on the other hand, seem to ha\'e bt.-en derived almost exclusively 
from general logic. With a subject-predicate theory of judgment, space 
necessarily appears to invoh·e contradictiom1 ; but when once the ir­
reducible nature of relational propositions is admitted, all the 1mpposed 
difficulties vanish like smoke•. There is no reason, therefore, 110 far as 
I am able to perceive, to deny the ultimate and absolute philosophical 
validity of a theory of geometry which regard11 space as compost.-d of 
points, and not as a mere assemblage of relations betwren non-spatial 
terms. 

* Cf. n,y Phi/oaophy of uifmi%, Cambridge, HIOO, l 'hap. z. 
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CHAPTER LII. 

KANT'S THEORY O:F SPACE. 

432. IN the present chapter I do not propose to unclert.a.ke a 
minutl' or textual examination of Kant's opinions; this has been done 
elsewhere, and notably in Vaihinger's monumental comment.a.ry, so well 
that it need not be done over again here. It is only the broad outlines 
of the Kantian d0<·tri11e that I wish to discus.'!. This doctrine, more or 
lt•ss modified, ha.11 held the field for over a century, and ha.i, won a nearly 
universal acreptanre. As my views are, on almost every point of mathe­
m11.tical theory, diametril'ally opposed to those of Kant, it becomes 
necessary cxplieitly to defend the opinions in which I differ from him•. 
In this I shall pay special attention to what Kant calls the transcendental 
arguments, i.e. thOKe derived from the nature of mathematics. 

433. Broadly speaking, the way in which Kant seeks to dedure his 
theory of space from mathematics (especially in the Prolegomena) is 
as follows. Starting from the question : "How is pure mathematics 
poKKible?" Kant first points out that all the propositions of mathe­
matics are synthetic·. He infers hence that these propositions cannot, 
a.11 Leibniz ha.cl hoped, be proved by means of a logical c·alculus; on the 
contrary, they require, he says, certain syuthetic a priori propositions, 
which may be railed axioms, and even then (it would seem) thC' reasoning 
employed in deductions from the axioms is different fmm thRt of pure 
logir. Now Kant was not willing to admit that knowledbre of the 
external world could be obtained otherwise than hy experience ; hence 
he eoncludlid that the propositions of mathematics all deal with some­
thing 11ubjertive, which he calls a form of intuition. Of these forms 
there are two, space and time ; time is the som't-e of Arithmetic, space 
of Geometry. It is only in the forms of time and space that obj~ 
can he expe1·ienl'ed b~· a subjel't ; and thus pure mathematit-s must be 
applicable to all experience. What is essential, from the logical point 

* The theory of space which l shall discUSA will be that of the l'ritique and the 
Prolegomena. Pre-critical works, and the Metaphyriache A,ifang,grunde dw Natur­
.,;,,en,,:Aafl (which dift'en from the Critique on this point), will not be considered. 
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of view, is, that the ti priori intuitions supply methods of rea..'K>ning and 
inference which formal logic doeis not admit ; and these methods, we are 
told, make the figure (which may of com-i;e be merely imagine<l) esisential 
to all geometrical proof.-.. The opinion that time and spo.ce are sub­
jective is reinforct-'<l by the antinomies, where Kant endeavours to prove 
that, if they be anything more than forms of experience, they must be 
definitely self-contradictory. 

In the above outline I have omitted everything not relevant to the 
philosophy of mathematics. The questions of chief importance to us, 
a.,; 1·egards the Kantian theory, are two, namely, (1) are the reasoningis 
in mathematics in any way different from those of Formal Logic? (2) are 
there any contradictions in the notions of time and space? If these two 
pillars of the K,mtian edifice t·an be pulled down, we shall have success­
fully played the part of Sa1m,on towards hii-. disciples. 

434. The <1ue!>tion of the nature of mathematical rca.-.oning wa., 
ob.-,cured in Kant\.; day by se,·eral causes. In the first place, Kant never 
doubted for a moment that the propositions of logic arc analytic, wherca;. 
he rightly perceived that those of mathematics arc synthetit•. It has 
isincc appeared that logic is just as synthetic as all other kinds of truth; 
but this is a purely philosophical question, whic-h I !>hall here pass by•. 
In the second place, formal logic WH.!., in Kant's day, in a very much 
more backward state than at prei,ent. It was still possible to hold, as 
Kant did, that 110 great advance had been made since Aristotle, and 
that none, therefore, wa.-, likely to occ·ur in the future. The syllogism 
still remaine<l the one type of formally correct rew.oning; and the syl­
logism was certainly inadequate for mathematics. But now, thanks 
mainly to the mathematical logicians, fonnal logic is enriched by several 
forms of rea.-,oning not reducible to the s_yllogismt, and b_y means of 
these all mathematics can be, and larh~ parts of mathematics actually 
have been, developed strictly according to the rules. In the third place, 
in Kant's day, matheinatics itself was, logically, very inferior to what it 
is now. It is perfectly true, for example, that any one who attempts, 
without the use of the figure, to deduce Euclid's seventh proposition 
from Euclid's axioms, will find the ta.-;k impossible; and there probably 
did not exist, in the eighteenth c·entury, any single logically correct 
pic.'<--e of mathematical reasoning, that is to say, any reasoning which 
<-"Orrectly deduced its result from the explicit premisses laid down by the 
author. Since the correctness of the result seemed indubitable, it wa.~ 
natural to suppose that mathematical proof wa..'I something different 
from logical proof. But the fact is, that the whole difference lay in 
the fa.et that mathematical proof.,; were simply unsouud. Ou closer 
examination, it ha.,; been found that many of the propositions which, 

* See my Philo,,opl1J111/ l.d!ilmiz, ~ 11. 
t See Chat•· 11 -"P,."· esp. § 18. 
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to Kant, were undoubted truths, are as a matter of fact demonstrably 
false•. A still larger class of propositions-for instance, Euclid's seventh 
proposition mentioned above-can be rigidly deduced from certain pre­
misses, but it is quite doubtful whether the premisses themselves are 
true or false. Thus the supposed peculiarity of mathematical reasoning 
has disappeared. 

The belief that the reasonings of Geometry are in any way pecqliar 
has lx.--en, I hope, sufficiently refuted already by the detailed accounts 
which have been given of these reasonings, and especially by Chapter xux. 
\Ve have seen that all geometrical results follow, by the mere rules of 
logic, from the definitions of the various spaces. And as rPgards th~ 
opinion that Arithmetic depends upon time, thi!. too, I hope, has been 
answcl"C{i by our acc·ounts of the relation of Arithmetic to Logic. In­
da-cl, apart from any detail, it sc.>ems to be refuted b_v the simple 
obserrntion that time must have parts, and therefore plurality, whole 
and part, are prior to any theory of time. All mathematics, we may 
say-and in proof of our assertion we have the actual development of 
the suhjcl·t-is deducible from the primitive propositions of formal logic: 
these being admitted, no further assumptions are required. 

But admitting the reaso11i11gw of Geometry to be purely formal, a 
Kantian may still maintain that an ti priori intuition assures him that 
the definition of three-dimensional Eudidean space, alone among the 
definitions of possible spaces, is the definition of an existent, or at any 
rate of an entity having some relation to existent.<; which other spa<"JeS 
do not haw. This opinion is, strictly speaking, irrelevant to the philo­
sophy of mathematics, t.ince mathematics is throughout indifferent to 
the question whether it., entities exist. Kant thought that the actual 
rea.ro11i11g of mathematics was different from that of logic; the suggested 
emt•ndation drops this opinion, and maintains merely a new primitive 
proposition, to the effect that Euclidean space is that of the actual 
world. Thus, although I do not believe in any immediate intuition 
guaranteeing 1tny such primitive proposition, I shall not undertake the 
refutation of this opinion. It is enough, for my purpose, to have shown 
that no such intuition is relernnt in any strictly mathematical pro­
position. 

436. It remains to discuss the mathematical antinomies. These 
are concerned with infinity and continuity, which Kant supposed to be 
spedally spatio-temporal. \Ve h,nc already seen that this view i11 mis­
taken, 11ince both occur in pure Arithmetic. We ha,•e seen also in 
Part V ( espeeially in Chapter x1.11) that the supposed antinomies of 
infinity and continuity, in thei1· arithmetical form, are soluble; it 
remains to prove the same condusion coneerning Kant's spatio-temporal 

* 1-'or example, the proposition that e,·ery continuous function can be dif­
ferentiated. 
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form. The third and fourth antinomies are not relevant here, sin<-e they 
involve causality ; only the first two, therefore, will be examined. 

Fir,t .Anti·nomy. Tke,i,: "The world has a beginning in time, and 
as regards space also is enclosed within limits." This statement is not 
concerned with pure time and pure space, but with the things in them. 
The proof, such as it is, applies in the first instan<.-e to time only, and is 
effected by reductio ad absurdum. ":For assume," it says, "that the 
world has no beginning in time, then an eternity has passed away 
(ahgelaufe11) before every given point of time, and consequently an 
infinite series of C"onditions of the thingi; in the world has happened. 
But the infinity of a serie11 consists in this, that it can never be com­
pleted by successive synthesis. Consequently an infinite past serie11 of 
things in the world ( JVeltreihe) is imJ>Ollllible, and a beginning of the 
world is a necessary condition of its exilitence, which WM fil'llt to be 
proved." 

This argument is difficult to follow, and 1mggests a t·overt appail to 
cauiiality and the supposed necei;11ity for a first cause. Seglet.-ting this 
aspet.-t of the argument, it would st.-em that, like most of the arguments 
against infinity, it fails to undel'!ltand the use of the cl&K11-concept and 
the word any. It is supposed-t10 it would seem-that the events pre­
ceding a given event ought to be definable by extension, whic•h, if their 
number is infinite, is obviously not the l'ase. "Completion by sut'C'ellllive 
synthesis" st.-ems roughly equivalent to enumeration, and it is true that 
enumeration of an infinite t1eries is practically impossible. But the series 
may be none the less perfectly definable, &11 the class of terms having a 
specified relation to a specified term. It then remains a question, as 
with all classes, whether the class is finite or infinite; and in the latter 
alternative, as we saw in Part V, that there i11 nothing self-contradit.-tory. 
In fact, to elicit a contradidion, it would be ne<.-essary to state as an 
axiom that every cl&1111 must have a finite number of terms-an axiom 
which can be refuted, and for which there are no grounds. It seems, 
however, that previous events are regarded by Kant as ca1ue1 of later 
ones, and that the cause is supposed to be logically prior to the effect. 
'This, no doubt, is the rew,;on for speaking of conditiom, and for confining 
the antinomy to events instead of moments. If the cause were logically 
prior to the effect, thii; argument would, I think, be valid ; but we shall 
find, in Part VII, that cam1e and effect are on the same logical level. 
Thu11 the thesis of the fil'llt antinomv, in so far as it <.-oncerns time, must 
be rejected as false, and the argume"nt concerning space, 11in<.-e it depends 
upon that rebrarding time, falls also. 

Antithe,i,y, "The world has no beginning, and no limits in 11pat.-e, 
but is infinite both in n..-sped of time and space . ., 1.'he proof of this 
proposition assumes the infinity of pure time and space, and argul.'s that 
these imply events and things to fill them. '.rhis view was reje<.-tt.-d, R8 

regards space, in the pre<-eding chapter, and t-an. be disproved, &11 regards 
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time, by precii.ely similar 11.rgmnenbl; it i11 in any ca11e irrele,·ant to our 
contention, sim·e no pl'Oof is offered that time and spal'e a1-e themselves 
infinite. Thii., in f11.Ct, imems incapable of proof, sinl-e it dependK upon 
the merely self-evident axiom that the1-e i11 a moment before any given 
mm11ent, ancl n point beyond any given point. But a.11 no cm1vel'lle proof 
is ,·alid, we mny, in this im1tan<-e, regard the self-evident a.11 true. 
\\'hether ewnti. hacl a bl'ginning, 11.nd whether matter is hounded by 
empt_, spnl"e, art• questions \\hil'h, if our philosophy of sp8.(,-e and 
time he i.ound, no nrgument independent of' causality <'an decide. , 

,",',•c,mcl A11timrm,y. 1'/in,i.v: "Every l'omplex substam·e in the world 
mm,it-ts of simple parts, mid nothing exii,b, anywhere exl·ept the simple, 
or" hat is c·ompost.><l of simpk parts." He1-e, again, till' argument applies 
to things i11 sp1t<-e 11.nd time, not to spaee and timl• the1m,el\'es. ,ve 
may ext.Imel it to i.pal·e and time, and to a.II c·ollel'tiom,, whether existent 
or not. It ii. indeed oh\'ious that the proposition, true or false, is 
com-cml'fl pun•l_v with whole and p1trt, and ha.'I no spel·ial relation to 
sp1u-e nnd timl'. Instead of' a c·omplex substanl'e, we might l'onsider the 
nu111hl•1-s hehH-cn 1 aud 2, or anv other definable mllection. And with 
this exten11ion, th,· proof of the i,roposition mm,t, I think, be admitted; 
only that tam., or ,·cmcq,t., i,houl<l be substituted for subatmu:es, and 
that, instead of the argument. that relations between sub.11tan<--es are 
ael'idl'llt11l (::1ifiillig), we should content om"!.eh-es with saying that 
relations imply terms, and c·omplexity implies relation~. 

~-1.ntitluwis. "So mmplu thing in the world <'011sisb1 of' simple part11, 
and nothing simple exists in it anywhere." The proof of' this pro­
position, ai, of tll(' first antithei;is, assumes, what is alone really interest­
ing to us, the mrresponding property of space. ••Hpnce,"" Kant says, 
••does not l'Cmsist of' 11imple parts, but of' spn<--es." This dogma is 
regarcfod as self-e\'ident, though all employment of points shows that 
it is not uni\'el'!lall_y H.<-"<-epted. It appears to me that the argument of 
the thesis, extended as I have just suggested, applies to pure spac-e as to 
any other c·ollec·tion, and demonstrates the existem-e of simple points 
which l'mnpose spa('('. As the dogma is not argued, we ean only con­
jecture the grounds upon whic·h it is held. The usual argument from 
infinite dh·ision i11 probably what. influem-ed Kaut. Howe\'er many parts 
we di\'ide a 11:pace into, these parts are still spa<--e11, not poinb. But 
howe,·er many part.K we di"ide the sb-et<-h of ratios between l and 2 
into, the pnrts are still stretche .. , not single numbers. Thus the argument 
ft.bra.inst points pro\'es that there are 110 numbers, and will ec1ually proYe 
that there are no c·olours or tones. All these absurdities in\'olve a 
oovel"t use of the axiom of finitudc, i.e. the axiom that, if a spru.-e does 
com1ist of point.II, it must consist of some finite number of' point.II. ,vhcn 
once this i11 denied, we may admit that no finite number of di\'i11ions of 
a spac.-e will lead to point,s, while yet holding e\'ery space to be com­
posed of points. A finite space is a whole <--OI1Sisting of simple parts, 
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but not of any finite number of simple part.s. Exactly the same thing 
is true of the stretch between 1 and !. Thus the antinomv is not 
specially spatial, and any answer which is applicable in Arithmeti<' is 
applicable here also. The thesis, whi<'h is an essential po11tulate of Logic, 
should be accepted, while the antithesis 11hould be rejeeted. 

Thus Kant's antinomies do not spe<'ially involve space and time: any 
other continuous series, including that of real numben, raises the 11ame 
problems. And what i11 more, the properties of spa<·e and time, to 
which Kant appeals, are general properties of such series. Other 
antinomics than Kant's-e.g. that concerning abmlute and relative 
position, or conceming the straight li'ne 1U1 both a relation and a 
collection of points-have been solved in the pl'eccding chapters of 
this Part. Kant's antinomies, which involve the difficulties of infinity, 
are by far the most 11erious, and the11e being essentially arithmetical, 
have been already solved in Part V. 

436. Before proceeding to matter and motion, let. us hl'ieff y re­
capitulate the results of thi11 Part. Geometry, we 11aid, is the study 
of series having more than one dimension; and such serie11 ari11e wherever 
we have a series whose terms are series. This subject is important in 
pure mathematics, because it gives us new kind11 of order and new 
methods of generating order. It is important in applied mathematics, 
because at lea11t one series of several dimensiorn1 exists, namely, space. 
We found that the abstract logical method, based upon the logic of 
relations, which had served hitherto, was still adequate, and enabled us 
to define all the classes of entities which mathematicians call spaces, 
and to deduce from the definitions all the prop011itions of the cor­
responding Geometries. We found that the continuity and infinity 
of a space can always be arithmetically defined, and that no new 
indefinables occur in Geometry. We saw that the phil()lol(}phical ob­
jections to points raised by most philosopMrs are all capable of being 
answered by an amended logic, and that Kant's belief in the peculiarity 
of geometrical reasoning, and in the existence of certain antinomies 
peculiar to spaee and time, has been disproved by the modern realir.ation 
of Leibniz's universal characteristic. 'Thus, although we discussed no 
problems specially concerned with what actually exists, we incidentally 
answered all the arguments usually alleged against the existence of an 
absolute 11pat-e. Since common sense affirms this existence, there seems 
therefore no longer any reason for denying it ; and this conclusion, we 
shall find, will give us the greatest assistance in the philosophy of 
Dynamics. 
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MATTER AND MOTION. 
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CHAPTER LIII. 

MA'l'TI<:R. 

437. 'l'm•: nature of matter, even more than that of spat\!, ha.-. 
alwayli been rebrardecl a., a e41-dinaf p1·oblem of' philosoph,v. In the 
pl'Clleut work, however, we are not concerned with the quei,ition: What 
is the nature of the matter that actually exh1ts? We arc conremed 
merely with the analysii-, of rational Dynamics considered a.-. a branch 
of pure mathcmatiC'll, whic·h introduces itK imbjcct-matter b~· definition, 
not by ob.11en·ation of the ac:tual world. Thus we are not ronfined to 
laws of motion which are empirically vt•rified: non-Newtonian DynamiCM, 
like non-Eudidean Geometr.v, must he as interesting to us l\!I the or­
thodox system. It is true that philosophiral arguments again!lt the 
reality of matter m,ually endeavour to raise logiC8.l objections to the 
notion of matter, and these ohjel'tions, like the objedions to absolute 
space, are rele,·ant to a disl'ussion of mathematical principle!!, But they 
need not blTl'l\tly t-oncern ui,, at this stage, as they have mOHtly been dealt 
with incidentally in the vindication of 11pac-e. ThOlle who have agreed 
that a spat-e t-omposed of point-. is J>OMsible, will probably agree also 
that matter is possible. But the question of possibility is in any C8JIC 

Kubse<1uent to om· immediate question, which is: What is matter? .And 
here matter is to mean, matter a.-. it occurs in rational Dynami~, <ptite 
independently of all qucstionK as to its actual existent-e. 

438. There ii.;-so we decided in Part VI-no logical implication of 
other entitiei,, in spat-e. It does not follow, merely because there· is 
space, that therefore the1-e are thingii in it. If we are to belie,·e thi11, 
we must believe it on new grounds, or rather on what is called the 
evident-e of the ~nses. Thus we 11.rc here taking an entirely new 1,1tep. 
Among tenus which appe111· to cxi11t, the1-e are, we may i.;ay, four ;reat 
da.'48(.'!I: (1) instants,(!) pointK, (3) ter1m1 which occupy instanti; but not 
points, ( 4) terms which ot•eupy both points and instant~. It 11eem~ to 
be the fad; that the1-e al'e no tcrn111 which occupy points but not h1!1~nts. 
What is meant by tK'l'IP!Ji11g a point Ol' an instant, analysis ca1~1ot 
explain; thi11 is a fundamental relation, expreSIIOO by i1t or at, &\fill• 
metriral and intransith'e, indefinable and simple. It is evident 'that 
bits of matter are among the tenn11 of (4). Matter or materiality itiielf, 
the cl1111K-c.-om-cpt, i11 among the tennit which do not exi11t, but hi,b or 
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matter exist both in time and in space. 'fhey do not, howt>ver, form 
the whole of class ( 4 ): there are, besides, the so-called secondary qualities, 
at least colours, which exist in time and space, but are not matter. We 
are not called upon to decide 88 to the subjectivity of secondary qualities, 
but at least we must agree that they differ from matter. How, then, is 
matter to be defined ? 

'39. There is a well-worn traditional answer to this question. 
Matter, we are told, is a substance, a thing, a subje<."t, of which secondary 
qualities are the predicates. But this traditional answer cannot ronteJl:l 
us. The whole doctrine of subject and predicate, as we have already had 
occasion to argue, is radically false, and mm1t be abandoned. It may~ 
quel!ltioned whether, without it, any sense other than that of Chapter 1v\ 
can be made of the notion of thing. We are sometimeii told that things· 
are organic unities, comprnied of many parts expressing the whole and 
expre&Hed in the whole. This notion is apt to replace the older notion of 
substance, not, I think, to the advantage of precise thinking. The only 
kind of unity to which I can attach any precise sense-apart from the unity 
of the absolutely simple-is that of a whole composed of parts. But this 
form of unity cannot be what i11 called organic ; for if the parts express the 

' whole or the other parts, they must be complex, and therefore themselves 
t--ontain part.~ ; if the parts have been analyzed as far as possible, they 
must be 11imple tt.-rms, incapable of expl'C!!Sing anything ext·ept them­
selveti. A distinction is made, in support of organil' unities, between 
conceptual analysis and real division into parts. What is really indi­
visible, we are told, may be conceptually analy:1.able. Thi11 distinction, if 
the conceptual analysis be regarded a:,; subjective, seems to me wholly 
inadmissible. All complexity is conceptual in the sense that it ii. due 
to a whole capable of logical analysis, but is real in the sense that it 
has no dependence upon the mind, but only upon the nature of the 
object. Where the mind can distinguish eleme11t11, there must be different 
elements to distingui11h ; though, al~! there are often different elements 
whit"h the mind does not distinguiish. The analysis of a finite space 
into points is no more objective than the analysis (say) of causality into 
time-sequence+ ground and consequent, or of equality into sameness of 
relation to a given magnitude. In every case of analysis, there is a 
whole consisting of parts with relations; it is only the nature of the 
parts and the relations which distinguishes different cases. Thus the 
notion of an organic whole in the above 11en11e must be attributed to 
defective analysis, and cannot be used to explain things. 

It is all!IO said that analysis is falsification, that the complex is not 
equivalent to the sum of its t--om1tituents and is changed when analyzed 
into these. In thi1,1 doctrine, &K we 118.W in Parts I and II, there is a. 
me&!lure of truth, when what is to be analyzed is a unity. A proposition 
has a certain indefinable unity, in virtue of which it is an assertion; 
and thi11 is so completely lost by analysis that no enumeration of 
constituents will restore it, even though itself be mentioned 811 a con-
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stituent. There is, it must be confessed, a grave logical difficulty in 
this fact, for it is difficult not to belieYe that a whole must be constituted 
by its constituents. J<'or us, however, it is sufficient to observe that 
all unities are propositions or propositional concepts, and that con­
sequently nothing that exists is a unity. If, therefore, it is maintained 
that things are unities, we must reply that no things exist. 

440. Thus no fonn of the notion of substance seemK applicable 
to the definition of matter. The question remains: How and why is 
matter distinguished from the so-called secondary qualities? It cannot, 
I think, be distinguished as belonging to a different logical class of 
conc,-epts; the only clasKCs appear to be things, predicates, and relations, 
and both matter and the secondary qualities belong to the first das.<1. 
Neverthcle"s the world of dynamic.-. is sharply distinguished from that of 
the secondary qualities, and the elementary properties of matter are 
<Juite different from those of colou1-s. Let us examine these properties 
with a view to definition. 

The mo,;t fundamental characte1istic of matter lies in the nature of 
its connection with space and time. Two pieces of matter cannot 
occupy the same place at the same moment, and the same piec·e cannot 
occupy two plaees at the same moment, though it may <x-cupy two 
moments at the same place. That is, whatever, A.t a given moment, has 
extension, is not an indivisible piece of matter: division of space always 
implies division of any matter occupying the space, hut division of time 
has no corresponding implication. (TheKC properties arc commonly 
attributed to matter: I clo not wish to assert that they do actually 
belong to it.) By thei.e properties, matter is distinguished from what­
ever else is in space. Consider colom-s for example: these posset111 
impenetrability, so that no two colours can be in the same place at 
the same time, but they do not possess the other prope1ty of matter, 
since the same colour may be in many places at once. Other pairs 
of qualities, as colour and hardnes::;, may ah10 coexist in one place. 
On the view which regarded matter as the subject of which qualities 
were attributes, one piece of colour was distinguished from another 
by the matter whose attribute it was, even when the two colours were 
exactly similar. I i.hould prefer to say that the colour is the same, and 
ha.-i no direct relation to the matter in the place. The relation it1 
indirect, and consisi:K in occupA.tion of the ti8.me place. (I do not wiMh to 
decide any moot questions as to the secondary qualities, but merely 
to show the difference between the common-sense notions of thc,-se and of 
matter respectively.) Thuis impenetrability and its com.-e1-se seem to 
characterize matter sufficiently to distinguish it from whatever else 
exists in Mpace. Two piece11 of matter cannot occupy the same place 
w1d the same time, and one piece of matter cannot oc-cupy two places 
at the same time. But the latter property mm1t be unden;tood of a 
simple piece of matter, one which is incapRble of analysis or divi11ion. 

Other prope1tics of matter flow from the nature _of motion. Every 
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piece of matter persii.ts through time: if it exi~ti. onc.-e, it would Meelll 

that it mm,t always exist. It either retains its spatial position, or 
changes it (·ontinuously, so that its pasitions at various times fonn a 
continuous series in space. Hoth these properties require ('()nsidere.ble 
diKCussion, which will follow at a later Rta.ge. The)' are purely kine­
matil'al, i.e. they involve none of the so-called laws of motion, hut only 
the nature of motion ib1elf. 

A controversy ha.,; always existed, since early Greek times, 11.i- to the 
pos.-;ihility of a vacuum. The question whether there is a vacuum 
cannot, I think, he decided on philosophical grounds, i.e. no decision is 
possible from the nature of matter or of motion. The answer belong~ 
properly to Science, and therefore none will he suggested here. , 

We 11111.)· isum up the nature of matter ais follows. .Material u11it il'I a 
cla."ls-concept, applicable to whatever has the following characterhitil's: 
(1) A simple material unit occupie1,1 a spatial point at any moment; 
two units cannot occupy the same point at the same moment, and one 
cannot O(•cupy two poinb, at the same moment. (!'l) Every material 
unit persisti'I through time; ib, positions in spac·e at any two moments 
may he the same or different; but if different, the positions at times 
intermediate between the two d1oscn must form a continuous series. 
(3) Two material unitis differ in the 1'1!tme immediate manner as two 
points or two eoloms; they agree in ha,·ing the relation of inclusion in 
a class to the general eonc·ept matter, or rather to the general concept 
material u11it. Matter il.'IClf seems to he a collective name for all pieces 
of matter, WI !!pace for all points and time for all instants. It is thm; 
the peculiar relation to space and time which distinguisl1cs matter from 
other qualities, and not any logical difference such a.o; that of suhjec..1: and 
predicate, or substance and attribute. 

441. \1/ e can now attempt an abstract logical statement of what 
rational Dynamil·s requires il.'I matter to he. In the first place, time 
and Hpac.-c may he replaced by a one-dimensional and n-dimensional 
series respectively. Next, it is plain that the only relevant function of 
a material point is to establish a correlation between all moments 
of time and some pointis of Kpace, and that this correlation is many-one. 
So i'IOon a."l the correlation is given, the actual material point c.-eases to 
have any importance. Thus we may repla<.-e a material paint by a 
many-one relation wh08C domain is a c.-ertain one-dimensional series, and 
whose converse domain is contained in a <.-ertain three-dimensional series. 
'l'o obtain a material universe, so far &.'I kinematical considerations go, 
we have only to consider a class of such relations 1,1ubject to the condition 
that the logical product of any two relations of the class is to be null. 
This condition insures impenetrability. If we add that the one-dimen­
sional and the three-dimensional series are to he both c.-ontinuous, and 
that each many-one relation is to define a continuous function, we have 
all the kinematical conditions for a system of material particles, 
generalized and expressed in tenus of logical constants. 
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MOTION. 

442. Mum has been written roncerning the laws of motion, the 
poi;sihility of dispensing with Causality in Dynamil's, the relativity of 
motion, and other kindred questions. But there arc several preliminary 
<JUestions, of great diffieult)· and importam·c, concerning whirh little has 
been said. Yet these questionl'!, speaking logically, must he settled before 
the more complex problems usui1lly di.;russed can be attarked with any 
hope of Slll'l-ess. ::\ilost of the rele\'ant modern philosophical literature 
will illustmte the truth of these remark.-; : the theories suggested usually 
repose on a <·ommon dogmatil- basis, and can he ea.-;ily seen to be unsatis­
fac.-tory. So long a.-; an author confines himself to demolishing his 
opponents, he is irrefutable; when he constructs his own theory, he 
exposes himself, 1L, a rule, to a similar demolition by the next author. 
Under these circumstanres, we must seek some different path, whose 
by-ways remain unexplained. "Back to Newton" is the watchword of 
reform in this matter. \cwton's seholium to the definitions <·ontains 
argument~ whil'h arc unrefuted, and so far IL'I I know, irrefutable: they 
have been before the world two hundl'l'<l years, and it is time they were 
refuted or ac<·cptcd. Being 11ne<1ual to the former, I have adopted the 
latter alternati\'e. 

The conC'ept of motion is logi<"ally subsequent to that of occupying 
a place at a time, and also to that of chan1,re. Motion is the oc<·upation, 
by one entity, of a <·ontinuous series of places at a continuous series of 
times. Change is the difference, in J'l-spect of truth or falsehood, between 
a proposition c·oncerning an entity and a time 1' and a proposition con­
t-crning the same entity and another time T', provided that the two 
propositions differ only by the fact that T occun; in the one where 1'' 
c>ecnr11 in the other. Change is continuous when the proposition~ of the 
aho\'e kind form a continuous series correlated with a <·ontinuous serit"S 
of moments. Chanbrc thus always involves (]) a fixed entity, (2) a thrt-e­
t·omered relation between this eutitv, another entity, and some hut not all, 
of the moment-; of time. 'l'his is its bare mininnim. Mere existence at 
!!Ollle hut not all moment-; constitutes change on this definition. ( 'ou-
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sider pleasure, for example. 'This, we know, exists at some moments, 
and we may suppose that there are moments when it does not exist. 
ThUH there is a relation between pleasure, existence, and some moments, 
which does not subsist between pleasure, existence, and other moments. 
According to the definition, therefore, pleasure changes in passing from 
existence to non-existence or t•ice versa. This shows that the definition 
requires emendation, if it is to accord with usage. Usage does not 
permit u.,; to speak of change except where what changes is an existent 
throughout, or is at least a. class-concept one of whose particulars always 
exists. Thus we should say, in the case of pleasure, that my mind is 
what changes when the pleasure ceases to exist. On the other hand, lf 
my pleasure is of different magnitudes at different times, we should say 
the pleasure changes it11 amount, though we agreed in Part III that not 
pleasure, hut only particular amounts of pleasure, are capable of 
existence. Similarly we should say that colour changes, meaning that 
there are different colours at different times in some connection ; though 
not colour, but only particular shades of colour, can exist. And 
generally, where both the class-concept and the particulars are simple, 
usage would allow us to say, if a serie11 of particulars exists at a con­
tinuous series of times, that the class-concept changes. Indeed it seems 
better to regard this as the only kind of change, and to regard as 
unchanging a term which itself exists thrc;mghout a given period of time. 
But if we are to do this, we must say that wholes consisting of exi&tent 
parts do not exist, or else that a whole cannot preserve its identity 
if any of its part'I be changed. The latter is the correct alternative, 
but some subtlety is required to maintain it. Thus people say they 
change their minds : they say that the mind changes when pleasure 
ceases to exist in it. If this expression is to be correct, the mind must 
not be the sum of its constituents. Por if it were the sum of all it'I 
,:onstituents throughout time, it would be evidently unchanging; if it 
were the sum of its constituents at one time, it would lose its identity 
as soon as a former constituent ceased to exist 01· a new one began 
to exist. Thus if the mind is anything, and if it can change, it must 
be something persistent and constant, to which all constituents of 
a psychical state have one and the same relation. Personal identity 
could be <--onstituted by the persistence of this term, to which all a 
pen1on's states (and nothing else) would have a fixed relation. The 
change of mind would then consist merely in the fact that these states 
are not the same at all times. 

Thus we may say that a term changes, when it has a fixed relation to 
a collection of other terms, each of which exist'! at some part of time, 
while all do not exist at exactlv the same series of moments. Can we 
say, with this definition, that the universe changes? The universe is a 
110mewhat ambiguous term: it may mean all the things that exist at a 
single moment, or all the thingii that ever ha,·e existed or will exist, 
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or the common quality of whatever exists. In the two former senses it 
cannot change ; in the last, if it be other than existence, it can change. 
Existence itself would not be held to change, though different terms exist 
at different times; for existence is involved in the notion of change 11M 

commonly employed, which applies only in ,·irtue of the difference 
between the things that exist at different times. On the whole, then, 
we shall keep nearest to usage if we say that the fixed relation, 
mentioned at the beginning of this paragraph, must be that of a simple 
class-concept to simple parti<·ulars contained under it. 

443. The notion of change has been much obscured by the doctrine 
of substance, by the distinction between a thing's nature and it.~ extenial 
relations, and by the pre-eminence of subject-predicate propositions. It 
has been supposed that a thing could, in some way, be different and yet 
the same: that though predi<·ates define a thing, yet it may have different 
predicates at different times. Hence the distinction of the essential and 
the accidental, and a number of other u!lt'less distindions, which were 
(I hope) employt,,d precisely and consciously by the scholastics, but are 
used vaguely and unconsciously by the modems. Change, in this meta­
physical sense, I do not at all admit. The so-called predicates of a 
term are mm1tly derived from relations to other tenus; change is due, 
ultimately, to the fa<1 that many terms have relations to some parts of 
time which they do not have to others. But every term is eternal, 
timeless, and immutable; the relations it may have to parts of time 
are equally immutable. It is merely the fact that different terms are 
relatt,,d to different times that makes the difference between what exist& 
at one time and what exii.-ts at another. And though a term may cease 
to exist, it cannot cease to be; it is still an entity, which can be counted 
as 01w, and concerning which some propositions are true and others false. 

444. Thus the important point is the relation of terms to the times 
they occupy, and to existence. Can a term oc-cupy a timP without 
existing? At first sight, one is tempted to MY that it can. It iia1 hard 
to deny that \Vaverley's adventurei,; occupied the time of the '45, or 
that the i,;tork'N in the 1,001 Nights occupy the period of He.run al 
Raschid. I should not say, with Mr Bradley, that these times are 
not parts of real time; on the contrary, I should give them a definite 
position in the Chri11tian Era. But I Mhould MY that the event11 are not 
real, in the sen,.c that they never existed. Ne\'ertheless, when a tenn 
exiKts at a time, there ii; an ultimate triangular relation, not reducible 
to a combination of 11eparate relations to existence and the time re­
spet,1ively. This may be shown as follows. If "A exists now"' can 
be analy7.ed into " A is now" and " A exists," where e:riata is used 
without any tense, we shall have to hold that "A is then " is logically 
possible even if A did not exist then ; for if occupation of a time be 
separable from existence, a term may occupy a time at which it does 
not exi11t, e,·en if there are other timei1 when it does exist. But, on the 
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theory in question, "A is then" and ".A exists" t-onstitute the Yery 
meaning of" .A existed then," and therefore, when these two propositions 
are true, .A must have existed then. This can only be avoided by 
denying the possibility of analyzing ".A exists now" into a combination 
of two-term relations; and hence non-existential 0<·cupation of a time, 
if possible at all, is radically different from the existential kind of 
occupation. 

It should be observed, howeYer, that the above discussion has a 
merely philosophical interest, and is strictly irrelevant to om· theme. 
For exi11tem,-e, being a constant term, need not he mcntiont,,d, from a 
mathematical point of view, in defining the moments occupied by a term. 
Prom the mathematical point of view, change arises from the fact that 
there are propositional functions which are true of some but not all 
moments of time, and if these involve existence, that is a further point 
with which mathematics as :mch need not concern ib;elf. 

445. Before applying these remarks to motion, we must examine 
the difficult idea of occupying a place at a time. Here again we seem 
to have an irreducible triangular relation. If there is to be motion, we 
must not analyze the relation into occupation of a place and occupation 
of a time. For a moving particle occupies many plH.Ces, and the essenl--e 
of motion lies in the fact that they are occupied at different times. If 
"A is here now" were a.nalyi,.able into" A is here"' and" .A is now," it 
would follow that ".A is there then" is a.nalyzable into " .A is there,, 
and " .A is then." If all these propositions were independent, we could 
combine them differentlv: we could, from "A is now,, and ".A is there," 
infer" .A is there now,,; which we know to be false, if A is a material 
point. The suggested analysis is therefore inadmisi,ible. If we a.re 
determined to avoid a relation of three terms, we may reduce ".A is 
here now" to "A's occupation of this place is now." Thus we have a 
relation between tlti.v time and a complex conl--ept, .A.'s oL·c:upa.tion of this 
ploc-e. But this seems merely to substitute another equivalent proposi­
tion for the one which it professes to explain. But mathematically, the 
whole l'l-'<JUisite condusion is that, in relation to a given term which 
cx-cupies a place, there is a correlation between a place ancl a time. 

446. \Ve can now l'Onsider the nature of motion, which need not, 
I think, cause any bJTCat difficulty. A simple unit of matter, we agreed, 
<~ only oecupy one place at one time. Thus if A be a material point, 
"A is here now" excludes ".A is there now," but not "A is here then." 
Thus any gh-cn moment hRs a unique relation, not direct, but tiiti A, to 
a 11iugle plaee, whose occ:upation by A is at the gi\'en moment; but there 
need not be a unique relation of 11. briven pla.L-e to R briYen time, since the 
oceupation of the plat-e 11111.y till several times. A moment such that 
an interval containing the gi,·en moment otherwist· than a.~ an end-point 
can be assigned, at any moment within which inte1"\·al A is in the same 
place, is a moment when A is at rest. A moment when this cannot be 
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done is a moment when .A is in motion, provided A oc-cupies some place 
at neighbouring moments on either side. .A moment when there are 
such inten·als, but all have the said moment a.-; an end-term, is one of 
transition from rest to motion or t•k-e versa. Motion consists in the fa.et 
that, by the occupation of a place at a time, a l'Orrelation is established 
between places and times; when different times, throughout any period 
however short, are correlated with different places, there is motion ; when 
different times, throughout some period however short, arc all correlated 
with the same plru.-e, there is rest. 

We may now procet.'<l to state our doctrine of motion in ahiitract 
logical terms, remembering that material putt.ides are replaced by many­
one relations of all times to soml' places, or of all terms of a t'<mtinuous 
one-dimensional i,eries t to some terms of a continuous three-dimensional 
series ,Y. Motion consists broadly in the correlation of different terms oft 
with different terms of 11. A ~lation R which has a single term of a for 
its converse domain corresponds to a material particle which is at rest 
throughout all time. A relation R which <·orrelates all the terrm, of t 
in a certain iuterrnl with a single term of .v cmTcsponds to a material 
pa1ticle which is at rest throughout the interval, with the prn,sible ex­
clusion of its end-tenns (if any), which may be tenns of transition between 
rest and motion. A time of momentary rest is given by any term for 
which the differential coefficient of the motion is zero. The motion is 
t.'(mtinuous if the corrt!Iating relation R definei; a continuous function. 
It is to be taken as part of the definition of motion that it is l'ontinuous, 
and that f mther it ha.-. first and second differential coefficient-.. This is 
an entirely new assumption, having no kind of necessity, but serving 
merely the purpose of gi\'ing a subjeet akin to rational Dynamics. 

447. It is to be obsen·ed that, in consequence of the denial of the 
infinitesimal, and in consec1uem·e of the allied purely technical view of 
the derivative of a function, we must entirely reject the notion of a .,tate 
of motion. )lotion consist-. merel!J in the occupation of different place11 
at different times, subject to continuity a.,; explained in Part V. There 
is no transition from place to place, no consecutive moment or con­
-.ecutivc position, no sm·h thing a.s ,,elocity except in the sense of a real 
number which is the limit of a certain set of quotient-;. The rejection 
of velocity and acceleration as physical facts (i.e. as properties belonging 
at etU.:h iw,tant to a mm·ing point, and not merely real numbers expressing 
limib. of certain ratios) invokes, Ill! we shall see, some difficulties in the 
:.tatement of the laws of motion; but the reform introduced hv Wcier­
strtL'ls in the infinitesimal l'IU<·ulus ha.'I rendered this rejec·tion in;peratiVl'. 
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CAUSALITY. \ 
448. A <lllft:AT controversy h8.1i exisb,'Cl in recent times, among those 

who are interested in the principles of Dynamics, on the question whethel' 
the notion of causality occurs in the subject 01· not. Kirchoff'• and 
Mach, and, in our own country, Karl Pearson, have upheld the view 
that Dynamics is purely descriptive, while those who adhere to the more 
traditional opinion maintain that it not me1·ely registers sequenceR, but 
discovers causal ('Onnections. This controversy is discussed in a very 
interesting manner in Professor ,James Ward's Naturaform and Agno.vti­
dam, in which the desl'riptive theory is used to prove that Dynamics 
cannot give metaphyRical truths about the real world. But I do not 
find, either in Professor Ward's book or elsewhere, a \'cry clear statement 
of the issue between the two schools. The practical m~thematicn.l form 
of the question arises a11 regardsjhrcl', and in this form, there l'Rll he no 
doubt that the dcsc:riptivc st"hool are in the right: the notion of force 
is one which ought not to he introdut'ed into the pri11C'iples of Dyne.mk'll. 
The reasons for this a.~sertion are quite conclusive. l4'orce is the sup­
posed cause of acl1!leration : many forecs are supposed to concur in 
producing a resultant acceleration. Now an acceleration, a.., wus pointed 
out at the end of the preceding chapter, is a mere mathematical fiction, 
11. number, not a physical fact; and a component acceleration ill doubly 
a fiction, for, like the component of any other vector sum, it is not part 
of the resultant, whit·h alone c·ould be supposed to exist. Hence a force, 
if it be a cause, is the l'ause of an effed which never takes place. But 
this l'onclusion does not suffice to show that causality never occurs in 
Dynamics. If the descriptive theory were strictly correct, inferences 
from what occurs at some times to what oo·urs at other.. would be 
impossible. Such inferences must involve a relation of implication 
between event" at different times, and any such relation is in a general 
sense causal. What does appear to be the case is, that the only caui.ality 
occurring in Dynamic.-. requires the whole configuration of the material 
world as a datum, and does not yield relations of particula™ to par-

* Vor/Nungr,, ii.ber 1nat/un1,uli11t:lu! Phy11tk, Leipzig, 1118.'l, Vorrede. 
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ticulars, ,mch as are usually called cau!l&l. In this respect, there is 
a difficulty in interpreting such seeming causation of particulars by 
particulars a.~ appears, for example, in the law of gravitation. On 
account of this difficulty, it will be neceM.~ry to treat cau11&tion at 11ome 
length, examining first the meaning to he a.~igned to the cauKAtion of 
particul8.1"11 by particulars as commonly understood, then the meaning 
of cau!l&lity which is essential to rational Dynamics, and finally the 
difficulty wi regards component ac<.-eleration. 

449. The fi~t subject of the pro.ent <·hapter is the logi<'al nature 
of <-ausal propositions. In this subject there is a con11iderable difficulty, 
due to the fact that temporal su<'Cession is not a relation between e,·enb1 
directly, but only between moments•. If two e,·ents <·ould be su<,·e1111i\'e, 
we eould regard causation as a relation of sucl'eS!lion holding between 
two events without regard to the time at whit-h they oc<·ur. If "A 
preredes B" (where A and B are actual or po118ible temporal existent.~) 
be a true proposition, involving no reference to any ad:ual part of time, 
but only to temporal Hucct.'SSion, then we ~y A ,·au,¥t's B. The law of 
causality would then consist in asserting that, among the thinbl'!I which 
actually precede a given particular existent B ·1w10, there i11 always one 
series of e\'ents at succeAAive moment-; which would nC<~Mimrily have 
precc.-ded B tlten, just ai; well as B 11mc; the temporal relations of B 
to the terms of this i.eriei. may then he abstracted from all partit·ular 
times, and asserted per ae. 

Such would hue bren the ac<·<mnt of' causality, if we had admittL-d 
that event.-; can be succes11ive. But 8.'I we ha\'e denied thi11, we ret1uire 
a different and more complicated theory. As a prelimimuy, let us 
examine some characteristi<-s of the causal relation. 

A causal relation between two events, whatever its nature may he, 
certainly involves no reference to constant particular partH of time. It 
is impossible that we should have such a proposition as ".A causeR B now, 
but not then." Such a proposition would merely mean that A exiat1r 
now but not then, and thel'efore B will exist at a slightly subsequent 
moment, though it did not exist at a time slightly subse<1uent to the 
former time. But the causal relation ibelf is etemal : if A l1ad existed 
at any other time, B would have existed at the 11ubHequent moment. 
Thus" A causes B'" bas no reference to L'Onsta.nt particulal' parts of' tilnt'. 

Again, neither .A nor B na>d ever exist, though if A shoultl exist at 
any moment, B must exist at a suhrequent moment, and z•i<·e "l'er.,d. In 
all Dynamics {a.'i I shall prcwe later) we work with camial cmmt.>ctionit; 
yet, except when applied to concrete cases, our tenus are not existents. 
Their non-existence is, in fact, the mark of what is called rational 
Dynamics. To take another example : All delibe1-ation and choire, all 
decisions as to policie11, demand the ,•alidity of caw111.l iteries whORe ten1111 

* See my article iu Mi11d, N.S., No. 39, "Is position i11 time aud 11pace ahl!olute­
or relative?" • 
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do not and will not exist. For the rational choice depends upon the 
construction of two causal series, only one of which can be made to 
exist. Unless both were valid, the chofoe could have no foundation. 
The rt;jected series consists of equally valid causal connections, but the 
events connected are not to be found among existents. Thus all states­
manship, and all rational conduct of life, is ba.'led upon the method of 
the frivolous historical game, in which we discuss what the world would 
be if Cleopatra's nONe had been half an inch longer. 

A causal relation, we have seen, has no essential reference to existente, 
as to particular part11 of time. But it has, none the less, some kind · of 
connection with both. If one of its terms is among existents, so is the 
other; if one i11 non-existent, the other is also non-existent. If one 
of the terms is at one moment, the other i11 at a later or earlier moment. 
Thu11 if .A causes B, we have also " .A's existen<--e implies D's" and " .A's 
being at this moment implie11 D's being at a suhse<p1ent moment." 
These two propositions are impliL>d by " A causes B" ; the second, at 
least, also implies ".A cau~es B," so that we have here a mutual impli­
cation. "\\'hether the first also implies "A causes B," is a difficult 
question. Some p<-'<>ple would hold that two momcnti; of time, or two 
points of space, imply each other's existence; yet the relation between 
these cannot be said to be causal. 

It would seem that whatever exists at any part of time has causal 
relations. 'This is not a distinguishing eharacteristic of what exists, 
11ince we have i;ecn that two non-existent terms may he cause and effect. 
But the absen<--e of this characteristic distinguishes terms which cannot 
exist from termi; which might exist. Excluding space and time, we may 
define as a p<>N.,il,k existent. any term which has a c·ausal relation to some 
other term. This definition exdudes numbers, and all so-called abstract 
ideas. But it admits the entities of rational Dynamics, which might 
exist, though we have no reason to suppose that they do. 

If we admit (what seems undeniable) that whate,·er occupies any 
given time is both a cam1e and an effect, we obtain 11. reason for either 
the infinity or the circularity of time, and a proof that, if there are 
events at any part of time, there always have been and always will be 
events. If, moreover, we admit that a single existent A can be isolated 
a.-. the <'.&USC of another single existent B, which in turn causes C, then 
the world eonsist-. of &11 many independent causal series &11 there are 
existents at any one time. This leadis to an absolute Leibnizian 
monad.ism-a. view which ha.-. always been held to be paradoxical, and 
to indicate an error in the theory from which it springs. Let us, then, 
return to the meaning of causality, and endea.Your to a.mid the paradox 
of independent c-auKal series. 

450. The proposition " A <·auSt.-s B" is, as it stands, incomplete. 
The only meaning of which it 8t.>em11 <'.Rpable is "...4's existence at any 
time implies Es existen<-e at some future time." It ha.'i always been 
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customary to suppose that cause and effa-t must occupy con!lel·utive 
moment:8 ; but &'I time is assumed to be a compact series, there cannot 
be any consecutive momenb1, and the interval between any two moments 
will always be finite. Thus in order to obtain a more c:amplete causal 
proposition, we must spe<'ify the interval" between A and B. A causal 
connec~ion then assert.<i that the existence of A at any one time implies 
the existence of B after an interval which is independent of the parti­
cular time at which A existed. In other words, we a.~rt: "There is 
an interval t such that A.'s existence at any time t1 implies Hs existence 
at a time t1 + t." This requires the measurement of time, and c·on­
sequently imolves either temporal distanc·e, or magnitude of divisibility, 
which la.-;t we agreed to regard as not a motion of pure mathematk-s. 
Thus if our mea.-;ure is effected by means of distance, our proposition is 
<·apable of the generalization whi<·h is required for a purely logical 
statement. 

461. A very diflkult question remains-the question which, when 
the problem is precisely stated, discriminates most dearl~· betwL--en 
monism and monadism. Can the causal relation hold between parti,·ular 
events, or does it hold only between the whole present i.tnte of the universe 
and the whole i.uh!ie<1uent state? Or t·au we take a middle prn1ition, 
and regard one group of events now as t•ausa.lly conneded with one group 
at another time, hut not with any other events at that other time? 

I will illustrate this difficulty by the case of gravitating particles. 
Let there be three partides A, B, C. ,ve say that B ancl C both 
cause ac(.,-elcrations in A, and we eompound these two act·elerations 
by the parallelobrram law. But this composition is not truly addition, 
for the components are not parts of the re1mltaut. The 1-esultant ill 
a new term, as simple a.'I its l'Omponent:8, and not by any means their 
sum. Thm; the effects attributed to B and C are never produced, but 
a third tenu different from either is produced. This, we may say, is 
produced by B and C together, taken as one whole. But the effect 
which they produce as a whole can only be discovered by supposing 
each to produce a separate effect : if this were not supposed, it would be 
impossible to obtain the two &l'(,-elerations whose resultant is the actual 
acceleration. Thus we seem to reach an antinomy: the whole has no 
effect except what results from the effects of the part.~, but the effects of 
the parts are non-existent. 

The examination of this difficulty will rudely shake our cherished 
prejudices concerning c.ausation. The laws of motion, we shall find, 
actually contradict the received view, and demand a quite different and 
far more complicated view. In Dynamics, we shall find (1) that the 
c.ausal relation holds between events at three times, not at two; (2) that 
the whole state of the material universe at two of the three times is 
necessary to the statement of a causal relation. In order to provide for 
this conclusion, let us re-examine causality in a less conventional spirit. 
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452. CaID1a.1ity, generally, is the prineiple in virtue of which? from 
a ,mffident number of events at a sufficient number of moments, one 01· 

more e,·ents at one or more new moment11 can be inferred. Let us 
suppose, for example, that, by means of the principle, if we are given e1 

events at a time tu e2 at a time tu, .. e,. at a time t,., then we can infer 
e,.+ 1 events at a time tn+i• If, then, e,.+ 1 ~ e" and if the times tr are 
arbitrary, except that tr+i is after tr, it follows that, from the original 
data., we can infer certain events at all future times. Por we may 
choose e1 of the events e2 , •• • e,. of the events e,.+i, and infer e,.+ 1 events 
at a new time t,.+2 • Hence by means of our supposed law, inference 'to 
future times is ast1ured. And if, for an_v value of r, e,.+ 1 > er, then more 
than '-'n+i events can be inferred at the time t11 +u since there are several 
ways of choosing e,. events out of e,.+ 1 events. But if for any value of r, 
e,+ 1 > e,., then inference to the past becomes in general impossible. In 
order that an unamb·iguous inference to the past may be possible, it is 
necessary that the implication should be reciprocal, i.e. that e1 events at 
time t 1 t1hould be implied by e2 at t2 ••• e,.+ 1 at t,.+ 1 • But some inference 
to the past is possible without this condition, namely, that at time t1 

there were e1 events implying, with the others up to t,., the e,.+ 1 events 
at time t,.+•· But even this inference soon fails if, for any value of r, 
"•·+ 1 > e,., sim.-e, after inferring e1 event-, at time t1 , e,. for the next inference 
takes the place of e,.+ 1 , hut is too small to allow the inference. Thus if 
unambiguous inference to any part of time is to be possible, it is necessary 
and ,;ufticient ( 1) that any one of the n + i groups of events should be 
implied by the other n groups; (2) that t',. = e,+i for all values of r. 
Sim .. -e causality demands the posi.ibility of such inference, we may take 
these two conditions as satisfied. 

Another somewhat complicated point is the folJowing. If e1 e •... e,. 
caul!IC e,.+ 17 and e, .. . t',.+i, cause e,.+ 2 and so on, we have an independent 
l'&ui.al series, and a retum to monadism, though the monad is now complex, 
being at each moment a group of events. But this remit is not 
na-essary. It may happen that only certain groups e1 e, ... e,. allow 
inferem .. -e to e,.+., and that e, e,. ... c.,, e,,+ 1 is not such a group. Thus 
suppo,-;e e'1 r'_ ... e\ simultaueou,-; with e1 ••• e,., and causing e',.+i· It may 
be that 1·~ e3 ••• e" e',.+ 1 and e'2 e'1 ••• e',. e,.+i form the next caullal groups, 
causinge,.H and e',.H respectively. In this way no independent causal 
l!Crit.-s will arise, in spite of particular causal sequences. ThiN however 
1-cmains a mere possibility, of which, so far as I know, no instance 
occurs. 

Do the general remarks on the logical nature of c·ausal proposition,-; 
:.till hold good? Must we suppose the causal relation to hold diret.'tly 
between the eve11t.Y e1 e2 •.. e,. +u and merely to imply their temporal 
t-uccession? The1-e are clifficultie; in this view. For, having recogniY.ed 
that <.-onsecutive times are impossible, it has lx.>come necei;sary to assume 
finite inter,·als of time between e1 and r,, e2 and e3 etc. Hence the length 
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of these intervals must be specified, and thus a mere reference to event.~ 
without regard to temporal position, becomes impossible. All we can 
say is, that only relative position is relevant. Given a causal relation 
in which the times are tr, this relation will still he valid for times T + tr. 
'fhus the ultimate statement seems to be: given m events at any 
moment, m other events at a moment whose distance from the first 
is specified, and so on till we haven groups of events, then m new events 
can be inferred at any new moment whose distant-e from the fiI'llt is 
specified, provided m and n have suitable ,·alucs, and the groups of 
event.., be suitably chosen-where, however, the values to be assigned 
to m and n may depend upon the nature of' the events in question. For 
example, in a material system consisting of N particles, we shall have 
m = N, n = 2. Here m depends upou tl1e nature of the material system 
in question. Wh1tt circumsrant-es obtain in Psychology, it is as yet 
impossible to say, since psychologists have failed to establish any strict 
causal laws. 

Thus rational Dynamics assume that, in an independent material 
system, the configurations at any two moments imply the eonfiguration 
at any other moment.. This statement is capable of translation into 
the language of pure mathematics, as we Rhall see in the next chapter. 
But it remains a question what we are to say c·oncerning sud1 causation 
of particulars by particulars a., appectr,v to be involved in such principles 
as the law of graviration. But this discussion must be postponed until 
we have examined the so-called laws of' motion. 
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CHAPTER L VI. 

I>B1''1Nfl'IOS <>I-' A DYSAMICAL WORLD. 

453. HJo:vont: proL-eeding to the laws of motion, which introduce new 
complication:-; of whit·h some are difficult to expres.-. in tem1s of pure 
mathematiC8, I wish briefly to define in logical langu~ the dynamical 
world as it result-. from previous chapters. 

Let e be a one-dimensional continuous series, 11 a .three-dimensional 
continuous 11erics, which we will not a.~sume to be Euclidean a., yet. 
If R be a many-one relation whoi-,e domain is e and whose ronverse 
domain is t·ontained in .,, then R defines a motion of a material particle. 
The indestructibility and ingenerability of matter are expressed in the 
fa.et that R has the whole of t for its field. Let m1 a.s..'lumc further that 
R defines a continuom, function in ,Y. 

In order to define the motions of a material system, it is only 
na'e888J"y to L·onsider a da.'iH of relations having the properties assigned 
above to R, and such that the logieal product of any two of them 
is null. This last rondition expresses impenetrability. For it asserts 
that no two of our relations relate the same moment to the same point, 
i.e. no two particles can be at the same plaL-e at the same time. A 
set of relatiom.1 fulfilling these conditions will be called a class of 
ki-Hematical motions. 

\Vith these conditioni., we have all that kinematie11 requires for the 
definition of matter; and if the descriptive school were wholly in the 
right, our definition would not add the new condition which takes 
us from kinematics to kinetics. Nevertheless this condition is essential 
to inferenL-e from events at one time to events at another, without which 
Dvnamics would lose its distinctive feature. 

· 454. A generalized form of the statement of causality which we 
require i11 the following: A class of kinetic nwtimis is a clWIS of kine­
matical motions such that, given the relata of the ,·arious component 
relations at 11 given times, the relata at all times are determinate. In 
ordinary Dynamk"S we have "= 2, and this assumption may be made 
without the loss of any interesting generality. Our usertion then 
amounbi to 11a.ying that then~ is a certain specific many-one relation 
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which holds between anv two configurations and their times and anr 
third time, as referent,· and the configuration at the third time ~ 
relatum ; in ordinary language, given two configurations at two given 
times, the configuration at any other time is determinate. Formally, 
the principle of causality in this form ma,v be stated aa follows. If H 
be a relation which is any one of our motions, and t any time, let R1 he 
the relation holding only between t and the tenn to which t has the 
relation R. If K be the whole class of motions, let K1 be the whole 
class of such terms as R1• Then K1 expres8ell the configuration of the 
system at the time t. ~ow let t', t" be any other two times. Then K 
is a dass of kinetic motions if there is a m~nv-oue relation S, the sa.me 
for any three times, which holds between the da.11s whose term11 are 
t, t', t", K,, K1·, as referent and the co11figuration K1 .. as relatum. 

The particular causal laws of the particular unive1-se considered are 
given when Sis given, and ziice versa•. \\re may treat of a whole set 
of universes agreeing in having the same S, i.e. the !lllll1e causal laws, 
and differing only in respect of the distribution of matter, i.e. the 
class K. This it1 the ordinary procedure of rational Dynamics, which 
commonly defines its Sin the way believed to apply to the actual world, 
and uses its liberty only to imagine different material systems. 

It will be ob11erved that, owing to the rejection of the iufinitesimal, 
it is necessary to give an integrated form to our general law of causality. 
We cannot introduce velocities and accelerations into statements of 
general p1inciples, though they be<·ome necessary as soon a.-. we descend 
to the laws of motion. A large part of Newton's laws, Q.'I we shall 
see in the next c·hapter, is eontained in the above definition, but the 
thit-d law introduces a radical novelty, and gives rise to the clifficulty a.11 
to the causation of particulars hy particulars, which we have mentioned 
but not yet examined. 

• In the Dynamics applicable to the actual world, the specification of S requil'ell 
the notion of mass. 
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NEWTOS,S LAWS OF MOTION. 

46&. TH1': present chapter will adopt, for the moment, a naive 
attitude towards Newton ,K Laws. It will not examine whether they 
really hold, or whether there are other really ultimate Jaws applying to 
the ether; its problem is merely to gh·e those laws a meaning. 

The fii~t thing to be remembert-d is-what physicists now-a-days 
will scarcely deny-that force is 11 mathematical fiction, not a physical 
entity. 'The second point is that, in ,·irtue of the philosophy of the 
calculus, aceeleration is a mere mathematiral limit, and does not itself' 
express a definite state of an accelerated particle. It may be remembered 
that, in discussing derivatives, we inquired whether it was pOMible to 
regard them otherwi!le than as limits-whether, in f'act, they could 
he treated e.s themselves fractions. This we found impossible. In this 
c:onclusion there was· nothing new, but its application in Dynamics will 
yield much that is distinctly new. It has been customary to regard 
velocity and n.ct•eleration as physit·al facts, and thm1 to regard the laws 
of motion &.'I connecting configuration and ac.·celeration. This, however, 
118 an ultimate M-count, is forbidden to us. It becomes neceSMry to 
seek a more integrated form for the laws of motion, and this form, as is 
c,·ident, must be one conned.ing three t'Onfigurations. 

458. The first law of motion is regarded sometimes as a definition 
of equal times. This ,·iew is 1·adically absurd. In the first place, equal 
times have no definition except as times whose magnitude is the same. 
In the second place, unless the first law told us when there is no act-eler­
ation (which it dl>e!I not do), it would not enable us to discover what 
motions are uniform. In the third place, if it is always significant to 
say that a 1,riven motion is uniform, there can be no motion by which 
unifomlity is defined. In the fourth place, science holds that no 
motion oc-curring in nature is uniform ; hence there must be a meaning 
of uniformity independent of all actual motions-and this definition is, 
the description of equal absolute distanees in equal abkolute times. 

The fil'llt law, in Newton,s form, asserts that ,·elocity is unchanged in 
the absence of causal M1ion from some other piece of matter. As it 
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!-ltands, this law is wholly confused. It tells us nothing as to how 
we are to discover l"ausal action, or as to the circ:umsta.llces under whil~h 
causal action occurs. But an important meaning may be found for it, 
hy remembering that velocity ii, a fiction, and that the only evenb; that 
occur in any material system are the various positions of its variom, 
particles. If we then assume (as all the laws of motion tacitly do) that 
there is to be some relation between different configurations, the law 
tells us that such a relation can only hold between three configurations, 
not between two. For two l'onfigurations are required for wlocity, and 
another for change of n•locity, which is what the law asserts to be 
relevant. Thus in any dyn1unical system, when the i;pecial laws (other 
than the laws of motion) whil'h regulate that system are specified, the 
l'onfiguration at any given time can "be inferred when tU'o l'ontigura­
tions at two given times 11.re known. 

457. The sel'ond and third laws introduce the new idea of 1/UlHH; 

the third also gi,·es one respect in which &l'<·eleration depends upon 
<·on figuration. 

The second law a,-, it stands is worthless. For we know nothing 
about the impresi,;t.-d force exl·ept that it produl'es change of motion, 
11.nd thus the law might seem to be a mere tautology. But by relating 
the impressed forl'c to the configuration, an important law may be 
discovered, which i!-1 as follows. In any material system consisting 
of n particlei,, there arc certain constant coeflicienb; (mas,'«-'S) m0 1n.l ••• mn 
to be associated with thei;e particles respectively; and when these 
l'oelficients are considered as forming part of the configuration, then m1 

multiplied by the corresponding al'celeration is a L-ertain function of the 
momentary configuration ; this is the same function for all times and all 
configurations. It is also a function dependent only upon the relative 
positions: the same configuration in another part of spac.-e will lead to the 
i.ame accelerations. 'fhat is, if .r,, !/r• z, be the coordinates of m,. at time 
t, we have .r,. =fr (t) etc., and 

This involves the assumption that .r·, =.f; (r) is a function ha,·ing a second 
clifferential coefficient .i\; the use of the equation involves the further 
a.-.sumption that .i\ ha.-, a first and second integral. The n.bove, how­
ever, iti a \'ery spt--ciali1.ed form of the Nt..'C<md law; in it..; general fonn, 
the function F mav involve other <·oeflicients than the masses, and 
,·elocities a.-. well a,,; poi.itions. 

458. The third law is very intcrei,ting, and allowis the analysi11 
of F into a \'ector sum of functions each depending only on m, and one 
other particle m, n.nd their relati\'e position. It asserts that the 
acceleration of 11i1 is made up of component accelerations ha,·ing special 
reference respectively·to 111~, ma .•. m,.; and if these components be f1u 
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fu, .. ,fin, it uierts that the acceleration of' any other particle mr has a 
eorresponding component f, 1 11uch that · 

7n,rf.r1 = - m1J,.,.. 
Thi11 law leadK to the usual properties of the centre of' ma11K. l•'or if' 
.t\, he the .z·-component of' l,.u WJ! ha,·e m1 .r1~ + m • • f 11 = 0, and thu11 

I I fflr.Tr,-0 . .. . 
Again, the 11pecial ref'erence of' J;, to m. can only be a reference to the 
m&Ks ,n,. the distan1,-e rm and the direction of the line 12; f'or the11e are 
the only intrinKic relations of the two particles. It is often 11pecified as 
part of the third law that the acceleration is in the direction 12, and 
this seems worthy to be included, as specifying the dependence of 
J,., upon the line 12. Thus J,.~ i11 along 12, and 

/,.2 = tf, ( m., m., r1i), 

j',1 = tf, (m2, m10 - r 12) 

and m1 tf, (,nu 1n.H r 12) = - m2 tf, (1112, 111i, - r1,), 

or, measuring J,.. from 1toward112, and /21. from 2 towards 1, both will 
have the Mme sign, and 

'IR1 tf, ( 111 i, m,, T12) = 111, t/) ( 111-:,, 1111, T12)• 

Hen<.oe m1 tf, (mi, mu r 12) is a symmetrical fundion of mi and m., say 
,f, (mu m2 , r 12). 

Thu!!> 
1 

fiv= - ,y (mu 111~, r12), 
1111 

1 
f21 = ni; ,f, (mum., 1"12)-

'l'hus the reimltant acceleration of each particle is analyzable into 
components depending only upon itself and one other particle; but 
this analy11is applie11 only to the statement in tenns of acceleration. No 
11uch analy11is is possible when we compare, not 1,-onfiguration and accelera­
tion, but three configuration11. At an~· moment, though the change of' 
distance and straight line 12 is not due to m1 and miz alone, yet the 
,u-celeration of' 1111 consists of L'Omponents each of which is the same 

it would be if there were only one other particle in the field. But 
where a finite time is in question this is no longer the case. The total 
change in the position of m1 during a time t is not what it would have 
been if m. had first operated alone for a time t, then ms alone and so on. 
Thus we cannot speak of any total effect of m1 or of m,; and sin1,-c 
momentary eftect.M are ffotions, there are really no independent eft'ecb of 
11eparate particles on m1 • The 11tatement by means of accelerations is 
to be regarded 11-'1 a mathematical device, not as though there really 
were an actual acceleration which is <!&Used in one particle by one other. 
And thus we er,1cape the very gra,·e difficulty which Wl' should otherwi11e 

Downloaded from https://www.holybooks.com



.N en•fon 's Lauw qj' ~lf otiou 485 

~,we to meet, namely, thllt the comp<>ucnt IU'l-elerations, not being 
(m brenera1) pa1ts of the resultant ll('celeration, would not be actual 
<'\"en if we allowed that ac(·eleration is an a.dual fact. 

469. The first two laws are mmpletel_v containl'll in the following 
stnteme~1t: In any independent i.ystem, the <'OllTib'l.lration at any time is 
a fmll'bon of that time and of the l'onfigurations at two given ti111e11, 
provided we include in t·onfigumtion the masst'8 of the various prutides 
('()ffiposing the system. The third lnw adds the further fad that the 
<·onfiguration can be analyzed into distances aml strnight lines ; the 
fom·tion of the l'onfiguration whid1 represents the 1ll't.0t'leration of' any 
pa1tide is a vedor-sum of functions C"Ontaining only one distan<·e, one 
-.traight line, and two ma.. .. ses eat·h-m<n-eo,·er, if we ,u•cepl the addition 
to the third law i,,poken of 1ihow, end1 of' thel'>\' functions is a n"l·tor 
along the join of tlll' two partide, whi<·h <•nter into it. Hut for this 
law, it might happen that thl' IU'l'elemtion of 111 1 would imoln- the 1t1-ea 
of the triangle 1 2 :3, or the n1lume of tlu.• tdmhedron l 2 :J .j.; and hut 
fo1· thii,, law, we ,-hould not ha\'e the ui,,ual propertit•s of till' <0l•nt.re of lll!\."1,"I. 

Th<· tlm .. 'l' law,- together, a!-. 1w11 t•xpoundl"I, give the 1-,"-'<-'ater part of 
the law of gra,·itation; this law nwrely tells ns that, so far as gra,·itation 
is c·om-crncd, the aho\'e fmu·tion 

,tr (111,, 111,;, r,,) = 111, lllt /r1f• 

It ,-hould be l'l'membered that nothing i!o, known, from tlw laws of motion, 
a,- to th<i fo1'111 of i/r, and that we might have e.g. i/r = 0 if l'i; > R. If 
'Y had thi,- form, p1·m·idecl R we1-e ,-mall l 00111pared to sensible distam·es, 
the world would seem a.,,; though there \\ere no action at a distam·c. 

It i,- to be ohN('l"\'ed thRt the fi!'st ho 1,iws, Rl'COl'cling to the Rho\'e 
analysis, merely ,-tate the general form of' the law of causality explained 
in Chapter 1,,·. From this it. result,- that we shall he able, with the 
as-.umptions t·ommonly nuulc· a,-. to t·ontinuity and the cxistem-e of first 
aml ,;et·ond dcrivRtin•s, to determine R motion l'Omplctely when the 
{'()Jlfiguration A.ml vclocitic,- at a gi\'ell instant 11.1-e given ; and in par­
ti<·ular, thel'>\• data \\ ill enable ll"I to determi1w the l\l't't'leration at the 
gi,·cn insbmt. The third law and the law of gravitation togetlll'r add 
tht· further prope1ties that the momentary 11.C<·elerations dl•pend only 
upon the momentary t·ontigurA.tion, not upon the momentary velodtiei;, 
a1Hl that the resultant 1t('(,-ele1·atio11 of any p1utide is the ,ector-s11111 
of <·omponent .. e1u·h dependent only on the masses and dista1wes of the 
gi \'en pa1ticle and one other. 

The que,,,tion whether ~ewtonian D~·111imiL'N 1tpplies in ,md1 problems 
as tl1ose of the motion of the ether is an interesting and important one; 
but in ,-o far as it deals with the tmth or falsehood of the law:,1 of' motion 
in relation to the l\l'tual world, it is for us irrcJc,·ant. For us, a." pm"t• 
1111tthemntirians, tl1e Jnws of motion and the law of h'nwitntion an• not 
properly laws at all. but parlti of the definition of a <-crtain kind of matter. 
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'80. Hv the abo,·e account the view of cau1111litv which ha." mmallv 
Kati11fied phil011ophel"!l is contravened in two respect..;, (1) in that the 
relation emlxxlil.-d in a causal law holds between th1'ee events, not 
between two; (2) in that the causal law has the unity of a formula or 
function, 1.e. of a com,tant relation, not merely that derived from 
repetition of the 1111me cauHC. The first of these is neces11itated by modem 
theories of the infinitesimal calculus; the second was alway11 neeessarv, 
Rt lea.,,;t since Newton's time. Hoth demand some elucidatic;n, · 

(1) The whole essence of dynamical cau1111tion is contained in t~e 
following L"qllation : if t1 , t2 he specified time!,, C1 , l'! the con-espondii,g 
configurations of an~· self-containerl sy!,tem, and C the configuratidn 
at any time t, then 

C= F(Cu fu C2 , t!, t) 
(a compresHCd form for a.-i many equation,,; a.,; C ha..; <·001-dinates). The 
form of F depends only upon the uumber of part.ides 1md the dynamieal 
laws of the Fiystem, not upou the dmice of C1 or C~. The cause must 
be taken lo be the f.rm ('(In figuration!, C1 and C., and t):ie interval t~ - t1 

may he any we please. l~urthcr t may fall between 11 and t,. or before 
both. The effect is any single one of the coordinates of the system 
at time t, or anv eolfo<·tion of thL-se coordinates; hut it seems better to 
re~ra1-d ea<·h coo~inate as one effel't, since each is given in one Pquation. 
Thus the langnage of cause and effe<•t has to he greatly !,tminL-d to 
meet the caMe, and SL-ems scareely worth presen·ing. The l"arn-1e is two 
state8 nf the whole system, at time, a.,,; far ap,ut I\!, we• ple.ase; the 
effe<"t iM one coordinate of the !,_vstem at II.JI)' time before, after, or 
between the times in the cause. ~othiug could well he more unlike the 
\'iews which it has pleased philosophers to adnx~ite. '11ms on thl' 
whole it is not worth while p1-c11er,·iug the word ,·,iwu· : it is enough 
to May, what il' far less misleading, that an_v two configumtions 11.llow 
us to infer am; other. 

(SI?) 'l11e t'.a.usal law 1-e1-,rulating an_v s_vi,;tem is contained in the 
form of F. The lnw does not assert that one e\'ent A will alwav!, 
he followed by another B ; if .A he the configuration of the .. ystem ~t 
one time, nothing can he inferred ai, to that at another ; the confibrtll-a­
tion might remr without a recurrcm-e of an~· ronfiguration that formerl~­
followed it. If .A be two configurations whose distanl'e in time is gi\'en, 
then indL'l.-d our c·ausal law does tell u!, whnt eonfibrurations will follow 
them, and if A rec·m-rerl, so would it.; c.onsequences. Hut if this were 
all that our causal law told us, it would afford cold comfmt, since 110 

configuration ever docs actua.11)· recm·. Moreover, we 1,hould need an 
infinite number of causal laws to meet the requirements of a 11ystem 
whieh has suc't-e~h-elv an infinite number of configurations. ,vhat our 
law does iK to a.-.sert "that an infinite cla.-s!, of effa-tii have each the same 
funl.'tfonal relation to one of an infinite class of c.·auscs ; and this is done 
by means of a fonnulR. One formula oonnec.·l-4 a11y thrL-e t.-onfiguration11, 
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and but for thi11 fact continuous motions would not he amenable to cau1111.l 
laws, which conMiMt in specifications of the formula. 

461. I have spoken hithe1-to of inde~ndent sy11tems of n particl~. 
It remains to examine whether an_v difficultiei; are introdul-ed by the fact 
that, in the dynamical world, there are no independent systems 11hort of 
the material universe. 'l\'e ha,·e Keen that no effect can be ascribe«l, 
within a material SJ11tem, to any one part of the system ; the whole 
system i11 neeessary for any inferen<.-e as to what will happen to one 
particle. The only effed traditionally attributed to the ac.·tion of a 
single particle on another is a component acceleration; but (11) thi"' 
is not part of the resultant acl'eleration, (,9) the resultant ac<.-eleration 
itself is not an l!,·ent, or· a physical fad, but a mere mathematical limit. 
Hence nothing <·an he attributed to pa1ti<·ula1· particle11. But it may he 
objected that we cannot know the whole material universe, and that, 
since no effect is attributable to any part as 1mC"h, we cannot <-onse«1uently 
know anything about the effec·t of the whole. For example, in calculating 
the motions of planeti.., we neglect the fix<.-d 11tar.. ; we pretend that the 
1mlar system is the whole universe. By what right, then, do we ll!lsume 
that the effect-; of this feigned unive~ in o.ny way re!ICmblc those of the 
actual unh·erse ? 

The answer to this question is found in the law of gra\·itation. \Ve 
can show that, if we compare the motions of a particle in a number 
of unive1'8eil differing only a.,; regards the matter at a greater distance 
than R, while much within this dii,tam·e all of them C'Cmtain much 
matter, then the motion of the particle in question relatively to the 
matter well within the distant-e R will be approximately the 118.llle in 
all the unh·erses•. This is posi,ible hecau!!e, by the thinl law, a kind 
of fic:titious analyi,is into partial cffeC"ts• is possible. Thus we can ap­
proximately calculate the effect of a univel'se of which part only is 
known. We must not say that the effect of the fixed stars is insensible, 
for we assume that they barn 110 effect pe1· se; we must say that the 
effai of a universe in which thev exist differs little from that of one in 
which they do not exist; and thi11 we are able to prove in the CR.He of 
gravitation. Speaking broadly, we require (reeul'ring to om· previou"' 
function (/,) that, if E he any number, howe,·er small, there should he 

some distance R i,uch that, recun·ing to our pre,·ious fum-tion ff,, if ,~ 

denote differentiation in any direetion, then 

f [ ff, (r) dr < e if r > R. 

,vhen thi11 t,-ondition i11 11R.tisfied, the difference hetw<.'t!n the relative 
a.c:celeration11 of two particlei, within a certain 1-egion, which rt.•,mlts from 
a.~uming different dii;tributiorn, of mattc1· at a di11tance greater than H 
from a c.-erlain point within the region, will ha,·e an &.'l."iiJtt1ahle upper 
limit; and hence the1-e i" an upper limit to the error im·urt"ed by pre-

* Thi,. i11 true only of 1'tllflli11r, not of ahiiolute mutio1111. 
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tending that there is no matter outside the space of radius R. Hence 
approximation becomes possible in spite of the fact that the whole 
universe is involved in the exact determination of any motion. 

The above leads to two obsen·ations of some interest. First, no law 
which doeR not satisfy the above inpquality is capable of being practically 
applied or tested. 'The &S11umption that gravity ,-aries as the direet 
distance, for example, could only be tested in a finite unh·erse. And in 
all phenomena, such as those of ela-tricity, we must assume, where the 
total efFeL-t i11 a sum or integral, or is calculated by means of a sum1 or 
integral, that the portion contributed to relative motions by large nlues 
of r i11 t1mall. Secondly, the denial of any partial effect of a part is 
<1uite necesAA.ry if we are to apply our formulae to an infinite unh·erse 
in the form of integrals. For an integral is not really an infinite sum, 
hut the limit of a finite sum. 'Thus if each partide had a partial effect, 
the total effeet of an infinite number of particle. would 11ot be an in­
tegral. But though an integral cannot reprei1ent an infinite sum, there 
~m11 no 1-eason whatc,·er why it should not represent the effeet of a 
universe which has an infinite number of parts. If there are finite 
\'Olumes containing an infinite number of partide", the notion of ma.,;,'! 
must he modified so R.'I to apply no longer to single p1uticles, but to 
infinite clai,;ses of p~1ticles. The density at a point will then be not the 
111as11 of that point, but the differential coeffieient, at the point, of the 
mai,;s with respect to the volume. 

It should be o~rved that the impossibility of an independent s~·stem 
i.hort of the whole unive~ does not re,mlt from the laws of motion, but 
from the speeial laws, sud1 R.."l that of gravitation, which the laws of 
motion lead us to seek. 

462. The lawii of motion, to l'ondude, have no \"esti~ of sclf­
cvidcnee. 011 the eontrary, they eontradiet the fom1 of eausa1ity whid1 
has ust11tlly been t·onside~ evident. Whethe1· they are ultimateiy ,·alid, 
m· are merely approximate generalizations, must remain doubtful: the 
more so as, in all their usual fomu,, they RNSume the truth of the axiom 
of parallels, of whieh we ha,·e so far no e,·idencc. The laws of motion, 
like the axiom of parallels in regard to spft.('e, ma~- be \"iewed either as 
parts of a definition of 11. da.,;s of p011.-;ible material nnh-e1,-;cs, or as emphi­
«·all y \"e1ifiecl t\llsertions t'Olll'l'titing the 11.<·tual nmte1ial unh·erse. But in 
no way c1,n the)· he taken as ,, priori truths nect.-ssa1ily applicable to any 
possible material worltl. 'The a p,-iori tl'llths iln-olvt'<l in Dynamit'l4 are 
only th011e of logi<·: 1\."l a 11y11tem of dedueth·e reasoning, Dynamies re­
'luires nothing fmther, while as a lll'ienre of what exists, it retJUirL'tl 
l'Xperiment and ohser,·ation. ·Those who ha,·e admitted a similar 
mndnsion in Geometry are not likel.v to <1ue11tion it here; but it i:s 
impo1tant to t'!ltabli11h sepal'Rtely e,·ery instam-e of the prineiple that 
knowledge as to what exists i11 ne,·c1· derinble from b"Cllt'l"R.l philOMOphil·11.l 
,·on11idemtion11, bnt i11 nhrn_,·s ,uH1 whol1.,· empiaieal. 
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.-\BSOI..UTF. .-\SI> RELATIVE MO'l'IO~. 

463. Ix the justly famous Nt0holiuin to the dcfinitiom,, Sc\\ ton has 
st.ated, with admirable p1't'dsion, the doctrine of absolute 11pat-e, t.imc, 
and motion. Not being a skilled philosopher, he WM unable to l,t'i\'l~ 
!,JTOunds for his vit'ws, exl't'pt an empiril'al argument derived from ati.ual 
Dynamics. Leibniz, i,·ith an unrivalled philclHOphical ctJuipmcnt, ron­
troverted Newton's position in his letters agaim1t Clarke•; 1\110 the 
,·ictory, in the opinion of subsequenl philo.,;ophers, 1"C11letl wholly with 
Leibniz. Although it would seem that Kant, in the 'l'r11.m1t"e11dental 
.Aei.thetic, inclines to absolute pOKition in spat·e, yet in the MetaphyS'i,che 
.Anfa11g8{,rrii11de ,ltr ~Vatm'Wi88e11,at:l1a'f! he quite lk-finite]y adopb the 
relational view. ~ot only other philosophel'll, hut also men of science, 
have been nearly unanimous iu rejecting absolute motion, the latter 011 

the ground that it is not rapahlc of being obKen·L-d, ,uul t·annot therefore 
he a datum in an empirical 11tudy. 

But a great diflit"ult.v hll.li always remained as re~ards the argument 
from absolute rotation, adduced hy ~ewton himself. This argument, in 
spite of a definite a.'ISertion that all motion i11 relatire, i" act-cpted and 
endorsed by (~erk :Maxwellt. It hM been re,·ived and emplwiir.ed by 
Heymans!, combated by Mach§, Karl Pea1'!lonJI, and many others, and 
made part of the ba.,,is of a general attack on Dynamics in Professor 
Ward's .VaturaJism and .Ag,iOJttids,n. Let us fir.it state the argument in 
,·arious forms, and then examine some of the attempt.'! to reply to it. 
1-'or us, i;int-e absolute time and 11pace ha,·e been admitted, there iK no 
need to avoid absolute motion, and indeed no possibility of doing so. 
But if amolute motion is in any ra.'lC una,·oidable, this affords a new 
argument in fa.mm· of the justil'e of our logic, whid1, unlike the logic 
rurrent among philrniophe1'll, admits and e,·en Ul'b'las its po"itihility. 

* Phil, We,·h-, ed. Cierhardt, \'ol. vu. 
t Jlatler a11d .'tfotio11, Art. cv. Contrast A1-t. xxx. 
! lJie Gwtu und Ele,mmte d,11 vi11llf!l11tt:l11,Jllit:htl1t JJ,11kt1111, Ley,leu, JHSIO. 
§ Difl .Jlttlw11ik i,i i/anr }:1itu:idctlun1, Lei~ig, 188:1. (J'ran"'lated, Lu11do11, l!J02.) 
II Gram,,,ar of St'tt11N'1 London, 1811:!. (:lud e1litio11, 1!H.IO.) 
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'64. If a bucket l-ontaining water is rotated, Newton obsen-es, the 
water will become concave and mount up the sides of the bucket. But 
if the bucket be left at rest in a rotating vessel, the water will remain 
level in spite of the relative rotation. Thus absolute rotation is in\"Oh-ed 
in the phenomenon in question. Similarly, from J<'oucault's pendulum 
and other similar experiment'!, the rotafion of the earth can be demon­
strated, and could be demonstrated if there were no heavenly bodies in 
relation to which the rotation become11 sensible. But thii-1 requires us to 
admit that the earth's rotation is abt.olute. Simpler instances may he 
given, such as the case of two gravitating particle11. If the motion dealt 
with in Dynamics were wholly relative, the!IC particles, if they constituted 
the whole unh·erse, could only move in the line joining them, and would 
therefore ultimately fall into one another. But Dynamics teaches that, 
if they have initiall_v a relative velocity not in the line joining them, 
they will de11eribe conk'!! about their t·ommon eentre of gravity as focm1. 
Aud generally, if acceleration be expressed in polars, there are term11 
in the aceeleration which, im1tead of t·ontainiug se,·eral differentials, 
contain 11<1uare11 of angular ,·eloeitie;: the11e terms 1-equire absolute 
angular velodt,v, and are inexplicahle so long 11.,,; relative motion is 
adhered to. 

If the law of gnu·itation be regarded &'! unil"en1al, the point may be 
stated as follow11. The law" of motion require to be stated by reference 
to what have been called ki11etir axes: these are in reality axes having 
no abmlute &el~leration and no absolute rotation. It ill 8.S!lerled, for 
example, when the third law is combined with the notion of mass, that, 
if m, ,n' he the lllB.NHeH of two pa1tides between whit·h there is a force, 
the component I\Cl-eleratiom~ of' the two particfos due to this fort-e are 
in the ratio ,n2 : m,. But this will onlv be trne if the ac<.'elerations 
are measured relatinily to axes which th~mseh·e; have no 11.L'(,"eleratiou. 
\Ve cannot here introduL-c the centre of me.'li., for, acmrding to the 
principle that dynamical fact11 muHt be, or be derh·ed f'rom, obKen·able 
data, the masses, and therefore the <,-entre of mass, must be obtainet\ 
from the acceleration, and not t•ire versa. Hence any dynamical motion, 
if it is to obey the law11 of motion, mm1t be referred to axes which are 
not 1mbject to any fore~. Uut, if the law of gravitation be ac<·epted, 
no material ax~ will llll.tisfv thiH condition. Hence we shall have to 
take ll'J}Otiol axes, and moti~ni,; relative to theHC ai-e of course abKolute 
motiom1. 

'815. In 01-der to a,·oid this t-onclusion, C. Seumanu• Msumes 11.,,; au 
e;sential part of the laws of motion the existeu<,-e, somewhere, of an 
absolutely rigid "Body Alpl,a,"' b~· 1-eferenre to which Rll motions are 
to be estimated. Thi11 suggestion miHHes the essence of the discuSKion, 
which is (or should be) l\.'I to the logical mea11i11g of dynamical pro-

.., lJie Urililei-Newtm,"'·h,. Th""""• Leipzig, 18i0, p. M. 
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prniitions, not as to the way in whi<'h they are dil!OO,·ered. It seems 
sufficiently evident that, if it is necei;sary to invent a fixed body, purely 
hypothetical and serving no pu~ except to be fixed, the rea.-«>n is 
that what is really relew1.nt is a fixed place, and that the body occupying 
it is irrelevant. It is true that N'eumann doeN not incur the vicious 
c·irde which would be invohed in saying that the Rody Alpha. is fixed, 
while all motions are relative to it ; he asserts that it is rigid, hut 
rightlv avoids any statement a-; to its rest or motion, whi<'h, in his 
theor_;., would be· wholly unmeaning. N'evertheless, it seems evident 
that the <1ucstion whether one boclv is at rest or in motion mnst have 
a:-, good a me1rning as the same q~1cstion concerning an)· other body; 
and this seems suffit·ient to <'ondemn N'eumann's suggested escape from 
absolute motion. · 

466. A developnwnt of :\'eumann 's views is undertaken b)· Streintz •, 
who refers motions to what he c·alls "fundamental hodit.'s" and "fun­
danll'ntal axes." These are defined as bodies or axes whit·h do not rotate 
and are independent of all outside influences. Streintz follows Kant's 
A,if'nng.,griinde in regarding it as possible to admit absolute rotation 
while denying absolute translation. This is a view which I shall discu!-s 
shortly, and which, a.o; we shall SL>e, though fatal to what i~ de!lit-ecl of 
the relational theory, is yl't logicall_v tenable, though Streintz does not 
show that it is so. Hut apart from this question, two objections may 
he made to his theory. (1) If motion ntt'mi., motion relati"e to fun­
damental ho<lie!. (and if not, their introduction is no gain from a logical 
point of view), then the law of gravitation becomes :.trictly meaningles.-; 
if taken to be universal-a view which seems impossible to defend. 'l11e 
theory requires that there should be matter not imbject to any fon:-es, 
and this is denied by the law of b'Tll.vitation. The point is not so much 
that universal gravitation must be tr11~, as that it must be significant­
whether true or false is an in"Clevant question. (2) \Ve have already 
~en thut absolute accekrat·im111 are required even llN regards ti-am,lations, 
and that the failure to perceive this is due to overlooking the fact that 
the centre of mao,s is not a piec.-e of matter, hut a spatial point whic·h is 
onlv detem1ined hv means of accelerations. 

0 467. Somewh~t similar remarks apply to Mr \V. H. Macaulay's article 
on "Newton's Theory of Kineticst." Mr Macaulay asserts that the true 
way to state Newton's theory (omitting points irrelevant to the present 
isi.ue) is as follows: "Axes of reference can be so chosen, and the 
as.'lignment of ma,s,o;cs so al'l'llnged, that a certain decomposition of 
the rates of' change of momenta, relative to the axe:., of all the particles 
of the universe is possible, namely one in which the components oecur 

* l>iP pl1.1p,ikali11eh1m (Jn111dl11ge1t de1· Jfpl'l"mik, Leip-.i:ig, 18ll.1; see e~1•• PJI· 24, 2-"i. 
t ttulletin of the American :\Jath. Soc., Vol. m. (IB!MJ-i). t"or a latc•r 1<tateme11t 

of Mr Macaulay't: vil'w,., ..ee Art. Motim,, """'" 11f, i11 the uew \·11lume11 of the 1'Im·.'l'•I. 
Hrit. (Vol. xxx,). 

Downloaded from https://www.holybooks.com



4-92 ~liatter a11,d 1liotio11, [CHAP. l,VIII 

in pail'K; the members of each pair belonging to two different particleK, 
and being opposite in direction, in the line joining the particle., and 
t.'«Jual in magnitude" (p. 368). Here again, a purely logical point 
remains. The abo,·e statement appears unobjectionable, but it dot."11 
not 11how that abiolute motion i11 unneceKS11ry. The axes cannot be 
material, for all matter i11 or may be subjec.-t to fon-e11, and therefm-c 
unsuitable for om· purpose; they cannot even he defined by Rll)' fixed 
geometrk-al relation to matter. Thus om· axes will real1y he spatial; 
1tnd if there were no absolute 11pace, the 1,ugge11tcd axe11 <--ould not exi11t. 
For apart from absolute space, any ax1."II would have to he mRteria] or 
nothing. The axe11 can, in a 11ense, he defowd by rel1ttion to ma.ttl'r, but 
not by a conistant geometrical relation ; and when we a.."lk what prop1.Tty 
is changt.-d by motion relath·e to sud1 axes, the only p01111ible Rnswer i11 
that the ahi;olute position lulll chanbretl. Thus absolute space and 1tb,;olute 
motion are not a\"oided bv Mr Ma<'Aulay'i; i.;ta.tement of Sewton's law11. 

468. If al:molute rotation 1tlone we1i:: in lJUei;tion, it would be possible, 
by abandoning all that t"C('Olllmemls the rel1ttio111:1l theory to phi10Kophe1-i,, 
and men of scienl-c, to keep its logi<·Rl ei,scnce intllt·t. \Vhat is ainl(_•cl 
1tt ii.;, to state tho principles of Dynami<~s in term" of seni;ihle entitiei,. 
Among these we find the metril'al properties of spru·e, but not i,trai~ht 
lines and planes. C'ollinl:'arity and t·oplanarity may he included, hut if 
a Ket of l0olline11.r material pointi.; c·hnngt." their i.;tmight line, thl!l'C i" 110 

i,ensihlc intt-insic· change. Hem-e all arlnK·ah-K of the relational th1.'01·.v, 
when they are thorough, endearnur, likl· Leihnii•, to deduce the straight 
line from cli"tam'l'. l•'or thi11 there ji, itl110 the J'CIL"IOH that the field of a 
1-,riven distanl-c ji, all i.;paee, whel"eas the field of the h"-'lll'mting rdation 
of ll straight Jine is only that i,tmight line, whelll'l.' the latter, hut not 
the former, make11 an intrim1il· distim·tion among th<• poi11t11 of i-}11\t-c, 
whil·h the relational theor)· Neeki, to avoid. ~till, we might l'l'glllil 
i.;traight lines llK relation11 between 111rderit1.l pointi.;, and absolute mtation 
would then appe1tr H.."1 <·hange in a relation between material point", 
which j., lobi-i<·ally c·mnpatihle \\ ith a relational theory of 11pncc. \\' e 
i-houlcl ha,·e to admit, howeYer, that the 11traight line WllS not a ,vt•m,iMt· 
pmperty of' two particles behn-cn which it wn.i,; a relation ; and in nu~· 
l"I\NC!, the llel't..'Kllity fm· abi.olute tm.1111lational necc•leration11 t"l'main" fatal 
to any relational theory of motion. 

469. :\lacht has a ,·cry <·urious llll,rtlment h)· whil·h he ath•mpt.,; to 
refute the brrouncl11 in fnvour of' alll'olute rotation. He 1-cmarks that, in 
the actual world, the earth rotates relating to the fix1.'«I staTh, aml that 
the 1mh·el'!IC ji, not gh·en twice over in different 1,hapei.;, hut only once, 
and a."' we find it. Hem-e nny 11.1-gmnent that the rotation of thl• earth 
l'Onld be inferred if thet'C were no heavenly bodies i" futile. This ar­
gument l'Olltllin11 the wry l'H.'!ellce of empiril•i11m, in 1i sense in whid1 

* Nee my article" &-cent \\'ork 011 Leibniz," iu .Vi11d, 1!10:J. 
t llir .Vf'R.l1111,ik ;,, i/uy,r ,-;,,1,ridre/111,g, 114 edition, l'· :Wi. 
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empiricism is radimll,r oppolll.'ll to the philo,mph~· adv<K:ated in the 
present work•. The logical basis of the argument is that all propo.'li­
tions are es.'lt'ntially t·oneerned with adual existents, not with entities 
whkh may or may not exist. For if, as hAA been held throughout our 
previous discussions, the whole dvnamical worl<l with it.'! laws can be 
considered without l'Cbrard to l•xistence, then it can be no part of the 
111etmi11g of these laws to IL'ii-ert that the matter to which they appl~· 
exists, and therefore they t-an be applied to unin~I'l!Cs whil'.h do not exist. 
Apart from gt•neral argument,, it is evicfont that the laws are so applied 
throughout rational Dynamics, and thitt, in all exact c11.lculation:1, thl' 
distribution of matter which is a.,;sumed i..; not that of the actual world. 
It seems impossible to deny sibrniticance to such calculations; and yet, 
if they have significanct•, if they c·ontafo propositions at 11.ll, whether trut• 
or false, then it c·an be no nece11sary p,ut of their 11uw1i11g to assert thl' 
existence of the matter to which they are applied. This being so, the 
universe it1 giwn, as an entity, not only twice, but as many times a., 
there are possible distributions of matter, and Mach's argument falls to 
the ground. The point is important, as illustrating a respect in whid, 
the philosophy here advocated is to be rec·koned with idealism and 
not with empiricism, in spite of the contention that what exists c1m 
only be known empirically. 

Thus, to conclude: Absolute motion is essential to Dynamics, and 
involves ab.~lute space. This fact, which h, a difficulty in current philo­
sophies, is for us a powe1ful confirmation of the logic upon which our 
discussions have been ba.'!Cd. 

* Cf. Art. "Nativism •· in the l>fotio11ary of Pl1i/o,m11l1.11 u11d l'"!Jt:l,olt,g.11, edited by 
Baldwin, Vol. 11, W02. 
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CHAPTER LIX. 

HERTZ'S DYNAllICS. 

470. W1t: have 11een that Newton'11 Law11 are wholly lacking in 11elf­
evidence-so much 110, indeed, that they contradict the law of causation 
in a fonn which has mmally been held to be indubitable. We have seen 
also that the11e laws are specially suggesth·e of the law of gravitation. 
In order to eliminate what, in elementary l)ynamfos, is specially New­
tonian, from what is really essential to the subject, we shall do well to 
examine some attempts to re-1:1tate the fundamental principles in a form 
more applicable to such sciences as :Electricity. }'or this purpose the 
most suitable work seems to be that of Hertz•. 

'fhe fundamental principles of Hertz's theory are 110 simple and so 
admirable that it seems worth while to expound them briefly. His 
object, like that of most recent writel's, is to construd, a 11y:.1tem in 
which there are only three fundamental conl'epts, space, time, and mas11. 
The elimination of a fourth conl-ept, such as force or energy, though 
evidently demanded by theory, i11 difficult to ca1Ty out mathematically. 
Hertz seems, howe,·er, to have overcome the difficulty in a 11atisfw..tory 
manner. There are, in his 11ystem, three 11uiges in the specification of 
a motion. In the first stage, only the relations of splll'e and time are 
considered: this stage is purely kinematical. Matter appears ~ere merely 
1U1 a means of establishing, through the motion of a particle, a one-one 
correlation between a series of points and a series of instants. At thii-1 
st.age a collection of n particle1:1 has Sn coordinates, all so far independent: 
the motion11 which result when all are regarded as independent are all 
the tkinko& motions of the system. But before coming to kinetics, 
Hertz introduces an intermediate 1:1t.age. Without introducing time, 
there are in any free material system direct relations between spare 
and mass, which form the geometrical t'Onnections of the sy11tem. 
(These may introduce time in the sense of inmlving velocities, but 
they are independent of time in the 11ense that they are expressed at 
all times by the 11&me equations, and that these do not contain the time 
explicitly.) Those among thinkable motions which safo.fy the equation11 

* Prinripien tier Mecha11ilt, Leipdg, 1894. 
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of connection are C'alled 1x1111,ibk motions. The c.~nnedions Rmong the 
parts of a system are assumed further to be c-ontinuous in a c.-ertain 
well-defined sense (p. 89). It then follows that they can be expressed 
hy homogeneous linear differential equations of the first order among 
the l'oordinates. But now 11 further prir){'iple is needed to discriminate 
among possible motions, »nd he1-e Hertz introdm-es his onlv le.w of 
motion, which is as follows : · · 

"Every free system persisti, in its state of rest or of uniform motion 
in a straightest path." 

This law requires some explanation. In the first plat'C, when the1-e are 
in e. system unequal partides, each i!. i1plit into a number of partides 
proportional to its ma.'ls. By this means all partides hL'<·ome equal. 
If now there e.re n particles, their 3,i c.·oordinates are regarded as the 
c.·oordinates of a point in spat·e of 31t dimemiions. Tht• e.bove law then 
»sserts that, in a f1-ee s~·stem, the velocity of this representative point is 
constant, and its path from a f.,riven point to another neighbouring point 
in a ghen direction is that one, among the pmisihle paths through the!lt! 
two points, which ha.~ the smallest curvature. Such a path is called a 
natural, path, and motion in it is l'allt-d a na.tuml motion. 

471. It will he seen that this system, though far simpler and more 
philosophical in form than :"ilewton ':-1, dot•s not differ very greatly in 
regard to the problems discussed in the preceding chapter. We still 
have, what we found to be the essence of the law of inertia, the necessity 
for three configurations in order to obtain a causal relation. This broad 
fact must reappear in every system at all resembling ordinary Dynamics, 
and is exhibited in the necessity for differential equations of the second 
order, which pervades all Physics. But there is one very material dif­
ference between Hertz's svstem and ~ewton's-a difference which, a.-. 
Hertz points out, render; an experimental decision between the two 
at lea.<1t theoretically possible. The spec·ial laws, other than the laws 
of motion, which regulate any particular syHtem, are for ;l,Jewton laws 
concerning mutual accelerations, such as gravitation itself. For Hertz, 
these special laws are all contained in the geometrical connections of 
the system, and are expressed in ec1uatiornl involving only velocities 
(v. p. 48). This is a considerable simplification, and is shown by Hertz 
to be m01-e conformable to phenomena in all departments eXl'ept where 
gravitation is concerned. It i11 also a great simplification to ha,·e only 
one law of motion, instead of Newton's three. But for the philosopher, 
so long as thi11 law involves second diff~rentials ( which are introduced 
through the curvatm-e), it is a comparatively minor matter that the 
special laws of special systems 11hould be of the fi:n;t order. 

The definition of mas.'I as number of particles, it should be obsened, 
is a mere mathemati<-al device, and ii; not, I think, regarded by Hertz as 
anything more (v. p. 54). ~ot only must we allow the possibility of 
incommensurable masses, but e,·en if this difficulty were o,·ercome, it 
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would still remain 11ignificant to assert that all our ultimate particle-i 
were t.'ttual. Mll!IS would therefore 11tiJI be a ,·ariety of magnitude, only 
that all particlez.i would happen to be of the 1111me magnitude as rebrard11 
their llla&'I. 'fhis would not effect any theoretical simplifit•ation, and we 
Khall do well, therefore, to retain 111&1111 &.'I an intenKh·e quantity of which 
a certain magnitude belongs to a certain partide, without any implica­
tion that the particle iK divisible. There is, in fa...t, no valid ground for 
denying ultimate)~· different m&lllle!I to different partidCK. 'The whole 
que11tion is, indeed, purely empirical, and the philosopher should, in this 
matter, 11.CL-ept p&Ki.ively what the ph)·siciKt finds rec:iuisite. 

\Vith regard to ether and ibl relatiom1 to matter, a Kimilar remark 
AL-e11111 to he applicable. Ether is, of t.-ouri.e, matter in the philo110phical 
11ense; but beyond this the pre11ent state of Sdem-e will scan·ely permit 
us to go. It 11hould be obsened, however, that in .Electricity, a.'l else­
where, mir e<1uations are of the second order, thus indicating that the 
law of inertia, &'I interpreted in the preceding chapter, still holds good. 
Thi11 broad fad. 11t.-ems, indeed, to be the chief result, for philosophy, of 
om· discussion of d_vmunical principles. 

472. 11ms to 11nm up, we have two principal results: 
( 1) In any independtmt system, there is a relation between the 

<.'<mfihrurations at three given times, which is su('h that, given the <'<>11-

figurations at two of the times, the configuration at the third time is 
determinate. 

(2) There is no independent !lystem in the aetual world except the 
whole material unh·e1'!1C; but if two universe11 which have the same causal 
laws a..; the actual univel'l!e <lifter only in regard to the matter at a great 
rlistanc-e from a given region, the relatfre motim111 within this region will 
be approximately the Mme in the two universes-r.e. an upper limit can 
he found for the <lift'erent.-e between the two set.'4 uf motions. 

These two prinl'iples apply equally to the Dynamics of ~ewton and 
to that of Hertz. When these are abandoned, other principles will gh·e 
a scien<.-e ha,·ing but little resemblance to receh·ed Dynamics. 

4'13. One general principle, which is commonly 11tated a." vital to 
Dynamict1, del!el"ves at lea.'lt a pa.-4sing mention. 'l'hit1 it-1 the principle 
that the cause and effect a1-e ec1ual. Owing to pre-occupation with 
quantity and ignorance of symbolic logic, it appean to have not been 
pen-eh·ed that this statement is equivalent to the assertion that the 
implkation between cause and effect is mutual. All equations, at bottom, 
are logical C<Juations, i.e. mutual implications: ,1uantitafo·e equality 
between variables, such as eause and effect, invoh·es a mutual formal 
implication. 'l'llll!I the principle in ,1uestion <an only be maintained 
if ause and effect he ploc-ed on the same logical le,·el, which, with the 
interpretation we were <.-ompelled to gh·e to causality, it is no longer 
possible to do. Ne,·ertheless, when one state of the unh·erse is given, 
any two othel'll have a mutual implieation : and this is the source of 
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the various laws of conservation whid1 pervade Dynamics, and give the 
truth underlying the supposed equality of cause and effe<'t. 

474. ,ve may now review the whole eoun1e of the arguments con­
tained in the present work. In Part I, an attempt is madl· to annlyze 
the nature of deduction, and of the logil:al concept.,,; involn•d in it. Of 
these, the most puzzling is the notion of cla.v.,, and from tht' c·ontra­
diction discussed in Chapter x (though this is perhaps soluble h_y the 
doctrine of types•), it appeared that a tenable theory as to the nature 
of classes is very hard to obtain. In subsequent Part.,;, it wa.-, shown 
that existing pmc mathematic.-s (including Geometry and Rational 
Dynamics) can he derived wholly from the indefinables and indt•mon­
strables of Part I. In this process, two points an• specially important: 
the definitions and the existence-theorems. A rlefinition is alwayi. l·ither 
the definition of a dass, or the definition of the single memher of n unit 
class: this is a necessary result of the plain fact that. 11 cll'finition can 
only he effected b_y assigning a property of the ohjel't or objects to 
he defin<.'<l, i.e. by stating a propositional function whi<·h they are to 
satisfy. .A kind of grammar controls definitions, mnking it imposi,,ihle 
e.g. to define .Euclidean Sp{J,(_·e, but possible to define the dm;s of Euclidean 
.vpace,Y. And wht:re\·er the prim·iple of abstmdion is employed, i.e. where 
the ohje,·t to be defined is obtained from a trarn,ilive symmctri,·al rc­
latiou, some class of elasses will always be the objel'l requir<.'<l. \\'hen 
symboli,· expressions 11.re used, the requirements of what may be call<.-d 
grammnr become evident, and it is seen that the logical type of the 
entity defined is in no way optional. 

The existence-t.heorems of mathematics-i.c. the proofs that the 
various classes defin<.-d arc not nuH-are almost alJ obtained from 
Arithmetic. It may be well here to <·ollect the more important of 
them. The existem·e of 1.cro i11 derived from the fact that the null­
cla.-;s is a member of it; the existence of 1 from the fac-t that 1.ero is a 
unit-class (for the null-class is its only member). Hence, from the fact 
that, if n be a finite number, n + 1 is the number of numhcf!I from 0 to n 
(both inclusive), the existence-theorem follows for all finite numbers. 
Hence, from the da.ss of the finite cardinal numbefll themselves, follows 
the existen<.-e of a,,, the smalleist of the infinite cardinal numbers; and 
from the series of finite cardinals in order of magnitude follows the 
existence of "'• the smallest of infinite ordinals. l•'rom the definition 
of the rational numhen. and of their order of magnitude followi,, the 
existence of .,,, the type of endlc.-;s compact denumerable series; thence, 
from the segments of the series of rationals, the existence of the real 
numbers, and of fJ, the type of continuous series. The terms of the 
series of well-ordered types are proved to exist from the two facts : 
(1) that the number of well-ordered typc1; from Oto a is a+ 1, (2) that 

* See Appendix 8. 
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if u be a class of well-ordered types having no maximum, the series of 
all types not greater than every " is itself of a type greater than every ri. 
From the existence of 8, by the definition of complex numbers (Chapter 
XLIV ~ we prove the existem.-e of the class of Euclidean spaces of any 
number of dimensions; thence, by the process of Chapter XLVI, we prove 
the existence of the rlass of projective spares, and thence, by removing 
the points outside a closL-d quadric, we prove the existence of the class 
of non-Euclidean descriptive (hyperbolic) spaces. By the methods of 
Chapter x1.v111, we prove the existence of spal-es with various metrical 
properties. Lastly, by correlating some of the points of a space with 
all the tenns of a continuous series in tht: ways explained in Chapter Lvt, 
we prove the existence of the class of dynamical worlds. Throughout 
this process, no entities are employed but such as are definable in terms 
of the fundamental logical l~nstants. Thus the chain of definitions 
and existence-theorems is complete, and the purely logical nature of 
mathematics is established throughout. 
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APPENDIX A. 

THE LOGICAL AND ARITHMETICAL DOCTRINES OF FREGE. 

475. Tm: work of Frege, which nppea.l'H to lip far lesH known than it 
deserves, contaim1 many of the doctrines set forth in Parts I and II of the 
present work, and where it differ11 from the view11 which l \u\Vc IM!vocll.t.ed, 
the difference" dem11,nd discussion. ~'rege's work abounds in tmhtle distinc­
tions, and llVoids all thu usual fallacies which heMet ,Hiters on Logic. His 
symbolism, though unfortu111itely 110 cumbrous as to hti very difficult to 
employ in practice, is based upon an ana.lysi11 of logical notions much more 
profound than Peano'11, and is philoMOphically very 11Uperior to itH more 
convenient rival, In what followH, I shall try brieOy to expound Frege's 
theo1ies on the moi,,t import1mt point11, and to explain my ground11 for 
differing where I do difft>r. Hut the points of disagreement a.rt• very few 
and slight compared to thoi,ie of agreement. They 1dl re,mlt from difference 
on three points: (1) J4'rege does JIOt think that there is a contradiction in the 
notion of concPpts which cannot be made logical sul~jects (see§ 49 R1tpra); 
(2) he thinks that, if a term a occurs in a propoi,ition, the pl'Opo11ition can 
always be analysed into a anrl an assertion about u (,me Chapwr vu); 
(3) he is not aware of the contradiction di11cu11MOO in Chapter x. The11e are 
very fundamental matters, and it will he well here to discuss them afrflsh, 
since the previous discussion was written in almost complt>te ignorance of 
Frege's work. 

Frege is compelled, 11.11 I have been, to employ common word11 in technical 
sen110s which depart more or less from usage. As his departures 1Lre-frequently 
different from mine, a difficulty arises M regards the tram1lation of bis terms. 
Some of these, to avoid confusion, I shall leave untranslated, since evf'ry 
English equivalent that I can think of has been already employed by me in & 

slightly different sense. 
The principal heads under which Frege's doctrines may be discusHt'<l ,~re 

the following: (1) meaning and indication; (2) truth-values and jndgment; 
(3) Begrift' and Gegenstand; (4) classes; (5) implication and symbolic logic; 
(6) the definition of integers and the principle of abstraction; (7) mathe­
matical induction and the theory of progresHions. I shall deal successively 
with these topics. 

Downloaded from https://www.holybooks.com



602 Appendi.r A [4.76-

476. Meaning and indication. The distinction between meaning (Sinn) 
and indication (Bedeutung)• is roughly, though not exactly, equivalent to 
my distinction between a concept as such and what the concept denotes 
(§ 96). Frege did not possess this distinction in the first two of the works 
under considel'll.tion (the Begriffsschrijl and the G1-undlagen der Arithmetik); 
it appears first in BuG. (cf. p. 1_98), and is specially dealt with in SuB. 
Before making the distinction, he thought that identity has to do with the 
names of objects (Bs. p. 1 :}) : " A is identical with B" means, he say~, that 
the sign A and the sign B have the same signification (Bs. p. 15 )-a detini,tion 
which, verbally u.t least, suffers from circularity. But later he explj&ins 
identity in much the same way as it was explained in § 64. "Identity,''. he 
say11, "calls for reflection owing t-0 questions which attach to it and are not 
quite es.sy to answer. Is it 11. relation 1 A relation between Gegenstimde t 
or between names or signs of Gegenstiinde?" (SuB. p. 25). We must 
distinguiRh, he says, the meaning, in which is contained. the way of being 
given, from what is indicated (from the Bedeutung). Thus "the evening star" 
and "the morning Rtar" have the same indication, but not the same meaning. 
A word ordinarily stands for its indicat,ion; if we wish to speak of its 
meaning, we must Ul!e inverted commas or some such device (pp. ~7-8). The 
indication of a. proper name is the object which it indicates; the presentation 
which goes with it is quite subjective; between the two lies the meaning, 
which is not subjective and yet is not the o~ject (p. 30). A proper name 
expresses its meaning, and indicntes its indication (p. 31 ). 

This theory of indication is more sweeping and general than mine, as 
appears from the fact that ev~ry proper name is supposed to have the two 
sides. It seems to me that only 1.1uch proper names as 11.re derived from con­
cepts by means of the can be 1.1a.id to have meaning, and that such words as 
Jolm mt>rely indicate without meaning. If one allow1.1, as I do, that concepts 
can be objects and ha\·e proper names, it seems fairly evident that their 
proper names, as a rule, will indicate them without having any distinct 
meaning; but the oppo11ite view, though it leuds to an endless regress, does 
not appear to be logically impo1.1sible. The further discussion of this point 
must be postponed until we come to Frege's theory of Begriffe. 

477. 1'rutlvvalues tmd Judyment. 'fhe prohlem to be di11cussed under 
this head is the same as the one raised in § 52t, conceming the difference 
between asserted and unasserted propositions. But Frege's position on this 
question is more subtle than mine, and involves a. more radical analysis of 
judgment. Hi11 Beyri.fl'ilschrift, owing to the absence of the distinction 
between meaning and indication, hM a simpler theory tha11 his later works. 
I shall therefore omit it from the discussions. 

There are, we a.re told (Gg. p. x), three elements in jndgment: (l) the 
recognition of truth, (2) the Gedanke, (3) the truth-value ( Wahrluiitswert/1). 

• I do not translate l/,•,lmtu11_q by de11otation, beoause tliie worJ. hae a technioal 
meaning different from Frege"s, and also because bedtuttn, for him, is not quite the same 
aa denoti11g for me. 

t Thia ia the logical aide of the problem of A1mah111m, raised by Meinong in his able 
work on the subject, Leipzig, 1902. The logical, though not the psyohologioal, part of 
Meinong'a work appears to have beeu cornpleLely ant1oipaled by 1''rege. 
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Here the Gedanke is what I have called an unasserted proposition--0r rather, 
what I called by this Jll'me covers both the Gedanke a.lone and the Gedanke 
together with its truth-value. It will be well to have names for these two 
distinct notions; I shall call the Gedanke alone a propo,ui,o,ia,/, concept; the 
truth-value of a Gedanke I shall call an assumption•. Formally at least, &11 

assumpt.ion does not require that its content should be a propositional 
concept: whatever x may be, "the truth of z" is a definite notion. Thia. 
means the true if z is true, and if a; is false or not a proposition it means the 
false (FuB. p. 21 ). In like manner, according to Frege, there is "the 
falsehood of z"; these are not assertions and negations of propositions, but 
only assertions of truth or of falsity, i.e. negation belongs to what is &1186rted, 
and is not the opposite of assPrtiont. Thu11 we have first a propositional 
concept, next its truth or falsity as the c11,11e may be, and finally the assertion 
of its truth or falsity. Thus in a hypothetical judgment, we have a relation, 
not of two judgments, Lut of two propositional concepts (SuB. p. 43). 

This theory is connected in a very curious way with the- theory of 
meaning and indication. It is held that every assumption indicates the 
true or the false (which are called truth-values), while it means the 
corresponding propositional concept. The assumption " 2v ,, 4" indicates 
the true, we are told, just as "2~" indicates 4 t (Fu B. p. 13; Su B. p. 32). 
In a dependent clause, or where a nllme occurs (such as Odysseus) which 
indicates nothing, a sentence may have no indication. But when a sentence 
has a truth-value, this is its indication. Thus every assertive sentence 
(Behattptungssatz) is a proper name, which indicates the true or the false 
(SuB. pp. 32--4; Gg. p. 7). The i,;ign of judgment (Urtl,,eilstricl,) does 
not combine with other signs to denott> an object; a judgment indicates 
nothing, but asserts 1mmething. l<'rege ha11 a special symbol for judgment, 
which is 1mmething distinct from and additional to the truth-value of a 
propositional concept (Gg. pp. 9-10). 

478. There are some difficulties in the 11.hove theory which it will be 
well to discuss. In the first place, it set>ms doubtful whether the introduction 
of truth-values marks any real analysis. If we consider, say, "Caesar died," 
it would seem that what is asserted is the propositional concept "the death 
of Caesar," not "the truth of the death of CaeNl.r." This latter seems to be 
merely another propositional concept, asserted in "the death of Caeear is 
true," which is not, I think, the same proposition as "Caesar died." There 
is great difficulty in avoiding psychological elements here, and it would 
seem that Frege hn.11 ,tllowed them t.o intrude in descrihing judgmeut as 
the recognition of truth (Gg. p. x). The difficulty i11 due to the fact that 
there is a psychological s1mse of assertion, which is what is lacking to 
Meinong's .Ann.ahmen, and that this does not run parallel with the logical 
sense. P11ychologically, any proposition, whether true or false, may be 
merely thought of, m: may he actually asserted : but for this possibility, 
error would be imp0t1sible. But logically, true propositions only are a11Serted, 

• Frege, like Meinong, calls this ao Annaltnie: FuB. p. 21. 
t Gg. I'· 10. Cf. also Bs. p. 4. . 
+ When a term which indicates ia itself to be apoken of, as opposed to what it indicates, 

Frege use, in•erM!d commas. Cf. § 56. 
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though they may occur in an una.sserted form as parts of oth~ propositionL 
In "p implies q," either or both of the propositions p, q may be true, yet 
each, in this proposition, is unas!Wlrted in a logical, and not merely in a 
psychological, sense. Thus assertion has a definite place among logical 
notions, though there is a psychological notion of assertion to which nothing 
logica.l corresponds. But assertion does not seem to be a constituent of 
an asserted proposition, although it is, in some sense, contained in an 
asserted proposition. If p is a proposition, "p's truth " is a concept which 
has being even if 'P is false, and thus "p's truth" is not the same as p 
asserted. Thus no concept can be found which is equivalent to 11 asseri/ed, 
and therefore assertion is not a constituent in p asserted. Yet a.ssertion 
is not a term to which p, when asserted, has an external relation; for any 
such relation would need to be itself &IIS8rted in order to yield what we 
want. Also a difficulty arises owing to the apparent fact, which may 
however be doubted, that an asserted proposition can never be part of 
another proposition : thus, if this be a fact, where any statement is made 
about p asserted, it is not really about p asserted, but only about the 
assertion of p. 'l'his difficulty becomes serious in the case of Frege's one 
and only principle of inference (Bs. p. 9): "p is true and p implies q; 
therefore q is true•." Here it is quite essential that there should be three 
actual &Ksertions, otherwise the assertion of propositions deduced from 
asserted premifl"eB would be impossible; yet the three assertions together 
form one proposition, whose unit,y is shown by the word t/i,e,,.,,/ore, without 
which q would not have been deduced, but would have been asserted as a 
fresh premiss. 

It is also almost impossible, at least to me, to divorce assertion from 
truth, as Frege does. An &'W!rted .proposition, it would seem, must be 
the 11ame as a true proposit.ion. We may allow that negation belongs to 
the content of a proposition (Be. p. 4 ), and regard every assertion as 
asserting something to be true. We shall then correlate 1> and not-p as 
una.sserted propositions, and regard "p is false" as mf',nning "not-p is true." 
But to divorce &R8t'lrtion from truth seems only possible by taking n.'lsertion 
in a psychological sense. 

479. Frege's theory that assumptions are proper names for the true 
or the false, as the case may he, appears to me alllO untenable. Direct 
inspection seems to show that the relation of a proposition to the true 
or the false is quite different from that of (say), "the present King of 
England" to Edward VII. Moreover, if Frege's view were correct on this 
point, we should have to hold th11,t in an a11serted proposition it i11 the 
meaning, not the indication, that is asserted, for otherwise, all asserted 
propositions would &11S0rt the very same thing, namely the true, (for false 
propositions are not asserted). Thus asserted propositions would not differ 
from one another in any way, but would be all strictly and simply identical. 
AIIBCrted propositions have no indication (FuB. p. 21 ), and can only differ, 
if at all, in some way analogous to meaning. Thus the meaning of the 
uDaBBerted proposition together with its truth-value must be what is 118118rtf'.d, 

• Cl. •upm, 118, (') and I 88. 
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if the meaning simply is rejected. But there seems no purpose in introduc­
ing the truth-value here : it seems quite sufficient to say that an a.s.~erted 
proposition is one whose meaning is true, and that to say the meaning is 
true is the same a.s t-0 sa.y the meaning is n.sserted. We might then concludt'! 
that true propositions, even when they occur as parts of otherR, are always 
and essentially asserted, while false propositions are always 11111LSsert<'C!, thus 
escaping the difficulty about tlU'Te.fore discuHsed a.how•. It may also be ohjt1ct<ld 
to Frege that "the true" e.nd "the false," as opposoo to truth and fal-i.-huod, 
do not denote single definite things, hut rather the clas~es of true and false 
propo,;itions respectively. This olije(·tion, however,_ would he mPt by his 
theory of rangus, which correspond approximately to my cl11.sHes; thAHe, 
he imys, are things, and the true and tlw fal:-e are ranges (v. i1!f ). 

480. Beyrijf and (,'pg,•nstmul. Functions. 1 c-omo now to a point in 
which Frege's work is very importimt; 1urd requireK cartiful (•xami111Ltion. 
His use of the word BP.griff does uot corrt>i,pond ex1tct.ly to any notion in 
my voc1ibulary, though it comeH vpry near to the notion of 11.11 11.s>1t>rl,io11 a!I 
defined in ~ 4-3, and discussed in Cha.pt!'!· Vil. Ou tlw other hand, his 
Gegni,itand ~emus to correspond exactly tu what I havn callnl II tl,iny (~ 48). 
I shall then,fore trnnslak (,',,y,,nstand hy thin!/· The nwa.11i11g of 11roper 
nmn•i seems to be the Ra.me for him as for me, hut hr nigards thP rnnge of 
proper names as confined t,o things, been.use tltt>y alone, in his opinion, can 
he logical su~jects. 

lfregt>'s theory of functions and B,1!1ri,/F· iii spt, forth &imply in FuH. and 
defended against thP criticisms of Kerry• in BuG. He reg1~rds functiom1-­
and in this I agree with him -as more fundn.mental th,m predicates and 
relationH; but he adoptK concprning funct.ions the theory of suhject and 
assertion whic-h wt' discusRed and rejected rn ( H1apter Vil. The aecPpt.auce of 
this view gives a simplicity to his exposition which I have heen unable to 
attain, but T do uot find auyt,hing iu hi,; work to per>1uadi, me of the 
leg1t.irrmcy of his analyHis. 

An arithmetical function, P.g. 2.c' + .1:, dot-s not denott>, .Frege sayH, the 
result of an arithmetical opPration, for t.hat, IH mPrely 11. numlwr, which would 
be nothiug new (I◄'uB. p fi). Tlw essence of a function is what ii;i l1•ft, when 
the :r. is takt-n away, i.P., in the above im1ta11ce, :! ( )3 + ( ). The argument 
.v don; not helong to the function, but the two together make a whole 
( ih. p. 6). A function may hi> a proposition for every value of the variable; 
its value is then always a truth-value (p. I:{). A proposition may be dividoo 
int~, two parti,, as "CaeRar" and "conquered Clu.ul." The former Frege calls 
the rr:ryumP,11.t, the latter the Jitnct.ion. Any thing whatever is a pos,iihle 
argument for a function (p 17). (Thii, division of propoHitions correspo11<l,-
1•xactly to my 11,ibject 11nd ,r,ssM·tion as explainr><l in ~ 43, but, Frege does not, 
restrict thit; met.hod of a1111lysis aH I do in Chapter vu.) A thing is anything 
which is not a function, i.e. whose expression leaveR no empty place. Tim 
two following accounts of the nature of a function are quoted from the 
earliest and one of the latest of Frege's works respectively. 

( l) "If in an expresllion, wholle contt'nt net>d not 1.,e proposit.ional 

• Vierteljahrschrift fur wiss. Phil., vol. x1, pp. 2!9-:107. 
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(beuru.eilhar), a simple or composite sign occurs in one or more places, and 
we regard it M replaceable, in one or more of these places, by something else, 
hut by the 811108 everywhere, then we call the part of the expression which 
reDJains invariable in this process a functiOf&, and the replaceable part we 
call itH argument" (Bs. p. 16). 

(2) " If from a. proper name we exclude a proper name, which is part 
or the whole of the first~ in some or a.II of the places where it occurs, but in 
such " way that these places remain recognizable as to be filled hy one and 
the same arbitrary proper name (as argument positions of tbe fil"llt kind), 
I call what we thereby obtain the name of a function of the first order with 
one argument. Such a name, together with II proper no.me which fills the 
argument-places, forms a proper 110.me" (Gg. p. 44). 

The latter definition 1110.y become plainer by the help of some examples. 
"The present kiug of England " is, ,wcording to Frege, a proper name, o.nd 
"England " is a proper name which is part of it. Thus here we may 1-ega.rd 
England as the argument, and "the present king of" as function. Thus we 
are led to "the present king of :c." This expression will u.l way11 have a 
meaning, but it will not have au indication except for those v11lues of :,; 
which at present are monarchies. 1'he above function is not propositional. 
But "Caes,~r conquered Gaul" leads to ":,; conqut>red Gaul"; here we have a 
propositional function. 1'here is here a minor point to be noticed: the asBtJrt.ed 
proposition is not a proper name, but only the assumption is a proper name 
for the true or the false (11, B"pra); thus it is not "Caesar conquered Gaul" 
as a1111erted, but only the corresponding assumption, that is involved in the 
genesis of a propositional function. This is indeed sufficiently obvious, since 
we wish :,; to be a.hie to be any thing in ":,; conquered Gaul," whereas there 
is no such asserted p1'0position except when:,; did actually perform this feat. 
Again consider "Socrates iti u. man implies Socrateis i11 a mortal.'' This 
(unassertud) is, according to Frege, a propet· uame for the true. By varying 
the proper name "Socrates, ' we cu.n obtain three propositional functions, 
namely "z is a mo.11 implies Socrates is a mortal," "Socrates i11 a man implies 
z is u. mortal," ":,; is a mlln implies :,; is a mortal." Of tht>.se the first and 
third are true for all values of a:, the second is true when and only when :,; is 
a mortal. 

By suppressing in like manner a proper name in the na.me of 11, function 
of the tint order with one argument, we obtain the name of 11, function of the 
first order with two arguments (Gg. p. 44). Thus e.g. starting from "1 < 2," 
we get fil'llt "z < 2," which is the no.me of a tilnction of the first order with 
one argument, and thence ":r.< y,'' which is the name of n. function of the 
first order with two arguments. By 11uppressing a function in like ma.nner, 
1!~rege says, we obtain the name of a function of the second order (Gg. p. 44). 
'l'hus e.g. the assertion of existenCP in the mathematical sen11e is a function 
of the second order : 11 There is at lea&11t one value of :,; satisfying t#)z" is not a 
function of :i:, but may be regarded as a function of f/,. Here f/, most on no 
aocouut be a thing, but may be any function. Thus this proposition, 
considered as a function of f/J, is quite different fron1 functions of the first 
order, by the fact that the possible arguments are different. Thus given any 
propoaition, aay /(a), we may consider either /(z), the function of the first 
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order resulting from varying a and keeping/ constant, or c/)(a), the function 
of the second order got by varying/ and keeping a fixed ; 't>r, finally, we may 
consider f/, (:z:), in which both f and a are separately varied. (It ia to be 
observed that such notions as c/) (a), in which we consider any propoeition 
concerning a, are involved in the identity of indiacemibles aa stated in§ 43.) 
Functions of the first order with two variables, Frege points out, expreu 
relatiom1 (Bs. p. 17) ; the referent and the relatum are both subjects in a 
1-elational proposition (Gl. p. 82). Relations, just u much u predica.tes, 
belong, Frege rightly says, to pure logic (ib. p. 83). 

481. The word Begrilf is used by 1',rege to mean nearly the same thing 
a.,; proposition,~/ furacti<m (e.g. FuB. p. 28)•; when there are two variables, 
the Begriff' i11 a relation. A thing is anything not a function, i.e. anything 
whose expre88ion leaves no empty place (ib. p. 18). To J:t'rebre's theory of the 
essential cleavage between things and Begriffe, Kerry objects (loc. cie. p. ::?72 ff.) 
that Begriffe al110 can occu1· 11.11 subjects. To tl1is Frege make11 two replies. 
In the first place, it is, he says, an important di1:1tinction thu.t &0me tenns can 
only occur as suhjects, while others can occur also 1H concepts, even if Begriffe 
can also occur WJ subjects ( Butt p. I 95). In this I agree with him entirely; 
the distinction is the one employed in !i§ 48, 49. But he goet1 011 to a second 
point which appears to me mistaken. We can, he says, have a concept 
falling under u. higher one (u.11 Socrates falls under man, he means, not aa 
G1·eek falls under man); but in such c11o11es, it is not the concept itself, but its 
name, that is in qut-stion (BuG. p. 195). "The concept hm·se," he say", is 
not 1~ concept, hut a thing; U1e peculiar use i11 indicated by inverted commas 
(ib. p. 196). nut a few pu.geK later he 1110.ke11 statementii which seem to 
involve a different view. A <,'Oncept, he BAYK, i,,; essentially predicative even 
when iwmething is aHserted of it: an assertion which can be ma.de of a 
concept doei. not fit an object. When a thing is said to fall under a concept, 
and when u. concept i,i 11aid to fall under a higher concept, the two relations 
involved, though 11imiliu, are not the 1111,me (ib. p. :WI). Jt i11 difficult to me 
to reconcile tlmse remarks with those of p. 195; but I shall return to this 
point 11h01·tly. 

Prege recognizes the unity of a propoKition : of the parts of a propositional 
concevt, he say11, not all can Le complete, hut one at le&Ht 111u11t be incomplete 
(u·11,ym,tittiyt) or predicative, otherwii;e the parts would not cohere (ib. p. 205). 
He recognizes al110, though he does not dh1cuss, the oddities resulting from 
atty n.nd ei-ery and such word11 : thus he remarks that e,·ery positive integer 
iK thr. sum of four i;;quares, but "e,·ery positive -integer" is not a poBBible 
value of .c in "x i11 the sum of fou1· squares" The meaning of "every 
po!iitive intPgr.r," he Nays, depend!! upon the ccmtext (Bs. p. 17)-a remark 
which is duubtl611s corl't'ct, but d0811 not t>xhau11t the 1:1ubject. Self-contra­
dicto1-y notion!! a.re admitted UH concept11: Jt' i11 a concept if "a fa.1111 under 
the concept J'" is a proprn1itiou whatever thing a may he (Gl. p. 87). A 
concept is the indication of u. p1·edicate ; a thing is what can ne,·er be 

• "\Ve have liere a C1111ction wbOIII! value is alwaye a troth-value. Such functions 
witb one urgnmen& we have calle,l Begrille; with two, we oall them rela&10ns." Of. GI. 
pp.tll:1-8. 
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the whole indication of a predicate, though it may he that of a subject 
(BuG. p. 198). 

482. The 11.IK1ve theory, in spite of close resemblance, differs in some 
important point11 from the theory set forth in Part I above. Before 
examining_ the differences, I she.II briefly recapitulate my own theory. 

Given e.ny propositional concept, or any nnity (see § 136), which may 
in the limit be simple, its constituents are in general of two sort.,;: (1) those 
which may he replaced by anything else whatever without destroying the 
unity of the whole; (2) those which have not this property. Thus in "the 
dea.th of Cae11a1·," anything else may be 1mbstituted for Caesar, but a proper 
name must not he sul»itituted for death, and hardly a.nything can be 
substituted for ,if. Of the unity in que11tion, the former class of constituents 
will he calltid terms, the latter ,:mu-epts. We have then, in rr•gard to any 
unity, to consider the following ol~jects : 

(I) What remains of the said unity when one of its terms is simply 
removed, or, if the term occurs several timell, when it is rt'mov!'d from 
one or more of the place11 in which it occurs, or, if the unity has more than 
one term, when two or more of itll term11 are removed from llOme or all of the 
places where they 01icur. This is what Fre~e calls a function. 

(:!) The clas11 of unities differing fr'Om the said unity, if at all, only by 
tlw fact that one of its tcrmH has 111.~en rt'placed, in one or more of th1• places 
where it occu1'!I, hy Home other terms, or hy the fact t,hat t~o or rnorl' of itK 
terms have been thuH replaced by other terms. 

(:\) Any mt'lnber of thf' class (:!). 
( 4) The 11.'IHertion that every llll'mlHir of the cl1LHS (:!) is true. 
{!'i) Thi" aRMertion that 1mme member of thf' daHH (:.l) is true. 
(6) The relation of a ml"lnl,er of the clasA (:!) to the vu.Im, whil'h the 

variabll' hn.11 in t,hat 111PmlH1r. 
The fund11me11tal c1LMC i,i that wht-re our unity is a propositional concept. 

From thi11 is derivP<i the uRual mathematic11l notion of function, which might 
at first sight seem simpler. lf f(x) i,i not 1\ propositional function, its value 
for a given value of rA: (/(.-c) being assumed to l,e one-valued) is the t.Prm !I 
11&tisfying the propositional function y 0 -f(.r.), i.e. satisfying, for the given 
value of :r, some relational prop<>11ition; this relational proposition is iuvolv!'d 
in the definition of f(x), and some such propositional function is required 
in the definition of any function which is not propositional. 

As rt-.gards (I), confining ourselves to one variable, it was maintained 
in Chapter vu that, except where the proposition from which we start 
is predicative m· else asserts a. fixed relation to a fixed term, there iH no 
Huch entity: the analysis into argument and assertion cannot be performed 
in the manner required. Thus what Frege calls 11, function, if our conclusion 
was sound, is in genera.I a non-entity. Another point of difference from 
Frege, in which, however, he appe.ars to be in the right, lies in the fact 
that I place no restriction upon the variation of the variable, whereas 
Frege, according to the nature of the function, confines the variable to 
things, functions of the first order with one variable, functions of the first 
order with two variables, functiom1 of the second order with one variable, 
and so on. There are thus for him an infinite number of different lriuda 
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, of variability. Thill arises from the fact that he regards as distinct the 
concept occurring as such and tht> concept occurring as term, which I (~ 49) 
have identified. For me, the functions, which cannot be values of varialiles 
in functiom1 of the first order, are no11-entiti1•11 and false ahHtmctions. 
Instead of the rump of a p1·opositio11 com1idel"('d in (1), I suhHtitutu (2) 
or (!i) or ( 4) according to circunu1tances. The ground for regarding the., 
analysi11 into argument and function as not 11.lway11 poHsibll' is that, when 
one term is remoYed from a propositional concept, the remainder is apt 
to have no sort of unity, l,ut to fall ap,,rt into a set of di~jointoo terms. 
Thus what is fundamental in Ruch a case is (~). l<'rege's geueral definition 
of a function, which is intended to cover ah10 functions which are not 
propositional, may hP ,!110wn to be inadequate by comiidering wlu,t may 
lltl called the identical function, i.P. ~ n.s a function of :i-. If we follow 
l<'rege's advice, and l't'move x in hopes of ha\'ing the function left, we find 
that nothing is left n.t all; yet nothing is not the meanmg of the i«lenticlLl 
function. :Frege wishes to hn.,·e the empty places where the arguml'l1t i11 
to he inserted indicated in some way ; thus ht> 111Lys that in 2.,.:1 + x the 
function iR 2( )• + ( ). But here his rpquirement that the two empty 
places are to be tilled by the 1mme letter cannot be indicatt>d : there is no 
way of distinguishing what we mean from the function involved in 2.t:3 + y. 
Tim fact seems to he that we want the notion of any term of n. certain 
class, and that thiR is what our empty places rually stand for. The fu11d.10n, 
as 11, single entity, is the rt>lation (6) above; we can then consider any 
relatum of this relation, or the aRsertion of all or some of the relata, and 
any relation can he expres11ed in terms of the correHponding referent,, as 
" Socrates is a man " is expre.<1sed in ter1m1 of 8ocratc11. But the usual 
formal apparatus of the calculus of rl'iatiom1 cannot be employed, because 
it presuppo11es propositional functions. We may say that a propositional 
function is a many-one relation which has all terms for the class of it.<i 
referents, and has its relate. contained among propositions•: or, if we 
prefer, we may call the class of relate. of such a relation a prop01:1itional 
function. But the air of formal definition about these statementt. is 
fallacious, siace propo11itional functions are presupposed in defining the 
class of referents and relate. of a relation. 

Thus by mean11 of proposition1tl functions, propositions are collected into 
classes. (The11e classes a.re not mutually exclusive.) But we may also collect 
them into classes by the terms which occur in them : all propositions con­
taining a given term a will form a class. In this way we obtain propo11itions 
concerning variable propositional functions. In the notation q, (x), the q, is 
essentially variable ; if we wish it not to be so, we must take some particular 
proposition ahout ~ such 11,11 "x is a class " or ":,; implies z." Thus 4> (x) 
essentially contains two v11.riable11. But, if we have decided that q, is not a 
separable entity, we cannot regard q, itself as the second variable. It will 
be necessary to take as our variable either the relation of x to q, (x), or else 
the class of propositions q, (y) for different values of y but for constant ~­
This does not matter formally, but it is important for logic to be clear as to 

• Not all relations having this property are propositiona.l fonctiona; v. inj. 
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the men.ning of what appears as the variation of it,. We obtain in this way 
another division of propositions into classes, but again these classea are not 
mutually exclusive. 

In the above manner, it would seem, we can make use of propositional 
functions without having to iutroduce the objects which Frege calls functions. 
It i11 to be observed, however, that the kind of relation by which proposi­
tional functions are defined is less general than the class of many-one relation11 
having their domain coextensive with terms and their converse domain con­
tained in propositions. For in this way any proposition would, for a suitable 
relation, be relatum to any term, whereas the term which is referent must, 
for e. propositionn.J function, be u. constituent of the proposition which is it.a 
relatum •. Thi11 point illustrates again that the class of relations involved 
iH fundamental and incapable of detinition. But. it would seem also to show 
that J4'rege's different kinds of variability a.re unavoidable, for in considering 
(say) tt, (:2), where tt, is variable, th11 va1·ia.ble would have to have as its range 
the above clll.llB of relations, which we may call propositional relatimia. 
Otherwise, ,/) (2) is not a. proposition, and is indeed meaningless, for we 
a.re dealing with an indefinable, which demands that tt, (2) should be the 
relatum of 2 with regard to some propositional relation. The contra.diction 
discussed in Chapter x seen,s to show that some mystery lurks in the varia­
tion of propositional functions; but for the present, Frege's theory of different 
kinds of vario.blf'.s must, I think, be accepted. 

483. It rf'main11 to discm., afresh the question whether concepts can be 
made into logical subjects without change of meaning. Frege's theory, that 
when this appears to be done it is really the name of the concept that is 
involvf'rl, will not, I think, bear in\"estigo.tion. In the first place, the mere 
&aeerti~n "not the concept, but its name, is involved," has already made the 
concept a subject. In the second place, it seem11 always legitimate to -a.sk : 
" what is it that iR named by this name 1" If there were no answer, the 
name could not he u. name; but if there is an answer, the concept, a.s opposed 
to its namf',, can be made a subject. (Fregt", it may be observed, does not 
set"m to have clearly disenti,ngled the logical and linguistic elements of 
naming : the fonner depend upon denoting, and have, I think, a much more 
restricted range than Frege allows them.) It is true that we found difficulties 
in the doctrine that everything can be a logical subject: as regards "any a," 
for example, and also 11,B l"f'gards plurals. But in the case of "any a," there 
is ambiguity, which introduces a new class of problems; and as regards 
plural11, there a.re propositions in wbich the many behave like a logical 
subject in every respect except that they are many subjects and not one 
only (11ee ~ 127, 128). In the case of concepts, however, no such escapes 
are possible. The case of 11S11erted propositions i11 difficult, but is met, I think, 
by holding that an asserted proposition is merely a true proposition, and is 
therefore asserted wherever it occurs, even wl1en grammar would lead to 
the opposite conclusion. Thus, on the whole, the doctrine of concepts which 
cannot be made subjects seems unt.eno.ble. 

-i84. C~. Frege'e theory of clw,ses is very difficult, and I am not 

• The notion of a. cona&i&uen& ol a. propoBition appear■ &o be a lotical indefinable. 
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sure that I have thoroughly understood it. He gives the name Wert!iwr­
lauj• to an entity which appears to be nearly the same as what I call the 
clasM as one. The concept of the class, and the class ae many, do not appear 
in his exposition. He differs from the theory set forth in Chapter VI chieRy 
by the fact that he adopts a more intensional view of classes than I have 
done, being led thereto mainly by the desirability of admitting the null-cla1111 
and of distinguishing a term from a class who11e only member it is. I agree 
entirely that these two objects cannot be attained by an extensional theory, 
though I have tried to show how to satisfy the requirements of formalism 
(§§ 69, 73). 

The extension of a Be~ff. Frege says, is the range of a function whose 
value for every argument is a truth-value, (Fun. p. 16). Rangt-s are thing11, 
whereas functions 11re not (ib. p. 19). There would be no null-class, if classes 
were taken in extension; for the null-class is only possible if a class is not 
a collection of terms (KB. pp. 436-7). If x be a term, we cannot iuentify 
x, as the extensional view requires, with the class whose only member is x; 
for suppose x to be a class having more than one member, and let y, z be 
two different members of x; then if a: is identical with the class whost> only 
member is x, y and z will both be mewbere of this class, and will therefore 
be identical with x a.rid with each other, contrary to the hypothesis t. The 
extension of a BegriJf has its being in the Begriff itself, not in the individuals 
falling under the Beyrijf (ib. p. 451). When I say something about all men, 
I say nothing about some wretch in the ctmtre of Africa, who is in no way 
indicated, and does not belong to the indication of man (p. 454 ). Begriffe 
are prior to their extension, and it is a mistake to attempt, 11.B Schnider does, 
to base extension 011 individuals; this leads to the calculus of regions 
(Gebiete), not t.o Logic (p. 455). 

What Frege understands by a range, and in what way it is to be 
conceived without reference to objects, he endeavours to explain in his 
Grunrlgesetze der .Aritlimetik. He begins by deciding that two propositional 
functions are to have the same rA.nge when they have the B&me value for 
every value of x, i.e. for every value of x both are true or both false 
(pp. 7, 14) This is laid down as a primitive proposition. But this only 
determines the equality of ranges, not what they are in themselves. If 
X (e) be a function which never has the same value for different values of t 
and if we denote by q;' the range of q;:r, we shall have X (cp') = X (t//) when 
and only when q;' and t// are equal, i.e. when and only when q;x and 1/1:i: always 
have the same value. Thus the conditions for the equality of ra.11gee do not 
of themselves decide what ranges are to be (p. 16). Let us decide arbitrarily 
-since the notion of a range is not yet fixed-that the true is to be the 
range of the function "x is true" (as an assumption, not an asserted propo­
sition ), and the false is to be the range of the function " x = not every term 
is identical with itself." It follows that the range of q;x is the true when 
and only when the true 11.nd nothing else falls under the Begriff ,p:,;; the 
range of ,p:,; is the false when and only when the false and nothing else falls 
under the Begri.ff ~ ; in other ca.ses, the range is neither the true nor 

• I shall tranalate Uria as rangt. t lb. p. 4.4.4.. Cf. n,pra, I 74.. 
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the false (pp. I; -18). If only one thing falls under a cQncep_t, this one 
thing i11 distinct from the range of the concept in question (p. 18, note)­
the reason is the !lame as that mentioned above. 

There is an argument (p. 49) to prove that the name of the range of a 
function always has an indication, i.e. that the symbol employed for it is 
neve1· meaningless'. In view of the contradiction discussed in ChaptP.r x, 
I 11hould be inclinP.d to deny a. mea.ning to a range when we have a proposi­
tion of the form ,t, [.f ( ,t,) l, where/ is constant a.ud ,t, va.ria.ble, or of the form 

JT (x), where :r. hi variable and /., i11 a propositional function which is de­
terminate when :x: is given, hut va.ries from one value of x to another­
prcffided, when j~ i11 a.nalyzed into things and concepts, the part dependent 
011 x does not consist only of things, hut contains also at least one concept. 
This is a very complicated case, in which, I should say, there is no class 
a.a one, my only reason for 11aying so being that we can thus escape the 
contradiction. 

485. By means of variable propositional functions, Frege obtains a 
definition of the relation which Peano calhi £, namely the relation of a term 
to a. cla.11s of which it is a member•. The dPfinition is a.11 follows : "an1," 
is Lo mean the term (or the range of tenus if there be none or many) :x: 1mch 
that there is a propositiona.l function ,t, which is such tha.t u is the range of 
,t, and ,t,a is identical with x (p. 53). It is observed that this defines n£u 
wha.te,·er thing11 a a.nd 1, ma.y be. In the first place, suppose u t,o be a ra.nge. 
Then there is at least one ,t, whose range is u, and any two whose range is n 
a.re n>garded hy Prege a11 identical. Thus we may speak of the function ,t, 
whose range is u. In this case, tH7.t is the proposition ,t,a, which is true 
when a is a member of u, and i~ false otlwrwise. If, in the second place, 
u is not a range, then there iN no such propositional funct,ion as ,t,, and 
therefore a,u is the range of a propositional function which is always false, 
i.e.. thP null-rang.,. Thus a£tt indicates the true when u is a range and a 
is a memher of ·u; am indicates the false when u is a. rauge and a is not a 
1m•mher of 1t; in other cases, aut indicat.e11 the null-range. 

It i11 to he observed that from the equivalence of xm and xn• for all 
va.lues of x we can only infer the identity of " and v when u and " are 
rang1>s. When they are not rimges, the equivalence will alway1:1 hold, since 
:.c,u and xiv a.re the null-range for all values of x ; thus if we allowed the 
inference iu this casE'!, any two objecb1 which are not ranges woulil be 
idcntica.l, which is absurd. One might be tempted to doubt whether u and i• 

must be identical even when they are ranges : with au intensiona.l view of 
classes, this becomes open to question. 

Prege proceeds (p. 55) to a.n analogous definition of the propositional 
function of three va.riables which I have 11ymbolised as x R y, and here again 
he gives a. definition which does not place any restrictions on the va.riahility 
of R. This is done by introducing a. tumble range, defined by a. propositional 
function of two variable11 ; we may regard thiR as a. class of couples with 
sense t. If then R is such a class of couples, and if (ri: ; y) is a. memlwr of this 

• Cf. §§ 21, 76, BtlJlra, 
t Neglecting, fo1· the present, our doubtM a• to there being any s11ch entity as a couple 

with sense, cf. § 98. 
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class, x R y iR to hold; in other cases it is to be false or null as before. On 
this basis, Frege successfully erects as much of the logic of relations as is 
required for his Arithmetic; and he is free from the restrictions on the 
variability of R which ari11e from the intensional view of relations adopted in 
the present work (cf. § 83). 

486. The chief difficulty which arises in the abow the.ory of classes is as 
to the kind of entity that a range is to be. The re11.11on which led me, against 
my inclination, to adopt 1111 extensional view of classes, was the necessity of 
discovering 11ome entity deti>nninatR for a given propositional function, and 
the same for any equivalent propositional function. Thus ".,; is a man" is 
equivalent (we will suppose) to ".r is a feath(•rless biped," and we wish to 
discover some one entity which is determined in the same way by both th!',se 
proposit.iunal functions. The only singJe·entity T have heen able to diAcover 
is the cl'ass as one-excPpt the derivative class (ahm as one) of propositional 
functions equivalent to either of the given propositional functions, This 
latter class is plainly a more complex notion, which will not pnahle uq to 
dispense with the general notion of cl-<1,Rs; out this more complex notion 
(so we agreed in § 7:\) must be substituted for the claRs of terms in the 
symbolic treutment, if there is t,o he any null-clasA and if tlw claHS whose only 
member is a given term is to be distinguished from that term. It would 
certainly be a very great simplification to admit, 11,,; Frege does, a range 
which ii; something other than the wholP composed of the t,erms satisfying 
the propositioual function in question ; hut for my part, inspection reveals to 
me no imch entity. On this ground, and also on account of the contradiction, 
I feel compelled to udhere to the extensional theory of classe!I, though not 
quite as set fort.Ii in Chapter VI. 

487. That some modification in that doctrine iY neces11ary, is proved by 
the argument. of KB. p. 444. This argument appears capable of proving 
that a class, even a" one, cannot be identified with the class of which it, is the 
only member. Jn ~ 74, I contended tlmt the argument waH met by the 
distinction between the class as one and the class as many, but this contention 
now appears to me mist11ken. For this reason, it is necessary to re-examine 
the whole doct,rine of classes. 

Frege's argument is as follow11. If a is a class of more than one term, 
and if a is identical with the class whoRe only term i,i a, then to he a term 
of a is the same thing as to be a term of the class whm1e only term is a, 
whence a is the only term of a. This argument a11pears to prove not merely 
that.the extensional view of classes is inadequate, but rather that it is wholly 
inadmissible. For suppose a to be a collection, and suppose that a collection 
of one term is identical with that one term. Then, if a can he regarded as 
one collection, the above argument proves that a is the only term of a. We 
cannot escape by saying that E is to be a relation to the class-concept or the 
concept of the cla.,;s or the class as many, for if there is any such Pntity as 
the class as one, there will be a relation, which we may call E, between terms 
and their classes as one. Thus the above argument leads to the conclusion 
that either (a) a collection of more than one term is not identical with the 
collection whose only term it is, or (/3) there is no collection a.s one term at 
all in the case of a collection of many terms, but the collection is strictly and 
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only many. One or other of these must be admitted in virtue of the above 
argument. 

'88. (a) To either of these views there are gra,·e objections. The 
former is the view of Frege and Peano. To realize the paradoxical nature of 
this view, it must be clearly grasped that it is not only the collection as 
many, but the collection a11 one, that is distinct from the collection wh011e 
only tem1 it is. (I speak of collections, because it is important to examinP 
the hearing of Frege's argume11t upon the poKRibility of an e11:tensional 
standpoint.) This view, in spite of its paradox, is certainly the one which 
seems to be required by the symbolism. It is quite essential that we should 
be able to regard a class aR a single object, that there should be a. null-cl11ss, 
and that a term should not (i11 general, at any rate) be identical with the 
cl&BS of which it is the 011ly member. It is subject to these conditions that 
the symbolic meaning of claa, has to be interpreted. Frege's notion of a 
range may be identified with the collection as one, and all will then go well. 
But it is Yery hard to see any entity such as Frege's range, and the argument 
that there must be such an entity gives us little help. Moreover, in virtue 
of the contradiction, there certainly are cases where we have a collection 1111 

many, but no collection as one (§ 104). Let us then exan,iue (/J), and sec 
whethllr this offers a better solution. 

(/J) Let us suppose that a collection of one term is that one term, and 
that a collection of many terms is (or rather are) those many terms, so that 
there is not a single term at all which is the collection of the many terms in 
questien. In this view there is, at first sight at any rate, nothing para.­
doxica.l, and it has the merit of admitting universally what the Contradiction 
shows to be sometimes the case. In this case, unless we abandon one of our 
fundlldllental dogmas, , will have to be a relation of a term to its class-concept, 
not to its cl&BB; if a is a claBB-conoept, what appears symbolically as the clasll 
whose only term is a will (one might suppose) be the cl&1111-co11cept under 
which falls only the concept a, which is of course (in general, if not always) 
dift'ere11t front a. We shall maintain, on account of the contradiction, that 
there is not always a class-concept for a given propositional function ~. 
i.e. that there is not always, for e,•ery q,, some class-concept a such that xea 
is equivalent to q,z for all values of z; and the cases where there is no such 
ol&BB-concept will be cases in which q, is a quadratic form. 

So far, all goes well. But now we no longer have one definite entity 
which is determined equally by any one of a set of equivalent propositional 
functions, i.e. tht1re is, it might be urged, no meaning of claa, left which is 
determined by the extension alone. Thus, to take a case where this leads to 
confusion, if a and b be different clitBB-COncepta such that x,a and z,b are 
equivalent for all values of z, the class-concept under whieh a falls and 
nothing else will not be identical with that under which falls band nothing 
else. Thus we cannot get any way of denoting what should symbolically 
correspond to the clas8 as one. Or agai11, if u 1U1d v be similar but different 
classes, "similar to u" is a different concept from "similar to v"; thus, unless 
we can find Rome exte11sional meaning for clau, we shall not be able to uy 
that the number of u is the &a.me as that. of v. And all the usual elementary 
problems as to combinations (i.e. as to the number of classes of aperified kinds 
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contained in a given cla11&) will have become impoeisibl~ and e,·en meaningle1111. 
For these various ren.son1.1, an objector might contfmd, 110mething like the clll,8.'t 

as one must be maintained; and Frege's ran1,re fultih, the conditions required. 
1 t would seem necessary thel'f'fore to accept 1·angp11 by 11.n act of faith, without 
waiting to see whether there are such thing11. 

Ne\'ertheless, the non-identification of the class with the clM11 n.s oue, 
whether in my form or in the form of Frege'H 1·ange, 11.ppears unavoidable, 
and by a process of exclu11ion the class as many ill left. a.s the only object 
which can play the p,trt of a class. By a modification of the logic hitherto 
a.d,·ocated in the present work, we shall, I think, be l\hle at once to satii.fy 
the requirements of the Contradiction and to kPep in harmony with common 
sense•. 

489. Let us begin by recapitulating the p011sible tht..>oriP.s of clasl!ei. which 
have presented themselves. A class may be identified with (a) the predicate, 
(fJ) the class concept, (y) the concept of the class, (8) Frege's range, (•) the 
numerical conjunction of the terms of the cli.1111, ({) the whole composed of 
the terms of the class. 

Of these theories, the first three, which are intensional, have t,he defect 
that they do not render a cl1111s determinate when its terms are given. 
The other three do not have this defect, but they have others. (8) 1mffers 
from a doubt as to there being such an entity, and also from the fact 
that, if ranges are terms, the contradiction is inevitable. (•) is logically 
unobjectionable, but is not a 11ingle entity, except when the clall!l hM only 
one membP.r. (C) cannot always exist as e. term, for the same reason as 
applies against (8); also it cannot be identified with the cl&11s on account 
of Frege's o.rgumentt. 

Nevertheless., without a single object! to represent an extension, 
Mathematics crumbles. Two propositional iunctions which are equivalent 
for all values of the ,•11.riable may not be identical, but it is nt-cessary that 
there should be some object determined by both. Any object that, may be 
proposed, however, presupposes the notion of cl,us. We may define clnu 
optatively as follows : A class is an object uniquely determined by a 
propositional function, and determined equally by any equivalent propositional 
function. Now we cannot take as this object (as in other cases of symmetrical 
transitive relations) the class of propositional functionK equivalent to a given 
propositional function, unleas we already have the notion of class. Again, 
equivalent relations, considered int.ensionally, may be dist.inct: we want 
therefore to find some one object determined equally by any one of a 11et of 
equivalent relations. But the only objects that suggest themselves are the 
cla.18 of relations or the class of couples forming their common range ; and 
these both presuppose clau. And without the notion of cla.as, elementary 
problems, such as "bow many combinations can be formed of m objects n at 
a time 1" become meaningless. Moreover, it appears immediately evident 
that there is some sense in saying that two class-concepts ha,·e the 11ame 

• The docbine to be lldvoca&ed in what follows is the direct denial of the dogma 1ta&ed 
in I 70, note. 

t Archiv 1. p. 44'. 
::: For the uae of the word objrtt in the following discussion, ■ee I 68, note. 
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extension, and this requires that there should be some object which can be 
called the extem1ion of a cl&Rs-concept. But it is exceedingly difficult to 
discover any such object, and the contradiction proves conclusively that, even 
if there be such an object sometimes, there are propo11itional function!! for 
which the extension is not one term. 

The class as many, which we numhered (E) in the above enumeration, is 
unolijectionabll', hut, i11 many and not onii. We may, if we chorn1e, represent 
this by a. single symhol: thm1 :n1" will mean ":~ is one of the u's." This 
must not be taken a.s a relation of two tc•rms, :,; and u, because u a.s the 
numerical conjunction is not a single term, and we wish to have a mpaning 
for zm which would be the 11ame if for u we substituted an equal class v, 
which prevent,s us from intl'rpreting u intensionally. Thus we may regard 
"x is one of the 1t'11 " as expresHing a relation of x to many termH, among 
which xii; included. The ma.in oqjection to this view, if only single terms can 
ho 11ultiectl!, h1 that, if n is a Hymbol standing es111>ntially for many terms, we 
cannot nu~ke u a logical Ruhject without risk of flrror. We can no longer 
HJlt'Ak, one might suppm,e, of a clas11 of claHSf's; for what should he the 
terms of such a class are not single terms, but arl' each many terms•. 
We cannot 11.s11crt a prec:lieat~ of many, one would suppose, except in 
the Mense of assert,ing it of eaeh of the many; hut what is required 
here i1o t.l1I' assertion of a predicate concerning the many as many, not 
couct•rniug each nor yet concPrning the whole (if any) which all compose. 
Thus a clas11 of clu.ss<•s will 1,., many many'11 ; its canstitueuts will each be 
only many, and cannot thl'refore in any se1111e, one might suppoHe, he 
i.;ingle constituentR. Now I find myself forced to maintain, in spite of the 
u.ppiirent logical difficulty, that this is precisely what is required for the 
H.'IHertion of number. If we hav11 1i class of ul1Lsses, eaeh of whose members 
has two terms, it is necessary that the memht>rs should t>ll,('h hl' genuinely · 
two-fold, and should not be ench one. Or agaiu, "Brown and Jones are two" 
rec1uires that WP should not. c•ornhine Brown o.nd ,J onm1 into a single whole, 
and yet it has the form of a subject-predicate propo1:1ition. But now a 
difficulty arises as to Uui nmnher of members of a claiis of classes. In what 
semw can we speak of two c,111plt>R 1 This sN"mR to require that each couple 
should be a single entity; yet if it wert>, we should have two units, not two 
couples. We ttquii-e a sem1e for diversity of collections, meaning thereby, 
apparently, if 1t and ,, are the colll'ctio1111 in question, that XEU and xu, are 
not equivalent for all values of x. 

4:90. The logical doctrine which is thus forced upon us is this: The 
Mubje-et of a propoMition may be not u. single term, hut e11Mtmtially many terms; 
this is the case with all propositionR wisertiug number11 other tha.n O and 1. 
But the predicate11 or class-conceptM or relatiou11 which can occur in propositions 
having plural 1mltit-cts are different (with some exceptions) from those that 
can occur in propo11itions having single term~ as subjects. Although a class 
is many and not ontt, yet there i11 identity ancl diversity among classes, and 
thus classes can he counted as though ea.eh were a genuine unity; and in this 
sense we can speak of 01te class and of the classes which a.re members uf a 

• Whtorever the context requires 1t, the reader iij to add "provided the claBB in question 
(or all the classes in ,1ueation) do not consist of a single term." 
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class of classes. One must be held, however, to be sonu,what different when 
asserted of a class [rom what it is when a.si;erted of a term; that is, thet"t' is 
a meaning of one which is applicable in speaking of one k'rm, and another 
whid1 is 1Jpplicable in speaking of unr. rlas11, hut there is also a general 
meaning applicable to both c11,11es. Tha fundamental doctrine upon which 
all restH is the doctrim• that tht' subject of a proposition ma.y be plural, and 
that 11uch plural imbjects are what is mea.nt by classes which have more than 
one term•. 

It will now he 11ecessary to distinguit<h (1) terms, (:.!) cla.<1sPs, (3) cl11.88es 
of clai-ses, and so on 1,d infinitum ; we !!hall have to hold that, no ml"mher of 
one ,iet is a member of any other set, and that :1:17l rt•quireK that :r t<hould he 
of e. set of a degree lower hy one tho.n the Ket to which 11, helong11. Thu11 :r,x 
will become a meaninglt>ss proposition ; ai11.l in this way the contradiction iK 
avoided. 

491. But we must now consider tlu-- prohletu of cfas,ms which h1wP 1ml' 
mt>mher or none. The case of the null-clasK might he met by a hart, denial -
thii, iR only inconvenient, not self-contro.dict.ory_ .Hut in tht> 1·a.1-1e of cla11se:•1,1 
having only oue term, it is i,till necessary t~> ciistinguish t.lu•m from tht>ir 1,olr 
members. Thi11 result!! from Frt>gfl!I argunwut, which we may repeat as 
follows. Let u be a cla.<,s having more than one t1m11 ; let tu he the' cl!\118 of 
clm;sr.s whose only member is "· Then tu has one member, u has mauy; 
hence u and tu a.re not identical. It may oo doubted, at firRt sight,, whether 
this argument i11 vn.Jid_ The relation of :z: to u expreHsed hy :cm is 11, relation 
of a single term to many tprms ; the relation of u, to ui Pxpre11seci hy 1icu1, is 
a rPlation of many tem111 (as subject) to many terms (ns predicate) t. This 
is, so au objector might contfmd, a different, relation from the previous one; 
and thus the argument break!! down_ It ii! in different 11e11ses that x iK 11. 

member of u and that u i!I a mt>mber of t?t; thus u and t?t mo.y be idtmtical 
in spit!' of the argument. 

Thii, attl-mpt, however, to escape from J?rege's ai-gument, is capable of 
refutation. l<'or a.II the purposes of Arithmetic, to begin with, and for many 
of the purposes of logic, it is necessary to have a meaning for I which is 
equally applicable to the relation of a term to a. cla.1111, of a class to a class of 
c)ll,l!l!es, and so on_ But the chief point is that, if every single term is a class, 
tl1e proposition xu., which gives rise to the Contradict,ion, must be admissible. 
It is only by distinguishing :,; and ,x, and insisting that in xcu the u must 
always be of a. type higher by one than x, that the contradiction ca.n be 
avoided_ Thus, although we may identify the class with the numerical 
conjunction of its terms, whereYer there a.re many terms, yet where there iK 
only one term we shall ha,-e to a.ccept .Frege's range as an o~ject distinct 
from its only terru. And having done this, we may of course also A.dmit a. 
range in the case of a null propositional function. We shall differ from 
Frege only in regarding a range as in no case a term, but an object of 11. 

different logical type, in the sense that a propositional function f/, (x), in 
which x may be any term, is in general meaningless if for x we substitute a 

• Cf. H 128, 182 •upra. 
t The word predicate ia here used loosely, not in the preciae seuae defined in§ 48. 

Downloaded from https://www.holybooks.com



618 Appendi.r A 

range; and if:,; may be any range of terms, ff, (:r) will in general be meaning­
leBB if for z we substitute either a term or a r11.n1,,re of ra~gee of terms. 
Ranges, finally, are what are prope1·ly to be called claae,, and it ie of them 
that cardinal numbers 11.re H.BSerted. 

492. According to the view here advocated, it will be necessary, with 
every variable, to indicate whether its field of significance ie terms, claBBee, 
classes of claeeee, or BO on•. A variable will not be able, e~cept in special 
C&Bee, to extend from one of these sets into another; and in :rcu, the :r and 
the u must, always belong to different type11; 1 will not be a relation between 
objects of the ea.me type, but cl or ,R( t will be, provided R is so. We shall 
have to dil\tingu.ish a.leo among relations &ecordiug to the types to which 
their domains and converse domu.in11 belong ; also ,·ariabl011 whose fields 
include relations, these being understood as classes of couples, will not as a 
rule include anything else, and relations between relationH will be different 
in type froU1 relations between termH. This seems to gh-e the t1·uth-though 
in a thoroughly extenRionn.l form-underlying Frege's distinction between 
terms and the various kinds of functions. Moreover the opinion here 
advocated seems to adhere very closely indeed to common sense. 

Thus the final conclusion is, that the correct theory of classes is even 
more extensional than that of Chapter VI ; that the class as many is the 
only object always defined by a propositional function, and that this is 
adequate for formal purposes; that the class as one, or the whole composed 
of the terms of the class, is probably a genuine entity except where the cl&BB 
is defined by a quadratic function (see§ 103), but that in thesE' cases, and in 
other cases possibly, the class as many is the only object uniquely defined. 

The theory that there are different kinds of variables demands a reform 
in the doctrine of formal implication. In n. formal implication, the variable 
does not, in general, take all the values of which variables 11.re susceptible, but 
only all those that make the propositio1111.I function in question a proposition. 
For other values of the variable, it must be held that any ginn propositional 
function becomes meaningless. Thus in :t1u, ,, must be a cl&11S, or a class of 
cla1111es, or etc., and x must lie 11, term if u is a class, a class if u is a class of 
clMSes, and so on; in ewiry propo.'litional function there will 'be some rn.nge 
permissible to the va.1-iable, but in 1,reneral there will be po11sible values for 
other va1-iables which are not admissible in the gh·en cRSe. This fact will 
require a certain modification of the principles of Symbolic Logic; but it 
remains true that, iu ,i fonnal implication, all propositions belonging to a 
gh·en propositional function a.re asserted. 

With this we come to the end of the more philosophical part of Frege's 
work. It re111ain11 t.o deal briefly with his Symbolic Logic and Arithmetic; 
hut here I tind myself in Rnch complete agreement with him that it is hardly 
necesMry to do mort> ttmn acknowledge his discovery of propositions which, 
when I wrote, I belie\·cd to have heen new. 

493. In,plicatio1& 111td Sumbolio logic. The relation which l<'rege 
employs as fundamental. in the logic of p1-opositio11s is not exactly the sa.me 
as what I have called implication: it is a ,-elation which holds between 

• See Appendix B. t On thia notation, aee §1118, 97. 
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P and 'I whenever q is true or p is not true, wherea11 the rel11tion which 
I employ holds whenever p and q are propositions, and q is true or p is false. 
That iR to say, Frege's relation holds when p i11 not a proposition at all, 
whatever q may be; mine does not hold unle1111 p and q are propo8itiona. 
His definition has the formal adnnta.ge that it avoidR the nece111ity for 
hypotheses of the form "p and q are prop011itions" ; but it has the 
disadvantage that it does not lead to a definition of prnpo,,ition and of 
negation. In fact, negation is taken l,y Frege as indt'finable; propo«iti.on is 
introduced by mMnB of the indefinable notion of a truth-value. Whatever 
z may be, "the truth-value of .,: " is to indicate the true if z i11 true, and the 
false in all other cases. F1,.ge'a notlltion b&K ct>rt&in advo.nta.ge11 over Peano's, 
in spite of the fact that it is excee<li11gly cumbrous and difficult to use. He 
inv1Lriahly definP-11 Pxpressiom1 for all ,·alues of tl,r Yariable, whereas Peano's 
definitions are often preceded by a hypoti1esi11 He h11.s a special symbol for 
11,1111ertion, and be i11 able to llSSt'rt for itll values of x a propositiom,l function 
not stating an implication, which PMno't1 11ymholism will not do. He alKO 
dii1tinguisheR, by the use of Latin and German lettrrs respecti\'ely. between 
atty proposition of a certain propoRitionnl function 11nrl t1ll such propositions. 
By alwllys using implications, Frege a.voids tht'I logic11l product of two 
proposition11, and theri,fore hM no axioms co1•rp,sponcli11g to Importation u.nd 
Exportation•. ThuH the joint aH.,ert.ion of p and q is the denial of "p implie11 
not-q." 

494. Aritlmietic. Frege gives exactly the 11a111e definition of cardinal 
numbers as I have given, at least if we identify hiK range with my claa11t. 
But following his intensional tht>ory of classes, he reg11.rd11 the number as a 
property of the cll\Sll-concept, not of the class in exten11io11. If u he 11, range, 
the number of u i11 the ro.nge of the concept "range 11imila.r to u." In t,be 
(Jrundl,rgen d11,· A.ritlumtik, other possible theories of number Rl'f' discusssed 
and di1m1i!ll!ed. Numbel'!I cannot be asserted of o~jects, laeca.u11e the same 
set of objectll may have different numbers assi!,'De<l to them (Gl. p. 29); for 
t>xa.mple, one army is RO many regiments and such anothe1· number of 
>1oldiers. This view seems to me to invoh>e too phy11ical a vit>w of ohjects : 
I do not consider the army to be the same object as the l't'giments. 
A Htronger argument for the 11,me view is that O will not apply to objects, 
hut only to oonceptK (p. 59). Thi11 argument is, I think, conclusive up to a 
certain point; but it iR 11&tisfif!d by the view of the sym lx,lic meaning of 
classeK set forth in § i3. N umlJflni themseh es, like othf'r mnget11 are things 
(p. 6i). For defining numbers M ranges, l<'n•ge giveH the same general 
ground as I ru,ve given, namely what I call the principle of ab&tra.ctic>n :. 
In the Gr1m.dgl',ae/.ZP. de,· .Arith,Mtilc, v11riou11 tht1<1rem>< in the founda.tiom1 of 
ci\1-dinal Arithmetic are proved wit,h greR.t elahoro.tion, so g1·e11.t that it ia 
often very difficult to discover the ditfenmce between 11ucceiuih·e 11teps in a 
demonstration. In view of the contradiction of ChR.pter x. it il!I plain that 
110me emendation i11 l'flqUired in Frege's principles; uut it il!I hard to believe 
that it can do more than introduce some genernl limitation which 1811\'et! the 
details unaffected. 

• Sea§ 18, (7), (8). t See GI. pp. 79, 85; OH. p. 67, Dl. Z. : GI. p. 70; cf. !1111 ••pru. 
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495. In addition to his work on cardinal numbers, Frege has, already 
in the Begrijf,schrift, a very admirable theory of progressions, or rather 
of all series that can be generat-ed by many-one relations. Frege does not 
confine himself to one-one relations: as long as we move in only one direction, 
a many-one relation also will generate a series. In some parts of his theory, 
he even deals with general relatiom1. He begins by considering, for any 
rele.tionf(x, y), functions P which are such the.t, if f(x, y) holds, then F (x) 
implies F (y). If thiH condition holds, Frege says that the property F is 
inherited in the /-series (Hs. pp. 55-58). From this he goes on to define, 
without the use of numbers, a relation which is equivalent to "some positive 
power of thP given relation." This is defined as follows. The relation in 
question holds between :r. and y if every property P', which is inherited in the 

f-series and i11 such that f(.x:, z) impliAs F (z) for all values of .i, belongs to 'f/ 
{ Bs. p. 60). On this basis, a non-numerical theory of series is very successfully 
nected, and is applied in Gg. to the proof of propositions concerning the 
number of finite numhers and kindred topics. This i11, 110 far as I know, the 
best method of treating such questions, and l<'rege's definition juRt quoted 
gives, apparently, the best form of mathematical induction. But as no 
controversy is involved, I shall not pursue thi11 subject any further. 

Frege's works contain much admirable criticism of the psychological 
Btandpoint in logic, and also of the formalist theory of mathematics, which 
believes that the actual symbols are the 1mbject-matter dealt with, and that 
tlmir properties can hP arbitrarily assigned by 1lefinition. In both these 
points, I find myt1elf in complete agreement with him. 

496. Kerry (loc. cit.) has criticized Frege very severely, and professes 
to have proved that a purely logical theory of Arithmetic is impossible 
(p. 304 ). On the question whether concepts can be made logical subjects, 
I find myself in agreement with his criticisms ; on other points, they seem 
to rest on mem misunderst,andings. As theRe are such as would naturally 
occur to any one unfamiliar with symbolic logic, I shall briefly discuss them. 

The definition of numbers as classes is, Kerry assert11, a vunpov Tponpov. 
We must know that every concept has only one extension, and we must 
know what om object is; Frege's numbers, in fact,, are merely convenient 
symhols for what arP commonly called numbers (p. 277). It must be 
admitted, 1 think, that the-notion of a term is indefinable (cf. § 132 supra), 
and is pre11upposed in the definition of the number 1. But Frege argues­
and hilil argument at least deservet1 di11cussion-that onR is not a predicate, 
attaching to every imaginable term, but has a less general meaning, and 
attaches to concepts (Gl. p. -lO). Thus a tenn. is not to be analyzed into one 
and term, and does not prl:'iluppose the notion of one (cf. ~ 72 BUpra). As to 
the a..'lllumption that every concept has only one extension, it is not necessary 
to be able to state this in language which employs the number I: all we 
need is, that if q,x a.nrl 1/tz are equivalent pro11011itions for all values of x, 
then they have the same extension--& p1imitive proposition whose 11ymbolic 
expr81,1sion in no way presupposet1 the number 1. From this it follows that 
if a and b are both exte11siorn1 of tf,:,:, a and b are identi<'al, which again does 
not formally im·olve the number 1. In like manner, other objections t.o 

Frege's definition can he met. 
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Kerry is misied by a certain passage (Gl. p. 80, note) into the belief that 
Frege identifies a concept with its extension. The pasaage in question 
appears to 1&88ert that the number of u might be defined as the concept 
"similar to tt " and not as the range of this concept; but it does not say 
that the two definitions are equin,lent. 

There is a long criticism of Frege'11 proof that O i11 n. number, which 
reveals fundamental errors as to the existential import of uuiversal 
propo11itions. The point is to prove that, if ,i and v are null-cl&slleS, they 11,1-e 

similar. I<'rege defines similarity to mean that there is a one-oue relation R 
such that "x i11 a u" implie11 "tht>re is a " to which :,; stands in the relation 
R," and vice versa. (I have altered tht' expressions into conformity with my 
usual language.) This, ht> says, is equivalent to "there is a one-one relation 
R such that 'x is a u' and 'there is no term of " to which :,; stanc..111 in the 
relation R' cannot both be true, whatever value :,; may have, and vice vel'fila "; 
and this proposition is true if "x is a tt " 1md "!I is a v " are always £also. 
This strikes Kerry as aL1mrd (pp. 28i -9). Himilarity of cl1t.Sses, he thinks, 
implies that they have terms. He affirms that ~•rege's assertion above is 
contradictPd by a later one (Gl. p. ~9): "If a is a u, and nothing is a v, 
then 'a is a ·1t' and 'no term is a t' which h&N the relation R to a' are both 
true for all values of R." J do not. quire know where Kerry finds the 
contradiction; but he evidently doe11 not ren.Jizp tho.t false propositions imply 
all propositiom1 and that universal propositiom1 have no existential import, 
so that '' all a is b" a.nd " 110 a is I, ·• will both be true if a is the null-class. 

Kerry objects (p. 290, note) to the generality of l<'rcge'K notion of relation. 
Frege assert11 that any proposition containing a and b affirms a relation 
between a and b (Gl. p. 83), hence Kei-ry (rightly) co11clud1,s that it is 
self-contradictory to deny that a and b are related. So general a notion, 
he says. can have neither sense nor purpose. As for Kense, that a and b 
11hould both be constituents of one proposition seems a perfectly intelligible 
11euse; as for purpose, the whole logic of relations, indeed the whole of 
ma.thematics, may be adduced in answer. There is, however, what seems at 
first sight to be a formal <li11proof of Frege's ,·iew. Consider the propositional 
function "Rand Sare relations which are identical, and the relation R does 
not hold between R and S." This contains two variables, R and S; let us 
suppose that it is equivalent to "R has the relation T to S." Then substi­
tuting T for both R and S, we find, since T i11 identical with T, tho.t " 1' does 
not have the relation T to T'' is equivalent to "T has the relation 1' to T." 
This is a contradiction, showing that there i11 no such relation as '/'. Frege 
might object to thi11 instance, on the ground that it treats relations as terms ; 
hut his double range11, which, like single ranges, he holds to be things, will 
bring out the same result. The point involved is clOKely analogou11 to that 
invoh·ecl in the Contradiction: it was there shown that HOme propositional 
functions with one variable are not equiv1'lent to any propositional function 
asserting membership of a. fixed clMs, while here it is Rhown that some 
containing two va.riables are not equiva.lent to the assertion of a.ny fixed 
relation. But the refutation is the so.me in the ca.se of relations as it was in 
the previous case. There is a hierarchy of relations according to the type of 
objects constituting their fields. Thus relations between terms are distinct 
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from those between classes, and these again are distinct from relations 
between relations. ThuR no relation can have itself both aa referent and aa 
relatum, for if it be of the same order aa the one, it must be of a higher order 
than the other; the proposed propo11itional function is therefore meaningleHB 
for all values of the ,-ariables R and :-i. 

It is affirmed (p. 29-1) that only the concepts of O and 1, not the objects 
themselves, are defined by Frege. But if we allow that the range of a 
Begrift' is an object, this cannot be maintained; for the &SBigning of a concept 
will carry with it the &118igning of its range. Kerry does not percei,·e that 
the uniqueness of l has been pro,·ed (ib.): he thinks that, with Frege's 
definition, there might he ReVera.l l 's. I do not understand how this can be 
supposed : the proof of uniqueneBB is precise and formal. 

The definition of immediate sequence in the series of natural numhers 
iR al110 severely criticized (p. 292 ff'.). This depends upon the geneml theory 
of serie11 set forth in Rs. Kerry oltiects that Frege has defined " F is 
inherited in the f-scries," but hu not defined "the .f-serieR" nor ".r is 
inluirited." The latter essentially ought not to be defined, having no precise 
11ense; the former is easily defined, if 11eces11&ry, as the field of the relation f. 
This objection is therefore t1·ivial. Again, there is an attack on the definition: 
" y follows x in the fserieH if y has all the pl'Operties inherited in the fse1·ieR 
and belonging to all terms to which :c boa the relation j•." 'fhis criterion, 
we are told, is of doubtful value, lieca.uae no catalogue of such Jlroperties 
exists, and further because, 11,1 Frege himself proves, following x is itself one 
of these properties, whence a vicious circle. Thie argument, to my mind, 
radically misconceives the nature of deduction. In deduction, a proposition 
i11 proved to hold conucrning euery member of a class, and may then be 
asserted of a particular member: but the proposition concerning every does 
not nece1111&rily result from enumeration of the entriee in a catalogue. 
Kerry's position involves acceptance of lfill'11 objection to Baroo1·a, that the 
mortality of Socrates is a neces1111ory premi1111 for the mortality of all e1en. 
The fact iR, of course, that general propositions can often be eKto.blished 
where no means exist of cataloguing the tem111 of the class for whiuh they 
hold; and even, as we have abund11,ntly llt'en, general propositions fully 
st.t,t.ed hold of all terme, or, as in the above case, of all functions, of which 
no catalogue ca.n be conceived. Kerry'H argument, therefore, is answered 
by a correct theory of deduction; 11,nd the logical theory of Arithmetic iR 
vindicated against its critics. 

Note. The second volume of (.;g., which appeared too late to be noticed 
in the Appendix, contai1111 an interesting tlii;cuKsion of the contr1Miiction 
(pp. 253-265), Huggesting that the liOlutiou is to be found by denying that 
two propositional 'functionH which determine equal classee must be equivalent . 
.As it seems very likely that this is the true 110lut.ion, the reader is strongly 
recommended to examine Frege's argument on the point. 

• Kerry omits the last cla.ose, wrongly ; for not a.JI properties inherited in the /-aeriu 
beloug to all ita t.arms ; for eD111ple, \he property of being greater th&u 100 is inluirited iu 
lbe nnmber-seriu. 
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THE DOCTRINE OF TYPES. 

497. 'fHE doct,rint' of typeH iH here put forward tenttttiwly, as affording 
a possible solution of the contradiction ; but it requirt•s, in all prohability, 
to be transformed into some subtler shape liefor1i it co.n answer all diffi­
culties. 1n case, howevf'r, it should be found to be IL lin1t stl'p towards the 
truth, I shall endeavour in this Appendix to eet forth its ma.in outlines, as 
well as HOme problenu1 which it fails to solve. 

Every propositional function cJ,(:r.)--Ro it is contended-has, in addition 
to its range of truth, a range of Higniticsmce, i.e. a range within which z 
must lie if cJ,(z) is to be a proposition at all, whether trutl m· fa.hie. This is 
the first point in the theory of types, the second point i11 that ranges of 
significance form ty1:,es, i.e. if :,; belon1,1S to the range of significance of cJ,(x), 
then there is a class of objects, the t'!/l>e of x, all of which must also belong 
to the range of significance of 1/,(x), however cJ, may be varied; and the 
range of significance is always either a single type or a Rum of several whole 
types. The second point is less precise than the first, and the C&Re of 
numbers introduces difficulties; hut in what follows its importance and 
meaning will, I hope, become plainer. 

A tr.rni or individ,ud is 11.ny object which is not a range. This iH the 
lowest type of object. If such an ohject-say 11, cert.a.in point in space--­
occurs in a proposition, any other individual may always he 11ubRtituted 
without loss of significance. What we called, in Chapter v1, t,he class a.o:i 

one, is an individual, provided its members are individuals: the ol,jectll of 
daily lifo, persons, tables, chairs, apples, etc., a.re claM&eS as one. (A person 
is a cllLIIS of psychical existent&, the others are classes of material point,11, 
with perhaps some reference to l!econdary qualitieH,) Thf'.se objectR, there­
fore, are of the same type as simple individuals. It would seem th&t all 
objects designated by single wordit, whether things or concepts, are of tbiK 
type. Thus e.g. the relations that occur in actual relational propositions are 
of the same type as things, though relations in exten11ion, which are what 
Sy1Dbolic Logic employs, o.rA of a. different type. (The intensionn.l 1-elat.ions 
which occur in ordinary relational propositions are not determinate when 
their extensions are given, but the extension11.l relations of Symbolic Logic 11.re 
classes of couples.) lndividuals are the onJy objects of which numbers 
cannot be significantly asserted. 
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The next type consists of ranges or classes of individuals. (No ordinal 
ideas are to be associated with the word range.) Thus" Brown and Jones" 
ia an object of this type, and will in genera.I not yield a significant propo­
sition if sub11tituted .for " Brown" in any true or false proposition of which 
Brown is a constitnent. (This constitutes, in a. kind of way, a justification 
for the grammatical distinction of 11ingular a.nd plural ; but the analogy is 
not close, since a range may have one term or mol't', and where it has many, 
it may yet appear as singular in certain propositions.) If u be a range 
determined by a propositional function c/,(:x), not-u will cousist of all objects for 
which q,(:x) is fah1e, so that not-u is contained in the range of significance 
of q,(;c), and contains only objects of the same type as the member11 of u. 
There is a difficulty in thii-1 conuection, arising from the fact that two propo­
sitional functiom1 q,(x), l{l(x) may have the same range of truth u, while their 
ranges of significance may be different; thus not-u hecomes ambiguoUK. 
There will always be a minimum type within which u is contained, and not­
u may be ddim•d as the rest of this type. (The sum of two or more types is a 
type ; a minimum type is one which is not such a 1:1um.) In view of the 
Contrat.liction, this view seems the best ; for not-1.1. must be the range of 
falsehood of "x is au," and ".k' is an x" must be in gerieral meaningless; 
consequently "x is a u" 111ust require that x and u should be of different 
typei,. It is doubtful whetht>r this 1·esult can be insured except by confining 
ourselves, in t,his connection, to minimum types. 

There is an unavoidable conflict with common sense in the necessity for 
denying that a mixe,d cla-.s (i.ll. one whose members are not all of the same 
minimum type) can ever be of the >1arne type as one of its member11. 
Consider, for example, 11uch phrases a11 "Heine and the French." If this is 
to he a clmn,i consi11ting of two individual!,, " the French " must he under­
stood 11.1!1 "the l<'rench nation," ·i.,,., as the class as one. If we are speaking 
of thr French as many, we get a class consisting not of two members, but of 
one more than there are Jc'renchmen. Whether it is possible to form a cla11s 
of which onp member is Heine, while the other is the French ILi! many, is a 
point to which I shall return later; for the present it i11 enough to remark 
that, if there he such a class, it must, if the Contradiction is to be avoided, 
be of a different type both from classe11 of individuals and from classes of 
classes of individuals. 

The next type after classes of individuals consists of clas11es of classes of 
individuals. Such are, for example, associations of clubs; the members of 
such associations, the clubs, are themselves classes of individuals. It will be 
convenient to speak of clnss1J11 only where we have classes of individuals, of 
cu111sP.s of clai1sll8 only where we have classes of classes of individuals, and so 
on. For the geueral notion, I shall use the word range. There is a pro­
gre,1:1sion of such types, since a range may be formed of objects of any given 
type, and the result is a range of higher type than its members. 

A new series of types begins with the couple with sense. A range of 
such types i~ what Symbolic Logic treats as a relation : this is the extensional 
view of relations. We may then form ranges of relations, or relations of 
relations, or relations of couples (such as 110paration in Projective Geometry•), 

• er.§ 20s. 
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or relations of individuals to couple!-, and so on ; and in thii;; way we g(•t, 
not merely a single progression, hut a whole infinitR serieN of progre11sions. 
We have also the types formed of trios, which 1u-e the mt.>mberx of triple 
relations tn.ken in extc•nsion as ranges ; hut of trios there arf' i<twernl kinds 
that are reducible tu previous types. Thus if <f,(z, y, z) he ,i propositiona.l 
function, it may he u product of propositions <f,,(x). <t,.(y). <f>:1(.::) or a product 
4>1(x). <f,,(y, .::), or a proposition ahout ;r anrl the couple (y, .::), or it may lJf' 
ana.lyzahle in other analogous w11ys. Jn such cases, a new typt• does not, ariHc. 
llut if our proposition is not so arnilyzahlP-anrl thert' seemN no a 7wiori rea.'!on 
why it should always he so--thrn we ohtJiin 1i new type, rmmely tlw trio. 
We can form mnges of trios, couplrR of trios, trios of trios, couplrn, of a trio 
and an imlividu.i.l, and so on. All thrsr yield new typeH, Thus w1• ohtain 
an immrnse hierarchy of typPs, a1,d it is ~lifficult to be sun• how many thrre 
may he; but the lllf'thod of obtaining Jlt'W typPH 11uggests that t.Jw total 
number is only a., (the number of finitf• inu·gers), siliCtl thf' series obtained 
tnon• or leKs resembles tlw series of rationals in the order I, :!, ... , n, ... , 1/:.l, 
1/3, ... , l/n, ... , 2/:J, ... , -.!./f>, ..• :l/(-Jn-,. I), ... ThiK, however, iA ouly a 
conjPcture. 

Each of the types abovP n1urnerated is a 111in,imnrn type; i.t., if <f>(:r) b!l 
a propositional function which is 8ignific1111t, for orm value of ,r belonging to 
one of the above types, then <f,(x) is significant for every rnlue of :c lil'longing 
to the said type. Rut it would &Pcm----though of this I am doubtful--that 
the sum of any number of minimum types iH a type, i.e. i11 a range of signifi­
cauce for certain propositional functions. Whether or not thiK is univerAAlly 
true, nll ra11yP-11 cert1iinly form a type, sinct' every range haH a 11111111,er; and 
so do all ohjectia;, since eVfiry object, is idt>nt,ical with itself. 

Outside the ahove series of types lies th<• type 7wopoxitio11; nnd from this 
as starting-point a new hierarchy, one might suppose, could h•• started ; hut 
there are certain difficulties in the way of 1,ueh a view, which render it 
doubtful whPther propositions can be treated like other ohjPct". 

498. Numl>Prs, also, are a type lying outside the above Rerif'!I, and pre­
senting certain ditliculti(•s, owing to the foct tha.t every number Relect11 
cntai11 olijects out of every other type of ranges, narm•ly thos(• range11 which 
have the given number of members. This rendt1rs the obvious definition of 
0 erroneous; for every type of range will have its own null-range, which will 
be a member of O considered as a range of ranges, HO that we cannot say that 
0 is the range whose only member is tlrn null-range. Alim numbers rt>quire a 
1•onsideration of the totality of types and ranges; and in this consideration 
there may be difficulties. 

Since all ranges have numberx, range!! are a ru.uge ; con!!equently xa fr 
sometimes significant, and in these cases it'I denial is also significant. Con­
sequently there is a range w of ranges for which XEX is false : thus the 
Contradiction proves that this range u• dOPs nut belong to the range of 
significance of xu:. We may observe that ZEX can only be significant when x 
is of a type of infinite order, since, in XEU, u must alway11 be of a type higher 
by one than z ; hut the range of all ranges is of course of a type of infinite 

order. 
Since numbers are a type, the propositional function ":r is not a u," 
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where u is a range of numbers, must mean "x is " number which is not au"; 
unless, indeed, to escape this somewhat paradoxical result, we say that, 
although numbers are a type in regard to certain p1-opositions, they are not 
a type in reg11.rd to such propositionH as " u is contained in 11 " or "x is a u " 
Such a view is perfectly tenable, though it leads to complications of which it 
is hani to see the end. 

That propositions a1·e a type results from the fact-if it be a fact-that 
only propositions can significantly he said to be true or false. Ce1·te.inly 
true propositions appear to form a type, since they a.lone are asserted (cf. 
Appendix A. § 479). But if so, the number of propositions is as great as 
that of all objects absolutely, since every object is identical with itself, and 
"x is identical with :i:" has a one-one relation to x. In t,his there are, 
however, two difficultit>s. First, what we called the propo11itional concept 
appears to he alway11 an individual ; consequently there should he no more 
propositions than individuals. Secondly, if it is possible, as it seems to he, to 
form ranges of propositions, t.here must be more such ranges than there are 
propositions, although such ranges are only some among objecw (cf. ~ 3-13). 
These two difficultie11 are very seriou11, and demand a full discussion. 

499. The first point may be illustrated by somewhat simpler ones. 
There are, we know, more classes than individuals; but predicates are 
individuals. Consequently not all cl11.8!16s have defining predicates. This 
result, which is al110 deducible from the Contradiction, shows how necessary 
it is to distinguish cla.'lse!I from predicates, and to adhere to the extensional 
view of classes. Similarly there are more ranges of couple11 than there are 
couples, and therefore more than there are individuals ; but verbs, which 
express relations intensionally, a.re individuals. Consequently not eve1-y 
range of couples form11 the extension of some verb, although every such 
range form11 the extension of some propositional function containing two 
variables. Although, therefore, Yerbs a.re essential in the logical genesis of 
such propositional functions, the intensiona.l standpoint is inadequate to give 
all the objects which Symbolic Logic regards as relations. 

In the case of propositions, it seems as though there were always an 
a11sociated verbal noun which is an individual. We have "x is identical 
with x" and "the self-identity of x," "x differs from y" and " the difference 
of x and y" ; and so on. The verbal noun, which is what we called the 
propositional concept, appears on inspection to he an individual ; but this is 
impossible, for "the self-identity of x" has as many values as there a.re 
objects, and therefore m01-e values than there are individuals. This results 
from the fa.et that there are propositions concerning every conceivable object, 
and the definition of identity shows(§ 26) that every object conceniing which 
there are p1·opositions, is identical with itself. The only method of evading 
this difficulty is to deny that propositional concepts a.re individuals; a.nd 
this seems to be the course to which we are driven. It iR undeniable, 
however, that a propositional concept aud a colour are two objects ; hence 
we shall have to admit that it ill poBBible to form mixed ranges, whose 
members are not all of the en.me type, but such ranges will be always of 
a different type from what we may co.II pure rangeis, i.e. such as have only 
members of one type. The propositional concept seems, in fa.et, to be nothing 
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other than the proposition itself, the dilfereuce being merely the psychological 
one that we do not a.ssert the proposition in the one case, and do &l181!rt it in 
the other. 

500. The second poiut presents greater difficulties. We cannot deny 
that there are ranges of propositions, for Wtl often wish to assert the logical 
product of such ranges ; yet we cannot admit that there al'e more ranges 
than propositions. At first sight, the difficulty might he thought to be 
solved by thtl fact that therp h~ a proposit.ion associated with every range of 
propositions which is uot null, IllLmely the logical product of the propositions 
of the range•; hut this does not destroy Cantor's proof that a range haK 
more sub-ranges than members. Let us apply the proof by assuming a 
particular one-one relation, which associate11 eYery proposition p which iB not 
a logical product with the range whose only mPmher i11 p, while it associate11 
the product of all proposition11 with the null-range of propositions, and 
associates m·ery other logical product of propositions with the range of its 
own factors. Then the range w which, hy the general principle of Cantor's 
proof, is not correlatp,d with any proposition, is the range of propositionli 
which are logical products, but are not themselves factors of themselve11. 
But, by the definition of the correlating relation, w ought to be correlated 
with the logical product of w. It will be found that the old contradiction 
breaks out afresh; for we can prm,e that the logical product of w both is and 
is not a member of w. ThiK seems to show that there is no such range as w; 
hut the doctrine of types does not show why there is no such range. It seems 
to follow that the Contradiction requires further subtleties for its solution; 
but what these are, I am at a loss to imagine. 

Let us state this new contradiction more fully. If m he a claRS of 
propositions, the proposition "every m is true" may or may not be itself an 
m. But there is a one-one relation of this proposition to 111: if u be different 
from m, "every n is true" is not the same proposition as "every m is true." 
Com1ider now the whole class of propositions of the form "every m is true," 
and having the property of not being members of their respective m's. Let 
this class be w, and let p be the proposition "every w is true." If p is a w, 
it must possess the defining property of w; but thiM property demands that 
p should not be a w. On the other hand, if p be not a w, then p does possess 
the defining property of w, 11ond therefore is a w. Thus the contradiction 
appears unavoiclable. 

In order to deal with this contradiction, it is desirable to reopen the 
question of the identity of equiv11lent propositional functions and of tlae 
nature of the logical product of two propositions. These questions arise 
as follows. If ,1, be a claS11 of p~positions, their logical product is the 
proposition ·• every '" is true," which I shall denote by .-.'m. If we now 
consider the logical product of the class of propositions composed of m 

• It might be doubted whe\her the rela\ion of rangea of pro))Ol!iUona to their lo~cal 
products is one-one or many-one. For e:umple, doe& the logical product of p and q and r 
differ from that of pq and r? A reference to the dldinition of ihe logical product (p. 21) 
will set this doubt at rest; for the \wo logical products in ques\ion, though equivalent, ai-e 

by no mean& identical. Consequently there ia a one-one relation of all ranges ofpropoaition• 
to some propositions, which id directly contradictory to Cantor'& theorem. 
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together with ,. 'tn, this is equivalent to " Every ni i11 true and every n1 
i11 true,' i.e. to "every m is true" i.e. to "'m. Thus the logical product 
of the new class of propositions is• equivalent ro a member of the new class, 
which is the B&JDe as the logical product of m. Thus if we identify equivalent 
propositional functions ("'m being a. propositional function of m), the proof 
of the above contradiction fails, since every proposition of the form "'m is 
the logica.l product, both of a. clas11 of which it is a. member and of a class of 
which it is not a member. 

Rut such an escape is, in reality, impracticable, for it is quite self-evident 
that equivalent propositional functions are often not identical. Who will 
maintain, for example, that "x is an even prime other than 2 " is identical 
with "a: is one of Charles II. 's wise deeds or foolish 11ayings "1 Yet these 
are equivalent, if a well-known epitaph i11 to be credited. The logical product 
of all the propositions of the class composed of m and "'m is "Every proposition 
which either is an m or asserts that every ,n is true, is true"; and this is not 
identical with " every 1n is true," although the two are equivalent. Thus 
there seems no simple method of avoiding the contradiction in question 

The close analogy of thi11 contradiction with the one discussed in 
Chapter x strongly suggest11 that the two must have the same solution, 
or at least very similar solutions. It is possible, of course, to hold that 
propositions themselves are of various types, and that logical products muHt 
have propoHitions of only one type as factors. But this suggestion seems 
harsh and highly artificial. 

To sum up : it appears that the special contra.diction of Chapter x is 
ROlved by the doctrine of types, but that there is at least one closely 
analogous contradiction which is probably not soluble by this doctrine. 
The totality of &11 logical o~jects, or of all propositions, involves, it would 
seem, a fundamental logical difficulty. What the complete solution of the 
difficulty may be, I havt' not succeeded in discovering; hut as it affects the 
very foundations of reasoning, I earnestly commend the study of it to the 
attention of all students of logic, 
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Absolute, 226, 448 
Abstraction, principle of, ix, 166, 219, 242, 

285, 305, :114, 497, 519 
Acceleration, 474, 483; 

absolute, 490, 491 
Achilles and the tortoise, 350, 358 
Action and Reaction, 483 
Activity, 460 
Addition, arithmetical, 118, 307 ; of indi­

viduals, 71, 133-135; logical, 17, 21, 
llfi; ordinal, :il8; of quantities, 179, 
180; relational, 182, 254,; of relations, 
321 ; relative, 26, 387 n. ; of vectors, 
477 

Adjectives, 20 n., 42 
Aggregates, 67, 139, 442 ; 

and classes as one, 141; infinite, 143 
Algebra, universal, 376 
Aliorelative, 203 n., 32011. 
All, 72, 105, 113, 305 
AnalysiK, how far falsification, 141, 466; 

conceptual and real, 466 
And, 67, 69, 71, 130 
Angles, 20!i, 414; 

axioms of, 415, 416 
Anharmonic ratio, 390, 391, 420 
Antinomies, of infimty, 18R, 1!10-193; 

Kant's, 259, 458-461 
Any, 45, 46, 57, 105, 263, 305, 351; 

and kindred words, ,55, 36, 5!1, 89, 91 
Archimedes, axiom of, lRl, :!52, 2M, 288, 

332, 333, 337, 408 
Area, 333, 417 
Arithmetic, haR no indemonstrables, 127; 

and progressions, 240; relation-, 321 
Arrow, Zeno's argument of, 350 
Assertion, 34-311, 4R, 100, .;o2 ff, 
Assertions, 39, 44, 82, 83, 98, 106, 505 
Associative law, 307 
Assumptions, 503 
Axioms, iu Geometry, 373, 441 

Being, 43, 49, 71, 446, 449 
Bernouilli, 329 n. 
Bernstein, 306 n., 367 11. 
Bettazzi, 181 n., 185 
Between, 200, 201, 205, 207, 21t; 

~hree theories of, 208; is a. relation 

between itH terms? 210; 11nd difference 
of sense, 211 ; indetinahlr? 213; in 
projPctive Geometry, 3!11, 393, 426; in 
descriptive Geometry, 393 

Bolyai, 373 
Bolzano, 70, :!01 n., 307, 36711. 
Boole, 10, 24, 376 
Borel, 30Gn., :l!i7n. 
Bradley, 41, 4311., 47, 90, 09, 16111., 221, 

224, 448, 471 
Burali-Porti, 11211., 323, 364 11. 

Calculu~, propositional, 13--18; of claseca, 
18-23; of relationH, 23-26; logical, 142; 
infinitesimal, 2,i\l, 276, 304, 325--330, 
331l lJ.; principles of a, 376 

Cantor, Georg, viii, 101, 111, 112, 11!), 120, 
l:!171., 14-1, 1.57, Hil, 177, 19!1, 23911., 
245, 2/i!J ff., :.!67, 270 ff., 2R2, 331, 334, 
:147, 350, :153, 371, 375, 381, 3\10, 
437 fl,, 444, 627; 

on irrationalR, 283; on continuity, 2R7ff.; 
on transfinite cardinal~, 304-311; on 
transfimtP ordinals, 312-324; on infi­
nitesimal Aegmcnts, 335 ; on orders of 
infinity, 331i; against gree.teRt number, 
363 ff. 

Carroll, Lew1R, 18 n., 3.5 
CaaRirer, 287 n. 
Cauchy, 329 n. 
Causal laws, 4Hl, 486 
CanHality, 474-479, 481; 

in rational dynamics, 479 
CauHation, of particulars by particulars, 

vii, 475, 477, 481, 487 
Cause, equal to effect? 49fi 
Cayley, 42211, 
Chain, 245, 2t8; 

of an clement, 245, 2t8 
Change, 347, 469 ff. 
Chasles, 420 
Circle, postulate of, 438, 440 
Class, v, ix, 18 ff., 40, 66-81, 349, 366, 

497, 610 ff.; 
extensional view of, 20, 67, 69, 131 ff., 
513, 5:.!6; intenRional genesis of, 67, 616; 
concept of, 8'1; &R many, 68, 76, 104, 
106, 132; as one, 76, 103, 104, 106, 
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182, 618, 628 ; alwa.ys definable by a 
11redicate? 98, 626; when a. member of 
itself, 102; defined by relation, 97, 98; 
or terms not having a given relation to 
themselves, 102; multiplicative, 808; in­
finite, 72, 106, 260, 306, 856, 857; de­
numerable, 809; and well-ordered series, 
322; of one term, see Individu,1l 

Clase-concept, 19, 20, 64, 56, 58, 67, 101, 
118· 

dietiu~t from class, f,8, 116, 131, 614 
Clifford, 434 
Cohen, 276 n., 826, 338-345 
Collections, 69, 138, 140, 1a3, 514 
Colours, 466, 467 
Commutative law, UR, 240, 807, 312 
Composition, lT, 31 
Concepts, ~. 211, 608 ; 

as such and as terms, 45; variation or, 
86 ; propositional, 503, 526 ; ca.n they 
be subjects? 46, 507, 510 

Congruent figures, 417 
Conjunction, numerica.l, 117, 67, 72, 113, 

131 ff.; proposit1onal, 117; variable, 117 
Connection, 202, 239 
Coneecutive, 201 
Constants, logical, 3, 7, 8, 11, 106, 429; 

a.nd para.meters, 6 
ConRtituent, of a proposition, 356, 510 ; 

of a whole, H3, 144 
Continuity, 188, 1!13, 25!!, 286 ff., 368; 

Dedekind's axiom of, 279, 294; ordinal, 
296-303; philosophy of, 346-354; anti­
nomies of, 347 ff.; in projective Geo­
metry, 387, 390, 437; of Euclidean 
apace, 438 ff. 

Continuum, in philosophical sense, 146, 
440; in mathematical sense, 297, 189 n., 
810; composed of eleme11ts, 344~ 347, 
858, 440 IJ. ; primarily aritlunetical, 444 

Contradiction, the, vi, ix, 20, 66, 791 97, 
101-107, 806, 362, 613, 615, 517, 523, 
/i24, 525; 

Frege's solution of, 522; law of, 455 
Coordina.tes, 439; projective, 885, 388, 390, 

422, 427 
Correlation, 260 ; of cl118scs, 261; of series, 

261, 321 
Counting, 114, 138, 309 
Couples, a.re relations classes of? 24, 99, 

624; with sense, 99, 612, 5:14 
Couples, separation of, 200, 205, 214, 237; 

a.nd transitive a.symmetrical relations, 
215, 238; 1n projective geometry, 386, 
887 

Coutura.t, 66, 194 11., 267 n., 291 n., 296 n., 
310n., 326 n., 41011,, 441 n. 

Cremona., 384 n., 420 

Dedekind, 90, 111, 167, 199, 239 n., 245-
251,294,307,315, 857n., 381,387,438; 

on irrationals, 278 ff. 
Deduction, 522 ; principles of, 4, 15, 16 
Definition, 15, 27, 111, 429, 497; 

and tht, 62; always nominal, 112; by 
abstraction, 114, 219, 249 

De Morgan, 23, 64n., 218n., 219n., 826, 8?6 
Denoting, 45, 47, 113, 106, 181; 

and predicates, 54; and any, etc., 56, 62; 
a.re there different kinda of? 56, 61 ; a.nd 
identity, 68 ; and infinite cla.ases, 72, 73, 
145, 350 

Derivatives, of a. series, 290 ff., 823; of 
functions, 328 

Descartes, 157 
Dichotomy, Zcno's argument of, 348 
Different,a.J coefficients, 173, 31111 
Dimensions, 372, 371; definable logica.lly, 

376 ; axiom of three, 388, 399 
Dini, 324n., 327, 328n., 329n. 
Direction, 435 
Disjunction, 15 n., 17, 31; va.ria.ble 111\d 

constant, 22, 68 
DiKtance, 171, 179, 1R2n., 1\)5, 252-256, 

281'1, 353; 
measurement of, 180, 181, 254, 408; and 
order, 204, 409, 419; and relative posi­
tion, 252; not implied by order, 252, 
254 ; definition of, 253; and limits, 254; 
and stretch, 254, 342, 852, 408 ff., 435; 
in Arithmetic, 254; axioms of, 407 ff., 
413, 424 ; end straight line, 410 ; pro­
jective theory of, 422, 425, 427 ; de­
scriptive theory of, 423-5 

Distributive law, 240, 307 
Diversity, 23; co11ceptual, 46 
Divisibility, infinite, 460 
Divisibility, ma.g11it11de of, 149, 151, 153, 

173, 230, 333, 345, n1, 425, 428; and 
mea.surement, 178 ; not a property of 
wholes a.s such, 179, 412 

Domain, see Jlelation 
Dna.lity, logical, 26; geometrical, 375, 892 
Du Bois Ueymo11d, 18111., 254, 336 
Dynamics, vi ; as pure ma.thematics, 465; 

two principles of, 496 

Economics, ma.thema.tioa.l, 233 n. 
Electricity, 494, 496 
Empiricism, 373, 492 
Epistemology, 339 
Equality, 219, 339; of olaBRes, 21 ; of re-

lations, 24 ; of quantities, 159 
Equive.lenoe, of propoeitious, 15, 527 
Ether, 485, 496 
Euclid, 157, 287, 373, 404, 420, 488; 

his errors, 405-!07 
Euler, 32!1 n. 
E vellin, 352 
Existence, vii, 449, 458, 472; 

of a. class, lll, 32 
Existence-theorems, i:1, 322, 431, 497; 

and Euclid's problems, 404 
Exponentia.tion, 120, 308 
Exportation, 16 
Extension and Intension, 66 

Fa.no, 386 n. 
Field, see Relation 
Finite, llll, 192, 371 
Finitude, axiom of, 188, 191, 460; abso­

lute and relative, 332 
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Force, 474, 482 
Formal truth, 40, 105 
Formalism, limHs of, 16, 41 
Formula, 267 
Fractions, 149, 150, 1111 
Frege, vi, viii, 19, 68 11., 78 rt., 111, 124 n., 

132, 142, 451 n., 501 ff.; 
three points of disagreement with, 501 ; 
his three elements in judgmcnt, 502 ; 
bis sign or judgment, 50a, 51\1 ; his 
theory of ranges, 505, 510 ff.; his Be­
grilJ, 505, 507; his Symbolic Logic, 518; 
his Arithrnet10, 519 ; !Jis theory of pro­
gressions, 520; Kerry's critJcism of, 520 

Frischauf, 410 
Functions, 32, 262, 268; non-serial, 263 ; 

numerical, 265; complex, 266, 376 ; real, 
824; oontinuous, 3118; Frege's theory of, 
506 IJ. 

Functions, propositional, 13, 19, 82-88, !12, 
:163, 356, 508 ff.; definabfo 'l 8a ; inde­
finable, 88, 106 ; more n uruerous than 
terms~ 103 ; and the contradwtio11, 103 ; 
with two variables, 9!, 506 ; and elaseeR, 
19, 88, 93, 98; variable, 103, 104 ; car­
dinal number of, 367; range of s1gmfi­
cance of, 623 

Fundamental bod1F~, 491 

Generalization, 7; algebraica.I, 267, 377 
Geometry, 1!19, 372 ; distance aud stretch 

theories of, 181 ; and actual space, 372, 
374; t!Jree kinds of, 381 ; based on dis­
tance, 410, 492; and order, 419; has no 
indemonstrables, 429 

Geometry, descriptive, 199, 382, 393-403; 
indefinables of, 394, 3\!5, 397; axioms 
of, 394 ff.; their mutual mdl'pcndence, 
396; relation to projective Geometry, 
400 ff.; and distance, 423-42/S 

Geometry, elliptic, 206, 382, 3!ll, 399, 413; 
Euclidean, 391, 39\J, 442; hypel'l1olic, 
255, 382, 391, 399; non-Euclidean, 158, 
179, 255, 373, 381, 436; of position, ;19;1 

Geometry, metrical, 382, 392, 403, 404-418; 
and quantity, 407; and distance, 407; 
and stretch, 4U ; relation to proJecttve 
and descriptive Geometry, 419-428 

Geometry, projective, 199, 206, 3tll-392; 
and order, 385 ff., 31:l!I, 421; ret1uil'es 
three dimensions, 394, 3!19 n.; differeuces 
from descriptive Geometry, 419 ; inde­
pendent of metrical Ueometry, 419-421; 
history of, 420; and distance, 421,425,427 

Gilman, 203 "· 
Grammar, 42, 497 
Grassmann, 376 
Gravitation, 486, 487, 490, 4!11 
Greater, 122, 169, 22'J, 306, 323, 36-l 
Groups, continuous, 436 

Hamilton, 376 
Harmonic relation, 384 
Hegel, 100, 137, 287, 346, 355 
Helmholt:>., 241 
Hertz, 494-41!6 

Heymans, 48\l 
Hilbert, 384 11., 40611., 416 n. 

Idea and object, 450 
Identity, 20, 96, 219, 502; 

distinguishe,l from e<jUality, 21; and 
denoting, 63 ; or indiscernibles, 451 

Imaginaries, 376 
Impenetrability, 467, 480 
lmphcat1011, formal, 5, 11, 14, 88---41, 89, 

106, 518 ; aset>rts a class or material 
implications, 31:l; and a11y, etc., 91 

lmphcation, m,1t,•rie.l, H, 26, 33-36, 106, 
203 11. ; Frege's theory of, 5111 

Importation, 18 
IncluRion, or classes, Ul, 3l\, 40, 78 
lncommensurablcs, 287, 431:l, 439 
lhcorupat,bility, synthetic, 233 
Indefinables, v, 112 
Indication, 502 
Individual, relation to class, HI, 19, 26, 

77, 103, .il2, 522; distinct from class 
whose only member it 1s? v,, 2il, 68, 
106, 130, 513, 514, ol 7 

Induction, 11 "·• 441 ; mathematical, 123, 
192 240 245 2 rn 248 260 307 314 
315: 357: 371,' 520' I , I I 

Inertia, law of, 482 
Iuextensive, 342 
lnferenct>, asyllogi•tic, 10; and deduction, 

ll 11.; logical and psychological, 33; two 
premisses unnecessary, 3,j 

Infinite, 121, 25!1, 21i0, 315, 368; 
antinomies of, 188, 1!10, 35,; ; not epe• 
cially 4uantitat,ve, 194; as limit of 
segmrnt•, 273 ; mntheme.tical theory of, 
304, 355; philosophy or, 355-368; im­
proper, 331-337; orders of, 335 

Infinitesimal, lt18, 260, 276, 325, 330, 331-· 
337; 

defined, 331; instances of, 332; philo­
sophy of, 338-345; and coutinuity, 1144; 
and change, 34 7 

Integer•, infinite classes of, 299, 310 11. 

Integral, definite, 329 
Intensity, 164 
Interaction, 446, 453 
Intuition, 2fi0, 339, 456 
Involution, 38.'\, 426 
Is, 4!), 64 11., 100, 106 
Isolated points, 290 

Jevons, 37fi 
Johnson, viii, 435 n. 
Jordan, 329 11. 

Kant, 4, 143, 158, 168, 177, 184, 22311., 
227, 259, 326, 339, 342, 3:i5, 373, U2, 
446, 4i,O, 454, 451i-4lil, 489 

Keny, 505, 520----522 
Killing, 40011., 404 n., 405 ,i., 415 11., 43411. 
Kinetic axes, 490 
Kirchoff, 4 74 
Klein, 38J, 38!1, 39011., 421, 42211., 424,i., 

42611., 434 "·· 43(i 
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Kronecker, 241 

Law, 268 
Leibniz, 5, 10, 132, 148, 144, 145 11., 221, 

222, 227, 228, 252, 287, 306, 325, 
329 71,, 338, 342, 347, :155, 410, 44011., 
445, 450, 451, 456, 461, 489, 492 

Lie, 436 
LikenesM, 242, 261, 282, 317, 321 
Limitation, prinmple of, 314 
Limiting-point, 290, 323 
Limits, 276 ff., 320, 361 ; and infinity, 

188, 189, 260; and contin11ity, 358; 
conditions for exiMtence of, 291 If., 389; 
and the infinitesimal calculus, 325, 339; 
_or functions, 327,328; and magnitude,:1141 

Lme, see Str,ught 
Line-Geometry, 432 
Linearity, axiom of, 181, 252, 254, 408 
Lobatehew8ky, 373 
Logic, symbolic, 10-32; three parts of, 11; 

and mathemo.ticK, v, 5, 8, IOii, 3!17, 429, 
457 

Lotze, 221, 446 II'. 

Macaulay, 491 
Mach, 474, 489, 492 
Magnitude, 159, 164 ff., 194; relative theory 

of, Hi2; absolute theory of, Hi4; axioms 
of, 163, 165, 168; kinds of, 164, 334; 
and divisibility, 173; and existence, 174, 
177, 342; extensive, 182; intensive, 11:!2, 
326, 342; discrete and continuous, 1!13, 
346; positive and negative, 229-231 ; 
infinitesimal, 332; hm1tmg, 341 

Mamfold, 67 
Mass, 481 n., 483, 488, 495; 

centre of, 4!J0 
Mathematics, pure, vii, 8, 106, 112, 397, 

429, 466, 497; applied, 5, 8, 112, 42!); 
arithmetization of, 259 

Matter, 465-468; as substance, 466; 
relation to space and time, 467; logical 
definition of, 468 

Maxwell, 48!1 
MoColl, 12, 13, 22 
Mean mg, 47, 502 
Measure, Zeno's argument of, 352 
Measurement, 157, 17~183, 195; 
Meinong, 55 11., 162 'll,, 168, 17111., 173 11., 

18ln., 184,187,252, 253, 28!1, 4UJ, 50211., 
603 

Mill, 373, 522 
Mobius net, 385, 388 
Monadism, 476 
Monism, 44, 447 
Moore, viii, 24, 44 n., 51 n., 446 n., 448 n., 

464 n, 
Motion, 265, 344, 405, 469-473 ; 

state of, 351,473; in geometry, 406, 418; 
logical definition of, 4'73; laws of, 
482-488; a.bsolute and relative, 489-493 ; 
Hertz's law of, 495 

Motions, kinematical, 480 ; kinetic, 480 ; 
thinkable, 494; possible, 495; natural, 
4116 

Multiplication, a.rithmetical, 119, 807,308; 
ordmal, 318 

nth, 243, 250, 312 
NecesRity, 454 
Negation, of propositions, 18, 31; or classes, 

23, 31, 524; of relations, 26 
Neumann, 490 
Newton, 325, 338, 469, 481, 482-492 
Noel, ,H8, 352 
Null-class, vi, 22, 28, 32, 38, 68, 73, 106, 

617, 525 
Number, algebraical generalization of, 267 
Number, cardinal, logical theory of, 111 ff., 

241, 519, 520-522; detinable '/ 111, 1'12, 
130; defined, 115, 305; and classes, 112, 
305, 306, 519; defined by abstraction, 114; 
transfimte, 112, 260, 304-311; finite, 124, 
260, 357; Dedekind's dufinition of, 247, 
249 ; Cantor's delinitrnn of, 304; addition 
of, 118,307; multiphl'ation of, 119, 307, 
308; of finite integer,q, 122, 309, 364; 
wt!ll-ordereil, 323, 364; of the continuum, 
310, 364 ; is there a greatest'/ 101, 3(i2 ff.; 
of cardmal number.s, 362; of classes, 362; 
of propositions, 362,526, 527 ; as a logical 
type, 525 

Number, ordinal, 240, 31!1; defined, 242, 
317; Deilekind's definition of, 248; not 
prior to cardinal, 241, 24!1-251; trans­
finite, 240 11., 260, 312-324; finite, 243, 
260 ; of finite ordinals, 243, 313 ; second 
cln..~• of, 812, 315, 322 ; two principles of 
formatwn of, 313; add1t1on of, 317; 
subtraction of, 317; mult1plico.tion of, 
318; division of, 318; no greatest, 323, 
364; positive and negative, 2H 

Number, relation-, 262, 321 
Numbers, complex, :17:l, 376 ff., 8'19 · 

ordmal, series of, 32:l ; posit1 ve and 
negative, 22!1 ; real, 270 

Numbers, irrational, 157, 270ff., 320; arith• 
metical theories of, 277 ff. 

Numbers, rational, 149 ff., 259, 835; car­
dinal number of, 310; 01·dinal type of, 
296, 316, 320 

Object, GG n. 
Occupation (of space or time), 465, 469, 

471, 472 
One, 241, 356, 520; definable? 112, 130, 

135; applicable to individuals or to 
classes? 130, 132, 517 

Oppositeness, 96, 205 
Order, 199ff., 207-217, 255; 

not psychological, 242 ; cyclic, 199; and 
infinity, 188, 189, 191, 195; in projective 
spe.oe,385 ff., 389; in descriptive space, 
394, 395 

Ordinal element, 200, 353 

Pa.doe., 111 11., 114 n., 125, 205 
Parallelism, psychophysical, 177 
Parallelogre.m le. w, 4 77 
Parallels, axiom of, 404 
Pa.rt, 360; proper, 121, 246n.; ordinal, 361; 
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three kinds of, 1S8, HB; Bimilarit:, to 
whole,121,143,800,Bl6,850,866,S68,871 

Pr.acal, 420 
Pr.ach, 390 n., 891 n., 393 ff., 407 n., '17 
Peano, vi, vii, 4, 10 ff., 23, 26-32, 86, 82, 

68, 78 ff., 111, lH, ll5, 131, 139, H2, 
162, 15911., 163n., 19!1, 20611., 219, 
24ln., 2'8, 270, 290, HOOn., 328n., 
834 11., 885, SU, 860, 410, 487, 448, 
601, 514, 519; 

hia iodelinablee, 27, 112; his indemon­
atr&ble11, 2!1; his Arithmetic, 124-128, 
238 "· ; on real numbera, 274; on de­
acriptive geometry, 893 If. ; on theory or 
vectors, 492 

Pearson, 474, 489 
Peirce, 23, 26, 203 n., 232 11., 320 n., 376, 

387 ri. 
Pencils of fllanea, 400 
Perception, its function 10 philosophy, v, 129 
Permutations, 118 
Philosophy, of Mathematica, 4, 226 ; dis­

ti11gu1shed from Mathematics, 128 ; and 
Ma&hematics, 338 

Pieri, 199, 216 11, 982 ff., 410, 421 
Planes, projective, 384; kinda of, 3!11 ; 

deacriptive, 3!18 ; ideal, 400, 402 ; metri­
cal, 410 

Plato, 79, 365, 357, 438, 446 
PleasUN', quantity of, 162,174; magnitude 

of, 164; and pain, 233 "· 
Pluralism, viii 
Poincare, 347 
Po1ot-pa1rs, 426 
Poiota, 382, 3\14, 437, 443; 

rational and irrational, 389 ; ideal, 400 ; 
proper and improper ideal, 423 ; 1ma­
gin,u-y, 420; logical objection& to, H5-465 ; 
material, 445; ind1sc.,rnible? 446, 451 

Poa1t100, abaolute and relat1vJ, 220, 221, 
444 ff. 

Power, 364 n. Hee Nu1,1btT, cardiri,d 
Predica&ea, M, 56 ; predicable of t~maelves, 

96, 97, 10'..! 
Premiss, empirical, 441 
Present&tiooa, 446, 460 
Primes, ordinal, 319 
Prooesa, endless. See Regre11. 
Product. logical, of propositions, 18, 51!1, 

627 ; of classes, Ill 
Product, relative, 18, 98 
Progreaaions, 199, 239 ff., 247, 21!.'i, 313, 

314, 520; 
existence of, 322, 497 

Projection, 390, 893 
Proper names, 42, M, 602 _ 
Propositions, ix, 13, 15, 211, 502, 52,;; 

unity of, 50, 51, 107, ~89, 466,507; w~en 
analysable into subiect and assertion, 
88 ff., 100, 505-510; can they be inlinit.e­
ly complex ? US; cardinal number of, 
867; contradict1on u to number or, 627 ; 
emt.enLial theory or, viii, '49, 493 

Quadratic fnrma, 11K, 612, 514 
Quadrica, 408 

Quadrilateral conatruotion, 8811, 884 ; in 
metrical geometry, 417 

Quantity, 1119; relation to number, 167, 
15H, 160: not alway11 divisible, 100, 170; 
Hometimea a relation, 161, 172; range of, 
170--175: and infinity, UIS; does not 
occur in pure mathematic■, 168, 419 

Quaternions, 432 

Rangl'a, 5ll ff., 524; e11teneion&l or in-
tt>na1on&l ? 611 ; double, 612 

Ratio, HI, S:JG 
Raye, 281, 39R, 414; order of, 416 
Reality, Kant'■ category of, 342, SU 
Re,luctio11, 1T 
Referent, 24, 98, !19, 263 
UegreBR, endlt•Rs. 50, 9!1, 228, 948 
HcJ(ression, 1191, 1100, 820 
Relatwn, H, 107; peculiar to two termR, Ill, 

!l'J, 268; domam or, 26, 97, 9H; oonverllt' 
domain of, 97, 9H; field of, 97, 98; in 
itself and as rPlatmf(, 49, 100; of a term 
to itselr, 86, !Mi, !17, 105; detinabll' aR a 
cla,e of coul'leK '! 9\1, 512; of a n•lation 
to its terms, 99; fundame11tal, 112 ; when 
analyzabll', 16:1; parLicularazed by 1t11 

term a, lil n., 52, 21 t ; finite, 181 
ltl'lation11, i11tt-11s1onal view of, 24,528,526; 

ext,mRmnal vww or, !19, 523, 526; nwn-
1st1c and monad1Rt1c theorie11 <1(, 221 ff. ; 
as functions of two vat iables, 507. 621 ; 
converse of, 211, 9S, 97, 20111., 2'l8; reality 
of? viii, 9!1, 221, 224, 4·'6 ff. ; HBnBII of, 86, 
95, 99, 107, 225, 227; difference from 
number&, !15; with aHsigned domains, 26, 
21iH; types of, 8. 23, 403, 4:Jli; eymmetri­
co.l, 20, 9fi, 114, 20:h., 218; asymmetrical. 
Ill, 200, 203 "·• 118-2'lli; not-11:,mmetrical, 
Ill, !16, 118; transitive, 114, 203, 1118; m­
transitave, 118; not-tro.osit1ve, 918; re­
flexive, 114, 1591&., 119, 220; many-ont', 
114, H6fl; 0nll-one, llS, 130, ao:,; non­
repeatmg, Ill "· ; Reri&l, 242; propo­
sitional, 510; triauKular, 204, 211, 471, 
472. See v~rba 

Uelat1on-11umber. See Nllmbn·, r1•lt,1io11-
RPlatum, 24, 98, 99, 26:i 
Representation, o( a RyHtem, SM 
Resemblance, immediate, 171 
Rest, 265 
Reye, 40311. 
Riemann, 266 
Hight and Mt, 22311., 231, 417 
Higidity, 405 
Bot&t1on, absolute, 489 ff. 

Schroder, l0n., 12n., 13, 22, 24, 26, 142, 
20111., 22111., 232, 806 n., 32011., H67 "· 

Segment•, l'fl, 359; and limitK, 2'J2; 
completed, UI, 303; ol compact aeriet1, 
2'J9-302; of well-ordered aerieR, 31411.; 
intin1tea1mal, 384, 353, 868; in proiective 
geometry, 985 ff. ; in descriptive geometry, 
99,, 897 

Semi-continnum, SID 
Separa,ion. See Cttu11l1!1 
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Series, 199; compact, 198 n., 208, 259, 271, 
277,287,289, 299-803; closed, 202, 204, 205, 
284-238, m, 381,387; infinite, 204,239; 
denumerable, 296, 298; continuous, 205, 
271, 287 ff.; well-ordered, 310, 111, 322, 
363 ; independent, 262 ; by correlation, 
262, 363; complete, 269, 303; perrect, 
273, 288, 290, 191, 297; coherent, 274, 
2H3, 297; cohe111ve, 181; fundamental, 
283, 2!17; am1ple and multiple, 372; and 
dManct', 204; and triangularrelationR, 204 

8btiaveM, 400 
Sign, difftir1mce of, 227-233 
Similarity, of classes, 113, 249, 261, 305, 

356; of null-classes, 521; of whole 1.md 
part, see P11rl 

Rimpli&cation, 18 
Some, distinguished from a, .j61t., 59 
BJl&ee, 872, 436, 442; an infinite aggregate, 

143, 443, 45r.; absolute, 227, 44511.; 
finite and infinite, 403; contmu1ty of, 
437-444; subjective? 4-16; empty, 446, 
44!1, 465; a priori? 4fi4 ; and existence, 
vii, 4fiH, 461 

SpaaeH, projective, defined, 430; Euclidean, 
defined, 432; Clifford'ij, ,folioed, 434 

Spinm:a, 221, 4iH 
Staudt, von, 199, 211l, 333, 384, 38511., 421, 

427n. 
Stolz, 00, 28211., 28311., 334,33(1, !17811., 379 
litmight lineH, elliptic, 205; proJecth·e, 

3H2 ff., 387, 3\11; ae11mentR of proJectivti, 
31!5 ; dl'scriptive, 394-391!; Hegmeuts of 
descriptiw, 394, 397 ; ideal, 400, 
402; mtitrical, 410; kmds of, 382, 3!11; 
and distance, 410, 492 

Streint:i:, 491 
Stretch, 11!1, 18211., 230, 254, 281!, 342,353, 

408 ff., 42/i 
Sub-clasaes, 11umb1!r containt.>d in a given 

class, 361l, 527 
Subjt•ct, and prl'<licute, 47, 54. 77, 95, 211, 

221, 448, 4r,1, 471; logical, co.n it be 
plural? ti9, 76, 1311, 136, 516 

Ruhstance, 43, 471 
NubetantiveH, 42 
Such that, 3, 11, 19, 10, 28, 79, 82 
Sum, lol{ical, 21 ; relative, 18 
Superposition, 101, 405 
Syllogism, 10, 18, 21, SO, 457 
System, singly infinite, 24ii, UT 

Tautology, law of, 13 
'fem1s, t3, 51> 11., Ui2, 211, -148, 471, 522; 

of a proposition, tl, 95, 211 ; combina­
tions of, 55, 58; sim}'ll' and complex, 
137; of a "bole, lU; principal, in a 
aeries, 297 ; four claslltls of, 46;,; car­
dinal numhor of, 362, 366 

Tetrahedra, 387, 3\111 
'fhan, 100 
The, 62 

Therefore, •• 504 
Things, M, 106,486, 506; and change, 471 
Time, an infinite a.gregate, 1'4; relational 

theory of, 265; Kant's theory of, 456,468 
Totality, 362, 868, 528 
TranacendentalA.esthetic,259; Dialeotic,259 
Triangles, 387, 398 
Trios, 525 
TriMtram Shandy, paradox of, 358 
Truth, 3, 35, 48, 504 
Truth-values, 502, 519 
Two, 185; not mental, 451 
Types, log1cal, 103, 104, 107, 131, lBP n., 

367, 361!, 521, 523-528; minimum, 624, 
525; mixed, 524, 526; number of, 525; 
of mllnite order, 525 · 

Types, ordinal, 261, 321 

Unequal, 180 11. 

Unit, 136, HO; matPrial, 468 
Umtiea, 139, 442; infinite, 144, 223 n.; 

organic, 466 

Vacuum, 468 
Vaihmger, 446,1., 456 
V11ilat1, 205, 215, 235, 393 ,1., 394, 395, 413 
Validity, 450 
Variable, 5, 6, 19, 1!9-94, 107, 264; 

apparent and real, 13; range of, 86, 
5HI; 1is concept, 86; and generality, 
90; in Arithmetic, YO; does not vary, 90, 
au, 351 ; restricted, 90; conjunctive and 
d1HJDDct1ve, 92 ; individuality of, 94 ; in­
dependent, 263 

VectorN, 432 
Velocity, 473, 482 
Verba, 20n., 42, 47-52, 106; and relations, 

49,526 
Vitita, 157 
Vivanti, 203 "·• 288 "·• 30711., 308 
Volumes, 231, 333, 417, 440, 443 

Ward, 474, 489 
Weierstrass, l ll, 157, 25!f, 326, 347, 473; 

on irrationals, 2~2 
Whitehead, vi, viii, 119, 253 n., 299 n., 

30711., 308, 31111., 822, 376n., 377, 
424 "·· 426 

Whole~, 77, 187; distinct from claues as 
many, 6!1, 132, 13411.; and logical 
prioiity, 137, 147; two kinds of, 138; 
di11ti11ct from all their parts, 140, 141, 
225; intlnitl', 143-148, 333, 349; alwaya 
either agii:regates or unities? 146, 440, 
460; collective and distributive, 348: 
and enumeration, SOO 

Zeno, 347 ff., 35.;, 358 
Zero, 168, 1115, 356; Meinong'a theory of, 

184, 11!7 ; as mini.mum, 18fi; of di1tance, 
11!6; as null-segment, 11!6, 273; and 
Uf!llation, 1116, 11!7; and existence, 187 
Zermelo, 30611. 
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