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Series Foreword

The MIT Press series on Economic Learning and Social Evolution

reflects the continuing interest in the dynamics of human interaction.

This issue has provided a broad community of economists, psychologists,

biologists, anthropologists, mathematicians, philosophers, and others

with such a strong sense of common purpose that traditional interdisci-

plinary boundaries have melted away. We reject the outmoded notion

that what happens away from equilibrium can safely be ignored, but

think it no longer adequate to speak in vague terms of bounded rational-

ity and spontaneous order. We believe the time has come to put some

beef on the table.

The books in the series so far are:

� Evolutionary Games and Equilibrium Selection, by Larry Samuelson

(1997). Traditional economic models have only one equilibrium and

therefore fail to come to grips with social norms whose function is to

select an equilibrium when there are multiple alternatives. This book

studies how such norms may evolve.

� The Theory of Learning in Games, by Drew Fudenberg and David

Levine (1998). John Von Neumann introduced ‘‘fictitious play’’ as a way

of finding equilibria in zero-sum games. In this book the idea is reinter-

preted as a learning procedure and developed for use in general games.

� Just Playing, by Ken Binmore (1998). This book applies evolutionary

game theory to moral philosophy. How and why do we make fairness

judgments?

� Social Dynamics, edited by Steve Durlauf and Peyton Young (2001).

The essays in this collection provide an overview of the field of social

dynamics, in which some of the creators of the field discuss a variety of

approaches, including theoretical model-building, empirical studies, sta-

tistical analyses, and philosophical reflections.



� Evolutionary Dynamics and Extensive Form Games, by Ross Cressman

(2003). How is evolution a¤ected by the timing structure of games? Does

it generate backward induction? The answers show that orthodox think-

ing needs much revision in some contexts.

Authors who share the ethos represented by these books, or who wish

to extend it in empirical, experimental, or other directions, are cordially

invited to submit outlines of their proposed books for consideration.

Within our terms of reference, we hope that a thousand flowers will

bloom.
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Introduction

Cleaning Test Tubes

When I started doing experimental work in the 1980s, the subject was in

its infancy among economists, but one set of findings was thought to be

rock solid. Game theory doesn’t work in the laboratory. People don’t

play Nash equilibria. They don’t use their maximin strategies in two-

person, zero-sum games. They even cooperate in the Prisoners’ Dilemma.

But the rock on which these certitudes were based has crumbled away.

It is true that unmotivated subjects in unfamiliar situations don’t play as

game theory predicts. So if game theory had to predict interactive human

behavior under all circumstances to be worthy of attention, it would in-

deed be a failure. But who would want to claim of any theory that it

work in all environments? Just as Newton’s laws of motion don’t predict

well at the bottom of the sea, so game theory can’t reasonably be

expected to work in environments in which its tacit assumptions have no

chance of being true. So what is the kind of environment in which we

might reasonably expect game theory to predict well?

Favorable Environments

A conservative specification of a favorable experimental environment for

game theory requires that all three of the following criteria be satisfied:

� The game is simple, and presented to the subjects in a user-friendly

manner.

� The subjects are paid adequately for performing well.

� Su‰cient time is available for trial-and-error learning.

Critics rightly say that these criteria are too stringent to cover all the eco-

nomic situations to which game theory gets applied, but who would want



to defend each and every crazy application of the theory? Such enthusi-

asts certainly exist, but they seem to me no less misguided than the skep-

tics who determinedly turn a blind eye to any evidence that isn’t hostile to

game theory.

My three environmental criteria aren’t intended to be hard-and-fast

necessary and su‰cient conditions for game theory to predict human

behavior. Game theory sometimes works when one or more of the cri-

teria aren’t satisfied. It sometimes fails when all three criteria are satis-

fied. However, the successes are now so well established that the first

response to finding that a game-theoretic prediction fails in a labo-

ratory when all three criteria hold is to ask the same question that

chemists ask if something unexpected happens when they mix reagents

together:

Did I clean my test tubes properly?

Bargaining

My own attempts to work with clean test tubes in the laboratory largely

fall into two categories: experiments on bargaining and experiments on

auctions. The latter work was all conducted on behalf of governments

and commercial enterprises. I don’t report on it here, partly for reasons

of confidentiality, but mostly because nobody seems to doubt that game

theory is a useful guide to predicting human bidding behavior. All but

one of the papers from my experimental repetoire that make up this

volume are therefore devoted to tests of game-theoretic models of

bargaining.

The case of bargaining is a particularly challenging case for game

theory—perhaps the most challenging case of all. Everyone agrees that

human behavior in real-life bargaining situations is governed at least

partly by fairness considerations that we don’t understand very well. But

what happens when such fairness considerations conflict with game-

theoretic predictions in the laboratory? Will people adapt their behavior

so that they end up playing a novel bargaining game strategically? Or

must we expect them simply to play fair?

Even when the test tubes are clean, experiments on bargaining models

therefore come with the dice loaded against game theory. But I hope that

the evidence to be presented will justify my boldness in defending the

theory in a case where skeptics think the arguments in its favor are at

their weakest.
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The Behavioral Challenge

I think the claims made for game theory in the previous section would be

uncontroversial if the issues weren’t clouded by an emotional debate that

seems to me entirely orthogonal to the issue of whether or not game

theory works. This is the question of whether people are inherently self-

ish, or whether they care about those around them.

Although I think the question isn’t central to the issue of whether game

theory works, it isn’t possible to get a hearing nowadays for the kind of

experimental results I report here without confronting this controversy,

since the behavioral economists who emphasize the importance of other-

regarding or social preferences commonly believe that their findings rep-

resent a threat to traditional game theory.

No amount of denial seems capable of altering their conviction that

game theorists like myself must necessarily believe that human beings

have no interest whatever in playing fair when the chips are down. I some-

times try to shake their certitude by pointing out that I have probably

written more on how and why fairness matters than any economist ever,

but I find this gets me nowhere because the reasons why I think social

preferences matter are so di¤erent from theirs (Binmore 1994, 1998, 2005).

The rest of this introduction is therefore devoted to making three

points. The first is that the behavioral school could well be right in claim-

ing that people have strong other-regarding preferences without their

results presenting any challenge to game theory at all. The second is that

one can believe that social preferences matter enormously in human con-

duct without agreeing at all with the behavioral school about how they

matter. The third is that the level of scientific rigor thought adequate by

some leading proponents of the behavioral school represents no improve-

ment on that of the experts who used to claim that people nearly always

cooperate in the Prisoners’ Dilemma.

Are People Selfish?

Should we model the people who enter our laboratories as seeking to

maximize the money in their own pockets? Or should we model them as

maximizing a more complicated utility function, whose arguments take

account of the welfare of others?

I think one might as well ask when you stopped beating your wife.

In discussing the behavior of inexperienced laboratory subjects, the first

question isn’t what kind of utility function they are maximizing, but

Introduction 3



whether they can sensibly be seen as maximizing anything at all (Giger-

enzer 2004).

The behavior of laboratory subjects often changes markedly over time

as they learn the ropes in a new experiment. We can make the maximiz-

ing hypothesis into a tautology by introducing utility functions that cor-

respondingly change with time, but who thinks that this would be a

worthwhile activity? It is true that abandoning the maximizing hypothesis

implies that we have to look beyond traditional economic theory for

explanations of how inexperienced subjects learn to play games, but I see

no reason why we should imagine that psychology and sociology are ir-

relevant when trying to make sense of boundedly rational behavior.

Only after the learning phase is over can we expect to find subjects at a

Nash equilibrium, each behaving as though trying to maximize his or her

own utility function given the behavior of the other subjects. But do we

then not find them simply maximizing money?

The answer is that this is indeed what we usually do observe—provided

that the monetary payo¤s are chosen to be su‰ciently large. However, we

can’t deduce that real people therefore don’t have other-regarding prefer-

ences, because part of the reason that experimenters like myself believe

that the monetary payo¤s need to be relatively large is to swamp what-

ever other-regarding preferences may be present (Vernon Smith 1976).

The school of behavioral economists who insist that other-regarding

preferences matter in real life therefore have nothing to fear from experi-

ments that show that game theory often works—unless they want to

claim that subjects care so enormously about other people that it is al-

ways impossible to control their preferences in the laboratory by paying

relatively large sums of money. They therefore don’t need to seek to dis-

credit game theory by endlessly drawing attention to the fact that it

mostly doesn’t work for inexperienced and underpaid subjects.

Nor have game theorists anything to gain from denying that the pay-

o¤s in real-life games might sometimes be derived from other-regarding

preferences. Game theory is the same whether it is used to advise Saint

Francis of Assisi or Attila the Hun. We simply recognize the di¤erence

between Attila and Saint Francis by writing di¤erent payo¤s in the games

we model them as playing.

Prisoners’ Dilemma

The Prisoners’ Dilemma is the most famous of all the toy games that

game theorists use to illustrate their ideas. In the payo¤ table of figure 1,
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Adam’s payo¤s are in the bottom left of each cell and Eve’s are in the top

right. Adam chooses a row and Eve chooses a column. Each then receives

the payo¤ in the cell their choices jointly determine.

The starred payo¤s indicate best replies. Thus, if Eve chooses dove,

Adam can get a payo¤ of 1 by choosing dove, and a payo¤ of 3 by choos-

ing hawk. Since 3 > 1, Adam’s payo¤ of 3 is starred to show that hawk is

his best reply to Eve’s choice of dove. Both payo¤s are starred in the cell

that arises when both players choose hawk, which implies that the strat-

egy pair (hawk, hawk) is a Nash equilibrium, since each player is then

making a best reply to the strategy choice of the other.

The idea that it is rational to play hawk in the Prisoners’ Dilemma has

historically generated great hostility, since everyone can see that both

players would get more if both played dove. All kinds of fallacies have

therefore been invented in hopeless attempts to prove that it can be ratio-

nal to play something other than the Nash equilibrium of the game (Bin-

more 1994). Fortunately, this activity seems to have gone out of fashion

for the moment, but it remains popular to claim that laboratory experi-

ments show that the game-theoretic analysis of the Prisoners’ Dilemma

has no practical relevance.

If this is your aim, then it is very easy to organize an experiment that

meets your requirements. Just as alchemists can ‘‘refute’’ the predictions

of modern chemistry by mixing their reagents in dirty test tubes, so one

can ‘‘refute’’ game theory by confusing the subjects with complicated

instructions, or by providing them with inadequate incentives, or with

too little time to get to grips with the problem that has been set.

One response to such criticism is that our test tubes need to be dirty,

because that’s how they are in real life. Those of us who clean our meta-

phorical test tubes can then be accused of ‘‘fixing’’ our experiments to get

the results we want. But who would apply the same reasoning to chemis-

try experiments?

Figure 1
Prisoners’ Dilemma
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Incentives

A much-quoted experiment of Robert Frank illustrates the genre I am

criticizing. Despite what is commonly said, even inexperienced subjects

cooperate only about half the time in the one-shot Prisoners’ Dilemma

(Camerer 2003, p. 46).1 However, in Frank’s (2004) modification of the

usual experimental design, subjects were allowed to fraternize for half an

hour before playing. It turned out that relatively few subjects were then

willing to cheat on their partners by playing hawk after promising to

play dove, although they could gain a dollar by doing so.

But of course not! Who is going to metaphorically stab even a new

friend in the back for one measly dollar? Even Attila the Hun wouldn’t

bother.

Sometimes such experiments are defended with the claim that it

doesn’t matter whether or not you pay the subjects, as the results turn

out much the same either way. Such apologists can point to experiments

in which behavioral ‘‘anomalies’’ remain una¤ected as the rewards get

large. In the Ultimatum Game they can get very large indeed (Cameron

1999).

But the fact that the size of the reward is irrelevant in some environ-

ments doesn’t imply that it is irrelevant in most environments. Right at

the beginning of modern experimental economics, Vernon Smith (1976)

observed that the amount subjects are paid can make a substantial di¤er-

ence in economic experiments. If this weren’t true most of the time, econ-

omists presumably would have learned by now that they don’t need to

spend large sums of their hard-to-get research money incentifying their

experimental subjects.

My own most striking experience was when I ran laboratory experi-

ments to test a design for a major British telecom auction for which I

was responsible (which eventually raised $35 billion). The pilot experi-

ments came nowhere near the e‰cient outcome predicted by game

theory, but when we doubled the financial incentives—so that subjects

went home with about $60 on average rather than $30—the results were

suddenly very close to the theoretical predictions.

Experience

Incentives therefore matter much of the time, but what I think matters

most is experience. Here again, Vernon Smith (1991) was early on the

scene. In a classic experiment, he found that subjects needed to be
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recalled to the laboratory for three separate sessions of experience with an

artificial financial market before they finally learned not to create

bubbles.

Despite what is commonly said to the contrary by those who don’t

know or care about the literature, the case of the Prisoners’ Dilemma

and other toy games that can be thought of as modeling the private pro-

vision of public goods is particularly clear.2 The huge number of experi-

mental studies available in 1995 was surveyed both by John Ledyard

(1995) and by David Sally (1995), the former for Roth and Kagel’s au-

thoritative Handbook of Experimental Economics. Camerer’s (2003, p. 46)

more recent Behavioral Game Theory endorses their conclusions.

It is true that inexperienced subjects often cooperate (by playing dove),

but as the subjects gain experience, they defect more and more (by play-

ing hawk), until about 90 percent are defecting. One can disrupt the march

toward equilibrium by intervening in various ways, but when active inter-

vention ceases, the march resumes.

Figure 2 is from a paper by Fehr and Gächter (2000). It is included to

emphasize that these conclusions are uncontested even by authors who

are commonly quoted with a view to discrediting traditional game theory.

The first ten periods show the standard decline in the average contribu-

tion as the subjects gain experience in a regular public goods game.3 In

the final round nearly everyone contributes nothing.

Figure 2
Public goods experiments before and after punishment (Fehr and Gächter 2000a, fig. 3B).

Introduction 7



What Does Game Theory Predict?

But what about the behavior in the second ten periods of Fehr and Gäch-

ter’s (2000) experiment?

In this part of the experiment the game is changed so that the subjects

can pay a relatively small amount to reduce the payo¤ of free riders by a

relatively large amount. They wouldn’t take advantage of this opportu-

nity to punish free riders in a subgame-perfect equilibrium of the one-

shot game, but the data from the second ten periods of the experiment

show that on the contrary, the threat of punishment induces the subjects

to contribute more and more as they gain experience of the new game.

Behavioral economists take such data as proof that people have other-

regarding preferences, but it isn’t hard to think of other reasons why the

equilibrium that behavioralists identify as the orthodox prediction isn’t

appropriate. For example, there isn’t any particular reason why an ad-

justment process should converge on the subgame-perfect equilibrium of

a one-shot game when other Nash equilibria are available—which they

usually are (appendix C at the end of this volume). Nor is it obvious that

we should be looking at Nash equilibria of the one-shot game when small

groups of subjects play repeatedly (chapter 8).

Even if one insists on looking only at subgame-perfect equilibria of the

one-shot game, it is unnecessary to postulate more than a small other-

regarding component in the subjects’ utility functions to create a game

with a cooperative equilibrium. For example, Jakub Steiner (1972) o¤ers

a model in which the subjects feel just a little angry with free riders. He

then describes an equilibrium in which only the worst free rider would

get punished. The small cost of punishing then becomes tiny because it is

shared among all the punishers. But the punishment is enough to support

an equilibrium without free riding in the one-shot game, since a player

who is the only free rider will necessarily be the most guilty (chapter 8).

No Convergence

However, the reason for spending time on the second ten periods of Fehr

and Gächter’s experiment isn’t so much to question their claims about

what game theory ought to predict about the equilibrium on which their

subjects might eventually converge if the game were repeated often

enough. It is to point out that although the subjects’ behavior converges

fairly well to the standard result in the experiment of the first ten periods,

their behavior in the experiment of the second ten periods hasn’t got close

to converging on anything at all.
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The graph of figure 2 shows the subjects’ average behavior changing

fairly rapidly over time. Nor is there any sign of the subjects coalescing

around the average. As the authors point out, the distribution of contri-

butions in the final round is spread out over the whole range of possibil-

ities. It is therefore premature to ask to what extent the subjects should be

seen as revealing other-regarding or selfish utilities in the second experi-

ment. The subjects’ behavior isn’t consistent with maximizing any time-

independent utility function at all.

This comment may seem too obvious to be worth making, but it isn’t at

all popular. Neoclassical economists are often as impatient as behavioral

economists with the idea that people need time to adapt to a new game

because they think of learning as an exclusively intellectual activity—

and what is there to learn in such a simple game?

But I think the kind of learning that is going on is more akin to a

sailor’s learning not to walk with a rolling gait when he comes ashore

after a long voyage. His mind knows perfectly well that he is on dry land,

but his body hasn’t figured out yet that this implies that he doesn’t need

to keep making ready for the next wave.

Coming Ashore

Everyone agrees that much of our interaction with other human beings is

governed by social norms. I see such norms as analogues in social life of a

sailor’s rolling gait.

Just as a sailor’s rolling gait is an e‰cient adaptation to the need to be

ready for the next wave during a long voyage, so game theorists of my

persuasion think it likely that cultural evolution has shaped our social

norms so that their use mostly results in our coordinating on e‰cient

equilibria in the real-life games that we play every day with those around

us.

Of course, we are seldom any more aware that this is what we are

doing than a sailor is conscious of walking oddly. We usually aren’t even

conscious that we are playing a game. For ordinary human beings, using

a social norm is a piece of habituated behavior that is triggered by appro-

priate environmental cues.

Habits are hard to shake o¤—especially if you are unconscious that

you have a habit in the first place. So when the framing of an experiment

triggers the appropriate environmental cues, we often respond with the

habituated response: no matter how ill-adapted it may be to the actual

game being played in the laboratory. Like a sailor stepping ashore, we
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still roll with the waves, even though there are no longer any waves with

which to roll.

I therefore think that Kahneman and Tversky’s (1988) emphasis on the

importance of framing in experiments is well grounded. But accepting this

insight doesn’t imply that we must also believe that human beings are

mindless robots, irreversibly programmed with rigid social behaviors.

Given time and adequate incentives, we can learn by trial and error or

by imitation to adapt our behavior to novel situations. Sometimes we

even think a little about what we are doing.

Presumably the rate at which di¤erent people learn depends on their

personal characteristics, and the strength of their conditioning in the

social norm that they must learn to abandon. Perhaps some people will

never learn, no matter how long we give them or how large the incentives.

The study of such inflexible folk is certainly of very great interest. But the

evidence from the one-shot Prisoners’ Dilemma suggests that the inflexi-

ble fraction of the student population from which subjects are usually

drawn can’t be more than about 10 percent of the whole.

Fairness

Although game theorists like myself have to put up with being said to be

unremmitingly hostile to the idea that fairness can influence human be-

havior, I have devoted a substantial chunk of my life to working out a

theory of how and why fairness norms matter in human societies (Bin-

more 1994, 1998). I even have some lingering hope that the absence of

any algebra in my recent Natural Justice will result in the theory getting

some serious attention from moral philosophers (Binmore 2005).

The basic thesis of the theory is that our sense of fairness evolved be-

cause the coordination games of which everyday social life largely con-

sists commonly have large numbers of equilibria. A society therefore

needs equilibrium selection devices if its members are to succeed in co-

ordinating on one particular equilibrium in each game. Fairness is our

name for a class of equilibrium selection devices that result in some social

surplus being divided.

The conclusions to which I am led accord rather well with a psycho-

logical literature referred to as ‘‘modern equity theory’’ that is largely

ignored by economists.4 This literature o¤ers experimental support for

Aristotle’s ancient contention, in his Nichomachean Ethics, that what is

fair is what is proportional.
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I don’t plan to press the virtues of my theory of fairness in this book,

since I haven’t done any experimental work of my own on the subject.

But two aspects of this theory are immediately relevant here. The first is

the significance of the theory of repeated games. The second is the impor-

tance of evolutionary theory.

Repeated Games

The folk theorem of repeated game theory says that any contract that ra-

tional players might sign on how to play a one-shot game is sustainable as

an equilibrium outcome when the game is played repeatedly by patient

players with no secrets from each other. Cooperative agreements that

can only be sustained in one-shot situations with the assistance of an ex-

ternal enforcement agency can therefore survive as self-policing social

norms in a repeated environment.

The mechanism that sustains self-policing cooperative agreements in

repeated games is reciprocity. People sometimes register their understand-

ing of how such self-policing agreements work by saying, ‘‘I’ll scratch

your back if you’ll scratch mine.’’ But such a promise wouldn’t be e¤ec-

tive without the implied threat that I’ll stop scratching your back (or

worse) if you stop scratching mine. That is to say, what keeps the cooper-

ative arrangement on track is that everybody recognizes that they will

su¤er some punishment if they don’t honor the implicit deal.

The need to punish deviant behavior is explicit when Adam and Eve

both use the grim strategy in the infinitely repeated Prisoners’ Dilemma.

The grim strategy tells you to play dove at each repetition of the Prisoners’

Dilemma until the opponent fails to reciprocate. After an opponent plays

hawk, the grim strategy tells you to play hawk yourself ever after. Neither

player can therefore profit from deviating from the grim strategy by being

the first to play hawk because the deviant will be relentlessly punished by

the opponent responding by always playing hawk thereafter.

When we all lived in small foraging communities, there was no external

enforcement agency to police the way that people played coordination

games, but most of the coordination games we played together were re-

peated day after day. Moreover, as in small villages today, everyone

knew everyone else’s business. Given the folk theorem of repeated game

theory, it is therefore perhaps no great surprise that evolution—both cul-

tural and biological—should have generated fairness norms that allow so-

cial surpluses to be divided e‰ciently in favorable environments without

wasteful conflict (Axelrod 1984).
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The conditions of the folk theorem don’t apply in large modern states,

but much of our interaction with other human beings nevertheless con-

tinues to be open-ended. Even when we won’t be interacting with the

same person again, the way we conduct ourselves with that person is

often being observed by onlookers with whom we may well interact in

the future. Punishment for cheating on a partner can then be adminis-

tered not by the victim (as in the grim strategy) but by onlookers refusing

to deal with someone who has just established a reputation for being

untrustworthy. That is to say, the domain within which we may reason-

ably expect cooperation to survive as equilibrium behavior is much wider

than the narrow class of games to which formal versions of the folk theo-

rem apply directly.

For this reason I believe that the social norms to which we uncon-

sciously appeal in bargaining and other social situations are often best

thought of as being adapted to repeated interactions. Such cooperative

norms for repeated games sometimes get triggered in one-shot laboratory

situations. This would explain why inexperienced subjects commonly play

dove in the one-shot Prisoners’ Dilemma. But after getting shafted a few

times when playing the one-shot Prisoners’ Dilemma over and over again

(against a new opponent each time) and finding themselves unable to re-

taliate, most people eventually shift to playing hawk.

Strong Reciprocity?

A recent anthropological study highlights how social norms can be trig-

gered in the laboratory (Henrich et al. 2004, 2005). The study confirms

that inexperienced citizens of di¤erent societies play a variety of canonical

toy games in di¤erent ways—presumably reflecting the fact that di¤erent

societies operate di¤erent social norms. As Henrich et al. (2005) say: ‘‘Ex-

perimental play often reflects patterns of interaction found in everyday

life.’’

The anthropologist Jean Ensminger is more explicit when commenting

on why the Orma contributed generously in the public goods game she

carried out as part of the study:

When this game was first described to my research assistants, they immediately

identified it as the ‘‘harambee’’ game, a Swahili word for the institution of village-

level contributions for public goods projects such as building a school. . . . I sug-

gest that the Orma were more willing to trust their fellow villagers not to free

ride in the Public Goods Game because they associated it with a learned and pre-

dictable institution. While the game had no punishment for free-riding associated

with it, the analogous institution with which they are familiar does. A social norm
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had been established over the years with strict enforcement that mandates what to

do in an exactly analogous situation. It is possible that this institution ‘‘cued’’ a

particular behavior in this game (Henrich et al. 2004, p. 376).

The enforcement here is operated by the players themselves as envisaged

in the folk theorem, and not external enforcement operated by the gov-

ernment. (National or cross-regional attempts at harambee collections

are predictably corrupt.)

Despite this and similar evidence from the anthropologists who con-

tributed to the study, Henrich et al.’s (2004) introduction insists on inter-

preting the data as supporting the existence of significant other-regarding

preferences. But if Ensminger is right, then it would be a huge mistake to

try to explain the behavior of the Orma in her public goods game on

the hypothesis that their behavior was adapted to the game they played

in her makeshift laboratory. In particular, inventing other-regarding util-

ity functions whose maximization would lead to generous contribution in

the public goods game would be pointless. Ensminger is suggesting that

the subjects’ behavior is adapted to the public goods game embedded

in the repeated game that they play every day of their lives, for which

the folk theorem provides an explanation that does not require anything

at all to be invented.

It is admittedly di‰cult to distinguish the interpretation of the data

that I share with Ensminger from the claim that the subjects have the

kind of other-regarding preferences postulated by the theory of ‘‘strong

reciprocity.’’ This theory holds that people have a liking for reciprocation

built into their personal utility functions. I am always puzzled by the

ardor with which advocates of the theory of strong reciprocity, like

Bowles and Gintis (2002) and Gintis (2002), condemn the idea that peo-

ple might also sometimes reciprocate favors because this is how coopera-

tive equilibria are sustained in indefinitely repeated games. Don’t they see

that the folk theorem would provide a possible evolutionary explanation

for the emergence of strong reciprocity? However, my guess is that they

reject the support that the theory of repeated games might o¤er the strong

reciprocity hypothesis because everyone can see that we don’t need to

hypothesize strong reciprocity if we can explain the available data with-

out going beyond the so-called weak reciprocity used to prove the folk

theorem.

Evolution?

Where did the fairness norms triggered in laboratory experiments come

from? I believe they evolved as equilibrium selection devices for use in
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those real-life games in which a surplus can be created by operating one

of many cooperative equilibria. Cultural evolution must surely have been

as important as biological evolution in this process, since what people re-

gard as fair seems to depend heavily on both context and culture. Indeed

I think that cultural evolution is active all the time in generating new

social mini-norms for novel contexts. Some bargaining experiments can

even be interpreted as snapshots of cultural evolution shaping a new fair-

ness mini-norm while we watch (chapter 2).

But evolution is a slippery concept, easily harnessed in support of

almost any doctrine. Other-regarding preferences are a case in point. It

isn’t good enough to argue that evolution built a regard for others into

our preferences because we are all better o¤ that way. The same argu-

ment shows that evolution should be expected to generate cooperation in

the one-shot Prisoners’ Dilemma. Similarly it isn’t good enough to argue

that evolution will select the preferences that we would choose to bind

ourselves to if we knew our choices were to become common knowledge

(Güth and Kliemt 1998). This is just another version of the Transparent

Disposition Fallacy used by some authors in defense of rational coopera-

tion in the one-shot Prisoners’ Dilemma (Binmore 1994b). Any evolution-

ary defense for other-regarding preferences needs to be accompanied with

a plausible story that explains how other-regarding mutants could have

invaded our gene pool, and managed to survive once established—as,

for example, in Samuelson (2004) or Weibull and Salomonsson (2005).

A Gift-Exchange Experiment

Nor can we a¤ord to be naı̈ve about evolutionary interpretations of labo-

ratory experiments. An anecdote of Konrad Lorenz will serve to illustrate

one particular mistake that I think it important to avoid.

Lorenz placed a totally inexperienced jackdaw on a marble-topped

table, whereupon the baby bird went through all the motions of taking a

bath. I think one may reasonably deduce that bath-taking behavior is ge-

netically programmed in jackdaws, and that a trigger for this behavior is

the presence of a flat, reflective surface (like water). What one isn’t enti-

tled to deduce is the absurd conclusion that bath-taking behavior some-

how promotes the survival of jackdaws placed on marble-topped tables.

If the jackdaw were human, we would say that its behavior was irratio-

nal, or ill-adapted to the context.

An example of the kind of interpretive mistake I am warning against is

provided by a much-quoted experiment of Fehr et al. (1997) and Fehr

and Gächter (2000). It can be thought of as modeling a competitive labor
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market in which the workers have the opportunity to reward employers

who pay above the competitive rate by putting in more e¤ort—even

though the employer has no comeback if the worker just pockets the extra

money and shirks.

The finding is that workers do indeed reward generous employers with

more e¤ort—that they metaphorically ‘‘exchange gifts.’’ The authors

speculate that their data supports the theory of strong reciprocity, which

says that people have preferences that incorporate a positive liking for

reciprocity.

But before leaping to such a conclusion, shouldn’t we consider a less

dramatic scenario? Although the subjects are called buyers and sellers in

the experiment rather than employers and workers, its framing never-

theless cues the subjects for the repeated environment typical of a labor

market. It therefore triggers a fairness norm that selects one of the coop-

erative equilibria of such a repeated game. Reciprocity therefore matters

to the behavior of the subjects because reciprocity is the mechanism that

sustains cooperative equilibria in repeated games.

If this dull story is true, then instead of subjects responding rationally

to a set of preferences unconsidered in traditional economics, they just

have traditional preferences but are behaving irrationally, in the sense

that their behavior isn’t adapted to the one-shot game they are deemed

to be playing in the laboratory.

Ledyard’s (1995) survey of experiments on the Prisoners’ Dilemma and

related games is obviously relevant here. What would happen if the sub-

jects in the Fehr et al. study were allowed to play a large number of

times?

We have seen that it is uncontroversial that subjects in experiments

change their behavior as they gain experience, and matters are no di¤er-

ent in the current study. The observed movement is initially away from

the behavior that the authors assume should be the orthodox equilibrium

prediction. But who can say what would happen with more than the usual

ten or so repetitions? Nevertheless, in summarizing their data, Fehr et al.

(1997, p. 2) say (with my italics):

These results indicate that reciprocity motives may indeed be capable of driving

a competitive experimental market permanently away from the competitive

outcome.

This claim is called into immediate question by the very data that the

authors o¤er in its support. How could they have overlooked the final

round e¤ects evident in the data given in the appendix to their paper? In
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16 of the 26 final rounds reported in which the worker has the opportu-

nity to reciprocate, he doesn’t. On the contrary, his e¤ort is as small as it

is possible for it to be.5

My own guess is that an understanding of what is really going on in the

Fehr et al. experiment requires appealing to the contagion mechanism

described by Kandori (1992) for sustaining cooperative equilibria in infi-

nitely repeated games played by small groups of anonymous agents. It is

true that the game of Fehr et al. is only repeated a finite number of times,

but a number of authors, including Reinhard Selten (1986), have shown

that the folk theorem often still works in the laboratory when the number

of repetitions is finite. The fact that cooperation tends to break down in

the final rounds of these experiment adds some support to my conjecture,

once it is revealed that the same holds true in the experiment of Fehr et al.

(chapter 8).

Social Preferences

When experimental economics was recognized in 2002 with a Nobel Prize

awarded jointly to Daniel Kahneman and Vernon Smith, a joke circu-

lated that Smith had been awarded the prize for showing that economics

works in the laboratory, and Kahneman for showing that it doesn’t.

The uncontroversial truth is that there are domains within which tradi-

tional economic theory—including game theory—works badly or not at

all, and other domains within which it works rather well. What is contro-

versial is how large these domains are, and where they lie.

Nowadays the followers of Daniel Kahneman and Amos Tversky6 call

themselves behavioral economists, to distinguish themselves from experi-

mental economists like Vernon Smith or Charles Plott, who work largely

in the tradition of neoclassical economics. However, on the subject of

fairness in bargaining games there is a curious reversal of attitudes. Be-

havioral economists seem mostly to believe that the available experimen-

tal data support the hypothesis that laboratory subjects are classical

optimizers whose utility functions have a social or other-regarding

component.7

I have already explained why I think it a mistake to get into a dispute

over what kind of utility function is being maximized by inexperienced

and unmotivated laboratory subjects, but I want to insist that this doesn’t

imply that I believe that social preferences have no role to play in ex-

plaining human economic behavior in general. On the contrary, my own

theory of fairness depends very heavily on the idea that social preferences
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matter (Binmore 2005). The rest of this section is therefore an aside that

briefly examines three di¤erent ways in which I believe that social prefer-

ences can be significant.

Blood Is Thicker Than Water

Hamilton’s (1995) rule o¤ers a biological prediction of the extent to

which we should care about a relative. A gene that programs its animal

host to maximize the gene’s fitness would do best to take into account

not only the children its current host might produce but also the children

of the host’s relatives. The probability that they will carry a copy of the

gene is smaller but much too large to be neglected.

The point was famously made in a semi-serious joke of the biologist

J. B. S. Haldane. When asked whether he would give his life for another,

he replied that the sacrifice would only be worthwhile if it saved two

brothers or eight cousins. Haldane’s joke is only funny if you know that

your degree of relationship to a full brother is one-half, and your degree

of relationship to a full cousin is one-eighth. These numbers are the prob-

abilities that a recently mutated gene in your body is also to be found in

the body of the relative in question.

The only experimental study on Hamilton’s rule of which I know found

that best friends get pretty much the same consideration as brothers or

sisters (Dunbar et al. 2004). My guess is that our bodies have to deduce

their degree of relationship to others from the extent to which we find

ourselves in their company. If so, then the instincts that promote altruism

within the family may also be triggered within a su‰ciently close-knit

group of unrelated individuals, as in an army platoon under combat con-

ditions or a teenage street gang.

This is perhaps why we find ourselves feeling curiously obligated to old

school friends or o‰ce colleagues, whom we may actively dislike at the

conscious level. Our bodies are telling us that this pushy individual

demanding an inconvenient favor must be a cousin or an aunt—as she

would probably have been when we all lived in small foraging commu-

nities. Even establishing eye contact with a beggar in the street somehow

creates enough inner discomfort at neglecting a potential relative that we

are sometimes moved to hand over our small change with no prospect of

any recompense.

I therefore accept that most people have other-regarding preferences to

some degree—that they are willing to pay a small amount for no other

return than the warm glow they derive from improving the lot of another

human being. Perhaps there are economists who think otherwise, but I
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don’t know who they are. One doesn’t even need to appeal to the data

from Dictator Games to confirm the claim, since nobody denies that

nearly everyone contributes some small fraction of their income to char-

ity. Moreover the kinship argument o¤ers a possible evolutionary expla-

nation of why people might be made this way. It is also doubtless true

that some small fraction of people are willing to make large contributions

on a regular basis toward the welfare of others, although an explanation

of this behavior is not so easy to find.

However, the fact that some small fraction of the population behave

like saints and that most of the rest of us are willing to treat pretty much

anyone as a distant relative won’t generate a warm enough glow to con-

vert a game like the Prisoners’ Dilemma into a game with an e‰cient

equilibrium when the other player is a stranger. One needs large perturba-

tions of the preferences economists traditionally attribute to players for

this to happen. Matters are di¤erent in the games we play with the friends

and neighbors in our extended family, but I don’t believe the evidence

o¤ered in support of the claim that most of us are programmed to treat

strangers like close members of the family survives serious examination.

Revealed Preference

Why do I reject the social preferences that behavioral economists fit to

their experimental data? They commonly report relatively large warm-

glow e¤ects.

The theory of revealed preference tells us that we can describe the be-

havior of agents who choose consistently as optimization relative to some

utility function. However, economists who take the orthodox neoclassical

position seriously are very careful not to deduce that the observed behav-

ior was generated by the agent actually maximizing whatever utility

function best fits the data. This would be to attribute the kind of psycho-

logical foundations to neoclassical theory that its founders invented the

theory to escape.

Being able to fit a utility function only tells us that the behavior is

consistent—it doesn’t tell us why the behavior is consistent. For example,

one way of explaining the behavior of that half of the population of inex-

perienced subjects who cooperate in the one-shot Prisoners’ Dilemma is

to say that they are optimizing a social utility function whose arguments

include the welfare of others. Another is to attribute any consistency in

their behavior to the fact that they are unconsciously operating a social

norm better adapted to repeated situations.
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Both explanations fit the data equally well, but the former explanation

is easier to criticize. What is the point of insisting that players have other-

regarding utility functions built into their brains if doing so doesn’t allow

predictions to be made about how they will play in future, or in other

games? But we know that the behavior of subjects in the one-shot Pris-

oners’ Dilemma changes markedly over time as they pick up experience.

A social utility function fitted to the behavior of an inexperienced sub-

ject will therefore fail to predict how he or she will behave when

experienced—let alone when they play other games in other contexts.

None of this is to suggest that fitting utility functions to behavioral

data may not be a useful way of summarizing the data—provided that

we don’t fall into the trap of assuming that the same utility function will

necessarily predict other data without any experimental confirmation.

When evaluating an empirical claim that people have personal prefer-

ences with a large social component that has been quantified using exper-

imental data, I therefore always ask myself what new data from other

sources this claim has genuinely succeeded in predicting. I don’t know of

any cases at all that can be said to have unequivocally cleared this hurdle.

The theory of inequity aversion proposed by Fehr and Schmidt (1999)

is usually quoted in denial of this skeptical assessment. (See chapter 4.)

Fehr and Schmidt claim to have used data from ultimatum games to cal-

ibrate the parameters in the other-regarding utility function of their

theory, and then used the calibrated utility function to predict the data

from experiments on other games. However, Shaked (2005) has pointed

out that this claim cannot possibly be true, because the data supposedly

used to calibrate the parameters only restricts their range. When Fehr

and Schmidt picked particular values of the parameters from within this

range, they therefore made use of information that they should have

denied themselves.8

Empathetic Preferences

Comparing utils across di¤erent individuals has been a controversial sub-

ject for a long time. Only recently have traditional economists stopped

teaching the dogma that such interpersonal comparisons are intrinsically

nonsensical. But how can fairness judgments be made if we have no way

of comparing the welfare of those among whom a surplus is to be shared?

John Harsanyi (1977) invented a theory of interpersonal comparison of

utility that makes good sense in the context of my theory of fairness (Bin-

more 2005). Harsanyi postulates social or empathetic preferences that
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exist in parallel with the standard personal preferences with which we are

all familiar. With some apparently mild assumptions, Harsanyi shows that

such empathetic preferences can be summarized in terms of a rate at which

Eve assesses Adam’s personal utils relative to her own personal utils.

Empathetic preferences live in an entirely di¤erent world from personal

preferences because their content is entirely hypothetical. For example,

Eve expresses an empathetic preference when she says that she would

rather be herself eating an apple than Adam wearing a fig leaf—but there

is no way Eve is ever going to get the opportunity to swap bodies with

Adam.

I think the reason that normal people are all capable of expressing such

empathetic preferences is that we need them to assess who should get how

much when using fairness norms as equilibrium selection devices. The in-

ternal process by which we make such judgments is largely a mystery to us,

and so it isn’t surprising that we often confuse our empathetic preferences

with our more readily understood personal preferences—especially those

personal preferences that capture our feelings about those close to us.

Psychologists avoid this confusion by separating the notion of empathy

from that of sympathy. A confidence trickster may empathize with an old

lady by putting himself in her position to see what tall tale is most likely

to persuade her to part with her money. He may compare the distress that

she will feel at the loss of her life savings with his own joy in having her

money to spend. He may even need to brush a tear from his eye as he

contemplates her plight. But he won’t be diverted from swindling her un-

less he also sympathizes with her by including her welfare among the

arguments of his personal utility function.

I think economists need to make the same distinction. I agree whole-

heartedly with those behavioral economists who argue that fairness mat-

ters. I also agree that we can’t make sense of fairness norms without some

notion of a social preference. But we don’t need to identify a social pref-

erence exclusively with a sympathetic preference. I believe that the social

preferences to which we appeal when making fairness judgments are

mostly empathetic preferences that implicitly describe the standard of in-

terpersonal comparison to be applied.

Straw Men

Finally, I want to address the standard criticism that people like me have

to face—that we fix our experiments to get results consistent with neo-

classical economics.9 This slander is often exacarbated by characteriza-

20 Introduction



tions of neoclassical economics that belong in horror comics rather than

serious academic studies.

For example, neoclassical economists are said to be wicked for suppos-

edly putting around the theory that people are inherently selfish. There is

even a small experimental literature in which students of economics are

supposedly demonstrated to be more evil than other students (Frank,

Gilovich, and Regan 1993). As a result I know of at least one case in

which a university senate was asked to ban the teaching of rational choice

theory on the ground that it is immoral!

I agree that politically motivated economists, both of the left and the

right, often use phony arguments in support of immoral policies, but I

am not politically active, and neither are most traditionally minded econ-

omists. We have no interest in defending the transparently wrong propo-

sition that people are inherently selfish. Just like anyone else, we give

money to charity and help old ladies cross the road. We don’t run experi-

ments to justify an irrational prejudice in favor of neoclassical economics.

We run experiments to determine the domains within which the predic-

tions of neoclassical economics work reasonably well.

When the predictions don’t work in apparently favorable environments,

we ask ourselves why. Sometimes the answer is that our test tubes need

cleaning, and sometimes the answer is that the theory needs fixing. Much

of the attention of young neoclassical theorists in recent years has corre-

spondingly been devoted to trying to come up with theories of bounded

rationality that explain laboratory behavior better than is possible for

any optimizing theory, whether neo-classical or retro-classical. (See, for

example, Rubinstein 1998.)

I do not understand why this modest research program attracts such ire

from behavioral economists. Behavioral economics is now triumphant in

its primary aim. Everybody agrees that we need to study microeconomic

behavior empirically in both the field and the laboratory. Behavioralists

therefore having nothing more to gain from dismissing those experimen-

talists who find that traditional economics sometimes works as dishonest

apologists for a failed orthodoxy.

Karl Marx said that history repeats itself, first as tragedy and then as

farce. But do we really need to repeat the history of suspicion and re-

proach that accompanied the controversy over cooperation in the one-

shot Prisoners’ Dilemma? Or the more recently defunct experimental

controversy over expected utility theory?

It was the latter controversy that brought Kahneman and Tversky

(1979) to prominence, along with behavioral economics. But where is
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this controversy now? After much sound and fury, the exhausted combat-

ants all seem to have retired from the field, leaving behind the consensus

that all behavioral theories of how humans make decisions under risk are

bad, but the least bad is traditional expected utility theory (Camerer and

Harless 1994; Hey and Orme 1994).

Even if you are as sure about the failings of some other orthodoxy as

Kahneman and Tversky were about expected utility theory, it may there-

fore still be worth your while to read papers that seem to defend the or-

thodoxy with a view to finding out what they actually say, rather than

lending a credulous ear to those who attribute absurdly unrealistic beliefs

to their unfortunate authors.

22 Introduction



1 Getting to Equilibrium?

When the experiment reported in this chapter was carried out, it was still

being said that Nash equilibria are irrelevant to the behavior of labora-

tory subjects. Even for the simplest class of games—Von Neumann’s

two-person, zero-sum games—the experimental reports were discourag-

ing. The eminent psychologist Estes (1957) was particularly scathing

when reporting on his test of Von Neumann’s minimax theory. He agreed

that game theory might be perhaps useful for something but that ‘‘game

theory will be no substitute for an empirically grounded behavioral

theory when we want to predict what people will actually do in competi-

tive situations.’’

The negative consensus was first disturbed by a paper of Barry O’Neill

(1987), but his positive conclusions were immediately attacked in Econo-

metrica by Brown and Rosenthal (1990). Among other criticisms an

econometric test was used to show that the theory fails because O’Neill’s

subjects didn’t randomize independently between successive trials. As far

as I know, all later experimenters, including myself, have found that

data from two-person, zero-sum games always fails this test.

My reaction to the paper of Brown and Rosenthal was incredulity that

anyone could take such a criterion seriously as a test of the Von Neu-

mann theory. The strategy choices of players learning to play according

to the minimax theory (or any other theory) will necessarily be correlated

across successive trials. Brown and Rosenthal had therefore invented a

test that treated any evidence that some kind of learning or adjustment

was taking place as evidence against the hypothesis that the subjects

were learning to play minimax.

However, Brown and Rosenthal made other criticisms of O’Neill’s

work that certainly did hit the spot. For this reason I joined with

colleagues at the University of Michigan in putting together a new

experiment on two-person, zero-sum games. Joe Swierzbinski has been a

regular collaborator on experimental papers ever since.



Before designing the experiment, it was necessary to read the earlier ex-

perimental work on two-person, zero-sum games with some care. Only

then did I begin to realize how slender the basis of an academic consensus

can be. For example, in the experiment on which Estes based his dismis-

sive remarks, there were only two subjects in all, who are described as

being well-practiced in the reinforcement learning experiments that Estes

was using to defend the (now discredited) theory of ‘‘probability match-

ing.’’ Neither subject knew that they were playing a game with another

person. Even if they had known they were playing a game, the minimax

theory would have been irrelevant to their plight, since they weren’t told

in advance what the payo¤s of the game were. They were therefore play-

ing a game of incomplete information, to which Von Neumann’s mini-

max theory doesn’t apply.

My colleagues and I dawdled for nearly ten years before producing a

publishable paper describing our experiment. In the interval between our

running the experiment and publishing our results, the academic con-

sensus on whether Nash equilibria are relevant to the play of laboratory

games had reversed itself. Nobody, then or now, finds it surprising that

experienced subjects who are adequately incentified end up playing close

to the minimax predictions in a user-friendly environment. But the accu-

racy of our results still remains of interest.

I think that there are several reasons why my experiments sometimes

generate results that are closer to theoretical predictions than those of

others. One reason is that I usually understand very well the ground rules

of the theory being tested.

A second reason is the close attention I pay to keeping my test tubes

clean. For example, the experiment of this chapter provides a good illus-

tration of my extensive (and expensive) use of animated graphics to ex-

plain the experiment to subjects, and to keep them informed of what is

happening in the game they are playing. Graphics also help make the ex-

periment less boring than is commonly the case in the dismal science of

economics.

A third reason is the quality of the feedback the subjects receive when

they begin to play against each other—the better the feedback, the quicker

and surer any convergence on a Nash equilibrium is likely to be.

Feedback

In real life we usually receive a great deal of feedback from all kinds of

sources when learning how to behave in a new economic environment.
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For example, rookie stockbrokers learn the ropes from their more experi-

enced colleagues. Young economists peruse the history of Nobel laureates

in the hope of finding the secret of success. Novelists tediously recycle the

plots of the latest best seller. Shoppers tell each other where the best bar-

gains are to be found. And so on.

One can completely control the quality of the feedback that subjects re-

ceive in the laboratory, but I know of very few experiments in which the

feedback supplied isn’t unrealistically sparse. In the experiment reported

in this chapter, the feedback is comparatively rich. Subjects can compare

a rolling average of their own payo¤ in recent games with the rolling av-

erage of the median subject in the same situation as themselves. Those

who are playing badly then have an opportunity to recognize that they

could do better if they played di¤erently.

Sometimes critics say that such attempts to mimic real-life adaptive

processes amount to fixing the results of an experiment. Amos Tversky

often enjoyed teasing me by saying that you can ‘‘teach’’ laboratory sub-

jects any behavior at all. I used to try to tease him back by telling him

that you could refute any theory whatever by failing to clean your test

tubes, but he always seemed to get more of a rise out of me than I was

able to get out of him.

I doubt that Tversky really thought that providing subjects with the op-

portunity to learn in the laboratory is equivalent to conditioning them to

behave in some predetermined fashion, but it isn’t uncommon for his

modern followers to take this line. Sometimes they claim that the results

of any learning in the laboratory would be devoid of interest even in an

experiment whose design wasn’t supposedly biased by the prejudices of

the experimenter!

As with Tversky, I am never sure how seriously such claims are in-

tended to be taken, but after reading the paper that follows, readers can

make their own judgment on whether my colleagues and I were guilty of

the crime of teaching our subjects to play according to the minimax

theory.
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Does Minimax Work? An Experimental Study

Ken Binmore, Joe Swierzbinski, and Chris Proulx

1.1 Zero-Sum Games

Von Neumann’s (1928) minimax theory of two-person, zero-sum games

remains the branch of game theory with the most solid theoretical foun-

dations. One would have thought that it would therefore have been tested

to exhaustion in economics laboratories, but the small number of existing

studies are mostly negative. This paper reports a laboratory experiment

using modern techniques that leads to a positive conclusion.

In a zero-sum game, the players’ payo¤s always sum to zero whatever

the outcome. In a finite, two-person, zero-sum game, Von Neumann’s

(1928) celebrated minimax theorem says that a player’s minimax and

maximin values are equal. It follows that m1 þm2 ¼ 0, where mi denotes

player i’s maximin value in the game.1 If player I gets a payo¤ x > m1,

player II will therefore get a payo¤ �x < m2. Since a player always has

a maximin strategy that guarantees him an expected payo¤ no smaller

than his maximin value in the game, it follows from Von Neumann’s the-

orem that any theory of rational play for finite, two-person, zero-sum

games must assign each player his maximin value.

There has been some debate about the extent to which Von Neumann

was anticipated by the great mathematician Emile Borel. This debate

is significant here only to the extent that the record shows that Borel

We are grateful to the National Science Foundation for funding the experiments reported in
the this paper under Grant NSF-SES-882521. We also gratefully acknowledge funding from
the University of Michigan to set up the Michigan Economics Laboratory, where the experi-
ments were conducted in 1993.

1. Let Piðp; qÞ be the expected payo¤ to player i in a finite, two-person game when player I
uses mixed strategy p and player II uses mixed strategy q. Then player I’s maximin and min-
imax values in the game are m1 ¼ maxp minq P1ðp; qÞ and M1 ¼ minq maxp P1ðp; qÞ. It is
always true that m1 aM1. Von Neumann’s minimax theorem asserts that m1 ¼ M1 when
the game is zero-sum. Since M1 ¼ �m2, it follows that m1 þm2 ¼ 0.



formulated the minimax theorem but decided that it was probably false.

It therefore seems pointless to run experiments designed to test the hy-

pothesis that laboratory subjects are capable of duplicating Von Neu-

mann’s reasoning. Insofar as Von Neumann’s minimax theory succeeds

in predicting the behavior of laboratory subjects playing zero-sum games,

it is not because it is common knowledge among the subjects that they are

all cleverer than Borel. It is because Von Neumann’s minimax theory

predicts the play of Nash equilibria, and—as Nash pointed out in his

thesis—Nash equilibria not only admit an eductive defense à la Von Neu-

mann, they also admit an evolutive defense.

An evolutive defense of an equilibrium concept accepts that the players

may be boundedly rational or just plain stupid. If they find their way to

an equilibrium, it is therefore by some process of trial-and-error adjust-

ment. Recent experimental work suggests that none of the dynamic ad-

justment processes that have been proposed fit the data well enough to

justify our claiming to understand in detail how boundedly rational

agents learn to play games. Nevertheless, the study of naı̈ve idealized ad-

justment processes is thought to provide insight into the types of games

for which a suitable equilibrium concept will provide a first approxima-

tion to how subjects end up playing after a long enough session in the

laboratory.

For example, Binmore et al. (1995) and Roth and Erev (1995) show

that simple adaptive models either do not converge to the subgame-

perfect equilibrium in the Ultimatum Game, or else converge far too

slowly for it to be possible to come close to replicating the necessary num-

ber of trials in the laboratory. By contrast, Brown (1951) and Robinson

(1951) showed long since that the adaptive process called fictitious play

converges reasonably quickly in two-person, zero-sum games. For exam-

ple, the Nash equilibrium in the game Matching Pennies requires each

player to play Heads or Tails with probability 1=2. Figure 1.1a shows a

typical trajectory along which players adjusting their behavior according

to the fictitious play algorithm approach this Nash equilibrium.2 The

adjustment process that receives the most attention after fictitious play

is Darwinian replicator dynamics. The Nash equilibrium for Matching

Pennies is a local attractor but not an asymptotic attractor for these

dynamics. However, figure 1.1b shows a typical trajectory when the repli-

cator dynamics are perturbed by introducing a small fraction of agents

2. The particular version of fictitious play required to generate this well-known diagram to-
gether with some adaptive stories that lead to it are described in Binmore (1987).
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who know the current population mix and then optimize. Two-person,

zero-sum games therefore provide an arena in which it is reasonable to

hope that subjects will learn to play the equilibrium of the game within

the time spans available in the laboratory.

1.2 Interpreting Mixed Strategies

If the evolutive interpretation of equilibria were valid, one would think

that it would have first been confirmed for two-person, zero-sum games,

but the few experimental studies that exist are not generally supportive of

the minimax hypothesis. An exception is provided by a paper of O’Neill

(1987).

Figure 1.2a reproduces the diagram with which O’Neill compares his

results with the earlier experiments of Frenkel (1973), Estes (1957),

Suppes and Atkinson (1960), and Malcolm and Lieberman (1965). It

compares the observed and predicted frequencies with which the selected

strategies were played in these experiments. However, O’Neill’s paper was

discredited by Brown and Rosenthal (1990), and we accept that his data

points in figure 1.2a are unsafe. Among other concerns his decision to

study repeated play between the same subjects blurs some of the issues

he was seeking to clarify. Later experimental studies by Rapoport and

Boebel (1992), Mookherjee and Sopher (1994, 1997), and McCabe et al.

(1994) report positive conclusions only in the case of Matching Pennies.

The recent field study by Walker and Wooders (1998) also rejects the

Figure 1.1
Approaching equilibrium in Matching Pennies
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minimax hypothesis for experimental data, although it finds support for

minimax play by professional tennis players.

For comparison, figure 1.2b plots the average frequencies with which

selected row and column strategies from each of the games in our experi-

ments were played against the theoretical frequencies predicted by the

minimax hypothesis. The symbol a in figure 1.2b denotes a row strategy

and the symbol � denotes a column strategy.

Our paper di¤ers from this literature in o¤ering experimental support

for the minimax hypothesis. We attribute our di¤erent findings partly to

our using a more refined experimental technique, and partly to an insis-

tence by previous authors on an overly literal interpretation of how one

might reasonably expect a mixed equilibrium to manifest itself in the

laboratory.3

We agree that the case of greatest interest arises when the maximin

strategies are mixed, but we think it a mistake to demand that the players

actively randomize before the minimax theory can be said to be relevant

to their play. Real people are notoriously bad natural randomizers

(although Rapaport and Budescu 1992 find that they randomize much

better when playing a zero-sum game than in other situations studied in

Figure 1.2
Observation versus prediction in some experimental games

3. A working paper available from the authors discusses the reasons for our di¤ering find-
ings in more detail.
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the psychological literature). Even professional statisticians find it hard to

eyeball a random sequence. When playing a repeated game against a real

opponent whom one wants to keep guessing, it is therefore not necessary

to behave in a manner that comes anywhere close to passing any scientific

tests for randomness.

This point becomes sharper when attention is confined to the one-shot

games that we study. In such games the players do not have to worry

about o¤ering their opponent clues as to their future play. When a mixed

strategy is optimal, the players are necessarily indi¤erent among the pure

strategies to which the mixed strategy assigns a positive probability. An

individual player therefore has no reason to play such pure strategies

with any particular probability. Although old-style game theory books

proceed as though rationality demands that each player actively random-

ize when his maximin strategy in a two-person, zero-sum game is mixed,

the theory actually o¤ers no support for this claim. Modern eductive

accounts of Nash equilibria in mixed strategies therefore stress their in-

terpretation as equilibria in beliefs rather than actions (Binmore 1991,

p. 286).

One way of realizing an equilibrium in beliefs arises when the players

are drawn at random from a population whose characteristics are

commonly known. It then does not matter how each individual player

chooses his strategy in a two-player, zero-sum game G, provided that the

frequencies with which strategies are played in the population as a whole

correspond to their maximin probabilities. In extreme cases we may ob-

serve what biologists call a polymorphic equilibrium of the grand game

played by the population as a whole. In such an equilibrium each member

of the population may plan to use a pure strategy if chosen to play G, but

the frequencies with which they choose di¤erent pure strategies coincide

with the probabilities assigned to them by a mixed equilibrium of G. A

player facing an opponent drawn at random from the population will

then be in the same situation as someone whose opponent is known to

randomize according to his maximin strategy. It is then optimal for him

to secure his maximin value by playing any of the pure strategies assigned

positive probability by his own maximin strategy.

Our experiment is designed to allow polymorphic equilibria to evolve

in the laboratory. Some theoretical evolutive models in which this out-

come should be expected have been studied by Hopkins (1996). Craw-

ford’s (1989) earlier evolutive study confirms that we should not expect

to see each individual player ending up by actively randomizing accord-

ing to his maximin probabilities, but neither are human subjects likely to
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stick to just one of their pure strategies in the manner that biologists attri-

bute to animals. Human subjects must be expected to be constantly

adjusting their strategy choice in an attempt to exploit variations in the

frequencies with which strategies are employed in the population as a

whole. Since the payo¤ to making such adjustments declines to zero as

the population frequencies approach their minimax values, it would be

unreasonable to expect convergence to go all the way. The best that one

can expect is that the system will find its way into a neighborhood of the

minimax outcome, wherein it will wander as the subjects find it increas-

ingly di‰cult to decide between strategies among which they would be in-

di¤erent in equilibrium.

These considerations led us to predict that the frequencies with which

pure strategies are played by populations of su‰ciently well-motivated

subjects will be close to the maximin probabilities, provided that ade-

quate time for trial-and-error adjustment is available. Their payo¤s will

then necessarily be close to the players’ maximin values for the game.

Figure 1.2b indicates that the experiment largely confirmed our expecta-

tions. The surprise was to find that convergence to a neighborhood of the

equilibrium was so quick.

An eductive explanation of why subjects get close to their maximin

payo¤s, which demands that players randomize independently each time

that they play, is not supported by our results. As with O’Neill’s and later

experiments, our data fail an independence test proposed by Brown and

Rosenthal (1990). As is evident from figure 1.6, our subjects’ choices are

dependent on the past history of play. A contrary finding would refute the

evolutive hypothesis that people find their way to equilibrium by some

kind of trial-and-error adjustment process.

1.3 The Experimental Design

Figure 1.3 shows player I’s payo¤ matrices for the seven two-person,

zero-sum games played by our subjects. As indicated in the figure, there

were two ‘‘practice’’ and five ‘‘real’’ games. The asterisks in figure 1.3

indicate the row and column strategies whose frequencies of play are

plotted in figures 1.5 and 1.6 and reported in tables 1A.3, 1A.4, and

1A.5. Figure 1.3 also shows the payo¤ matrices for the three companion

games that we use to facilitate the analysis of the data and are discussed

in section 1.4.

In the computer implementation a subject was always shown his or her

own payo¤ matrix with positive values represented by the appropriate
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Figure 1.3
Payo¤ matrices for the row player in our experiments
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number of green disks and negative values by a corresponding number of

red disks. Alongside their payo¤ matrix, subjects were shown a ‘‘roulette

wheel’’ that was half red and half green at the beginning of each new

game. After each play of the game, the red or green region was updated

to take account of the amount the player won or lost in that play. After

completing all the plays of a particular game, the subjects observed a

small yellow ‘‘ball’’ move around the circumference of the roulette wheel.

Its stopping location was random. If it stopped in green, the subject won

$6.00 in the games played for real (and 60 cents in the practice games). If

it stopped in red, the subject won nothing. Subjects were told to think in

terms of losing or winning ‘‘lottery tickets.’’ However risk-averse a ratio-

nal agent might be, his or her goal in these circumstances should be to

maximize the expected number of lottery tickets.

It should be noted that all the games of figure 1.3, with the exception of

O’Neill’s game (real game 5), have maximin frequencies that are multi-

ples of 1=6. This choice reflects the fact that all games were played in ses-

sions involving twelve subjects split into six row players and six column

players, who were repeatedly matched in pairs to play a game in an un-

predictable manner. This design allows mixed strategies to be ‘‘purified.’’

For example, if a mixed strategy requires the first row to be played with

probability 1=6 and the second row with probability 5=6, then the same

e¤ect can be achieved by having one row player choose the first row for

certain while the other five row players choose the second row for certain.

With the exception of O’Neill’s game (real game 5), it follows that poly-

morphic equilibria exist in which each subject uses a pure strategy. For

example, in real game 1 it would be an equilibrium if just one row player

used the first row strategy and just one column player used the second

column strategy.

The subjects in the experiment were undergraduate students at the Uni-

versity of Michigan, recruited directly from classes chosen to make any

familiarity with game theory or related topics unlikely. Recruits from the

same class were assigned to di¤erent sessions. Despite the administrative

inconvenience, we do not use the same list of volunteers for di¤erent

experiments for fear of cross-experimental contamination. Since the

games are all zero-sum, it was possible to tell prospective subjects that

the average amount to be expected from participation would exceed $15.

Counting the $3 attendance payment and the small prizes for the practice

games, the actual average was approximately $18.60. Subjects spent ap-

proximately 45 minutes in the laboratory.
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Each experiment session required 12 subjects, who were seated at

screened monitors. We ran 13 experimental sessions4 in all, in each of

which the subjects played all 7 games of figure 1.3 many times. Each real

game was played 150 times, except for real game 2, which has a pure-

strategy saddle point. Real game 2 was played 75 times. Practice game 1

was played 50 times. Practice game 2 was played 100 times.

Practice game 1 was played fairly slowly to allow subjects to familiarize

themselves with the controls. Practice game 2 was played faster, and the

real games were played so quickly that a subject who wished to change

his or her strategy at every play needed to pay very close attention to

what was going on. A subject’s opponents were switched after every play

in an unpredictable manner. A subject remained a row or a column

player during the play of any particular game, but the sets of row and col-

umn players were reshu¿ed each time that the game changed.

A row player chose his or her strategy by pressing the up and

down arrow keys. This led to di¤erent rows being highlighted on the

screen. Every so often, a column would be highlighted, indicating the

choice made by the opponent in the game just played. The roulette

wheel showing the subject’s accumulated number of lottery tickets

would then be updated. Column players chose strategies by pressing the

left and right arrow keys but were not otherwise distinguished from row

players.

Starting with the second practice game, subjects were also shown two

graphs updated in real time. A green graph showed the subject’s payo¤

averaged over the last six plays. A white graph showed the same statistic

for the median of the other players in the same situation as the subject.

That is, a row player saw the median payo¤ of the other row players

and a column player the median payo¤ of the other column players.

Row players were, of course, only matched against column players in

the game currently being played. The graphs were intended to allow him

to compare his performance with the other subjects in the same situation

as himself. We attach considerable importance to this feature of the ex-

periment, which has no correlate in other experimental work on two-

person, zero-sum games as far as we know.

We will be very pleased to send copies of our experimental software to

interested parties.

4. More sessions were organized, but we were unlucky with computer crashes and the be-
havior of one subject. Our policy is to throw away data if anything untoward occurs, what-
ever the cause.
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1.4 Results

Recall that 13 experiments were run, each with 12 subjects. In each exper-

iment, all subjects played 2 practice games and 5 real games. In any given

game, half the subjects were row players and half were column players.

The results of the experiments are summarized in figure 1.4 to 1.7. Figure

1.2, which is provided for purposes of comparison with O’Neill’s (1987)

data, has already been mentioned. Table 1A.1 to 1A.6 provide additional

information on the results.

Figures 1.4 and 1.5 and the accompanying tables 1A.1 and 1A.2 show

that, both in terms of average payo¤s and the average frequencies with

which various strategies were used, the behavior of our subjects is close

to that predicted by the minimax hypothesis. Figure 1.6 and the accom-

panying table 1A.5 contains information on how our subjects responded

to opportunities for increasing their payo¤s. Figure 1.7 and table 1A.6 in-

dicate how the subjects responded to the information presented in our

graphical display. Perhaps the most striking results of our experiments

concern tables 1A.3 and 1A.4, which show that the maximin frequencies

are good predictions of the play-by-play behaviour of individual groups

of subjects.

Figure 1.4a to 1.4e shows histograms of moving averages of the payo¤s

obtained by row players in real games 1 to 5 respectively. For example,

figure 1.4a describes the first real game. For each subject who was a row

player and for each play of the game, we calculate the moving average of

that subject’s payo¤ in the current and preceding 23 plays. Starting with

play 24, the top line indicates, at each play, the maximum of the 78 mov-

ing averages calculated this way. The connected dots indicate the medians

of the moving averages at each play, and the bottom line indicates the

minimum of the moving averages. The intermediate lines indicate the

top and bottom quartiles respectively. The horizontal lines in figure 1.4a

to 1.4e indicate the maximin payo¤s for a row player. For each real game

the median moving average is always very close to this line. The vertical

distance between the top and bottom quartile lines indicates the range of

moving averages obtained by the middle half of the subjects at each

play.5 For comparison, the vertical axis in each graph runs from the min-

imum to the maximum payo¤ attainable by a row player and so indicates

the full range of values that these moving averages can take on. For each

5. By construction, the 21st to 58th largest values are guaranteed to fall between the bottom
and top quartiles. This turns out to be one less than half of the values.
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Figure 1.4
Summary statistics for the moving averages of payo¤s



game the middle half of the moving averages remains clustered very nar-

rowly around the minimax payo¤.

Table 1A.1 provides further information concerning the average pay-

o¤s received by the row players in each real game.

Table 1A.2 reports the average frequency with which row and column

players used each strategy. As in figure 1.3, row strategies are labeled nu-

merically, starting from the top of the payo¤ matrix for each game, and

column strategies are numbered from left to right. The first part of table

1A.2 involves averages over all the experiments. It reports the theoretical

maximin frequency predicted for each strategy by the minimax hypothesis

together with the actual frequency with which each strategy was played,

both averaged over all the plays of the game and also over only the last

third of plays. The second part of table 1A.2 reports the average fre-

quency with which each strategy was used in all the plays of each separate

experiment.

Figure 1.5a to 1.5e displays some of the information in table 1A.2 in

graphical form. For the row and column strategies of each real game

marked with asterisks in figure 1.3 and table 1A.2, the average frequen-

cies with which these strategies were used in each of the 13 experiments

are plotted. The row frequencies are shown on the horizontal axes in fig-

ure 1.5 and the column frequencies on the vertical axes. For comparison,

horizontal and vertical lines in each graph also indicate the maximin row

and column frequencies for each strategy. The average frequencies plot-

ted in figure 1.5 are clearly close to the theoretical maximin predictions.

On the other hand, it is also evident that there are small but systematic

deviations from the maximin frequencies.6

The dashed boxes in figure 1.5a to 1.5e indicate the best unit box pre-

dictor for each game. As discussed in more detail below, more than 60

percent of all the frequencies observed in di¤erent plays fall within this

box for each real game.

Tables 1A.3 and 1A.4 and the dashed boxes in figure 1.5 and figure 1.6

provide information on the frequencies with which individual groups of

subjects used selected strategies in individual plays of the games. In figure

1.5 the strategies considered are those marked with an asterisk in figure

1.3 and table 1A.2.

6. For example, the standard Hotelling T2 tests reject the hypothesis that the clouds of
points in figure 1.5 are drawn from bivariate normal distributions with means at the maxi-
min frequencies.
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Figure 1.5
Average frequencies of play in each of the 13 experiments



Figure 1.6
Trajectories of frequency of play for selected experiments



For each real game the group of subjects was divided into six row

players and six column players. Hence only frequencies that were a mul-

tiple of 1=6 were observed in a single play of a game. For each observable

combination of row and column frequencies, the entries in table 1A.4 in-

dicate the fraction of the total number of plays in all the experiments in

which that particular combination was observed. For comparison, the

numbers in parentheses indicate the probabilities that the designated com-

binations of row and column frequencies will be observed if all players

behave purely randomly, choosing their strategies randomly and inde-

pendently with an equal probability of choice assigned to each strategy.

The information contained in table 1A.4 is summarized in various ways

in table 1A.3. In addition the first row of entries in table 1A.3 shows the

fraction of all plays where there was a net change in the number of row

and/or column players playing the designated strategies from that play to

the next. For each real game, the frequency of net changes was very high.

Little tendency to purify mixed strategies was therefore observed.

The next set of entries in table 1A.3 describes the performance of the

maximin point predictor. We use the term ‘‘point predictor’’ to refer to a

prediction that a single combination of the row and column frequencies

indicated in table 1A.4 will be observed in a play of the game. For each

game the maximin point predictors select the combinations of row and

column frequencies that are to be played according to the minimax hy-

pothesis.7 Depending on the game, the designated strategies were played

at exactly the frequencies predicted by the minimax hypothesis in from 7

to 20 percent of the total plays.

The set of entries labeled ‘‘best point predictor’’ in table 1A.3 indicate

the single frequency combination that was observed most often in each

real game. These ‘‘most likely’’ frequency combinations are always close

to the maximin frequencies, di¤ering at most by the choice of one subject.

For games 2 and 3 the maximin frequencies are the combinations

observed most often. Also note that the fraction of plays occurring at

the most likely frequency combinations are no more than 2 percent

greater than the fractions of plays at the maximin frequencies, except for

game 1 where the di¤erence exceeds 10 percent.

As another point of comparison, the numbers listed in parentheses

under the fractions of plays for the maximin and best point predictors in

7. The exact maximin frequencies for game 5 are not a multiple of 1=6 and so cannot be
observed in the play of a single game. For game 5, the maximin point predictor is the ob-
servable frequency combination that has the highest probability of occurrence when subjects
choose their strategies randomly and independently using the exact maximin probabilities.
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table 1A.3 give the predictions of two probabilistic theories. As in table

1A.4, the first of the two numbers is the probability that each frequency

combination will occur if all subjects behave purely randomly. The sec-

ond number in parentheses is the probability that the designated fre-

quency combination will occur if all subjects choose their strategies

randomly and independently using the maximin probabilities. It is inter-

esting to note that although the observed fractions of plays occurring at

exactly the maximin frequencies seem small, the fractions predicted by

this strong form of the minimax hypothesis are also small (except, of

course, for game 2, where minimax behavior does not involve mixed

strategies). Indeed, for games 3 and 4 the observed and predicted frac-

tions of plays at exactly the maximin frequencies are not statistically

di¤erent.8

Given the large fraction of plays where there was a net change in the

frequencies with which strategies were used from one play to the next, it

is unsurprising that we do not observe a large proportion of plays occur-

ring at any one frequency combination. Since point predictors fail to rec-

ognize the noisy nature of the subjects’ choices, the rest of table 1A.3

considers unit box predictors. We use the term ‘‘unit box’’ to refer to a

square centered at one of the observable frequency combinations shown

in table 1A.4. The square has a height of 1=3 to allow for a net change

(up or down) of one in the number of column players using their desig-

nated strategy at the central frequency combination. Similarly the square

has a width of 1=3 to allow for a net change of one in the number of row

players using their designated strategy at the central combination. For

purposes of comparison, we thought it best to keep all unit boxes the

same size, although this requires displacing the centers of boxes when

these involve the use of a pure strategy.

We use the term ‘‘unit-box predictor’’ to refer to a prediction that one

of the nine adjacent combinations of observable row and column frequen-

cies contained in some unit box will be observed in a play of the game. To

make a unit box prediction is to claim that the number of row players and

the number of column players using their designated strategies will each

di¤er by at most one from the numbers of players indicated by the fre-

quency combination at the center of the unit box under consideration.

8. If strategies are chosen randomly using the maximin probabilities, the observed fraction
of plays is a binomial random variable with a standard deviation of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ=N

p
, where p

is the predicted probability of observing the maximin frequency combination, and
N ¼ 1;950 is the total number of plays for game 3 and game 4. The observed fractions of
plays for games 3 and 4 are within one standard deviation of the predicted fractions.
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Where possible, the maximin unit-box predictor uses the unit box

centered at the exact maximin frequencies to predict the outcomes of in-

dividual games. For game 2, the center of the maximin unit box predictor

is o¤set from the boundary ð1; 1Þ to ð5=6; 5=6Þ so that the box contains

the same number of possible frequency combinations as other games.

The exact maximin frequencies for game 5 are not a multiple of 1=6, and

so a square the same size as a unit box but centered at the exact maximin

frequencies will not contain the same number of observable frequency

combinations as the boxes for other games. The maximin unit box for

game 5 is therefore centered at one of the observable frequency combina-

tions closest to the exact maximin frequencies. The unit box chosen has

the highest probability of occurrence when all subjects randomly and

independently choose their strategies using the maximin probabilities.

One of the important results of our experiments is the large number of

plays in which the observed row and column frequencies fall within the

maximin unit boxes. Depending on the game, the fraction of plays falling

within the maximin unit box ranges from 49 to 88 percent.

As with point predictors, one can ask which of the unit boxes for each

game contains the frequency combinations most often observed in the

play of that game. We call this box the best unit box. The best unit box

for each game is drawn in table 1A.4 and is also shown as a dashed box

in figures 1.5 and 1.6. Information on the best unit box predictors is sum-

marized in table 1A.3. It is worth emphasising that although the dashed

boxes in figures 1.5 and 1.6 appear large, any smaller squares centered at

the same points contain only one of the frequency combinations that can

be observed in a single play of the game.

The best unit-box predictor for each game is a good prediction of the

outcome of the individual plays in that game. Depending on the game,

from 61 to 88 percent of the total number of plays occur at one of the fre-

quency combinations contained in the best unit box. The best unit-box

predictor is always close to the maximin prediction. For every game the

exact maximin frequency combination is one of those contained in the

best unit box. For games 2 and 3, the maximin and best unit boxes are

identical. As can also be observed in table 1A.3, the fractions of plays

contained in the best unit boxes are typically not much larger than the

fractions contained in the maximin unit boxes.

The numbers in parentheses in table 1A.3 under the listing of the frac-

tion of plays for the maximin and best unit-box predictors give the same

information as for the point predictors. The first number is the probabil-

ity that one of the frequency combinations contained in the designated
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box will occur when subjects choose their strategies purely randomly. The

second number is the probability that one of these frequency combina-

tions will occur when subjects choose their strategies using the maximin

probabilities. In game 5 the probability of observing a frequency combi-

nation contained in the maximin unit box is large, both when subjects be-

have purely randomly and when they choose strategies using the maximin

probabilities. Except in this case, the fraction of total plays contained in

the maximin unit box is far higher than if subjects chose their strategies

randomly with equal probabilities.9 Clearly, some sort of systematic be-

havior keeps the subjects’ choices close to the maximin frequencies.

The last part of table 1A.3 uses unit-box predictors to compare the pre-

dictive power of alternative theories with that of the minimax hypothesis.

The alternative hypotheses compared with the minimax hypothesis are as

follows:

1. Random play Brown and Rosenthal (1990) propose comparing

O’Neill’s (1987) results with the hypothesis that each player chooses each

of his strategies with equal probability.

2. Optimizing against random play Kadane and Larkey (1982) argue

that equilibrium considerations should be irrelevant to a strict Bayesian

who simply maximizes his expected payo¤ relative to his subjective beliefs

about the play of the opponent. We consider a player who believes that

his opponent will use each of his strategies with equal probability.

3. Minimax regret Savage (1951) o¤ers the minimax-regret criterion as

a decision-making principle for large world contexts to which he believes

that Bayesian decision theory does not apply. We adapt the theory to the

case of mixed strategies in the natural way.

4. Probability matching As documented in a survey by Vulkan (1996),

the hypothesis that animals and people do not optimize but match proba-

bilities has a wide following in the psychological literature. It is not en-

tirely clear how the hypothesis should be adapted to a game-theoretic

context, but we take it to be the theory that a player uses his best reply

to an opponent’s strategy with the same probability that the opponent

uses that strategy.

For the selected row and column strategies from each game, table 1A.3

first reports the probability for these strategies predicted by each of the

9. When subjects behave purely randomly, the standard deviation of the fraction of total
plays falling within the maximin unit box is given by the same formula as in note 9, except
that p is now the probability of observing a single play within the unit box.
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four alternate theories listed above. We then consider the unit boxes cor-

responding to each of these predictions. Except where the predictions of

the alternative theories coincide with the maximin predictions, the frac-

tions of games whose frequency combinations fall within the unit boxes

of the alternative theories are much less than the fractions falling within

the corresponding maximin unit boxes.

For the pairs of row and column strategies that we have been consider-

ing and each real game, figure 1.6 shows a trajectory of moving averages

of the frequencies with which these strategies were played in particular

experiments. Each dot indicates the average frequency with which the

strategies were used in six plays of the game. The numbers by some of

the dots indicate the first plays in the corresponding averages. As in figure

1.5, the horizontal and vertical lines in each graph indicate the predicted

maximin row and column frequencies, and the dashed boxes indicate the

best unit boxes for each game. It is interesting how quickly the moving

averages enter the best unit boxes. It is also worth recalling that except

for game 2, which has a saddle point, the payo¤ from using each strategy

is almost the same when opponents play their strategies with probabilities

close to the maximin frequencies. It is therefore not surprising that the

trajectories wander rather unpredictably once they get close to the max-

imin frequencies.

For a 2� 2 game, a point in the ‘‘frequency space’’ depicted in figures

1.5 and 1.6 completely determines which pure strategy is a best reply for

each player when he or she believes that the opponent will play according

to the indicated frequency. Hence we associate a companion 2� 2 game

to each of games 3, 4, and 5.10 The payo¤ matrices for the row player in

these companion games are listed in figure 1.3.

If certain assumptions are maintained, then play in one of the 2� 2

companion games should mirror play in the original game. For example,

the 2� 2 game associated with game 5 is obtained by assuming that the

interchangeability of the second, third, and fourth pure strategies is

reflected in their being played with equal probabilities. To play the first

pure strategy in the companion game corresponds simply to playing the

first pure strategy in the original game. To play the second pure strategy

in the companion game, labeled 2–4, corresponds to playing each of the

other pure strategies in the original game with probability 1=3. In a similar

way a companion 2� 2 game is obtained for game 4 by exploiting the

10. Since it is fully dominance solvable, it is not interesting to compare real game 2 with a
2� 2 companion game.
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interchangeability of the first and second strategies in that game. The

companion 2� 2 game for real game 3 is obtained by deleting row strat-

egy 2, which is strictly dominated, and then column strategy 3.11

The counterclockwise spiral inset in figure 1.6a indicates the direction

in which that trajectory should ‘‘wind’’ if subjects tend to switch to

whichever strategy is their best reply. Similarly the spirals inset in figure

1.6c to 1.6e indicate the directions in which the corresponding trajectories

should move if subjects tend to switch to their best replies in the compan-

ion 2� 2 games for each figure. Although the evolution of the trajectories

is obviously noisy, each trajectory appears to wind in the predicted direc-

tion. The data reported in table 1A.5 support this conclusion.

Table 1A.5 considers plays of the games where there were nonzero net

changes in the frequencies with which row or column players used their

designated strategies from those plays to the next. The designated strat-

egies are those whose frequencies are graphed in figures 1.5 and 1.6.

Consider, for example, the row strategy for game 1. This strategy is a

strict best reply for row players if and only if the column players in game

1 use their designated strategy with a frequency less than the maximin

column frequency. (Both row strategies are best replies when column

players play their strategies with exactly the maximin frequencies.) Hence,

if subjects tend to switch to their best replies, we should observe more

positive than negative changes in the numbers of row players playing

their designated strategy after plays where column players use their own

designated strategy with less than the maximin frequency, and more neg-

ative than positive changes in the reverse situation. Similar predictions

apply for the column players in game 1 and row and column players in

the 2� 2 companion games for games 3, 4, and 5.

The first part of table 1A.5 reports data pooled over all the experi-

ments. The data show an increased use of those strategies which were

strict best replies to the opponents’ previous play either for the game itself

(for game 1) or the companion 2� 2 games (for games 3, 4, and 5).

Whenever a strict best reply exists, the fraction of plays for which there

was a shift toward that best reply is always greater than the fraction

with a shift in the opposite direction. The second part of table 1A.5

reports the data separately for each experiment. In a large majority of

the individual experiments, we also observe that the fraction of plays

11. Assuming that the row player does not use his strictly dominated strategy, it is not opti-
mal for the column player in game 3 to use strategy 3 unless the probability that the row
player uses strategy 1 is greater than 1=2. As can be seen in table 1A.2, this probability is
much higher than either the predicted maximin frequency or the observed frequency with
which strategy 1 was played in the various experiments.
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with a shift toward a strict best reply is greater than the fraction with a

shift in the opposite direction.

As discussed in section 1.3, during each game subjects were provided

with a real-time display that showed a moving average of their own pay-

o¤s as well as information about the average payo¤ of other players like

themselves. One way that subjects might respond to such information is

to switch strategies when the display indicates that the performance of

their current choice is poor.

Figure 1.7 is a histogram that shows the frequencies with which indi-

vidual row players in game 5 switched from the strategy that they used

in the previous play of the game as a function of the moving averages of

their own payo¤s in the previous six plays. The height of each bar in fig-

ure 1.7 gives the frequency with which subjects switched strategies when

Figure 1.7
Switching frequency versus payo¤ for row players in game 5

Getting to Equilibrium 47



their average payo¤s were within the indicated interval. The data are

pooled over all the plays of game 5 by the 78 subjects who were row

players in that game.

It is clear from the figure that subjects tended to switch strategies more

frequently when their average payo¤s were low. Although the relation-

ships are not always as smooth as that displayed in figure 1.7, similar neg-

ative relationships between the frequency of switching and the subjects’ own

average payo¤s can be observed in the histogram for the column players

in game 5 and the histograms for the row and column players in each of

the other games. Table 1A.6 provides further evidence on this point.

The curve superimposed on the histogram of figure 1.7 represents the

predicted probability of switching obtained from a logit model. For the

row and column players in each real game, table 1A.6 reports the esti-

mated coe‰cients of logit models that relate the probability of switching

strategies to the two statistics contained in the subjects’ graphical display.

In every case there is a highly significant negative relationship between

the probability of switching and the moving average of the subjects’ own

payo¤s. The relation between the probability of switching and the median

moving average of the other players’ payo¤s is less clear. In some cases,

this relation was negative, in others positive, and in still other cases, no

significant relationship existed.12

1.5 Conclusion

Two-person, zero-sum games are the heartland of game theory. It is

therefore frustrating that the empirical evidence should have carried so

little weight in determining the prevailing orthodoxy, which treats Von

Neumann’s minimax theory as sacred. However, the hypothesis that real

people are better natural gamesmen than Emile Borel is not well sup-

ported by this or any other experiment. But the question that matters is

whether real people are willing and able to learn to play like gamesmen

using trial-and-error methods. This and other experiments on simple non-

cooperative games whose equilibria are easily accessible using simple ad-

justment processes would seem to establish that the answer is a firm yes,

provided that the incentives are adequate and ample time and informa-

tion is available to allow learning to take place.

12. In considering the results presented in figure 1.7 and table 1A.6, one should keep in
mind that subjects had other sources of information about their own payo¤s in addition to
the graphical display. Subjects received an indication each time they won or lost, and they
could also observe changes in their cumulative winnings, which were displayed on a roulette
wheel as described in section 1.3.
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Appendix Tables

Table 1A.1
Average payo¤s obtained by row players for each of the games of our experiments. The first part of the table reports payo¤s averaged over all the experi-
ments. For comparison, the second column of the first part reports the minimax payo¤ for row players in each game. The third and fourth columns re-
port the payo¤ obtained by the row players averaged over all the plays and the last third of the plays respectively. The columns in the second part of the
table report the average payo¤ obtained in all the plays of each experiment.

Game Minimax All Last 3rd

1 �1.1667 �1.2399 �1.2023

2 �1 �1.1297 �1.0923

3 �0.3333 �0.3870 �0.4013

4 �0.3333 �0.3413 �0.3282

5 �0.2 �0.1976 �0.1882

Average payo¤ in each experiment

Experiment

Game 1 2 3 4 5 6 7 8 9 10 11 12 13

1 �1.2700 �1.2933 �1.1611 �1.1422 �1.2667 �1.1733 �1.3233 �1.2622 �1.2189 �1.2622 �1.2956 �1.1467 �1.3033

2 �1.0733 �1.1222 �1.0711 �1.1622 �1.3000 �1.2511 �1.2422 �0.9044 �0.9733 �1.0756 �1.1400 �1.0933 �1.2778

3 �0.3133 �0.3576 �0.2489 �0.3767 �0.5356 �0.3822 �0.3633 �0.3600 �0.3700 �0.4433 �0.3311 �0.6244 �0.3256

4 �0.3500 �0.4067 �0.3144 �0.3389 �0.3600 �0.3167 �0.3656 �0.3500 �0.3533 �0.2689 �0.3444 �0.3500 �0.3178

5 �0.2267 �0.1889 �0.2067 �0.2222 �0.1978 �0.1867 �0.2289 �0.2311 �0.1689 �0.2044 �0.1933 �0.1689 �0.1444
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Table 1A.2
Average frequencies with which row and column players used each strategy in the games of our experiments. The first part of the table involves averages
over all the experiments. It reports the theoretical maximin frequency predicted for each strategy by the minimax hypothesis along with the actual fre-
quency that each strategy was played both averaged over all the plays of the game and also over only the last third of plays. The second part of the table
reports the average frequency with which each strategy was played in all the plays of each separate experiment. Strategies for row players are numbered
from top to bottom of the payo¤ matrices shown in figure 1.3. Column strategies are numbered from left to right. Strategies marked with an asterisk are
those whose frequencies are plotted in figures 1.5 and 1.6 and reported in tables 1A.3, 1A.4, and 1A.5.

Row frequencies Column frequencies

Strategy Maximin All
Last
3rd Maximin All

Last
3rd

Game 1

1* 0.1667 0.3143 0.2508 0.8333 0.9256 0.9146

2 0.8333 0.6857 0.7492 0.1667 0.0744 0.0854

Game 2

1 0 0.0562 0.0441 0 0.0171 0.0113

2* 1 0.8386 0.8877 1 0.8622 0.9179

3 0 0.1051 0.0682 0 0.1207 0.0708

Game 3

1* 0.1667 0.2222 0.2051 0.6667 0.6201 0.6469

2 0 0.0679 0.0562 0.3333 0.2876 0.2785

3 0.8333 0.7098 0.7387 0 0.0923 0.0746

Game 4

1 0.1667 0.2132 0.2072 0.1667 0.0608 0.0813

2 0.1667 0.1717 0.1328 0.1667 0.1691 0.1705

3* 0.6667 0.6150 0.6600 0.6667 0.7702 0.7482

Game 5

1* 0.4 0.4295 0.4392 0.4 0.4885 0.4479

2 0.2 0.1762 0.1874 0.2 0.2579 0.2664

3 0.2 0.2281 0.2236 0.2 0.1093 0.1118

4 0.2 0.1662 0.1497 0.2 0.1443 0.1738
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Average frequencies in each experiment

Experiment

Strategy 1 2 3 4 5 6 7 8 9 10 11 12 13

Game 1—Row frequencies

1* 0.3367 0.4333 0.2678 0.1822 0.3078 0.2233 0.4611 0.3189 0.3022 0.2878 0.3644 0.2322 0.3678

2 0.6633 0.5667 0.7322 0.8178 0.6922 0.7767 0.5389 0.6811 0.6978 0.7122 0.6356 0.7678 0.6322

Game 1—Column frequencies

1* 0.9467 0.9000 0.8933 0.9400 0.9611 0.9500 0.9311 0.9167 0.8567 0.9722 0.9222 0.9322 0.9111

2 0.0533 0.1000 0.1067 0.0600 0.0389 0.0500 0.0689 0.0833 0.1433 0.0278 0.0778 0.0678 0.0889

Game 2—Row frequencies

1 0.0378 0.0711 0.0467 0.0822 0.0733 0.1133 0.0711 0.0044 0.0200 0.0244 0.0244 0.0489 0.1133

2* 0.8400 0.7867 0.9000 0.8111 0.7289 0.7556 0.8022 0.9000 0.9533 0.9333 0.8311 0.9089 0.7511

3 0.1222 0.1422 0.0533 0.1067 0.1978 0.1311 0.1267 0.0956 0.0267 0.0422 0.1444 0.0422 0.1356

Game 2—Column frequencies

1 0.0200 0.0556 0.0067 0.0067 0.0333 0.0133 0.0133 0.0244 0.0156 0.0044 0.0133 0.0044 0.0111

2* 0.7378 0.8000 0.9267 0.8089 0.8911 0.8956 0.9156 0.7378 0.8956 0.9644 0.8111 0.9644 0.8600

3 0.2422 0.1444 0.0667 0.1844 0.0756 0.0911 0.0711 0.2378 0.0889 0.0311 0.1756 0.0311 0.1289

Game 3—Row frequencies

1* 0.2178 0.1911 0.2500 0.2167 0.2178 0.2333 0.2433 0.2100 0.1933 0.2522 0.2400 0.2411 0.1822

2 0.0611 0.0511 0.0489 0.0389 0.1222 0.0444 0.0322 0.0644 0.0400 0.0822 0.0300 0.2244 0.0433

3 0.7211 0.7578 0.7011 0.7444 0.6600 0.7222 0.7244 0.7256 0.7667 0.6656 0.7300 0.5344 0.7744

Game 3—Column frequencies

1* 0.6367 0.5556 0.5667 0.6767 0.7156 0.6500 0.5944 0.6789 0.5944 0.4756 0.6100 0.6489 0.6578

2 0.2722 0.3089 0.3222 0.2478 0.2033 0.2567 0.3111 0.2456 0.3444 0.3600 0.2733 0.3200 0.2733

3 0.0911 0.1356 0.1111 0.0756 0.0811 0.0933 0.0944 0.0756 0.0611 0.1644 0.1167 0.0311 0.0689
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Table 1A.2
(continued)

Average frequencies in each experiment

Experiment

Strategy 1 2 3 4 5 6 7 8 9 10 11 12 13

Game 4—Row frequencies

1 0.2144 0.2389 0.1844 0.1600 0.1811 0.1589 0.2667 0.2000 0.2433 0.2256 0.2100 0.2033 0.2856

2 0.1922 0.2844 0.1589 0.1333 0.1778 0.1556 0.2022 0.1822 0.0956 0.1300 0.1678 0.1511 0.2011

3* 0.5933 0.4767 0.6567 0.7067 0.6411 0.6856 0.5311 0.6178 0.6611 0.6444 0.6222 0.6456 0.5133

Game 4—Column frequencies

1 0.0344 0.0756 0.0900 0.0900 0.0567 0.0833 0.0378 0.0333 0.0411 0.1056 0.0244 0.0722 0.0456

2 0.1978 0.1567 0.1989 0.1644 0.1244 0.1300 0.1567 0.2144 0.2133 0.1433 0.1511 0.1722 0.1744

3* 0.7678 0.7678 0.7111 0.7456 0.8189 0.7867 0.8056 0.7522 0.7456 0.7511 0.8244 0.7556 0.7800

Game 5—Row frequencies

1* 0.4322 0.4878 0.3711 0.4400 0.3456 0.3767 0.4433 0.4322 0.4289 0.4156 0.4433 0.4922 0.4744

2 0.1456 0.1222 0.1811 0.1822 0.2544 0.1811 0.1789 0.1600 0.1467 0.2078 0.1889 0.1822 0.1589

3 0.2778 0.2189 0.2989 0.1778 0.2367 0.2367 0.2022 0.1956 0.2867 0.2444 0.2167 0.1800 0.1933

4 0.1444 0.1711 0.1489 0.2000 0.1633 0.2056 0.1756 0.2122 0.1378 0.1322 0.1511 0.1456 0.1733

Game 5—Column frequencies

1* 0.5144 0.4600 0.5711 0.4600 0.4533 0.4489 0.5100 0.5578 0.4556 0.4456 0.4800 0.4956 0.4978

2 0.3533 0.3333 0.2189 0.2789 0.2289 0.2744 0.2300 0.2256 0.2067 0.2678 0.2522 0.1767 0.3067

3 0.0378 0.1156 0.0700 0.1333 0.1222 0.1456 0.0578 0.1278 0.1833 0.1278 0.1267 0.0911 0.0822

4 0.0944 0.0911 0.1400 0.1278 0.1956 0.1311 0.2022 0.0889 0.1544 0.1589 0.1411 0.2367 0.1133
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Table 1A.3
Summary information about the frequencies with which populations of subjects used their designated strategies in individual plays of the games. The row
and column strategies considered for each game are those marked with an asterisk in figure 1.3 and table 1A.2. See the text for a definition and discussion
of the summary statistics reported in this table. An entry of 0.0000 indicates a value less than 0.00005.

Game 1 Game 2 Game 3 Game 4 Game 5

Frequencies of net changes 0.7274 0.6778 0.8436 0.8363 0.8947

Maximin point predictor

Coordinates of point ð1=6; 5=6Þ ð1; 1Þ ð1=6; 4=6Þ ð4=6; 4=6Þ ð2=6; 2=6Þa
Fraction of total plays at designated point 0.0959

ð0:0088; 0:1615Þ
0.2082
ð0:0000; 1:0Þ

0.1272
ð0:0217; 0:1323Þ

0.1067
ð0:0068; 0:1084Þ

0.0744
ð0:0880; 0:0967Þ

Best point predictor

Coordinates of point ð1=6; 1Þ ð1; 1Þ ð1=6; 4=6Þ ð4=6; 5=6Þ ð2=6; 3=6Þ
Fraction of total plays at designated point 0.1995

ð0:0015; 0:1346Þ
0.2082
ð0:0000; 1:0Þ

0.1272
ð0:0217; 0:1323Þ

0.1097
ð0:0014; 0:0867Þ

0.0964
ð0:0391; 0:0860Þ

Unit-box predictors

Maximin unit-box predictor

Coordinates of center ð1=6; 5=6Þ ð5=6; 5=6Þb ð1=6; 4=6Þ ð4=6; 4=6Þ ð2=6; 2=6Þc
Fraction of total plays within designated box 0.7041

ð0:1182; 0:8793Þ
0.88
ð0:0100; 1:0Þ

0.7174
ð0:2165; 0:7615Þ

0.6108
ð0:1013; 0:6595Þ

0.4995
ð0:6153; 0:5993Þ

Best unit-box predictor

Coordinates of center ð2=6; 5=6Þ ð5=6; 5=6Þ ð1=6; 4=6Þ ð4=6; 5=6Þ ð3=6; 3=6Þ
Fraction of total plays within designated box 0.7544

ð0:2202; 0:6155Þ
0.88
ð0:0100; 1:0Þ

0.7174
ð0:2165; 0:7615Þ

0.6867
ð0:0319; 0:5525Þ

0.6123
ð0:2129; 0:5267Þ

Unit-box predictors for alternate theories

Minimax regret

Theoretical prediction ð5=6; 5=6Þ ð3=5; 3=6Þ ð3=6; 6=7Þ ð0; 4=6Þ ð2=5; 2=5Þd
Coordinates of center ð5=6; 5=6Þ ð4=6; 3=6Þe ð3=6; 5=6Þe ð1=6; 4=6Þf ð2=6; 2=6Þe
Fraction of total plays within designated box 0.1133 0.1538 0.2369 0.1215 0.4995
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Table 1A.3
(continued)

Random strategy choice

Theoretical prediction ð3=6; 3=6Þ ð2=6; 2=6Þ ð2=6; 2=6Þ ð2=6; 2=6Þ ð1=4; 1=4Þ
Coordinates of center ð3=6; 3=6Þ ð2=6; 2=6Þ ð2=6; 2=6Þ ð2=6; 2=6Þ ð1=6; 1=6Þe
Fraction of total plays within designated box 0.0374 0.0133 0.3200 0.0441 0.1723

Best reply to random strategy choice

Theoretical prediction ð1; 1Þ ð1; 1Þg ð0; 1Þ ð0; 1Þ ð0; 1Þ
Coordinates of center ð5=6; 5=6Þf ð5=6; 5=6Þf ð1=6; 5=6Þf ð1=6; 5=6Þf ð1=6; 5=6Þf
Fraction of total plays within designated box 0.1133 0.8800 0.5256 0.1446 0.1569

Probability matching

Theoretical prediction ð3=6; 3=6Þ ð1; 1Þd ð3=6; 0Þ ð3=6; 3=6Þ ð2=5; 2=5Þg
Coordinates of center ð3=6; 3=6Þ ð5=6; 5=6Þf ð3=6; 1=6Þf ð3=6; 3=6Þ ð2=6; 2=6Þe
Fraction of total plays within designated box 0.0374 0.8800 0.0615 0.2985 0.4995

a. As recorded in table 1A.2, the exact maximin prediction for game 5 is ð2=5; 2=5Þ, which is not a frequency that can be observed in a single play by a
single population of players. The indicated point predictor is the frequency combination with the highest probability of occurrence in a single play when
all subjects randomly and independently choose strategies using the maximin probabilities.
b. The exact maximin prediction for game 2 is ð1; 1Þ. A square box centered at this point would contain only four rather than nine frequency combina-
tions that could occur in a single play, since frequencies must lie between 0 and 1. In order to maintain comparability with the unit-box predictors for
other games and other theories, the center of the unit box is therefore ‘‘o¤set’’ to ð5=6; 5=6Þ.
c. Since the exact maximin prediction for game 5 is not a frequency combination that can be observed in a single play of the game, a square box which is
the same size as a unit box but centered at this prediction would not contain the same number of observable frequency combinations as a unit box, which
is centered at an observable combination. In order to maintain comparability with other unit-box predictors, we choose as the maximin unit-box predic-
tor that box which is (1) centered at an observable frequency combination and (2) has the highest probability of occurrence when all subjects randomly
and independently choose strategies using the maximin probabilities.
d. This predicted frequency combination is also the one predicted by the minimax hypothesis.
e. For the reasons discussed in note c, the unit box is not centered at the exact prediction for this game and theory. Rather it is the unit box which is (1)
centered at an observable frequency combination and (2) has the highest probability of occurrence when all subjects randomly and independently choose
whether or not to play their designated strategy using the probabilities predicted by the relevant theory.
f. For the same reasons as were discussed in note b, the center of the unit box in this case is ‘‘o¤set’’ from the ‘‘boundary’’ value predicted by the theory.
g. The theory in this case predicts a range of possible frequency combinations including the frequencies predicted by the minimax hypothesis, as shown
in the table.
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Table 1A.4
For selected row and column strategies from each game, showing frequencies with which in-
dividual groups of subjects used these strategies in individual plays of the game. The strat-
egies considered are those marked with an asterisk in figure 1.3 and table 1A.2. Since there
were six row and six column players in each group, only frequencies which are a multiple of
one sixth can be observed in a single play. The possible frequencies for row players are indi-
cated at the top of the table for each game and the frequencies for column players are shown
in the first column of the table. For each combination of row and column frequencies, the
entries in the table indicate the fraction of the total number of plays in all the experiments
where that particular combination was observed. For each game, the numbers in parentheses
indicate the probabilities that each combination of row and column frequencies will occur
when all players choose strategies randomly with an equal probability of choice assigned to
each strategy. For games 1 through 4, the maximin row and column frequencies are indi-
cated with an asterisk. The boxes in the table surround the nine entries that correspond to
the frequency combinations contained in the best unit box for each game. See the text for a
further discussion of unit-box predictors. An entry of 0.0000 indicates a value less than
0.00005.

Game 1—Fraction of total plays at each combination of frequencies

0 1/6* 2/6 3/6 4/6 5/6 1

1 0.0846 0.1995 0.1590 0.1077 0.0533 0.0144 0.0036

(0.0002) (0.0015) (0.0037) (0.0049) (0.0037) (0.0015) (0.0002)

5/6* 0.0364 0.0959 0.0959 0.0554 0.0251 0.0062 0.0015

(0.0015) (0.0088) (0.0220) (0.0293) (0.0220) (0.0088) (0.0015)

4/6 0.0051 0.0123 0.0154 0.0133 0.0056 0.0031 0.0005

(0.0037) (0.0220) (0.0549) (0.0732) (0.0549) (0.0220) (0.0037)

3/6 0.0005 0.0005 0.0015 0.0005 0.0005 0.0010 0.0010

(0.0049) (0.0293) (0.0732) (0.0977) (0.0732) (0.0293) (0.0049)

2/6 0.0000 0.0000 0.0000 0.0005 0.0000 0.0000 0.0000

(0.0037) (0.0220) (0.0549) (0.0732) (0.0549) (0.0220) (0.0037)

1/6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(0.0015) (0.0088) (0.0220) (0.0293) (0.0220) (0.0088) (0.0015)

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(0.0002) (0.0015) (0.0037) (0.0049) (0.0037) (0.0015) (0.0002)

Game 2—Fraction of total plays at each combination of frequencies

0 1/6 2/6 3/6 4/6 5/6 1*

1* 0.0000 0.0000 0.0021 0.0174 0.0544 0.1723 0.2082

(0.0001) (0.0004) (0.0005) (0.0003) (0.0001) (0.0000) (0.0000)

5/6 0.0000 0.0010 0.0051 0.0236 0.0646 0.1251 0.1128

(0.0014) (0.0043) (0.0054) (0.0036) (0.0014) (0.0003) (0.0000)

4/6 0.0000 0.0000 0.0031 0.0113 0.0359 0.0626 0.0441

(0.0072) (0.0217) (0.0271) (0.0181) (0.0068) (0.0014) (0.0001)

3/6 0.0000 0.0000 0.0031 0.0082 0.0123 0.0174 0.0062

(0.0193) (0.0578) (0.0723) (0.0482) (0.0181) (0.0036) (0.0003)

2/6 0.0000 0.0000 0.0000 0.0010 0.0031 0.0021 0.0010

(0.0289) (0.0867) (0.1084) (0.0723) (0.0271) (0.0054) (0.0005)

1/6 0.0000 0.0000 0.0000 0.0010 0.0010 0.0000 0.0000

(0.0231) (0.0694) (0.0867) (0.0578) (0.0217) (0.0043) (0.0004)

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(0.0077) (0.0231) (0.0289) (0.0193) (0.0072) (0.0014) (0.0001)
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Table 1A.4
(continued)

Game 3—Fraction of total plays at each combination of frequencies

0 1/6* 2/6 3/6 4/6 5/6 1

1 0.0169 0.0164 0.0154 0.0026 0.0015 0.0000 0.0000

(0.0001) (0.0004) (0.0005) (0.0003) (0.0001) (0.0000) (0.0000)

5/6 0.0421 0.0769 0.0636 0.0190 0.0041 0.0000 0.0000

(0.0014) (0.0043) (0.0054) (0.0036) (0.0014) (0.0003) (0.0000)

4/6* 0.0713 0.1272 0.0959 0.0292 0.0056 0.0005 0.0000

(0.0072) (0.0217) (0.0271) (0.0181) (0.0068) (0.0014) (0.0001)

3/6 0.0513 0.1118 0.0774 0.0256 0.0056 0.0000 0.0000

(0.0193) (0.0578) (0.0723) (0.0482) (0.0181) (0.0036) (0.0003)

2/6 0.0215 0.0390 0.0318 0.0123 0.0021 0.0000 0.0000

(0.0289) (0.0867) (0.1084) (0.0723) (0.0271) (0.0054) (0.0005)

1/6 0.0046 0.0092 0.0087 0.0041 0.0010 0.0000 0.0000

(0.0231) (0.0694) (0.0867) (0.0578) (0.0217) (0.0043) (0.0004)

0 0.0015 0.0026 0.0010 0.0005 0.0000 0.0000 0.0000

(0.0077) (0.0231) (0.0289) (0.0193) (0.0072) (0.0014) (0.0001)

Game 4—Fraction of total plays at each combination of frequencies

0 1/6 2/6 3/6 4/6* 5/6 1

1 0.0046 0.0103 0.0231 0.0503 0.0600 0.0410 0.0149

(0.0001) (0.0004) (0.0005) (0.0003) (0.0001) (0.0000) (0.0000)

5/6 0.0026 0.0154 0.0472 0.0913 0.1097 0.0718 0.0164

(0.0014) (0.0043) (0.0054) (0.0036) (0.0014) (0.0003) (0.0000)

4/6* 0.0036 0.0056 0.0323 0.0831 0.1067 0.0728 0.0185

(0.0072) (0.0217) (0.0271) (0.0181) (0.0068) (0.0014) (0.0001)

3/6 0.0010 0.0031 0.0108 0.0236 0.0292 0.0226 0.0082

(0.0193) (0.0578) (0.0723) (0.0482) (0.0181) (0.0036) (0.0003)

2/6 0.0005 0.0005 0.0000 0.0056 0.0072 0.0046 0.0005

(0.0289) (0.0867) (0.1084) (0.0723) (0.0271) (0.0054) (0.0005)

1/6 0.0005 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000

(0.0231) (0.0694) (0.0867) (0.0578) (0.0217) (0.0043) (0.0004)

0 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(0.0077) (0.0231) (0.0289) (0.0193) (0.0072) (0.0014) (0.0001)

Game 5—Fraction of total plays at each combination of frequencies

0 1/6 2/6 3/6 4/6 5/6 1

1 0.0015 0.0031 0.0046 0.0056 0.0015 0.0015 0.0000

(0.0000) (0.0001) (0.0001) (0.0000) (0.0000) (0.0000) (0.0000)

5/6 0.0062 0.0159 0.0221 0.0251 0.0092 0.0026 0.0005

(0.0008) (0.0016) (0.0013) (0.0006) (0.0001) (0.0000) (0.0000)

4/6 0.0072 0.0262 0.0703 0.0621 0.0379 0.0072 0.0000

(0.0059) (0.0117) (0.0098) (0.0043) (0.0011) (0.0001) (0.0000)

3/6 0.0128 0.0421 0.0964 0.0949 0.0508 0.0215 0.0026

(0.0235) (0.0469) (0.0391) (0.0174) (0.0043) (0.0006) (0.0000)

2/6 0.0067 0.0359 0.0744 0.0821 0.0436 0.0123 0.0005

(0.0528) (0.1056) (0.0880) (0.0391) (0.0098) (0.0013) (0.0001)

1/6 0.0036 0.0128 0.0308 0.0303 0.0149 0.0062 0.0000

(0.0634) (0.1267) (0.1056) (0.0469) (0.0117) (0.0016) (0.0001)

0 0.0005 0.0021 0.0056 0.0056 0.0010 0.0000 0.0000

(0.0317) (0.0634) (0.0528) (0.0235) (0.0059) (0.0008) (0.0000)



Table 1A.5
Plays of the games where there were net changes in the frequencies with which selected row or column strategies were used from that play to the next.
The strategies considered are those marked with an asterisk in figure 1.3 and table 1A.2. For these plays, the table describes how the fraction of changes
that were positive depends on the opponents’ play. The heading ‘‘lt. mm.’’ indicates a frequency ‘‘less than the maximin frequency’’ and similarly for the
other headings. See the text for further discussion. The first part of the table reports data pooled over all the experiments. The first number in each entry
is the number of plays in that category with a nonzero net change. The second number is the fraction of those net changes that were positive. The num-
bers in parentheses are the 95 percent confidence interval for the probability that a net change is positive under the assumption that this probability is
constant across plays in a given category. The second part of the table reports the data separately for each experiment. The number in parentheses in
each entry is the total number of plays in the indicated category and experiment where there was a nonzero net change from that play to the next. The
other number is the fraction of these net changes that were positive. As discussed further in the text, the categories of plays where the designated strat-
egies are strict best replies are marked with a y in the second part of the table. The corresponding fractions of positive net changes are marked with a y in
the first part of the table.

Fractions of nonzero net changes that were positive, pooled over all the experiments

Row players: Frequency of opponents’ play Column players: Frequency of opponents’ play

lt. mm. eq. mm. gt. mm. lt. mm. eq. mm. gt. mm.

Game 1 76, 0.6316
˙

381, 0.5774 673, 0.4309 96, 0.4583 206, 0.4757 401, 0.5511
˙

(0.5193, 0.7312) (0.5273, 0.6260) (0.3940, 0.4686) (0.3622, 0.5577) (0.4086, 0.5437) (0.5022, 0.5991)

Game 3 486, 0.5391
˙

390, 0.5205 298, 0.3993 268, 0.4291 467, 0.4882 477, 0.5577
˙

(0.4946, 0.5829) (0.4710, 0.5697) (0.3453, 0.4559) (0.3713, 0.4890) (0.4432, 0.5335) (0.5128, 0.6016)

Game 4 166, 0.2831 396, 0.4116 646, 0.6130
˙

456, 0.6162
˙

363, 0.4408 297, 0.4242

(0.2201, 0.3560) (0.3642, 0.4607) (0.5749, 0.6498) (0.5708, 0.6597) (0.3906, 0.4922) (0.3694, 0.4811)

Game 5a 150, 0.3733 772, 0.4650 380, 0.6421
˙

216, 0.6481
˙

793, 0.5132 272, 0.3125

(0.3000, 0.4530) (0.4301, 0.5003) (0.5927, 0.6887) (0.5824, 0.7087) (0.4785, 0.5479) (0.2604, 0.3699)
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Table 1A.5
(continued)

Fractions of nonzero net changes that were positive—Each experiment

Experiment
Frequency of
opponents’ play 1 2 3 4 5 6 7 8 9 10 11 12 13

Game 1—Row players

lt. mm.̇ 0.5 0.5 0.5455 0.6 1.0 0.0 0.6667 0.6364 0.75 1.0 0.7143 — 0.5

(2) (4) (11) (5) (1) (1) (3) (11) (20) (1) (7) (0) (10)

eq. mm. 0.72 0.5614 0.5294 0.6786 0.65 0.5625 0.5455 0.6087 0.5106 0.7 0.4516 0.6364 0.5833

(25) (57) (34) (28) (20) (16) (44) (23) (47) (10) (31) (22) (24)

gt. mm. 0.4118 0.4043 0.3714 0.4063 0.4068 0.45 0.4844 0.4364 0.3243 0.4524 0.5098 0.4 0.4754

(68) (47) (35) (64) (59) (60) (64) (55) (37) (42) (51) (30) (61)

Game 1—Column players

lt. mm. 0.4 — 0.375 0.45 0.5 0.5 0.0 0.5 0.5455 0.3333 0.5 0.0 0.3333

(5) (0) (8) (20) (10) (22) (1) (10) (11) (3) (2) (1) (3)

eq. mm. 0.4737 0.4286 0.5 0.5833 0.4545 0.5263 0.5 0.4 0.3478 0.5 0.4118 0.5 0.5714

(19) (7) (34) (12) (11) (19) (6) (10) (23) (14) (17) (20) (14)

gt. mm.̇ 0.5476 0.5278 0.5714 0.6 0.5294 0.5 0.5313 0.5652 0.6111 0.6 0.5682 0.625 0.5

(42) (36) (35) (10) (34) (20) (64) (23) (36) (15) (44) (8) (34)

Game 3—Row players

lt. mm.̇ 0.6129 0.475 0.4915 0.6957 0.6667 0.4516 0.5417 0.5417 0.5435 0.5625 0.5111 0.5 0.5385

(31) (40) (59) (23) (21) (31) (48) (24) (46) (64) (45) (28) (26)

eq. mm. 0.4667 0.6071 0.6071 0.5143 0.5429 0.5 0.4091 0.5294 0.3889 0.45 0.5429 0.5455 0.5556

(30) (28) (28) (35) (35) (42) (22) (17) (18) (20) (35) (44) (36)

gt. mm. 0.3333 0.4167 0.4167 0.375 0.3846 0.4483 0.3333 0.5152 0.4286 0.0 0.3636 0.3704 0.5

(27) (12) (12) (24) (52) (29) (18) (33) (14) (6) (22) (27) (22)
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Game 3—Column players

lt. mm. 0.5652 0.4643 0.3529 0.4516 0.4828 0.2941 0.5 0.375 0.45 0.3529 0.5455 0.3333 0.3333

(23) (28) (17) (31) (29) (17) (20) (16) (20) (17) (11) (18) (21)

eq. mm. 0.4483 0.3953 0.5455 0.5349 0.4872 0.4688 0.4878 0.5588 0.4571 0.5789 0.4242 0.4545 0.5111

(29) (43) (22) (43) (39) (32) (41) (34) (35) (38) (33) (33) (45)

gt. mm.̇ 0.5641 0.5946 0.6190 0.4848 0.4359 0.6364 0.5217 0.5357 0.6522 0.5 0.5333 0.6667 0.5455

(39) (37) (42) (33) (39) (33) (46) (28) (23) (48) (45) (42) (22)

Game 4—Row players

lt. mm. 0.1818 0.5 0.2609 0.4444 0.5 0.4 0.0 0.35 0.2 0.1875 0.2857 0.2353 0.2353

(11) (10) (23) (9) (6) (10) (5) (20) (15) (16) (7) (17) (17)

eq. mm. 0.3333 0.3721 0.4194 0.4222 0.3913 0.4828 0.3103 0.5161 0.4054 0.4615 0.3333 0.4688 0.4091

(24) (43) (31) (45) (23) (29) (29) (31) (37) (26) (24) (32) (22)

gt. mm.̇ 0.6889 0.5833 0.8 0.6923 0.5152 0.5246 0.6316 0.6 0.7045 0.5636 0.5806 0.6818 0.6034

(45) (48) (30) (26) (66) (61) (57) (50) (44) (55) (62) (44) (58)

Game 4—Column players

lt. mm.̇ 0.5926 0.5362 0.5455 0.8125 0.6 0.9167 0.5345 0.6970 0.6538 0.6667 0.7083 0.6563 0.5833

(27) (69) (33) (16) (30) (12) (58) (33) (26) (36) (24) (32) (60)

eq. mm. 0.3469 0.2 0.5667 0.28 0.4706 0.45 0.56 0.3913 0.5517 0.4667 0.6296 0.4194 0.3

(49) (10) (30) (25) (34) (20) (25) (23) (29) (30) (27) (31) (30)

gt. mm. 0.75 0.5714 0.3889 0.5556 0.4074 0.375 0.3333 0.36 0.3889 0.3704 0.3333 0.4516 0.3636

(12) (7) (36) (36) (27) (16) (9) (25) (36) (27) (24) (31) (11)
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Table 1A.5
(continued)

Experiment
Frequency of
opponents’ play 1 2 3 4 5 6 7 8 9 10 11 12 13

Game 5—Row playersa

lt. mm. 0.4444 0.3636 0.5 0.1667 0.4211 0.4375 0.3333 0.3333 0.25 0.3889 0.4444 0.4444 0.375

(9) (11) (6) (12) (19) (16) (15) (6) (12) (18) (9) (9) (8)

eq. mm. 0.3770 0.4655 0.4 0.4894 0.5 0.4559 0.5526 0.5263 0.4237 0.5 0.3651 0.5 0.5

(61) (58) (45) (47) (64) (68) (38) (57) (59) (70) (63) (62) (80)

gt. mm.̇ 0.6923 0.6875 0.5556 0.7222 0.52 0.6552 0.5938 0.5435 0.7667 0.8571 0.8077 0.6061 0.5758

(26) (16) (45) (18) (25) (29) (32) (46) (30) (21) (26) (33) (33)

Game 5—Column playersa

lt. mm.̇ 0.7143 0.5455 0.7083 0.9091 0.5625 0.5 0.5 0.6923 0.6 0.8095 0.7857 0.5 0.6

(21) (11) (24) (11) (32) (24) (14) (13) (10) (21) (14) (6) (15)

eq. mm. 0.4603 0.5373 0.4444 0.5455 0.5079 0.5143 0.4607 0.4902 0.54 0.5294 0.5 0.5806 0.6122

(63) (67) (63) (55) (63) (70) (89) (51) (50) (51) (60) (62) (49)

gt. mm. 0.3529 0.3333 0.2727 0.15 0.5 0.2667 0.4091 0.25 0.3529 0.1923 0.36 0.3214 0.3103

(17) (36) (11) (20) (14) (15) (22) (12) (17) (26) (25) (28) (29)

a. The exact maximin frequencies for game 5 are not a multiple of 1/6 and so would never be observed in a single play of the game. For game 5, the
observed frequency with which opponents used their designated strategy was classified as ‘‘equal to the maximin frequency’’ if that frequency was either
2/6 or 3/6. The exact maximin frequency for both row and column players is 0.4.
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2 Which Equilibrium?

We have just looked at an experiment that shows that subjects can learn

to play Nash equilibria in games, even when the equilibria call for the use

of mixed strategies. But the games of the previous chapter each have only

one Nash equilibrium, and so the equilibrium selection problem doesn’t

arise.1

However, one can’t study bargaining games without facing up to the

equilibrium selection problem. This is part of the reason that bargaining

games present such a challenging case for game theory. How will people

behave when there are many Nash equilibria that they might learn to

play?

Focal Points

Thomas Schelling (1960) argued that societies develop focal points to

solve such equilibrium selection problems in the games of everyday life.

For example, the Driving Game we play every morning on our way to

work has three Nash equilibria: we can all drive on the left, we can all

drive on the right, or we can all choose the side of the road on which to

drive at random. The first equilibrium is focal in Britain and the second in

the United States. When some Turks told me that the third equilibrium

was focal in their country, I thought it was a joke, but I take the idea

more seriously now that I have visited Turkey myself.

I think the bargaining experiment reported in this chapter is best seen

as a representation in minature of the manner in which di¤erent focal

points can evolve in di¤erent societies to solve the same equilibrium selec-

tion problem. We found that all our groups of experimental subjects

ended up playing close to one of the game’s e‰cient Nash equilibria but

that di¤erent groups ended up near di¤erent equilibria. As usual in my



later experiments, the feedback the subjects received was much richer

than in most comparable experiments.

What led some groups to one equilibrium and others to another? My

guess is that the e¤ect is partly random and partly a function of where

the group started. But when the subjects were debriefed, they didn’t see

it like this. They were willing to say that the focal point that had evolved

within their group of experimental subjects was close to the ‘‘fair’’ solu-

tion to the bargaining problem they were set. It can therefore take only

an hour or so for cultural evolution to create a new fairness norm in a

small minisociety, even when the amount of interaction within the mini-

society is severely restricted.

I should hasten to qualify this last remark by observing that to say that

new fairness norms can be created in the laboratory for restricted pur-

poses isn’t the same as saying that we can easily persuade people to aban-

don the fairness criteria that they are accustomed to use in regulating

their everyday lives. If our bargaining problem had been framed less

sparsely, we would doubtless have triggered whatever focal point was

conventional for the social environment with which the trigger is nor-

mally associated. One might, for example, adopt a frame in which the

first player is said to be an employer and the second a worker in a wage

negotiation. Or one could frame the problem as that of sharing a sum of

money, so that it is obvious what counts as a fifty:fifty split. I would still

expect to see eventual divergence from the conventional focal point if this

isn’t a Nash equilibrium of the bargaining game being played, but who

knows how long that might take?

Conditioning

Although I think the main lesson to be learned from the experiment

reported in this chapter is that the Nash equilibrium selected in a game

is likely to be partly a function of historical events or accidents that occur

while or before or a group of players are finding their way to an equilib-

rium, this wasn’t its initial aim at all. All the e‰cient outcomes of our

bargaining game are approximate Nash equilibria; the extra money a

player could gain by deviating is so small that it would normally be

regarded as negligible. I thought that we should therefore be able to treat

all the e‰cient outcomes of the bargaining game as e¤ective Nash equi-

libria. The idea was then to see how easy it would be to condition players

on whichever of four focal points that we chose beforehand.
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But it turns out not to be so easy to educate subjects as Amos Tversky

liked to claim. Even though the gains were negligible and the movements

of the cursor necessary to achieve the gains almost imperceptible on their

screens, subjects nevertheless moved away from anything that wasn’t an

exact Nash equilibrium. Our attempt to persuade some groups to make

the outcome that utilitarians hold to be fair into a focal point cut partic-

ularly little ice. Nor was our attempt to focalize Rawls’s theory of justice

with other groups very much more successful. Only a small number of

trials was necessary to see subjects begining to diverge from these widely

canvased fairness norms. Although both norms called for the play of

strategies that were very nearly an equilibrium, all groups eventually

moved away to one or other of the exact equilibria—a result I found so

unexpected that Joe Swierzbinski had to spend half an hour repeatedly

showing me diagrams of the exact Nash equilibria and the final experi-

mental outcomes before I was able to grasp that they were two di¤erent

diagrams.

Nash’s Demand Game

The bargaining game chosen for the experiment was John Nash’s (1950)

classic Demand Game. Each player makes a demand. If the two demands

are compatible with what is available, both players receive their demands;

otherwise, both get nothing. This toy game strips the bargaining process

to an irreducible minimum, and so exposes the equilibrium selection

problem that lies at its root. All e‰cient ways of dividing the surplus cor-

respond to Nash equilibria; if each player demands his or her share in any

e‰cient division of the surplus, neither player can gain from unilaterally

demanding more, since the new joint demand will be infeasible.

Nash (1950) proposed solving the severe equilibrium selection problem

that arises in his Demand Game by inventing what later came to be known

as trembles. He introduced some doubt about whether a pair of demands

close to the boundary of the feasible set would be counted as feasible. In

this smoothed Nash Demand Game, all Nash equilibria converge on the

Nash bargaining solution as the size of the tremble is allowed to become

vanishingly small. We included Nash’s trembles in the experiment more

to counter possible criticism from theorists than because we thought they

would be important behaviorally, but in this we were mistaken.

For those who are interested, here is a simple version of Nash’s argu-

ment. In the smoothed Nash Demand Game the players’ reaction curves
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look like those of figure 2.1. Under mild conditions, the curves cross only

once, which implies that there is only one Nash equilibrium (Binmore

1987).

If pðx; yÞ is the probability that the pair of demands ðx; yÞ is counted
as feasible, then one player wants to maximize xpðx; yÞ and the other

ypðx; yÞ. They will simultaneously achieve their aims—and hence be at

the only Nash equilibrium of the game—if they choose x and y so that

the product xypðx; yÞ is maximized.

As we allow the uncertain world represented by the probability func-

tion p to collapse onto certainty, the pair of demands ðx; yÞ that maxi-

mizes xypðx; yÞ converges on the pair of demands that maximizes xy in

the certain world. But one of many defining criteria for the Nash bargain-

ing solution is that it maximizes the Nash product xy. It follows that the

unique Nash equilibrium in the smoothed Demand Game approximates

the Nash bargaining solution when the level of uncertainty is su‰ciently

small.

One can’t capture the mathematical elegance of this argument in a

computerized version of the smoothed Nash Demand Game, since the

players don’t have a continuous range of demands available. The reaction

curves of figure 2.1 then become finite sets of points, which can’t easily be

made to intersect in a single point as in Nash’s model. In our case they

overlay each other for some of their length. Each of the many points

they have in common is an exact Nash equilibrium that lies close to one

of the e‰cient outcomes of the unsmoothed bargaining game. However,

it turned out to be fortunate that most e‰cient outcomes of the

unsmoothed game aren’t close to such an exact Nash equilibrium.

Figure 2.1
Reaction curves in Nash’s smoothed Demand Game
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Focal Points and Bargaining

Ken Binmore, Joe Swierzbinski, Steven Hsu, and Chris Proulx

Early mankind soon reached the grand generalization that everything has its

price, everything can be paid for. Here we have the oldest and most naı̈ve moral

canon of justice, of all ‘‘fair play,’’ ‘‘good will,’’ and ‘‘objectivity.’’ Justice at this

level is good will operating among men of roughly equal power, their readiness to

come to terms with one another, to strike a compromise . . . . (Friedrich Nietzsche,

The Generalogy of Morals)

2.1 Introduction

If I wait in the co¤ee shop for my wife while she searches for me in the

car park, we are experiencing a coordination failure. Schelling’s (1960)

well-known essay on coordination stresses the importance of focal points

in such a context. The side of the road on which people drive is the stan-

dard example. Before any legislation appeared, it became focal to drive

on the left in England, but to drive on the right in France.

Although the idea of a focal point is of great practical importance, the

manner in which focal points become established and survive after their

establishment remains a mystery. No consensus even exists about how

this mystery should be investigated. Some authors emphasize rationality

considerations to the exclusion of all else. However, it seems doubtful

that the equilibrium selection problem of game theory is likely to be

solvable by a technique that ignores what may be common knowledge

among the players about the social norms of their culture. At the other

extreme are authors who argue that social norms are so important that

We are grateful to the National Science Foundation for funding the experiments reported in
this paper under Grant NSF-SES-8821521. We also gratefully acknowledge funding from
the University of Michigan to set up the Michigan Economics Laboratory, where the experi-
ments were conducted. We would also like to thank Richard Stallman and the Free Software
Foundation for developing EMACS, Luke Tierney for developing LISPSTAT, and Hal
Varian for showing us how to use both.



strategic issues can be neglected altogether. This view tends to be

expressed most forcefully when the coordination problem is framed in a

bargaining context. Fairness norms then enter the picture—and there is

much evidence that such norms often do take precedence over strategic

considerations in determining the behavior of subjects in certain types of

laboratory experiments.

The story is further confused by the fact that those who emphasize ra-

tionality do not argue that real people are likely to find their way to what

rationality supposedly recommends simply by thinking about the prob-

lem. Where pregame, cheap-talk sessions are not possible, the claim is

that people will be able to find their way to the rational solution by trial-

and-error if given long enough to gain experience of the game’s strategic

realities and the behavior of other members of the game-playing popula-

tion. Nor are the views of those who emphasize social norms free from

complication. They argue that several distinct social norms may compete

for attention in certain contexts. So how do people decide which social

norm should be honored?

This paper seeks to investigate such questions experimentally, using an

archetypal example of a focal point problem. The example studied is the

Nash (1950) bargaining problem in which two players can achieve any

point x in a given feasible set X provided that they can reach agreement.

If they cannot agree, the result is a fixed disagreement point x in the set

X . Although the paper can be seen as a contribution to the expanding lit-

erature on experimental bargaining games, its potential applications to

bargaining theory were a secondary consideration in our choosing the

Nash bargaining problem for study. The primary reasons are twofold:

1. The literature contains numerous rival candidates as focal points in the

Nash bargaining problem. We consider the Nash (1950) bargaining solu-

tion, the Kalai-Smorodinsky (1975) bargaining solution, the utilitarian

solution associated with Harsanyi (1977) and the equal increments solu-

tion2 associated with Rawls (1972).

2. Unlike the situations studied in the related work of Cooper et al. (1991)

and Van Huyck et al. (1991a,b), the Nash bargaining problem has a con-

tinuous strategy space. In a discrete problem, it may be hard to destabilize

an established focal point. A population, for example, cannot gradually

drift from driving on the left to driving on the right.

2. The Pareto e‰cient point x A X with x1 � x1 ¼ x2 � x2.
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In order to study the Nash bargaining problem, it is necessary to say

what the players need to do to reach an agreement. The most primitive

mechanism is represented by the Nash (1950) demand game, and so we

use this. In our experiment a population of subjects plays the same Nash

demand game repeatedly, half the time as player I and half the time as

player II, switching partners unpredictably after each play. At each play

a subject currently in the role of player I makes a demand x1 and a sub-

ject in the role of player II makes a demand x2. Each subject makes his

demand in ignorance of the current demand of the other subject. (How-

ever, in our experiment much information about past plays of the popu-

lation as a whole was made available using a graphic display to be

described later.) If the point x ¼ ðx1; x2Þ of a partnered pair of subjects

proves to be feasible, each receives his or her demand. Otherwise, each

receives the disagreement payo¤. In our case this was always zero (i.e.,

x ¼ 0).

Since conventional wisdom holds that the outcome in such a game

depends on the players’ attitudes toward risk, it is important to control

for risk aversion. The standard technique is to pay subjects o¤ in lottery

tickets. In our case the subjects had the opportunity to win $10 with a

probability equal to the number of lottery tickets they had accumulated

divided by 100. Rational agents would then be induced to behave as

though they were risk neutral. To further impress the subjects with the

importance of risk, lotteries were also introduced into each play of

the game by fuzzing the boundary of the feasible set X . That is to say,

the boundary of X was expanded into a narrow strip. The feasibility of

pairs of demands falling in this strip was uncertain. If, for example, the

pair of demands fell on an 80 percent contour running through the strip,

it would be found feasible by the computer with probability 0.8.

We had a secondary motive in fuzzing the boundary, which needs to be

mentioned at an early stage because the fuzzing was instrumental in gen-

erating results that took us by surprise. This was a desire to be faithful to

Nash’s (1950) original conception. He transferred his attention from the

original Nash Demand Game to a version with a fuzzed or smoothed

boundary because, without the smoothing, any individually rational,

Pareto e‰cient x in X is a Nash equilibrium for the Nash demand game.

With the smoothing, all Nash equilibria approximate the Nash bargain-

ing solution. (See papers 4 and 8 of Binmore and Dasgupta 1987.)

To see why such smoothing might help in responding to a comment on

the possible results of the experiment, consider what conclusions might
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be drawn if the subjects were to coordinate on the utilitarian solution.

Harsanyi (1977) might argue that such subjects were motivated by moral

considerations. A welfare economist might argue that the explanation is

that the utilitarian solution is Pareto e‰cient for the population as a

whole over the course of the experiment. However, a game theorist of

the variety that believes that thinking alone is adequate to get subjects im-

mediately to the ‘‘right’’ Nash equilibrium would not be willing to admit

that such normative considerations were necessarily relevant if the bound-

ary of X were not fuzzed. He could simply point to the fact that the

utilitarian solution is a Nash equilibrium like every other individually

rational, Pareto e‰cient outcome of X .

Although we prepared defenses in advance against certain potential

criticisms by paying subjects o¤ in lottery tickets (rather than directly in

money) and by fuzzing the boundary of the feasible set, we did not seri-

ously anticipate that these refinements would have any impact on our

results. Our guess was that subjects are e¤ectively risk neutral already

with respect to the small sums of money we are able to pay. Moreover,

after the fuzzing of the boundary of the feasible set, all the focal points

we considered were within 0.1 of an e-equilibrium with e ¼ 0:1. It did

not occur to us at the outset that subjects would be interested in discrim-

inating at the 0.1 level, since 0.1 of a lottery ticket was worth only about

a dime. However, our guess about the level at which subjects would

choose to discriminate turned out to be badly wrong, and the results are

perhaps more interesting than would have been the case if we had guessed

right. To see why, it is necessary to continue outlining the design of the

experiment.

After a hands-on interactive session at their computer to learn the me-

chanics of the program, the subjects first played ten ‘‘practice’’ games

‘‘against the computer.’’ Both when playing the computer and when play-

ing real opponents, subjects sometimes occupied the role of player I and

sometimes the role of player II. Throughout the experiment, the subjects

were shown the last demands made by all of their potential partners, both

when the potential partner was player I and when he or she was player II.

In the ‘‘practice games’’ this information display was used in a (success-

ful) attempt to condition the subjects to begin the games against real

opponents at one of the four ‘‘focal points’’ that we chose to study. For

example, in the treatment designed to study the equal increments solution

as a possible focal point, the simulated potential partners that the subjects

faced during the ten ‘‘practice games’’ were designed to converge slowly

from a fixed initial configuration toward the equal increments solution.
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After being conditioned to begin by making demands at or near the

equal increments solution, the question was then whether the subjects

would continue to use this focal point once play against real opponents

began.

We would not have been surprised to find that all the focal points we

studied were stable. We thought the utilitarian solution might be particu-

larly attractive. However, this proved to be the hardest to condition for in

our main experiment. But the chief conclusion to which we were led by

the data swept aside our initial expectations. We found a very strong ten-

dency of the median subject to optimize relentlessly. Indeed, the extent of

the optimization is almost absurd, since the subjects seem to have been

sensitive to payo¤ di¤erences right down to 0.01 of a lottery ticket

(about a penny). It is important to understand that the subjects were

provided with graphic aids that made this possible for them to do reason-

ably e‰ciently if they so chose. In particular, they were provided with a

display that allowed them to zero-in on the demand that would maximize

their expected number of lottery tickets in the current game if their poten-

tial partners were to behave as they did the last time that they occupied

their current role. Nevertheless, we were taken aback to find it necessary

to compute the exact Nash equilibria of the discrete game that the digital

character of computer technology made it necessary to present to the sub-

jects in place of the continuous version that we had in mind as our basic

model.

In our experiment this required looking at a 100� 50 payo¤ matrix in

which each player’s pure strategies consist of all possible locations for the

cursor that he or she used in specifying what demand to make. The cursor

moved in steps of 0.1 of a lottery ticket. Each lottery ticket increases the

probability of winning $10 by 0.01. Thus 0.1 of a lottery ticket corre-

sponds to about one dime.

Figure 2.2 is intended to illustrate the main conclusions (case 1)

reported in this paper. The region shown represents the feasible set X in

each repetition of the Nash demand game. (The boundary shown is the

100 percent probability contour.) Coordinates are given as numbers of

lottery tickets. The equal increments solution, the Kalai-Smorodinsky so-

lution, the Nash bargaining solution and the utilitarian solution are indi-

cated by the letters E, K , N, and U respectively. The box contains all

Nash equilibria of the discrete game. (Any Nash equilibrium of the con-

tinuous version approximates N.)

The arrows in figure 2.2 do not indicate trajectories. Each of the 16

sets of arrows corresponds to a di¤erent group of 12 subjects and
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summarizes their experience by linking three points. Each point is a pair

of median3 demands. The x-coordinate is the median demand of players

I. The y-coordinate is the median demand of players II. The three stages

of the experiment at which these numbers are reported in the figure are:

1. At the very beginning—the first and second practice games before any

experience had been gained.4

Figure 2.2
Summary of results in case 1

3. The median of a set of numbers with an even number of elements is the mean of the two
middle numbers.

4. The computer updated its display every second play.
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2. Immediately after the practice games—the 11th and 12th plays that

followed the 10 conditioning practice games.

3. At the very end—the 49th and 50th plays, after 10 practice games and

40 real games.

Three preliminary conclusions are listed below:

� Whatever social norms the subjects may bring into the laboratory are

easily erasable in the circumstances of the experiment. The subjects can

be conditioned to begin playing for real close to any of the four focal

points E, K , N, or U .

Figure 2.2
(continued)
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� The focal points E and U are not stable.

� The explanation that groups of subjects converge on an exact Nash

equilibrium of the discrete game that they actually played fits the data

very well.

It is natural to ask whether the Kalai-Smorodinsky solution K would

have been stable if it had not been included in the Nash equilibrium box.

(One cannot, of course, exclude the Nash bargaining solution from the

box.) One might also ask how the subjects would perform if not assisted

with such a helpful graphic display. It is also interesting to know how the

subjects responded to questions about ‘‘fairness’’ after playing the game.

The first question is not easily answered because it is di‰cult to adapt

our experimental design to separate the Kalai-Smorodinsky solution

and the Nash bargaining solution adequately. The extent to which our

graphic display was essential to the results was explored in case 2. Case

1E was modified so that the subjects were deprived of expected utility in-

formation in the graphic display. (Case 2 was otherwise identical to case

1E.) Perhaps surprisingly, the subjects’ behavior was not very di¤erent

from that when the expected utility information was provided. Even the

amount of variance in the data was only slightly higher. However, we

only gathered data on this issue in the case when subjects were condi-

tioned on the equal increments solution.

Finally, the median of the claims reported as fair by each set of subjects

after the experiment turned out to be closely correlated with the median

of the claims actually made at the end of the experiment in which the sub-

jects had participated. Very similar results were reported in Binmore et al.

(1991). Perhaps we are therefore learning something about the origin of

‘‘fairness’’ norms.

2.2 Theory

This section begins by describing the ideas from cooperative bargaining

theory used to locate the focal points in the experiment. Roth (1979) dis-

cusses the properties and axiomatic characterization of the concepts. The

remainder of the section briefly examines the problem of computing Nash

equilibria in the smoothed Nash Demand Game.

2.2.1 Cooperative Solution Concepts

The unsmoothed feasible set X shown in figure 2.3 is the convex hull

of the points ð0; 0Þ, ð10; 0Þ, ð0; 5Þ, ð4:1; 4:1Þ, ð6:8; 3:4Þ, ð8:4; 2:9Þ, and
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ð9:9; 2:1Þ. (In the smoothed case a belt of fuzz surrounds X as described

in section 2.2.2 and section 2.3.) The shape of X was determined by the

need to separate the focal points E, K , N, and U from each other. These

four focal points are denoted by small boxes and labeled by letter in fig-

ures 2.2, 2.3, and 2.5. The disagreement point x is always ð0; 0Þ.

Equal Increments Solution E This is a special case of a proportional bar-

gaining solution as studied by Rai¤a (1953), Isbell (1960), Kalai (1977),

Myerson (1977), Roth (1979), Peters (1986), and others. Like the utili-

tarian solution to be considered shortly, the equal increments solution

requires that there be some basis for interpersonal comparison of utilities.

This was provided in our experiments by the fact that the subjects alter-

nated roles and were paid o¤ in equally valuable lottery tickets both as

player I and as player II. This same feature would also seem to justify

restricting attention to cooperative bargaining solutions whose character-

izations include a symmetry axiom. A proportional bargaining solution

places the bargaining outcome at the Pareto e‰cient point of X that lies

on a line of fixed positive slope through the disagreement point x. The

slope of this line equals the rate at which player I’s utils are to be com-

pared with player II’s. With a symmetry axiom this rate is 1, and so the

relevant line through x has slope 1. The equal increments solution there-

fore awards each player the same increment on his or her disagreement

payo¤. For the bargaining set described above, the equal increments solu-

tion is E ¼ ð4:1; 4:1Þ. It is worthwhile noting that E is the point of X that

will be selected by Rawls’s (1972) maximin criterion.

Figure 2.3
Feasible set, focal points, the exact Nash equilibrium box, e-equilibria of the discrete game
with e ¼ 0.1, and initial robot claims
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Kalai-Smorodinsky Solution K Kalai and Smorodinsky (1975) o¤er this so-

lution as an alternative to the Nash bargaining solution. Neither of these

solutions depends on interpersonal comparisons of utility. The Kalai-

Smorodinsky solution is found in our case by first locating the (infeasible)

‘‘utopian point’’ ð10; 5Þ at which each player gets his or her maximum

possible demand. A straight line is then drawn joining the disagree-

ment point x and the utopian point. The Kalai-Smorodinsky solution

K ¼ ð6:8; 3:4Þ is the Pareto e‰cient point of X on this line.

Nash Bargaining Solution N Nash (1950) characterized N ¼ ð8:4; 2:9Þ as

the value of x in X satisfying xb x at which the Nash product

ðx1 � x1Þðx2 � x2Þ is maximized.

Utilitarian Solution U The utilitarian solution U ¼ ð9:9; 2:1Þ is the value

of x in X at which x1 þ x2 is maximized. Harsanyi (1977) discusses its

merits.

2.2.2 Nash Equilibria in the Smoothed Game

The details of how the Nash demand game was smoothed for the experi-

ment are now described. The continuous case is described first and then

the discrete approximation.

The Continuous Version The smoothed version of the Nash Demand

Game was obtained by making some of the demand pairs x ¼ ðx1; x2Þ
outside X available with a specified probability pðxÞ. If the polar coordi-

nates of x are ðr; yÞ, and ðR; yÞ is on the Pareto boundary of X , then

pðxÞ ¼ 1� 1� ðr=RÞ
g

� �2

; Ra ra ð1þ gÞR:

If r < R, then pðxÞ ¼ 1. If r > ð1þ gÞR, then pðxÞ ¼ 0. Notice that

qp=qr ¼ 0 when r ¼ R, so probabilities change smoothly across the outer-

most 100 percent probability contour. Notice also that the region in

which it is uncertain whether a particular demand pair x is available

shrinks to nothing as g ! 0. In the experimental implementation, we

took g ¼ 0:1.

Binmore (1987, p. 65) studies the reaction curves of the two players in

smoothed Demand Games, and confirms Nash’s claim that all nontrivial5

5. Excluding those equilibria when both players make demands that are too large to be fea-
sible whatever the other player may demand.
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Nash equilibria converge on the Nash bargaining solution (under mild

conditions) in the limiting case as g ! 0. (The case of a piecewise linear

boundary is not substantially di¤erent from the case where X has a

smooth boundary, which can be treated very easily as in Binmore 1987,

p. 159.)

With our choice of the function p, the reaction curves cross at just one

point when g > 0. It follows that there is always a unique Nash equilib-

rium in the continuous case when g > 0. However, since the reaction

curves are trapped in the region where 0 < p < 1, they get very close to-

gether when g becomes small. In fact, given any e > 0, we can make any

individually rational, Pareto e‰cient x in X an e-equilibrium by taking g

su‰ciently small.

The Discrete Version We restricted players to making demands in

multiples of 0.1 of a lottery ticket in the belief that we were thereby

approximating the continuous version su‰ciently closely for practical

purposes. Figure 2.4 shows the reaction curves for the resulting discrete

game.

Notice that the reaction curves in figure 2.4 are very close together

where things matter. Thus many points along the boundary are

e-equilibria for small values of e. Note also that the reaction curves actu-

ally overlap over some of their range. Thus there are multiple exact Nash

equilibria.

Figure 2.4
Reaction curves for the discrete game
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The small circles along the boundary in figure 2.3 indicate all the non-

trivial e-equilibria with e ¼ 0:1. There are 83 such equilibria, some of

which are also e-equilibria for smaller values of e. These e-equilibria indi-

cate a long and narrow region of relative stability where the gains from a

unilateral deviation are small. There are 12 nontrivial exact Nash equi-

libria of the Discrete Game: ð6:3; 3:6Þ, ð6:7; 3:5Þ, ð7:0; 3:4Þ, ð7:3; 3:3Þ,
ð7:6; 3:2Þ, ð8:0; 3:1Þ, ð8:3; 3:0Þ, ð8:5; 2:9Þ, ð8:7; 2:8Þ, ð8:9; 2:7Þ, ð9:1; 2:6Þ,
and ð9:3; 2:5Þ. These equilibria are contained in the large rectangular box

shown in figure 2.3 (and also in figures 2.2, 2.5, and 2A.1). This is the

smallest box that contains all 12 equilibria.

Near the boundary of the feasible set, small changes in position can

have large e¤ects. For example, the point ð4:7; 4:0Þ is an e-equilibrium

for e ¼ 0:05. However, at the nearby point ð4:7; 3:8Þ, a type I player can

increase his expected payo¤ by more than 0.7 lottery tickets by deviating

from the choice 4.7 when his counterpart chooses 3.8.

2.3 Practice

The experiment was conducted at the Michigan Economics Laboratory

using undergraduates of the University of Michigan. The subjects were

recruited directly from classes rather than from a list of participants in

previous experiments. Each subject was given a specific time to appear at

the laboratory6 and promised $2 for turning up on time, together with:

. . . the opportunity to win substantially more depending on how well you bargain

and the circumstances in which you are placed. On average, subjects go away with

between $10 and $30, but you might end up with more or less.

Each experimental session used 12 subjects who sat at networked micro-

computers that were screened from each other. After reading the written

instructions (given as appendix A1), the subjects participated in an inter-

active demonstration with the computer that was designed to familiarize

them with how lottery tickets are converted into money and how

demands are made and converted into lottery tickets.

Recall that after each 10 games a subject who has accumulated N lot-

tery tickets in these games wins $10 with probability N percent. This was

operationalized by showing a ‘‘roulette wheel’’ split into a green winning

region and a red losing region. A small yellow ‘‘ball’’ ran round the cir-

cumference of the wheel making appropriate noises, finally stopping in ei-

6. We did not want friends together in the same session.
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ther the green or the red region. Where it stopped was fixed in advance

only in the two demonstrations of its operation. Otherwise, everything

advertized as random was indeed random.

The feasible set X was shown as a blue region relative to white Carte-

sian coordinate axes against a black background. The fuzzy boundary

was indicated as a halo shading gradually into black. An artist with a

trained eye would perhaps have been able to deduce the probability that

a demand pair in the halo would be accepted from the shade of blue at

that point. Recall that the subjects occupied the role of player I about

half the time.7 They were therefore given experience of both roles.

Player I made demands by moving a cursor along the x-axis. The

cursor was accompanied by a vertical line. After practicing moving the

cursor, a subject was shown the payo¤s that he or she might receive for

various demands that player II might make:

1. A horizontal line first appeared that intersected player I’s vertical line

well inside the blue feasible region. The point of intersection was then

indicated with a flashing white circle. It was explained that each player

gets his or her demand for certain.

2. Next a horizontal line appeared so that the point of intersection lay

well inside the black region. The point of intersection was indicated with

a flashing red circle. It was explained that each player gets nothing for

certain.

3. Finally a horizontal line appeared so that the point of intersection lay

in the fuzzy boundary region on the 80% probability contour. The point

of intersection was indicated with a flashing white circle and the 80 per-

cent probability contour was shown in white. It was explained that both

players would get their demands 80 percent of the time and both players

would get nothing 20 percent of the time.

4. Subjects received similar information after each practice and real

game. After subjects registered their demands, a line was added to each

subject’s display indicating the demand of the opponent with whom he

or she had been matched. If the intersection of the two demands was

well inside the feasible set, the message ‘‘These claims are always accept-

able. You both get your claims.’’ was displayed. If the intersection was

well outside the feasible set, the message ‘‘These claims are never accept-

able. You both get nothing.’’ was shown.

7. They did not strictly alternate roles since then they would not get the chance to play all
other subjects. But they never occupied the same role three times in succession.
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If the intersection fell near the boundary, for example, on the 65 per-

cent contour, then the computer displayed the message ‘‘These claims

are acceptable 65 percent of the time. The computer accepts/rejects this

pair of claims.’’ The word ‘‘accepts’’ was shown in white alternating

with the word ‘‘rejects’’ in red, the former remaining on the screen 65 per-

cent of the time. Clicking sounds accompanied the changes in the words

displayed. Eventually the alternation stopped and the subjects were in-

formed whether or not they had received their demands on that particular

occasion.

After practicing in player I’s role, each subject went through a similar ex-

perience in the role of player II. Note that we were anxious not to suggest

any focal points at this stage, and so it was always left to the subject to

choose where to place his or her demand cursor during the demonstra-

tion. Moreover, when the computer simulated an opponent, its placing

of the opponent’s cursor was made a function of the placing of the sub-

ject’s cursor.

The next step in the demonstration was to teach the subjects to under-

stand the information about their potential opponents that would be sup-

plied. They were shown a screen with small yellow squares superimposed

on the blue feasible region. It was explained that each yellow square rep-

resents one of the other subjects, each of whom is equally likely to be

your next opponent. The x-coordinate of the center of a square represents

the demand that the subject represented by that square last made when

occupying the role of player I. The y-coordinate represents the demand

that he or she last made when occupying the role of player II. The

computer moved player I’s cursor back and forward to show how a yel-

low square becomes red as the demand represented by the current placing

of player I’s cursor becomes incompatible with the demand last made by

the subject represented by that square when occupying the role of player

II. When there is only a probability p of the demand pair being incompat-

ible, only a fraction p of a yellow square becomes red. As player I’s

cursor is moved, the impression is therefore of a collection of small square

vessels being slowly filled with blood.

Subjects in case 2 were o¤ered only this information about the other

subjects. Subjects in the main experiment (case 1) were o¤ered more in-

formation. After the screens that explained the yellow squares, they were

shown the same screens again with the addition of an ‘‘expected utility in-

dicator’’ on the x-axis. This took the form of a second cursor that showed

the expected number of lottery tickets that player I would receive if he or

she made the demand indicated by the current placing of his or her de-
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mand cursor, and the other subjects made the demands indicated by the

current placing of the yellow squares. The part of the x-axis between

the origin and the second cursor was highlighted in yellow and the part

of the x-axis between the second cursor and the demand cursor was high-

lighted in red. Trials with the equipment indicate that di¤erences in

expected utility as small as 0.025 lottery tickets could be detected with

this indicator.

As the demand cursor moved, the second cursor acting as an ‘‘expected

utility indicator’’ moved also. When it reached its maximum point, it left

behind a third stationary cursor (like a max-min thermometer). It was

therefore relatively easy for a subject so minded to locate the demand

that maximized his or her expected utility on the myopic assumption that

other subjects would play as they did last time.

After seeing the screens that described how information is presented to

player I, the subjects were invited to move player I’s demand cursor back

and forward to see how the display changes as the cursor moves. They

were then shown the whole thing over again from player II’s viewpoint.

Those who have no experience of presenting information to subjects

through interactive computer programs may feel that the subjects must

have been overwhelmed by such a complicated demonstration. However,

subjects seemed to have very little di‰culty in absorbing the information

o¤ered. They almost never used the facility for calling the assistant to

answer questions, and seldom reported any confusion about what was

expected of them in the questionnaire that they completed after the exper-

iment. Perhaps this is not so surprising, since everybody has experience of

video games requiring the need to absorb far more information much

more quickly.

After the demonstration, each subject played ten ‘‘practice games’’

against ‘‘robot opponents.’’ These practice games were not simply to fa-

miliarize the subjects with the way the games were played. The practice

games were a deliberate attempt to condition the subjects to use one of

the focal points on which the experiment concentrated. In each case the

subjects were told that in the practice games the yellow squares each rep-

resented a robot opponent that they might be playing. The initial distribu-

tion of robot squares is shown by the larger, unlabeled squares in figure

2.3.

Case 1 was separated into four treatments. In case 1E, the robots were

programmed to converge slowly on the equal increments solution, E. In

case 1K, the robots converged on K , in case 1N on N, and in case 1U on

U . Case 2 was the same as case 1E but without the ‘‘expected utility
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indicator.’’ Throughout the experiment, subjects’ screens were updated

with information about their potential opponents’ every second game. Note

also that convergence was deliberately not total. The robots converged

only to the extent that they arrived in the neighborhood of the selected

focal point at the time of the last update during the practice games.

At the end of the ten practice games, subjects were shown the roulette

wheel and discovered whether they would win or lose a prize for the prac-

tice session. They were forewarned that the prize for the practice games

would be only $1 instead of the $10 prize that was at stake in each of the

four sets of ten games that were subsequently to be played for real.

In each game, subjects were matched at random with the constraints

that no subject ever played the same opponent twice in succession or

occupied the same player role three times in succession. The interaction

between paired subjects was anonymous. Except for their opponent’s cur-

rent demand, subjects were not given any information about the identify

of their partner.

After each game, subjects were shown a roulette wheel that exhibited

how many lottery tickets they had accumulated since it was last ‘‘spun.’’

At the end of each set of ten games the roulette wheel was spun for a

prize of $10. Our strong impression is that such ‘‘intermittent reinforce-

ment’’ does indeed quicken the interest of subjects (as psychologists re-

port). However, perhaps more important, it also provides some mildly

entertaining interludes in an experimental session, which although only

half an hour or so long, can easily become very dull if not broken up

into bite-size pieces.

After playing 50 games (10 for practice and 40 for real), the subjects

were told how much money they had won, and asked to complete a brief

computerized questionnaire before leaving. Finally, they were called to be

paid o¤ one by one with the aim of minimizing interaction among sub-

jects as they left the vicinity of the laboratory.

2.4 Results

Recall that case 1 was split into four treatments in which an attempt was

made to condition subjects to use one of the four focal points E, K , N, or

U (by programming their robot opponents to converge on one of these

focal points during the practice games). Only treatment E was used in

case 2, which di¤ered from case 1E only in that no ‘‘expected utility indi-

cator’’ was provided.
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In each case 10 practice games were followed by 40 real games with

pauses to spin a roulette wheel every tenth game. The experiment con-

cluded with a brief computerized questionnaire.

2.4.1 Case 1

Figure 2.2 summarizes the overall picture. The figure shows the median

demand pairs before the subjects had any experience, immediately after

they had been conditioned by the practice games, and at the end of the

experiment. All that need be added to the discussion of figure 2.2 given

in the Introduction is that the data better fits the hypothesis that the sub-

jects were conditioned to play a best response to the robot opponents they

faced rather than to play the focal point itself. This point is discussed fur-

ther in section 2.5 and is, of course, consistent with our overall explana-

tion of the data: namely that the story is one of relentless optimization by

the median player. Table 2A.1 gives the data from which figure 2.2 was

constructed, together with the corresponding data for case 2.

Figure 2A.1a through 2A.1e show some typical trajectories for median

demand pairs over the entire 50 games. For the practice games the trajec-

tories show the median claims of both the subjects and their robot oppo-

nents. In practice games 1, 4, 6, 7, and 9 the subjects made claims as

player I while the computer made claims as player II. The roles were

reversed in the other practice games. When interpreting the trajectories,

it is helpful to keep in mind that the x-coordinate of the point labeled

‘‘10’’ represents robot rather than human claims. Table 2A.1, on the

other hand, reports the median human claims in games 9 and 10. That

is, table 2A.1 reports the median human claims as player I from game 9

and the median human claims as player II from game 10.

Unlike figures 2.2 and 2.5, each point in figure 2A.1 represents the me-

dian demands by type I and type II players in a single game rather than a

pair of games. The numbers in figure 2A.1 indicate the games that corre-

spond to various points. It was not possible to label the same set of games

on each trajectory and keep the figures legible.

From the positions of points 9 and 10 on the trajectories for case 1U,

one can see that the human claims in the last practice games are close to

the utilitarian focal point but the trajectories quickly move away from the

focal point in the first few real games. This pattern, which indicates the

di‰culty we encountered in conditioning subjects to use the utilitarian

focal point U , was also observed in the other three trajectories for

case 1U. (One could also turn to table 2A.1 and, for each treatment, and
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compare the median claims made by player I in games 9 and 10 with the

median type I claims made in games 11 and 12.)

The extent of the variation in individual claims can also be assessed

using tables 2A.1 and 2A.3. The variation indicates that subjects did not

always use the ‘‘expected utility indicator’’ with any precision, if at all.

Such variation in behavior should not be dismissed as mere ‘‘noise.’’

Computer simulations of myopic adjustment that we conducted before

experimenting with real subjects exhibited much slower movement along

the boundary away from a ‘‘focal point’’ than was observed in the exper-

iment. We believe that the slow convergence of the simulated claims was

due to the absence of variation in the simulation.

Other points that can be checked by examining table 2A.1 are the ex-

tent to which the subjects within each population group finally converged

on the same claim and the number of games required for the median

claims in each experiment to converge. In each experiment there is little

or no di¤erence between the median of the claims in the last two games

and the median of the claims in the last ten games. That is to say, the me-

dian claims had already converged by the 41st game.

2.4.2 Case 2

This was an attempt to see how important the ‘‘expected utility indicator’’

is for the conclusions of case 1. It was replication of case 1E without the

expected utility indicator. Figure 2.5 is the equivalent of figure 2.2 for

case 2. The relevant data appears in table 2A.1. Figure 2A.1f shows a

typical trajectory.

Figure 2.5
Summary of results in case 2
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The results are broadly similar to those reported in case 1E. This came

as yet another surprise. How did the subjects manage to behave as though

they were optimizing when deprived of the means to do so with the accu-

racy that their behavior seems to indicate?

2.4.3 Questionnaire

In a previous paper (Binmore et al. 1991), a strong tendency was noted

for people asked after the experiment for their views on what is ‘‘fair’’ to

give answers that correlate with their experience of what actually hap-

pened in the bargaining game they had just played. We now briefly ex-

plore this issue. The relevant data is contained in table 2A.1.8

For each experiment figure 2.6 plots against the median of the last

claims made as player I the median claim said to be ‘‘fair’’ for player I

in reply to the question:

What do you feel would be a fair amount for each player to get?

Move each player’s cursor to the fair amount.

Notice the marked tendency to report as fair what actually happened.

The line shown in figure 2.6 is the least squares regression line obtained

by regressing the median fair claims on the median last claims. It satisfies

the equation y ¼ �0:3970þ 0:9999x. The standard errors of the intercept

and slope are 1.0748 and 0.1401 respectively and R2 ¼ 0:7282.

It is perhaps interesting that the points in figure 2.6 whose residuals

have the greatest absolute value are from experiments 17 and 18, both

from case 2. If only data from case 1 are used, the results are essentially

the same except that the R2 increases to 0.8977. The results are also unaf-

fected if the median last and median fair claims for player II are used in-

stead of the claims for player I. In all cases we obtain a highly significant

relationship between the median fair claims and the median last claims

and a regression line with an intercept close to 0 and a slope close to 1.

If, for all 252 subjects, we regress the claim that each individual desig-

nated as fair for player I ðyÞ against the last claim made by that indi-

vidual as player I ðxÞ, then we obtain the equation y ¼ 2:2261þ 0:6382x

with standard errors 0.7699 and 0.1007 and R2 ¼ 0:1385. There is still a

8. Because a subject could be player I or player II for two games in a row, the median
claims in games 49 and 50 are almost but not quite identical to the median last claims. In
experiment 17, the median of the last claims made as player I was 7.60 and in experiment
21 was 6.70. In all other cases the di¤erence between the median claims in games 49 and 50
and the median last claims did not exceed 0.1 lottery tickets. Figure 2.6 was constructed
using the median last claims rather than the median claims in games 49 and 50.
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significant relationship, but the unexplained variation in the individual

claims is much higher than for the median claims.

A later question asked:

Is this the sort of situation in which people ought to ‘‘play fair,’’ or is it

socially acceptable to use whatever bargaining power one has?

Of the 252 subjects who participated in the entire experiment, 89 subjects,

approximately 35 percent, said that one ought to ‘‘play fair.’’ The rest

said that it was acceptable to use one’s bargaining power.

2.5 Statistics

This section reports numerical summaries of the data that complement

the graphical summaries in figures 2.2 to 2.6 and figure 2A.1.

Recall that the subjects’ information about the play of their potential

opponents was updated every second game. In order to compare the

e¤ects of the di¤erent treatments in case 1 and to study the stability of

the focal points, we consider the subjects’ claims in the last practice

games, 9 and 10, the first real games, 11 and 12, and the last real games,

49 and 50. For each treatment table 2.1 reports information about the

median claims in these pairs of games.

Figure 2.6
Comparison of the medians of the last actual claims made by player I in each experiment
with the medians of the claims said to be ‘‘fair’’ for player I
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The data used to construct table 2.1, as well as figures 2.2, 2.5, and 2.6,

is contained in tables 2A.1 and 2A.3 of appendix A2 and summarized in

table 2A.2. For each experiment table 2A.1 reports the median and the

standard deviation of the populations of type I and type II claims in

selected pairs of games. Table 2A.1 also reports the median and standard

deviation for the populations of claims in the last 10 games, 41 through

50, and for the populations of claims that were designated as ‘‘fair’’ for

each type of player in the questionnaire at the end of the experiment.

We can regard each of the pairs of type I and type II median claims

reported in table 2A.1 as a single data point. The replications of each

treatment then provide a population of data points for each pair of games.

Table 2A.2 reports summary statistics for each of these populations. The

Table 2.1
For selected pairs of games, this table reports Euclidean and standardized measures of dis-
tance from the populations of median claims in each treatment to the appropriate focal
points and to the median myopic best replies to the robot claims in games 9 and 10. The
table also reports the means of the maximum gains obtained by unilateral deviations from
each pair in the designated sets of median claims. Table 2.1 uses the median claims reported
in table 2A.1 and the maximum gains from a unilateral deviation reported in table 2A.3 as
input.

Focal point Myopic best reply

Games Euclidean
distance

p-Value for
Hotelling’s
T 2

Euclidean
distance

p-Value for
Hotelling’s
T 2

Mean
maximum
gain from
a deviation

Case 1E

9 & 10 0.690 0.0057 0.210 0.2412 0.514

11 & 12 0.708 0.0007 0.234 0.0065 0.609

49 & 50 2.637 lt. .0001 2.127 0.0002 0.011

Case 1K

9 & 10 0.261 0.1157 0.134 0.1316 0.584

11 & 12 0.295 0.2675 0.589 0.2559 0.655

49 & 50 0.841 0.3460 0.554 0.5756 0.048

Case 1N

9 & 10 0.237 0.1267 0.097 0.2712 0.254

11 & 12 0.409 0.0378 0.201 0.0322 0.214

49 & 50 0.130 0.2765 0.117 0.4508 0.018

Case 1U

9 & 10 0.160 0.0576 0.117 0.1786 0.160

11 & 12 0.977 0.0095 0.860 0.0480 0.564

49 & 50 1.548 0.0015 1.413 0.0041 0.025

Case 2E

9 & 10 0.620 0.0544 0.156 0.1451 0.379

11 & 12 0.905 0.0315 0.399 0.1335 0.295

49 & 50 3.274 0.0028 2.765 0.0053 0.036
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statistics in table 2.1 were also constructed by treating the pairs of median

claims in table 2A.1 as two-dimensional data points.

The second column of table 2.1 reports the Euclidean distance between

the center of gravity of each population of median claims and the relevant

focal point. (The coordinates of the centers of gravity are reported in col-

umns 2 and 4 of Table 2A.2.9) These distances confirm the impression left

by figures 2.2 and 2.5 that for each case and treatment the distance be-

tween the population of medians in the last practice or first real games

and the treatment’s focal point is always small compared, for example,

to the distance between adjacent focal points.

For case 1U the jump in the distance to the utilitarian focal point from

the last practice to the first real games is an indication of the di‰culty we

had in conditioning subjects to begin play at the utilitarian point. Note

also that the distance from the populations to their respective focal points

increases substantially from the first to the last real games for cases 1E

and 1U and for case 2. The distance increases somewhat for case 1K and

actually decreases for case 1N. The change in the distance from the pop-

ulations of medians to their focal points over the course of the real games

is one index of the relative stability of the four focal points.

Is the distance between the center of gravity of each population and the

relevant focal point small or large relative to the variation within the pop-

ulation? If the data were one-dimensional, the t-statistic could be used to

measure the distance from the sample mean to the focal point in units of

the estimated standard deviation of the sample mean. Column 3 of table

2.1 measures distances using Hotelling’s T 2 statistic, which is a multi-

dimensional generalization of the t-statistic.10

Just as the t-statistic can be used to construct confidence intervals

around the sample mean, the two-dimensional T 2 statistic can be used to

construct confidence ellipses around a sample’s center of gravity. Rather

than directly reporting the value of T 2, column 3 of table 2.1 reports the

p-value of the confidence ellipse that surrounds the center of gravity of

each population of median claims and passes through the appropriate

focal point.

Smaller p-values correspond to ellipses that are further from the center

of gravity. Under the assumption that the population of median claims

9. The x and y coordinates of the center of gravity of a cloud of two-dimensional points are
the means of the x and y coordinates of the points in the cloud.

10. See Rao (1973) (or any good text on multivariate statistics) for a definition and discus-
sion of the properties of Hotelling’s T 2 statistic.
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represents a sample drawn from a bivariate normal distribution, a p-value

less than 0.05 implies that one can reject the hypothesis that the center of

gravity of the true distribution is equal to the focal point with a level of

confidence greater than 95 percent. However, caution should be used in

interpreting the standardized distances in this way, especially in light of

the small numner of observations (3 or 5) in each sample.

If the median subject in the practice games of each experiment opti-

mized myopically against his or her robot opponents, then the median

claim in the last practice games would not necessarily be close to the focal

point. Instead, this claim would be close to the myopic best reply to the

population of robot opponents in games 9 and 10.

The population of robot opponents varied slightly from subject to sub-

ject within the same treatment. However, by games 9 and 10, the myopic

best replies to the possible populations of robots within each treatment

were virtually identical.11 Let Ebr denote the ordered pair of medians of

the myopic best replies by type I and type II players respectively to

the robot populations in games 9 and 10 of case 1E (and case 2).

Ebr ¼ ð4:6; 4:0Þ. For case 1K, Kbr ¼ ð7:1; 3:4Þ. For case 1N, Nbr ¼
ð8:2; 3:0Þ. For case 1U, Ubr ¼ ð9:8; 2:2Þ.

Columns 4 and 5 of table 2.1 report the same statistics as columns 2

and 3 except that the distances measured are those between the centers

of gravity of each population and the relevant median myopic best replies

rather than the relevant focal points.

For case 2 and each treatment of case 1, the Euclidean distance from

the center of gravity of the median claims in games 9 and 10 to the me-

dian myopic best reply is less than the distance to the corresponding focal

point. In each case the p-value measuring the standardized distance to the

focal point is smaller (so the standardized distance is greater) than the

p-value measuring the distance to the myopic best reply. If Hotelling’s

T 2 statistic were used as the basis of a hypothesis test, we would be un-

able to reject the hypothesis that the center of gravity of the true distribu-

tion of each sample of median claims in games 9 and 10 is the relevant

11. In the real games, subjects were shown the previous claims of each of their 11 possible
opponents. However, in the practice games only 10 (out of a possible 11) robot squares were
displayed at a time, and which squares were displayed varied randomly from subject to sub-
ject. By games 9 and 10, the 11 possible populations of robot opponents in each treatment
were all very similar, so this source of variation had almost no e¤ect on the myopic best
replies. For each treatment, the di¤erence between the largest and the smallest myopic
best reply for player I in games 9 and 10 was less than or equal to 0.2 lottery tickets. For
best replies by player II, the di¤erence was less than or equal to 0.1 lottery ticket.
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myopic best reply. Statistical tests on the populations of individual sub-

jects’ claims in games 9 and 10 support a similar conclusion.12

In other respects the alternate distance measures in columns 3, 4, and 5

of table 2.1 reinforce the information conveyed by the distances reported

in column 2. For case 1E, case 1U, and case 2 the Euclidean distance

from the myopic best reply increases considerably from the first to the

last pair of real games. The corresponding p-values for both the focal

point and myopic best reply all decrease. The Euclidean distance to the

myopic best reply in case 1K is relatively small and approximately the

same in games 11 and 12 and games 49 and 50. The Euclidean distances

to the best reply for case 1N are even smaller than for case 1K and the

distance from the center of gravity in games 49 and 50 is less than the dis-

tance in games 11 and 12. All four p-values in games 11 and 12 and

games 49 and 50 of case 1K are relatively large. The p-values for case

1N increase from the first to the last pair of real games.13

By comparing the median claims reported in table 2A.1 for games 49

and 50 with the coordinates of the exact Nash equilibria reported in sec-

tion 2.2.2, one can confirm that the median claims in each experiment

typically end up very close to one of the exact Nash equilibria of the dis-

crete demand game. Table 2A.3 of appendix A2 further investigates the

convergence of the subjects’ claims to e-equilibria of the discrete game.

For the designated games of each experiment, table 2A.3 reports the

maximum expected gain that a player can achieve by deviating from the

median claim for his type that was reported in table 2A.1 when the player

expects his opponent to make the corresponding median claim that was

reported for her type in table 2A.1. The reported gain is the maximum

of that achievable by either type I or type II players. The last column in

12. A sign test was used to test the hypothesis that the median of the population of type I
claims made by each subject in game 9 pooled across all replications of the same treatment
was the same as the median of the myopic best replies to the populations of robot claims for
that treatment. (See, for example, Gibbons and Chakraborti (1992) for a description and
analysis of the sign test.) For each treatment we were unable to reject this hypothesis at the
usual 5 percent level of significance. A similar test for the populations of type II claims in
game 10 was unable to reject the hypothesis for each of the four populations of type II
claims in case 1. For the type II claims in case 2 the sign test would reject the hypothesis at
the 5 percent but not the 1 percent level of significance.

13. The correlation coe‰cients reported in table 2A.2 indicate that the populations of
medians in games 49 and 50 are almost ‘‘one-dimensional.’’ One might therefore wonder if,
after all, a one-dimensional standardized distance might be more appropriate than one based
on Hotelling’s T 2 statistic. It turns out that p-values based on the t-statistic for the popula-
tions of median type I claims exhibit qualitative behavior which is similar to that of the
p-values reported in table 2.1.
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table 2.1 reports the mean of the maximum expected gains in table 2A.3

for each series of experiments.

In every experiment, including those where there was no expected util-

ity indicator, table 2A.3 shows that by the last real games the median sub-

jects had found their way to e-equilibria for remarkably small values of e.

As indicated in tables 2.1 and 2A.3, at least one type of player could

typically receive an expected gain of about 0.5 lottery tickets (or 1 nickel)

by unilaterally deviating from the median claim in the first real games of

an experiment. An expected gain of that size would have been easily ob-

servable with the expected utility indicator provided to subjects in case 1.

Moreover an increase of 0.5 lottery tickets in each of 40 real games cor-

responds to a 20 percent greater chance of winning 10 dollars or an

expected gain of 2 dollars. Such a gain, while not large, might not have

been negligible in the eyes of the subjects. By the last real games of the

experiment, the typical gain obtained by a unilateral deviation from the

median claims had shrunk to about 0.03 lottery tickets (about 1=3 of a

penny or 12 cents over the course of 40 games).

The standard deviations reported in table 2A.1 show that not all sub-

jects made claims close to the median especially in the early games of an

experiment. The numbers reported in parentheses in table 2A.3 help as-

sess the implications of this variability.

For each pair of games and each experiment, one can calculate the

maximum expected gain that a player can achieve by deviating from a

particular claim when the player’s opponent chooses randomly from the

12 opposing claims actually made in these games. By calculating a maxi-

mum expected gain in this way for each of the the 24 type I and type II

claims actually made in a particular pair of games, one obtains a popula-

tion of 24 maximum expected gains from a deviation. The first number of

each pair in parentheses in table 2A.3 is the median of such a population

of maximum expected gains. The second number is the 90th percentile of

these gains.

The median expected gain defined in this way di¤ers from the expected

gain discussed earlier partly because in one case each claim is matched

against a population of opposing claims while in the other case a claim

is matched only against the single opposing median claim. Nevertheless,

the two statistics behave similarly. In almost all experiments the median

expected gain decreases from the first to the last pair of real games. In ad-

dition the median expected gain in the last real games is often less than

0.1 lottery ticket (that is less than 1 dime) and always less than 0.2 lottery

tickets.
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The 90th-percentile expected gains also typically decrease from the first

to the last pair of real games in each experiment. Part of this decrease is

probably due to the tightening of the distributions of claims around their

medians which is also shown by the changes in the standard deviations

reported in table 2A.1. However, the magnitudes of the 90th-percentile

expected gains are also noteworthy. In a number of experiments, this per-

centile is greater than 0.5 lottery tickets even in the last pair of real

games. This supports the conclusion stated earlier that although the me-

dian subject may optimize relentlessly, this is not necessarily true of every

subject in every game.

2.6 Conclusions

The results of this series of experiments provide no comfort for those who

argue that strategic considerations have little relevance to how people re-

solve coordination problems. If people are equipped with social norms

that are relevant to the problem faced by our subjects, then it seems that

a small amount of conditioning is su‰cient to displace them in favor of a

focal point of the experimenter’s choice. Thereafter the median subject

seems to optimize insofar as circumstances allow. In our experiment, this

means optimizing right down to fractions of a penny. However, the sub-

jects seem to see no contradiction between such optimizing and ‘‘fair’’ be-

havior, since the median subject reports as fair pretty much what actually

happened towards the end of the games that he or she played. These

results are consistent with a view that regards behavior as being shaped

by social norms in the minds of the subjects, but which sees the social

norms themselves as being determined by evolutionary considerations of

which the subjects are only dimly aware.

However, we do not think it appropriate to make any wide claims for

game theory as a predictor of human behavior, in spite of what we regard

as the remarkable sharpness of our results. The reason is that we are vul-

nerable to the criticism that we made the process of ‘‘myopic adjustment’’

focal by featuring it in our graphic display.14 One reply to this criticism is

to note the similarity between the results in case 1E and case 2, even

though the expected utility indicator was absent in the second situation.

However, the important point is much less tendentious.

14. We do not accept that such criticism can be neglected because it involves a ‘‘Catch 22.’’
Nobody anticipates that subjects would optimize if they were not provided with information
in an easily digestible form that indicates what optimal behavior is. The catch is that the nec-
essary information cannot be provided without focusing attention on what is optimal.
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We do not argue that social norms that isolate particular focal points

are unimportant in determining how people behave both inside and out-

side the laboratory. This paper is about how social norms get established

and extinguished. In particular, we believe that it is a major error to sup-

pose that social norms are commonly so rigid that they are able to sustain

behavior in the long run that is not in equilibrium. Our experiment shows

that it is relatively easy to displace whatever norms our subjects brought

into the laboratory by norms that are consistent with an optimizing

scenario.

Appendix

Instructions

Bargaining Experiment In this experiment, you will bargain via the com-

puting equipment in front of you with the people seated at the the other

machines in the room. You will participate in a large number of very

short bargaining sessions. Whether you are player I or player II in these

sessions is determined randomly. Sometimes you will be player I and

sometimes player II. After each session, you will be randomly paired

with a new bargaining partner.

In each bargaining session, you and your counterpart for that session

will have the opportunity to split a ‘‘cake’’ between you. The cake will

be represented by a blue region on your monitor screen. You will each

simultaneously make a claim. If the pair of claims made by you and

your counterpart lies well within the blue region on your screen, then

you each get your claims. If the pair of claims lies well outside the blue

region, you both get nothing in that session. If the pair of claims lies close

to the boundary of the blue region, then the computer will sometimes

allow the claims and sometimes it will disallow them. The closer the pair

of claims is to the boundary of the blue region, the less likely the com-

puter is to find them acceptable.

You will be bargaining for lottery tickets. After every ten bargaining

sessions, each player may possibly win $10. Each lottery ticket that you

acquired during the preceding ten bargaining sessions gives you one

chance of a win. How many lottery tickets you get during the bargaining

will depend partly on chance. If you bargain so as to maximize the num-

ber of lottery tickets that you would get on average, this will make the

probability of winning $10 largest. Since you will take part in forty ses-

sions in all, you will have four separate opportunities of winning $10. If
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Figure 2A.1
Trajectories of median claims for selected experiments



Figure 2A.1
(continued)



Table 2A.1
For each experiment, this table reports the median of the claims made by type I and type II players in selected pairs of games, the median of the claims in
the last 10 games, and the median of the claims designated as ‘‘fair’’ for each type of player. (The standard deviation of each set of claims is reported in
parentheses.)

Games 1 & 2 Games 9 & 10 Games 11 & 12 Games 49 & 50 Games 41–50 Fair

Experiment Type I Type II Type I Type II Type I Type II Type I Type II Type I Type II Type I Type II

Case 1E

1 5.45 2.95 4.75 4.15 4.60 3.75 6.90 3.45 6.90 3.50 7.10 3.40

(1.438) (0.294) (1.119) (0.421) (0.478) (0.387) (0.305) (0.176) (0.356) (0.143) (0.803) (0.191)

2 5.10 3.10 4.80 4.00 5.00 3.85 6.35 3.60 6.30 3.60 5.55 3.65

(1.455) (0.410) (0.611) (0.329) (0.423) (0.303) (0.403) (0.235) (0.424) (0.173) (1.741) (0.714)

3 7.05 3.10 4.95 4.20 4.70 3.80 7.20 3.35 7.10 3.40 6.50 3.50

(1.422) (0.534) (1.251) (1.153) (0.523) (0.276) (0.510) (0.124) (0.490) (0.240) (1.639) (0.587)

4 6.10 3.10 4.95 4.10 4.75 3.90 6.50 3.55 6.50 3.60 6.00 3.60

(1.598) (0.696) (0.698) (0.348) (0.389) (0.480) (0.344) (0.090) (0.393) (0.233) (1.102) (0.284)

5 5.40 3.20 4.50 4.00 4.70 3.80 6.40 3.60 6.40 3.50 6.05 3.50

(1.020) (0.601) (1.274) (0.274) (0.278) (0.329) (0.128) (0.130) (0.314) (0.127) (0.553) (0.157)

Case 1K

6 5.65 2.75 6.65 3.55 5.95 3.30 7.20 3.30 7.20 3.30 6.90 3.35

(1.666) (0.586) (0.585) (0.738) (1.214) (0.151) (0.261) (0.123) (0.204) (0.110) (1.591) (0.425)

7 6.00 3.00 7.50 3.50 7.10 3.30 8.15 3.00 8.10 3.10 7.85 3.10

(1.658) (0.489) (0.989) (0.224) (0.408) (0.124) (0.178) (0.144) (0.243) (0.184) (0.689) (0.416)

8 6.15 2.75 6.95 3.50 6.50 3.35 7.50 3.30 7.60 3.30 7.60 3.15

(1.696) (0.538) (2.555) (0.215) (1.807) (0.322) (0.271) (0.135) (0.520) (0.165) (0.414) (0.221)
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Case 1N

9 5.35 3.10 8.05 3.10 7.85 3.05 8.00 3.10 8.00 3.10 7.95 3.00

(1.691) (0.730) (1.014) (0.124) (0.735) (0.173) (0.183) (0.090) (0.191) (0.094) (1.152) (0.368)

10 6.50 3.20 8.45 3.10 7.95 3.00 8.55 2.90 8.50 2.90 8.20 3.10

(1.312) (0.173) (0.501) (0.188) (0.401) (0.094) (0.249) (0.095) (0.282) (0.095) (1.475) (0.491)

11 5.60 3.05 8.25 3.05 8.20 2.90 8.40 3.00 8.30 3.10 8.20 2.95

(1.945) (0.444) (1.134) (0.178) (1.097) (0.329) (0.108) (0.097) (0.325) (0.213) (1.296) (0.921)

Case 1U

12 6.50 3.10 9.70 2.15 9.05 2.35 8.30 2.95 8.30 3.00 7.90 2.95

(1.379) (0.379) (2.964) (0.401) (1.853) (0.268) (0.295) (0.137) (0.306) (0.140) (1.634) (0.543)

13 6.80 3.35 9.80 2.20 9.50 2.25 8.95 2.70 9.00 2.70 8.15 2.55

(1.301) (0.368) (0.377) (0.424) (0.867) (0.234) (0.248) (0.074) (0.169) (0.099) (2.058) (0.701)

14 5.60 2.90 9.75 2.20 8.10 2.35 9.30 2.50 9.25 2.50 9.00 2.35

(1.280) (0.642) (1.775) (0.476) (1.466) (0.298) (0.293) (0.198) (1.206) (0.149) (1.740) (0.740)

15 6.25 3.00 9.60 2.20 8.85 2.40 7.85 3.10 7.90 3.10 8.20 2.90

(2.290) (0.346) (3.711) (0.617) (1.742) (0.417) (0.292) (0.190) (0.264) (0.192) (1.246) (0.460)

16 6.15 3.10 9.85 1.75 9.25 2.230 8.30 2.95 8.20 3.00 8.40 2.90

(1.438) (0.432) (1.522) (0.621) (1.468) (0.291) (0.312) (0.131) (0.695) (0.186) (0.921) (0.368)

Case 2E

17 5.75 3.45 5.05 4.05 5.50 3.70 7.45 3.25 7.50 3.30 6.40 3.45

(1.163) (0.303) (0.932) (0.310) (0.612) (0.282) (0.429) (0.405) (0.351) (0.286) (1.056) (0.315)

18 4.90 3.10 4.75 4.15 4.90 3.90 8.15 3.05 8.10 3.10 6.00 3.35

(1.431) (0.509) (0.587) (0.904) (0.489) (1.095) (0.186) (0.267) (0.388) (0.222) (2.522) (0.814)

19 6.90 3.30 4.80 4.00 4.95 3.80 7.25 3.40 7.20 3.40 7.00 3.40

(1.047) (0.490) (0.569) (1.167) (0.846) (0.748) (0.586) (0.079) (0.485) (0.114) (1.127) (0.284)

20 6.55 3.25 4.75 4.20 4.95 3.95 6.55 3.50 6.60 3.50 6.10 3.60

(0.639) (0.294) (0.601) (0.211) (0.257) (0.231) (0.373) (0.256) (0.413) (0.153) (0.844) (0.238)

21 5.95 2.90 4.25 4.10 4.55 3.90 7.00 3.40 6.75 3.50 6.70 3.45

(1.312) (0.651) (0.789) (0.341) (0.328) (0.789) (0.474) (0.148) (0.498) (0.205) (1.300) (0.496)
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you are very lucky, you may therefore win $40 on top of your participa-

tion free. But please do not complain if you win nothing at all. When

things are done at random, it is unavoidable that some people will be

unlucky.

After the bargaining sessions are over, you will be asked to complete a

computerized questionnaire. When all subjects have completed the ques-

tionnaire, the computer will display how much we owe you. The amount

will include your $2 attendance fee, and any money you won during the

experiment. Please remain in your seat until the supervisor calls your seat

number and then bring your seat tag so that you can be paid.

This is not an experiment to find out what kind of person you are.

When we see the results, we will neither know nor care who did what.

We are only interested in what happens on average. So please don’t feel

that some particular sort of behavior is expected of you. However, we do

ask that you do not talk to the other subjects or look at their screens. It is

Table 2A.2
Summary statistics describing the median type I and type II claims reported in table 2A.1 for
each treatment and selected pairs of games

Type I claims Type II claims

Games Mean Standard
deviation

Mean Standard
deviation

Correlation
coe‰cient

Case 1E, 5 experiments

9 & 10 4.790 0.185 4.090 0.089 0.634

11 & 12 4.750 0.150 3.820 0.057 0.585

49 & 50 6.670 0.367 3.510 0.108 �0.997

Case 1K, 3 experiments

9 & 10 7.033 0.431 3.517 0.029 �0.770

11 & 12 6.517 0.575 3.317 0.029 �0.025

49 & 50 7.617 0.486 3.200 0.173 �0.951

Case 1N, 3 experiments

9 & 10 8.250 0.200 3.083 0.029 0.000

11 & 12 8.000 0.180 2.983 0.076 �0.999

49 & 50 8.317 0.284 3.000 0.100 �0.967

Case 1U, 5 experiments

9 & 10 9.740 0.096 2.100 0.197 �0.627

11 & 12 8.950 0.533 2.330 0.057 �0.617

49 & 50 8.540 0.578 2.840 0.238 �0.995

Case 2E, 5 experiments

9 & 10 4.720 0.291 4.100 0.079 �0.218

11 & 12 4.970 0.340 3.850 0.100 �0.772

49 & 50 7.280 0.591 3.320 0.175 �0.972
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Table 2A.3
Maximum expected gain that a player can achieve by deviating from the median claim for
his type that was reported in table 2A.1 when the player expects his opponent to make the
corresponding median claim that was reported for her type in table 2A.1. The gain is the
maximum of that achievable by player I and player II. The numbers assigned to each exper-
iment are the same as those assigned in table 2A.1. (The numbers in parentheses are the me-
dian and 90th percentile of the maximum expected gains obtained by deviating optimally
from each of the type I or type II claims made in the designated pair of games. The maxi-
mum expected gain in this case is calculated assuming that a claim is matched randomly
against one of the 12 opposing claims actually made in the designated games.)

Experiment

Games 1 2 3 4 5

Case 1E

9 & 10 0.523 0.007 1.311 0.541 0.188

(0.352 1.962) (0.183 1.480) (1.083 2.582) (0.605 1.917) (0.153 0.461)

11 & 12 1.021 0.247 0.734 0.308 0.734

(0.326 0.770) (0.103 0.532) (0.169 0.528) (0.119 0.436) (0.130 0.575)

49 & 50 0.014 0.000 0.005 0.013 0.025

(0.074 0.344) (0.057 0.874) (0.103 0.614) (0.057 0.308) (0.034 0.344)

6 7 8

Case 1K

9 & 10 0.065 1.558 0.129

(0.254 1.425) (0.964 2.548) (0.533 3.090)

11 & 12 1.274 0.124 0.567

(0.263 1.885) (0.030 0.385) (0.186 0.717)

49 & 50 0.039 0.034 0.071

(0.061 0.133) (0.052 0.126) (0.173 0.520)

9 10 11

Case 1N

9 & 10 0.019 0.690 0.053

(0.057 0.611) (0.731 2.286) (0.277 1.874)

11 & 12 0.166 0.221 0.256

(0.079 0.841) (0.060 0.457) (0.245 1.053)

49 & 50 0.000 0.006 0.047

(0.008 0.150) (0.029 0.392) (0.171 0.441)

12 13 14 15 16

Case 1U

9 & 10 0.155 0.018 0.041 0.161 0.428

(0.260 2.221) (0.212 0.460) (0.300 1.826) (0.116 2.458) (0.284 2.039)

11 & 12 0.427 0.167 1.377 0.531 0.322

(0.149 1.440) (0.108 1.024) (0.229 1.807) (0.097 1.952) (0.169 1.471)

49 & 50 0.041 0.021 0.000 0.023 0.041

(0.062 0.183) (0.040 0.250) (0.125 0.985) (0.085 0.417) (0.010 0.409)
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important to the experiment that our subjects interact only via the com-

puter equipment.

Now press the SPACE BAR on your keyboard. You will see a demon-

stration that will review the information in these instructions and give you

hands-on experience of how claims are made. Remember to keep pressing

the SPACE BAR to see a new screen. There is no need to hurry. You

may have to wait for the other subjects to be ready anyway. If you still

have questions after seeing the demonstration, there will then be an op-

portunity to ask the supervisor.
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3 The Ultimatum Game

Bargaining games are di‰cult. The equilibrium selection problems they

engender represent a major theoretical challenge. At the same time, it is

almost inevitable that everyday fairness norms, unadapted to the bargain-

ing game being studied in the laboratory, will be triggered by hints and

cues inadvertently or deliberately built into the framing of the game.

Refining Equilibria

The refinement theories that proliferated in the late 1970s and 1980s

were largely created in response to frustration with the equilibrium selec-

tion problem in bargaining games. In a refinement of Nash equilibrium,

assumptions are made about how players will behave o¤ the equilibrium

path. With such assumptions it is sometimes possible to weed the set of

Nash equilibria down to a single possibility.

Rubinstein’s (1982) bargaining model is the leading example. In a bar-

gaining game with perfect information in which impatient players alter-

nate in exchanging demands until agreement is reached, he demonstrated

the existence of a unique subgame-perfect equilibrium, thereby kicking

out the props from under a long-standing dogma that characterized the

bargaining problem as intrinsically indeterminate.1 Now that relatively

simple proofs of Rubinstein’s theorem are available and the idea of a

subgame-perfect equilibrium is no longer held in reverence, it is easy to

underestimate Rubinstein’s achievement. Perhaps this book will help to-

ward putting things back in their proper perspective.

My own attempt to simplify the Rubinstein’s approach will serve to il-

lustrate the idea of backward induction that lies behind the notion of a

subgame-perfect equilibrium (Binmore 1987).

The feasible set (sometimes called the cake or pie) X ¼ X0 for a bar-

gaining problem is shown in figure 3.1c. Each time an o¤er is refused,



the feasible set shrinks. So if no agreement was previously reached, the

feasible set when a demand is made at time T will be some smaller set XT .

Figure 3.1a shows the situation when player I is about to make a de-

mand at time T � 1 after all previous demands have been refused. He

knows that the cake will shrink from XT�1 to XT if his demand is refused.

The final deal therefore can’t assign him a payo¤ of less than x. The rea-

son is that player I would then do better to o¤er player II a little more

than y. A rational player II is sure to accept such an o¤er, because a pay-

o¤ of this size will never again be available to her. It follows that if time

T � 1 is reached without an agreement, the final deal lies in the shaded

region of figure 3.1a. A similar argument shows that if time T � 2 is

reached without an agreement, the final deal lies in the shaded region of

figure 3.1b.

Working backward in this way from time T to time 0, we find that the

final deal must lie in the shaded set R of figure 3.1c. If we don’t get too

Figure 3.1
Shrinking cakes in Rubinstein’s model
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adventurous when shrinking the cake, and if XT shrinks away to a single

point as T ! y, then the set R does the same thing. That is to say, only

one possible agreement survives the backward induction argument.

It is easy to check that only one pair of strategies can sustain this

unique agreement, and so the game has a unique subgame-perfect equi-

librium. Although the equilibrium strategies tell the players what to

do under all possible contingencies that might arise in the game, what

actually happens in equilibrium is that the opening demand is accepted

immediately.

Reinhard Selten

The idea of a subgame-perfect equilibrium was invented by Reinhard

Selten (1975), who eventually won a Nobel Prize for his contributions to

game theory.2 Before he was widely known outside Germany, I invited

him to visit for a week at the London School of Economics, where I was

running a workshop in economic theory.

In a long and instructive discussion in the college bar, Selten explained

that he had anticipated Rubinstein by exploring the possibility of using

subgame-perfect equilibria to analyze some simple bargaining games

with his student Ingolf Stahl (1972). He also insisted that his idea of a

subgame-perfect equilibrium should be regarded only as an ideal theoret-

ical construct that would be unlikely to predict well in laboratories. In

defending this view, he told us of an experiment he had suggested to his

student Werner Güth on what became known as the Ultimatum Game.

With colleagues at Köln University, Güth showed that subgame-

perfect equilibrium fails to predict even in the simplest version of Rubin-

stein’s model, in which a single demand is followed by a single acceptance

or refusal. The subgame-perfect prediction in the Ultimatum Game is

that player I will get almost the whole cake, since the alternative to player

II accepting such a demand is that she gets nothing. There are wide di¤er-

ences among cultures, but it is now well established that in the Western

world, player I commonly o¤ers player II half the cake; it is unwise to

o¤er her less than a third of the cake, since the probability of a refusal is

then about a half.

Because a standard response to these results is that they show that peo-

ple are too nice to pay attention to strategic consideration in bargaining

games, it is perhaps worth pointing out immediately that such a naive

interpretation is untenable. For example, Mitzkewitz and Nägel (1993)

studied the Ultimatum Game in the case where only player I knows
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how much money is available for division. He mostly then o¤ers half the

money when the amount is no more than a third of its maximum possible

size. When the amount is larger, he often sneakily makes the o¤er that

would be fair if the amount available for division were equal only to a

third of the maximum.

A Two-Stage Game

The Ultimatum Game must now be the single most replicated economic

experiment of all time, but it is a reflection on attitudes of the time that

nobody took much notice of the paper by Güth et al. (1982) when it was

originally published. However, having been much impressed by Selten’s

arguments, I proposed to my then colleagues, Avner Shaked and John

Sutton, that we run an experiment of our own to check things out. At the

time we had reservations about the design of the Güth et al. experiment.

Was the Ultimatum Game so pathologically simple that the subjects

didn’t perceive it as a strategic problem? What about the anonymity of

subjects in Güth’s experiment? And so on.

We had never run an experiment before, but I think we did quite well. I

don’t know whether we were the first economists to run an experiment

with networked computers using animated graphics, but I think it quite

likely. I bored a hole with my electric drill through the wall connecting

two unused cubicles that the Psychology Department kindly made avail-

able. We then passed a wire through the hole to connect two computers,

through which our subjects communicated using seat-of-the-pants soft-

ware. (Commercial networking systems were not then available.)

The general shape of Güth’s results survived in our harsher laboratory

environment, and so we looked at a two-stage ultimatum game in which

player II can follow her refusal of player I’s opening demand by making a

final demand of her own—but only after the cake has shrunk by a prede-

termined amount. The subgame-perfect prediction is then that player II

will end up with the amount to which the cake shrinks after a refusal,

and player I will get the rest.

We found that totally inexperienced subjects in the two-stage game

played pretty much as one might expect from observing behavior in the

one-shot game. However, subjects who had the experience of playing as

player II played quite di¤erently when o¤ered the opportunity to play

again, this time in the role of player I. Their initial demands were now

close to the subgame-perfect prediction for the particular shrinkage rate

of 75 percent that we chose to use.
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It was particularly hard to get experimental papers published in those

early days. The referees were either theorists who saw no point in theo-

rems being tested in the laboratory, or refugees from psychology who

thought they already knew that game theory is irrelevant to human be-

havior. However, the American Economic Review eventually printed the

brief note reproduced in this chapter.3 Unlike the original paper of Güth

et al., it attracted a great deal of attention.

This is the only paper that I actively regret publishing, since I think

it was instrumental in creating an academic industry in which innu-

merable variants of the Ultimatum Game continue to be flogged to death

in laboratories all over the world to this day. Who cares, for example,

how toddlers or victims of Alzheimer’s disease play the Ultimatum

Game?

Early papers in the genre often began by denouncing the folly of naı̈ve

theorists like Binmore, Shaked, and Sutton who were said to believe that

subjects in bargaining experiments always behave like selfish optimizers

rather than playing fair. Particular criticism was directed at a passage in

our experimental instructions which said: ‘‘You will be doing us a favor if

you simply set out to maximize your winnings.’’4 The implication is that

we thereby ‘‘fixed’’ our experiment to generate our preferred outcome

(Thaler 1988). When our work is mentioned nowadays, it continues to

be said that our use of this sentence disqualifies our results from serious

attention. But if the sentence persuaded our experienced subjects to be-

have unfairly, how come it didn’t persuade our inexperienced subjects to

do the same?

In any case, a glance at the graph of figure 3.2 from Holt and Davies

(1993) is enough to show that such critics are simply seizing on an excuse

to ignore data they find inconvenient. (Figure 4.1 conveys the same mes-

sage.) Each point on the graph represents a di¤erent two-stage ultimatum

game experiment.

When the shrinkage rate is di¤erent in di¤erent experiments, the

subgame-perfect prediction of the opening demand is also di¤erent.

This prediction is the x coordinate of each point. The y coordinate is the

average opening demand actually made in the experiment. If subgame-

perfection were a good predictor in these games, all the points on the

graph would be close to the 45� line—which they evidently aren’t. How-

ever, the immediate point is that the data point from our experiment isn’t

an outlier.5 Since the instructions in these other experiments didn’t in-

clude our o¤ending phrase, it clearly didn’t make much di¤erence to our

subjects’ behavior.
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Does Backward Induction Work?

We thought that our experiment showed not only that naı̈ve generaliza-

tions of the fairness results of Güth et al. in the Ultimatum Game are

untenable but that here was at least one case in which subgame-perfection

works. However, we were unlucky in having chosen a shrinkage rate that

placed our data point near the point of intersection of the graph of

subgame-perfect predictions and the graph representing the average open-

ing demands.

When one takes account of the full range of results, it looks as though

both strategic and fairness considerations somehow combine in determin-

ing the subjects’ early play.6 Perhaps di¤erent strategic realities trigger

di¤erent fairness norms. But, whatever the explanation, to use subgame-

perfection alone as a predictor is evidently as hopeless as using a fairness

norm that ignores the relative bargaining power that the shrinkage rate

characterizing a two-stage ultimatum game confers on the players.

Refutations of the idea that experimental subjects commonly reason

using backward induction are now legion. My own favorite is the paper

by Camerer et al. (1994) in which the order in which players click on var-

Figure 3.2
Mean initial demands in Alternating-O¤er Bargaining Games with two rounds (Source:
Spiegel et al. 1994, tab. 6).
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ious screens to examine the payo¤s in forthcoming subgames is recorded.

But little tendency to work back from the closing subgames to the begin-

ning of the game was observed.

Is the failure of pure subgame-perfection in two-stage ultimatum games

a good reason for abandoning Rubinstein’s bargaining model as a posi-

tive theory? I hope that later chapters will convince skeptics that this

would be a bad mistake. There are experimental environments in which

the Rubinstein theory works very well indeed.

How can the Rubinstein theory sometimes predict well if subjects don’t

use backward induction? My guess at the reason isn’t very profound.

Rubinstein’s prediction of the outcome of his bargaining model doesn’t

change if we replace the subgame-perfect equilibrium of his theorem by

what one might call a stationary expectations equilibrium, in which the

players always plan to act today as though everybody’s plans tomorrow

will always be the same as they are today. The point is that it would not

be surprising if boundedly rational laboratory subjects were led to such

an equilibrium by a simple myopic optimization process that assumes

that tomorrow will be much the same as today (chapter 8).7

What Does Game Theory Really Predict?

Despite the liberal sentiments expressed above, I guess there is no way I

am ever going to escape the lingering odium of being thought so attached

to the idea of a subgame-perfect equilibrium that I would fix an experi-

ment to make it seem like it works in the laboratory. Ironically, most of

the time that I was being attacked in the behavioral literature for suppos-

edly being an unprincipled supporter of subgame-perfection, I was simul-

taneously engaged in a debate with Bob Aumann and his followers, in

which I was putting the case against subgame-perfection as a necessary

principle of rationality (Binmore 1996, 1997). Appendix B contains two

papers in which I explain why I don’t believe that Aumann’s (1995, 1996)

claim that common knowledge of rationality implies backward induction

even has a chance of being true.

Despite Aumann’s advocacy, I think some version of my opposing view

on this subject is now standard among game theorists. Even Aumann

agrees with Selten that subgame-perfection should be regarded as a purely

theoretical construct that is unlikely to be decisive in predicting experi-

mental results.

The continuing refrain in papers from the Ultimatum Game industry

that ‘‘game theory predicts that the subgame-perfect equilibrium will be
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Figure 3.3
Convergence on weakly dominated equilibria in the Ultimatum Minigame. The Nash equi-
libria indicated in the right diagram occur in two clusters. The subgame-perfect equilibrium
S sits alone in the top left corner of the square. The remaining (weakly dominated) Nash
equilibria form a connected set N, indicated by thickening the lower part of the right side
of the square. A escape trajectory leads away from the equilibrium at the highest equilibrium
in N (where the probability with which player II is planning to say no to a low o¤er makes
player I just indi¤erent between his high and low o¤ers). On arriving in N, the system will
presumably drift through N in response to unmodeled noise, until it finally finds it way via
the escape trajectory to the subgame-perfect equilibrium S. But the expected waiting time
before this eventuality occurs will commonly be so large as to be irrelevant for experimental
purposes.
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observed’’ is therefore at best outdated, and at worst dishonest. Refine-

ment theory has been e¤ectively dead for many years now. Current theo-

retical attempts on the equilibrium selection problem center on trying to

model the actual processes of learning or adjustment by means of which

actual people find their way to equilibria in the real world. It can’t be said

that this research program has come up with anything very useful in the

way of positive results, but it certainly confirms that we can’t a¤ord to

throw away unrefined Nash equilibria if we care about the long-run be-

havior of subjects in laboratories. Simple adjustment processes can be

made to converge even on weakly dominated Nash equilibria without

any trouble at all.

Consider, for example, the Ultimatum Minigame8 of figure 3.3a from

Binmore et al. (1995). The game has a unique subgame-perfect equilib-

rium, in which player I makes a high demand and player II acquiesces.

It also has many other (weakly dominated) Nash equilibria, in which

player I makes the fair demand (which is optimal when player II is plan-

ning to say no with high probability to the high demand that player I

therefore doesn’t make).

These equilibria are indicated in figure 3.3b. The trajectories in this

figure are those of the replicator dynamics, which evolutionary biologists

regard as the simplest model that captures anything significant about evo-

lutionary processes in games. The point is simply that some of these tra-

jectories end up at weakly dominated Nash equilibria.

Appendix C is a theoretical paper that discusses this issue at length

in the context of the full Ultimatum Game (Binmore et al. 1995). Among

other things, it shows that convergence on weakly dominated equilibria

can be robust. Its computer simulations are also in line with those of

Roth and Erev (1995) in suggesting that any convergence is likely to be

very slow.

None of these equilibrium-selection problems exist for the one-shot

Prisoners’ Dilemma. There are also many other games with only one

Nash equilibrium. Any of these games would be a much better test bed

for critics of orthodox game theory than the Ultimatum Game, with its

many Nash equilibria and slow convergence properties. So why do critics

interminably appeal to experiments on the Ultimatum Game? Presum-

ably because they are aware that game theory predicts the behavior of ex-

perienced subjects in games like the Prisoners’ Dilemma rather well.
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Testing Noncooperative Bargaining Theory: A Preliminary Study

Ken Binmore, Avner Shaked, and John Sutton

Bargaining theory has received much attention of late. There has also

been a growing interest in experimental work on bargaining, notably by

Reinhard Selten (1978) and by Alvin Roth, M. Malouf, and J. Mur-

nighan (1981). This work confirms a view that is common among social

psychologists: namely that subjects tend to seek a ‘‘fair’’ outcome to bar-

gaining problems. The thrust of the inquiry is then to determine what the

subjects will regard as fair in a given situation.

A tension exists between this work and the theoretical approach revital-

ized by Ariel Rubinstein (1982). (See also Binmore 1982, 1983; Shaked

and Sutton 1984.) This new approach involves modeling the process of

o¤er and countero¤er by means of which agreement can be reached, as a

formal noncooperative game, and studying agreements that can be sus-

tained as equilibria of this game.

The tension is sharply illustrated by a recent experimental study of W.

Güth, R. Schmittberger, and B. Schwarze (1982). (See also Güth 1983.)

Two subjects have to divide a sum of money (the ‘‘cake’’), using the fol-

lowing primitive procedure: player 1 makes a demand, which player 2 can

then accept or refuse. This concludes the game. If the demand is refused,

both players receive nothing. A strategic analysis assigns all (or nearly all)

of the cake to player 1, but experiments show that a much ‘‘fairer’’ divi-

sion is usual.

The work of Güth et al. seems to preclude a predictive role for game

theory insofar as bargaining behavior is concerned. Our purpose in this

London School of Economics, Houghton St., London WC2A 2AE, UK. We gratefully ac-
knowledge the financial support of the International Centre for Economics and Related Dis-
ciplines (Suntory-Toyota Foundation), and the hospitality of the Psychology Department at
LSE, where our experimental work was conducted, under the immediate supervision of Yas-
min Batliwala, Mimi Bell, and Maria Herrero. We also thank Werner Güth, Alvin Roth,
and particularly Reinhard Selten for comments on an early draft.



note is to report briefly on an experiment that shows that this conclusion

is unwarranted. (Only the briefest account of the experiment is o¤ered

here; for a full account, see our 1984 paper.)

This does not mean that our results are inconsistent with those of Güth

et al. Under similar conditions, we obtain similar results.9 Moreover our

full results would seem to refute the more obvious rationalizations of the

behavior observed by Güth et al. as ‘‘optimising with complex motiva-

tions.’’ Instead, our results indicate that this behavior is not stable in the

sense that it can be easily displaced by simple optimizing behavior, once

small changes are made in the playing conditions.

3.1 The Experiment

In the present work, we went beyond the one-stage ‘‘Ultimatum’’ Game

of Güth et al. and examined a two-stage game, as follows:

Stage I: The cake is of size 100 pence. Player 1 makes a proposal ðX Þ;
player 2 accepts (1 receives X , 2 receives 100� X ) or rejects (game

continues).

Stage II: The cake is of size 25 pence. Player 2 makes a proposal ðX 0Þ;
player 1 accepts (1 receives X 0, 2 receives 25� X 0) or rejects (1 receives

0, 2 receives 0).

A game-theoretic analysis requires that player 1 makes an opening de-

mand in the range 74 to 76 pence, and player 2 accepts any opening de-

mand of 74 pence or less (for he cannot do better by refusing, even if he

obtains the entire cake in the second stage).

We studied the game, using subjects who were isolated from each

other, and who communicated their decisions via linked microcomputers.

Following lengthy pilot studies, in which we solicited players’ comments

after they had played the game, we decided to extend the design, as fol-

lows. We invited the subject who had filled the role of player 2 to play

the game again, but this time he would fill the role of player 1. We

recorded only his opening demand in this second game (game B).

3.2 The Results

We focus here on the main features of interest. The opening demands

made in game A and game B, respectively, are shown in the histograms

9. See note 10 below.
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in figure 3.4. They exhibit a marked change of behavior between game A

and game B. A tendency to ‘‘play fair’’ in game A becomes a strong ten-

dency to play ‘‘like a game theorist’’ in game B.

This marked change in behavior constitutes the first of the two main

findings of the present study. The null hypothesis is that the opening

demands in each game are drawn from the same population and is

rejected at the 0.1 percent level (Kolmogoro¤-Smirno¤ two-tailed test).

Focusing on those subjects who filled the role of player 2 in game A,

we looked at the subsample who faced a ‘‘high’’ demand in that game. A

fair player would reject a high demand, and would not himself make a

high demand (when o¤ered the chance to act as player 1, in game B).

The results (shown in table 3.1) indicate little support for the view that

a substantial proportion of the population are ‘‘fairmen’’ as opposed to

‘‘gamesmen.’’ The table shows the relationship between a subject’s re-

sponse to the opening demand made of him in game A, and the opening

demand which he later makes when acting as player 1 in game B. Cell G

denotes gamesmen, cell F denotes fairmen. We chose the midpoint be-

tween 50 and 75 as our dividing line between low and high demands.

The table refers only to the subsample of our population who faced high

demands in game A.

What, then, of the players who filled the role of player 1 in game A,

and who exhibited a marked tendency to make fair demands? While we

have considered various possible explanations, the interpretation that we

favor is this: subjects, faced with a new problem, simply choose ‘‘equal

Figure 3.4
Opening demands for main results
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division’’ as an ‘‘obvious’’ and ‘‘acceptable’’ compromise—an idea famil-

iar from the seminal work of Thomas Schelling (1960). We suspect, on

the basis of the present experiments, that such considerations are easily

displaced by calculations of strategic advantage, once players fully appre-

ciate the structure of the game.

Finally, it is important to note that Güth et al. did in fact study sub-

jects playing the one-stage ultimatum game for a second time, without

observing any marked change in behavior.10 Thus, it is not only this fea-

ture which distinguishes our results from theirs.

The key feature to note, in this respect, is that responses to opening

demands in Game A were strongly biased in favor of ‘‘rationality.’’ (Of

22 opening demands in the range 63a a < 77, only 3 were rejected.) On

the other hand, at the second stage of Game A—following a refusal at

the first stage—subjects showed a strong tendency to reject high demands

(as in the study of Güth et al.).

Our suspicion is that the one-stage ultimatum game is a rather special

case, from which it is dangerous to draw general conclusions. In the ulti-

matum game, the first player might be dissuaded from making an open-

ing demand at, or close to, the ‘‘optimum’’ level, because his opponent

would then incur a negligible cost in making an ‘‘irrational’’ rejection. In

the two-stage game, these considerations are postponed to the second

stage, and so their impact is attenuated.11

Table 3.1

Response to high opening demands
(63a aa 77) in game A

Opening demand
in game B No Yes

ba 62 1ðF Þ 2

bb 63 2 17ðGÞ

10. Opening demands were slightly higher, and refusals of these demands more frequent.

11. There remains the possibility that the di¤erence between our results and those of Güth et
al. might be traced to di¤erences in the experimental environment rather than to di¤erences
in the game played. Güth et al. operated in an open environment within which subjects
could see each other (although the identity of their current opponent was, of course, a se-
cret). Our assistant, Yasmin Batliwala, has run a controlled experiment to check for this pos-
sibility (which will be reported separately). Replicating our experimental conditions, she
compared the behavior of subjects playing our two-stage game with that of a control group
playing the one-stage Ultimatum Game. Broadly, the results confirmed our present interpre-
tation. Behavior in the two-stage game was similar to that reported in this paper. Behavior
in the one-stage Ultimatum Game was consistent with the observations of Güth et al. in that
game theory was a poor predictor of outcomes.
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4 Inequity Aversion?

Camerer (2003, p. 24) explains the behavior of subjects in bargaining

experiments who refuse low o¤ers of money in favor of nothing by say-

ing: ‘‘According to behavioral game theory, responders reject low o¤ers

because they like to earn money but dislike unfair treatment (or like being

treated equally).’’

I don’t see why this should be thought to be a behavioral explanation.

We aren’t even able to predict what people will count as fair in di¤erent

contexts, so how can we test whether the claim holds true? But this isn’t

to say that I don’t think that the explanation is right at some level. Indeed

there are at least two levels at which it surely must be right.

In debriefing sessions, experimental subjects certainly very frequently

do say that they like fair outcomes. I might say the same thing myself in

similar circumstances. So if we are looking for the way that subjects ex-

plain their behavior to themselves, we need look no further. But how

well do such subjective explanations predict a person’s future behavior?

For example, why do I drive on the left in London? At one level, I do

so because I like it. If you ask me in London whether I prefer driving on

the left to driving on the right, I will say that I prefer the former. But next

week you might find me driving on the right in New York.

The point here is that it isn’t an adequate explanation of my behavior

in London to say that I choose to drive on the left because I like it. The

real question in such instrumental matters is why I like it.1 A major rea-

son is that I want to avoid accidents. This is a more satisfactory explana-

tion for why I drive on the left in London, since it also explains why I

drive on the right in New York.

This brings us to the second level at which it can’t be wrong to say that

people do things because they like doing them. If one includes enough

parameters it becomes a tautology that anyone can always be modeled

as maximizing a utility function. For example, after observing my driving



in appropriate cities, we could summarize our data by saying that I like

driving on the left in London, on the right in New York, and at random

in Istanbul. But it is surely important not to fall into the Ptolemaic trap of

confusing a description of the data with an explanation.

To be useful for predictive purposes, a putative explanation must be

reasonably parsimonious. In game theory, people sometimes say that it

needs to be portable. This means that the predictions should work for

some wider class of environments than those from which the data incor-

porated in the prediction was gathered. For example, if I was seen always

driving on the left in London, New York, and Istanbul, then the explana-

tion that I like driving on the left would be portable if I was later

observed driving on the left in Paris, Rome, and Tokyo.

The big problem I see with explanations that reduce the behavior of

subjects to the maximizing of a suitable utility function is that such

explanations commonly fail to be portable over time, but this criticism

loses much of its force in the context of ultimatum games with only one

or two stages, since both theory and experiment suggest that trial-and-

error adjustment over a realistic number of trials is then likely to be

small.2 However, other portability problems have to be confronted.

A reasonably satisfactory explanation should be robust to at least some

changes in the rules of the game under study, but it turns out that even

apparently inessential changes in the framing of an experiment can have

significant e¤ects on the subjects’ behavior.3 My favorite example is Ball

and Eckel’s (1996) striking experiment on the Ultimatum Game, in which

subjects awarded an otherwise meaningless gold star were the beneficia-

ries of favored treatment from their bargaining partners.

Is our explanation of this phenomenon to be that subjects like being

more-than-fair to people wearing gold stars? Is it the same for white coats

or dog collars? What about jackboots or dreadlocks? What of people sell-

ing a house or buying a used car?

Rescuing Backward Induction?

In seeking a parsimonious utility function to characterize the behavior of

experimental subjects in ultimatum games, Bolton (1991) looked at a case

where players care not only about their own money payo¤ but that of

their opponent as well. Fehr and Schmidt (1999) are among others who

have similarly found it possible to fit other such functions to Ultimatum

Game data—although their claim to have used utility functions ‘‘cali-

brated’’ in this way to predict the data from other games turn out to be
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wildly exaggerated.4 I don’t think anyone is especially attached to any

particular functional form. Whatever functional form is adopted, there

will anyway need to be at least one loose parameter hanging around (to

take care of gold-star e¤ects if nothing else).

A question posed by this work is whether subgame-perfection in two-

stage ultimatum games can be ‘‘rescued’’ by postulating that the players

optimize such other-regarding utility functions rather than the money

payo¤s provided by the experimenter. The experiment of this chapter

answers this question in the negative.

No matter what parameters are chosen in whatever functional form,

backward induction isn’t portable across di¤erent variants of simple ulti-

matum games, unless the utility functions take account of more than the

money payo¤s of both players. Because the work of Camerer et al. (1994)

and others, we were expecting this negative result, and so we did every-

thing we could to give subgame-perfection its best chance of working,

but it failed anyway.

On the positive side, we now have figure 4.1, which provides a less

eclectic bunch of data points for the average initial demands in two-stage

ultimatum games than the summary of diverse experiments from Holt

and Davies (figure 3.2).

Figure 4.1
Average initial demands in two-stage ultimatum games. The graphs are to be read as in fig-
ure 3.2. The groups of subjects corresponding to each graph di¤ered only in having previ-
ously played variants of a one-stage Ultimatum Game in which their fractional payo¤s
after a refusal were respectively (0.1, 0.1), (0.1, 0.6), and (0.7, 0.1).
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I want to draw particular attention to the fact that the three graphs of

figure 4.1 are systematically di¤erent, although all three were compiled

from experiments on exactly the same set of games. The only di¤erence

between the three groups of subjects corresponding to the three di¤erent

graphs is that di¤erent groups had experienced versions of a one-stage Ul-

timatum Game that di¤ered in the amounts that each player would re-

ceive after a rejection.

So we have another gold-star e¤ect, but this time what matters is the

shared history of experience of the subjects in playing a di¤erent game. I

take this as another confirmation that one comes up with less fragile

explanations of experimental data if one thinks of fairness norms as being

lodged in the common understandings of a society rather than in the pref-

erences of individuals.

Why do I drive on the left. Because I like it. Why do I like it? Because

it helps avoid accidents while I am in London. Why does it avoid acci-

dents in London? Because it is commonly understood in London that ev-

erybody drives on the left. Why is it focal to drive on the left in London?

Because this is the Nash equilibrium in the Driving Game at which cul-

tural evolution has stranded the British.

In my Natural Justice (Binmore 2005), I try to tell the similar but much

more complicated story that I think needs to be told for fairness norms.

Aside from other issues, behavioral economists might find my treatment

of interpersonal comparison relevant to the kind of gold-star e¤ects that

have been central in this discussion.
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A Backward Induction Experiment

Ken Binmore, John McCarthy, Giovanni Ponti, Larry Samuelson, and Avner

Shaked

4.1 Introduction

Experimental subjects frequently fail to play subgame-perfect equilibria

in one-stage and two-stage alternating-o¤ers bargaining games. A com-

mon response is to question the implicit assumption that players’ mone-

tary payo¤s and utilities are synonymous. A variety of alternative utility

functions have been suggested, typically allowing for ‘‘interdependence,’’

or the possibility that a player’s utility depends on his opponent’s as well

as his own monetary payo¤.

These alternative utility functions allow some reconciliation of the

theory and experimental results but leave open the original question:

Does play respect backward induction? And if not, how can the depar-

tures from backward induction be characterized? This paper reports an

experiment that investigates these questions.5

Once we abandon the equivalence of monetary payo¤s and utility, we

are left without a precise idea of what determines utility. Then how can

we examine backward induction? Section 4.2 makes this question more

precise and sets the stage for our analysis by splitting backward induction

into two components, subgame consistency and truncation consistency.

Section 4.3 describes the experimental procedure used to examine sub-

game and truncation consistency. Section 4.4 presents and discusses the

We thank Menesh Patel and John Straub for research assistance and thank Vince Crawford
for helpful comments. The instructions and data for the experiments reported in this paper
are posted at http://www.nyu.edu/jet/supplementary.html. Financial support from the
ESRC Centre for Economic Learning and Social Evolution at University College London,
the National Science Foundation, and the Deutsche Forschungsgemeinschaft, SFB 303 at
the University of Bonn, is gratefully acknowledged.

5. The instructions used in the experiment and the data are posted at http://www.nyu.edu/
jet/supplementary.html.



results. We find systematic violations of backward induction that cannot

be explained by payo¤-interdependent preferences. For example, pro-

posers are less aggressive in the second stage of a two-stage bargaining

game than in an equivalent one-stage game (violating subgame consis-

tency). Players are less responsive to variations in the expected value of

playing a subgame than to equivalent variations in terminal payo¤s (vio-

lating truncation consistency). Section 4.5 concludes.

4.2 Background

4.2.1 Bargaining Games

Figure 4.2 presents one-stage and two-stage Alternating-O¤ers Bargain-

ing Games. We take the total surplus to be 100 and measure divisions of

the surplus in terms of the percentage allocated to player 1, speaking of

1’s actions as ‘‘demands’’ and 2’s actions as ‘‘o¤ers.’’ The one-stage game

is commonly called the Ultimatum Game.

The subgame-perfect equilibrium prediction is that player 1 receives all

of the surplus in the Ultimatum Game (or at least all but a penny, if divi-

sions must be made in multiples of pennies), and receives 100ð1�DÞ of
the surplus (with 100D going to player 2) in the two-stage game, where

D is the common discount factor. However, in the original study of the

Ultimatum Game, Güth et al. (1982) found that player 1’s modal de-

Figure 4.2
One-stage and two-stage alternating-o¤ers bargaining games
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mand claimed only half of the surplus, and significantly more aggressive

demands were often rejected. Binmore et al. (1985) found similar results,

as have a multitude of subsequent studies, surveyed in Bolton and Zwick

(1995), Davis and Holt (1993), Güth and Tietz (1990), Roth (1995), and

Thaler (1985). Experimental outcomes in the two-stage game similarly

tend to be less extreme than the subgame perfect equilibrium.6

4.2.2 Payoff-Interdependent Preferences

The experimental results are commonly interpreted as indicating that

players have interdependent preferences, meaning that preferences depend

upon more than simply one’s own monetary payo¤.7 Bolton (1991),

for example, suggests that utility is increasing in one’s own payo¤ and

decreasing in the ratio of one’s opponent’s to one’s own payo¤, as do

Ochs and Roth (1989).

We concentrate on payo¤-interdependent preference theories, in which

preferences depend only upon the payo¤s received by the players. For ex-

ample, applying Bolton and Ockenfels’s (2000) ERC (equity, reciprocity,

and competition) theory to two-player bargaining games, we can write

player i’s utility function as

uiðpi; pjÞ ¼ vi pi;
pi

pi þ pj

� �
; ð1Þ

where vi is assumed to be increasing and concave in its first argument,

and to be strictly concave in its second argument, with a zero derivative

in the second argument when the latter equals 1
2
.8 Player i thus prefers

higher payo¤s but dislikes inequality, and hence may prefer to reject quite

asymmetric payo¤ allocations.

Alternatively, Fehr and Schmidt (1999) work with a utility function (in

two-player games)

6. Figure 5.6 of Davis and Holt (1993, p. 272) provides a convenient summary of experi-
ments with two-stage games. The results of Camerer et al. (1993) and Johnson et al. (2002),
who examine the information-gathering patterns of experimental subjects, raise further ques-
tions concerning backward induction.

7. A variety of experiments have investigated the fairness considerations that are often
invoked to motivate interdependent preferences. Examples include Abbink et al. (1996),
Andreoni et al. (2002), Andreoni and Miller (2002), Bolton et al. (1998), Bolton and Zwick
(1995), Dufwenberg and Gneezy (1996), Kagel et al. (1996), Ru¿e (1998), Slembeck (1998),
Straub and Murnighan (1995), Winter and Zamir (1997), Zwick and Chen (1997), and
Zwick and Weg (1996).

8. The function v is continuous and the utility, when pi ¼ pj ¼ 0, is defined to equal
við0; 1=2Þ (so uiðpi ; pjÞ is not continuous).
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uiðpi; pjÞ ¼ pi � ai maxfpj � pi; 0g � bi maxfpi � pj; 0g; ð2Þ

where 0 < bi < ai, so that player i dislikes inequality, and especially

dislikes inequality in which i has the smaller payo¤. Costa-Gomes and

Zauner (2001) examine a utility function whose deterministic part (sup-

plemented by an error designed to facilitate empirical application) is

given by

uiðpi; pjÞ ¼ pi þ aipj; ð3Þ

where ai may be positive or negative, reflecting a positive or negative con-

cern for the opponent’s payo¤.

We use (1)–(3) as illustrations, but our results apply to any payo¤-

interdependent utility function uiðpi; pjÞ that is strictly quasi-concave on

sets of the form fðpi; pjÞ : pi þ pj ¼ Cg (for some constant C).9

A more general interdependent utility specification would allow prefer-

ences to be based not only on realized payo¤s but also on other charac-

teristics of one’s opponent or the structure of the game, including the

alternative payo¤s o¤ered by unreached outcomes. In Levine (1998),

player i’s utility may be increasing in j’s payo¤ if j himself is relatively

altruistic, while i’s utility may be decreasing in j’s payo¤ if j is similarly

spiteful. Building on the theory of psychological games, Dufwenberg and

Kirchsteiger (1998), Falk and Firshbacher (1999), and Rabin (1993) o¤er

alternatives in which the structure of the game, coupled with beliefs about

opponents’ intentions, plays an important role. This allows player i to

prefer to be kind to kind opponents, but allows i’s assessment of whether

j has been kind to depend on i’s beliefs about what j believed about the

consequences of j’s actions.

We can be assured of the ability to construct interdependent prefer-

ences capable of reconciling experimental data and backward induction,

as long as we allow su‰ciently flexible preferences and examine a su‰-

ciently narrow class of games.10 For the interdependent-preferences

approach to backward induction to be useful, we require a relatively par-

simonious specification of preferences that is readily applicable across a

relatively broad class of games. We say that such preferences are rela-

tively ‘‘portable.’’ Payo¤-interdependent preferences are attractive be-

9. Strict quasiconcavity ensures that backward induction solutions are unambiguous.

10. For example, Dufwenberg and Kirchsteiger (1998) argue that their theory creates su‰-
ciently flexible self-referential links across the stages of the game as to render the concept of
backward induction vacuous.
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cause their simplicity makes them eminently portable. Coupled with the

observation that such preferences are consistent with many experimental

results, including violations of backward induction (Bolton and Ockenfels

2000; Costa-Gomes and Zauner 2001; Fehr and Schmidt 1999), this

makes payo¤-interdependent preferences particularly interesting.

4.2.3 Backward Induction

In the Ultimatum Game backward induction requires player 1 to choose

1’s most preferred allocation, from the set of allocations that player 2 at

least weakly prefers to disagreement. But when preferences exhibit payo¤-

interdependence, we do not have a precise idea of the latter set. Then how

can we examine backward induction?

One experimental approach begins by separating backward induction

into its three components:11

� Rationality Given a choice between two (vectors of ) payo¤s, a player

chooses the most preferred.

� Subgame consistency Play in a subgame is independent of the sub-

game’s position in a larger game.

� Truncation consistency Replacing a subgame with its equilibrium pay-

o¤s does not a¤ect play elsewhere in the game.

In generic, finite games of perfect information, these three requirements

are equivalent to backward induction, as captured by the equilibrium no-

tion of subgame perfection.12 In the case of the Ultimatum Game with

ordinary preferences, rationality ensures that a player will always choose

a positive amount of money rather than zero. Subgame consistency

ensures that a player will accept when this same decision appears as the

result of an opponent’s o¤er. Next, truncation consistency allows us to

replace this accept/reject decision with its equilibrium payo¤s, and then

rationality is once again invoked to examine the proposal that opens the

game.

11. The concepts of subgame consistency and truncation consistency are taken from Har-
sanyi and Selten (1988). An alternative approach, used by Holt (1999) to examine coordi-
nation games, would estimate subjects’ utility functions, use these estimates to calculate the
backward-induction solution, and then compare the calculated solution with the outcomes
of further experiments.

12. In nongeneric, finite games of perfect information, subgame perfection may also require
appropriate tie-breaking rules (Harsanyi and Selten 1988, pp. 106–109). Strict quasi-
concavity ensures that the relevant genericity condition is satisfied in our games. In games
of imperfect information, the possibility of subgames with multiple Nash equilibria obvi-
ously allows subgame-perfect equilibria to violate subgame consistency.
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Interdependent-preference theories are designed to preserve the main-

tained assumption of rationality. In order to assess backward induction,

our analysis accordingly presumes rationality and examines issues of sub-

game consistency and truncation consistency.

4.3 The Experiments

4.3.1 The Games

Figure 4.3 presents the games involved in the experiments. Game III is

the two-stage game of figure 4.2. We refer to game I as the Ultimatum

Game, though the presence of the rejection payo¤s ðV1;V2Þ causes the

Figure 4.3
Experimental games
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game to di¤er from a standard Ultimatum Game. The rejection payo¤s

ðZ1;Z2Þ in game IV are subject-specific, and are calculated on the basis

of the subjects’ realized payo¤s in game II (details below).

Twenty-four treatments were run, with all four of games I–IV played in

each treatment, and with one treatment for each of the twenty-four ele-

ments of the set

fð10; 10Þ; ð70; 10Þ; ð10; 60Þg � f0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 0:8; 0:9g;

where the first element identifies a rejection-payo¤ pair ðV1;V2Þ that

appeared in game I (only) and was common to all of the subjects in the

treatment, and the second element identifies the discount factor (again

common to all subjects within a treatment) that appeared in games II and

III of the treatment.

4.3.2 The Ultimatum Game

The first of our four games, the Ultimatum Game, serves three purposes.

First, the Ultimatum Game with rejection payo¤s ð10; 10Þ provides a

control. We regard results similar to those obtained in other Ultimatum

Game experiments as an essential indication that there is nothing in our

procedures that prevents replication of standard experimental results, and

would re-examine our procedures in the absence of such results. We

choose the Ultimatum Game with the rejection payo¤s ð10; 10Þ as a con-

trol, rather than the standard Ultimatum Game, to check that the mere

introduction of (relatively small) rejection payo¤s does not significantly

change subjects’ behavior.

Second, the Ultimatum Game provides a check on our intuition as

to how players respond to varying rejection payo¤s. We expect play in

the ð10; 60Þ, ð10; 10Þ, and ð70; 10Þ rejection-payo¤ games to di¤er, with

player 1 becoming increasing aggressive across these three games, and

would again reexamine our procedures if this were not the case.

Finally, the ð10; 60Þ rejection-payo¤ game provides a setting in which

a common form of payo¤-interdependence makes a particularly sharp

prediction. Payo¤-interdependent models typically assume that utility is

increasing in one’s own payo¤ and (possibly weakly) decreasing in in-

equality, as do Bolton and Ockenfels (2000), Fehr and Schmidt (1991),

and as does the model of Costa-Gomes and Zauner (2001) when �1 <

ai < 0 (in which case it is illuminating to let uiðpi; pjÞ ¼ ð1þ aÞpi þ
aðpj � piÞ). Hence player 2 should prefer to accept any allocation in

which 2 receives at least 60 percent of the surplus. Player 1 will then

demand at least 40, and player 2 will accept 1’s demand.
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4.3.3 Subgame Consistency

The second stage of the two-stage bargaining game is itself an Ultimatum

Game, with player 2 making the initial proposal and with the total sur-

plus given by 100D rather than 100. Game II duplicates this second stage

as a separate game. We will refer to game II as the continuation game. We

investigate subgame consistency by comparing play in the continuation

game with play in the second stage of the two-stage game:13

� Subgame consistency indicates that play in the second stage of the two-

stage game, for those cases in which it is reached, should duplicate play in

the continuation game.

Isn’t the mere fact that the second stage is reached evidence that back-

ward induction fails? If players’ preferences are commonly known, the

answer is yes. However, di¤erent subjects may have di¤erent (interdepen-

dent) preferences. Player 1 may then be uncertain about the interdepen-

dent preferences of the (anonymous) opposing player 2, and hence may

optimally make a first-stage demand that some player 2s reject, leading

to the second stage.

In the presence of such heterogeneity, di¤ering player-2 o¤ers in the

second stage of the two-stage game and in the continuation game may

reflect not a failure of backward induction, but rather that player 2 has

inferred something about player 1, and hence about 2’s optimal second-

stage o¤er, from the demand that 2 rejected to reach the second stage of

the two-stage game.14 Depending upon how prior beliefs are specified

and how beliefs are updated in response to zero-probability demands, we

can construct subgame-perfect equilibria that will account for virtually

any outcome. But can this be done with beliefs that are su‰ciently

straightforward as to yield a useful theoretical model?15 The evidence

13. Violations of subgame consistency are readily found in games with imperfect informa-
tion and hence multiple backward-induction equilibria, in which the case for subgame con-
sistency is less obvious. See, for example, the Cooper et al. (1994) coordination-game
experiments. Much less is known about games with unique backward induction outcomes.
In an experiment involving centipede games of varying length, McKelvey and Palfrey
(1992) find encouraging results concerning subgame consistency.

14. In the presence of incomplete information, we must now work with perfect Bayesian or
sequential rather than subgame-perfect equilibrium, as well as appropriate generalizations of
subgame consistency and truncation consistency in terms of Markov perfection. Because we
find that incomplete information does not play an important explanatory role, we forgo a
formal development, following the common practice of retaining the terms subgame perfec-
tion, subgame consistency, and truncation consistency.

15. This consideration is reminiscent of the observation that some preferences must exist
which support backward induction, while our interest centers on preferences that are su‰-
ciently portable, such as payo¤-interdependent preferences.
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suggests that the updating of beliefs helps very little in explaining player

2’s observed play in the second stage of the two-stage game. Player 2s

reject a wide variety of demands in the first stage of game III. If player

2 can draw inferences about player 1 from the latter’s period-1 demand,

then we would expect player 2’s period-2 o¤er to vary significantly with

the identity of the demand rejected by player 2 to reach the second stage.

We find no evidence of such a relationship.

Heterogeneous preferences also raise the possibility that the player 2s

who reach the second stage of the two-stage game are a biased sample of

the complete set of player 2s who participate in the continuation game.

We can eliminate this potential selection bias by restricting attention to

the continuation-game play of those player 2s who reach the second stage

when playing the two-stage game. Doing so only exacerbates (slightly)

the observed behavioral di¤erences between the two games.

4.3.4 Truncation Consistency

We next turn to truncation consistency. A rejected demand in game

IV leads to the rejection payo¤s ðZ1;Z2Þ. A pair of values ðZ1;Z2Þ is

assigned to each experimental subject (according to a method that will

be important in the next subsection but is not relevant here). When two

subjects are matched to play game IV, the value of Z1 for that interaction

is the corresponding value assigned to the subject who plays as player 1,

while Z2 is the corresponding value assigned to the subject who plays as

player 2 in game IV. The values Z1 and Z2 thus vary across instances of

game IV, with subjects always completely informed as to the relevant

values.

We can estimate a function describing the relationship between player-

1 demands in game IV and the rejection payo¤s ðZ1;Z2Þ. Similarly we

can examine a function describing the relationship between player-1

demands in game III and the anticipated values ðZIII
1 ;ZIII

2 Þ of play in

the second stage of game III, where we estimate the latter values on the

basis of the observed second-stage play in game III. If truncation consis-

tency holds, then a change in a game-IV rejection payo¤ should have the

same e¤ect on player-1 demands as an equivalent change in the antici-

pated value of the game-III second stage:

� Truncation consistency indicates that play in game IV should bear the

same relationship to the rejection values ðZ1;Z2Þ as does play in the first

stage of game III to the anticipated payo¤s ðZIII
1 ;ZIII

2 Þ of the second

stage of the two-stage game.
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The primary di‰culty here involves identifying and estimating the ap-

propriate anticipated value ðZIII
1 ;ZIII

2 Þ of playing the second stage of

game III. We find that our results are insensitive to a variety of alterna-

tive measures of ðZIII
1 ;ZIII

2 Þ.

4.3.5 Subgame and Truncation Consistency

Games III and IV di¤er in that a rejection of a first-period demand in

game III leads to a copy of the continuation game, while a rejection in

game IV leads to the fixed rejection payo¤s ðZ1;Z2Þ. The latter payo¤s

are calculated on the basis of observed play in the continuation game. A

pair of values ðZ1;Z2Þ is calculated for each experimental subject, one

describing the experience of that subject as player 1 in the continuation

game, and one describing the subject’s experience as player 2 in the con-

tinuation game. When two subjects are matched to play game IV, Z1 is

the estimated continuation-game value for the subject who plays as player

1 in game IV, and Z2 the estimated continuation-game value for the sub-

ject who plays as player 2 in game IV.

If subgame consistency holds, then the continuation-game payo¤s

ðZ1;Z2Þ provide an estimate of the value of entering the second stage of

the two-stage game. If truncation consistency holds, then it should not

matter whether a first-stage rejection leads to the second-stage game or

to the payo¤ pair ðZ1;Z2Þ. Hence:

� Subgame and truncation consistency indicate that experimental play in

game IV should duplicate that of the first stage of game III.

The primary di‰culty here involves ensuring that Z1 and Z2 are good

estimates of the value of playing the continuation game. Notice that the

problem now involves not ðZIII
1 ;ZIII

2 Þ, which are estimates that appear

only in our analysis of truncation consistency and whose properties we

can examine and adjust in the course of our empirical investigation, but

values ðZ1;Z2Þ, which appear in the specification of game IV and hence

whose calculation must be fixed as part of the experimental design.16

4.3.6 Procedures

The experiments were conducted at University College London in the

fall of 1998 with undergraduate subjects. Each of the twenty-four—one

16. Fortunately, this problem does not arise in the test of truncation consistency described
in the preceding subsection, where ðZ1;Z2Þ need not bear any relationship to the value of the
continuation game or second stage of game III.
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for each possible combination of three rejection payo¤ pairs (ð10; 10Þ,
ð70; 10Þ, and ð10; 60Þ) and eight discount factors (0.2, 0.3, 0.4, 0.5, 0.6,

0.7, 0.8, and 0.9)—treatments involved ten subjects, for a total of 240

subjects. Each treatment consisted of eighty rounds, with the ten subjects

matched into five pairs for each round, with each pair playing one game.

Game I was played in the first twenty rounds, game II in the next twenty,

game III in the penultimate twenty rounds, and game IV in the final

twenty rounds. We thus have a total of 400 games in each treatment of the

experiment and an overall total of 9,600 games, 2,400 each of games I, II,

III, and IV. In each of the four games, each subject played about half of

the time as player 1 and half of the time as player 2, with the ‘‘about’’

reflecting the fact that roles were assigned randomly. Each of the ten sub-

jects in a treatment could be matched with each of the nine opponents.

All subjects play the four games in the same order. A more complete

experimental design would add another dimension to the definition of a

treatment, corresponding to di¤erent orders in which the four games are

played and allowing us to test for the possibility that the results are sensi-

tive to the order of play. Our theoretical design places some constraints

on this order, in that game II must be played before game IV so that

game-II outcomes can be used in defining the game-IV rejection payo¤s

ðZ1;Z2Þ. Even after incorporating this constraint, investigating all possi-

ble orderings would require twelve times as many treatments. We discuss

possible evidence of order e¤ects as we proceed.

Instructions were provided via a self-paced, interactive computer pro-

gram that introduced and described the experiment, and provided prac-

tice in how to make choices in each of the four games. The surplus was

pictured as a wedge-shaped slice of ‘‘cake,’’ as shown in figure 4.4. In

games I and IV, the left wedge of figure 4.4 appeared, along with two

smaller wedges with areas corresponding to the appropriate rejection pay-

o¤s of players 1 and 2.

In game II, the right wedge of figure 4.4 appeared, capturing the fact

that payo¤s in the event of an agreement were discounted. In game III,

both wedges appeared, one corresponding to each stage of the game,

with the second stage being somewhat fainter while the first stage was

being played. Discounting was captured by coloring only an inner seg-

ment of the second wedge whose area corresponded to the discounted

value of the cake.

Demands and o¤ers were made by using the arrow keys to move a line

that rotated about the point of the wedge, with player 1’s share lying

above the line and player 2’s below. To avoid suggesting focal points,
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there were initially no numbers on the screen. Once a tentative division

was proposed, the percentage of the cake going to each player was indi-

cated, as was the equivalent number of ‘‘tickets’’ going to each player.

The percentages always added to 100. The number of tickets added to

100 in the absence of discounting, and in a discounted stage (game II or

the second stage of game III) was given by 100D, where D was the dis-

count factor. Players then had a chance to confirm or revise their choice.

After each twenty rounds, and hence after each of games I, II, III, and

IV, an electronic roulette wheel was spun whose surface was divided into

‘‘win’’ and ‘‘lose’’ areas, with the former being proportional to the num-

ber of tickets won in the previous twenty rounds of play.17 A win paid six

pounds, which was then worth slightly less than ten dollars. Together

with a six-pound initial fee, subjects’ earnings were then drawn from the

setf6; 12; 18; 24; 30gpounds,with theseamountsbeingwonby4,28, 79, 106,

and 23 subjects, respectively, for an experiment that took about two hours.

4.4 Results

4.4.1 Game I: The Ultimatum Game

We begin with game I. Figure 4.5 reports player-1 demands and provides

information on player 2’s response to those demands.

Figure 4.4
Representation of the bargaining games. The wedges were outlined in white against a black
background. The interior of the entire wedge was colored light brown in the no-discounting
case, while only the area within the inner boundary was colored in the discounting case.

17. Our purpose was not so much to control for risk aversion, as expected-utility maxi-
mizers are likely to be risk neutral over the relatively small amounts of money involved in
the experiment but to provide an interlude when switching from one game to the next.
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First, the results for rejection payo¤ ð10; 10Þ are much like those of con-

ventional Ultimatum Game experiments. The mean and median demands

are both near two-thirds of the surplus. A significant number of demands

are rejected, with higher rejection rates for higher demands. Demands are

slightly higher in the final ten rounds than in the first ten rounds of play,

and the distribution of demands is somewhat tighter in the final ten

rounds (cf. the 5th and 95th percentiles, and notice that this tightening

contributes to the reduction in rejection rates), but the changes are small

relative to the variation in Ultimatum Game results reported in the liter-

ature.18 Our experiment replicates familiar Ultimatum Game results.

Second, player-1 demands increase, as expected, as the rejection pay-

o¤s change from ð10; 60Þ to ð10; 10Þ to ð70; 10Þ. These di¤erences are sig-
nificant: over the final ten rounds of play, the 90-percentile intervals for

the observed demands made under the three specifications, given by

Figure 4.5
Player-1 demands (measured in terms of the percentage of the surplus demanded by player
1) and player-2 rejection rates (R percent) in the Ultimatum Game. There were five games
per round in each of eight treatments for each (V1,V2) specification, for a total of 800 obser-
vations (or ‘‘Obs.’’) over twenty rounds. No demands from [30, 40] were rejected in the
(10, 10) and (70, 10) cases, and none from [70, 80] were accepted in the (10, 60) case.

18. We frequently compare results for the first and last ten rounds, and often focus on the
last ten rounds, in order to isolate any initial subject confusion. The di¤erences are quite
small compared to those involved in the hypotheses of interest.
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½26; 49�; ½55; 77�; ½79; 88�;

are disjoint.

When rejection payo¤s are ð70; 10Þ, player 1 is ensured a payo¤ (70)

larger than player 1 conventionally receives in the ordinary Ultimatum

Game. Player 1’s mean demand in this case is approximately 83, with a

90-percentile interval (over the last ten rounds) of ½79; 88�, leaving player

2 with little more than the rejection payo¤ of 10. This willingness of

player 1s to make such aggressive demands reflects the sensitivity of rejec-

tion rates to rejection payo¤s. Figure 4.5 reports that when rejection pay-

o¤s are ð10; 10Þ, 40 percent (103 of 257, over all 20 rounds) of demands in

the interval ½70; 80� are rejected. Only 0.75 percent (1 of 133) are rejected

when the rejection payo¤s are ð70; 10Þ. Figure 4.6 provides an additional

Figure 4.6
Rejection rates in the Ultimatum Game.
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summary of the behavior of player 2s. Many player 2s are thus willing to

settle for 20 or 25 percent of the surplus if 1 has a rejection payo¤ of 70

but not if 1’s rejection payo¤ is a mere 10, revealing interdependent pref-

erences for these player 2s of the form:19

ð10; 10Þ � ð75; 25Þ � ð70; 10Þ: ð4Þ

The ð70; 10Þ outcome is consistent with the behavior that would appear

if players mentally ‘‘assigned’’ the rejection payo¤s 70 to player 1 and 10

to player 2, and then bargained over the remaining surplus as if they were

in an ordinary Ultimatum Game with a total surplus of size twenty. For

example, player 1’s mean demand allocates slightly less than two-thirds

of this remaining surplus to player 1. This reaction to rejection payo¤s

contrasts with the findings of Binmore et al. (1989, 1991, 1998), where

players appear to ignore outside options that pose no constraint on the

agreement that would be reached in the absence of such an option and

make demands close to constraining outside options. In the ð70; 10Þ case,
such behavior would produce the agreement that comes closest to that of

the ordinary Ultimatum Game while still respecting player 1’s rejection

payo¤, giving player 1 a payo¤ of (perhaps just over) 70. More impor-

tant, approaching the surplus remaining after rejection payo¤s have been

covered as an ordinary Ultimatum Game yields results that contrast

sharply with those of the ð10; 60Þ rejection-payo¤ case, described below.

Finally, the rejection payo¤s ð10; 60Þ allow an examination of the most

common form of payo¤-interdependent theories. If subjects value their

own monetary payo¤ but dislike inequality, as in the models of Bolton

and Ockenfels (2000) and Fehr and Schmidt (1999), then subgame perfec-

tion calls for player 1 to demand at least forty percent of the surplus, and

for such a demand to be accepted.

Figure 4.5 shows that player 1s initially demand about 40 percent of

the surplus (the mean player-1 demand over the first ten rounds is 39.8 and

the median 38.5), coming very close to the subgame-perfect equilibrium,

19. Would player 2 exhibit the preferences ð10; 10Þ � ð75; 25Þ if the choice were given
exogenously, rather than arising as a result of player 1’s choice? If not, we must question
the portability of payo¤-interdependent preferences. The generalized dictator games of
Andreoni and Miller (2002), in which some dictators give away all of the surplus when faced
with exogenously imposed trade-o¤s that make it e‰cient to do so, suggest a negative an-
swer. The experiments of Slembeck (1998), in which rejection rates were higher when sub-
jects were presented with exogenously determined choices, and of Blount (1995), in which
subjects did not have significantly smaller rejection thresholds when facing a ‘‘disinterested’’
proposer (who did not receive part of the surplus) as when facing an ordinary proposer, are
less clear.
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and with their demands drifting downward (a mean demand of 36 over

the last ten rounds). However, rejection rates are the highest in this treat-

ment, with almost a quarter of the cases in which player 1 demands be-

tween 30 and 40 percent of the surplus ending in rejection.20 A payo¤ of

sixty or slightly higher is not enough to ensure acceptance from player 2.

In summary, we find that (1) our game-I results include replications of

standard results for the Ultimatum Game; (2) subjects respond to rejec-

tion payo¤s, with proposers increasing their demand in response to a

high rejection payo¤ and decreasing their demand when the opponent’s

rejection payo¤ is high; and (3) findings for the ð10; 60Þ rejection-payo¤

specification suggest that something in addition to payo¤-interdependent

preferences, at least in inequality-aversion forms such as (1)–(2) and (3)

(with ai A ð�1; 0Þ) lies behind the results.

4.4.2 Game II: The Continuation Game

Figure 4.7 provides information on o¤ers and rejection rates in game II.

The results in figure 4.7 are reported in terms of the share of the surplus

o¤ered to player 1, noting that player 1 was the responder in this game.

Game II is an Ultimatum Game, with rejection payo¤s of zero. Once

we make allowance for the reversal of roles, we again obtain results

consistent with previous Ultimatum Game experiments. On average, the

proposer demands between 60 and 70 percent of the surplus. Higher

demands on the part of the proposer are likely to be rejected, with about

20 percent of plays ending in rejection. Figure 4.8 shows the mean and

median percentage of the surplus o¤ered to player 1 by round, showing

some initial adjustment followed by relatively unchanging behavior.

Subjects who faced di¤erent rejection payo¤s in game I face precisely

the same game II. However, figures 4.7 and 4.8 suggest that o¤ers in

game II vary systematically with the rejection payo¤s that prevailed in

game I. Subjects who faced rejection payo¤s ð10; 60Þ in game I o¤er

more of the surplus to the responder than subjects who experienced rejec-

tion payo¤s ð10; 10Þ, who in turn o¤er slightly more than those who expe-

rienced rejection payo¤s ð70; 10Þ. Hence rejection payo¤s that induced

20. Behind the reduction in mean player-1 demand is a more pronounced tightening of the
distribution of demands. Over the course of the twenty rounds, there are 146 cases (out of
800) in which player 1 demands more than 40 percent, and hence o¤ers player 2 less than
her rejection payo¤. However, half (72 of 146) of these demands come in the first four
rounds of play. As figure 4.6 shows, some demands that leave player 2 with less than the re-
jection payo¤ of 60 are accepted in the early rounds of play, but this behavior has virtually
disappeared in the final ten rounds.
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more asymmetric divisions of the surplus in game I correspond to game II

outcomes with more asymmetric divisions of the surplus. We report tests

indicating that these di¤erences are statistically significant in the next sec-

tion, in the course of comparing games II and III.

It thus appears as if the di¤erent game-I specifications condition players

to coordinate on di¤erent outcomes in game II.21 On the one hand, this

finding provides evidence that subgame consistency fails. At the same

time, these results suggest that there are spillovers between games, and

hence that the order in which the games are played can matter. The next

section shows that play in game III does not vary significantly with the

game-I rejection payo¤, perhaps because games I and III are less similar

than I and II. Could it be that subgame consistency appears to fail, in the

form of di¤ering behavior in game II and the second stage of game III,

Figure 4.7
Player-2 o¤ers (the percentage of the surplus o¤ered to player 1) and player-1 rejection rates
in game II. There were five games per round in each of eight treatments per rejection pay-
o¤s, for a total of 800 o¤ers in each specification. Rejection rates are given for each combi-
nation of rejection payo¤ and discount factor, over all twenty rounds of play.

21. This is reminiscent of the experimental findings of Roth et al. (1991), who find di¤erent
conventions in Ultimatum Game experiments in di¤erent countries.
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Figure 4.8
Mean and median o¤ers made by player 2 to player 1 in game II, by round and by discount factor, measured as a percentage of the surplus.
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simply because game II (and not game III) was a¤ected by previous expe-

rience in game I? The di¤erences in game II and the second stage of game

III persist even when each of the game-I rejection-payo¤ cases is exam-

ined separately. In addition, these di¤erences take the same direction in

each case, even though the three game-I rejection payo¤s involve quite

di¤erent allocations between the two agents and hence would be expected

to push game-II behavior in quite di¤erent directions. Finally, the e¤ect

of game-I rejection payo¤s on game-II outcomes are small in comparison

to the di¤erences between game II and game III, suggesting that order

e¤ects do not lie behind the results.

In contrast to rejection payo¤s, di¤ering discount factors, which deter-

mine the size of the surplus to be divided, have little e¤ect on the out-

come. Figure 4.8 shows mean and median o¤ers by discount factor,

revealing no systematic relationship.

In summary, our game-II results are again consistent with standard Ul-

timatum Game findings.

4.4.3 Games II and III: Subgame Consistency

We now investigate subgame consistency by comparing behavior in the

continuation game with that of the second stage of the two-stage game.

Of the 2400 initial demands made in the two-stage game, 501 (20.875 per-

cent) were rejected. Figure 4.9 summarizes behavior in the second stage of

the two-stage game. As in game II, game-I rejection payo¤s are irrelevant

in game III, but we will typically report the results for di¤erent game-I

rejection payo¤ cases separately.

The mean and median o¤ers for the three rejection-payo¤ specifica-

tions are much closer to one another than they were in game II. Their

ranking has also shifted, with the most generous o¤er now attached to re-

jection payo¤ ð10; 10Þ rather than ð10; 60Þ. Finally, there is also little pat-

tern to the relationship between discount factors and o¤ers, and there is

relatively little di¤erence between the first and last ten rounds of play.

Figures 4.7 and 4.9 show that play in the continuation game and the

second stage of game III di¤ers. Proposers are more generous in the sec-

ond stage of game III, o¤ering a mean percentage of 43.5 (median 44) of

the surplus to player 1, as opposed to only 32.8 (median of 32) in the con-

tinuation game. This pattern of more generous o¤ers in the second stage

of game III holds for every rejection payo¤ and every discount rate.

Are these di¤erences statistically significant? To address this ques-

tion, we require an analysis that respects the panel nature of the data.

Figure 4.10 reports the results of a random e¤ects regression, with a
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Figure 4.9
Player-2 o¤ers in the second stage of game III, the two-stage game, measured as the percent-
age of the surplus o¤ered to player 1. ‘‘Observations’’ reports the number of games in which
player 2 caused the second stage to be reached by rejecting player 1’s first-stage demand. The
first three lines report all cases, with a total of 2,400 possible observations over the course of
twenty rounds. There are 800 possible observations for each game-I rejection-payo¤ specifi-
cation reported in the next three lines, and 300 possible observations for each discount-factor
specification.

Figure 4.10
Random-e¤ects regression results. The dependent variable is log y/(100� y), where y is
player 2’s o¤er in either the continuation game or the second stage of game III. There are
2,901 observations, 2,400 from the continuation game and 501 from the second stage of
game III. Independent variables include an intercept capturing the base case of game II and
rejection payo¤ (10, 10), and dummies capturing departures from the base case for the five
remaining combinations of games (II or III) and game-I rejection payo¤ ((10, 10), (70, 10),
or (10, 60)). ‘‘p-Value’’ is the probability that, given a parameter value of zero, a test statistic
appears with absolute value (i.e., a two-tailed test) at least that of the calculated statistic.

142 Chapter 4



transformation of player 2’s o¤er as the dependent variable and with the

independent variables including an intercept capturing the base case of

game II and rejection payo¤ ð10; 10Þ, and five dummy variables that iden-

tify the five remaining combinations of a game (II or III) and one of the

three possible rejection payo¤s.22

The ‘‘game II, ð70; 10Þ’’ and ‘‘game II, ð10; 60Þ’’ coe‰cients reported in

figure 4.10 identify departures of the game II, ð70; 10Þ and game II,

ð10; 60Þ rejection payo¤ cases from the game II, ð10; 10Þ base case cap-

tured by the intercept (shown in bold). These coe‰cients show that

game-II o¤ers are significantly related to game-I rejection payo¤s, being

highest in the ð10; 60Þ case and lowest in the ð70; 10Þ case. In contrast, a

test of the game-III coe‰cients reveals that o¤ers in game III do not vary

significantly in the game-I rejection payo¤.

More important, the estimated ‘‘game III, ð10; 10Þ’’ coe‰cient indicates

that for the case in which game-I rejection payo¤s were ð10; 10Þ, game-III

o¤ers are higher than game-II o¤ers at any conventional significance level

(i.e., a two-tailed test p-value of 0.000), in contrast to the prediction of

subgame consistency. It is straightforward to calculate that game-III

o¤ers are also higher, at similar significance levels, for the ð70; 10Þ and

ð10; 60Þ rejection-payo¤ cases.

Why are proposers more generous in the second stage of the two-stage

game? Figure 4.11 compares rejection rates in the continuation game and

the second stage of the two-stage game.

The rates are not too dissimilar, being 29 percent in the second stage of

the two-stage game and 20 percent in the continuation game. However,

these aggregate rates hide the fact that o¤ers are significantly higher in

the second stage of the two-stage game. There are much larger di¤erences

in rejection rates conditional on o¤ers. The range of o¤ers [30–40] lies

below a typical o¤er in the second stage of the two-stage game (a mean

of 43.5 and median 44), while containing near its bottom end a typical

o¤er in the continuation game (mean of 32.8 and median of 32). Figure

4.11 shows that the rejection rate in the second stage of game III is just

22. The transformation of player 2’s o¤er y to log y=ð100� yÞ, taking ½0; 100� into
½�y;y�, allows us to capture the restriction that o¤ers must lie in the interval ½0; 100�. The
random e¤ects estimator allows us to capture the fact that the multiple o¤ers of a single
player are likely to be correlated. O¤ers may depend on the history of opponents’ actions
observed by the o¤erer. It is appropriate to omit this history from the regression as long as
it is not correlated with the o¤erer-specific error term. Such a correlation could appear, as
player i’s play could a¤ect the subsequent behavior of opponent j and hence the subsequent
history of opponent actions observed by player i, and our implicit assumption is that the
resulting correlation is not too large.
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over three times that of the continuation game, over this range of o¤ers.

The range [35–45] lies above a typical o¤er in the continuation game, and

contains near its upper end a typical o¤er in the second stage of the two-

stage game. Here we find rejection rates four times higher in the second

stage of the two-stage game. Proposers have good reason to be more gen-

erous in the second stage of the two-stage game because responders are

much more likely to reject less generous o¤ers.

Are the di¤erences in behavior between the second stage of the two-

stage game and the continuation game economically important? Let yII
m

be the median o¤er made in the continuation game, and let yIII
m be the

median o¤er in the second stage of the two-stage game. How much would

a proposer sacrifice by making o¤er yIII
m in game II? How much by mak-

ing o¤er yII
m in game III? Figure 4.12 reports the results. The first eight

lines report, for each discount factor, the expected payo¤ that one would

achieve in game II by making the game-II median o¤er yII
m , and by mak-

ing the game-III second-stage median o¤er yIII
m . The second eight lines re-

port the payo¤s that these o¤ers would receive in the second stage of

game III.23

In game II, for every discount factor, one is better o¤ making the

game-II median o¤er than the (higher) game-III median, with the latter

Figure 4.11
Rejection rates for the continuation game (game II) and the second stage of the two-stage
game (game III), in percentages. There were 2,400 plays of each game. In the two-stage
game, 501 of these plays reached the second stage.

23. To calculate the expected payo¤ of an o¤er y, we must estimate the expected acceptance
rate attached to the o¤er. We first calculated the observed acceptance rate of each o¤er that
appears in the data, given by the proportion of the times the o¤er was accepted. The
‘‘expected’’ acceptance rate of o¤er y is then chosen to minimize the sum of the number of
higher o¤ers with lower observed acceptance rates and the number of lower o¤ers with
higher observed acceptance rates. The minimizer was unique in 24 cases and was an interval
in the remaining 8, in which case we chose the midpoint of the interval.
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sacrificing between 3 ðD ¼ 0:6Þ and 27 ðD ¼ 0:9Þ percent of the former’s

expected payo¤. These relatively small di¤erences reflect the fact that

higher o¤ers reduce the surplus from each agreement but sacrifice no

agreements, eliciting a somewhat higher acceptance probability. Results

are more dramatic in the second stage of game III. The game-II median

o¤er is su‰ciently low as to garner no acceptances in six of the eight

cases, hence sacrificing 100 percent of the expected payo¤. This reflects

the rejection dangers associated with more aggressive o¤ers. The implica-

tion is that the di¤erences in game-II and game-III behavior have impor-

tant payo¤ consequences, with it being disastrous to treat the second

stage of game III as if it were game II.

The di¤ering outcomes of the continuation game and the second stage

of game III would be convincing evidence of a failure of subgame consis-

tency if preferences were known and identical across players. However, if

preferences are payo¤-interdependent, then players may be incompletely

informed about their opponents’ possibly heterogeneous preferences. This

raises two considerations.

First, could proposers in the second stage of the two-stage game be

simply reacting to information gleaned about their opponents’ preferences

Figure 4.12
Comparison of expected monetary payo¤s in the continuation game (game II) and the sec-
ond stage of the two-stage game (game III), by discount factor. The yII

m and yIII
m columns

report the median o¤ers made in games II and III for the relevant discount factor. In the first
eight lines, each o¤er is followed by the expected payo¤ the o¤er would receive if made in
game II. In the second eight lines, each o¤er is followed by the expected it would receive if
made in the second stage of game III.
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from the o¤er made by their opponents in the first stage? It is not a priori

clear which direction this information updating should take. A relatively

aggressive demand on the part of player 1 may reveal that 1 is intent on

a large share, and hence that player 2 should make a relatively generous

o¤er to player 1 in the next round. Alternatively, an aggressive demand

may indicate that 1 is relatively unconcerned with relative-payo¤ consid-

erations, and hence that 2 can safely make a quite niggardly o¤er.

In the experiment a wide variety of player-1 demands are rejected.

Figure 4.13 shows that there is considerable overlap between the set of

accepted and rejected demands. If the value of player 1’s demand re-

veals significant information about player 1, then player-2 o¤ers in the

second stage of game III should be systematically related to the value

of the player-1 demand that was rejected in order to reach the second

stage.

Figure 4.13
The tables show ranges of accepted and rejected demands in the first stage of game III. The
figure shows player 2’s o¤er to player 1 in the second stage of the two-stage game, as a func-
tion of player 1’s demand in the first stage, for those demands that were rejected. Both axes
measure the percentage of the surplus accruing to player 1.
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Figure 4.13 plots player 2’s o¤er to player 1 in the second stage of the

two-stage game, as a function of player 1’s demand in the first stage, for

those 501 demands that were rejected.24 As expected, the observations

cluster below the diagonal: player 2 is generally less generous to player 1

than is player 1. More important, there appears to be little relationship

between the rejected demand and the subsequent o¤er. However, figure

4.13 aggregates over all the discount factor specifications. We expect

first-stage demands to vary systematically with the discount factor (as fig-

ure 4.17 below confirms), rendering such aggregation suspect. Figure 4.14

reports the results of a random-e¤ects regression of (a transformation of )

player 2’s second-stage o¤er on player 1’s first-stage demand, once again

finding little relationship. In the base case of D ¼ 0:5, player 2’s second-

stage o¤er does not vary significantly in player 1’s first-stage demand.

24. In 217 of the 501 cases in which player 2 rejected, the subsequent o¤er was ‘‘disadvanta-
geous,’’ in the sense that it provided player 2 (if accepted) with a discounted monetary payo¤
lower than the monetary payo¤ 2 would have secured by accepting player 1’s first-stage de-
mand. Ochs and Roth (1989) draw attention to disadvantageous countero¤ers in two-stage
bargaining experiments, citing them as evidence that subjects must be concerned with more
than simply their own monetary payo¤s.

Figure 4.14
Random e¤ects regression results. The dependent variable is log y/(100� y), where y is
player 2’s o¤er in the second stage of game III. ‘‘Player-1 demand’’ is the demand rejected
by player 2 to reach the second stage. Dummy variables are used to estimate the deviation of
the intercept and slope term (on player-1 demand), for each discount factor, from the base-
case relationship (shown in bold) of D ¼ 0.5.
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Only the cases D ¼ 0:7 and D ¼ 0:4 show significant departures from this

base case, with the latter somewhat weaker than the former. Player 2s do

not appear to be drawing useful inferences from the magnitude of player

1’s rejected demand.

An examination of player 1’s behavior in the second stage of game III

suggests that there is little for player 2 to learn from observing player 1’s

first-period demand. Figure 4.15 shows player 1’s rejection rate of player

2’s o¤ers in the second stage of game III, as a function of the first-period

demand that player 1 had rejected in order to reach the second stage.

There is scant evidence of a systematic relationship. Decomposing these

data by discount factor and controlling for player 2’s second-stage o¤er,

though hampered by very small sample sizes, yields similar results. An

appeal to incomplete information cannot readily reconcile the observed

behavior with payo¤-interdependent preferences.

Second, the second stage of game III can only be reached if player 2

rejects player 1’s initial demand. Could play in the continuation game dif-

fer from that of the second stage of game III because the latter game is

not played by a random sample of player 2s? Notice that one’s initial in-

tuition here works the wrong way. We would expect player 2s who reject

to be more aggressive than those who do not, leading to lower rather than

higher o¤ers in the second stage of game III. Figure 4.16 reports results

for game II, analogous to those reported in figure 4.7, but restricts atten-

tion to experimental subjects who rejected at least one demand when

playing as player 2 in game III. A comparison with figure 4.7 shows that

the di¤erences are slight and the directions are mixed. The game-II aver-

age o¤er of those with ð10; 60Þ rejection-payo¤s who rejected at least one

o¤er in game III is larger than the overall average, with the opposite rela-

Figure 4.15
Player 1’s rejection rate in the second stage of game III, as a function of the first-period de-
mand that player 1 had rejected in order to reach the second stage.
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tion holding for ð70; 10Þ rejection payo¤s. There is little evidence that the

second stage of game III is played by a su‰ciently atypical group of

player 2s as to reconcile game-II and game-III second-stage behavior.25

In summary, we find that subgame consistency fails, and does so sys-

tematically. Players make less aggressive o¤ers in the second stage of a

two-stage game than in an equivalent, stand-alone game. There is evi-

dence that information is incomplete, in the form of rejected first-stage

o¤ers in the two-stage game, but the failure of second-stage behavior to

depend on the magnitude of the rejected first-stage demand suggests that

this does not provide a useful explanation for the di¤erences between

game II and the second stage of game III. Similarly the evidence is that

self-selection bias in determining which player 2’s participate in the sec-

ond stage of the two-stage game does not provide a useful explanation.

4.4.4 Games III and IV: Truncation Consistency

We next consider truncation consistency, which we examine by compar-

ing the initial demands in games III and IV. Figure 4.17 shows the mean

and median demands made by player 1 in the first stage of the two-stage

game, as a function of the discount factor and the game-I rejection pay-

o¤s. (Again, the game-I rejection payo¤s are relevant only in game I.) As

Figure 4.16
Player-2 o¤ers in game II, measuring the percentage of the surplus o¤ered to player 1, as in
figure 4.7, but for those subjects who reject a demand in game III.

25. We can pursue this possibility further by examining ‘‘chronic rejecters,’’ namely subjects
who frequently rejected demands while playing as player 2 in game III. Consider subjects
who rejected five or more demands in the first stage of game III. The average game-II o¤ers
made by these subjects (all rounds) were 27.5 (all rejection payo¤s), 30.2 (the 10; 10 case),
22.1 (the 70; 10 case), and 35.7 (the 10; 60 case). Hence chronic rejecters made even smaller
o¤ers when playing game II, rendering it all the less likely that the relatively large o¤ers
encountered in the second stage of game III can be attributed to nonrandomness in the se-
lection of player 2s.
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the discount factor increases from 0.2 to 0.9, player 1’s mean demand

falls from about 70 to about 50 percent of the surplus. Subgame perfec-

tion predicts that player 1’s demand should decrease in the discount fac-

tor, but at a more precipitous rate, falling from 80 percent to 10 percent

as D increases from 0.2 to 0.9. The data shown in figure 4.17 are similar

to data displayed in figure 5.6 of Davis and Holt (1993, p. 272), which

summarizes a variety of experiments with two-stage games.

Each subject i in game IV was characterized by a pair ðZ1ðiÞ;Z2ðiÞÞ,
which varied across subjects. Each time two subjects i and j were

matched to play the game (in roles 1 and 2), the rejection payo¤s were

given by Z1ðiÞ (for player i in role 1) and Z2ð jÞ (player j in role 2). The

following section discusses how the values ðZ1ðiÞ;Z2ðiÞÞ were determined.

For the purposes of this section, it matters only that these values varied

across subjects and were commonly known in each game, so the first-

Figure 4.17
Mean and median demands made by player 1 in the first stage of the two-stage game, mea-
sured as a percentage of the surplus.
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stage demands can be expected to vary systematically as do the values

ðZ1;Z2Þ.
We can similarly think of first-stage demands in game III as depending

on the player-1 and player-2 values of proceeding to the second stage,

which we denote by ðZIII
1 ;ZIII

2 Þ. If truncation consistency holds, and if

play reflects rational behavior given payo¤-interdependent preferences,

then initial demands in game IV should bear the same relationship to

ðZ1ðiÞ;Z2ð jÞÞ as initial demands in game III to ðZIII
1 ;ZIII

2 Þ. Our investi-

gation of truncation consistency thus estimates ðZIII
1 ;ZIII

2 Þ, and then

examines the relationship between initial demands in games III and IV

and the values ðZIII
1 ;ZIII

2 Þ and ðZ1;Z2Þ, respectively.
Because we are interested in the explanatory power of rational be-

havior, given payo¤-interdependency, we use observed play in the second

stage of game III to estimate the expected payo¤s ðZIII
1 ;ZIII

2 Þ. However,

some di‰culties are raised by the potential heterogeneity in preferences

among anonymously matched opponents. In the presence of such hetero-

geneity, first-stage demands in principle depend on player 1’s expectation

of ðZIII
1 ;ZIII

2 Þ, as well as 1’s expectation of 2’s expectation of ðZIII
1 ;ZIII

2 Þ,
and 1’s expectation of 2’s expectation of 1’s expectation of ðZIII

1 ;ZIII
2 Þ,

and so on. We cannot estimate this entire infinite hierarchy, and must

focus on what we expect to be the most salient variables. The greater is

the amount of variation in second-stage payo¤s explained by variations

in the discount factor, and the less important are player idiosyncrasies,

the more likely is this hierarchy to be captured by a single pair of values.

This observation motivates the wide range of discount factors incorpo-

rated in our experimental design.

Since we are interested in the determinants of player 1’s initial demand,

we first consider player 1’s expectation of ðZIII
1 ;ZIII

2 Þ, which we denote by

ðZIII1
1 ðiÞ;ZIII1

2 ðiÞÞ, where i is the subject acting as player 1 in game III.

We take ZIII1
1 ðiÞ to be the average of the player-1 payo¤s in those

second-stage games in which player i participated, and take ZIII1
2 ðiÞ to

be the average of the player-2 payo¤s in those games.26

Figure 4.18 presents the results of random-e¤ects regression with data

drawn from games III and IV.27 The dependent variable is a transforma-

26. The more dispersed are realized payo¤s, the greater is the extent to which an approach
based on such averages requires utility functions that are not too nonlinear, as in (2) or (3).

27. In game III, the sample is restricted to subjects who participated in the second stage of
game III at least once, and hence for whom we can estimate ðZIII1

1 ðiÞ;ZIII1
2 ðiÞÞ. These sub-

jects played game III as player 1 a total of 2,229 times which, together with 2,400 instances
of game IV, gives us 4,629 observations.
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tion of the demand made by player 1 in the first period of the game,

where this is a demand in game III for some observations and a demand

in game IV for others. The independent variables include an intercept

term and two intercept dummy variables to identify the ð70; 10Þ and

ð10; 60Þ game-I rejection payo¤ cases (the base case is ð10; 10Þ). The vari-
ables ‘‘player-1 payo¤ ’’ and ‘‘player-2 payo¤ ’’ identify the expected

payo¤s following a rejection in game III or IV. These variables are given

by ðZIII1
1 ðiÞ;ZIII1

2 ðiÞÞ for observations taken from game III and by

ðZ1ðiÞ;Z2ð jÞÞ for observations taken from game IV. In addition, we in-

clude two slope dummy variables, (‘‘player-1 payo¤, game III’’ and

‘‘player-2 payo¤, game III’’), to capture di¤erences, across games III and

IV, in the relationship between initial demands and the payo¤s that fol-

low a rejection. If truncation consistency holds, these latter dummy vari-

ables should be zero.

The coe‰cient on ‘‘player-2 payo¤ ’’ in figure 4.18 is negative. Hence

the larger is the rejection payo¤ for player 2, the more moderate is 1’s ini-

tial demand. The coe‰cient on the ‘‘player-2 payo¤, game III’’ dummy

identifies how the dependence of game-III initial demands on player-2

rejection payo¤s di¤ers from that of game IV. This coe‰cient is (signifi-

cantly) positive, and smaller in absolute value than the ‘‘player-2 payo¤ ’’

coe‰cient. Hence initial demands in game III are again decreasing in

player 2’s rejection payo¤, but are much less sensitive to the latter.28

The coe‰cient on ‘‘player-1 payo¤ ’’ is positive, indicating that player 1

Figure 4.18
Random e¤ects estimates of player 1’s first-stage demand in games III and IV. The
dependent variable is log x/(100� x), where x is player 1’s demand in the first stage of
game III or game IV. The player-1 and player-2 payo¤s are (Z1,Z2) for game-IV observa-
tions and (ZIII1

1 ,ZIII1
2 ) for game-III observations. ‘‘Player-1 payo¤, game III’’ and ‘‘player-2

payo¤, game III’’ are dummy variables, indicating how the coe‰cients on player-1 and
player-2 payo¤s for game III di¤er from the game-IV base case. The game-I rejection payo¤
(10, 10) is the intercept base case, with dummy variables for the (70, 10) and (10, 60) cases.

28. That is, the sum of the ‘‘player-2 payo¤’’ and ‘‘player-2 payo¤, game III’’ coe‰cients is
negative, but smaller in absolute value than the ‘‘player-2 payo¤’’ coe‰cient.
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tends to be more aggressive in game IV when 1 has a larger rejection pay-

o¤. But the ‘‘Player-1, game III’’ dummy is negative, again indicating

that this sensitivity is attenuated in game III.29

Our basic result is then that player-1 initial demands are significantly

less sensitive to rejection payo¤s in game III, which appear as the result

of play in a continuation game, than to rejection payo¤s in game IV,

which are part of the specification of the game. In contrast to the predic-

tion of truncation consistency, players react more sharply to variations in

fixed terminal payo¤s than they do to equivalent variations in the

expected value of a continuation game.

Are the di¤erences shown in figure 4.18 economically relevant? From

figure 4.18, which gives log x=ð100� log xÞ as a function of V2, we can

calculate that, in game IV, dx=dV2A�0:8, so that 80 percent of an

increase in player 2’s rejection payo¤ V2 is translated into a decrease in

player 1’s initial demand x. This is a smaller response than the derivative

of �1 that would characterize subgame perfection given monetary payo¤

maximization, but a much larger response than that described by the cor-

responding derivative for game III, where dx=dV2A�0:2. The latter cal-

culation, which is consistent with the results shown in figure 4.17, shows

that players react quite sluggishly to changes in rejection payo¤s gener-

ated by continuation games.

Are these results robust to our estimation of game III second-stage pay-

o¤ expectations? We can explore alternatives. First, the average ZIII1
1 ðiÞ

may involve second-stage player-1 payo¤s from cases in which subject i

occupied the role of player 2. These in turn may involve accept/reject

decisions that subject i would have made di¤erently, and which hence

may present a misleading estimate of subject i’s expected payo¤ from

playing the second stage as player 1. To examine this possibility, we re-

strict the calculation of ZIII1
1 ðiÞ to those cases in which i plays the second

stage as player 1, calling the estimate ẐZIII1
1 . In addition player 1’s expec-

tation of ZIII
2 may be less important than 1’s estimate of 2’s estimate of

ZIII
2 , since the latter is likely to play the major role in shaping 2’s accept/

reject decision in stage 1. We accordingly replace ZIII1
2 with ẐZIII21

2 , 1’s ex-

pectation of 2’s expectation of 2’s payo¤ in the second stage, calculated as

the average payo¤ realized by player 2 in those second-stage games in

which agent i fills the role of player 1.

29. In this case, adding the dummy to the base coe‰cient gives a negative value, indicating
that 1’s demands in game III are inversely related to 1’s rejection payo¤s. This reflects the
fact that ZIII1

1 and ZIII1
2 tend to be positively correlated, as both vary positively in the dis-

count factor, with the dominant e¤ect on player-1 demands being the inverse relationship
with ZIII1

2 .
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Figure 4.19 duplicates the analysis of figure 4.18, using the alternative

measures ðẐZIII1
1 ðiÞ; ẐZIII21

2 ðiÞÞ. The results are familiar. The coe‰cient on

‘‘Player-2 payo¤ ’’ is (significantly) negative, so that player 1’s game-IV

initial demand is more moderate for larger player-2 rejection payo¤s.

The ‘‘Player-2 payo¤, game III’’ dummy is (significantly) positive, and

smaller in absolute value. Hence initial demands in game III are again

decreasing in player 2’s rejection payo¤ but are much less sensitive to the

latter. In this case the calculated derivatives are dx=dV2A�0:7 in game

IV, and dx=dV2A�0:1 in game III. Once again, players are much more

sensitive to changes in terminal payo¤s than to equivalent changes in the

expected value of a continuation game.

Next, we would like to investigate the e¤ect of simply using 2’s expec-

tation of 2’s payo¤, rather than 1’s expectation of 2’s expectation, which

suggests replacing ẐZIII21
2 ðiÞ with ẐZIII2

2 ð jÞ (when subject i plays j), where

the latter measures the average payo¤ earned in those second-stage games

in which subject j acted as player 2.30 In addition we note that when cal-

culating ẐZIII1
1 , those cases in which subject i, in the role of player 1,

rejects a second-stage o¤er add a zero payo¤ to ZIII1
1 ðiÞ while having no

e¤ect on ẐZIII21
2 ðiÞ (or ẐZIII2

2 ð jÞ). This is likely to underestimate i’s payo¤,

since i has revealed that i’s realized utility, from payo¤s ð0; 0Þ, is higher
than the utility of accepting 2’s o¤er, which in turn is likely to exceed the

utility of the e¤ectively recorded outcome ð0;ZIII2
2 ð jÞÞ. The best available

correction is to calculate 1’s payo¤ as the average of the o¤ers made to

subject i when playing the second stage as player 1 (though this still po-

tentially underestimates i’s utility in those cases in which i rejects), de-

30. If this change makes little di¤erence, then we have evidence that our results are not sen-
sitive to which expectation involving player 2’s payo¤ we choose from the infinite hierarchy
of possibilities. More generally, there are numerous alternatives for examining the robust-
ness of the results. We found none that made a significant di¤erence.

Figure 4.19
Random e¤ects estimates of player 1’s first-stage demand in games III and IV, as in figure
4.17, but with (ZIII1

1 (i),ZIII1
2 (i)) replaced by (ẐZ III1

1 (i), ẐZ III21
2 (i)).
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noted by ~ZZIII1
1 ðiÞ. Similarly we are likely to underestimate 2’s utility in those

cases in which 2 makes a second-stage o¤er that is rejected. In this case we

do not have any attractive alternative estimates of 2’s utility available,

since (unlike the situation of player 1) we cannot conclude that 2 preferred

that the o¤er be rejected. We accordingly restrict our calculation of 2’s

payo¤ to those cases in which 2’s o¤er is accepted, denoted by ~ZZIII2
1 ð jÞ.

Figure 4.20 reports the corresponding estimates, again with familiar

results. The coe‰cient on ‘‘player-2 payo¤ ’’ is (significantly) negative,

while the ‘‘player-2 payo¤, game III’’ dummy is (significantly) negative

but smaller in absolute value. Hence initial demands in games III and IV

are both decreasing in player 2’s rejection payo¤, but are much less sensi-

tive to the latter in game III. In this case the estimated derivatives are

dx=dV2A�0:8 in game IV and dx=dV2A�0:2 in game III.

In summary, truncation consistency does not hold. It makes a di¤er-

ence whether a rejected o¤er is followed by a pair of fixed payo¤s, or by

a continuation game whose expected outcome matches those fixed pay-

o¤s. Initial demands are much more sensitive to changes in terminal pay-

o¤s than to equivalent changes in the expected value of a continuation

game.31 These results are consistent across a variety of methods for esti-

mating the expected payo¤s following a game-III first-stage rejection.

Figure 4.20
Random e¤ects estimates of player 1’s first-stage demand in games III and IV, as in figure
4.17, but with (ZIII1

1 (i),ZIII1
2 (i)) replaced by ( ~ZZIII1

1 (i), ~ZZIII2
2 (i)).

31. Beard and Beil (1994) suggest a similar conclusion. They examine a game in which
player 1 can either choose L, ending the game with a known pair of monetary payo¤s, or
choose R, in which case player 2 chooses between l or r, each ending the game with known
payo¤s. The payo¤s are chosen so that R, r is the unique subgame-perfect equilibrium (if
utility depends only upon one’s own earnings), but so that R, l is worse for player 1 than L.
Their experimental finding is that player 1s quite often choose the ‘‘safe’’ outcome of L
rather than risk a suboptimal choice of l on the part of player 2, with the incidence of such
choices depending in expected ways upon payo¤ magnitudes. They suggest that player 1s ap-
pear to be more responsive to the payo¤ following L than to the expected payo¤ of the sub-
game following R, attributing this to a preference for certain payo¤s that players can ensure
over uncertain ones, which players cannot ensure.
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4.4.5 Games II, III and IV: Subgame and Truncation Consistency

This section provides a joint test of subgame and truncation consistency,

based on comparing first-period demands in game III with demands in

game IV.

Each experimental subject i in game IV was characterized by an idio-

syncratic pair of rejection payo¤s ðZ1ðiÞ;Z2ðiÞÞ, one when playing as

player 1 and one when playing as player 2. In each play of game IV,

rejection payo¤s were commonly known, and given by ðZ1ðiÞ;Z2ð jÞÞ,
where player 1 was subject i and player 2 was j. Our intention was that

the rejection payo¤s ðZ1;Z2Þ would equal the subjects’ expected payo¤s

from playing game II, the continuation game. If subgame consistency

holds, then these payo¤s would also equal the expected payo¤s of the sec-

ond stage of the two-stage game. If truncation consistency also holds,

play in the first stage of game III should be identical to play in game IV.

The previous subsection described a variety of alternatives estimating

the expected payo¤ of playing the second stage of game III or, equiva-

lently, playing the continuation game. Our experimental design required

one of these estimates to be built into the experiment in the calculation

of Z1 and Z2. In making this choice, we were anxious to provide the

most favorable environment for payo¤-interdependent preferences, and

hence were anxious not to underestimate utility when o¤ers are rejected.

We accordingly employed the final alternative investigated in the previous

subsection, taking Z1ðiÞ to be the average o¤er received by subject i when

playing as player 1 in the continuation game, and taking Z2ð jÞ to be the

average payo¤ realized by subject j player in those periods in which j

played as player 2 in the continuation game and made an o¤er that was

accepted.

Figure 4.21 reports the resulting mean rejection payo¤s for game IV.

As expected, rejection payo¤s are larger for larger discount factors. The

rejection payo¤s allocate about two-thirds of the surplus to player 2 and

one-third to player 1. The latter percentage varies with the discount fac-

tor, but again in no systematic way. The mean rejection payo¤s virtually

exhaust the surplus in each case, consistent with a rejection-payo¤ calcu-

lation designed to capture expected utilities, where player 1 prefers dis-

agreement to the o¤ers 1 rejects.

Figure 4.22 compares player-1 demands in games III and IV. We con-

centrate on the final ten rounds of play in this section, though expanding

to all twenty rounds makes virtually no di¤erence. (Once again, the rejec-

tion payo¤s ðV1;V2Þ, being ð10; 10Þ, ð10; 60Þ, or ð70; 10Þ, are irrelevant

for games III and IV.) If subgame and truncation consistency hold, then
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player-1 demands in games III and IV should be identical. Figure 4.22

indicates that for low discount factors, mean and median demands are

similar. However, as the discount factor increases, the mean and median

demands fall much more rapidly in game IV than in game III. As a result

of this sluggish game-III response, proposers are more aggressive in game

III than in game IV, for high discount factors.

Figure 4.23 provides evidence that the di¤ering behavior in games III

and IV is important, comparing the mean amount of surplus o¤ered to

player 2 in the first stage of games III and IV with player 2’s mean rejec-

tion payo¤ in game IV, for large discount factors. In every case the game-

IV mean player-1 demand yields a higher payo¤ to player 2 than does the

mean rejection payo¤. If the subgame and truncation consistency holds,

we can expect the same of the game-III mean demand. However, in every

case the game-III mean player-1 demand is su‰ciently aggressive as to

leave player 2 with a lower payo¤ than the game-IV mean rejection

payo¤.

It is intuitive that there should be little di¤erence between games III

and IV when discount factors are small. In this case, the rejection payo¤s

in game IV are small, and the second stage in game III is relatively un-

important. As the discount factor grows, rejection payo¤s become larger

in game IV and the second stage becomes more important in game III,

magnifying behavioral di¤erences.

We can illustrate the di¤erence between games III and IV. For each of

the 240 subjects, we can calculate the subject’s mean demand as player 1

in games III and IV. Figure 4.24 shows the demands. (Analogous results

obtain for median demands.) Low discount factors give rise to relatively

Figure 4.21
Mean rejection payo¤s for game IV by discount factor. There were three treatments for each
discount factor (one for each game-I rejection payo¤ (V1,V2)), with ten subjects in each
treatment, for a total of 30 rejection payo¤s for each discount factor and player role. The
mean of these 30 payo¤s is reported in each case. Z1 and Z2 percentages are player 1 and
2’s average rejection payo¤ as a percentage of the total surplus.
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large demands, in which case game-III and game-IV demands are similar.

However, higher discount factors give rise to lower demands, in which

case player 1s demand significantly more in game III than in game IV,

reflecting the relatively sluggish response of game-III demands to dis-

count factors.

To examine the significance of these di¤erences, figure 4.25 reports esti-

mations of subjects’ mean and median initial demands in game III as a

function of their initial median demands in game IV. Subgame and trun-

cation consistency combine to predict a zero intercept and unitary slope,

indicating that there is no systematic di¤erence between the two games.

Figure 4.22
Player-1 demands in the first stage of game III and game IV. Data are taken from the last
ten rounds in each case. For each discount-factor and rejection-payo¤ combination, there
were ten rounds of five games each, for 50 observations.
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Figure 4.23
Amount of the surplus that mean player-1 demands allocate to player 2, in the first stage of
game III (100� (III mean)) and in game IV (100� (IV mean)).

Figure 4.24
Plot of player-1 mean demand in game IV (horizontal axis) and the first stage of game III
(vertical axis), taken from the last ten rounds of play. There are 240 observations, one for
each of the 240 experimental subjects.

Figure 4.25
Linear regressions of transformations of player 1’s mean and median demand in the first
stage of game III on player 1’s median and mean demand in game IV confidence intervals.
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Instead, the intercept is greater than zero and the slope is less than one

(both at a p-value of 0.000), as we would expect if player 1 consistently

demands more in game III than in game IV when the discount factor is

high.

In summary, our comparison of games III and IV suggests a failure of

at least one of subgame and truncation consistency, leading to systematic

di¤erences in play in the first stage of game III and play in game IV. The

di¤erences appear primarily for high discount factors, when rejection

payo¤s in game IV are high and the second stage of game III is relatively

important. In such cases opening demands are more aggressive in game

III than in game IV.

These results are consistent with our separate tests of subgame and

truncation consistency. When the discount factor is small, games III and

IV are both quite similar to an Ultimatum Game, and yield similar play.

As the discount factor rises, so does player 2s payo¤ in the continuation

game, and hence 2’s rejection payo¤ in game IV, leading to lower player-

1 demands. A similar force appears in game III as the second stage

becomes more valuable. As section 4.4.3 shows, however, player 2s value

in the second stage of game III is less than that of the continuation game,

reflecting 2’s less aggressive play (and 1’s more aggressive play) in game

III’s second stage. In addition section 4.4.4 shows that initial play is less

responsive to changes in the expected value of a second stage than to

changes in a corresponding terminal payo¤. These failures of subgame

and truncation consistency reinforce one another. A rising discount factor

causes a smaller increase in player 2s rejection value in game III than in

game IV, and player 1 is less sensitive to changes in the rejection value in

game III than in game IV. Together, the result is that player 1s demands

show less variation in game III than in game IV, leading to the result

shown in figure 4.24.

4.5 Conclusion

Our experimental results provide several indications that payo¤-

interdependent preferences and backward induction, in the form of sub-

game and truncation consistency, are inconsistent. The second stage of

the two-stage game features more generous player-2 o¤ers than does the

(identical) continuation game. This is a failure of subgame consistency:

players regard the second stage of the two-stage game and a seemingly

stand-alone equivalent as di¤erent strategic situations. Making an o¤er

to someone whose demand you have just rejected, in the second stage of
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the two-stage game, is not viewed as equivalent to opening the seemingly

identical continuation game, with no history of interaction. Truncation

consistency also fails. Players are more responsive to variations in future

prospects when a rejection leads to a fixed pair of rejection payo¤s, as

opposed to the case in which a rejection leads to a game involving an-

other o¤er and response.

Attention now turns either to alternative formulations of preferences or

to models of behavior that do not depend on backward induction. Be-

cause the self-references or additional arguments built into more compli-

cated preference formulations can deprive backward induction of its

content, it is not clear that these are distinct alternatives.

Our findings reinforce those of Andreoni et al. (2002), who show that

payo¤ interdependence alone cannot account for behavior in public-

good provision experiments.32 Instead, changes in the extensive form of

the game prompt changes in behavior that are inconsistent with prefer-

ences that depend on only payo¤s. Our results are similar in spirit, sug-

gesting that preferences in seemingly identical games depend upon the

larger context in which the games are played. Andreoni et al. (2002) sug-

gest incorporating the specification of the game into the utility function,

allowing players to have di¤erent preferences over identical monetary

payo¤ vectors in di¤erent games. Given the mounting experimental evi-

dence, such an approach seems inevitable if the results are to be explained

in terms of more elaborate utility functions. However, the results will be

useful only if some portability of the preferences can be recovered, in the

form of some systematic view of the relationship between the specification

of the game and preferences.

We suspect the key to such portability lies in a more systematic investi-

gation of how people think about games. Psychologists direct attention to

the use of analogy when reasoning about novel problems (e.g., Holyoak

and Thagard 1996). We envision players as analyzing unfamiliar games

or subgames by drawing analogies to more familiar contexts. Subgame

consistency will then obtain if the considerations that shape these analo-

gies are precisely those captured by the extensive-form specification of a

game. As a result subgame consistency and backward induction would

be compelling in the classical view of game theory, in which games are

complete literal representations of strategic interactions. But game theory

is typically used not as a literal description but as a model of a more

32. Prasnikar and Roth (1992) explore similar games and issues.
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complicated strategic interaction, and there is no reason to believe that

the extensive form constructed by an analyst exactly captures the consid-

erations used by players to analyze the interaction. If not, subgame and

truncation consistency can be expected to fail. Anticipating this failure,

however, makes many seemingly anomalous experimental findings less

puzzling. Framing e¤ects are now expected, for example, as di¤ering

details of the experimental environment trigger varying analogies. Nor is

it a surprise that rejecting an o¤er might bring a new analogy into play,

or that fixed rejection payo¤s and continuation games trigger di¤erent

analogies. Our hope is that a theory of reasoning by analogy will lead to

a more useful model of behavior in games. Samuelson (2001) begins the

construction of such a theory.
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5 Outside Options

Laboratory subjects don’t reason by backward induction as Rubinstein

(1982) assumed when o¤ering a unique solution to the bargaining prob-

lem, but this chapter shows that his solution nevertheless turns out to

work a lot better at predicting deals reached in the laboratory than the

naı̈ve split-the-di¤erence criterion that was once universal among labor

economists.

How can Rubinstein’s theory sometimes work if backward induction

doesn’t? I think the answer is that we don’t really need subgame-

perfection in his theorem. The idea of a stationary expectations equilib-

rium will do equally well (chapter 3). For the special case of the theorem

considered in this chapter, we could get by with even milder strategic

assumptions. All that is necessary for subjects to find their way to the

Rubinstein outcome is that they eventually learn to behave in conformity

with whatever these mild strategic principles may be.

Nash Bargaining Solution

The story behind the experiment of this chapter begins in 1950, when

John Nash (1950) broke with the prevailing orthodoxy by introducing

the idea of the Nash bargaining solution. Previously it was held that the

bargaining problem is economically indeterminate, in the sense that one

has to take account of psychological factors to predict the precise out-

come of a negotiation.1

Figure 5.1 illustrates three di¤erent geometric characterizations of

the Nash bargaining solution to a bargaining problem in which rational

players must agree on a pair x of payo¤s in a given feasible set X , or

else remain at a status quo pair x.

More notice is usually taken of Nash’s axiomatic defense of his

bargaining solution than of the bargaining-model defense discussed in



chapter 2. Nash meant the two approaches to be regarded as complimen-

tary, but some residual friction still lingers between theorists who focus

on one approach to the exclusion of the other.

Economists were largely ummoved by Nash’s work. When I took up

his ideas as a newcomer to economics in the 1970s, I was taken aback to

be told several times in seminars that ‘‘bargaining isn’t part of econom-

ics.’’ (I was left even more at a loss when I was told some years later

that ‘‘economics isn’t an experimental science.’’) But I guess the hecklers

were right if economics is defined as what economists did at the time.

The world of economics only started paying serious attention in the

1980s to what had been going on in bargaining theory after Rubinstein

(1982) had replaced Nash’s Demand Game by his much more realistic

Alternating-O¤ers Game.

Rubinstein’s discovery opportunely predated a visit to the London

School of Economics, where he modestly explained that his e¤orts to

solve the bargaining problem had proved a failure because he could only

solve the case with perfect information. To crack the general case of bar-

gaining under incomplete information would indeed have been a triumph,

but the theorem he had already was more than good enough for me.

I was su‰ciently excited that my next few evenings were spent explor-

ing the implications of the theorem, one of which turned out to be that

Figure 5.1
Characterizing the Nash bargaining solution. Any rational solution of the bargaining prob-
lem must be an e‰cient point of X that assigns both players at least their status quo payo¤s.
The Nash bargaining solution can be located within this set of candidates by using any one
of the following criteria: (1) maximize the Nash product (x1 � x1)(x2 � x2), (2) make
AN ¼ NB, or (3) make JNQA ¼ JNAQ.
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when the time interval between successive proposals in the Alternating-

O¤ers Game is allowed to become vanishingly small, the predicted deal

converges on the Nash bargaining solution (Binmore 1987).2 I still feel

this result to be a striking vindication of the quality of Nash’s intuition.

Breakdown and Deadlock

I later applied Rubinstein’s bargaining model to the problem of coalition

formation in multiplayer games (Binmore 1985). In puzzling over the rea-

son why the outcomes to which I was led are sometimes inconsistent with

the Shapley value, I realized that we had all been naı̈ve in accepting

Nash’s assumption that a disagreement can always be modeled simply as

a pair x of payo¤s.

Nowadays I advocate normally including at least two disagreement

points when modeling a negotiation: a deadlock point d, and a break-

down point b. The payo¤s at the deadlock point represent the player’s

incomes while the dispute continues. The payo¤s at the breakdown point

represent the incomes they will receive if a player abandons the negotia-

tion irrevocably in favor of his or her best outside option. Normally the

players’ breakdown payo¤s will exceed their deadlock payo¤s.

It was standard practice in labor economics at one time to predict a

bargaining outcome using the ordinary Nash bargaining solution with

the status quo located at the breakdown point. For example, a worker’s

payo¤ at the status quo might be determined by the current level of social

benefit. In the case when what is at issue is how an income stream is di-

vided, the outcome then seems very natural. The extra surplus created by

the players’ agreement to cooperate rather than take up their outside

options is split fifty:fifty—a practice known as splitting-the-di¤erence.

However, applying the Rubinstein theory doesn’t normally lead to the

Nash bargaining solution of a bargaining problem with its status quo at

the breakdown point b. It leads to the Nash bargaining solution of a bar-

gaining problem with its status quo at the deadlock point d. The break-

down payo¤s are relevant only if one of the players would get more than

his or her outside option than at the Nash bargaining solution computed

as though outside options were absent. The Rubinstein theory predicts

that a player with such a large outside option will receive only marginally

more than that outside option.3

Once we understood this outside option principle, Shaked, Sutton,

and I were keen to run an experiment to compare the rival predictions.
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A referee made us invent the term deal-me-out for the alternative predic-

tion to split-the-di¤erence generated by Rubinstein’s theory when outside

options are present. With this terminology, we found that deal-me-out

predicts reasonably well, and split-the-di¤erence not at all.

I naı̈vely thought that our paper would herald the end of split-the-

di¤erence in labor economics. Perhaps it would have done so if deal-me-

out weren’t a bit harder to manage when juggling with equations.

Listening to the Subjects

In addition to the experiment reported in this chapter, we also ran

unstructured bargaining sessions with the same bargaining games, taping

what the subjects said to each other during the negotiations. The data

were broadly consistent with that of our structured experiment but too

noisy to be worth reporting without moving to a larger sample size than

we could a¤ord. However, I found listening to the tapes very instructive.

There were a number of exchanges in which subjects with low outside

options would explain the strategic reality of their positions to a bargain-

ing partner with a larger outside option. In the case where the unequal

outside options are both less than a fifty:fifty split of the available money,

one of the exchanges might typically go as follows:

Adam argues that his larger outside option entitles him to a larger

share of the available money, perhaps because he claims that split-the-

di¤erence is fair. Eve demures on the grounds that they should simply

split the money fifty:fifty without reference to their outside options.

Adam then threatens to take up his outside option. Eve responds that his

threat is incredible, since he would lose the di¤erence between what she is

o¤ering and his outside option. Adam eventually caves in.

Of course, Eve’s debating position is strengthened by the fact that

deal-me-out in this situation coincides with the ‘‘fair’’ outcome in which

the available money is split fifty:fifty. Our decision to use equal dis-

count rates in the experiment therefore harnesses any bias that may exist

in favor of such a fifty:fifty split in favor of deal-me-out. On the other

hand, split-the-di¤erence also has some claim to be the ‘‘fair’’ outcome,

as we will see in the next chapter. Indeed some of our bargaining games

reduced to what seemed like a battle between these two rival ‘‘fairness’’

norms. The subject with the higher outside option would hold out for

split-the-di¤erence and the subject with lower outside option for deal-

me-out.4
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Aside from emphasizing that our design by no means buries the

fairness issues that bedevil all attempts to get a handle on bargaining

behavior, the preceding story of Adam and Eve also puts a finger on the

essential strategic insight that players need to recognize in order for deal-

me-out to displace split-the-di¤erence. This strategic insight is wrapped

up with lots of other baggage in the concept of a subgame-perfect equilib-

rium, but subjects who wisely don’t buy into all the extra baggage will

still end up at deal-me-out.
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An Outside Option Experiment

Ken Binmore, Avner Shaked, and John Sutton

5.1 Introduction

The Nash bargaining solution has been widely used as a modeling tool

for wage negotiations in applied economics. Recent progress in noncoop-

erative, game-theoretic models of bargaining (Binmore 1985; Binmore

and Dasgupta 1987; Binmore, Rubinstein, and Wolinsky 1986; Rubin-

stein 1982; Shaked and Sutton 1984; Sutton 1986) suggests that some of

the modeling problems are not quite so simple as is often assumed. The

di‰culty considered here is the manner in which the bargainers’ outside

options are incorporated into the Nash solution.

The Nash bargaining solution (Nash 1950) is formulated in terms of

a set5 X of utility pairs that represent possible deals on which two bar-

gainers may agree, and a disagreement pair ðd1; d2Þ that represents the

utilities the bargainers will receive if there is no agreement. The Nash bar-

gaining solution ðs1; s2Þ is then the point in X at which the Nash product

ðs1 � d1Þðs2 � d2Þ is maximized subject to the constraints s1 b d1 and

s2 b d2. In this paper, and in most applications, the agreements amount

to sharing a sum M of money (which will not be available without

an agreement) between bargainers whose utilities are linear in money. In

this case X is a set of the form fðx1; x2Þ : x1 b 0; x2 b 0; x1 þ x2 aMg,
and si ¼ di þ ðM � d1 � d2Þ=2 ði ¼ 1; 2Þ. The Nash bargaining solution

then assigns each player his disagreement payo¤ plus half what remains

from M after the disagreement payo¤s have been made.

However, in applications there is often more than one candidate for the

disagreement point. One possible candidate is the impasse point, by which

The financial support of STICERD at LSE and of the ESRC; and the excellent research as-
sistance of Yasmin Batliwala, Ami Klin, Nikki Boyce, Maria Herrero, and Carol Van Der
Ploeg are acknowledged. Al Roth provided much useful criticism.

5. Which is usually assumed to be convex, closed, bounded above, and comprehensive.



we mean the utility pair that will result if the bargaining continues forever

without agreement being reached or the negotiations being abandoned.

We always normalize the impasse point at ð0; 0Þ. But such an impasse is

not the only route that may lead to a failure to agree. One or other of the

bargainers could unilaterally abandon the negotiations to take up an op-

portunity elsewhere. Alternatively, if agreement is delayed, the opportu-

nity the bargainers are planning to exploit jointly could be lost through

the intervention of some random factor outside the bargainers’ control.

The utility pairs that arise as a consequence of such breakdowns in the

negotiation process provide further candidates for the disagreement point

in Nash’s solution. In what follows, we assume that only one such break-

down point ðb1; b2Þ is possible and that b1 b 0, b2 b 0, and b1 þ b2 aM.

Breakdown will be assumed to be precipitated by one or other of the

players leaving the negotiation table for good in order to take up his out-

side option bi. The other bargainer is then assumed to follow suit.

In wage negotiations it is appropriate to think of the points in X as

wage-profit flows, the impasse utilities as income flows during a strike

and the outside options as the best income flows available to each side if

they cease their partnership altogether.

In such a context it is conventional to place the disagreement point for

the Nash solution at the breakdown point ðb1; b2Þ as indicated in figure

5.2. A useful mnemonic for the prediction ðp1; p2Þ of the bargaining out-

come so generated is split-the-di¤erence. The paper contrasts this predic-

Figure 5.2
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tor with a special case of an ‘‘outside option principle’’ derived from an

analysis of optimal behavior in a natural game-theoretic model of the

bargaining process. The mnemonic used for this special case is deal-me-

out for reasons to be explained shortly. It selects the bargaining outcome

ðq1; q2Þ indicated in figures 5.3(a) and (b). This is the Nash bargaining so-

lution for the set Y ¼ fðx1; x2Þ : b1 a x1; b2 a x2; x1 þ x2 aMg with the

disagreement point at ð0; 0Þ. Thus outside options are only used as con-

straints on the range of validity of the Nash bargaining solution. The dis-

agreement point is placed at the impasse point ð0; 0Þ. With deal-me-out

the predicted bargaining outcome is

ðq1; q2Þ ¼

ðb1;M � b1Þ if
M

2
< b1;

ðM � b2; b2Þ if
M

2
< b2;

M

2
;
M

2

� �
; otherwise:

8
>>>>>>>>>><

>>>>>>>>>>:

So each bargainer gets a half-share of the whole sum of money unless this

would assign one bargainer less than his outside option. In the latter case

that bargainer receives his outside option, and the other bargainer gets

the rest.

The appropriate form of the ‘‘outside option principle’’ is justified for-

mally in appendix A by identifying the unique subgame-perfect equilib-

rium of a Rubinstein-type bargaining game with alternating o¤ers from

Figure 5.3
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which either player can secede after refusing an o¤er to take up his out-

side option. Deal-me-out arises when the discount factor of d in this anal-

ysis is approximately 1.

Strategically what is involved is very simple. The attraction of split-the-

di¤erence lies in the fact that a larger outside option seems to confer

greater bargaining power. But how can a bargainer use his outside option

to gain leverage? By threatening to play the deal-me-out card. When is

such a threat credible? Only when dealing himself out gives the bargainer

a bigger payo¤ than dealing himself in. It follows that the agreement that

would be reached without outside options is immune to deal-me-out

threats, unless the deal assigns one of the bargainers less than he can get

elsewhere. The opponent need then only o¤er him epsilon on top of his

outside option to keep him at the table. The theory idealizes epsilon to

be zero. In real life, epsilon would need to be chosen su‰ciently large

not to be dismissed as negligible.

This paper reports the result of an experiment in which anony-

mous subjects played a Rubinstein-type game with outside options.

Deal-me-out predicted the outcomes overwhelmingly better than split-

the-di¤erence. If one is willing to believe that the stylized negotiations

procedure which constrained our subjects bears a su‰cient resemblance

to that used in relevant real-life situations, and if one is also willing to be-

lieve that the laboratory behavior of our subjects is similarly significant,

then our results would seem to refute the conventional use of split-the-

di¤erence in this context.

Is there any point in such an experimental refutation? Is it not enough

to show that the conventional predictor attributes suboptimal behavior to

the bargainer? Such naı̈ve questions neglect the accumulated evidence

that, in laboratory bargaining experiments, subjects seldom take proper

account of strategic factors and prefer to settle on deals that are ‘‘fair’’

in some sense (e.g., Güth et al. 1982; Ho¤man-Spitzer 1985). Do the

current results not contradict this evidence? In brief, one is not entitled

to argue that deal-me-out predicts better because it represents optimal

behavior. We do not, in fact, believe that our subjects know all about

subgame-perfect equilibria and are gifted with the capacity for e¤ortless

mental arithmetic. Without extensive opportunities for trial-and-error

learning, they can only be anticipated to have a dim awareness of the stra-

tegic realities. Since our game is very simple, being nearly symmetric

when both outside options are zero, it may be that such a dim awareness

is enough to generate behavior close to the optimum in strategic terms.

But the very symmetry that makes such a scenario plausible simultane-
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ously makes it di‰cult to distinguish such an explanation of the observed

behavior from one that postulates that the subjects are partly motivated

by ‘‘fairness’’ considerations. The issue of the extent to which ‘‘fairness’’

genuinely motivates subjects in bargaining situations is taken up elsewhere

(Binmore, Shaked, and Sutton 1989). The current paper is content to es-

tablish that deal-me-out predicts better than split-the-di¤erence without

committing itself to why this should be so.

5.2 The Bargaining Game

This section briefly describes the rules of the game played by our subjects.

The manner in which these rules were operationalized is left to the next

section.

A ‘‘cake’’ originally worth £7 (approximately $10 at the time) is to be

divided between two players if they can agree on how it is to be divided.

The bargainers are constrained to employ the following very specific bar-

gaining procedure. Player 1 begins by proposing a division of the cake to

player 2. Player 2 then accepts or refuses this proposal. If he refuses,

player 2 may then decide not to continue bargaining but to take up an

outside option. In the experiment, games were divided into three groups:

in group 1, player 2’s outside option was zero; in group 2 it was £2; and in

group 3 it was £4. For simplicity, player 1’s outside option was always

zero.6 If player 2 refuses player 1’s o¤er but does not opt out, then all

the sums of money mentioned above are reduced by a factor of d < 1,

and a second round of negotiations takes place, just like the first, but

with player 2 making an o¤er to player 1. This procedure continues with

the players alternating in being the proposer until (a) agreement is

reached, or (b) a player opts out, or (c) a cuto¤ point is reached at which

the available payo¤s have become negligible.7

All this information was known to both players,8 but much care was

taken to ensure that neither player became aware of the real-life identity

of his bargaining partner.

Figure 5.4 compares the predictions of split-the-di¤erence and deal-me-

out. These are appropriate when d is approximately one. In the experi-

ment, d was actually taken to be 0.9 so that all sums of money shrank by

6. Players with a zero outside option were not explicitly reminded of their opportunity to
opt out.

7. In practice this cuto¤ point was never reached.

8. The game is one of perfect information.
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10 percent before each new round of negotiation. This explains the

slightly di¤erent predictions indicated in figures 5.5, 5.6, and 5.7.

Enough information has been provided to appreciate the results of sec-

tion 5.4, but a detailed analysis requires some further comments on the

design of the game.

1. The game is based on a bargaining model of Rubinstein (1982) in the

belief that this model, with its explicit pattern of o¤er and countero¤er,

captures an essential aspect of real-world bargaining institutions.

2. The game admits an explicit game-theoretic analysis. It has a unique

subgame-perfect equilibrium outcome (as proved in appendix A). In the

zero option case this requires the first player to o¤er d=ð1þ dÞ of the

cake to the second player and for the second player to accept. Here d

is the players’ common discount factor. With d ¼ 0:9, as in the experi-

ment, the fraction of the cake to be o¤ered is therefore 0.473. Since this

is nearly 0.5, the game-theoretic analysis therefore leads to an approxi-

mately fifty:fifty split as would, for example, an analysis based on attrib-

uting motives of fairness to the players. With a positive outside option

for player 2, all remains precisely the same unless d=ð1þ dÞ of the cake is
less than player 2’s outside option. If so, then the equilibrium outcome

is for player 1 to o¤er player 2 his or her outside option instead. Since

2 < 0:473� 7 ¼ 3:311 < 4, an equilibrium outcome in groups 1 and 2 of

our experiment requires that player 2 gets 0.473 of the cake while, in

Figure 5.4
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group 3, player 2 gets just his outside option (which is worth 0.571 of the

value of the cake).

3. The analysis above treats money as infinitely divisible. There is also

the fact that equilibrium behavior requires specific selections to be made

from actions among which a player is indi¤erent. In particular, players

are always indi¤erent between accepting or refusing an equilibrium o¤er,

but in equilibrium they accept. With a discrete currency the indi¤erence

issue can be resolved in theory, since players can always ‘‘play safe’’ by

making their o¤er better than the alternative by an amount equal to the

smallest coin available.9 Of course, this smallest coin will be regarded

as ‘‘negligible’’ by most subjects. One must therefore expect to see larger

‘‘token’’ amounts in practice. Rather than commit ourselves to a view on

how large such a ‘‘token’’ amount should be taken to be, we increased the

size of the experimental cake from £3 in our pilot study of £7 in the main

study so that relevant numbers to be compared were always substantially

di¤erent.

4. The game-theoretic analysis predicts that agreement will always be

reached at the very first opportunity. But implicit in a noncooperative

game theory analysis is the hypothesis that it is common knowledge that

the players are rational. In real life even a player who is rational himself

might reasonably entertain doubts about the rationality of an anonymous

opponent. Delaying agreement might then be worthwhile to provide an

opportunity of learning whether the opponent is exploitable. However,

even when agreement is not immediate, game theory still provides a pre-

diction of future play conditional on no agreement having been reached so

far. In odd-numbered periods when player 1 makes the o¤er, the predic-

tion is just as in comment 2 above. In even-numbered periods, player 2

makes the o¤er. In groups 1 and 2 the equilibrium outcome then gives

1=ð1þ dÞ ¼ 0:526 of the available cake to player 2. In group 3 the equi-

librium outcome gives player 2 somewhat more than the current value of

his outside option (i.e., 0.614 of the value of the currently available cake).

It will be noted that a game-theoretic analysis attributes a slight advan-

tage to the player who has the opportunity of making the first proposal.

5. The shrinkage factor d ¼ 0:9 was chosen with two considerations

in mind. The aim was to make the rate of shrinkage fast enough to

9. However, this will be only one of many equilibria in the discrete case. These all approxi-
mate the unique equilibrium of the continuous case provided that the smallest unit of cur-
rency is su‰ciently small.
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‘‘blanket’’ any di¤erence in the ‘‘natural’’ rates of time preference of the

subjects but slow enough that the first-mover advantage mentioned in

item 4 above was relatively small. The situation discussed in the introduc-

tion is, strictly speaking, the limiting case as d ! 1�. In what follows it

should be noted that the deal-me-out prediction is the unique subgame-

perfect equilibrium outcome calculated for the actual shrinkage factor of

d ¼ 0:9 with the first-mover advantage taken into account.

6. A split-the-di¤erence analysis gives 0.5 of the available cake to player

2 in group 1 games, 0:643 ¼ 4:5=7 in group 2 games, and 0:786 ¼ 5:5=7

in group 3 games. Split-the-di¤erence can also be used to predict the bar-

gaining outcome conditional on no agreement having been reached so far.

Because it is favorable to the split-the-di¤erence predictor, we adopt an

interpretation in even-numbered periods that takes account of the fact

that player 2 must wait one period before his or her outside option is

available again. In groups 1, 2, and 3, respectively, the prediction then is

that player 2 gets 0.5, 0.629, and 0.757 of the available cake when making

an o¤er.

7. Deal-me-out is only one of various alternatives to split-the-di¤erence

that might be considered. Methodologically it has a considerable advan-

tage over the other alternatives in that it yields precise and unambiguous

predictions, and hence we cannot be accused of altering our rival predic-

tor to suit the data. Given that our rival predictor does better than split-

the-di¤erence, we therefore have a sound case for rejecting the latter. But

it is not claimed that we necessarily have a good case for rejecting any-

thing else.

5.3 Experimental Setup

Following the pilot studies, 120 subjects were recruited from a wide cross

section of LSE students in the social sciences.10 Students who had been

exposed to game theory or bargaining models were excluded. Recruit-

ment was carried out from teaching classes and not from a pool of

subjects accustomed to psychological experiments. Each student was

assigned a time slot. To preserve anonymity, two subjects assigned to the

same time slot were always drawn from di¤erent classes. Much care was

taken to ensure that subjects had no knowledge of the identity of their op-

10. Including economics, law, demography, social anthropology, politics, management
science, sociology, geography, psychology, and computing.
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ponent either before or after the game.11 The 60 pairs were partitioned

into the three groups itemized in section 5.2. Group 1 (the ‘‘control’’

group) contained 10 pairs. Groups 2 and 3 each contained 25 pairs.

Subjects were placed in separate rooms before microcomputers linked

by a cable. After reading a set of written instructions (appendix B), the

subjects were ‘‘talked through’’ the instructions again by a research assis-

tant to ensure that they were clearly understood. Reinforcement of the

instructions, together with practice in the use of the necessary computer

controls, was provided with the help of a video display unit (VDU). The

subjects did not play a practice game with the computer, since we were

anxious not to o¤er cues about what type of play was expected. For the

same reason we were not present in the room ourselves.

The VDU displayed a picture of a rectangular ‘‘cake’’. The player

making an o¤er could divide the cake into two shares by pressing desig-

nated keys that moved the dividing line between the share claimed and

the share o¤ered up or down. The monetary value of the cake and the

value of the share claimed were also displayed. The responding player

registered acceptance or rejection of the o¤er by pressing the Y or N

keys accordingly. Players were paid in cash immediately after the game

finished.

5.4 Results

We report the results using diagrams. The raw data appear in our work-

ing paper (Sutton et al. 1985). The three histograms, figures 5.5, 5.6, and

5.7, group data in bands equal to a 1 percent share of the cake. O¤ers and

agreements are always expressed in terms of the amount of the share pro-

posed for, or received by, player 2.

Consider figure 5.6 by way of example. Observe that in group 2 games

(with player 2’s outside option at £2) 11 of the 25 games concluded with

player 2 receiving a share of between 0.50 and 0.51 of the cake available

when the bargaining finished. In 6 of these 11 games agreement was

reached immediately. Observe that in group 3 games (with player 2’s out-

side option at £4) 7 of the 25 games concluded with player 2 receiving a

share of between 0.57 and 0.58 of the cake available when the bargaining

finished. In three of these seven games agreement was reached immedi-

ately. In the remaining four games agreement was never reached, since

11. Thus subjects could not verify that they had a human opponent. But this is unavoidable
if anonymity is to be fully preserved.
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Figure 5.5
Amount received by player 2 as a fraction of the original (£7) cake

Figure 5.6
Player 2’s final payment as a fraction of the cake available when bargaining concluded
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player 2 chose to take his or her outside option rather than continue

bargaining.

5.5 Commentary

The inadequacy of split-the-di¤erence as a predictor, as compared with

deal-me-out, is clearly exhibited in figures 5.5, 5.6, and 5.7. A feature of

the results is the substantial number of failures to agree at the first oppor-

tunity. Figures 5.8 and 5.9 give the full details of the histories of games

that lasted at least three rounds. Presumably there would have been

more of these games, and with longer histories, if the shrinkage factor

d ¼ 0:9 had been chosen closer to one.12 None of the currently popular

bargaining theories assuming perfect information predict disagreement at

all, and to this extent, the data are not supportive of any of them. Further

research is clearly necessary on this point.

However, results that may be thought to be surprisingly sharp are

obtained by examining what player 2 gets once agreement has been

Figure 5.7
Fraction of the cake originally proposed by player 1 as player 2’s share

12. On the other hand, the first-mover advantage would have been diminished. However,
the final agreements reached do not support the hypothesis that the first player was able to
exploit his first-mover advantage even if he perceived that he had one.
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reached as a fraction of the cake available at the time of agreement (see

items 4, 5, and 6 of section 5.2). These amounts are shown in figure 5.6.

We test the extent to which this impression of sharpness is accurate by

asking the following questions:

a. Does the fraction of the available cake obtained by player 2 in a group

2 game (£2 option) exceed the fraction he obtains in a group 1 game (no

option)?

b. Is the fraction of the available cake obtained by player 2 in a group 3

game (£4 option) nearer the split-the-di¤erence fraction than the current

value of the outside option?

For question a we tested the null hypothesis that the proportion of

agreements in which player 2 gets a fraction strictly exceeding 0.5 is equal

in both groups 1 and groups 2. (In view of the clustering at 0.5, this seems

a more appropriate criterion than does a test for the equality of the me-

dian outcome, which is in fact 0.5 in both groups.) In accordance with

our rejection of split-the-di¤erence as a predictor, we observe that the

null hypothesis is not rejected by a w2 test at the 5 percent level.

For question b we observe that the fractions of the available cake

obtained by player 2 in group 3 games fall into three classes. Four points

Figure 5.8
Group II (small option) games involving disagreement. The diagram shows the share pro-
posed for player 2 in the successive rounds as a fraction of the cake then available.
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lie well below 0.571 (which is the value of the outside option to player 2

as a fraction of the available cake when player 1 is proposing). These out-

comes are incompatible with either deal-me-out or split-the-di¤erence,

however loosely defined. Of the remaining 21 points, 18 are closer to

deal-me-out (0.571 for agreement in odd-numbered periods). The null

hypothesis—that the fraction of the relevant population generating out-

comes closer to deal-me-out is less than one half—is rejected at the 5 per-

cent level by the present data.

Finally, it should be noted that the intuition for split-the-di¤erence is

not without some support from the data. The counterproposals made by

player 2s who had refused the opening proposal in figure 5.8 (showing

group 2 games) cluster around the split-the-di¤erence level. However,

most of these counterproposals were refused.

5.6 Conclusion

Split-the-di¤erence has been widely used to predict the outcome of wage

negotiations in applied economics. The theoretical foundations for this

Figure 5.9
Group 3 (large option) games involving disagreement. The diagram shows the share pro-
posed for player 2 in the successive rounds as a fraction of the cake then available.
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predictor have been questioned in Binmore (1985) and Shaked and Sut-

ton (1984). The current paper provides experimental support for these

doubts.

Some care is necessary in evaluating the implications of the results.

They are not immediately relevant if incomplete information or reputa-

tion e¤ects are important. Nor are they relevant if breakdown may occur

through random events outside the control of the bargainer (see appendix

A). Even where they are relevant, it must be remembered that social ben-

efit, for example, may not only be a factor in determining a worker’s out-

side option: it may also be a factor in determining the size of the available

‘‘cake.’’

Finally, it cannot properly be argued that the results demonstrate that

our subjects were motivated largely by enlightened self-interest. They

were clearly unwilling to settle for less than their outside option, but with-

in this constraint a ‘‘fairness’’ explanation of their behavior is consistent

with the data. Our latest experimental study (Binmore, Shaked, and Sut-

ton 1989) bears on these issues. We only observe here that the results of

the new study support the rejection of split-the-di¤erence under condi-

tions comparable to those of the current paper.

Appendix A: The Unique Subgame-Perfect Equilibrium Outcome

In this appendix we begin by o¤ering a formal demonstration that the in-

finite horizon version of the bargaining game of Section II has a unique

subgame-perfect equilibrium outcome. We also compute the equilibrium

payo¤s. (The necessary argument is only sketched in Binmore [1985],

while Shaked and Sutton [1984] is unpublished.) We assume a common

discount factor d ð0 < d < 1Þ and let player 2’s outside option be s

ð0a sa 1Þ. Without loss of generality the original size of the cake is

taken to be 1.

Let m1 and M1 be the infimum and supremum of equilibrium payo¤s

to player 1 in the game. Let m2 and M2 be the infimum and supremum

of equilibrium payo¤s to player 2 in the companion game in which it is

player 2 who moves first. We claim that the following inequalities hold:

m1 b 1�maxfdM2; sg; ð1Þ

1�M1 bmaxfm2; sg; ð2Þ

m2 b 1� dM1; ð3Þ

1�M2 b dm1: ð4Þ
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Inequality (1) follows from the fact that in equilibrium player 2 must

accept any opening o¤er y with y > maxfdM2; sg because the right-hand

side is the most that player 2 can get from refusing. Thus in equilibrium

player 1 cannot get less than x, where x < 1�maxfdM2; sg, because he

can always guarantee x by making x his opening demand. Inequality (2)

follows from the fact that in equilibrium player 2 must get at least z

for each z < maxfdm2; sg, since z can be guaranteed by refusing player

1’s opening o¤er. Hence player 1 can get at most 1� a in equilibrium.

Inequalities (3) and (4) are just the same, but with the roles of players 1

and 2 reversed, and s ¼ 0.

We distinguish three cases: (a) sa dm2, (b) dm2 < s < dM2, and (c)

dM2 a s. Case a leads immediately to the conclusion that 1=ð1þ dÞa
m1 aM1 a 1=ð1þ dÞ and 1=ð1þ dÞam2 aM2 a 1=ð1þ dÞ. Thus in

case a, m1 ¼ M1 ¼ m2 ¼ M2 ¼ 1=ð1þ dÞ. The same argument applied in

case b yields the contradiction 1=ð1þ dÞ < m2 aM2 a 1=ð1þ dÞ. In case

c the conclusion is that 1� sam1 aM1 a 1� s and 1� dð1� sÞa
m2 aM2 a 1� dð1� sÞ. Thus m1 ¼ M1 ¼ 1� s and m2 ¼ M2 ¼ 1�
dð1� sÞ. From the computed values of m2 and M2, it only remains to ob-

serve that case (a) occurs when sa d=ð1þ dÞ and case (c) occurs when

sb d=ð1þ dÞ.
This shows that if subgame-perfect equilibria exist, then they generate

a unique outcome. Existence, however, is trivial. Each player always

demands his equilibrium payo¤ when proposing and accepts his equilib-

rium payo¤ (or more) when responding. Section 5.1 of the paper de-

scribes the limiting case as d ! 1�.

Split-the-di¤erence can also emerge from a noncooperative analysis

under suitable conditions. To see this, suppose that the game we have

just studied is modified so that outside options are no longer available

but that, after each refusal of a proposal, a breakdown in communica-

tions occurs with probability p, resulting in the payo¤ pair ð0; sÞ regard-
less of any desire the players have to continue negotiating. For simplicity,

we take d ¼ 1. The inequalities of the preceding analysis are replaced by

m1 b 1� fð1� pÞM2 þ psg; ð5Þ

1�M1 b ð1� pÞm2 þ ps; ð6Þ

m2 b 1� ð1� pÞM1; ð7Þ

1�M2 b ð1� pÞm1; ð8Þ

from which it follows that m1 ¼ M1 ¼ ð1� sÞ=ð2� pÞ and m2 ¼ M2 ¼
f1þ ð1� pÞsg=ð2� pÞ. The limiting case p ! 0þ is split-the-di¤erence.
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In the finite horizon cases uniqueness is immediate, but the computa-

tion of the equilibrium payo¤s is tedious. These converge to the infinite

horizon payo¤s as the horizon is allowed to recede to infinity.

Appendix B: Instructions to Subjects

The following instruction sheet was given to subjects filling the role of

player 1 in those games where player 2 had an outside option that was

initially worth £4. The instruction sheets given to players in other condi-

tions were similar to this. Having read these instructions, subjects were

talked through them by an assistant, and then the rules were explained

again by means of a display on the VDU.

Instructions to Player 1

The aim of this exercise is to examine how people behave in bargaining

situations.

You will be asked to divide a cake (worth a certain sum of money) be-

tween yourself and an opponent.

The initial value of the cake is £7.00.

At certain times, your opponent can, if he/she wishes, ‘‘opt out,’’ and

be paid a certain sum (initially £4.00); if he/she does this, you will receive

nothing.

You do not have any such ‘‘outside option.’’

As bargaining continues over time, these values will be reduced, in a

manner to be explained below.

Incidentally, it was decided at random before you came in, who would

have the ‘‘outside option.’’

The way bargaining will proceed is as follows:

You will make your opponent an o¤er of some share of the cake. Your

opponent can do one of 3 things:

1. Accept your o¤er, in which case the game ends. And you and your op-

ponent each receive the agreed amount.

2. Your opponent can decide to ‘‘opt out’’ of the game, in which case he/

she will be paid £4.00 and you will receive nothing.

3. Reject the o¤er—in which case the cake shrinks by 10 percent and so

does the outside option. Now it becomes your opponent’s turn to make

you an o¤er.

The cake is now worth £6.30. Your opponent makes you an o¤er. You

can do one of two things:
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1. Accept your opponent’s o¤er, in which case the game ends, and you

and your opponent receive the agreed amount.

2. Reject your opponent’s o¤er, in which case the cake, and the option,

shrink by a further 10 percent, and it becomes your turn once again to

make your opponent an o¤er.

The game continues in this way, with the sums of money shrinking by

10 percent following each rejection, until an agreement is reached.

All this information is known to your opponent.

A computer demonstration now follows.
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6 Forced Breakdown

One of the problems in discussing fairness in bargaining games is that

there isn’t always a firm consensus among either theorists or subjects

about what counts as fair in any particular game. I think that the hints

and cues built into the way the game is presented to the subjects matter

even more to this question than is generally recognized. If merely pinning

a gold star on some people can make a di¤erence, the scope for obtaining

variation in this way seems endless (chapter 4).

Controling Frames

I think that we therefore need to control the framing of bargaining experi-

ments very carefully, for the same reason that chemists clean their test

tubes. If we don’t understand what is significant in our input to the sub-

jects, how can we hope to understand their output? It seems to me that a

systematic approach to understanding how the framing of a game influ-

ences the nature of the fairness norms to which subjects appeal should

begin by minimizing the cues o¤ered to the subjects by the way the game

is framed.

In my experiments I therefore take the opposite tack from authors who

evoke the atmosphere of the workplace or some other venue in which the

subjects are habituated to operating a norm adapted to whatever game

they commonly play in that venue. I seek instead to avoid o¤ering any

cues that might trigger a focal point adapted to some game other than

that being studied in my laboratory. However, Schelling’s (1960) essay

on the type of information that we unthinkingly make use of in guessing

what equilibrium other subjects will regard as focal makes it clear that

scrubbing a frame free of inadvertent cues is likely to be di‰cult. One

can easily trigger a focal point simply by representing the feasible set as



a familiar geometrical figure, or by labeling some deals with enticingly

round numbers.

I think my attempts at controling my experimental frames combine

with the comparative richness of the feedback with which I provide my

subjects to explain why I see more evidence of learning among my sub-

jects than some other experimenters. The case is particularly clear in the

experiment reported in chapter 2 on Nash’s Demand Game.

The Demand Game is already abstract in character, and we were care-

ful not to o¤er any cues in our instructions that might encourage the sub-

jects to identify the game with some more familiar bargaining situation.

We then conditioned subjects to accept focal points that we had chosen

ourselves. But when they were left to play against each other, we found

that only our attempts to condition them on exact equilibria had any suc-

cess. The most striking fact is that di¤erent groups of subjects who ended

up at di¤erent exact equilibria were ready to say that the focal point that

had evolved in their group is the fair outcome of the game.

I think this experiment captures in minature what goes on in the real

world when cultural evolution establishes a new norm for a new situation.

However, it is the easiest thing in the world to interfere with this process

in the laboratory. All one needs to do is to somehow invoke a focal point

on which the subjects are very strongly conditioned in the real world. We

could have done this in the Demand Game, for example, by taking the set

of available payo¤s to be a triangle, in which case the central point of the

hypotenuse would have been irresistible as a correlate of the fifty:fifty

deal that is commonly focal in simple bargaining situations.

Varying the Breakdown Rules

In the Rubinstein bargaining model or in multistage ultimatum games it

isn’t possible to avoid o¤ering focalizing cues in the framing of the exper-

iment, since the subjects seem to use the strategic structure of the game

itself as such a cue (see figures 3.2 and 4.1). However, one can interfere

with the rules of the game in a way that is strategically significant but is

unlikely to be seen as relevant by inexperienced subjects. We can then see

how groups of subjects playing two apparently similar but strategically

di¤erent bargaining games end up playing. After the experiment is over,

we can also ask them what they think is fair in the game they just played.

Rubinstein’s Alternating-O¤ers Game with outside options is a happy

playground for someone with such aims, since we can create two strategi-

cally di¤erent versions of the game simply by making the act of opting
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out voluntary or not. In the previous chapter we found that the Rubin-

stein outcome we called deal-me-out works rather well when players who

have just refused an o¤er have the choice of staying around to make a

counter-o¤er or walking o¤ to take up their best outside option. In this

case, any breakdowns are voluntary. However, matters change dramati-

cally in the case when we force the players to opt out with some small

probability after each refusal. In the case of forced breakdown the Rubin-

stein outcome is now split-the-di¤erence.

Shaked, Sutton, and I joined forces with Peter Morgan to compare

behavior in the Alternating-O¤ers Game with forced or voluntary break-

down. Behavior di¤ered dramatically in the two cases, with split-the-

di¤erence predicting unexpectedly well in the case of forced breakdown.

I think it particularly significant that subjects tended to say that what is

fair in the game they had just played is the same as the behavior that

had evolved in their own particular group. An explanation of fairness in

terms of other-regarding preferences therefore has to cope not only with

the fact that the subjects’ perception of what counts as fair can be altered

by an hour’s experience in the laboratory, but also that it can be deter-

mined by apparently irrelevant alterations to the strategic structure of a

game.

It is especially interesting that these conclusions don’t hold for the

whole subject pool. A minority of around 10 percent insist that fifty:fifty

is the fair split of the available money, no matter what the strategic real-

ities may be. Could these be the same kind of people who make up the 10

percent of the subject pool who never learn to switch to defection in the

one-shot Prisoners’ Dilemma? If such an inflexible minority really exists,

they would often make a substantial di¤erence to the convergence proper-

ties of simple adjustment processes (chapter 8).
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Do People Exploit Their Bargaining Power? An Experimental Study

Ken Binmore, Peter Morgan, Avner Shaked, and John Sutton

6.1 Introduction

Human behavior, even in simple bargaining situations, is not well under-

stood. Numerous rival theories compete for attention, but the data are

seldom adequate to justify a rejection of one in favor of another. It is

often not even clear what the significant control variables are.

This paper examines only one small aspect of the problem. It describes

an experimental attempt to compare the predictions of two qualitatively

distinct types of theory. First, there are the fairness/focal theories of bar-

gaining behavior as propounded by Güth (1990), Kahneman et al. (1986),

Roth (1985), Selten (1978), and others. Second, there are the strategic

theories of bargaining behavior, notably that of Rubinstein (1982).

Game-theoretic or strategic models treat the bargainers as rational opti-

mizers and hence predict that the players will exploit whatever bargaining

power they possess. Fairness/focal theories view the agreement on which

subjects settle as being determined by social norms or conventional

understandings that render the agreement focal, given the circumstances

in which the bargainers are working. In a bargaining context the social

norms often involve ‘‘fairness’’ considerations, but other features of the

situation may also be important. For example, deals involving whole

numbers of dollars may be salient in some circumstances.

It is not easy to distinguish fairness/focal behavior from strategic

behavior. Indeed part of the message of this paper is that what people

We are grateful to the Economics and Social Research Council of the United Kingdom for
generously funding this research project. We also thank P. Knox and S. Chew for e‰ciently
programming the experiments, and A. Hoolighan, A. Klin, C. Mirrlees, C. Purkhardt, and
B. Thakker for their invaluable help in supervising the experiment and recruiting the sub-
jects. We are also grateful to the Psychology Department at the London School of Eco-
nomics for the use of their laboratory.



perceive as ‘‘fair’’ or focal can sometimes be explained in terms of the

strategic realities of the situation. However, we found it possible to design

two simple laboratory games that, superficially at least, seem very similar

from a fairness/focal viewpoint but di¤er significantly in their strategic

characteristics.

To summarize the results of the experiments very briefly, the subjects’

behavior was biased in the direction of strategically optimal play. Under

one of the two conditions the di¤erences in behavior between the two types

of game were very marked indeed. The same turned out to be true of what

the subjects asserted to be fair when questioned on this issue after playing

the game.1 That is to say, what they judged to be fair after experiencing

actual play was biased in the direction of the outcome that would result

from strategically optimal behavior in the game they had actually played.

Peter Cramton (1988) has run the same experiment using our computer

programs with Yale undergraduates as his subjects. His conclusions will

be reported elsewhere. We note only that they are broadly consistent with

ours. However, his subject population was half the size of ours.

Commentary on the results is left to a concluding section. At this point

we observe only that the fairness/focal and strategic bargaining literatures

by no means exhaust all possible viewpoints. See, for example, Leventhal

(1980), Thibaut (1968), or Walster et al. (1973).

6.2 Bargaining Models

The basic problem for the subjects in all the models considered is that of

dividing a sum of money2 that we call a ‘‘cake.’’ If the negotiations break

down, player I will receive a payment which is equivalent to a share a of

the cake and player II will receive a share b of the cake, where aþ ba 1.

What is fair in such a situation? Three possible answers to this question

merit special attention:

1. Individuals in the same pool from which the subjects were drawn but who did not play
the game were also surveyed on the ‘‘fairness’’ question. There was no significant di¤erence
on what was reported as ‘‘fair’’ in the two types of game. This fact could be used for rhetor-
ical purposes in support of the conclusions of the paper, but we do not feel the very dispersed
data are good enough for this purpose. In asking inexperienced people for an opinion about
a complicated matter, one must expect noisy answers: and it may well be that the data from
the poll contain essentially nothing but noise with little or no relevance to the experiment.
The best that one would seem entitled to conclude is that the description of the two types
of game o¤ered to the subjects for an opinion did not trigger any firmly held preconceptions
about what is or is not fair in bargaining situations.

2. We proceed throughout on the questionable assumption that utility can be identified with
money.
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a. Split-the-di¤erence (S-T-D). With this outcome, player I is assigned

a, player II is assigned b, and then they split the remainder of the cake

equally. This outcome is the Nash bargaining solution with the status

quo located at ða; bÞ. Player I’s final share is then ð1þ a� bÞ=2 and

player II’s share is ð1þ b � aÞ=2.
b. Fifty:fifty (50:50). With this outcome, the breakdown payments a and

b are ignored and each player simply gets half the cake.

c. Deal-me-out (D-M-O). With this outcome, the breakdown payments

are ignored and the result is 50:50, unless this would assign player i less

than i’s breakdown payo¤ of g. If so, player i gets g and the other player

gets the remaining 1� g of the cake.

The term deal-me-out derives from a previous paper (Binmore et al.

1989c) and is intended to suggest player i’s response to the proposed im-

plementation of 50:50 when g > 1
2
. Its possible role as a ‘‘fairness’’ crite-

rion was suggested by critics of the previous paper.

In all the games considered, a was taken to be very small ða ¼ 0:04Þ.
Two values of b were considered: a high value ðb ¼ 0:64Þ and a low value

ðb ¼ 0:36Þ. Figure 6.1 provides a convenient means of comparing the

three di¤erent notions for di¤erent values of b (but with a fixed at 0.04).

To discuss strategically optimal play, it is necessary to be specific about

the bargaining procedure to be used. We employ a procedure studied by

Rubinstein (1982). Accessible accounts of variants of his model, including

those considered here, are to be found, for example, in Binmore et al.

(1989b) or Sutton (1986).

In the Rubinstein procedure the players alternate in making proposals

indefinitely until a proposal is accepted or the negotiations break down.

Some incentive is necessary to encourage the players to reach an early

agreement. The two classes of games considered di¤er in how this incen-

tive is provided and in how breakdowns may occur.

A. Games with optional breakdown. In these games, a player may opt

out after refusing a proposal3 made by the opponent (and only then). If

a player opts out, the negotiations are deemed to have broken down,

and the players receive their breakdown shares, a and b, of the current

cake. The incentive for an early agreement is provided by the fact that

the cake and the outside options shrink by a factor of d immediately be-

fore each proposal after the first.

3. It matters when a player may opt out (Shaked 1987).
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The game has a unique subgame-perfect equilibrium in which player I

o¤ers a share equal to maxfb; d=ð1þ dÞg to player II at time 0, and

player II accepts (Binmore et al. 1989c). Note that the equilibrium out-

come converges to D-M-O as d ! 1�.

B. Games with forced breakdown. In these games, players may not

choose to opt out and the cake does not shrink. Instead, after each re-

fusal, a random move decides whether the negotiations will be broken

o¤ or allowed to continue. The probability of a continuation is taken to

be the same value of d as in optional breakdown games. The incentive for

early agreement is therefore that the cake may disappear altogether if the

negotiations are prolonged, leaving each player with only their break-

down payment.

The game has a unique subgame-perfect equilibrium in which player I

o¤ers a share equal to fdð1� aÞ þ bg=ð1þ dÞ to player II at time 0, and

player II accepts (Binmore et al. 1989c). Note that the equilibrium out-

come converges to S-T-D at d ! 1�.

Each of these two classes of games was run under two conditions: low

b and high b. This yields four di¤erent games that are referred to as

regimes 0, 1, 2, and 3 as indicated in table 6.1. Thus the labels 0 and 1

refer to optional breakdown games with low and high b, respectively,

Figure 6.1
The ‘‘fairness’’ criteria.
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and the labels 2 and 3 refer to forced breakdown games with low and

high b, respectively.

Two points should be noted. The first is that a subgame-perfect anal-

ysis predicts future behavior even if past behavior has not been as pre-

dicted. Our earlier work (Binmore et al. 1989c) on optional breakdown

games indicates that one should not expect instant agreement at time

zero from subjects in the laboratory, but that there is reason to believe

that the game-theoretic prediction of the final outcome, in terms of the

cake then available, may not fare too badly. Results are therefore always

reported in terms of player II’s share of the cake available at the time the

game ended. When d ! 1�, the game-theoretic prediction will always be

D-M-O in optional breakdown games, and S-T-D in forced breakdown

games. The second point is the more important. For a given value of b,

optional breakdown games and forced breakdown games are intended to

present a similar payo¤ profile to the subject, who may therefore be

inclined to treat them in the same way in deciding what is or is not fair

or focal. Indeed, since a subgame-perfect analysis of an optional break-

down game is identical to that of a forced breakdown game when a ¼
b ¼ 0, one might expect even a strategically minded but inexperienced

subject to fail to recognize the rather subtle distinction between the two

classes of game. If subjects behave di¤erently in optional breakdown

games from the way they behave in forced breakdown games, one would

therefore seem to have evidence in favor of the players’ bargaining power

being a significant factor in determining the final outcome. It is this con-

sideration that provides the major motivation for the experimental design

described in this section.

6.3 The Experiment

Subjects were recruited directly from undergraduate classes in economics

at the London School of Economics. The students had not studied game

theory or bargaining, nor were these topics part of the curriculum for the

Table 6.1

b ¼ 0:36 b ¼ 0:64

Optional breakdown Regime 0 Regime 1

Low optional High optional

Forced breakdown Regime 2 Regime 3

Low forced High forced
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courses they were attending. The recruiters were graduate students in Psy-

chology who also supervised the fully automated experimental runs in the

Psychology Laboratory. Subjects were informed that the experiment was

‘‘in economics’’ rather than ‘‘in psychology,’’ but were not informed of

the identities of the authors of this paper. As to the details of the game

itself, our intention was that the subjects be perfectly informed about the

rules of the game and the monetary payo¤s to be distributed.

The main experiment ran for 6 days. Each day had four sessions, with

each session devoted to a di¤erent regime from table 6.1. Each session

involved four subjects, who each played 10 games in all. After each

game a subject’s opponent was changed. On arrival, subjects were seated

in isolated booths with a minimum of interaction between them. They

communicated via networked microcomputers. They were first asked to

read written instructions (appendix A), and then to operate a demonstra-

tion program that provided them with hands-on experience on how to

make and respond to o¤ers and so on. The cake was represented on the

screen by a rectangular slab. The subject made an o¤er by moving a

‘‘knife’’ up or down the cake until satisfied with the division it indicated.

The monetary amounts being proposed were also displayed. The demon-

stration program did not involve any examples of partitions of the cake

since we were anxious not to interfere with the natural focal point struc-

ture of the game.

After running the demonstration program and asking any questions

they might have,4 the subjects played six ‘‘practice games’’ for which no

payments were made. They then played four ‘‘real games’’ in each of

which the cake was initially worth £5.00. At the time of the experiment

(December 1987) this was worth about $8.00. We felt this sum provided

an adequate incentive for the subject to devote some care and attention to

the experiment, given that we were asking for only 30 to 45 minutes of

their time. Since each group of four subjects in a particular session played

a total of 20 games altogether (12 for practice and 8 for real) and since

each regime was in force on each of 6 days, we observed a total of 120

games for each of the four regimes (72 for practice and 48 for real).

To minimize on reputation e¤ects, the subjects’ bargaining partners

were changed after each game. Their role in the game also varied. Half

the time they occupied the role of player I (who moves first and has a

breakdown payment of a) and half the time they occupied the role of

player II (who moves second and has a breakdown payo¤ of b). We at-

4. A supervisor could be summoned by pressing an appropriate key.
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tach importance to this alternation of roles in game-theoretic experi-

ments. A rational player bases his strategic analysis of a game on the

way he would play if he were in the shoes of the opponent. Alternating

roles provides subjects with an opportunity to see things from the other

player’s viewpoint and hence to understand the game better. In a previous

experiment (Binmore et al. 1985, 1988) such role switching influenced the

outcome very markedly.

At the end of each session subjects were asked to remain seated until

they had completed a questionnaire (appendix B) and had been paid the

total amount of money they had successfully bargained for in the four

real games that each had played. They were then invited to leave one by

one with a view to minimizing interaction.

Under all the four regimes of table 6.1 the cake was worth £5.00 in the

main experiment and the parameter d was taken to be 0.9. In all four

regimes player I’s breakdown share of a ¼ 0:04 was therefore initially

worth £0.20 in money.

For optional breakdown games (regimes 0 and 1) the cake shrinks over

time according to the discount factor d, and it is left to the players’ discre-

tion whether to force a breakdown by opting out. Under regime 0, player

II’s breakdown share of b ¼ 0:36 was initially worth £1.80. Under regime

1, player II’s breakdown share of b ¼ 0:64 was initially worth £3.20.

For forced breakdown games (regimes 2 and 3) the cake does not

shrink, but there is a risk of an imposed breakdown every time that an

o¤er is refused. Our intention was that the players should believe that

the game continues after a refusal with probability d ¼ 0:9, but here we

met with a di‰culty in our pilot experiments. The manner in which we

sought to resolve this di‰culty requires some explanation.

In our initial pilot the written instructions described the probabilistic

mechanism by means of which breakdown occurred, and after each re-

fusal subjects saw a simulated roulette wheel turn on their screens. Never-

theless, they tended to behave as though the possibility of a breakdown

ever occurring was negligible.5 That is to say, they neglected to note that,

although 0.9 is nearly 1, ð0:9Þn is small when n is su‰ciently large. Such

misconceptions about probabilistic matters are, of course, commonplace

as laboratory phenomena.

After various attempts we sought to evade the di‰culty by telling the

subjects, in their written instructions, that the maximum length for each

5. And, in many cases, confirmed this interpretation of their behavior by their comments on
the questionnaire.
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game had already been chosen in advance, but that they were not to be

told what this length was. However, they were invited to proceed on the

assumption that, after each refusal, the probability of the game continu-

ing was 0.9. The precise wording was as follows:

In each of the ten sessions, the number of proposals allowed before a breakdown

is announced has been fixed in advance. But we are going to keep you guessing by

not telling you what these ten numbers are. All you will know for sure is that a

breakdown will occur eventually if agreement is delayed long enough. The maxi-

mum number of proposals allowed in each session may be large or it may be

small, and knowing what the number turns out to be in one session will not help

much in guessing what it will be in another. The numbers have been fixed so that,

however many proposals there may already have been in a session, you should

still reckon that there is a 90 percent chance of being allowed at least one more

proposal. This means for example, that it is more likely that 12 or more proposals

will be allowed than 3 or less.

No subject expressed any confusion about the issue on their question-

naire. We chose the maximum lengths for 10 games that each subject

played to be:

9; 2; 11; 2; 10; 7; 7; 16; 12; 8:

The two short games were intended to convince the subjects that break-

down could indeed occur. Otherwise, our intention was that the data

available to the subjects should not be such as to allow them rationally

to reject the hypothesis that breakdowns occur independently with

probability 0.1, even if they participated in games that always ended in

breakdown.6

6.4 Results

The raw results are available as an appendix to a discussion paper Bin-

more et al. (1989a). We will be pleased to supply a copy of this discussion

paper on request. In this section, the results we believe to be relevant are

summarized in six histograms (figures 6.2, 6.3, and 6.4). We always report

percentages of the cake obtained by player II. (In optional breakdown

games, the cake shrinks over time. The percentage of the cake is then

computed in terms of the cake available at the time the game ended.)

Games that do not end in agreement are indicated by an empty box.

6. We do not, of course, believe that the subjects did carry out any elaborate probabilistic
calculations. It is enough for our purposes if the subjects are convinced that the game will
end eventually but that it is unlikely to do so immediately.
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Player II then gets his or her breakdown share b (36 percent under

regimes 0 and 2; 64 percent under regimes 1 and 3).

The immediate issue is whether, in view of the similarity of their payo¤

profiles and the subtlety of their strategic di¤erences, optional breakdown

and forced breakdown games generate the same behavior, although a

subgame-perfect analysis predicts D-M-O in the former and S-T-D in the

latter. Before considering this question, some preliminary comments are

useful:

How Big Is Epsilon?

Game theory treats players as rational optimizers, who are assumed to

squeeze the last penny from a situation on the assumption that their op-

ponent will do the same. But in practice one must accept that subjects will

treat small enough amounts as negligible. As a rule-of-thumb we proceed

as though anything less than the price of a cup of co¤ee (£0:2 ¼ 4 percent

of £5.00 at the time of the experiment) is negligible. In particular, we ne-

glect the fact that the strategically optimal outcomes with the actual dis-

count factor used ðd ¼ 0:9Þ di¤er slightly7 from those in the limiting case

when d ! 1�.

Round Number Focal Points

A further source of possible distortion is the tendency of subjects to settle

on deals in round numbers. Under the high b regimes 1 and 3, this ten-

dency makes S-T-D attractive (since 80 percent of the cake is £4.00 at

time 0) and creates a possible focal point at 70 percent (which corre-

sponds to £3.50 at time 0). Under the low b regimes 0 and 2, a round

number focal point may exist at 60 percent (which corresponds to £3.00

at time 0).

Disagreements

It is sometimes argued that the fact that subjects often fail to agree imme-

diately in bargaining games of perfect information is a serious obstacle to

a game-theoretic interpretation of their behavior. It is true that, in the

models of this paper, all equilibrium o¤ers will be accepted in equilibrium

and hence any refusal is an out-of-equilibrium phenomenon. However, al-

though he accepts in equilibrium, the responder in these models is always

7. For example, under regime 0, a subgame-perfect analysis predicts 47.42 percent for player
II when player I makes the first o¤er, and 52.67 percent when player II makes the first o¤er.
These are both approximated by the 50 percent predicted by D-M-O.
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indi¤erent between accepting and refusing. Thus a refusal by a responder

does not necessarily represent a large deviation from the game-theoretic

prediction if deviations are measured in terms of the responder’s antici-

pated payo¤s.8

This discussion is particularly relevant to disagreements in the ‘‘high

optional’’ games of regime 1. A subgame-perfect equilibrium analysis of

such games predicts that player I will o¤er player II approximately

b ¼ 64 percent at time 0, and that this will be accepted. But such an o¤er

is approximately equal to player II’s outside option in such games. If he

refuses the o¤er made to him and instead takes his outside option, it is

true that he deviates from what the analysis predicts, but the deviation is

negligible in terms of the payo¤ he receives. For this reason we count

disagreements under the high optional regime 1 as being supportive of

the game-theoretic prediction (i.e., D-M-O) rather than dismiss them as

‘‘noise.’’

We do not do the same for ‘‘forced breakdown’’ games. The bargaining

in the games of this type that the subjects played for money was unilater-

ally terminated by the computer after a minimum of seven o¤ers had

been rejected. Disagreements in forced breakdown games therefore

convey little information relevant to this study, beyond the fact that dis-

agreements do indeed occur even though they are not predicted.9 The

same goes for the ‘‘low optional’’ games of regime 0.

The Data

A statistical analysis appears in section 6.7. Figure 6.2 summarizes the

data for the high b regimes 1 and 3. The di¤erence of behavior between

optional breakdown and forced breakdown games is very marked. At

this point we note only that game theory predicts the observed behavior

much better than the fairness/focal alternatives listed in Section 2 that

take no account of strategic issues. It is not surprising that 50:50 does

not do well when player II can get 64 percent without the consent of his

8. Moreover a prediction based on a subgame-perfect equilibrium analysis presupposes that
it is common knowledge that the players are ‘‘perfectly rational.’’ If subjects entertain doubts
on this score, one might also see deviations from equilibrium by proposers who are ‘‘testing
the rationality’’ of their opponent. One might then also observe deviations by responders
who anticipate such behavior from their opponent in the future. This latter point is relevant
to what follows in the text on opting out.

9. Note in particular that breakdown in the ‘‘high forced’’ regime 3 is not compatible with
D-M-O when the latter is regarded as a ‘‘fairness’’ criterion because, although player II gets
b, player I only gets a instead of his ‘‘fair’’ share of 1� b.
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partner,10 but it is instructive that S-T-D predicts very much better than

D-M-O in forced breakdown games, while D-M-O predicts better than

S-T-D in optional breakdown games.

The results for the low b regimes 0 and 2 are summarized in figure 6.3.

Here the di¤erences between optional breakdown and forced breakdown

are slight. The round number focal point at 60 percent (£3.00 at time 0) is

perhaps responsible for producing this result, since it lies roughly midway

between D-M-O (50 percent) and S-T-D (66 percent).

Figure 6.2
A comparison of the paid ‘‘high optional’’ games with the paid ‘‘high forced’’ games for the
£5 cake. An open square (j) refers to the games that ended in a breakdown, and a solid
square (n) to those that did not. The solid circles (f) on the horizontal axis at 50, 60, 70,
and 80 percent indicate possible round number focal points. These percentages of £5 are
£2.50, £3.00, £3.50, and £4.00 respectively.

10. Although a number of researchers have observed systematic violations of individual ra-
tionality in related contexts.
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To examine this possibility, we ran the low b regimes 0 and 2 again,

but with the £5.00 cake replaced by an $11.00 cake. Subjects were told

that their dollar winnings would be paid to them in pounds sterling at

the then current exchange rate. Otherwise, the circumstances of the exper-

iment were identical. The point of doing this was to create two round

number focal points (at $6.00 and $7.00) between the D-M-O prediction

of 50 percent and the S-T-D prediction of 66 percent. Figure 6.4 shows

the sharper date obtained. The di¤erences between optional breakdown

and forced breakdown games are statistically significant (section 6.7).

Game theory cannot be said to predict these data well, but it does better

than the fairness/focal alternatives being considered.

Figure 6.3
A comparison of the paid ‘‘low optional’’ games with the paid ‘‘low forced’’ games for the
£5 cake. An open square (j) refers to the games that ended in a breakdown, and a solid
square (n) to those that did not. The solid circles (f) on the horizontal axis at 50, 60, 70,
and 80 percent indicate possible round number focal points. These percentages of £5 are
£2.50, £3.00, £3.50, and £4.00 respectively.
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6.5 Questionnaire

Interesting results were obtained from the subjects’ answers to the ques-

tionnaire (appendix B). We discuss only11 the answers to questions 5, 6,

and 7. In these questions, the subjects were asked to indicate what they

felt to be a fair way to split the cake in three situations. In each situation,

Figure 6.4
A comparison of the paid ‘‘low optional’’ games with the paid ‘‘high optional’’ games for the
$11 cake. An open square (j) refers to the games that ended in a breakdown, and a solid
square (n) to those that did not. The solid circles (f) on the horizontal axis at 45, 55, and
64 percent indicate possible round number focal points. These percentages of $11 are $5.00,
$6,00, and $7.00 respectively.

11. It is not clear to us how much weight can be given to the answers to question 8. For the
record, we observe that 50 percent of the subjects were unambiguously of the view that it is
socially acceptable to use one’s bargaining power, and 17 percent were unambiguously of the
opinion that one ought to ‘‘play fair.’’
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player I’s breakdown share of the cake was a ¼ 0:04 but player II’s was

successively b ¼ 0:04, b ¼ 0:36, and b ¼ 0:64. The unanimous response to

question 5 ða ¼ b ¼ 0:04Þ was that 50:50 is fair in this symmetric situation.

The answers to question 6 ðb ¼ 0:36Þ and question 7 ðb ¼ 0:64Þ are

summarized in figures 6.5 and 6.6. Figure 6.5 shows the views about fair-

ness expressed by all those who had experienced optional breakdown

games (in which D-M-O is strategically optimal). The x-coordinate of

a point12 in the figure shows what was asserted to be fair in a low-

breakdown payo¤ situation (b ¼ 36 percent) and the y-coordinate shows

what was asserted to be fair in a high-breakdown payo¤ situation (b ¼ 64

percent). Figure 6.6 similarly shows the views of all those who had expe-

rienced forced breakdown games (in which S-T-D is strategically optimal).

Figure 6.5
The share of the cake for player II proposed as ‘‘fair’’ for low and high b situations by sub-
jects who had experienced optional breakdown games.

12. Too much significance should not be attached to the precise location of points in figures
6.5 and 6.6. For example, in figure 6.6, most subjects simply proposed the S-T-D point.
These choices have been indicated by clustering them as close to the S-T-D point as possible
without overlaps. Also subjects were not always very neat in marking their choice of a ‘‘fair
division’’ on their questionnaires.

206 Chapter 6



The di¤erence between figures 6.5 and 6.6 is striking. (See section 6.7

for a statistical analysis.) Note, in particular, the following features:

1. In both figures a small group (around 10 percent) insists that 50:50 is

‘‘fair’’ despite the asymmetries they are invited to contemplate.

2. Those who had experienced forced breakdown games (S-T-D strategi-

cally optimal) were very much more in agreement about what is fair than

those who had experienced optional breakdown games (D-M-O) strategi-

cally optimal). Results for optional breakdown games were very much

more dispersed.

3. In forced breakdown games, S-T-D predicts what was asserted to be

fair quite well, and D-M-O predicts very badly.

4. In optional breakdown games, the situation is more confused. How-

ever, D-M-O is no longer irrelevant to the data.

We do not feel that these results are conclusive, but they do suggest

that people’s views about what is fair may be heavily influenced by their

Figure 6.6
Share of the cake for player II proposed as ‘‘fair’’ for low and high b situations by subjects
who had experienced forced breakdown games.
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strategic experiences in situations about which they do not have estab-

lished preconceptions.

6.6 Unlearning

We were disappointed not to have sharper results under the optional

breakdown regimes 0 and 1, since we had obtained sharp results in a pre-

vious study13 of optional breakdown games (Binmore et al. 1989c), with-

out apparent interference from round number focal points. However, in

this previous study, subjects did not play repeatedly and hence had little

opportunity to learn. It is therefore of interest to compare the results of

our previous study with those shown in figure 6.7 for the first four prac-

tice games under the optional breakdown regimes 0 and 1 in the case of

the £5.00 cake.14

The results from these practice games and those from our previous

study are similar, in that D-M-O predicts the data quite well in absolute

terms, and overwhelmingly better than S-T-D. The drift away from this

distribution is evident from figure 6.3. One can tell a story for the high b

regime 1 about subjects learning that player II needs an epsilon on top of

what is available from opting out if he or she is to be kept at the nego-

tiating table. However, this would not seem to explain why player II’s

payo¤s should improve over time under the low b regime 0. Presumably

round number focal points are somehow relevant. Evidence in support of

this would seem to be provided by the di¤ering results obtained for the

low b regime 0 with an $11 cake (figure 6.4). More research will perhaps

provide an explanation for what is going on here. For the moment, the

only safe conclusion would seem to be that if people are indeed ‘‘natural

gamesmen,’’15 then experience in this context would appear to lead to

some ‘‘unlearning’’ of their game-playing skills.

6.7 Statistical Analysis

Here we present the results of nonparametric tests of the null hypothesis

that the data sets presented in figures 6.2, 6.3, 6.4, and 6.7 are generated,

13. The size of the cake and the values of a and b were not the same.

14. We did not run regime 1 with an $11 cake. The results from practice games under re-
gime 0 for the $11 cake are very similar to those for the £5 case. Only the first four practice
games are reported, so the number of observations in each of the histograms of figures 6.2,
6.3, 6.4, and 6.7 is the same.

15. A view that has been wrongly attributed to us in the past.
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pair by pair, by the same stochastic process. A variety of tests suitable for

testing this hypothesis exists. The most commonly used in this context

seem to be the Kolomogorov-Smirnov (KS), Cramèr-von Mises (CM),

and Anderson-Darling (AD) tests. Each compares empirical cumulative

density functions (cdf ’s). A recent new test of Epps and Singleton (ES)

(1986) compares empirical moment-generating functions.

The tests above are ‘‘nonparametric’’ in the sense that their significance

levels are not a¤ected by the actual stochastic process generating the

observed data. However, the powers of the tests do depend on the spe-

cifics of the two stochastic processes generating the data. Little is known

about the finite sample size ranking of these tests by their powers for var-

ious types of stochastic processes. Consequently we conducted a Monte

Figure 6.7
The first four practice games with optional breakdown for both low and high b in the case of
the £5 cake. A open square (j) refers to the games that ended in a breakdown, and a solid
square (n) to those that did not. The solid circles (f) on the horizontal axis at 50, 60, 70, and
80 percent indicate possible round number focal points. These percentages of £5 are £2.50,
£3.00, £3.50, and £4.00 respectively.
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Carlo study in an e¤ort to deduce if one test or another might ‘‘domi-

nate’’ the others by o¤ering largest power in the context of our study.

The results of this study are presented in appendix C. The alternative

distributions examined were selected so as approximately to mimic the

empirical cdf ’s observed. We concluded that none of the four tests domi-

nated the others, although the CM and AD tests generally performed at

least as well as the KS and ES tests. These findings contrast with the

results of the Monte Carlo study of Forsythe et al. (1988), who found

that as a pair, the AD and ES tests dominated the others. A number of

reasons explain the di¤ering conclusions. In particular, di¤erent sample

sizes were used (25 in Forsythe et al. 1988 and 40 here) and di¤erent al-

ternative hypotheses were examined.

The test results are presented in table 6.2. The ‘‘value’’ columns report

the observed values of the statistics. The 10 percent and 5 percent col-

umns report if the tests retain the null hypothesis of no di¤erence in dis-

tribution or reject it, at the 10 percent and 5 percent significance levels,

respectively. The tests all reject the null hypothesis of no di¤erence in the

cases of figures 6.2 and 6.7, and all retain the null hypothesis for figure

6.3. The data for figure 6.4 lead to a strong rejection of the null hy-

pothesis by the CM and AD tests, a rejection by the KS test at the 10 per-

cent significance level, and a retention by the ES test (the prob-value of

the ES test is 16.5 percent).

The two histograms of figure 6.4 suggest that the di¤erences in the two

data sets are, first, a shift in central location and, second, a di¤erence in

the size of a mass point. The Monte Carlo cases 2, 3, and 4 described in

appendix C investigate the relative powers of the four tests in the presence

of shifts of central location and/or variance. Cases 8 and 9 were intended

to reveal the tests’s relative powers when a substantial mass point was

introduced. In all these cases the ES test is dominated (sometimes

sharply) at either significance level by the CM or AD test. For these rea-

Table 6.2

Test employed

KS CM AD ES

Value 10% 5% Value 10% 5% Value 10% 5% Value 10% 5%

Nonpara-
metric
test results

Figure 6.2 0 � 845 Yes Yes 5 � 84 Yes Yes 25 � 9 Yes Yes 413 Yes Yes

Figure 6.3 0 � 180 No No 0 � 228 No No 1 � 05 No No 9 � 58 No No

Figure 6.4 0 � 256 Yes No 0 � 736 Yes Yes 3 � 77 Yes Yes 14 � 2 No No

Figure 6.7 0 � 842 Yes Yes 4 � 48 Yes Yes 22 � 2 Yes Yes 155 Yes Yes
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sons we attribute more weight to the strong rejections of the null hypoth-

esis of no di¤erence by the CM an AD tests than to the somewhat weaker

retention of the null hypothesis by the ES test.

We also tested the null hypothesis that the data presented in figures 6.5

and 6.6 were generated by the same bivariate process. There is a dearth of

two-dimensional nonparametric tests available for this task. Extensions of

the KS and Wald-Wolfowitz tests from one dimension to two have been

developed by Friedman and Rafsky (1979), but as yet they are poorly

tabulated. Accordingly we adopted the following approach, which mimics

techniques used by spatial statisticians. We categorized the data points

into six regions by dividing the rectangle ½30; 100� � ½30; 100� vertically at

57.5 and horizontally at 57.5 and 71.5. The regions are labeled 1 to 6

from top left to bottom right. 57.5 is the horizontal coordinate halfway

between the D-M-O (and 50:50) and S-T-D points. 71.5 is the vertical co-

ordinate halfway between the D-M-O and S-T-D points. 57 is the vertical

coordinate halfway between the D-M-O and 50:50 points. Any data

points occurring on a boundary were assigned to the lower region. Doing

so weakens the case for rejection of the null hypothesis. The respective

numbers of data points in the regions are 10, 14, 20, 9, 12, and 1 for fig-

ure 6.5, a total of 66 data points, and 3, 48, 2, 6, 8, and 0 for figure 6.6, a

total of 67 data points. The null hypothesis under test is that the two data

sets are generated by the same stochastic process. Accordingly we esti-

mate the probability of a data point being generated for a particular re-

gion by combining the two samples and then computing the relative

frequencies for the region from the combined sample of 133 data points.

The respective probabilities so assigned to the six regions are 13=133,

62=133, 22=133, 15=133, 20=133, and 1=133. These probabilities imply

that the marginal and conditional probabilities for a data point ðx1; x2Þ
generated by the estimated stochastic process are

Prð30a x1 a 57:5Þ ¼ 55

133
;

Prð57:5 < x1 a 100Þ ¼ 78

133
;

Prð30a x2 a 57 j 30a x1 a 57:5Þ ¼ 20

55
;

Prð30a x2 a 57 j 57:5 < x1 a 100Þ ¼ 1

78
;

Forced Breakdown 211



Prð57 < x2 a 71:5 j 30a x1 a 57:5Þ ¼ 22

55
;

Prð57 < x2 a 71:5 j 57:5 < x1 a 100Þ ¼ 15

78
;

Prð71 < x2 a 100 j 30a x1 a 58Þ ¼ 13

55
;

Prð71:5 < x2 a 100 j 57:5 < x1 a 100Þ ¼ 62

78
:

We used this bivariate stochastic process to generate two independent

samples, the first of size 66 and the second of size 67. The ‘‘distance’’ be-

tween the two samples was then computed as the sum, over the six

regions, of the absolute values of the di¤erences in the relative frequen-

cies. We generated 1,500 pairs of samples and computed the empirical

distribution of the resulting 1,500 values of the distance statistic. The

range of the statistic is ½0; 2�, but the observed empirical distribution was

concentrated almost entirely between 0.1 and 0.5; the largest observed

value was 0.713. The value of the statistic for the data displayed in figures

6.5 and 6.6 is 1.009. We conclude that the null hypothesis that the data

presented in figures 6.5 and 6.6 were generated by the same process can

be rejected with very high confidence. This conclusion would be unaf-

fected by moderate changes to the positions of the boundaries of regions

1 to 6.

6.8 Concluding Remarks

The results of this experiment are consistent with the view that if the pre-

conceived rules-of-thumb with which players may originally approach a

game are not too firmly established, then they can be displaced by more

sophisticated rules that take better account of the strategic realities of the

situation. Moreover there is evidence that subjects are willing to justify

their new behavior by asserting that it is fair. It is not argued that these

conclusions support the view that fairness/focal theories are mistaken.

Nor is it claimed that subjects are natural gamesmen. Our belief is that

a more sophisticated type of theory than either of these alternatives is

necessary.

We do not believe that people are natural gamesmen, if the term ‘‘nat-

ural gamesman’’ is taken to mean an individual who is familiar with all
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the results of game theory, who is capable of lightning mental calcula-

tions of great complexity, and who takes for granted that other individ-

uals selected at random from the population at large have the same

characteristics as themselves. In so far as people behave like gamesmen,

it is presumably because they are capable, to some extent, of adapting

their behavior to new situations. We do not believe that the manner in

which people learn in game-like situations is optimal or even close to op-

timal. It is clearly often a hit-and-miss a¤air that operates below the level

of consciousness to a considerable degree. Nevertheless, we believe that

game theory can be useful in predicting the outcome of such learning

processes.

One may speculate that people are equipped with rules-of-thumb that

they use to settle conflicts of interest that arise in real-life bargaining sit-

uations and elsewhere, and that these rules-of-thumb embody fairness

criteria or depend in other ways on salient or focal features of the envi-

ronment in which they are used. We will follow Dawkins (1976) in refer-

ring to such rules-of-thumb as memes. It seems unlikely that people think

very hard about these memes when using them in the real-life situations

to which they are adapted. One tends to question ingrained habits or cus-

toms only when their use generates unsatisfactory results.

What triggers a switch from one meme to another? We have no general

theory to propose. Certainly this experiment was not designed to answer

such a question. Its design specifically excludes the rich variety of conver-

sational or contextual cues that presumably prompt the substitution of

one meme for another under the conditions of everyday life. At best the

experiment only serves to demonstrate that such switches from one meme

to another can occur, and that game theory can be relevant in predicting

the nature of the switch. There are evolutionary reasons why this may be

thought plausible. One may ask: Given a meme that is established in a

human population, how does it manage to survive? Why does it not get

displaced by an alternative meme? The game theorist’s answer is that it

survives because it is adapted to the environment in which it is commonly

used. That is to say, it prescribes behavior that is in equilibrium.16 People

will not usually be conscious of this fact and may be quite truthful in

16. It goes without saying that this is a gross simplification. One must take into account the
complexity of the meme’s environment. The more complex the environment, the more di‰-
cult it will be for better adapted memes to surface, and the longer it will take for them to
become established. One must also consider the cost to individuals of implementing compli-
cated strategies. And so on.
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reporting that they are unmotivated by strategic considerations. But it is

not necessary for individuals to know why a particular meme survives in

order for it to survive.

If this view is correct, a least in some circumstances, then one should

expect to observe memes in operation that are triggered by hints or cues

in the environment that match the strategic realities of the situation. We

hope that the current paper will be seen as a confirmation of the viability

of such a standpoint rather than as just a refutation of a naı̈ve version of

the fairness/focal explanation of human behavior. Subjects were put in

situations for which life did not seem to have equipped them in advance

with a strongly established rule-of-thumb. Behavior then evolved that

correlated with the strategic situation, and many subjects seemingly

developed attitudes toward fairness that allowed them to rationalize this

behavior in terms that were familiar to them.

This behavior of our subjects is clearly not supportive of those who

might wish to argue that ‘‘fairness memes’’ are altogether irrelevant in

describing the behavior of subjects in such laboratory experiments as

ours. Moreover we do not doubt that it is possible to construct experi-

ments in which adaptation to the environment of the kind we observed

does not occur, even with large incentives and long time spans for learn-

ing. One might frame the experiment in such a way as to trigger a form of

the fairness meme that is very firmly established for use in a particular

real-world context but which bears only a surface resemblance to the

problem faced in the laboratory.17 Alternatively, it would not be hard to

interfere with the learning process by confusing the issues facing the sub-

jects. Indeed we seem to have done so inadvertently under regimes 0 and

2 with the £5 cake by introducing a round number focal point at £3.00.

Such experiments, confirming that fairness is relevant to the way people

resolve bargaining problems, would not and do not refute the view that

we are defending here.

In summary, in defending the relevance of game theory to actual bar-

gaining behavior, we are not denying that fairness/focal theories are also

relevant. We deny only that a theory of this type that ignores strategic

considerations is likely to get to what lies at the heart of human bargain-

ing behavior. Most of all we want to emphasize the importance of learn-

ing and adaptation in this context.

17. Invoking the meme in such pathological circumstances is, of course, precisely what one
would wish to do if one’s aim were to study the mechanics of a particular established meme.
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Appendix A: The Instructions

Di¤erent written instructions were o¤ered to subjects depending on the

regime of the game they were to play, and whether they would be player

I or player II in their first bargaining session. The instructions below are

for a subject about to begin as player I under regime 1. The instructions

for a subject about to begin as player I under regime 3 were identical with

the exception of the fourth paragraph. This was replaced, under regime 3,

by the paragraph quoted in section 6.3. Instructions for regimes 0 and 2

were the same except that the figure of £3.20 was replaced by £1.80. The

necessary modifications for a subject about to begin as player II will be

evident.

Bargaining Experiment: Regime 1, Subject 0

This is an experiment in which you will bargain via the computing equipment in

front of you with the persons in the other booths. There will be ten separate and

distinct bargaining sessions after each of which the person with whom you are

paired may change. The initial six sessions are for practice. The remaining four

sessions are ‘‘for real’’. The other four persons were recruited in the same way as

you and the order in which you and they will be paired has been chosen at

random.

In each of the ten sessions a ‘‘cake’’ which is always nominally worth £5 will be

available for the two bargainers to share, provided they can come to an agreement

on how it should be split. You and the other person will alternate in making pro-

posals until either a proposal is accepted or the negotiations break down. You will

make the first proposal in the first session but in five of the ten sessions it will be

the other person who makes the first proposal.

Once a proposal is accepted, each of the two parties to the agreement will

have his or her agreed share credited to their accounts. BUT, if the negotiations

get broken o¤, the opportunity to split the cake will disappear. Instead, each

player will receive a BREAKDOWN payment. In the first session, your break-

down payment is 20p and the other person’s is £3.20. But in five of the ten ses-

sions, it will be your breakdown payment which is £3.20 and the other person’s

which is 20p.

Breakdowns can only occur immediately after a proposal has been refused. It is

the person who just refused a proposal who decides whether or not to break o¤

the negotiations. If the decision is to continue bargaining, the cake SHRINKS

TO 90% OF ITS PREVIOUS SIZE and so, of course, do the breakdown

payments.

The final four sessions are for ‘‘real’’ and we will pay you all the money you

make in these sessions immediately after the last bargaining session in which you

are involved. The preceding six sessions are for practice only. In these sessions

you will have to pretend that you are bargaining over real money.
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In summary, you have to remember that each proposal which is made may be

the last. But even if the negotiations get broken o¤, the session will not be a com-

plete wash-out for you since you will still get your breakdown payment.

This is not an experiment to find out what sort of person you are. When we see

the results, we shall neither know nor care who did what. We are only interested

in what happens on average. So please do not feel that some particular kind of

behavior is expected of you.

Before the first bargaining session, there will be a demonstration of the comput-

ing equipment. The demonstration program is started by pressing the SPACE

BAR. But there is no need to hurry. You may have to wait for the other persons

to be ready anyway. Read the instructions again if you think this may be helpful,

or call the assistant if you need a question answered.

Appendix B: The Questionnaire

It would help us if you would give brief answers to the following

questions:

1. Where were you recruited?

2. Were the instructions and the demonstration program clear?

3. Were there any hitches during the experiment?

4. Why did you bargain the way you did?

5. On the scale below, indicate what you feel would be a fair way to split

the cake if person 1’s and person 2’s breakdown payments are both

£0.20.

6. On the scale below, indicate what you feel would be a fair way to split

the cake if person 1’s breakdown payment is £0.20 and person 2’s break-

down payment is £1.80.

Figure 6.8

Figure 6.9
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7. On the scale below, indicate what you feel would be a fair way to split

the cake if person 1’s breakdown payment is £0.20 and person 2’s break-

down payment is £3.20.

8. Is this the sort of situation in which people ought to ‘‘play fair’’ or is it

socially acceptable for them to make what use they can of whatever bar-

gaining power they have?

9. Would you bargain in the same way if you were put in the same situa-

tion tomorrow?

Appendix C: The Monte Carlo Study

The nonparametric test statistics used were the Kolmogorov-Smirnov

(KS), Cramèr-von Mises (CM), Anderson-Darling (AD), and Epps-

Singleton (ES) statistics. Let F1ðxÞ and F2ðxÞ denote two cumulative den-

sity functions (cdf ’s) defined on an observation space X A R. The null

hypothesis is H0 : F1 1F2. The alternative, HA, is that H0 is false. Let

F̂F1 and F̂F2 denote the empirical cdf ’s generated by two independent ran-

dom samples, of sizes n1 and n2, respectively, from X . Let F̂F12 denote the

empirical cdf generated by the combined sample, of size n1 þ n2. The KS,

CM, and AD test statistics compare the empirical cdfs F̂F1, F̂F2, and F̂F12.

They are defined as follows:

KS1 sup
x AX

jF̂F1ðxÞ � F̂F2ðxÞj;

CM1
1

n1
þ 1

n2

� �ð

X

½F̂F1ðxÞ � F̂F2ðxÞ�2 dF12ðxÞ;

and

AD1
1

n1
þ 1

n2

� �ð

X

ðF̂F1ðxÞ � F̂F2ðxÞÞ2

F̂F12ðxÞ½1� F̂F12ðxÞ�
:

The ES statistic measures the distance between the empirical characteris-

tic functions generated by the two samples. For an arbitrary but fixed

Figure 6.10
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integer Jb 1, let ft1; . . . ; tJg be real and positive numbers. Let Xij denote

observation i from sample j. The empirical characteristic function for

sample j is

fjðtkÞ1
1

nj

Xnj

i¼1

ðcos tkXij þ i sin tkXijÞ

for k ¼ 1; . . . ; J and for j ¼ 1; 2:

Denote the 2J � nj matrix of the real and imaginary parts of fj by

Gj ¼

cos t1X1j cos t1X2j � � � cos t1Xnj j

sin t1X1j sin t1X2j � � � sin t1Xnj j

..

. ..
. ..

.

cos tJX1j cos tJX2j � � � cos tjXnj j

sin tJX1j sin tJX2j � � � sin tJXnj j

0

BBBBBBB@

1

CCCCCCCA

for j ¼ 1; 2:

The average row sums of Gj are denoted by the 2J � 1 vector

gj ¼
1

nj

Xnj

i¼1

cos t1Xij ;
Xnj

i¼1

sin t1Xij ; . . . ;
Xnj

i¼1

cos tJXij;
Xnj

i¼1

sin tJXij

 !T

for j ¼ 1; 2:

The Epps-Singleton statistic is

ES1 c � 2n1n2

n1 þ n2
ðg1 � g2ÞTðŜS1 þ ŜS2Þ�1ðg1 � g2Þ;

where ŜS1 and ŜS2 are the variance-covariance matrices of G1 and G2, re-

spectively, and c is a small sample correction factor. The ES statistic is

asymptotically distributed as a w2 variable with 2J degrees of freedom.

We chose sample sizes of n1 ¼ n2 ¼ 40 for our study since the sizes of

our data sets are close to these values. Following the recommendations

given in Epps and Singleton (1986) for such sample sizes, we chose

J ¼ 5, ðt1; t2; t3; t4; t5Þ ¼ ð0:4; 0:8; 1:2; 1:6; 2:0Þ and c ¼ 0:849.

The alternative hypotheses used in our study are listed in table 6.3. The

table also presents the estimated powers of each test, for significance

levels of 10 and 5 percent. 10,000 independent pairs of samples of 40

data were generated for each case and the power estimates for the 10

and 5 percent significance levels were computed as the fraction of the
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Table 6.3

Estimated powers of the test statistics

Distributions KS CM AD ES
Case
number F1 F2 10% 5% 10% 5% 10% 5% 10% 5%

1 U [40, 85] U [60, 80] 0.997 0.975 0.993 0.970 0.999 0.995 0.999 0.996

2 N(50, 100) N(65, 100) 1.000 0.999 1.000 1.000 1.000 1.000 1.000 0.999

3 N(50, 400) N(65, 400) 0.880 0.723 0.936 0.883 0.939 0.892 0.582 0.452

4 N(50, 100) N(65, 400) 0.998 0.983 0.998 0.994 0.999 0.997 0.982 0.963

5 U(30, 70) N(50, 100) 0.208 0.060 0.211 0.097 0.249 0.121 0.353 0.240

6 50 with prob. 0.2;
N(50, 100) with
prob. 0.8

N(50, 100) 0.238 0.088 0.212 0.104 0.196 0.098 0.219 0.140

7 50 with prob. 0.2;
N(50, 400) with
prob. 0.8

N(50, 400) 0.232 0.088 0.207 0.098 0.192 0.093 0.221 0.137

8 50 with prob. 0.4;
N(50, 100) with
prob. 0.6

N(50, 100) 0.662 0.355 0.778 0.571 0.720 0.513 0.671 0.558

9 50 with prob. 0.4;
N(50, 400) with
prob. 0.6

N(50, 400) 0.657 0.351 0.774 0.569 0.716 0.515 0.669 0.558
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10,000 replications for which the null hypothesis that F1 1F2 was

rejected at these significance levels.

The table suggests that no test dominates the others at the 10 percent

level. The KS test never wins at the 5 percent significance level. The CM

and AD tests generally do better than the KS and ES tests at either signif-

icance level for cases 2, 3, and 4, which present cases of shifts of central

location and/or variance. The CM test does best at recognizing di¤er-

ences in distribution due to the existence of a substantial mass point. (The

ES test is nonparametric even for discontinuous cdfs. However, the KS,

CM, and AD tests assume continuous cdf ’s and so are not truly nonpara-

metric for cases 6 through 9.) The results above contrast with those

obtained by Forsythe et al. who selected the AD and ES tests over the

others on the basis of a study using samples of size 25. Our study’s results

left us unable to discard any of the four tests.
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7 Lost Opportunities

The Coase theorem encapsulates a view that has held sway since at least

the time of Edgeworth (1881). It says that rational bargainers with negli-

gible transaction costs will agree on an e‰cient outcome. If we exclude

some pathological cases, modern game theory accords with the Coase

theorem in the case where information is perfect.1

The Rubinstein (1982) outcome remains e‰cient even when the costs of

delay in his model are large. Layfolk are often disappointed that all the

action in the Alternating-O¤ers Game reduces to an immediate accep-

tance of the first o¤er made. But why would perfectly rational people

fool around when everybody’s cards are on the table right from the start?

However, any perfectly rational subjects who find themselves in real

laboratories would be stupid to assume that their fellow subjects are also

perfectly rational. It therefore isn’t perhaps surprising that the Coase the-

orem doesn’t work well in the Alternating-O¤ers Game. Sometimes there

are many refusals before an agreement is reached.

Players commonly shade down their demands during this period until a

compromise is reached. In doing so, they must pay the cost of delaying

while learning about their opponent. It is only when the shares finally

agreed are evaluated as a fraction of the cake available at the time of

agreement that the Rubinstein prediction fits reasonably well (chapter 5).

A possible interpretation is that it takes time before an implicit consen-

sus emerges between the players that both are su‰ciently rational for

Rubinstein’s theory to work. In any case, at least as much learning is

going on within each Rubinstein game as between games.

Opting Out

A more fundamental source of ine‰ciency arises when the Rubinstein

theory predicts that one of the player’s outside options will be active.



This happens if Eve has an outside option that exceeds what she would

get if the theory were applied without outside options. The Rubinstein

theory then says that Adam will o¤er Eve her outside option, and that

she will accept in equilibrium, although she is then actually indi¤erent be-

tween accepting and refusing. Students who question her predicted behav-

ior in such situations are told that Adam can always prevent her opting

out by o¤ering her an extra few pennies. But perhaps he will underesti-

mate the number of extra pennies he needs to o¤er, and so provoke her

into irrevocably ending their negotiation by taking up her outside option.

Although the contract literature seems to ignore the problem, such

hard bargaining when a deal is just on the edge being worthwhile for one

of the players must surely often result in potentially e‰cient deals falling

through. In any case, this is what happens in the laboratory. Indeed, if it

were appropriate to count as negative the cases in which Eve actually

opts out when she should strictly accept an o¤er equal to her outside op-

tion, then the support the experiment o¤ers for Rubinstein’s theory would

be markedly diminished.

The Outside Option Game

In tandem with our experimental work on how people learn in laboratory

games, my coauthors and I have also sought to make theoretical contri-

butions to the theory of adjustment processes in games. In the paper

reported in this chapter, we join these two strands of research.

Because the Rubinstein bargaining model is too complicated for our

theoretical capacity, we return to the relatively simple Nash Demand

Game of chapter 2 (but without any fuzzing of the boundary). The op-

portunity for Eve to take an outside option, leaving Adam with nothing

is then added to her strategies.

It is no surprise that the Coase theorem should frequently fail in the

laboratory when Eve’s outside option is high. Nor is it a surprise by now

that the subjects show a strong tendency to characterize their own experi-

ence in the laboratory as what fairness recommends. But can we make

theoretical sense of how and why subjects don’t learn to bargain more

e‰ciently as they gain experience?

I think that we are looking at an example of what Samuelson and I call

a hanging valley in our papers on evolutionary drift (Binmore and

Samuelson 1997). Figure 7.1 shows a hanging valley in what theoretical

biologists call a ‘‘fitness landscape.’’ We normally think of a stable equi-

librium as lying by itself at the bottom of a fitness valley, but the floor of

a valley in a fitness landscape derived even from very simple games com-
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monly consists of a whole connected component of Nash equilibria. For

example, the set N in figure 3.3 is the floor of such a valley for the unper-

turbed replicator dynamics in the Ultimatum Minigame. A similar hang-

ing valley for the three-legged Centipede Game features in the second

paper of appendix B.

In the Outside Option Game, a Nash equilibrium in which Eve is left

indi¤erent between taking up her outside option or planning to accept

an o¤er from Adam equal to her outside option is likely to have similar

properties to the escape equilibrium in the Ultimatum Minigame. But

there is nowhere obvious for the escape trajectory to go in the Outside

Option Game but back to the set of equilibria from which it just

escaped.2

If this speculative story is right, then we shouldn’t expect evolution to

cure the ine‰ciencies caused by breakdowns in the Outside Option Game,

even if it were given all eternity to accomplish the task. At best we should

expect to see the system drift in response to unmodeled noise when the

evolutionary pressures fall away in the vicinity of the game’s connected

component of pure Nash equilibria. For high values of the outside op-

tion, the system will then continually be wandering into breakdown

territory.

We don’t succeed in capturing the complexity of this story with our at-

tempt at a theoretical model in the paper. Current theoretical tools aren’t

really up to the task. But perhaps the e¤ort that we put into trying to

make sense of our data will be compared favorably with the naive stories

of those who see no role at all for trial-and-error learning in bargaining

experiments.

Figure 7.1
A hanging valley in a fitness landscape. A dynamic system can get trapped in such a hanging
valley for very long intervals before being flushed out by an unlikely conjunction of random
shocks. It can then fall back into the same hanging valley—as in an Escher sketch.
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Hard Bargains and Lost Opportunities

Ken Binmore, Chris Proulx, Larry Samuelson, and Joe Swierzbinski

Orthodox economic theory assumes that the entrepreneurial spirit will

call forth individuals or institutions to exploit gains from trade wherever

they exist. Implicit in this assumption is the understanding that the parties

to any potential deal will agree on a division of the surplus providing

each with a share su‰cient to ensure their cooperation.

When bargaining over the division of a surplus, each agent has an in-

centive to extract the largest possible share consistent with the other

parties being willing to continue in the relationship. Demands in an

alternating-o¤ers negotiation are chosen to drive the responder to indif-

ference between accepting and rejecting (Rubinstein 1982). Demands in

a simultaneous-o¤er negotiation are chosen so that not even the tiniest

scrap of surplus remains unclaimed (Nash 1953). In equilibrium, respond-

ing players accept in the former case and opposing players make compat-

ible demands in the latter. But only a small misjudgment on either side

would be enough to delay agreement or to destroy it altogether. The equi-

librium outcome therefore calls for agreement on an e‰cient deal, but

the players’ equilibrium strategies leave them precariously perched on

the edge of disagreement.

Hard bargaining is entirely consistent with e‰ciency in a world of per-

fect information with perfectly rational agents who never make mistakes,

but the real world is less accommodating. The leap from models filled
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son enjoyed the hospitality and support of the Department of Economics at the University
of Bonn (Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 303) and the Institute
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with rational agents to the world of real people is often justified by argu-

ing that learning, imitation, or the discipline of the market will cause low-

payo¤ behavior to be supplanted over time by high-payo¤ behavior

(Alchian 1950; Friedman 1953). If enough money is involved, the school

of hard knocks may indeed eventually teach its graduates to approximate

the behavior of the idealized agents of orthodox economic theory, but

there is no guarantee that they will learn to reproduce all the fine details

of perfectly rational bargaining strategies. Instead of reaching a compro-

mise just short of disagreement, one must expect that a bargainer will

sometimes overreach himself just enough to push his opponent over the

edge. The chance of reaching an e‰cient deal will then be lost. Even in a

world that is only marginally imperfect, a tension therefore arises between

the intuition that agents will learn to drive a hard bargain and the claim

that economic opportunities will seldom remain unexploited.

Coase (1960) argues that this tension between e‰ciency and distribu-

tion will be resolved in favour of e‰ciency if transactions costs are negli-

gible. Rubinstein’s analysis of alternating-o¤ers bargaining models with

perfect information can be regarded as showing that e‰cient outcomes

will also appear even when the transactions costs of refusing an o¤er are

not negligible (1982). However, the experiments of Binmore et al. (1989,

1991) with such bargaining models show that substantial fractions of

agents ine‰ciently opt out despite high discount factors (and hence low

transactions costs). In contrast to such evidence, the literature on contract

theory typically reconciles bargaining and e‰ciency by assuming that

take-it-or-leave-it o¤ers of no more than the responder’s outside option

will necessarily be accepted, and that responders will opt in to relation-

ships knowing that they will face such o¤ers.3

This paper examines an Outside Option Game in which one player can

sink a cost in order to create a surplus to be divided with another player.

The bargaining that follows the decision to opt in by sinking the cost is

modeled using a modification of the Nash Demand Game.4 We report

3. See, for example, Chung (1991), Hart and Moore (1988), Hermalin and Katz (1991), and
the survey by Hart and Holmstrom (1987). The assumption that an indi¤erent responder
will accept is sometimes defended by observing that she can always be o¤ered an extra
e > 0 to remain in the relationship. But e itself will be the subject of hard bargaining. If the
second player finally accepts e instead of her outside option of x, it will be because her out-
side option is not x but xþ e—the real amount that just prevents her opting out.

4. A more satisfactory model might employ Rubinstein’s alternating-o¤ers game, but its
complexity complicates the attempt to o¤er a theoretical explanation of opting out behav-
iour, which occurs in experimental alternating-o¤ers games even in the absence of an initial
cost-sinking move (Binmore et al. 1989; 1991). The take-it-or-leave-it o¤ers of a Nash De-
mand Game are also more in line with the standard models of contract theory.
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experimental results for the Outside Option Game in which ine‰cient

outcomes are commonplace despite a design intended to facilitate e‰cient

deals. We explain this phenomenon as an equilibrium of an adaptive pro-

cess in which agents must learn to play the game in an imperfect world.

When player 2’s outside option is su‰ciently high, players do not learn

to cooperate and gains from trade remain unexploited.

The following section introduces the Outside Option Game. Section 7.2

discusses the relationship of our work to previous results. Section 7.3

reports the results of an experiment whose instructions appear in the ap-

pendix. Section 7.4 analyses the equilibrium behaviour of agents who

must play the Outside Option Game in an imperfect world. Section 7.5

concludes.

7.1 The Outside Option Game

The bargaining game we consider involves two players who can keep a

ten dollar bill if they can agree on how to divide it. In the classic Nash

Demand Game (Nash 1953), players 1 and 2 simultaneously announce

take-it-or-leave-it demands, x and y. If xþ ya 10, player 1 receives x

and 2 receives y. Otherwise, each gets nothing.

The Outside Option Game modifies the rules of Nash’s game in two

ways. First, we add an opt-out strategy ‘‘O’’ to player 2’s list of strategies.

If she opts out instead of making a demand, she receives a payo¤

of a ð0 < a < 10Þ and player 1 gets nothing, whatever he may have

demanded. Second, if player 2 opts in and xþ ya 10, then each player

gets half the unclaimed surplus on top of his or her claim. Thus player 1

gets xþ 1
2
ð10� x� yÞ and player 2 gets yþ 1

2
ð10� x� yÞ. We think of

this game as modelling the negotiation over the division of the profits

from a partnership worth ten dollars, where only player 2 incurs an op-

portunity cost of a dollars in joining the partnership.

We sort the pure-strategy Nash equilibria of the Outside Option Game,

all of which are also subgame perfect, into two classes:5

E‰cient equilibria Any pair ð10� y; yÞ with yb a is an e‰cient Nash

equilibrium.

Ine‰cient equilibria Any pair ð10� y;OÞ with ya a is an ine‰cient

Nash equilibrium.

5. Mixed-strategy Nash equilibria also exist, all of which are ine‰cient.
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E‰ciency thus requires player 2 to opt into the game and for the players

to make compatible demands that give player 2 a payo¤ of at least a.

There are many such demands, and hence many e‰cient equilibria. Opt-

ing out is always ine‰cient.

Our basic questions are: How will the players split the surplus and com-

pensate player 2 for the opportunity cost she incurs in joining the partner-

ship? Will attempts to drive a hard bargain sometimes lead to ine‰cient

outcomes in which player 2 opts out?

The Outside Option Game focuses attention on the tensions between

e‰ciency and hard bargaining because, when a is large, an e‰cient out-

come can appear only if player 2 aggressively seeks an asymmetrically

large share of the total surplus. If she is not convinced that player 1 rec-

ognises the need to accommodate such a share, she may simply opt out.6

At the same time, the Outside Option Game facilitates e‰cient out-

comes by allowing player 2 to use the fact that any unclaimed surplus

is split equally to secure some protection against the risks of hard bar-

gaining. Suppose player 2 is convinced that player 1 will make a demand

that leaves 2 a share at least as large as a, but is not certain which of

these demands player 1 will make. By opting in and claiming only a,

player 2 can ensure that no deals are lost, while still gleaning half of what-

ever surplus remains when player 1 claims less than 10� a, for a payo¤

exceeding a. Player 2 may even find it profitable to opt in and claim less

than a.

How large a share of the surplus should player 2 seek? Among the

many e‰cient equilibria of games like the Outside Option Game, two

have attracted attention in the literature:

Split-the-di¤erence. In general, split-the-di¤erence awards each player

his outside option plus half of the remaining surplus, and so is the out-

come obtained by applying the symmetric Nash bargaining solution after

placing the status quo at the pair of outside options. In the Outside Op-

tion Game, it assigns 1
2
ð10� aÞ to player 1 and aþ 1

2
ð10� aÞ to player 2.

Deal-me-out. In general, deal-me-out assigns each player half the sur-

plus unless a player would then receive less than his outside option, in

which case that player receives his outside option. The deal-me-out out-

come is obtained by applying the Nash bargaining solution, with the sta-

6. We expect it to be much easier to achieve e‰cient outcomes when they are consistent
with sharing the surplus symmetrically, though the work of van Huyck et al. (1990, 1993)
shows that e‰ciency even then can be elusive.
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tus quo at the origin, to the set of outcomes from which alternatives

assigning players less than their outside options have been removed (Bin-

more et al. 1989, 1991). In the Outside Option Game, deal-me-out assigns

each player a payo¤ of 5 unless a > 5. If a > 5, it assigns 10� a to player

1 and a to player 2.

All bargaining theories agree with split-the-di¤erence and deal-me-out

in selecting the fifty-fifty outcome in the Outside Option Game when

a ¼ 0. When a increases, the appropriate prediction is less clear. Applied

workers in labor, trade theory, and elsewhere frequently follow Mc-

Donald and Solow (1981) in assuming that a surplus is divided according

to split-the-di¤erence. The split-the-di¤erence solution is viewed as cap-

turing the intuition that player 2’s share should increase as we strengthen

her bargaining position by increasing her outside option. Such models

focus their attention on the comparative-static implications of variations

in the players’ outside options.

However, as long as her outside option falls short of half the surplus, it

is not clear that player 2’s bargaining position is enhanced by increasing

her outside option. Nor is it clear that she can bring pressure to bear on

player 1 to secure more than her outside option when the latter exceeds

half the surplus. In contrast to models based on split-the-di¤erence, con-

tract theories typically stress Goldberg’s (1976) holdup problem (Klein

et al. 1978; Williamson 1985), in which one party is forced down precisely

to the value of his outside option, giving the deal-me-out outcome. The

transactions-cost literature then focuses on the ability of contracts and

institutional arrangements to produce e‰cient outcomes despite holdup

problems.

Game theory readily produces models in which deal-me-out is a better

description of players’ demands than split-the-di¤erence (Binmore et al.

1989, 1991). For example, the Rubinstein (1982) alternating-o¤ers model

of bargaining leads to this conclusion when outside options are available.

However, we think that such models place too much faith in e‰ciency.

Although the Outside Option Game is designed to make it relatively at-

tractive for player 2 to opt in, it has to be anticipated that player 2 will

frequently opt out when a is large.

Why should player 2 opt out? Our view of behavior in the Outside Op-

tion Game (and more generally) is that people are ordinarily faced with

so many decisions that they cannot possibly conduct a careful analysis in

every case. Instead, they equip themselves, not always consciously, with a

collection of rules-of-thumb, along with guidelines for the context in
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which each rule should be applied. When confronted with a novel situa-

tion, people then apply what appears to be the best-suited rule-of-thumb.

For example, people may propose (and insist on) fifty-fifty as a sharing

rule when faced with a bargaining problem. As they accumulate experi-

ence, some players will discover better decision rules, and they will then

alter their behavior. However, other players will have su‰cient demands

on their attention from other sources that they may never adapt their be-

havior to the game in question.7

Section 7.4 analyses a very simple model of this phenomenon involving

large collections of players who come in two types. All players are repeat-

edly and randomly matched to play the Outside Option Game. Most

players adjust their behavior in the light of their experience with the

game until they are playing best responses. We call these agents maximiz-

ers. However, some agents, referred to as rule-driven agents, never bring

best-response considerations to bear on the game. Instead, they apply

rules-of-thumb that they have become accustomed to using in other

games they regard as being analogous to the Outside Option Game. We

are interested in the equilibria of this process, taking into account the per-

turbations caused by the agents who never learn to maximize. We de-

scribe conditions under which a maximizing player 2 opts into the game

when a is small but opts out when a is large, even if the proportion of

rule-driven agents is small.

7.2 Previous Experiments

The point of departure for our analysis is the work of Binmore et al.

(1989, 1991) using experimental studies of Rubinstein bargaining models

in which players alternate in making o¤ers as often as they please, with

the sum of money available for division shrinking fractionally after each

refusal. Each player could abandon the negotiations in favor of an out-

side option whenever he had just refused an o¤er. The outside options

were ine‰cient in that the sum of opt-out payments was always smaller

7. If behavior in the laboratory appears to bear no relationship to optimization theories, the
likely reason is then that a rule-or-thumb has been applied that is not well-suited to the game
in question. (See Binmore et al. 1985, 1986, 1991 and Roth and Erev 1995a, b for discussions
of learning in experiments.) Ho¤man et al. (1995) similarly suggest that mistakenly applied
rules-of-thumb are responsible for much of the behavior that seems anomalous by conven-
tional standards. Camerer and Thaler (1995) indicate that their theory of manners could be
viewed as a theory of mistakenly applied rules-of-thumb.
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than the current surplus to be divided. In this game, deal-me-out is the

unique subgame-perfect equilibrium (Binmore et al. 1986, 1991).8

In the experiments of Binmore et al. (1989, 1991), deal-me-out per-

forms well when compared with split-the-di¤erence as a predictor of

player 2’s share of the money available at the time a deal is struck. How-

ever, deal-me-out’s prediction that player 2 will never opt out is often

wrong. In fact, she frequently opts out when her outside option is su‰-

ciently high. Hard bargaining over how the surplus from an agreement

is to be distributed leads to potential gains from trade remaining

unexploited.

Rubinstein bargaining games may be reasonably realistic models of

many negotiations. However, their complicated structure makes it di‰-

cult to explore further the tension between hard bargaining and e‰ciency

revealed by the experimental results. The static structure of the Outside

Option Game, along with the absence of an outside option for player 1,

yields a simpler game that still captures this tension.

The experimental results of Binmore et al. (1989, 1991) can be com-

pared with the experiments of Ho¤man and Spitzer (1982, 1985) and

Harrison and McKee (1985), who studied the behavior of subjects in

free-form, face-to-face bargaining sessions. One of the subjects in these

experiments was designated as the controller. The controller could choose

either to receive a dollars (leaving the other subject with nothing) or to

split a larger sum of money with the other subject. The two subjects dis-

cussed which choice the controller should make and then signed a binding

agreement specifying how the total payment should be split between

them. In contrast to the results of Binmore et al. (1989, 1991), the deals

reached under such circumstances were commonly e‰cient. In particular,

the controller rarely exercised his or her capacity to opt out. More strik-

ingly, the controller in Ho¤man and Spitzer’s treatments frequently

agreed to deals close to a fifty-fifty split, even though he or she could

have obtained several dollars more by forgoing an agreement altogether

and opting out. Harrison and McKee found fifty-fifty splits to be less

prevalent but still observed many cases in which controllers took less

than their outside option.

We have doubts about the extent to which the results from such face-

to-face bargaining experiments involving relatively small amounts of

8. The subgame-perfect equilibrium predicts split-the-di¤erence only if breakdown is invol-
untary (Binmore et al. 1991).
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money are likely to generalize to a wider economic context, because the

intimacy generated while the subjects fraternize is likely to inhibit the

hard bargaining that we are interested in studying. Our subjects com-

municate through a computer so that both parties to the negotiation re-

main anonymous throughout.9

Balkenborg (1994) has recently examined a game with an outside op-

tion that is simpler than the infinite-horizon games of Binmore et al. and

more structured that the experiments of Ho¤man et al. Figure 7.2 shows

the Dalek Game, whose form is taken from Kohlberg and Mertens (1986).

The Dalek Game has two subgame-perfect equilibrium outcomes: one

in which players choose ðT ;LÞ and so obtain the payo¤ pair ð3; 9Þ, and
one in which player 2 takes her outside option (strategy O) because player

1 plays B with probability at least 2=9. Only the first of these two possi-

bilities is e‰cient, and only the first satisfies the forward induction criteria

that are usually defended in this context by an appeal to the iterated elim-

ination of weakly dominated strategies. However, experimental studies of

this game by Balkenborg (1994) show that player 2 virtually always opts

out. Cooper et al. (1994) find similar results in related games. The risks

associated with the hard bargaining that is required to achieve an e‰cient

outcome are avoided by ine‰ciently opting out of the game.

9. Ho¤man et al. (1992, 1994) have recently argued that the behavior of experimental sub-
jects can be quite sensitive to the details of the experimental setting, including the opportu-
nities to behave anonymously or for behavior to be observed. However, Ochs and Roth
(1989) report that their subjects often make disadvantageous o¤ers when anonymously play-
ing alternating-o¤ers bargaining games.

Figure 7.2
The Dalek Game
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In contrast to the Outside Option Game, there is no counterpart of the

deal-me-out solution in the Dalek Game and no flexibility in how player

2 is to be compensated for eschewing her outside option. It is impossible

for player 2 to refuse her outside option and receive a payo¤ in the game

just high enough to compensate her for doing so. The Outside Option

Game, by presenting more flexibility in this regard, enhances the possibil-

ities for players to forsake outside opportunities and achieve e‰cient out-

comes, thereby providing insights into what it takes to tempt players to

enter a game and how players compensate others for doing so.

7.3 Experimental Results

7.3.1 Experimental Design

Section 7.1, in previewing the model of section 7.4, suggests that e‰cient

equilibria will appear when player 2’s outside option is small, but equilib-

ria will be ine‰cient when the outside option is lucrative. Our experiments

accordingly call for subjects to play the Outside Option Game with vary-

ing values of a. To eliminate the e¤ects of across-subject variations in

unobservable characteristics, we arranged for each group of subjects to

play a sequence of games with varying values of a. To control for the pos-

sibility that behavior in the later games in such a sequence is contami-

nated by experience in previous games, we conducted two sequences of

experimental games, one in which the value of a increased across games

and one in which it decreased.

The experiment was conducted at the Michigan Economics Laboratory

with undergraduates of the University of Michigan. Each experimental

session involved 12 subjects who sat at networked microcomputers that

were screened from each other. The subjects were asked to read the

written instructions (reproduced in the section 7.6) and given an interac-

tive demonstration of how claims were registered, payo¤s determined,

and so forth.

Following the demonstration, subjects participated in a series of bar-

gaining sessions. At the beginning of each session, subjects saw on their

video displays the outline in white against a black background of a tall,

hollow, rectangular ‘‘cake.’’ To the left of the cake, in blue print, the

number 10 together with brackets reaching from top to bottom reminded

subjects that the total height of the cake represented an amount of money

that was always nominally worth 10 dollars. Almost as wide and slightly

inside the rectangular cake was a second, smaller, hollow rectangle which

began at the bottom of the cake and whose height represented the
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amount of money that player 2 could obtain unilaterally by opting out.

The numerical value of the opt-out payment was also indicated. To avoid

suggesting focal points, only these two numbers were indicated on the

display.

Player 1 indicated his claim by moving a small red cursor that pointed

to the right side of his cake up or down using the computer’s up and

down arrow keys. As the red cursor moved down from its initial position

at the top of the cake, the area of the rectangle between the top and the

cursor filled with red to represent the amount of player 1’s claim. When

player 1 was satisfied, he registered his claim by pressing ENTER. At

that point the numerical value of his claim was indicated and he had the

opportunity to revise the claim by pressing the function key F10 or con-

firm the claim by pressing SPACE BAR. Claims were made in multiples

of dimes.

The procedure by which player 2 indicated a claim was similar except

that player 2 moved a small green cursor that was initially positioned at

the bottom right hand side of his cake. As the green cursor moved up or

down, the area between the bottom of the cake and the cursor filled with

green to indicate the amount of player 2’s claim. Player 2 could also indi-

cate a decision to opt out by pressing the BACKSPACE key, at which

time the area of the rectangle indicating the opt-out payment filled with

white to indicate the amount that player 2 could gain by opting out. As

with player 1, player 2 was given the opportunity to revise her choice by

pressing F10 or confirm it by pressing SPACE BAR.

After both player 1 and player 2 confirmed their choices, the choice of

each player’s counterpart for the session was displayed by overlying the

appropriate red, green, or white region on the player’s own display. If

the red and green claims of the two players overlapped, then the total

claimed by both players was more than 10 dollars, and neither player

received anything. The area of overlap was shown in yellow. If the red

and green claims did not overlap, then each player received his claim to-

gether with half the unclaimed cake. A white line dividing the surplus

(i.e., the remaining dark region in the middle of the cake) was displayed

together with the numerical value of the player’s total payo¤. Finally, if

player 2 opted out, then she received her opt-out payment while player 1

received nothing. Along with a graphical display of the players’ choices

and payo¤s, a brief written summary of the outcome was displayed.

Subjects did not know with whom they had been paired in each session.

After each session, subjects were paired with a new partner who was

chosen randomly subject to constraints discussed at the end of this sec-
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tion. Whether a player was player 1 or player 2 in a given session was also

determined randomly subject to the constraint that no subject was the

same type of player for more than two sessions in a row.10

Players participated in twenty ‘‘practice’’ sessions followed by ten

‘‘real’’ sessions. The cake in each session was always nominally worth

ten dollars. However, subjects were paid the amounts they succeeded in

obtaining in only two of each set of ten sessions. Moreover, for the first

ten practice sessions, the subjects were paid at the rate of one dime for

each dollar they earned. In the second set of practice sessions, subjects

were paid at the rate of one quarter for each dollar they earned. Only in

the final set of ten real sessions were subjects paid at the full rate of one

dollar per dollar earned. After each set of ten sessions, a ‘‘roulette wheel’’

appeared on each subject’s screen, and the two sessions for which that

subject would be paid were randomly selected.

The opt-out payment which a player 2 could receive varied from ses-

sion to session. There were two types of experiments. In experiments

that received the ‘‘up’’ treatment, the opt-out payments for each set of

ten practice or real sessions were in the following ascending order:

f0:90; 0:90; 2:50; 2:50; 4:90; 4:90; 6:40; 6:40; 8:10; 8:10g. In experiments

that received the ‘‘down’’ treatment, the opt-out payments for each set of

ten sessions were in the opposite, descending order.

After the bargaining sessions were over, subjects were asked to com-

plete a computerised questionnaire. For each opt-out payment, subjects

answered the question: ‘‘What do you feel would be a fair amount for

player 2 to get?’’ by moving a green cursor to indicate a claim on the

rectangular cake precisely as in the actual bargaining sessions as player

2. The opt-out payments in the questionnaire were presented in the

same (ascending or descending) order that was used in the bargaining

sessions.11

Our expectation before undertaking the experiment was that player 2

would not take the outside option, with the primary question of interest

being how much compensation she would receive for not doing so. How-

ever, forgoing a large outside option is potentially risky. When designing

the experiment, we attempted to isolate the e¤ect of this risk and attain

conditions under which player 2 would not opt out. This motivated our

10. If we had strictly alternated the players’ types, then any given subject could have partici-
pated in bargaining sessions with only half of the subjects.

11. For each opt-out payment, subjects were also asked to indicate their best guess of the
median of the claims that the other subjects in their group designated as fair for a player 2.
The subject whose guess was closest to the actual median was awarded $2.
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rule calling for unclaimed surplus to be split between the agents. In addi-

tion subjects were ‘‘filtered’’ in the practice bargaining sessions.

Our motivation for the filtering was a suspicion that ‘‘irrational’’ be-

havior by player 1 would be correlated with lower profits and greater

risk to player 2 from not taking the outside option. Hence, after the first

ten practice sessions, the four subjects with the lowest total profit in these

sessions were ‘‘filtered out,’’ and, in subsequent practice and real sessions,

these subjects were matched only with others in their group. After the sec-

ond ten practice sessions, the four subjects of the remaining eight who

had the lowest cumulative profit in all twenty practice sessions were also

grouped. Thus at the start of the real bargaining sessions there were three

groups of four subjects who had been selected by their profits in the prac-

tice sessions and who bargained in real sessions only with subjects in their

own group. Subjects were not informed of this filtering procedure.

Somewhat to our surprise, the di¤erences in the behavior of the aver-

age subject in each group during the real sessions and in the average

responses to the questionnaire were economically insignificant. For exam-

ple, pooled over all subjects who experienced the same treatment (either

up or down), the frequencies with which subjects in di¤erent groups opted

out were always within 0.08 of the pooled (across groups) frequency. For

each opt-out payment, the median player-1 claims of each group never

di¤erent from the pooled (across groups) frequency by more than $0.25,

and the medians of the claims indicated as fair for player 2 in the ques-

tionnaire were identical across all three groups for every value of a and

treatment (up or down) except one case, where they di¤ered by only

$0.10. As a result tables 7.1 and 7.2 summarize the data pooled across

all three groups.

7.3.2 Results

Tables 7.1 and 7.2 summarize the results from the real bargaining sessions

of the experiments and the questionnaire. The data are reported sepa-

rately for each opt-out payment and each treatment.12 There were a total

of 9 experiments where subjects were presented with the opt-out pay-

ments in ascending order (the up treatment) and 19 experiments where

the opt-out payments were presented in descending order (the down treat-

12. The primary di¤erence between the up and down treatment is that, in the down treat-
ment, player 1 was more likely to demand more than a when a was large and player 2 was
more likely to opt out. These di¤erences are su‰ciently small that our interpretation and
conclusions remain unaltered whether working with the up, down, or pooled data, but
prompt us to report the up and down treatments separately.
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Table 7.1
Summary data for ‘‘UP’’ treatment

Opt-out payments

0.90 2.50 4.90 6.40 8.10

1a. Median claims of player 2 when not opting out 4.95 5.00 5.00 6.40 8.10

(4.15–5.20) (3.95–5.10) (4.90–5.20) (5.10–6.80) (5.05–8.40)

2a. Median claims of player 1 4.90 4.90 4.70 3.25 1.60

(4.20–5.25) (4.30–5.00) (2.75–5.00) (2.20–4.80) (0.90–4.00)

3a. Median claims asserted as fair for player 2 5.00 5.00 5.00 6.40 8.10

(4.40–5.50) (4.05–6.15) (4.90–6.80) (5.05–7.35) (4.90–8.70)

4a. Frequency with which player 2 made claims
less than the opt-out value

0.000 0.000 0.019 0.065 0.028

5a. Frequency of player 1 claims greater than 4.50 0.880 0.852 0.574 0.074 0.037

6a. Frequency of player 1 claims providing player 2
a payo¤ lower than the opt-out value

0.000 0.000 0.009 0.083 0.102

7a. Frequency with which player 2 opted out 0.000 0.019 0.343 0.556 0.750

8a. Mean profit of player 2 when not opting outa 4.43 4.63 4.72 5.79 7.54

(0.00, 5.00, 5.27) (0.00, 5.00, 5.27) (0.00, 5.15, 5.65) (0.00, 6.60, 7.28) (3.35, 8.25, 8.53)

9a. Maximum expected profit of a player 2 who
does not opt outb

4.77 5.00 5.23 6.13 7.47

(4.90) (4.90) (5.00) (6.40) (7.80)

10a. Maximum expected profit of a player 1b 4.78 4.89 4.70 3.31 1.89

(4.80) (4.80) (4.80) (3.10) (1.60)

Note: Except where noted, the statistic reported is the median of the observations pooled over all subjects who participated in experiments with the same
treatment, and the numbers in parentheses are the 5th and 95th percentile of the observations. Claims and profits are in dollars.
a. Numbers in parenthesis are respectively the 5th percentile, median, and 95th percentile of the profits obtained by player twos who did not opt out.
b. See text for details. The number in parenthesis is the optimal claim for such a player.
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Table 7.2
Summary data for ‘‘DOWN’’ treatment

Opt-out payments

0.90 2.50 4.90 6.40 8.10

1b. Median claims of player 2 when not opting out 5.00 4.90 5.00 6.40 8.10

(3.85–5.20) (3.90–5.20) (4.90–5.70) (4.95–7.00) (4.85–8.35)

2b. Median claims of player 1 4.90 4.90 4.60 3.15 1.70

(4.10–5.20) (4.00–5.10) (3.45–5.00) (2.05–4.85) (1.00–5.00)

3b. Median claims asserted as fair for player 2 5.00 5.00 5.00 6.40 8.10

(2.20–5.45) (2.50–5.70) (4.35–5.70) (4.10–6.95) (5.00–8.45)

4b. Frequency with which player 2 made claims
less than the opt-out value

0.000 0.000 0.013 0.105 0.061

5b. Frequency of player 1 claims greater than 4.50 0.846 0.759 0.535 0.083 0.154

6b. Frequency of player 1 claims providing player 2
a payo¤ lower than the opt-out value

0.000 0.000 0.009 0.140 0.237

7b. Frequency with which player 2 opted out 0.000 0.000 0.325 0.640 0.868

8b. Mean profit of player 2 when not opting outa 4.42 4.66 4.88 5.45 6.51

(0.00, 5.00, 5.40) (0.00, 5.00, 5.45) (0.00, 5.20, 6.00) (0.00, 6.57, 7.33) (0.00, 8.15, 8.70)

9b. Maximum expected profit of a player 2 who
does not opt outb

4.85 4.96 5.21 5.82 6.37

(4.80) (4.80) (5.00) (5.00)c (8.00)

10b. Maximum expected profit of a player 1b 4.77 4.89 4.56 3.24 2.21

(4.80) (4.80) (4.20) (3.00) (1.60)

Note: For notes a and b, see table 7.1.
c. The expected profit function was not always a unimodal function of the subject’s claim. In this case, for example, there was a second local maximum
at 6.40. The expected profit obtained by making a claim of 6.40 was 5.76 dollars.
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ment). There were 12 subjects in each experiment and each opt-out pay-

ment was presented for two real bargaining sessions. Since half the sub-

jects were player 1 and half were player 2 in each session, for every opt-

out payment there were a total of 108 choices by each type of player in

real sessions with the up treatment and 228 choices by each type of player

for the down treatment.13

We summarize the results as follows:

Division of surplus Deal-me-out is in many respects a good predictor of

subjects’ behavior. As player 1, the median subject made claims that were

only slightly less than those predicted by the deal-me-out outcome: for

each value of a the median claims depart from the deal-me-out claims of

minf5; 10� ag by less than 50 cents. The median claims player 2 when

not opting out were within 10 cents of the deal-me-out claims of

maxf5; ag. With one exception, the expected-profit-maximizing claim for

a player 2 who chose not to opt out was within 30 cents of maxf5; ag. Fi-
nally, after the bargaining sessions were over, subjects were asked what

would be a fair claim for a player who could opt out. For each opt-out

payment, the median claim designated as fair was maxf5; ag.
Opting Out When a was large, player 2 frequently chose to opt out,

yielding an ine‰cient outcome. The opt-out frequencies for a ¼ $4.90,

a ¼ $6.40, and a ¼ $8.10 were 0.33, 0.61, and 0.83, respectively.

Rows 1a and 1b of tables 7.1 and 7.2 describe the player-2 claims made

by players who chose not to opt out, with the median, 5th percentile and

95th percentile claims indicated (the latter two being the first and second

numbers in parentheses, respectively) in each case.14 Rows 2a and 2b sim-

ilarly report player 1 claims, while rows 3a and 3b report the subjects’

estimates of what would be a ‘‘fair’’ claim in each case. The median

claims of both player 1 and player 2 reported in rows 1a, 1b, 2a, and 2b

and the median claims indicated as fair for player 2 in rows 3a and 3b

correspond well to the predictions of the deal-me-out outcome. Moreover

13. Since every subject responded once to each questionnaire item, there were also a total of
108 responses to each question for the up treatment and 228 responses for the down
treatment.

14. For 108 observations, the 5th percentile is calculated as the mean of the 6th and 7th
order statistics, that is, the 6th and 7th elements of a list of the observations sorted from low-
est to highest. The 95th percentile is the mean of the 102th and 103th order statistics and the
median or 50th percentile is the mean of the 54th and 55th order statistics. For 228 observa-
tions, the 5th, 50th, and 95th percentiles are given by the means of the 12th and 13th, the
114th and 115th, and the 216th and 217th order statistics, respectively.
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the 95th percentiles reported for player 2’s claims indicate that virtually

no player 2 expected to receive much more than the deal-me-out claim.

In addition, rows 4a and 4b of tables 7.1 and 7.2 show that player 2 rarely

opted in and made a claim less than a.

Player 1 behavior is also generally consistent with the deal-me-out out-

come, though the 5th percentiles for the player 1 claims for opt-out pay-

ments $6.40 and $8.10 show that at least some subjects made claims as

player 1 that were close to the split-the-di¤erence outcome.

Rows 5a and 5b report the frequencies with which player 1 made

claims greater than 4.50 dollars, that is, claims that were close to the

fifty-fifty prediction. Rows 6a and 6b report the frequencies with which

player 1 made claims greater that 10 dollars minus the opt-out payment.

Such claims give player 2 a smaller payo¤ than opting out. For both

treatments, the frequencies reported in rows 5a, 5b, 6a, and 6b are rela-

tively small for opt-out payments that exceed half the cake, which is con-

sistent with deal-me-out. The most noticeable di¤erences in the data from

the up and down treatments are the larger frequencies with which player

1, in sessions with the down treatment, made claims that did not leave

player 2 with a payo¤ larger than a when the opt-out payment was $6.40

or $8.10.15

The deal-me-out solution thus matches player 1’s behavior reasonably

well and matches player 2’s behavior reasonably well when player 2 opts

in. Contrary to the deal-me-out prediction, however, player 2 frequently

opts out. Rows 7a and 7b in tables 7.1 and 7.2 report the frequency with

which player 2 chose to opt out.16 The conclusion here is strikingly obvi-

ous: player 2 is unlikely to opt out when a is small, but quite likely to do

so when a is large.

Why does player 2 opt out? Rows 8a and 8b describe the profit

achieved by player 2 when not opting out.17 The first number is mean

profit. In addition to the 5th and 95th percentiles, the middle number

reported in parentheses in rows 8a and 8b is the median profit obtained

by player 2 when not opting out. In each case the median profit is the

same as or slightly larger than the opt-out payment or half the cake,

15. As one might expect, the larger frequencies of such claims for the down treatment coin-
cide with lower mean profits for player 2 as reported in rows 8a and 8b.

16. The overall opt-out frequencies reported in the summary are the weighted average of the
frequencies reported in tables 7.1 and 7.2 for the up and the down treatments.

17. For the larger opt-out payments, many player 2s chose to opt out; hence, for these opt-
out payments, the numbers of observations summarized in rows 1a, 1b, 8a, and 8b are much
smaller than 108 or 228.
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whichever is larger. On the other hand, the mean profit is always lower

than the median profit, often by a substantial margin, and is lower than

the opt-out payment for the three largest opt-out payments.

The mean profit reported in rows 8a and 8b involves only those player

1 claims that were actually matched with a player 2 who did not opt out.

In contrast, rows 9a and 9b report the maximum expected profit that a

player 2 could achieve when playing against the entire population of

player 1 claims made in bargaining sessions with the designated opt-out

payment and treatment. The numbers reported in parentheses are the

player 2 claims that achieve this expected profit.18 The maximum possible

expected profit obtained by not opting out is less than the opt-out pay-

ment for those opt-out payments which exceed $5.00.19

These experimental results reflect the tension between optimization and

e‰ciency. In the quest for a hard bargain, player 1 pushes player 2 to-

ward the fifty-fifty outcome. If the outside option for player 2 is su‰-

ciently small (i.e., outside options $0.90 and $2.50), then the system

settles on the fifty-fifty outcome. For higher outside options, hard bar-

gaining on the part of player 1 pushes player 2 to a claim very close to

her outside option, with player 1 claiming the rest. This is the deal-me-

out outcome, and we expect the system to settle there in a perfect world.

However, the experimental world is not perfect. Instead, hard bargaining

sometimes leads to disagreements, and this causes the deal-me-out out-

come to give player 2 a lower mean payo¤ than their outside options. As

a result player 2 often opts out and the gains from trade go unrealized.

7.4 A Model

This section constructs a simple model of equilibrium play in the Outside

Option Game based on ideas outlined in section 7.1. We are interested in

the equilibrium of a process that leads most players to choose best

responses, but in which some players apply rules-of-thumb borrowed

from analogous games. Let y be the proportion of the agents who, in

equilibrium, rely on rules-of-thumb. We refer to such an agent as a rule-

driven agent. In equilibrium, the remaining 1� y of the agents in each

18. In a similar fashion, rows 10a and 10b report the maximum expected profit and the op-
timal claim for a player 1 who is matched randomly with one from the designated popula-
tion of claims made by a player 2 who did not opt out.

19. Because row 9 involves a larger sample of player 1s, it is not contradictory that the max-
imum profit in row 9b (the down treatment) falls short of the mean profit in row 8b for out-
side option 8.10.
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population from which players 1 and 2 are randomly drawn play best

responses to the opposing population. We refer to these agents as

maximizers.

Let Ga be a probability distribution on ½0; 10�W fOg describing the

claims made by the rule-driven agents in population 2, given the opt-out

value a. It will simplify the exposition to let player 1’s claims be measured

in terms of the share of the ten dollars that they leave as potentially avail-

able to player 2. To emphasize this, we will often refer to player 1’s

actions as o¤ers. We let Fa be a probability distribution on ½0; 10� describ-
ing the o¤ers made by the rule-driven agents in population 1.

We will be primarily interested in the properties of Fa, the key feature

of which will be the extent to which Fa concentrates o¤ers around the

o¤er made by maximizers in a pure-strategy equilibrium. We assume

that there exists c > 0 and e such that in a pure-strategy equilibrium in

which maximizing player 2s opt in and demand x, for all e < e, we have

Fað½x� e; xÞÞ
e

bc: ð7:1Þ

Larger values of c correspond to a greater concentration of rule-driven

o¤ers near x. How large do we expect c to be? If Fa is a uniform distribu-

tion, so that rule-driven players are completely indiscriminate in their

o¤ers, then c ¼ 1. Our analysis holds for this case, but the results are rel-

atively weak, with large proportions of rule-driven players (large y)

required in order to conclude that player 2 will opt out. However, we

expect Fa to be far from uniform and c to be much larger than unity. In

particular, we expect rule-driven players to appropriate their rules-of-

thumb from similar games with similar (though perhaps not precisely the

same) equilibria, leading to rules-of-thumb that give o¤ers very close to

the equilibrium o¤er and hence values of c that exceed unity.20

For a fixed specification of y, Fa, and Ga, a pure-strategy Nash equilib-

rium is an o¤er for player 1, and either a demand or the outside option

for player 2, such that it is a best response for each of the maximizing

agents in the game to play such a strategy. We have:

20. Notice that this allows the distribution Fa to depend not only on the Outside Option
Game but also on the equilibrium of that game. The factors leading the players to a particu-
lar equilibrium of the Outside Option Game, including the strategic structure of the game,
the context in which it is played, the characteristics of the players, and the framing of the
game, are also the factors that shape the analogies used by rule-driven players in choosing
their o¤ers. This leads to rule-driven o¤ers that tend to be near the equilibrium o¤er but
may not precisely equal the equilibrium o¤er because of imperfect analogies.
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Proposition 1 Fix x A ð0; 10Þ, a < x, and Fa satisfying (1). Then there

exists y > 0 such that if y < y, then it is a Nash equilibrium for a maxi-

mizing player 2 to demand x and a maximizing player 1 to o¤er x.

Proposition 2 If y A ð0; 1Þ, a A ð5; 10Þ, and Fa satisfies (1), then there exists

c such that if c > c and a > a, then player 2 opts out in every pure-

strategy Nash equilibrium. The larger are y and a, the smaller can c be.

Proposition 1 indicates that any pure-strategy Nash equilibrium with-

out rule-driven players remains an equilibrium when there are only a few

rule-driven players. This is no surprise. The pure-strategy equilibria in

which player 2 enters the game are strict Nash equilibria. As long as the

payo¤ perturbations introduced by rule-driven players are su‰ciently

small, they cannot disrupt the equilibrium conditions. However, this ‘‘suf-

ficiently small’’ level may be di¤erent for di¤erent equilibria, which forms

the basis for the second statement of the proposition.

Proposition 2 indicates that, for a fixed specification of rule-driven

players, there may exist equilibria in which player 2 does not take the out-

side option as long as a is not too large. But for su‰ciently large values of

a, such equilibria may fail to exist. For small proportions of rule-driven

players and relatively dispersed rule-driven o¤ers (small y and c), e‰cient

equilibria will fail to exist only for a relatively small collection (if any) of

high values of a. As either the proportion of rule-driven players increases,

or as rule-driven o¤ers become more concentrated, the threshold value of

a at which an e‰cient agreement fails to exist gets smaller. If rule-driven

o¤ers are su‰ciently concentrated, e‰cient equilibria may fail to exist for

a wide range of large values of a, even though there are few rule-driven

agents.

To see why e‰cient equilibria may not exist for large a, suppose max-

imizing player 1s o¤er x > a. Player 2 can then demand x, producing an

agreement worth x with every maximizing player 1, but yielding disagree-

ments with any rule-driven player 1 who o¤ers less than x. Player 2 could

instead reduce her demand slightly, allowing her to conclude agreements

with some of the latter players, at the cost of a smaller surplus from exist-

ing agreements.21 If the proportion of rule-driven players is large, this

reduction will be advantageous. Even if the proportion of rule-driven

21. If player 2 increases her demand, she forces a disagreement with every maximizing
player 1, in return for getting a slightly larger share of the surplus from those rule-driven
players who are o¤ering more than x. This could be advantageous but only if the proportion
of rule-driven players is very high.
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players is small, this will be advantageous if their o¤ers are very highly

concentrated around x, so that reducing her demand allows player 2 to

conclude agreements with a very high proportion of the rule-driven

agents. Finally, this reduction is most likely to be advantageous when x

is large, and hence the new agreements with rule-driven player 1s are es-

pecially valuable. The optimal action for player 2 will then be to reduce

her demand, and there is no equilibrium in which player 2 demands x,

whenever there are either many rule-driven agents or highly concentrated

rule-driven agent o¤ers, and x is large.22 Rule-driven agents thus pre-

clude equilibria that involve highly asymmetric divisions of the surplus,

with more such divisions precluded as there are more rule-driven agents

and as their o¤ers are more concentrated. If a is su‰ciently large, then

every e‰cient equilibrium must involve a relatively asymmetric division

of the surplus with a relative large o¤er xb a, and there will be no such

equilibria.

Proof of Proposition 1 Proposition 1 follows immediately from the fact

that it is a strict Nash equilibrium for player 2 to demand x and player 1

to o¤er x. We accordingly consider proposition 2. Let x > a. Let Ha be a

probability distribution on ½0; 10� describing the choices of maximizing

player ones. In order for maximizers in population 2 to optimally demand

x, no demand x� e can give a higher payo¤, or

ð10

y¼x

xþ y

2
½ð1� yÞ dHaðyÞ þ y dFaðyÞ�

b

ð10

y¼x�e

x� eþ y

2
½ð1� yÞ dHaðyÞ þ y dFaðyÞ�:

A necessary condition for this inequality is

e

2

ð10

y¼x

½ð1� yÞ dHaðyÞ þ y dFaðyÞ�

b ðx� eÞ
ð x

y¼x�e

½ð1� yÞ dHaðyÞ þ y dFaðyÞ�: ð7:2Þ

22. Player 1 faces a similar trade-o¤ when considering whether to increase his o¤er slightly.
However, the fact that x > a > 5 ensures that the new agreements achieved by moderating
one’s demand are more valuable to player 2 than to player 1. This is a variant of the obser-
vation by Nash (1953) that players in a noisy environment have an incentive to moderate
their demands to achieve more agreements, and that this incentive is greatest for the player
receiving the larger share of the surplus, because this is the player for which the additional
agreements are particularly valuable.
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A necessary condition for inequality (7.2) is (replacing the left and right

integrals by upper and lower bounds of 1 and yFað½x� e; x�Þ and then us-

ing (7.1) for the second inequality):

eb 2ðx� eÞyFað½x� e; x�Þb 2ðx� eÞyce: ð7:3Þ

The result then follows from noting that (7.3) will be violated whenever

the product of a (and hence x > a), y, and c is large. m

7.5 Conclusion

Experimental subjects in the Outside Option Game ine‰ciently opt out of

the game because e‰cient equilibria require aggressive bargaining in

which small miscalculations can have large costs. We believe that this

phenomenon is widespread, and that e‰ciency will therefore sometimes

fail to be achieved even when the agents involved are as close to being ra-

tional as real people are ever likely to get.

Contract theorists have recently devoted considerable attention to the

holdup problem, in which agents anticipate that promised compensation

for incurring sunk costs may be expropriated by others once the costs

have been sunk. The traditional line taken by such authors as Coase

(1960) or Williamson (1985) is that e‰ciency is guaranteed if the parties

to the deal have a costless opportunity to negotiate a binding contract be-

fore sinking any costs. More generally, they argue that new property

rights and new forms of contracting will emerge to deal with the ine‰-

ciencies that can result from a variety of transactions costs and frictions

that might impede such contracting.

Our results indicate that if e‰ciency is to be achieved, attention must

also be devoted to providing appropriate compensation when contracts

are negotiated for opportunity costs that are not yet sunk. This result can

be reconciled with the transactions-cost literature by classifying the learn-

ing frictions that we study as yet another form of transaction cost whose

existence calls for the appearance of new institutions. An obvious possi-

bility is the replacement of primitive bargaining institutions like those

built into the Outside Option Game by more sophisticated schemes.

However, we first turned our attention to the opting-out phenomenon be-

cause of its appearance in the more sophisticated and more forgiving

environment provided by Rubinstein bargaining models (Binmore et al.

1989, 1991).
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Appendix: Instructions to Subjects

Bargaining Experiment

In this experiment you will bargain via the computing equipment in front

of you with people seated at other machines in the room. You will partic-

ipate in a large number of very short bargaining sessions. Whether you

are player 1 or player 2 in these sessions is determined randomly. Some-

times you will be player 1 and sometimes player 2. After each session you

will be randomly paired with a new bargaining partner.

In each bargaining session, you and your counterpart for that session

will have the opportunity to split a ‘‘cake’’ between you. You will each

simultaneously make a claim. If the two claims sum to no more than the

value of the cake, then each of you will receive their claim plus half the

surplus after the claims have been met. If the two claims sum to more

than the value of the cake, each of you will get nothing at all.

Only one thing complicates this very simple scenario. Before each bar-

gaining session begins, player 2 only is o¤ered the opportunity of opting

out. If player 2 opts out, he or she gets a payment that may vary from

session to session. But, in each session, both players will know what

player 2’s opting out payment is for that session. Player 1 gets nothing if

player 2 opts out.

The cake is always nominally worth $10, but you will be paid the

amounts you succeed in securing only for two of the bargaining sessions.

These will be chosen at random from the final ten sessions in which you

participate. The preceding two sets of ten sessions are for practice. In

each of these two sets of ten practice sessions you will also be paid for

two sessions chosen at random, but you will not be paid at the full rate.

In the first set of ten practice sessions you will be paid at the rate of one

dime for each nominal dollar. In the second set of ten practice sessions,

you will be paid at the rate of one quarter for each nominal dollar. Only

in the third set of ten sessions will you be bargaining for real and getting

paid at the full rate for the two sessions the computer chooses at random.

After the bargaining sessions are over, you will be asked to complete a

computerised questionnaire. Money prizes will be awarded during the

questionnaire for answers to some questions.

When all subjects have completed the questionnaire, the computer will

display how much money you have earned during the experiment. This

will include the amounts you secured during the bargaining, and any

prizes you won while completing the questionnaire. It will not include

your $2 attendance fee. Please remain in your seat until the supervisor
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calls your seat number and then bring your seat tag so that you can be

paid.

This is not an experiment to find out what kind of person you are.

When we see the results, we will neither know nor care who did what.

We are only interested in what happens on average. So please do not feel

that some particular sort of behavior is expected of you. However, we do

ask that you do not talk to the other subjects or look at their screens. It is

important to the experiment that our subjects interact only through the

computer equipment.

Now press the SPACE BAR on your keyboard. You will see a demon-

stration that will review the information in these instructions and give you

hands-on experience in making claims or opting out. Remember to keep

pressing the SPACE BAR to see a new screen. There is no need to hurry.

You may have to wait for the other subjects to be ready anyway. If you

still have questions after seeing the demonstration, there will be an oppor-

tunity to ask the supervisor.
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8 Unequal Bargaining Power

This chapter di¤ers from its predecessors in that it includes neither a pub-

lished paper nor o¤ers a detailed description of an experiment. Its pur-

pose is to confirm that even small perturbations in the preferences of

players, or some disparity in the rate at which they learn, can sometimes

have a large impact on game-theoretic predictions. It is therefore unwise

to leap to the conclusion that game theory (or neoclassical economics in

general) has been refuted by an experiment without first exploring how

robust the prediction is to such perturbations.

Although the paper featured in this chapter has this wider aim, it

belongs in a book about bargaining because its main example consists of

an experiment with a Rubinstein bargaining model in which the players

have unequal discount factors (Binmore et al. 2005). The rest of this in-

troductory section explores the background to this experiment, which

presents a much greater challenge to Rubinstein’s theory than the cases

with equal discount rates studied in chapters 5 and 6. The reason is that

we can make the Rubinstein prediction di¤er very markedly from any

particular fairness norm when we are allowed to vary the relative sizes of

the players’ discount rates.

The Asymmetric Nash Bargaining Solution

The axioms with which Nash (1950) originally characterized the Nash

bargaining solution include e‰ciency and symmetry, although neither is

necessary to obtain a result. When the symmetry axiom is abandoned,

one is led to an asymmetric bargaining solution obtained by maximizing

a generalized Nash product

ðx1 � x1Þaðx2 � x2Þb;

subject to the requirement that xb x lies in the set X of feasible

alternatives.



I call ab 0 and bb 0 the bargaining powers associated with the partic-

ular asymmetric Nash bargaining solution under study. Outside options

aren’t considered in this chapter, although they fit into the theory exactly

as in the symmetric case.

Since we can require that aþ b ¼ 1 without loss of generality, an asym-

metric Nash bargaining solution is really determined by the value of only

a single parameter. By varying this parameter appropriately, the asym-

metric Nash bargaining solution can be made to coincide with any e‰-

cient point xb x.

I sometimes get the credit for formulating the asymmetric Nash bar-

gaining solution (Binmore 1987a), but numerous others had done so be-

fore, including Kalai (1977), Roth (1979), Roberts (1980), and Myerson

(1991). However, it was my linkage of this result with the Rubinstein bar-

gaining model that seems to have put the idea on the map (Binmore

1987b).

Unfortunately, applied workers have relentlessly misapplied the asym-

metric Nash bargaining solution in the case where outside options are

present. As is traditional in labor economics, they place the status quo at

the breakdown point rather than the deadlock point (chapters 5 and 6).

They then estimate the bargaining powers that best describe their data

as an asymmetric Nash bargaining solution relative to this (wrong)

status quo. As when fitting Ptolemaic epicycles to the movements of

the planets, this procedure can’t fail to fit the data fairly well, but one

should normally place the status quo at the deadlock point, and take the

bargaining powers to be the reciprocals of the bargainers’ discount rates.

Because we don’t know how to handle the informational problems that

are often all-important in real life, the theory would then seldom predict

field data well, but at least we would be doing something reasonably

scientific.

Rubinstein and the Asymmetric Nash Bargaining Solution

When the bargainers in the Alternating-O¤ers Game discount time at

constant rates, the Rubinstein outcome converges on an asymmetric

Nash bargaining solution as the time interval between successive pro-

posals becomes vanishingly small (Binmore 1987b).

The bargaining powers in this asymmetric Nash bargaining solution

are given by a ¼ 1=r1 and b ¼ 1=r2, where r1 and r2 are the rates as

which players I and II discount time. An impatient player correspond-

ingly has less bargaining power than a patient player. As we saw in chap-
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ter 5, equally patient players will end up at the ordinary Nash bargaining

solution with equal bargaining powers.

The following sketch of a proof for the case x ¼ 0 shows that the result

depends only on the fact that the Rubinstein outcome is a stationary

expectations equilibrium, which is an equilibrium in which players always

plan to optimize on the assumption that, even if a player were to deviate

from the plan he has for today’s play, the plans the players have for

tomorrow’s play will the same as they are today.

Suppose that the payo¤ pair a is accepted immediately when proposed

by player I. Let b be the corresponding payo¤ pair in the companion

game in which it is player II who makes the opening proposal. In equilib-

rium, an o¤er will make the responder just indi¤erent between accepting

and refusing. So in the case of stationary expectations, the equilibrium

values of a and b satisfy a2 ¼ b2e
�r2t and b1 ¼ a1e

�r1t, where t > 0 is the

time interval between successive proposals. Thus

b1

a1

� �a
¼ a2

b2

� �b

¼ e�t:

It follows that a and b are two points on the boundary of the feasible set

X that lie on the same contour xa
1x

b
2 ¼ c. But x and y converge on the

same point n as t ! 0þ. Their common limit n must therefore be the

asymmetric Nash bargaining solution with bargaining powers a ¼ 1=r1
and b ¼ 1=r2.

It will be evident that much of the fine detail of the bargaining process

in Rubinstein’s model is unnecessary for this result to hold true. For ex-

ample, the subjects don’t need to stick to a rigid timetable in which each

makes a demand at a fixed time. It is enough that each has the opportu-

nity to make a demand at least once in any time interval of length t. In

the experiment on a version of Rubinstein’s model that motivates this

chapter, Rubinstein’s timetable is retained, but the current proposer is

chosen at random.1 Subjects then have to look only one move ahead

rather than two when assessing a stationary expectations equilibrium,

but it remains true that we are led to an asymmetric Nash bargaining so-

lution as the time interval between successive proposals becomes vanish-

ingly small.

Myopic Adjustment

As with Reinhard Selten on the subject of subgame-perfect equilibria,

Ariel Rubinstein never thought that his bargaining theorem would predict
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behavior in laboratories. He continues to regard his result as an idealiza-

tion that we shouldn’t expect to see realized in the messy world of real

life.

I agree to the extent that there seems little chance of the Rubinstein

bargaining model with unequal discount rates working at all in the labo-

ratory, unless the subjects use some myopic adjustment process in which

they optimize on the assumption that the result of an o¤er being refused

today is that they will have to wait until tomorrow to get the kind of deal

other subjects have agreed to already. Joe Swierzbinski (Binmore et al.

2007) has written a simple model of such a myopic adjustment process

to confirm that it does indeed eventually converge on the stationary

expectations equilibrium of the Rubinstein Alternating-O¤ers Game.

The model requires that the subjects have a rich source of feedback.

They use the deals on which other pairs of subjects have recently agreed

to predict the deal that they would reach with their current bargaining

partner tomorrow if the proposal on the table today is refused. In an ex-

periment that tests the model, we attempt to provide a surrogate for this

feedback by showing a bunch of boxes on a subject’s screen that represent

six recently agreed payo¤ pairs discounted to the next period (Binmore

et al. 2005).

I don’t know of other bargaining experiments in which such a rich

source of feedback is provided, although nobody in real life is likely to

buy or sell a house or a car without first checking out what similar houses

or cars are currently selling for in the market. It is di‰cult to see how

meaningful learning in a population of experimental subjects would be

possible without feedback of comparable quality, and so it isn’t surprising

that other experimenters report little evidence of learning in bargaining

games (Camerer 2003).

However, it is impractical for laboratory subjects to play the Rubin-

stein Game the large number of times that would be necessary to be con-

fident that a myopic adjustment process followed by all subjects would

converge. Nor is there much chance that all subjects will follow exactly

the same adjustment regime, and the paper that follows confirms that we

need only introduce some disparity in how subjects adjust their behavior

to divert the system from the Rubinstein track.

Even without further impurities in our test tubes, it would therefore be

unreasonable to expect Rubinstein’s theory to predict experimental bar-

gaining outcomes without reservation—although it doesn’t do too badly

in the experiment of Binmore et al. (2005). In fact the myopic optimiza-

tion hypothesis does su‰ciently well that it is hard to see how any future
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behavioral theory of bargaining can a¤ord not to take it into account. In

one treatment, the learning e¤ect is so strong that I even have hope of

converting the most intransigent of skeptics to the proposition that learn-

ing sometimes matters in bargaining games.

Perturbations

The paper that follows is largely motivated by the fact that we can sub-

stantially improve the predictions of our myopic adjustment model in

asymmetric versions of Rubinstein’s Alternating-O¤ers Game by intro-

ducing perturbations that one may attribute to an initial bias that some

subjects are reluctant to abandon.

It is important to note that this model does not deviate from the hy-

pothesis that most subjects will eventually end up as though they are

maximizers of expected money, but it nevertheless explains much of the

data in our experiment on the Rubinstein bargaining game with unequal

discount rates. This finding needs to be contrasted with the claims of

those behavioral economists who argue that data from bargaining experi-

ments support the hypothesis that people should be modeled as having a

large other-regarding component built into their preferences (chapter 4).
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A Little Behavioralism Can Go a Long Way

Ken Binmore and Joe Swierzbinski

8.1 Economic Man Refuted?

There is a school of behavioral economists who have popularized the no-

tion that the neoclassical paradigm of homo economicus is refuted by the

experimental evidence. We agree that the idea that human behavior can

always be modeled as rational optimization in each and every context is

o¤ the wall, but who would want to defend such a wild claim? To make

their case, behavioral economists need to address the more moderate

claim that people often learn to play like income maximizers given su‰-

cient time and adequate incentives.

It isn’t adequate to look only at the behavior of inexperienced subjects.

Nobody denies that they are unlikely candidates for the role of economic

man. Nor is it enough to keep pointing at unusual games like the Ultima-

tum Game, in which subjects do not seem to adjust their behavior much

as they gain experience. Indeed it seems palpably dishonest to harp con-

tinually on such games, while simultaneously turning a blind eye to the

very much larger literature in which laboratory subjects are reported as

converging on the Nash equilibria of games with money payo¤s.

Why do we see apparently anomalous behavior in the class of games to

which behavioral economists restrict their attention? This paper argues

that the explanation lies partly in the fact that behavioral economists are

some twenty years behind the times in thinking that economic man must

solve games using the principle of backward induction, whereas advances

in evolutionary game theory have shown that it is unwise to discard any

Nash equilibrium whatever without close attention to the context. The

paper then goes on to explore the extent to which the set of Nash equilib-

ria in some games that behavioral economists regard as canonical can

be expanded by deviating only slightly from the income-maximizing

hypothesis.



The same approach is then applied to an experiment of our own on the

Rubinstein bargaining game with unequal discount rates. A full discus-

sion of the experimental details and an analysis of the results is given else-

where (Binmore et al. 2007).2 The results are supportive of the pure

Rubinstein prediction in some contexts but not in others. For the latter

contexts, the Rubinstein bargaining model with unequal discount factors

therefore needs to be added to the class of anomalous cases identified by

behavioral economists. But we then go on to observe that the anomalies

can largely be accommodated by assuming that some fraction of the pop-

ulation of subjects are slow in learning that the fair outcome on which

they have been conditioned isn’t adapted to the game they are playing in

the laboratory.

In brief, we believe that behavioral economists are right to argue that

the income-maximizing hypothesis for experienced and adequately incen-

tified subjects needs to be modified to accommodate anomalous cases, but

that it is unproved that there is a need for the modifications to be large.

8.2 Ultimatum Game

When subjects first encounter a new game in the laboratory, we do not

believe that they commonly recapitulate the principles of game theory in

their heads and play accordingly. We therefore do not believe that the

subjects are actively optimizing relative to any utility function whatever,

whether other-regarding or selfish. We think instead that inexperienced

subjects respond to the framing of the experiment by playing according

to whatever social norm is triggered by the hints and cues with which

they are presented. Game theory is relevant to such social norms, because

we believe social norms evolved in the first place as equilibrium selection

devices for the repeated games of everyday life.

But human beings are not helpless robots, irrevocably programmed by

their culture with fixed behaviors. We vary in our flexibility when con-

fronted with new situations, but most of us can and will learn if given

the opportunity, and the vast majority of relevant experiments confirm

that subjects move toward a Nash equilibrium—calculated with money

payo¤s—of the laboratory game they are playing, provided that adequate

incentives and su‰cient time for learning are built into the experimental

design.

However, there is a minority of anomalous cases in which subjects do

not shift much or at all from their initial behavior. How is such behavior

to be explained? Behavioral economists o¤er the explanation that they
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are already at or close to a Nash equilibrium of a game in which their

payo¤s are not measured in money but in units of utility that take into

account of the welfare of other players or other social considerations.

We agree that one can explain the anomalous cases by arguing that the

players are already at or close to a Nash equilibrium, but we see no need

to modify the assumption that subjects maximize expected money by very

much in order to make this explanation work.

The reason that one does not have to move far (or sometimes at all)

from the income-maximizing hypothesis to explain the anomalous cases

is that the games involved typically have large numbers of Nash equilib-

ria that behavioral economists neglect to take into account. If the social

norm that is triggered by the way an experiment is framed happens to co-

ordinate the behavior of the subjects on or near one of these neglected

equilibria, then any learning that follows will have little e¤ect. The sub-

jects will not be led away to a distant Nash equilibrium because they are

already in the basin of attraction of a nearby Nash equilibrium.

The leading anomalous case is the Ultimatum Game. In the Ultimatum

Game, a sum of money can be divided between Alice and Bob if they can

agree on a division. The rules are that Alice proposes a division and that

Bob is then restricted to accepting or refusing. If the subgame-perfect

equilibrium (in which Bob acquiesces when Alice demands almost all the

money) were the only Nash equilibrium of the game, then the fact that

Alice’s modal o¤er in the laboratory is a fifty:fifty split would be a serious

challenge to the income-maximizing hypothesis for experienced players,

since this conclusion seems to be robust when the amount of money is

made large or repeated play (against a new opponent each time) is

allowed.

However, as with other anomalous cases the Ultimatum Game actually

has many Nash equilibria. In fact any split of the money whatsoever is a

Nash equilibrium outcome on the income-maximizing hypothesis. Not

only does the Ultimatum Game have many Nash equilibria, but com-

puter simulations show that simple models of adaptive learning can easily

converge on one of the infinite number of Nash equilibria that are not

subgame-perfect (Binmore, Gale and Samuelson 1995).

However, this isn’t the point of presenting the computer simulation

illustrated in figure 8.1, which was one of a large number of simulations

carried out for Binmore et al. (1995). In this simulation the original sum

of money is $40, and the simulation begins with Alice o¤ering Bob about

$33, leaving $7 for herself. One has to imagine that the operant social

norm in the society from which Alice and Bob are drawn selects this
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Figure 8.1
Simulated adaptive learning in the Ultimatum Game. The upper diagram shows the evolu-
tion over time of the o¤ers a large population of player I’s would make to player II if chosen
to play. The diagram on the right shows the evolution over time of the acceptance levels of a
corresponding population of player II’s. A slightly perturbed version of the replicator
dynamics is simulated whose parameters have been chosen to make the system converge on
a 30:10 split of the $40 available. This takes 5,000 or so iterations when the system is started
close to a 7:33 split. (The suddeness of the eventual transition between the Nash equilibria at
7:33 and 30:10 is illusory as the number of iterations during the transition exceeds by far
those in any Ultimatum Game experiment.)
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Nash equilibrium outcome from all those available when ultimatum sit-

uations arise in their repeated game of life. This split (like any other split)

is also a Nash equilibrium outcome in the one-shot Ultimatum Game.

The figure shows our slightly perturbed replicator dynamic leading the

system away from the vicinity of this ð7; 33Þ equilibrium. The system

eventually ends up at a ð30; 10Þ equilibrium. The final equilibrium is not

subgame-perfect (where the split would be ð40; 0Þ), but this fact is not

particularly germane. What is important here is that it takes some 5,000

periods before our simulated adaptive process moves the system any sig-

nificant distance from the vicinity of the original ð7; 33Þ equilibrium. This

enormous number of periods has to be compared with the ten or so

commonly considered ‘‘ample’’ for adaptive learning to take place in the

laboratory.

One might summarize these remarks by saying that testing the Ultima-

tum Game isn’t an ideal way to go about exploring the extent to which an

income-maximizing version of game theory works. Any e‰cient deal cor-

responds to a Nash equilibrium that a social norm operating in the soci-

ety from which the subjects are drawn might render focal. A suitably

perturbed adjustment process might eventually lead the subjects else-

where, but the number of iterations this is likely to take would not be

easy to replicate in a laboratory.

8.3 Public Goods Games with Punishment

In games like the Prisoners’ Dilemma that can be interpreted as modeling

the private provision of public goods, it is uncontroversial that most expe-

rienced subjects in laboratory experiments contribute little or nothing.

However, Fehr and Gächter’s (2000) show that the situation changes

when free riders can be punished after the contribution phase is over.

In their modified experiment the subjects can pay a small amount to re-

duce the payo¤ of a free rider of their choice by a substantially larger

amount. The opportunity to punish free riders in this way is actually used

by the subjects, although an income-maximizer can gain nothing from

such behavior. Contributions correspondingly rise progressively until

most subjects are contributing a substantial amount. The conclusion

drawn is that the subjects have a liking for punishing defectors built into

their utility functions.

It is doubtless true that most people are disposed to punish antisocial

behavior even when there is no money to be made out of this practice.

But how firm is this tendency? Will more experience teach people that
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they gain nothing from punishing malefactors whom they will never meet

again? How much of a loss will people endure before giving up the oppor-

tunity to punish?

Fehr and Gächter’s (2000) experiment is uninformative. They overlook

the fact that attributing only the trace of a liking for punishing bad be-

havior to the subjects is enough to create a Nash equilibrium in their

game in which everybody contributes maximally (Steiner 2004). Each

player’s strategy in this equilibrium calls only for the worst free rider to

be punished. Since all players punish the worst free rider, their share of

the cost of providing an adequate disincentive becomes tiny. However,

the assumption that players are prepared to pay this tiny cost is adequate

to support the equilibrium, because nobody wants to be the worst free

rider.

8.4 A Gift Exchange Game

An experiment of Fehr et al. (1997, 1999) is based on an idealized com-

petitive labor market in which the workers have the opportunity to re-

ward employers who pay above the competitive rate by putting in more

e¤ort. Subjects representing workers turn out to reward generous em-

ployers with more e¤ort, although the employers have no way of identify-

ing workers who shirk with a view to punishing them in the future. The

result is typical of ‘‘gift-exchange’’ experiments that are o¤ered in support

of the hypothesis that people have preferences that incorporate a positive

liking for reciprocating.

In a simplified version of the kind of labor market studied in this liter-

ature, there are m employers and n workers, where m < n. Each of N

periods begins with each employer independently publishing either a high

wage or a low wage for all to see. The workers get a negative payo¤ from

being unemployed, and so they compete to get employed. Each worker

has an equal chance, and so the probability that any single worker finds

employment in any given period is m=n. The matchings are entirely anon-

ymous, so long-term relationships between an employer and a worker are

impossible.

A worker on a low wage automatically shirks. But a worker on a high

wage can choose high or low e¤ort. Both members of a matched pair re-

ceive a payo¤ of s if the wage is low (and so the worker shirks). Both re-

ceive b if the wage is high and the worker puts in high e¤ort. The worker

receives a payo¤ of 1 and the employer a payo¤ of 0 if the wage is high

and the worker puts in low e¤ort. We assume that 0 < s < b < 1.
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All Nash equilibria of this finitely repeated game require that the em-

ployer o¤ers a low wage along the equilibrium path, but matters change

if the game is perturbed slightly. To this end, we assume that each player

is independently strategic with probability 1� p, or a reciprocating robot

with probability p. A reciprocating robot makes a high o¤er as an em-

ployer and puts in high e¤ort when receiving a high wage as a worker—

until he observes that anyone at all has deviated from this behavior, after

which he always plays low. The strategic players do not know the value of

p but update their subjective probability distribution for this parameter as

play proceeds.

For small values of p and large enough values of N, there are Nash

equilibria of this finitely repeated game in which everybody plays high

until near the end of the game. Cooperation is sustained by the contagion

mechanism identified by Kandori (1992) for infinitely repeated games.

The game is only finitely repeated, but the introduction of a small frac-

tion of reciprocating robots permits a similar cooperating equilibrium to

be sustained. As in the gang-of-four paper of Kreps et al. (1982), strategic

players find it expedient to mimic the robots until it no longer matters

whether a robot is provoked into precipitating a breakdown.

A number of authors, including Reinhard Selten (Selten and Stocker

1986), have shown that the folk theorem often still works in the la-

boratory when the number of repetitions is finite. The fact that coopera-

tion tends to break down in the final rounds of these experiments

adds some support to the relevance of the preceding model, since the

same holds true in the experiment of Fehr et al. (1997), with 16 out of

26 workers putting in only the minimum e¤ort in the tenth and final

round.

8.5 Bargaining with Unequal Discount Rates

An experiment on Rubinstein’s (1982) bargaining model with unequal

discount rates reported elsewhere supports the hypothesis that most sub-

jects optimize to a degree that would eventually be su‰cient to shift a

group of experimental subjects to the Rubinstein solution if all members

of the group were to behave in the same way (Binmore et al. 2005). But

some subjects presumably do not learn so quickly as others. Perhaps

some do not learn at all but remain fixated on operating what they regard

as a fair social norm. If we perturb Rubinstein’s model by writing such

behavioral possibilities into his scenario, what impact will this have on

the predicted outcome?
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In seeking an answer to this question, we focus on models in which a

fraction of the population of possible players are initially conditioned on

an outcome f of the bargaining problem, which they regard as fair or

focal. However, their behavior is not inflexible. After observing a refused

proposal, they sometimes switch to playing strategically with some exoge-

nously determined probability. We find that the existence of such a group

can result in significant perturbations of the Rubinstein outcome—even

when all the conditioned players will eventually end up playing in the

same way as the strategic players.

8.5.1 Experimental Background

This section briefly reviews some relevant experimental evidence.

Subgame Perfection? The experimental evidence on finite bargaining

games with alternating o¤ers is firmly hostile to the idea that laboratory

subjects use backward induction in deciding how to play (Camerer 2003).

Even when it is assumed that the players care about their opponent’s pay-

o¤s as well as their own, backward induction performs badly (Binmore

et al. 2002).

It is therefore commonly thought that Rubinstein’s use of the concept

of a subgame-perfect equilibrium in analyzing his infinite-horizon model

makes his theorem irrelevant to the behavior of real people. However, in

the case of equally patient players, it turns out that the Rubinstein theory

does rather well in predicting experimental outcomes when compared

with more traditional bargaining approaches (Binmore et al. 1989, 1991).

One possible explanation is that the conclusion of Rubinstein’s theorem

doesn’t change if we replace the idea of a subgame-perfect equilibrium

by that of a stationary expectations equilibrium—to which subjects can

find their way in repeated play using some kind of myopic adjustment

procedure, in which tomorrow is always treated as though it will resemble

today.

Learning? Although the experimental evidence that laboratory subjects

can adjust their behavior over time to the strategic realities of most simple

games is overwhelming, the case of finite bargaining games with alternat-

ing o¤ers is more problematic, with nearly all experiments finding little

or no evidence of experience changing the subjects’ behavior (Camerer

2003).

However, in the bargaining games we have studied experimentally, we

have always found evidence of learning—sometimes very rapid learning—
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provided that the feedback provided is su‰ciently rich. A possible

explanation is that simple models of trial-and-error adjustment in the Ul-

timatum Game (and so presumably in similar games) predict that any

learning is likely to be painfully slow (Binmore et al. 1995; Roth and

Erev 1995).

Atypical Subjects A particularly strong body of evidence is presented by

Ledyard (1995) in his survey of a very large number of games like the

Prisoners’ Dilemma that model the private provision of public goods.

Novices cooperate somewhat more than half the time, but the frequency

of cooperation declines as the subjects gain experience, until about 90 per-

cent of the subjects are defecting. However, the remaining 10 percent of

the subject pool is of very considerable interest, especially since we find a

similar proportion of subjects in our own bargaining experiments who

seem impervious to strategic considerations (Binmore et al. 1991).

A Recent Experiment In our most recent experiment, subjects played a

variant of Rubinstein’s (1982) bargaining game in which the next pro-

poser after a disagreement is chosen at random (Binmore et al. 2005).

The disagreement point is located at the origin. The feasible set resembles

that of figure 8.2. The subjects played a total of 24 games, sometimes as

player I and sometimes as player II.

The subjects first knowingly played eight ‘‘practice’’ rounds against a

computer programmed to try to condition them either on the approxi-

mately utilitarian outcome ð8; 2Þ, or on the equal increments or Rawlsian

outcome ð4; 4Þ. They then knowingly played 16 times against other sub-

jects in their group, chosen unpredictably anew at the start of each game.

Figure 8.2
A simplified version of the feasible set used in Binmore et al.’s (2005) experiment on Rubin-
stein’s Alternating-O¤ers Game.
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Our intention was to study the extent to which the stability of any focal

points established by the conditioning is related to the location of the

Rubinstein solution (Binmore et al. 1992).

When player I’s discount factor is d1 ¼ 0:9 and player II’s is d2 ¼ 0:8 in

the bargaining problem of figure 8.2, the utilitarian outcome ð8; 2Þ is the
Rubinstein solution. When the players’ discount factors are exchanged,

the Rawlsian outcome ð4; 4Þ becomes the Rubinstein solution. Introduc-

ing one or other of these pairs of discount factors allows four treatments

to be distinguished:

Treatment 1 Subjects conditioned on ð4; 4Þ. Rubinstein solution ð4; 4Þ.
Treatment 2 Subjects conditioned on ð8; 2Þ. Rubinstein solution ð4; 4Þ.
Treatment 3 Subjects conditioned on ð4; 4Þ. Rubinstein solution ð8; 2Þ.
Treatment 4 Subjects conditioned on ð8; 2Þ. Rubinstein solution ð8; 2Þ.

We succeeded in conditioning the subjects on ð4; 4Þ, but we only suc-

ceeded in persuading the subjects that player I should get something

more than 7 when our target was ð8; 2Þ.3
Some of our results are shown in figures 8.3 and 8.4. The horizontal

axis shows the sixteen games played against a human opponent. The

plus signs indicate that player I made the first proposal in a game. The

vertical axis shows the mean monetary payo¤ to player I. The points

marked with a cross show the mean payo¤ to player I in the final agree-

ment, discounted to time zero (in each game). The stars indicate the mean

amount assigned to player I by the opening proposal. The circles show

the predictions of a myopic best-reply model.4 The squares show the pre-

dictions of a version of the myopic best-reply model, which has been per-

turbed by introducing a small bias toward the equal-split outcome ð4; 4Þ.
The fact that the mean initial proposals always recognize the strategic

advantage of the proposer suggests that the Rubinstein approach is basi-

cally on track, but the steady movement toward the Rubinstein solution

in treatment 2 is absent (or only very slight) in treatments 3 and 4. Why

does player I not make more aggressive proposals in treatment 3, and so

further shift the trajectory of final agreements toward the Rubinstein so-

lution of ð8; 2Þ? Why again does the trajectory in treatment 4 not shift

from around ð7; 2:5Þ toward the Rubinstein solution of ð8; 2Þ?
We do not see how it is possible to answer such questions in our exper-

iment simply by attributing social preferences to the subjects that lead

them to play fair. The data show that the subjects’ behavior varies so

much over time that any such preferences would sometimes need to be
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Figure 8.3
Data from treatments 1 and 2 in Binmore et al.’s (2005) experiment on a Rubinstein bar-
gaining game.



Figure 8.4
Data from Treatments 3 and 4 in Binmore et al.’s (2005) experiment on a Rubinstein bar-
gaining game.
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malleable to an extent that would render worthless any attempt to de-

scribe the subjects’ behavior exclusively in such terms. Their conditioning,

their role in the game, and their experience of previous play evidently all

matter a great deal. In particular, treatment 2 shows clear evidence of

learning—not only within each game—but between games as well.

On the other hand, fairness considerations are clearly relevant to our

data—as they are in all bargaining experiments of which we are aware.

However, there is an alternative explanation for why people sometimes

play fair to the claim that a strong propensity for such behavior is frozen

into their preferences. It is that fairness norms evolved as equilibrium se-

lection devices (Binmore 1994, 2005). It is this alternative explanation

that motivates the model explored in this paper.

8.6 Perturbing Rubinstein’s Model

In Rubinstein’s (1982) Alternating O¤ers Game, two players alternate in

proposing how to split a shrinking cake. We model the cake at time 0 as

the set

X0 ¼ fx A R2 : x2 a gðx1Þg;

Where g : R ! R is strictly decreasing and concave. Its inverse function

is denoted by h : R ! R. The set of figure 8.2 will be used as a canonical

example. This is really the special case where the boundary of X0 is

x1 þ 2x2 ¼ 12, since the chunk cut away from this set in figure 8.2 is irrel-

evant to any calculations.5

In order that our subjects need only to look one move ahead in com-

puting a stationary expectations equilibrium, our experiment modified

the rules of Rubinstein’s game so that the new proposer is always decided

by the fall of a fair coin. This change does not alter Rubinstein’s conclu-

sions in any essential way.

At each time t ¼ 0; 1; 2; . . . that the modified game is still in progress,

an independent chance move chooses player I or II with equal probability

to act as proposer or responder at this time. The proposer then makes

a demand that the responder can accept or refuse. If the demand is

accepted, the proposer receives his demand, and the responder is assigned

whatever remains of the cake.

The shrinkage of the cake is modeled by assigning discount factors d1
and d2 to the two players. After a refusal at time t, the cake shrinks from

Xt to

Xtþ1 ¼ fðx1d1; x2d2Þ : x A Xtg:
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Since we assume 0 < di < 1, the cake shrinks to zero if all proposals are

refused.

The game has a unique subgame-perfect equilibrium (Binmore 1987).

In equilibrium, the expected payo¤s to the two players in our canonical

example are6

r1 ¼
12ð1� d2Þ
2� d1 � d2

; r2 ¼
6ð1� d1Þ
2� d1 � d2

: ð8:1Þ

Such computations are eased by noting that the answer turns out to be a

stationary expectations equilibrium. Since a proposer will always make

an o¤er (either d1r1 or d2r2) that leaves the responder indi¤erent between

accepting and refusing, we merely need to solve the equations

2r1 ¼ hðd2r2Þ þ d1r1;

2r2 ¼ gðd1r1Þ þ d2r2:

Robots Abreu and Gul (2000) studied the Rubinstein bargaining model

in the case where it is common knowledge that there is some probability

that an opponent will turn out to be a robot who always plays ‘‘fair’’ re-

gardless of the strategic situation. As in the gang-of-four model (Kreps et

al. 1982), they find that a rational player will then sometimes pretend to

be such a robot until some randomly determined number of proposals

have been refused.

There are two reasons why we do not appeal to the Abreu-Gul model

in seeking to make sense of our experimental data. The first is that it

seems unlikely that their equilibrium could easily be learned by real peo-

ple under laboratory conditions. The second is that our experience sug-

gests that even strategically unresponsive subjects are a lot less inflexible

than the robots of their model. Our own simpler model seeks to make vir-

tues out of these problems.

Instead of a single chance move that decides whether a player will be a

robot or a strategist at the start of the game, we introduce independent

chance moves immediately following each refusal that permanently trans-

form a player who has been a robot hitherto into a strategist from now on

with probability 1� y < 1. This way we hope to capture in a crude way

the fact that subjects who have been conditioned to play fair have the ca-

pability of learning to behave otherwise. If we keep things simple by al-

ways assigning the same belief to a newly created strategist as any other

strategist would have on reaching the same point in the game, we simul-

taneously create a game with a stationary structure. Stationary expecta-
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tions equilibria of this game then have a chance of being learned by sub-

jects who operate some kind of myopic optimization process.

This specification leaves open the initial probability f > 0 that a player

is a robot. In the calculations that follow, we take f ¼ y to keep things

simple (but see section 8.7). It also leaves open the definition of a robot,

which we take to be a player who has been conditioned to believe that the

correct proposal is some e‰cient point f of X0. A robot in the role of

player I therefore always demands f1 when proposing, and accepts f2 or

better when responding. A robot in the role of player II always demands

f2 when proposing, and accepts f1 or better when responding.

Types of Equilibrium The plan is to investigate equilibria in which strate-

gists always accept proposals made in equilibrium by strategists. Any re-

fusal therefore signals to a strategist that the opponent is currently a

robot, who will remain a robot only with probability y in the next round.

We can therefore employ the same methodology used to characterize sta-

tionary expectations equilibria in the unperturbed model. The only di¤er-

ence is that now a proposer sometimes has two possibly optimal demands

to compare: a larger demand that makes a strategic responder indi¤erent

between accepting and refusing, and a possibly smaller demand that will

also be accepted by a robot responder.

We distinguish three types of equilibrium:

Rubinstein equilibria A strategist always makes a demand that renders

another strategist indi¤erent between accepting and refusing. In equilib-

rium, strategists always accept.

Fair equilibria A strategist always makes the fair demand. In equilib-

rium, strategists always accept.

Hybrid equilibria A strategist plays as in a Rubinstein equilibrium or as

in a fair equilibrium, depending on whether assigned the role of player I

or player II. In equilibrium, strategists always accept.

In designing our experiment, we did not contemplate equilibria other

than those of the Rubinstein type, nor did we realize that the existence

of a robot fringe could significantly alter the players’ behavior in such

equilibria. We now think that only the results in treatment 2 look like

the subjects are moving toward an equilibrium of the Rubinstein type. In

the case of treatment 1, we should have been ready to see a fair equilib-

rium with f ¼ ð4; 4Þ. In treatments 3 and 4, we should have been ready to

consider hybrid equilibria.
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The point here is not to argue that one or other of these equilibria

should be used to predict the data. We think that the modified myopic

best-reply model used in Binmore et al. (2007) is to be preferred for this

purpose, because it takes better account of the fact that even strategically

minded folk need to learn to play equilibria. The point is rather that

critics who would like to argue that the Rubinstein theory is altogether

refuted by the data need to look harder at possible variants of the theory

before they settle on such a draconian conclusion.

Rubinstein Equilibria Let r be the payo¤ pair strategic players expect be-

fore the game begins. We distinguish three cases.

Case 1. f1 > d1r1; f2 > d2r2.

Case 2. f1 > d1r1; f2 < d2r2.

Case 3. f1 < d1r1; f2 > d2r2.

In case 1, a robot always refuses a strategist’s o¤er of d2r2 or d1r1.

When a strategic player I proposes, he therefore expects ð1� yÞhðd2r2Þþ
yd1r1. Strategists always accept o¤ers made by strategists, and so expect

yf1 þ ð1� yÞd1r1 when responding as player I. Similar considerations

apply to strategic player IIs. The characterizing equations for a Rubin-

stein equilibrium in case 1 are therefore

2r1 ¼ ð1� yÞhðd2r2Þ þ yf1 þ d1r1;

2r2 ¼ ð1� yÞgðd1r1Þ þ yf2 þ d2r2;

These equations apply if and only if

ð1� yÞhðd2r2Þ þ yd1r1 b f1;

ð1� yÞgðd1r1Þ þ yd2r2 b f2;

since it would not otherwise be optimal for strategists to tolerate their

o¤ers being refused by robots.

In case 2, a robot in the role of player II accepts a a strategist’s o¤er of

d2r2. When a strategic player I proposes, he therefore expects hðd2r2Þ. A
strategic player II refuses a fair o¤er, and so expects d2r2 when respond-

ing. The characterizing equations for a Rubinstein equilibrium in case 2

are therefore

2r1 ¼ hðd2r2Þ þ yf1 þ ð1� yÞd1r1;

2r2 ¼ ð1� yÞgðd1r1Þ þ ð1þ yÞd2r2:
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These equations apply if and only if

hðd2r2Þb yf1 þ ð1� yÞd1r1:

ð1� yÞgðd1r1Þ þ yd2r2 b f2;

Case 3 is the same as case 2, except that the roles of players I and II are

reversed.

Fair Equilibria Fair equilibria can only exist in case 1, because then r ¼ f .

The inequalities that need to be satisfied are

f1 b ð1� yÞhðd2r2Þ þ yd1r1;

f2 b ð1� yÞgðd1r1Þ þ yd2r2:

These inequalities always hold when f coincides with the Rubinstein out-

come in the unperturbed game and yb 0:5. (There are no other fair equi-

libria in our canonical case when y ¼ 0:5.)

In particular, if yb 0:5 and f ¼ ð4; 4Þ, it is an equilibrium in our treat-

ments 1 and 2 (d1 ¼ 0:8 and d2 ¼ 0:9) for everyone always to propose and

accept the outcome f . The same holds in our treatments 3 and 4 (d1 ¼ 0:9

and d2 ¼ 0:8) with yb 0:5 and f ¼ ð8; 2Þ.

Hybrid Equilibria We omit the characterization of hybrid equilibria, since

it will now be evident how this proceeds.

Existence In our canonical example, computerized calculations reveal

that one of these three types of equilibria exists for all values of

y ð0a ya 1Þ and all values of f ð0a f1 a 12Þ. There are occasionally

multiple equilibria, but mostly only one of the three types of equilibrium

exists for each pair ðy; f Þ.
When the two parameters y and f are not equal, it becomes more com-

plicated to characterize the equilibria. However, computerized calcula-

tions again show that one of the three types of equilibrium always exists,

except for a few patches in the parameter space. The equilibrium is again

typically unique.

8.7 What Do Perturbed Equilibria Look Like?

Figures 8.5 and 8.6 show equilibrium behavior in perturbed versions of

Rubinstein’s model. They are directly comparable with the experimental
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Figure 8.5
Equilibrium behavior in a perturbed Rubinstein model for treatments 1 and 3. The unper-
turbed Rubinstein outcomes are (4, 4) and (8, 2) respectively. The parameters of the model
are y ¼ 0.6, f ¼ 0.5, c ¼ 0.1, and f ¼ (4, 4). Treatment 1 is a fair equilibrium in which no-
body ever deviates from proposing or accepting (4, 4). Treatment 3 is a hybrid equilibrium in
which only player II proposes (4, 4).

Figure 8.6
Equilibrium behavior in a perturbed Rubinstein model for treatments 2 and 4. The unper-
turbed Rubinstein outcomes are (4, 4) and (8, 2) respectively. The parameters of the model
are y ¼ 0.2, f ¼ 0.5, c ¼ 0.1, with f ¼ (7.5, 2.25) in treatment 2, and f ¼ (7, 2.5) in treat-
ment 4. Treatment 2 is a Rubinstein equilibrium. Treatment 4 begins as a hybrid equilibrium
in which only player II proposes f ¼ (7, 2.5) but switches to a Rubinstein equilibrium when
the fraction of robots becomes su‰ciently small.
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data illustrated in figures 8.3 and 8.4. In particular, the choice of who

makes the first proposal in each game is exactly the same.

The firm lines in figures 8.5 and 8.6 join points that show the average

money payo¤ to player I in the final agreement, discounted to time zero

(in each game). The broken lines join points which show the average

money payo¤ proposed for player I at the outset of each game.

Notice that treatment 1 in figure 8.5 is a fair equilibrium in which both

the firm and the broken graph sit on top of each other. Treatment 2 in

figure 8.6 is a Rubinstein equilibrium. Treatment 3 in figure 8.5 is a hy-

brid equilibrium. Treatment 4 in figure 8.6 is begins as a hybrid equi-

librium but switches to a Rubinstein equilibrium when the remaining

fraction of robots becomes su‰ciently small.

The parameter value f ¼ 0:5 (which gives the fraction of robots at the

beginning of the game) was chosen to correspond roughly with the frac-

tion of subjects who begin by cooperating in Prisoners’ Dilemma experi-

ments. The parameter value c ¼ 0:1 (which was taken to be zero in the

previous section) is the fraction of robots who are assumed never to alter

their conditioned behavior under any circumstances. This was chosen to

correspond roughly with the fraction of subjects who persist in cooperat-

ing in Prisoners’ Dilemma experiments after having enjoyed ample op-

portunity for learning.7 The remaining robots behave as described in the

preceding section.

In treatments 1 and 3, we took f ¼ ð4; 4Þ to reflect the fact that an at-

tempt was made to condition the subjects on this outcome in the practice

rounds. In treatments 2 and 4, we took f ¼ ð7:5; 2:25Þ and f ¼ ð7; 2; 5Þ
respectively to reflect the degree of success we enjoyed in seeking to con-

dition the subjects on the outcome ð8; 2Þ. However, we would have done

better by taking f ¼ ð4; 4Þ in all the treatments—as we do in the modified

myopic best-reply model that we fit to the data in Binmore et al. (2007).

This observation is reflected in the fact that, although we have made no

attempt to fit the current equilibrium model econometrically to the data,

we do better by taking y ¼ 0:6 in treatments 1 and 3, and y ¼ 0:2 in treat-

ment 2 and 4. Roughly speaking, this means that subjects are assumed to

be more reluctant to abandon their conditioning when f ¼ ð4; 4Þ than

when f ¼ ð7:5; 2:25Þ or f ¼ ð7; 2:5Þ.

8.8 Conclusion

We have argued that anomalous data in bargaining experiments can often

be explained without resorting to the extravagant claim that subjects act
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as optimizers with a large other-regarding component built into their

utility function. We believe that a better explanation is that subjects are

acting in accordance with a social norm which is adapted to a real-life

game that di¤ers from the game they are playing in the laboratory.

When subjects fail to adapt their behavior to the laboratory game (with

money payo¤s) as in a minority of economic experiments, we believe

that the explanation is often to be found in the fact that the anomalous

games have many Nash equilibria that are commonly overlooked. The

field for such an explanation opens wider if one admits the possibility

that the subjects may have a small other-regarding component built into

their utility functions, or if there is some heterogeneity in the speed at

which di¤erent subjects learn to adjust their behavior away from what-

ever social norm they brought with them into the laboratory.

In the main part of the paper, we explored the latter possibility using a

perturbed version of the Rubinstein bargaining model with unequal dis-

count rates. We find that the crude prediction of the unperturbed Rubin-

stein model must then be replaced by one of a rich variety of equilibria,

some of which share the qualitative features of the available data.

Our general conclusion is that, before critics are entitled to argue that

the income-maximizing hypothesis for experienced subjects should be

abandoned in bargaining games or elsewhere, they first need to ask

whether the behavior they observe is consistent with a neglected Nash

equilibrium of the game or with a Nash equilibrium of some perturbed

version of the game.
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A More Ultimata

This appendix contains our original unpublished report on the two-stage

ultimatum game experiment eventually published as the short note of

chapter 3. Both the experimental instructions and the final data are

appended.
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ularly indebted to Werner Güth, Alvin Roth, and Reinhard Selten for
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Fairness or Gamesmanship in Bargaining: An Experimental Study

Ken Binmore, John Sutton, and Avner Shaked

A.1 Introduction

A new approach to bargaining theory has led to a major resurgence of in-

terest in the subject over the past few years. The new approach is to study

the dynamics of specific bargaining processes using the techniques of

noncooperative game theory. This approach presents a marked contrast

to the traditional use of axiomatic ‘‘bargaining solutions’’ (e.g., that of

Nash) drawn from cooperative game theory. Although useful insights

are possible with the traditional methodology, it su¤ers from the fact

that it is seldom clear to what extent the axioms are genuinely appropri-

ate in a given field of application. The new approach, on the other hand,

seeks to model explicitly a bargaining process described by a detailed

structure of moves; that is, we look for a noncooperative equilibrium

where players’ strategies describe the o¤ers, and replies they make, at

specified stages in the process. One attraction of this approach is that it

allows reasoned judgments to be made about the applicability of its con-

clusions.1 In some cases, indeed, recent advances have led to conclusions

that are sharply testable in the sense that they generate predictions that

are directly refutable by experiment (Shaked and Sutton 1983). An inves-

tigation of bargaining behavior in a controlled experimental setting is

therefore timely.

However, conventional wisdom on experimental bargaining behavior

o¤ers little prospect of success for predictions based on game-theoretic

1. We think it is important, however, not to regard the two approaches as hostile competi-
tors. We see them instead as providing complementary points of view, each of which pro-
vides a di¤erent type of insight into bargaining problems. In this we simply follow Nash.
According to Nash, intuitions about the appropriate choice of cooperative solution concept
should be examined by investigating the extent to which the concept will be implemented by
players in a variety of noncooperative negotiation games chosen so as to mimic the manner
in which cooperation between individuals may be achieved as a result of their making opti-
mal choices of negotiating posture.



ideas.2 It is perhaps possible to dismiss some experimental studies on the

grounds that the results are too fuzzy to allow an unambiguous interpre-

tation, and because of uncertainties over controls. But a number of recent

papers (e.g., Selten et al. 1975; Roth and Malouf 1979; Shaked and Sut-

ton 1983) cannot reasonably be so dismissed. We wish to concentrate

particularly on a study of Güth et al. (1982). The reason is that some of

the results obtained in that study conflict quite dramatically with the

results a game-theoretic analysis would lead one to anticipate.3 Such

results are familiar to social psychologists. However, in most studies sub-

jects bargain in a relatively unstructured environment to which noncoop-

erative game theory cannot be directly applied. In contradistinction, the

study by Güth et al. employed an entirely structured environment, so sim-

ple that the appropriate game-theoretic analysis would seem completely

transparent.

Their most striking experiment used a (one-stage) Ultimatum Game. In

this game, two players bargain over the division of a ‘‘cake’’ (which actu-

ally consisted of a sum of money between 4 and 10 DM). If the players

agree on a division of the cake, then each player receives his agreed share.

Otherwise, both players receive nothing. The bargaining procedure is very

simple4 and involves precisely two ‘‘moves.’’ The first move is made by

player 1 who proposes a division of the cake. The second move is made

by player 2 who accepts or rejects the proposal made by player 1.

If the players seek only to maximise the quantity of cake received, a

game-theoretic analysis is trivial. Player 1 demands all but the tiniest

crumb which player 2 accepts on the grounds that even the tiniest crumb

is better than nothing. But the subjects studied by Güth, Schmittberger

and Schwarze showed little inclination to act like ‘‘gamesmen.’’ Instead

they were very much more likely to settle on a fair division of the cake.

Güth (1983), along with many social psychologists and others, favours

a sociopsychological explanation of this phenomenon in terms of deeply

held convictions about ‘‘fairness’’ or ‘‘distributive justice.’’ Determined

2. Although mention should be made of the work of Fouraker and Siegel (1963) who found
evidence of strategic behavior in subjects asked to play bargaining games based on a bilat-
eral monopoly problem.

3. Further similar results are quoted in Güth (1983).

4. Matters would be more complicated if the bargaining game were not a ‘‘one-shot’’ a¤air
but one of a sequence of similar games during the play of which the players would be able to
learn the characteristics of their opponents and teach opponents their own characteristics.
However, although the study of Güth et al. involved the play of more than one game by
some players, care was taken to ensure that a ‘‘one-shot’’ game-theoretic analysis was appro-
priate in each particular game.
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neoclassicists prefer an explanation which assigns a ‘‘spite’’ component5

to the second player’s utility function. This would lead to his rejecting

proposals which o¤er him too little. Knowing this, player 1 would then

avoid such proposals.

The two explanations are not necessarily mutually exclusive in that one

might attribute a ‘‘spite’’ component in player 2’s utility function to righ-

teous indignation at a lack of proper conduct on the part of player 1. At

the same time a knowledge that deviations from the path of virtue are

likely to be punished might reasonably be expected to reinforce any feel-

ings that player 1 might have about the propriety of ‘‘playing fair.’’ Güth

(1983) emphasises this latter point.

The chief finding of our experimental study is that these reactions to

the observation of ‘‘fair play’’ in certain bargaining situations are un-

warranted. Briefly, we feel that our results support the following general

conclusions:

Conclusion 1 It is false that players systematically aim at a ‘‘fair’’ out-

come in simple, structured bargaining games.

Conclusion 2 Game theory can be useful as a predictor of human behav-

ior in simple, structured bargaining games provided that the circumstances

under which the game is played encourage a little reflection on the part of

players. It should be emphasized that we do not make the same claim for

complicated bargaining games.6

Conclusion 3 In so far as subjects hold convictions about ‘‘distribu-

tive justice,’’ these convictions would seem ephemeral in the sense that

they can be quickly displaced by more ‘‘rational’’ considerations once

these have been appreciated. Thus the observation that players some-

times divide the cake ‘‘half and half ’’ is perhaps better attributed to the

subjects finding themselves at a loss as to what play is individually opti-

mal7 rather than to any firm commitment on their part to some ethical

standpoint.

Conclusion 4 Any beliefs that players might entertain about the exis-

tence of a ‘‘spite’’ component in their opponent’s utility function would

seem equally easily displaced.

5. This explanation was proposed to us by our colleague Morris Perlman among others. A
somewhat less delicate terminology is apparently commonplace.

6. Especially where information is incomplete.

7. Or, perhaps, to their not taking note of the fact that the situation can be seen as a prob-
lem in optimisation.
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It is not hard to construct plausible ‘‘explanations’’ of these conclu-

sions,8 but we feel that it would be premature to do so. Much further re-

search is necessary, particularly on the nature of cues that trigger various

types of behavior in the laboratory.

Finally it should be noted that many di¤erent formulations of a ‘‘fair-

ness’’ or ‘‘equity’’ theory of bargaining behavior are possible. We have

chosen to describe particularly simple formulations so that our conclu-

sions are expressible in a reasonably sharp manner. However, we are

aware that our results in no way refute more complex formulations of

the theory in which both strategic calculations and considerations of fair-

ness play a role in determining the bargaining outcome. Selten and

Krischker (1982) o¤er perhaps the most developed and plausible version

of such a theory.

Our stance is a modest one. Game theory provides a simple and test-

able model, and one that is a natural starting point for explaining

observed outcomes in simple bargaining games. Prior to the present work

we were much influenced by the current conventional wisdom, which

stresses the limitation of game-theoretic predictions. We now feel that

this was an overreaction, given the current state of experimental knowl-

edge, and that a more optimistic view is warranted.

A.2 Background

The experimental work described here arose as an o¤shoot of a more am-

bitious project that aimed at studying bargaining behavior in multi-stage

bargaining games. As a preliminary, we thought it appropriate to seek to

reproduce the results of Güth et al. (1982) in a two-stage bargaining game

under the laboratory conditions that we thought appropriate to the main

project. A two-stage game was chosen to guard against the risk that the

8. Building blocks in such an explanation would presumably include

1. A ‘‘limited rationality’’ model of human behavior such as that proposed by Selten (1978).
The essential feature is the possibility that di¤erent ‘‘problem-solving techniques’’ might be
triggered depending on the ‘‘cues’’ o¤ered by the environment. These ‘‘problem-solving tech-
niques’’ would usually be tailored to real-life bargaining situations rather than those con-
trived in a laboratory.
2. A recognition that the problems raised by real-life bargaining situations are typically
those of coordination and/or reputation-building rather than the competitive issues raised
by the game of our study. For ‘‘co-ordination’’; see Schelling (1960). For ‘‘reputations,’’ see
Selten (1978) or Wilson (1983).
3. An understanding that the reasons for the survival of a behaviour pattern in a popu-
lation may have little to do with the explanation that individuals themselves o¤er for this
behavior.
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degenerate nature of the one-stage game used by Güth et al. might lead to

atypical results in respect of multiple-stage bargaining in general.

A pilot study (pilot I) of such a game led to results that are broadly

consistent with those of Güth et al. However, the comments that subjects

recorded after the game (about their motivation in playing as they had)

led us to doubt that these results in themselves told the whole story. We

therefore designed a more complex pilot study (pilot II) with the aim of

investigating the doubtful questions. The results of this second pilot study

were su‰ciently striking that we thought it worth investigating them fur-

ther by way of an experiment (reported under the heading Main Results)

using a much larger sample. It is on this last piece of work that we base

the tentative conclusions o¤ered at the end of section A.1.

A.3 The Two-Stage Bargaining Game

As in the (one-stage) Ultimatum Game described in section A.1, two

players bargain over the division of a notional cake. If they agree on a

division, then each player receives his agreed share. Otherwise, each

receives nothing. A rigidly structured bargaining procedure is imposed.

Player 1 begins by making a proposal to player 2, which he or she can

accept or refuse. If player 2 refuses, then he or she makes a counterpro-

posal, which player 1 can accept or refuse. If player 1 refuses, both

players receive nothing.

In the experiment it was common knowledge that the cake was worth a

sum of money.9 When player 1 made his proposal, the cake was worth

£1 ¼ 100p. If player 1’s proposal was refused, the cake shrank to 25p for

player 2’s proposal. Only proposals involving a whole number of pence

were permitted. The amount of 25p for the shrunken cake was chosen so

as to be small enough to make a sharp distinction between ‘‘fair play’’

and ‘‘gamesmanship’’ but not so small as to be regarded as negligible.

We leave the experimental conditions under which the game was

played until section A.4 and continue this section with a brief game-

theoretic analysis. Of course, almost any behavior can be justified along

neoclassical lines if one is free to assign su‰ciently complicated utility

functions to the players. The following analysis, however, assumes that

players are interested in maximizing the amount of cake they receive and

in nothing else.

9. Experimental evidence shows that it can make a substantial di¤erence whether subjects
bargain over money or ‘‘counters’’. (See Roth and Malouf 1979.) We are grateful to Profes-
sor Selten for advice on the actual amount to make available for bargaining.
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An attractive feature of the bargaining games we consider is that fur-

ther information about the players’ preferences (in particular, their atti-

tudes to risk) is irrelevant to the properties of the equilibria with which

we are concerned. It is for this reason that we can work directly with

monetary payments and do not need to resort to the methods introduced

by Roth and Murningham (1982), and others, for the experimental deter-

mination of Von Neumann and Morgenstern utilities.

Note first that it cannot be optimal for player 1 to demand 73p or less

when he makes the first proposal. The reason is that player 2 can get at

most 25p by refusing, and hence he or she will necessarily accept any de-

mand of 74p or less (since this yields a payo¤ of 26p or more to player 2).

Next observe that it cannot be optimal for player 1 to demand 77p or

more when he makes the first proposal. The reason is that player 2 will

refuse such a demand, and then player 1 will get at most 25p. Player 2

refuses because an acceptance yields a payo¤ of 23p or less whereas a re-

fusal yields at least 24p. This follows from the fact that any positive o¤er

made by player 2 at the second stage will be accepted by player 1 who

otherwise would receive nothing.

A game-theoretic analysis therefore requires that player 1’s opening de-

mand lie in the range 74p to 76p inclusive and that player 2 plan to accept

any opening demand of 74p or less. More could be said,10 but we follow

Ståhl (1972) in seeking to minimize rationality assumptions.

If we restrict our attention to opening demands for the moment, then

a comparison between ‘‘fair play’’ and ‘‘gamesmanship’’ is easily made.

Making some allowance for ‘‘noise,’’ the former requires opening de-

mands in the vicinity of 50p while the latter requires opening demands

in the vicinity of 75p. This observation is all that is necessary to appreci-

ate the main feature of our results. (See figure A.3 of section A.6.)

We will also make a somewhat more sophisticated comparison that

requires our being more specific about the nature of ‘‘fair play.’’ Both

Güth’s (1983) ‘‘theory of distributive justice’’ and the neoclassical ‘‘spite’’

theory require that a substantial proportion of player 2’s plan to refuse

opening demands significantly in excess of 50p. So as to have something

precise to say, we o¤er the following operational labels11 (it is relevant to

their interpretation that 62:5 ¼ ð50þ 75Þ=2:

10. If the players were not constrained by indivisibilities in making demands, then there
would be a unique equilibrium involving the acceptance of an opening o¤er of 75p. In our
game there are a multiplicity of (perfect) equilibria due to the fact that players can only
make o¤ers in multiples of 1p.

11. Obviously neither definition is either necessary or su‰cient for theoretical purposes.
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A gamesman is a subject who makes an opening demand of 63p or more

when filling the role of player 1 and who plans to accept opening demands

in the range 63p to 77p inclusive12 when filling the role of player 2.

A fairman13 is a subject who makes an opening demand of 62p or less

when filling the role of player 1 and who plans to refuse opening demands

in the range 63p to 77p inclusive when filling the role of player 2.

The relevant comparison appears in table A.3 of section A.6.

A.4 Experimental Setup

The experiments were conducted in the psychology test-rooms at the Lon-

don School of Economics under the immediate supervision of Yasmin

Batliwala, Mimi Bell, and Maria Jose Herrero.14 Subjects were placed in

separate rooms before two microcomputers linked by a cable. They were

then asked to read an account of the rules of the game after which a ver-

bal summary of the instructions was o¤ered.

We felt it was important to o¤set any reluctance a subject might feel

toward maximizing his winnings at the expense of the university, the re-

search fund, or the researchers themselves. We therefore included an in-

struction as to how subjects should view their objectives, stating that

they should set out to maximize their winnings (annex 1).

Reinforcement of the instructions together with practice in the use of

the necessary computer controls was then provided via the visual display

unit (VDU). The subjects did not play a practice game with the computer

because we were anxious not to o¤er any cues about what type of play

was expected of them.

After the instructional period, player 1’s VDU displayed a picture of a

rectangular ‘‘cake,’’ which he or she could divide into two ‘‘shares’’ with

the aid of a cursor controlled from the keyboard. When satisfied with the

proposed division, player 1 pressed a key that transmitted an appropriate

display to player 2’s VDU. Player 2 responded by pressing key ‘‘Y’’ for

acceptance or ‘‘N’’ for refusal. If player 2 refused, his or her VDU then

displayed a picture of a new shrunken cake to be divided into two

12. The 77p allows for some noise in the opening demand.

13. Perhaps ‘‘strawman’’ would be a better description, since it is not evident to the authors
that a commitment to ‘‘fairness’’ necessarily precludes taking a rational attitude when placed
in a ‘‘take it or leave it’’ situation.

14. Maria Jose Herrero is an economist by training; Yasmin Batliwala and Mimi Bell have
a background in psychology.
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‘‘shares’’ with the aid of a cursor as before. When ready, player 2’s pro-

posal was communicated to player 1 who concluded the game with an ac-

ceptance or a refusal.

The players knew throughout the value of the two cakes and were paid

the amounts on which they had agreed immediately after the play of the

game.

Very considerable care was taken to ensure that the subjects had no

knowledge of the identity of their opponent either before or after the

game (although this was expensive in so far as the time put in by the re-

search assistants). The fact that strict anonymity was maintained meant

that subjects did not have the opportunity to verify whether they were

playing against a human opponent, as they had been informed. We

thought this a small price to pay in order to eliminate even the slightest

possibility of the exchange of hints or cues by the players except via the

cable that linked their respective computers.

The players could, of course, make some generalized deductions about

their opponents from the manner in which they themselves were recruited.

Güth et al. used graduate students in economics at the University of Co-

logne, but we found it necessary to cast our net more widely. Our subjects

included not only graduate and undergraduate students of economics at

LSE but also students of related subjects like management science and

accounting as well as a sprinkling of students from other disciplines. (Stu-

dents or former students of the LSE Game Theory course were excluded.)

A log-book was kept in which were recorded the particulars of each sub-

ject, the course of the game in which he or she took part, and the com-

ments the subject was willing to make afterward about his or her

strategy choice. An inspection of these data did not suggest any obvious

correlations between the categories of student used and the way they

played the game (although this is not to say that such correlations may

not exist).

A.5 Pilot Studies

We began by running 38 games (recorded as pilot I) in which the 76 sub-

jects each played one and only one bargaining game each. A histogram of

opening demands is given below as figure A.1. These demands are consis-

tent with those observed by Güth et al. (1982) in that there is a clear ten-

dency for player 1 to make a ‘‘fair’’ demand.

It is not so clear that the behavior of player 2 in responding to these

demands is consistent with the results obtained by Güth et al. (1982) (see
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annex 3). However, our attention was struck, not so much by a disparity

of behavior between players 1 and 2 in their play of the game, but by the

disparity in their comments about their motivation in playing as they had.

Those subjects who had occupied the role of player 2 made comments

that seemed to us to be very much more to the point. In retrospect, this

does not seem very surprising. The role of player 2 is a passive one at

the outset, and hence he or she has the opportunity to reflect on the

game without the pressure of being in the ‘‘hot seat.’’ What is more,

player 2 has a much simpler decision problem to contemplate at the first

stage. Just two options are available (i.e., accept or refuse) and only the

smallest amount of contemplation is necessary to see that a ‘‘rational’’

cake-maximizer should accept demands of 74p or less independently of

any beliefs player 2 might have about player 1. In contrast, player 1 has

a large number of options to consider, and what is ‘‘rational’’ for him will

depend on his beliefs about the manner in which player 2 is likely to re-

spond to his opening demand. In addition player 1 may well feel con-

strained to act quickly for fear of looking foolish if he procrastinates.

We felt this issue important to explore further. So we ran another 19

games. After each game player 2 was asked to play once more against a

new opponent,15 but this time taking the role of player 1 (figure A.2). The

Figure A.1
Opening demands in PILOT I

15. Actually the new opponent was a research assistant in the other room instructed to play
like a gamesman. However, since we recorded only the opening demand in game B, the iden-
tity and manner of play of the new opponent is irrelevant to our results.
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results of the ensuing 19 pairs of games are recorded as pilot II. The first

of each pair of games is called game A and the second is called game B.

We did not seek to study game B beyond the opening demand because of

practical di‰culties in having suitable subjects available at the necessary

times.

The results were su‰ciently interesting to induce us to run a further

series of 81 game pairs (A and B), which we report under the heading of

Main Results. Our immediate aims were as follows:

1. To test for bimodality in the histograms corresponding to those given

above.

Figure A.2
Opening demands in PILOT II

Table A.1
Response to opening demands

Response to opening demand
of a (63a aa 77) in game A

Opening demand in game B No Yes

ba 62 (F) 3 (B?) 0

bb 63 1 (G) 3

Note: The table refers to the 7 opening demands that fell in the range 63 to 77 in game A of
pilot study II. The labels F and G indicate the cells in which a Fairman, and a Gamesman,
as defined in section A.3, will lie. A Bayesian with appropriate beliefs about his opponent
might lie in the cell labeled B.
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2. To test the proposition that a substantial proportion of the population

are ‘‘fairmen’’ (in the sense of section A.3) by constructing a table corre-

sponding to that given for pilot II in table A.1.

The top left-hand cell in table A.1 is labeled (F) for ‘‘fairman’’ and the

bottom right-hand cell is labeled (G) for ‘‘gamesman.’’ Note that a ‘‘ra-

tional cake-maximizer’’ must lie in the right-hand column. A Bayesian

player with appropriate beliefs might find himself in cell (B?), but we

could think of no rationalization for occupants of the fourth cell.

A.6 Main Results16

A complete listing of the course of each game is given as annex 4 and

some subsidiary tables are o¤ered in annex 3. In this section we confine

our attention to the features of the data that we feel have a direct bearing

on the issues raised in section A.1. Recall that we studied 81 pairs of

games (game A and game B). Player 1 in game B was the subject who

had been player 2 in game A provided with the information that he or

she was to play against a new opponent in game B. Only the opening de-

mand of game B was recorded. Thus, in game A, the opening demand

was made by a totally inexperienced player; in game B, a player had just

a little more experience.

The histograms17 showing opening demands in each game are bimodal

but not to a significant degree (figure A.3). Contrary to our expectations,

they exhibit a marked change of behavior between game A and game B.

A tendency to ‘‘play fair’’ in game A becomes a strong tendency to play

‘‘like a game theorist’’ in game B.

This marked changes in behavior constitutes the central finding of the

present study.

To investigate the change in behavior between games A and B, we had

planned to test the null hypothesis—that the opening demands in each

game are drawn from the same population. The null hypothesis was in-

16. It is necessary to say something about the manner in which we dealt with ‘‘mistakes.’’
Several subjects reported, after playing the game, that they had not meant to do what they
actually did, chiefly as a consequence of confusing left and right. A pair of games involving a
player who reported making such a mistake in understanding the rules of the game was sim-
ply discarded. It should be noted, however, that the instructions given to subjects di¤ered
slightly as between pilot II and Main Results, the aim being to minimize such mistakes
(both reported and unreported). The new instructions emphasized that a subject’s share of
the cake always lay to the left of the cursor both in game A and in game B.

17. Before running the games we decided to split the range of opening demands into nine
equal cells so that the cell containing the ‘‘fair’’ demand of 50p would be clearly separated
by a third cell from the cell containing the ‘‘gamesman’’ demand of approximately 75p.
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deed rejected at the 0.1 percent level (Kolmogoro¤-Smirno¤ two-tailed

test; Siegel 1956, pp. 131, 279).

But, while the pilot results had led us to expect a change in behavior

because of a sharpening bimodality, they had not led us to expect a

marked shift toward high demands. Given these results, we applied the

one-tailed test to observe the more precise question: Are the demands

in game B larger? Interestingly, again, the null hypothesis—that the

demands in game B are not stochastically larger than those in game A—

was rejected at the 0.1 percent level (Kolmogoro¤-Smirno¤ one tailed

test; Siegel 1956, pp. 131, 245).

Our main conclusion is that the results for game B show that game

theory can be useful as a predictor of human behavior provided that the

circumstances encourage a little reflection on the part of the players.

While this is the interpretation we find most natural, we remark here on

a number of qualifications, and on a number of alternative explanations

that might appear plausible:

1. Aping behavior It is of course reasonable to ask whether a player in

game B might simply by copying the strategy he saw his opponent use in

game A. Such aping behavior would lead to a correlation between the

opening demand in game A and the opening demand in game B.

A second possibility that would lead to the same correlation is when

the opening demands in game B are high because the player in question

is reacting to the fact that he was o¤ered very little in game A.

Figure A.3
Opening demands for MAIN RESULTS
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In table A.2 below, we show the relationship between opening demands

in game A, and opening demands in game B (Main Results). A Fisher ex-

act test indicates that there is no significant association (at the 5 percent

level).

2. Bayesian decision theory We were surprised to find little evidence of

player 1 choosing an opening demand according to Bayesian criteria—

that is, forming a subjective probability distribution for the response be-

havior of player 2 and then maximizing utility relative to this distribution.

Only a small number of subjects explained their behavior in these terms.

Instead most subjects who o¤ered a coherent explanation seemed to take

it for granted that if they analyzed the game in a particular way, then so

would their opponent.

Still it may be interesting to learn what demand a (risk neutral) Baye-

sian player would make if he correctly forecast the probability of accep-

tance of demands in each interval (table A.3). However, the data reported

here are not adequate to permit any sharp conclusion. The optimal de-

mand for such a player might lie anywhere in the range 50 to 75, within

the limits of experimental error.

3. Fairmen v. Gamesmen Our study is not at all supportive of the hy-

pothesis that a substantial proportion of the population systematically

Table A.2
Relationship between the opening demand made to a subject in game A and the opening de-
mand he later made as player 1 in game B.

Opening demand a in game A

Opening demand in game B aa 62 ab 63

ba 62 18 (7) 5 (4)

bb 63 34 (2) 24 (5)

Note: The figures are those for the Main Results. Those in brackets are for pilot II.

Table A.3
Relationship between a subject’s response to the opening demand made of him in game A,
and the opening demand that he later makes when acting as player 1 in game B.

Response to opening demand
of a (63a aa 77) in game A

Opening demand b in game B No Yes

ba 62 (F) 1 (B?) 2

bb 63 2 (G) 17
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play as ‘‘fairmen’’. This is illustrated in table A.2, whose interpretation is

noted above.

4. Comparison with Güth et al. Responses to opening demands were

strongly biased in favor of ‘‘rationality.’’ (Of 22 opening demands in the

range 63a ab 77, only 3 were rejected; see annex 3.) On the other hand,

at the second stage—following a refusal at the first stage—subjects

showed a strong tendency to reject high demands as in the study of Güth

et al. (1982). Our suspicion is that the one-stage Ultimatum Game is

pathological in this respect.

The pathology may be due to the following fact: in the Ultimatum

Game, the first player might be dissuaded from making an opening de-

mand at, or close to, the ‘‘optimum’’ level, since his opponent would

then incur a negligible cost in making an ‘‘irrational’’ rejection. In the

two-stage game, these considerations are postponed to the second stage,

and so their impact is attenuated.

There remains the possibility that the di¤erence between our results

and those of Güth et al. might be traced to di¤erences in the experimental

environment rather than to di¤erences in the game played. Güth et al.

operated in an open environment within which subjects could see each

other (although the identity of their current opponent was, of course, se-

cret). Our assistant, Yasmin Batliwala, has run a controlled experiment to

check for this possibility (which will be reported separately). Replicating

our experimental conditions, she compared the behavior of subjects play-

ing our two-stage game with that of a control group playing the one-stage

Ultimatum Game. Generally, the results confirmed our present interpre-

tation. Behavior in the two-stage game was similar to that reported in

this paper. Behavior in the one-stage Ultimatum Game was consistent

with the observations of Güth et al. in that game theory is a poor predic-

tor of outcomes.

A.7 Summary and Conclusions

We have been concerned here to analyze the behavior of experimental

subjects in playing a two-stage noncooperative bargaining game. The

game we chose was designed to probe more deeply the widely held

view that game-theoretic solutions are a poor predictor of bargaining

outcomes.

In the game we investigated, the game-theoretic solution turned out

to be a fairly successful predictor of outcomes. However, there was a
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marked di¤erence in behavior between players who were confronted with

the game for the first time and those playing it a second time. Many sub-

jects playing for the first time proposed an equal division, even though

they enjoyed a strong strategic advantage.

While we have considered various possible explanations, the inter-

pretation we favor is this: when faced with a new problem, subjects

simply choose ‘‘equal division’’ as an ‘‘obvious’’ and ‘‘acceptable’’ com-

promise—an idea familiar from the seminal work of Schelling (1960).

We suspect, on the basis of the present experiments, that such con-

siderations are easily displaced by calculation of strategic advantage

once players fully appreciate the structure of the game.

Annex 1: Instructions Given to Player 1

The ‘‘Divide a Cake’’ Game

The aim of this exercise is to examine how people behave in bargaining

situations. You will play a game in which you bargain with an opponent,

as to how to divide a sum of money between you.

The game has two steps.

In the first step the amount of money involved is £1. You will be given

a chance to make an o¤er of a certain share (sum of money) to your

opponent.

If your opponent accepts, then he or she will be paid the amount that

was o¤ered by the organizer.

You will be paid the remaining part of the £1.

And that will end the game.

Suppose your o¤er is rejected, however. Then your opponent will be

given a turn to make an o¤er.

WHAT IS DIFFERENT ‘‘SECOND TIME ROUND’’ IS THAT

THE AMOUNT OF MONEY TO BE SPLIT IS LESS.

You will be told at the start of the game, what the size of the cake in

this second stage will be. (It may be 75p, 50p, or less.)

But apart from this, the second round is like the first. Your opponent

makes you an o¤er, and you accept: the organizer pays out accordingly.

BUT IF YOU REJECT IT, NO ONE GETS ANYTHING.

And that’s all there is to the game!

How Do We Want You to Play?

YOU WILL BE DOING US A FAVOR IF YOU SIMPLY SET OUT

TO MAXIMIZE YOUR WINNINGS.
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(And since all this will have taken only 5 or 10 minutes, you can make

a very respectable ‘‘hourly rate of pay’’ by so doing.)

Before you start the game, there will be a short demonstration routine

on the computer, which shows you how to make an o¤er and how to ac-

cept or reject one.

Thank you and over to you!

Annex 2: The Program

The program presents a series of visual displays accompanied by text. We

here show the text of each display in turn (omitting the initial ‘‘demon-

stration’’ round), together with selected visual displays only. We confine

ourselves to player 1. The text displayed to subjects is shown in capitals;

our comments on the text are in parentheses.

1. this cake is to be divided now (figure 2A.1).

2. it is now your turn to make an offer.

3. if your offer is rejected, the slice shown will disappear (figure

2A.2).

Figure 2A.1
The basic color of the display is green. Areas of solid color are indicated in parentheses.

Figure 2A.2
Note that the lower (green) cursor records the slice that will disappear and continues to do
so.
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4. you decide your offer by moving the red cursor (figure 2A.3).

wait!

5. your share will be to the left of the cursor. wait!

6. now move cursor.

press space bar when you have decided.

(The share claimed is now represented by a blue rectangle, shown shaded

in figure 2A.3. The lower cursor still shows the 75p slice, which will

disappear.)

7. please wait while the other player considers your offer.

(If the player accepts, the game ends. If he rejects, then the game proceeds

as follows.)

8. your offer was rejected.

9. this cake is to be divided now (figure 2A.4).

10. the other player will now make an offer (figure 2A.5).

11. remember: if you reject this offer, the WHOLE cake will

disappear.

Figure 2A.3

Figure 2A.4
Only the lower cursor line is shown in player 1’s displays henceforward, since it is player 2
who will make an o¤er.
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12. please wait while the other player considers what to offer you.

13. your opponent offers you the blue share.

14. fraction offered is worth (value) pence.

15. do you agree to this offer?

please type y/n.

16. (if yes is typed):

you accepted the offer. you get (value) pence.

(if no is typed):

the game ends.

17. this is the end of the game. your score: (value) pence.

thank you.

Annex 3: Opening Demands and Responses

Figure 2A.5
Seen by player 2

Number of games

Pilot II Main ResultsOpening
demand in
pence (d )

Pilot I
(game A) (game A) (game B) (game A) (game B)

0a da 11 1 (1) 0 (0) 0 0 (0) 0

0a da 22 1 (1) 0 (0) 1 0 (0) 0

23a da 33 0 (0) 0 (0) 1 3 (3) 2

34a da 44 4 (4) 2 (1) 1 12 (11) 3

45a da 55 17 (12) 6 (6) 7 30 (25) 14

56a da 66 6 (4) 3 (2) 1 13 (12) 8

67a da 77 7 (4) 6 (2) 8 16 (13) 50

78a da 88 1 (0) 1 (0) 0 6 (2) 3

89a da 99 1 (0) 1 (0) 0 1 (0) 1

Note: Numbers in parentheses indicate the number of acceptances.
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Annex 4: Listing of Games

Table 4A.1
Pilot 1

Game number First o¤er Second o¤er Reply

1 0.99 0.04 R

2 0.54 A

3 0.50 A

4 0.63 A

5 0.39 A

6 0.64 A

7 0.37 A

8 0.85 0.20 A

9 0.50 A

10 0.61 A

11 0.45 A

12 0.75 A

13 0.48 A

14 0.34 A

15 0.44 A

16 0.68 A

17 0.65 A

18 0.71 A

19 0.75 0.16 R

20 0.51 0.12 A

21 0.50 A

22 0.76 0.00 R

23 0.61 0.52 A

24 0.54 A

25 0.18 A

26 0.57 0.48 A

27 0.53 A

28 0.48 A

29 0.50 0.56 A

30 0.55 A

31 0.55 0.52 A

32 0.49 A

33 0.75 A

34 0.75 0.40 R

35 0.48 0.36 R

36 0.02 A

37 0.51 0.32 R

38 0.47 A
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Table 4A.2
Pilot 2

First game Second game

Game number First o¤er Second o¤er Reply Game number First o¤er

1 0.74 A 1 0.74

2 0.74 0.48 A 2 0.51

3 0.37 0.68 A 3 0.32

4 0.48 A 4 0.52

5 0.74 A 5 0.72

6 0.65 A 6 0.74

7 0.58 A 7 0.54

8 1.00 0.04 A 8 0.76

9 0.47 A 9 0.48

10 0.51 A 10 0.75

11 0.67 0.04 R 11 0.72

12 0.44 A 12 0.48

13 0.74 0.36 A 13 0.52

14 0.56 0.40 A 14 0.22

15 0.53 A 15 0.74

16 0.50 A 16 0.75

17 0.74 0.52 R 17 0.51

18 0.87 0.08 A 18 0.36

19 0.48 A 19 0.62
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Table 4A.3
Main results

First game Second game

Game number First o¤er Second o¤er Reply Game number First o¤er

1 0.55 A 1 0.70

2 0.68 A 2 0.31

3 0.43 A 3 0.51

4 0.47 A 4 0.54

5 0.75 A 5 0.74

6 0.47 A 6 0.75

7 0.64 A 7 0.70

8 0.42 0.48 A 8 0.51

9 0.56 A 9 0.65

10 0.68 A 10 0.54

11 0.75 A 11 0.75

12 0.70 A 12 0.75

13 0.71 A 13 0.75

14 0.48 A 14 0.74

15 0.41 A 15 0.48

16 0.88 0.12 R 16 0.75

17 0.74 A 17 0.72

18 0.66 A 18 0.75

19 0.83 0.12 A 19 0.71

20 0.38 A 20 0.74

21 0.81 A 21 0.70

22 0.47 A 22 0.75

23 0.41 A 23 0.70

24 0.50 A 24 0.55

25 0.38 A 25 0.92

26 0.64 A 26 0.75

27 0.49 0.44 A 27 0.52

28 0.38 A 28 0.75

29 0.74 0.40 A 29 0.67

30 0.66 A 30 0.78

31 0.52 0.52 A 31 0.37

32 0.98 0.52 A 32 0.59

33 0.44 A 33 0.77

34 0.54 A 34 0.48

35 0.53 A 35 0.62

36 0.54 A 36 0.74

37 0.52 A 37 0.72

38 0.73 A 38 0.75

39 0.53 A 39 0.75

40 0.86 A 40 0.83

41 0.74 0.48 A 41 0.54

42 0.56 A 42 0.75

43 0.48 A 43 0.74

44 0.54 A 44 0.68

45 0.51 A 45 0.65
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Table 4A.3
(continued)

First game Second game

Game number First o¤er Second o¤er Reply Game number First o¤er

48 0.50 A 48 0.75

49 0.52 A 49 0.77

50 0.38 A 50 0.54

51 0.57 0.44 A 51 0.44

52 0.80 A 52 0.58

53 0.31 A 53 0.74

54 0.81 A 54 0.77

55 0.39 A 55 0.63

56 0.73 A 56 0.76

57 0.31 A 57 0.51

58 0.50 A 58 0.77

59 0.65 A 59 0.74

60 0.61 A 60 0.75

61 0.71 A 61 0.72

62 0.50 A 62 0.75

63 0.47 A 63 0.70

64 0.48 A 64 0.75

65 0.74 0.40 A 65 0.67

66 0.23 A 66 0.38

67 0.57 A 67 0.63

68 0.53 0.48 A 68 0.50

69 0.52 0.00 R 69 0.30

70 0.47 A 70 0.62

71 0.71 A 71 0.72

72 0.43 A 72 0.74

73 0.64 A 73 0.74

74 0.52 A 74 0.75

75 0.38 A 75 0.75

76 0.50 A 76 0.55

77 0.45 A 77 0.69

78 0.75 A 78 0.76

79 0.51 A 79 0.54

80 0.50 A 80 0.88

81 0.75 A 81 0.75
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B Backward Induction?

These papers record my di¤erences with Bob Aumann (1995) on the sub-

ject of backward induction. What a lot of trouble I had getting this work

published anywhere!

I think the entire literature on refinements of Nash equilibrium was a

blind alley for economics, although I guess it will always have a place in

the philosophy of rational decision theory (Binmore 1987, 1992). Now

that this view is more or less orthodox, it is hard to put oneself back into

the frame of mind that once made refinement theory seem such a promis-

ing line of inquiry.





A Note on Backward Induction

Ken Binmore

It now seems to be generally accepted that rational players would

not necessarily use their backward-induction strategies if there were to

be a deviation from the backward-induction path (Binmore 1987). But

Aumann (1995) has recently o¤ered a formal defense of the proposition

that prior common knowledge of rationality implies that play will never-

theless necessarily follow the backward-induction path. This brief note,

extracted from a longer philosophical paper (Binmore 1996), questions

the definition of rationality that he employs.

What keeps a rational player on the equilibrium path is his evaluation

of what would happen if he were to deviate. But, if he were to deviate, he

would behave irrationally. Other players would then be foolish if they

were not to take this evidence of irrationality into account in planning

their responses to the deviation. A formal model that neglects what would

happen if a rational player were to deviate from rational play must there-

fore be missing something important, no matter how elaborately it is ana-

lyzed. However, Aumann (1995, sec. 5f ) is insistent that his conclusions

say nothing whatever about what players would do if vertices of the

game tree o¤ the backward induction path were to be reached.1 But, if

nothing can be said about what would happen o¤ the backward-induction

path, then it seems obvious that nothing can be said about the rationality

of remaining on the backward-induction path. How else do we assess the

cleverness of taking an action than by considering what would have hap-

pened if one of the alternative actions had been taken? But this is pre-

cisely what Aumann’s (1995) definition of rationality fails to do.

The support of the ESRC Centre for Economic Learning and Social Evolution and the
Leverhulme Trust is gratefully acknowledged.

1. Although he avoids the subjunctive mood, I take this to be the meaning of the apparently
oxymoronic sentence, ‘‘The results of this paper say nothing about the behavior of the
players at vertices that are o¤ the backward induction path and are actually reached.’’



In Binmore (1987), I used Rosenthal’s (1981) Centipede Game of figure

B.1 as an example when criticizing the defense of the backward-induction

principle that was then current. The same example will also su‰ce here.

According to Aumann (1995), common knowledge of rationality in the

Centipede makes it irrational for player I to choose across at his opening

move. Aumann supports this conclusion by denying that the rationality

of choosing down need involve any knowledge at all of what would hap-

pen if across were played. Instead of saying that it is rational for player I

to choose down if he knows or believes that choosing across would not re-

sult in a higher payo¤, Aumann says that it is rational for player I to

choose down if he does not know that choosing across would result in a

higher payo¤. That is to say, Aumann moves the word ‘‘not’’ from one

place to another.

But do we really want to deny the standard Bayesian assumption that

player I can quantify his ignorance about what would happen if he were

to play across?2 If not, then player I must assign a probability p to the

event that the result of his playing across would be a payo¤ of at least 4,

rather than the payo¤ of 2 he gets by playing down. The latter eventuality

would result, for example, if player II were to deduce from player I’s

choosing across at the first node that player I would also choose across if

the third node were reached.

If down is the only Bayesian-rational action at the opening, then p < 1
2
.

But why is p < 1
2
?3 We seem to be stuck with the implication that p < 1

2
is

somehow built into the assumption that there is common knowledge of

rationality. But what would be the source of this knowledge? Surely we

Figure B.1

2. Aumann’s (1995, sec. 4c) comments on how his approach can be framed in Bayesian
terms are irrelevant to this point, since his formalism does not allow counterfactuals to be
expressed.

3. One cannot argue that common knowledge of rationality implies that p ¼ 0 because,
according to Aumann, the play of across at the opening move would refute the hypothesis
that player I is rational—and anything whatever follows from a contradiction.

306 Appendix B



should not be arguing that player I must know or believe something be-

cause the action we attribute to him is rational. The causal chain should

run from knowledge to action rather than the reverse.

In denying Aumann’s (1995) claim that common knowledge of ratio-

nality necessarily implies backward induction, I do not want to argue

that backward induction is irrelevant to game-theoretic analyses. For ex-

ample, one may use induction to demonstrate that all Nash equilibria in

the Centipede require player I to choose down with probability one at the

opening move. Personally, I think that the Nash equilibria of interest

for the issues that Rosenthal (1981) invented the Centipede to explore

are those in which player I is actually indi¤erent between playing down

and across at the opening move—but this is another story told elsewhere

(Binmore 1996).
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Rationality and Backward Induction

Ken Binmore

I have a text, it always is the same,

And always has been,

Since I learnt the game.

(Chaucer, The Pardoner’s Tale)

B.1 Introduction

In 1987, I wrote a paper (Binmore 1987a) that questioned the rationality

of the backward-induction principle in finite games of perfect informa-

tion. Since that time, a small literature has grown up in which Antonelli

and Bicchieri (1994), Ben-Porath (1992), Bicchieri (1988, 1989), Bonanno

(1991, 1994), Pettit and Sugden (1989), Reny (1992), Samet (1994), Stal-

naker (1992a,b), and numerous others have attempted with varying suc-

cess to treat the issues formally.

I believe my claim that rational players would not necessarily use their

backward-induction strategies if there were to be a deviation from the

backward-induction path is now generally accepted. But Aumann (1995)

has recently o¤ered a formal defense of the proposition that prior com-

mon knowledge of the players’ rationality implies that play will neverthe-

less necessarily follow the backward-induction path. He argues that the

conclusion is counterintuitive in certain games, but attributes our discom-

fort with the result to a failure to appreciate how strong his assumptions

are. However, although Aumann’s deep and thought-provoking contribu-

tions to the foundations of game theory provide the chief inspiration for

this article, my purpose is not to comment specifically on his recent arti-

cle. Its purpose is to question the significance of this and other results of

the formalist genre.



Without intending any disrespect to the authors,1 I believe that there is

little of genuine significance to be learned from any of the literature that

applies various formal methods to backward-induction problems—even

when the authors find their way to conclusions that I believe to be cor-

rect. It seems to me that all the analytical issues relating to backward in-

duction lie entirely on the surface. Inventing fancy formalisms serves only

to confuse matters. The related literature on the Surprise Test Paradox

provides a particularly blatant example. The paradox has a trivial resolu-

tion (Quine 1996; Binmore 1994), but the various exotic logics that have

been brought to bear on the problem never come near exposing the piece

of legerdemain by means of which we are deceived when the problem is

posed.

Formalists will object, saying that an argument is open to serious eval-

uation only after it has been properly formalized. But this is a disingenu-

ous response. It is true that if we were in serious doubt about whether an

author had succeeded in analyzing his or her model correctly, then it

would be foolish not to insist that the argument be given in precise terms.

However, the literature on backward induction seldom provokes doubts

at this level. The issue is almost never whether a particular model

has been analyzed correctly—but whether the correct model has been

analyzed.

In brief, I think that the backward-induction problem—like much else

in the foundations of game theory—poses only a very small challenge to

our powers of formal analysis. The real challenge is not to our powers of

analysis but to our ability to find tractable models that successfully incor-

porate everything that matters. In particular, it seems entirely elementary

that whatever model of a player is used, it must be rich enough to encom-

pass irrational behavior as well as rational behavior (Binmore 1987a).

What keeps a rational player on the equilibrium path is his evaluation of

what would happen if he were to deviate. But, if he were to deviate, he

would behave irrationally. Other players would then be foolish if they

were not to take this evidence of irrationality into account in planning

their responses to the deviation. A formal model that neglects what would

happen if a rational player were to deviate from rational play must there-

fore be missing something important, no matter how elaborately it is ana-

lyzed. However, Aumann (1995, sec. 5c), for example, is insistent that his

conclusions say nothing whatever about what players would do if vertices

1. It is always easy to predict which line of research will be fruitful after the event.
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of the game tree o¤ the backward-induction path were to be reached.2

But, if nothing can be said about what would happen o¤ the backward-

induction path, then it seems obvious that nothing can be said about the

rationality of remaining on the backward-induction path. How else do we

assess the cleverness of taking an action than by considering what would

have happened if one of the alternative actions had been taken? But this is

precisely what Aumann’s (1995) definition of rationality fails to do. (See

justification 6 of section B.4.)

In Binmore (1987a), I used Rosenthal’s (1980) Centipede Game of fig-

ure B.2(a) as an example when criticizing the defense of the backward in-

duction principle that was then current. Figure B.2(b) shows the strategic

form of the special case when n ¼ 3 (the three-legged Centipede). In this

note, I plan to use the same example to elaborate on the criticism just

expressed of the tighter defense of the principle that is possible if one fol-

lows Aumann (1995) in abandoning claims about what would happen o¤

the backward-induction path.

It is easy to verify that the backward-induction principle requires that

each player always plan to play down in the Centipede. In particular, the

2. Although he avoids the subjunctive mood, I take this to be the meaning of the apparently
oxymoronic sentence, ‘‘The results of this paper say nothing about the behavior of the
players at vertices that are o¤ the backward induction and are actually reached.’’

Figure B.2
The Centipede Game
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unique subgame-perfect equilibrium S in the three-legged Centipede is

ðdd; dÞ. However, the three-legged Centipede has other Nash equilibria.

Part of the reason for writing this article is to argue that such alternative

Nash equilibria have been too readily dismissed in the past—a theme

pursued at greater length in Binmore et al. (1995) and Binmore and

Samuelson (1995). In particular, the three-legged Centipede has a mixed

Nash equilibrium N in which player I uses his backward-induction strat-

egy with probability one, but player II mixes between a and d, using the

former with probability 1=2.3 If player I knows that player II will play

across with this probability, it is false that rationality requires that he

play down. In fact he is indi¤erent between playing down and across. Al-

though he plays down with probability one in equilibrium, it is neverthe-

less equally rational for him to play across.

Among other things, this article argues that prior common knowledge

of rationality should not lead us to reject the equilibrium N. On the con-

trary, it is argued that N, rather than S, is the equilibrium of interest for

the issues that the Centipede was constructed to explore. It is tempting to

wave this point aside by conceding that perhaps prior common knowl-

edge of rationality in the Centipede may lead to the play of N and so

does not, after all, necessitate that player I open the Centipede by playing

down. But who cares if player I only plays across with probability zero?

But there is more riding on this issue than immediately meets the eye, as

I hope will be evident by the end of this article. In particular, I hope that

it will become apparent that we need not follow Aumann (1992, 1995) in

perceiving a sharp discontinuity between what happens when there is per-

fect common knowledge of rationality and when this condition is relaxed

slightly. In particular, there is no need for game theorists to seek to insu-

late themselves from the criticism of experimentalists by claiming that

their theorems have no relevance to how real people behave.

3. The three-legged Centipede has other mixed Nash equilibria. Figure B.2(c) shows a
prism, the points of which represent all pairs of mixed strategies for the reduced strategic
form of the three-legged Centipede (obtained by deleting the row da). A point in the prism
corresponds to a Nash equilibrium if and only if it lies on the closed line segment NS. This
article discusses possible eductive analyses of the Centipede (Binmore 1987a). In an evolutive
analysis it would be of interest to note the trajectories of the replicator dynamics indicated in
Figure B.2(c). No Nash equilibrium is an asymptotic attractor in these dynamics. Moreover
after an equilibrium E in the relative interior of NS has been perturbed by introducing a
small fraction of player I’s who use aa, the system returns to an equilibrium that is nearer
N than E. Drift induced by a tendency on the part of player I to use aa rather than ad
when making an out-of-equilibrium deviation will therefore result in a movement along NS
towards N. A tendency to use ad rather than aa will result in a drift in the opposite direction
toward S.

312 Appendix B



Section B.2 comments briefly on the importance of common knowledge

assumptions in general. Section B.3 explores one of the reasons for the

popularity of the claim that prior common knowledge of rationality

implies the backward-induction principle. It describes my version of a

folk argument that purports to demonstrate that prior common knowl-

edge of rationality in the Centipede Game implies that its opening move

will necessarily be down. As with Aumann’s (1995) more complicated

theorem, the argument is correct, in the sense that the conclusion does in-

deed follow from the premises. But something must be wrong at the con-

ceptual level, because the conclusion that player I will begin by playing

down is obtained without any reference to his beliefs about what would

happen if he were to play across. But if the probability that player I

assigns to the event that player II would then also play across is su‰-

ciently high, it is obviously not optimal for player I to begin by playing

down. I believe that this apparent paradox arises partly as a consequence

of a failure to appreciate how counterfactual reasoning works. Section

B.4 therefore seeks to demystify this question. Section B.5 attempts to re-

solve the paradox by retelling the story with a less restrictive background

model. However, once a paradox-free model has been adopted, the door

is no longer closed on the Nash equilibrium N. Finally, Section B.6 tries

to say something about what the conclusions mean by taking up a clarion

call from one of Aumann’s (1985) previous papers, and asking what we

are trying to accomplish when we prove theorems in game theory. Per-

sonally, I think it is because this question has been so neglected that the

foundations of game theory are now in such a mess.

B.2 Common Knowledge

Before Aumann (1976) put the concept of common knowledge on an

operational footing, game theorists were very casual about what their

players did or did not know. More recently it became fashionable to insist

that everything is to be assumed to be common knowledge, regardless of

its relevance to the issue at hand. Now the wheel has turned again, with

Aumann and Brandenburger (1995) insisting that no common knowledge

at all is necessary to justify Nash equilibrium. As they observe, it is obvi-

ously true that justifying Nash equilibrium requires no more than that

each player knows the game and the strategies used by his opponents. In

the hope of averting confusion, this section is devoted to pointing out that

this truth, and its elaborations to more complex situations, are largely be-

side the point.
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The purpose of prescriptive game theory is to advise players about

the rational course of action in a game. If a prescriptive theory begins

with the assumption that the players already know its prescriptions, then

it preempts its own reason for existing. To be useful, a prescriptive theory

needs to begin with assumptions that not trivialize the problem. It is im-

portant to insist that such assumptions often do require that various

things are common knowledge—notably, the rules of the game, the pref-

erences of the players over the outcomes, and the players’ beliefs about

chance moves in the game. One may summarize these assumptions as

the requirement that the game being played is common knowledge among

the players.4. Examples that demonstrate how slight relaxations of this

requirement can sometimes have big e¤ects are a commonplace of the

theory. For example, all Nash equilibria in the N-times repeated Pris-

oners’ Dilemma result in each player defecting at each stage with prob-

ability 1. However, this conclusion evaporates if the value of N is not

common knowledge (Binmore 1991, ch. 10).

Of course, after a game-theoretic analysis has been brought to a suc-

cessful conclusion and the results published in a book, it may well be rea-

sonable to assume that each player knows that his opponents will play as

the book prescribes. But it does not follow that one can then discard the

knowledge assumptions that led its author to write what he wrote. The

reason that rational players know what their opponents will do after

reading the book is because they are able to check that the author’s con-

clusions do indeed follow from his hypotheses. However, within the static

formalism that Aumann (1987, 1989; Aumann and Brandenburger 1995)

now favors, there is no way to compare the state of things before and

after an analysis, or even to ask why a player takes one action rather

than another. As Aumann (1987) puts it, players ‘‘just do what they do.’’

An analyst can only look on from outside the world in which the game is

played and comment that if the players happen to make a Bayesian-

rational choice then they will be operating a correlated equilibrium. As

Aumann (1987) insists, such a model is neither prescriptive nor descrip-

tive, but what he calls ‘‘analytic.’’ Personally, I think that such analytic

models have their uses, but they will not su‰ce as a foundation stone for

all of game theory. If it sometimes seems otherwise, it is because, as with

George Orwell’s newspeak, criticism of the defects of analytic models

4. Harsanyi’s theory of incomplete information does not provide a counterexample. His
theory provides a recipe for adding information to a situation in which information is in-
complete until a game has been constructed whose structure is common knowledge (Binmore
1991, ch. 11).
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sometimes cannot even be expressed in the language within which they

are formalized.

Although I believe it would be a mistake to follow Aumann and Bran-

denburger (1995) in focusing attention away from the underlying com-

mon knowledge assumptions of game theory, this is not because I think

one will often be led to wrong conclusions by treating common knowl-

edge considerations in an informal manner. It is at the interpretive level

that the importance of common knowledge assumptions needs to be

acknowledged. In Harsanyi’s theory of incomplete information, for ex-

ample, one really does need to assume that the underlying distribution of

types is common knowledge. But the theory is nevertheless widely applied

to situations in which this assumption is highly implausible. In any case,

although no formal definitions are introduced, it is important to empha-

size that this article takes both common knowledge of the game and prior

common knowledge of rationality for granted. If they feel the need, those

familiar with Aumann (1995) will have no di‰culty in formalizing what it

means for something to be common knowledge in the simple case covered

by proposition 1. My own view is that we run into conceptual di‰culties

when considering the implications of prior common knowledge of ratio-

nality in finite games of perfect information because we are unsure how

rationality should be defined—not because we are unable to handle the

technicalities of common knowledge.

Finally, while on the subject of rationality, I am anxious to clear the

air by stipulating that the general di‰culties I have raised elsewhere (Bin-

more 1987) about the coherence of the notion of ‘‘perfect rationality’’

evaporate in the context of a finite game of perfect information. In such

games the issue of whether rational players are so perfect that they can

decide the undecidable does not arise.

B.3 ‘‘Proving’’ Backward Induction

Knowledge of a finite game of perfect information can be summarized

as a list of conditional sentences of the type: ‘‘If both players were always

to play across, then player I would get a payo¤ of n and player II would

get nþ 1.’’ A player’s knowledge of the characteristics of his opponents

(including what the opponents know or do not know about him) is not

always accorded a formal role in game-theoretic analyses. Usually the

assumptions being made about what players know about each other are

implicit in the equilibrium concept that an analyst chooses to consider.

However, in what follows, I will assume that part of our enterprise is to
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seek to label each node x in the Centipede Game with a pair ðS;TÞ of fi-
nite sets. The interpretation is that if node x were to be reached, then it

would be common knowledge that player I lies in set S and player II lies

in set T . With such a convention, the assumption of prior common

knowledge of rationality can be expressed by labeling the first node with

a pair ðR1;R2Þ, where both R1 and R2 contain only ‘‘rational’’ players.

(When the word ‘‘rational’’ appears in quotes, there will be reason later

to ask whether the framework within which it is being used is capable of

bearing the load.)

During the course of a game, the actions that a player takes will enrich

the information about his characteristics available to his opponent. Sup-

pose that node x is labeled with the pair ðS;TÞ. Suppose also that, if

player I were to take action a at node x, then the next node would be y.

Finally, suppose that there is at least one player in the set S who some-

times would play a if node x were reached. Then it will be assumed5 that

y may be labeled with a pair ðS 0;TÞ, where S 0 JS. A similar assumption

is made if it is player II who moves at node x. The perennial problem of

refinement theory arises when no player in S would ever take action a if

node x were reached. How then should node y be labeled? This problem

will not go away, but it will be put to one side for the moment.

If the first node of the n-legged Centipede Game of figure B.2(a) is la-

beled ðS;TÞ, then it will be denoted by GnðS;TÞ. An elaborate definition

of a ‘‘rational’’ player is not needed if the aim is only to show that the

‘‘rational’’ opening move is necessarily down in GnðR1;R2Þ, where R1

and R2 will always denote sets of ‘‘rational’’ players. A ‘‘rational’’ player

need only be taken to be someone who would maximize his payo¤ when

making the first move in all games GnðR1;R2Þ.

Proposition 1 When there is prior common knowledge that everybody is

a ‘‘rational’’ player, the Centipede Game necessarily begins with the play

of down.

Proof For all R1 and R2, it follows immediately from the definition of a

‘‘rational’’ player that down is always played in G1ðR1;R2Þ. As an induc-

tion hypothesis, suppose that the first move of Gn�1ðR1;R2Þ is down for

all R1 and R2. Now consider the first move of GnðR1;R2Þ. If the play of

across is a possible opening move of GnðR1;R2Þ, then the second node

GnðR1;R2Þ should be labeled ðR 0
1;R2Þ, where R 0

1 JR1. But we know that

5. The assumption implies that actions taken by one player are not informative about the
other. I make this assumption only to keep things simple. Binmore (1987) uses Selten’s
Horse Game as an example when exploring the alternative hypothesis.
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down is the opening move of Gn�1ðR 0
1;R2Þ if this is reached. Moreover the

common knowledge assumption implies that the player making the open-

ing move GnðR1;R2Þ knows this also. It follows that a ‘‘rational’’ player

in the set R1 makes a suboptimal move by playing across, since he knows

that his payo¤ from playing down would be greater. From this contra-

diction, we deduce that no ‘‘rational player’’ in the set R1 ever opens

GnðR1;R2Þ by playing across. m

The proposition shows that, with prior common knowledge of ‘‘rational-

ity,’’ the opening move of the Centipede Game cannot be across. A for-

malist might be satisfied to stop at this point, but I think it important to

continue by asking the seemingly stupid question:

Is it rational to be ‘‘rational’’?

To address this question, consider the labeling of the second node of

G3ðR1;R2Þ. Since it has been shown that this node cannot be reached,

we have no rule to assist in its labeling. We therefore lack the information

we need to predict what would happen if the second node were reached.

Nevertheless, to assess the rationality of a ‘‘rational’’ player who plays

down at the opening move, we need to ask what payo¤ he would get if he

were to play across.

The subjunctives in the preceding sentence have been italicized to em-

phasize that we have a counterfactual conditional to evaluate. Aumann’s

(1995) discussion of such counterfactuals, which actually play no role

whatsoever in his formal analysis, obscures the important point that the

interpretation of a counterfactual depends on the context in which it

arises. An aside on this issue is therefore necessary.

B.4 Conditionals

Sanford’s (1989) book, If P, then Q, reviews the many attempts that have

been made to provide an adequate account of conditional reasoning. The

debate began in ancient times and continues unabated into the present.

There seems to be no consensus even on definitions. However, I will

adopt the terminology of Flew’s widely quoted Dictionary of Philosophy

(1979). Flew distinguishes material conditionals, subjunctive condition-

als6 and counterfactual conditionals.

6. Aumann (1995) invents the term substantive conditional for what Flew calls a subjunctive
conditional, arguing that the subjunctive is colloquially used only with a false antecedent. If
I were ever take up residence in New York, perhaps I would come round to his point of
view.
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A material conditional is usually called a material implication by math-

ematicians and written as P ) Q. Such conditionals are all that is needed

in pure mathematics and so mathematicians are often reluctant to con-

cede that other types of conditional may sometimes be useful. However,

the subjunctive conditional, ‘‘If my dean were a man, then my salary would

be astronomical’’ is false as used in ordinary conversation—even though

my dean is actually a woman and so the conditional has a false anteced-

ent (which would make it true if interpreted in the material sense). A

subjunctive conditional with such a false antecedent is said to be a coun-

terfactual conditional.

How are subjunctive conditionals to be interpreted? The simplest ap-

proach uses the notion of a possible world. For example, since my dean is

actually a woman, someone interpreting the counterfactual conditional,

‘‘If my dean were a man, then my salary would be astronomical’’ needs to

consider what possible world I have in mind when seeking to make sense

of the sentence. In these enlightened times, the relevant possible world is

clear enough. It is created by replacing my current female dean by a male

dean, leaving everything else the same. However, were Isaac Newton to

have said ‘‘If my dean were a woman, my salary would be astronomical,’’

we would certainly not have thought it appropriate simply to replace his

male dean by a female dean, leaving everything else the same. For a fe-

male dean to be possible in the seventeenth century, all sorts of other

changes in society would need to be postulated. How a subjunctive con-

ditional is to be interpreted therefore depends on the context in which

it arises. If the context is uncertain, it is the duty of the analyst to clar-

ify the context that he has in mind by making formal assumptions if

necessary.

In section B.3, all three types of conditional appear. Subjunctive condi-

tionals appear in the description of the game. When we are told, ‘‘If both

players were always to play across, then player I would get a payo¤ of n,’’

we are accepting a constraint on the possible worlds we are allowed to

postulate during an analysis of the game. The definition of a ‘‘rational’’

player makes a similar use of subjunctive conditionals. We are told some-

thing about what such a player would do if he were to play the game

GnðR1;R2Þ. (I find it helpful to think of a ‘‘rational’’ player as a computer

program that would produce certain outputs if it were o¤ered certain

inputs. However, only some of the many potential inputs it might receive

will actually be realized.)

Section B.3 continues with the proof of proposition 1. Wherever the in-

dicative mood has been used in this proof, the conditionals are intended
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as material conditionals—as in a regular mathematical proof. In such

arguments by contradiction, it is of some importance to be clear on this

point. As Sanford (1989) documents, it is easy to go astray when attempt-

ing to argue by contradiction when the conditionals are subjunctive, be-

cause nothing says that all subjunctive conditionals that appear in an

argument must be interpeted within the same possible world.

Section B.3 ends by questioning the rationality of a ‘‘rational’’ player

who opens GnðR1;R2Þ with the play of down, by asking what such a

player would get if he were to play across. Here we are definitely faced

with a counterfactual conditional. As stressed in Binmore (1987), the

standard definition of a game tells us nothing whatever about the nature

of the possible world or worlds within which such a counterfactual condi-

tional is to be interpreted. It is true that, when arguing by contradiction

in proposition 1, we maintained the hypothesis that common knowledge

of ‘‘rationality’’ was still in place when contemplating the possibility that

player I might start by playing across. But after proposition 1 has been

proved, we have to live with the fact that common knowledge of ‘‘ratio-

nality’’ would be refuted if player I’s opening move were across. The

meaning of the counterfactual conditional, ‘‘If a ‘rational’ player were to

open GnðR1;R2Þ by playing across, he would get a smaller payo¤ than if

he played down’’ therefore remains open for debate unless further infor-

mation is supplied to establish a context for its interpretation.

One way of specifying a context for our troublesome counterfactual

conditional is to name a label ðS;R2Þ for the second node of G3ðR1;R2Þ.
To make the traditional backward-induction argument work, we need

that SJR1. However, the assumption that SJR1 seems strange to the

layman, who argues that the play of across has refuted the hypothesis that

player I lies in the set R1. This leads him to propose that SJCR1.

One possibility for the set S is then that its members would always play

across no matter what. Backward induction would then fail, since player

II would play across if the second node of G3ðR1;R2Þ were reached, be-

cause player II would then believe player I would play across if the third

node were reached. In this situation it would definitely be irrational to be

a ‘‘rational’’ player. If a precondition of being rational is to be ‘‘rational,’’

we are therefore led to the odd conclusion that a rational player cannot

know that if an opponent ever were to play across in the Centipede, then

he would always play across. But, when we assumed prior common

knowledge of the players’ rationality, did we really intend to restrict what

the players might or might not believe in the counterfactual event that

someone were to play irrationally?
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But nothing compels us to adopt either SJR1 or SJCR1 as proper-

ties of the relevant possible world within which to interpret our trouble-

some counterfactual.7 If we wish to justify the rationality of a ‘‘rational’’

player, we therefore need to add something to the assumption of prior

common knowledge of ‘‘rationality’’—something that tells us what would

be known if a ‘‘rational’’ player were to play across. I can think of a num-

ber of ways in which someone defending backward induction might seek

to justify or evade the requirement that SJR1:

Justification 1 One could simply add the assumption SJR1 to the

other assumptions being made. For example, in the spirit of Selten’s

(1975) agent-normal form of a game, it is not unknown for authors to

propose that a player be modeled as a collection of independently acting

agents, one for each decision node at which the player might have to

make a decision. As Binmore and Samuelson (1993) observe, it then

seems relatively innocent to propose that, if prior common knowledge of

the rationality of one of the players were to be refuted during the course

of the game by some display of irrational behavior on the part of one or

more of his agents, then rationality should still be attributed to those of

his agents who have yet to play. One might even be forgiven for regarding

the assumption as being so natural that it need not be explicitly stated

when assigning a meaning to the counterfactual conditionals that arise

when irrational play needs to be contemplated. However, since a rational

player is clearly not simply a collection of independently acting agents,

there seems little point in deducing the backward-induction principle

from the assumption that he is.

Justification 2 One could follow Selten (1975) in his defense of perfect

equilibrium by attributing any ‘‘irrationalities’’ that may arise during the

game to transient random errors that have no significance for a player’s

future play.

Justification 3 One might follow Zermelo (1913) in his study of chess by

proceeding on the assumption that each player needs always to take the

least favorable view of his opponent when assessing possible futures. This

is certainly the correct procedure when computing a player’s security level

in a game—and security strategies are what we care about in two-person,

zero-sum games like chess. Moreover in such games the least favorable

assumption is always that the opponent will behave rationally in the fu-

7. The logic of the layman’s argument is flawed because anything follows from a contradic-
tion. But it does not therefore follow that his suggestion that SJCR1 can be rejected.
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ture no matter how irrationally he may have behaved in the past. But the

Centipede Game is not zero-sum. Zermelo is therefore irrelevant as an

authority in this context.

Justification 4 One might adopt a strict revealed-preference line as in

Binmore (1994). If we take the choices that would be made at nodes as

fundamental, then the reason, for example, that down is assigned a larger

payo¤ at the final node of the Centipede than across is because it is part

of the data of the problem that if player I were to reach the final node and

make whatever deductions about his situation that he then thought fit, he

would definitely choose down and not across.

But the literature on backward induction does not adopt a strict

revealed-preference approach because it then becomes a tautology that

backward induction holds. Whatever behavior we might observe in a fi-

nite game of perfect information is compatible with backward induction

if we are allowed to fill in the payo¤s after the event. Binmore (1994)

makes this point to refute philosophers who argue that prior common

knowledge of rationality in games like the Centipede makes backward in-

duction necessarily irrational—as opposed to Aumann’s (1995) claim to

the contrary.

Justification 5 Alternatively, one might argue as follows. Because player

I is known to be rational, if he plays down at the first node of the Centi-

pede Game, then he must know that he would get a worse payo¤ from

playing across. That is to say, his rationality includes his knowing that if

he were to play across, then player II would not conclude that he is the

type of person who always plays across. But what would be the source

of this knowledge? Surely the causal chain should run from knowledge

to action rather than from action to knowledge.8 However, if rationality

implies ‘‘rationality,’’ we have already seen that the assumption of prior

common knowledge of rationality commits us to precisely this di‰culty.

Justification 6 Aumann (1995) seeks to evade the requirement that

SJR1 by denying that the rationality of choosing down need involve

any knowledge at all of what would happen if across were played. Instead

of saying that it is rational for a player to choose down if he knows or

8. More generally, we should not argue that an action is rational because it has been chosen
by a rational person. We should argue that a person is rational because he always chooses
rational actions given his knowledge or beliefs. If this principle is denied, how does one deal
with the fallacy for rational cooperation in the Prisoners’ Dilemma that goes, ‘‘I am rational.
So anything I decide to do will necessarily be rational. Player II is also rational and hence
will aways make the same decision as I make when placed in identical circumstances. There-
fore, she will do whatever I do in the Prisoners’ Dilemma. Hence I should cooperate.’’
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believes that choosing across would not result in a higher payo¤, the

strategem is to say that it is rational for a player to choose down if he

does not know that choosing across would result in a higher payo¤.9 But

does this mean that we are to assume that he is so ignorant that the stan-

dard Bayesian assumption that he can quantify his ignorance with a prob-

ability distribution is to be denied?10 If not, then he must assign a

probability p to the event that the result of his playing across would be a

payo¤ of 4 rather than the payo¤ of 2 he gets by playing down. If only

down is Bayesian-rational, then p < 1
2
. But how come p < 1

2
? We seem to

be stuck with the implication that this fact is somehow built into the as-

sumption that there is prior common knowledge of rationality. That is to

say, we have essentially the same problem that we faced in justification 5.

Of the preceding attempts to justify or evade the assumption that

SJR1, it is the second that I feel has most to be said for it. It is an up-

front attempt to explain how a ‘‘rational’’ player might come to act ‘‘irra-

tionally.’’ Often the need for such an explanation is expressed by asserting

that each equilibrium concept needs to incorporate a ‘‘theory of mis-

takes.’’ However, nothing says that Selten’s (1975) trembling-hand story

is the only story of mistakes that can be told. Indeed adopting such a

story would seem to close the door on any hopes that game-theoretic

results might be relevant to the play of real people. We all know that

bad play by actual people is usually the result of a failure to think things

through properly—and people who have reasoned badly in the past are

likely to reason badly in the future.

Kreps, Milgrom, Roberts, and Wilson’s (1982) ‘‘gang of four’’ paper

tells a di¤erent story in which there are irrational types as well as rational

types of players. Within such a story, the observation of an action that

would be a mistake for a rational player is explained by attributing it to

an irrational player—just as our layman would wish. In Selten’s terminol-

ogy, trembles are then correlated, and so backward induction cannot be

justified. Indeed within such a framework Fudenberg, Kreps, and Levine

(1988) have shown that no refinements of Nash equilibrium can be justi-

9. Such a movement of the word ‘‘not’’ from one place to another in the sentence may seem
innocuous. But do we really want to argue that it is rational never to take any action that
would reduce our ignorance? But the very nature of such an action precludes our knowing
what its outcome would be.

10. Aumann’s (1995, sec. 4c) comments on how his approach can be framed in Bayesian
terms are irrelevant to this point, since his formalism does not allow counterfactuals to be
expressed.
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fied at all. Of course, the analysis of a game with a realistic theory of mis-

takes is much harder than with Selten’s trembling-hand story. But if we

want a theory that is at all relevant to what real people do when they

play games, it seems to me that this is the route we must follow.

B.5 Paradox of Rationality?

The previous section argues that it may not be rational to be ‘‘rational.’’

But, whatever full rationality may be, surely it includes being ‘‘rational’’?

In my view, the appearance of a paradox arises only because we have

been working with an inadequate background model. To explore this

viewpoint, let us first consider the case when it is not true that there is

prior common knowledge that all the players are rational. Instead there

is prior common knowledge that a player is rational with probability

1� e > 0 and irrational with probability e > 0. Only the extreme case in

which irrational players always play across will be considered. This setup

was analyzed in Binmore (1987) in much the same way that the gang

of four Kreps et al. (1982) analyzed the finitely repeated Prisoners’

Dilemma. The analysis shows that equilibrium play in the Centipede

requires the rational players to mix between across and down at each

stage of the game. If the Centipede has su‰ciently many legs, they play

across with probability one in the early stages of the game. At the final

stage, they necessarily play across with probability zero. At intermediate

stages, they play across with a probability that declines over time from

one to zero.

For an equilibrium in the three-legged Centipede, the initial phase in

which rational players choose across with probability one is absent. Equi-

librium play requires that rational players use both across and down with

positive probabilities at nodes 1 and 2. The probabilities with which a ra-

tional player mixes at one of these nodes are chosen to make a rational

player at the other node indi¤erent between playing down or across. As

e ! 0, the probability that a rational opening player chooses across

declines to zero. However, he remains indi¤erent between choosing across

or down all the way up to the limit, where the players’ behavior is sum-

marized by the Nash equilibrium N introduced in section B.1.

To capture this phenomenon while actually working at the limit, it

is necessary to abandon the assumption of section B.3 that the sets of

players to be considered are finite, in favor of a model in which a set

may be of measure zero without being empty. Knowledge must also be
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reinterpreted as being ‘‘belief with probability one.’’ The existence of irra-

tional players in G3ðR1;R2Þ is then not ruled out altogether. They may

exist with probability zero. One can then contemplate a mixed equilib-

rium in which a null set of rational players open G3ðR1;R2Þ by playing

across.11 (A rerun of the backward induction argument of section B.3

shows only that the set of ‘‘rational’’ players who play across cannot

have positive measure.) It is then not true that a rational player must

play down at the opening move of G3ðR1;R2Þ. He will be indi¤erent be-

tween his two choices. This is particularly important when the general

question of backward induction in the Centipede is at issue. Although

only a null set of rational players would begin GnðR1;R2Þ by playing

across, the existence of this set nevertheless has an enormous impact on

what would happen if later nodes were to be reached.

The general procedure followed in this section seems usable whenever a

puzzling counterfactual arises. Instead of ignoring the di‰culty or invent-

ing exotic methods of analysis to deal with the problem of what would

happen if impossible events were to occur, one enlarges the model so

that the impossible events cease to be impossible (Selten and Leopold

1982; Binmore 1987). One then returns to the idealized world in which

the problem first arose by allowing appropriate parameters to approach

their extremal values. In this section, for example, we studied a world

parametrized by e > 0, and then considered the limit as e ! 0. The ideal-

ized world obtained in this way then retains the essential properties of the

less idealized worlds in which the analysis was conducted—albeit some-

times in vestigial form, as with the null set of rational players who may

begin the Centipede by playing across according to the analysis of this

section.

In my opinion, we neglect such vestiges of realism at our peril, espe-

cially if we hope that the theories we propound will have some relevance

to applied work. We know from the work of McKelvey and Palfrey (1992)

that real people are not inclined to open the Centipede by playing down.

Such behavior is simply irreconcilable with Aumann’s (1995) idealization

of a player. But with the approach outlined in this section, one is o¤ered

a clue about which idealizing assumptions need to be relaxed to accom-

modate the data.

11. The size of this null set must, of course, be carefully chosen so that the probability that
player II at node 2 attaches to the event that his opponent is irrational is just su‰cient to
make him indi¤erent between his two choices. Those concerned about conditioning on a
null event will find an appropriate formalism in Blume et al. (1991).
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B.6 What Are We Trying to Accomplish?

Early game theorists seem to have taken for granted that their role was

prescriptive—to advise players on how to optimize given their informa-

tion, on the often tacit assumption that it is common knowledge that the

other players are receiving similar advice. On the standard assumption of

neoclassical economics that all agents behave as though in receipt of such

advice, one would then have a descriptive model—one that allows predic-

tions to be made about the world. Confusion at the conceptual level is

therefore possible because the same theorem may be useful in both pre-

scriptive and descriptive game theory. Such confusion may be com-

pounded when theorems are proved whose interesting interpretations lie

in what Aumann (1987) calls analytic game theory.

I have commented on Aumann’s (1987) careful distinction between an

analytic model and models constructed for other purposes elsewhere (Bin-

more 1992). The issues are simpler in the case of the Centipede Game. In

brief, proposition 1 makes perfectly good sense when interpreted in terms

of an analytic model. In Aumann’s (1987) expressive catchphrase, players

in an analytic model ‘‘just do what they do.’’ We do not ask how it comes

about that they behave like they do, we simply write down some condi-

tions that are assumed to constrain their behavior and explore their impli-

cations. In the case of the Centipede Game, common knowledge of

‘‘rationality’’ turns out to imply that player I begins by playing down.

But it also turns out to imply that player I acts as though he knows or

believes that if he were to play across, then the probability that player II

would then play across is less than 1
2
.

But suppose that we try to use proposition 1 for prescriptive purposes.

Imagine that it is common knowledge that players I and II have hired

Von Neumann and Morgenstern respectively to give them advice. Von

Neumann applies proposition 1 and advises player I to choose down at

the first node. Morgenstern tells player II that she will not require his

services since the second node will not be reached. Player I now asks

Von Neumann why he should choose down at the first node, and the reply

is that this conclusion follows from proposition 1. But player I very rea-

sonably finds this answer inadequate and persists by asking what advice

Von Neumann predicts that player II will receive from Morgenstern. On

receiving the reply that Morgenstern will o¤er her no advice because he

will believe that the second node will not be reached, player I then tells

Von Neumann that he is sure that player II would play across if node 2

were reached, and she had to act without the benefit of Morgenstern’s
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advice. Von Neumann objects that this is not part of the data of the prob-

lem as proposed to him, and player I agrees that Von Neumann was only

asked to o¤er advice on the assumption that player II would act as

advised by Morgenstern. However, player I explains that he has private

information about player II’s past history of play when she acts without

advice, that he thought irrelevant when he learned that player II had

retained Morgenstern’s services.

Can Von Neumann now plausibly reply that it follows from proposi-

tion 1 that player I cannot have this information? If he dared, player I

would simply respond that Von Neumann should adjust his model to the

data rather than trying to adjust the data to his model.

As for possible alternative models, Von Neumann can reason as in sec-

tion B.5 and so reconcile player I’s claim to have private information

about player II with a version of proposition 1 in which the players

are drawn from an infinite population. He will then be led to the mixed

Nash equilibrium N of the Centipede Game introduced in section B.2.

When player I now asks what advice Von Neumann predicts that Mor-

genstern will give player II, Von Neumann answers that Morgenstern

will randomize, and sometimes advise her to play across and sometimes

down, with the probabilities chosen so that it doesn’t matter to player I

whether he takes Von Neumann’s advice or not. If player I now asks

Von Neumann why he should therefore take Von Neumann’s advice,

does Von Neumann now reply that he must do so because Morgenstern

predicted that it was almost certain that he would? Player I would just

respond that he doesn’t care whether Morgenstern’s prediction is verified

or not.

Notice that the problem has now ceased to have backward induction

per se as its focus. It now pivots around the old chestnut of why a player

should mix between strategies that all yield the same payo¤. But the stan-

dard defenses of mixed Nash equilibria all require introducing trembles of

some sort and then taking a limit. However, if Von Neumann appeals to

one of these defenses, he must abandon the postulates of proposition 1

and argue instead that the world is such that players do not always follow

the advice of their tame game theorists with probability one. Indeed we

already had to contemplate this possibility when finding a way for Von

Neumann to accommodate player I’s private information about player

II in the first place.

However hard we struggle, it is therefore necessary to face the fact that

the story we are telling is only fully coherent in a world to which the pos-

tulates of proposition 1 are only an idealizing approximation. The source
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of the paradox in the prescriptive case is that the story cannot be told

while actually at the limit without fudging one issue or another.

What of the possibility of applying proposition 1 to a neoclassical

descriptive model? As a referee comments, in practice N and the

subgame-perfect equilibrium S predict the same thing in such a model:

namely that player I will play down with probability one. If the trembles

are su‰ciently small, what di¤erence does it then make whether we pre-

dict N or S? But, as the di‰culties we have encountered in seeking to

interpret proposition 1 should have warned us, it turns out that it may

matter very much if one is interpreting an equilibrium as the end-product

of some equilibriating process. One then needs to worry about the stabil-

ity of equilibria. The case of the four-legged Centipede is particularly

striking in this regard, since Cressman and Schlag (1995) have recently

shown that, although the subgame-perfect equilibrium S is locally stable

with respect to the standard replicator dynamics, the same is not true of

the equilibrium N at the other end of the component of Nash equilib-

ria.12 In fact, trajectories lead away from N far into the interior of the

phase space, where they wander all over the place before approaching

the component of Nash equilibria again. The equilibrium N is therefore

unsafe as a prediction of the end-product of an equilibriating process

like the replicator dynamics.13 I know that these remarks on interpreta-

tion just seem like wa¿e to formalists. However, I hope that some readers

at least will agree that it is a mistake to invent definitions of rationality

that make it look as though theorems that are strictly applicable only in

analytic models can be applied without careful appraisal to prescriptive

or descriptive purposes.
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C Equilibrium Selection in the Ultimatum Game

The paper reproduced here is one of a long sequence of papers with Larry

Samuelson on evolutionary dynamics and equilibrium selection. His ex-

cellent book sets the paper in a wider context (Samuelson 1997). But no

matter how often modern game theorists multiply examples in which evo-

lutionary processes fail to select subgame-perfect equilibria, it will con-

tinue to be said that game theory always predicts that a subgame-perfect

equilibrium will be played.





Learning to be Imperfect: The Ultimatum Game

Ken Binmore, John Gale, and Larry Samuelson

C.1 The Ultimatum Game

Consider two players with a dollar to divide. The rules of the Ultimatum

Game specify that player I begins by making an o¤er of x A ½0; 1� to player

II, who then accepts or refuses. If player II accepts, player I gets 1� x

and player II gets x. If player II refuses, both get nothing. Traditional

game theory predicts that the play of this game will result in the unique

subgame-perfect equilibrium in which player II plans to accept whatever

she is o¤ered and player I o¤ers player II nothing.1

In the first of many experiments on this and related games by numerous

authors, Güth et al. (1982) found that the modal o¤er was 1
2
and that

player I had roughly half a chance of being rejected if he o¤ered about 1
3

of the sum of money available. Binmore et al. (1989) reported qualita-

tively similar results in their replication of the Ultimatum Game experi-

ment. There have been many related studies in the interim, surveyed by

Bolton and Zwick (1993), Güth and Tietz (1990), Roth (1994), and

Thaler (1988).

Critics of traditional game theory have quoted these results (along with

the early results on the finitely repeated Prisoners’ Dilemma and games

Financial support from National Science Foundation Grant SES-9122176 and the Deutsche
Forschungsgemeinschaft, Sonderforschungsbereich 303 at the University of Bonn, is grate-
fully acknowledged. We thank Drew Fudenberg and Joseph Harrington for helpful discus-
sions, and thank two referees and an associate editor for helpful comments. We are grateful
to the Department of Economics at the University of Bonn and the Institute for Advanced
Studies at the Hebrew University of Jerusalem, where part of this work was done, for their
hospitality. The authors first encountered the possibility of using the replicator dynamics to
obtain unusual results in the Ultimatum Game in a manuscript of James Andreoni and John
Miller. This paper was prepared for the Nobel Symposium at Björkborn, Sweden, June 18–
20, 1993.

1. If o¤ers must be made in whole numbers of cents, other subgame-perfect equilibria also
exist, but player II never gets more than one cent in any of these.



involving the private provision of public goods) as demonstrating that the

optimizing paradigm on which game theory is based is fundamentally

mistaken. Instead, so the story goes, people simply honor whatever social

norm is appropriate to the situation. Frank (1988) is particularly eloquent

on this subject. In bargaining games, for example, it is popular to assert

that people ‘‘just play fair.’’

Many game theorists have responded by dismissing laboratory results

as irrelevant to actual behavior. We agree that the results of poorly

designed experiments are irrelevant. Binmore (1992, p. 51) stresses that

an experimentalist or game theorist should be cautious about making pre-

dictions unless the following criteria are satisfied:2

� The game is reasonably simple;

� The incentives are adequate;

� Su‰cient opportunity for trial-and-error learning is provided.

On the other hand, game theorists cannot ignore experiments that persis-

tently refute their predictions when all three criteria are satisfied. In the

case of the Ultimatum Game, the relevant experiments have been repli-

cated too often for doubts about the data to persist. A theory predicting

that real people will use the subgame-perfect equilibrium in the Ultima-

tum Game is therefore open to question.

At first glance the case for subgame-perfection in the Ultimatum Game

seems ironclad. This is a two-player game of perfect information in which

each player moves only once.3 Player I need only believe that player II

will not play a weakly dominated strategy to arrive at the subgame-

perfect o¤er. But the deletion of weakly dominated strategies is an

eductive principle (see Binmore 1987, 1988), whereas we believe that the

principles to which one must appeal when predicting actual behavior, in

the laboratory or elsewhere, are almost always evolutive in character.

2. As experimental techniques in economics have become increasingly sophisticated, the im-
portance of these factors has come to the fore. As advocated by Smith (1991), it is now com-
monplace to o¤er experimental subjects large incentives instead of the negligible amounts
considered appropriate by many psychologists. At the same time the introduction of com-
puter technology has made it possible to use interactive demonstrations to teach subjects
the rules of the game quickly and e‰ciently and to give the subjects the experience of large
numbers of repetitions of the game. A survey to Ledyard (1992) of recent experiments con-
cerning the private provision of public goods is revealing. In experiment after experiment,
subjects are reported to approach the game-theoretic equilibrium as the incentives increase
and the subjects’ experience with the game becomes extensive.

3. In particular, the criticism that subgame-perfection calls for players to regard their oppo-
nents as perfectly rational after having received evidence to the contrary (cf. Binmore 1987/
1988) has no force in the Ultimatum Game.
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That is to say, the outcomes we observe are not the product of careful

reasoning but of trial-and-error learning.

This paper demonstrates that interactive learning processes readily lead

to outcomes in the Ultimatum Game that are Nash equilibria but not

subgame-perfect.4 We argue that game theorists were therefore wrong to

put all their eggs in the subgame-perfect basket when predicting labora-

tory behavior in the Ultimatum Game. A case exists for predicting that

interactive learning will result in the selection of one of the other Nash

equilibria of the game.

Section C.2 begins by showing that if the initial conditions are not too

close to the subgame-perfect equilibrium, then the replicator dynamics

can converge to Nash equilibria in the Ultimatum Game that are not

subgame-perfect. Given the relation between trembles and subgame-

perfect equilibria (Selten 1975), such a result is of interest only if it is ro-

bust in the presence of relevant perturbations. We therefore introduce

noise into the replicator dynamics. When this noise is small in absolute

terms but relatively larger in the population of responders, we find that

asymptotic attractors survive which are Nash equilibria but not subgame-

perfect. But why do we expect responders to be noisier than proposers?

Our reason is to be found in the structure of the Ultimatum Game.

When noise levels are allowed to depend on the potential cost of making

an error, the system can endogenously produce a situation with more

noise in the responding population.

Section C.3 explains how we think these calculations should be inter-

preted in the light of the experimental data. In the process, we comment

on a complementary learning-based analysis of the Ultimatum Game due

to Roth and Erev (1993). We also explain why we expect to see initial

conditions in laboratory experiments that lead the dynamics to equilibria

that are not subgame-perfect. In particular, we suggest that initial play

reflects decision rules that have evolved in real-life bargaining situations

that are superficially similar to the Ultimatum Game. These bargaining

games generally feature more symmetric allocations of bargaining power

than the Ultimatum Game, yielding initial play in Ultimatum Game

experiments that need not be close to the subgame-perfect equilibrium.

Section C.4 discusses how we think (out-of-equilibrium) behavior can

persist in which people ‘‘leave money on the table.’’ This section also

4. This finding is not without precedent. Binmore (1990), Samuelson (1988, 1993, 1994), and
Samuelson and Zhang (1992) give simple examples showing that the deletion of weakly
dominated strategies is at best a dubious activity in an evolutionary context.
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comments on the use of ‘‘fairness’’ explanations for the outcomes of Ulti-

matum Game experiments.

The results of section C.2 are established by numerically computing

trajectories for the replicator dynamics. In order to provide some insight

into the forces that drive these results, section C.5 studies a variant of Sel-

ten’s (1978) Chain-Store Game, which we reinterpret as a two-o¤er sim-

plification of the Ultimatum Game. In this simpler setting an analytic

study of the evolutionary dynamics is possible. The same analysis also

provides a possible resolution of the well-known chain-store paradox that

does not require incomplete information assumptions and applies even

when only one potential entrant exists.

We employ the replicator dynamics throughout. Why are such bio-

logically motivated dynamics relevant? First, section C.6 presents an

aspiration-level model of learning that leads to the replicator dynamics.

Börgers and Sarin (1993), Binmore and Samuelson (1993), Cabrales

(1993), and Schlag (1994) similarly present learning models that lead to

the replicator dynamics, suggesting that the replicator dynamics are of

more than merely biological interest. Second, the analysis of section C.5

isolates the smoothness properties of the learning model that drive our

results, revealing that qualitatively similar results will hold in a wide

variety of learning models (including variants of Roth and Erev’s 1993

model).

C.2 Numerical Calculations

This section studies a version of the Ultimatum Game. The players must

split a ‘‘pie’’ of size 40. The set of o¤ers available to the proposer is

I ¼ f1; 2; . . . ; 40g.5 (Note that an o¤er i is the amount that player I pro-

poses that player II should get rather than the amount player I demands

for himself.) An action for player II is a choice from the set fY ;Ng.
Her strategies are therefore functions f : f1; 2; . . . ; 40g ! fY ;Ng. How-

ever, we assume that player II is restricted to functions of the form

f ðiÞ ¼ Y ðib jÞ and f ðiÞ ¼ N ði < jÞ for some j A f1; 2; . . . ; 40g. We

can then identify player II’s strategy with the minimum acceptable o¤er

j and the set of pure-strategy pairs can be identified with I � I . The forty

pure-strategy Nash equilibria are ði; iÞ ði ¼ 1; 2; . . . ; 40Þ. Since i ¼ 0 is

excluded, the unique subgame-perfect equilibrium is ð1; 1Þ.

5. In what seemed crucial cases, we also computed solutions for games with I ¼
f1; 2; . . . ; 100g without significantly altering the results.
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For an evolutionary analysis, we assume that player I is drawn from an

infinite population of proposers and that player II is drawn from an infi-

nite population of responders. The fraction of proposers who make o¤er i

at time t is denoted by xiðtÞ. The fitness piðtÞ of a proposer using o¤er i at

time t is taken to be the expected payo¤ to a player I who makes o¤er i

when his opponent is drawn at random from the population of re-

sponders at time t. Average fitness in the population of proposers at time

t is pI ðtÞ ¼ x1ðtÞp1ðtÞ þ � � � þ x40p40ðtÞ. The standard replicator equation

for the evolution of xiðtÞ is given by

_xxi ¼ xiðpi � pI Þ; i A f1; 2; . . . ; 40g: ð1Þ

Similarly we let yjðtÞ be the fraction of responders playing strategy j at

time t, with pjðtÞ being the fitness of a responder using strategy j and

pII ðtÞ be the average fitness of responders, so that

_yyj ¼ yjðpj � pII Þ; j A f1; 2; . . . ; 40g: ð2Þ

The evolution of the whole system is determined by the 80 equations

given by (1) and (2).

In the terminology of Hofbauer and Sigmund (1988), every Nash

equilibrium is a rest point of the replicator dynamics.6 It is easy to show

that many of these Nash equilibria are local attractors. In addition, the

calculation reported in cell ð0; 0Þ of table C.1 shows that, with uniform

initial conditions,7 the system converges to an equilibrium in which

6. A rest point r is a fixed point of the dynamics. A local attractor l has the property that for
each neighborhood V with l A V , there is another neighborhood U with l A U JV such that
any trajectory that begins in U remains in V . An asymptotic attractor a is a local attractor
with the property that all trajectories which begin in a small enough neighborhood of a con-
verge to a.

7. That is, each population begins with each strategy being played by 1
40
of the agents in that

population.

Table C.1
Fixed noise calculations

dII

dI 0.1 0.01 0.001 0.0001 0

0.1 7 2 1 1 1

0.01 9 7 3 1 1

0.001 9 9 7 3 1

0.0001 9 9 9 7 1

0 9 9 9 9 9
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player II receives a little more than 20 percent of the pie. We therefore

have immediate occasion to cast doubt on the subgame-perfect prediction

in an evolutive context.

However, it may appear that Nash equilibria which fail to be subgame-

perfect equilibria are attractors only because the long-run operation of

the replicator dynamics allows some strategies to approach extinction,

and hence artificially excludes the evolutionary pressure against weakly

dominated strategies that would otherwise eliminate them. We therefore

turn our attention to models in which small fractions of all possible strat-

egies are continually injected into the population—including those that

test the ‘‘rationality’’ of responders who refuse positive o¤ers. Only if the

survival of Nash equilibria that are not subgame-perfect is robust in the

presence of such noise can we realistically argue against the subgame-

perfect prediction.

It is natural to see the noisy model as an evolutionary gloss on Selten’s

(1975) trembling-hand story, which he used to justify subgame-perfect

equilibria in games like the Ultimatum Game. However, caution is neces-

sary before pressing the analogy too far. Samuelson and Zhang (1992)

show that adding noise to the replicator and other evolutionary dynamics

does not necessarily lead to the elimination of weakly dominated strat-

egies. The question of whether only subgame-perfect equilibria can sur-

vive in a noisy evolutionary environment therefore remains open.

Noise in an interactive learning system may arise in many ways and

cause perturbations of various types. We therefore think it important to

be clear on the source of the noise to be studied.8 This in turn requires

that we take a little more care than is usual in modeling the agents.

We envisage an agent as a stimulus–response mechanism with two

modes of operation: a playing mode and a learning mode. Its playing

mode operates when it is called upon to choose a strategy in one of a

large number of games that it repeatedly plays against di¤erent oppo-

nents. Its behavior in each game is triggered by a stimulus that is

determined by the manner in which the game is framed. (By a ‘‘game-

frame,’’ we mean more than the game itself. We include also the context

in which the game is encountered and the manner in which its rules are

described.9) When it receives such a stimulus s it responds by playing a

8. We depart from that part of the refinement literature which follows Kohlberg and
Mertens (1986) in demanding robustness in the face of all conceivable perturbations. There
is no reason to suppose that a system will necessarily be adapted to types of noise that it has
experienced only rarely if at all.

9. For example, it may be relevant whether the interacting agents are a monopoly seller and
a buyer or whether they are the joint winners of a lottery.
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strategy DðsÞ. If the learning mode were absent, an agent could therefore

be identified with a fixed decision rule D that maps a set of stimuli into a

set of strategies. However, sometimes an agent will enter its learning

mode between games to adjust its current decision rule. When learning,

it takes a stimulus s and some information f about the relative success

of strategies in the game labeled by s to modify the value of DðsÞ. The
learning rule L that it uses for this purpose is assumed to be fixed. We re-

strict our attention to learning rules that lead to the replicator dynamics

largely because this dynamic has been widely discussed in the literature

on evolutionary game theory and hence will be familiar (but see section

C.6).

Noise may perturb an agent in its decision mode or in its learning

mode. Here and in section C.6, we simplify by considering only the sec-

ond possibility. We then simplify further by assuming that the only source

of error lies in the possibility that an agent may mistakenly learn to play a

strategy that is adapted to the wrong game.10 We do not explicitly model

the situations that may be confused with the Ultimatum Game. In the

case of a misguided proposer, we simply assume that he makes each o¤er

i in the Ultimatum Game with probability yi. If the fraction of proposers

at time t who misread the game is always dI, and the usual arguments

leading to the replicator equation apply to the fraction 1� dI of the pro-

posing population who do not misread the game, then we are led to the

‘‘noisy replicator equation’’

_xxi ¼ ð1� dIÞxiðpi � pIÞ þ dIðyi � xiÞ ð3Þ

for the evolution of the fraction xiðtÞ of agents in the proposing popula-

tion who play strategy i. The corresponding equation for the population

of responders is

_yyj ¼ ð1� dIIÞyjðpj � pIIÞ þ dIIðcj � yjÞ; ð4Þ

where dII is the fraction of the responding population who misread the

game and cj describes the choices of such agents.

Section C.6 derives (1)–(2) and (3)–(4) from an explicit choice model in

which agents sometimes misread their strategic situation. Other choice

10. Although the English language forces us into speaking of players’ misreading the game
or learning to play better, it should be emphasized that our agents do not monitor what is
going on except insofar as this is modeled by the learning rule with which they are endowed.
The face that they have a learning rule at all makes them more flexible than the stimulus–
response machines that are often considered, since their decision rules for playing games
evolve over time, but the learning rule that governs how decision rules evolve is fixed.
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models can lead to di¤erent versions of the dynamics. For example, if a

proportion dIt of the agents die (or leave the game, or choose to experi-

ment with new strategies) in each time period of length t, to be replaced

by novices who play each strategy i with probability yi, then we are led to

the equation _xxi ¼ xiðpi � pIÞ þ dIðyi � xiÞ. This corresponds to noise in

agents’ playing mode rather than their learning mode. Our theoretical

analysis in section C.5 includes this case as well as (3) by examining

dynamics of the form _xxi ¼ DIxiðpi � pIÞ þ dIðyi � xiÞ. Alternatively, Bin-

more et al. (1993) examine a choice model that gives rise to the dynamics

_xxi ¼ xiðpi � pIÞ=pI. Van Damme (1987) and others work with a discrete

version of this dynamic. We have reported numerical calculations using

this discrete dynamic in Binmore and Samuelson (1994), and we indicate

how the results di¤er from those reported here as we proceed.

What determines yi and cj? These presumably reflect rules of thumb or

behavior learned in other games, and as a result we have little to say

about their precise form. For most of our calculations we will assume

that these represent a uniform distribution over strategies. We discuss

how the specification of yi and cj a¤ects the results at the end of this

section.

Table C.1 reports calculations for various values of dI and dII.11 The

rows in table C.1 correspond to di¤erent values of dI. The columns corre-

spond to di¤erent values of dII. In each case the system was initialized

with each of the 40 possible strategies being played by 1
40

of each popula-

tion. The mistake probabilities were also taken to be uniform, so that

yi ¼ cj ¼ 1
40
.

The entries in table C.1 are the model o¤ers made by player I after the

system has converged to a point where the proportion of each population

playing each strategy is unchanging in its first 15 decimal places. In each

case the frequency with which the model o¤er is played at this point is

1.00 to at least two decimal places. The equilibrium behavior of re-

sponders is much more di¤use, but is very highly concentrated on strat-

egies less than or equal to the modal o¤er. Hence o¤ers are rejected with

only a very tiny probability. For example, in the cases when the model

equilibrium o¤er made by player I is 9, a significant fraction of re-

sponders would accept each of the o¤ers between 1 and 9 in equilibrium

(with virtually no responders insisting on more than 9)—but the fraction

11. The di¤erence equation xiðtþ tÞ � xiðtÞ ¼ t½ð1� dIÞxiðpi � pÞ þ dIðyi � xiÞ� is used to
approximate Eq. (3) where we set t ¼ 0:01. The robustness of the approximation was tested
by repeating a sample of the calculations with much smaller values of t.
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of responders who will refuse anything lower than 9 is high enough to

make it unprofitable for proposers to reduce their o¤er.

Table C.1 shows that, if the noise level among responders is su‰ciently

small relative to that of proposers, then the subgame-perfect equilibrium

appears. However, if the noise level in the responding population fails to

be small enough compared with the noise level in the proposing popula-

tion, then outcomes appear that are far from the subgame-perfect equilib-

rium. If responders are noisy enough compared with proposers, then

player II gets a little more than 20 percent of the pie.12

Section C.5 provides an analytic explanation of these results for a sim-

ple special case, but the intuition is straightforward. It is, for example,

weakly dominated for player II to refuse an o¤er of 10 percent. There

will therefore always be some evolutionary pressure against this strategy

because, in a noisy population, the set of proposers who make such low

o¤ers is continually renewed. However, if this fraction of the proposing

population becomes su‰ciently small, the pressure against refusals of 10

percent will be negligible compared with the drift engendered by the noise

in the responding population. Hence, if responders are noisy enough rela-

tive to proposers, then su‰ciently many responders can reject o¤ers of 10

percent that it is not a best response for proposers to o¤er less and we can

reach outcomes that are not subgame-perfect.

Why should we anticipate that there will be more noise in the popula-

tion of responders than in the population of proposers? Recall that we

envision the noise arising as a result of an agent misreading the game

when learning and hence acquiring an inappropriate behavior. The con-

text is that of a boundedly rational agent without su‰cient computational

power to devote full attention to all of the many games that compete for

its attention. However, the frequency with which learning errors are made

is unlikely to be independent of the potential costs. Instead we expect the

likelihood of a learning error to depend on how much it currently matters

in payo¤ terms what strategy is played in the game.13 In more familiar

12. For the dynamic xiðtþ 1Þ ¼ xiðtÞ þ xiðtÞðpi � pÞ=p, Binmore and Samuelson (1994) find
results that are much the same as reported in this paper, though in (1994) we find that player
I’s noise level need only be at least as high as player II’s in order to give subgame-perfection.
The outcome for cases in which player II’s noise level is higher is again 9. This di¤erence
arises because, near the subgame-perfect equilibrium, the divisor p becomes especially small
for responders. This accentuates the learning portion of the noisy replicator dynamic, caus-
ing the responding population to seem less noisy.

13. This formulation is consistent with the spirit of Myerson’s (1991) proper equilibrium,
which refines the idea of a trembling-hand equilibrium by making more costly mistakes less
likely.
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terms, the assumption will be that the players are more diligent in identi-

fying games correctly when their potential gains and losses are large, and

more prone to misread games when their potential gains or losses are

small.14

In the Ultimatum Game the result of making such an assumption is

that responders will tend to be noisier when proposers are making low

o¤ers, because the responders will then have less at stake. In particular,

such endogenously determined noise will lead responders to be noisier

than proposers if the system should get close to the subgame-perfect

equilibrium.

To explore this question further, we performed calculations in which

the noise levels were endogenized along the lines discussed above. We

took

dkðtÞ ¼
ab

aþ lkðtÞ
; k ¼ I; II; ð5Þ

where a and b are constant and lkðtÞ is the di¤erence between the

maximum and minimum of the expected payo¤s attached to player k’s

strategies, given the current distribution of strategies in the opposing

population. When this di¤erence is zero, as is nearly the case for re-

sponders at the subgame-perfect equilibrium, the noise level takes its

highest value of b. If the di¤erence could increase all the way to infinity,

dkðtÞ would decrease to zero.15

Table C.2 summarizes calculations with endogenized noise for various

values of the two constants a and b listed in the first and second columns.

The third column shows the modal o¤er made in equilibrium. The fre-

quency with which the modal o¤er made in equilibrium is again 1.00 to

at least two decimal places, and responders’ strategies range between the

14. Such an assumption adds more complexity to the stimulus–response mechanism used to
model an agent. The mechanism must now incorporate a device that responds to changes in
its environment by diverting computational capacity between monitoring and other tasks
according to the estimated rewards from the di¤erent activities. Like the learning rule, this
device is assumed to be fixed.

15. The di¤erence between the maximum and minimum payo¤ is an arbitrary measure of
the payo¤s that are at stake in a game. Calculations using alternative measures, such as the
variance of the payo¤s to player k’s strategies, with each strategy taken to be equally likely
in the variance calculation, produced analogous results (Binmore and Samuelson 1994). A
more realistic measure would perhaps use a sample of past payo¤s rather than employing
all current payo¤s. On the other hand, we suspect that people are indeed often able to
make educated guesses about their compatriots’ current payo¤s without necessarily being at
all well informed about the strategies that secure the payo¤s. Academic economists, for ex-
ample, are often able to estimate their colleagues’ salaries quite closely. Extreme payo¤s are
especially likely to attract comment.
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modal o¤er and zero, with virtually no rejections. The fifth and sixth col-

umns show the noise levels in the two populations after equilibrium is

achieved.

Endogenizing the noise leads to an equilibrium in which the responder

population is noisier than the proposer population. It is therefore not

surprising that the equilibrium outcome is not subgame-perfect. In fact

the equilibrium o¤er is again close to 20 percent.

How robust are these results? First, consider the question of initial con-

ditions. The calculations reported in tables C.1 and C.2 are based on a

uniform initial distribution of o¤ers over I � I . We also performed

1;600 ¼ 40� 40 other calculations to explore the dependence of the

results on the initial conditions. Table C.3 shows the modal equilibrium

o¤ers for some of these initial conditions for the case of endogenous noise

with a ¼ 1 and b ¼ 0:1. The entry in row i and column j is the modal

equilibrium o¤er when the system is started with all proposers playing i

and all responders playing j. The frequency of the modal equilibrium

o¤er remains 1.00 to at least two decimal places.

Space precludes showing the whole table. The table extends downward

just as one would anticipate on the basis of its existing pattern. For cases

in which proposers initially play at least 10, it extends to the right as one

would expect (expect that the cells ð38; 37Þ, ð38; 38Þ, ð39; 37Þ, ð39; 38Þ,
ð39; 39Þ, ð40; 37Þ, ð40; 38Þ, ð40; 39Þ, and ð40; 40Þ yield outcomes of 9

rather than 10). For cases in which the initial o¤er is less than 10, we

Table C.2
Calculations with endogenous noise

a b O¤er dI ðyÞ dII ðyÞ

10 1 9 0.26 0.52

10 0.1 9 0.024 0.053

10 0.01 9 0.0024 0.0053

10 0.001 9 0.00024 0.00053

1 1 9 0.032 0.1

1 0.1 9 0.0031 0.01

1 0.01 9 0.00031 0.001

1 0.001 9 0.000031 0.0001

0.1 1 9 0.0032 0.011

0.1 0.1 9 0.00032 0.0011

0.1 0.01 9 0.000032 0.00011

0.1 0.001 9 0.0000032 0.000011

0.01 1 9 0.00032 0.0011

0.01 0.1 9 0.000032 0.00011

0.01 0.01 9 0.0000032 0.000011

0.01 0.001 9 0.00000032 0.0000011
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Table C.3
Calculations with varying initial conditions

1 2 3 4 5 6 7 8 9 10 11 12 13 14 � � �

1 1 2 3 4 5 6 7 8 9 10 10 10 10 10 � � �

2 1 2 3 4 5 6 7 8 9 10 10 10 10 10 � � �

3 1 2 3 4 5 6 7 8 9 10 10 10 10 10 � � �

4 1 2 3 4 5 6 7 8 9 10 10 10 10 10 � � �

5 1 2 3 4 5 6 7 8 9 10 10 10 10 10 � � �

6 1 2 3 4 5 6 7 8 9 10 10 10 10 10 � � �

7 1 2 3 4 5 6 7 8 9 10 10 10 10 10 � � �

8 1 2 3 4 5 6 7 8 9 10 10 10 10 10 � � �

9 1 2 3 4 5 6 7 8 9 10 10 10 10 10 � � �

10 1 2 3 4 5 6 7 8 9 10 10 10 10 10 � � �

11 1 2 3 4 5 6 7 8 9 10 10 10 10 10 � � �

12 1 2 3 4 5 6 7 8 9 10 10 10 10 10 � � �

13 1 2 3 4 5 6 7 8 9 10 10 10 10 10 � � �

14 1 2 3 4 5 6 7 8 9 10 10 10 10 10 � � �

15 1 2 3 4 5 6 7 8 9 10 10 10 10 10 � � �

16 1 2 3 4 5 6 7 8 9 10 10 10 10 10 � � �

17 1 2 3 4 5 6 7 8 9 10 10 10 10 10 � � �

18 1 2 3 4 5 6 7 8 9 10 10 10 10 10 � � �

19 1 2 3 4 5 6 7 8 9 10 10 10 10 10 � � �

20 1 2 3 4 5 6 7 8 9 10 10 10 10 10 � � �

21 1 2 3 4 5 6 7 8 9 10 10 10 10 10 � � �

22 1 2 3 4 5 6 7 8 9 10 10 10 10 10 � � �

23 1 2 3 4 5 6 7 8 9 10 10 10 10 10 � � �

24 1 2 3 4 5 6 7 8 9 10 10 10 10 10 � � �

25 1 2 3 4 5 6 7 8 9 10 10 10 10 10 � � �

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.
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find the outcome to be 10 as long as the initial response is not too high

(generally, up to 25, though higher for lower initial proposals). Higher

initial responses yield lower final outcomes. We found the outcomes of

initial conditions in which the proposer o¤ers at least 10 to be robust to

the values of a and b.16 The outcomes for cases in which proposers ini-

tially o¤ered less than 10 were somewhat more sensitive, though the out-

come was always at least as large as the minimum of the initial o¤er and

initial proposal.17

The most striking feature of table C.3 is the robustness of a modal

equilibrium o¤er above 20 percent. This o¤er appears for a large collec-

tion of initial conditions, including all those in which the initial proposal

and response are at least 20 percent. The next section explains why we be-

lieve these are most likely to be the relevant initial conditions.

How do our results depend on the specification of noise, that is, on yi
and cj? By changing these specifications, we can obtain di¤erent results.

The distribution of noise among the responders is especially important. If

we alter cj to put relatively more weight on o¤ers and responses near

zero, equilibrium outcomes can be achieved in which the responder gets

less that 20 percent of the pie. Causing more weight to be put on some-

what higher o¤ers gives outcomes in which the responders get more than

20 percent of the pie.

It is interesting to note, however, that changing the values of yi and cj

that are attached to relatively high o¤ers has virtually no e¤ect on the

outcome. For example, we changed the mistake probabilities so that y20
and c20, the probabilities of the ‘‘fair’’ o¤er and response, took various

values up to 0.95 (with the remaining values of yi and cj remaining equal

to one another). We might view this as a case in which the rule of thumb

to which most noisy players resort when not paying attention to the game

is to split the pie evenly, with a minority of such players adopting

completely random rules of thumb that attach equal probability to all

strategies. This change had almost no impact on the results of the

calculations.

16. Using the specification of the basic dynamic as xiðtþ 1Þ ¼ xiðtÞ þ xiðtÞðpi � pÞ=p and
taking lkðtÞ to be the variance of the payo¤s accruing to each of agent k’s strategies (rather
than the di¤erence between the maximum and minimum payo¤ ) gives similar results,
though the 10’s are replaced by 9’s.

17. Whenever proposers initially make smaller o¤ers than responders will accept, the
dynamics begin with a race between proposers and responders, with each adjusting to match
the other’s strategy. The outcome of this race can be sensitive to parameters of the model
when all responders initially get very low payo¤s, as is the case for low proposer o¤ers.
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Probability attached to the ‘‘fair’’ response of 20 has little e¤ect be-

cause this o¤er lies above the range of potential modal equilibrium o¤ers

(given that the remaining noise is uniformly distributed). As a result the

response earns a low payo¤ and the learning dynamics ensure that little

probability accumulates on this response. The important considerations

involve the distribution of noise over those responses that are lower than

potential modal equilibrium o¤ers. These responses earn almost identical

payo¤s and noise plays a major role in determining the equilibrium pro-

portions of responders choosing each of these strategies. The key here is

whether the noise in the responder population can amass a su‰cient

proportion of responders on a strategy y to make it unprofitable for pro-

posers to make o¤ers x < y and hence sustain an outcome in which the

modal o¤er is y. This depends on the relative noise level of the two pop-

ulations and on the specification of the noise. With uniform noise and suf-

ficiently noisy responders, o¤ers less than or equal to 10 can be sustained

(see table C.3) but higher o¤ers cannot. If the responder’s noise concen-

trates more of its probability near (away from) zero, then lower (higher)

modal o¤ers will result (provided in the latter case that the increased

weight is not directed to o¤ers such as 20 that are too high to be possible

equilibrium modal o¤ers).

It is clear that we cannot place too much significance on the particular

value of the equilibrium o¤er of a little more than 20 percent that repeat-

edly emerges in the calculations, and we are anxious that our results not

be remembered for this number. Di¤erent specifications of the model can

give di¤erent numbers. The important feature of the results is that the

equilibrium o¤er is frequently far from subgame-perfect, even when the

noise levels are made very small indeed. This result requires primarily

that the responding population be relatively more noisy than the propos-

ing population. But this is the configuration of noise levels that appears

if players tend to be less noisy when making decisions that are more

important.

C.3 Relevance to Experimental Data?

How do we think the calculations of the previous section might be rele-

vant to the experimental data? We think it useful to distinguish four time

spans:18

18. Our general views on the evolution of social norms inside and outside laboratories have
been reported elsewhere (Binmore and Samuelson (1994)).
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1. In the short run, one should anticipate that behavior is driven primar-

ily by norms that are triggered by the framing of the problem. The fram-

ing may well elicit norms that are ill-adapted to the laboratory situation.

If these norms have been strongly reinforced outside the laboratory, they

may be hard to shift. We suspect that the ‘‘irrational’’ behavior studied by

the school of Kahneman and Tversky (1987) often falls into this category.

2. In the medium run, subjects begin to learn—as emphasized by

Andreoni and Miller (1993), Crawford (1991, 1992), Miller and Andreoni

(1991), Roth and Erev (1993), and numerous other authors.

3. In the long run, this interactive learning process may converge on an

equilibrium of the game.

4. In the ultralong run, there may be jumps between equilibria when ran-

dom shocks jolt the system from one basin of attraction to another—as

emphasized by Young (1993), Kandori et al. (1993), and Samuelson

(1994).

In the ultralong run we expect an evolutionary process to select the

subgame-perfect equilibrium. However, our guess is that the ultralong

run is too long a run to be relevant to the available experimental data.

We also do not think that the replicator dynamics provide a useful model

of the ultralong run.19

But, as we have argued, the replicator dynamics do have a role to play

as long-run approximations to certain simple learning rules. We therefore

believe that the asymptotic properties of the replicator dynamics may be

relevant to the long-run outcome of interactive learning in the laboratory.

If so, then it is significant that our calculations of the long-run behavior

of noisy replicator dynamics in the Ultimatum Game should generate

equilibria that are far from subgame-perfect.

We believe that our calculations are relevant to the short run as well as

the long run. As section C.6 explains, we think it possible to regard our

dynamics as a crude but instructive model of social evolution (as well as

of interactive learning in the laboratory).

19. In section C.6, an implicit appeal is made to the law of large numbers when studying the
long run, so that the underlying stoachastic learning is smoothed into a deterministic pro-
cess. Binmore and Samuelson (1993) argue that one must refrain from such appeals when
studying the ultralong run, and work directly with the stochastic system instead. If one
were to work directly with the stochastic system in the current paper, results would emerge
concerning the expected waiting time until reaching the subgame-perfect equilibrium in the
ultralong run. The noisier the responding population relative to the proposing population,
the longer the system lingers near long-run equilibria that are not subgame-perfect—and
hence the longer and less relevant the ultralong run.

Equilibrium Selection in the Ultimatum Game 347



More important, the social norm (or norms) triggered in the short term

by laboratory experiments on the Ultimatum Game have presumably

evolved to guide behavior in real-life bargaining situations that are super-

ficially similar to the Ultimatum Game in some respects. We must there-

fore examine long-run behavior in these external situations for the origin

of the norms that guide short-run behavior in laboratory experiments on

the Ultimatum Game.

The real-life bargaining situations that have shaped the norms which

subjects bring to the laboratory will be complicated by informational,

reputational and other e¤ects that are controlled away in the laboratory.

The pure Ultimatum Game represents an extremal case in the class of

real-life bargaining situations, because all the power is on the side of the

proposer. If a social norm adapted to the pure Ultimatum Game leads to

the proposer o¤ering about 20 percent to the responder, we should there-

fore anticipate that bargaining norms adapted to a wider class of bargain-

ing games will assign more than 20 percent to the responder. If this guess

is correct, we should therefore envisage the initial conditions for learning

in the laboratory as allocating more than 20 percent to the responder and

hence as lying in the basin of attraction of the 20 percent equilibrium

o¤er of table C.3.

What do our calculations tell us about the medium run? Table C.4 is a

medium-run version of table C.1. It di¤ers from table C.1 in that the

modal o¤er is reported on the first occasion at which no change in con-

secutive iterations was detected in the first five decimal places of the frac-

tions of proposers making each o¤er. (Table C.1 does the same, but with

fifteen decimal places.) The number in parentheses following each model

o¤er is a measure of how much learning was necessary before a tempo-

rary stability in the first five decimal places was achieved.20 In table C.1,

the frequency with which modal o¤ers were used was 1.00 to at least two

decimal places. The frequency with which the modal o¤ers were used at

the time reported in table C.4 is at least 0.98.21

20. The measure is the number of iterations of the discrete dynamic described in note 11
multiplied by the step size. In the model of section C.6, t of the population has an opportu-
nity to change strategies in each iteration of the discrete equation. Our measure therefore
provides a crude approximation to the aggregate number of times that members of the entire
population have assessed their strategies. The measure is intended to serve as a correlate for
the number of rounds of an experiment required to reach temporary stability.

21. If we ask for stability in only the first three decimal places, the first line of this table
would read 9 (7) 9 (6) 9 (6) 9 (6), with the modal o¤er being played with frequency at least
0.85 in each case.
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Table C.4 shows that the system always (with uniform initial conditions

and perturbations) goes quite quickly to a modal o¤er of about 20 per-

cent. But table C.1 shows this to be a medium-run result. In the long

run, the system sometimes moves away to the subgame-perfect equilib-

rium. Only when dI < dII is the medium-run behavior a useful guide to

the long-run behavior of the system.

These results complement those of Roth and Erev (1993), who report

Ultimatum Game simulations that spend extended periods of time, in

the medium run, near equilibria that are Nash but no subgame-perfect.

Roth and Erev suggest explaining the experimental data on the Ultima-

tum Game as a set of medium-run observations of a learning process.

We agree that much experimental data consists of a series of snapshots

of medium-run phenomena. This is especially true of Ultimatum Game

experiments, where both dispersion in proposals as well as rejected o¤ers

often persist into the later rounds of the experiments, both of which can

only be medium-run phenomena in our model. However, we do not think

it follows that theories of long-run behavior can be neglected. As our

analysis of section C.5 suggests, long-run predictions of theoretical

models of interactive learning will often depend only on qualitative fea-

tures of the models. By contrast, medium-run predictions must be ex-

pected to depend on the fine details of the interactive learning process.

We therefore think that current theoretical techniques are more likely to

be successful when applied to long-run rather than medium-run phe-

nomena. Rather than seeking to explain experimental data in which

medium-run behavior has been elicited, we therefore think there is a

strong case for designing experiments with a view to eliciting long-run

behavior.22 The contribution of this paper is to argue that, in such

22. Binmore et al. (1992), for example, obtain very close convergence to equilibrium in less
than 40 repetitions in a complicated bargaining game by o¤ering high incentives and helping
the subjects with sophisticated computer graphics.

Table C.4
Medium-run equivalent of table C.1

dII

dI 0.1 0.01 0.001 0.0001 0

0.1 9 (13) 7 (74) 7 (69) 7 (69) 7 (69)

0.01 9 (15) 9 (12) 9 (12) 9 (12) 9 (12)

0.001 9 (15) 9 (12) 9 (12) 9 (12) 9 (12)

0.0001 9 (15) 9 (12) 9 (12) 9 (12) 9 (12)

0 9 (15) 9 (12) 9 (12) 9 (12) 9 (12)
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experiments, there is no compelling reason why predictions should favor

subgame-perfect equilibria over other Nash equilibria.

C.4 Leaving Money on the Table

The previous sections argue that attention needs to be paid to Nash equi-

libria in the Ultimatum Game that are not subgame-perfect. Such equi-

libria require that the responder be prepared to refuse low positive o¤ers.

If o¤ered a choice between something and nothing, such a responder

would therefore sometimes choose nothing. Such behavior is outlawed in

conventional economic modeling. Perhaps for this reason, a common re-

sponse to our argument is an incredulous ‘‘Why would anyone leave

money on the table?’’

That positive o¤ers should be refused in the short term is easy to under-

stand. Short-term behavior in the Ultimatum Game is likely to be gov-

erned by social norms that are triggered by the framing of the laboratory

experiment. Rather than being adapted to the pure Ultimatum Game,

such social norms will presumably have evolved for use in everyday

cousins of the Ultimatum Game. In everyday life we rarely play pure

take-it-or-leave-it games. In particular, real-life games are seldom played

under conditions of total anonymity. A refusal of something positive may

therefore serve to maintain a reputation for toughness. Even when we do

play anonymously, outside options are often available. For example, in

the take-it-or-leave-it auction used by stores to sell their goods, a refusal

of something positive may simply indicate a willingness to search else-

where for a better deal. Norms that call for refusals in commonly occur-

ring ‘‘take-it-or-leave-it’’ situations therefore make good evolutionary

sense. Given that such norms exist, it is unsurprising if they are some-

times inappropriately triggered in laboratory experiments. Short-run

refusals of positive o¤ers in the pure Ultimatum Game therefore create

no problem for orthodox game theory.

However, we argue that Nash equilibria that are not subgame-perfect

should be taken seriously even in the long run. Notice first that such equi-

libria actually require very few o¤ers to be rejected, because proposers

learn not to make such o¤ers. Nevertheless, responders must stand ready

to reject some positive o¤ers.

On this subject, it is useful to observe that people clearly do sometimes

leave money on the table. Frank (1988), for example, reminds us about

tipping behavior in restaurants that are never to be visited again. After

the waiter makes your change, you can either pocket the entire amount
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or leave the customary percentage on the table. Nearly everyone chooses

the latter option—including economists!

A kibitzer may ask why we leave money on the table. Most people are

satisfied with the explanation that leaving a tip is a custom that it would

be uncomfortable to violate. If pressed, they might attribute the discom-

fort to the unfairness involved in disappointing the server’s expectations.

Such considerations have led a number of authors to downplay strate-

gic explanations of experimental behavior in favor of various theories of

‘‘fair play.’’ Sophisticated versions of this approach sometimes build a

taste for ‘‘fairness’’ into the utility functions attributed to the subjects.

Ochs and Roth (1989) discuss such a utility function in explaining the

mediumrun results of an alternating o¤ers bargaining experiment. Bolton

(1991) explicitly constructs such a utility function for this purpose.

We agree that subjects find their emotions engaged in bargaining situa-

tions. They also frequently explain their bargaining behavior in the labo-

ratory in terms of ‘‘fairness.’’ But an approach that takes these facts at

their face value is in danger of explaining too much and too little. Fair-

ness theories explain too much because, by choosing one’s fairness notion

with su‰cient care, one can justify a very wide range of outcomes. At the

same time such theories explain too little because they provide no insight

into the origin of the fairness norms to which appeal is made.

We believe that a more fruitful approach is to ask how the custom

of leaving money on the table can survive. Our answer is simple. The

amounts involved and the frequency with which the situation arises are

too small to provide su‰cient evolutionary pressure to eliminate the phe-

nomenon in a noisy environment. What then of the folk explanation in

terms of the discomfort felt at violating a fairness norm?

In responding to such questions, it is important to appreciate that the

evolutionary approach we advocate reverses the standard explicans and

explicandum of the folk explanation and of economic theory. Our players

are not members of the species Homo economicus. They do not optimize

relative to fixed preferences. They simply have decision rules for playing

games. When a player switches from a less profitable to a more profitable

strategy, he does not do so because he thinks that the switch is optimal—

he is just acting as a stimulus–response mechanism.

This model of Homo sapiens raises the question of how it feels for one’s

actions to be programmed as a result of past experience. Here the post

hoc, ergo propter hoc fallacy awaits the unwary. It is easy to say that I

preferred to take this foolish action rather than that wise action because

I got angry. But we feel angry because adrenalin and other chemicals

Equilibrium Selection in the Ultimatum Game 351



have been released into our bloodstream by a process which is only very

partially under our conscious control. Angry feelings are a conditioned

reflex to certain learned stimuli. Such conditioned reflexes survive because

the behaviors they induce have evolutionary advantages. Rather than

seeking to explain a particular behavior in terms of the angry feelings

that accompany it, we therefore do better to explain the angry feelings in

terms of the evolutionary advantages of the behavior. In brief, being

angry or fearful or amorous is how it feels to be a stimulus–response

mechanism.

Of course, none of us like to admit that much of our behavior is little

more than a set of conditioned reflexes. We prefer to o¤er more flattering

rationalizations of the behavior. For example, the stimulus of receiving

an o¤er of only 10 percent in the Ultimatum Game may be su‰ciently

irritating that we turn the o¤er down. If asked why we refused, we may

then rationalize our behavior by arguing that irritation is an entirely ap-

propriate response to an ‘‘unfair’’ o¤er of 10 percent. Indeed, such an ex-

planation may become institutionalized and so reinforce the behavior that

it ‘‘explains.’’ But we see no more reason to believe that ‘‘fairness norms’’

are fixed and immutable than that economic agents always maximize

money. We believe that players usually find their way to a long-run equi-

librium of trial-and-error learning without having any clear understand-

ing of the strategic realities of the game they are playing. They simply

learn that certain stimulus–response behaviors are e¤ective. After the

game they may rationalize their behavior in various ways. In bargaining

experiments they often say that the long-run equilibrium to which they

found their way is ‘‘fair.’’ But, from an evolutionary perspective, how

they explain their own behavior to themselves and others is an epipheno-

menon. If they had found their way to another equilibrium, they would

be o¤ering some other explanation.23 Economists who fit utility functions

to observed behavior would similarly find themselves proposing a di¤er-

ent utility function.

In summary, we believe that attention should be focused on the evolu-

tion of behavior. If a type of behavior that prompts people to leave money

on the table survives, it will be because there is insu‰cient evolutionary

pressure to remove it. Fairness explanations may be o¤ered as rational-

23. One can observe the fairness norms evolving in the laboratory. In Binmore et al. (1992),
the median long-run equilibrium claim in a laboratory implementation of the Nash Demand
Game turns out to be a very good predictor of the median claim said to be ‘‘fair’’ in a com-
puterized postexperimental debriefing, even though subjects are randomly chosen for an ini-
tial conditioning that directs their subsequent play to di¤erent long-run equilibrium claims.
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izations of the behavior. Such stories may even be incorporated into the

workings of the stimulus–response mechanism. But the details of how

the mechanism actually works or how we explain its workings to our-

selves are secondary. The primary consideration is why some behavior

patterns survive in a population while others will necessarily perish. Only

after this question has been answered is it worthwhile to ask why some of

the stories we tell ourselves are washed away by the evolutionary tide

while others remain high and dry.

C.5 An Ultimatum Minigame

To identify the forces that drive our computational results, this section

provides an analytical study of the simplified version of the Ultimatum

Game shown in figure C.1. In this Ultimatum Minigame, player I can

make a high o¤er ðHÞ or a low o¤er ðLÞ. If he makes a high o¤er, it is

assumed that player II accepts. If he makes a low o¤er, player II may ac-

cept ðY Þ or refuse ðNÞ.
The Ultimatum Minigame has the same structure as Selten’s (1978)

Chain-Store Game. Although we do not press the point, our conclusions

in this section therefore provide a possible resolution of the chain-store

paradox that applies even in the case when there is just one potential

entrant.

Figure C.1c shows the pairs ðx; yÞ that represent equilibria in the Ulti-

matum Minigame, where x and y are the probabilities with which H and

Y are played. There is a unique subgame-perfect equilibrium S at ð0; 1Þ in
figure C.1c, and a component N of Nash equilibria occupying the closed

line segment joining 1; 2
3

� �
and ð1; 0Þ.

Figure C.1
Ultimatum Minigame.
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Figure C.2 shows the trajectories of the standard replicator dynamics in

the Ultimatum Minigame:

_xx ¼ xð1� xÞð2� 3yÞ ð6Þ

_yy ¼ yð1� yÞð1� xÞ: ð7Þ

We summarize the key properties of these trajectories in proposition 1

(see note 6):

Proposition 1 The subgame-perfect equilibrium S is the unique asymptotic

attractor of the unperturbed replicator dynamics. With the exception of

1; 2
3

� �
, the Nash equilibria in the set N are local attractors.

The fact that interior points of N are local attractors does not seem to

us an adequate reason for regarding them as alternatives to the subgame-

perfect equilibrium S. To draw this conclusion, we feel it necessary that

Figure C.2
Phase diagram, no noise.
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the result should survive in the presence of noise that continually replaces

strategies that the replicator dynamics drives to extinction. We accord-

ingly require strategies to be at least local attractors in slightly perturbed

versions of the dynamics where extinction is not a possibility. We accord-

ingly study the perturbed replicator dynamics, defined by

_xx ¼ DIxð1� xÞð2� 3yÞ þ dI
1

2
� x

� �
; ð8Þ

_yy ¼ DIIyð1� yÞð1� xÞ þ dII
1

2
� y

� �
: ð9Þ

In the case when Dk ¼ 1� dk ðk ¼ I; IIÞ, these equations are analogues to
(3)–(4) of section C.3.

Figures C.3 and C.4 show the trajectories for the perturbed replicator

dynamics. None of the points in N is a local attractor in figure C.3, where

responders and proposers are equally noisy; but there exists an asymp-

totic attractor in figure C.4, where responders are noisier than proposers.

More formally, we are interested in what happens when the noise in

(8)–(9) is small, so that ðdI; dII;DI;DIIÞ is close to ð0; 0; 1; 1Þ. We fix

f ¼ dIIDI=dIDII and consider the limit as ðdI; dII;DI;DIIÞ ! ð0; 0; 1; 1Þ in

two cases:

Case 1. 0 < f < 3þ 2
ffiffiffi
2

p
.

Case 2. 3þ 2
ffiffiffi
2

p
< f.

Since 3þ 2
ffiffiffi
2

p
@ 5:8, responders are appreciably noisier than proposers in

the second case.

Lemma 1 Let R be the set of rest points of the system (8)–(9) for values

of ðdI; dII;DI;DIIÞ near ð0; 0; 1; 1Þ.

In case 1, the set R has at most one limit point, which is the subgame-

perfect equilibrium S ¼ ð0; 1Þ.
In case 2, the set R has at most three limit point S ¼ ð0; 1Þ; ð1; yÞ and

ð1; yÞ. The points ð1; yÞ and ð1; yÞ lie in the set N of Nash equilibria.

Proof Writing _xx ¼ _yy ¼ 0 and ðdI; dII;DI;DIIÞ ¼ ð0; 0; 1; 1Þ in (8)–(9)

yields ð0; 0Þ, ð0; 1Þ and ð1; yÞ as candidates for the limit points of R. The

first point is a source for the unperturbed dynamics, and is easily excluded

as a limit point of R. We now consider the possible values of y. To this

end, write _xx ¼ _yy ¼ 0 in (8)–(9) and then set x ¼ 1. We then obtain the

equation
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f ¼ yð1� yÞ
ð2� 3yÞð2y� 1Þ :

This equation, illustrated in figure C.6, has two solutions, y and y, satis-

fying 1
2
< y < 2�

ffiffiffi
2

p
< y < 2

3
when f > 3þ 2

ffiffiffi
2

p
. When f < 3þ

ffiffiffi
2

p
, the

equation has no solutions y satisfying 0a ya 1. m

Proposition 2 Let AðdI; dII;DI;DIIÞ be the set of asymptotic attractors of

the system (8)–(9) given values ðdI; dII;DI;DIIÞ.

In case 1, the set A has a unique limit point as ðdI; dII;DI;DIIÞ !
ð0; 0; 1; 1Þ, which is the subgame-perfect equilibrium S ¼ ð0; 1Þ.
In case 2, the set A has two limit points as ðdI; dII;DI;DIIÞ ! ð0; 0; 1; 1Þ,
which are S ¼ ð0; 1Þ and ð1; yÞ. (The point ð1; yÞ is a limit of saddles.)

Figure C.3
Phase diagram, comparable noise (dI ¼ dII ¼ 0.01).
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The first case gives rise to the phase diagram in figure C.3; the second

case to the phase diagram in figure C.4.

Proof The proof of the first statement is straightforward, and we con-

sider only the second. The right side of (8)–(9) defines a function

F : R2 ! R2 for which

DF ðx; yÞ ¼ DIð2� 3yÞð1� 2xÞ � dI �3DIxð1� xÞ
�DIIyð1� yÞ DIIð1� 2yÞð1� xÞ � dII

� �
:

The trace of this matrix is negative when 1
2
< y < 2

3
and x > 1

2
. We there-

fore consider the limiting value of its determinant.

Multiply the second column of det DF ðx; yÞ by 2y� 1 and then make

the substitution dIIð2y� 1Þ ¼ 2DIIyð1� yÞð1� xÞ, which holds at a rest

point by virtue of (8)–(9). Factor out the term DIDIIð1� xÞ and write

dI ¼ 0 and x ¼ 1 in what remains. We then have to sign the determinant

Figure C.4
Phase diagram, more noise in population II (dI ¼ 0.01, dII ¼ 0.1).
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2� 3y 3ð2y� 1Þ
yð1� yÞ 2y2 � 2yþ 1

����

���� ¼ y2 � 4yþ 2:

The roots of the quadratic equation y2 � 4yþ 2 ¼ 0 are 2�
ffiffiffi
2

p
and

2þ
ffiffiffi
2

p
. It follows that the determinant is positive when y ¼ ya 2�

ffiffiffi
2

p

and negative when y ¼ y < 2
3
< 2þ

ffiffiffi
2

p
. Thus y is an asymptotic attrac-

tor and y is not. m

We next briefly consider the e¤ect of endogenizing the noise in (8)–(9)

by writing DI ¼ cIð1� dIðtÞÞ and DII ¼ cIIð1� dIIðtÞÞ, where cI and cII are

constants and dIðtÞ and dIIðtÞ are given by (5). We study the rest points of

this system as b approaches zero, for small values of a. Figure C.5 shows

the trajectories for this case.24 We have:

24. An asymptotic attractor exists, though it is di‰cult to see, at approximately ð1; 0:505Þ.

Figure C.5
Phase diagram, endogenous noise (a ¼ b ¼ 0.01).
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Proposition 3 Let A be the set of asymptotic attractors for (8)–(9) with

endogenous noise when b > 0 is small. For su‰ciently small a, A has

two limit points S ¼ ð0; 1Þ and ð1; yÞ as b ! 0. As a ! 0, these limit

points converger to ð0; 1Þ and 1; 1
2

� �
.

Proof The first statement follows from an argument analogous to that of

the previous proposition, along with the observation that, as x ! 1, the

di¤erence between the minimum and maximum of player II’s payo¤s

approaches zero, so that dIIðtÞ=dIðtÞ gets very large for su‰ciently small

a. As a ! 0, the limiting ratio of dIIðtÞ=dIðtÞ approaches infinity, in which

case we see from figure C.6 that the limiting values of y and y approach 1
2

and 2
3
respectively. m

We can identify the forces behind these results. When nearly all pro-

posers are playing H, the pressure for a responder to play Y is weak.

Adding noise to the strategies of the proposer pushes the population of

proposers away from H, and increases the pressure for responders to

move towards Y . This pushes the system toward the subgame-perfect

equilibrium. However, the responders are also noisy. In the absence of

Figure C.6
Determining y and y.
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other forces, this noise creates a drift that would eventually result in the

responding population being split equally between agents who play Y

and agents who play N. But the best reply for a proposer against such a

mix in the responding population is to play H. If the drift in the respond-

ing population is su‰ciently strong, it overpowers the countervailing

tendency towards the subgame-perfect equilibrium. As a result the re-

sponding population remains close enough to a half–half mix of Y and

N that the best reply for proposers continues to be H. The subgame-

perfect equilibrium then fails to be selected.

The same intuition can be expressed in a more quantitative form. The

dynamic system give by (6)–(7) can be represented as a vector field on the

state space ½0; 1�2, associating with each point ðx; yÞ a vector

ðxð1� xÞð2� 3yÞ; yð1� yÞð1� xÞÞ ð10Þ

indicating the direction and strength of moment at ðx; yÞ. Along the com-

ponent N illustrated in figure C.1c, these vectors are all zero vectors. The

perturbed system (8)–(9) is the sum of the vector field given by (10) and a

vector field of perturbations given by

�
ðDI � 1Þxð1� xÞð2� 3yÞ þ dI

1

2
� x

� �
;

ðDII � 1Þyð1� yÞð1� xÞ þ dII
1

2
� y

� ��
: ð11Þ

Because the vector (10) is zero on N, the behavior of (8)–(9) on N is

driven by the perturbations given in (11). The key question here is

whether we can find a subset NHN such that the perturbations on N

point into the basin of attraction of N in the unperturbed dynamics given

by (10). If such an N exists, then the perturbations have the e¤ect of con-

tinually pushing points near N back into the basin of attraction of N. The

dynamics (8)–(9) will then have an asymptotic attractor that is close to N

and that converges to N as noise levels become small.

What does this have to do with relative noise levels? Let N ¼ ½0; yþ eÞ
for some small e > 0. Notice that this set includes the half-half mixture

between Y and N, and recall that responder perturbations are pushing

responders toward the half–half mixture of Y and N. At the same time,

proposer perturbations are pushing proposers toward the strategy L,

which in turn creates pressure for responders to switch to Y . The larger

the ratio dII to dI, the stronger the net perturbation pushing responders

toward the half–half mixture, and the more likely the resulting perturba-
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tions to point into the basin of attraction of N. Notice that only relative

noise levels matter in determining the direction of the perturbation vec-

tors, which (combined with the fact that (10) is zero on N ) explains why

the argument holds for arbitrarily small absolute noise levels.

Two implications of this argument are immediate. First, if the payo¤ 3

is replaced by 5 in the Ultimatum Minigame, then the best response to a

half–half mixture of Y and N is L, so that the preturbed dynamics can

never point into the basin of attraction of a subset of N. The dynamics

then lead to the subgame-perfect equilibrium regardless of relative noise

levels. Second, even after replacing 3 by 5, we could induce the perturba-

tions to point into the basin of attraction of a subset of N if we altered the

specification of the responders’ behavior (when noisy) to put a large prob-

ability on N rather than a probability of 1
2
on N. We see here the sensitiv-

ity of the results to the specification of noisy behavior.

This argument also provides an idea as to how sensitive our results are

to the specification of the unperturbed learning dynamic, which we have

taken to be the replicator dynamic. The precise form of this dynamic is

not particularly important, as long as the points in N are rest points and

the set N has a basin of attraction into which perturbations can point.

This excludes pure best-reply dynamics, in which even an arbitrarily small

payo¤ di¤erence between Y and N causes all responders to immediately

switch to Y . However, virtually any system in which growth rates of

strategy proportions are smooth, increasing functions of expected payo¤

di¤erences (with growth rates being zero when all strategies have the

same expected payo¤ ) has the desired property.25 The existence of an

asymptotic attractor close to the component of equilibria that are not

subgame perfect therefore holds for a wide class of dynamic processes, al-

though the precise location of this attractor will be sensitive to the speci-

fication of the process.

These results address long-run behavior. What about the medium run?

Figures C.3 and C.4 reveal medium-run behavior matching that reported

in table C.4 for the full Ultimatum Game. The trajectories in figure C.3

reach the subgame-perfect equilibrium S in the long run, but in the me-

dium run they can first approach the set N of Nash equilibria that are

not subgame perfect. In figure C.4 (where dI < dII), some trajectories

again approach N in the medium run, but in these case these trajectories

never leave the vicinity of N.

25. Samuelson (1988) describes such systems as ‘‘cardinal’’ (as opposed to ‘‘ordinal’’).

Equilibrium Selection in the Ultimatum Game 361



These results allow us to return to the question of fairness. Experimen-

tal results in bargaining games are now seldom explained purely in terms

of fairness norms. Prasnikar and Roth (1992) and Roth et al. (1991), for

example, suggest that some experimental results are best described in

terms of a trade-o¤ between strategic and fairness factors. Their most

striking example contrasts the Ultimatum Game with the Best Shot

Game. The latter is a public-goods-provision game that, like the Ultima-

tum Game, features a unique subgame-perfect equilibrium in which the

first mover’s payo¤ is much higher than the second mover’s.

Prasnikar and Roth find experimental outcomes for the Ultimatum

Game that are not close to subgame perfection. On the other hand, their

Best Shot outcomes are consistent with a subgame-perfect explanation.

They suggest that fairness considerations are able to wrestle outcomes

away from subgame-perfection in the Ultimatum Game, but are over-

whelmed by strategic considerations in the Best Shot Game. In adopting

this interpretation, they note that the Best Shot Game has only one pure-

strategy Nash equilibrium that is not subgame perfect. The payo¤ pair

resulting from this Nash equilibrium is ð0:4; 3:7Þ. The payo¤ pair at the

rival subgame-perfect equilibrium is ð3:7; 0:4Þ. Prasnikar and Roth argue

that there is then very little scope for learning to reinforce movements of

behavior away from the subgame-perfect equilibrium, and hence very

little scope for fairness considerations to gain a foothold. This contrasts

with the Ultimatum Game, where the presence of Nash equilibria that

are close to the unique subgame-perfect outcome provides opportunity

for movements away from subgame perfection (perhaps induced by fair-

ness considerations) to be reinforced.

Our methodology o¤ers a potential explanation of such results that, in

keeping with our discussion in section C.4, does not require treating ‘‘fair-

ness’’ as a primitive concept. To make this point, we contrast the Best

Shot Minigame of figure C.7 with the Ultimatum Minigame of figure

C.1. In the Best Shot Minigame, player I has the option of making a

high ðHÞ or low ðLÞ contribution to the public good. If player I makes a

high contribution, the player II is assumed to make a low contribution. If

player I makes a low contribution, then player II has the choice of a high

or low contribution. The payo¤s are such that there is no gain to both

players making a high contribution and each player is better o¤ if the

other player makes the high contribution.

As figure C.7 indicates, the Best Shot Minigame has the same qualita-

tive features as the Ultimatum Game, with a subgame-perfect equilibrium
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S of ðL;HÞ and a component N of Nash equilibria in which player I

plays H. However, the strategic incentives associated with these equilibria

di¤er, with this di¤erence making it very much more likely that our

model will select a Nash equilibrium that is not subgame-perfect in the

Ultimatum Minigame than in the Best Shot Minigame. In particular,

notice that N is much smaller than the corresponding Ultimatum Game

component. Nash equilibria that are not subgame perfect in the Best

Shot Game require that player II uses H with a probability no higher

than approximately 0.11. As a result the basin of attraction of this com-

ponent relative to the unperturbed replicator dynamics is small. More-

over, if perturbations are introduced in which H and L receive the same

probability from players who misread the game, then the perturbed

dynamics cannot point into the basin of attraction of N. In contrast to

the Ultimatum Minigame, no local attractor can therefore be found close

to N and the subgame-perfect equilibrium is necessarily selected in the

Best Shot Minigame.26

C.6 The Relevance of Replicator Dynamics

Why do we think the replicator dynamics, with their origins in biology,

are relevant? Börgers and Sarin (1993) have shown that the replicator dy-

namics can serve as an approximation to simple learning models related

Figure C.7
Best Shot Minigame.

26. A local attractor could be created close to N, but this requires perturbations that are
very heavily weighted toward L.
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to that used by Roth and Erev (1993). In this section we present a simple

model of social evolution that also leads to the replicator dynamic. Our

purpose is not to argue that the replicator dynamics represent ‘‘the’’ right

model but only to argue that dynamics of their general type are worthy of

our attention.27

We interpret our model as one of social evolution because it relies on

the ability of players to observe others’ strategies; information that is gen-

erally not available in the laboratory. The reinforcement learning model

of Börgers and Sarin (1993) is perhaps better suited as a model of learn-

ing in experiments. As explained in section C.3, both types of learning

seem relevant to explaining experimental data.

Divide time into discrete periods of length t. In every period, each

agent retains his current strategy with probability 1� t. With probability

t, the agent compares his payo¤ with an aspiration level L, which is ran-

dom and uniformly distributed on ½l;L�. If the agent receives a payo¤

exceeding L, then the agent does not switch strategies. If the agent’s pay-

o¤ falls short of L, then the agent randomly chooses a new strategy. The

probability that a given strategy is chosen is taken to be the proportion of

the population playing that strategy. For example, it may be that the

agent chooses a new strategy by randomly selecting another member of

the population and imitating his strategy.

Why is L random? Our preferred interpretation here is that the aspira-

tion level is actually fixed while the payo¤s in the game are random,28

though we find it analytically convenient to work with the equivalent for-

mulation of a random aspiration level. This is consistent with the view we

used to motivate our noisy dynamics, namely that players are constantly

involved in a multitude of di¤erent games and may misperceive the pre-

cise nature of the game.

Let piðtÞ be the probability that the aspiration level L exceeds the pay-

o¤ from a proposer’s strategy i in period t. We assume that exactly piðtÞ
of the proposers playing strategy i at time t are dealt an aspiration level in

excess of their payo¤s, and that these proposers switch to new strategies

in exactly the same proportions as these strategies are used in the popula-

tion of proposers. Then

27. See Binmore and Samuelson (1993) and Cabrales (1993) for similar arguments. See
Bendor et al. (1991) for another aspiration learning model.

28. We then implicitly assume that the dispersion of the payo¤ distribution around its mean
does not vary over strategies or players. More realistic assumptions would lead to more
complex dynamics.
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xiðtþ tÞ ¼ xiðtÞð1� tpiðtÞÞ þ
X

j AS

tpjðtÞxjðtÞxiðtÞ: ð12Þ

Note that piðtÞ ¼ ðL� piðtÞÞ=ðL� lÞ, where piðtÞ is the payo¤ to strategy

i in period t. Hence

xiðtþ tÞ � xiðtÞ
t

¼ xiðtÞ
piðtÞ � pIðtÞ

L� l
;

where pIðtÞ is the average payo¤ over all proposers’ strategies. Taking the

limit as t ! 0 leads to a continuous-time version of the dynamic:

_xxi ¼ xi
pi � pI

L� l
: ð13Þ

A similar equation can be derived for responders. The replicator dynamic

given by (1)–(2) is the special case in which time has been rescaled so as

to eliminate the constant L� l.29

Now suppose that each proposer ignores the learning process with

probability dI in each period. Given that the learning process is ignored,

with probability t such an agent abandons his strategy regardless of aspi-

ration level considerations and randomly chooses a new strategy, giving

strategy i probability yi.

The dynamic given by (12) now becomes30

xiðtþ tÞ ¼ ð1� dIÞ xiðtÞð1� tpiðtÞÞ þ
X

j AS

tpjðtÞxjðtÞxiðtÞ
( )

þ dI½xiðtÞ þ tðyiðtÞ � xiðtÞÞ�:

But piðtÞ ¼ ðL� piðtÞÞ=ðL� lÞ. As t ! 0, we obtain

_xxi ¼ ð1� dIÞxiðtÞ
piðtÞ � pIðtÞ

L� l
þ dIðyi � xiðtÞÞ: ð14Þ

The noisy replicator dynamic given by (3)–(4) is the special case in which

L� l ¼ 1 for both populations.

We have assumed that the two populations are governed by identical

learning rules. There are two obvious ways in which they may not be.

29. See Taylor and Jonker (1978) and Hofbauer and Sigmund (1988). This rescaling
depends on an assumption that the distribution of the aspiration level is the same for the
two players.

30. Samuelson and Zhang (1992) examine an analogous dynamic, with the random choices
interpreted as errors in passing strategies (or genes) from one generation to the next.
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First, the populations may be characterized by di¤erent values of L� l.

This is equivalent to saying that the unperturbed dynamics presented in

(1)–(2) may proceed at di¤erent speeds of the two populations.31 Con-

sider the Ultimatum Minigame. The faster is the relative rate at which

population I learns, the larger is the basin of attraction of the component

of Nash equilibria N that are not subgame perfect. This makes it more

likely that the perturbations on this component will point into its basin

of attraction, and hence more likely that the dynamics do not lead to the

subgame-perfect equilibria.

Alternatively, the rates of learning in the perturbed dynamics (3)–(4)

may be di¤erent. This would correspond to a situation in which learn

draws come at di¤erent rates for the two populations.32 It is easy to

show that changing the rate at which learning proceeds is equivalent to

rescaling payo¤s (i.e., multiplying by a constant) and noise levels.33 As

the relative rate at which learning procees for population II increases, we

are again more likely to observe outcomes that are not subgame-perfect.

C.7 Conclusion

To the question of whether the subgame-perfect equilibrium should be

regarded as the one and only game-theoretic prediction for the Ultima-

tum Game, we hope that we have provided a convincing and firmly neg-

ative answer. But what distinguishes our model from other theories of

equilibrium selection in the long run, notably fairness theories? Neither

our theory nor fairness theories are open to straightforward refutation,

since both leave an apologist with ample room for maneuver in explain-

ing the data. In particular, our theory requires tailoring the initial condi-

tions and the noise that perturbes the dynamics to the experimental

environment. We hope that our models will not have to be altered radi-

cally in moving between environments, as seems to be necessary with fair-

ness models. However, the final word on these questions will have to

await further research on a variety of other games. We hope to report

such results soon.

31. One might, for example, make the speed of learning endogenous by linking it to the pay-
o¤ magnitudes involved, just as we have done with noise levels.

32. Again, these rates might be linked to payo¤ di¤erences.

33. For example, increasing the rate at which time proceeds by replacing _xx with k _xx for
k < 1 is equivalent to multiplying all payo¤s by 1=k > 1 and multiplying the noise level by
1=k (or multiplying the parameters a and b by 1=k in our endogenous noise cases).
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D Generalizing Rubinstein

Various accounts of extensions of Rubinstein’s ideas are available, for

example, Binmore et al. (1982, 1992), Binmore (1985), Binmore and Das-

gupta (1987), Osborne and Rubinstein (1990), and Muthoo (1999). The

paper reproduced here is an attempt to o¤er a mathematically undemand-

ing version of the theory that remains su‰ciently general for most applied

work.





Bargaining Theory without Tears

Ken Binmore

D.1 Introduction

The purpose of this article is twofold. The primary aim is to provide a

simple proof of a version of Rubinstein’s (1982) bargaining theorem in a

setting that is su‰ciently general to cover the situations that typically

arise in applications. In particular, the feasible set is not assumed to be

convex and a reasonably general view is taken of the manner is which dis-

agreement may arise.

The secondary aim pursues some points made in Binmore et al. (1986).

A detailed analysis of subgame-perfect equilibria in a complicated non-

cooperative bargaining model is unnecessary for most applications.

Much heavy computation can be short-circuited by applying certain sim-

ple principles directly rather than deriving them anew each time they are

required. The methodology is illustrated in section D.8 for a model of

decentralized price formation.

D.2 The Alternating-Offers Model

Rather than setting the story directly in utility space, it will be told in

terms of the classic problem of ‘‘dividing the dollar.’’ A philanthropist

donates a dollar to Adam and Eve on condition that they are able to

agree on how to share it. Disagreement may arise in various ways. A

player may abandon the negotiations in favor of his or her best outside

option leaving the other to do the same. Or the philanthropist may lose

patience if agreement is delayed and withdraw his o¤er. If either of these

eventualities occurs, the negotiations will be said to have broken down.

Even without a breakdown, agreement may not be reached since it is

open to the players to sit at the negotiation table for ever.



The result of bargaining under precisely specified rules will be studied.

All action takes place at times nt ðn ¼ 0; 1; 2; . . .Þ, where t > 0. Adam is

active when n is even. Eve is active when n is odd. If the game has not

already ended at time nt > 0, the philanthropist begins by withdrawing

his dollar with probability p ¼ lt < 1. The game continues with probabil-

ity p ¼ 1� p. The active player then decides whether to opt out. If the

active player opts in, then he or she continues by making a proposal on

how to split the dollar. The passive player then accepts or refuses. Only

after a refusal does the clock advance by t. The passive player then

becomes active and the above sequence of events is repeated. The game

begins at time n ¼ 0 but, in this first period, the steps in which the dollar

may be withdrawn and in which Adam may opt out are skipped. The

very first move therefore consists of Adam’s making a proposal. The sec-

ond move consists of Eve’s response. If she refuses, the sequence of events

described in the previous paragraph commences with n ¼ 1. Figure D.1

illustrates the order of moves.1

D.3 Preferences

Adam is taken to be player 1 and Eve to be player 2. The set of possible

deals is identified with

W ¼ fo : o1 þ o2 a 1g:

Notice that it is assumed that money can be burned or borrowed and

transferred freely between the players. Osborne and Rubinstein (1990),

for example, assume that such transactions are impossible.2 The point

b A W represents a pair of breakdown payments. These are the payments

that each player will receive if the negotiations break down.3

1. Most of the sequencing in this specification is unimportant to the results. That chosen is
largely for mathematical convenience. However, it is important that the active player’s opt-
ing out decision does not occur immediately after the passive player has refused an o¤er.
Otherwise, further equilibria appear (Shaked 1987). But a model in which a player cannot
leave without hearing one final o¤er from the opponent seems more realistic. The anomalous
first period allows a more elegant statement of some results since then Adam will never actu-
ally opt out in equilibrium. It is, of course, trivial to extend the analysis using backward in-
duction to the case when the first period is not anomalous.

2. Hence Osborne and Rubinstein (1990) are able to find equilibria in circumstances when
they would not otherwise exist. The approach taken here seems more natural.

3. The case when di¤erent payments are received depending on whether someone opts out
or the dollar is withdrawn has been considered elsewhere (e.g., Binmore et al. 1992). The
only new di‰culties are combinatorial, but the interest of this more general case does not
seem su‰cient to justify the extra algebra.
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Player i’s utility for the outcome o A W at time t is taken to be

uiðo; tÞ ¼ viðoiÞd ti ; ð1Þ

where the discount factor di satisfies 0 < di a 1. (The corresponding dis-

count rate ri is defined by di ¼ e�ri ). To economize on notation, we write

Di ¼ dti . Recall that p ¼ lt. Thus, in what follows, both Di and p are al-

ways functions of t. The function vi : R ! R is assumed to be continu-

ous and strictly increasing. Its range is an open interval R1. We take

bi ¼ viðbiÞ. The breakdown point b then lies in R1 � R2.

The Pareto frontier of the set X of utility pairs available at time 0 is the

graph of the function f defined by

f ðx1Þ ¼ v2ð1� v�1
1 ðx1ÞÞ:

Both f : R1 ! R2 and its inverse f �1 : R2 ! R1 are continuous and

strictly decreasing. Note that b A X so that b2 a f ðb1Þ and b1 a f �1ðb2Þ.
It remains to discuss how the players assess the consequences of the

perpetual disagreement outcome D. This is assigned utility uiðDÞ ¼ 0 so

Figure D.1
Rules of the bargaining game
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as to be consistent with the result of allowing t ! y in (1). In addition it

is assumed that 0 A R1 � R2 and bb 0.

A situation in which the players use strategies that rule out the possibil-

ity of agreement being reached but do not result in either player ever opt-

ing out will be called a deadlock. A deadlock leads to the outcome D with

positive probability only when p ¼ 0. Otherwise, the expected utility to

player i from a deadlock is

pbiDi þ pbiDiðpDiÞ þ pbiDiðpDiÞ2 þ � � � ¼ pbiDi

1� pDi

ð2Þ

If v1 and v2 are concave, then so is f . It follows that X is convex. If X is

not convex, we specifically do not replace it by its convex hull as is nor-

mal practice. It is frequently unrealistic to suppose that agreement on a

lottery is feasible. A union boss, for example, cannot report to his mem-

bers that their wage settlement was decided by tossing a coin. Where lot-

teries are feasible, W should be replaced by the set of all lotteries with

prizes in W. A simpler theory then results.

Notes

1. Fishburn and Rubinstein (1982) show that relatively mild assumptions

on preference relations guarantee a utility representation of the form (1).

In particular, (1) substitutes in this paper for the conditions (A1) through

(A5) of Osborne and Rubinstein (1990). Their condition (A6) is not used

here.

2. Expressing the basic problem in terms of ‘‘dividing the dollar’’ clarifies

the interpretation but may obscure the generality of the treatment. All

that really matters is the shape of the set X of feasible utility pairs and

the values of d1, d2, p, and b. Geometric characterizations of the equilib-

rium outcomes in such a setting are easily obtained (Binmore 1987). Al-

gebraic characterizations, as studied here, require more labor.

3. If p > 0, the utility functions must be understood in the sense of Von

Neumann and Morgenstern. If p ¼ 0, expected utility calculations are not

necessary and so any utility function representation will su‰ce. This ob-

servation permits the study of various cases not obviously included in the

scope of the analysis. In particular, Rubinstein’s (1982) case of ‘‘fixed

costs of disagreement’’ is accessible. Player i’s utility for the deal w at

time t is then Uiðw; tÞ ¼ wi � git, where gi > 0. Rubinstein’s version has

to be supplemented here by requiring that, if someone opts out at time t,
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then player i gets �git. One takes uiðw; tÞ ¼ exp Uiðw; tÞ and di ¼ e�gi .

Then viðxÞ ¼ ex is far from concave. Notice that f : ð0;yÞ ! ð0;yÞ is

given by f ðxÞ ¼ e=x and b ¼ ð1; 1Þ. The example is useful because it

exhibits various pathologies.

D.4 Stationary Subgame-Perfect Equilibria

In this section, h and x are Pareto-e‰cient deals in W. The utilities

assigned to these deals at time 0 by the two players are given by

yi ¼ viðhiÞ and zi ¼ viðxiÞ. Notice that y2 ¼ f ðy1Þ and z2 ¼ f ðz1Þ.
Adam will be assumed to use a pure strategy s that requires him to

1. Propose h whenever called upon for a proposal;

2. Accept x or better and to refuse anything worse whenever called upon

for a response.

Eve will be assumed to use a pure strategy t that has the same properties

except that the roles of h and x are reversed.

When do strategies with these properties constitute a subgame-perfect

equilibrium? The current section explores this question in a series of lem-

mas. The simple proofs are relegated to an appendix.

Define: mi : Ri ! R by

miðxÞ ¼ Diðpbi þ p maxfbi; xgÞ;

and restrict attention to those h and x for which

y2 ¼ m2ðz2Þ
z1 ¼ m1ðy1Þ

)

: ð3Þ

These equations express the fact that the passive player will always be

indi¤erent between accepting and refusing what is proposed.

Lemma 1 If (3) holds, then y1 b b1 or z2 b b2. Also z1 a y1 and

y2 a z2.

Proof If y1 < b1, then z1 ¼ D1b1 a b1. Since z is Pareto-e‰cient, it there-

fore cannot be that z2 < b2. If y1 b b1. Then z1 ¼ D1ðpy1 þ pb1Þa
D1y1 a y1. Thus z2 ¼ f ðz1Þb f ðy1Þ ¼ y2. A similar argument applies if

z2 b b2. m

Lemma 2 If y and z satisfy [3], then there exists a corresponding

subgame-perfect equilibrium pair ðs; tÞ.
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The properties given for s and t do not specify whether or not a player

should opt out when the opportunity arises. Adam should opt in if

y1 b b1 and opt out if y1 < b1. Eve should opt in if z2 b b2 and opt out

if z2 < b2.

Proof It needs to be confirmed that proposing decisions are optimal.

They are optimal because the active player cannot demand more without

being refused, and he or she prefers not to be refused. In checking this last

point, lemma 1 makes all the cases immediate except for that in which the

active player opts out in equilibrium. Suppose, in particular, that y1 b b1
and z2 < b2. Then y2 ¼ D2b2. Hence

z2 b y2 ¼ D2b2 bD2ðpD2b2 þ pb2Þ ¼ D2ðpy2 þ pb2Þ:

It follows that Eve prefers z to be accepted than to have her proposal

refused. A similar argument applies when y1 < b1 and z2 b b2. m

Lemma 3 The pair ðy; zÞ satisfies (3) and hence specifies a stationary

subgame-perfect equilibrium if and only if y1 is a zero of the function

g : R1 ! R defined by

gðxÞ ¼ f ðxÞ � ðm2 � f �m1ÞðxÞ

and y2 ¼ f ðy1Þ, z1 ¼ m1ðy1Þ, z2 ¼ f ðz1Þ.

It will be necessary to investigate the properties of the function g in some

detail. Note to begin with that

gðxÞ ¼
f ðxÞ � D2½pb2 þ pf ðD1b1Þ� if xa b1;

f ðxÞ � D2½pb2 þ pf ðD1ðpb1 þ pxÞÞ� if b1 a xa c1;

f ðxÞ � D2b2 if xb c1;

8
><

>:

where pc1 ¼ D�1
1 f �1ðb2Þ � pb1. The dependence of g on r is not made

explicit, since it turns out to be more convenient to study G : R1 �
ð0;yÞ ! R, which is defined by

Gðx; rÞ ¼ t�1gðxÞ ð4Þ

when this dependence matters.

Lemma 4 The function g : R1 ! R has the following properties:

i. x < D1b1 ) gðxÞ > 0.

ii. x > f �1ðD2b2Þ ) gðxÞ < 0.
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Proof

i. If x < D1b1, then

gðxÞ > f ðD1b1Þ � D2½pb2 þ pf ðD1b1Þ�

¼ ð1� D2pÞ f ðD1b1Þ � D2pb2

b ð1� D2pÞb2 � D2pb2

¼ b2ð1� D2Þb 0:

ii. If x > f �1ðD2b2Þ, then f ðxÞ < D2b2. If it is also true that gðxÞb 0,

then

D2b2 � D2½pb2 þ pf ðD1ðpb1 þ pxÞÞ� > 0

b2 > f ðD1ðpb1 þ pxÞÞ

f �1ðb2Þ < D1ðpb1 þ pxÞ

x > c1:

Now suppose that f �1ðD2b2Þa c1. Then gðxÞ < 0 for f �1ðD2b2Þ <
xa c1. Hence, gðxÞ < 0 for x > f �1ðD2b2Þ, because g is continuous and

decreases on ðc1;yÞ. On the other hand, if f �1ðD2b2Þ > c1, then x >

f �1ðD2b2Þ implies that gðxÞ ¼ f ðxÞ � D2b2 < 0. m

Lemma 5 The function g : R1 ! R always has a zero in ½D1b1; f
�1ðD2b2Þ�

and hence a stationary subgame-perfect equilibrium exists.

Proof This follows from the previous lemma because g is continuous. m

D.5 Nonstationary Equilibria

This section proves a generalized version of a theorem of Rubinstein

(1982). The proof follows Binmore (1987), Shaked and Sutton (1984)

and Binmore et al. (1989).

Let S be the set of all subgame-perfect equilibrium outcomes. The first

result demonstrates that S is necessarily a large set when more than one

stationary subgame-perfect equilibrium of the type considered in section

D.4 exists. In particular, Pareto-ine‰cient outcomes lie in S.

Multiple stationary subgame-perfect equilibria exist when g : R1 ! R
has more than one zero. Let ðs; tÞ be the strategy pair that corresponds
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to the smallest zero y1 of g. Let ðs; tÞ be the strategy pair corresponding

to the largest zero y1.

Let T be the set of all feasible payo¤ pairs x that satisfy xb ðy1; y2Þ.

Lemma 6 If x A T , then there exists a subgame-perfect equilibrium ðs; tÞ
in which Adam proposes a deal x at time 0 worth x and Eve accepts.

Thus T JS.

Proof Three ‘‘states of mind,’’ UP, DOWN, and MIDDLE are distin-

guished. Players begin in the MIDDLE state. In this state, the subgame-

perfect equilibrium ðs; tÞ to be constructed requires Adam to propose x

when called upon to make a proposal. Eve accepts x and anything at least

as good as x. She refuses anything else. m

In the UP state, ðs; tÞ requires that the players play according to ðs; tÞ
in the remainder of the game. In the DOWN state, ðs; tÞ requires playing
according to ðs; tÞ in the remainder of the game.

Once in the UP state, players remain there. The same applies to the

DOWN state. Transitions from the MIDDLE state are made as follows.

If Adam proposes x, then a refusal by Eve shifts both players to the UP

state. If Eve refuses any other proposal, both players shift to the DOWN

state.

Why is the schedule for proposal and response in the MIDDLE state

optimal? Eve should accept x because x2 b y2 ¼ m2ðz2Þ. Her response to

other proposals is optimal because she gets y2 ¼ m2ðz2Þ from refusing.

Adam should propose x because he gets at most y1 from deviating and

x1 b y1. (If Adam deviates to a proposal that is refused, either Eve opts

out because z2 < b2 or she opts in because z2 b b2. In the latter case,

Adam gets D1ðpb1 þ pz1ÞaD1z1 a z1 a y1 a x1. In the former case, he

gets D1b1 a b1 a y2 a x1 by lemma 1.)

Next it will be shown that SJT . A preliminary lemma is needed.

Lemma 7 The set Y of all subgame-perfect equilibrium payo¤s to Adam

is ½y1; y1�.

Proof Let a ¼ inf Y and A ¼ sup Y . Let Z be the set of all subgame-

perfect equilibrium payo¤s to Eve in the companion game in which it

is Eve who makes the first proposal at time 0. Write e ¼ inf Z and

E ¼ sup Z.

1. It is open to Eve to refuse whatever Adam proposes at time 0. If equi-

librium strategies are used in the continuation of the game, then Eve will
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get an expected payo¤ of at least m2ðeÞ because the companion game will

be played after a time delay of t unless the dollar is withdrawn of Eve

opts out in the interim. If equilibrium strategies are used, it follows that

Eve gets at least m2ðeÞ, and so Adam gets at most f �1ðm2ðeÞÞ. Thus

Aa f �1ðm2ðeÞÞ, and so

f ðAÞbm2ðeÞ: ð5Þ

On applying a similar argument in the companion game,

Ea f ðm1ðaÞÞ: ð6Þ

2. It is optimal for Eve to accept any proposal from Adam that assigns

her a payo¤ w2 > m2ðEÞ, provided that equilibrium strategies are used af-

ter a refusal. Thus Adam must get at least f �1ðw2Þ. Hence f �1ðw2Þ is a
lower bound for S whenever w2 > m2ðEÞ. Thus ab f �1ðm2ðEÞÞ, and so

f ðaÞam2ðEÞ: ð7Þ

On applying a similar argument in the companion game,

eb f ðm1ðAÞÞ: ð8Þ

3. From (5) and (8),

f ðAÞbm2ðeÞb ðm2 � f �m1ÞðAÞ;

and hence gðAÞb 0. But gðxÞ < 0 for x > y1. Thus Aa y1. But y1 A Y ,

and so A ¼ y1.

From (6) and (7),

f ðaÞam2ðEÞa ðm2 � f �m1ÞðaÞ;

and hence gðaÞa 0. But gðxÞ > 0 for x < y1. Thus ab y1. But y1 A Y ,

and so a ¼ y1.

4. It remains to confirm that y1 a y1 a y1 implies y1 A Y . This follows

immediately from lemma 6. m

Theorem 1 S ¼ T .

Proof By the preceding lemma, Adam’s equilibrium payo¤s lie in the set

½y1; y1�. Similarly Eve’s equilibrium payo¤s in the companion game lie in

½z2; z2�. It follows that her equilibrium payo¤s in the original game lie in

½y2; y2�, since y2 ¼ m2ðz2Þ and y2 ¼ m2ðz2Þ. Thus SJT . On the other

hand, lemma 6 shows that T JS. m
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Notes

1. When multiple equilibria exist, there may be subgame-perfect equilib-

ria in which agreement is not reached immediately (Osborne and Rubin-

stein 1990, sec. 3.10.1).

The second and third notes concern two cases of special interest con-

sidered by Rubinstein (1982). The reason that the conclusions quoted

di¤er from his is because the bargaining models considered are not

identical.

2. In the notation of section D.3, take v1ðxÞ ¼ v2ðxÞ ¼ x and p ¼ 0. Then

R1 ¼ R2 ¼ R and f ðxÞ ¼ 1� x. The zeros of the function g are the sta-

tionary subgame-perfect equilibrium outcomes for Adam. In this case g is

strictly decreasing. It follows that there is a unique equilibrium outcome.

If u ¼ ð1� D2Þ=ð1� D1D2Þ satisfies b1 a uaD�1
1 ð1� b2Þ, then Adam

gets u. If u < b1, then Adam will be planning to take his outside option

should the opportunity arise. He gets 1� D2ð1� D1b1Þ when proposing.

If u > D�1
1 ð1� b2Þ, Eve is planning to take her outside option. Adam gets

1� D2b2.

3. The second case of interest is described in note 3 of section D.3. When

D1 > D2, g has a unique zero at D�1
2 . In terms of money payo¤s, this

means that when g1 < g2, Adam gets 1þ g2t in equilibrium. (Eve plans

to take her outside option.) When D1 < D2, g has a unique zero at D1D
�1
2 .

In terms of money payo¤s this means that when g1 < g2, Adam gets

ðg2 � g1Þt in equilibrium. (Adam plans to take his outside option.) When

D1 ¼ D2 ¼ D, g is zero on ½1; eD�1�. Thus, with the notation of section

D.4, y1 ¼ 1 and, y1 ¼ eD�1. Hence y2 ¼ D. Any feasible pair xb ð1;DÞ
is therefore an equilibrium outcome. In terms of money payo¤s this

means that when g1 ¼ g2 ¼ g, the set of equilibrium outcomes is fo : o1:

þo2 a 1;o1 b 0;o2 b�grg.

D.6 Generalized Nash Bargaining Solutions

Much of the interest of the bargaining model described in the previous

sections lies in the fact that, in the limit as t ! 0þ, the equilibrium out-

comes can be characterized in terms of a suitably generalized version of

Nash’s bargaining solution. The case t ! 0þ deserves special emphasis

for at least two reasons. The first reason is that there will often be nothing

that constrains players to keep to the timetable specified in the model. Af-

ter refusing a proposal, they will then wish to make a counterproposal at
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the earliest possible opportunity.4 The second reason is that Adam’s first-

mover advantage disappears in the limit as t ! 0þ. In this section a gen-

eralized Nash bargaining solution will be described. Axiomatizations of

the point-valued version can be found in Kalai (1977), Roth (1979), and

elsewhere.

An abstract bargaining problem will be identified with a triple ðX ; b; dÞ
in which X is interpreted as the set of feasible payo¤ pairs, b is a

breakdown point whose coordinates are the players’ outside options,

and d is a deadlock point. As in section D.2, R1 and R2 are open inter-

vals, f : R1 ! R2 is a strictly decreasing surjection and X ¼ fðx1; x2Þ A
R1 � R2 : x2 a f ðx1Þg. Also 0 A R1 � R2 and 0a da b A X . For the re-

mainder of the paper it will also be assumed that f is twice di¤erentiable

on R1.

A generalized Nash product with bargaining powers a > 0 and b > 0 is

defined to be an expression of the form

Pðx1; x2Þ ¼ ðx1 � d1Þaðx2 � d2Þb: ð9Þ

When X is convex and b ¼ d, the regular Nash bargaining solution intro-

duced by Nash (1950) identifies the solution of ðX ; d; dÞ with the point n

at which the Nash product P with a ¼ b is maximized subject to the con-

straints x A X and xb d.

When X is not convex, a more elaborate definition is necessary. Let

p : R1 ! R be given by

pðxÞ ¼ Pðx; f ðxÞÞ: ð10Þ

Attention will be restricted to the case in which p 0ðxÞ is zero neither at an

endpoint of the interval ½b1; f �1ðb2Þ�, nor at an interior point x where

p 00ðxÞ ¼ 0. Only pathological cases are excluded by this restriction. The

function H : R1 ! R is defined by

HðxÞ ¼

þy if x < b1;

f 0ðxÞ x� d1

a

� �
þ f ðxÞ � d2

b

� �
if b1 a xa f �1ðb2Þ;

�y if x > f �1ðb2Þ:

8
>>><

>>>:

This has the same sign as p 0 on the interval ½b1; f �1ðb2Þ�. A ‘zero’ of H

will be understood to be any x A R1 which has the property that all of its

neighborhoods contain both positive and negative values of H. In view of

4. The limiting factors will then be physical or physiological. Modeling these will involve a
reinterpretation of d1 and d2.
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the preceding restrictions on p, a ‘zero’ of H is either an interior point z

of the interval ½b1; f �1ðb2Þ�, at which HðzÞ ¼ 0, or an endpoint of the

interval.

A Nash bargaining point n can now be defined to be a Pareto-e‰cient

point of X for which n1 is a ‘zero’ of H. Of all Nash bargaining points, let

n be that which assigns Adam the greatest payo¤ (and Eve the least). Let

n be that which assigns Eve the greatest payo¤ (and Adam the least). The

generalized Nash bargaining solution corresponding to the bargaining

powers a > 0 and b > 0 for the bargaining problem ðX ; b; dÞ is the set N

of all feasible payo¤ pairs xb ðn1; n2Þ. The definition is illustrated in

figure D.2.

Proposition 1 The point n is the local maximum of the Nash product (9)

subject to x A X and xb b that assigns Adam the greatest payo¤. The

point n is the local maximum that assigns Eve the greatest payo¤.

Proposition 2 A su‰cient condition that N consist of a single point is

that ðx� d1Þ f 0ðxÞ be concave on ½b1; f �1ðb2Þ�. In particular, it is su‰-

cient if f is concave and so X is convex.

Figure D.2
A generalized Nash bargaining solution
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Proof The condition implies that H is strictly decreasing on

½b1; f �1ðb2Þ�. m

D.7 The Nash Program

The aim of the Nash program is to provide noncooperative justifications,

where possible, for the solution concepts of cooperative game theory (see,

for example, the introduction to Binmore and Dasgupta 1987). The alter-

nating o¤ers model of sections D.2 through D.5 is important in this con-

text since it provides a defense for the Nash bargaining solution.

Theorem 2 As t ! 0, the set of subgame-perfect equilibrium outcomes

in the alternating o¤ers model converges to the generalized Nash bar-

gaining solution N corresponding to the bargaining powers a ¼
1=ðlþ r1Þ and b ¼ 1=ðlþ r2Þ for the bargaining problem ðX ; b; dÞ, in
which the deadlock payo¤ di ¼ lbi=ðlþ riÞ is the limiting value of (2) as

t ! 0þ.

Proof It will be shown that the set of values of x for which the function

G defined by (4) is zero converges to the set of ‘‘zeros’’ of the function H

defined in the preceding section. The first step is the observation that for

each x A R1,

Gðx; tÞ ! HðxÞ as t ! 0þ:

On the interval ½b1; f �1ðb2Þ�, this follows from L’Hôpital’s rule because

c1 > f �1ðb2Þ. Outside the interval, one may appeal to lemma 4 to deter-

mine the sign of G.

1. Every neighborhood of a ‘‘zero’’ of H contains a zero of G, provided t

is su‰ciently small. With the restriction introduced in section D.6, each

such neighborhood contains a point at which H is positive and a point

at which H is negative. The same is therefore true of G if t is su‰ciently

small. Since G is continuous, it follows that G has a zero in the

neighborhood.

2. Every neighborhood that contains zeros of G for all su‰ciently small t

also contains a ‘‘zero’’ of H. The inverval ½b1; f �1ðb2Þ� is compact, and

hence G converges uniformly to H on this interval. This observation

takes care of neighborhoods centered at points of ðb1; f �1ðb2ÞÞ. A trivial

argument extends the conclusion to neighborhoods centered at the

endpoints. m
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In summary, where the defense of the use of the Nash bargaining theory

is to be based on an alternating o¤ers model,5 the ‘‘status quo’’ should

correspond to the consequences of a deadlock (during which the players

remain at the negotiation table but never reach an agreement). The out-

side options that they may obtain by abandoning the negotiations serve

only as constraints on the range of validity of the Nash bargaining solu-

tion. Often it is convenient to apply these principles to payo¤ flows. In a

wage negotiation, for example, the deadlock flows may be the income per

period for the two sides during a strike.

The final result of this section is o¤ered without a proof. In provides a

criterion for the uniqueness of an equilibrium in the alternating o¤ers

model that does not depend on t being small.

Proposition 3 A necessary condition that the alternating o¤ers model

have a unique subgame-perfect equilibrium is that N consist of a single

point.

Some special cases of theorem 2 deserve mention. In each case X is

assumed to be convex so that N consists of a single point.

1. r1 ¼ r2 ¼ 0. In this case the equilibrium outcome converges to the reg-

ular Nash bargaining solution for the problem ðX ; b; bÞ. Here the break-

down and deadlock points are the same, and there is no di‰culty in

deciding on an appropriate ‘‘status quo’’ in using Nash’s theory. This

case arises when it is not impatience that motivates an early agreement

but fear that the opportunity to reach an agreement may disappear if an

agreement is delayed.

2. r1 ¼ r2 ¼ r > 0. In this case the equilibrium outcome converges to

the regular Nash bargaining solution for the problem ðX ; b; dÞ, where
d ¼ lb=ðlþ rÞ. Note the displacement of the ‘‘status quo’’ from b. In

symmetric situations, this displacement leaves the location of the Nash

bargaining solution unaltered. Models that mistakenly place the ‘‘status

quo’’ at b will therefore nevertheless lead to the correct conclusions in

symmetric situations.

3. l ¼ 0. In this case the equilibrium outcome converges to an asym-

metric, Nash bargaining solution with bargaining powers a ¼ 1=r1 and

b ¼ 1=r2 for the problem ðX ; b; 0Þ. Recall that the payo¤ pair 0 corre-

sponds to the perpetual disagreement point D which therefore serves as

5. Rather than, for example, Nash’s (1950) own model in which players simultaneously
make take-it-or-leave-it o¤ers.
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the appropriate ‘‘status quo’’ under these circumstances. This case arises

when the players are unconcerned about the risk of losing the opportunity

to reach an agreement and are motivated simply by their impatience with

delays.

D.8 Decentralized Price Formation

To illustrate the principles of the preceding section, a model will now be

studied in which the price at which a good is traded is determined by bar-

gaining between buyers and sellers rather than through some centralized

auctioneering mechanism. Insofar as there is an innovation as compared

with Rubinstein and Wolinsky (1985), Gale (1986), or Binmore and Her-

rero (1988), it lies in the more realistic modeling of the circumstances of a

bargaining breakdown. Wolinsky (1988) and Bester (1988) consider other

variants of the model.

Each seller owns a house. If he sells the house at time t for price p, his

utility is pd t1. The buyer gets ð1� pÞd t2. An agent who opts out of the

market or who never succeeds in consummating a deal gets zero utility.

After a sale the buyer and seller leave the market but are immediately

replaced by a new buyer and a new seller so that things remain in a steady

state. The market therefore always contains a pool of unmatched agents

looking for a bargaining partner.

The price at which the house is exchanged is determined by bargaining

between individual buyers and sellers who have succeeded in finding each

other. The bargaining model is based on that of section D.2, but various

modifications are necessary. In particular, account needs to be taken of

buyers and sellers who have yet to find a bargaining partner. Such

unmatched agents are always deemed to be active.

At the beginning of each time period, all active agents are matched

with a new partner with probability lit > 0 ði ¼ 1; 2Þ. A player who was

passive in the preceding period and refused the proposal made by his or

her partner may therefore have two partners in the current period. Such a

player is in a powerful position because this creates an auctioning sce-

nario.6 The modeling of this scenario is discussed below. The next event

is a decision by active players on whether or not to opt out. An

unmatched player may opt out of the market altogether. A matched

active player may do the same or abandon his or her current partner and

6. Usually this possibility is neglected by assuming that the rejection of a proposal or the
discovery of a new partner dissolves the partnership.
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so become unmatched. If a matched active player opts in, he or she

makes a proposal that the passive player may accept or refuse. Before fur-

ther events, the clock advances by t. Any remaining passive players be-

come active and the cycle of events is repeated.

This is a more complex problem than that discussed in preceding sec-

tions, but a full noncooperative analysis will not be described. Instead,

the result of such an analysis will be predicted using the principles out-

lined in section D.7. These apply only in the limiting case when t ! 0þ
(the case of ‘‘no bargaining frictions’’). The prediction is framed in

terms of an appropriate Nash bargaining solution of an appropriate

bargaining problem ðX ; b; dÞ. Note first that the average probability that

bilateral bargaining will break down during a period of length t is lt ¼
1
2
ðl1 þ l2Þt. The appropriate bargaining powers are therefore a ¼ 1=

ðlþ r1Þ and b ¼ 1=ðlþ r2Þ. The feasible set X is the unit simplex. The

value of the generalized Nash bargaining solution is therefore a payo¤

pair of the form ðp; 1� pÞ, where p is the price at which the house is

sold. Agreement on this price will be immediate when a buyer and seller

get matched.

The seller’s outside option b1 is l1r=ðl1 þ r1Þ. Similarly b2 ¼
l2ð1� rÞ=ðl2 þ r2Þ. Notice that since b1 < r and b2 < 1� r, no player

opts out in equilibrium. It remains to consider the deadlock point d. Mat-

ters and less simple than in section D.7. We take

d1 ¼
1

2ðr1 þ lÞ fl2b1 þ l1ð1� b2Þg;

d2 ¼
1

2ðr2 þ lÞ fl1b2 þ l2ð1� b1Þg:

The assumption is that when two sellers are matched simultaneously with

one buyer, the house is sold at a price equal to a seller’s outside option b1.

The buyer then gets 1� b1, and similarly if two buyers are matched with

one seller.7 The deadlock payo¤s are then calculated by considering the

consequences of a matched buyer and seller continuing to negotiate with-

out reaching agreement until one finds a second partner.

The equilibrium price is then found by solving the equation

r ¼ a

aþ b

� �
ð1� d2Þ þ

b

aþ b

� �
d1:

7. The auction envisaged can be modeled as a noncooperative game as in Binmore (1987) or
Wilson (1984).
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In the case when r1 ¼ r2 ¼ r, r ¼ ðl1 þ rÞ=2ðlþ rÞ, and so the unit of

surplus gets divided in the ratio ðl1 þ rÞ : ðl2 þ rÞ. This is the conclusion

reached in Rubinstein (1982) and Wolinsky (1988).8

Opting out plays no role in the preceding discussion. One may, how-

ever, follow Gale (1986) and enrich the model by replacing the assump-

tion that agents get zero utility from leaving the market by something

more realistic. To this end, continuous, strictly increasing functions S :

½0; 1� ! R and B : ½0; 1� ! R are introduced. In each period it is assumed

that Sð1Þt and Bð1Þt are the measures of sellers and buyers who appear in

the market in one period.9 The quantity Sðx1Þt is interpreted as the mea-

sure of these new sellers who can get a utility of at most x1 outside the

market. A similar interpretation applies to Bðx2Þt.
For a steady-state equilibrium, the measures of new buyers and sellers

who choose not to opt out by leaving the market must be equal. In the

limiting case as t ! 0þ, this reduces to the requirement that Sðb1Þ ¼
Bðb2Þ. The measures S �

t and B�
t of sellers and buyers in the market at

the beginning of a period will consist of Sðb1Þt and Bðb2Þt together with

those sellers and buyers who were in the market in the previous period

but did not get matched (A matched pair will agree immediately in equi-

librium). The values S � and B� need to be related to the rates l1 and l2
at which agents are matched. One of many possible assumptions is that

there is a fixed constant k > 0 for which

l1 ¼
kB�

S � þ B� ; l2 ¼
kS �

S � þ B� :

The measure of sellers who get matched in a period and hence leave the

market after concluding a deal is then tkS �B�=ðS � þ B�Þ. This is equal to
the measure of buyers who get matched in the same period. For a steady

state it is therefore necessary that

Sðb1Þ ¼ Bðb2Þ ¼
kS �B�

S � þ B� : ð11Þ

The principle that a bargainer’s outside option acts only as a constraint

on the range of validity of the bargaining solution is now applied. The

conclusion is that the analysis that led to the equilibrium price r in the

8. But note that the same conclusion would not be reached if r1 0 r2 because the break-
down assumptions di¤er.

9. They appear after the matching move but before the opting out move.

Generalizing Rubinstein 387



case when outside options were zero remains valid. The players do not

even need to be informed of their partner’s outside option.

In the case r1 ¼ r2 ¼ r, the value of the equilibrium price was given in

terms of l1 and l2. This allows b1 and b2 to be calculated in terms of l1
and l2. However, l1 and l2 are functions of S

� and B� and so the model

can be solved.

When r ! 0þ (the case of ‘‘no search frictions’’), b1 and b2 reduce to

r and 1� r respectively. The equations q ¼ SðrÞ and q ¼ Bð1� rÞ can

then be interpreted as defining supply and demand curves. The equilib-

rium price r is then simply the Walrasian price. Note, however, that the

‘‘law of one price’’ applies even when search frictions are not negligible.

It is interesting to explore the manner in which models like that dis-

cussed here relate to classical intuitions about price formation. However,

my own view is that the value of such models lies more in their capacity

to provide insight into situations which are not amenable to a classical

approach because relevant frictions cannot be dismissed as negligible.

D.9 Conclusion

This paper has largely been an attempt to convince the reader that the

material it covers is fairly straightforward as a piece of theory. However,

one does not need to penetrate very deeply into the theory in order to be

able to apply the principles to which it leads. In particular, a wide variety

of matching-and-bargaining models is amenable to the analysis outlined

in section D.8.
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Notes to Chapter Introductory Remarks and Reprint
Acknowledgments

Introduction

1. A game is said to be one-shot when it is worth emphasizing that it is to be played just
once, without further interaction between the players.

2. In a ‘‘public goods game,’’ the subjects privately choose how much to contribute to a
public project that enhances the value of the total contribution. This enhanced value is
enjoyed by everyone, including the ‘‘free riders’’ who contributed nothing.

3. Using average behavior as a summary statistic can be seriously misleading in public
goods games even for inexperienced subjects, since they tend to split into those who contrib-
ute a lot and those who contribute nothing (Camerer 2003, p. 46).

4. For example, Deutsch (1985), Homans (1961), Kayser et al. (1984), Lerner (1981, 1991),
Reis (1984), Sampson (1975), Schwartz (1975), Wagsta¤ (2001), Walster et al. (1973), and
Walster and Walster (1975).

5. Healy (2004) reports similar final-round e¤ects, not only in his own instructive gift-
exchange experiment, but also in those of Rigdon (2002) and Riedl and Tyran (2005).

6. Tversky, who sadly died before the award of the prize, was Kahneman’s long-time
collaborator.

7. One might perhaps call the behavioral position retro-classical, since it abandons the neo-
classical theory of revealed preference in favor of the psychological interpretation of utility
functions held by economists in Victorian times.

8. Fehr and Schmidt (2005) actually tell us in their reply to Shaked’s critique that they
‘‘picked the value bi ¼ 0:6’’ on the grounds that it ‘‘seemed more plausible to us.’’ It cer-
tainly fits the data they claim to predict better than other values in the range between 0.5
and 1, which is all the accuracy their ‘‘calibration’’ allows.

9. A student recently told me that I figured explicitly in the course in behavioral economics
he had just taken as an awful example of how not to run experiments.

Chapter 1

The paper was first published in the Economic Journal 111 (2001): 445–64. It is reproduced
here by kind permission of the editors.

Chapter 2

The paper was first published in the International Journal of Game Theory 22 (1993): 381–
409. It is reproduced here by kind permission of the editors.



1. Even if the games had multiple equilibria, the equilibrium selection problem wouldn’t
have arisen. This is because the equilibria of two-person, zero-sum games are both inter-
changeable and payo¤-equivalent, which implies that it doesn’t matter which equilibrium
the players go for.

Chapter 3

The paper was first published (with A. Shaked and J. Sutton) in American Economic Review
75 (1985): 1178–80. It is reproduced here with kind permission of the publisher.

1. Von Neumann and Morgenstern (1944) endorse the dogma in their pathbreaking Theory
of Games and Economic Behavior. It may seem incredible now, but the bargaining model of
Nash (1950) studied in the previous chapter was largely ignored at the time Rubinstein wrote
his paper.

2. Selten’s formal definition of a subgame-perfect equilibrium is that it is a Nash equilibrium
that induces Nash equilibrium play in every subgame, whether or not the subgame is reached
in equilibrium. He originally said such equilibria are perfect, but later used the term perfect
equilibria for his more general notion of a trembling-hand perfect equilibrium.

3. Our orginal discussion paper of 1984, with the experimental instructions and the data,
appears as appendix A.

4. Our inexperience as experimenters at the time is evident not only in this sentence, but in
the fact that the dollar rewards we o¤ered were so painfully small.

5. Spiegel et al. inappropriately averaged our results over the two trials to obtain a single
data point for our experiment in their figure. If only demands made by the more experienced
subjects are recorded, our data point moves even closer to the results reported by later
experimenters.

6. Few experiments have as many as ten repetitions. Camerer (2003, p. 469) summarizes the
experimental results so far from all multistage Ultimatum Games by saying that they lie
somewhere between an equal-split and the subgame-perfect outcome. Is it only another acci-
dent that these are precisely the outcomes that are evolutionarily stable in a version of
Rubinstein’s model when simple strategies are assumed to supplant more complicated strat-
egies if they do the same job? (Binmore et al. 1991).

7. One might perhaps call the behavioral position retro-classical, since it abandons the neo-
classical theory of revealed preference in favor of the psychological interpretation of utility
functions held by economists in Victorian times.

8. This is also the stage game in Selten’s (1988) chain-store paradox. The behavioral litera-
ture has taken to referring to it as the Mini-ultimatum Game, although it is the game that is
small rather then the ultimata.

Chapter 4

The paper was first published in the Journal of Economic Theory 104 (2002): 48–88. It is
reproduced here by kind permission of the editors.

1. From what direct utility function has my revealed indirect utility function been derived?

2. Substantial switches in behavior, as in Binmore et al. (1985) are unusual.

3. Plott and Zeiler’s (2003) painstaking study of framing sensitivities in the endowment ef-
fect is particularly instructive.

4. See Shaked (2005) and Fehr and Schmidt’s (2005) reply.
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Chapter 5

The paper was first published in the Quarterly Journal of Economics 104 (1989): 753–70. It is
reproduced here by kind permission of the editors.

1. Von Neumann and Morgenstern (1944) were still saying this in the Theory of Games and
Economic Behavior.

2. It is assumed that the available cake shrinks at a constant rate as o¤ers are refused. If the
players discount the shrinkage at di¤erent rates, one is led to an asymmetric variant of the
Nash bargaining solution, for the reasons explained in chapter 8.

3. People usually reference Binmore et al. (1982) for this result, thereby neglecting the role
of Shaked and Sutton (1989, 1991). Appendix D reproduces what is intended to be a user-
friendly version of the general theory (Binmore 1994).

4. In reporting on old-time collective bargaining in Sweden, Elster (1992) notes that each
side in a wage negotiation would similarly advocate the use of a fairness norm that favored
their own side rather than crudely exchanging demands for higher or lower wages.

Chapter 6

The paper was first published in Games and Economic Behavior 3 (1991): 295–322. It is
reproduced here by kind permission of the editors.

Chapter 7

The paper was first published in the Economic Journal 108 (1998): 1279–99. It is reproduced
here by kind permission of the editors.

1. Coasians commonly exclude other cases on the grounds that there are then significant
informational costs.

2. I doubt that biologists commonly appreciate that fitness landscapes derived from simple
games can resemble Escher sketches in which you keep walking downstairs but eventually
find yourself above your starting point.

Chapter 8

1. This doesn’t a¤ect the players’ bargaining powers when their probabilities of being cho-
sen are equal (Binmore 1987).

2. We do not attribute the laboratory successes that the Rubinstein theory has enjoyed to
its use of backward induction, but to the fact that the unique subgame-perfect equilibrium
in Rubinstein’s model happens to be a stationary expectations equilibrium. (See Binmore
et al. 1989, 1991.)

3. The computer randomized over a small range centered on ð8; 2Þ. The subjects responded
by moving close to an optimal response to this behavior.

4. Responders were shown the outcome of six recent final agreements discounted to the next
period that they could use in estimating a best reply.

5. Although not to focal point considerations, as the midpoint ð6; 3Þ on the hypotenuse
would clearly have strong focal properties if the cutaway chunk were present.

6. Replacing di by e�rit and allowing t ! 0 (to capture the case where the interval between
successive proposals becomes vanishingly small), we are led to an asymmetric Nash bargain-
ing solution of the bargaining problem ðX0; 0Þ with bargaining powers 1=r1 and 1=r2.

7. The results look much the same with c ¼ 0.
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Appendix B

‘‘A Note on Backward Induction’’: First published in Games and Economic Behavior 17
(1996): 135–37. It is reproduced here by kind permission of the editors.

‘‘Rationality and Backward Induction’’: First published in the Journal of Economic Method-
ology 4 (1997): 23–41. It is reproduced here by kind permission of the editors.

Appendix C

First published in Games and Economic Behavior 8 (1995): 56–90 with the alphabetical order
of the authors’ names somehow scrambled. It is reproduced here by kind permission of the
editors.

Appendix D

First published in Investigaciones Económicas 17 (1994): 403–19. It is reproduced here by
kind permission of the editors.
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