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Series Foreword

The MIT Press series on Economic Learning and Social Evolution
reflects the continuing interest in the dynamics of human interaction.
This issue has provided a broad community of economists, psychologists,
biologists, anthropologists, mathematicians, philosophers, and others
with such a strong sense of common purpose that traditional interdisci-
plinary boundaries have melted away. We reject the outmoded notion
that what happens away from equilibrium can safely be ignored, but
think it no longer adequate to speak in vague terms of bounded rational-
ity and spontaneous order. We believe the time has come to put some
beef on the table.
The books in the series so far are:

« Evolutionary Games and Equilibrium Selection, by Larry Samuelson
(1997). Traditional economic models have only one equilibrium and
therefore fail to come to grips with social norms whose function is to
select an equilibrium when there are multiple alternatives. This book
studies how such norms may evolve.

« The Theory of Learning in Games, by Drew Fudenberg and David
Levine (1998). John Von Neumann introduced “fictitious play” as a way
of finding equilibria in zero-sum games. In this book the idea is reinter-
preted as a learning procedure and developed for use in general games.

« Just Playing, by Ken Binmore (1998). This book applies evolutionary
game theory to moral philosophy. How and why do we make fairness
judgments?

+ Social Dynamics, edited by Steve Durlauf and Peyton Young (2001).
The essays in this collection provide an overview of the field of social
dynamics, in which some of the creators of the field discuss a variety of
approaches, including theoretical model-building, empirical studies, sta-
tistical analyses, and philosophical reflections.



viii Series Foreword

« Evolutionary Dynamics and Extensive Form Games, by Ross Cressman
(2003). How is evolution affected by the timing structure of games? Does
it generate backward induction? The answers show that orthodox think-
ing needs much revision in some contexts.

Authors who share the ethos represented by these books, or who wish
to extend it in empirical, experimental, or other directions, are cordially
invited to submit outlines of their proposed books for consideration.
Within our terms of reference, we hope that a thousand flowers will
bloom.



Introduction

Cleaning Test Tubes

When I started doing experimental work in the 1980s, the subject was in
its infancy among economists, but one set of findings was thought to be
rock solid. Game theory doesn’t work in the laboratory. People don’t
play Nash equilibria. They don’t use their maximin strategies in two-
person, zero-sum games. They even cooperate in the Prisoners’ Dilemma.

But the rock on which these certitudes were based has crumbled away.
It is true that unmotivated subjects in unfamiliar situations don’t play as
game theory predicts. So if game theory had to predict interactive human
behavior under all circumstances to be worthy of attention, it would in-
deed be a failure. But who would want to claim of any theory that it
work in all environments? Just as Newton’s laws of motion don’t predict
well at the bottom of the sea, so game theory can’t reasonably be
expected to work in environments in which its tacit assumptions have no
chance of being true. So what is the kind of environment in which we
might reasonably expect game theory to predict well?

Favorable Environments
A conservative specification of a favorable experimental environment for
game theory requires that all three of the following criteria be satisfied:

« The game is simple, and presented to the subjects in a user-friendly
manner.

+ The subjects are paid adequately for performing well.

+ Sufficient time is available for trial-and-error learning.

Critics rightly say that these criteria are too stringent to cover all the eco-
nomic situations to which game theory gets applied, but who would want
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to defend each and every crazy application of the theory? Such enthusi-
asts certainly exist, but they seem to me no less misguided than the skep-
tics who determinedly turn a blind eye to any evidence that isn’t hostile to
game theory.

My three environmental criteria aren’t intended to be hard-and-fast
necessary and sufficient conditions for game theory to predict human
behavior. Game theory sometimes works when one or more of the cri-
teria aren’t satisfied. It sometimes fails when all three criteria are satis-
fied. However, the successes are now so well established that the first
response to finding that a game-theoretic prediction fails in a labo-
ratory when all three criteria hold is to ask the same question that
chemists ask if something unexpected happens when they mix reagents
together:

Did I clean my test tubes properly?

Bargaining

My own attempts to work with clean test tubes in the laboratory largely
fall into two categories: experiments on bargaining and experiments on
auctions. The latter work was all conducted on behalf of governments
and commercial enterprises. I don’t report on it here, partly for reasons
of confidentiality, but mostly because nobody seems to doubt that game
theory is a useful guide to predicting human bidding behavior. All but
one of the papers from my experimental repetoire that make up this
volume are therefore devoted to tests of game-theoretic models of
bargaining.

The case of bargaining is a particularly challenging case for game
theory—perhaps the most challenging case of all. Everyone agrees that
human behavior in real-life bargaining situations is governed at least
partly by fairness considerations that we don’t understand very well. But
what happens when such fairness considerations conflict with game-
theoretic predictions in the laboratory? Will people adapt their behavior
so that they end up playing a novel bargaining game strategically? Or
must we expect them simply to play fair?

Even when the test tubes are clean, experiments on bargaining models
therefore come with the dice loaded against game theory. But I hope that
the evidence to be presented will justify my boldness in defending the
theory in a case where skeptics think the arguments in its favor are at
their weakest.



Introduction 3

The Behavioral Challenge

I think the claims made for game theory in the previous section would be
uncontroversial if the issues weren’t clouded by an emotional debate that
seems to me entirely orthogonal to the issue of whether or not game
theory works. This is the question of whether people are inherently self-
ish, or whether they care about those around them.

Although I think the question isn’t central to the issue of whether game
theory works, it isn’t possible to get a hearing nowadays for the kind of
experimental results I report here without confronting this controversy,
since the behavioral economists who emphasize the importance of other-
regarding or social preferences commonly believe that their findings rep-
resent a threat to traditional game theory.

No amount of denial seems capable of altering their conviction that
game theorists like myself must necessarily believe that human beings
have no interest whatever in playing fair when the chips are down. I some-
times try to shake their certitude by pointing out that I have probably
written more on how and why fairness matters than any economist ever,
but I find this gets me nowhere because the reasons why I think social
preferences matter are so different from theirs (Binmore 1994, 1998, 2005).

The rest of this introduction is therefore devoted to making three
points. The first is that the behavioral school could well be right in claim-
ing that people have strong other-regarding preferences without their
results presenting any challenge to game theory at all. The second is that
one can believe that social preferences matter enormously in human con-
duct without agreeing at all with the behavioral school about how they
matter. The third is that the level of scientific rigor thought adequate by
some leading proponents of the behavioral school represents no improve-
ment on that of the experts who used to claim that people nearly always
cooperate in the Prisoners’ Dilemma.

Are People Selfish?

Should we model the people who enter our laboratories as seeking to
maximize the money in their own pockets? Or should we model them as
maximizing a more complicated utility function, whose arguments take
account of the welfare of others?

I think one might as well ask when you stopped beating your wife.
In discussing the behavior of inexperienced laboratory subjects, the first
question isn’t what kind of utility function they are maximizing, but
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whether they can sensibly be seen as maximizing anything at all (Giger-
enzer 2004).

The behavior of laboratory subjects often changes markedly over time
as they learn the ropes in a new experiment. We can make the maximiz-
ing hypothesis into a tautology by introducing utility functions that cor-
respondingly change with time, but who thinks that this would be a
worthwhile activity? It is true that abandoning the maximizing hypothesis
implies that we have to look beyond traditional economic theory for
explanations of how inexperienced subjects learn to play games, but I see
no reason why we should imagine that psychology and sociology are ir-
relevant when trying to make sense of boundedly rational behavior.

Only after the learning phase is over can we expect to find subjects at a
Nash equilibrium, each behaving as though trying to maximize his or her
own utility function given the behavior of the other subjects. But do we
then not find them simply maximizing money?

The answer is that this is indeed what we usually do observe—provided
that the monetary payoffs are chosen to be sufficiently large. However, we
can’t deduce that real people therefore don’t have other-regarding prefer-
ences, because part of the reason that experimenters like myself believe
that the monetary payoffs need to be relatively large is to swamp what-
ever other-regarding preferences may be present (Vernon Smith 1976).

The school of behavioral economists who insist that other-regarding
preferences matter in real life therefore have nothing to fear from experi-
ments that show that game theory often works—unless they want to
claim that subjects care so enormously about other people that it is al-
ways impossible to control their preferences in the laboratory by paying
relatively large sums of money. They therefore don’t need to seek to dis-
credit game theory by endlessly drawing attention to the fact that it
mostly doesn’t work for inexperienced and underpaid subjects.

Nor have game theorists anything to gain from denying that the pay-
offs in real-life games might sometimes be derived from other-regarding
preferences. Game theory is the same whether it is used to advise Saint
Francis of Assisi or Attila the Hun. We simply recognize the difference
between Attila and Saint Francis by writing different payoffs in the games
we model them as playing.

Prisoners’ Dilemma

The Prisoners’ Dilemma is the most famous of all the toy games that
game theorists use to illustrate their ideas. In the payoff table of figure 1,
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dove hawk
dove 9 2 0 3
hawk g% 0 1* o
Figure 1

Prisoners’ Dilemma

Adam’s payoffs are in the bottom left of each cell and Eve’s are in the top
right. Adam chooses a row and Eve chooses a column. Each then receives
the payoff in the cell their choices jointly determine.

The starred payoffs indicate best replies. Thus, if Eve chooses dove,
Adam can get a payoff of 1 by choosing dove, and a payoff of 3 by choos-
ing hawk. Since 3 > 1, Adam’s payoff of 3 is starred to show that hawk is
his best reply to Eve’s choice of dove. Both payoffs are starred in the cell
that arises when both players choose hawk, which implies that the strat-
egy pair (hawk, hawk) is a Nash equilibrium, since each player is then
making a best reply to the strategy choice of the other.

The idea that it is rational to play hawk in the Prisoners’ Dilemma has
historically generated great hostility, since everyone can see that both
players would get more if both played dove. All kinds of fallacies have
therefore been invented in hopeless attempts to prove that it can be ratio-
nal to play something other than the Nash equilibrium of the game (Bin-
more 1994). Fortunately, this activity seems to have gone out of fashion
for the moment, but it remains popular to claim that laboratory experi-
ments show that the game-theoretic analysis of the Prisoners’ Dilemma
has no practical relevance.

If this is your aim, then it is very easy to organize an experiment that
meets your requirements. Just as alchemists can “refute” the predictions
of modern chemistry by mixing their reagents in dirty test tubes, so one
can ‘“‘refute” game theory by confusing the subjects with complicated
instructions, or by providing them with inadequate incentives, or with
too little time to get to grips with the problem that has been set.

One response to such criticism is that our test tubes need to be dirty,
because that’s how they are in real life. Those of us who clean our meta-
phorical test tubes can then be accused of “fixing” our experiments to get
the results we want. But who would apply the same reasoning to chemis-
try experiments?
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Incentives

A much-quoted experiment of Robert Frank illustrates the genre I am
criticizing. Despite what is commonly said, even inexperienced subjects
cooperate only about half the time in the one-shot Prisoners’ Dilemma
(Camerer 2003, p. 46).! However, in Frank’s (2004) modification of the
usual experimental design, subjects were allowed to fraternize for half an
hour before playing. It turned out that relatively few subjects were then
willing to cheat on their partners by playing hawk after promising to
play dove, although they could gain a dollar by doing so.

But of course not! Who is going to metaphorically stab even a new
friend in the back for one measly dollar? Even Attila the Hun wouldn’t
bother.

Sometimes such experiments are defended with the claim that it
doesn’t matter whether or not you pay the subjects, as the results turn
out much the same either way. Such apologists can point to experiments
in which behavioral “anomalies” remain unaffected as the rewards get
large. In the Ultimatum Game they can get very large indeed (Cameron
1999).

But the fact that the size of the reward is irrelevant in some environ-
ments doesn’t imply that it is irrelevant in most environments. Right at
the beginning of modern experimental economics, Vernon Smith (1976)
observed that the amount subjects are paid can make a substantial differ-
ence in economic experiments. If this weren’t true most of the time, econ-
omists presumably would have learned by now that they don’t need to
spend large sums of their hard-to-get research money incentifying their
experimental subjects.

My own most striking experience was when I ran laboratory experi-
ments to test a design for a major British telecom auction for which I
was responsible (which eventually raised $35 billion). The pilot experi-
ments came nowhere near the efficient outcome predicted by game
theory, but when we doubled the financial incentives—so that subjects
went home with about $60 on average rather than $30—the results were
suddenly very close to the theoretical predictions.

Experience
Incentives therefore matter much of the time, but what I think matters

most is experience. Here again, Vernon Smith (1991) was early on the
scene. In a classic experiment, he found that subjects needed to be
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recalled to the laboratory for three separate sessions of experience with an
artificial financial market before they finally learned not to create
bubbles.

Despite what is commonly said to the contrary by those who don’t
know or care about the literature, the case of the Prisoners’ Dilemma
and other toy games that can be thought of as modeling the private pro-
vision of public goods is particularly clear.> The huge number of experi-
mental studies available in 1995 was surveyed both by John Ledyard
(1995) and by David Sally (1995), the former for Roth and Kagel’s au-
thoritative Handbook of Experimental Economics. Camerer’s (2003, p. 46)
more recent Behavioral Game Theory endorses their conclusions.

It is true that inexperienced subjects often cooperate (by playing dove),
but as the subjects gain experience, they defect more and more (by play-
ing hawk), until about 90 percent are defecting. One can disrupt the march
toward equilibrium by intervening in various ways, but when active inter-
vention ceases, the march resumes.

Figure 2 is from a paper by Fehr and Géchter (2000). It is included to
emphasize that these conclusions are uncontested even by authors who
are commonly quoted with a view to discrediting traditional game theory.
The first ten periods show the standard decline in the average contribu-
tion as the subjects gain experience in a regular public goods game.> In
the final round nearly everyone contributes nothing.

20
18 +

16 +
14 +
12 +
10 +
8 1
6 P

Average contributions

—O— Without punishment
4 + —— With punishment

2 1
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Periods

Figure 2
Public goods experiments before and after punishment (Fehr and Géchter 2000a, fig. 3B).
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What Does Game Theory Predict?
But what about the behavior in the second ten periods of Fehr and Géch-
ter’s (2000) experiment?

In this part of the experiment the game is changed so that the subjects
can pay a relatively small amount to reduce the payoff of free riders by a
relatively large amount. They wouldn’t take advantage of this opportu-
nity to punish free riders in a subgame-perfect equilibrium of the one-
shot game, but the data from the second ten periods of the experiment
show that on the contrary, the threat of punishment induces the subjects
to contribute more and more as they gain experience of the new game.

Behavioral economists take such data as proof that people have other-
regarding preferences, but it isn’t hard to think of other reasons why the
equilibrium that behavioralists identify as the orthodox prediction isn’t
appropriate. For example, there isn’t any particular reason why an ad-
justment process should converge on the subgame-perfect equilibrium of
a one-shot game when other Nash equilibria are available—which they
usually are (appendix C at the end of this volume). Nor is it obvious that
we should be looking at Nash equilibria of the one-shot game when small
groups of subjects play repeatedly (chapter 8).

Even if one insists on looking only at subgame-perfect equilibria of the
one-shot game, it is unnecessary to postulate more than a small other-
regarding component in the subjects’ utility functions to create a game
with a cooperative equilibrium. For example, Jakub Steiner (1972) offers
a model in which the subjects feel just a little angry with free riders. He
then describes an equilibrium in which only the worst free rider would
get punished. The small cost of punishing then becomes tiny because it is
shared among all the punishers. But the punishment is enough to support
an equilibrium without free riding in the one-shot game, since a player
who is the only free rider will necessarily be the most guilty (chapter 8).

No Convergence

However, the reason for spending time on the second ten periods of Fehr
and Giéchter’s experiment isn’t so much to question their claims about
what game theory ought to predict about the equilibrium on which their
subjects might eventually converge if the game were repeated often
enough. It is to point out that although the subjects’ behavior converges
fairly well to the standard result in the experiment of the first ten periods,
their behavior in the experiment of the second ten periods hasn’t got close
to converging on anything at all.
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The graph of figure 2 shows the subjects’ average behavior changing
fairly rapidly over time. Nor is there any sign of the subjects coalescing
around the average. As the authors point out, the distribution of contri-
butions in the final round is spread out over the whole range of possibil-
ities. It is therefore premature to ask to what extent the subjects should be
seen as revealing other-regarding or selfish utilities in the second experi-
ment. The subjects’ behavior isn’t consistent with maximizing any time-
independent utility function at all.

This comment may seem too obvious to be worth making, but it isn’t at
all popular. Neoclassical economists are often as impatient as behavioral
economists with the idea that people need time to adapt to a new game
because they think of learning as an exclusively intellectual activity—
and what is there to learn in such a simple game?

But I think the kind of learning that is going on is more akin to a
sailor’s learning not to walk with a rolling gait when he comes ashore
after a long voyage. His mind knows perfectly well that he is on dry land,
but his body hasn’t figured out yet that this implies that he doesn’t need
to keep making ready for the next wave.

Coming Ashore

Everyone agrees that much of our interaction with other human beings is
governed by social norms. 1 see such norms as analogues in social life of a
sailor’s rolling gait.

Just as a sailor’s rolling gait is an efficient adaptation to the need to be
ready for the next wave during a long voyage, so game theorists of my
persuasion think it likely that cultural evolution has shaped our social
norms so that their use mostly results in our coordinating on efficient
equilibria in the real-life games that we play every day with those around
us.

Of course, we are seldom any more aware that this is what we are
doing than a sailor is conscious of walking oddly. We usually aren’t even
conscious that we are playing a game. For ordinary human beings, using
a social norm is a piece of habituated behavior that is triggered by appro-
priate environmental cues.

Habits are hard to shake off—especially if you are unconscious that
you have a habit in the first place. So when the framing of an experiment
triggers the appropriate environmental cues, we often respond with the
habituated response: no matter how ill-adapted it may be to the actual
game being played in the laboratory. Like a sailor stepping ashore, we
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still roll with the waves, even though there are no longer any waves with
which to roll.

I therefore think that Kahneman and Tversky’s (1988) emphasis on the
importance of framing in experiments is well grounded. But accepting this
insight doesn’t imply that we must also believe that human beings are
mindless robots, irreversibly programmed with rigid social behaviors.
Given time and adequate incentives, we can learn by trial and error or
by imitation to adapt our behavior to novel situations. Sometimes we
even think a little about what we are doing.

Presumably the rate at which different people learn depends on their
personal characteristics, and the strength of their conditioning in the
social norm that they must learn to abandon. Perhaps some people will
never learn, no matter how long we give them or how large the incentives.
The study of such inflexible folk is certainly of very great interest. But the
evidence from the one-shot Prisoners’ Dilemma suggests that the inflexi-
ble fraction of the student population from which subjects are usually
drawn can’t be more than about 10 percent of the whole.

Fairness

Although game theorists like myself have to put up with being said to be
unremmitingly hostile to the idea that fairness can influence human be-
havior, I have devoted a substantial chunk of my life to working out a
theory of how and why fairness norms matter in human societies (Bin-
more 1994, 1998). I even have some lingering hope that the absence of
any algebra in my recent Natural Justice will result in the theory getting
some serious attention from moral philosophers (Binmore 2005).

The basic thesis of the theory is that our sense of fairness evolved be-
cause the coordination games of which everyday social life largely con-
sists commonly have large numbers of equilibria. A society therefore
needs equilibrium selection devices if its members are to succeed in co-
ordinating on one particular equilibrium in each game. Fairness is our
name for a class of equilibrium selection devices that result in some social
surplus being divided.

The conclusions to which I am led accord rather well with a psycho-
logical literature referred to as “modern equity theory” that is largely
ignored by economists.* This literature offers experimental support for
Aristotle’s ancient contention, in his Nichomachean Ethics, that what is
fair is what is proportional.
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I don’t plan to press the virtues of my theory of fairness in this book,
since I haven’t done any experimental work of my own on the subject.
But two aspects of this theory are immediately relevant here. The first is
the significance of the theory of repeated games. The second is the impor-
tance of evolutionary theory.

Repeated Games

The folk theorem of repeated game theory says that any contract that ra-
tional players might sign on how to play a one-shot game is sustainable as
an equilibrium outcome when the game is played repeatedly by patient
players with no secrets from each other. Cooperative agreements that
can only be sustained in one-shot situations with the assistance of an ex-
ternal enforcement agency can therefore survive as self-policing social
norms in a repeated environment.

The mechanism that sustains self-policing cooperative agreements in
repeated games is reciprocity. People sometimes register their understand-
ing of how such self-policing agreements work by saying, “I’ll scratch
your back if you’ll scratch mine.” But such a promise wouldn’t be effec-
tive without the implied threat that I'll stop scratching your back (or
worse) if you stop scratching mine. That is to say, what keeps the cooper-
ative arrangement on track is that everybody recognizes that they will
suffer some punishment if they don’t honor the implicit deal.

The need to punish deviant behavior is explicit when Adam and Eve
both use the GRIM strategy in the infinitely repeated Prisoners’ Dilemma.
The GriM strategy tells you to play dove at each repetition of the Prisoners’
Dilemma until the opponent fails to reciprocate. After an opponent plays
hawk, the GRIM strategy tells you to play hawk yourself ever after. Neither
player can therefore profit from deviating from the GRim strategy by being
the first to play hawk because the deviant will be relentlessly punished by
the opponent responding by always playing hawk thereafter.

When we all lived in small foraging communities, there was no external
enforcement agency to police the way that people played coordination
games, but most of the coordination games we played together were re-
peated day after day. Moreover, as in small villages today, everyone
knew everyone else’s business. Given the folk theorem of repeated game
theory, it is therefore perhaps no great surprise that evolution—both cul-
tural and biological—should have generated fairness norms that allow so-
cial surpluses to be divided efficiently in favorable environments without
wasteful conflict (Axelrod 1984).
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The conditions of the folk theorem don’t apply in large modern states,
but much of our interaction with other human beings nevertheless con-
tinues to be open-ended. Even when we won’t be interacting with the
same person again, the way we conduct ourselves with that person is
often being observed by onlookers with whom we may well interact in
the future. Punishment for cheating on a partner can then be adminis-
tered not by the victim (as in the GRIM strategy) but by onlookers refusing
to deal with someone who has just established a reputation for being
untrustworthy. That is to say, the domain within which we may reason-
ably expect cooperation to survive as equilibrium behavior is much wider
than the narrow class of games to which formal versions of the folk theo-
rem apply directly.

For this reason I believe that the social norms to which we uncon-
sciously appeal in bargaining and other social situations are often best
thought of as being adapted to repeated interactions. Such cooperative
norms for repeated games sometimes get triggered in one-shot laboratory
situations. This would explain why inexperienced subjects commonly play
dove in the one-shot Prisoners’ Dilemma. But after getting shafted a few
times when playing the one-shot Prisoners’ Dilemma over and over again
(against a new opponent each time) and finding themselves unable to re-
taliate, most people eventually shift to playing hawk.

Strong Reciprocity?
A recent anthropological study highlights how social norms can be trig-
gered in the laboratory (Henrich et al. 2004, 2005). The study confirms
that inexperienced citizens of different societies play a variety of canonical
toy games in different ways—presumably reflecting the fact that different
societies operate different social norms. As Henrich et al. (2005) say: “Ex-
perimental play often reflects patterns of interaction found in everyday
life.”

The anthropologist Jean Ensminger is more explicit when commenting
on why the Orma contributed generously in the public goods game she
carried out as part of the study:

When this game was first described to my research assistants, they immediately
identified it as the “harambee” game, a Swahili word for the institution of village-
level contributions for public goods projects such as building a school. ... I sug-
gest that the Orma were more willing to trust their fellow villagers not to free
ride in the Public Goods Game because they associated it with a learned and pre-
dictable institution. While the game had no punishment for free-riding associated
with it, the analogous institution with which they are familiar does. A social norm
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had been established over the years with strict enforcement that mandates what to
do in an exactly analogous situation. It is possible that this institution “cued” a
particular behavior in this game (Henrich et al. 2004, p. 376).

The enforcement here is operated by the players themselves as envisaged
in the folk theorem, and not external enforcement operated by the gov-
ernment. (National or cross-regional attempts at harambee collections
are predictably corrupt.)

Despite this and similar evidence from the anthropologists who con-
tributed to the study, Henrich et al.’s (2004) introduction insists on inter-
preting the data as supporting the existence of significant other-regarding
preferences. But if Ensminger is right, then it would be a huge mistake to
try to explain the behavior of the Orma in her public goods game on
the hypothesis that their behavior was adapted to the game they played
in her makeshift laboratory. In particular, inventing other-regarding util-
ity functions whose maximization would lead to generous contribution in
the public goods game would be pointless. Ensminger is suggesting that
the subjects’ behavior is adapted to the public goods game embedded
in the repeated game that they play every day of their lives, for which
the folk theorem provides an explanation that does not require anything
at all to be invented.

It is admittedly difficult to distinguish the interpretation of the data
that 1 share with Ensminger from the claim that the subjects have the
kind of other-regarding preferences postulated by the theory of “strong
reciprocity.” This theory holds that people have a liking for reciprocation
built into their personal utility functions. I am always puzzled by the
ardor with which advocates of the theory of strong reciprocity, like
Bowles and Gintis (2002) and Gintis (2002), condemn the idea that peo-
ple might also sometimes reciprocate favors because this is how coopera-
tive equilibria are sustained in indefinitely repeated games. Don’t they see
that the folk theorem would provide a possible evolutionary explanation
for the emergence of strong reciprocity? However, my guess is that they
reject the support that the theory of repeated games might offer the strong
reciprocity hypothesis because everyone can see that we don’t need to
hypothesize strong reciprocity if we can explain the available data with-
out going beyond the so-called weak reciprocity used to prove the folk
theorem.

Evolution?
Where did the fairness norms triggered in laboratory experiments come
from? I believe they evolved as equilibrium selection devices for use in
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those real-life games in which a surplus can be created by operating one
of many cooperative equilibria. Cultural evolution must surely have been
as important as biological evolution in this process, since what people re-
gard as fair seems to depend heavily on both context and culture. Indeed
I think that cultural evolution is active all the time in generating new
social mini-norms for novel contexts. Some bargaining experiments can
even be interpreted as snapshots of cultural evolution shaping a new fair-
ness mini-norm while we watch (chapter 2).

But evolution is a slippery concept, easily harnessed in support of
almost any doctrine. Other-regarding preferences are a case in point. It
isn’t good enough to argue that evolution built a regard for others into
our preferences because we are all better off that way. The same argu-
ment shows that evolution should be expected to generate cooperation in
the one-shot Prisoners’ Dilemma. Similarly it isn’t good enough to argue
that evolution will select the preferences that we would choose to bind
ourselves to if we knew our choices were to become common knowledge
(Giith and Kliemt 1998). This is just another version of the Transparent
Disposition Fallacy used by some authors in defense of rational coopera-
tion in the one-shot Prisoners’ Dilemma (Binmore 1994b). Any evolution-
ary defense for other-regarding preferences needs to be accompanied with
a plausible story that explains sow other-regarding mutants could have
invaded our gene pool, and managed to survive once established—as,
for example, in Samuelson (2004) or Weibull and Salomonsson (2005).

A Gift-Exchange Experiment

Nor can we afford to be naive about evolutionary interpretations of labo-
ratory experiments. An anecdote of Konrad Lorenz will serve to illustrate
one particular mistake that I think it important to avoid.

Lorenz placed a totally inexperienced jackdaw on a marble-topped
table, whereupon the baby bird went through all the motions of taking a
bath. I think one may reasonably deduce that bath-taking behavior is ge-
netically programmed in jackdaws, and that a trigger for this behavior is
the presence of a flat, reflective surface (like water). What one isn’t enti-
tled to deduce is the absurd conclusion that bath-taking behavior some-
how promotes the survival of jackdaws placed on marble-topped tables.
If the jackdaw were human, we would say that its behavior was irratio-
nal, or ill-adapted to the context.

An example of the kind of interpretive mistake I am warning against is
provided by a much-quoted experiment of Fehr et al. (1997) and Fehr
and Géchter (2000). It can be thought of as modeling a competitive labor
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market in which the workers have the opportunity to reward employers
who pay above the competitive rate by putting in more effort—even
though the employer has no comeback if the worker just pockets the extra
money and shirks.

The finding is that workers do indeed reward generous employers with
more effort—that they metaphorically “exchange gifts.” The authors
speculate that their data supports the theory of strong reciprocity, which
says that people have preferences that incorporate a positive liking for
reciprocity.

But before leaping to such a conclusion, shouldn’t we consider a less
dramatic scenario? Although the subjects are called buyers and sellers in
the experiment rather than employers and workers, its framing never-
theless cues the subjects for the repeated environment typical of a labor
market. It therefore triggers a fairness norm that selects one of the coop-
erative equilibria of such a repeated game. Reciprocity therefore matters
to the behavior of the subjects because reciprocity is the mechanism that
sustains cooperative equilibria in repeated games.

If this dull story is true, then instead of subjects responding rationally
to a set of preferences unconsidered in traditional economics, they just
have traditional preferences but are behaving irrationally, in the sense
that their behavior isn’t adapted to the one-shot game they are deemed
to be playing in the laboratory.

Ledyard’s (1995) survey of experiments on the Prisoners’ Dilemma and
related games is obviously relevant here. What would happen if the sub-
jects in the Fehr et al. study were allowed to play a large number of
times?

We have seen that it is uncontroversial that subjects in experiments
change their behavior as they gain experience, and matters are no differ-
ent in the current study. The observed movement is initially away from
the behavior that the authors assume should be the orthodox equilibrium
prediction. But who can say what would happen with more than the usual
ten or so repetitions? Nevertheless, in summarizing their data, Fehr et al.
(1997, p. 2) say (with my italics):

These results indicate that reciprocity motives may indeed be capable of driving
a competitive experimental market permanently away from the competitive
outcome.

This claim is called into immediate question by the very data that the
authors offer in its support. How could they have overlooked the final
round effects evident in the data given in the appendix to their paper? In
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16 of the 26 final rounds reported in which the worker has the opportu-
nity to reciprocate, he doesn’t. On the contrary, his effort is as small as it
is possible for it to be.®

My own guess is that an understanding of what is really going on in the
Fehr et al. experiment requires appealing to the contagion mechanism
described by Kandori (1992) for sustaining cooperative equilibria in infi-
nitely repeated games played by small groups of anonymous agents. It is
true that the game of Fehr et al. is only repeated a finite number of times,
but a number of authors, including Reinhard Selten (1986), have shown
that the folk theorem often still works in the laboratory when the number
of repetitions is finite. The fact that cooperation tends to break down in
the final rounds of these experiment adds some support to my conjecture,
once it is revealed that the same holds true in the experiment of Fehr et al.
(chapter 8).

Social Preferences

When experimental economics was recognized in 2002 with a Nobel Prize
awarded jointly to Daniel Kahneman and Vernon Smith, a joke circu-
lated that Smith had been awarded the prize for showing that economics
works in the laboratory, and Kahneman for showing that it doesn’t.

The uncontroversial truth is that there are domains within which tradi-
tional economic theory—including game theory—works badly or not at
all, and other domains within which it works rather well. What is contro-
versial is how large these domains are, and where they lie.

Nowadays the followers of Daniel Kahneman and Amos Tversky® call
themselves behavioral economists, to distinguish themselves from experi-
mental economists like Vernon Smith or Charles Plott, who work largely
in the tradition of neoclassical economics. However, on the subject of
fairness in bargaining games there is a curious reversal of attitudes. Be-
havioral economists seem mostly to believe that the available experimen-
tal data support the hypothesis that laboratory subjects are classical
optimizers whose utility functions have a social or other-regarding
component.”’

I have already explained why I think it a mistake to get into a dispute
over what kind of utility function is being maximized by inexperienced
and unmotivated laboratory subjects, but I want to insist that this doesn’t
imply that I believe that social preferences have no role to play in ex-
plaining human economic behavior in general. On the contrary, my own
theory of fairness depends very heavily on the idea that social preferences
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matter (Binmore 2005). The rest of this section is therefore an aside that
briefly examines three different ways in which I believe that social prefer-
ences can be significant.

Blood Is Thicker Than Water

Hamilton’s (1995) rule offers a biological prediction of the extent to
which we should care about a relative. A gene that programs its animal
host to maximize the gene’s fitness would do best to take into account
not only the children its current host might produce but also the children
of the host’s relatives. The probability that they will carry a copy of the
gene is smaller but much too large to be neglected.

The point was famously made in a semi-serious joke of the biologist
J. B. S. Haldane. When asked whether he would give his life for another,
he replied that the sacrifice would only be worthwhile if it saved two
brothers or eight cousins. Haldane’s joke is only funny if you know that
your degree of relationship to a full brother is one-half, and your degree
of relationship to a full cousin is one-eighth. These numbers are the prob-
abilities that a recently mutated gene in your body is also to be found in
the body of the relative in question.

The only experimental study on Hamilton’s rule of which I know found
that best friends get pretty much the same consideration as brothers or
sisters (Dunbar et al. 2004). My guess is that our bodies have to deduce
their degree of relationship to others from the extent to which we find
ourselves in their company. If so, then the instincts that promote altruism
within the family may also be triggered within a sufficiently close-knit
group of unrelated individuals, as in an army platoon under combat con-
ditions or a teenage street gang.

This is perhaps why we find ourselves feeling curiously obligated to old
school friends or office colleagues, whom we may actively dislike at the
conscious level. Our bodies are telling us that this pushy individual
demanding an inconvenient favor must be a cousin or an aunt—as she
would probably have been when we all lived in small foraging commu-
nities. Even establishing eye contact with a beggar in the street somehow
creates enough inner discomfort at neglecting a potential relative that we
are sometimes moved to hand over our small change with no prospect of
any recompense.

I therefore accept that most people have other-regarding preferences to
some degree—that they are willing to pay a small amount for no other
return than the warm glow they derive from improving the lot of another
human being. Perhaps there are economists who think otherwise, but I
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don’t know who they are. One doesn’t even need to appeal to the data
from Dictator Games to confirm the claim, since nobody denies that
nearly everyone contributes some small fraction of their income to char-
ity. Moreover the kinship argument offers a possible evolutionary expla-
nation of why people might be made this way. It is also doubtless true
that some small fraction of people are willing to make large contributions
on a regular basis toward the welfare of others, although an explanation
of this behavior is not so easy to find.

However, the fact that some small fraction of the population behave
like saints and that most of the rest of us are willing to treat pretty much
anyone as a distant relative won’t generate a warm enough glow to con-
vert a game like the Prisoners’ Dilemma into a game with an efficient
equilibrium when the other player is a stranger. One needs large perturba-
tions of the preferences economists traditionally attribute to players for
this to happen. Matters are different in the games we play with the friends
and neighbors in our extended family, but I don’t believe the evidence
offered in support of the claim that most of us are programmed to treat
strangers like close members of the family survives serious examination.

Revealed Preference

Why do I reject the social preferences that behavioral economists fit to
their experimental data? They commonly report relatively large warm-
glow effects.

The theory of revealed preference tells us that we can describe the be-
havior of agents who choose consistently as optimization relative to some
utility function. However, economists who take the orthodox neoclassical
position seriously are very careful not to deduce that the observed behav-
ior was generated by the agent actually maximizing whatever utility
function best fits the data. This would be to attribute the kind of psycho-
logical foundations to neoclassical theory that its founders invented the
theory to escape.

Being able to fit a utility function only tells us that the behavior is
consistent—it doesn’t tell us why the behavior is consistent. For example,
one way of explaining the behavior of that half of the population of inex-
perienced subjects who cooperate in the one-shot Prisoners’ Dilemma is
to say that they are optimizing a social utility function whose arguments
include the welfare of others. Another is to attribute any consistency in
their behavior to the fact that they are unconsciously operating a social
norm better adapted to repeated situations.
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Both explanations fit the data equally well, but the former explanation
is easier to criticize. What is the point of insisting that players have other-
regarding utility functions built into their brains if doing so doesn’t allow
predictions to be made about how they will play in future, or in other
games? But we know that the behavior of subjects in the one-shot Pris-
oners’ Dilemma changes markedly over time as they pick up experience.
A social utility function fitted to the behavior of an inexperienced sub-
ject will therefore fail to predict how he or she will behave when
experienced—Ilet alone when they play other games in other contexts.

None of this is to suggest that fitting utility functions to behavioral
data may not be a useful way of summarizing the data—provided that
we don’t fall into the trap of assuming that the same utility function will
necessarily predict other data without any experimental confirmation.

When evaluating an empirical claim that people have personal prefer-
ences with a large social component that has been quantified using exper-
imental data, I therefore always ask myself what new data from other
sources this claim has genuinely succeeded in predicting. I don’t know of
any cases at all that can be said to have unequivocally cleared this hurdle.

The theory of inequity aversion proposed by Fehr and Schmidt (1999)
is usually quoted in denial of this skeptical assessment. (See chapter 4.)
Fehr and Schmidt claim to have used data from ultimatum games to cal-
ibrate the parameters in the other-regarding utility function of their
theory, and then used the calibrated utility function to predict the data
from experiments on other games. However, Shaked (2005) has pointed
out that this claim cannot possibly be true, because the data supposedly
used to calibrate the parameters only restricts their range. When Fehr
and Schmidt picked particular values of the parameters from within this
range, they therefore made use of information that they should have
denied themselves.®

Empathetic Preferences
Comparing utils across different individuals has been a controversial sub-
ject for a long time. Only recently have traditional economists stopped
teaching the dogma that such interpersonal comparisons are intrinsically
nonsensical. But how can fairness judgments be made if we have no way
of comparing the welfare of those among whom a surplus is to be shared?
John Harsanyi (1977) invented a theory of interpersonal comparison of
utility that makes good sense in the context of my theory of fairness (Bin-
more 2005). Harsanyi postulates social or empathetic preferences that
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exist in parallel with the standard personal preferences with which we are
all familiar. With some apparently mild assumptions, Harsanyi shows that
such empathetic preferences can be summarized in terms of a rate at which
Eve assesses Adam’s personal utils relative to her own personal utils.

Empathetic preferences live in an entirely different world from personal
preferences because their content is entirely hypothetical. For example,
Eve expresses an empathetic preference when she says that she would
rather be herself eating an apple than Adam wearing a fig leaf—but there
is no way Eve is ever going to get the opportunity to swap bodies with
Adam.

I think the reason that normal people are all capable of expressing such
empathetic preferences is that we need them to assess who should get how
much when using fairness norms as equilibrium selection devices. The in-
ternal process by which we make such judgments is largely a mystery to us,
and so it isn’t surprising that we often confuse our empathetic preferences
with our more readily understood personal preferences—especially those
personal preferences that capture our feelings about those close to us.

Psychologists avoid this confusion by separating the notion of empathy
from that of sympathy. A confidence trickster may empathize with an old
lady by putting himself in her position to see what tall tale is most likely
to persuade her to part with her money. He may compare the distress that
she will feel at the loss of her life savings with his own joy in having her
money to spend. He may even need to brush a tear from his eye as he
contemplates her plight. But he won’t be diverted from swindling her un-
less he also sympathizes with her by including her welfare among the
arguments of his personal utility function.

I think economists need to make the same distinction. I agree whole-
heartedly with those behavioral economists who argue that fairness mat-
ters. I also agree that we can’t make sense of fairness norms without some
notion of a social preference. But we don’t need to identify a social pref-
erence exclusively with a sympathetic preference. I believe that the social
preferences to which we appeal when making fairness judgments are
mostly empathetic preferences that implicitly describe the standard of in-
terpersonal comparison to be applied.

Straw Men
Finally, I want to address the standard criticism that people like me have

to face—that we fix our experiments to get results consistent with neo-
classical economics.” This slander is often exacarbated by characteriza-



Introduction 21

tions of neoclassical economics that belong in horror comics rather than
serious academic studies.

For example, neoclassical economists are said to be wicked for suppos-
edly putting around the theory that people are inherently selfish. There is
even a small experimental literature in which students of economics are
supposedly demonstrated to be more evil than other students (Frank,
Gilovich, and Regan 1993). As a result I know of at least one case in
which a university senate was asked to ban the teaching of rational choice
theory on the ground that it is immoral!

I agree that politically motivated economists, both of the left and the
right, often use phony arguments in support of immoral policies, but I
am not politically active, and neither are most traditionally minded econ-
omists. We have no interest in defending the transparently wrong propo-
sition that people are inherently selfish. Just like anyone else, we give
money to charity and help old ladies cross the road. We don’t run experi-
ments to justify an irrational prejudice in favor of neoclassical economics.
We run experiments to determine the domains within which the predic-
tions of neoclassical economics work reasonably well.

When the predictions don’t work in apparently favorable environments,
we ask ourselves why. Sometimes the answer is that our test tubes need
cleaning, and sometimes the answer is that the theory needs fixing. Much
of the attention of young neoclassical theorists in recent years has corre-
spondingly been devoted to trying to come up with theories of bounded
rationality that explain laboratory behavior better than is possible for
any optimizing theory, whether neo-classical or retro-classical. (See, for
example, Rubinstein 1998.)

I do not understand why this modest research program attracts such ire
from behavioral economists. Behavioral economics is now triumphant in
its primary aim. Everybody agrees that we need to study microeconomic
behavior empirically in both the field and the laboratory. Behavioralists
therefore having nothing more to gain from dismissing those experimen-
talists who find that traditional economics sometimes works as dishonest
apologists for a failed orthodoxy.

Karl Marx said that history repeats itself, first as tragedy and then as
farce. But do we really need to repeat the history of suspicion and re-
proach that accompanied the controversy over cooperation in the one-
shot Prisoners’ Dilemma? Or the more recently defunct experimental
controversy over expected utility theory?

It was the latter controversy that brought Kahneman and Tversky
(1979) to prominence, along with behavioral economics. But where is
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this controversy now? After much sound and fury, the exhausted combat-
ants all seem to have retired from the field, leaving behind the consensus
that all behavioral theories of how humans make decisions under risk are
bad, but the least bad is traditional expected utility theory (Camerer and
Harless 1994; Hey and Orme 1994).

Even if you are as sure about the failings of some other orthodoxy as
Kahneman and Tversky were about expected utility theory, it may there-
fore still be worth your while to read papers that seem to defend the or-
thodoxy with a view to finding out what they actually say, rather than
lending a credulous ear to those who attribute absurdly unrealistic beliefs
to their unfortunate authors.
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When the experiment reported in this chapter was carried out, it was still
being said that Nash equilibria are irrelevant to the behavior of labora-
tory subjects. Even for the simplest class of games—Von Neumann’s
two-person, zero-sum games—the experimental reports were discourag-
ing. The eminent psychologist Estes (1957) was particularly scathing
when reporting on his test of Von Neumann’s minimax theory. He agreed
that game theory might be perhaps useful for something but that “game
theory will be no substitute for an empirically grounded behavioral
theory when we want to predict what people will actually do in competi-
tive situations.”

The negative consensus was first disturbed by a paper of Barry O’Neill
(1987), but his positive conclusions were immediately attacked in Econo-
metrica by Brown and Rosenthal (1990). Among other criticisms an
econometric test was used to show that the theory fails because O’Neill’s
subjects didn’t randomize independently between successive trials. As far
as I know, all later experimenters, including myself, have found that
data from two-person, zero-sum games always fails this test.

My reaction to the paper of Brown and Rosenthal was incredulity that
anyone could take such a criterion seriously as a test of the Von Neu-
mann theory. The strategy choices of players learning to play according
to the minimax theory (or any other theory) will necessarily be correlated
across successive trials. Brown and Rosenthal had therefore invented a
test that treated any evidence that some kind of learning or adjustment
was taking place as evidence against the hypothesis that the subjects
were learning to play minimax.

However, Brown and Rosenthal made other criticisms of O’Neill’s
work that certainly did hit the spot. For this reason I joined with
colleagues at the University of Michigan in putting together a new
experiment on two-person, zero-sum games. Joe Swierzbinski has been a
regular collaborator on experimental papers ever since.
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Before designing the experiment, it was necessary to read the earlier ex-
perimental work on two-person, zero-sum games with some care. Only
then did I begin to realize how slender the basis of an academic consensus
can be. For example, in the experiment on which Estes based his dismis-
sive remarks, there were only two subjects in all, who are described as
being well-practiced in the reinforcement learning experiments that Estes
was using to defend the (now discredited) theory of ““probability match-
ing.” Neither subject knew that they were playing a game with another
person. Even if they had known they were playing a game, the minimax
theory would have been irrelevant to their plight, since they weren’t told
in advance what the payoffs of the game were. They were therefore play-
ing a game of incomplete information, to which Von Neumann’s mini-
max theory doesn’t apply.

My colleagues and I dawdled for nearly ten years before producing a
publishable paper describing our experiment. In the interval between our
running the experiment and publishing our results, the academic con-
sensus on whether Nash equilibria are relevant to the play of laboratory
games had reversed itself. Nobody, then or now, finds it surprising that
experienced subjects who are adequately incentified end up playing close
to the minimax predictions in a user-friendly environment. But the accu-
racy of our results still remains of interest.

I think that there are several reasons why my experiments sometimes
generate results that are closer to theoretical predictions than those of
others. One reason is that I usually understand very well the ground rules
of the theory being tested.

A second reason is the close attention I pay to keeping my test tubes
clean. For example, the experiment of this chapter provides a good illus-
tration of my extensive (and expensive) use of animated graphics to ex-
plain the experiment to subjects, and to keep them informed of what is
happening in the game they are playing. Graphics also help make the ex-
periment less boring than is commonly the case in the dismal science of
economics.

A third reason is the quality of the feedback the subjects receive when
they begin to play against each other—the better the feedback, the quicker
and surer any convergence on a Nash equilibrium is likely to be.

Feedback

In real life we usually receive a great deal of feedback from all kinds of
sources when learning how to behave in a new economic environment.
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For example, rookie stockbrokers learn the ropes from their more experi-
enced colleagues. Young economists peruse the history of Nobel laureates
in the hope of finding the secret of success. Novelists tediously recycle the
plots of the latest best seller. Shoppers tell each other where the best bar-
gains are to be found. And so on.

One can completely control the quality of the feedback that subjects re-
ceive in the laboratory, but I know of very few experiments in which the
feedback supplied isn’t unrealistically sparse. In the experiment reported
in this chapter, the feedback is comparatively rich. Subjects can compare
a rolling average of their own payoff in recent games with the rolling av-
erage of the median subject in the same situation as themselves. Those
who are playing badly then have an opportunity to recognize that they
could do better if they played differently.

Sometimes critics say that such attempts to mimic real-life adaptive
processes amount to fixing the results of an experiment. Amos Tversky
often enjoyed teasing me by saying that you can “teach” laboratory sub-
jects any behavior at all. T used to try to tease him back by telling him
that you could refute any theory whatever by failing to clean your test
tubes, but he always seemed to get more of a rise out of me than I was
able to get out of him.

I doubt that Tversky really thought that providing subjects with the op-
portunity to learn in the laboratory is equivalent to conditioning them to
behave in some predetermined fashion, but it isn’t uncommon for his
modern followers to take this line. Sometimes they claim that the results
of any learning in the laboratory would be devoid of interest even in an
experiment whose design wasn’t supposedly biased by the prejudices of
the experimenter!

As with Tversky, I am never sure how seriously such claims are in-
tended to be taken, but after reading the paper that follows, readers can
make their own judgment on whether my colleagues and I were guilty of
the crime of teaching our subjects to play according to the minimax
theory.






Does Minimax Work? An Experimental Study

Ken Binmore, Joe Swierzbinski, and Chris Proulx

1.1 Zero-Sum Games

Von Neumann’s (1928) minimax theory of two-person, zero-sum games
remains the branch of game theory with the most solid theoretical foun-
dations. One would have thought that it would therefore have been tested
to exhaustion in economics laboratories, but the small number of existing
studies are mostly negative. This paper reports a laboratory experiment
using modern techniques that leads to a positive conclusion.

In a zero-sum game, the players’ payoffs always sum to zero whatever
the outcome. In a finite, two-person, zero-sum game, Von Neumann’s
(1928) celebrated minimax theorem says that a player’s minimax and
maximin values are equal. It follows that m; + m, = 0, where m; denotes
player ©’s maximin value in the game.! If player I gets a payoff x > my,
player II will therefore get a payoff —x < my,. Since a player always has
a maximin strategy that guarantees him an expected payoff no smaller
than his maximin value in the game, it follows from Von Neumann’s the-
orem that any theory of rational play for finite, two-person, zero-sum
games must assign each player his maximin value.

There has been some debate about the extent to which Von Neumann
was anticipated by the great mathematician Emile Borel. This debate
is significant here only to the extent that the record shows that Borel

We are grateful to the National Science Foundation for funding the experiments reported in
the this paper under Grant NSF-SES-882521. We also gratefully acknowledge funding from
the University of Michigan to set up the Michigan Economics Laboratory, where the experi-
ments were conducted in 1993.

1. Let IT;(p, q) be the expected payoff to player i in a finite, two-person game when player I
uses mixed strategy p and player II uses mixed strategy g. Then player I’s maximin and min-
imax values in the game are m; = max, min, IT;(p,¢) and M; = min, max, IT;(p,q). It is
always true that m; < M;. Von Neumann’s minimax theorem asserts that m; = M| when
the game is zero-sum. Since M| = —m, it follows that m; + my = 0.
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formulated the minimax theorem but decided that it was probably false.
It therefore seems pointless to run experiments designed to test the hy-
pothesis that laboratory subjects are capable of duplicating Von Neu-
mann’s reasoning. Insofar as Von Neumann’s minimax theory succeeds
in predicting the behavior of laboratory subjects playing zero-sum games,
it is not because it is common knowledge among the subjects that they are
all cleverer than Borel. It is because Von Neumann’s minimax theory
predicts the play of Nash equilibria, and—as Nash pointed out in his
thesis—Nash equilibria not only admit an eductive defense a la Von Neu-
mann, they also admit an evolutive defense.

An evolutive defense of an equilibrium concept accepts that the players
may be boundedly rational or just plain stupid. If they find their way to
an equilibrium, it is therefore by some process of trial-and-error adjust-
ment. Recent experimental work suggests that none of the dynamic ad-
justment processes that have been proposed fit the data well enough to
justify our claiming to understand in detail how boundedly rational
agents learn to play games. Nevertheless, the study of naive idealized ad-
justment processes is thought to provide insight into the types of games
for which a suitable equilibrium concept will provide a first approxima-
tion to how subjects end up playing after a long enough session in the
laboratory.

For example, Binmore et al. (1995) and Roth and Erev (1995) show
that simple adaptive models either do not converge to the subgame-
perfect equilibrium in the Ultimatum Game, or else converge far too
slowly for it to be possible to come close to replicating the necessary num-
ber of trials in the laboratory. By contrast, Brown (1951) and Robinson
(1951) showed long since that the adaptive process called fictitious play
converges reasonably quickly in two-person, zero-sum games. For exam-
ple, the Nash equilibrium in the game Matching Pennies requires each
player to play Heads or Tails with probability 1/2. Figure 1.1a shows a
typical trajectory along which players adjusting their behavior according
to the fictitious play algorithm approach this Nash equilibrium.? The
adjustment process that receives the most attention after fictitious play
is Darwinian replicator dynamics. The Nash equilibrium for Matching
Pennies is a local attractor but not an asymptotic attractor for these
dynamics. However, figure 1.1b shows a typical trajectory when the repli-
cator dynamics are perturbed by introducing a small fraction of agents

2. The particular version of fictitious play required to generate this well-known diagram to-
gether with some adaptive stories that lead to it are described in Binmore (1987).
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Approaching equilibrium in Matching Pennies

who know the current population mix and then optimize. Two-person,
zero-sum games therefore provide an arena in which it is reasonable to
hope that subjects will learn to play the equilibrium of the game within
the time spans available in the laboratory.

1.2 Interpreting Mixed Strategies

If the evolutive interpretation of equilibria were valid, one would think
that it would have first been confirmed for two-person, zero-sum games,
but the few experimental studies that exist are not generally supportive of
the minimax hypothesis. An exception is provided by a paper of O’Neill
(1987).

Figure 1.2a reproduces the diagram with which O’Neill compares his
results with the earlier experiments of Frenkel (1973), Estes (1957),
Suppes and Atkinson (1960), and Malcolm and Lieberman (1965). It
compares the observed and predicted frequencies with which the selected
strategies were played in these experiments. However, O’Neill’s paper was
discredited by Brown and Rosenthal (1990), and we accept that his data
points in figure 1.2a are unsafe. Among other concerns his decision to
study repeated play between the same subjects blurs some of the issues
he was seeking to clarify. Later experimental studies by Rapoport and
Boebel (1992), Mookherjee and Sopher (1994, 1997), and McCabe et al.
(1994) report positive conclusions only in the case of Matching Pennies.
The recent field study by Walker and Wooders (1998) also rejects the
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Observation versus prediction in some experimental games

minimax hypothesis for experimental data, although it finds support for
minimax play by professional tennis players.

For comparison, figure 1.2b plots the average frequencies with which
selected row and column strategies from each of the games in our experi-
ments were played against the theoretical frequencies predicted by the
minimax hypothesis. The symbol o in figure 1.2b denotes a row strategy
and the symbol x denotes a column strategy.

Our paper differs from this literature in offering experimental support
for the minimax hypothesis. We attribute our different findings partly to
our using a more refined experimental technique, and partly to an insis-
tence by previous authors on an overly literal interpretation of how one
might reasonably expect a mixed equilibrium to manifest itself in the
laboratory.?

We agree that the case of greatest interest arises when the maximin
strategies are mixed, but we think it a mistake to demand that the players
actively randomize before the minimax theory can be said to be relevant
to their play. Real people are notoriously bad natural randomizers
(although Rapaport and Budescu 1992 find that they randomize much
better when playing a zero-sum game than in other situations studied in

3. A working paper available from the authors discusses the reasons for our differing find-
ings in more detail.
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the psychological literature). Even professional statisticians find it hard to
eyeball a random sequence. When playing a repeated game against a real
opponent whom one wants to keep guessing, it is therefore not necessary
to behave in a manner that comes anywhere close to passing any scientific
tests for randomness.

This point becomes sharper when attention is confined to the one-shot
games that we study. In such games the players do not have to worry
about offering their opponent clues as to their future play. When a mixed
strategy is optimal, the players are necessarily indifferent among the pure
strategies to which the mixed strategy assigns a positive probability. An
individual player therefore has no reason to play such pure strategies
with any particular probability. Although old-style game theory books
proceed as though rationality demands that each player actively random-
ize when his maximin strategy in a two-person, zero-sum game is mixed,
the theory actually offers no support for this claim. Modern eductive
accounts of Nash equilibria in mixed strategies therefore stress their in-
terpretation as equilibria in beliefs rather than actions (Binmore 1991,
p. 286).

One way of realizing an equilibrium in beliefs arises when the players
are drawn at random from a population whose characteristics are
commonly known. It then does not matter how each individual player
chooses his strategy in a two-player, zero-sum game G, provided that the
frequencies with which strategies are played in the population as a whole
correspond to their maximin probabilities. In extreme cases we may ob-
serve what biologists call a polymorphic equilibrium of the grand game
played by the population as a whole. In such an equilibrium each member
of the population may plan to use a pure strategy if chosen to play G, but
the frequencies with which they choose different pure strategies coincide
with the probabilities assigned to them by a mixed equilibrium of G. A
player facing an opponent drawn at random from the population will
then be in the same situation as someone whose opponent is known to
randomize according to his maximin strategy. It is then optimal for him
to secure his maximin value by playing any of the pure strategies assigned
positive probability by his own maximin strategy.

Our experiment is designed to allow polymorphic equilibria to evolve
in the laboratory. Some theoretical evolutive models in which this out-
come should be expected have been studied by Hopkins (1996). Craw-
ford’s (1989) earlier evolutive study confirms that we should not expect
to see each individual player ending up by actively randomizing accord-
ing to his maximin probabilities, but neither are human subjects likely to
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stick to just one of their pure strategies in the manner that biologists attri-
bute to animals. Human subjects must be expected to be constantly
adjusting their strategy choice in an attempt to exploit variations in the
frequencies with which strategies are employed in the population as a
whole. Since the payoff to making such adjustments declines to zero as
the population frequencies approach their minimax values, it would be
unreasonable to expect convergence to go all the way. The best that one
can expect is that the system will find its way into a neighborhood of the
minimax outcome, wherein it will wander as the subjects find it increas-
ingly difficult to decide between strategies among which they would be in-
different in equilibrium.

These considerations led us to predict that the frequencies with which
pure strategies are played by populations of sufficiently well-motivated
subjects will be close to the maximin probabilities, provided that ade-
quate time for trial-and-error adjustment is available. Their payoffs will
then necessarily be close to the players’ maximin values for the game.
Figure 1.2b indicates that the experiment largely confirmed our expecta-
tions. The surprise was to find that convergence to a neighborhood of the
equilibrium was so quick.

An eductive explanation of why subjects get close to their maximin
payoffs, which demands that players randomize independently each time
that they play, is not supported by our results. As with O’Neill’s and later
experiments, our data fail an independence test proposed by Brown and
Rosenthal (1990). As is evident from figure 1.6, our subjects’ choices are
dependent on the past history of play. A contrary finding would refute the
evolutive hypothesis that people find their way to equilibrium by some
kind of trial-and-error adjustment process.

1.3 The Experimental Design

Figure 1.3 shows player I's payoff matrices for the seven two-person,
zero-sum games played by our subjects. As indicated in the figure, there
were two “practice’” and five “real” games. The asterisks in figure 1.3
indicate the row and column strategies whose frequencies of play are
plotted in figures 1.5 and 1.6 and reported in tables 1A.3, 1A.4, and
1A.5. Figure 1.3 also shows the payoff matrices for the three companion
games that we use to facilitate the analysis of the data and are discussed
in section 1.4,

In the computer implementation a subject was always shown his or her
own payoff matrix with positive values represented by the appropriate
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Practice Games

Game 1

1 2 3

1 3 -3 -2

2 2 0 -1

3 1 2 0
Real Games

Game 4

1 2 3%

1 0 -1
2 2 0 -1
3% —1 -1 0

2%

l’i

Game 2
1 2* 3
-3 -2 -3
1 -1 0
3 -3 =3
Game 5
1* 2 3 4
1 -1 -1 -1

33

Game 3

1* 2 3
-2 3 -3
-1 -3 0
3 -1 1

Figure 1.3
Payoff matrices for the row player in our experiments
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number of green disks and negative values by a corresponding number of
red disks. Alongside their payoff matrix, subjects were shown a “‘roulette
wheel” that was half red and half green at the beginning of each new
game. After each play of the game, the red or green region was updated
to take account of the amount the player won or lost in that play. After
completing all the plays of a particular game, the subjects observed a
small yellow ““ball” move around the circumference of the roulette wheel.
Its stopping location was random. If it stopped in green, the subject won
$6.00 in the games played for real (and 60 cents in the practice games). If
it stopped in red, the subject won nothing. Subjects were told to think in
terms of losing or winning “lottery tickets.”” However risk-averse a ratio-
nal agent might be, his or her goal in these circumstances should be to
maximize the expected number of lottery tickets.

It should be noted that all the games of figure 1.3, with the exception of
O’Neill’s game (real game 5), have maximin frequencies that are multi-
ples of 1/6. This choice reflects the fact that all games were played in ses-
sions involving twelve subjects split into six row players and six column
players, who were repeatedly matched in pairs to play a game in an un-
predictable manner. This design allows mixed strategies to be “purified.”
For example, if a mixed strategy requires the first row to be played with
probability 1/6 and the second row with probability 5/6, then the same
effect can be achieved by having one row player choose the first row for
certain while the other five row players choose the second row for certain.
With the exception of O’Neill’s game (real game 5), it follows that poly-
morphic equilibria exist in which each subject uses a pure strategy. For
example, in real game 1 it would be an equilibrium if just one row player
used the first row strategy and just one column player used the second
column strategy.

The subjects in the experiment were undergraduate students at the Uni-
versity of Michigan, recruited directly from classes chosen to make any
familiarity with game theory or related topics unlikely. Recruits from the
same class were assigned to different sessions. Despite the administrative
inconvenience, we do not use the same list of volunteers for different
experiments for fear of cross-experimental contamination. Since the
games are all zero-sum, it was possible to tell prospective subjects that
the average amount to be expected from participation would exceed $15.
Counting the $3 attendance payment and the small prizes for the practice
games, the actual average was approximately $18.60. Subjects spent ap-
proximately 45 minutes in the laboratory.
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Each experiment session required 12 subjects, who were seated at
screened monitors. We ran 13 experimental sessions* in all, in each of
which the subjects played all 7 games of figure 1.3 many times. Each real
game was played 150 times, except for real game 2, which has a pure-
strategy saddle point. Real game 2 was played 75 times. Practice game 1
was played 50 times. Practice game 2 was played 100 times.

Practice game | was played fairly slowly to allow subjects to familiarize
themselves with the controls. Practice game 2 was played faster, and the
real games were played so quickly that a subject who wished to change
his or her strategy at every play needed to pay very close attention to
what was going on. A subject’s opponents were switched after every play
in an unpredictable manner. A subject remained a row or a column
player during the play of any particular game, but the sets of row and col-
umn players were reshuffled each time that the game changed.

A row player chose his or her strategy by pressing the up and
down arrow keys. This led to different rows being highlighted on the
screen. Every so often, a column would be highlighted, indicating the
choice made by the opponent in the game just played. The roulette
wheel showing the subject’s accumulated number of lottery tickets
would then be updated. Column players chose strategies by pressing the
left and right arrow keys but were not otherwise distinguished from row
players.

Starting with the second practice game, subjects were also shown two
graphs updated in real time. A green graph showed the subject’s payoff
averaged over the last six plays. A white graph showed the same statistic
for the median of the other players in the same situation as the subject.
That is, a row player saw the median payoff of the other row players
and a column player the median payoff of the other column players.
Row players were, of course, only matched against column players in
the game currently being played. The graphs were intended to allow him
to compare his performance with the other subjects in the same situation
as himself. We attach considerable importance to this feature of the ex-
periment, which has no correlate in other experimental work on two-
person, zero-sum games as far as we know.

We will be very pleased to send copies of our experimental software to
interested parties.

4. More sessions were organized, but we were unlucky with computer crashes and the be-
havior of one subject. Our policy is to throw away data if anything untoward occurs, what-
ever the cause.
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1.4 Results

Recall that 13 experiments were run, each with 12 subjects. In each exper-
iment, all subjects played 2 practice games and 5 real games. In any given
game, half the subjects were row players and half were column players.
The results of the experiments are summarized in figure 1.4 to 1.7. Figure
1.2, which is provided for purposes of comparison with O’Neill’s (1987)
data, has already been mentioned. Table 1A.1 to 1A.6 provide additional
information on the results.

Figures 1.4 and 1.5 and the accompanying tables 1A.1 and 1A.2 show
that, both in terms of average payoffs and the average frequencies with
which various strategies were used, the behavior of our subjects is close
to that predicted by the minimax hypothesis. Figure 1.6 and the accom-
panying table 1A.5 contains information on how our subjects responded
to opportunities for increasing their payoffs. Figure 1.7 and table 1A.6 in-
dicate how the subjects responded to the information presented in our
graphical display. Perhaps the most striking results of our experiments
concern tables 1A.3 and 1A.4, which show that the maximin frequencies
are good predictions of the play-by-play behaviour of individual groups
of subjects.

Figure 1.4a to 1.4e shows histograms of moving averages of the payoffs
obtained by row players in real games 1 to 5 respectively. For example,
figure 1.4a describes the first real game. For each subject who was a row
player and for each play of the game, we calculate the moving average of
that subject’s payoff in the current and preceding 23 plays. Starting with
play 24, the top line indicates, at each play, the maximum of the 78 mov-
ing averages calculated this way. The connected dots indicate the medians
of the moving averages at each play, and the bottom line indicates the
minimum of the moving averages. The intermediate lines indicate the
top and bottom quartiles respectively. The horizontal lines in figure 1.4a
to 1.4e indicate the maximin payoffs for a row player. For each real game
the median moving average is always very close to this line. The vertical
distance between the top and bottom quartile lines indicates the range of
moving averages obtained by the middle half of the subjects at each
play.® For comparison, the vertical axis in each graph runs from the min-
imum to the maximum payoff attainable by a row player and so indicates
the full range of values that these moving averages can take on. For each

5. By construction, the 21st to 58th largest values are guaranteed to fall between the bottom
and top quartiles. This turns out to be one less than half of the values.
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game the middle half of the moving averages remains clustered very nar-
rowly around the minimax payoff.

Table 1A.1 provides further information concerning the average pay-
offs received by the row players in each real game.

Table 1A.2 reports the average frequency with which row and column
players used each strategy. As in figure 1.3, row strategies are labeled nu-
merically, starting from the top of the payoff matrix for each game, and
column strategies are numbered from left to right. The first part of table
1A.2 involves averages over all the experiments. It reports the theoretical
maximin frequency predicted for each strategy by the minimax hypothesis
together with the actual frequency with which each strategy was played,
both averaged over all the plays of the game and also over only the last
third of plays. The second part of table 1A.2 reports the average fre-
quency with which each strategy was used in all the plays of each separate
experiment.

Figure 1.5a to 1.5¢ displays some of the information in table 1A.2 in
graphical form. For the row and column strategies of each real game
marked with asterisks in figure 1.3 and table 1A.2, the average frequen-
cies with which these strategies were used in each of the 13 experiments
are plotted. The row frequencies are shown on the horizontal axes in fig-
ure 1.5 and the column frequencies on the vertical axes. For comparison,
horizontal and vertical lines in each graph also indicate the maximin row
and column frequencies for each strategy. The average frequencies plot-
ted in figure 1.5 are clearly close to the theoretical maximin predictions.
On the other hand, it is also evident that there are small but systematic
deviations from the maximin frequencies.®

The dashed boxes in figure 1.5a to 1.5e indicate the best unit box pre-
dictor for each game. As discussed in more detail below, more than 60
percent of all the frequencies observed in different plays fall within this
box for each real game.

Tables 1A.3 and 1A.4 and the dashed boxes in figure 1.5 and figure 1.6
provide information on the frequencies with which individual groups of
subjects used selected strategies in individual plays of the games. In figure
1.5 the strategies considered are those marked with an asterisk in figure
1.3 and table 1A.2.

6. For example, the standard Hotelling T? tests reject the hypothesis that the clouds of
points in figure 1.5 are drawn from bivariate normal distributions with means at the maxi-
min frequencies.
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For each real game the group of subjects was divided into six row
players and six column players. Hence only frequencies that were a mul-
tiple of 1/6 were observed in a single play of a game. For each observable
combination of row and column frequencies, the entries in table 1A.4 in-
dicate the fraction of the total number of plays in all the experiments in
which that particular combination was observed. For comparison, the
numbers in parentheses indicate the probabilities that the designated com-
binations of row and column frequencies will be observed if all players
behave purely randomly, choosing their strategies randomly and inde-
pendently with an equal probability of choice assigned to each strategy.

The information contained in table 1A.4 is summarized in various ways
in table 1A.3. In addition the first row of entries in table 1A.3 shows the
fraction of all plays where there was a net change in the number of row
and/or column players playing the designated strategies from that play to
the next. For each real game, the frequency of net changes was very high.
Little tendency to purify mixed strategies was therefore observed.

The next set of entries in table 1A.3 describes the performance of the
maximin point predictor. We use the term ““point predictor” to refer to a
prediction that a single combination of the row and column frequencies
indicated in table 1A.4 will be observed in a play of the game. For each
game the maximin point predictors select the combinations of row and
column frequencies that are to be played according to the minimax hy-
pothesis.” Depending on the game, the designated strategies were played
at exactly the frequencies predicted by the minimax hypothesis in from 7
to 20 percent of the total plays.

The set of entries labeled “best point predictor” in table 1A.3 indicate
the single frequency combination that was observed most often in each
real game. These “most likely”” frequency combinations are always close
to the maximin frequencies, differing at most by the choice of one subject.
For games 2 and 3 the maximin frequencies are the combinations
observed most often. Also note that the fraction of plays occurring at
the most likely frequency combinations are no more than 2 percent
greater than the fractions of plays at the maximin frequencies, except for
game 1 where the difference exceeds 10 percent.

As another point of comparison, the numbers listed in parentheses
under the fractions of plays for the maximin and best point predictors in

7. The exact maximin frequencies for game 5 are not a multiple of 1/6 and so cannot be
observed in the play of a single game. For game 5, the maximin point predictor is the ob-
servable frequency combination that has the highest probability of occurrence when subjects
choose their strategies randomly and independently using the exact maximin probabilities.
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table 1A.3 give the predictions of two probabilistic theories. As in table
1A.4, the first of the two numbers is the probability that each frequency
combination will occur if all subjects behave purely randomly. The sec-
ond number in parentheses is the probability that the designated fre-
quency combination will occur if all subjects choose their strategies
randomly and independently using the maximin probabilities. It is inter-
esting to note that although the observed fractions of plays occurring at
exactly the maximin frequencies seem small, the fractions predicted by
this strong form of the minimax hypothesis are also small (except, of
course, for game 2, where minimax behavior does not involve mixed
strategies). Indeed, for games 3 and 4 the observed and predicted frac-
tions of plays at exactly the maximin frequencies are not statistically
different.®

Given the large fraction of plays where there was a net change in the
frequencies with which strategies were used from one play to the next, it
is unsurprising that we do not observe a large proportion of plays occur-
ring at any one frequency combination. Since point predictors fail to rec-
ognize the noisy nature of the subjects’ choices, the rest of table 1A.3
considers unit box predictors. We use the term “unit box” to refer to a
square centered at one of the observable frequency combinations shown
in table 1A.4. The square has a height of 1/3 to allow for a net change
(up or down) of one in the number of column players using their desig-
nated strategy at the central frequency combination. Similarly the square
has a width of 1/3 to allow for a net change of one in the number of row
players using their designated strategy at the central combination. For
purposes of comparison, we thought it best to keep all unit boxes the
same size, although this requires displacing the centers of boxes when
these involve the use of a pure strategy.

We use the term ‘““unit-box predictor” to refer to a prediction that one
of the nine adjacent combinations of observable row and column frequen-
cies contained in some unit box will be observed in a play of the game. To
make a unit box prediction is to claim that the number of row players and
the number of column players using their designated strategies will each
differ by at most one from the numbers of players indicated by the fre-
quency combination at the center of the unit box under consideration.

8. If strategies are chosen randomly using the maximin probabilities, the observed fraction
of plays is a binomial random variable with a standard deviation of \/p(1 — p)/N, where p
is the predicted probability of observing the maximin frequency combination, and
N = 1,950 is the total number of plays for game 3 and game 4. The observed fractions of
plays for games 3 and 4 are within one standard deviation of the predicted fractions.
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Where possible, the maximin unit-box predictor uses the unit box
centered at the exact maximin frequencies to predict the outcomes of in-
dividual games. For game 2, the center of the maximin unit box predictor
is offset from the boundary (1,1) to (5/6,5/6) so that the box contains
the same number of possible frequency combinations as other games.
The exact maximin frequencies for game 5 are not a multiple of 1/6, and
so a square the same size as a unit box but centered at the exact maximin
frequencies will not contain the same number of observable frequency
combinations as the boxes for other games. The maximin unit box for
game 5 is therefore centered at one of the observable frequency combina-
tions closest to the exact maximin frequencies. The unit box chosen has
the highest probability of occurrence when all subjects randomly and
independently choose their strategies using the maximin probabilities.

One of the important results of our experiments is the large number of
plays in which the observed row and column frequencies fall within the
maximin unit boxes. Depending on the game, the fraction of plays falling
within the maximin unit box ranges from 49 to 88 percent.

As with point predictors, one can ask which of the unit boxes for each
game contains the frequency combinations most often observed in the
play of that game. We call this box the best unit box. The best unit box
for each game is drawn in table 1A.4 and is also shown as a dashed box
in figures 1.5 and 1.6. Information on the best unit box predictors is sum-
marized in table 1A.3. It is worth emphasising that although the dashed
boxes in figures 1.5 and 1.6 appear large, any smaller squares centered at
the same points contain only one of the frequency combinations that can
be observed in a single play of the game.

The best unit-box predictor for each game is a good prediction of the
outcome of the individual plays in that game. Depending on the game,
from 61 to 88 percent of the total number of plays occur at one of the fre-
quency combinations contained in the best unit box. The best unit-box
predictor is always close to the maximin prediction. For every game the
exact maximin frequency combination is one of those contained in the
best unit box. For games 2 and 3, the maximin and best unit boxes are
identical. As can also be observed in table 1A.3, the fractions of plays
contained in the best unit boxes are typically not much larger than the
fractions contained in the maximin unit boxes.

The numbers in parentheses in table 1A.3 under the listing of the frac-
tion of plays for the maximin and best unit-box predictors give the same
information as for the point predictors. The first number is the probabil-
ity that one of the frequency combinations contained in the designated
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box will occur when subjects choose their strategies purely randomly. The
second number is the probability that one of these frequency combina-
tions will occur when subjects choose their strategies using the maximin
probabilities. In game 5 the probability of observing a frequency combi-
nation contained in the maximin unit box is large, both when subjects be-
have purely randomly and when they choose strategies using the maximin
probabilities. Except in this case, the fraction of total plays contained in
the maximin unit box is far higher than if subjects chose their strategies
randomly with equal probabilities.® Clearly, some sort of systematic be-
havior keeps the subjects’ choices close to the maximin frequencies.

The last part of table 1A.3 uses unit-box predictors to compare the pre-
dictive power of alternative theories with that of the minimax hypothesis.
The alternative hypotheses compared with the minimax hypothesis are as
follows:

1. Random play Brown and Rosenthal (1990) propose comparing
O’Neill’s (1987) results with the hypothesis that each player chooses each
of his strategies with equal probability.

2. Optimizing against random play Kadane and Larkey (1982) argue
that equilibrium considerations should be irrelevant to a strict Bayesian
who simply maximizes his expected payoff relative to his subjective beliefs
about the play of the opponent. We consider a player who believes that
his opponent will use each of his strategies with equal probability.

3. Minimax regret Savage (1951) offers the minimax-regret criterion as
a decision-making principle for large world contexts to which he believes
that Bayesian decision theory does not apply. We adapt the theory to the
case of mixed strategies in the natural way.

4. Probability matching As documented in a survey by Vulkan (1996),
the hypothesis that animals and people do not optimize but match proba-
bilities has a wide following in the psychological literature. It is not en-
tirely clear how the hypothesis should be adapted to a game-theoretic
context, but we take it to be the theory that a player uses his best reply
to an opponent’s strategy with the same probability that the opponent
uses that strategy.

For the selected row and column strategies from each game, table 1A.3
first reports the probability for these strategies predicted by each of the

9. When subjects behave purely randomly, the standard deviation of the fraction of total
plays falling within the maximin unit box is given by the same formula as in note 9, except
that p is now the probability of observing a single play within the unit box.
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four alternate theories listed above. We then consider the unit boxes cor-
responding to each of these predictions. Except where the predictions of
the alternative theories coincide with the maximin predictions, the frac-
tions of games whose frequency combinations fall within the unit boxes
of the alternative theories are much less than the fractions falling within
the corresponding maximin unit boxes.

For the pairs of row and column strategies that we have been consider-
ing and each real game, figure 1.6 shows a trajectory of moving averages
of the frequencies with which these strategies were played in particular
experiments. Each dot indicates the average frequency with which the
strategies were used in six plays of the game. The numbers by some of
the dots indicate the first plays in the corresponding averages. As in figure
1.5, the horizontal and vertical lines in each graph indicate the predicted
maximin row and column frequencies, and the dashed boxes indicate the
best unit boxes for each game. It is interesting how quickly the moving
averages enter the best unit boxes. It is also worth recalling that except
for game 2, which has a saddle point, the payoff from using each strategy
is almost the same when opponents play their strategies with probabilities
close to the maximin frequencies. It is therefore not surprising that the
trajectories wander rather unpredictably once they get close to the max-
imin frequencies.

For a 2 x 2 game, a point in the “frequency space” depicted in figures
1.5 and 1.6 completely determines which pure strategy is a best reply for
each player when he or she believes that the opponent will play according
to the indicated frequency. Hence we associate a companion 2 x 2 game
to each of games 3, 4, and 5.1° The payoff matrices for the row player in
these companion games are listed in figure 1.3.

If certain assumptions are maintained, then play in one of the 2 x 2
companion games should mirror play in the original game. For example,
the 2 x 2 game associated with game 5 is obtained by assuming that the
interchangeability of the second, third, and fourth pure strategies is
reflected in their being played with equal probabilities. To play the first
pure strategy in the companion game corresponds simply to playing the
first pure strategy in the original game. To play the second pure strategy
in the companion game, labeled 2—4, corresponds to playing each of the
other pure strategies in the original game with probability 1/3. In a similar
way a companion 2 x 2 game is obtained for game 4 by exploiting the

10. Since it is fully dominance solvable, it is not interesting to compare real game 2 with a
2 x 2 companion game.
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interchangeability of the first and second strategies in that game. The
companion 2 x 2 game for real game 3 is obtained by deleting row strat-
egy 2, which is strictly dominated, and then column strategy 3.1

The counterclockwise spiral inset in figure 1.6a indicates the direction
in which that trajectory should “wind” if subjects tend to switch to
whichever strategy is their best reply. Similarly the spirals inset in figure
1.6¢ to 1.6¢ indicate the directions in which the corresponding trajectories
should move if subjects tend to switch to their best replies in the compan-
ion 2 x 2 games for each figure. Although the evolution of the trajectories
is obviously noisy, each trajectory appears to wind in the predicted direc-
tion. The data reported in table 1A.5 support this conclusion.

Table 1A.5 considers plays of the games where there were nonzero net
changes in the frequencies with which row or column players used their
designated strategies from those plays to the next. The designated strat-
egies are those whose frequencies are graphed in figures 1.5 and 1.6.

Consider, for example, the row strategy for game 1. This strategy is a
strict best reply for row players if and only if the column players in game
1 use their designated strategy with a frequency less than the maximin
column frequency. (Both row strategies are best replies when column
players play their strategies with exactly the maximin frequencies.) Hence,
if subjects tend to switch to their best replies, we should observe more
positive than negative changes in the numbers of row players playing
their designated strategy after plays where column players use their own
designated strategy with less than the maximin frequency, and more neg-
ative than positive changes in the reverse situation. Similar predictions
apply for the column players in game 1 and row and column players in
the 2 x 2 companion games for games 3, 4, and 5.

The first part of table 1A.5 reports data pooled over all the experi-
ments. The data show an increased use of those strategies which were
strict best replies to the opponents’ previous play either for the game itself
(for game 1) or the companion 2 x 2 games (for games 3, 4, and 95).
Whenever a strict best reply exists, the fraction of plays for which there
was a shift toward that best reply is always greater than the fraction
with a shift in the opposite direction. The second part of table 1A.5
reports the data separately for each experiment. In a large majority of
the individual experiments, we also observe that the fraction of plays

11. Assuming that the row player does not use his strictly dominated strategy, it is not opti-
mal for the column player in game 3 to use strategy 3 unless the probability that the row
player uses strategy 1 is greater than 1/2. As can be seen in table 1A.2, this probability is
much higher than either the predicted maximin frequency or the observed frequency with
which strategy 1 was played in the various experiments.
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with a shift toward a strict best reply is greater than the fraction with a
shift in the opposite direction.

As discussed in section 1.3, during each game subjects were provided
with a real-time display that showed a moving average of their own pay-
offs as well as information about the average payoff of other players like
themselves. One way that subjects might respond to such information is
to switch strategies when the display indicates that the performance of
their current choice is poor.

Figure 1.7 is a histogram that shows the frequencies with which indi-
vidual row players in game 5 switched from the strategy that they used
in the previous play of the game as a function of the moving averages of
their own payoffs in the previous six plays. The height of each bar in fig-
ure 1.7 gives the frequency with which subjects switched strategies when

s
<
‘\
< | \
<
8 <3
'S
<
g
g
=
(&9
<
2
E
w
} \
S
=4 v s
-1 -0.5 0 0.5 1
Moving Average Payoffs
Figure 1.7

Switching frequency versus payoff for row players in game 5
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their average payoffs were within the indicated interval. The data are
pooled over all the plays of game 5 by the 78 subjects who were row
players in that game.

It is clear from the figure that subjects tended to switch strategies more
frequently when their average payoffs were low. Although the relation-
ships are not always as smooth as that displayed in figure 1.7, similar neg-
ative relationships between the frequency of switching and the subjects’ own
average payoffs can be observed in the histogram for the column players
in game 5 and the histograms for the row and column players in each of
the other games. Table 1A.6 provides further evidence on this point.

The curve superimposed on the histogram of figure 1.7 represents the
predicted probability of switching obtained from a logit model. For the
row and column players in each real game, table 1A.6 reports the esti-
mated coefficients of logit models that relate the probability of switching
strategies to the two statistics contained in the subjects’ graphical display.
In every case there is a highly significant negative relationship between
the probability of switching and the moving average of the subjects’ own
payoffs. The relation between the probability of switching and the median
moving average of the other players’ payofs is less clear. In some cases,
this relation was negative, in others positive, and in still other cases, no
significant relationship existed.'?

1.5 Conclusion

Two-person, zero-sum games are the heartland of game theory. It is
therefore frustrating that the empirical evidence should have carried so
little weight in determining the prevailing orthodoxy, which treats Von
Neumann’s minimax theory as sacred. However, the hypothesis that real
people are better natural gamesmen than Emile Borel is not well sup-
ported by this or any other experiment. But the question that matters is
whether real people are willing and able to learn to play like gamesmen
using trial-and-error methods. This and other experiments on simple non-
cooperative games whose equilibria are easily accessible using simple ad-
justment processes would seem to establish that the answer is a firm yes,
provided that the incentives are adequate and ample time and informa-
tion is available to allow learning to take place.

12. In considering the results presented in figure 1.7 and table 1A.6, one should keep in
mind that subjects had other sources of information about their own payoffs in addition to
the graphical display. Subjects received an indication each time they won or lost, and they
could also observe changes in their cumulative winnings, which were displayed on a roulette
wheel as described in section 1.3.



Appendix Tables

Table 1A.1
Average payoffs obtained by row players for each of the games of our experiments. The first part of the table reports payoffs averaged over all the experi-
ments. For comparison, the second column of the first part reports the minimax payoff for row players in each game. The third and fourth columns re-
port the payoff obtained by the row players averaged over all the plays and the last third of the plays respectively. The columns in the second part of the
table report the average payoff obtained in all the plays of each experiment.

Game Minimax All Last 3rd
1 —1.1667 —1.2399 —1.2023
2 -1 —1.1297 —-1.0923
3 —0.3333  —0.3870 —0.4013
4 —0.3333  —0.3413 —0.3282
5 -0.2 —0.1976  —0.1882
Average payoff in each experiment

Experiment
Game 1 2 3 4 5 6 7 8 9 10 11 12 13
1 —-1.2700 —-1.2933 —1.1611 —1.1422 —-1.2667 —1.1733 —1.3233 —1.2622 —1.2189 —1.2622 —1.2956 —1.1467 —1.3033
2 -1.0733  -1.1222 -1.0711 -1.1622 —1.3000 —1.2511 —1.2422 —0.9044 —-0.9733 —1.0756 —1.1400 —1.0933 —1.2778
3 —0.3133  —0.3576 —0.2489 —0.3767 —0.5356 —0.3822 —0.3633 —0.3600 —0.3700 —0.4433 —0.3311 —0.6244 —0.3256
4 —0.3500 —0.4067 —0.3144 —0.3389 —0.3600 —0.3167 —0.3656 —0.3500 —0.3533 —0.2689 —0.3444 —0.3500 —0.3178
5 —0.2267 —0.1889 —0.2067 —0.2222 —0.1978 —0.1867 —0.2289 —0.2311 —0.1689 —0.2044 —0.1933 —0.1689 —0.1444
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Table 1A.2

Average frequencies with which row and column players used each strategy in the games of our experiments. The first part of the table involves averages
over all the experiments. It reports the theoretical maximin frequency predicted for each strategy by the minimax hypothesis along with the actual fre-
quency that each strategy was played both averaged over all the plays of the game and also over only the last third of plays. The second part of the table
reports the average frequency with which each strategy was played in all the plays of each separate experiment. Strategies for row players are numbered
from top to bottom of the payoff matrices shown in figure 1.3. Column strategies are numbered from left to right. Strategies marked with an asterisk are
those whose frequencies are plotted in figures 1.5 and 1.6 and reported in tables 1A.3, 1A.4, and 1A.5.

Row frequencies Column frequencies
Last Last

Strategy Maximin All 3rd Maximin All 3rd
Game 1

1* 0.1667 0.3143 0.2508 0.8333 0.9256 0.9146
2 0.8333 0.6857 0.7492 0.1667 0.0744 0.0854
Game 2

1 0 0.0562 0.0441 0 0.0171 0.0113
2% 1 0.8386 0.8877 1 0.8622 0.9179
3 0 0.1051 0.0682 0 0.1207 0.0708
Game 3

1* 0.1667 0.2222 0.2051 0.6667 0.6201 0.6469
2 0 0.0679 0.0562 0.3333 0.2876 0.2785
3 0.8333 0.7098 0.7387 0 0.0923 0.0746
Game 4

1 0.1667 0.2132 0.2072 0.1667 0.0608 0.0813
2 0.1667 0.1717 0.1328 0.1667 0.1691 0.1705
3* 0.6667 0.6150 0.6600 0.6667 0.7702 0.7482
Game 5

1* 0.4 0.4295 0.4392 0.4 0.4885 0.4479
2 0.2 0.1762 0.1874 0.2 0.2579 0.2664
3 0.2 0.2281 0.2236 0.2 0.1093 0.1118

4 0.2 0.1662 0.1497 0.2 0.1443 0.1738
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Average frequencies in each experiment

Experiment
Strategy 1 2 3 4 5 6 7 8 9 10 11 12 13
Game 1—Row frequencies
1* 0.3367 0.4333 0.2678 0.1822 0.3078 0.2233 0.4611 0.3189 0.3022 0.2878 0.3644 0.2322 0.3678
2 0.6633 0.5667 0.7322 0.8178 0.6922 0.7767 0.5389 0.6811 0.6978 0.7122 0.6356 0.7678 0.6322
Game 1—Column frequencies
1* 0.9467 0.9000 0.8933 0.9400 0.9611 0.9500 0.9311 0.9167 0.8567 0.9722 0.9222 0.9322 0.9111
2 0.0533 0.1000 0.1067 0.0600 0.0389 0.0500 0.0689 0.0833 0.1433 0.0278 0.0778 0.0678 0.0889
Game 2—Row frequencies
1 0.0378 0.0711 0.0467 0.0822 0.0733 0.1133 0.0711 0.0044 0.0200 0.0244 0.0244 0.0489 0.1133
2% 0.8400 0.7867 0.9000 0.8111 0.7289 0.7556 0.8022 0.9000 0.9533 0.9333 0.8311 0.9089 0.7511
3 0.1222 0.1422 0.0533 0.1067 0.1978 0.1311 0.1267 0.0956 0.0267 0.0422 0.1444 0.0422 0.1356
Game 2—Column frequencies
1 0.0200 0.0556 0.0067 0.0067 0.0333 0.0133 0.0133 0.0244 0.0156 0.0044 0.0133 0.0044 0.0111
2% 0.7378 0.8000 0.9267 0.8089 0.8911 0.8956 0.9156 0.7378 0.8956 0.9644 0.8111 0.9644 0.8600
3 0.2422 0.1444 0.0667 0.1844 0.0756 0.0911 0.0711 0.2378 0.0889 0.0311 0.1756 0.0311 0.1289
Game 3—Row frequencies
1* 0.2178 0.1911 0.2500 0.2167 0.2178 0.2333 0.2433 0.2100 0.1933 0.2522 0.2400 0.2411 0.1822
2 0.0611 0.0511 0.0489 0.0389 0.1222 0.0444 0.0322 0.0644 0.0400 0.0822 0.0300 0.2244 0.0433
3 0.7211 0.7578 0.7011 0.7444 0.6600 0.7222 0.7244 0.7256 0.7667 0.6656 0.7300 0.5344 0.7744
Game 3—Column frequencies
1* 0.6367 0.5556 0.5667 0.6767 0.7156 0.6500 0.5944 0.6789 0.5944 0.4756 0.6100 0.6489 0.6578
2 0.2722 0.3089 0.3222 0.2478 0.2033 0.2567 0.3111 0.2456 0.3444 0.3600 0.2733 0.3200 0.2733
3 0.0911 0.1356 0.1111 0.0756 0.0811 0.0933 0.0944 0.0756 0.0611 0.1644 0.1167 0.0311 0.0689
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Table 1A.2
(continued)

Average frequencies in each experiment

Experiment
Strategy 1 2 3 4 5 6 7 8 9 10 11 12 13
Game 4—Row frequencies
1 0.2144 0.2389 0.1844 0.1600 0.1811 0.1589 0.2667 0.2000 0.2433 0.2256 0.2100 0.2033 0.2856
2 0.1922 0.2844 0.1589 0.1333 0.1778 0.1556 0.2022 0.1822 0.0956 0.1300 0.1678 0.1511 0.2011
3* 0.5933 0.4767 0.6567 0.7067 0.6411 0.6856 0.5311 0.6178 0.6611 0.6444 0.6222 0.6456 0.5133
Game 4—Column frequencies
1 0.0344 0.0756 0.0900 0.0900 0.0567 0.0833 0.0378 0.0333 0.0411 0.1056 0.0244 0.0722 0.0456
2 0.1978 0.1567 0.1989 0.1644 0.1244 0.1300 0.1567 0.2144 0.2133 0.1433 0.1511 0.1722 0.1744
3* 0.7678 0.7678 0.7111 0.7456 0.8189 0.7867 0.8056 0.7522 0.7456 0.7511 0.8244 0.7556 0.7800
Game 5—Row frequencies
1* 0.4322 0.4878 0.3711 0.4400 0.3456 0.3767 0.4433 0.4322 0.4289 0.4156 0.4433 0.4922 0.4744
2 0.1456 0.1222 0.1811 0.1822 0.2544 0.1811 0.1789 0.1600 0.1467 0.2078 0.1889 0.1822 0.1589
3 0.2778 0.2189 0.2989 0.1778 0.2367 0.2367 0.2022 0.1956 0.2867 0.2444 0.2167 0.1800 0.1933
4 0.1444 0.1711 0.1489 0.2000 0.1633 0.2056 0.1756 0.2122 0.1378 0.1322 0.1511 0.1456 0.1733
Game 5—Column frequencies
1* 0.5144 0.4600 0.5711 0.4600 0.4533 0.4489 0.5100 0.5578 0.4556 0.4456 0.4800 0.4956 0.4978
2 0.3533 0.3333 0.2189 0.2789 0.2289 0.2744 0.2300 0.2256 0.2067 0.2678 0.2522 0.1767 0.3067
3 0.0378 0.1156 0.0700 0.1333 0.1222 0.1456 0.0578 0.1278 0.1833 0.1278 0.1267 0.0911 0.0822
4 0.0944 0.0911 0.1400 0.1278 0.1956 0.1311 0.2022 0.0889 0.1544 0.1589 0.1411 0.2367 0.1133
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Table 1A.3

Summary information about the frequencies with which populations of subjects used their designated strategies in individual plays of the games. The row
and column strategies considered for each game are those marked with an asterisk in figure 1.3 and table 1A.2. See the text for a definition and discussion
of the summary statistics reported in this table. An entry of 0.0000 indicates a value less than 0.00005.

Game 1 Game 2 Game 3 Game 4 Game 5
Frequencies of net changes 0.7274 0.6778 0.8436 0.8363 0.8947
Maximin point predictor
Coordinates of point (1/6,5/6) (1, 1) (1/6,4/6) (4/6,4/6) (2/6,2/6)*
Fraction of total plays at designated point 0.0959 0.2082 0.1272 0.1067 0.0744
(0.0088,0.1615) (0.0000, 1.0) (0.0217,0.1323) (0.0068,0.1084) (0.0880,0.0967)
Best point predictor
Coordinates of point (1/6,1) (I, 1) (1/6,4/6) (4/6,5/6) (2/6,3/6)
Fraction of total plays at designated point 0.1995 0.2082 0.1272 0.1097 0.0964
(0.0015,0.1346) (0.0000, 1.0) (0.0217,0.1323) (0.0014,0.0867) (0.0391,0.0860)
Unit-box predictors
Maximin unit-box predictor
Coordinates of center (1/6,5/6) (5/6,5/6)" (1/6,4/6) (4/6,4/6) (2/6,2/6)°
Fraction of total plays within designated box 0.7041 0.88 0.7174 0.6108 0.4995
(0.1182,0.8793) (0.0100, 1.0) (0.2165,0.7615) (0.1013,0.6595) (0.6153,0.5993)
Best unit-box predictor
Coordinates of center (2/6,5/6) (5/6,5/6) (1/6,4/6) (4/6,5/6) (3/6,3/6)
Fraction of total plays within designated box 0.7544 0.88 0.7174 0.6867 0.6123
(0.2202,0.6155) (0.0100, 1.0) (0.2165,0.7615) (0.0319,0.5525) (0.2129,0.5267)
Unit-box predictors for alternate theories
Minimax regret
Theoretical prediction (5/6,5/6) (3/5,3/6) (3/6,6/7) (0,4/6) (2/5,2/5)¢
Coordinates of center (5/6,5/6) (4/6,3/6)° (3/6,5/6)° (1/6,4/6)F (2/6,2/6)°
Fraction of total plays within designated box 0.1133 0.1538 0.2369 0.1215 0.4995
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Table 1A.3
(continued)

Random strategy choice

Theoretical prediction (3/6,3/6) (2/6,2/6) (2/6,2/6) (2/6,2/6) (1/4,1/4)
Coordinates of center (3/6,3/6) (2/6,2/6) (2/6,2/6) (2/6,2/6) (1/6,1/6)°
Fraction of total plays within designated box 0.0374 0.0133 0.3200 0.0441 0.1723
Best reply to random strategy choice

Theoretical prediction (1, 1) (1,1)2 (0,1) 0,1) 0,1)
Coordinates of center (5/6,5/6)" (5/6,5/6)" (1/6,5/6) (1/6,5/6)" (1/6,5/6)"
Fraction of total plays within designated box 0.1133 0.8800 0.5256 0.1446 0.1569
Probability matching

Theoretical prediction (3/6,3/6) (1,1)¢ (3/6,0) (3/6,3/6) (2/5,2/5)8
Coordinates of center (3/6,3/6) (5/6,5/6)" (3/6,1/6)f (3/6,3/6) (2/6,2/6)°
Fraction of total plays within designated box 0.0374 0.8800 0.0615 0.2985 0.4995

a. As recorded in table 1A.2, the exact maximin prediction for game 5 is (2/5,2/5), which is not a frequency that can be observed in a single play by a
single population of players. The indicated point predictor is the frequency combination with the highest probability of occurrence in a single play when
all subjects randomly and independently choose strategies using the maximin probabilities.

b. The exact maximin prediction for game 2 is (1,1). A square box centered at this point would contain only four rather than nine frequency combina-
tions that could occur in a single play, since frequencies must lie between 0 and 1. In order to maintain comparability with the unit-box predictors for
other games and other theories, the center of the unit box is therefore “offset” to (5/6,5/6).

c. Since the exact maximin prediction for game 5 is not a frequency combination that can be observed in a single play of the game, a square box which is
the same size as a unit box but centered at this prediction would not contain the same number of observable frequency combinations as a unit box, which
is centered at an observable combination. In order to maintain comparability with other unit-box predictors, we choose as the maximin unit-box predic-
tor that box which is (1) centered at an observable frequency combination and (2) has the highest probability of occurrence when all subjects randomly
and independently choose strategies using the maximin probabilities.

d. This predicted frequency combination is also the one predicted by the minimax hypothesis.

e. For the reasons discussed in note c, the unit box is not centered at the exact prediction for this game and theory. Rather it is the unit box which is (1)
centered at an observable frequency combination and (2) has the highest probability of occurrence when all subjects randomly and independently choose
whether or not to play their designated strategy using the probabilities predicted by the relevant theory.

f. For the same reasons as were discussed in note b, the center of the unit box in this case is “offset” from the “boundary” value predicted by the theory.
g. The theory in this case predicts a range of possible frequency combinations including the frequencies predicted by the minimax hypothesis, as shown
in the table.

e
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Table 1A.4

For selected row and column strategies from each game, showing frequencies with which in-
dividual groups of subjects used these strategies in individual plays of the game. The strat-
egies considered are those marked with an asterisk in figure 1.3 and table 1A.2. Since there
were six row and six column players in each group, only frequencies which are a multiple of
one sixth can be observed in a single play. The possible frequencies for row players are indi-
cated at the top of the table for each game and the frequencies for column players are shown
in the first column of the table. For each combination of row and column frequencies, the
entries in the table indicate the fraction of the total number of plays in all the experiments
where that particular combination was observed. For each game, the numbers in parentheses
indicate the probabilities that each combination of row and column frequencies will occur
when all players choose strategies randomly with an equal probability of choice assigned to
each strategy. For games 1 through 4, the maximin row and column frequencies are indi-
cated with an asterisk. The boxes in the table surround the nine entries that correspond to
the frequency combinations contained in the best unit box for each game. See the text for a
further discussion of unit-box predictors. An entry of 0.0000 indicates a value less than
0.00005.

Game 1—Fraction of total plays at each combination of frequencies

0 1/6* 2/6 3/6 4/6 5/6 1
1 0.0846 0.1995 0.1590 0.1077 0.0533 0.0144 0.0036
(0.0002) | (0.0015)  (0.0037)  (0.0049) | (0.0037)  (0.0015)  (0.0002)
5/6% 0.0364 0.0959 0.0959 0.0554 0.0251 0.0062 0.0015
(0.0015) | (0.0088)  (0.0220)  (0.0293) | (0.0220)  (0.0088)  (0.0015)
4/6 0.0051 0.0123 0.0154 0.0133 0.0056 0.0031 0.0005
(0.0037) | (0.0220)  (0.0549)  (0.0732) | (0.0549)  (0.0220)  (0.0037)
3/6 0.0005 0.0005 0.0015 0.0005 0.0005 0.0010 0.0010
(0.0049)  (0.0293)  (0.0732)  (0.0977)  (0.0732)  (0.0293)  (0.0049)
2/6 0.0000 0.0000 0.0000 0.0005 0.0000 0.0000 0.0000
(0.0037)  (0.0220)  (0.0549)  (0.0732)  (0.0549)  (0.0220)  (0.0037)
1/6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
(0.0015)  (0.0088)  (0.0220)  (0.0293)  (0.0220)  (0.0088)  (0.0015)
0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
(0.0002)  (0.0015)  (0.0037)  (0.0049)  (0.0037)  (0.0015)  (0.0002)
Game 2—Fraction of total plays at each combination of frequencies
0 1/6 2/6 3/6 4/6 5/6 1*
1* 0.0000 0.0000 0.0021 0.0174 0.0544 0.1723 0.2082
(0.0001)  (0.0004)  (0.0005)  (0.0003) | (0.0001)  (0.0000)  (0.0000)
5/6 0.0000 0.0010 0.0051 0.0236 0.0646 0.1251 0.1128
(0.0014)  (0.0043)  (0.0054)  (0.0036) | (0.0014)  (0.0003)  (0.0000)
4/6 0.0000 0.0000 0.0031 0.0113 0.0359 0.0626 0.0441
(0.0072)  (0.0217)  (0.0271)  (0.0181) | (0.0068)  (0.0014)  (0.0001)
3/6 0.0000 0.0000 0.0031 0.0082 0.0123 0.0174 0.0062
(0.0193)  (0.0578)  (0.0723)  (0.0482)  (0.0181)  (0.0036)  (0.0003)
2/6 0.0000 0.0000 0.0000 0.0010 0.0031 0.0021 0.0010
(0.0289)  (0.0867)  (0.1084)  (0.0723)  (0.0271)  (0.0054)  (0.0005)
1/6 0.0000 0.0000 0.0000 0.0010 0.0010 0.0000 0.0000
(0.0231)  (0.0694)  (0.0867)  (0.0578)  (0.0217)  (0.0043)  (0.0004)
0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
(0.0077)  (0.0231)  (0.0289)  (0.0193)  (0.0072)  (0.0014)  (0.0001)




Table 1A.4
(continued)

Game 3—Fraction of total plays at each combination of frequencies

0 1/6* 2/6 3/6 4/6 516
1 0.0169 0.0164 0.0154 0.0026 0.0015 0.0000
(0.0001)  (0.0004)  (0.0005)  (0.0003)  (0.0001)  (0.0000)
516 0.0421 0.0769 0.0636 0.0190 0.0041 0.0000
(0.0014) (0.0043) (0.0054) (0.0036) (0.0014) (0.0003)
4/6* 0.0713 0.1272 0.0959 0.0292 0.0056 0.0005
(0.0072)  (0.0217)  (0.0271) | (0.0181)  (0.0068)  (0.0014)
3/6 0.0513 0.1118 0.0774 0.0256 0.0056 0.0000
(0.0193)  (0.0578)  (0.0723) | (0.0482)  (0.0181)  (0.0036)
2/6 0.0215 0.0390 0.0318 0.0123 0.0021 0.0000
(0.0289) (0.0867) (0.1084) (0.0723) (0.0271) (0.0054)
1/6 0.0046 0.0092 0.0087 0.0041 0.0010 0.0000
(0.0231)  (0.0694)  (0.0867)  (0.0578)  (0.0217)  (0.0043)
0 0.0015 0.0026 0.0010 0.0005 0.0000 0.0000
(0.0077)  (0.0231)  (0.0289)  (0.0193)  (0.0072)  (0.0014)
Game 4—Fraction of total plays at each combination of frequencies
0 1/6 2/6 3/6 4/6* 5/6
1 0.0046 0.0103 0.0231 0.0503 0.0600 0.0410
(0.0001)  (0.0004)  (0.0005) | (0.0003)  (0.0001)  (0.0000)
5/6 0.0026 0.0154 0.0472 0.0913 0.1097 0.0718
(0.0014)  (0.0043)  (0.0054) | (0.0036)  (0.0014)  (0.0003)
4/6* 0.0036 0.0056 0.0323 0.0831 0.1067 0.0728
(0.0072) (0.0217) (0.0271) (0.0181) (0.0068) (0.0014)
3/6 0.0010 0.0031 0.0108 0.0236 0.0292 0.0226
(0.0193)  (0.0578)  (0.0723)  (0.0482)  (0.0181)  (0.0036)
2/6 0.0005 0.0005 0.0000 0.0056 0.0072 0.0046
(0.0289)  (0.0867)  (0.1084)  (0.0723)  (0.0271)  (0.0054)
1/6 0.0005 0.0000 0.0005 0.0000 0.0000 0.0000
(0.0231) (0.0694) (0.0867) (0.0578) (0.0217) (0.0043)
0 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000
(0.0077)  (0.0231)  (0.0289)  (0.0193)  (0.0072)  (0.0014)
Game 5—Fraction of total plays at each combination of frequencies
0 1/6 2/6 3/6 4/6 5/6
1 0.0015 0.0031 0.0046 0.0056 0.0015 0.0015
(0.0000)  (0.0001)  (0.0001)  (0.0000)  (0.0000)  (0.0000)
5/6 0.0062 0.0159 0.0221 0.0251 0.0092 0.0026
(0.0008)  (0.0016)  (0.0013)  (0.0006)  (0.0001)  (0.0000)
4/6 0.0072 0.0262 0.0703 0.0621 0.0379 0.0072
(0.0059)  (0.0117) | (0.0098)  (0.0043)  (0.0011) | (0.0001)
3/6 0.0128 0.0421 0.0964 0.0949 0.0508 0.0215
(0.0235)  (0.0469) | (0.0391)  (0.0174)  (0.0043) | (0.0006)
2/6 0.0067 0.0359 0.0744 0.0821 0.0436 0.0123
(0.0528)  (0.1056) | (0.0880)  (0.0391)  (0.0098) | (0.0013)
1/6 0.0036 0.0128 0.0308 0.0303 0.0149 0.0062
(0.0634) (0.1267) (0.1056) (0.0469) (0.0117) (0.0016)
0 0.0005 0.0021 0.0056 0.0056 0.0010 0.0000
(0.0317)  (0.0634)  (0.0528)  (0.0235)  (0.0059)  (0.0008)

1
0.0000
(0.0000)
0.0000
(0.0000)
0.0000
(0.0001)
0.0000
(0.0003)
0.0000
(0.0005)
0.0000
(0.0004)
0.0000
(0.0001)

1
0.0149
(0.0000)
0.0164
(0.0000)

0.0185
(0.0001)

0.0082
(0.0003)

0.0005
(0.0005)

0.0000
(0.0004)

0.0000
(0.0001)

1
0.0000
(0.0000)
0.0005
(0.0000)

0.0000
(0.0000)
0.0026
(0.0000)
0.0005
(0.0001)
0.0000
(0.0001)
0.0000
(0.0000)




Table 1A.5

Plays of the games where there were net changes in the frequencies with which selected row or column strategies were used from that play to the next.
The strategies considered are those marked with an asterisk in figure 1.3 and table 1A.2. For these plays, the table describes how the fraction of changes
that were positive depends on the opponents’ play. The heading “It. mm.” indicates a frequency “‘less than the maximin frequency” and similarly for the
other headings. See the text for further discussion. The first part of the table reports data pooled over all the experiments. The first number in each entry
is the number of plays in that category with a nonzero net change. The second number is the fraction of those net changes that were positive. The num-
bers in parentheses are the 95 percent confidence interval for the probability that a net change is positive under the assumption that this probability is
constant across plays in a given category. The second part of the table reports the data separately for each experiment. The number in parentheses in
each entry is the total number of plays in the indicated category and experiment where there was a nonzero net change from that play to the next. The
other number is the fraction of these net changes that were positive. As discussed further in the text, the categories of plays where the designated strat-
egies are strict best replies are marked with a } in the second part of the table. The corresponding fractions of positive net changes are marked with a { in
the first part of the table.

Fractions of nonzero net changes that were positive, pooled over all the experiments

Row players: Frequency of opponents’ play Column players: Frequency of opponents’ play

It. mm. eq. mm. gt. mm. It. mm. eq. mm. gt. mm.
Game 1 76, 0.6316 381, 0.5774 673, 0.4309 96, 0.4583 206, 0.4757 401, 0.5511
(0.5193, 0.7312) (0.5273, 0.6260) (0.3940, 0.4686) (0.3622, 0.5577) (0.4086, 0.5437) (0.5022, 0.5991)
Game 3 486, 0.5391 390, 0.5205 298, 0.3993 268, 0.4291 467, 0.4882 4717, 0.5577
(0.4946, 0.5829) (0.4710, 0.5697) (0.3453, 0.4559) (0.3713, 0.4890) (0.4432, 0.5335) (0.5128, 0.6016)
Game 4 166, 0.2831 396, 0.4116 646, 0.6130 456, 0.6162 363, 0.4408 297, 0.4242
(0.2201, 0.3560) (0.3642, 0.4607) (0.5749, 0.6498) (0.5708, 0.6597) (0.3906, 0.4922) (0.3694, 0.4811)
Game 5° 150, 0.3733 772, 0.4650 380, 0.6421 216, 0.6481 793, 0.5132 272, 0.3125

(0.3000, 0.4530)

(0.4301, 0.5003)

(0.5927, 0.6887)

(0.5824, 0.7087)

(0.4785, 0.5479)

(0.2604, 0.3699)
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Table 1A.5
(continued)

Fractions of nonzero net changes that were positive— Each experiment

Experiment

Frequency of

opponents’ play 1 2 3 4 5 6 7 8 9 10 11 12 13

Game 1—Row players

It. mm: 0.5 0.5 0.5455 0.6 1.0 0.0 0.6667  0.6364  0.75 1.0 0.7143  — 0.5
2 © an (5 0 (0] 3 an (20 0 )] ©) (10

eq. mm. 0.72 0.5614  0.5294  0.6786  0.65 0.5625  0.5455  0.6087  0.5106 0.7 0.4516  0.6364  0.5833
(25) (57) (34) (28) (20) (16) (44) (23) (47) (10) @31) (22) (24)

gt. mm. 0.4118  0.4043 03714  0.4063  0.4068  0.45 0.4844  0.4364 03243 04524 0.5098 04 0.4754
(68) 47) 35) (64) (59) (60) (64) (55) 37) (42) (51) (30) (61)

Game 1—Column players

It. mm. 0.4 — 0.375 0.45 0.5 0.5 0.0 0.5 0.5455  0.3333 0.5 0.0 0.3333
(5 (©) ®) (20) (10) (22 0 (10) an 3 2 (0] 3

eq. mm. 0.4737  0.4286 0.5 0.5833  0.4545  0.5263 0.5 0.4 0.3478 0.5 0.4118 0.5 0.5714
19) (M (34 (12) ) 19) (©) (10) (23) (14 an (20) 14

gt. mm: 0.5476 ~ 0.5278  0.5714 0.6 0.5294 0.5 0.5313  0.5652  0.6111 0.6 0.5682  0.625 0.5
(42) (36) (35) (10 (34 (20) (64 (23) (36) (15) (44 ®) (34

Game 3—Row players

It. mm: 0.6129  0.475 0.4915  0.6957 0.6667 04516  0.5417 0.5417 0.5435  0.5625 05111 0.5 0.5385
@31 (40) (59) (23) 21 @31 (48) (24) (46) (64) (45) (28) (26)

eq. mm. 0.4667  0.6071  0.6071  0.5143  0.5429 0.5 0.4091  0.5294  0.3889  0.45 0.5429  0.5455  0.5556
(30) (28) (28) (395) (35) (42) (22) (17) (18) (20) 395) (44) (36)

gt. mm. 0.3333  0.4167 04167  0.375 0.3846  0.4483  0.3333  0.5152 0.4286 0.0 0.3636  0.3704 0.5
(2] (12 (12) 24 (52) (29 (18) (33) (14 (6 (22 27 (22
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Game 3—Column players

It. mm.

eq. mm.

gt. mm.

0.5652
(23)
0.4483
29
0.5641
(39

Game 4—Row players

It. mm.

eq. mm.

gt. mm.

0.1818
()]
0.3333
(24)
0.6889
45)

Game 4—Column players

It. mm:

eq. mm.

gt. mm.

0.5926
27
0.3469
(49)
0.75
(12)

0.4643
(28)
0.3953
(43)
0.5946
(37

0.5
(10)
0.3721
43)
0.5833
(48)

0.5362
(69)
0.2
(10)
0.5714
Q)

0.3529
(17)
0.5455
(22)
0.6190
(42)

0.2609
(23)
0.4194
(3D
0.8
(30)

0.5455
(33)
0.5667
(30)
0.3889
(36)

0.4516
(31
0.5349
(43)
0.4848
(33)

0.4444
)
0.4222
45)
0.6923
(26)

0.8125
(16)
0.28
(25)
0.5556
(36)

0.4828
29)
0.4872
(39)
0.4359
(39)

0.5
(6)
0.3913
(23)
0.5152
(66)

0.6
(30)
0.4706
(34)
0.4074
@n

0.2941
(17)
0.4688
(32)
0.6364
(33)

0.4
(10)
0.4828
29
0.5246
(61)

0.9167
(12)
0.45
(20)
0.375
(16)

0.5
(20)
0.4878
(41)
0.5217
(46)

0.0

©)
0.3103
29
0.6316
7

0.5345
(58)
0.56
(25)
0.3333
©®

0.375
(16)
0.5588
(34)
0.5357
(28)

0.35
(20)
0.5161
€2))
0.6
(50)

0.6970
(33)
0.3913
23)
0.36
25

0.45
(20)
0.4571
(35)
0.6522
(23)

0.2
(15)
0.4054
(37)
0.7045
(44)

0.6538
(26)
0.5517
(29)
0.3889
(36)

0.3529
17
0.5789
(38)
0.5
(48)

0.1875
(16)
0.4615
(26)
0.5636
(55

0.6667
(36)
0.4667
(30)
0.3704
@7

0.5455
(11)
0.4242
(33)
0.5333
(45)

0.2857
Q)
0.3333
24
0.5806
(62)

0.7083
24
0.6296
27
0.3333
24

0.3333
(18)
0.4545
(33)
0.6667
42)

0.2353
(17)
0.4688
(32)
0.6818
(44)

0.6563
(32)
0.4194
(€20)
0.4516
(€2))

0.3333
@n
0.5111
(45)
0.5455
22

0.2353
17)
0.4091
22)
0.6034
(58)

0.5833
(60)
0.3
(30)
0.3636
)

wnuqiinb3 o3 Suman

69



Table 1A.5

(continued)
Experiment

Frequency of

opponents’ play 1 2 3 4 5 6 7 8 9 10 11 12 13

Game 5—Row players*

It. mm. 0.4444 03636 0.5 0.1667  0.4211 04375 0.3333  0.3333 0.25 0.3889  0.4444 04444  0.375
® ) 6) (12) 19) (16) 15) (6) (12) (18) ® ® ®)

eq. mm. 0.3770  0.4655 0.4 0.4894 0.5 0.4559  0.5526  0.5263 04237 0.5 0.3651 0.5 0.5
(61) (58) (45) (47) (64) (68) (38) (57) (59) (70) (63) (62) (80)

gt. mm: 0.6923  0.6875  0.5556  0.7222  0.52 0.6552  0.5938  0.5435 0.7667 0.8571  0.8077  0.6061  0.5758

(26) (16) (45) (18) (25) (29) (32) (46) (30) 21) (26) (33) (33)

a

Game 5—Column players

It. mm: 0.7143  0.5455 0.7083 0.9091 0.5625 0.5 0.5 0.6923 0.6 0.8095 0.7857 0.5 0.6
eh Ay ey an  G) @y a4 1) a0 eh 4 © (19

eq. mm. 0.4603  0.5373 0.4444  0.5455 0.5079  0.5143 0.4607  0.4902 0.54 0.5294 0.5 0.5806  0.6122
©) ) @) (5 ®) ) @) Gh ) ) 60 (62 (@)

gt. mm. 0.3529  0.3333 0.2727  0.15 0.5 0.2667  0.4091 0.25 0.3529  0.1923 0.36 0.3214  0.3103

17) (36) (11) (20) (14) (15) (22) (12) 17) (26) (25) (28) (29)

a. The exact maximin frequencies for game 5 are not a multiple of 1/6 and so would never be observed in a single play of the game. For game 5, the
observed frequency with which opponents used their designated strategy was classified as “equal to the maximin frequency” if that frequency was either
2/6 or 3/6. The exact maximin frequency for both row and column players is 0.4.
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Getting to Equilibrium 61

Table 1A.6

For the row and column players of each real game, the estimated coefficients of logit models
on the probability that an individual subject switches from the strategy he or she used in the
previous play of the game to the two variables whose moving averages were displayed
graphically for each subject during the game. The variable own-plot refers to the moving av-
erage of the subject’s own payofs in the preceding six plays. The variable other-plot refers to
the median of the average payoffs of the other players of the same type in the previous six
plays. The models were estimated via maximum likelihood, and the asymptotic standard
errors of the coefficients are reported in parentheses. To estimate each model, the data were
pooled over all the plays of the indicated game by the 78 subjects who were the indicated
type of player in that game. See the text for further discussion.

Row players Column players
Game Own-plot Other-plot Own-plot Other-plot
1 —0.7458 —0.4529 —1.2003 —0.1261
(0.0592) (0.0911) (0.0662) (0.1557)
2 —2.0522 —0.6299 —1.5492 1.0573
(0.0729) (0.1400) (0.0960) (0.1703)
3 —0.6433 —0.1825 —0.5001 0.1061
(0.0362) (0.0699) (0.0369) (0.0683)
4 —1.3190 —0.0798 —1.3172 —0.2924
(0.0658) (0.1067) (0.0700) (0.1271)
5 —0.7894 0.1278 —0.7878 —0.0272
(0.0456) (0.0737) (0.0479) (0.0772)
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2 Which Equilibrium?

We have just looked at an experiment that shows that subjects can learn
to play Nash equilibria in games, even when the equilibria call for the use
of mixed strategies. But the games of the previous chapter each have only
one Nash equilibrium, and so the equilibrium selection problem doesn’t
arise.’

However, one can’t study bargaining games without facing up to the
equilibrium selection problem. This is part of the reason that bargaining
games present such a challenging case for game theory. How will people
behave when there are many Nash equilibria that they might learn to

play?
Focal Points

Thomas Schelling (1960) argued that societies develop focal points to
solve such equilibrium selection problems in the games of everyday life.
For example, the Driving Game we play every morning on our way to
work has three Nash equilibria: we can all drive on the left, we can all
drive on the right, or we can all choose the side of the road on which to
drive at random. The first equilibrium is focal in Britain and the second in
the United States. When some Turks told me that the third equilibrium
was focal in their country, I thought it was a joke, but I take the idea
more seriously now that I have visited Turkey myself.

I think the bargaining experiment reported in this chapter is best seen
as a representation in minature of the manner in which different focal
points can evolve in different societies to solve the same equilibrium selec-
tion problem. We found that all our groups of experimental subjects
ended up playing close to one of the game’s efficient Nash equilibria but
that different groups ended up near different equilibria. As usual in my
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later experiments, the feedback the subjects received was much richer
than in most comparable experiments.

What led some groups to one equilibrium and others to another? My
guess is that the effect is partly random and partly a function of where
the group started. But when the subjects were debriefed, they didn’t see
it like this. They were willing to say that the focal point that had evolved
within their group of experimental subjects was close to the “fair” solu-
tion to the bargaining problem they were set. It can therefore take only
an hour or so for cultural evolution to create a new fairness norm in a
small minisociety, even when the amount of interaction within the mini-
society is severely restricted.

I should hasten to qualify this last remark by observing that to say that
new fairness norms can be created in the laboratory for restricted pur-
poses isn’t the same as saying that we can easily persuade people to aban-
don the fairness criteria that they are accustomed to use in regulating
their everyday lives. If our bargaining problem had been framed less
sparsely, we would doubtless have triggered whatever focal point was
conventional for the social environment with which the trigger is nor-
mally associated. One might, for example, adopt a frame in which the
first player is said to be an employer and the second a worker in a wage
negotiation. Or one could frame the problem as that of sharing a sum of
money, so that it is obvious what counts as a fifty:fifty split. I would still
expect to see eventual divergence from the conventional focal point if this
isn’t a Nash equilibrium of the bargaining game being played, but who
knows how long that might take?

Conditioning

Although T think the main lesson to be learned from the experiment
reported in this chapter is that the Nash equilibrium selected in a game
is likely to be partly a function of historical events or accidents that occur
while or before or a group of players are finding their way to an equilib-
rium, this wasn’t its initial aim at all. All the efficient outcomes of our
bargaining game are approximate Nash equilibria; the extra money a
player could gain by deviating is so small that it would normally be
regarded as negligible. I thought that we should therefore be able to treat
all the efficient outcomes of the bargaining game as effective Nash equi-
libria. The idea was then to see how easy it would be to condition players
on whichever of four focal points that we chose beforehand.
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But it turns out not to be so easy to educate subjects as Amos Tversky
liked to claim. Even though the gains were negligible and the movements
of the cursor necessary to achieve the gains almost imperceptible on their
screens, subjects nevertheless moved away from anything that wasn’t an
exact Nash equilibrium. Our attempt to persuade some groups to make
the outcome that utilitarians hold to be fair into a focal point cut partic-
ularly little ice. Nor was our attempt to focalize Rawls’s theory of justice
with other groups very much more successful. Only a small number of
trials was necessary to see subjects begining to diverge from these widely
canvased fairness norms. Although both norms called for the play of
strategies that were very nearly an equilibrium, all groups eventually
moved away to one or other of the exact equilibria—a result I found so
unexpected that Joe Swierzbinski had to spend half an hour repeatedly
showing me diagrams of the exact Nash equilibria and the final experi-
mental outcomes before I was able to grasp that they were two different
diagrams.

Nash’'s Demand Game

The bargaining game chosen for the experiment was John Nash’s (1950)
classic Demand Game. Each player makes a demand. If the two demands
are compatible with what is available, both players receive their demands;
otherwise, both get nothing. This toy game strips the bargaining process
to an irreducible minimum, and so exposes the equilibrium selection
problem that lies at its root. All efficient ways of dividing the surplus cor-
respond to Nash equilibria; if each player demands his or her share in any
efficient division of the surplus, neither player can gain from unilaterally
demanding more, since the new joint demand will be infeasible.

Nash (1950) proposed solving the severe equilibrium selection problem
that arises in his Demand Game by inventing what later came to be known
as trembles. He introduced some doubt about whether a pair of demands
close to the boundary of the feasible set would be counted as feasible. In
this smoothed Nash Demand Game, all Nash equilibria converge on the
Nash bargaining solution as the size of the tremble is allowed to become
vanishingly small. We included Nash’s trembles in the experiment more
to counter possible criticism from theorists than because we thought they
would be important behaviorally, but in this we were mistaken.

For those who are interested, here is a simple version of Nash’s argu-
ment. In the smoothed Nash Demand Game the players’ reaction curves
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Reaction curves

Nash equilibrium

0

Figure 2.1
Reaction curves in Nash’s smoothed Demand Game

look like those of figure 2.1. Under mild conditions, the curves cross only
once, which implies that there is only one Nash equilibrium (Binmore
1987).

If p(x, y) is the probability that the pair of demands (x, y) is counted
as feasible, then one player wants to maximize xp(x, y) and the other
yp(x, y). They will simultaneously achieve their aims—and hence be at
the only Nash equilibrium of the game—if they choose x and y so that
the product xyp(x, y) is maximized.

As we allow the uncertain world represented by the probability func-
tion p to collapse onto certainty, the pair of demands (x, y) that maxi-
mizes xyp(x, y) converges on the pair of demands that maximizes xy in
the certain world. But one of many defining criteria for the Nash bargain-
ing solution is that it maximizes the Nash product xy. It follows that the
unique Nash equilibrium in the smoothed Demand Game approximates
the Nash bargaining solution when the level of uncertainty is sufficiently
small.

One can’t capture the mathematical elegance of this argument in a
computerized version of the smoothed Nash Demand Game, since the
players don’t have a continuous range of demands available. The reaction
curves of figure 2.1 then become finite sets of points, which can’t easily be
made to intersect in a single point as in Nash’s model. In our case they
overlay each other for some of their length. Each of the many points
they have in common is an exact Nash equilibrium that lies close to one
of the efficient outcomes of the unsmoothed bargaining game. However,
it turned out to be fortunate that most efficient outcomes of the
unsmoothed game aren’t close to such an exact Nash equilibrium.



Focal Points and Bargaining

Ken Binmore, Joe Swierzbinski, Steven Hsu, and Chris Proulx

Early mankind soon reached the grand generalization that everything has its
price, everything can be paid for. Here we have the oldest and most naive moral
canon of justice, of all “fair play,” “good will,” and “objectivity.” Justice at this
level is good will operating among men of roughly equal power, their readiness to
come to terms with one another, to strike a compromise. . .. (Friedrich Nietzsche,
The Generalogy of Morals)

2.1 Introduction

If T wait in the coffee shop for my wife while she searches for me in the
car park, we are experiencing a coordination failure. Schelling’s (1960)
well-known essay on coordination stresses the importance of focal points
in such a context. The side of the road on which people drive is the stan-
dard example. Before any legislation appeared, it became focal to drive
on the left in England, but to drive on the right in France.

Although the idea of a focal point is of great practical importance, the
manner in which focal points become established and survive after their
establishment remains a mystery. No consensus even exists about how
this mystery should be investigated. Some authors emphasize rationality
considerations to the exclusion of all else. However, it seems doubtful
that the equilibrium selection problem of game theory is likely to be
solvable by a technique that ignores what may be common knowledge
among the players about the social norms of their culture. At the other
extreme are authors who argue that social norms are so important that

We are grateful to the National Science Foundation for funding the experiments reported in
this paper under Grant NSF-SES-8821521. We also gratefully acknowledge funding from
the University of Michigan to set up the Michigan Economics Laboratory, where the experi-
ments were conducted. We would also like to thank Richard Stallman and the Free Software
Foundation for developing EMACS, Luke Tierney for developing LISPSTAT, and Hal
Varian for showing us how to use both.
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strategic issues can be neglected altogether. This view tends to be
expressed most forcefully when the coordination problem is framed in a
bargaining context. Fairness norms then enter the picture—and there is
much evidence that such norms often do take precedence over strategic
considerations in determining the behavior of subjects in certain types of
laboratory experiments.

The story is further confused by the fact that those who emphasize ra-
tionality do not argue that real people are likely to find their way to what
rationality supposedly recommends simply by thinking about the prob-
lem. Where pregame, cheap-talk sessions are not possible, the claim is
that people will be able to find their way to the rational solution by trial-
and-error if given long enough to gain experience of the game’s strategic
realities and the behavior of other members of the game-playing popula-
tion. Nor are the views of those who emphasize social norms free from
complication. They argue that several distinct social norms may compete
for attention in certain contexts. So how do people decide which social
norm should be honored?

This paper seeks to investigate such questions experimentally, using an
archetypal example of a focal point problem. The example studied is the
Nash (1950) bargaining problem in which two players can achieve any
point x in a given feasible set X provided that they can reach agreement.
If they cannot agree, the result is a fixed disagreement point ¢ in the set
X. Although the paper can be seen as a contribution to the expanding lit-
erature on experimental bargaining games, its potential applications to
bargaining theory were a secondary consideration in our choosing the
Nash bargaining problem for study. The primary reasons are twofold:

1. The literature contains numerous rival candidates as focal points in the
Nash bargaining problem. We consider the Nash (1950) bargaining solu-
tion, the Kalai-Smorodinsky (1975) bargaining solution, the utilitarian
solution associated with Harsanyi (1977) and the equal increments solu-
tion? associated with Rawls (1972).

2. Unlike the situations studied in the related work of Cooper et al. (1991)
and Van Huyck et al. (1991a,b), the Nash bargaining problem has a con-
tinuous strategy space. In a discrete problem, it may be hard to destabilize
an established focal point. A population, for example, cannot gradually
drift from driving on the left to driving on the right.

2. The Pareto efficient point x € X with x; — & = x; — &,.
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In order to study the Nash bargaining problem, it is necessary to say
what the players need to do to reach an agreement. The most primitive
mechanism is represented by the Nash (1950) demand game, and so we
use this. In our experiment a population of subjects plays the same Nash
demand game repeatedly, half the time as player I and half the time as
player II, switching partners unpredictably after each play. At each play
a subject currently in the role of player I makes a demand x; and a sub-
ject in the role of player II makes a demand x,. Each subject makes his
demand in ignorance of the current demand of the other subject. (How-
ever, in our experiment much information about past plays of the popu-
lation as a whole was made available using a graphic display to be
described later.) If the point x = (x,x,) of a partnered pair of subjects
proves to be feasible, each receives his or her demand. Otherwise, each
receives the disagreement payoff. In our case this was always zero (i.e.,
£=0).

Since conventional wisdom holds that the outcome in such a game
depends on the players’ attitudes toward risk, it is important to control
for risk aversion. The standard technique is to pay subjects off in lottery
tickets. In our case the subjects had the opportunity to win $10 with a
probability equal to the number of lottery tickets they had accumulated
divided by 100. Rational agents would then be induced to behave as
though they were risk neutral. To further impress the subjects with the
importance of risk, lotteries were also introduced into each play of
the game by fuzzing the boundary of the feasible set X. That is to say,
the boundary of X was expanded into a narrow strip. The feasibility of
pairs of demands falling in this strip was uncertain. If, for example, the
pair of demands fell on an 80 percent contour running through the strip,
it would be found feasible by the computer with probability 0.8.

We had a secondary motive in fuzzing the boundary, which needs to be
mentioned at an early stage because the fuzzing was instrumental in gen-
erating results that took us by surprise. This was a desire to be faithful to
Nash’s (1950) original conception. He transferred his attention from the
original Nash Demand Game to a version with a fuzzed or smoothed
boundary because, without the smoothing, any individually rational,
Pareto efficient x in X is a Nash equilibrium for the Nash demand game.
With the smoothing, all Nash equilibria approximate the Nash bargain-
ing solution. (See papers 4 and 8 of Binmore and Dasgupta 1987.)

To see why such smoothing might help in responding to a comment on
the possible results of the experiment, consider what conclusions might
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be drawn if the subjects were to coordinate on the utilitarian solution.
Harsanyi (1977) might argue that such subjects were motivated by moral
considerations. A welfare economist might argue that the explanation is
that the utilitarian solution is Pareto efficient for the population as a
whole over the course of the experiment. However, a game theorist of
the variety that believes that thinking alone is adequate to get subjects im-
mediately to the “right” Nash equilibrium would not be willing to admit
that such normative considerations were necessarily relevant if the bound-
ary of X were not fuzzed. He could simply point to the fact that the
utilitarian solution is a Nash equilibrium like every other individually
rational, Pareto efficient outcome of X.

Although we prepared defenses in advance against certain potential
criticisms by paying subjects off in lottery tickets (rather than directly in
money) and by fuzzing the boundary of the feasible set, we did not seri-
ously anticipate that these refinements would have any impact on our
results. Our guess was that subjects are effectively risk neutral already
with respect to the small sums of money we are able to pay. Moreover,
after the fuzzing of the boundary of the feasible set, all the focal points
we considered were within 0.1 of an e-equilibrium with ¢ = 0.1. It did
not occur to us at the outset that subjects would be interested in discrim-
inating at the 0.1 level, since 0.1 of a lottery ticket was worth only about
a dime. However, our guess about the level at which subjects would
choose to discriminate turned out to be badly wrong, and the results are
perhaps more interesting than would have been the case if we had guessed
right. To see why, it is necessary to continue outlining the design of the
experiment.

After a hands-on interactive session at their computer to learn the me-
chanics of the program, the subjects first played ten “practice’” games
“against the computer.” Both when playing the computer and when play-
ing real opponents, subjects sometimes occupied the role of player I and
sometimes the role of player II. Throughout the experiment, the subjects
were shown the last demands made by all of their potential partners, both
when the potential partner was player I and when he or she was player II.
In the ““practice games” this information display was used in a (success-
ful) attempt to condition the subjects to begin the games against real
opponents at one of the four “focal points™ that we chose to study. For
example, in the treatment designed to study the equal increments solution
as a possible focal point, the simulated potential partners that the subjects
faced during the ten “practice games’ were designed to converge slowly
from a fixed initial configuration toward the equal increments solution.
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After being conditioned to begin by making demands at or near the
equal increments solution, the question was then whether the subjects
would continue to use this focal point once play against real opponents
began.

We would not have been surprised to find that all the focal points we
studied were stable. We thought the utilitarian solution might be particu-
larly attractive. However, this proved to be the hardest to condition for in
our main experiment. But the chief conclusion to which we were led by
the data swept aside our initial expectations. We found a very strong ten-
dency of the median subject to optimize relentlessly. Indeed, the extent of
the optimization is almost absurd, since the subjects seem to have been
sensitive to payoff differences right down to 0.01 of a lottery ticket
(about a penny). It is important to understand that the subjects were
provided with graphic aids that made this possible for them to do reason-
ably efficiently if they so chose. In particular, they were provided with a
display that allowed them to zero-in on the demand that would maximize
their expected number of lottery tickets in the current game if their poten-
tial partners were to behave as they did the last time that they occupied
their current role. Nevertheless, we were taken aback to find it necessary
to compute the exact Nash equilibria of the discrete game that the digital
character of computer technology made it necessary to present to the sub-
jects in place of the continuous version that we had in mind as our basic
model.

In our experiment this required looking at a 100 x 50 payoff matrix in
which each player’s pure strategies consist of all possible locations for the
cursor that he or she used in specifying what demand to make. The cursor
moved in steps of 0.1 of a lottery ticket. Each lottery ticket increases the
probability of winning $10 by 0.01. Thus 0.1 of a lottery ticket corre-
sponds to about one dime.

Figure 2.2 is intended to illustrate the main conclusions (case 1)
reported in this paper. The region shown represents the feasible set X in
each repetition of the Nash demand game. (The boundary shown is the
100 percent probability contour.) Coordinates are given as numbers of
lottery tickets. The equal increments solution, the Kalai-Smorodinsky so-
lution, the Nash bargaining solution and the utilitarian solution are indi-
cated by the letters £, K, N, and U respectively. The box contains all
Nash equilibria of the discrete game. (Any Nash equilibrium of the con-
tinuous version approximates N.)

The arrows in figure 2.2 do not indicate trajectories. Each of the 16
sets of arrows corresponds to a different group of 12 subjects and
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Summary of results in case 1

summarizes their experience by linking three points. Each point is a pair
of median® demands. The x-coordinate is the median demand of players
I. The y-coordinate is the median demand of players II. The three stages
of the experiment at which these numbers are reported in the figure are:

1. At the very beginning—the first and second practice games before any
experience had been gained.*

3. The median of a set of numbers with an even number of elements is the mean of the two
middle numbers.

4. The computer updated its display every second play.
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(continued)

2. Immediately after the practice games—the 11th and 12th plays that
followed the 10 conditioning practice games.

3. At the very end—the 49th and 50th plays, after 10 practice games and
40 real games.

Three preliminary conclusions are listed below:

« Whatever social norms the subjects may bring into the laboratory are
easily erasable in the circumstances of the experiment. The subjects can
be conditioned to begin playing for real close to any of the four focal
points E, K, N, or U.
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+ The focal points £ and U are not stable.

« The explanation that groups of subjects converge on an exact Nash
equilibrium of the discrete game that they actually played fits the data
very well.

It is natural to ask whether the Kalai-Smorodinsky solution K would
have been stable if it had not been included in the Nash equilibrium box.
(One cannot, of course, exclude the Nash bargaining solution from the
box.) One might also ask how the subjects would perform if not assisted
with such a helpful graphic display. It is also interesting to know how the
subjects responded to questions about “fairness’ after playing the game.

The first question is not easily answered because it is difficult to adapt
our experimental design to separate the Kalai-Smorodinsky solution
and the Nash bargaining solution adequately. The extent to which our
graphic display was essential to the results was explored in case 2. Case
1E was modified so that the subjects were deprived of expected utility in-
formation in the graphic display. (Case 2 was otherwise identical to case
1E.) Perhaps surprisingly, the subjects’ behavior was not very different
from that when the expected utility information was provided. Even the
amount of variance in the data was only slightly higher. However, we
only gathered data on this issue in the case when subjects were condi-
tioned on the equal increments solution.

Finally, the median of the claims reported as fair by each set of subjects
after the experiment turned out to be closely correlated with the median
of the claims actually made at the end of the experiment in which the sub-
jects had participated. Very similar results were reported in Binmore et al.
(1991). Perhaps we are therefore learning something about the origin of
“fairness” norms.

2.2 Theory

This section begins by describing the ideas from cooperative bargaining
theory used to locate the focal points in the experiment. Roth (1979) dis-
cusses the properties and axiomatic characterization of the concepts. The
remainder of the section briefly examines the problem of computing Nash
equilibria in the smoothed Nash Demand Game.

2.2.1 Cooperative Solution Concepts
The unsmoothed feasible set X shown in figure 2.3 is the convex hull
of the points (0,0), (10,0), (0,5), (4.1,4.1), (6.8,3.4), (8.4,2.9), and
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Feasible set, focal points, the exact Nash equilibrium box, ¢-equilibria of the discrete game
with ¢ = 0.1, and initial robot claims

(9.9,2.1). (In the smoothed case a belt of fuzz surrounds X as described
in section 2.2.2 and section 2.3.) The shape of X was determined by the
need to separate the focal points £, K, N, and U from each other. These
four focal points are denoted by small boxes and labeled by letter in fig-
ures 2.2, 2.3, and 2.5. The disagreement point ¢ is always (0, 0).

Equal Increments Solution E This is a special case of a proportional bar-
gaining solution as studied by Raiffa (1953), Isbell (1960), Kalai (1977),
Myerson (1977), Roth (1979), Peters (1986), and others. Like the utili-
tarian solution to be considered shortly, the equal increments solution
requires that there be some basis for interpersonal comparison of utilities.
This was provided in our experiments by the fact that the subjects alter-
nated roles and were paid off in equally valuable lottery tickets both as
player I and as player II. This same feature would also seem to justify
restricting attention to cooperative bargaining solutions whose character-
izations include a symmetry axiom. A proportional bargaining solution
places the bargaining outcome at the Pareto efficient point of X that lies
on a line of fixed positive slope through the disagreement point &. The
slope of this line equals the rate at which player I's utils are to be com-
pared with player II’s. With a symmetry axiom this rate is 1, and so the
relevant line through & has slope 1. The equal increments solution there-
fore awards each player the same increment on his or her disagreement
payoff. For the bargaining set described above, the equal increments solu-
tion is E = (4.1,4.1). It is worthwhile noting that E is the point of X that
will be selected by Rawls’s (1972) maximin criterion.
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Kalai-Smorodinsky Solution K Kalai and Smorodinsky (1975) offer this so-
lution as an alternative to the Nash bargaining solution. Neither of these
solutions depends on interpersonal comparisons of utility. The Kalai-
Smorodinsky solution is found in our case by first locating the (infeasible)
“utopian point” (10,5) at which each player gets his or her maximum
possible demand. A straight line is then drawn joining the disagree-
ment point ¢ and the utopian point. The Kalai-Smorodinsky solution
K = (6.8,3.4) is the Pareto efficient point of X on this line.

Nash Bargaining Solution N Nash (1950) characterized N = (8.4,2.9) as
the value of x in X satisfying x > ¢ at which the Nash product
(x1 — &) (x2 — &) is maximized.

Utilitarian Solution U The utilitarian solution U = (9.9,2.1) is the value
of x in X at which x; + x, is maximized. Harsanyi (1977) discusses its
merits.

2.2.2 Nash Equilibria in the Smoothed Game

The details of how the Nash demand game was smoothed for the experi-
ment are now described. The continuous case is described first and then
the discrete approximation.

The Continuous Version The smoothed version of the Nash Demand
Game was obtained by making some of the demand pairs x = (xj, x7)
outside X available with a specified probability p(x). If the polar coordi-
nates of x are (r,6), and (R, #) is on the Pareto boundary of X, then

2
S0 s n

pe=1-{
If r <R, then p(x)=1. If r> (14 y)R, then p(x)=0. Notice that
0p/0r = 0 when r = R, so probabilities change smoothly across the outer-
most 100 percent probability contour. Notice also that the region in
which it is uncertain whether a particular demand pair x is available
shrinks to nothing as y — 0. In the experimental implementation, we
took y = 0.1.

Binmore (1987, p. 65) studies the reaction curves of the two players in
smoothed Demand Games, and confirms Nash’s claim that all nontrivial®

5. Excluding those equilibria when both players make demands that are too large to be fea-
sible whatever the other player may demand.
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Nash equilibria converge on the Nash bargaining solution (under mild
conditions) in the limiting case as y — 0. (The case of a piecewise linear
boundary is not substantially different from the case where X has a
smooth boundary, which can be treated very easily as in Binmore 1987,
p. 159.)

With our choice of the function p, the reaction curves cross at just one
point when y > 0. It follows that there is always a unique Nash equilib-
rium in the continuous case when y > 0. However, since the reaction
curves are trapped in the region where 0 < p < 1, they get very close to-
gether when y becomes small. In fact, given any ¢ > 0, we can make any
individually rational, Pareto efficient x in X an ¢-equilibrium by taking y
sufficiently small.

The Discrete Version We restricted players to making demands in
multiples of 0.1 of a lottery ticket in the belief that we were thereby
approximating the continuous version sufficiently closely for practical
purposes. Figure 2.4 shows the reaction curves for the resulting discrete
game.

Notice that the reaction curves in figure 2.4 are very close together
where things matter. Thus many points along the boundary are
e-equilibria for small values of &. Note also that the reaction curves actu-
ally overlap over some of their range. Thus there are multiple exact Nash
equilibria.

Player I's reaction curve
+ _‘.’l

+

Player 1I's reaction curve

0 2 4 6 8 10
Player I's claim

Figure 2.4
Reaction curves for the discrete game
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The small circles along the boundary in figure 2.3 indicate all the non-
trivial e-equilibria with & = 0.1. There are 83 such equilibria, some of
which are also ¢-equilibria for smaller values of ¢. These ¢-equilibria indi-
cate a long and narrow region of relative stability where the gains from a
unilateral deviation are small. There are 12 nontrivial exact Nash equi-
libria of the Discrete Game: (6.3,3.6), (6.7,3.5), (7.0,3.4), (7.3,3.3),
(7.6,3.2), (8.0,3.1), (8.3,3.0), (8.5,2.9), (8.7,2.8), (8.9,2.7), (9.1,2.6),
and (9.3,2.5). These equilibria are contained in the large rectangular box
shown in figure 2.3 (and also in figures 2.2, 2.5, and 2A.1). This is the
smallest box that contains all 12 equilibria.

Near the boundary of the feasible set, small changes in position can
have large effects. For example, the point (4.7,4.0) is an e-equilibrium
for ¢ = 0.05. However, at the nearby point (4.7,3.8), a type I player can
increase his expected payoff by more than 0.7 lottery tickets by deviating
from the choice 4.7 when his counterpart chooses 3.8.

2.3 Practice

The experiment was conducted at the Michigan Economics Laboratory
using undergraduates of the University of Michigan. The subjects were
recruited directly from classes rather than from a list of participants in
previous experiments. Each subject was given a specific time to appear at
the laboratory® and promised $2 for turning up on time, together with:

... the opportunity to win substantially more depending on how well you bargain
and the circumstances in which you are placed. On average, subjects go away with
between $10 and $30, but you might end up with more or less.

Each experimental session used 12 subjects who sat at networked micro-
computers that were screened from each other. After reading the written
instructions (given as appendix Al), the subjects participated in an inter-
active demonstration with the computer that was designed to familiarize
them with how lottery tickets are converted into money and how
demands are made and converted into lottery tickets.

Recall that after each 10 games a subject who has accumulated N lot-
tery tickets in these games wins $10 with probability N percent. This was
operationalized by showing a “roulette wheel” split into a green winning
region and a red losing region. A small yellow “ball” ran round the cir-
cumference of the wheel making appropriate noises, finally stopping in ei-

6. We did not want friends together in the same session.
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ther the green or the red region. Where it stopped was fixed in advance
only in the two demonstrations of its operation. Otherwise, everything
advertized as random was indeed random.

The feasible set X was shown as a blue region relative to white Carte-
sian coordinate axes against a black background. The fuzzy boundary
was indicated as a halo shading gradually into black. An artist with a
trained eye would perhaps have been able to deduce the probability that
a demand pair in the halo would be accepted from the shade of blue at
that point. Recall that the subjects occupied the role of player I about
half the time.” They were therefore given experience of both roles.

Player I made demands by moving a cursor along the x-axis. The
cursor was accompanied by a vertical line. After practicing moving the
cursor, a subject was shown the payoffs that he or she might receive for
various demands that player II might make:

1. A horizontal line first appeared that intersected player I's vertical line
well inside the blue feasible region. The point of intersection was then
indicated with a flashing white circle. It was explained that each player
gets his or her demand for certain.

2. Next a horizontal line appeared so that the point of intersection lay
well inside the black region. The point of intersection was indicated with
a flashing red circle. It was explained that each player gets nothing for
certain.

3. Finally a horizontal line appeared so that the point of intersection lay
in the fuzzy boundary region on the 80% probability contour. The point
of intersection was indicated with a flashing white circle and the 80 per-
cent probability contour was shown in white. It was explained that both
players would get their demands 80 percent of the time and both players
would get nothing 20 percent of the time.

4. Subjects received similar information after each practice and real
game. After subjects registered their demands, a line was added to each
subject’s display indicating the demand of the opponent with whom he
or she had been matched. If the intersection of the two demands was
well inside the feasible set, the message “These claims are always accept-
able. You both get your claims.” was displayed. If the intersection was
well outside the feasible set, the message “These claims are never accept-
able. You both get nothing.” was shown.

7. They did not strictly alternate roles since then they would not get the chance to play all
other subjects. But they never occupied the same role three times in succession.
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If the intersection fell near the boundary, for example, on the 65 per-
cent contour, then the computer displayed the message “These claims
are acceptable 65 percent of the time. The computer accepts/rejects this
pair of claims.” The word ‘“‘accepts” was shown in white alternating
with the word “rejects” in red, the former remaining on the screen 65 per-
cent of the time. Clicking sounds accompanied the changes in the words
displayed. Eventually the alternation stopped and the subjects were in-
formed whether or not they had received their demands on that particular
occasion.

After practicing in player I’s role, each subject went through a similar ex-
perience in the role of player II. Note that we were anxious not to suggest
any focal points at this stage, and so it was always left to the subject to
choose where to place his or her demand cursor during the demonstra-
tion. Moreover, when the computer simulated an opponent, its placing
of the opponent’s cursor was made a function of the placing of the sub-
ject’s cursor.

The next step in the demonstration was to teach the subjects to under-
stand the information about their potential opponents that would be sup-
plied. They were shown a screen with small yellow squares superimposed
on the blue feasible region. It was explained that each yellow square rep-
resents one of the other subjects, each of whom is equally likely to be
your next opponent. The x-coordinate of the center of a square represents
the demand that the subject represented by that square last made when
occupying the role of player I. The y-coordinate represents the demand
that he or she last made when occupying the role of player II. The
computer moved player I’s cursor back and forward to show how a yel-
low square becomes red as the demand represented by the current placing
of player I’s cursor becomes incompatible with the demand last made by
the subject represented by that square when occupying the role of player
II. When there is only a probability p of the demand pair being incompat-
ible, only a fraction p of a yellow square becomes red. As player I's
cursor is moved, the impression is therefore of a collection of small square
vessels being slowly filled with blood.

Subjects in case 2 were offered only this information about the other
subjects. Subjects in the main experiment (case 1) were offered more in-
formation. After the screens that explained the yellow squares, they were
shown the same screens again with the addition of an “expected utility in-
dicator” on the x-axis. This took the form of a second cursor that showed
the expected number of lottery tickets that player I would receive if he or
she made the demand indicated by the current placing of his or her de-
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mand cursor, and the other subjects made the demands indicated by the
current placing of the yellow squares. The part of the x-axis between
the origin and the second cursor was highlighted in yellow and the part
of the x-axis between the second cursor and the demand cursor was high-
lighted in red. Trials with the equipment indicate that differences in
expected utility as small as 0.025 lottery tickets could be detected with
this indicator.

As the demand cursor moved, the second cursor acting as an “‘expected
utility indicator” moved also. When it reached its maximum point, it left
behind a third stationary cursor (like a max-min thermometer). It was
therefore relatively easy for a subject so minded to locate the demand
that maximized his or her expected utility on the myopic assumption that
other subjects would play as they did last time.

After seeing the screens that described how information is presented to
player I, the subjects were invited to move player I’s demand cursor back
and forward to see how the display changes as the cursor moves. They
were then shown the whole thing over again from player II’s viewpoint.

Those who have no experience of presenting information to subjects
through interactive computer programs may feel that the subjects must
have been overwhelmed by such a complicated demonstration. However,
subjects seemed to have very little difficulty in absorbing the information
offered. They almost never used the facility for calling the assistant to
answer questions, and seldom reported any confusion about what was
expected of them in the questionnaire that they completed after the exper-
iment. Perhaps this is not so surprising, since everybody has experience of
video games requiring the need to absorb far more information much
more quickly.

After the demonstration, each subject played ten ‘“‘practice games”
against “robot opponents.” These practice games were not simply to fa-
miliarize the subjects with the way the games were played. The practice
games were a deliberate attempt to condition the subjects to use one of
the focal points on which the experiment concentrated. In each case the
subjects were told that in the practice games the yellow squares each rep-
resented a robot opponent that they might be playing. The initial distribu-
tion of robot squares is shown by the larger, unlabeled squares in figure
2.3.

Case 1 was separated into four treatments. In case 1E, the robots were
programmed to converge slowly on the equal increments solution, E. In
case 1K, the robots converged on K, in case IN on N, and in case 1U on
U. Case 2 was the same as case 1E but without the “expected utility
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indicator.” Throughout the experiment, subjects’ screens were updated
with information about their potential opponents’ every second game. Note
also that convergence was deliberately not total. The robots converged
only to the extent that they arrived in the neighborhood of the selected
focal point at the time of the last update during the practice games.

At the end of the ten practice games, subjects were shown the roulette
wheel and discovered whether they would win or lose a prize for the prac-
tice session. They were forewarned that the prize for the practice games
would be only $1 instead of the $10 prize that was at stake in each of the
four sets of ten games that were subsequently to be played for real.

In each game, subjects were matched at random with the constraints
that no subject ever played the same opponent twice in succession or
occupied the same player role three times in succession. The interaction
between paired subjects was anonymous. Except for their opponent’s cur-
rent demand, subjects were not given any information about the identify
of their partner.

After each game, subjects were shown a roulette wheel that exhibited
how many lottery tickets they had accumulated since it was last “spun.”
At the end of each set of ten games the roulette wheel was spun for a
prize of $10. Our strong impression is that such “intermittent reinforce-
ment” does indeed quicken the interest of subjects (as psychologists re-
port). However, perhaps more important, it also provides some mildly
entertaining interludes in an experimental session, which although only
half an hour or so long, can easily become very dull if not broken up
into bite-size pieces.

After playing 50 games (10 for practice and 40 for real), the subjects
were told how much money they had won, and asked to complete a brief
computerized questionnaire before leaving. Finally, they were called to be
paid off one by one with the aim of minimizing interaction among sub-
jects as they left the vicinity of the laboratory.

2.4 Results

Recall that case 1 was split into four treatments in which an attempt was
made to condition subjects to use one of the four focal points E, K, N, or
U (by programming their robot opponents to converge on one of these
focal points during the practice games). Only treatment E was used in
case 2, which differed from case 1E only in that no “expected utility indi-
cator” was provided.
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In each case 10 practice games were followed by 40 real games with
pauses to spin a roulette wheel every tenth game. The experiment con-
cluded with a brief computerized questionnaire.

2.41 Case1

Figure 2.2 summarizes the overall picture. The figure shows the median
demand pairs before the subjects had any experience, immediately after
they had been conditioned by the practice games, and at the end of the
experiment. All that need be added to the discussion of figure 2.2 given
in the Introduction is that the data better fits the hypothesis that the sub-
jects were conditioned to play a best response to the robot opponents they
faced rather than to play the focal point itself. This point is discussed fur-
ther in section 2.5 and is, of course, consistent with our overall explana-
tion of the data: namely that the story is one of relentless optimization by
the median player. Table 2A.1 gives the data from which figure 2.2 was
constructed, together with the corresponding data for case 2.

Figure 2A.1a through 2A.1le show some typical trajectories for median
demand pairs over the entire 50 games. For the practice games the trajec-
tories show the median claims of both the subjects and their robot oppo-
nents. In practice games 1, 4, 6, 7, and 9 the subjects made claims as
player 1 while the computer made claims as player II. The roles were
reversed in the other practice games. When interpreting the trajectories,
it is helpful to keep in mind that the x-coordinate of the point labeled
“10” represents robot rather than human claims. Table 2A.1, on the
other hand, reports the median human claims in games 9 and 10. That
is, table 2A.1 reports the median human claims as player I from game 9
and the median human claims as player II from game 10.

Unlike figures 2.2 and 2.5, each point in figure 2A.1 represents the me-
dian demands by type I and type II players in a single game rather than a
pair of games. The numbers in figure 2A.1 indicate the games that corre-
spond to various points. It was not possible to label the same set of games
on each trajectory and keep the figures legible.

From the positions of points 9 and 10 on the trajectories for case 1U,
one can see that the human claims in the last practice games are close to
the utilitarian focal point but the trajectories quickly move away from the
focal point in the first few real games. This pattern, which indicates the
difficulty we encountered in conditioning subjects to use the utilitarian
focal point U, was also observed in the other three trajectories for
case 1U. (One could also turn to table 2A.1 and, for each treatment, and
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compare the median claims made by player I in games 9 and 10 with the
median type I claims made in games 11 and 12.)

The extent of the variation in individual claims can also be assessed
using tables 2A.1 and 2A.3. The variation indicates that subjects did not
always use the “expected utility indicator’” with any precision, if at all.
Such variation in behavior should not be dismissed as mere ‘“‘noise.”
Computer simulations of myopic adjustment that we conducted before
experimenting with real subjects exhibited much slower movement along
the boundary away from a ““focal point” than was observed in the exper-
iment. We believe that the slow convergence of the simulated claims was
due to the absence of variation in the simulation.

Other points that can be checked by examining table 2A.1 are the ex-
tent to which the subjects within each population group finally converged
on the same claim and the number of games required for the median
claims in each experiment to converge. In each experiment there is little
or no difference between the median of the claims in the last two games
and the median of the claims in the last ten games. That is to say, the me-
dian claims had already converged by the 41st game.

242 Case2

This was an attempt to see how important the “expected utility indicator”
is for the conclusions of case 1. It was replication of case 1E without the
expected utility indicator. Figure 2.5 is the equivalent of figure 2.2 for
case 2. The relevant data appears in table 2A.1. Figure 2A.1f shows a
typical trajectory.

Type
1 3
claims

2 4

1 T T T T T T T 1
2 4 6 8 10
Type | claims

Figure 2.5
Summary of results in case 2
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The results are broadly similar to those reported in case 1E. This came
as yet another surprise. How did the subjects manage to behave as though
they were optimizing when deprived of the means to do so with the accu-
racy that their behavior seems to indicate?

2.4.3 Questionnaire
In a previous paper (Binmore et al. 1991), a strong tendency was noted
for people asked after the experiment for their views on what is “fair” to
give answers that correlate with their experience of what actually hap-
pened in the bargaining game they had just played. We now briefly ex-
plore this issue. The relevant data is contained in table 2A.1.8

For each experiment figure 2.6 plots against the median of the last
claims made as player I the median claim said to be “fair” for player I
in reply to the question:

What do you feel would be a fair amount for each player to get?
Move each player’s cursor to the fair amount.

Notice the marked tendency to report as fair what actually happened.

The line shown in figure 2.6 is the least squares regression line obtained
by regressing the median fair claims on the median last claims. It satisfies
the equation y = —0.3970 4 0.9999x. The standard errors of the intercept
and slope are 1.0748 and 0.1401 respectively and R? = (0.7282.

It is perhaps interesting that the points in figure 2.6 whose residuals
have the greatest absolute value are from experiments 17 and 18, both
from case 2. If only data from case 1 are used, the results are essentially
the same except that the R? increases to 0.8977. The results are also unaf-
fected if the median last and median fair claims for player II are used in-
stead of the claims for player I. In all cases we obtain a highly significant
relationship between the median fair claims and the median last claims
and a regression line with an intercept close to 0 and a slope close to 1.

If, for all 252 subjects, we regress the claim that each individual desig-
nated as fair for player I (y) against the last claim made by that indi-
vidual as player I (x), then we obtain the equation y = 2.2261 + 0.6382x
with standard errors 0.7699 and 0.1007 and R? = 0.1385. There is still a

8. Because a subject could be player I or player II for two games in a row, the median
claims in games 49 and 50 are almost but not quite identical to the median last claims. In
experiment 17, the median of the last claims made as player I was 7.60 and in experiment
21 was 6.70. In all other cases the difference between the median claims in games 49 and 50
and the median last claims did not exceed 0.1 lottery tickets. Figure 2.6 was constructed
using the median last claims rather than the median claims in games 49 and 50.
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Figure 2.6

Comparison of the medians of the last actual claims made by player I in each experiment
with the medians of the claims said to be “fair” for player I

significant relationship, but the unexplained variation in the individual
claims is much higher than for the median claims.
A later question asked:

Is this the sort of situation in which people ought to “play fair,” or is it
socially acceptable to use whatever bargaining power one has?

Of the 252 subjects who participated in the entire experiment, 89 subjects,
approximately 35 percent, said that one ought to “play fair.”” The rest
said that it was acceptable to use one’s bargaining power.

2.5 Statistics

This section reports numerical summaries of the data that complement
the graphical summaries in figures 2.2 to 2.6 and figure 2A.1.

Recall that the subjects’ information about the play of their potential
opponents was updated every second game. In order to compare the
effects of the different treatments in case 1 and to study the stability of
the focal points, we consider the subjects’ claims in the last practice
games, 9 and 10, the first real games, 11 and 12, and the last real games,
49 and 50. For each treatment table 2.1 reports information about the
median claims in these pairs of games.
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Table 2.1

For selected pairs of games, this table reports Euclidean and standardized measures of dis-
tance from the populations of median claims in each treatment to the appropriate focal
points and to the median myopic best replies to the robot claims in games 9 and 10. The
table also reports the means of the maximum gains obtained by unilateral deviations from
each pair in the designated sets of median claims. Table 2.1 uses the median claims reported
in table 2A.1 and the maximum gains from a unilateral deviation reported in table 2A.3 as
input.

Focal point Myopic best reply
Mean
Games Euclidean  p-Value for Euclidean p-Value for maximum
distance Hotelling’s distance Hotelling’s gain from
T2 T2 a deviation
Case 1E
9& 10 0.690 0.0057 0.210 0.2412 0.514
11 & 12 0.708 0.0007 0.234 0.0065 0.609
49 & 50 2.637 1t. .0001 2.127 0.0002 0.011
Case 1K
9&10 0.261 0.1157 0.134 0.1316 0.584
11 & 12 0.295 0.2675 0.589 0.2559 0.655
49 & 50 0.841 0.3460 0.554 0.5756 0.048
Case IN
9& 10 0.237 0.1267 0.097 0.2712 0.254
11 & 12 0.409 0.0378 0.201 0.0322 0.214
49 & 50 0.130 0.2765 0.117 0.4508 0.018
Case 1U
9& 10 0.160 0.0576 0.117 0.1786 0.160
11 & 12 0.977 0.0095 0.860 0.0480 0.564
49 & 50 1.548 0.0015 1.413 0.0041 0.025
Case 2E
9&10 0.620 0.0544 0.156 0.1451 0.379
11 & 12 0.905 0.0315 0.399 0.1335 0.295
49 & 50 3.274 0.0028 2.765 0.0053 0.036

The data used to construct table 2.1, as well as figures 2.2, 2.5, and 2.6,
is contained in tables 2A.1 and 2A.3 of appendix A2 and summarized in
table 2A.2. For each experiment table 2A.1 reports the median and the
standard deviation of the populations of type I and type II claims in
selected pairs of games. Table 2A.1 also reports the median and standard
deviation for the populations of claims in the last 10 games, 41 through
50, and for the populations of claims that were designated as “fair” for
each type of player in the questionnaire at the end of the experiment.

We can regard each of the pairs of type I and type II median claims
reported in table 2A.1 as a single data point. The replications of each
treatment then provide a population of data points for each pair of games.
Table 2A.2 reports summary statistics for each of these populations. The
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statistics in table 2.1 were also constructed by treating the pairs of median
claims in table 2A.1 as two-dimensional data points.

The second column of table 2.1 reports the Euclidean distance between
the center of gravity of each population of median claims and the relevant
focal point. (The coordinates of the centers of gravity are reported in col-
umns 2 and 4 of Table 2A.2.°) These distances confirm the impression left
by figures 2.2 and 2.5 that for each case and treatment the distance be-
tween the population of medians in the last practice or first real games
and the treatment’s focal point is always small compared, for example,
to the distance between adjacent focal points.

For case 1U the jump in the distance to the utilitarian focal point from
the last practice to the first real games is an indication of the difficulty we
had in conditioning subjects to begin play at the utilitarian point. Note
also that the distance from the populations to their respective focal points
increases substantially from the first to the last real games for cases 1E
and 1U and for case 2. The distance increases somewhat for case 1K and
actually decreases for case 1N. The change in the distance from the pop-
ulations of medians to their focal points over the course of the real games
is one index of the relative stability of the four focal points.

Is the distance between the center of gravity of each population and the
relevant focal point small or large relative to the variation within the pop-
ulation? If the data were one-dimensional, the f-statistic could be used to
measure the distance from the sample mean to the focal point in units of
the estimated standard deviation of the sample mean. Column 3 of table
2.1 measures distances using Hotelling’s T2 statistic, which is a multi-
dimensional generalization of the #-statistic.!®

Just as the t-statistic can be used to construct confidence intervals
around the sample mean, the two-dimensional 72 statistic can be used to
construct confidence ellipses around a sample’s center of gravity. Rather
than directly reporting the value of T2, column 3 of table 2.1 reports the
p-value of the confidence ellipse that surrounds the center of gravity of
each population of median claims and passes through the appropriate
focal point.

Smaller p-values correspond to ellipses that are further from the center
of gravity. Under the assumption that the population of median claims

9. The x and y coordinates of the center of gravity of a cloud of two-dimensional points are
the means of the x and y coordinates of the points in the cloud.

10. See Rao (1973) (or any good text on multivariate statistics) for a definition and discus-
sion of the properties of Hotelling’s 7' statistic.
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represents a sample drawn from a bivariate normal distribution, a p-value
less than 0.05 implies that one can reject the hypothesis that the center of
gravity of the true distribution is equal to the focal point with a level of
confidence greater than 95 percent. However, caution should be used in
interpreting the standardized distances in this way, especially in light of
the small numner of observations (3 or 5) in each sample.

If the median subject in the practice games of each experiment opti-
mized myopically against his or her robot opponents, then the median
claim in the last practice games would not necessarily be close to the focal
point. Instead, this claim would be close to the myopic best reply to the
population of robot opponents in games 9 and 10.

The population of robot opponents varied slightly from subject to sub-
ject within the same treatment. However, by games 9 and 10, the myopic
best replies to the possible populations of robots within each treatment
were virtually identical.!! Let Ep, denote the ordered pair of medians of
the myopic best replies by type I and type II players respectively to
the robot populations in games 9 and 10 of case 1E (and case 2).
E,. = (4.6,4.0). For case 1K, K, = (7.1,3.4). For case IN, Ny, =
(8.2,3.0). For case 1U, Uy, = (9.8,2.2).

Columns 4 and 5 of table 2.1 report the same statistics as columns 2
and 3 except that the distances measured are those between the centers
of gravity of each population and the relevant median myopic best replies
rather than the relevant focal points.

For case 2 and each treatment of case 1, the Euclidean distance from
the center of gravity of the median claims in games 9 and 10 to the me-
dian myopic best reply is less than the distance to the corresponding focal
point. In each case the p-value measuring the standardized distance to the
focal point is smaller (so the standardized distance is greater) than the
p-value measuring the distance to the myopic best reply. If Hotelling’s
T? statistic were used as the basis of a hypothesis test, we would be un-
able to reject the hypothesis that the center of gravity of the true distribu-
tion of each sample of median claims in games 9 and 10 is the relevant

11. In the real games, subjects were shown the previous claims of each of their 11 possible
opponents. However, in the practice games only 10 (out of a possible 11) robot squares were
displayed at a time, and which squares were displayed varied randomly from subject to sub-
ject. By games 9 and 10, the 11 possible populations of robot opponents in each treatment
were all very similar, so this source of variation had almost no effect on the myopic best
replies. For each treatment, the difference between the largest and the smallest myopic
best reply for player I in games 9 and 10 was less than or equal to 0.2 lottery tickets. For
best replies by player 11, the difference was less than or equal to 0.1 lottery ticket.
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myopic best reply. Statistical tests on the populations of individual sub-
jects’ claims in games 9 and 10 support a similar conclusion.!?

In other respects the alternate distance measures in columns 3, 4, and 5
of table 2.1 reinforce the information conveyed by the distances reported
in column 2. For case 1E, case 1U, and case 2 the Euclidean distance
from the myopic best reply increases considerably from the first to the
last pair of real games. The corresponding p-values for both the focal
point and myopic best reply all decrease. The Euclidean distance to the
myopic best reply in case 1K is relatively small and approximately the
same in games 11 and 12 and games 49 and 50. The Euclidean distances
to the best reply for case 1N are even smaller than for case 1K and the
distance from the center of gravity in games 49 and 50 is less than the dis-
tance in games 11 and 12. All four p-values in games 11 and 12 and
games 49 and 50 of case 1K are relatively large. The p-values for case
IN increase from the first to the last pair of real games.!3

By comparing the median claims reported in table 2A.1 for games 49
and 50 with the coordinates of the exact Nash equilibria reported in sec-
tion 2.2.2, one can confirm that the median claims in each experiment
typically end up very close to one of the exact Nash equilibria of the dis-
crete demand game. Table 2A.3 of appendix A2 further investigates the
convergence of the subjects’ claims to ¢-equilibria of the discrete game.

For the designated games of each experiment, table 2A.3 reports the
maximum expected gain that a player can achieve by deviating from the
median claim for his type that was reported in table 2A.1 when the player
expects his opponent to make the corresponding median claim that was
reported for her type in table 2A.1. The reported gain is the maximum
of that achievable by either type I or type II players. The last column in

12. A sign test was used to test the hypothesis that the median of the population of type I
claims made by each subject in game 9 pooled across all replications of the same treatment
was the same as the median of the myopic best replies to the populations of robot claims for
that treatment. (See, for example, Gibbons and Chakraborti (1992) for a description and
analysis of the sign test.) For each treatment we were unable to reject this hypothesis at the
usual 5 percent level of significance. A similar test for the populations of type II claims in
game 10 was unable to reject the hypothesis for each of the four populations of type II
claims in case 1. For the type II claims in case 2 the sign test would reject the hypothesis at
the 5 percent but not the 1 percent level of significance.

13. The correlation coefficients reported in table 2A.2 indicate that the populations of
medians in games 49 and 50 are almost “one-dimensional.” One might therefore wonder if,
after all, a one-dimensional standardized distance might be more appropriate than one based
on Hotelling’s T2 statistic. It turns out that p-values based on the r-statistic for the popula-
tions of median type I claims exhibit qualitative behavior which is similar to that of the
p-values reported in table 2.1.
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table 2.1 reports the mean of the maximum expected gains in table 2A.3
for each series of experiments.

In every experiment, including those where there was no expected util-
ity indicator, table 2A.3 shows that by the last real games the median sub-
jects had found their way to ¢-equilibria for remarkably small values of ¢.

As indicated in tables 2.1 and 2A.3, at least one type of player could
typically receive an expected gain of about 0.5 lottery tickets (or 1 nickel)
by unilaterally deviating from the median claim in the first real games of
an experiment. An expected gain of that size would have been easily ob-
servable with the expected utility indicator provided to subjects in case 1.
Moreover an increase of 0.5 lottery tickets in each of 40 real games cor-
responds to a 20 percent greater chance of winning 10 dollars or an
expected gain of 2 dollars. Such a gain, while not large, might not have
been negligible in the eyes of the subjects. By the last real games of the
experiment, the typical gain obtained by a unilateral deviation from the
median claims had shrunk to about 0.03 lottery tickets (about 1/3 of a
penny or 12 cents over the course of 40 games).

The standard deviations reported in table 2A.1 show that not all sub-
jects made claims close to the median especially in the early games of an
experiment. The numbers reported in parentheses in table 2A.3 help as-
sess the implications of this variability.

For each pair of games and each experiment, one can calculate the
maximum expected gain that a player can achieve by deviating from a
particular claim when the player’s opponent chooses randomly from the
12 opposing claims actually made in these games. By calculating a maxi-
mum expected gain in this way for each of the the 24 type I and type II
claims actually made in a particular pair of games, one obtains a popula-
tion of 24 maximum expected gains from a deviation. The first number of
each pair in parentheses in table 2A.3 is the median of such a population
of maximum expected gains. The second number is the 90th percentile of
these gains.

The median expected gain defined in this way differs from the expected
gain discussed earlier partly because in one case each claim is matched
against a population of opposing claims while in the other case a claim
is matched only against the single opposing median claim. Nevertheless,
the two statistics behave similarly. In almost all experiments the median
expected gain decreases from the first to the last pair of real games. In ad-
dition the median expected gain in the last real games is often less than
0.1 lottery ticket (that is less than 1 dime) and always less than 0.2 lottery
tickets.
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The 90th-percentile expected gains also typically decrease from the first
to the last pair of real games in each experiment. Part of this decrease is
probably due to the tightening of the distributions of claims around their
medians which is also shown by the changes in the standard deviations
reported in table 2A.1. However, the magnitudes of the 90th-percentile
expected gains are also noteworthy. In a number of experiments, this per-
centile is greater than 0.5 lottery tickets even in the last pair of real
games. This supports the conclusion stated earlier that although the me-
dian subject may optimize relentlessly, this is not necessarily true of every
subject in every game.

2.6 Conclusions

The results of this series of experiments provide no comfort for those who
argue that strategic considerations have little relevance to how people re-
solve coordination problems. If people are equipped with social norms
that are relevant to the problem faced by our subjects, then it seems that
a small amount of conditioning is sufficient to displace them in favor of a
focal point of the experimenter’s choice. Thereafter the median subject
seems to optimize insofar as circumstances allow. In our experiment, this
means optimizing right down to fractions of a penny. However, the sub-
jects seem to see no contradiction between such optimizing and ““fair” be-
havior, since the median subject reports as fair pretty much what actually
happened towards the end of the games that he or she played. These
results are consistent with a view that regards behavior as being shaped
by social norms in the minds of the subjects, but which sees the social
norms themselves as being determined by evolutionary considerations of
which the subjects are only dimly aware.

However, we do not think it appropriate to make any wide claims for
game theory as a predictor of human behavior, in spite of what we regard
as the remarkable sharpness of our results. The reason is that we are vul-
nerable to the criticism that we made the process of “myopic adjustment”
focal by featuring it in our graphic display.!* One reply to this criticism is
to note the similarity between the results in case 1E and case 2, even
though the expected utility indicator was absent in the second situation.
However, the important point is much less tendentious.

14. We do not accept that such criticism can be neglected because it involves a “Catch 22.”
Nobody anticipates that subjects would optimize if they were not provided with information
in an easily digestible form that indicates what optimal behavior is. The catch is that the nec-
essary information cannot be provided without focusing attention on what is optimal.
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We do not argue that social norms that isolate particular focal points
are unimportant in determining how people behave both inside and out-
side the laboratory. This paper is about how social norms get established
and extinguished. In particular, we believe that it is a major error to sup-
pose that social norms are commonly so rigid that they are able to sustain
behavior in the long run that is not in equilibrium. Our experiment shows
that it is relatively easy to displace whatever norms our subjects brought
into the laboratory by norms that are consistent with an optimizing
scenario.

Appendix
Instructions

Bargaining Experiment In this experiment, you will bargain via the com-
puting equipment in front of you with the people seated at the the other
machines in the room. You will participate in a large number of very
short bargaining sessions. Whether you are player I or player II in these
sessions is determined randomly. Sometimes you will be player 1 and
sometimes player II. After each session, you will be randomly paired
with a new bargaining partner.

In each bargaining session, you and your counterpart for that session
will have the opportunity to split a “cake” between you. The cake will
be represented by a blue region on your monitor screen. You will each
simultaneously make a claim. If the pair of claims made by you and
your counterpart lies well within the blue region on your screen, then
you each get your claims. If the pair of claims lies well outside the blue
region, you both get nothing in that session. If the pair of claims lies close
to the boundary of the blue region, then the computer will sometimes
allow the claims and sometimes it will disallow them. The closer the pair
of claims is to the boundary of the blue region, the less likely the com-
puter is to find them acceptable.

You will be bargaining for lottery tickets. After every ten bargaining
sessions, each player may possibly win $10. Each lottery ticket that you
acquired during the preceding ten bargaining sessions gives you one
chance of a win. How many lottery tickets you get during the bargaining
will depend partly on chance. If you bargain so as to maximize the num-
ber of lottery tickets that you would get on average, this will make the
probability of winning $10 largest. Since you will take part in forty ses-
sions in all, you will have four separate opportunities of winning $10. If
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Trajectories of median claims for selected experiments
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(continued)



Table 2A.1

For each experiment, this table reports the median of the claims made by type I and type II players in selected pairs of games, the median of the claims in
the last 10 games, and the median of the claims designated as ““fair” for each type of player. (The standard deviation of each set of claims is reported in

parentheses.)

Games 1 & 2 Games 9 & 10 Games 11 & 12 Games 49 & 50 Games 41-50 Fair
Experiment Type 1 Type 11 Type I Type 11 Type 1 Type 11 Type 1 Type 11 Type I Type 11 Type 1 Type 11
Case IE
1 5.45 2.95 4.75 4.15 4.60 3.75 6.90 3.45 6.90 3.50 7.10 3.40
(1.438) (0.294) (1.119) (0.421) (0.478) (0.387) (0.305) (0.176) (0.356) (0.143) (0.803) (0.191)
2 5.10 3.10 4.80 4.00 5.00 3.85 6.35 3.60 6.30 3.60 5.55 3.65
(1.455) (0.410) (0.611) (0.329) (0.423) (0.303) (0.403) (0.235) (0.424) (0.173) (1.741) (0.714)
3 7.05 3.10 4.95 4.20 4.70 3.80 7.20 3.35 7.10 3.40 6.50 3.50
(1.422) (0.534) (1.251) (1.153) (0.523) (0.276) (0.510) (0.124) (0.490) (0.240) (1.639) (0.587)
4 6.10 3.10 4.95 4.10 4.75 3.90 6.50 3.55 6.50 3.60 6.00 3.60
(1.598) (0.696) (0.698) (0.348) (0.389) (0.480) (0.344) (0.090) (0.393) (0.233) (1.102) (0.284)
5 5.40 3.20 4.50 4.00 4.70 3.80 6.40 3.60 6.40 3.50 6.05 3.50
(1.020) (0.601) (1.274) (0.274) (0.278) (0.329) (0.128) (0.130) (0.314) (0.127) (0.553) (0.157)
Case 1K
6 5.65 2.75 6.65 3.55 5.95 3.30 7.20 3.30 7.20 3.30 6.90 3.35
(1.666) (0.586) (0.585) (0.738) (1.214) (0.151) (0.261) (0.123) (0.204) (0.110) (1.591) (0.425)
7 6.00 3.00 7.50 3.50 7.10 3.30 8.15 3.00 8.10 3.10 7.85 3.10
(1.658) (0.489) (0.989) (0.224) (0.408