
Almost every aspect of life presents us with decision problems, ranging from
the simple question of whether to have pizza or ice cream, or where to aim
a penalty kick, to more complex decisions like how a company should
compete with others and how governments should negotiate treaties. Game
theory is a technique that can be used to analyse strategic problems in
diverse settings; its application is not limited to a single discipline such as
economics or business studies. A Guide to Game Theory reflects this
interdisciplinary potential to provide an introductory overview of the subject. 

Put off by a fear of maths? No need to be, as this book explains many of the
important concepts and techniques without using mathematical language or
methods. This will enable those who are alienated by maths to work with and
understand many game theoretic techniques. 

KEY FEATURES
◆ Key concepts and techniques are introduced in early chapters, such as

the prisoners’ dilemma and Nash equilibrium. Analysis is later built up in a
step-by-step way in order to incorporate more interesting features of the
world we live in.

◆ Using a wide range of examples and applications the book covers decision
problems confronted by firms, employers, unions, footballers, partygoers,
politicians, governments, non-governmental organisations and
communities.

◆ Exercises and activities are embedded in the text of the chapters and
additional problems are included at the end of each chapter to test
understanding.

◆ Realism is introduced into the analysis in a sequential way, enabling you to
build on your knowledge and understanding and appreciate the potential
uses of the theory.

Suitable for those with no prior knowledge of game theory, studying courses
related to strategic thinking. Such courses may be a part of a degree
programme in business, economics, social or natural sciences.

FIONA CARMICHAEL is Senior Lecturer in Economics at the University of
Salford. She has a wealth of experience in helping students tackle this
potentially daunting yet fascinating subject, as recognised by an LTSN award
for ‘Outstanding Teaching’ on her innovative course in game theory.
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This book gives an introductory overview of game theory. It has been written
for people who have little or no prior knowledge of the theory and want to
learn a lot without getting bogged down in either thousands of examples or
mathematical quicksand. Game theory is a technique that can be used to
analyse strategic problems in diverse settings. Its application is not limited to a
single discipline such as economics or business studies and this book reflects
this interdisciplinary potential. A wide range of examples and applications are
used including decision problems confronted by firms, employers, unions,
footballers, partygoers, politicians, governments, non-governmental organisa-
tions and communities. Students on different social and natural sciences
programmes where game theory is part of the curriculum should therefore find
this book useful. It will be particularly helpful for students who sometimes feel
daunted by mathematical language and expositions. I have written it with
them in mind and have kept the maths to a minimum to prevent it from
becoming overbearing. 

Mathematical language can act as a barrier that stops theories like game
theory, that have their origins in mathematics, from being applied elsewhere.
This book aims to break down these barriers and the exposition relies heavily
on a logical approach aided by tables and diagrams. Often this is all that is
needed to convey the essential aspects of the scenario under investigation.
However, this won’t always be the case and sometimes, in order to get closer to
the real world, it is helpful to use mathematical language in order to give preci-
sion to what might otherwise be very long and possibly rambling explanations. 

In the first four chapters of this book you will learn about many of the
important ideas in game theory: concepts like zero-sum games, the prisoners’
dilemma, Nash equilibrium, credible threats and more. In the subsequent chap-
ters the analysis is built up in a step-by-step way in order to incorporate more
of the interesting features of the world we live in, such as risk, information
asymmetries, signals, long-term relationships, learning and negotiation.
Naturally, the insights generated by the theory are likely to be more useful the
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greater the degree of reality incorporated into the analysis. The trade-off is that
the more closely the analysis mirrors the real world the more intricate it
becomes. To help you thread your way through these intricacies a small
number of examples are followed through and analysed in detail. An alterna-
tive approach might be to build on the material in the earlier chapters by
applying it in some specific but relatively narrowly-defined circumstances. This
alternative would bypass many of the potential uses of game theory and, I
think, do you and the theory a disservice.

As you read through the chapters in this book you will find that there are
plenty of opportunities for you to put into practice the game theory you learn
by working through puzzles, or more formally in the language of the class-
room, exercises and problems. The exercises are embedded in the text of the
chapters and there are additional problems and discussion questions at the end
of the chapters. Working through problems is a really good way of testing your
understanding and you may find that learning game theory is a bit like learn-
ing to swim or ride a bike in that it is something that you can only really
understand by doing. 

The plan of this book is as follows. In Chapter 1, some of the basic ideas and
concepts underlying game theory are outlined and some examples are given of
the kinds of scenario where game theory can be applied usefully. The objectives
of using game theory in these circumstances are also discussed. In Chapter 2
simultaneous- or hidden-move games are analysed and the dominant strategy
and Nash equilibrium concepts are defined. Some limitations of these solution
concepts are also discussed.

The subject of Chapter 3 is the prisoners’ dilemma, a famous hidden-move
game. In Chapter 3 you will see how the prisoners’ dilemma can be generalised
and set in a variety of contexts. You will see that some important questions are
raised by the prisoners’ dilemma in relation to decision theory in general and
ideas of rationality in particular. Examples of prisoners’ dilemmas in the social,
business and political spheres of life are explored. Some related policy ques-
tions in connection with public and open access goods and the free rider effect
are analysed in depth using examples. 

Dynamic games are analysed in Chapter 4 and you will learn how sequential
decision making can be modelled using game theory and extensive forms.
Examples are used to demonstrate why the idea of a Nash equilibrium on its
own may not be enough to solve dynamic games. Backward induction is used
to show that only a refinement of the Nash equilibrium concept, called a sub-
game perfect Nash equilibrium, rules out non-credible threats. Games
involving threats to prosecute trespassers and fight entry are used to explore
the idea of commitment. The centipede game is also analysed and some ques-
tions are raised about the scope of the backward induction method.

All the games analysed in Chapters 1 to 4 involve an element of risk for the
participants as they won’t usually know what the other participants are going to
do. This kind of information problem is central to the analysis of games. In
Chapters 5 to 7 the analysis is extended to allow for even more of the risks and
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uncertainties that abound in the world we live in. In Chapter 5 you will see how
hidden and chance moves are incorporated into game theory and decision theory
more generally. Expected values and expected utilities are compared. Attitudes to
risk are discussed and examples are used to explain the significance of risk aver-
sion and risk neutrality. The experimental evidence relating to expected utility
theory is considered in detail and the implications of that evidence for the predic-
tive powers and normative claims of the theory are discussed. 

In Chapter 6 the Nash equilibrium concept is extended to incorporate ran-
domising or mixed strategies. Randomisation won’t always appeal to individual
players but can make sense in terms of a group or population of players. This
possibility is explored in the context of evolutionary game theory. Some famil-
iar examples such as chicken, coordination with assurance in the stag hunt
game and the prisoners’ dilemma are used to examine some of the key insights
of evolutionary game theory. The concept of an evolutionary stable equilib-
rium is explained and used to explore ideas relating to natural selection and
the evolution of social conventions.

In Chapter 7 the analysis of the previous chapters is extended by allowing
for asymmetric information in one-shot games. Examples, some from previous
chapters (such as the entry deterrence game and the battle of the sexes) and
some that are new like the beer and quiche game, are developed to explain
how incomplete information about players’ identities changes the outcome of
games. Bayes’ rule and the idea of a Bayesian equilibrium are introduced. The
role of signalling in dynamic games with asymmetric information is explored. 

In Chapter 8 more realism is incorporated by allowing for the possibility
that people play some games more than once. Backward induction is used to
solve the finitely repeated prisoners’ dilemma and the entry deterrence game. A
paradox of backward induction is resolved by allowing for uncertainty about
either the timing of the last repetition of the game, players’ pay-offs or their
state of mind. The prisoners’ dilemma and the entry deterrence game are devel-
oped to allow for these kinds of uncertainties. In Chapter 9, the methodology
used to analyse dynamic games in Chapter 4 is applied to strategic bargaining
problems. In addition you will see some cooperative game theory. Nash’s bar-
gaining solution and the alternating-offers model are both outlined and
bargaining solutions are derived for a number of examples. The related experi-
mental evidence is also considered. 

I hope that you enjoy working through the game theory in this book and
that you find the games in it both interesting and challenging.

Lecturers can additionally download an Instructor’s Manual and PowerPoint
slides from http://www.booksites.net/carmichael.
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GAME THEORY TOOLBOX

Concepts and techniques

● Strategic interdependence 

● Players 

● Strategies

● Pay-offs 

● Utility

● Equilibrium 

● Simultaneous-move games, static games 

● Strategic form, pay-off matrix

● Sequential-move games, dynamic games 

● Extensive form, game tree

● Repeated games 

● Constant-sum and zero-sum games

● Cooperative games.

After working through this chapter you will be able to:

● Describe a strategic situation as a game

● Explain the difference between simultaneous moves and sequential
moves in games



This chapter sets out a framework for understanding and applying game
theory. It provides you with the tools that will enable you to use game theory
to analyse a range of different problems. The general approach of game theory
is outlined in the first part of the chapter; what it is and how and when it can
be used. You will also see some examples of situations that could be usefully
analysed as games. Some of the everyday language used by game theorists is
explained and the type of outcome predicted by game theory is characterised.
Two main categories of games are simultaneous-move games and sequential-
move or dynamic games. These are both described in this chapter. You will see
how pay-off matrices are used to capture the salient features of simultaneous-
move games and how extensive forms or game trees are used to illustrate
dynamic games. Games can be played only once or repeated, they can be co-
operative or non-cooperative. Sometimes the participants in a game have
shared interests and sometimes they don’t. These distinctions are all explained.
In some games the participants will have the same information and in others
they won’t. The amount of information in a game can affect its outcome and
this possibility is discussed in the last section of this chapter. In the subsequent
chapters of this book, the terminology that you are introduced to in this chap-
ter and the different approaches that are outlined, will be developed so that
you use game theory to interpret, explain and make predictions about the
likely outcomes of decision problems that can be analysed as games. 

2 Game theory toolbox

● Show how a simultaneous-move game can be represented in a pay-off
matrix

● Illustrate a sequential-move game in a game tree

● Explain what is meant by a zero-sum game

● Outline the difference between one-shot and repeated games

● Outline the difference between a cooperative and a non-cooperative
game

● Distinguish between different categories of information in a game.

Introduction
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The first important text in game theory was Theory of Games and Economic
Behaviour by the mathematicians John von Neumann and Oskar Morgenstern
published in 1944.1 Game theory has evolved considerably since the publica-
tion of von Neuman and Morgenstern’s book and its reach has extended far
beyond the confines of mathematics. This is due in a large part to contribu-
tions in the 1950s from John Nash (1950, 1951). However, it was in the 1970s
that game theory as a way of analysing strategic situations began to be applied
in all sorts of diverse areas including economics, politics, international rela-
tions, business and biology. A number of important publications precipitated
this breakthrough, however, and Thomas Schelling’s book The Strategy of
Conflict (1960) still stands out from a social science perspective. 

Hutton (1996: 249) describes game theory as ‘an intellectual framework for
examining what various parties to a decision should do given their possession
of inadequate information and different objectives’. This definition describes
what game theory can be used for rather than what it is. It also implicitly char-
acterises the distinctive features of a situation that make it amenable to analysis
using game theory. These features are that the actions of the parties concerned
impact on each other but exactly how this might happen is unknown.
Interdependence and information are therefore critical aspects of the definition
of game theory. 

Game theory is a technique used to analyse situations where for two or more
individuals (or institutions) the outcome of an action by one of them depends
not only on the particular action taken by that individual but also on the
actions taken by the other (or others). In these circumstances the plans or
strategies of the individuals concerned will be dependent on expectations
about what the others are doing. Thus individuals in these kinds of situations
are not making decisions in isolation, instead their decision making is interde-
pendently related. This is called strategic interdependence and such situations are
commonly known as games of strategy, or simply games, while the participants
in such games are referred to as players. In strategic games the actions of one
individual or group impact on others and, crucially, the individuals involved
are aware of this.

Because players in a game are conscious that the outcomes of their actions
are affected by and affect others they need to take into account the possible
actions of these other individuals when they themselves make decisions.
However, when individuals have limited information about other individuals’
planned actions (their strategies), they have to make conjectures about what
they think they will do. These kinds of thought processes constitute strategic
thinking and when this kind of thinking is involved game theory can help us
to understand what is going on and make predictions about likely outcomes.2

The idea of game theory

1. 1 The idea of game theory



4

Strategic thinking characterises many human interactions. Here are some
examples:

(a) Two firms with large market shares in a particular industry making
decisions with respect to price and output.

(b) Leaders of two countries contemplating a war with each other.

(c) The decision by a firm to enter a new market where there is a risk that the
existing or incumbent firms will try to fight entry.

(d) Economic policy makers in a country contemplating whether to impose a
tariff on imports.

(e) Leaders of two opposing factions in a civil war who are attempting to
negotiate a peace treaty.

(f) Players taking/facing a penalty in association football.

(g) A tennis player deciding where to place a serve.

(h) Managers involved in the sale and purchase of players on the transfer
market in association football.

(i) A criminal deciding whether to confess or not to a crime that he has
committed with an accomplice who is also being questioned by the police.

(j) The decision by a team captain to declare in cricket.

(k) Family members arguing over the division of work within the household.

In all of the above situations the participants or players are involved in a stra-
tegic game. The outcome of their planned actions depends on the actions of
others players and therefore their plans may be thwarted in that they do not
achieve their desired outcome. For example, in scenario (a) the players are firms
with large market shares. Markets where a small number of large firms control a

Game theory toolbox

Games and who plays them

● Strategic game: a scenario or situation where for two or more
individuals their choice of action or behaviour has an impact on the
other (or others).

● Strategic interdependence: individuals’ decisions, their choices about
actions, impact on each other and therefore their decision making is
interdependently related.

● Player: a participant in a strategic game.

● Strategy: a player’s plan of action for the game.



5

large share of the market are called oligopolies. An example of an oligopoly is
the automobile industry which is dominated by a small number of large multi-
national companies all of whom are household names (the top five in terms of
sales are General Motors, Ford, Daimler Chrysler, Toyota and Volkswagen).
Because the firms in an oligopoly are large relative to the size of the industry as
a whole, the actions of the firms are independent. For instance, if one firm
lowers its price the others are likely to lose custom to the price cutter, or if one
firm raises its output by any significant amount the market price will probably
fall.3 In both instances, the profits of the other firms will be lower because of
the action of the first firm.

There are no wrong or necessarily right answers to Exercise 1.1 but just by
thinking about examples like these you will be thinking about strategic situ-
ations. This means you will already be starting to think strategically.

Strategic thinking involves thinking about your interactions with others
who are doing similar thinking at the same time and about the same situation.
Making plans in a strategic situation requires thinking carefully before you act,
taking into account what you think the people you are interacting with are also
thinking about and planning. Because this kind of thinking is complex we
need some sharp analytical tools in order to explain behaviour and predict out-
comes in strategic situations – this is what game theory is for.4

In order to be able to apply game theory a first step is to define the boundaries
of the strategic game under consideration. Games are defined in terms of their
rules. The rules of a game incorporate information about the players’ identity
and their knowledge of the game, their possible moves or actions and their
pay-offs. The rules of a game describe in detail how one player’s behaviour
impacts on other players’ pay-offs. A player can be an individual, a couple, a
family, a firm, a pressure group, the government, an intelligent animal – in fact
any kind of thinking entity that is generally assumed to act rationally and is
involved in a strategic game with one or more other players.5

Players’ pay-offs may be measured in terms of units of money or time,
chocolate, beer or anything that might be relevant to the situation. However, it

Describing strategic games

Exercise 1.1

In examples (b) to (k) above can you identify the players and explain why
and how their actions are interdependent? 

1.2 Describing strategic games
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is often useful to generalise by writing pay-offs in terms of units of satisfaction
or utility. Utility is an abstract, subjective concept and its use is widespread in
economics. My utility from, say, a bar of chocolate is likely to be different from
yours and anyway the two will not be directly comparable, but if we both
prefer chocolate to pizza we will both derive more utility from the former.
When a strategic situation is modelled as a game and the pay-offs are measured
in terms of units of utility (sometimes called utils) then these will need to be
assigned to the pay-offs in a way that makes sense from the player’s perspec-
tives. What usually matters most is the ranking between different alternatives.
Thus if a bar of chocolate makes you happier than a pizza the number of utility
units assigned to the former should be higher. The actual number of units
assigned will not always be important. Sometimes it is simpler not to assign
numbers to pay-offs at all. Instead we can assign letters or symbols to pay-offs
and then stipulate their rankings. For example, instead of assigning a pay-off
of, say, ten to a bar of chocolate and three to a pizza, we could simply assign
the letter A to the chocolate and the letter B to the pizza and specify that A is
greater than B (i.e. A > B). This can be quite a useful simplification when we
want to make general observations about the structure of a game.6 However, in
some circumstances the actual value of the pay-offs is important and then we
need to be a bit more precise (see Chapter 5).

Rational individuals are assumed to prefer more utility to less and therefore
in a strategic game a pay-off that represents more utility will be preferred to
one that represents less. Note that while this will always be true about levels of
satisfaction or pleasure it will not always be the case when we are talking about
quantities of material goods like chocolate – it is possible to eat too much
chocolate. Players in a game are assumed to act rationally if they make plans or
choose actions with the aim of securing their highest possible pay-off (i.e. they
choose strategies to maximise pay-offs). This implies that they are self-interested
and pursue aims. However, because of the interdependence that characterises
strategic games, a player’s best plan of action for the game, their preferred strat-
egy, will depend on what they think the other players are likely to do. 

The theoretical outcome of a game is expressed in terms of the strategy com-
binations that are most likely to achieve the players’ goals given the
information available to them. Game theorists focus on combinations of the
players’ strategies that can be characterised as equilibrium strategies. If the play-
ers choose their equilibrium strategies they are doing the best they can given
the other players’ choices. In these circumstances there is no incentive for any
player to change their plan of action. The equilibrium of a game describes the
strategies that rational players are predicted to choose when they interact.
Predicting the strategies that the players in a game are likely to choose implies
we are also predicting their pay-offs. 

Games are often characterised by the way or order in which the players move.
Games in which players move at the same time or their moves are hidden are
called simultaneous-move or static games. Games in which the players move in
some kind of predetermined order are call sequential-move or dynamic games.
These two types of games are discussed in the following sections.

Game theory toolbox
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In these kinds of games players make moves at the same time or, what amounts
to the same thing, their moves are unseen by the other players. In either case,
the players need to formulate their strategies on the basis of what they think
the other players will do. We are going to look at three examples: hide-and-
seek; a pub managers’ game; and a penalty-taking game. The first of these is a
hidden-move game and the second and third are simultaneous-move games.
Both types of games are analysed using the pay-off matrix or the strategic form
of a game. In the first and third games the interests of the players are diametri-
cally opposed; if one wins the other effectively loses. Games like this are games
of pure conflict. Often the pay-offs of the players in games of pure conflict add
to a constant sum. When they do the game is a constant-sum game. Both Hide-
and-seek and the penalty-taking game are constant-sum games. If the constant
sum is zero the game is a zero-sum game. Most games are not games of pure
conflict. There is usually some scope for mutual gain through coordination or
assurance. In such games there will be mutually beneficial or mutually harmful
outcomes so that there are shared objectives. Games like this are sometimes
called mixed-motive games. The pub managers’ game is a mixed-motive game. 

Simultaneous-move games

Pay-offs, equilibrium and rationality

● Pay-off: measures how well the player does in a possible outcome of a
game. Pay-offs are measured in terms of either material rewards such
as money or in terms of the utility that a player derives from a
particular outcome of a game.

● Utility: a subjective measure of a player’s satisfaction, pleasure or the
value they derive from a particular outcome of a game. 

● Equilibrium strategy: a ‘best’ strategy for a player in that it gives the
player his or her highest pay-off given the strategy choices of all the
players.

● Equilibrium in a game: a combination of players’ strategies that are a
best response to each other. 

● Rational play: players choose strategies with the aim of maximising
their pay-offs.

1.3 Simultaneous-move games
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1.3.1 Hide-and-seek

Hide-and-seek is played by two players called Robina and Tim. Robina chooses
between only two available strategies: either hiding in the house or hiding in
the garden. Tim chooses whether to look for her in the house or the garden. He
only has 10 minutes to find Robina. If he looks where she is hiding (either the
house or the garden) he finds her within the allotted time otherwise he does
not. If Tim finds Robina in the time allotted he wins €50, otherwise Robina
wins the €50. 

Matrix 1.1 shows how the game looks from Robina’s perspective. The figures
in the cells of the matrix are her pay-offs in euros. In the first cell of Matrix 1.1,
on the top row of the first column, the zero shows that if Robina hides in the
house and Tim looks in the house she loses. In the second cell, reading across
the matrix, the 50 indicates that if she hides in the house and Tim looks in the
garden she wins €50. On the bottom row of the matrix the 50 in the first
column indicates that if Robina hides in the garden and Tim looks in the house
she wins the €50 but the zero in the second column shows that if she hides in
the garden and Tim looks in the garden she loses.

Matrix 1.1 Robina’s pay-offs in hide-and-seek

Tim

Robina

Matrix 1.2 shows how the game looks from Tim’s perspective. In Matrix 1.2 the
pay-offs in the cells show that if Robina hides in the house and Tim looks in
the house he finds her and wins the €50, but if he looks in the garden when
she hides in the house he loses. Similarly, if Robina hides in the garden and
Tim looks in the house he loses but if he looks in the garden when she hides in
the garden he finds her and wins the €50. 

Matrix 1.2 Tim’s pay-offs in hide-and-seek

Tim

Robina

Game theory toolbox

look in house look in garden

hide in house 0 50

hide in garden 50 0

look in house look in garden

hide in house 50 0

hide in garden 0 50
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To analyse the game we need to show both players’ pay-offs in the same
matrix.7 This is done in Matrix 1.3 which is the strategic form or pay-off matrix
of hide-and-seek. It shows all the possible pay-offs of the players that result
from all their possible strategy combinations. It is a convention that in each
cell the pay-off of the player whose actions are designated by the rows of the
matrix are written first. The pay-offs of the player whose actions are denoted in
the columns are written second. So in this pay-off matrix Robina’s pay-offs are
written first and her pay-offs and strategies are highlighted in blue. For exam-
ple, the pay-offs in the cell in the top row of the first column are 0 to Robina
and 50 to Tim. This shows that if Robina hides in the house and Tim looks in
the house, Tim wins the €50 and Robina’s pay-off is zero. The cell in the
bottom row of the first column shows that if Robina hides in the garden and
Tim looks in the house, Robina wins the €50 and Tim’s pay-off is zero. 

Matrix 1.3 The pay-off matrix for hide-and-seek

Tim

Robina

1.3.2 Pub managers’ game

In the pub managers’ game the players are two managers of
different village pubs, the King’s Head and the Queen’s Head.
Both managers are simultaneously considering introducing a
special offer to their customers by cutting the price of their
premium beer. Each chooses between making the special offer
or not. If one of them makes the offer but the other doesn’t
the manager who makes the offer will capture some customers

from the other and some extra passing trade. But if they both make the offer
neither captures customers from the other although they both stand to gain
from passing trade. Any increase in customers generates higher revenue for the
pub. If neither pub makes the discounted offer the revenue of the Queen’s Head
is €7 000 in a week and the revenue to the Kings Head is €8 000. The pay-off
matrix for this game is shown in Matrix 1.4 below which shows the pay-offs as
numbers representing revenue per week in thousands of euros.

Simultaneous-move games

look in house look in garden

hide in house 0, 50 50, 0

hide in garden 50, 0 0, 50
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Matrix 1.4 Pay-off matrix for the Pub managers’ game

King’s Head

Queen’s Head

Following the convention already noted in section 1.3.1, the pay-offs of the
player whose actions are designated by the rows are written first. So in this
game the pay-offs of the manager of the Queen’s Head are written first and his
strategies and pay-offs are highlighted in blue. The matrix shows that if the
Queen’s Head manager makes the special offer his pay-off is 10 (i.e. €10 000) if
the King’s Head manager also makes the offer, and 18 if he doesn’t. Similarly if
the King’s Head manager makes the offer his pay-off is 14 if the Queen’s Head
manager also makes the offer, and 20 if he doesn’t.

Give some thought to Exercise 1.3. Although we haven’t actually looked at how
to solve games yet, the pub managers’ game has an equilibrium
that you can probably work out just by using a little common
sense. In Chapter 2 you will see how to solve games like this in
a systematic way. You will then be able to check whether your
intuition was correct. 

In hide-and-seek and the pub managers’ game the pay-offs
represent monetary sums and it was convenient to do this. But
this won’t always be possible as the next game shows. 

Game theory toolbox

special offer no offer

special offer 10, 14 18, 6

no offer 4, 20 7, 8

Exercise 1.2

In the pub managers’ game what are the pay-offs of the managers if
neither of them makes the offer? What is the pay-off of the Queen’s
Head manager if he doesn’t make the offer but the manager of the
King’s Head does? What is the pay-off of the King’s Head manager if he
doesn’t make the offer but the manager of the Queen’s Head does? 

Exercise 1.3

What do you think will be the outcome of the pub managers’ game. What
do you think the managers will do?
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1.3.3 Penalty taking

In the penalty-taking game the two players are the striker taking the penalty
and the goalkeeper. Let’s assume that it is the last minute of the game and the
score is one all. If the striker scores his team will win the game and if the goal-
keeper saves the penalty his team will secure an honourable draw. If the striker
scores he will be covered in glory and if the goalkeeper saves the penalty it will
be he who is covered in glory. This time the pay-offs cannot really be measured
in terms of money – being covered in glory is not really quantifiable in this way.
Instead the pay-offs are best represented in terms of levels of subjective satisfaction
or utility. 

We can assume that if the striker misses, his satisfaction level is zero and if
he scores, the goalkeeper’s satisfaction level is zero. This is clearly a simplifica-
tion. You might prefer to assign a negative score in these circumstances or even
different low scores. You can do this but bear in mind that these scores are sub-
jective representations and therefore the players’ pay-offs are not directly
comparable, even if we wanted to make this kind of comparison, which we
don’t. If the striker scores, his satisfaction level will be sky-high and similarly,
the goalkeeper will feel sky-high if he saves the penalty. How do we record
these sky-high satisfaction levels? Well here, what really matters is the ranking
of the players’ pay-offs so we could arbitrarily assign them a value of anything
between 1 and some incredibly high figure like 100 billion. But smaller num-
bers are easier to handle so here I will use a pay-off of 10 to represent sky-high
utility. You may prefer to add a few noughts and you should feel free to do
that. You might also prefer to allocate different scores between the players for
sky-high utility – perhaps you think the striker will feel happier if he scores
than the goalkeeper will if he saves the penalty. But remember the scores are
not directly comparable so this would really be an unnecessary complication. 

In order to construct the pay-off matrix that corresponds to these pay-offs
we need to make some additional assumptions. First of all we can assume that
the striker always kicks the ball on target so he either scores or the goalkeeper
makes a save. Second we can simplify the players’ strategies by assuming that
the striker can only kick to his right, his left or straight ahead, these are his
strategy choices. Similarly the goalkeeper can only move to the striker’s left, his
right or he can stand his ground in the centre of the goal. If the goalkeeper’s
action mirrors the striker’s he saves the penalty otherwise the striker scores.
With these pay-offs and simplifying assumptions the pay-off matrix for this
penalty-taking game looks like the one in Matrix 1.5 (I have highlighted the
strategies and pay-offs of the striker).

Simultaneous-move games
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Matrix 1.5 Taking a penalty 1

goalkeeper

striker

Notice that in the cells of Matrix 1.5 the pay-offs always add to the constant
sum 10 since if one player’s pay-off is 10 the other’s is zero. Therefore the inter-
ests of the players, like those of Robina and Tim in hide-and-seek, are
diametrically opposed (in hide-and-seek the equivalent constant sum is 50). In
both these games there is only one winner and the other player is a loser.
Games like penalty-taking and hide-and-seek are called constant-sum games. If
the constant sum in question is zero then the game is a zero-sum game. But
any constant-sum game can be represented as a zero-sum game by subtracting
half the constant sum from every pay-off. To see this subtract 5 from all the
pay-offs in Matrix 1.5 or 25 from all the pay-offs in Matrix 1.3. All constant or
zero-sum games are games of pure conflict and their outcomes are sometimes
difficult to predict (you will see why in Chapter 2, Section 2.4.3). However,
games of pure conflict won’t always be constant-sum games although they can
usually be represented in this way.8

In the penalty-taking game left, centre and right are the pure strategies of the
striker and the goalkeeper. If the striker decides that he is going to kick the ball
to the left this would imply that he had chosen one of his pure strategies.
Alternatively he might prefer to randomise between his pure strategies by, for
instance, mentally throwing a dice before he runs up to kick the ball (or actu-
ally throwing a dice before running onto the pitch). He could kick to the left if
the dice showed a 1 or a 2, to the right if it showed a 3 or a 4 and to the centre
of the goal otherwise. If he did this the probability of him choosing any one of
his three pure strategies would be . We could write this as (   left; , centre; ,
right). Strategies that mix up a player’s pure strategies in this way are called
mixed strategies. Mixed strategies like these can be useful in games of pure

1–
3

1–
3

1–
3

1–
3

Game theory toolbox

left centre right

left 0, 10 10, 0 10, 0

centre 10, 0 0, 10 10, 0

right 10, 0 10, 0 0, 10

Constant-sum and zero-sum games

● Games in which the sum of the players’ pay-offs is a constant. If the
constant sum is zero the game is a zero-sum game. Constant-sum
games are games of pure conflict; one player’s gain is the other’s loss.
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conflict like penalty taking, where one player doesn’t want the other to be able
to predict their move. Mixed strategies are explained in more detail in Chapter 6. 

In each of the games we have looked at so far we have used numbers to repre-
sent the players’ pay-offs. If the ranking of the pay-offs is all that matters (as
opposed to their absolute values) it is sometimes more convenient to write the
players’ pay-offs as letters. Using letters means that actual numbers do not have
to be assigned to pay-offs and this can be useful if you want to generalise the
results of one piece of analysis to other similar but not identical games. This
will be something that we will want to do in many of the chapters of this book
(see for example Chapter 3, Section 2). In the penalty game we could generalise
the pay-offs in this way by substituting the letter W for the number 10 on the
assumption that W is greater than zero (W > 0). Although the resulting game in
Matrix 1.5.1 looks a bit different from the one in Matrix 1.5, in all important
respects it is the same since W > 0 (as noted beneath the matrix). The striker
still prefers outcomes in which his chosen strategy is not matched by the goal-
keeper and the opposite is true for the goalkeeper.

Matrix 1.5.1 Taking a penalty 1 with non-numerical pay-offs

goalkeeper

striker

W > 0

In sequential-move games players make moves in some sort of order. This
means one player moves first and the other player or players see the first
player’s move and can respond to it. Some illustrative examples are:

Sequential-move or dynamic games

Mixed strategy

● A mix of pure strategies determined by a randomisation procedure.

left centre right

left 0, W W, 0 W, 0

centre W, 0 0, W W, 0

right W, 0 W, 0 0, W

1.4 Sequential-move or dynamic games
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(i) A firm considering entry into a monopolised industry where the
incumbent may start a price war if it does enter.

(ii) Chess.

(iii) A series of offers and counter offers made by a potential buyer and seller
of a house.

(iv) A large firm, Apex, considering whether to launch an expensive
advertising campaign which may be matched by its main rival,
Convex.9

(v) The leader of one country planning to invade another country.

(vi) A film star who is deciding whether or not to sue a newspaper.

(vii) A landowner who puts up a sign threatening to sue trespassers.

In each of these examples one of the players moves first and another sees the
first player’s move before deciding how to respond. This means that the order
of moves is important and the analysis of this type of game has to take this
into account. It is not always easy to do this using pay-off matrices and there-
fore sequential games are usually analysed using game trees or extensive forms
like the one in Figure 1.1. 

Figure 1.1 is drawn to represent the example in (iv). In this version of that
game the two firms, Apex and Convex, choose between launching an advertis-
ing game or not. Apex moves first but the success of Apex’s campaign depends
on what Convex does. A, C1 and C2 represent the decision points in the game.
Apex’s choices are represented by the two branches that are drawn coming
from the decision point or node labelled A. As Apex moves first this point is
the first decision point in the game, the first point at which any player makes a
move. At this point Apex chooses between launch or not launch. Whatever
Apex decides Convex sees Apex’s move and can respond. If Apex launches its
campaign the game moves to C1 where Convex decides whether to launch its

Game theory toolbox

Figure 1.1 The extensive form or game tree of Apex and Convex’s advertising game 

A

C1

C2

Launch

Not launch
Launch

Not launch

Launch

Not launch

3, 6

6, 3

2, 2

4, 4
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campaign or not knowing full well that Apex has launched its campaign. At C1

Convex can respond aggressively by launching its own campaign or respond
passively by doing nothing. If Apex decides not to launch the campaign then
the game moves to C2 where Convex decides whether to launch its own expen-
sive advertising campaign or not. 

The pay-offs represent the firm’s profits in thousands of euros and they are
written on the far right of the diagram at the endpoints or terminal nodes of
the game tree, with Apex’s pay-offs written first. It is a convention that the pay-
offs are written in the same order as the players’ moves, i.e. the pay-off of the
player who moves first, in this case Apex, is written first. The pay-offs will
always be written next to the terminal nodes of the appropriate branches of the
game tree that mark the end of the game. In this game Apex’s pay-off depends
not only on its own initial move but also on Convex’s response. Convex’s pay-
off similarly depends on Apex’s initial move as well as its own move at either
C1 or C2. If Convex responds aggressively to Apex’s move, whatever it is, by
launching its own campaign Apex’s profits will be lower than if Convex had not
launched its campaign. But if Apex does launch its campaign and Convex
responds aggressively Convex’s profits are also lower as Convex’s action throws
both firms into a damaging advertising war. However, if Apex doesn’t launch its
campaign Convex benefits most by launching its campaign. This is shown by the
players’ pay-offs at the ends of branches of the game tree. To see this look at the
player’s pay-offs. When Apex decides on launching the campaign, if Convex
responds by launching its own campaign, Apex’s pay-off is 2 and so is Convex’s.
But if Convex doesn’t launch its own campaign both firms are better off – Apex’s
pay-off is 6 and Convex’s is 3.

Sequential-move or dynamic games

Exercise 1.4

What is Apex’s pay-off if it doesn’t launch the campaign but Convex
does? What is Convex’s pay-off in these circumstances?

Exercise 1.5

What is Apex’s pay-off if it doesn’t launch the campaign and Convex
doesn’t either? What is Convex’s pay-off in these circumstances?



The answer to Exercise 1.6 is not obvious but it is worth having a think about.
In Chapter 4 we will use extensive forms like the one in Figure 1.1 to resolve
sequential-move games like this game. You will be then be able to check
whether your intuition was correct.

Games that are only played once by the same players are called one-shot,
single-stage or unrepeated games. Games that are played by the same players
more than once are known as repeated, multi-stage or n-stage games where n is
greater than one. The strategies of the players in repeated games need to set out
the moves they plan to make at each repetition or stage of the game. These
kinds of strategies are called meta-strategies.

The penalty game is a game that is likely to be played by the same players
more than once; the same players in teams tend to take the penalties. Suppose
the penalty game in Matrix 1.5 was played six times by the same two players.
The striker’s meta-strategy for this repeated game could be to kick to the left in
the first two repetitions then to the centre of the goal then twice to the right
and then to the centre again. We would write this as (left, left, centre, right,
right, centre). Alternatively he could choose a mixed strategy by randomising
between left, right and centre every time he went to kick the ball. If his mixed
strategy prescribed that he played each of his pure strategies with a probability
of one-third then over the course of the repeated game we would expect to see
him kicking to the left, right and centre a third of the time each. Repeated
games are analysed in Chapter 8 and in some of the repeated games we are
going to look at the players play mixed strategies.

Whether a game is cooperative or not is a technical point. Essentially a game is
cooperative if the players are allowed to communicate and any agreements
they make about how to play the game as defined by their strategy choices are
enforceable. Most of the games we will look at in this book are non-cooperative

Game theory toolbox

1.5 Repetition

Exercise 1.6

Do you think Apex will launch its campaign? (Hint: What do you think
Convex will do if Apex launches its campaign?)

1.6 Cooperative and non-cooperative games

16
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even though in some of them players choose between cooperating with each
other or not (for example in the prisoners’ dilemma games in Chapter 3). But
being able to choose to cooperate does not make a game cooperative in the
technical sense as such a choice is not necessarily binding. Being able to
enforce agreements makes the analysis of cooperative games very different
from that of non-cooperative games. Because agreements can be enforced the
players have an incentive to agree on mutually beneficial outcomes. This leads
cooperative game theory to focus on strategies that are implemented in the
players’ joint or collective interests. This is not the case in non-cooperative
game theory where it is assumed that player’s act only in their own self-
interest. Some bargaining games are cooperative in this technical sense and
these as well as non-cooperative bargaining games are analysed in Chapter 9. 

N is the number of players in the game. If a game has two players then it is a 2-
player game. But if there are more than two players then the game is an
N-player game where N is greater than 2. Most of the games we will look at in
this book are 2-player games. The greater the number of players involved in a
game the more complex it is likely to be.

The equilibrium strategies of the players will depend on what kind of informa-
tion players have about each other. In some games players will be very well
informed about each other but this will not be true in all games. The informa-
tion structure of a game can be characterised in a number of ways (see, for
example, Montet and Serra, 2003: 4–6). The categories used in this book are
perfect information, incomplete information and asymmetric information. If
information is perfect then each player knows where they are in the game and
who they are playing. If information is incomplete then a pseudo-player called
‘nature’ or ‘chance’ moves in a random way that is not clearly observed by all
or some of the players. If not all the players observe the chance move then the
information is also asymmetric. When information is asymmetric not all play-
ers have the same information. Instead some player has private information

In all the games in Chapters 2–4 the players have perfect information. This
is unlikely in real life and if game theory is to be really useful it needs to incorpo-
rate imperfect information. You will see how to do this in Chapters 5, 6 and 7.

Information

1.7 N-player games

1.8 Information
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In the games analysed in these chapters one or more of the players is less than
perfectly informed. 

When information is not perfect there is uncertainty in one or more of the
players’ minds about where they are in a game or who they are playing. For the
players this implies an extra element of risk. In risky situations the outcome is
uncertain and this uncertainty is characterised by a probability distribution. In
strategic games risk is incorporated in terms of the initial or prior beliefs of the
players. In some situations the players may also be able to update their beliefs
as and when they receive information (see Chapter 7). Risk is not unique to
strategic games. It is also a feature of many situations where an individual’s
choice of action is not strategically related to that of anyone else. In these cases
risk is non-strategic. You will see how to model non-strategic risk in Chapter 5.

Whether the situation is strategic or not, where risk is involved decision
makers need to incorporate the relevant probabilities into their decision
making. They do this by forming expectations about likely outcomes and ra-
tional decision makers are assumed to choose in order to maximise their
expected pay-off. This is an average of all the possible pay-offs corresponding
to a given choice. It is calculated by multiplying (or weighting) each pay-off by
the probability that it will occur. If the pay-offs are written as units of money or
even chocolate then this calculation generates an expected value in terms of
either money or chocolate. If the pay-offs are written in terms of utility values
then the calculation generates an expected utility. These two alternatives are
discussed further in Chapter 5 but for the moment it may be helpful to note
that expected utility is potentially the more useful measure as it can incorpo-
rate people’s different attitudes to risk.

In this chapter you have learned about some of the basic ideas and concepts that
are central to game theoretic analysis. Games and game theory were defined in
terms of strategic interdependence and some game theoretic terminology was
explained. You have seen that games can be divided into two main groups
according to whether they involve simultaneous or sequential moves.
Simultaneous-move games are represented using pay-off matrices or strategic
forms. Sequential-move or dynamic games are usually represented by extensive
forms or game trees. Simultaneous-move and sequential games can be played
only once or they can be repeated. In the next two chapters you will learn how
to model and predict outcomes in single-stage simultaneous-move games.
Sequential-move games are analysed in Chapter 4. In Chapters 5 and 6 single-
stage games with incomplete information are analysed. Repeated games are the
subject of Chapter 8. Strategic games can be either non-cooperative or coopera-
tive. Most of the games you will see in this book are non-cooperative.
Cooperative games are considered in Chapter 9.

Game theory toolbox
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1.1
There are no explicitly right or wrong answers in this exercise. By way of an
example an answer for (e) might go as follows: in the civil war the players are
the two opposing factions. At least one of the factions needs to compromise in
order for an agreement to be reached. If only one party compromises (or com-
promises more than the other) they lose out in the agreement but if neither
compromises there will be no agreement and the war will continue (to the dis-
advantage of both). Interestingly scientists at the Santa Fe Institute in New
Mexico have devised a game that models a scenario a bit like this to calculate
how the probability of each party’s decision to fight in a civil conflict or to
compromise changes as the terms of the proposed agreement change (Dispatch
report, Guardian, 18 November 2003).

1.2
If neither manager makes an offer the manager of the Queen’s Head gets 7 and
the manager of the King’s Head gets 8. If the Queen’s Head manager doesn’t
make the offer but the manager of the King’s Head does the manager of the
Queen’s Head gets 4. If the King’s Head manager doesn’t make the offer but the
manager of the Queen’s Head does the manager of the King’s Head gets 6.

1.3
Both managers are better off making the offer whatever the other manager does
so there is no reason to expect them not to make the offer. The most likely out-
come seems to be that both managers will make the offer. This is actually the
dominant strategy equilibrium of the game as you will see in Chapter 2. 

1.4
In these circumstances Apex’s pay-off will be 3 and Convex’s pay-off will be 6.

1.5
In these circumstances Apex’s pay-off will be 4 and Convex’s pay-off will be 4.

1.6
If Apex launches it gets either 6 if Convex doesn’t launch or 2 if Convex does.
As Convex gets 3 by not launching if Apex also launches but 2 otherwise it
should not launch if Apex also launches. Apex is assumed to know this. If
Apex doesn’t launch it gets at most 4. So if Apex believes that if it launches
Convex will not launch Apex should launch. Don’t worry if this chain of logic
is not altogether clear as sequential games like this will be examined in detail
in Chapter 4. 

Answers to exercises

Answers to exercises
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1 Think of one or two examples of real-life situations that could be
represented as games and describe them using game theoretic terminology
such as player, pay-offs and strategies.

2 In the examples you have thought of, do the players move simultaneously
or sequentially and are their moves hidden or seen?

1 What is meant by strategic interdependence?

2 How can player’s pay-offs in games be represented?

1 Philip Mirowski (2003) in Machine Dreams: Economics becomes a cyborg science devotes a whole
chapter to John von Neumann. It is an interesting read.

2 Schelling (1960: 150) defines a strategic game in terms of dependence of one person’s choice of
action on what he expects another to do and a strategic move as an action by one person that
influences another person’s choice by affecting their expectations of how the first person will behave.

3 Except for some very expensive luxury items and some necessities, the relationship between
consumer demand and price is assumed to be negative, i.e. if price rises demand falls and vice
versa. Thus to encourage more sales in an industry market prices need to fall (assuming that no
other important factors, for instance advertising or consumer tastes, change).

4 Binmore (1990) distinguishes three additional  purposes of game theoretic models: description,
investigation and prescription.

5 The thinking and rationality assumptions are not always applicable in evolutionary games 
(see Chapter 6).

6 If you want to know more about utility most introductory economics and all intermediate
microeconomic textbooks have a chapter explaining how the concept is used to analyse various
types of human behaviour (see, for example, Dawson, 2001, Chapter 4 in Himmelweit et al., 2001).

7 Or bimatrix as there is more than one pay-off in each cell.

8 Since in zero-sum games the pay-off of one player is just the negative of the other’s, pay-off
matrices for zero-sum games often only show the pay-offs of one of the players.

9 An oligopoly market dominated by only two large firms is called a duopoly.

Game theory toolbox

Problems

Questions for discussion

Notes
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MOVING TOGETHER

Concepts and techniques

● Simultaneous moves

● Dominant strategies and dominated strategies

● Dominant-strategy equilibrium

● Iterated-dominance equilibrium

● Nash equilibrium

● Pareto efficiency

● Assurance games.

After working through this chapter you will be able to:

● Analyse games in which the players move simultaneously or their
moves are hidden

● Explain what is implied by a dominant strategy

● Determine the dominant-strategy equilibrium of a game if one exists

● Find the iterated-dominance equilibrium of a game if it has one

● Explain what is implied by the concept of a Nash equilibrium

● Determine whether a game has a Nash equilibrium

● Demonstrate that a dominant-strategy equilibrium is also a Nash equilibrium

● Show that some games have more than one Nash equilibrium and some
games have none.



In this chapter you are going to learn how to analyse games in which the play-
ers choose their strategies and make their moves at the same time or their moves
are hidden from each other. Games of this kind can be analysed in the same
way. They are called simultaneous-move, static- or hidden-move games. You saw
some examples of these kinds of games in Section 1.3 of Chapter 1. In the
penalty-taking game and the pub managers’ game the players moved simultane-
ously. In hide-and-seek Robina’s move was, literally, hidden. Another example of
a hidden move game is voting in an election where voters’ choices are made in
secret. In general elections, which can last several days, voters are kept deliber-
ately uninformed about how others are voting by laws that prohibit the results
of exit polls being revealed until polling is closed. In some countries polls are
also prohibited for a few days leading up to an election. In games like this where
the players’ moves are hidden from each other and in games where the players
move simultaneously a player’s choice cannot be made contingent on another
player’s actions. Players therefore need to reason through the game from their
own and the other players’ perspectives in order to make a rational choice. 

An underlying assumption of game theoretic models that enables players to
carry out these kinds of thought processes is that they possess common know
ledge that the other players are rational. This means that each player aims to
choose a strategy that will secure their highest possible pay-off in the full
knowledge that all the other players are trying to do exactly the same thing.
The players will only be satisfied with their strategy choices if they are mutu-
ally consistent. By this I mean that no player could have improved their pay-off
by choosing a different strategy given the strategy choices of the other players.
If the strategy choices of the players are mutually consistent in this way then
none of the players has an incentive to make a unilateral change. In these cir-
cumstances the strategies of the players constitute an equilibrium. However,
the precise nature of the equilibrium will depend on the game in question. The
main equilibrium concepts used to resolve simultaneous-move games are those
of a dominant-strategy equilibrium, an iterated-dominance strategy equilib-
rium and a Nash equilibrium. We are going to consider each of these in turn.

In a dominant-strategy equilibrium every player in the game chooses their
dominant strategy. A dominant strategy is a strategy that is a best response to

22 Moving together

Introduction

2.1 Dominant-strategy equilibrium
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all the possible strategy choices of all the other players. A game will only have a
dominant-strategy equilibrium if all the players have a dominant strategy. To
understand what this means we are going to look at a number of examples in
detail. The first of these is the pub managers’ game that you saw in Chapter 1,
Section 1.3.2.

2.1.1 PUB MANAGERS’ GAME

The players in this game are the two managers of different village pubs, the
King’s Head and the Queen’s Head. They are simultaneously considering
making a special offer to their customers. The strategic form of the pub man-
agers’ game is reproduced here as Matrix 2.1. As before, the pay-offs represent
revenue per week in thousands of euros and to help you with the analysis that
follows the strategy choices and the pay-offs of the Queen’s Head manager are
highlighted in colour. 

Matrix 2.1 The pub managers’ game

King’s Head

Queen’s Head

In the pub managers’ game there are four possible strategy combinations corre-
sponding to four possible sets of pay-offs :

1 The Queen’s Head does not make the special offer and neither does the
King’s Head: neither pub gains custom. The pay-off to the Queen’s Head is 7
and the pay-off to the King’s Head is 8.

2 The Queen’s Head makes the special offer and so does the King’s Head: both
pubs gain customers. The pay-offs are 10 to the Queen’s Head and 14 to the
King’s Head.

3 The Queen’s Head makes the offer but the King’s Head does not: the Queen’s
Head gains custom and the King’s Head loses custom. The pay-offs are 18 to
the Queen’s Head and 6 to the King’s Head.

4 The Queen’s Head does not make the special offer but the King’s Head does:
the Queen’s Head loses custom but the King’s Head gains custom. The pay-
offs are 4 to the Queen’s Head and 20 to the King’s Head respectively.

To see if the game has a dominant-strategy equilibrium we need to check
whether both players have a dominant strategy. In this game they do. First let’s

Dominant-strategy equilibrium

special offer no offer

special offer 10, 14 18, 6

no offer 4, 20 7, 8
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consider the game from the perspective of the manager of the Queen’s Head. If
the Queen’s Head manager makes the special offer his pay-off is either 10 or 18.
It is 10 if the manager of the King’s Head also makes the offer and 18 if he
doesn’t. If the manager of the Queen’s Head doesn’t make the offer then his
pay-off is either 4 or 7. It is 4 if the manager of the King’s Head also makes the
offer. This is less than the 10 he would have got if he had introduced the offer.
If he doesn’t make the offer and neither does the manager of the King’s Head
then his pay-off is 7 which is also less than the 18 he would have got if he had
introduced the offer in these circumstances. 

This reasoning shows that the manager of the Queen’s Head is better off if
he makes the special offer whatever the manager of the King’s Head does. Thus
making the offer is a dominant strategy for him; it is a best response to what-
ever the manager of the King’s Head decides to do. Take another look at Matrix
2.1. Each of the Queen’s Head’s pay-offs in the top row is higher than the corre-
sponding pay-off in the same column of the bottom row (10 is greater than 4
and 18 is greater than 7). This shows that making the special offer is a domi-
nant strategy of the manager of the Queen’s Head. 

Similar reasoning can be applied to the strategy choices of the manager of
the King’s Head to show that introducing the offer is also a dominant strategy
for him. Visually this is clear in the matrix because each of the King’s Head’s
pay-offs in the first column on the left is higher than the corresponding pay-off
in the same row of the second column on the right (14 is greater than 6 and 20
is greater than 8). Since making the offer is a dominant-strategy for both pub
managers the dominant strategy equilibrium of this game is for both managers
to make the special offer. This equilibrium is written as {special offer, special
offer}. When the equilibrium is written in this way it is conventional to write
the equilibrium strategy of the player whose strategies are denoted in the rows
of the pay-off matrix first. However in this game the equilibrium strategies of
the players are the same and the order in which their strategies are written is
not really an issue but this will not always be the case. At this point it would be
a good idea to check your answer to Exercise 1.3. Was your intuition correct?
Can you explain how you rationalised the answer you gave (whatever it was)?

The idea of a dominant-strategy equilibrium is an important one. In a
dominant-strategy equilibrium all the players pick their dominant strategies,
their best responses to all the available strategies of all the other players. If a
player has a dominant strategy and he wants to maximise his pay-off then
there is no reason to believe that he will choose anything else. Thus if a game
has a dominant-strategy equilibrium we can be fairly bullish about predicting
this as the likely outcome as long as the players are rational and the game cap-
tures all the salient aspects of the situation under examination. Unfortunately,
games with dominant strategy equilibria may not be that common in real life
although you are going to see a few more that do.

Moving together
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2.1.2 Labour market legislation

In this game represented in Matrix 2.2 the governments of two neighbouring
countries, Jesmania and Rosatia, are considering imposing new labour market
legislation, e.g. legislation relating to health and safety, paternity rights or mini-
mum wages. Polls have predicted that the new legislation will be a net vote
winner for the government. This is true even though some votes are expected to
be lost because firms have threatened to lay off workers due to the higher labour
costs associated with complying with the legislation. The net gain in votes is
expected to be much higher if the neighbouring country imposes similar legisla-
tion. But if the neighbouring country does not impose legislation their labour
will be cheaper and some firms from the first country are expected to relocate to
the second. This means more jobs will be lost in the country that introduces the
legislation and the net gain in votes will be much smaller. The pay-offs in
Matrix 2.2 are expected gains in millions of votes. As in the pub managers’
game, the strategy choices and the pay-offs of the player whose strategies are
given in the rows of the matrix, the Government of Jesmania, are highlighted. 

Matrix 2.2 Legislation game 

government of Rosatia

government 
of Jesmania

In the legislation game the dominant strategy of both governments is to intro-
duce the legislation. If Jesmania introduces the legislation and Rosatia does not

Dominant-strategy equilibrium

Dominant strategies 

● Strongly dominant strategy: in a two-player game the pay-offs to a
player from choosing a strongly dominant strategy are higher than
those from choosing any other strategy in response to any strategy
the other player chooses.

● Weakly dominant strategy: in a two-player game the pay-offs to a
player from choosing a weakly dominant strategy are (i) at least as
high as those from choosing any other strategy in response to any
strategy the other player chooses and (ii) higher than those from
choosing any other strategy in response to at least one strategy of
the other player.

legislate don’t legislate

legislate 5, 5 1, 0

don’t legislate 0, 1 0, 0
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then the expected number of votes gained by the government of Jesmania is
only 1 million. But if Rosatia also introduces the legislation the government of
Jesmania stands to gain 5 million extra votes. However, if the government of
Jesmania doesn’t introduce the legislation its votes do not increase at all; doing
nothing achieves nothing. Thus to legislate is a dominant strategy for
Jesmania, as it is for Rosatia, and the dominant-strategy equilibrium of this
game is {legislate, legislate}. 

You can see this in the matrix by comparing the pay-offs of the Jesmanian
government on the top row with those on the bottom row. Each of the
Jesmanian government’s pay-offs on the top row is higher than the correspond-
ing pay-off in the same column on the bottom row (5 is greater than 0 and 1 is
greater than 0). Similarly each of the Rosatian government’s pay-offs in the first
column on the left are higher than the corresponding pay-off in the second
column on the right. 

However, if more firms were to relocate than expected as a result of only one
country imposing the legislation then the actual net gain from legislation
could be negative. In these circumstances legislation would not be a dominant
strategy for either government. It is this kind of possibility, an aspect of global
isation, that can prevent governments introducing what many voters believe to
be sensible legislation.

2.1.3 Port access

Before turning to the derivation of iterated-dominance equilibria we are going
to look at one more example of a game with a dominant-strategy equilibrium.
The port-access game is a simplified version of an example in Gates and
Humes (1997: Chapter 2). The game represents a series of interactions in 1985
between the USA and New Zealand in connection with an ANZUS (Australia,
New Zealand, United States) alliance exercise. In the simplified port-access
game described here one country, the USA, requires port access for its naval
vessels in the other country, New Zealand. However, New Zealand has declared
itself a nuclear-free zone and may refuse to allow access unless the USA gives a

Moving together

Dominant-strategy equilibrium

● Strong dominant-strategy equilibrium: a combination of strongly
dominant strategies; in a two-player game a pair of strategies that for
each player are strictly best responses to all of the strategies of the
other player.

● Weak dominant-strategy equilibrium: combination of dominant
strategies where some or all of the strategies are only weakly
dominant.
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guarantee that they are not carrying any nuclear weapons. Alternatively it can
simply allow access to American ships without question. For security reasons
the USA is unable to give any guarantees about their vessels’ weaponry. In
response to New Zealand’s nuclear-free stance it can simply acquiesce by
putting into harbour somewhere else or retaliate by declaring the alliance
between the two countries void. The latter is assumed to be a costly alternative
for both countries but more so for the USA. 

The strategic form for the port-access game is shown in Matrix 2.3. As only
the ranking of the pay-offs to the players is important and it is difficult to con-
ceive of meaningful numerical equivalents for the utilities of the two
governments, the pay-offs are delineated as letters. The pay-offs of the USA are
A, B, C and D where A > B > C > D. New Zealand’s pay-offs are a, b, c and d
where a>b>c>d.

Matrix 2.3 Port access

New Zealand

USA

For the USA: A > B > C > D

For New Zealand: a > b > c > d

New Zealand’s highest pay-off, a, is earned when it maintains the confidence of
its electorate by refusing access to American vessels but the USA maintains the
alliance. The worst possible outcome for New Zealand (leading to a pay-off of d)
arises if it allows access to USA vessels, losing the trust of its electorate, but the
USA still voids the alliance. For the New Zealand government it is better to refuse
access to USA vessels whatever the USA does since a >b and c >d. Refusing access
is therefore a dominant strategy for New Zealand.

The USA’s highest pay-off, A, is earned when New Zealand allows access and
the USA maintains the alliance. The worst outcome for the USA (leading to a
pay-off of D) arises if New Zealand refuses access and it retaliates by voiding the
alliance. The alliance is important to the USA and therefore it is always better
to maintain the alliance whatever New Zealand does. 

Because A > B and C > D maintaining the alliance is a dominant strategy for
the USA. To be more precise it is a strictly dominant strategy. If either of these
inequalities were equalities then maintaining the alliance would only have
been a weakly dominant strategy for the USA. As a >b and c >d refusing entry is
similarly a strictly dominant strategy for New Zealand (if either inequality were
an equality then refusing entry would be a weakly dominant strategy). If both
players choose their dominant strategies they will have no incentive to deviate
from them. The dominant-strategy equilibrium of this game is therefore {main-
tain the alliance, refuse access}.

Dominant-strategy equilibrium

allow access refuse access

maintain alliance A, b C, a

void alliance B, d D, c
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When the real-life version of this game was played out New Zealand refused
entry but the USA retaliated by withdrawing from military relations with New
Zealand. Why then was the dominant-strategy equilibrium not played out?
Well, assuming the governments of the USA and New Zealand acted rationally
the answer to this question must be that the port-access game described here
does not fully capture all the salient features of the game that was actually
played out. This is a valid criticism. First of all in the real-life version of this
game the players did not move simultaneously – New Zealand moved first. In
many, if not most strategic games the order of moves matters and as we shall see
in Chapter 4, when sequential moves are incorporated the equilibrium of a
game can change. Second, the pay-offs of the USA do not take into account how
its other military relationships might be damaged by acquiescence. Doing so
could change the pay-offs considerably even to the extent that maintaining the
alliance is no longer a dominant strategy for the USA. Lastly, the port-access
game may only have been one stage of a repeated game being played out by the
USA with its allies. Modelling a game as a repeated game allows reputation
effects to be incorporated and these can also change the predicted outcome as
we shall see in Chapter 8. These kinds of considerations should alert you to
some of the dangers implicit in game theoretic modelling. By necessity game
theory simplifies and abstracts from the real world in order to develop hypothe-
ses about how the real world works. But if important elements are left out in the
modelling process little of consequence may be learned. It is therefore of consid-
erable importance, when constructing game theoretic models, to try to capture
as many of the salient features of the game’s real-life counterpart as possible.

Moving together

Exercise 2.1 

The players in the foreign investment game represented in Matrix 2.4
are two large firms, Art and Bart, that monopolise a domestic market.
The firms are independently deciding whether to invest in new outlets
abroad or not. The new investments cost money but open up new
foreign markets thereby generating higher profits. If only one firm
invests abroad it claims all the available foreign markets. If both of the
firms invest in new outlets the foreign markets are shared. Each firm
has to decide whether to make the foreign investments or not without
knowing the other firm’s choice. The pay-offs in Matrix 2.4 reflect the
utilities of the firms’ directors from the profits the firms make on the
assumption that higher profits generate more utility. What is the
dominant strategy equilibrium of this game? (Hint: ask yourself what is
the preferred strategy of Art, the one that is a best response to what-
ever firm Bart chooses. Then ask yourself the same question about
Bart. If it helps you can highlight the pay-offs of one of the players as I
did in the pub managers’ game and the legislation game.)
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Many games do not have a dominant-strategy equilibrium. In this case we can
look for an iterated-dominance equilibrium. A two-person game that doesn’t
have a dominant-strategy equilibrium may have an iterated-dominance equilib-
rium if one of the players has either a strongly or weakly dominant strategy. A
strongly dominant strategy is one where the pay-off to the player from choosing
that strategy is better than that from any other strategy in response to any strat-
egy the other player picks. A weakly dominant strategy is one where the pay-off

Iterated-dominance equilibrium

Matrix 2.4 Foreign investment game

Firm Bart

Firm Art

Exercise 2.2

What is the dominant-strategy equilibrium of the friends game in Matrix
2.5? In this game Ms Row and Mr Column choose between accepting
invitations to either a party or an event at a club. Mr Column and
Ms Row are friends and their enjoyment from the activity they choose is
greater if the other is there as well. However, both players also have a
strong preference for going to the party whether the other goes there
or not. The pay-offs indicate the players’ utility from the four alternative
outcomes.

Matrix 2.5 Friends

Mr Column

Ms Row

invest do not invest

invest 5, 5 9, 3

do not invest 3, 9 3, 3

party club

party 6, 5 3, 1

club 1, 3 2, 2

2.2 Iterated-dominance equilibrium
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to the player from choosing that strategy is at least as good as any other strategy
and better than some in response to whatever strategy the other player picks (see
Section 2.3.1 for a more formal definition). If a player in a game has a dominant
strategy all their other strategies are dominated strategies.

If one of the players in a two-player game has a dominant strategy then
even if the other player doesn’t the game may still have an iterated-dominance
equilibrium. An additional requirement when the player with the dominant
strategy has a choice of only two strategies is that the other player has a best
response to the dominant strategy of the first player. More generally in a two-
person game an iterated-dominance equilibrium is a strategy combination
where for at least one player their equilibrium strategy (i) is as good any other
strategy and better than some in response to all the non-dominated strategies
of the other player and (ii) is a best response to the equilibrium strategy of the
other player. For the other player, their equilibrium strategy is a best response
to the equilibrium strategy of the first player. This sounds complicated but
these ideas will become clearer as we look at some examples. First we will look
at games with a strong iterated-dominance equilibrium and then at games with
only a weak iterated-dominance equilibrium.

2.2.1 Friends or enemies?

The game in Matrix 2.6 is a variation on the friends game in Exercise 2.2 but
this version of the game doesn’t have a dominant-strategy equilibrium. In this
game although Mr Column still has a preference for the party and still wants to
be with Ms Row, she doesn’t want to be with him at all, quite the opposite. In
this game Mr Column is Ms Row’s stalker. He wants to be with her but she
doesn’t want to be anywhere near him. However, Mr Column’s preference for
the party still makes going to the party a dominant strategy for him. But Ms
Column doesn’t have a dominant strategy she just wants to avoid Mr Column
by choosing the opposite of whatever he chooses. Because Ms Row doesn’t
have a dominant strategy the game doesn’t have a dominant-strategy equilib-
rium. But it does have a strong iterated-dominance equilibrium.

Matrix 2.6 Friends or enemies 1

Mr Column

Ms Row

Moving together

party club

party 1, 3 2, 0

club 2, 2 1, 1
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To find the strong iterated-dominance equilibrium of a game, if one exists, all
that you need to do is delete strongly dominated strategies from the strategic
form of the game until only a single pair of strategies remain. In the friends or
enemies 1 game club is a dominated strategy for Mr Column because his pay-
off from choosing party is always higher than his pay-off from choosing club. If
Ms Row chooses party and Mr Column chooses party his pay-off is 3 but if he
chooses club his pay-off is 0. Similarly, if Ms Row chooses club Mr Column’s
pay-off from choosing party is 2 but if he chooses club his pay-off is only 1.
Consequently he always gets less by choosing club which means that club is a
strongly dominated strategy for Mr Column (party is a strongly dominant strat-
egy) so if he is rational he will never choose club. Why would he when he can
always do better by going to the party? Since Mr Column will never choose
club we can delete the column corresponding to his choice of club. This pro-
duces Matrix 2.6.1.

Matrix 2.6.1 Deleting Mr Column’s dominated strategy of club

Mr Column

Ms Row

In the game in Matrix 2.6.1 club is a dominant strategy for Ms Row (she gets 2
by going to the club and only 1 by going to the party) so we can also delete the
row corresponding to her option of party. This leaves only one strategy for each
player; club for Ms Row and party for Mr Column. This pair of strategies is the
strong iterated-dominance equilibrium of the game. We found it by deleting
the players’ strongly dominated strategies, initially club for Mr Column and
then party for Ms Row. This left only one pair of strategies: club for Ms Row
and party for Mr Column, implying that the strong iterated-dominance equi-
librium of the game is for Ms Row to go to the club and Mr Column to go to
the party. This is written as {club, party} because, as noted above, it is conven-
tional to write the equilibrium strategy of the player whose strategies are
delineated by rows, Ms Row in this case, first. 

Iterated-dominance equilibrium

party

party 1, 3

club 2, 2

Iterated-dominance equilibrium

● An equilibrium found by deleting strongly or weakly dominated
strategies until only one pair of strategies remains.
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2.2.2 Political ambition

Matrix 2.7 represents a game called political ambition.1 In this game the play-
ers are an incumbent member of parliament (the MP) who has a safe seat and a
local councillor who is considering challenging the MP by standing for election
herself. The incumbent MP is deciding between leaving office (resigning his
parliamentary seat, perhaps to spend more time with his family) and standing
for re-election. The MP enjoys his job and will only resign if an effective chal-
lenge can be mounted against him. The pay-offs represent the players’ utilities
from the alternative outcomes. In this particular version of political ambition
the incumbent MP is very popular with his constituents and is electorally
invulnerable; in the pay-off matrix this is represented by his higher pay-offs (in
the first column on the left of the matrix) from standing whatever the chal-
lenger does. Resign is consequently a strongly dominated strategy for the MP
and we can delete the right-hand column from the matrix. But the challenger’s
case is hopeless if the MP stands for re-election (this is represented by the chal-
lenger’s pay-off of –15 in the cell on the bottom row of the first, the left-hand
column). Deleting challenge for the challenger leaves only one pair of strategies
remaining: no challenge and stand. This strategy pair constitutes the strong
iterated-dominance equilibrium of the game which we can write as {no
challenge, stand}.

Matrix 2.7 Political ambition

incumbent MP

challenger

2.2.3 Friends or enemies again

The game represented in Matrix 2.8 is called friends or enemies 2. In this version
of the friends or enemies game both players receive an invite to a wedding on the

Moving together

stand resign

no challenge 5, 10 0, 1

challenge –15, 9 15, 1

Exercise 2.3 

What would the pay-offs in political ambition look like if the incumbent
MP was electorally vulnerable to a challenge? Can you construct a
pay-off matrix that illustrates this possibility? Does the game you have
constructed have an iterated-dominance equilibrium or dominant-
strategy equilibrium?
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same day as the party and the club event. Going to the wedding is a new option
for the players and Mr Column prefers to go to the wedding if Ms Row also goes
to the wedding. Consequently neither player has a dominant strategy. But will Ms
Row ever want to go to the wedding? This seems unlikely as her pay-offs make
going to the wedding a strongly dominated strategy. If Mr Column goes to the
party she prefers the club, if he goes to the club she prefers the party and if he
goes to the wedding she doesn’t care where she goes as long as it isn’t the wed-
ding. She therefore has no reason to go the wedding and we can rule out wedding
for Ms Row by deleting the bottom row of the matrix. Mr Column will never
choose wedding in response to either party or club so we can rule out going to the
wedding for him too. This leaves us with the original friends or enemies game
represented in Matrix 2.6. You have already seen that the iterated-dominance
equilibrium of that game was {club, party hence the iterated-dominance equilib-
rium of friends or enemies 2 must also be {club, party}. 

Matrix 2.8 Friends or enemies 2

Mr Column

Ms Row

2.2.4 Friends or enemies 3

The game in Matrix 2.9 is another version of the friends or enemies game. It
doesn’t have a strong iterated-dominance equilibrium but it does have a weak
iterated-dominance equilibrium. In this version of the game Ms Row still does
not want to meet Mr Column and Mr Column is still stalking Ms Row.
However, Mr Column’s preference for the party is not as strong as it was. His
pay-offs are such that if Ms Row goes to the party he also prefers to go the party
but if she goes to the club he is indifferent between going to the club or the
party. But by going to the club he risks ending up with nothing and since he
can always do as well or better by going to the party why would he go to the
club? There is no reason why he should and this is what makes club a weakly
dominated strategy for Mr Column. We can therefore delete the column on the
right corresponding to his choice of club. This makes club a dominant strategy
for Ms Row and we can delete the top row of what’s left of Matrix 2.9. As the
only remaining strategy pair this makes {club, party} the iterated-dominance
equilibrium of the game. But now it is only a weak iterated-dominance equilib-
rium as club is only weakly dominated by party for Mr Column. 

Iterated-dominance equilibrium

party club wedding

party 1, 3 2, 0 1, 1

club 2, 2 1, 1 1,0

wedding 1, 3 1, 4 0,5
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Matrix 2.9 Friends or enemies 3

Mr Column

Ms Row

2.2.5 Battle of the Bismarck Sea

The game represented in Matrix 2.10 is another game with a weak iterated-
dominance equilibrium. It is a classic example referred to in many game theory
texts. The players are the Japanese Navy and the USAF (the US Air Force). The
Japanese Navy are transporting troops across the Bismarck Sea and the USAF
wants to bomb them. The Japanese Navy are choosing between two routes, a
northern or a southern route. The USAF has to decide where to send their
planes to look for the Japanese Navy. If the USAF initially send their planes
along the wrong route they can send them back out on the other route but the
opportunity for bombing will be reduced and less damage will be inflicted on
the Japanese Navy. The northern route is shorter than the southern route and
therefore the Japanese Navy is more vulnerable to attack along the latter (they
can be bombed for longer).

The pay-offs in this game indicate that north is a weakly dominant strategy
for the Japanese Navy; because the southern route is longer, choosing south is
as, or more costly than, choosing north, even if the USAF initially chooses
north. Eliminating south for the Japanese Navy leaves north as a dominant
strategy for the USAF and the strategy combination {north, north} as the weak
iterated-dominance equilibrium of this game. In the real-life version of this
game played out in the South Pacific in March 1943 this was the actual out-
come.2 Note that the battle of the Bismarck Sea is also a zero-sum game: the
USAF’s gain is the Japanese Navy’s loss.

Matrix 2.10 Battle of the Bismarck Sea

Japanese Navy

USAF

Moving together

party club

party 1, 3 2, 0

club 2, 2 1, 2

north south

north 2, –2 2, –2

south 1, –1 3, –3
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2.2.6 Weak iterations

Not every game that doesn’t have a dominant-strategy equilibrium has an iterated-
dominance equilibrium and more worryingly some games may have more than
one weak iterated-dominance equilibrium. This possibility suggests that the
concept of a weak iterated-dominance equilibrium may not be quite as useful
as its name suggests. If there is more than one iterated-dominance equilibrium
in a game how can any of them encapsulate the idea of dominance in a mean-
ingful way? 

To see what is implied in this kind of situation take a look at the abstract
game represented in Matrix 2.11. In the weak iterations game the players
choose between three alternative strategies and there are two weak iterated-
dominance equilibria: {middle, centre} and {down, left}. 

Matrix 2.11 Weak iterations 

Player B

Player A

To find the first iterated-dominance equilibrium in weak iterations, {middle,
centre} you can delete down as this is a weakly dominated strategy for A. This
makes left a strongly dominated strategy for B. Deleting left makes up a weakly
dominated strategy for A. Deleting A’s strategy of up leaves centre as a domi-
nant strategy for B making {middle, centre} the iterated-dominance
equilibrium. Alternatively, delete middle which is also weakly dominated for A,
then centre, now strongly dominated for B. This leaves down as weakly domi-
nant for A and deleting up leaves left as a dominant strategy for B making
{down, left} the iterated-dominance equilibrium of the game. The problem here
is a theoretical one, that there is more than one weakly dominated strategy and
the order of deletion matters. This is something to be aware of when using the
method of deleting weakly dominated strategies to find the equilibrium of a
game. Evidence from experiments3 also suggests that there are some descriptive
limitations of the iterative method. For example, Beard and Beil (1994) tested
the willingness of players to choose their iterated dominance strategies. In their
experiments the players whose iterated-dominance strategies were not domi-
nant strategies did not systematically choose the former. However, the majority
of players with weakly dominant strategies did select them. These results have
been replicated in other similar experiments and in experiments involving
more iterations. The problem appears to be that while subjects in experiments

Iterated-dominance equilibrium

left centre right

up 3, 6 2, 6 1, 7

middle 2, 1 2, 7 2, 5

down 3, 7 1, 5 2, 6



36

are able to perform a number of steps of iterated reasoning for themselves they
are less willing to believe that other players are able to do the same (see
Camerer, 2003: 200–9 for a summary of these experimental results).
Nevertheless this method can still be a useful and intuitively plausible way of
resolving games like battle of the Bismarck Sea. 

In a Nash equilibrium the players in a game choose strategies that are best
responses to each other. However, no player’s Nash-equilibrium strategy, or
more simply their Nash strategy, is necessarily a best response to any of the
other strategies of the other players. Nevertheless, if all the players in a game
are playing their Nash strategies none of the players has an incentive to do
anything else. In every dominant strategy and iterated-dominance equilibrium
the players’ strategies are also best responses to each other. Therefore every
dominant strategy and iterated-dominance equilibrium must also be a Nash
equilibrium. But not every Nash equilibrium is also a dominant strategy equi-
librium or even an iterated-dominance equilibrium.4 Consequently there are
games that have no dominant strategy or iterated-dominance equilibrium but
do have a Nash equilibrium. However, some games have no equilibrium at all
in pure strategies, as you will see.5

To help you to understand the concept of a Nash equilibrium we are going to
look at a number of examples. The first of these is called computer wars 1. This
game is represented in pay-off Matrix 2.12. The players in computer wars 1 are
two computer companies that are simultaneously planning newspaper advertis-
ing campaigns. They plan their campaigns in secret and run them
simultaneously. A promotional offer is an integral part of any campaign they
run. Both companies choose between offering a lower price, a free printer or an
extended guarantee. The pay-offs in Matrix 2.12 represent expected profits. The
pay-offs show that whatever Chip offers, it is in Pin’s best interests to make a
different offer unless Chip offers the extended guarantee, in which case Pin
should match Chip’s offer. Chip always wants to match Tell’s offer. 

Moving together

2.3 Nash equilibrium 

Nash equilibrium

● A combination of players’ strategies that are best responses to each
other.
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Matrix 2.12 Computer wars 1 

Chip Inc

Pin Ltd

To find the Nash equilibrium of computer wars 1 we need to identify each
player’s best response to each of the other’s strategies. We could start by identi-
fying Pin’s best responses to each of Chip’s three possible strategies. Then we
could identify Chip’s best responses to each of Pin’s three possible strategies. If
any two of the strategies we identify are best responses to each other then we
will have found a strategy combination that constitutes a Nash equilibrium.
This sounds complicated but once the best responses of each player are found it
is straightforward to identify a Nash equilibrium if one exists. The trick then is
to identify both players’ best response strategies. The way we will do this here
is by underlining the pay-offs corresponding to each player’s best response to
each of the strategies of the other. We can call these pay-offs their ‘best
response’ pay-offs. If we follow this procedure for each player then any cell
where both pay-offs are underlined will identify a Nash equilibrium. By the
way, underlining isn’t a requirement. You can identify the pay-offs correspond-
ing to a player’s optimal strategies in any way you choose e.g. by a * or a
circle – indeed whatever takes your fancy. But underlining works just as well as
anything else.6

To see how the underlining method works let’s start by considering Pin’s
position. If Chip chooses lower price then Pin’s best response is to offer a free
printer; by choosing free printer his pay-off is 4 whereas he only gets 3 by
choosing an extended guarantee and 0 by choosing to lower price. So in Matrix
2.12.1 I have underlined Pin’s pay-off of 4 in the first cell of the middle row. If
Chip chooses free printer then Pin’s best response is to lower price so I have
underlined his pay-off of 4 in the first row of the second column. If Chip
chooses to offer an extended guarantee then Pin’s best response is to also offer
an extended guarantee and so I have underlined Pin’s pay-off of 6 in the last
row of the third column; he gets a pay-off of 6 by matching Chip and only 5
otherwise. 

Nash equilibrium

lower price free printer extended 
guarantee

lower price 0, 4 4, 0 5, 3

free printer 4, 0 0, 4 5, 3

extended 
guarantee 3, 5 3, 5 6,6
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Matrix 2.12.1 Pin’s best responses to Chip

Chip Inc

Pin Ltd 

Following the same procedure for Chip leads to the pattern of underlining in
Matrix 2.12.2. If Pin chooses lower price then Chip’s best response is also to
lower price and so I have underlined Chip’s pay-off of 4 in the first cell of the top
row. If Pin offers a free printer then Chip’s best response is to also offer a free
printer and so I have underlined Chip’s pay-off of 4 in the middle row of the
second column. If Pin offers the extended guarantee then Chip’s best response is
again to match Pin’s offer as by doing this Chip’s pay-off is 6 which is higher
than the pay-off of 3 that results if he chooses either of the alternatives.

Matrix 2.12.2 Chip’s best responses to Pin

Chip Inc

Pin Ltd 

In Matrix 2.12.3 both players’ best response pay-offs are underlined. The only
cell with two underlinings is the third cell of the bottom row which is high-
lighted. The pay-off pair (6, 6) is the outcome if both players choose the
extended guarantee. The double underlining means that choosing the
extended guarantee is Pin’s best response if Chip chooses the extended guaran-
tee and choosing the extended guarantee is also a best response for Chip if Pin
chooses the extended guarantee. Thus each player’s strategy is a best response
to the other’s implying that {extended guarantee, extended guarantee} is the
Nash equilibrium of computer wars 1.

Moving together

lower price free printer extended 
guarantee

lower price 0, 4 4, 0 5, 3

free printer 4, 0 0, 4 5, 3

extended 
guarantee 3, 5 3, 5 6,6

lower price free printer extended 
guarantee

lower price 0, 4 4, 0 5, 3

free printer 4, 0 0, 4 5, 3

extended 
guarantee 3, 5 3, 5 6,6
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Matrix 2.12.3 Pin and Chip’s best responses to each other

Chip Inc

Pin Ltd 

To see that every dominant strategy equilibrium is also a Nash equilibrium we
can look at the game in Matrix 2.13. Do you recognise this game? It is the same
as the pub managers’ game you saw represented in Matrix 2.1. You have
already seen that the dominant-strategy equilibrium of this game is {special
offer, special offer}. In Matrix 2.13 both managers’ best response pay-offs are
underlined. For the manager of the Queen’s Head special offer is a best
response to both special offer and no offers. I have therefore underlined the
Queen’s Head’s pay-offs of 10 and 18 in the top row of the matrix. Special offer
is also a best response for the manager of the King’s Head to either special offer
or no offer by the Queen’s Head. I have therefore underlined the King’s Head
manager’s pay-offs of 14 and 20 in the first column of the matrix. The two
underlinings in the first cell of the top row show that special offer is a best
response to special offer and that {special offer, special offer} is a Nash equilib-
rium as well as a dominant-strategy equilibrium. 

Matrix 2.13 Pub managers game

King’s Head

Queen’s Head

To see that an iterated-dominance equilibrium is also a Nash equilibrium let’s
have another look at friends or enemies 3 that you first saw represented in
Matrix 2.9. You have already seen that the weak iterated-dominance equilib-
rium of this game is {club, party}. The strategic form for friends or enemies 3 is
redrawn as Matrix 2.14 with the players’ best response pay-offs underlined. Mr
Column’s best response to Ms Row’s choice of party is party but Mr Column is
indifferent between party and club when Ms Row goes to the club. This means
that both strategies are equally as good in response to Ms Row’s choice of club

Nash equilibrium

lower price free printer extended 
guarantee

lower price 0, 4 4, 0 5, 3

free printer 4, 0 0, 4 5, 3

extended 
guarantee 3, 5 3, 5 6,6

special offer no offer

special offer 10, 14 18, 6

no offer 4, 20 7, 8
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and therefore it is appropriate to underline both of the corresponding pay-offs.
For Ms Row club is a best response to party but party is a best response to club.
As club is a best response to party for Ms Row and party is a best response to
club for Mr Column {club, party} is a Nash equilibrium as well as an iterated-
dominance equilibrium. 

Matrix 2.14 Friends or enemies 3 

Mr Column

Ms Row

Because every dominant-strategy equilibrium and iterated-dominance equilib-
rium is also a Nash equilibrium it may be simpler, when looking for the
equilibrium of the game, to start by looking for the Nash equilibrium. After
identifying a Nash equilibrium it is relatively straightforward to check whether
the Nash equilibrium is also a dominant strategy equilibrium or an iterated-
dominance equilibrium. Look again at the Pub managers game where the Nash
equilibrium is also a dominant-strategy equilibrium. The underlinings in pay-
off Matrix 2.13 corresponding to the Queen’s Head’s best response pay-offs are
all in the same (the top) row. Similarly, the underlinings identifying the King’s
Head’s best response pay-offs are all in the same (the first) column. This shows
in a visual way that each player has a dominant strategy and that the Nash
equilibrium is also a dominant-strategy equilibrium. In friends or enemies 3 in
Matrix 2.14 the situation is a bit different. Two of the three underlinings identi-
fying Mr Column’s best response pay-offs are in the same column (the first) but
each of the underlinings identifying Ms Row’s best response pay-offs are in dif-
ferent rows. This shows that Mr Column but not Ms Row has a weakly
dominant strategy and therefore the Nash equilibrium in this case is also a
weak iterated-dominance equilibrium.

party club

party 1, 3 2, 0

club 2, 2 1, 2

Exercise 2.4

In the version of computer wars in Matrix 2.15 Chip and Pin can only
choose between lower price and free printer. Pin has secured a large
consignment of cut price printers and free printer is now a dominant
strategy for Pin but Chip still doesn’t have a dominant strategy. What is
the Nash equilibrium of computer wars 2? Is the Nash equilibrium also
an iterated-dominance equilibrium and if so is it strong or weak?
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2.3.1 Some formal definitions 

To give a formal definition of a dominant strategy for player A in a two-person
game played with player B it is convenient to define the following: 

(i) P(Ai, Bi) is player A’s pay-off from choosing strategy Ai when player B
chooses strategy Bi.

(ii) P(A–i, Bi) is player A’s pay-off from choosing some strategy other than Ai
when player B chooses strategy Bi. 

(iii) P(Ai, B–i) is player A’s pay-off from choosing Ai when player B chooses
some strategy other than Bi.

Nash equilibrium

Matrix 2.15 Computer wars 2

Chip Inc

Pin Ltd

lower price free printer

lower price 1, 6 2, 0

free printer 6, 2 4, 4

Exercise 2.5

In computer wars 3 Chip can offer the third option of an extended guar-
antee but neither player has a dominant strategy. What is the Nash
equilibrium of computer wars 3? Is the Nash equilibrium also an
iterated-dominance equilibrium? If so is the iterated-dominance equilib-
rium strong or weak?

Matrix 2.16 Computer wars 3

Chip Inc

Pin Ltd

lower price free printer extended 
guarantee

lower price 1, 0 1, 2 0, 1

free printer 0, 3 0, 1 2, 0
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With the above definitions Ai is a strictly dominant strategy for player A if for
all the possible alternative strategies A–i and B–i:

P(Ai, Bi) >P(A–i, Bi) and P(Ai,B–i) >P(A–i, B–i) condition (2.1)

Condition (2.1) implies that all the A–i are dominated strategies. If either of the
strict inequalities are equalities then Ai is only a weakly dominant strategy. 

A dominant-strategy equilibrium is a combination of strategies where every
strategy of every player is a dominant strategy. Thus if we define the following
in relation to player B’s strategies:

(iv) P(Bi,Ai) is player B’s pay-off from choosing strategy Bi when player A
chooses strategy Ai.

(v) P(B–i,Ai) is player B’s pay-off from choosing some strategy other than Bi
when player A chooses strategy Ai.

(vi) P(Bi,A–i) is player B’s pay-off from choosing Bi when player A chooses
some strategy other than Ai.

Then Bi is a strictly dominant strategy for B if for all the possible alternatives
B–i and A–i:

P(Bi, Ai) > P(B–i, Ai) and P(Bi, A–i) > P(B–i, A–i) condition (2.2)

and if both conditions (2.1) and (2.2) are satisfied then {Ai, Bi} is a strong domi-
nant strategy equilibrium. If either of the inequalities in conditions (2.1) and
(2.2) are equalities then {Ai, Bi} is only a weak dominant strategy equilibrium.

Using definitions (i)–(ii) and (iv)–(v) above Ai and Bi will constitute a Nash
equilibrium if:

P(Ai, Bi) > P(A–i, Bi) and P(Bi, Ai) > P(B–i, Ai) condition (2.3)

If either of the inequalities in condition (2.3) is an equality then the Nash equi-
librium is weak, otherwise it is strong. 

Note that definitions (iii) and (vi) are not needed to define a Nash equilib-
rium. Now compare conditions (2.1) and (2.2) with condition (2.3). The first
inequality in condition (2.3) is the same as the first inequality in condition (2.1)
and the second inequality in condition (2.3) is the same as the first inequality in
condition (2.2). Hence if conditions (2.1) and (2.2) are satisfied so is condition
(2.3). This means that condition (2.3) is a necessary but not a sufficient condition
for Ai and Bi to constitute a dominant-strategy equilibrium and therefore every
dominant-strategy equilibrium must also be a Nash equilibrium. Condition (2.3)
is also a necessary condition for Ai and Bi to constitute an iterated-dominance
equilibrium if for at least one of the players the relevant inequality also holds
with respect to all of the other player’s non-dominated strategies. 

Moving together
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A number of well-defined two-person simultaneous-move games have been
used to generate general inferences about a range of strategic situations. These
games have been around for many years and are widely used as illustrative
examples. They include games of assurance, battle of the sexes, chicken and the
war of attrition. They generally have multiple or problematic Nash equilibria.
Some examples are analysed here. The whole of the next chapter is devoted to
the prisoners’ dilemma, probably the most famous strategic game of all. 

2.4.1 Ranked coordination: coordination with assurance7

In coordination games the players have an incentive to coordinate their strat-
egies in order to secure mutually beneficial outcomes or avoid mutually harmful
ones. This will be more difficult in games with more than one Nash equilibrium.
Have a look at the matching moves game represented in Matrix 2.17. The play-
ers in this game are managers of two firms who want to coordinate their price
strategies. Their pay-offs represent their profits. There are two Nash equilibria in
this game – can you identify them? 

Matrix 2.17 Matching moves

Firm Y

Firm X

In matching moves the Nash equilibria are {raise price, raise price} and {lower
price, lower price}. Do you think one of them is more likely to be the outcome
of this game than the other? Well, in the {raise price, raise price} equilibrium
both firms’ pay-offs are higher than in the {lower price, lower price} equilibrium.
Therefore both players prefer the former and for this reason it seems intuitively
more likely to be the outcome of the game. The problem with the {lower price,
lower price} equilibrium is that both players can benefit by switching to the
{raise price, raise price} outcome. An outcome where at least one of the players
can benefit if one or both does something else, without worsening the position
of the other is called a Pareto inefficient outcome. {lower price, lower price} is a
Pareto inefficient outcome as both players can benefit by changing their strategy
to raise price. The {raise price, raise price} equilibrium on the other hand is

Some classic games

2.4 Some classic games

raise price lower price

raise price 5, 5 1, 2 

lower price 2, 1 3, 3 
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Pareto efficient as neither player could benefit by switching strategies without
lowering the pay-off of the other. Since both players are advantaged by switch-
ing their strategies from lower price to raise price the {raise price, raise price}
equilibrium is said to Pareto dominate the {lower price, lower price} alternative. 

The firms’ shared interests in securing the higher ranked Nash equilibrium
{raise price, raise price} provides them with an element of assurance when they
are choosing their strategies. Because {raise price, raise price} is advantageous to
both of them it appears to be the more compelling of the two Nash equilibria.
It may be that it acts as a kind of focal point for the players in that it stands out
or has prominence and therefore they are able to coordinate their choices
around it.8

However, in games with multiple equilibria Pareto domination won’t auto-
matically guarantee coordination. Consider the matching moves game in
Matrix 2.17.1 where the pay-offs of Firm Y are a little different from those in
Matrix 2.17. In the game in Matrix 2.17.1 the raise price strategy is risky for the
manager of Firm Y. If he chooses raise price and for some reason Firm X does
not, Firm Y’s pay-off is –100. This is a lot less than he gets if he chooses lower
price and Firm X chooses raise price. This added risk for Firm Y makes the
Pareto dominant Nash equilibrium {raise price, raise price} seem less likely.

Matrix 2.17.1 Matching moves with added risk for Firm Y.

Firm Y

Firm X

Moving together

raise price lower price

raise price 5, 5 1, 2 

lower price 2, –100 3, 3 

● Pareto efficiency: an outcome is Pareto efficient if it is not possible
to improve the pay-off of one player without lowering the pay-off of
another.

● Pareto domination: outcome 1 Pareto dominates or is Pareto superior
to outcome 2 if the pay-offs of one or more players is higher and
none are lower in outcome 1.

● Pareto inefficiency: an outcome is Pareto inefficient if it is Pareto
dominated by another outcome.
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2.4.2 Weak ranking

In the game represented in Matrix 2.18 the two players are Mr English and Mr
French who are driving their horse-drawn carriages towards each other along a
track in Victorian England. Mr English has a preference for driving on the left
and Mr French has a preference for driving on the right. Because they are in
England where more of the people share Mr English’s preferences, Mr English
feels more strongly about driving on the left than Mr French does about dri-
ving on the right. There are two Nash equilibria in this game – can you identify
them? 

Matrix 2.18 Which side of the track?

Mr French

Mr English

The two Nash equilibria in Which side of the track? are {left, left} and {right,
right}. However, there is less assurance than in matching moves as {left, left}
only weakly Pareto dominates {right, right}; Mr English prefers {left, left} but
Mr French is indifferent between {left, left} and {right, right}. In this game Mr
English’s preference for {left, left} provides some assurance for Mr French that
Mr English will choose left. This should perhaps encourage him to choose left
himself. Mr English knows this and therefore {left, left} still seems the likely
outcome even though it only weakly Pareto dominates {right, right}. 

However, some further doubts about the strength of Pareto domination as a
selection criteria are raised by the related experimental evidence.9 Van Huyck,
Battalio and Beil (1990) conducted a series of coordination games with Pareto
ranked multiple equilibria. They found that subjects were unlikely to make ini-
tial choices that corresponded to the Pareto dominant equilibrium although in
some cases players did converge to it after a number of repetitions. This was
more likely when fewer players were involved. Cooper, DeJong, Forsythe and
Ross (1990) ran experiments where respondents played two player games with
a choice of three strategies. Each game had two Pareto ordered Nash equilibria.
They found that Pareto dominance was not automatically a selection criteria.
Subjects were also less likely to select strategies consistent with the Pareto dom-
inant equilibrium when these strategies were associated with the kind of risk
experienced by Firm Y in Matrix 2.17.1. An interpretation of these results sug-
gested by Cooper et al. is that individuals may be uncertain as to the rationality
of the other player in the game. In other experiments Cooper, DeJong, Forsythe
and Ross (1989) found that subjects were much more likely to select the Pareto
dominant equilibrium when one-way pre-play communication was allowed.10

Some classic games

right left

right 2, 3 0, 0 

left 1, 1 3, 3 
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2.4.3 Coordination without assurance 

In coordination games without assurance there are mul-
tiple Nash equilibria but none of them Pareto dominates.
In the Battle of the sexes11 game represented in Matrix
2.19 the players want to meet up either at the party or
the pub but John has a preference for the pub and Janet
has a preference for the party.12 The worst possible out-
come for both of them is that Janet goes to the pub and
John goes to the party. But Janet prefers to go to the pub

if John is there than to go to the party if he is not and John would rather go to
the party if Janet is there than go to the pub without her. You should be able to
confirm that the two Nash equilibria are {pub, pub} and {party, party}. The prob-
lem for Janet and John is that John prefers the first equilibrium and Janet the
second so how can they coordinate on either? There is no obvious answer to
this question and in experiments involving battle of the sexes games coordina-
tion failure is common (see Camerer, 2003: Chapter 7). One way may be for one
of the players to move first by pre-committing to their preferred venue. For
example Jane could pre-commit to the party by buying a present for the host of
the party. Alternatively John could pre-commit to the pub by joining the pub
darts team. Moving first in this game also gives a player a first-mover advantage.
For example, if the party didn’t start till 9 pm John could get a head start on
Jane by going down to the pub at 8 pm (see Chapter 5, Section 5.1 where a ver-
sion of this game is considered in which John moves first).

Matrix 2.19 Battle of the sexes

Janet

John

Battle of the sexes has applications that go beyond gender relations. For example
two food manufacturers may prefer to standardise the ingredients of their product
in the interests of promoting consumer confidence, but they may have differ-
ent preferences over which ingredients to use. Alternatively two neighbouring
governments may both wish to adopt minimum wage legislation but they are
likely to have different preferences about the level at which to set the mini-
mum (the legislation game in Matrix 2.2 simplifies this problem by assuming
that the governments can either introduce the legislation or not – they don’t
have discretion about how much legislation to introduce). 

Chicken is another coordination game without assurance. There are multiple
Nash equilibria but each player prefers a different equilibrium outcome. One of

Moving together

pub party

pub 3, 2 1, 1

party –1, –2 2, 3



47

the non-equilibrium outcomes is truly a disaster for both of them but unlike
Battle of the sexes the other is preferred by both players to their least preferred
Nash equilibrium outcome. In the chicken game in Matrix 2.20, the two play-
ers are a couple of ageing boxers who are trying to maintain a media profile by
challenging the other to a fight. Neither of them actually wants to fight but by
backing down they lose credibility with their fans. If neither of them backs
down the fight will go ahead. The two Nash equilibria are {challenge, back
down} and {back down, challenge} but Smith prefers the first of these, in which
Jones chooses back down and Jones prefers the second. {challenge, challenge} is
a disaster for both of them and they both want to avoid this outcome. The
other non-equilibrium outcome {back down, back down} is preferred by both
Jones and Smith to their least preferred Nash equilibrium. 

Matrix 2.20 Chicken 1 (war of attrition)

Jones

Smith

In chicken games it is not clear how the players will coordinate their strategies.
One possibility considered in Chapter 6 is that the players choose their strat-
egies according to some predetermined probability distribution such as fight
with probability and back down with probability . If players in a game
choose their strategies in this way they are using mixed or randomisation
strategies. Mixed strategies may have more appeal for players in games that are
played over time or repeated. In a one-off game of Chicken 1, if both players
choose challenge the –20 pay-off for each player is irretrievable. But in a
repeated version of the game, in which both players are randomising between
back down and challenge, a –20 pay-off could be recouped by a series of 5s or
2s. A game of chicken played over time is a war of attrition. If chicken 1 is
played as a war of attrition then both players start with challenge which gives
them a negative pay-off over time and the game continues until one of them
chooses back down. The player who maintains the challenge for longest wins
the war. 

Chicken, especially when played as a war of attrition, has many applica-
tions.13 It is possible to conceive of arms races as games of chicken and in 2003
the BBC and the British Government were accused of playing a game of
chicken during the Hutton Inquiry because neither side was prepared to shift
its position and admit making an error (Guardian, 19 August 2003: 4–5).14

3–
4

1–
4

Some classic games

back down challenge

back down 2, 2 0, 5

challenge 5, 0 –20, –20
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2.4.4 Games of pure conflict

You have already seen two games of pure conflict in Chapter 1 (hide-and-seek
and the penalty-taking game). Games of pure conflict are games where there is
no scope for coordination because there are no mutually beneficial outcomes:
there can only be one winner. Many games of pure conflict are constant-sum
games. Consider the game represented in Matrix 2.21. This version of the
friends or enemies game is a constant-sum game where the constant-sum is
zero. It is a game of pure conflict because Ms Row doesn’t care whether she
goes to the party or the club, she just wants to avoid Mr Column. Mr Column
on the other hand wants to see Ms Column so much that he too doesn’t care
whether he goes to the party or the club, he just wants to go where she goes.
Does friends or enemies 4 have a Nash equilibrium?

Matrix 2.21 Friends or enemies 4

Mr Column

Ms Row

Matrix 2.21.1 shows the best responses of Ms Row and Mr Column underlined.
There is no cell in which both players’ pay-offs are underlined and therefore no
Nash equilibrium. There is no Nash equilibrium because there are no strategy
pairs where the strategies are best responses to each other. For example, if both
players choose party then Ms Row will want to switch to club and if she
switches to club then Mr Column will want to switch from party. But if he does
Ms Row will want to switch back to party. Every possible strategy combination
is like this. One of the players will always want to deviate. Consequently there
is no Nash equilibrium in friends or enemies 4, or to be more precise no Nash
equilibrium in pure strategies. 

Matrix 2.21.1 Friends or enemies 4: both player’s best responses

Mr Column

Ms Row

Moving together

party club

party –1, 1 1, –1

club 1, –1 –1, 1

party club

party –1, 1 1, –1

club 1, –1 –1, 1



49

Similar reasoning applies in many but not all games of pure conflict. The battle
of the Bismarck Sea is an exception. It is a game of pure conflict but there is a
Nash equilibrium because one of the players has a (weakly) dominant strategy.
In games with no Nash equilibrium in pure strategies it is difficult to predict
what will happen. This problem is compounded in constant-sum games
because unlike battle of the sexes or chicken there is a first-mover disadvan-
tage. In Friends or enemies 4 if Ms Row moves first by going to the party Mr
Column will surely follow which will be to Ms Row’s disadvantage. Mr Column
is in the same position. If he moves first Ms Row will just as surely avoid him
which will be to his disadvantage. When there is a first-mover disadvantage the
secret of success is to make your moves unpredictable. One way to do this is to
act unsystematically by choosing between strategies in a random way. If a
player does this they are choosing a mixed rather than a pure strategy. It turns
out that all simultaneous-move two-player games, including constant-sum
games, have a Nash equilibrium in mixed strategies (Glicksberg, 1952).
Therefore it is a theoretical possibility for the players in a game with no Nash
equilibrium in pure strategies to coordinate on a Nash equilibrium in mixed
strategies. This possibility is discussed in detail in Chapter 6. 

Some classic games

Exercise 2.6

Taking a penalty 2 is a variation of taking a penalty 1, the game you
saw in Chapter 1. In this version of the game the striker gains more
satisfaction if he scores by kicking the ball into the corners of the goal.
Does taking a penalty 2 have a Nash equilibrium (in pure strategies)? If
not can you explain why? Does either player in this game have a first-
over advantage?

Matrix 2.22 Taking a penalty 2

goalkeeper

striker

left middle right

left 0, 1 2, 0 2, 0

middle 1, 0 0, 1 1, 0

right 2, 0 2, 0 0, 1
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In this chapter a number of simultaneous- or hidden-move games were
analysed in detail. You have seen that the analysis of these kinds of games
focuses on strategies that are best responses to each other and therefore consti-
tute an equilibrium. Three equilibrium concepts for static games were defined;
dominant-strategy equilibrium, iterated-dominance equilibrium and Nash
equilibrium (in pure strategies). You have learned how to derive each of these
in two-person simultaneous-move games. 

In a Nash equilibrium the players’ strategies are best responses to each other.
In a dominant-strategy equilibrium the players’ strategies are best responses to
all of the other players’ strategies. In an iterated-dominance equilibrium the
players’ strategies are best responses not only to each other but also, for at least
one of the players, to some of the other strategies of the other player. Because
the conditions that need to be satisfied for a Nash equilibrium are necessary
but not sufficient conditions for a dominant strategy and iterated-dominance
equilibrium, every dominant-strategy and iterated-dominance equilibrium is
also a Nash equilibrium. But not every Nash equilibrium is also a dominant-
strategy or an iterated-dominance equilibrium. It may therefore be simpler
when searching for the theoretical outcome of a game to start by looking for a
Nash equilibrium and then, if one is found, check whether it is either a dominant-
strategy or iterated-dominance equilibrium. If Nash equilibrium strategies are
also dominant strategies then we can be more confident about predicting the
Nash equilibrium as the outcome of the game. 

A straightforward way of finding a Nash equilibrium is to underline or other-
wise identify in the game’s pay-off matrix each player’s ‘best response’ pay-offs.
These are the pay-offs that correspond to their best responses to each of the
other players’ strategies. After following this procedure you can look for cells in
the pay-off matrix where both players’ pay-offs are identified as best response
pay-offs. The strategies corresponding to these pay-offs will be best responses to
each other and will constitute a Nash equilibrium. 

In Section 2.4 some classic games including chicken and battle of the sexes
were analysed. You saw that some simultaneous two-player games have more
than one Nash equilibrium and others have none. In games with assurance
there are multiple equilibria but one of the Nash equilibria seems more plausi-
ble by virtue of Pareto dominance. However, in games like chicken it is difficult
to predict how the players will coordinate their strategy choices. In games of
pure conflict there may be no Nash equilibrium in pure strategies and one pos-
sibility is that players will try to create doubt in their opponent’s mind by
choosing mixed strategies.

Moving together

Summary
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The Nash equilibrium is an important concept that is used extensively in
game theory. It does, however, have some limitations. First of all, as you have
already seen, some games have multiple Nash equilibria and some have no
Nash equilibria in pure strategies. Secondly, as you will see in the following
chapters, the problem of multiple Nash equilibria gets worse as games become
more complicated. This has led game theorists to refine the concept of a Nash
equilibrium when moves are sequential and information is not perfect.
Sequential move games are analysed in Chapter 4. In these games refinement of
Nash equilibrium leads to the idea of a subgame perfect Nash equilibrium. In
games with imperfect information the process of refinement leads to the concept
of a Bayesian Nash equilibrium (see Chapter 7). Last but not least a long line of
academics have raised objections to the underlying assumptions of Nash equilib-
rium such as rationality and common knowledge.15

2.1
Whatever Bart does Art is always better off choosing invest; Art gets at most 3
by not investing and either 9 or 5 by investing. Whatever Art does Bart is also
better off choosing invest. Consequently the dominant-strategy equilibrium is
{invest, invest}

2.2 
The dominant-strategy equilibrium is {party, party}. Both players prefer to go to
the party whatever the other player does.

2.3
A wide range of correct answers is possible. Pay-off Matrix 2.7.1 shows one pos-
sibility. In Matrix 2.7.1 the pay-offs make no challenge a strongly dominated
strategy for the challenger and the strong iterated-dominance equilibrium is
{challenge, resign}.

Matrix 2.7.1 Political ambition with a weak incumbent MP

incumbent MP

challenger

Answers to exercises

Answers to exercises

stand resign

no challenge 5, 10 0, 1

challenge 10, –15 15, 1
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The Nash equilibrium of computer wars 2 can be found in three steps:

Step 1: Underline or otherwise indicate the pay-offs corresponding to Pin’s
best responses to each of Chip’s strategies as shown in Matrix 2.15.1.

Matrix 2.15.1 Pin’s best responses 

Chip Inc

Pin Ltd

Step 2: Underline the pay-offs corresponding to Chip’s best responses to each of
Pin’s two strategies as shown in Matrix 2.15.2.

Matrix 2.15.2 Chip’s best responses 

Chip Inc

Pin Ltd

Step 3: Combine the two matrices and check to see if a cell in the pay-off
matrix has two underlinings as shown in Matrix 2.15.3.

Matrix 2.15.3 Both firms’ best responses 

Chip Inc

Pin Ltd

There are two underlinings in the (highlighted) cell in the bottom row of the
second column. This implies that offering the free printer is a best response by
both players if the other also offers a free printer. {free printer, free printer} is
therefore the Nash equilibrium of the game. This strategy combination is also a
strong iterated-dominance equilibrium found by deleting Dime’s strongly dom-
inated strategy of lower price. 

lower price free printer

lower price 1, 6 2, 0

free printer 6, 2
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lower price free printer

lower price 1, 6 2, 0

free printer 6, 2 4, 4

lower price free printer

lower price 1, 6 2, 0

free printer 6, 2 4, 4

4, 4
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2.5
Pay-off Matrix 2.16.1 shows the best responses of both players underlined. The
Nash equilibrium is {lower price, free printer}. This strategy combination is also
a strong iterated-dominance equilibrium found by deleting Chip’s strongly
dominated strategy extended guarantee which makes free printer strongly
dominated for Pin. Deleting Pin’s strategy of free printer makes lower price
strongly dominated for Tell. 

Matrix 2.16.1 

Chip Inc

Pin Ltd

2.6
There is no Nash equilibrium in pure strategies in taking a penalty 2. Even
though the pay-offs do not sum to a constant the game is still one of pure con-
flict and neither player has a dominant strategy; if the striker scores the
goalkeeper effectively loses and vice versa. Neither player has a first-mover
advantage, there is a first-mover disadvantage.

1 Identify the Nash equilibria of the up-down, left-right game represented in
Matrix 2.23. Is there more than one Nash equilibrium? If so are all the Nash
equilibria also iterated-dominance equilibria? Are the iterated-dominance
equilibria that exist strong or weak?

Matrix 2.23 The up-down, left-right game

player B

player A

Problems

lower price free printer extended 
guarantee

lower price 1, 0 1, 2 0, 1

free printer 0, 3 0, 1 2, 0

Problems

left left left right right left right right 

up 2, 0 2, 0 3, 3 3, 3

down 4, 2 1, 1 1, 1 4, 2
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2 Identify the Nash equilibria in the chicken game in Matrix 2.24. What kind
of situation do you think is being modelled in chicken 2?

Matrix 2.24 Chicken 2

Rosie

Jessie

3 In the stag hunt game in Matrix 2.25 each player chooses between hunting a
stag (which will only be successful if both players join in) and shooting a
hare (which doesn’t require the help of anyone else). There are two Nash
equilibria in this game – which do you think is more likely?

Matrix 2.25 Stag hunt

player 2

player 1

1 Explain what is implied by a Nash equilibrium (in pure strategies) in a
simultaneous-move game. 

2 Why is every dominant-strategy equilibrium also a Nash equilibrium?

3 In what kinds of circumstances might the Nash equilibrium concept be of
limited use in predicting the outcome of a game?

4 How do you think that games of pure conflict like penalty taking are
resolved in practice?

Moving together

stay swerve

stay –10, –10 2, –1

swerve –1, 2 1, 1

stag hare

stag 5, 5 0, 1

hare 1, 0 1, 1

Questions for discussion



55

1 There are 3 Nash equilibria as shown in Matrix 2.23.1. They are: {down, left
left}, {up, right left} and {down, right right}. The last of these is a weak
iterated-dominance equilibrium found initially by deleting B’s strongly
dominated strategy left right. And then left left and right left. 

Matrix 2.23.1 The up-down, left-right game

B

A

2 In chicken 2, the two Nash equilibria are {stay, swerve} and {swerve, stay} but
Jessie prefers the first of these and Rosie prefers the second. {stay, stay} is a
disaster for both players and both players prefer {swerve, swerve} to the
other’s preferred Nash equilibrium. 

This version of chicken represents a classic case in which the two players
are playing a game of nerves by driving towards each other or towards a cliff
edge or some variation on this theme. The player who swerves first loses face
and the player who stays on course the longest wins the glory. But if neither
swerves the consequences are disastrous. The game is widely associated with
the classic 1955 film Rebel Without a Cause starring James Dean in which the
main characters play a variant of this chicken game.

3 The two Nash equilibria are {stag, stag} and {hare, hare} but the first Nash
equilibrium Pareto dominates the second. The rationale is as follows: the
stag is bigger and the group is small enough so that a share in the stag is
preferred to the whole hare. The situation where both players join in the
stag hunt is therefore Pareto superior to the situation where both shoot their
own hare.

Answers to problems

Answers to problems

left left left right right left right right 

up 2, 0 2, 0 3, 3 3, 3

down 4, 2 1, 1 1, 1 4, 2
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1 A series of games like political ambition are analysed in Gates and Humes (1997: Chapter 3).

2 See Haywood (1954)  for an analytical discussion or www.combinedfleet.com/bismksea.htm for
more general information.

3 See Roth (1995: 21–3) for a brief  summary of the objectives of experimental research. See
Mirowski (2002: 545–51) for a critique of the experimental approach. 

4 Deleting weakly dominated strategies may also result in the deletion of a Nash equilibrium.

5 All references to Nash equilibria in this chapter are to pure strategy Nash equilibria. Remember
from Chapter 1 that if a player chooses a pure strategy they choose just one of  the alternative
strategies that are available to them. If a game doesn’t have an equilibrium in pure strategies it can
still have one in mixed strategies as you will see in Chapter 6. Choosing a mixed strategy involves
randomising between some or all of the player’s available strategies. A pure strategy can be viewed
as a special mixed strategy for which the respective pure strategy is played with probability one
and any other strategy with probability zero.

6 Gibbons (1992: 9) calls this a ‘brute-force approach’ to finding a game’s Nash equilibrium.

7 A classic  coordination game with assurance is Rousseau’s stag hunt. See Problem 3 at the end of
this chapter.

8 Schelling (1960) showed that in many situations where formal theorising doesn’t appear to offer
much guidance  people are still able to coordinate their actions by focusing independently on
some particular feature of the situation. 

9 See Ochs (1995) for a summary of the related experimental literature.

10 This kind of communication is sometimes called cheap talk as any commitments made are not
binding. 

11 Sometimes the title of this game is changed, for example to the dating game (see Gibbons, 1997:
132) because the original title is considered politically incorrect.

12 Battle of the sexes is like the friends game but the players have different preferences in relation to
the choice of venues. 

13 Another  example of a game of chicken is played when two swimmers are swimming in the same
lane in a crowded pool. When they are swimming towards each other they face a simultaneous
choice of swerving in order to avoid the other or not swerving. If neither swerves there will be an
uncomfortable collision. But swerving may set a precedent and is inconvenient. Alternatively, if
one of them decides to swim backstroke he can commit to not swerving because he will be unable
to see the other.

14 The Hutton Inquiry investigated the roles of the British Government and the BBC in the death of
a senior civil servant who had made claims concerning the contents of a government dossier on
weapons of mass destruction in Iraq.

15 See, for example, Hargreaves Heap and Varoufakis (1997) or Mirowski (2002).

Moving together

Notes
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PRISONERS’ DILEMMA

Concepts and techniques

● Prisoners’ dilemma

● Generalised pay-offs

● Pareto efficiency

● Public goods

● Open-access resources

● Binding contracts.

After working through this chapter you will be able to:

● Explain what is implied by a prisoners’ dilemma

● Construct a pay-off matrix for a prisoners’ dilemma game

● Show that the dominant-strategy equilibrium of the prisoners’ dilemma
is not Pareto-efficient

● Generalise the pay-offs of the prisoners’ dilemma

● Describe prisoners’ dilemmas in a variety of situations

● Show how prisoners’ dilemma games can be used to analyse problems
relating to the provision of public goods and the over-harvesting of
open-access resources

● Reflect on some suggestions about ways to resolve prisoners’ dilemmas.



Only one game is examined in this chapter. That game is the
prisoners’ dilemma.1 The prisoners’ dilemma is a truly classic
game in the sense that it has been analysed in countless academic
publications and is almost always discussed in introductory
reviews of game theory. Its renown has also spread beyond aca-

demic circles. This is not surprising as strategic situations that can be
characterised as a prisoners’ dilemma are ubiquitous. Applications include oli-
gopoly collusion, international trade and investment, environmental problems,
wage inflation and public goods. The prisoners’ dilemma game is interesting
not only because of its wide applicability but also because it poses some inter-
esting questions about the underlying assumptions of game theory, specifically
in relation to the definition of rationality that the theory employs.2 Some of
these questions are discussed in this chapter.

This chapter begins with the original application of the prisoners’ dilemma
from which the name of the game is derived.3 The dilemma is then generalised
and applied in a range of contexts in Sections 3.2 to 3.4. Some related policy
questions that arise in connection with public goods and the free-rider effect are
discussed in Sections 3.5 to 3.6 and a macroeconomic application is discussed in
Section 3.7. Some questions raised by the dilemma are discussed in Section 3.8. 

In the original prisoners’ dilemma two suspects are being interviewed by the
police in relation to a major crime. They are being interviewed in separate cells
and neither knows how the other’s interview is progressing. The moves of the
game are therefore hidden and it is appropriate to model the situation as a
simultaneous-move game (even if the prisoners are not actually being inter-
viewed exactly at the same time). An implicit assumption of the game is that
the prisoners did in fact commit the crime that they are being questioned
about. The suspects can either confess to the crime or deny their involvement
in it. If neither prisoner confesses the police are not able to convict either for
the major crime but are able to secure a conviction against both of them in
relation to a lesser crime. However, if just one of them confesses to the major
crime they can both be convicted. The dilemma for the prisoners is that if one
of them confesses but the other does not the one who confesses receives a

58 Prisoners’ dilemma

Introduction

3.1 Original prisoners’ dilemma game
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much shorter sentence than the other (his reward for acting as an informer
or ‘grass’). 

Take a look at the prisoners’ dilemma represented by the
pay-off matrix in Matrix 3.1. In Matrix 3.1 the pay-offs rep-
resent the prison sentences that the suspects face as a
result of their actions. In this prisoners’ dilemma if one
suspect confesses and the other denies the confessor is
released while the other receives a ten-year sentence. If nei-
ther suspect confesses they both receive short one-year
sentences. If both confess they both spend five years in

prison. What do you think will be the outcome of this game? 

Matrix. 3.1 Prisoners’ dilemma

prisoner 2

prisoner 1

If you apply the methodology of Chapter 2 you will see that game theory
makes a clear prediction about the game’s outcome since it has a dominant-
strategy equilibrium. You can see this by looking at the pay-off matrix in
Matrix 3.1.1 where the prisoners’ pay-offs corresponding to their best responses
are underlined. For both prisoners confess is the best response to either deny or
confess by the other implying that each player’s dominant strategy is to con-
fess. The dominant-strategy equilibrium is therefore {confess, confess} and the
game theoretic prediction is that faced with these strategy choices and pay-offs
both prisoners will confess. 

Matrix. 3.1.1 Dominant-strategy equilibrium of the prisoners’ dilemma

prisoner 2

prisoner 1

The dilemma for the players is that they could both have higher pay-offs if
they both denied. Since the {confess, confess} equilibrium is Pareto-dominated
by {deny, deny} it is not Pareto-efficient. Both prisoners can work out that {con-
fess, confess} is not an efficient outcome (as can the police) but the rational,

The original prisoners’ dilemma game

deny confess

deny –1, –1 –10, 0

confess 0, –10 –5, –5

deny confess

deny –1, –1 –10, 0

confess 0, –10 –5, –5
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self-interested dominant strategy is clearly to confess. This paradoxical result is
not resolved by a pre-negotiated agreement to deny as once the police start to
question the prisoners they each have an incentive to break the agreement.
This will still be true even if they believe that the other will stick to the agree-
ment. The dilemma for the prisoners is that by acting rationally, that is by
choosing their strategies to maximise their pay-offs, they are worse off than if
they had acted in some other presumably ‘irrational’ way . This is clearly a per-
verse result. It implies that the players could do better by acting altruistically or
even randomly than by acting in their own self-interests. But with the pay-offs
as they are in Matrix 3.1 the players will only deny if a prior agreement to deny
is somehow enforceable. 

Making a prior agreement to deny would clearly be in the prisoners’ joint inter-
ests and we could call this jointly rational behaviour4 because it would make
sense if the players were trying to maximise their total rather than their individ-
ual pay-offs. But the logic of game theory5 assumes that individual players choose
their strategies to maximise their individual not their joint pay-offs and with this
assumption it is not clear how such an agreement could be enforced.6 And unless
the agreement to deny is enforced in some way the incentive for both prisoners
to confess is so strong that neither can trust the other to keep to any such agree-
ment. One possibility is that an agreement to deny could be enforced by a threat
to punish confession after the event (this could involve a third party in prison or
outside). If the punishment for confession was very severe denial could become a
dominant strategy (see Problem 2 at the end of the chapter). But then the game
would no longer be a prisoners’ dilemma suggesting that changing the pay-offs
in this way is a circumvention of the problem rather than a solution.

The prisoners’ dilemma is not restricted to the scenario
described above as played out in many crime dramas on
TV and in films. It is therefore useful to characterise the
problem in a more general way in order to capture the
salient features of the game. Matrix 3.2 shows a gener-
alised pay-off matrix for the prisoners’ dilemma game in
Matrix 3.1. A game is a prisoners’ dilemma if the prefer-
ences of the players over the pay-offs (a), (b), (c) and (d)

Prisoners’ dilemma

Pareto efficiency

● In a two-player game an outcome is Pareto-efficient if it is not
possible to improve one player’s pay-off without at the same time
lowering the pay-off of the other.

3.2 Generalised prisoners’ dilemma
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are such that (c) is preferred to (a), (a) is preferred to (d) and (d) is preferred to
(b) which, as more is assumed to be preferred to less, implies that c > a > d > b
as indicated below.7 In Matrix 3.2. I have underlined the pay-offs that corre-
spond to each player’s best responses. As you can see, confess is still a
dominant-strategy for both prisoners. The dominant-strategy equilibrium is
therefore for both prisoners to confess but as a > d both of them would be
better off if they could both deny. 

Matrix. 3.2 Generalising the pay-offs in the prisoners’ dilemma

prisoner 2

prisoner 1

c > a > d > b 

Any game with the pay-off structure of Matrix 3.2 is a prisoners’ dilemma. The
players do not have to be prisoners and their strategy choices will rarely be
between outright denial and confession. To encompass all these different possi-
bilities the deny strategy is generally referred to as the cooperative strategy and
the confess strategy is referred to as the defect strategy. By cooperating the play-
ers can achieve a mutually beneficial outcome. Defection, on the other hand,
can be mutually harmful. If the prisoners in the original example both denied
they would be cooperating or colluding with each other in order to achieve a
shorter sentence. By confessing a prisoner is defecting from the cooperative
strategy. A prisoners’ dilemma with these generalised strategies and generalised
pay-offs is shown in Matrix 3.3. The dominant-strategy equilibrium of the
game in Matrix 3.3 is {defect, defect} even though both players would be better
off if they could both cooperate.

Matrix 3.3 Generalising the strategies as well as the pay-offs in the prisoners’ dilemma

player column

player row

c > a > d > b 

Generalised prisoners’ dilemma

deny confess

deny a, a b, c

confess c, b d, d

cooperate defect

(with row)

cooperate (with column) a, a b, c

defect c, b d, d
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Many of the strategic issues facing managers of firms in oligopoly markets can
be modelled using game theory and one of the most cited examples is a prison-
ers’ dilemma. The application of the prisoners’ dilemma to oligopoly theory
refers to the problem for firms8 of sustaining cartels or more implicit collusion
over prices, output or other competitive weapons such as spending on advertis-
ing. These kinds of agreements stifle competition and are not usually in the
interests of consumers but they are desirable from the firms’ perspective
because they can raise profits.9 Consider the strategic situation described by the
pay-off matrix in Matrix 3.4.

In the game of oligopoly collusion represented in Matrix 3.4 Ash and Birch are
the only two firms producing wood flooring in Jesmania. The wood flooring
market is therefore an oligopoly or more precisely a duopoly. Ash and Birch can
raise their profits by colluding to maintain a high market price. If they do this
they each make profits of 7 billion units of Jesmanian money. The dilemma for
the firms is that if one of them cheats on the agreement by lowering their price
the cheat’s profits rise to 10 billion while the other loses custom (to the cheat)
and profits fall to 3 billion. If both firms cheat by cutting price neither firm gains
customers from the other and the profits of both firms fall to 5 billion. 

Matrix 3.4 Oligopoly collusion

Birch

Ash

With the firms’ pay-offs as depicted in Matrix 3.4 do you think that collusion
between the firms is likely to be sustained? Game theory suggests that the
answer to this question is no. You should be able to see this by working out
that cheating is a dominant strategy for both firms and therefore the game

Prisoners’ dilemma

Exercise 3.1

Construct a pay-off matrix for a prisoners’ dilemma game using the gen-
eralised strategies in Matrix 3.3 and any positive numbers between 1
and 20 for the pay-offs.

3.3 Prisoners’ dilemma and oligopoly collusion

collude cheat

collude 7, 7 3, 10

cheat 10, 3 5, 5
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theoretic prediction is that both firms will cheat. This is a prisoners’ dilemma
for the firms as they could both make higher profits by colluding.
Unfortunately the individual incentives for the firms to cheat are too strong.
This prediction can be generalised. It implies that whenever there are strong
individual incentives to cheat oligopolistic collusion will be difficult to
sustain.10 A real-world example of a collusive agreement breaking down is pro-
vided by Sotheby’s and Christie’s. These two international auction houses
operated a price-fixing cartel for most of the 1990s until early 2000 in order to
reduce the competition between them. The cartel broke down when Christie’s
blew the whistle on the cartel and handed over evidence to the European
Commission. Christie’s escaped without a fine as a reward for ‘confessing’
while Sotheby’s were fined nearly £13 million.11

However, the incentive to cheat or defect from a collusive agreement won’t
always be as strong as it is in Matrix 3.4. If the market share of one firm is con-
siderably larger than that of the other or others then the incentive of the larger
firm to cheat may be weakened. Consider what happens if Birch is very large
relative to Ash. In this case the pay-off matrix for the game could look like the
one in Matrix 3.4.1. In this asymmetric oligopoly game cheating is no longer a
dominant strategy for Birch. Birch is so large relative to the market as a whole
that breaking the collusive agreement has a negative effect on its own as well as
Ash’s profits.12 This is true whether Ash also breaks the agreement or not. Ash’s
situation hasn’t changed so cheating is still a dominant strategy for the smaller
firm. The dominant strategy equilibrium of this asymmetric game is for Ash to
cheat and Birch to collude. This equilibrium outcome is Pareto-efficient as nei-
ther firm can improve their pay-off without worsening the position of the
other. Consequently the game is no longer a prisoners’ dilemma.

Matrix 3.4.1 Asymmetric oligopoly collusion

Birch

Ash

An example of cooperation being sustained at least partly through the actions
of a dominant supplier is OPEC’s ability in the early 1980s to keep oil prices
high by restricting output. The OPEC strategy was helped considerably by the
willingness of Saudi Arabia, a major player, to withhold production in order
that other OPEC members with contrary objectives or in vulnerable political
positions (specifically Libya, Iran, Iraq and Nigeria) could exceed their quotas.
However, in 1985 Saudi Arabia became unwilling to maintain this position and
Saudi production expanded rapidly leading to a virtual collapse of the cartel
and a fall in oil prices.

Prisoners’ dilemma and oligopoly collusion

collude cheat

collude 7, 40 3, 18

cheat 10, 20 5, 10
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Prisoners’ dilemmas are also found in the arena of international trade. The
theory of comparative advantage shows that trade can be mutually beneficial
for countries but it is still tempting for governments13 to try to protect domes-
tic producers from foreign competition by imposing tariffs on imported goods.
A tariff helps domestic producers by raising import prices. It will also raise rev-
enue for the government but tariffs will mean higher prices for consumers. A
government may be inclined to introduce a tariff if it believes that the benefits
of the tariff to domestic industry outweigh the losses to consumers. However, it
will still need to take into account the possibility of retaliatory action by other
countries. In an extreme case this could escalate into a trade war. Imposing a tariff
unilaterally is one thing but if two countries in a trading relationship impose tar-
iffs on each other’s exports, the gains to domestic producers may be outweighed
by the revenue losses to domestic exporters. Retaliation of this kind is not uncom-
mon. In 2003 there were fears that a trade war between the USA and Europe
would be re-ignited when the USA rejected a final ruling from the World Trade
Organisation that its protectionist tariffs on foreign steel were illegal. In retalia-
tion the European Union threatened to impose sanctions on a range of US goods
including Harley Davidson motorcycles and Ray-Ban sunglasses.14

This kind of scenario is modelled in the international trade game represented
in Matrix 3.5. Jesmania and Rosatia are trading partners and each is deciding
whether to impose a tariff on imports from the other country or not.15 If one
country imposes a tariff unilaterally then that country makes a significant net
gain while the other loses. If both countries impose a tariff then both lose. If
neither country imposes a tariff then both make moderate gains from trade. The
pay-offs in Matrix 3.5 represent net effects (in billions of euros).

Matrix 3.5 International trade 1

Rosatia

Jesmania

In the international trade game in Matrix 3.5 the dominant-strategy equilib-
rium is for both countries to impose a tariff even though they would both be
better off if neither imposed a tariff. The game as described here is a prisoners’
dilemma for the two countries. The situation might be different if either or

Prisoners’ dilemma

3.4 International trade

no tariff impose tariff

no tariff 10, 10 –1, 15

impose tariff 15, –1 2, 2
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both of the countries were small relative to the market for the traded goods. In
this case reduced demand due to a tariff might have little effect on import
prices.16 If import prices do not fall the negative effect of a tariff on consumers
is more likely to outweigh the positive effects on domestic producers and gov-
ernment revenue. A country in this position has little incentive to unilaterally
impose a tariff. This possibility is illustrated in Matrix 3.6 where both countries
are assumed to be small and neither has an incentive to impose a tariff. 

Matrix 3.6 International trade 2

Little Rosatia

Little 

Jesmania

International trade 2 is not a prisoners’ dilemma. The dominant-strategy equi-
librium of this game is for neither country to impose a tariff, the free trade
alternative or mutual cooperation. This result suggests that trade wars are
unlikely between small countries that are at the mercy of world markets. Small
countries stand to lose more than they gain by imposing tariffs. On the other
hand the analysis suggests that trade conflicts will be much more likely to flare
up between large countries and large trading blocks like the European Union
(EU) and the North American Free Trade Area (NAFTA).

International trade

no tariff impose tariff 

no tariff 10, 10 –1, 8

impose tariff 8, –1 –2, –2

Exercise 3.2

In International trade 3 in Matrix 3.7 one country, Little Rosatia, is
assumed to be much smaller relative to the world market than the other,
Greater Jesmania. What is the dominant-strategy equilibrium of
International trade 3? Can you give an interpretation of this version of
the international trade game? 

Matrix 3.7 International trade 3

Little Rosatia

Greater 

Jesmania

no tariff impose tariff

no tariff 10, 10 –1, 8

impose tariff 15, –1 2, –2
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The economic definition of a pure public good17 is a good that is both non-
excludable and non-rival in consumption. Non-rivalry means that one person’s
consumption does not reduce the supply of the public good to other potential
consumers. This implies that supply of the good is non-divisible and the extra
cost of supplying it to additional consumers is zero. An example is the security
provided by the local police or the protection to sea-going vessels provided by a
lighthouse. Non-excludability means that once a good or service becomes avail-
able anyone and everyone can use it. That is, no one can be excluded from its
consumption. An example is clean air in an unpolluted environment. Most
market goods have neither feature. They are private goods meaning that they
are both excludable and rival in consumption. If a good is rival then one
person’s consumption is at the expense of another’s and the incremental or
marginal cost of supplying the good to an additional consumer is therefore
positive. If a good is excludable then the owner of the good can exclude
anyone and everyone else from using it. In this case the owner of the good is
said to have property rights with respect to the good concerned. Some goods
are neither purely public nor purely private but lie somewhere in between. In
fact many so called public goods are only non-excludable and non-rival up to a
point. For instance the security provided by the local police may become rival
if there is a riot or major criminal event of some kind. Goods that are neither
purely private nor purely public are called mixed goods or impure public goods.
Table 3.1 gives some examples. Goods in the top left-hand quadrant are private
goods because they are both excludable and rival. Goods in the bottom right-
hand quadrant are public goods that are both non-excludable and non-rival.
The goods in the other two quadrants are mixed goods. They are either non-
excludable but rival or non-rival but excludable.

Table 3.1 Non-rivalry and non-excludability

Rival Non-rival

Pure private goods Mixed goods

● Cornflakes ● Pay per view TV 

Excludable ● Cars ● Toll bridges
● Chocolate ● Private roads

Mixed goods Pure public goods

● State education ● National defence
● Public health ● Lighthouses

Non-excludable ● Open access resources ● A clean environment
such as ocean fishing fields, ● Very large national parks

city streets and town parks

Prisoners’ dilemma

3.5 Prisoners’ dilemma and public goods
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National defence is a public good because it is non-excludable and non-rival. It
is non-excludable because once a country has committed to defending itself no
citizen can be excluded from the protection it offers; either all are defended or
none. It is non-rival because one person’s safety is not secured at the expense of
another’s. A lighthouse is a classic public good because no ship can be excluded
from the warning it provides and the warning received by one passing ship
does not diminish the warning received by the next. Public goods like national
defence and the police tend to be provided by governments but not all goods
that are provided by governments are pure public goods. Often they are merit
goods. Merit goods like state-funded education and the National Health Service
in the UK are impure public goods that are funded by governments because
they are assumed to have wide-ranging benefits for society.18 Merit goods are
usually rival but state provision makes them non-excludable. 

Economic theory predicts that the provision of public goods is likely to be
problematic. The supply problem stems directly from the non-excludability
and non-rivalry characteristics that generate free-rider effects. Free-riders are
people who benefit from the provision of a good or service without paying. In
the case of a public good the free-rider problem is endemic because no one can
be excluded from consumption and one person’s consumption has no effect on
another’s. Consequently there are limited private incentives to pay for provi-
sion. These free-rider effects can be modelled as a prisoners’ dilemma19

although in most cases more than two players will be involved making the
dilemma an n-player game with n>2. 

Consider a situation where there are two neighbouring communities that
both value a threatened natural habitat that has the non-excludable and non-
rival characteristics of a public good. The communities are independently
considering whether to finance the conservation of the threatened habitat. The
habitat can be saved if one of the communities acts unilaterally or by both
communities sharing the costs of conservation. Because the habitat has the
characteristics of a public good, if only one of the communities supports the
habitat, both gain. Whether the habitat will be conserved depends on the costs
of conservation relative to the benefits. If the costs of conserving the habitat
are so high that the expense of a unilateral commitment outweighs the benefits
the problem is a prisoners’ dilemma. 

This scenario is represented in Matrix 3.8 where the pay-offs for two com-
munities, Arleston and Waremouth, are the net benefits of conservation
converted into monetised units. The value to each community of saving the
habitat is 100 units. The cost of saving the habitat is 150 units. If the habitat is
saved its benefits are non-excludable and non-rival and therefore both commu-
nities fully benefit regardless of who pays. If one community pays all of the 150
conservation costs, its net benefits are negative. If the costs are shared equally
both communities gain. If neither community acts to save the habitat then nei-
ther gains and their net benefits are zero. What do you think will be the
outcome of the conservation game represented in Matrix 3.8?

Prisoners’ dilemma and public goods
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Matrix 3.8 Conservation 

Community of Waremouth

Community of

Arleston

The conservation game is a prisoners’ dilemma for the two communities. Each
community’s dominant strategy is not to conserve and therefore the dominant-
strategy equilibrium is {not conserve, not conserve} even though both
communities would be better off if they both conserved. This is the theoretical
prediction of the outcome of the game. The conservation game illustrates how
the free-rider effect impacts on the provision of public goods. It shows that if
the parties who stand to gain from the provision of a public good act in their
own self-interest the public good is unlikely to be supplied. Non-excludability
and non-rivalry reduce the private incentives to contribute towards the provi-
sion of public goods and therefore intervention by government may be
necessary to ensure their supply. The example of conservation was not chosen
by accident. Many environmental problems such as pollution and threats to
biodiversity are exacerbated because the benefits that derive from improve-
ments in environmental quality are often both non-excludable and non-rival.
Because of this private incentives to improve (or refrain from harming) the
environment are weak. Environmental problems like pollution are the result.20

Ocean fisheries and the large tracts of tropical rain forest in South America and
East Asia are effectively non-excludable resources since they are virtually
impossible to police. Resources that are non-excludable in this way are called
open-access resources. Open-access resources are not public goods since they
are invariably rival. Fish caught by one group of fishermen cannot be caught
again and once an area of forest has been logged it is unavailable to other
would-be loggers (or any other users of the forest). When a resource is non-
excludable but rival potential users face a prisoners’ dilemma but not in
relation to supply, instead the issue is one of over-harvesting or over-exploita-
tion. This problem was first analysed in relation to common land with open
access grazing rights to local sheep farmers.21 For this reason the problem itself
is often referred to as the ‘tragedy of the commons’.22 Fisheries, forests and
grass for grazing are renewable resources but not all open-access resources are
renewable. An example of a non-renewable open-access resource is a public

Prisoners’ dilemma

conserve not conserve

conserve 25, 25 –50, 100

not conserve 100, –50 0, 0

3.6 Prisoners’ dilemma and open-access resources 
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road. Roads are effectively non-excludable but they are definitely rival – traffic
congestion provides ample evidence of that.23

The example considered here is that of ocean fisheries. Take a look at the
fishing game represented in Matrix 3.9. In this game the players are two fishing
fleets from two different countries, fleet Cody and fleet Kippen. The fleets are
rivals for the stock of fish in the sea. Fishing yields per trawler are assumed to
be higher per sailing the greater the stock of fish in the sea. Fishing costs will
therefore be lower and profits higher, the greater the stock.24 The pay-offs in
Matrix 3.9 reflect the profits from selling the fish that are caught over a fixed
time period. Restrained fishing by both fleets generates a sustainable yield of
fish and a reasonable level of profits for both fleets. Non-excludability implies
that if fishing is unrestrained a fleet will trawl as long as there are positive prof-
its to be made from fishing. Rivalry means that unrestrained fishing by one or
both fleets depletes the stock of fish in the sea, lowers yields, raises fishing costs
and lowers profits for both fleets. If one fleet shows restraint but the other does
not the yields and profits of the fleet showing restraint will be lower than if
neither or both had showed restraint. The yields and profits of the fleet not
showing restraint will be higher. 

Matrix 3.9 Fishing game

Fleet Kippen

Fleet Cody

If Cody and Kippen want to maximise their profits their dominant strategy is to
fish indiscriminately. In the long term this may lead to non-sustainable yields
and over-harvesting of the fisheries, possibly to extinction if the stock of fish is
harvested beyond its critical minimum size (the level at which reproduction
rates are so low that the stock is non-viable). Yet both fleets could make higher
profits (probably for longer) if they could somehow agree to show restraint. The
problem is a prisoners’ dilemma for the fleets. By acting in their own self-
interest they both are worse off than if they had managed to cooperate. 

The prisoners’ dilemma in ocean fisheries arises because access to the
resource is open or non-excludable. The dilemma could therefore be solved in
principle by restricting access. This may be easier in some situations than
others. For example, property rights to fisheries closer to shores and where only
a limited number of countries are affected should be easier to establish. One
example where fishing rights have been restricted by quotas and more sustainable
fishing practices have been the result is in Port Lincoln in South Australia. In
this remote corner of South Australia there are no international border disputes
to worry about and a combination of restricted access and self-regulation has

The prisoners’ dilemma and open-access goods

restrained fishing unrestrained fishing

restrained fishing 100, 100 25, 150

unrestrained fishing 150, 25 30, 30
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generated high incomes for licensed fisherman and sustainable stocks of
bluefin tuna, rock lobster and king prawn.25

Prisoners’ dilemmas can also arise in the macroeconomic environment when
the actions of individual agents acting in their own self-interest have damaging
effects on the macroeconomy. When this is a possibility acting in what appears
to be self-interest can be self-defeating. Consider the case of a trade union
leader negotiating a wage increase. From the perspective of the union leader it
makes sense to try to secure a wage increase for the union membership that is
as large as possible. The problem for the trade union leader is that if other trade
union leaders act in the same way, implying a wages free-for-all, the overall
negative effects on the economy in terms of rising inflation or higher unem-
ployment are likely to outweigh the positive effects of any given wage increase.
This situation is illustrated in the wages game shown in Matrix 3.10. The pay-
offs in the wages game are the utility pay-offs of the trade union leaders. Their
utility depends on the welfare of their members and this depends on the real
value of their wages and whether they have a job or not.26

In the wages game one of the players (TU leader 1) is a representative leader
of a major trade union in a national labour market. The trade union leader
chooses between making either high or moderate wage demands. Although
each trade union leader in the economy acts independently their decisions
impact on each other. Because all the leaders of the major trade unions are in
an identical position each of them is effectively playing against a collective of
all the others. This is modelled by letting the ‘other’ player in the game be a
conglomeration of all the other trade union leaders. This is a useful simplifica-
tion when there are more than two players in a game but, in terms of their
strategies and relative pay-offs, they are identical.

Matrix 3.10 Wages game 

all other TU leaders

TU leader I

Prisoners’ dilemma

3.7 Macroeconomics

high wage demands moderate wage 

demands

high wage demands –5, –5 15, –10

moderate wage 

demands –10, 15 10, 10
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In this instance the game is an n-player prisoners’ dilemma. If all the leaders
make high wage demands this triggers an upward inflationary spiral in the
economy or massive redundancies or both. Either is disastrous for workers. If
this is the only alternative the workers are better off if all the unions show
restraint. But if one trade union leader makes a high wage demand while all the
others show restraint the members of the first trade union benefit from high
wage increases. The inflation this triggers leaves all the other union members
worse off. Similarly, if one trade union leader shows restraint while all the
others make high demands the economy still suffers but the employed mem-
bers of the first trade union are not compensated by higher wages, so they are
worse off. Unfortunately for the economy as a whole it is rational for every
leader to go for high wages. This is not in their collective interests but to secure
moderate wage demands all round requires some kind of deal on mutual
restraint. The question then is how, if at all, could such a deal be instigated? 

The wages game shows that where there are many players in a game, the
interaction between them can still constitute a prisoners’ dilemma. In a prison-
ers’ dilemma, actions motivated by self-interest are not mutually beneficial,
they are mutually harmful. Consequently, when interactions are characterised
by a prisoners’ dilemma Adam Smith’s invisible hand may require some assis-
tance in order to achieve a socially desirable outcome.

One of the questions addressed in the vast literature on the prisoners’ dilemma
relates to evidence of collusion and cooperative behaviour in situations that
can be characterised as prisoners’ dilemmas. Clearly such behaviour contradicts
the theoretical prediction. For example, large firms can and do collude. If they
did not, there would be no rationale for governments and supranational organ-
isations like the EU to regulate these kinds of activities by firms. Clearly there is
a perceived need for this type of regulation as embodied by antitrust policy in
the USA, as enforced by the Office of Fair Trading and the Competition
Commission27 in the UK and as encompassed in Article 81 of the European
Community Treaty of Amsterdam.28

In addition, there is considerable experimental evidence to suggest that
people playing one-shot prisoners’ dilemma games will cooperate at least some
of the time. In the experiments that have been conducted, of which there have
been a large number, subjects playing one-shot prisoners’ dilemma games29

have been found to cooperate about half of the time (Camerer, 2003: 46).
Similarly, subjects playing one-shot public good games have been shown to
exhibit a systematic tendency not to free ride (Ledyard, 1995: 121). Changes in
the relative pay-offs so that the pay-off from unilateral defection is less or the
pay-off from unilateral (and multilateral) cooperation is more both increase the
chances of cooperation in prisoners’ dilemma games and, equivalently, the rate

Resolving the prisoners’ dilemma

3.8 Resolving the prisoners’ dilemma



72

of provision in public good games. Communication between the players can
also raise the rate of cooperation or contribution. Evidence of this kind contra-
dicts the theoretical predictions in the same way as cooperative behaviour
observed in the real world, outside the laboratory. 

How then can such behaviour be explained other than by dismissing it as
irrational? A number of possible answers to this question have been suggested
in the academic literature. First of all it may be possible for the players to make
enforceable or binding agreements to secure the cooperative outcome.
Agreements could be enforced by the threat of punishment, possibly through a
third party as discussed at the end of Section 3.1. Punishments could also be
imposed through the legal system if for instance contracts are broken, or
through government imposed penalties. Threats that work though informal
networks of associates can also be effective. When threats to punish are cred-
ible they lower the pay-offs from non-cooperative behaviour. If the
punishments are hard enough (so that in Matrix 3.3 c < a and d < b) then they
can make cooperation a dominant strategy. In this case there is no dilemma. 

Second, if a prisoners’ dilemma is repeated then, intuitively, the players
should have more incentive to cooperate as their pay-offs are collected not just
once but however many times the game is played. Repetition means that play-
ers need to choose long-term strategies that take into account their future
pay-offs. They also have time to learn about the game and each other. If there
are enough repetitions of the game then the possibility of higher pay-offs in
the future as a result of earlier cooperative behaviour could outweigh the short-
term gains from defection. This is what some analysts refer to as ‘the shadow of
the future’ influencing decisions made today. 

Lastly, if one or both of the players is unsure about the other’s pay-offs then
this could also change the outcome of the game. If, for instance, one of the
players is not sure that non-cooperation is a dominant strategy for the other
then it could make sense for the first player to choose the cooperative strategy
but only if the prisoners’ dilemma is repeated. 

All of these possibilities point to ways of resolving prisoners’ dilemmas with-
out weakening the strong rationality assumptions that are integral to game
theory. They can also help to reconcile the game theoretic predictions with
both real-life observations and experimental evidence. All of them are given
attention later in this book. The idea of a credible threat is developed in
Chapter 4 and the possibility of making binding contracts is discussed in
Chapter 9. Repeated prisoners’ dilemma games are analysed in Chapter 8. 

This chapter has focused on just one game, the prisoners’ dilemma. The dominant-
strategy equilibrium of the prisoners’ dilemma is not Pareto-efficient as both

Prisoners’ dilemma

Summary
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players could do better by choosing their dominated strategies. This equilib-
rium is unsettling because it suggests that rational play can be self-defeating
which raises some interesting questions about the definition of rationality used
in game theory.30 After all, how rational is rational if non-rational choices
result in higher pay-offs? The assumption that human beings are motivated
only by self-interest can also be criticised. If this were a true reflection of
human nature it would be difficult to explain why people give to charity, leave
tips in restaurants they are unlikely to revisit, look after their children or care
for their elderly relatives. This kind of behaviour suggests that people are not
selfish all the time – but of course they are not altruistic all the time either.31

Rabin (1993) suggests instead that people engage in a type of reciprocal fair-
ness: they are nice to people who are nice to them, but not so nice to people
who are unkind to them. This idea can be incorporated into game theory by
adding fairness bonuses or subtracting penalties from pay-offs. In the prisoners’
dilemma fairness bonuses raise both players’ pay-offs when they both cooper-
ate and unfairness penalties lower the pay-offs of a player who defects when
the other cooperates. If the fairness bonus is high enough the dominant strat-
egy equilibrium of a prisoners’ dilemma adjusted in this way is for both players
to cooperate (see Camerer and Thaler, 2003: 162). Thus allowing for a shared
sense of fairness can resolve the one-shot version of the prisoners’ dilemma.
But people do not always want to be nice to each other or expect other people
to be nice to them and in these cases the prisoners’ dilemma is less likely to be
resolved by shared beliefs about fairness. Nevertheless, behavioural approaches
of this kind offer some interesting answers to the questions raised by the pris-
oners’ dilemma and game theory more generally. These questions are worth
addressing because, as you have seen, there are numerous applications of the
prisoners’ dilemma – it is not restricted to prisoners. 

3.1
One possibility is the one illustrated in Matrix 3.11:

Matrix 3.11

player 2

player 1

Answers to exercises

Answers to exercises

cooperate defect

cooperate 6, 6 1, 8

defect 8, 1 5, 5
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The game represented in Matrix 3.11 is a prisoners’ dilemma because the domin-
ant strategy of both players is to defect yet in the dominant-strategy equilib-
rium {defect, defect} the players’ pay-offs are less than if they had both
cooperated. 

3.2

Matrix 3.7 International trade 3

Little Rosatia

Greater 

Jesmania

In international trade 3 the dominant-strategy equilibrium is for Little Rosatia
not to impose a tariff and for Greater Jesmania to impose a tariff. This suggests
that in trading relations between small and large countries tariffs are more
likely to be raised by the latter. An example is the tariff wall erected by the EU
against agricultural imports from smaller, developing countries as part of its
Common Agricultural Policy (CAP). 

1 In the pay-off matrix below use numbers between –8 and –2 to write pay-offs
for Alf and Bert such that {confess, confess} is a dominant-strategy
equilibrium but not a Pareto-efficient one. Is the game you have created a
prisoners’ dilemma? If so explain why and if not explain why not.

Bert

Alf

2 Imagine that the prisoners playing the prisoner’s dilemma game represented
in Matrix 3.1.1 (p. 59) have secured the services of a professional hit man in
an attempt to enforce an agreement to deny. Show in a pay-off matrix how
this could affect the prisoners’ pay-offs? Is the game you have constructed
still a prisoners’ dilemma?

Prisoners’ dilemma

no tariff impose tariff

no tariff 10, 10 –1, 8

impose tariff 15, –1 2, –2

Problems

hold out confess

hold out

confess
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1 Describe three or more examples of prisoners’ dilemmas that are faced by
real people (acting individually or in groups) in real life.

2 How, if at all, are the prisoners’ dilemma problems, described in the
examples you have outlined in answer to Problem 1, resolved? If they are
not resolved in practice how do you think they might be resolved?

3 In what sense is the Nash equilibrium of the prisoners’ dilemma
unsatisfactory?

1 The pay-off matrix below shows one possibility. The dominant-strategy
equilibrium is {confess, confess} but it is Pareto-dominated by {hold out,
hold out}. The game in the matrix is a prisoners’ dilemma as the pay-offs
satisfy the conditions that c > a > d > b where c = –2, a = –3, d = –6 and b = –8. 

Bert

Alf

2 Matrix 3.1.1 is shown again below. If the prisoners secured the services of a
hit man who agreed, for a fee, to kill a close relative of any one of them who
confessed (whether the other confessed or not) the pay-offs could look like
those in Matrix 3.1.2. Note that the pay-offs in Matrix 3.1.2 take into
account more than the length of the possible prison sentences. They also
incorporate how the prisoners’ might feel about the death of their relative. I
am assuming that this makes them very unhappy. The pay-offs in Matrix
3.1.2 make {deny, deny} the dominant-strategy equilibrium of the game.
This is a Pareto-efficient outcome and the game is no longer a prisoners’
dilemma even though it is still being played by prisoners.

Answers to problems

Questions for discussion

Answers to problems

hold out confess

hold out –3, –3 –8, –2

confess –2, –8 –6, –6
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Matrix. 3.1.1 Prisoners’ dilemma

prisoner 2

prisoner 1

Matrix 3.1.2 Hiring a hit man to resolve the prisoners’ dilemma

prisoner 2

prisoner 1

1 Or  the prisoner’s dilemma, which one seems to be a matter of personal preference but as there are
two prisoners and the dilemma is shared by both, the former representation is used here.

2 For a detailed discussion see, for example, Hargreaves Heap (1989) or, specifically in relation to the
prisoners’ dilemma, Rapoport (1974).

3 The prisoners’ dilemma game is attributed either to Tucker (1950) or Flood (1952). See Roth (1995a:
87 note 12) for a brief discussion of the origins of the prisoners’ dilemma and a review of initial
experiments with prisoners’ dilemma games. See Mirowski (2002: 357–60) for a full discussion.

4 Or collectively rational behaviour which as defined by Rapoport (1974: 18) is behaviour that
prescribes a course of action to both players simultaneously. In a prisoners’ dilemma collectively
rational behaviour would result in both players being better off than if they had acted in their own
self-interest that is in accordance with individual rationality. 

5 Specifically non-cooperative game theory. The distinction between cooperative and non-
cooperative game theory is returned to in Chapter 9.

6 Simply assuming that the players can make agreements that are truly binding changes the game
from a non-cooperative one to a cooperative game. Cooperative games of this kind are discussed in
Chapter 9. You should try not to confuse the idea of a cooperative game as defined in Chapter 1,
Section 1.6 with the idea of cooperation as a strategy option for the players in a prisoner’s
dilemma as shown in Matrix 3.3.

7 Usually the pay-offs in a prisoners’ dilemma are symmetric (the game is the same from the
perspective of either player) but a game can still be a prisoners’ dilemma even if it is not
symmetric. All that is required is that each player’s pay-offs satisfy the inequalities c > a > d > b in
Matrix 3.2.

8 Or countries as in the case of the oil cartel formed by the Organisation of Petroleum Exporting
Countries (OPEC).

Prisoners’ dilemma

deny confess

deny –1, –1 –10, 0

confess 0, –10 –5, –5

deny confess

deny –1, –1 –10, –100

confess –100, –10 –105, –105

Notes
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9 When firms collude to maximise their joint profits they are effectively acting as a monopoly and
are therefore able to extract higher (monopoly) profits from the industry. 

10 See Hutton (1994: 250–1) for a more general discussion of the prisoners’ dilemma and its
implications for cooperative behaviour in a market economy.

11 The European Commission made its ruling on 30 October 2002 see http://europa.eu.int/comm/archives.

12 If the collusive agreement is one that maintains a high price by restricting output and a large firm
raises output by a significant proportion, the consequent fall in the market price could hurt the
defector as much as its competitor. In this situation the large firm has no incentive to break the
collusive agreement and even though a small firm has, the larger firm may be able and willing to
compensate the other in order to sustain the agreement. 

13 Or supranational confederations like the European Union. 

14 ‘Fear of trade war after US steel tariffs ruled illegal’, Andrew Osborne and David Gow in the
Guardian, 11 November 2003.

15 Trade implies the exchange of one product for another thus the tariffs imposed by Jesmania and
Rosatia would be on different commodities. In reality, unless either Rosatia or Jesmania has a
monopoly in one or other of the traded commodities, a tariff imposed by either of them would affect
exporters in other countries. For simplicity the pay-offs and strategies of these countries are ignored. 

16 Beneficial terms of trade effects can arise when there is a reduction in the price of the imported
good as a result of reduced demand due to the tariff. This positive effect is likely to be more
significant for larger countries because a fall in import demand in a country like the USA, for
instance, is likely to have a greater (downward) influence on world prices than an equivalent fall
in a country like Lithuania (see the literature on optimal tariffs, e.g. Venables 2003: 412–13). 

17 See a microeconomics text book such as Pindyck and Rubinfeld (2001: Chapter 18) for a fuller
discussion of public goods.

18 Wide-ranging benefits that extend beyond the individual consumer of a good or service (such as
education or health) are known as positive externalities. In the case of education and health the
benefits of an educated and healthy workforce extend beyond the individual worker to the rest of
society. These kinds of benefits are both non-rival and non-excludable.

19 Public goods may also be analysed as a chicken game (Ledyard, 1995: 144–5) or a stag hunt game
(Camerer, 2003: 377). 

20 See an environmental economics text such as Field and Field (2002: Chapter 4) for a more detailed
discussion of these issues.

21 Resources like these, with group access rights are often referred to as common property resources.

22 The term was popularised by Hardin (1968). 

23 See an environmental economics text such as Hanley, Shogren and White (2001: Chapter 7) or Van
Kooten and Bulte (2000) for a more detailed analysis of open access resources. 

24 If there are more fish in the sea they are easier, quicker and therefore cheaper to catch. As long as
prices do not fall in line with costs as catches increase, profits per catch will be higher.

25 Guardian, 20 April 2001. For more information see the Australian Bureau of Agriculture and
Resource Economics web site at www.abare.gov.au/research/fisheries.

26 See a labour economics text such as Sapsford and Tzannatos (1993: Chapter 10) or a text on the
economics of trade unions such as Booth (1996) for a more detailed discussion of trade union
utility functions. 

27 See www.oft.gov.uk or www.competition-commission.org.uk.

28 Originally Article 85 of the Treaty of Rome. See, for example, Martin (2001).

Notes
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29 Many of the prisoners’ dilemma games that subjects are asked to play in experiments are repeated
games (see Roth, 1995a: 27). This evidence is discussed in Chapter 8. 

30 Mirowski (2003: 458) quotes Simon (1982: 2,487–8) who states that ‘the main product of the very
elegant apparatus of game theory has been to demonstrate quite clearly that it is virtually
impossible to define an unambiguous criterion of rationality for this class of situations’.

31 For an introduction to this debate see, for example, Frank (2003: Chapters 7 and 8). For a
discussion on economic rationality in relation to a specific example see Basu (2003: 896–7). 
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TAKING TURNS

Concepts and techniques

● Sequential moves

● Dynamic games

● Subgame perfect Nash equilibrium 

● Backward induction

● Credible threats

● Extensive forms, game trees.

After working through this chapter you will be able to:

● Analyse games in which the players move sequentially

● Explain the difference between simultaneous and sequential moves and
use extensive forms or game trees to illustrate sequential games

● Explain why moves might not be the same as strategies in dynamic
games

● Complete strategic forms for sequential-move games 

● Explain what is meant by a credible threat

● Show that sequential games can have Nash equilibria that are not
supported by credible threats

● Explain what is implied by backward induction



In the games analysed in this chapter one player moves first and the other sees
the first player’s move before making his or her move. Games where players
move sequentially in this way are called sequential-move or dynamic games. In
these kinds of games the concept of a Nash equilibrium as defined in Chapter 2
is not sufficient to ensure that players’ strategies prescribe moves that are best
responses to each other at every decision point in the game. Remember that a
player’s strategy for a game needs to map out their plan of action, their moves,
for the entire game, taking into account all eventualities. Not all the eventual-
ities will actually be realised. Which are, and which are not will depend on the
moves of the players in the game. This means that a player’s strategy for the
game may need to specify moves that are never actually made. Consequently a
player can threaten (or promise) to make a move in order to secure a preferred
outcome but if the other player takes the threat seriously they will not need to
carry the threat out. However, a threat or a promise will only be credible if it
would actually be carried out by a rational player if required to do so. A threat
will be credible if it would be in a player’s best interest to carry it out in these
circumstances. If a threat or a promise is not credible in this sense then it
cannot be a best response to the other player’s move at that particular point in
the game. An equilibrium strategy for the whole game needs to specify moves
that are best responses at all stages of the game. Therefore, if a threat or a
promise involves a move that is not a best response at some decision point in
the game it cannot be part of an equilibrium strategy for the whole game. 

In dynamic games, Nash equilibria as defined in the previous chapter that
incorporate non-credible threats or promises can exist. Therefore the concept
of a Nash equilibrium needs to be refined. The analysis in this chapter shows
that the idea of a subgame perfect Nash equilibrium is a more appropriate equi-
librium concept for games in which the order of moves matters since this
refinement of Nash equilibrium rules out strategy combinations that involve
non-credible threats. The method of backward induction is used to show this
and to determine the subgame perfect Nash equilibrium of the games analysed. 

In Sections 4.1 to 4.3 three different games with sequential moves are exam-
ined in detail. The concept of a subgame perfect Nash equilibrium is defined and
backward induction is used to determine the subgame perfect Nash equilibrium

80 Taking turns

● Define the concept of a subgame perfect Nash equilibrium 

● Use examples to show how to derive a subgame perfect Nash
equilibrium in a sequential-move game.

Introduction
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of each game. In Section 4.4 an entry deterrence game is analysed to explore
some ideas relating to credibility and in Section 4.5 the centipede game is used to
illustrate some of the limitations of the backward induction method.

The example developed in this section is called foreign direct investment (FDI).
It is a variation on the foreign investment game you saw in Chapter 2. In this
version of the game the two companies are Alpha and Beta. Alpha moves first
and only Alpha is in a position to consider the option of making a foreign
direct investment by opening a subsidiary in another country, Jesmania.1 Alpha
is currently exporting to Jesmania and can continue to export for the next
10 years (the expected life of its product) or engage in FDI by opening a sub-
sidiary. Exporting is less costly but leaves Alpha’s market share vulnerable to
competition. If Alpha opens a subsidiary, by employing Jesmanians and devel-
oping links with the Jesmanian community it creates customer loyalty for its
product and its market share is more secure. If there is no strategic threat from
Beta then Alpha will choose the less costly option of exporting and will not
engage in FDI. Alpha’s profits when there is no strategic threat are shown in
Matrix 4.1 in billions of euros.

Matrix 4.1 Alpha’s profits with no strategic threat from Beta 

Alpha’s 

moves

Beta is not currently exporting but is considering expanding the market for its
product by developing an export market in either Jesmania or at home. If it
decides to export to Jesmania it will be in direct competition with Alpha and its
profits will depend on whether Alpha is exporting or has chosen FDI. If Beta
decides to export to Jesmania then Beta’s profits will be higher if Alpha has not
directly invested in Jesmania. In this case Beta’s profits will also be higher than
if it doesn’t export and simply expands its domestic market. But if Alpha
invests directly in Jesmania then Beta cannot compete with Alpha. In these cir-
cumstances Beta will incur major costs if it tries to enter the market but will
only secure a small market share as a result, making a net loss overall. Therefore
when Alpha invests directly in Jesmania, Beta’s profits are higher if it doesn’t
export and instead expands production at home. Beta’s pay-offs are shown in
billions of euros in Matrix 4.2.

Foreign direct investment game

4.1 Foreign direct investment game

FDI 40

export only 60



82

Matrix 4.2 Beta’s pay-offs (contingent on Alpha’s move)

Alpha’s moves

Beta’s moves

If Beta decides to export to Jesmania then Alpha’s profits will also be lower. If
Alpha is only exporting to Jesmania it has no alternative but to passively share its
export market. If it has chosen direct investment then it engages in a costly cam-
paign to retain its monopoly position. This campaign is partially successful in
that Alpha remains the market leader in Jesmania but the challenge by Beta
weakens its monopoly of the market by opening up the market to domestic and
other foreign competition. Alpha’s pay-offs if Beta exports to Jesmania are shown
in billions of euros in Matrix 4.3. With these pay-offs Alpha still prefers the
export only option even if Beta enters the Jesmanian market.

Matrix 4.3 Pay-offs to Alpha if Beta exports to Jesmania

Alpha’s

moves

If the firms moved simultaneously then the pay-off matrix for the game would
look like the one in Matrix 4.4. In Matrix 4.4 {export only, export} is the only
Nash equilibrium in pure strategies. Export only is a best response for Alpha to
Beta’s move of exporting to Jesmania and if Alpha only exports to Jesmania
then exporting to Jesmania is a best response for Beta. This Nash equilibrium
seems to confirm that Alpha will choose the export only strategy regardless of
whether there is a competitive threat from Beta or not. However, this way of
representing the game ignores the sequence of moves. 

Matrix 4.4 Pay-off matrix for FDI with simultaneous moves

Beta 

Alpha 

Taking turns

FDI export only

export –5 30

not export 10 10

FDI 25

export only 30

export not export

FDI 25, –5 40, 10

export only 30, 30 60, 10
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In the FDI game Alpha actually moves first and chooses between FDI and
export only. Beta moves last and chooses between exporting to Jesmania or
not. But Beta sees Alpha’s move and therefore Beta’s choice of move is contin-
gent on Alpha’s move. This means that there is an important difference
between the strategies of Alpha and Beta. Remember that a strategy is a plan for
playing a game; it should give a complete description of what a player plans to
do during the game and the more complex the game the more detailed a
player’s plan needs to be. 

Because Alpha moves first, its plan for playing the game only needs to spe-
cify its preferred choice between FDI and export only. Alpha’s available
strategies are therefore the same as its available moves: a straight choice
between FDI or export only. For Beta the situation is more complex. Beta’s plan
for the whole game needs to specify moves that are contingent on Alpha’s
choice. This is easiest to see in the extensive form or game tree for the FDI
game shown in Figure 4.1.

In the game tree Alpha moves first at the decision node labelled A and
chooses between FDI and export only. If Alpha chooses FDI the game moves to
B1 where Beta chooses between export and not export. If Alpha chooses not
export at the decision node labelled A the game moves to B2 where again Beta
decides between export and not export. The extensive form shows the pay-offs
of the firms written at the terminal nodes. It should be clear from the way the
game tree is drawn that while Alpha simply chooses between FDI and export
only Beta’s choices are more complicated. A strategy for Beta needs to specify a
choice at both B1 and B2 as Beta can’t be sure before Alpha moves what Alpha
will choose; Beta needs to have a full set of contingency plans. 

More specifically, a strategy for Beta needs to specify what Beta’s move
should be if Alpha chooses FDI and what it should be if Alpha chooses export
only. Because a strategy for Beta needs to map out a plan for all eventualities
Beta actually has four possible strategies from which to choose:

Foreign direct investment game

Figure 4.1 Extensive form or game tree for FDI
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1 Export to Jesmania whatever Alpha does (export, export).

2 Not export to Jesmania whatever Alpha does (not export, not export).

3 Export if Alpha chooses FDI and not export if Alpha chooses export only
(export, not export).

4 Not export if Alpha chooses FDI and export if Alpha chooses export only
(not export, export).

If you are finding it difficult to understand why Beta has four strategies instead
of two, imagine that the boss of Beta has to go into hospital for an operation
and leaves her deputy in charge of the firm. Alpha is expected to make its deci-
sion about whether to undertake FDI while Beta’s boss is in hospital. Beta’s boss
wants to leave her deputy with precise instructions about what to do in
response to Alpha’s choice when Alpha makes it. She writes down her chosen
strategy to cover all contingencies and expects the deputy to carry out her
instructions precisely. If she writes down simply export or not export, the
deputy will either export or not export whatever Alpha does. Simply writing
export or not export corresponds to export whatever Alpha does and not
export whatever Alpha does, that is (export, export) and (not export, not
export). If Beta’s boss wants to do anything different then she will have to be
more specific. For example, if she wants Beta to export if Alpha chooses FDI but
not export if Alpha chooses export only then she can write this down as
(export, not export). Alternatively, if she wants Beta to not export if Alpha
chooses FDI but export if Alpha chooses export only, then she can write this as
(not export, export) as shown. Thus Beta’s boss needs to write down one of four
possible strategies. 

In Matrix 4.4 the pay-offs correspond only to the firms’ moves and for Beta
these are not the same as its fully defined strategies. In dynamic games where
one player’s moves are conditional on another’s this will always be the case and
therefore a pay-off matrix corresponding to moves – a move matrix – is not
really the strategic form of the game as it does not accurately depict the strat-
egy choices of the players. It follows that any Nash equilibrium found by
indicating best responses to moves alone is likely to be misspecified. Matrix 4.5
shows the fully specified pay-off matrix for FDI where the players’ choices are
between strategies rather than moves (although these are the same for Alpha).
In Matrix 4.5 Beta has four strategies from which to choose while in the move
matrix it has only two: export to Jesmania corresponding to (export, export)
and not export to Jesmania corresponding to (not export, not export). This is
because Matrix 4.4 does not take account of the sequence of moves and there-
fore only specifies strategies for Beta that involve making the same move
whatever Alpha does.

Taking turns
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Matrix 4.5 Strategic form for FDI with sequential moves

Beta 

Alpha 

The two Nash equilibria in Matrix 4.5 are {export only, (export, export)} and
{FDI, (not export, export)}. In the first of these, Beta chooses export whatever
Alpha chooses and Alpha chooses export only. In the second equilibrium Beta
chooses not export if Alpha chooses FDI and export if Alpha chooses export
only. As Alpha chooses FDI, Beta chooses not export. The first Nash equilib-
rium corresponds to the Nash equilibrium found in the simple moves matrix:
{export only, export}. The second Nash equilibrium is not represented in the
moves matrix. Can you see that the second Nash equilibrium, {FDI, (not
export, export)}, is preferred by Alpha while the first is preferred by Beta? In the
second Nash equilibrium Alpha’s pay-off is 40, in the first it is only 30. In the
first Nash equilibrium Beta’s pay-off is 30, in the second it is only 10. 

You should also be able to see that in the strategic form different strategies by
Beta can lead to the same combination of moves and pay-offs for both players
depending on what Alpha does. For example, {FDI, (export, export)} and {FDI
(export, not export)} both result in Alpha undertaking FDI and Beta exporting.
This gives Alpha a pay-off of 25 and Beta a pay-off of –5. Beta’s strategies are dif-
ferent but the outcome is the same. This is one reason why it is important to
think about an equilibrium in terms of the players’ strategies rather than their
pay-offs since the same pay-offs can result from different strategy pairs.

Now take a look at the two Nash equilibria that have been identified in the
strategic form of the game. Do you think that both are equally feasible? Or do
you think that either or both of them could embody moves that are not credible
because they are not best, that is Nash responses to a move by the other player
at some point in the game? In game theory this question is answered by identi-
fying whether the Nash equilibria are also subgame perfect Nash equilibria. By
definition, the players’ strategies in a subgame perfect Nash equilibrium specify
moves that are best responses at all the decision points or nodes in the game. 

Foreign direct investment game

Exercise 4.1

Use the underlining (or equivalent) method to identify two Nash equilibria
in Matrix 4.5 where the strategies of Beta are now fully specified. 

export, not export, export, not not export,
export not export export export

FDI 25, –5 40, 10 25, –5 40, 10

export only 30, 30 60, 10 60, 10 30, 30
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To find a subgame perfect Nash equilibrium for this game we can use back-
ward induction.2 Backward induction is used to choose between multiple Nash
equilibria by checking that the players’ moves are best responses to each other
at every decision node. This process often amounts to checking the credibility
of threats. To use backward induction start at an end point or terminal node of
the game in its extensive form and work back through the game analysing sub-
sets or subgames of the whole game independently. A subgame is a subset of
the whole game that starts at some decision node where there is no
uncertainty3 and branches out from that node. Subgames end at nodes that are
terminal nodes of the whole game.4 In the FDI game there are two proper sub-
games: the subgame beginning at B1 in Figure 4.1 and the subgame beginning
at B2. After identifying the subgames you can check if the players’ strategies
specify moves that are best responses in every subgame. If they are not, then a
player’s threat or promise to make such a move is not credible so can be
ignored. Only threats or promises that are in a player’s self-interest are credible.
(If you are still unsure about the idea of a subgame you can test your under-
standing in Problem 1 at the end of this chapter.)

For a Nash equilibrium to be subgame perfect it has to specify a combination of
credible moves in every subgame: moves that are best responses at every deci-
sion node. In the actual equilibrium that is played out some decision nodes
will not be reached. Such nodes are said to be off the equilibrium path of the
game. But players still need to specify their moves at these points as threatened
actions off the equilibrium path influence other players’ strategy choices on it.
In a subgame perfect Nash equilibrium any threat to follow a given strategy, in
order to enforce a particular strategy choice by other players, needs to be credi-
ble. To be credible a threat must be in a player’s best interest to carry out if
called upon to do so.5 Backward induction involves working back through the
game checking that the players’ strategies specify moves that constitute a Nash
equilibrium in every subgame. If the players’ strategies are best responses in
every subgame then they are playing rationally by acting in their own self-
interest throughout the game. 

Taking turns

A subgame 

● A piece of a game that begins at a decision point where there is no
uncertainty and ends at decision nodes that are terminal nodes of the
whole game.
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4.1.1 Using backward induction to find the subgame
perfect Nash equilibrium of the FDI game

In the FDI game there are two proper subgames: the subgame beginning at B1
in Figure 4.1 and the subgame beginning at B2. Using backward induction in
this case means working back from the terminal nodes to the subgames begin-
ning at B1 and B2 and checking that Beta’s strategy specifies moves that are best
responses to Alpha’s move.6 We can check each subgame in turn.

The subgame beginning at B1

In order to have reached the subgame beginning at B1 Alpha must have chosen
FDI. At B1 Beta chooses between export and not export. If Beta chooses not
export Beta’s pay-off is 10. If Beta chooses export Beta’s pay-off is –5. 

Consequently, not exporting is Beta’s best response at B1 to FDI by Alpha
and exporting is not a best response. It is not rational for Beta to choose export
if Alpha chooses FDI because by exporting Beta’s pay-off is less than it would be
if it chose not to export to Jesmania. Therefore if Alpha chooses FDI and Beta is
rational, Beta will choose not export, as not exporting is a best response to FDI
by Alpha. This means that any threat by Beta to export if Alpha chooses FDI is
not credible. Because Beta’s pay-offs are common knowledge Alpha knows this.
It follows that Alpha knows that if it chooses FDI its pay-off will be 40. We can
illustrate this in the game tree by highlighting the relevant branches of the tree
as I have done in Figure 4.1.1. In Figure 4.1.1 the thickened branches show that
if Alpha chooses FDI Beta’s best response at B1 is not to export.

Foreign direct investment game

Subgame perfect Nash equilibrium

● A combination of strategies that yield a Nash equilibrium in every
subgame, whether these subgames are reached in equilibrium or not. If
players’ strategies constitute a Nash equilibrium in every subgame they
specify moves that are best responses to each other in every subgame.

Figure 4.1.1 Beta’s best response at B1
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The subgame beginning at B2

In order for the game to have reached B2 Alpha must have chosen export only.
At B2 Beta chooses between export and not export. If Beta chooses export Beta’s
pay-off is 30. If Beta chooses not export Beta’s pay-off is 10.

At B2 choosing export is a rational response to Alpha’s move. By exporting
Beta’s pay-off is 30 and otherwise it is only 10. Therefore Beta will choose
export at B2 and Alpha’s pay-off will be 30. Alpha knows this and so can predict
that if it chooses export only its pay-off will be 30. This is indicated in Figure
4.1.2 where the thickened branches show that if Alpha chooses not export
Beta’s best response at B2 is to export.

The backward induction procedure shows that Beta’s best response at B1 is
not export and at B2 it is export. This implies that (not export, export) is Beta’s
only rational strategy. Only this strategy can be part of a subgame perfect Nash
equilibrium and we can rule out all Beta’s other alternatives. This is shown in
Figure 4.1.3 where the thickened branches show Beta’s best responses at each of
Beta’s decision nodes.

Taking turns

Figure 4.1.2 Beta’s best response at B2
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Figure 4.1.3 Beta’s best responses at B1 and B2
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Alpha’s choice at A

Having analysed Beta’s choices it is now possible to work back from B1 or B2 to
the beginning of the game where Alpha is choosing between FDI and export
only. Common knowledge means that Alpha knows that if it chooses FDI Beta
will choose not export and Alpha’s pay-off will be 40 (following the thickened
branch from B1 in Figure 4.1.3). But if Alpha chooses export only Beta will
choose to export as well and Alpha’s pay-off will only be 30 (following the
thickened branch from B2 in Figure 4.1.3). Thus FDI is a best response by Alpha
to Beta’s only credible strategy of (not export, export). This implies that the
only subgame perfect Nash equilibrium of the FDI game is {FDI, (not export,
export)}as illustrated by the thickened branches in Figure 4.1.4.

{FDI, (not export, export)} is the only Nash equilibrium in which Beta’s strat-
egy specifies moves that are best responses in both subgames. It is therefore the
only subgame perfect Nash equilibrium of the game. This is Alpha’s preferred
Nash equilibrium outcome and Beta’s least preferred. It appears that in this game
Alpha has a first-mover advantage since Alpha’s costly FDI strategy deters Beta
from entering the Jesmanian market. Alpha’s commitment to FDI is rational as
Beta’s implicit threat to export if Alpha commits to FDI is not credible. 

In the next section a more abstract dynamic game is examined in order to
highlight a number of different possibilities in games like FDI. In Sections 4.3
and 4.4 further examples are examined. The structure of these games is differ-
ent but the method for finding the subgame perfect Nash equilibrium by ruling
out non-credible threats or promises is the same. 

In this section we examine another sequential move game. It is similar to the FDI
game in that there are two players and one moves first. However, the players’

Nice—not so nice game

Figure 4.1.4 Alpha’s best response to (not export, export) by Beta
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4.2 Nice—not so nice game7
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moves are labelled according to whether they are potentially more or less advan-
tageous for the other player. Although the impact of one player’s choice on the
other’s pay-off is made explicit, the players are still rational and self-interested
and therefore choose their strategies in their own best interests. However,
labelling the moves in this way highlights the threat–promise nature of the play-
ers’ strategies which is an inherent feature of many sequential move games.

In this game there are two players: Players One and Two. Player One moves
first and he chooses between two moves. One of these is potentially more
advantageous for Two because if One chooses this move Two will have the
chance to ensure her highest possible pay-off (in the discussion that follows it
helps if we assume One is male and Two is female). If One chooses this move
we can say that he is being nice to Two and if he does not then he is being not
so nice to Two. Thus he has a choice between two moves: nice (to Two) and
not nice (to Two). Two moves second after seeing One’s move. Whether One
has chosen his nice strategy or not Two makes a choice between two moves
one of which is relatively more advantageous for One. Thus Two similarly
chooses between a nice (to One) and a not so nice (to One) move. Although
the impact of one player’s move on the other’s possible pay-off is common
knowledge neither player cares about the other’s pay-off, only their own. To
summarise, One moves first and chooses between nice and not so nice. Two
sees One’s move and chooses between nice and not so nice. 

Because One moves first, his strategies correspond to his moves as he has a
simple choice between nice and not so nice. Because Two moves after One her
strategies are more complex as they are contingent on One’s move. Two has
four possible strategies:

1 (nice, nice): always choose nice.

2 (not so nice, not so nice): always choose not so nice.

3 (nice, not so nice): choose nice if One chooses nice; choose not so nice if
One chooses not so nice.

4 (not so nice, nice): choose not so nice if One chooses nice; choose nice if
one chooses not so nice.

The extensive form for this version of nice–not so nice is shown in Figure 4.2.
The fully specified pay-off matrix is shown in Matrix 4.6. 

The extensive form shows clearly that there is conflict in this game. Two
would prefer One to choose nice at decision node 1 so that she can secure her
maximum pay-off of 6. However, One achieves his maximum pay-off of 5 by
choosing not so nice as long as Two chooses nice at 2B. But Two may be able to
deter One from choosing not so nice by threatening to choose not so nice at 2B
and by promising to choose nice if One also chooses nice. But is this threat and
promise strategy by Two credible?

Taking turns
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Matrix 4.6 Strategic form for nice—not so nice 1

Two

One

An examination of the strategic form in Matrix 4.6 shows that {nice, (nice, not
so nice)} is the only Nash equilibrium of the game (you should check this by
highlighting the best response pay-offs of both players). But is {nice, (nice, not
so nice)} also a subgame perfect Nash equilibrium? 

To answer this question we can use backward induction to work back from the
terminal nodes in Figure 4.2 to the subgames beginning at 2A and 2B. By doing
this we can check whether (nice, not so nice) is potentially a subgame perfect
Nash equilibrium strategy for Two. At 2A Two’s pay-off is 6 if she chooses nice
and 0 otherwise. Since 6 > 0 nice is her best response to One’s choice of nice at
decision node 1. At 2B Two’s pay-off is 2 if she chooses nice and 3 otherwise.
Since 3 > 2 her best response to One’s choice of not so nice is to similarly choose
not so nice. This implies that (nice, not so nice) is entirely rational for Two and I
have highlighted the corresponding branches of the game tree in Figure 4.2.1. 

Since (nice, not so nice) is a rational strategy for Two her threat to play not
so nice if One chooses not so nice is credible and her promise to play nice if
One chooses nice can also be trusted. If we can work this out so can One. One
will assume that if he chooses nice at decision node 1 his pay-off will be 2. If he
chooses not so nice his pay-off will be –6. Therefore One will choose nice.
One’s choice of nice is a best response to (nice, not so nice) by Two and there-
fore {nice (nice, not so nice)}, the Nash equilibrium identified in the strategic
form, is the only subgame perfect Nash equilibrium of the game. The subgame
perfect Nash equilibrium defines the players’ moves through the game along
the equilibrium path as illustrated in Figure 4.2.2 by the thickened branches.

Nice—not so nice game

nice, nice not so nice, nice, not not so 
not so nice so nice nice, nice

nice 2, 6 –1, 0 2, 6 –1, 0

not so nice 5, 2 –6, 3 –6, 3 5, 2

Figure 4.2 Extensive form for nice—not so nice 1
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Because Two’s threat to play not so nice at 2B is a credible threat, Two does not
actually have to play not so nice in the equilibrium. One chooses nice and
decision node 2B is never reached. But Two’s threat to play not so nice at 2B is
still part of her equilibrium strategy and it induces One’s choice of nice. This
shows how threatened moves off the equilibrium path can support a subgame
perfect Nash equilibrium but to do so they need to be credible.
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Figure 4.2.1 Two’s best responses
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Figure 4.2.2 The equilibrium path of nice—not so nice 1
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Exercise 4.2

The extensive form of a different version of the nice—not so nice game,
nice—not so nice 2, is shown in Figure 4.2.3. What is the subgame per-
fect Nash equilibrium of nice—not so nice 2? In this version of the game
is Two’s threat to play not so nice at 2B credible? If so, why, and if not,
why not? Does One gain any advantage by moving first in this game?
Did One gain any advantage by moving first in nice—not so nice 1?
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The two players in this game are a landowner, Bert, and a hiker, Angela. Bert
owns some land by a river in a beautiful part of the English countryside. Angela
likes to ramble in the countryside and would like to walk through Bert’s land
beside the river instead of walking along the tarmac road around Bert’s land.
Bert doesn’t want walkers on his land and he moves first by putting up a large
sign threatening to prosecute trespassers who come onto his land. Angela sees
the sign and chooses between trespassing on Bert’s land or not. If she defers to
Bert’s threat by not walking over his land he is satisfied but she is not. If she
doesn’t cross his land Bert doesn’t prosecute, he effectively does nothing except
perhaps smugly repaint his sign. If Angela challenges his threat to prosecute by
crossing Bert’s land Bert then has to choose between carrying out his threat to
prosecute or not. If he prosecutes the law is such that if Angela has merely
walked over his land he loses – in England there is no criminal law against tres-
passing unless the trespasser commits criminal damage of some kind. Assuming
Angela doesn’t commit any criminal damage, the whole procedure will be a
waste of time and money for both of them. The players’ pay-offs for this game
are shown in Matrix 4.7.

If Angela is deterred by Bert’s threat and chooses not trespass she loses the
respect of other walkers including her friends in the rambling club and has feel-
ings of inadequacy. This is represented by her pay-off of –10. If she decides to
trespass on Bert’s land and Bert prosecutes, she is greatly inconvenienced even if
she doesn’t end up losing in court. This possibility is represented by her pay-off
of –100. If Bert doesn’t prosecute she is personally satisfied and also wins respect
from other hikers who are likely to follow her example. This is represented by

Trespass

Figure 4.2.3 Extensive form for nice—not so nice 2
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her pay-off of 100. Although Angela moves second her choices are simple. She
either trespasses or not; her moves correspond to her strategies.

Bert moves again after Angela and his choices are contingent on what
Angela does. If Angela trespasses he either prosecutes or not. But if Angela doesn’t
trespass then he doesn’t prosecute, he does nothing, and in effect the game
ends. He doesn’t really have to make a choice as it would make no sense for
him to prosecute if Angela doesn’t trespass. He therefore has two strategy
choices: prosecute if Angela trespasses and do nothing if she doesn’t, (pros-
ecute, do nothing), and not prosecute if she trespasses and do nothing
otherwise, (not prosecute, do nothing). If Angela doesn’t trespass Bert retains
his privacy and his control over access to his land. This satisfactory state of
affairs for Bert is represented by his pay-off of 100. If Angela trespasses Bert
either attempts to prosecute her or does not. If he prosecutes he is doomed to
failure and this is represented by his pay-off of –100. If he decides not to prose-
cute he just looses face but his threat to prosecute other walkers in the future is
considerably weakened. This is represented by his pay-off of –10.

Matrix 4.7 Strategic form for trespass

Angela

Bert

In Matrix 4.7 the best responses of the players are identified by underlining the
corresponding pay-offs. Two Nash equilibria are identified:

● Nash equilibrium (1): {(not prosecute, do nothing), trespass}.

● Nash equilibrium (2): {(prosecute, do nothing), not trespass}.

The first of these is preferred by Angela (she trespasses but Bert doesn’t pros-
ecute) and the second by Bert (Angela doesn’t trespass). The second Nash
equilibrium is supported by Bert’s threat to prosecute if Angela trespasses. But is
this threat credible? We can answer this question by checking whether either of
the two Nash equilibria are subgame perfect. The extensive form of the game is
shown in Figure 4.3. Bert moves first by putting up his ‘trespassers will be pros-
ecuted’ sign. Angela then decides whether to trespass or not at A. If she does
Bert decides between prosecution or not at B1. If she doesn’t trespass the game
moves to B2 and Bert does nothing.

Taking turns

trespass not trespass

prosecute, do nothing –100, –100 100, –10

not prosecute, do nothing –10, 100 100, –10
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To check whether either of the Nash equilibria identified in the strategic form
is also subgame perfect we can use backward induction to work back to Bert’s
decision node at B1 (we know that at B2 he does nothing). Nash equilibrium (1)
is {(not prosecute, do nothing), trespass}. In this equilibrium Bert doesn’t pros-
ecute at B1. This is a rational response for Bert. His pay-off is –10 if he doesn’t
prosecute but –100 if he does. 

Nash equilibrium (2) is {(prosecute, do nothing), not trespass}. In this equi-
librium Bert prosecutes if Angela trespasses. However, Bert’s threat to prosecute
is not tested as Angela is deterred from trespassing. But as we have seen Bert’s
pay-offs mean that prosecuting is not a best response for him if Angela does
trespass. Therefore the threat to prosecute by Bert is not credible; it is an empty
threat. With common knowledge Angela can work this out so she will not be
deterred by Bert’s threat. Instead she will trespass on Bert’s land. By trespassing
she receives a pay-off of 100 but if she doesn’t trespass her pay-off is –10.
Because Bert’s threat to prosecute is not credible only Nash equilibrium (1),
{(not prosecute, do nothing), trespass}, is subgame perfect. The path of this
equilibrium is indicated by the thickened branches in Figure 4.3.

The analysis of trespass shows how the concept of a subgame perfect Nash
equilibrium rules out outcomes supported by empty threats – in this case the
threat by Bert to prosecute. There are other empty threat situations that can be
modelled as games. For instance, the threat by an employee to resign from his
job if he is not given a rise is likely to be an empty one in a recession or when
there are no other employers looking for his particular skills in the locality.
Similarly the threat by a union to strike may not be credible if the union has
only limited strike funds. The threat by a wife to leave her husband (or vice
versa) may also be empty if she (or he) has nowhere else to go (see Chapter 9,
Section 3). On the international stage the threat to invade a country may not
be credible if the decision makers of the invading force are divided.

Trespass

Figure 4.3 Extensive form for trespass
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However, some non-credible threats can be made
credible through commitment. You will see this
modelled formally in the next section but in trespass
Bert may be able to commit to punishing Angela if
she trespasses by changing his threat. Instead of
threatening to prosecute trespassers he could put a

bull in his field. The bull would effectively commit Bert to punishing trespassers
and would probably deter Angela. The bull works as a commitment as the bull
itself is not worried about the consequences of attacking trespassers so will
attack indiscriminately. Contrast this situation with the one where Bert himself
ups the ante by threatening to shoot trespassers. The law in a country like the
UK is unlikely to make this a best response8 and therefore it would not be a
credible threat. 

The structure of the entry deterrence game considered here is very similar to
that of trespass. However the question of entry deterrence in relation to market
structure and competition policy has been considered in depth in the industrial
organisation literature and has wider implications.9 The two players in the
entry deterrence game are an incumbent monopolist and a firm that is a poten-
tial entrant into the monopolist’s market. The entrant chooses between
entering the market or not. The entrant will enter the market if by doing so it
can make positive profits. If the entrant enters the market the monopolist will
no longer be in a monopoly position and consequently its profits will be lower.
The monopolist tries to deter entry by threatening to fight entry should it
occur by engaging in some kind of aggressive market action.10 For example, the
monopolist may threaten to engage in an expensive advertising war or refuse
to share the market by maintaining output. The latter action, sometimes called
predatory pricing, would mean that prices would fall if the entrant entered and
if they fell low enough this could prevent the entrant from making positive
profits. Whatever strategy it threatens to adopt it will be costly for the monop-
olist as well as the entrant. Three questions are raised by this game. First of all,
is the threat to fight entry by the monopolist a credible threat? Second, will it
deter entry? Lastly, if the threat to fight doesn’t deter entry is there a way for
the monopolist to make the threat to fight credible? We will try to answer each
of these questions using game theory.

To model this game we can make some simplifying assumptions about the
market. Let’s assume that the total market is worth 10 to the monopolist and if
the monopolist concedes to the entrant by sharing, each firm’s pay-off is 5. If
the monopolist fights entry both make negative profits of –1. If the entrant
doesn’t enter its pay-off is zero. The entrant moves first and decides between

Taking turns

4.4 Entry deterrence 
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entry and staying out of the market. If the entrant enters the monopolist
decides between fighting entry and conceding by sharing the market. If the
entrant stays out the monopolist does nothing – in effect the game ends. The
monopolist has two strategies: concede if the entrant enters and do nothing
otherwise (concede, do nothing) and fight if the entrant enters and do nothing
otherwise (fight, do nothing). These pay-offs and strategies are shown in the
strategic form in Matrix 4.8. In Matrix 4.8 the pay-offs corresponding to the
best responses of both players to each other’s strategies are underlined.

Matrix 4.8 Strategic form of the entry deterrence game

monopolist

entrant

There are two Nash equilibria in this game. They are:

● Nash equilibrium (1): {enter, (concede, do nothing)}.

● Nash equilibrium (2): {stay out, (fight, do nothing)}.

In Nash equilibrium (1) the monopolist concedes if the entrant enters and the
entrant duly enters. In Nash equilibrium (2) the monopolist fights if there is
entry and therefore the entrant stays out. Nash equilibrium (1) is preferred by
the entrant. The monopolist prefers Nash equilibrium (2) which is sustained by
the threat to fight entry. To check whether either of these Nash equilibria are
subgame perfect we need to examine the extensive form of the game. This is
shown in Figure 4.4. In the game tree the entrant decides whether to enter or
not at decision node E. If the entrant enters the monopolist decides between
fighting and conceding at M1.

Entry deterrence

concede, do nothing fight, do nothing

enter 5, 5 –1, –1

stay out 0, 10 0, 10

Figure 4.4 Extensive form of the entry deterrence game

E
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M2
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Stay out

Concede
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Do nothing
0

5

–1

Pay-offs
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10

5

–1

Monopolist
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At M1 the monopolist’s best response is to concede; by conceding the
monopolist’s pay-off is 5 but it is –1 if the monopolist fights. Therefore conced-
ing is a best response by the monopolist to entry. The entrant’s pay-off from not
entering the market is zero. Since the monopolist concedes if there is entry the
entrant’s pay-off from entry is 5. The entrant will therefore enter at E. This
means that only Nash equilibrium (1), {enter, (concede, do nothing)}, incorpo-
rates moves that are best responses by the players at all the decision points in
the game. In Nash equilibrium (2) the entrant is deterred from entry by the
monopolist’s threat to fight at M1. But fighting at M1 is not a credible threat and
therefore Nash equilibrium (2) is not subgame perfect. Because the threat to
fight is not credible only Nash equilibrium (1) is subgame perfect. Figure 4.4.1
highlights the equilibrium path through entry deterrence; at E the entrant
enters and at M1 the monopolist concedes. 

4.4.1 Making the threat to fight credible

The theoretical prediction following from the analysis of the game represented
in Figure 4.4.1 is that the entrant will always enter and the monopolist will
always concede. In the first paragraph of the previous section three questions
were posed in relation to this game. The theoretical prediction suggests that the
answer to the first two is no: the threat to fight is not credible and entry will
not be deterred. But what about the third question? Is there any way to make
the threat to fight credible? In this subsection we consider the possibility that
the monopolist is able to invest in some commitment to fight which can do
just that. Such a commitment could take the form of a non-recoverable or sunk
cost that makes fighting optimal but has no benefit for the monopolist other-
wise (Dixit, 1980 and 1981). For example, the monopolist could invest in excess
capacity. An investment of this sort would only be useful to the monopolist in
the event of entry. If the entrant entered the monopolist could increase output
at minimal cost. This would lower prices and reduce the profits of the potential
entrant. Alternatively, it could invest in goodwill or generating customer loy-
alty. With a strong customer base the monopolist could confidently start an

Taking turns

Figure 4.4.1 Equilibrium path through entry deterrence
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advertising war in the event of entry.11 Making this kind of commitment would
alter the monopolist’s pay-offs. We can model this by assuming that the com-
mitment costs c but generates net benefits of d if there is entry and the
monopolist fights. The extensive form of the entry deterrence game with these
changes is shown in Figure 4.4.2. 

Using backward induction to work back to the decision node at M1 we can
see that if the entrant enters the monopolist will fight entry if condition (4.1)
holds:

–1 + d > 5 – c (4.1)

If condition (4.1) holds the pay-off to the monopolist from fighting (–1 + d) is
greater than the pay-off from conceding (5 – c). As a result, fighting is a best
response for the monopolist. This makes the threat to fight credible since it is
in the monopolist’s self-interest to carry out the threat of fighting if entry
occurs. In these circumstances the entrant will stay out and the monopolist’s
pay-off will be 10 – c. Depending on c this may be less than the monopolist’s
pay-off of 5 from concession in the game without commitment. Since the
monopolist concedes if no commitment is made, it is only worthwhile for the
monopolist to make the costly commitment if condition (4.2) also holds: 

10 – c > 5 (4.2)

The commitment should only be made if both conditions (4.1) and (4.2) are
satisfied. If condition (4.1) is satisfied the commitment deters entry and if con-
dition (4.2) is also satisfied the cost of deterring entry is worth paying.
Combining conditions (4.1) and (4.2) leads to condition (4.3):

5 > c > 6 – d (4.3)

If condition (4.3) is satisfied then fighting is credible and the commitment that
makes it credible is worth investing in. In these circumstances {stay out, (fight,

Entry deterrence

Figure 4.4.2 Extensive form of entry deterrence with commitment
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do nothing)} is not only a Nash equilibrium but also a subgame perfect Nash
equilibrium. This shows that in some circumstances (where condition (4.3) or
its equivalent is satisfied) a monopolist may be able to invest in a commitment
to fighting that makes the threat to fight credible and thereby deters entry. So
the answer to the question ‘can the threat to fight be made credible?’ is a quali-
fied yes. And as we shall see in Chapter 7 if there is uncertainty about the
monopolist’s pay-offs the monopolist may not actually need to make the costly
commitment in order to deter entry.

The entry deterrence game is another classic game in game theory. In some
form or other it invariably appears in textbook introductions to game theory
and in economic analyses of imperfect competition in product markets. It will
appear without fail in courses in industrial economics or industrial organisa-
tion and will very probably make an appearance in courses in managerial and
business economics. The game’s defining characteristics are that (i) moves are
made sequentially, (ii) one player makes a threat in order to deter some action
by a second player, and (iii) the action in question is potentially advantageous
to the second player but damaging to the first. Games with these characteristics
have many applications outside the theory of industrial organisation.
Applications hinge around the question of whether a player’s threat is credible
and therefore deters the relevant action of the other. Trespass and the FDI game
(where Beta implicitly threatens to export if Alpha undertakes FDI) are both
games with this kind of structure. There are other examples that we could
examine. For example, a union’s threat to strike in support of a wage demand
(see Problem 3 at the end of this chapter) or one person’s threat to sue another
could be analysed using the methodology of this section. 

In the examples we have looked at in this chapter most of the threats made
were not credible; nice–not so nice 1 was an exception in this respect. However,
you have seen that players may be able to make their threats credible by invest-
ing in some commitment to carry out the threat. For example, in the FDI game
Beta could make a commitment to export (possibly by investing in capacity).
This could deter Alpha from making the direct foreign investment. In wage
negotiations a union could make the threat to strike credible by holding and
winning a pre-strike vote. But for a commitment of this kind to be made the
potential gains must outweigh the costs. 

In this section we look at a family of games commonly called centipede games
(because of the way they are represented diagrammatically (see Figure 4.5.2) and
some questions will be raised about the backward induction method. For a more
detailed discussion of centipede games12 and the implications of these games for
backward induction and subgame perfect Nash equilibrium see the analysis in
Kreps (1993: 110–11) on which this section draws or Rosenthal (1981). 

Taking turns

4.5 Centipede games
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Take a look at the extensive form of the baby centipede game
in Figure 4.5. In baby centipede there are two players, A and B.
A moves first at A1 and decides between down (D) and right
(R). If A chooses down the game ends and both players receive
a pay-off of 3. If A chooses right then B chooses between down

(d) and right (r). If B chooses down the game ends and A receives a pay-off of
10 and B’s pay-off is 0. If B chooses right then A chooses again between down
and right at A2. If A chooses down A’s pay-off is 1 and B’s pay-off is –10. If A
chooses right A’s pay-off is 2 and B’s pay-off is 1.

Working back from the end of the game A’s best option at A2 is to choose
right. Anticipating this B will choose (r). In further anticipation of B’s move A
should choose down at A1. Thus the subgame perfect Nash equilibrium is that
A chooses D at the start of the game as A anticipates that B would choose r
given the chance and therefore the most A can hope for by choosing right at A1
is 2. The only reason for A to choose right at A1 would be if A expected B to
choose down but if B expects A to choose right at A2 then B has no reason to
choose down. Therefore if both players are rational and believe the other to be
the same the game will end at A1. Given the pay-offs this subgame perfect Nash
equilibrium doesn’t appear unduly problematic. 

Now consider the mini-centipede game in Figure 4.5.1. Does this centipede
game look familiar? It should do. From A’s decision node at A2 mini-centipede
is the same as baby centipede. Knowing this you should be able to work out
that the subgame perfect Nash equilibrium of mini-centipede still has A choos-
ing down, D, at the start. This is because A anticipates that B would choose r at
B1 given the chance, in the further anticipation that A will choose D at A2 (A’s
subgame perfect Nash equilibrium move in baby centipede). In other words A
doesn’t expect B to choose d at B1 which would be a reason for A to choose
right instead of down. However, the extra complexity in mini-centipede makes
this subgame perfect Nash equilibrium somewhat less intuitive than that of
baby centipede. To see this ask yourself what would B think if instead of choos-
ing down at the start of the game A chose right (R)? Would B still be as
confident that A would choose down at A2? Maybe not. And if not could B rely
on A choosing right at A3? If B has any doubts about A’s future moves then B
could choose down at B1 if A chooses right at A1. If A attaches a high probability13

to this possibility then it would be entirely rational for A to choose right at A1.

Centipede games

Figure 4.5 Baby-centipede 
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This kind of reasoning weakens the prediction that A will choose down at the
start of the game. Now consider a more standard representation of the cen-
tipede game in Figure 4.5.2.

Working backwards from the end of the centipede game you
should find that once again the subgame perfect Nash equilib-
rium move for A is to choose D from the start. But this
equilibrium is clearly Pareto inefficient. Both players would be
better off if the game moved beyond B’s first decision point at
B1 with B choosing right. And what should B think if A
chooses R at A1? Has A made a mistake or has A deviated with

a purpose, and if so what purpose? Can B rely on A choosing R again at A2? If A
could be relied on to choose R at A2 this would give B an incentive to choose r
at B1 in which case both A and B could benefit by B choosing r at B2. The possi-
bility of A choosing R at A1, even if by mistake, suggests that a completely
different outcome for the game is possible, one in which both players are
potentially much better off. Consequently, the subgame perfect Nash equilib-
rium may not be the best prediction of this game. This possibility suggests that
there are some limitations of the subgame perfect Nash equilibrium concept
and the backward induction method. Experimental evidence tends to support
this conclusion. A typical finding is that subjects rarely choose the equivalent
of down (take in experiments) straightaway. However, the observed probability
of choosing down (or take) does tend to rise as the game progresses, and per-
haps surprisingly when the stakes are higher (see, for example, McKelvey and
Palfrey, 1992 or Camerer, 2003: 94–5, 218–21 for a summary of this evidence). 
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Figure 4.5.1 Mini-centipede 
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In this chapter you have seen how dynamic or sequential-move games are
modelled. Five games were analysed in detail: the FDI game, nice–not so nice,
trespass, entry deterrence and the centipede game. You saw how there is not
always a one-to-one correspondence between a player’s moves and strategies in
sequential-move games. If one player moves after another, their moves are con-
tingent on the moves of the other player. The strategies of the player will
therefore need to allow for all eventualities. This means that players’ strategies
will sometimes have to specify moves at decision nodes that are never actually
reached in the equilibrium of the game.

You used backward induction to make a theoretical prediction about the
outcome of games with sequential moves. Backward induction allows the ana-
lyst to rule out strategies that incorporate non-credible threats. A non-credible
threat is a threat that a player would not carry out if called upon to do so as it
would not be in the player’s self-interest so to do. Ruling out non-credible
threats ensures that strategies specify moves that are a Nash equilibrium in
every subgame of the whole game. Only strategies that meet this requirement
can be part of a subgame perfect Nash equilibrium. 

The role of credibility and commitment in sequential games was further
highlighted in the analysis of the entry deterrence game from industrial organi-
sation theory. In the entry deterrence game an incumbent monopolist is
threatened by entry. In order to deter entry the monopolist threatens to fight
entry should it occur. But if the threat to fight is not credible the entrant will
enter. However, the monopolist may be able to make a commitment that
makes fighting entry a best response. In these circumstances the threat to fight
is credible and entry will be deterred. Because games with the same or a similar
structure to entry deterrence are so ubiquitous, you will see this game again
when we allow for more of the complexities of life in later chapters. In the last
section of this chapter you saw how the subgame perfect Nash equilibrium of
the centipede game is Pareto inefficient. This possibility suggests that the sub-
game perfect Nash equilibrium of a game might not always be the best
prediction of the game’s outcome. 

Summary

Summary
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4.1

Matrix 4.5.1 Best responses of Alpha and Beta underlined

Beta 

Alpha

The Nash equilibria are {export only, (export, export)} and {FDI, (not export,
export)}.

4.2
The subgame perfect Nash equilibrium of nice–not so nice 2 is {not so nice,
(nice, nice)}, the corresponding branches are highlighted in Figure 4.2.4. Any
threat by Two to play not so nice at 2B in order to persuade One to choose nice
is not credible because at 2B Two’s best response is to choose nice. By choosing
nice at 2B her pay-off is 2 while if she chooses not so nice her pay-off is only 1.
In this version of the nice–not so nice game One has an advantage by moving
first. One can choose not so nice and then rely on Two being nice which gives
One his maximum pay-off of 5. 

One’s position in nice–not so nice 2 can be contrasted with his position in
nice–not so nice 1. In nice–not so nice 1, even though One still moves first,
this does not give him such an advantage because Two’s threat to play not so
nice at 2B is credible. One cannot secure his maximum pay-off by choosing not
so nice and does better by being nice to Two.

Taking turns

Answers to exercises

export, not export, export, not not export,
export not export export export

FDI 25, –5 40, 10 25, –5 40, 10

export only 30, 30 60, 10 60, 10 30, 30

Figure 4.2.4 Extensive form for nice—not so nice 2
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1 The game in Figure 4.6 is played between players A and B. A moves first and
chooses between north, east, west or south at A. B moves second and
chooses between left and right. How many proper subgames does the
sequential move game in Figure 4.6 have and what is the subgame perfect
Nash equilibrium of this game?

2 Consider the following scenario: a single firm monopolises a market. When
faced by the possibility of entry into the market the monopolist threatens to
fight should entry occur. Use game theory to analyse this scenario and to
characterise the circumstances when the threat by the monopolist to fight
entry (a) is not credible and (b) is credible. 

3 In the wage demands game represented in Figure 4.7 a union is negotiating
with a firm and trying to secure a wage increase for its members, the firm’s
employees. The union (U) has to decide between making a high or a low
wage demand. The firm (F) will definitely accept the low wage demand (at
Fl) but may reject a high wage demand at (Fh). If the firm rejects the high
demand the union and the employer enter into a long, drawn-out
bargaining phase that is expensive for them both (it may for instance
involve a work-to-rule, strike or even a lockout). At the end of this phase the

Problems

Problems

Figure 4.6 How many subgames?
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agreed wage will lie somewhere between the original high and low demands;
both sides will have made concessions. The pay-offs in Figure 4.7 are
illustrative of this scenario. What is the subgame perfect Nash equilibrium of
this game? If the firm’s pay-off from rejecting the high demand is 5 instead
of 15 does the subgame perfect Nash equilibrium change?

1 How does the idea of a subgame perfect Nash equilibrium rule out
non-credible threats?

2 Explain why all Nash equilibria are not subgame perfect.

3 What is implied by backward induction? Does backward induction always
make sense? 

4 In games like entry deterrence how can the threat to fight entry or its
equivalent be made credible?

5 What is the centipede game and why is the subgame perfect Nash
equilibrium of the centipede game somewhat unsatisfactory?

1 The game in Figure 4.6 has 4 proper subgames: the subgames beginning at
the decision nodes labelled B1, B2, B3 and B4. The subgame perfect Nash
equilibrium is {south, (left, left, left, left)}. B will always choose left so A
should choose south.

Taking turns
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2 See Sections 4.4 and 4.4.1. For part (a) you can model a game with the same
pattern of relative pay-offs as those in Figure 4.4. For part (b) the relative
pay-offs should have the same pattern as those in Figure 4.4.2.

3 In the subgame perfect Nash equilibrium of this game the union makes the
low wage demand and the firm accepts it: {low demand, (reject, accept)}. The
union makes the low wage demand because the firm’s threat to reject is
credible; the firm’s equilibrium strategy is (reject, accept). The pay-offs imply
that rejection and concession (on both sides) hurts the firm less than passive
acceptance of the high demand. If the firm’s pay-off from rejecting the high
demand was 5 instead of 15 (implying that the firm’s negotiating costs are
higher) the firm’s threat to reject would no longer be credible and in the
subgame perfect Nash equilibrium the union would make the high demand
and the firm would accept: {high demand, (accept, accept)}.

1 The strategic role of FDI or multinational investment has been considered by a long line of authors

probably beginning with Knickerbocker (1973). Smith (1987) and  Horstmann and Markusen

(1987) develop early models where overseas production is undertaken, in preference to exporting,

in order to deter entry as domestic firms in a foreign country become more efficient. 

2 Or rollback as Dixit and Skeath (1999) call it. 

3 The significance of the qualification will be made clearer in Chapter 5, Section 5.1.

4 Gibbons (1997: 135) defines a subgame as a ‘piece of an original game that remains to be played,

beginning at any point at which the complete history of the play of the game thus far, is common

knowledge’.  See Bierman and Fernandez (1998: Section 6.5) or Montet and Serra (2003: 104) for a

more formal definition.

5 Katz and Rosen (1998, Chapter 15: 513) call this the ‘credibility condition’. 

6 In FDI the subgames starting from B1 and B2 and ending at terminal nodes are proper subgames.

The game starting at A is the  whole game and technically the whole game is also a subgame as it

starts at a node where there is no uncertainty and ends at a terminal node, but  it is only a

subgame in a trivial sense.

7 Nice–not so nice is  similar to the trust game analysed in Gibbons (1997).

8 The law as it stands in England will heavily punish this kind of action if it is deemed unreasonable

force. This was demonstrated when Tony Martin, a householder who shot dead a would-be burglar,

received a five year prison sentence (see www.tonymartinsupportgroup.org).

9 See Vickers (1985) for an early introduction.

10 The economic literature relating to entry deterrence generally (see, for example,  Bain, 1968, 1956

and Sylos-Labini, 1962) and strategic entry deterrence in particular (see, for example, Spence, 1977)

is large. 

Notes

Notes
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11 In trespass Bert’s purchase of a bull would constitute a ‘strategic’  investment of this kind.

12 Centipede games have some of the features of  the nice–not so nice game as both games require an
element of trust for the players to be ‘nice’ to each other. But in centipede games the players face
multiple decision nodes.

13 See Rosenthal (1981) for a more rigorous discussion along these lines.
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HIDDEN MOVES AND
RISKY CHOICES

Concepts and techniques

● Hidden moves

● Risk

● Expected value

● Expected utility

● Attitudes to risk

● Independence axiom

● Common consequence and common ratio effects

● Transitivity

● Framing, preference reversal.

After working through this chapter you will be able to:

● Analyse a game with hidden moves

● Illustrate hidden moves in the extensive form of a dynamic game

● Use expected values and expected utility to calculate expected pay-offs

● Use examples to show how attitudes to risk affect choices between
risky options

● Outline the theoretical limitations of expected utility theory

● Explain what is implied by the independence axiom of expected utility theory



In Section 1.8 of Chapter 1 it was stated that the outcome of a game will
depend on the information that the players have. In the games considered so
far, all the players have had the same information, they knew where they were
in the game and who they were playing. In this chapter you will see how to
model situations where there is less shared information than this. First, you
will see how simultaneous-move games can be modelled as dynamic games
with hidden moves. I have already claimed that these two possibilities are
equivalent in game theoretic terms and in Section 5.1 you will see why this is
the case. In Section 5.2, risk is modelled by incorporating probabilities in indi-
vidual decision-making problems. Using probabilities allows the analyst to
calculate either expected values or expected utilities. The latter usage is gener-
ally considered the more versatile but expected utility theory is not without its
critics. Some of the criticisms of expected utility theory are supported by exper-
imental evidence and this will be examined in detail in Section 5.3. 

We will start by considering the battle of the sexes game in Matrix 5.1. This
game was first analysed in Chapter 2 in Matrix 2.19 and you should verify that
it has two Nash equilibria in pure strategies: {pub, pub} and {party, party}. In
Chapter 2 the players were assumed to move simultaneously or if the players
moved at different times their moves were hidden. I’ve claimed that these two
possibilities are equivalent and intuitively it is not difficult to see why this
might be; if a move is hidden to a player then it cannot really matter when it
was made. Here we can use the methodology of Chapter 4 to argue this point
more forcibly. We will do this by analysing a sequential-move version of the
battle of the sexes game. Two possibilities are considered: a sequential-move
game with seen moves and one with hidden moves.

110 Hidden moves and risky choices

● Explain how and why evidence of common consequence and common
ratio effects weakens the descriptive claims of expected utility theory

● Explain what is implied by the axiom of transitivity

● Explain how and why evidence of preference reversal weakens the
descriptive claims of expected utility theory.

Introduction

5.1 Hidden moves
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Matrix 5.1 Battle of the sexes

Janet

John

Let’s first consider the battle of the sexes game as a sequential-move game in
which John moves first but there are no hidden moves. Figure 5.1 illustrates
this case; John moves first and Janet observes John’s move. In this version of
the game if John chooses pub Janet makes a decision at Janet1 and if he
chooses party then she makes a decision at Janet2. Because Janet’s move is con-
tingent on John’s she has four pure strategies: (pub, pub), (pub, party), (party,
pub) and (party, party). The players’ pay-offs are such that if John chooses pub,
so will Janet, but if John chooses party she will choose party. Thus only (pub,
party) is rational for Janet. John knows this and as he prefers the pub the sub-
game perfect Nash equilibrium of this dynamic version of battle of the sexes is
{pub, (pub, party)} which implies that both of them go to the pub. This is what
I meant in Chapter 2 Section 2.4.3 when I said that the game had a first mover
advantage; if the moves are seen, then whoever moves first can secure their
preferred outcome. To show that this is true when Janet has the first move
draw the game tree with Janet moving first. You should be able to use backward
induction to argue that the subgame perfect Nash equilibrium now has both
players going to the party. This shows that, unlike the simultaneous-move
game, there is a unique equilibrium outcome when one of the players moves
first and their move is observed by the other. This is not the case when the
player’s move is hidden.

We can see this by examining Figure 5.2 which shows how the game-tree
looks when John moves first but his move is hidden from Janet. The dotted
line between Janet’s decision nodes, Janet1 and Janet2, is a simple illustrative
device that is used to signify that Janet doesn’t know whether she is at Janet1 or

Hidden moves

pub party

pub 3, 2 1, 1

party –1, –2 2, 3

Figure 5.1 Battle of the sexes with John moving first and his move is seen by Janet
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Janet2. Broken lines either joining or around a player’s decision-nodes are used
in this way. They indicate that the player with the move doesn’t know which
of the nodes joined by or, enclosed within, the broken lines, he or she is at. In
this case Janet doesn’t know whether she is at Janet1 or Janet2 because she
hasn’t seen John’s move. 

In the version of the game depicted in Figure 5.2 we cannot use backward
induction to analyse Janet’s moves at Janet1 and Janet2 because the games
beginning at these nodes are not proper subgames of the whole game.
Remember from Chapter 4 that the definition of a subgame is a subset of the
whole game that starts at a decision-node where there is no uncertainty. As
Janet doesn’t see John’s move she doesn’t know whether she is at Janet1 or
Janet2 so there is clearly some uncertainty for her at each of these decision-
nodes. This implies that there are no proper subgames of this version of the
game and backward induction cannot be used. Furthermore, as Janet’s moves
are not contingent on John’s move – they can’t be as she doesn’t see John’s
move – she has only two pure strategies: pub and party. As John moves first
there is no possibility of him seeing Janet’s move and therefore he too has only
two pure strategies: pub and party. It follows that unless Janet has some infor-
mation about John’s moves the sequential version of this game with hidden
moves is analytically equivalent to the simultaneous-move version. Each player
has two pure strategies, neither player has an advantage and there are two Nash
equilibria. Since each prefers a different equilibrium neither is more likely than
the other. 

This indeterminacy is borne out in experiments with battle of the sexes games
in which subjects tend to choose randomly and there are many mismatches
(Camerer, 2003: 353–67). As you have seen, the theoretical prediction changes if
John moves first and Janet sees his move. In experiments this is modelled by
allowing one player to announce in advance their intended choice. When this
happens the announcing player secures their preferred outcome as predicted.
Interestingly, subjects also tend to coordinate on the first mover’s preferred out-
come even when the second-mover doesn’t know what the first-mover has done.
Camerer (2003: 367) attributes this to ‘a tacit – almost telepathic – first-mover
advantage’. Telepathy isn’t assumed in game theory. Instead a first-mover advan-

Hidden moves and risky choices

Figure 5.2 Game tree for battle of the sexes with hidden moves
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tage of this kind would be explained by assuming that the second-mover, Janet
in Figure 5.2, had some information about the likelihood of John choosing pub.
This information would be reflected in her beliefs and these are modelled by
probabilities. We have not dealt with probabilities yet but now you are going to
see how they can be incorporated into the analysis.

As noted in Chapter 1 not all risky situations are strategic ones and the analysis of
risk and uncertainty extends beyond game theory to decision theory more gener-
ally (see, for example, Watson and Bude, 1987: Part 1 or Biswas, 1997: Chapters
1–2). In order to keep the analysis simple we can start by considering some situ-
ations where there is risk but it is non-strategic. When risk is non-strategic the
decision maker has no influence or possible impact on how the risk is resolved. 

For example, when you plan your next holiday you will
have to make a number of decisions concerning your destin-
ation, the timing of your holiday and so forth. You will
make these decisions in the knowledge that there is some
risk that your plans will be disrupted, perhaps because of a
luggage handlers’ strike or your cat being ill, or that the
holiday is a disaster for some other reason (for example if

the weather is awful). But your choice concerning your holiday doesn’t actually
have any effect on any of these possibilities; they will occur or not occur what-
ever you decide. The luggage handlers, your cat or the weather don’t sit down
and think about where or if you are going on holiday and then make a decision
about whether to strike, be ill or organise a freak hurricane. The chance of a
strike taking place, your cat being ill or the weather being bad is therefore inde-
pendent of how you actually choose and this means that the luggage handlers,
your cat and the weather are not playing a strategic game with you. Other
examples of instances where there is non-strategic risk are lotteries, a football
match from the standpoint of a supporter and games of chance like roulette. In
all of these cases there is only one player, i.e. the decision maker herself, and
therefore no strategic interaction of the kind you have been looking at in the
previous chapters. People who are superstitious in these circumstances think
that the weather, the outcome of the lottery, the match or the spin of the
roulette wheel are in some way influenced by what they do. That is, they think
they are playing some kind of strategic game but they are not.

Risk and probabilities

5.2 Risk and probabilities
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The first example of non-strategic risk you are going to look at is the decision
faced by Mr Punter on a day out at the races. He is deciding whether or not to
bet in the last race of the day on a horse owned by his friend Mr Lucky. Mr
Lucky has inside knowledge about his horse and the other horses in the race. He
assures Mr Punter that his horse has a 1 in 10 (a 0.1 or ) chance of winning the
race.1 Mr Punter has €M left in his pocket. If he bets €c on the horse winning the
race and the horse wins Mr Punter wins €z making a net gain of €z – c which we
can call €w. If he makes the bet and the horse loses he will take home €M – c. If
he doesn’t make the bet he takes home the whole €M. (€M is the amount of
money he starts with, c is the cost of the bet and w is his net win if the horse
wins.) In making his decision whether to bet on the horse or not Mr Punter
knows that there are only two ways in which the uncertainty can be resolved:2

● The horse wins (probability 0.1).

● The horse loses (probability 0.9).

However, there are three possible outcomes from Mr Punter’s perspective:

● He bets €c and wins €z so that his total wealth is €M + (z – c) = €M + w.

● He bets and loses €c so that his total wealth is €M – c.

● He doesn’t bet and retains his original monetary wealth €M.

1––
10
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Exercise 5.1 

In the examples (a) to (g) below only the last two could easily be repre-
sented as strategic games. Can you say why? (Hint: who are the
decision makers in the examples, are there more than one and if so do
they both make their decisions by taking into account what they think
the other is likely to do?)
(a) Betting on the outcome of a horse race or a cricket match that

hasn’t to your knowledge been fixed.
(b) Gambling on a fair roulette wheel at a casino.
(c) Deciding whether to take an umbrella with you when you go out for

the day in England.
(d) Deciding whether to take out insurance against the risk of your

home being burgled.
(e) A smoker deciding whether to continue smoking or not.
(f) A thug thinking about whether to punch someone in a bar who has

annoyed him but who might be a karate expert.
(g) A firm deciding whether to enter a new industrial sector where one

firm has a monopoly position but it is unclear whether the
incumbent will resist entry or not.
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The outcomes, €M + w, €M – c and €M are Mr Punter’s contingent pay-offs.
They are contingent on Mr Punter’s initial decision and how the uncertainty is
resolved. The decision problem for Mr Punter is represented by the diagram in
Figure 5.3.

Figure 5.3 is a decision-tree showing the choice problem for Mr Punter. It is
not a game-tree as such, as Mr Punter is not involved in a strategic game but
the two forms are very similar. Figure 5.3 shows that Mr Punter moves first by
deciding to bet on the horse or not. After he has made his decision the race is
run and either his horse wins or it doesn’t. As far as Mr Punter is concerned
whether his horse wins is decided by chance or nature (a pseudo player) as he
has no influence on the outcome. The chance move is depicted by the proba-
bilities written beside the branches of the decision-tree attached to the right of
the decision-nodes labelled chance. Chance determines whether the horse wins
or not and it wins with probability 0.1 and loses with probability 0.9. The
chance move is the same whether Mr Punter bets or not – it is not contingent
on his move. Mr Punter’s pay-offs are written at the terminal-nodes of the
decision-tree. Only his pay-offs are shown as he is the only proper player in the
game. The horse, for instance, is not.

Should Mr Punter bet on the horse? Assuming Mr Punter prefers more
money to less his decision will depend on the expected pay-off from betting
relative to the expected pay-off from not betting. The simplest way to calculate
expected pay-offs is to calculate the expected value of the pay-offs from betting
and not betting respectively. The expected value of the pay-off from taking a
particular decision is the average of the pay-offs associated with all the possible
outcomes of that decision. The average is calculated by weighting (or multiplying)
each pay-off by the probability that it will occur. The expected value of Mr Punter’s

Risk and probabilities

Figure 5.3 Mr Punter’s decision-tree
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pay-off from betting is the sum of the weighted pay-offs from winning and
losing and each pay-off is weighted by the probability that it occurs. Thus if he
bets the expected value of his pay-off is:

● 0.1(€M + w) + 0.9(€M – c)

This formulation says that the expected value of betting is the probability of
winning (0.1) multiplied by the pay-off from betting and winning (€M + w) plus
the probability of losing (0.9) multiplied by the pay-off from losing (€M – c). If
he doesn’t bet then his wealth is the same whether the horse wins or not there-
fore his expected pay-off from not betting is:

● €M

That is €M with certainty, a sure thing. If Mr Punter prefers more money to less,
then he could decide to bet on the horse if the expected value of betting is
greater than the expected value of not betting or:

● 0.1(€M + w) + 0.9(€M – c) > €M

which simplifies to €w > €9c.
If Mr Punter chooses to bet because w is greater than 9c this implies that his

utility or satisfaction from the expected pay-off of betting is greater than his
utility from the expected pay-off of not betting. We can write Mr Punter’s sub-
jective utility for a given monetary pay-off as U(€) where U(€) is the function
that determines how a given monetary sum translates into units or levels of
satisfaction in Mr Punter’s mind. For example, if the monetary sum is €100
then U(100) is the subjective utility value to Mr Punter of €100. If Mr Punter
prefers more money to less then the function U(€) will reflect this so that, for
example, U(€100) > U(€10) > U(€5). But the amount by which U(€100) > U(€10)
will depend on Mr Punter’s preferences which will be unique to him. He may,
for example, value €100 more than, less than or exactly ten times as much as
€10. His utility function will reflect his preferences in this regard as well (some
different possibilities are outlined below).

With this notation the condition that his utility from the expected pay-off
of betting is greater than his utility from the expected pay-off of not betting
can be written in mathematical shorthand as:

● U(0.1(M + w) + 0.9(M – c)) > U(M)

where U(0.1(M + w) + 0.9(M – c)) is Mr Punter’s utility from the expected value
of betting on the horse and U(M) is his utility from €M which is the expected
value of not betting. 

This formulation has the advantage of simplicity in that it implies that if the
expected value of one option is greater than another then the decision maker

Hidden moves and risky choices
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should simply choose the former. However, because some very risky options
can have the same expected value as other very safe options this formulation
fails to take into account differing attitudes to risk. It implies that all the deci-
sion maker cares about is the overall expected value of a given choice and not
the probabilities that are implicit in that relevant expected value calculation.
For example, it implies that an individual would be indifferent between a sure
payment of €1000 and a lottery ticket with a 1 in 1000 (0.001 or ) chance of
winning €1 000 000. This is because if there is a 1 in 1000 chance of winning
with the lottery ticket there is also a 999 in 1000 chance of losing, that is win-
ning nothing. The expected value of the lottery gamble is therefore (0.001 × 1
000 000 + 0.999 x 0) = €1000, the same as the sure payment of €1000. Would
you be indifferent between these two options, or prospects3 as they are
sometimes called? Even if you are most people would not be. For instance,
some people are risk averse which means that they don’t really like risk and
others, like Formula One racing car drivers and bungee jumpers, appear to love
it and actively seek it out. Alternatively you may not fit into either of these
categories because you neither worry about nor enjoy risk – in this case you are
risk neutral.4 A further complication is that some people might like to take
small risks, for instance by buying lottery tickets, but they might not be so
keen to take large risks, for example with their lives. 

5.2.1 Expected utility

One way of taking these different attitudes to risk into account
is to calculate the expected utility,5 as opposed to the expected
value, of taking a particular gamble. The expected utility of
accepting a particular gamble (or prospect) is the average utility
derived from the associated contingent pay-offs. It is calculated

by finding the utility of each of the possible contingent pay-offs, weighting
each by the probability that it occurs and then summing to come up with the
overall average. This can be contrasted with the expected value calculation
which probability weights the contingent pay-offs themselves, not the utility
or satisfaction that they potentially bring to the decision maker. These two for-
mulations sound, on the face of it, very similar. But the differences between
them mean that the expected utility of a gamble or prospect will only equal the
utility of the expected value if the decision maker doesn’t care about risk (he or
she is risk neutral) or there is in fact no risk (the gamble is a sure thing). We can
see this by looking at some examples and I’ll start by reconsidering the decision
problem faced by Mr Punter.

As you have already seen the expected value of betting for Mr Punter is
0.1(M + w) + 0.9(M – c). Letting U(€) define Mr Punter’s utility for money his
utility from the expected value of betting is given by:

1–––––
1000

Risk and probabilities
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● Utility of the expected value of the bet, UEV: U(0.1(M + w) + 0.9(M – c)).

while the expected utility of betting is determined by probability weighting the
utilities of each of the contingent pay-offs (M + w) and (M – c). This leads to:

● Expected utility of the bet, EU: 0.1U(M + w) + 0.9U(M – c).

This is in effect the expected value of the utility of betting while the utility of
the expected value is the utility of the expected monetary value of betting. The
two definitions may look and sound very similar but, as noted above, they will
only be equal if Mr Punter is risk neutral. Otherwise, by separately probability
weighting the utilities of the alternative pay-offs the expected utility formula-
tion will reflect either his aversion to, or love of, risk. 

More specifically the theoretical assumptions that underlie the expected utility
calculation6 imply that if he is risk averse the expected utility of betting, EU, will
be less than the utility of the expected value, UEV. If he is risk-loving the oppo-
site will be true. More generally if a risky alternative has the same expected value
as a sure thing a risk-averse person will prefer the sure thing because the
expected utility of the gamble will be less. On the other hand a risk-loving
person will prefer the gamble. The expected utility formulation also implies
that, if two gambles have the same expected value but one is relatively more
risky than the other, a risk-loving person will prefer the more risky gamble, a
risk-averse person will prefer the safer gamble and a risk-neutral person will be
indifferent between the two prospects. A gamble could be riskier than another
that had the same expected value if the probability of losing in the risky gamble
is higher but there is also a bigger chance of winning a larger prize. 

It follows that Mr Punter (and anyone else who is facing a risky choice) won’t
necessarily choose the option with the highest expected value. Instead, if they
are either risk-averse or risk-loving7 they will choose the option with the highest
expected utility which may or not be the option with the highest expected value.
This doesn’t mean that a risk-averse person will never gamble, just that they will
only choose risky options if they have a high enough expected value relative to
the expected value of choosing some less risky or risk-free alternative. 

To summarise, the expected utility of a gamble is the probability weighted
average of the utilities of the pay-offs corresponding to the alternative out-
comes that characterise the gamble (the horse winning or losing in Mr Punter’s
case). To generalise a little assume that an action has two possible outcomes
corresponding to the contingent pay-offs x and y. The probability of x occur-
ring is p and the probability of y occurring is therefore (1 – p). The expected
utility from making the decision to take the action will be:

● EU = pU(x) + (1 – p)U(y)

If there is a third possible outcome corresponding to the contingent pay-off z
and the probability of z occurring is q then the expected utility of this prospect
will be: 

Hidden moves and risky choices



119

● EU = pU(x) + (1 – p – q)U(y) + qU(z)

If there are more than three possible outcomes then the expected utility formu-
lation is extended accordingly.

5.2.2 Expected values, expected utilities and
attitudes to risk

To illustrate some of these points consider the gambles A and B described by
the following probabilities and prizes. 

Gamble A

● You win €100000 with probability 0.01.

● You win nothing with probability 0.99.

Gamble B

● You win €2000 with probability 0.5.

● You win nothing with probability 0.5.

Ask yourself which gamble you prefer (assume that entry is costless) and make
a note of your answer. The decision-tree corresponding to this choice problem
is illustrated in Figure 5.4.

Risk and probabilities

Expected value and expected utility

● Expected utility, EU: the expected utility of a gamble is the
(probability weighted) average of the utilities of the pay-offs
corresponding to the alternative outcomes that characterise the
gamble.

● Expected value, EV: the expected value of a gamble is the (probability
weighted) average of the pay-offs corresponding to the alternative
outcomes that characterise the gamble.

● Utility of expected value, UEV: the utility of the expected value of a
gamble is the utility of the (probability weighted) average of the
pay-offs corresponding to the alternative outcomes that characterise
the gamble.
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The expected value of gamble A is 0.01 × 100 000 + 0.99 × 0 =1000 and the
expected value of gamble B is 0.5 × 2000 + 0.5 × 0 = 1000. As the expected
values of the two gambles are the same the utilities of the expected values of
the two gambles will also be the same. This means that if you don’t attach any
value (positive or negative) to risk you should be indifferent between the two
gambles. But were you? Possibly not. Gamble B has a higher probability of win-
ning a reasonable prize than gamble A although the prize in gamble A is larger.
This means that gamble B is a relatively safer gamble and if, like me, you would
prefer gamble B you are, at least in relation to these gambles, risk-averse. If you
prefer gambler A you are risk-loving. 

With the expected utility formulation we can take account of these different
possibilities. To see this, suppose that your utility function, U(€y), for an
amount of money y is y2 (U(€y) = y2). Then the utility you would derive from
€10 would be worth 100 (units of utility), the utility you derive from €100
would be 10 000 and so on. With this utility function the utilities of the
expected values of the two gambles are: 

● Utility of the expected value of gamble A: UEV(A) = U(0.01 × 100000 + 0.99 × 0)
= U(1000) = 10002 = 1000000.

● Utility of the expected value of gamble B: UEV(B) = U(0.5 × 2000 + 0.5 × 0) 
= U(1000) = 10002 = 1000000.

The utilities of the expected values are the same for both gambles because their
expected values are the same. Now let’s look at the expected utility formula-
tions. The expected utility of gamble A is:

● Expected utility of gamble A: EU(A) = 0.01U(100000) + 0.99U(0)

Hidden moves and risky choices

Figure 5.4 Choice between gambles A and B
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With U(€y) = y2 we can calculate precisely the expected utility of gamble A as:

● Expected utility of gamble A: EU(A) = 0.01(1000002)
= 100000000.

and the expected utility of gamble B is: 

● Expected utility of gamble B: EU(B) = 0.5U(2000) + 0.5U(0) 
= 0.5(2000)2 = 2000000

With the utility function U(€y) = y2 the expected utility of gamble A is higher
than that of gamble B even though the expected values of the two gambles are
the same. An individual with this utility function would therefore choose
gamble A (the more risky gamble) in preference to gamble B (the relatively safer
gamble). Such a person is risk-loving; he or she prefers a risky option to a safer
option with the same expected value. The expected value formulation couldn’t
take these kinds of preferences into account but you have seen that the
expected utility formulation can.

Now consider the position of Ms Careful whose utility for money is
described by the function U(€y) = y (or y ). With this utility function the
utility Ms Careful derives from €100 is U(€100) = 10 and the utility she derives
from €4 is U(€4) = 2 and so on. The expected values of gambles A and B haven’t
changed, both are still 1000, but the utility of these expected values and the
expected utilities of the gambles will be different since the utility function is
different. As the expected value of gambles A and B are both 1000 Ms Careful’s
utility from the expected value of gambles A and B is:

● Utility of the expected value of gamble A: UEV(A) = U(1000) = 1000  =
31.623

● Utility of the expected value of gamble B: UEV(B) = U(1000) = 1000  =
31.623

For Ms Careful the expected utility of gamble A is 0.01U(100 000) + 0.99U(0)
and with her utility function this implies:

● Expected utility of gamble A: EU(A) = 0.01   100 000  + 0.99 0 
= 0.01(316.23) = 3.1623

and the expected utility of gamble B is 0.5U(2000) + 0.5U(0) or:

● Expected utility of gamble B: EU(B) = 0.5 2000 + 0.5 0 
= 0.5(44.72) = 22.36

So for Ms Careful the expected utility of gamble B is higher than that of gamble
A and therefore, if she is aiming to maximise her expected utility, she will

1
––
2
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choose gamble B, the relatively safer gamble. She is risk-averse since she prefers
gamble B, the relatively safe option, to gamble A, the risky option, even though
they both have the same expected value. 

This exercise has shown that the expected value formulation won’t always
reflect people’s different subjective valuations of risky pay-offs. The expected util-
ity formulation, on the other hand, by probability weighting the utilities of the
contingent pay-offs can take better account of people’s different attitudes to risk.
This is why I said in Section 1.8 of Chapter 1 that the expected utility formula-
tion was potentially a more useful way of calculating a player’s expected pay-off. 

The following lottery example shows in a stark way how important attitudes to
risk can be. In this example you are offered a choice between two lottery
tickets. One is for a midweek lottery and the other is for a Saturday lottery. The
prizes and the probabilities of winning in the two lotteries are as follows.

Midweek lottery

● 50 per cent chance of winning €10 000.

● 50 per cent chance of winning nothing.

Saturday lottery

● 100 per cent chance of winning €5000.

Hidden moves and risky choices

The expected utility and the expected value of a
gamble

Ms Flutter is deciding whether to take a gamble with a 0.75 chance of win-
ning €100 and a 0.25 chance of winning €20:
● expected value of the gamble is: 0.75€100 + 0.25€20 = €80;

● expected utility of the gamble is: 0.75U(€100) + 0.25U(20);

● utility of the expected value of the gamble is: U(0.75€100 + 0.25€20) =
U(€80).

Ms Flutter’s utility function for an amount of money €M is U(€M) = M2.
With this utility function:
● expected utility of the gamble = 0.75U(€100) + 0.25U(€20) 

= 0.75 × 1002 + 0.25 × 202 = 7,500 + 100 = 7,600
● utility of the expected value of the gamble = U(€80) = 802 = 6400

Ms Flutter is risk-loving: the expected utility of the gamble is higher than
the utility of the expected value of the gamble.
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The expected values of these two lotteries are the same, €5000, but the mid-
week lottery is risky – there is a good chance that you will win nothing – while
the Saturday lottery is completely safe – you are guaranteed €5000. In these cir-
cumstances I would be very surprised if you were indifferent between these two
lotteries. Most people would prefer the certainty of the Saturday lottery (which
is not really a lottery at all, it is a sure thing). This would imply that they were
risk-averse; they prefer a sure thing to a risky prospect with the same expected
value. If you prefer the midweek lottery you are risk-loving; you prefer a risky
prospect to a sure thing with the same expected value. If you are indifferent
between the two lotteries then you are risk neutral. The expected value formu-
lation cannot take account of these different possibilities but the expected
utility formulation can. 

Risk and probabilities

Attitudes to risk

● Risk love: risk lovers prefer a gamble to a sure thing with the same
expected value.

● Risk aversion: risk-averse people prefer a sure thing to a gamble with
the same expected value.

● Risk neutrality: risk-neutral people are indifferent between a sure thing
and a gamble with the same expected value.

If two gambles have the same expected value but one is riskier than the
other because there is a higher probability of winning the lowest valued
prize but also a higher probability of winning the highest valued prize:

● Risk lovers prefer the riskier gamble.

● Risk-averse people prefer the safer gamble.

● Risk-neutral people are indifferent between the two gambles.

If one gamble has a higher expected value than another then:

● Risk lovers and risk-neutral people will always choose the gamble with
the higher expected value.

● Some risk-averse people may choose the gamble with the lower
expected value if it appears less risky.
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To summarise, if outcomes are uncertain people won’t necessarily choose
between prospects according to their expected value. Instead, if people care
about risk the choices they make may be more consistent with the expected util-
ity hypothesis. The expected utility formulation can better account for people’s
attitudes to risk because the utility of a contingent pay-off (rather than the pay-
off itself) is weighted by the probability that it will occur. This means that the
overall weighting given to a contingent pay-off depends not just on the proba-
bility that it will occur but also on the utility function of the individual
concerned. An outcome that has a lower probability of occurring is still given a
lower weight but the relative worth of a larger pay-off will be magnified or
diminished according to the individual’s utility function.

A person whose utility function is such that he or she attaches more and
more incremental (or marginal) value to equal increases in income will be more
willing to gamble on higher and higher prizes. Such a person is a risk-lover.
Similarly, a person who attaches less and less incremental value to equal
increases in income will be less willing to gamble. This kind of person is risk-
averse. Someone who values equal gains in income equally is risk-neutral. This
implies that the expected utility of a gamble will be less than the utility of the
expected value of the gamble if the individual is risk-averse. The opposite will
be true if the individual is a risk-lover like Ms Flutter in the boxed example.
The two calculations will be equal if the individual is risk neutral.

More formally risk-loving people have increasing marginal utility, risk-averse
people have diminishing marginal utility and risk-neutral people have constant
marginal utility. This can be made more precise by using some mathematical

Hidden moves and risky choices

Exercise 5.2

You are offered the choice of a free ticket to enter lottery 1 or a free
ticket to lottery 2. In lottery 1 and lottery 2 the prizes and the probabili-
ties of winning are as follows: 

Lottery 1
● 10 per cent chance of winning €5000.
● 70 per cent chance of winning €2500.
● 20 per cent chance of winning nothing.

Lottery 2
● 40 per cent chance of winning €5000.
● 20 per cent chance of winning €2500.
● 40 per cent chance of winning nothing.

Which lottery do you prefer? What are the expected values of the tickets
for these two lotteries? If you prefer lottery 1 are you risk-averse, risk-
neutral or risk-loving in relation to the two lotteries?
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terminology. In general, if an individual’s utility function is given by U(y) = yz,
where y is a monetary (or other objectively valued) pay-off and z > 0 then if
z = 1 the individual’s marginal utility is constant, it is increasing if z > 1 and
diminishing if z < 1. Thus the individual is risk-neutral if z = 1, risk-loving if
z > 1 and risk-averse if z < 1.8 The two examples that were used above were U(y)
= y2 and U(y) = y = y1/2. In the first case z = 2 > 1 and in the second z = < 1.
We showed above that with U(y) = y2 an individual’s choices would reflect
those of a risk-lover and in the second case, that of Ms Careful, her choices
were consistent with risk aversion.

The kinds of examples we have looked at show that attitudes to risk are
important. In general people don’t like risk and that they commonly take
action to avoid risk, for example by buying insurance or diversifying. On the
other hand many people who buy insurance also gamble. Often the gambles
they take are unfair9 in that they favour the individual or institution that offers
them. This implies they are risk-loving, but buying insurance implies they are
also risk-averse. It seems strange that people can be risk-averse and risk-loving
at the same time but one explanation is that people have different attitudes to
risk in different situations and over different sums of money. If this is true then
they will have a utility function that has both risk-averse and risk-loving
regions.10 Alternatively people may gamble for reasons that are unrelated to
whether they are risk-loving or not – for example they may enjoy gambling (it
is a form of entertainment) or they are mistaken about the element of risk
involved (they think the gambles they accept are fair or favour them). 

Expected utility theory implies that when individuals choose between risky
alternatives they will choose the one with the highest expected utility. This
hypothesis is widely used to determine equilibrium strategies in games where
there is uncertainty for one or more of the players (you will see examples of this
in Chapters 7 and 8). However, the expected utility hypothesis relies on a number
of underlying assumptions about the ways in which people make choices between
risky prospects and these assumptions have been criticised. For a detailed exposi-
tion of these assumptions and a formal derivation of the expected utility
hypothesis see Starmer (2000: 334–6) or Camerer (1995: 617–20)

The criticisms levelled at expected utility theory suggest that its applicability
maybe limited and as such these limitations should be born in mind when
drawing insights from theoretical arguments that rely on the expected utility
formulation. The criticisms of the theory fall into two main groups: theoretical
and descriptive. Theoretical considerations arise when expected utility theory is
unable to capture important elements of an individual’s choice problem. The
descriptive limitations follow from experimental evidence of violation of the
underlying assumptions of expected utility theory.

1–
2
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5.3.1 Theoretical limitations11

The theoretical limitations of expected utility theory include evidence of port-
folio effects and issues associated with the temporal resolution of uncertainty.

5.3.1.1 Portfolio effects 

Critics argue that the expected utility formulation ignores ‘other gambles’ that
are already faced by the individual but may be relevant. Consider the position
of Ms Investor who is offered shares in either Marks & Spencer or Manchester
United. If she already holds shares elsewhere her choice is likely to be affected
by her existing portfolio of holdings. For instance, if she already holds shares in
Tottenham Hotspur she may prefer to diversify away from English football. If
she prefers to diversify then she will take the Marks & Spencer shares. This con-
sideration implies that the probability distributions of gambles under
consideration will not always be sufficient descriptions of the choice problem.

5.3.1.2 Temporal considerations

The expected utility formulation does not take into account the timing of any
resolution of uncertainty but this can matter to people. To see this imagine you
are offered a choice between €500 for sure or a lottery ticket with a 40 per cent
chance of winning a million euros and a 60 per cent chance of winning noth-
ing. A possible drawback of the lottery option is that if you win you won’t get
the money until a year from today. However, this is not so much the issue here.
What I’d like you to consider is whether your choice between the €500 for sure
or the lottery ticket is affected by the timing of the resolution of the uncer-
tainty. By this I mean the time at which you find out whether you have or have
not won the lottery. Consider the following possibilities:

(a) The lottery is drawn today and you find out whether you have won or not
today.

(b) The lottery is drawn a year from today and you find out whether you have
won or not a year from today. 

(c) The lottery is drawn today and you find out whether you have won or not
a year from today.

If you, like me and many others, would prefer (a) and you are indifferent
between (b) and (c) then getting the information sooner is valuable to you.
This could be because you can only plan your life properly if you have the rele-
vant information or it may be because you just don’t like not knowing.
Whatever the explanation, uncertainty has a negative value for you if you
prefer (a). Furthermore indifference between (b) and (c) implies that the impor-
tant time is when the uncertainty is resolved for you, not when the uncertainty
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is ‘physically’ resolved. Expected utility theory is unable to handle these kinds
of issues. As Kreps (1990: 114) says, the problem is one ‘of a partial or incom-
plete model’ of the choice problem. Furthermore, people in general don’t like
uncertainty and the expected utility formulation cannot really take this possi-
bility into account. Of course you may not prefer (a). Maybe you like
uncertainty? Perhaps it makes your life more exciting? But expected utility
theory cannot incorporate preferences like these either.

5.3.2 Descriptive limitations

The logic of expected utility theory follows from a number of underlying
assumptions or axioms (see Machina, 1989: 17 or Camerer, 1995: 618–19 for a
summary). But experimental evidence suggests that people’s behaviour is not
always consistent with two of these: the independence axiom and the axiom of
transitivity. This evidence weakens the descriptive claims of expected utility
theory, that is its claims to be able to accurately predict what people will actually
do when confronted with risk. However, this doesn’t automatically mean that
the prescriptive or normative claims of the theory are similarly weakened; we
might still want to recommend that people act in accordance with the theory
even if they don’t always conform to the theory’s predictions in practice.
Nevertheless the evidence that people do not always act in ways that are consis-
tent with the axioms of independence and transitivity represents a serious attack
on the validity of expected utility. We are going to examine some of that evi-
dence here first in relation to the independence axiom and secondly in relation
to the axiom of transitivity. For a more detailed discussion you could look at
Kahneman (2003), Starmer (2000), Camerer (1995) or Machina (1987 or 1989). 

5.3.2.1 The independence axiom

The independence axiom of expected utility theory says that the choice
between risky gambles or prospects should not be affected by elements that are
the same in each. Consider gambles A and B below where x, y, z, v and w are
monetary prizes:

● Gamble A: 0.5x + 0.25y + 0.25z

● Gamble B: 0.5v + 0.25w +0.25z

Gamble A has a 0.5 probability of winning the prize x, a 0.25 probability of
winning the prize y and a 0.25 probability of winning the prize z. Gamble B
offers a 0.5 probability of winning the prize v, a 0.25 probability of winning w
and, just as in gamble A, a 0.25 chance of winning z. Thus the gambles have a
common element or consequence, z, and a common probability of winning it.
The independence axiom claims that your choice between gambles A and B
should be independent of this common consequence and the probability of
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winning it and therefore your choice should not be affected by either the proba-
bility of winning z or the value of z. This does not seem unreasonable but in
experiments where individuals are asked to choose between risky prospects
behaviour consistent with the independence axiom is not consistently observed. 

Before we consider this experimental evidence consider the gambles on offer
in choice problems A and B below. In each case you should make a choice
between the gambles you are offered. Make a note of the gambles you prefer in
A and B and we will return to them later.

Choice problem A. a and b are two gambles. Gamble a has a certain pay-off
of €1000000 and gamble b will give you a 10 per cent chance of winning
€5000000, an 89 per cent chance of winning €1000000 and a 1 per cent
chance of winning nothing. Which gamble do you prefer, a or b?

Choice problem B. e and f are two gambles. Gamble e will give you €700
with certainty. Gamble f will give you an 80 per cent chance of winning
€1100 and a 20 per cent chance of winning nothing. Which gamble do
you prefer, e or f?

Evidence of violations of the independence axiom is commonly divided into
two effects known as (i) common consequence and (ii) common ratio effects.

(i) Common consequence effects

Consider an illustrative choice problem between two options S and R where:

● Option S: pb + qb + ra + sb

● Option R: pa + qc + ra + sb

a, b and c are three monetary prizes such that a < b < c and a = 0. p, q, r, s are
the probabilities of winning in S and R. If r > 0 then s = 0 and if s > 0 then r = 0.
The common consequence in the two options is therefore a if s = 0 and b if r =
0. As a = 0 the gambles are both riskier when s = 0 and r > 0.

Thus if r > 0 (in which case s = 0) by choosing S you have a (p + q) chance of
winning b, and an r chance of winning nothing, that is a. If you choose R you
have a (p + r) chance of winning nothing, i.e. a, but a q chance of winning the
bigger prize of c. If s > 0 (in which case r = 0) then S represents a sure thing, a
certain prize of b, while R is a p chance of nothing, a q chance of c and an s
chance of b. In either case S is the relatively safer option because with S there is
less chance of loosing (winning a). But the biggest prize, c, can only be won by
choosing R. The choice between S and R is illustrated in Matrix 5.2 which
shows the pay-offs and probabilities corresponding to the two options. This
type of matrix is sometimes called a state contingent matrix.
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Matrix 5.2 The S and R options

Probabilities

Options Pay-offs

0 = a < b < c

If s > 0 then r = 0 and the common consequence is b

If r > 0 then s = 0 and the common consequence is a = 0

The independence axiom implies that an individual’s choice between S and R
should be independent of r and s and therefore independent of whether r = 0
or s = 0. Letting r = 0 or s = 0 simply amounts to scaling up or down the
common consequence and should have no affect on people’s choices. But
when gambles like S and R have been presented to people in experiments
researchers have found that there is a systematic tendency for them to (i) prefer
S when r = 0 and the common consequence is greater than zero and (ii) prefer
R when s = 0 and the common consequence is zero. Such behaviour violates
the independence axiom because it implies that people’s choices are affected by
the value of common consequences. Evidence of the common consequence
effect was first discovered by Maurice Allais (1953) and was originally referred
to as the Allais paradox. Before examining in detail the example Allais used to
illustrate this paradox consider the gambles in choice problem A* below. Make
a choice between the gambles you are offered and make a note of your choice.

Choice problem A*. c and d are two gambles. Gamble c will give you an
11 per cent chance of winning €1000000 and an 89 per cent chance of
winning nothing. Gamble d will give you a 10 per cent chance of winning
€5000000 and a 90 per cent chance of winning nothing. Which gamble
do you prefer, c or d?

Allais’ example is represented here by attaching specific values to the prizes and
probabilities in the S and R gambles in Matrix 5.2 as shown in Matrices 5.2.1
and 5.2.2. In Allias’ example S and R are offered in two different situations. In
situation 1 r = 0 and s = 0.89 and in situation 2 r = 0.89 and s = 0. As shown in
Matrix 5.2.1 in situation 1 the choice between S and R is between 1 million for
sure if you choose S and a 0.89 chance of 1 million, and a 0.1 chance of 5 mil-
lion and a 0.01 chance of nothing if you choose R. In situation 2 represented in
Matrix 5.2.2 S offers a 0.11 chance of 1 million and a 0.89 chance of nothing
while R is a 0.1 chance of 5 million and a 0.9 chance of nothing. 
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Matrix 5.2.1 Situation 1 (r = 0, s = 0.89)

Probabilities

Options Pay-offs

Matrix 5.2.2 Situation 2 (s = 0, r = 0.89)

Probabilities

Options Pay-offs

You should ask yourself whether you prefer S or R in each case. In situation 1 S
is a safe option, a sure thing and R is relatively risky although there is a chance
of winning 5 million. After choosing between S and R in situation 1 ask your-
self whether you would make the same choice in situation 2? Again S is safer
than R but S is no longer a sure thing. 

According to the independence axiom your choice between R and S in situ-
ation 1 should be independent of the 0.89 chance of winning 1 million as this
is a common consequence. Similarly your choice in situation 2 should be inde-
pendent of the 0.89 chance of winning nothing. As S and R are otherwise
identical, the independence axiom implies that if you choose S when r = 0 in
situation 1 then you should also choose S in situation 2 when s = 0. Did you
conform to this prediction? Maybe you did, maybe not. You can check again by
looking at your choices in response to A and A*. The choice problems A and A*

are in fact the same as those represented in Matrices 5.2.1 and 5.2.2 (see
Machina, 1989: 22). Gambles a in A and c in A* correspond to the S options in
situations 1 and 2 respectively while gambles b and d correspond to the R
options in situations 1 and 2. Choices consistent with expected utility theory
and the independence axiom are either a in A and c in A* or b in A and d in A*.
If you chose b in A and c in A* or a in A but d in A* then you violated the inde-
pendence axiom.

If your choices were not consistent with the independence axiom don’t
worry, you are in good company. There is in fact considerable evidence that
people systematically prefer S in situation 1 (or a in A) when r = 0 but they
prefer R in situation 2 (i.e. d in A*) when s = 0. Similar violations of the inde-
pendence axiom have been found to occur in other examples where r and s are
large relative to q. In the Allais example when r = 0, S is totally safe and R is
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relatively risky but when s = 0 both S and R are risky and S is only marginally
safer than R. In these circumstances, choices in violation of the independence
axiom can be defended on the grounds that when r = 0, S is clearly the safest
option but when s = 0, as both options are very risky and R is only marginally
more risky than S, it’s worth having a gamble on R. 

Evidence of behaviour that violates the independence axiom weakens the
descriptive claims of expected utility theory. However, the normative claims of
the theory are also weakened if people continue to violate the independence
axiom after the axiom has been explained to them and its logic justified.
Unfortunately, for expected utility theory there is evidence that people do just
that. That is, they continue to violate the independence axiom even after it has
been explained to them (see Slovic and Tversky, 1974). In fact anyone who read
the first part of this section and then violated the independence axiom in their
responses to A and A* also did so after the independence axiom had been
explained to them.

(ii) The common ratio effect

The independence axiom implies that choices should also be independent of
the probability of a common consequence but there is experimental evidence
that contradicts this prediction. Consider options S’ and R’ where:

● Option S’ = λPx2 + (1 – λ)Px2 + (1 – P)c

● Option R’ = λPx3 + (1 – λ)Px1 + (1 – P)c

In S’ and R’ c, x1, x2 and x3 are prizes, c = x1 < x2 < x3 and often in experiments
c = x1 = 0. λP, (1 – λ)P and (1 – P) are the probabilities of winning the prizes
where 0 < λ < 1, 0 < P ≤ 1. The common ratio in question is the ratio of the prob-
abilities of winning x2 or x3 in S’ and R’, namely:

Prob. of winning in S’       P      1 (5.1)
–––––––––––––––––––––––   = ––  = ––
Prob. of winning in R’     λP      λ

The independence axiom implies that choices between S’ and R’ should be
independent of (1 – P) and therefore P. However, there is evidence that people
systematically prefer S’ when P is high and prefer R’ when P is low.12

Before examining a numerical example consider the choice problem in B*

below. Without looking back at choice problem B, make a choice between g
and h and note which gamble you prefer:

Choice problem B*. g and h are two gambles. Gamble g will give you a
20 per cent chance of winning €700 and an 80 per cent chance of winning
nothing. Gamble h will give you a 16 per cent chance of winning €1100
and an 84 per cent chance of winning nothing. Which gamble do you
prefer, g or h?
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The choice problems in B and B* can be written in the same way as options S’
and R’. In B and B* λ = 0.8, c = x1 = 0, x2 = €700, x3 = €1100. But P = 1 in choice
problem B and P = 0.2 in choice problem B*. The common ratio is 1.25 (i.e. 
when P = 1 in B and when P = 0.2 in B*. Gambles e and f in B correspond to
S’ and R’ and are defined as follows:

● Option S’ = gamble e = 0.8€700 + 0.2€700 = €700 for sure.

● Option R’ = gamble f = 0.8€1100 + 0.2€0 = 0.8€1100, i.e. a 0.8 or an 80 per
cent chance of winning €1100 and a 20 per cent chance of nothing.

Thus when P = 1 e is the safe gamble corresponding to option S’ and f is the
risky gamble corresponding to option R’. In choice problem B* P = 0.2 and gam-
bles g and h correspond to S’ and R’ and are given by:

● Option S’ = gamble g = (0.8 × 0.2)€700 + (0.2 × 0.2)€700 + 0.8€0 = 0.2€700
i.e. a 0.2 or 20 per cent chance of winning €700 and an 80 per cent chance
of nothing.

● Option R’ = gamble h = (0.8 × 0.2)€1100 + (0.2 × 0.2)€0 + 0.8€0 = 0.16€1100,
i.e. a 0.16 or 16 per cent chance of 1100 and an 84 per cent chance of
nothing.

Thus when P = 0.2 g is the safe gamble corresponding to option S’ and gamble
h is the risky gamble corresponding to option R’.

The independence axiom implies that your choice between gambles e and f
and gambles g and h should be independent of the value of P. But gambles e
and g and gambles f and g are the same other than that P = 1 in gambles e and
f and P = 0.2 in gambles g and h. Consequently, the independence axiom
implies that if you chose gamble e when P = 1 in B then that you should have
chosen gamble g in B* when P = 0.2. Similarly if you prefer gamble f when P =
1 in B you should prefer gamble h in B* when P = 0.2. Were your choices con-
sistent with the independence axiom? Maybe they were but once again you
would not be alone if they were not.13 Experiments have shown that in exam-
ples like this people have a systematic tendency to choose option S’ when P = 1
and S’ is a sure thing but to choose option R’ when P < 1.

Systematic evidence of common consequence and common ratio effects in
experiments suggests that the independence axiom does not always reflect
what people do.14 This evidence weakens the claims of expected utility theory
to be a descriptive theory. These claims are further weakened by evidence of
violations of the transitivity axiom.

5.3.2.2 Transitivity

The axiom of transitivity implies that if A is preferred to B and B is preferred to
C then A will be preferred to C. This claim appears entirely uncontroversial. For
example, if you prefer chocolate to beer and beer to apple pie then you should

0.2––––
0.16

1–––
0.8
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prefer chocolate to apple pie. But it seems that when choices are over risky
prospects there are instances were the axiom of transitivity is systematically
violated. Examples of behaviour that contradict transitivity are usually referred
to as instances of preference reversal. Before examining a generalised problem
consider the specific choices in problem C below and make a note of your
answers to (i) and (ii).

Choice problem C. P and $ are two gambles. Gamble P will give you an
80 per cent chance of winning $100 and a 20 per cent chance of winning
nothing. Gamble $ will give you a 40 per cent chance of winning $500
and a 60 per cent chance of winning nothing.
(i) Which gamble do you prefer, gamble P or gamble $?
(ii) How much would you be willing to pay to take part in each of the
gambles P and $?

Now consider the following example characterised by two gambles or bets: a P
bet and a $ bet. The P bet and the $ bet are defined as follows:

● The P bet: a p chance of winning X and a (1 – p) chance of winning x.

● The $ bet: a q chance of winning Y and a (1 – q) chance of winning y.

Where X, x, Y and y are prizes, p and q are probabilities and X > x, Y > y, Y > X
and p > q. 

The P bet offers a higher chance of winning the smaller prize, X, but the $
bet offers a smaller chance of winning the bigger prize, Y. The choice problem
in C is a numerical example of this kind. In C, X = $100, Y = $500, x = y = 0,
p = 0.8 and q = 0.4. In experiments involving similar P and $ bets subjects are
asked to choose between the P bet and $ bet and to value the P and $ bets (as
you were asked to do in C). In effect both tasks amount to answering the same
question, namely which of these two bets do you prefer? The axiom of transi-
tivity implies that whichever bet you prefer (in your answer to part (i)) you
should assign a higher value to it (in your answer to part (ii)). However,
researchers have found a systematic tendency for people to choose the P bet in
these circumstances and put a higher value on the $ bet. This has been inter-
preted in terms of intransitive preferences or preference reversal.15

To see this we can consider separately the implications of placing a higher
value on the $ bet but stating a preference for P (see Machina, 1989: 32). If a
subject’s valuation of the P bet is CEp and their valuation of the $ bet is CE$
then the subject is: 

(a) indifferent between the P bet and some sure or certain amount16 CEP
implying that P Indf CEp where Indf is shorthand for saying that the
individual is indifferent between P and CEp.
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(b) Indifferent between the $ bet and some sure value CE$ implying that $ Indf
CE$.

And if the subject puts a higher value on the $ bet this implies:

(c) CE$ is greater than CEP which if the individual concerned prefers more
money to less implies that he or she prefers CE$ to CEP or CE$ PT CEP
where PT is shorthand for preferred to.

However, if the subject chooses P over $ then they:

(d) strictly prefer P to $. That is, P is preferred to $ or P PT $.

As (a) says that P Indf CEp and (b) says that $ Indf CE$ then if P PT $ it must
also follow that CEp PT CE$. But (c) says that CE$ PT CEP which is a
contradiction and (a)–(d) together imply that: 

(e) CEP Indf P PT $ Indf CE$ PT CEP Indf P.

(e) simultaneously implies that P is preferred to $, P PT $ and $ is preferred to P, $
PT P which is inconsistent with transitivity and instead implies intransitive
preferences or preference reversal.17 An alternative interpretation favoured by
psychologists is in terms of response mode or framing effects. This interpretation
suggests that people respond differently to analytically equivalent questions that
are framed differently or have different reference points. For instance, in the P
and $ bet example the same question is asked in terms of first choice and then
valuation and it is conceivable that choice and valuation invoke different mental
responses. Framing effects of this kind have been observed in other experiments
where different aspects of the same problem are highlighted, for example when
subjects are asked to make decisions in relation to monetary losses or gains or
survival and mortality (Kahneman and Tversky, 1979; Tversky and Kahneman,
1981; and see Kahneman (2003) for a recent review of framing effects). 

Experimental evidence of preference reversal and violations of the indepen-
dence axiom clearly weaken the descriptive claims of expected utility theory
but to what extent? How meaningful are these experimental results which are
after all conducted in a laboratory? Some of the experiments conducted relate
to very specific cases, for example where the probability of the common conse-
quence is very large as in Allais’ famous example. Nevertheless the evidence is
difficult to ignore and it should be no surprise that a number of alternative the-
ories of choice under risk have been developed such as prospect theory
(Kahneman and Tversky, 1979; Kahneman, 2003), generalised expected utility
theory (Machina, 1982) and regret theory (Loomes and Sugden, 1986). 
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In Section 5.1 of this chapter extensive forms were used to model uncertainty
about where a player is in a game. A simple device of a broken line linking
decision-nodes was used to illustrate uncertainty for players about where they
are in a game. This technique was used to show that hidden-move games can
be analysed as simultaneous-move games. 

In Section 5.2 the idea of non-strategic risk was considered. Risk is incorpo-
rated in decision-making problems by specifying the likelihood of different
events in terms of probabilities. Individuals are then assumed to choose
between gambles or prospects on the basis of their expected pay-offs. Two alter-
native ways of calculating an expected pay-off were considered: expected value
and expected utility. Examples were used to show that only the expected utility
formulation can incorporate individuals’ attitudes to risk. Individuals may be
risk-averse, risk-neutral or risk-loving. Since not everyone is risk-neutral the
expected utility formulation is potentially more useful when analysing decision
problems characterised by risk. This conclusion will also apply to strategic
games. If players’ pay-offs in games are formulated in terms of their utility then
the calculation of an expected pay-off will automatically generate an expected
utility. An expected pay-off calculated in this way will take into account a
player’s attitude to risk. If the players’ pay-offs are written in terms of some
objective measure, such as units of money, they won’t do this since the calcula-
tion of the expected pay-off will only yield an expected value.

Expected utility theory is not without its critics and in Section 5.3 some of
the limitations of expected utility theory were considered. Experimental evi-
dence of violations of the underlying assumptions of expected utility theory
weakens the descriptive claims of the theory. As you will see in subsequent
chapters expected utility theory is fundamental to game theoretic analysis
when information is incomplete. It follows that experimental evidence of the
kind discussed in Section 5.3 must also weaken the descriptive claims of game
theory. A question remains as to why people don’t automatically conform to
the rules proscribed by expected utility theory. Perhaps in some instances they
are just mistaken or ill informed and in such cases the normative or prescrip-
tive claims of expected utility theory (and game theory by assumption) are less
affected. However, you should be aware that experimental evidence has raised
some challenging questions about the validity of expected utility in particular
and game theory more generally. These questions have not been resolved
although behavioural game theorists are making inroads in this area (see, for
example, Kahneman, 2003 or Camerer, 2003).

Summary

Summary
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5.1
In the examples given only the last two could easily be represented as strategic
games. In examples (a) to (e) the risk faced by the decision maker is indepen-
dent of the choice made. For example, in (b) the outcome of the spin of the
roulette wheel is unaffected by a punter’s decision to bet or not (what happens,
happens). But in example (f) if the thug decides to punch the other man this
will clearly affect him and therefore the other man may wish to take some sort
of preventative action, whether he is a karate expert or not (a game like this is
analysed in Chapter 7). In example (g) the potential entrant needs to think
about the likely response to entry of the incumbent firm and the latter’s profits
will depend not only on whether there is entry or not but also on what the
incumbent does if there is entry. This is a classic game theoretic scenario and
you saw it modelled in Chapter 4. You will see it again in Chapters 7 and 8
where the extra element of uncertainty suggested here is considered.

5.2
You were offered the choice of a free ticket to enter lottery 1 or a free ticket to
lottery 2. In lottery 1 and lottery 2 the prizes and the probabilities of winning
are as follows: 

Lottery 1:

● 10 per cent chance of winning €5000.

● 70 per cent chance of winning €2500.

● 20 per cent chance of winning nothing.

Lottery 2:

● 40 per cent chance of winning €5000.

● 20 per cent chance of winning €2500.

● 40 per cent chance of winning nothing.

The expected values of lottery 1 is: 

● EV(1) = 0.1€5000 + 0.7€2500 + 0.2€0 = €500 + €1750 = €2250.

The expected value of lottery 2 is:

● EV(2) = 0.4€5000 + 0.2€2500 + 0.4€0 = €2000 + €500 = €2500.
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The expected value of lottery 2 is higher but lottery 2 is riskier; there is greater
chance of winning nothing even though there is a higher probability of win-
ning the larger prize. If you prefer lottery 1 you must be risk-averse. If you are
risk-loving or you are risk-neutral you will choose lottery 2.

1 What is the expected value of a gamble where you toss a coin and win €100
if it lands heads and lose €50 if it lands tails?

2 A bloke in an English pub is trying to exchange his Scottish pound notes for
English pound notes. Legally a Scottish pound note is worth exactly the
same as an English pound note. However, there is 10 per cent chance that
the Scottish notes are forgeries. If I am risk-neutral how much should I be
willing to pay for a Scottish pound note?

Questions 3 to 7 refer to the following scenario: Mr X is aiming to maximise
his expected utility (he is an expected utility maximiser). His utility for money
is given by the function U(€y) = y1/2 where y is a monetary pay-off. Mr X’s total
income is €10 000. He is offered a bet on the outcome of the toss of a fair coin
where, if the coin comes up heads, he loses all his income, but if it comes up
tails he doubles it (by winning an extra €10000).

3 What is Mr X’s expected utility if he takes the bet?

4 What is Mr X’s expected utility if he rejects the bet?

5 Will he take the bet?

6 Mr X is now offered a bet where if a fair coin comes up heads he again loses
everything, but if it comes up tails he wins €40000, taking his total income
to €50000. Will he take the bet?

7 Is Mr X risk-averse, risk-loving or risk-neutral?

1 How well does expected utility theory hold up as either (a) a descriptive
theory or (b) a prescriptive (or normative) theory in the light of
experimental evidence contradicting the independence and transitivity
axioms?

Questions for discussion

Problems

Questions for discussion 
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2 Consider the following choice problem attributable to Tversky and
Kahneman (1981):

You have to make a decision for yourself or a close friend between surgery or
radiation therapy. You are given the following information:

Surgery: of 100 people having surgery 90 live through the post-operative
period, 68 are alive at the end of the first year and 34 are alive at the end of
5 years.

Radiation therapy: of 100 people having radiation therapy all live through
the treatment, 77 are alive at the end of one year and 22 at the end of 5 years.

Which treatment would you choose? Would you choose differently if the
problem was phrased as follows?

You have to make a decision for yourself or a close friend between surgery or
radiation therapy. You are given the following information:

Surgery: of 100 people having surgery 10 die during surgery or the post-
operative period, 32 die by the end of the first year and 66 die by the end of
5 years.

Radiation therapy: of 100 people having radiation therapy none die during
treatment, 23 die by the end of one year and 78 die by the end of 5 years.

If your choice changes why do you think this might be? If your choice
doesn’t change can you explain why in experiments researchers have
observed a systematic tendency for less people to choose radiation when the
problem is phrased in terms of survival than when it is phrased in terms of
mortality? 

1 The expected value of the gamble is (€100) – (€50) = €25.

2 The expected value of a Scottish note is 0.9 English pounds (90 pence). I
should be willing to pay 90 pence for each note.

3 Mr X’s expected utility if he takes the bet is .0 + (200001/2) = 70.71.

4 Mr X’s expected utility if he doesn’t take the bet is 100001/2 = 100.

5 Mr X will not take the bet. His expected utility if he doesn’t take the bet is
100. If he takes the bet his expected utility is only 70.71.

6 His expected utility if he takes the new bet is (500001/2) = 111.8. If he
doesn’t take the bet his expected utility is still 100. Since 111.8 > 100 he will
take the new bet.
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7 He is risk-averse. His expected utility from any gamble is less than the utility
of its expected value. Alternatively, you could show that the second
derivative of the expected utility function (over certain money) is negative.

1 The probabilities in Mr Punter’s decision problem are objectively given to him by the horse’s
owner. When probabilities are determined in this way the situation is said to be one of risk.  An
alternative possibility is that Mr Punter has no inside knowledge  and instead bases his decision on
his own subjective assessment of the horse’s chance of winning the race. In this case the
probabilities in Mr Punter’s decision problem would be subjectively determined and technically
speaking this would imply that the situation was one of uncertainty rather than risk (see Starmer,
2000: 334 for an exact distinction between these two terms).  

2 These alternative possibilities are sometimes referred to as states of nature or the world. This
terminology is more usual when the decision-making problem is characterised by uncertainty
rather than risk (see previous note).

3 Starmer (2000) defines a prospect as a list of consequences with associated probabilities.

4 If you want to know more about attitudes to risk, expected values and expected utilities you could
start by consulting the relevant chapter in a  microeconomics textbook for example  Katz and
Rosen (1998: Chapter 6, pp. 167–8) or Frank (2003: Chapter 6, pp. 212–15).

5 Expected utilities are often referred to as von Neumann-Morgenstern utility functions after the
originators of expected utility theory.  For a precise formulation see Starmer (2000). For a less
formal introduction consult a microeconomics textbook such as Katz and Rosen (1998: Chapter 6,
Section 4). 

6 For a detailed exposition of these assumptions and a formal derivation of the expected utility
hypothesis see Starmer (2000: 334–6).

7 That is they care  about risk and by assumption are choosing to maximise expected utility rather
than expected value.

8 The individual’s marginal utility is given by differentiation as zyz–1 and the rate of increase (or
decrease) in marginal utility is (z – 1)zy(z–2). The latter will equal zero if z = 1 implying constant
marginal utility, it is positive if z > 1 implying increasing marginal utility and it is negative if z < 1
implying diminishing marginal utility.

9 Fair gambles have a zero expected value, for example a game where if a coin comes down heads
you win €10 and you lose €10 otherwise. The expected value of this game is [ 10 – 10] = 0. The
expected value of your wealth if you accept this gamble is the same as the certain value of your
wealth if you refuse the gamble. For example, if your initial wealth is €40 then the expected value
of your wealth if you take the gamble is [ (40 + 10) + (40 – 10)] = 50 + 30 = 40. By definition
risk-averse people always refuse fair gambles, risk-neutral people are indifferent about fair gambles
and risk-lovers always accept fair gambles (see Frank, 2003,: Chapter 6 for a more detailed
discussion). The gambles offered by the gambling industry must be unfair in this technical sense
or the industry could not expect to make profits.

10 See, for example, Kemp (1988).

11 See, Kreps (1990, Chapter 3: Section 5) for a more detailed discussion of these issues.

12 See, for example, Starmer and Sugden (1989),  Machina  (1989: 25–6) or Camerer (1995: 623–4) for
further discussion.
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13 If your choices were consistent with the independence axiom would they still be if the prizes were
in tens of thousands of euros? 

14 Apparently, it is not just humans who violate the independence axiom.  Battalio, Kagel and
MacDonald (1985) found that in experiments with rats some of their non-human subjects
exhibited common ratio effects.

15 This pattern of violation was first observed by Lichentenstein and Slovic (1971) and Lindman
(1971).  See Tversky and Thaler (1990) for a review of the related evidence.

16 CEp is called the certainty equivalent of P.

17 See Loomes and Sugden (1983),  Machina (1989) or Camerer (1995) for a more detailed discussion.

Hidden moves and risky choices
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MIXING AND EVOLVING

Concepts and techniques

● Mixed strategy Nash equilibrium

● Evolutionary game theory

● Evolutionary stable equilibrium.

After working through this chapter you will be able to:

● Analyse games in which players choose mixed strategies

● Explain the difference between a pure strategy and a mixed strategy

● Derive the mixed strategy equilibrium of a two-player simultaneous-
move game

● Analyse evolutionary games

● Explain what is meant by an evolutionary stable strategy 

● Derive the evolutionary stable equilibrium of evolutionary games like
hawk—dove and stag hunt 

● Show that a dominant strategy in a static game will also be a stable
strategy in an evolutionary game.



In this chapter the analytical tools developed in previous chapters (and
Chapter 5 in particular) are used to examine two different kinds of games. The
games that we are going to look at first are all simultaneous-move games that
you have seen before. But now you are going to see what can happen in these
games if the players randomise between their available pure strategies. When
players randomise they are using mixed strategies and the related solution con-
cept is that of a mixed strategy Nash equilibrium. The other games we are
going to look at are evolutionary games where players’ strategies (or behav-
iours) can change over time. In these kinds of games the relevant solution
concept is that of an evolutionary stable equilibrium. 

Simultaneous-move and evolutionary games are conceptually quite differ-
ent. They are together in this chapter because in some evolutionary games the
evolutionary stable equilibrium looks very much like a mixed strategy Nash
equilibrium. This suggests that evolutionary game theory can provide a
rationale for the mixed strategy Nash equilibrium concept. However, the
insights that follow from evolutionary game theory go beyond that of mixed
strategy Nash equilibrium. Evolutionary game theory has been used extensively
to explore ideas relating to natural selection and the development of social
conventions. Some of these insights are touched on in this chapter using exam-
ples like the chicken game which in an evolutionary context is analysed as a
hawk–dove game.1

If players choose mixed strategies they are choosing a combination of pure
strategies on the basis of a probabilistic distribution. For example, if a player is
choosing between two strategies called left and right, one possible mixed strategy
would be to choose left with probability and right with probability (or left a
quarter of the time and right three-quarters of the time2). The player could
operationalise a strategy like this by randomly choosing a card from a pack and
then choosing left if it is a diamond and down if it is a club, a spade or a heart.
This particular mixed strategy could then be written in shorthand either as
{left; , right; } or {left, right; , }. 

Mixed strategies can make intuitive sense in zero and constant-sum games if
none of the players have dominant strategies. In games of this kind if one
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player can predict the other’s behaviour then the first player has more chance
of winning. Players therefore have an incentive to behave unpredictably and
mixing up their pure strategies can help them to do this. Think about a foot-
baller taking a penalty: if he always kicks the ball to the left he makes life easy
for goalkeepers. Choosing a mixed strategy by randomising between kicking to
the left, the right or straight ahead would be a way of behaving unpredictably
and making it more difficult for the goalkeeper to save the penalty.
Randomising may also be a useful way of deterring another player from choos-
ing an action that is costly for you. For example, a monopolist might deter
entry by randomising between fighting or conceding to entry, should entry
occur (see Chapter 4, Section 4 and Chapter 8, Section 4). Choosing a mixed
strategy might also be a rational way of dealing with uncertainty about what
you think the other player is likely to be doing, for example if neither of you
have a dominant strategy or if there are multiple pure strategy Nash equilibria.
However, even when it is rational for players to randomise, mixed strategies
will only be optimal if they are best responses to each other. 

In this section you will see how to derive equilibrium mixed strategies,
mixed strategies that are best responses to each other, in two-person simultane-
ous-move games where there is no uncertainty about pay-offs. In Chapters 7
and 8 the methodology used here will be extended to simultaneous, sequential
and repeated-move games where there is more uncertainty.

Take a look at the chicken game in Matrix 6.1 where the two players are
Tough and Duff and they are choosing between challenging the other to a fight
or not. Neither really wants to fight but nor do they want to lose face by back-
ing down. You saw a chicken game like this in Chapter 2, Section 2.4.3.
Chicken games have two Nash equilibria in pure strategies and in this chicken
game the two Nash equilibria are {backdown, challenge} and {challenge, back-
down}. However, as you saw in Chapter 2, a feature of chicken games is that
each player prefers a different Nash equilibrium. Here, Tough prefers the equi-
librium in which Duff backs down but Duff prefers Tough to backdown. In
these circumstances it is not clear how, or if, the players will manage to coordi-
nate their strategy choices. One solution to this coordination problem might be
for the players to choose mixed strategies. 

Matrix 6.1 Tough and Duff chicken

Duff

Tough

A mixed strategy is essentially a rule that prescribes certain action choices
according to a probability distribution. When a player is playing against

Nash equilibrium in mixed strategies

backdown challenge

backdown 1, 1 0, 2

challenge 2, 0 –3, –3
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another player who is using a mixed strategy then the first player’s pay-off is
contingent on the mixed strategy of his opponent. For example, if Duff
chooses backdown half of the time then if Tough chooses backdown he will get
1 half of the time (when Duff chooses backdown) and 0 half of the time (when
Duff chooses challenge). Tough’s pay-off from choosing backdown is therefore
an expected pay-off equal to (1) + (0) = . Tough’s expected pay-off from
choosing challenge is calculated in an analogous way as (2) + (–3) = – . If the
pay-offs in Matrix 6.1 are units of utility then these expected pay-offs are
expected utilities which, as you saw in Chapter 5, means that Tough’s attitude
to risk is accounted for and we don’t need to make any further allowances in
this respect. If Tough similarly adopts a mixed strategy then Duff’s expected
pay-offs can be calculated in the same way (see below).

For the players’ mixed strategies to be optimal they need to be best
responses to each other. For example, if Tough chooses backdown with proba-
bility pt and challenge with probability 1 – pt while Duff chooses backdown
with probability pd and challenge with probability 1 – pd, then for pt and pd to
constitute a mixed strategy Nash equilibrium they must be best responses to
each other. We will examine two equivalent ways of solving for mixed strate-
gies that constitute a mixed strategy Nash equilibrium. Method 1 is intuitive.
Method 2 relies rather more on mathematical logic. 

Method 1

The intuitive argument goes like this: if either player chooses a mixed strategy
then they must be indifferent between playing either of their pure strategies. If
not, then one pure strategy would be preferred and they would choose that
rather than randomising. According to this logic for a mixed strategy to be part
of a Nash equilibrium for Tough, he must be indifferent between choosing
challenge or backdown. If this is the case his expected pay-off from choosing
challenge must be the same as his expected pay-off from choosing backdown.
Similarly, if Duff chooses a mixed strategy, his expected pay-off from choosing
challenge must be the same as his expected pay-off from backdown.

Let’s look at the game first from Tough’s perspective. Tough’s expected pay-
off from choosing backdown depends on Duff’s strategy. If Duff chooses
backdown with probability pd and challenge with probability 1 – pd then Duff
is choosing a mixed strategy. In this case Tough’s expected pay-off from choos-
ing backdown is:

Tough’s expected pay-off from backdown = pd1 + (1 – pd)0 (6.1)

Tough’s expected pay-off from choosing challenge if Duff is choosing a mixed
strategy is:

Tough’s expected pay-off from challenge = pd2 + (1 – pd) (– 3) (6.2)
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Setting these two expected pay-offs equal yields:

pd1 + (1 – pd)0 = pd2 + (1 – pd) (– 3) (6.3)

which solves for pd = where pd is the probability that Duff chooses backdown.
In other words it is rational for Tough to choose a mixed strategy if Duff
chooses backdown with probability (or is choosing backdown three-quarters
of the time). 

Now looking at the game from Duff’s perspective, his expected pay-off from
choosing backdown if Tough is choosing a mixed strategy is:

Duff’s expected pay-off from backdown = pt1 + (1 – pt)0 (6.4)

His expected pay-off from choosing challenge is:

Duff’s expected pay-off from challenge = pt2 + (1 – pt)(– 3) (6.5)

Setting these two expected pay-offs equal yields:

pt1 + (1 – pt)0 = pt2 + (1 – pt)(– 3) (6.6)

which solves for pt = where pt is the probability that Tough chooses
backdown. This means that if pt = it makes sense for Duff to choose a mixed
strategy.

Equations (6.1)–(6.6) imply that if pd = it is rational for Tough to choose a
mixed strategy and if pt = it is rational for Duff to choose a mixed strategy. If
pd = and pt = then Duff and Tough’s mixed strategies will be best responses
to each other since they can do no better by choosing something else.
Therefore, the mixed strategies pd = and pt = are Nash equilibrium strategies.
We can write this mixed strategy Nash equilibrium as {(Tough: backdown; ,
challenge; )(Duff: backdown; , challenge; )}.

Method 2

More formally, if a strategy is a Nash equilibrium strategy then it is a best
response to the equilibrium strategy of the other player. For a strategy to be a best
response it should generate the highest possible or maximum pay-off for the
player concerned. Therefore we can find Tough and Duff’s equilibrium mixed
strategies by finding the strategies that maximise their expected pay-offs.

Tough’s expected pay-off from choosing pt as a mixed strategy, EPOTmixed, if
Duff chooses pd is:

EPOTmixed = pt [pd1 + (1 – pd)0] + (1 – pt)[pd2 + (1 – pd)(– 3)] (6.7)
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Duff’s expected pay-off from choosing pd as a mixed strategy, EPODmixed, if
Tough chooses pt is:

EPODmixed = pd [pt1 + (1 – pt)0] + (1 – pd)[pt2 + (1 – pt)(–3)] (6.8)

To find each player’s optimal mixed strategy we can use calculus. This involves
differentiating (6.7) and (6.8) with respect to pt and pd. We can then solve for
the optimal values of pt and pd from the first order conditions. By differentiat-
ing (6.7) with respect to pt and setting the resulting expression equal to zero we
obtain the following condition:

[pd1 + (1 – pd)0] – [pd2 + (1 – pd)(– 3)] = 0 (6.9)

rearrangement of (6.9) leads to:

pd1 + (1 – pd)0 = pd2 + (1 – pd)(– 3) (6.10)

Equation (6.10) solves for pd = as in Method 1. 
Equation (6.10) shows that the first order condition for utility maximisation

for Tough requires that Tough’s expected pay-off from choosing backdown
equals his expected pay-off from choosing challenge. Equation (6.10) should
look familiar to you. Can you see that it is the same as equation (6.3) above?
This coincidence means that the intuitive argument in Method 1 is implied by
the mathematical derivation in Method 2. In other words, the mathematics of
Method 2 simply formalises the intuition of Method 1.

Applying the same methodology to Duff’s pay-off by differentiating (6.8)
with respect to pd leads to:

[pt1 + (1 – pt)0] – [pt2 + (1 – pt)(– 3)] = 0 (6.11)

rearrangement of (6.11) leads to:

pt1 + (1 – pt)0 = pt2 + (1 – pt)(– 3) (6.12)

Equation (6.12) solves for pt = as in Method 1. Equation (6.12) should also
look familiar to you. It is the same as equation (6.6). This coincidence confirms
that the intuition of Method 1 is consistent with the mathematical logic of
Method 2. 

Using either method, the mixed strategy Nash equilibrium of the game is
{(Tough: backdown; , challenge; )(Duff: backdown; , challenge; )}. As
Methods 1 and 2 lead to the same result you can use either to solve for the
equilibrium mixed strategies. This is a general result. It means that if you want
to find a player’s equilibrium mixed strategy you can do so by simply setting
their expected pay-offs from their pure strategies equal.
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In the mixed strategy Nash equilibrium of Tough and Duff’s chicken game
each player’s expected pay-off is . This is found by substituting for pt = pd = 
in equations (6.7) and (6.8) (you should check this). In the mixed strategy Nash
equilibrium each player is indifferent between challenge or backdown and their
expected pay-offs are greater than or equal to their pay-offs from following any
other strategy given that the other is following their equilibrium mixed strat-
egy. For example if Tough challenges for sure but Duff follows his equilibrium
mixed strategy then Tough’s expected pay-off, EPOTchallenge, is:

EPOTchallenge = pd2 + (1 – pd)(– 3) = – = (6.13)

And if Tough always chooses backdown but Duff follows his equilibrium mixed
strategy then Tough’s expected pay-off, EPOTbkdown, is:

EPOTbkdown = pd1 + (1 – pd)0 = (6.14)

If both players follow one or other of their pure strategies then they either get
0, 1, 2 or –3 depending on which strategy they and the other player choose.

Mixed strategies have a certain appeal when players are trying to be unpre-
dictable as in games of pure conflict like penalty taking. They also make sense
when one player is trying to deter some action by another, for instance in qual-
ity control exercises in which auditors make random checks to discourage
malpractice (or encourage good practice). The random checks made by officials
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Exercise 6.1

In the simplified Penalty — taking game in Matrix 6.2 below the striker
can only kick to the left or the right and therefore the goalkeeper only
moves either to the left or the right. If the striker and the goalkeeper
choose the same direction (looking at the game from either the striker’s
or the goalie’s perspective) the goalkeeper saves the penalty and other-
wise the striker scores. Derive the mixed strategy Nash equilibrium of
this game.

Matrix 6.2 Penalty taking

goalkeeper

striker

left right

left 0, 1 1, 0

right 1, 0 0, 1
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at customs controls are another example of this kind. It would be impractical
to search everyone’s bags – there are too many people and not enough customs
officials. Officials also make random ticket checks at some events. For example,
at the Wimbledon tennis championships there is excess demand for tickets but
the organisers want to deter ticket holders from selling on their tickets to touts.
Again, it would be impractical to check everyone’s ticket. Mixed strategies may
also be rational when a player just doesn’t know what else to do. 

But mixed strategies won’t always make sense even if neither player has a
dominant strategy. For example, in coordination games like the Battle of the
sexes, players really want to coordinate their actions even if they have different
preferences. In these circumstances rational players may be more likely to
search for alternatives by pre-committing or by looking for focal points (see
Schelling, 1960). In a game theoretic context focal points are strategy combina-
tions that stand out in some way for all the players and therefore they can
choose to coordinate their actions around them. For example, in the Battle of
the sexes game that you saw in Chapter 2 (Section 2.4.3), party might become a
focal point if both players were fans of a famous footballer who had also been
invited to the party. 

Even if mixed strategies appeal to the players in a game one problem with
the mixed strategy Nash equilibrium concept in practice is that players some-
how need to work out each other’s mixed strategies in order to make it
operational. This will not always, if ever, be easy. One possibility is that players
can learn to play mixed strategies if a game is repeated enough times. But in a
mixed strategy Nash equilibrium the expected pay-off of a player from using
their equilibrium mixed strategy is, by assumption, the same as their pay-off
from choosing a pure strategy. Consequently, there is no extra incentive to ran-
domise or maintain a randomising strategy in preference to choosing a pure
strategy. Nevertheless, even if individual players are choosing pure strategies a
mixed strategy Nash equilibrium could be played out among a group of players
if an equilibrium fraction of the group chooses one pure strategy while the rest
of the group chooses another.

The predictive validity of mixed strategy Nash equilibria in zero-sum and
constant-sum games has been tested in a long line of experiments that began
in the 1950s. This research is discussed in detail in Camerer (2003: Chapter 3).
To summarise Camerer, some of the earlier studies provided support for the
mixed strategy Nash equilibrium concept and in particular the argument that a
mixed strategy Nash equilibrium can be learned (Kaufman and Becker, 1961
and Malcolm and Lieberman, 1965). More recent studies have found that the
frequencies with which players choose their pure strategies in zero-sum games
are often very close to the mixed strategy Nash equilibrium prediction (see, for
example, O’Neill, 1987). However significant deviations from the mixed strat-
egy Nash equilibrium frequencies have also been observed. In some
experiments where subjects are explicitly allowed to randomise most do not
choose mixtures corresponding to the mixed strategy Nash equilibrium and
subjects often choose pure strategies (for example, Bloomfield, 1994). However,

Mixing and evolving
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the mixture of strategies chosen within groups of subjects is often close to the
mixed strategy Nash equilibrium predictions (Camerer, 2003: 142). This evi-
dence is consistent with the idea noted above of a mixed strategy Nash
equilibrium being played out among a group of people. This possibility is
explored in Section 6.2 below.

Field studies of the mixed strategy Nash equilibrium concept have also been
conducted. For example, Walker and Wooders (2001) and Hsu, Huang and Tang
(2003) have examined the direction of serves in professional tennis and
Palacios-Huerta (2003) has studied penalty taking in association football. These
studies have tended to confirm (less so in the case of Hsu et al.) that profes-
sional players in tennis and association football can successfully employ
equilibrium mixed strategies. This may be less true for subjects in laboratory
experiments but they have less incentive to practise.

One scenario where mixed strategies of a kind can make sense is in evolutionary
games. Evolutionary game theory has its origins in biology where it is acknow-
ledged that in any animal population some behavioural patterns will be more
successful than others. For example, a particular behavioural strategy may rep-
resent a more efficient way of securing resources that are necessary for survival.
From the biological perspective more successful strategies, or phenotypes as
they are called, will be fitter. Being fitter means that they will have more repro-
ductive success and become more numerous. If one type of behaviour in a
population is becoming more numerous, while another is becoming less
numerous, the existence of the less successful phenotype is threatened and it is
not, in biological terms, evolutionary stable. Evolutionary game theory seeks to
identify patterns of behaviour in populations that are evolutionary stable.

6.2.1 Hawks and doves

We can explore these ideas further by examining the
hawk–dove game in Matrix 6.3. This game looks like
a chicken game between two players who choose
between strategies called hawk and dove but it has a
different, evolutionary interpretation. In the evolu-
tionary version of this game a population of animals
(not necessarily birds) is made up of two types;
hawks and doves. Hawk and dove are two patterns

of animal (possibly human) behaviour or phenotypes that, from a strictly bio-
logical perspective, are genetically determined. Hawks are aggressive and prefer

Evolutionary  games

6.2 Evolutionary games
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to fight while doves are more peaceful by nature and prefer not to fight. Hawks
and doves meet up and interact randomly. The pay-offs represent shares of
some scarce resource that is necessary for survival, e.g. food, water or perhaps
oil. The average pay-off of hawks and doves will reflect their share of the scarce
resource. The greater their share of the scarce resource the higher will be their
chances of survival and the higher their reproduction rates.3

Matrix 6.3 Hawk—dove 1

There are three possible pairings in this game: hawk with hawk, dove with dove
and hawk with dove. If a hawk interacts with another hawk they fight over the
resource injuring themselves and destroying most of the resource in the process
receiving a pay-off of –4 each. If two doves interact they peacefully share the
resource and both receive a pay-off of 6. If a dove pairs with a hawk the hawk
secures all of the resource and the dove receives nothing. 

There are also three possible outcomes in terms of the survival of hawks and
doves in the population: only hawks survive; only doves survive; both doves
and hawks survive. The resulting population will not be stable if the entry or
invasion of one or more of either type raises the average pay-off of the invad-
ing type over that of the other. If this happened the reproductive rate of the
invader would be higher than that of the other type and the latter’s survival
would be threatened. In these circumstances the population is not stable
because it is vulnerable to invasion. Additionally a population composed of
both hawks and doves would only be stable if the average pay-off of the hawks
or the doves was the same. If this were not the case the reproductive rate of one
type would be higher than that of the other and the survival of one behav-
ioural type would be threatened. But if (i) neither hawks nor doves stand to
gain by invasion and (ii) their reproduction rates are equal where they coexist
then the population mix will be stable. A population satisfying these condi-
tions constitutes an evolutionary stable equilibrium as defined by the biologist
Maynard Smith (1982).

In the hawk–dove game in Matrix 6.3 what kind of population mix of hawks
and doves would be evolutionary stable? We can start to answer this question by
initially considering a population where half are hawks and the other half
doves. In this situation the probability of a hawk being paired with another
hawk, or a dove interacting with another dove is as is the probability of a
hawk being paired with a dove. The average pay-offs of hawks and doves will be:

1–
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hawk dove

hawk –4, –4 12, 0

dove 0, 12 6, 6
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Average pay-off of a hawk: APOH = (–4) + (12) = 4 (6.15)
Average pay-off of a dove: APOD = (0) + (6) = 3 (6.16)

(6.15) and (6.16) imply that when the population is half hawks and half doves
the average pay-off of hawks is higher. According to the biological interpreta-
tion hawks will therefore have higher survival rates and reproduce faster. As a
result, the population will become more hawkish. Thus a mix of hawks and 
doves is not a stable equilibrium as the percentage of hawks in the population
will be growing.

But if the population is made up of only hawks then APOH = –4. This is not
a stable situation either as the entry of one dove would only marginally raise
APOH and the pay-off of the dove, APOD, would be 0 which is considerably
greater than –4. Therefore doves could invade the population and doves would
reproduce faster than hawks. This means that a population consisting only of
hawks is not evolutionary stable either. 

What if the population consisted only of doves? The average
pay-off of the doves would be 6 but if one hawk invaded its
pay-off would be 12 and the average pay-off of the doves
would fall. Therefore hawks could invade the population
and if they did they would reproduce faster than the doves.
Therefore a population consisting only of doves is not
stable either.

The only possible evolutionary stable equilibrium is there-
fore one where doves and hawks both coexist but not in
equal numbers. For stability we require that the average

pay-offs of hawks and doves are equal. That is, APOH = APOD. If this condition
is satisfied the reproduction rates of hawks and doves will also be equal. 

To find the stable mix of hawks and doves where APOH = APOD let h be the
fraction of hawks (the probability of a random member of the population being
a hawk). Then the average pay-offs of hawks and doves will be:

Average pay-off of a hawk: APOH = h(–4) + (1 – h)12 = 12 – 16h (6.17)
Average pay-off of a dove: APOD = h(0) + (1 – h)6 = 6 – 6h (6.18)

Setting APOH = APOD leads to:

APOH = 12 – 16h = 6 – 6h = APOD (6.19)

or:

h = (6.20)

h = or 0.6 implies that 60 per cent of the population are hawks and 40 per
cent are doves. This mix of doves and hawks is stable because if hawk numbers
increase APOH will fall relative to APOD and if the population is invaded by doves
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APOD falls relative to APOH. Therefore neither hawks nor doves can mount a
successful invasion; the invader always ends up with a lower average pay-off
than the invaded type. This means that the invader’s reproduction rate will be
lower and its numbers will fall until the average pay-offs of both types are
equal and the 60:40 mix is restored. The 60:40 hawk–dove ratio is therefore
evolutionary stable and constitutes an evolutionary stable equilibrium. This
stable equilibrium is shown diagrammatically in Figure 6.1 where APOH and
APOD are plotted against the fraction of hawks in the population.

In Figure 6.1 the average pay-offs of hawks and doves are measured along
the vertical axis and the fraction of hawks is measured along the horizontal
axis. The lines corresponding to APO Dove and APO Hawk chart the average
pay-offs of doves and hawks in relation to the fraction of hawks in the popula-
tion. When this fraction is 0.6 the two lines cross signifying that the average
pay-offs of doves and hawks are equal when 60 per cent of the population are
hawks. To the right of this point the fraction of hawks is higher but APOH is less
than APOD. Consequently, doves reproduce faster than hawks signifying that the
population is not vulnerable to invasion by hawks. To the left of the intersection
point the percentage of doves in the population is higher than 40 per cent but
APOD is less than APOH. As a result hawks reproduce faster than doves. This signi-
fies that the population is not vulnerable to invasion by doves either. 

h = 0.6 also corresponds to the mixed strategy Nash equilibrium of the
equivalent chicken game. That is, if we interpret the hawk–dove game in a
strictly non-evolutionary way then the mixed strategy Nash equilibrium of that
game would be {(hawk: , dove: )(hawk: , dove: )}. If you are not sure about
this let ph be the probability of choosing hawk as a strategy for one of the play-
ers. Then set the expected pay-off from hawk equal to the expected pay-off
from dove for the other. Solving for ph will give you ph = 0.6. 

Thus the evolutionary approach gives a rationale for the Nash equilibrium
concept and in this particular case the idea of a Nash equilibrium in mixed strate-
gies. The strictly biological interpretation also suggests that natural selection
depends on individual pay-offs, not the pay-off of the population as a whole.
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Figure 6.1 Average pay-offs of hawks and doves

12

10

8

6

4

2

0

–2

–4

0.2 0.4 0.6 0.8 1

A
ve

ra
g

e
 p

ay
-o

ff
s

Fraction of hawks

APO Hawks

APO Doves



153

This is clear in the hawk–dove game as the population as a whole would be
better off if there were no hawks but a population of all doves would not be
stable as it would be vulnerable to invasion by hawks.

6.2.2 Socio-evolutionary games

An alternative to the strictly biological interpretation is to consider behaviour
in terms of preferences or strategies rather than predetermined types. Then the
evolution of behavioural strategies can be interpreted in terms of learning
rather than genetically programmed adaptation. For example, hawk and dove
could represent two behavioural preferences in a society: aggressive and peace-
ful. In this scenario members of the society would benefit if they could avoid
simultaneous hawk-like behaviour but there is conflict as the benefits of coop-
eration are distributed differently between hawks and doves. According to this
socio-evolutionary interpretation people will learn which strategies are more
successful and adapt by consciously adopting strategies that achieve higher
pay-offs. They will adopt more hawkish or more dovish behaviour depending
on the usefulness of each. However, the usefulness of a preference for a certain
type of behaviour or strategy will depend on the frequency others are using the
same strategy since being hawkish will only be a good idea if there are enough
doves in the population. The stable mix of behavioural strategies will be one
where there is no incentive for members of the society to switch strategies.
Thus the evolutionary approach can suggest ways in which social rules and cul-
tural conventions become established over time. 

In order to develop these arguments further4 consider the stag hunt game in
Matrix 6.4 (you saw this game earlier in Problem 3 of Chapter 2). In stag hunt
the choice is between hunting for stag and hunting for hare. Stag hunting

Evolutionary  games

Exercise 6.2

Find the evolutionary stable equilibrium of the hawk–dove game in
Matrix 6.3.1. Why do you think the equilibrium fraction of hawks is higher
in hawk–dove 2 than in hawk–dove 1? 

Matrix 6.3.1 Hawk–dove 2

hawk dove

hawk 1, 1 6, 2

dove 2, 6 3, 3
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requires cooperation but a hunter acting alone can successfully kill a hare.
However, the stag is bigger and a share in a stag is preferred to a whole hare. In
the simultaneous-move version of this game there are two Nash equilibria in
pure strategies: {stag, stag} and {hare, hare}. Since stag hunt is a coordination
game with assurance (see Chapter 2, Section 2.4) one of the equilibria is Pareto
superior. Can you see that the Pareto superior equilibrium is {stag, stag}, the
equilibrium in which everyone joins in the stag hunt? There is also a mixed
strategy Nash equilibrium in which both players choose stag with probability 
or 0.2.

Matrix 6.4 Stag hunt

In the socio-evolutionary version of this game people in a large population are
assumed to fall into two groups. They either follow a social convention of
cooperation and working together or they act on their own. The first group of
people will choose stag hunting and the second group hunting for hare. Over
time people can switch between strategies but they will only do so if they
expect to make a higher return by doing so. They can learn which strategy is
likely to do better from social interactions with acquaintances and friends.
People’s hunting partners though are chosen randomly. If a stag hunter is
paired with an individualistic hare hunter the latter does better but if two stag
hunters are paired together they do better than two hare hunters. If the propor-
tion of cooperating stag hunters in the population is s then the average pay-off
of stag hunters is:

Average pay-off of stag hunters: APOS = s5 + (1 – s)0 = 5s (6.21)

And the average pay-off of hare hunters is:

Average pay-off of hare hunters: APOH = s1 + (1 – s)1 = 1 (6.22)

The expected pay-off from stag hunting is therefore higher when 5s > 1 or s > 
= 0.2. When s < 0.2 the proportion of stag hunters in the population is not
high enough and hare hunting is more beneficial. When s = 0.2 the expected
pay-off from stag hunting is the same as it is from hunting hare. 

As before there are three possible outcomes in terms of the population mix:
a population composed solely of stag hunters, a population composed of only
hare hunters and a population where both types of hunting are practised.
However, the last possibility could not persist and therefore cannot constitute
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stag hare

stag 5, 5 0, 1

hare 1, 0 1, 1
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an evolutionary stable equilibrium. To see this consider what happens if 20 per
cent of the population are stag hunters (s = 0.2). The average pay-offs of both
types of hunter would be the same but if just one person decided to switch
from hare hunting to stag hunting the average pay-off of stag hunters, 5s,
would increase (as s would have increased). Furthermore, since s > 0.2 APOS is
higher than APOH and so more hare hunters will switch to stag hunting.
Eventually no hare hunters will be left as the whole population will have
switched to stag hunting. Similarly if s = 0.2 but one stag hunter switches to
hare hunting the average pay-off of hare hunters would stay the same but the
average pay-off of stag hunters would fall below that of hare hunters (s is less
than 0.2 so 5s < 1). Once other stag hunters learn what had happened they too
will switch to hare hunting which would lower the expected pay-off from stag
hunting still further. Eventually only hare hunters would be left in the popula-
tion. Thus a population composed of both types of hunters cannot survive. 

What makes a population of both types stable in the hawk–dove game but
unstable in the stag hunt game? Well, in the hawk–dove game the average pay-
off of each type is higher the rarer it becomes but the opposite happens in the
stag hunt game. In the stag hunt game the average pay-off associated with
either strategy is higher the more people employ it. This is shown in Figure 6.2
which you can compare with Figure 6.1. Figure 6.2 shows the average pay-offs
of stag and hare hunters plotted against the fraction of people in the popula-
tion who are using the stag hunting strategy. When this fraction is 0.2 the
average pay-offs are equal. In contrast to Figure 6.1, when the fraction of stag
hunters rises above 0.2 the average pay-off of stag hunters increases. The
number of stag hunters in the population will therefore continue to increase.
On the other hand, when the fraction of stag hunters falls below 0.2 the aver-
age pay-off of stag hunters falls. In this case the number of stag hunters will
continue to decrease.

However, a population consisting solely of either stag hunters or hare
hunters will be stable. To see this consider a population consisting only of stag
hunters: if one person were to switch to hare hunting that person’s pay-off
would be 1 but as long as the percentage of stag hunters is greater than 20 per
cent the average pay-off from stag hunting is higher than 1. In Figure 6.2 this is
shown by the lower average pay-off of hare hunters when the fraction of stag
hunters in the population is between 1 and 0.2. Similarly, in a population con-
sisting only of hare hunters if one or two people switched to stag hunting then
their average pay-off would be less than 1.5 This will be true as long as the per-
centage of stag hunters is less than 20 per cent, in which case the expected
pay-off from stag hunting is less than that from hare hunting. In Figure 6.2 this
is shown by the lower average pay-off of stag hunters when the fraction of stag
hunters in the population is between 0 and 0.2. 

Consequently, there are two evolutionary stable equilibria: either the popula-
tion is composed solely of stag hunters or there are only hare hunters. Either
possibility will be a stable outcome. The first evolutionary stable equilibrium
where there are only stag hunters corresponds to the {stag, stag} Nash equilibrium

Evolutionary  games
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in the static version of the game. The all hare hunter evolutionary stable equilib-
rium corresponds to the {hare, hare} Nash equilibrium. But there is no
evolutionary stable equilibrium corresponding to the mixed strategy Nash equi-
librium of the static game. Which evolutionary stable equilibrium will result will
depend on the initial mix of hunting strategies. This will in turn depend on the
social conventions in the population (or society). It is therefore entirely plausible
that different evolutionary equilibria could evolve in different societies facing
the same evolutionary issues. However, should two previously isolated popula-
tions with different hunting strategies come into contact a new evolutionary
stable equilibrium could be established in which both populations follow the
same strategy. But the fact that in the stag hunting equilibrium the pay-offs are
higher does not guarantee that this will be the outcome. 

The analysis in the previous section showed how the evolutionary stable
equilibrium of the evolutionary hawk–dove game corresponds to the mixed
strategy Nash equilibrium of the equivalent simultaneous move or static game.
Similarly, the evolutionary equilibria of the stag hunt game correspond to the
two pure Nash equilibria of the static stag hunt game. In fact all evolutionary
equilibria are Nash equilibria. Hence evolutionary theory provides some ration-
ale for the Nash equilibrium concept generally and the mixed strategy Nash
equilibrium in particular. 

However, as you have seen, not all Nash equilibria are evolutionary stable
(the mixed strategy equilibrium of stag hunt for example). But if the Nash equi-
librium of a static game is also a dominant strategy equilibrium there will be an
evolutionary equivalent. We can see this by looking at the conservationists’
dilemma in Matrix 6.5 (you saw a different version of this game in Section 3.5
of Chapter 3). 

Mixing and evolving

Figure 6.2 Average pay-offs of hunters
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Matrix 6.5 The conservationists’ dilemma

In this game the players choose between conservationist and exploitative
strategies. The static version of the conservationists’ dilemma is a prisoners’
dilemma and exploitation is a dominant strategy. The dominant strategy equi-
librium is therefore {exploitation, exploitation} even though the players would
have higher pay-offs if they could agree to conserve. In a socio-evolutionary
context conservation and exploitation are alternative strategies employed by
people that interact randomly. If the proportion of conservationists is c then
the average pay-off of conservationists is c25 – (1 – c)50 = 75c – 50 but the aver-
age pay-off of exploiters is c100 + (1 – c)0 = 100c. Since 100c is greater than
75c – 50 for all positive values of c the average pay-off of conservationists will
always be less than that of exploiters. This means that whatever the initial
value of c conservationists will want to switch strategies until c = 0 and every-
one is an exploiter. If c = 0 the population is stable because even if only one
exploiter switched to conservation their expected pay-off would fall. Thus
exploitation is the evolutionary stable strategy of the game. This result illus-
trates a general proposition that dominant strategies in static games are stable
strategies in an evolutionary context. 

In this chapter you have seen how to derive the mixed strategy Nash equilib-
rium of two-person simultaneous-move games. When a player chooses a mixed
strategy they choose a mix of their pure strategies on the basis of some proba-
bilistic rule. For example, imagine a game where a player has two pure
strategies: up and down. A possible mixed strategy would be to choose up with
probability and down with probability . The player could operationalise this
mixed strategy by tossing a coin. If it came up heads the player could decide to
choose up and if it came up tails she could choose down. 

In a mixed strategy Nash equilibrium the players mixed strategies are best
responses to each other. In some zero and constant sum games there may be no
Nash equilibrium in pure strategies but there will always be a mixed strategy
Nash equilibrium. In these games mixed strategies also have a certain intuitive
appeal as players are more likely to win if they behave unpredictably and
choosing mixed strategies is one way of doing just that. There are other types
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Summary

conservation exploitation

conservation 25, 25 –50, 100

exploitation 100, –50 0, 0

Summary
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of games where players could use mixed strategies. For example, in games like
chicken and battle of the sexes, where there is more than one Nash equilibrium
in pure strategies, the players might think about randomising. However, mixed
strategies may be difficult to operationalise in practice and in some circum-
stances they may be undesirable. 

One interpretation of a mixed strategy Nash equilibrium that has met with
some success is in terms of a population of player types. For example, individ-
ual players in a population may be choosing pure strategies but a mixed
strategy Nash equilibrium could be played out if an equilibrium fraction of the
group chooses one pure strategy while the rest of the group chooses the other.
This possibility was considered in the context of evolutionary game theory.
Two different evolutionary standpoints were explored. The hawk–dove game
was initially analysed from a strictly biological standpoint where the idea of
natural selection is paramount and then re-interpreted in a socio-evolutionary
context. Socio-evolutionary game theory explores ideas relating to the develop-
ment of social conventions and cultural norms. This approach was used to
examine two more games: the Stag hunt coordination game and the conserva-
tionists’ version of the prisoners’ dilemma. Evolutionary game theory is an
interesting and relatively new branch of game theory. It offers many new
insights of which some have been touched on in this chapter.

6.1

Matrix 6.2 Penalty taking

goalkeeper

striker

If the probability the striker kicks to the left is ps and the probability the goal-
keeper dives to the striker’s left is pg then if the striker kicks to the left his
expected pay-off is:

Striker (left) = pg0 + (1 – pg)1 (i)

If he kicks to the right his expected pay-off is:

Striker (right) = pg1 + (1 – pg)0 (ii)

Mixing and evolving

Answers to exercises

left right

left 0, 1 1, 0

right 1, 0 0, 1
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Setting these two equal implies:

pg0 + (1 – pg)1 = pg1 + (1 – pg)0 (iii)

(iii) solves for pg = . As this game is symmetric setting the goalkeeper’s expected
pay-offs from diving left and right equal solves for ps = . Thus the mixed strategy
Nash equilibrium is {(striker: left; , right; ) (goalkeeper: left; , right; )}.

6.2

Matrix 6.3.1 Hawk—dove 2

Let h equal the fraction of hawks in the population then APOH = h1 + (1 – h)6
= 6 – 5h and APOD = h2 + (1 – h)3 = 3 – 1h. APOH = APOD when 6 – 5h = 3 – 1h
or h = = 0.75. In Hawk–dove 1 the equilibrium fraction of hawks was 0.6
which is clearly less. The equilibrium fraction of hawks is lower in hawk–dove 1
because the costs for a hawk of being paired with another hawk and the gains
for a dove from being paired with another dove are both higher. 

1 Consider the penalty game in Matrix 6.5. This game is a version of the
Penalty-taking game in Matrix 6.2. In this version of the game the striker
derives more pleasure when he scores by kicking to the left (perhaps because
this is naturally more difficult for him). What is the mixed strategy Nash
equilibrium of this version of the penalty-taking game? Why is the mixed
strategy Nash equilibrium of the asymmetric penalty game different from
the mixed strategy Nash equilibrium of the symmetric version?

Matrix 6.5 Asymmetric penalty taking goalkeeper 

striker

2 Derive the mixed strategy equilibrium of the zero-sum game described in
Matrix 6.6. Do you recognise this game? If you do try playing it with a friend
and try to observe what kind of strategy works best for you (or your friend).
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hawk dove

hawk 1, 1 6, 2

dove 2, 6 3, 3

left right

left 0, 1 2, 0

right 1, 0 0, 1

Problems
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Matrix 6.6 Paper, scissors, stone

Player 2

Player 1

3 In the simultaneous move game in Matrix 6.7 players either share or grab:

Matrix 6.7 Share or grab 

Y

X

(a) Derive the pure strategy Nash equilibria of this game.

(b) Derive the mixed strategy equilibrium of this game.

(c) Explain how this game might be interpreted in an evolutionary context.

(d) Show that the evolutionary stable equilibrium of the version of the game
described in part (c) is mathematically equivalent to the mixed strategy
equilibrium derived in part (b).

(e) What would the evolutionary stable equilibrium of the game be if the pay-
offs changed so that when two grabbers meet they each received a pay-off
of 2 (but this was the only change)? Explain your answer.

1 How likely do you think it is that players in games with no Nash equilibrium
in pure strategies choose mixed strategies? 

2 How can the ideas underlying evolutionary game theory be used to explain
how cultural preferences for different types of behaviour have emerged in
different societies? 

Mixing and evolving

stone paper scissors

stone 0, 0 –1, 1 1, –1

paper 1, –1 0, 0 –1, 1

scissors –1, 1 1, –1 0, 0

share grab

share 3, 3 1, 5

grab 5, 1 0, 0

Questions for discussion
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1 The mixed strategy Nash equilibrium of asymmetric penalty taking is
{(striker: left; , right; )(goalkeeper: left; , right; ). To see this let gl equal
the probability that the goalkeeper moves to the left then the expected pay-
off to the striker from kicking the ball to the left is gl0 + (1 – gl)2. His
expected pay-off from kicking the ball to the right is gl1 + (1 – gl)0. These
expected pay-offs are equal when gl = . If sl is the probability that the striker
kicks to the left then the expected pay-off to the goalkeeper from moving to
the left is   sl1 + (1 – sl)0. The goalkeeper’s expected pay-off from moving to
the right is sl0 + (1 – sl)1. These pay-offs are equal when sl = . 

In this version of the penalty-taking game the equilibrium mixed
strategy of the striker is the same as in the symmetric version but the mixed
strategy of the goalkeeper has changed. Because the striker gains more
satisfaction from scoring to the left he will only randomise if the goalkeeper
moves to the left more often than he moves to the right.

2 The mixed strategy Nash equilibrium is for each player to choose each
strategy with the same probability: . To solve let let ps = the probability that
player 1 chooses stone, pp equal the probability that she chooses paper and
then (1 – ps – pp) is the probability that she chooses scissors. Set player 2’s
expected pay-offs from stone, scissors and paper equal to each other and
solve for ps and pp and then (1 – ps – pp). The game is symmetric so the
equilibrium mixed strategies of the players are the same. Note that this is
another zero-sum game with a first-mover disadvantage.

3 The answers are as follows:

(a) {share, grab} and {grab, share}.

(b) Let ps equal the probability that Y shares then X’s expected pay-off from
sharing is ps3 + (1 – ps)1 = 2ps + 1 and his pay-off from grabbing is ps5 +
(1 – ps)0 = 5ps. Setting these equal solves for ps = . As the game is
symmetric the mixed strategy Nash equilibrium is {(X: share; , grab; 
)(Y: share; , grab; )}.

(c) Share or grab is a chicken or hawk–dove game. In a socio-evolutionary
context grabbers are hawks and sharers are doves. 

(d) Letting s equal the fraction of sharers in the population and setting the
average pay-off of sharers equal to the average pay-off of grabbers solves
for s = and the evolutionary stable equilibrium is that of the
population are sharers and are grabbers. This is a stable mix because if
the fraction of grabbers increases their average pay-off will be less than
that of sharers and vice versa. 
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(e) If the pay-offs change in this way then the pay-off matrix becomes:

Matrix 6.7 Share or grab

Y

X

Now the game is a prisoners’ dilemma and grabbing is a dominant strategy
so that in the evolutionary version of the game the only evolutionary
stable strategy is grab. In other words, the only evolutionary stable
equilibrium is one in which the population is composed solely of grabbers.
This is true even though the population as a whole would be better off if
everyone was a sharer.

1 For a full discussion of evolutionary game theory see Maynard Smith (1982).

2 Thinking about mixed strategies in this way implicitly assumes that there are multiple
opportunities for choosing strategies, that is, the game is repeated and for a quarter of the
repetitions the player chooses left. In this chapter we will treat these two alternative ways of
thinking about mixed strategies as equivalent.  Repeated games are analysed in detail in Chapter 8.

3 In Maynard Smith’s (1982) original example hawks and doves are two animals contesting a
resource of value V. The resource could be territory in a favourable habitat. Animals that breed in
the favourable habitat produce more offspring.  In the contest over the resource, hawks ‘escalate’
the contest and continue until injured or their opponent retreats while doves only ‘display’ and
retreat at once if their opponent escalates. 

4 For a more detailed discussion see Ridley (1996).

5 Unless there are less than five people in the population, but the initial assumption was that the
population was large.
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share grab

share 3, 3 1, 5

grab 5, 1 2, 2

Notes
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MYSTERY PLAYERS

Concepts and techniques

■ Bayesian Nash equilibrium

■ Perfect Bayesian Nash equilibrium

■ Bayes’ rule

■ Signalling.

After working through this chapter you will be able to:

● Analyse games in which one or more players are unsure about the pay-
offs of the other

● Define the concept of a Bayesian Nash equilibrium

● Explain how to use Bayes’ rule to update beliefs

● Explain the role of signalling in games with incomplete information

● Derive the Bayesian equilibrium of static and dynamic games with
incomplete information.
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In all the games in this chapter information is incomplete and asymmetric
because at least one of the players is unsure about the other’s pay-offs. Games
in which players are incompletely informed in this way are known as Bayesian
games. In Bayesian games the Nash equilibrium concept needs to be refined in
order to take account of players’ beliefs. A Nash equilibrium that does this is
called a Bayesian Nash equilibrium, or more simply a Bayesian equilibrium. In
a Bayesian equilibrium the actions of players need to be optimal or best
responses given their expectations about the other player. Players’ expectations
depend on the knowledge they have and their beliefs. An extra restriction in
dynamic games is that the players’ strategies need to be best responses in every
subgame, even those that are not actually played out in the equilibrium. In
these circumstances the Bayesian equilibrium is perfect.

The procedure for finding a Bayesian equilibrium in games with asymmetric
information is somewhat more complex than any you have seen before. It
involves first proposing a strategy combination and then calculating the beliefs
generated by those strategies. The proposed strategies then need to be checked
to ensure that they are optimal given the players’ beliefs. Beliefs in game theory
are characterised by probabilities and are conditional on the ‘type’ of the player
about whom there is doubt. A player’s type is determined by his pay-offs. Since
in any game a player’s choice of strategy also depends on their pay-offs, play-
ers’ strategies in Bayesian games will be conditional on their type. If moves are
observed information may be revealed about a player’s type and the beliefs of
the other player(s) may be updated. This updating process uses a rule of proba-
bility theory known as Bayes’ rule. 

These ideas are explored by examining four games in detail. In all of these
games there is asymmetric information about one or both players’ pay-offs. In
Section 7.1 you will see another version of the friends or enemies game that you
first analysed in Chapter 2. In the version of the game analysed here Ms Row is
unsure about Mr Column’s preferences, specifically whether he is a party lover or
not. Friends or enemies is a static game and in Sections 7.2 to 7.5 two games with
sequential moves are analysed. The game examined in Section 7.2 is the entry
deterrence game that you saw in Chapter 3 but here there is uncertainty for the
potential entrant about the pay-offs of the incumbent monopolist. In Sections
7.3 and 7.4 the entry deterrence game is extended by allowing for the possibility
that the monopolist can signal its type. Signals1 are actions taken by players to
convey information. They represent an attempt by one player to communicate
with another. For example, a potential employee might signal her productivity
by investing in education. Alternatively, a second-hand car dealer could signal
the quality of his cars by offering a three-month warranty. The possibility of

Introduction
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signalling adds another layer of realism to game theory and makes the analysis of
games with asymmetric information very interesting. Signals are explicit in the
game examined in Section 7.5 which is a version of the Cho and Kreps (1987)
beer and quiche game. In this game one of the players, a man, sends a signal
about his type which is either tough or wimpy and the other player, a bully,
decides whether to fight the man on the basis of the signal sent. In Section 7.6 a
battle of the sexes game is analysed. In this version of the game both players are
uncertain about the pay-offs of the other.2

The game considered in this section is played by Mr Column and Ms Row. They
are playing a friends or enemies game like the ones examined in Chapter 2.
Here Mr Column and Ms Row have both received invitations for two different
New Year’s Eve events. They are independently choosing between spending a
relatively quiet evening at a local hotel or having a much wilder night by going
to a party. The key features of the game in Chapter 2 are retained in that one
player wants to match the action choice of the other while the other player
wants to avoid matching and one or both players has a preference for one or
other of the actions available to them. Here Ms Row simply wants to avoid Mr
Column but he would like to see her. Mr Column also has a strong preference
for one of the venues. However, in this version of the game asymmetric infor-
mation is an added ingredient. The problem for Ms Row in that she is unsure
about Mr Column’s preferences. Mr Column is either a party-lover or he is not.
If Mr Column is a party lover his dominant strategy is to go the party but if he
is not a party-lover his dominant strategy is to go to the hotel. This is an
important gap in Ms Row’s knowledge as she wants to avoid Mr Column. The
information in the game is asymmetric because although Mr Column knows
his own preferences and pay-offs Ms Row does not. 

The game is represented by pay-off matrices 7.1.1 and 7.1.2. Pay-off Matrix
7.1.1 describes the game when Mr Column is a party-loving type and
Matrix 7.1.2 describes the game when he is not. Mr Column knows which
matrix is appropriate but Ms Row does not. 

Matrix 7.1.1 Mr Column is a party lover

Mr Column

Ms Row

Friends or enemies again

7.1 Friends or enemies again

party hotel

party 2, 3 4, 0

hotel 3, 2 0, 1



166

Matrix 7.1.2 Mr Column is not a party-lover

Mr Column

Ms Row

Since Ms Row doesn’t know whether Mr Column is a party-lover or not she
cannot be sure which pay-off matrix is appropriate. But she does know two very
important things. One of these is the probability that Mr Column is a party lover
– this is common knowledge and is given by P. She also knows from the pay-offs
in Matrices 7.1.1 and 7.1.2 that if he is a party-lover Mr Column will choose
party so she should choose hotel and if Mr Column is not a party lover then he
will choose hotel so Ms Row should choose party (you should verify that if Ms
Row knows Mr Column’s type and he is a party-lover the Nash equilibrium is
{hotel, party} and if he is not a party lover the Nash equilibrium is {party, hotel}). 

The equilibrium of this game needs to specify the following: 

(i) A strategy for Mr Column that is conditional on Mr Column’s type (party-
lover, or not) and optimal given his expectations about Ms Row’s actions.

(ii) A strategy for Ms Row that is optimal given her beliefs about Mr Column
and her expectations about his actions.

(i) implies that the equilibrium strategy of Mr Column (the player about whom
there is uncertainty) needs to specify actions that are conditional on his type.
More generally if there is uncertainty about any player in a game then the equi-
librium strategy of that player needs to specify actions that are conditional on
their type.3 (i) and (ii) together imply that the equilibrium strategies of each
player will be conditional on their expectations or beliefs about the other. In a
simultaneous-move or static game, an equilibrium that incorporates beliefs in
this way is called a Bayesian Nash equilibrium or Bayesian equilibrium. In a
Bayesian equilibrium the strategies of the players specify actions that are con-
sistent with their type and their beliefs about the actions of the other player. 

Mystery players

party hotel

party 2, 1 4, 2

hotel 3, 0 0, 3

Bayesian Nash equilibrium 

● A combination of the players’ strategies such that each player’s
strategy is a best response to the equilibrium strategies of all the
other players, whatever the player’s type and whatever the type of
the other players.
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The Bayesian equilibrium is relatively easy to determine in this game because
one of the player’s, Mr Column, has a dominant strategy.4 The Bayesian equi-
librium for this game can be derived in four steps:

Step 1: Propose a strategy for Mr Column conditional on his type:

● The party-loving Mr Column: Party is a dominant strategy so he always
chooses party.

● The non-party-loving Mr Column: Hotel is a dominant strategy so he
always chooses hotel.

Step 2: Calculate beliefs for Ms Row that are consistent with Mr Column’s strategy
as defined in Step 1 and probability, P, that Mr Column is a party lover.
Consistent beliefs for Ms Row are that:

● With probability P Mr Column is a party lover and will always choose
party.

● With probability (1 – P) Mr Column is not a party lover and will always
choose hotel.

Step 3: Propose a strategy for Ms Column that is consistent with her beliefs
about Mr Column:

Ms Row should choose hotel if her expected pay-off from choosing hotel,
EPOhotel, is greater than her expected pay-off from choosing party EPOparty.
She should choose party if EPOparty > EPOhotel. If EPOparty = EPOhotel she
might as well randomise between her two pure strategies. 

Whether EPOhotel > EPOparty depends on P. There is a critical value of P,
which we shall call P*, such that if P > P*, EPOhotel > EPOparty but if P < P*

EPOhotel < EPOparty and if P = P*, EPOhotel = EPOparty. Thus a strategy for Ms
Row that is consistent with her beliefs is:

● Choose hotel if P > P*. 

● Choose party if P < P*.

To fully specify Ms Row’s strategies P*, the critical value of P needs to be
determined. P* is defined by the condition that if P = P* then EPOhotel =
EPOparty where: 

EPOhotel= P(3) + (1 – P)0 = 3P (7.1)

Ms Row’s pay-off if she chooses hotel and Mr Column chooses party is 3. If
she chooses hotel there is a P probability of this happening. She gets zero if
they both choose hotel and if she is choosing hotel there is a (1 – P)
probability of this happening. Her expected pay-off from choosing party is:

Friends or enemies again
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EPOparty = P(2) + (1 – P)4 = 4 – 2P (7.2)

Her pay-off is 2 if she chooses party and Mr Column also chooses party.
There is a P chance of this happening if she goes to the party. Her pay-off is
4 if she chooses party and Mr Column goes to the hotel and he goes to the
hotel with probability (1 – P). EPOhotel = EPOparty if:

3P = 4 – 2P (7.3)

which solves for: 

P = = P* (7.4)

Thus P*, the critical value of P, equals . If P > Ms Row’s expected pay-off is
higher if she chooses hotel and if P < her expected pay-off is higher if she
chooses party. Thus P* = defines Ms Row’s strategy:

● Choose hotel if P > = P*.

● Choose party if P < = P*.

If P = Ms Row is indifferent between hotel and party and we can assume
that she chooses randomly between the two venues.

Step 4 Check that the players’ strategies are optimal, that is best responses to
each other and consistent with their beliefs:

Mr Column

Party-lover: chooses party.

Non-party-lover: chooses hotel.

These are optimal strategies for Mr Column as party is a dominant strategy
for the party-lover and hotel is a dominant strategy for the non-party-lover.

Ms Row

If P > choose hotel.

If P < choose party.

If P = randomise. 

Ms Row expects the party-loving Mr Column to choose party and the other Mr
Column to choose hotel. She knows that the probability that Mr Column is a
party lover is P. As shown in Step 3, is the critical value of P such that if P > .
EPOhotel > EPOparty and the inequality is reversed if P < . If P = she is indifferent
between her two pure strategies and therefore she might as well randomise
between them. These strategies are therefore optimal for Ms Row given her
expectations about Mr Column.
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As the strategies defined here are optimal and consistent with the players’
beliefs they constitute a Bayesian equilibrium for this game which is written
in terms of the players strategies as: 

Mr Column

Party-lover always chooses party.

Non-party-lover always chooses hotel.

Ms Row

If P > chooses hotel. 

If P < chooses party.

If P = randomises between hotel and party.

Where P is the common knowledge probability that Mr Column is a party-
lover. Thus in the Bayesian equilibrium of this game Ms Row only chooses
hotel if the probability that Mr Column is a party-lover is high enough
(higher than , the critical value of P) and she chooses party (or randomises)
otherwise.
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Exercise 7.1

In the friends and enemies game described by Matrices 7.2.1 and 7.2.2
Ms Row doesn’t know whether Mr Column is a party-lover or not.
Nothing has changed for Mr Column but now Ms Row’s preferred out-
come is that she goes to the hotel and Mr Column goes to the party. The
worst possible outcome for her is that she goes to the party and so does
Mr Column. The probability that Mr Column is a party-lover is p. How
does the change to Ms Row’s preferences alter the Bayesian equilibrium
of the game?

Matrix 7.2.1 Mr Column is a party-lover

Mr Column

Ms Row

party hotel

party 0, 3 3, 0

hotel 4, 2 2, 1
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In this section we are going to analyse a version of the entry deterrence game
that you first saw in Chapter 4, Section 4.4. In the version examined here the
entrant is unsure about the pay-offs of the incumbent monopolist. The entrant
is aware that the monopolist may have invested in a sunk cost that makes it
optimal to fight entry (as discussed in Chapter 3, Section 4.4.1) but doesn’t
know if the incumbent has made this investment or not. If the monopolist has
made this investment then fighting is a best response to entry, otherwise it is
not. The incumbent is therefore one of two types: a strong monopolist for
whom fighting is an optimal strategy or a weak monopolist for whom conced-
ing to entry is a best response. The entrant knows that a strong monopolist will
always fight and a weak monopolist will always concede but doesn’t know
which of the two the monopolist is. The entrant knows only Ps, the prior or ini-
tial probability that the monopolist is strong. Ps is common knowledge.5

Entry deterrence is a sequential-move game and the extensive form of this
version of the game with asymmetric information is shown in Figure 7.1. The
pay-offs of the weak monopolist and the entrant are the same as the game
analysed in Chapter 4 (see Figure 4.4). The strong monopolist has invested in a
commitment to fighting entry that costs 2 but generates a net benefit of 5 if
there is entry and the incumbent fights.6 Because this game is a little more
complex than the version examined in Chapter 4 it will be helpful to refer to
the incumbent as a he and the entrant as a she. If you are not sure about this
then imagine that the managing director of the incumbent monopoly is a man
and the managing director of the firm that is a potential entrant is a woman. 

The extensive form in Figure 7.1 shows that a chance move determines
whether the monopolist is strong with probability Ps or weak with probability
(1 – Ps). The entrant doesn’t see the chance move and decides between entry or

Mystery players

Exercise 7.1  (Continued)

Matrix 7.2.2 Mr Column is not a party-lover

Mr Column

Ms Row

party hotel

party 0, 1 3, 2

hotel 4, 0 2, 3

7.2 Entry deterrence with incomplete information
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not at either E1 or E2. The broken line between E1 and E2 indicates that the
entrant doesn’t know which of the decision nodes E1 or E2 actually applies. The
incumbent knows his type and, if the entrant enters, decides between fighting
or not. If the monopolist is strong then entry moves the game to Ms1 where
the strong monopolist will choose fight (the pay-off from fighting is 4 while
the pay-off from conceding is only 3). If the monopolist is weak entry moves
the game to Mw1 where concession is the weak incumbent’s best response (the
pay-off from fighting is –1 while the pay-off from concession is 5). Can you see
from Figure 7.1 that if the entrant knew the monopolist’s type there would be
entry only if the monopolist were weak? But with asymmetric information
about the monopolist’s type the entrant needs to work out the expected pay-
offs of entering and staying out before making a move. The crucial part of this
decision-making process for the entrant is the determination of Ps

*, the critical
value of Ps such that if Ps > Ps

* the expected pay-off from staying out is higher
than that of entering.

The equilibrium of this game is defined in the same way as in Section 7.1 in
terms of the strategies and beliefs of the players but here the players’ strategies
also need to be best responses in every subgame. The equilibrium therefore
needs to be subgame perfect, that is a perfect Bayesian Nash equilibrium or,
more simply, a perfect Bayesian equilibrium. 

As you saw in Chapter 4 subgame perfectness in the entry deterrence game
rules out equilibria in which the entrant stays out because the weak monopolist
threatens to fight entry. Such a threat is not credible because it is not in the
weak monopolist’s self interest to carry out and therefore it is not a best

Entry deterrence with incomplete information

Figure 7.1 Extensive form of entry deterrence with asymmetric information
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response in the subgame starting at Mw1. In the asymmetric entry deterrence
game the monopolist’s equilibrium strategy is conditional on type: the strong
monopolist will always fight and the weak monopolist will always concede.
These strategies are consistent with the entrant’s belief that the monopolist is
strong and always fights with probability Ps.

7

To fully determine the perfect Bayesian equilibrium of this game Ps*, the critical
value of Ps, needs to be defined. Ps* is defined by the condition that the entrant’s
expected pay-off from staying out is equal to the expected pay-off of entering.
The entrant’s expected pay-off from staying out, EPOso is zero whatever the
monopolist’s type. The expected pay-off of entering, EPOE, depends on Ps where:

Expected pay-off of entering: EPOE = (1 – Ps)5 + Ps(–1) = 5 – 6Ps (7.5)

The entrant should stay out if:

EPOSO > EPOE (7.6)

that is:

0 > 5 – 6Ps (7.7)

(7.7) solves for;

Ps > = Ps
* (7.8)

Thus Ps* = is the critical value of Ps such that if Ps > the entrant should stay
out of the market and the entrant should enter if this inequality is reversed.8

This calculation allows us to fully determine the Bayesian equilibrium of the
game as follows:
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Perfect Bayesian Nash equilibrium 

● A combination of strategies and beliefs such that:

(i) the players’ strategies specify actions that are conditional on
their type, constitute a Nash equilibrium given the players’
beliefs and specify moves that are best responses in every
subgame. 

(ii) the players’ beliefs are consistent with the equilibrium
strategies of the players and their commonly held prior beliefs
and where possible beliefs are updated using Bayes’ rule.
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Strategy of incumbent monopolist 

Strong monopolist always fights entry.
Weak monopolist always concedes to entry.

Strategy of entrant

Stay out if Ps > .

Enter if Ps < . 

Randomise if Ps = .

You may be wondering whether the monopolist can do anything about Ps.
After all, the higher Ps the less chance that the entrant will enter and therefore
both strong and weak incumbents have an incentive to raise Ps if initially Ps < 
. A strong monopolist will clearly want to reveal his true strength in some way
and a weak incumbent would like to convey a false impression of strength.
Both might be possible if the monopolist can send a signal by taking an action
that is cheaper for the strong monopolist and therefore less likely to be taken
by the weak monopolist. For example, the monopolist could launch a targeted
marketing or publicity campaign or make a special offer to its existing cus-
tomers. Either of these would be more costly for a weaker monopolist that had
a less secure and less well identified customer base. If the signal is not more
expensive for the weak monopolist then it won’t convey any information since
a weak monopolist would be just as likely to send it as a strong monopolist.
Think about the warranties offered by firms selling computers. Longer war-
ranties are a signal that the product they are selling is less likely to break down.
A signal like this is effective only because manufacturers of unreliable comput-
ers cannot afford to offer similar terms – too many customers would make
claims against them. 

In the entry deterrence game if the entrant sees a signal that she believes is
more likely to be sent by the strong monopolist then she learns something about
the monopolist. She should therefore incorporate the extra information implicit
in the signal in her decision-making process. We can model her decision using
probability theory, specifically Bayes’ rule, to update Ps. If the updating procedure
raises Ps enough, so that it is more than , entry will be deterred. 

Updating Ps

If a signal is sent then in a perfect Bayesian equilibrium the entrant’s beliefs
need to be updated using Bayes’ rule. According to Bayes’ rule the updated
value of Ps is the conditional probability that the monopolist is strong given
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7.3 Entry deterrence with signalling
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that the signal, which we can abbreviate to SIG, has been sent. Bayes’ rule says
that this conditional probability, which I am going to write as Prob(Ms|SIG),
equals the probability that the monopolist is strong and sends the signal
divided by the probability that the signal is sent. The probability that the
monopolist is strong is Ps and the probability that the strong monopolist sends
the signal is another conditional probability: the probability that the signal is
sent given that the monopolist is strong. I am going to write this conditional
probability as Prob(SIG|Ms). Therefore the probability the monopolist is strong
and sends the signal is Prob(SIG|Ms)Ps. The probability that the signal is sent is
the probability that the monopolist is strong and sends the signal plus the
probability that the monopolist is weak and sends the signal. The probability
that the monopolist is strong and sends the signal is Prob(SIG|Ms)Ps as before.
The probability that the monopolist is weak and sends the signal is equiva-
lently given by Prob(SIG|Mw)(1 – Ps) where Prob(SIG|Mw) is the conditional
probability that the weak monopolist sends the signal and (1 – Ps) is the proba-
bility that the monopolist is weak. Using this terminology Bayes’ rule9 says that
the updated value of Ps, Prob(Ms|SIG), is given by:

Prob(SIG|Ms)PsUpdated Ps = Prob(Ms|SIG) = –––––––––––––––––––––––––––––––––       (7.9)
Prob(SIG|Ms)Ps + Prob(SIG|Mw)(1 – Ps)

To keep things simple we shall assume that the signal is free for the strong
monopolist so that a strong monopolist will always send the signal. In this case
the probability that a strong monopolist sends the signal, the conditional prob-
ability that the signal is sent given that the monopolist is strong, Prob(SIG|Ms),
is equal to 1. This implies that the probability that the monopolist is strong and
sends the signal is just Ps. However, if the signal is costly for a weak monopolist
he may or may not send the signal. The conditional probability that a weak
monopolist sends the signal is Prob(SIG|Mw) which, for simplicity, we can abbre-
viate to ws. ws is likely to be less than 1 as sending the signal is costly for the
weak monopolist. With these assumptions the expression for the updated value
of Ps can be simplified to:10

updated Ps = (7.10)

Expression (7.10) looks a lot simpler than (7.9). It should be easier for you to
see in (7.10) that in order to raise Ps the weak monopolist needs to send the
signal with some probability greater than zero but less than one. To see this
think about what happens to Ps if the entrant sees the signal but ws = 0. In this
case the entrant knows the monopolist is strong and from (7.10) Ps = 1. If ws
= 1 then if the entrant sees the signal and updates Ps this leads to Ps = =
Ps so nothing is learned from the signal and Ps is unchanged. But if 0 < ws < 1
then the updating procedure raises Ps.

Ps––––––––––––
Ps + (1 – Ps)

Ps––––––––––––––
Ps + (1 – Ps)ws
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Allowing for the possibility of signals changes the perfect Bayesian equilibrium
of this game. If a strong incumbent monopolist always sends the signal and a
weak monopolist can also send the signal but at a cost the perfect Bayesian
equilibrium becomes:

Strategy of incumbent monopolist

Strong monopolist always sends the signal and always fights entry.

Weak monopolist sends the signal with some probability if initially Ps < ;
concedes if there is entry.

Strategy of entrant: 

Enters if doesn’t see the signal since Ps = 0.

If the entrant sees the signal Ps is updated using Bayes’ rule and the entrant:

● enters if the updated value of Ps < .

● stays out if the updated value of Ps > .

● randomises if the updated value of Ps = .

Whether the weak monopolist sends a signal or not will depend on the costs of
sending the signal relative to the expected gains from deterring entry. This is
easiest to see by looking at a numerical example.

Assume that the initial value of Ps is as in Exercise 7.2. This is less than so if
there is no signalling entry will definitely take place. If a signal of strength is
available at zero cost to the strong monopolist but at a positive cost to the
weak monopolist then the strong monopolist will send the signal. Bayes’ rule
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Numerical example of entry deterrence with signalling

Exercise 7.2

If the entrant observes the signal and the initial value of Ps = what will
the updated value of Ps be according to Bayes’ rule if ws = ? What will
the updated value of Ps be if ws = ?1––2

1––4

1––2

7.4 Numerical example of entry deterrence 
with signalling
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implies that the weak monopolist needs to randomise between sending the
signal or not in order to raise Ps. Specifically the weak monopolist needs to ran-
domise with just enough chance of not sending the signal so that the updated
Ps ≥ (you should have seen from working through Exercise 7.2 that the
higher ws the less Ps is raised by the signal). Thus there is a critical value of ws,
ws

*, such that when ws = ws* the updated value of Ps = . We can solve for ws
*

by substituting for Ps = into equation (7.10). Doing this leads to: 

updated Ps = –––––––– (7.11) 
+ ws 

The weak monopolist needs to set ws so that the updated value of Ps = .
Setting Ps = solves for ws*, the critical value of ws. Setting Ps = leads to:

updated Ps = ––––––––– = (7.12)
+ ws

(7.12) solves for ws
* = = 0.2.11 If ws = and the entrant observes the signal Ps

will be updated so that Ps = . In this case the entrant will be indifferent
between entering or not and will randomise between entry and staying out. If
ws > the updated value of Ps will be less than and the entrant will enter. If ws < 
the updated value of Ps will be greater than and the entrant will stay out but the
lower ws the less chance the signal will actually be sent and if it isn’t sent the
entrant will enter, so not sending the signal is costly for the weak monopolist. 

But sending the signal is also costly for the weak monopolist and it will be
optimal to incur signalling costs only if the resulting probability of entry is low
enough. In order to fully determine the perfect Bayesian equilibrium of the sig-
nalling version of the entry deterrence game we therefore need to be a little
more specific about the entrant’s strategy. 

The weak monopolist will send the signal only if the expected pay-off from
sending the signal, EPOsig, is high enough relative to the expected pay-off of
not sending the signal, EPOnsig. The weak monopolist’s expected pay-offs
depend on the probability of no entry, which I will call y. EPOnsig = 5 for the
weak monopolist because if there is no signal the entrant knows the incumbent
is weak and there will be entry. If there is entry the weak monopolist concedes
and receives a pay-off of 5 (see Figure 7.1). EPOsig depends on the weak monop-
olist’s signalling costs and the strategies of the entrant which are characterised
by the probability of no entry, y. 

The expected pay-off from signalling for the weak monopolist is at most 10
less the costs of signalling (that’s if there is no entry for sure when the signal is
sent). Hence if signalling costs are greater than 5 EPOsig < 5 and the weak
monopolist does better by not sending the signal and simply conceding. Let’s
assume that the weak monopolist’s signalling costs are 3. In this case the weak
monopolist’s pay-off will be 2 in the event of entry and 7 if there is no entry.
Accordingly EPOsig is given by:
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EPOsig = (1 – y)2 + y7 = 2 + 5y (7.13)

Equality between EPOsig and EPOnsig defines the critical value of y, y*, such that
if y = y* the weak monopolist is indifferent between sending the signal or not.
Setting these two expected pay-offs equal we obtain: 

EPOsig = 2 + 5y = 5 = EPOnsig (7.14)

(7.14) solves for y* = or 0.6. 
If you look back at (7.13) and (7.14) you will see that we solved for the critical

value of y, the probability that the entrant enters, by examining the strategies
and expected pay-offs of the weak monopolist . If you look back at (7.8) and
(7.12) you will see that we solved for the critical value of ws, the probability
that the weak monopolist sends the signal, in a similar way by examining the
beliefs and strategies of the entrant. This procedure is analogous to the one we
used in Chapter 6 to solve for the mixed strategy Nash equilibrium of the battle
of the sexes game. In Chapter 6 we solved for each players’ optimal mixed
strategy by setting the expected pay-offs of the other player from each pure
strategy equal. We have clearly done something very similar here and this is no
coincidence because the weak monopolist is following a mixed strategy;12 in
order to raise Ps the weak monopolist needs to randomise between sending and
not sending the signal so that 0 < ws < 1. If the weak monopolist is randomising
then intuitively (see Method 1 in Chapter 6) the weak monopolist must be
indifferent between sending and not sending the signal. If this were not true
the weak monopolist would choose whichever pure strategy was preferred.
Equation (7.14) implies that the weak monopolist will be indifferent between
sending and not sending the signal only if y = y* = . Thus 0 < ws < 1 can only
be an equilibrium strategy for the weak monopolist if y = y*. But if y = the
entrant is also following a mixed strategy which can only be a best response if
the entrant’s expected pay-off from entering is the same as her expected pay-off
from staying out. Equations (7.8), (7.10), (7.11) and (7.12) show that this will
be the case only if the updated value of Ps is exactly equal to which requires that
ws = ws* = . 

The argument in the preceding paragraph shows that if ws = ws
* and y = y*

the mixed strategies of the weak monopolist and the entrant are best responses
to each other. In other words, the critical values of ws and y determine the
equilibrium strategies of the entrant and the weak monopolist. Accordingly,
when the initial or prior value of Ps is and the costs of signalling for the weak
monopolist are 3, the perfect Bayesian equilibrium of the entry deterrence
game with signalling is defined as follows:

Strategy of monopolist

The strong monopolist always sends the signal and always fights entry.

The weak monopolist sends the signal with probability and concedes if
there is entry.
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Strategy of entrant

Enters if there is no signal.

If the signal is sent, enters with probability , stays out with probability . 

In the equilibrium of this asymmetric information entry deterrence game the
entrant may stay out if a signal is sent even though the initial value of Ps is less
than . For signalling to be effective it needs to be more costly for the weak
monopolist who randomises between sending and not sending the signal. In
the perfect Bayesian equilibrium of this game the probability that the weak
monopolist sends the signal, ws, is and if a signal is sent then the updated
value of Ps is and the entrant is indifferent between entering and staying out.
The entrant may still enter in these circumstances but there is a positive proba-
bility that she will stay out. If no signal is sent then the updated value of Ps will
be 0 and the entrant will enter for sure. Thus a weak monopolist can deter
entry without being strong if there is enough initial uncertainty about the
incumbent’s pay-offs. If not the monopolist may still be able to deter entry by
sending a signal that is more costly for a weak monopolist.

You may be wondering what sort of signal could be effective in the sense
outlined in this section. A number of alternatives such as a marketing cam-
paign or a highly visible investment programme are possible. But to signal
strength in terms of a commitment to fight entry the costs of the signal need to
be higher for a weak monopolist. An alternative possibility is that the monopo-
list might have fought entry on a previous occasion. However, this would make
the game a repeated game and the version of entry deterrence considered here
is not repeated. A repeated version of entry deterrence is analysed in Chapter 8
and in that model the possibility of fighting entry in a previous repetition of
the game in order to deter entry in later rounds is analysed.13

In the game considered in the next section one of the players chooses between
two alternative signals. Not sending a signal for this player is not an option as it
was for the weak monopolist in the entry deterrence game but the player does
have a preference for one of the signals and his preference depends on his type. 

In this game, based on the Cho and Kreps (1987) model, there
is both asymmetric information and signalling. There are two
players: a man and a bully. The bully is unsure about the dis-
position of the man who is either a wimp or tough and this
uncertainty is a concern for the bully as he is thinking about
whether or not to start a fight with the man. The bully only

really wants to fight the man if the latter is a wimp. But he doesn’t know the
man’s type and has to make his decision on the basis of a signal sent by the
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7.5 The beer and quiche signalling game
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man. The signal is that the man either eats quiche or drinks beer. The wimp
would rather eat quiche and the tough man prefers to drink beer. Both types of
men prefer not to get into a fight with the bully. The man and the bully make
their moves sequentially with the man moving first. 

We are going to look at a version of this game that has well defined pay-
offs.14 The probability, pt, that the man is tough is also common knowledge
and is equal to . In the perfect Bayesian equilibrium of this version of the beer
and quiche game if the wimp drinks beer the bully may be deterred from fight-
ing. Drinking beer is a costly strategy for the wimp (relative to eating quiche)
but less costly than fighting. 

The bully’s pay-off is 1 if he fights the wimp or defers to
the tough man and 0 otherwise. The wimp gains 1 by
eating quiche and receives a bonus of 2 if the bully defers
to him. The tough man also receives a bonus of 2 if the
bully defers and gains an extra 1 by drinking beer. Figure
7.2 illustrates the game if the man is tough for sure.
Figure 7.3 is the extensive form of the game if the man is
definitely a wimp. Figure 7.4 brings Figures 7.2 and 7.3

together and illustrates the beer and quiche game with incomplete information
for the bully about the man’s type. 

In the game in Figure 7.2 there is no asymmetry of information. The bully
knows that the man is tough and so the bully’s best response to either quiche or
beer is to defer (for a pay-off of 1 rather than a pay-off of 0). The optimal strategy
of the man is therefore to drink beer (for a pay-off of 3 instead of a pay-off of 2).
In the subgame perfect Nash equilibrium of this version of the beer and quiche
game the man will therefore drink beer and the bully will defer. 

In the quiche game in Figure 7.3 information is also complete; the bully
knows the man is a wimp. The bully’s best response to either quiche or beer is
to fight (for a pay-off of 1 rather than 0). The optimal strategy of the man is
therefore to eat quiche (a pay-off of 1 rather than a pay-off of 0). The wimp has
nothing to gain by drinking beer in order to look tough as the bully will fight
regardless. It follows that in the subgame perfect Nash equilibrium of this ver-
sion of the quiche game where the bully knows that the man is a wimp, the
man will eat quiche and the bully will fight.
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Figure 7.2 The man is tough for sure
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In the beer and quiche game illustrated in Figure 7.4 information is incomplete
and asymmetric. In this version of the game a chance move determines
whether the man is tough or a wimp. The man is tough with probability and
a wimp with probability . The man knows his own type but the bully does
not. The bully sees only the signal. The dotted lines between the bully’s deci-
sion nodes Bullyqt and Bullyqw and his decision nodes at Bullybt and Bullybw
indicate that he is unsure which of these nodes he is at: whether he faces a
wimp or the tough man when he sees the man eating quiche or drinking beer.
If he sees quiche he could be at either at Bullyqt or Bullyqw. Similarly if he sees
the man drinking beer he could be at either Bullybt or Bullybq. All the bully
knows is the initial or prior probability, pt, that the man is tough since it is
common knowledge that pt = . 

The obvious question to ask in relation to the beer and quiche game with
incomplete information is whether or in what circumstances there is an incen-
tive for the wimp to drink beer in order to convince the bully that he is tough.
The wimp doesn’t like beer but it may be worth sacrificing the quiche if this
deters the bully from fighting with a high enough probability. In game theor-
etic terms this amounts to asking whether there is a perfect Bayesian
equilibrium of the game in which the wimp drinks beer and avoids a fight.

One thing to note right away is that in the quiche game with asymmetric
information there is no perfect Bayesian equilibrium in which the bully
chooses a pure strategy response to both quiche and beer (either fight or defer).
Can you see why this is? To be part of a perfect Bayesian equilibrium a strategy
must prescribe moves that are subgame perfect, that is best responses in every
subgame, even those that are not actually reached in the suggested equilibrium.
Now, consider what happens if the bully always fights in response to quiche
but defers if he sees beer. In this case both types of men will choose beer (the
bonus pay-off to the man from avoiding a fight is 2 which is greater than the
benefit of 1 that he derives from sending his preferred signal). But if both types
of men choose beer it is not a best response for the bully to defer at beer
because the probability that the man is a wimp is higher than the probability
that he is tough.15 Therefore the strategy to fight in response to quiche and
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Figure 7.3 The man is a wimp for sure
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defer in response to beer cannot be part of a perfect Bayesian equilibrium.
What happens if the bully always fights regardless? Well then the wimp will eat
only quiche and the tough man will drink only beer in which case fighting is
not a best response to beer. You should be able to apply the same kind of rea-
soning to rule out the bully’s other two pure strategy choices: always defer
whatever signal is sent and fight at beer but defer at quiche. It follows that in
any perfect Bayesian equilibrium of this game the bully must be randomising at
either quiche or beer or both.

The perfect Bayesian equilibrium of the quiche game is defined as before in
terms of the strategies and beliefs of the players. In order to determine the equi-
librium beliefs and strategies of the players it is helpful to adopt some
simplifying terminology. Loosely following Binmore (1992) we can define the
strategies of the man as follows: 

● B is the probability that the tough man drinks beer.

● (1 – B) is the probability that the tough man eats quiche. 

● Q is the probability that the wimp eats quiche. 

● (1 – Q) is the probability that the wimp drinks beer. 

The beer and quiche signalling game

Figure 7.4 Quiche game with asymmetric information about the man
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For the bully:

● d is the probability that the bully defers at quiche. 

● (1 – d) is the probability that the bully fights at quiche. 

● D is the probability that the bully defers at beer. 

● (1 – D) is the probability that the billy fights at beer. 

As before the determination of the critical values of these probabilities will be
an important element in the derivation of the equilibrium of this game. The
critical values of D and d determine whether the man, whatever his type,
prefers quiche or beer and the critical values of B and Q (relative to each other)
determine whether the bully fights or not at beer and quiche. 

The bully will fight at quiche if the expected pay-off from fighting,
EPOqBfight, is greater than that of deferring, EPOqBdefer. If the conditional proba-
bility that the bully attaches to the man being tough given that he’s seen the
man eat quiche is ptq and the conditional probability that he attaches to the
man being a wimp in the same circumstances is pwq then:

● EPOqBdefer = ptq1 + pwq0 = ptq.

● EPOqBfight = pwq1 + ptq0 = pwq.

Thus the bully will defer at quiche if ptq > pwq and fight if the inequality is
reversed. The conditional probabilities ptq and pwq are calculated using Bayes’
rule. Bayes’ rule says that ptq is equal to the probability that the man is tough
and eats quiche divided by the probability that quiche is eaten (by either type
of man). The probability that the man is tough and eats quiche is calculated by
multiplying the probability that he is tough, , by the probability that the
tough man eats quiche, (1 – B). This product equals (1 – B). pwq is equal to the
probability that the man is a wimp and eats quiche divided by the probability
that quiche is eaten. The probability that the man is a wimp and eats quiche is
calculated by multiplying the probability that he is a wimp, , by the probability
that the wimp eats quiche, Q. This product equals Q. The probability that
quiche is eaten is the sum of (1 – B) and Q. Thus; 

(1 – B)
ptq = –––––––––––––– (7.15)

(1 – B) + Q

Q
pwq = –––––––––––––– (7.16)

(1 – B) + Q

The bully defers at quiche if ptq > pwq which from (7.15) and (7.16) requires
that (1 – B) > Q or 2Q < (1 – B). Thus the condition 2Q < (1 – B) determines2–
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the critical values of Q and B relative to each other such that if 2Q < (1 – B) the
bully defers at quiche. 

Similarly the bully will fight at quiche if pwq > ptq which requires that Q >
(1 – B) or 2Q > (1 – B). And the bully will be indifferent between fighting and

deferring and therefore randomise by assumption if 2Q = (1 – B). To summarise
the analysis implies that:

(a) The bully defers at quiche if: 2Q < (1 – B). 

(b) The bully fights at quiche if: 2Q > (1 – B). 

(c) The bully randomises at quiche if: 2Q = (1 – B).

The game is symmetric and so similar analysis at beer leads to the following
predictions: 

(d) The bully defers at beer if: B > 2(1 – Q).

(e) The bully fights at beer if: B < 2(1 – Q).

(f) The bully randomises at beer if: B = 2(1 – Q).

Thus B > 2(1–Q) defines the critical values of B and Q relative to each other. If
this condition is satisfied the bully will defer at beer. 

As argued above in any equilibrium the bully must be randomising at either
beer or quiche or both and this implies that either (c) 2Q = (1 – B) and/or
(f) B = 2(1 – Q) must hold. We can check each of these conditions in turn to see
whether either is feasible.

Beginning with (c) the condition that 2Q = (1 – B). This condition can be
rearranged to obtain B = 1 – 2Q or B = 2( – Q). 2( – Q) must be less than
2(1 – Q) and therefore condition (c) implies that B = 2( – Q) < 2(1 – Q). That is,
B < 2(1 – Q). But B < 2(1 – Q) is the condition for the bully to fight at beer
(condition (e)). This means that if condition (c) is satisfied so that the bully is
randomising at quiche then he must always fight at beer. In these circum-
stances the wimp has no incentive to drink beer and so will always eat quiche.
Thus Q, the probability that the wimp eats quiche equals 1. But if Q = 1 then
substituting for Q into condition (c) gives 2 = (1 – B) and this is impossible (a
probability cannot be greater than 1).16 This impossibility means that condition
(c) cannot hold and therefore the bully must be either fighting or deferring at
quiche and not randomising.

Turning now to (f) the condition that B = 2(1 – Q). This condition can be
rearranged to obtain 2Q = 2 – B. 2 – B is clearly greater than 1 – B and 2Q > 1 – B
is the condition for the bully to always fight at quiche. So if condition (f) is sat-
isfied so that the bully is randomising at beer, the bully must always fight at
quiche. In these circumstances the tough man has no incentive to eat quiche so
will always drink beer. Thus B = 1. Substituting for B = 1 into condition (f) leads
to 1 = 2(1 – Q) which solves for Q = . This is certainly feasible. Q = indicates1–

2
1–
2

1–
2

1–
2

1–
2

1–
3

2–
3

The beer and quiche signalling game



184

that the wimp is randomising between beer and quiche which is not unreasonable
if the bully is randomising at beer but fighting at quiche. However, the wimp’s
mixed strategy needs to be more than reasonable to be part of an equilibrium:
it also needs to be a best response to that of the bully. 

To discover the conditions in which this will be the case we need to find the
critical value of D, the probability that the bully defers at beer, such that the
wimp is just indifferent between beer and quiche. The wimp will be indifferent
between beer and quiche if his expected pay-off from quiche, EPOq, and his
expected pay-off from drinking beer, EPOb, are equal. If the bully is fighting at
quiche then EPOq = 1. EPOb depends on the randomisation strategy of the bully: 

● EPOb = 0(1 – D) + 2D.

Setting 0(1 – D) + 2D equal to 1, the wimp’s pay-off from eating quiche, solves
for D = . 

D = is therefore the critical value of D such that if D = the wimp is indifferent
between drinking beer and eating quiche and randomises between them. If Q also
equals then as we have seen the bully will randomise between fighting and
deferring at beer but will fight at quiche (d = 0). Thus Q = and D = , d = 0 are
best responses to each other and B = 1 (the tough man always drinks beer) is
also a best response to D = and d = 0. These values for Q, D, d and B define
the perfect Bayesian equilibrium of this game as follows: 

The man’s strategy

The tough man drinks beer for sure.

The wimp eats quiche with probability and drinks beer with probability .

The bully’s strategy 

If the man eats quiche; fights for sure.

If the man drinks beer; fights with probability  and defers with probability .

In this equilibrium17 the wimp can avoid a fight by drinking beer. If he eats
quiche the bully always picks a fight but if the wimp drinks beer he has a 50:50
chance of not getting into a fight. Drinking beer means that the wimp sends a
costly signal to the bully that he is tough. Because a tough man would always
drink beer the bully cannot be sure if the man he sees drinking beer is tough or
a wimp and he therefore randomises between fighting and deferring. If the
wimp is lucky he avoids a fight but the price is having to drink the beer. In
more general terms this analysis confirms that incomplete and asymmetric
information can completely change the outcome of a game. If a player can
send a costly signal some (more costly) action by the other player may be
deterred. In the beer and quiche game the wimp has an incentive to drink beer
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in order to deter the bully from fighting. On the other hand the wimp drinking
beer gives the bully a reason to fight at beer which is not such a good result
from the perspective of the tough type of man. 

In this section we examine a situation in which neither player is sure about the
pay-offs of the other in a battle of the sexes game.18 The two players are Jess (a
guy) and Rosy (a girl). Jess has a preference for the pub while Rosy has a prefer-
ence for the party. The pay-off matrix for this battle of the sexes game with no
asymmetry of information is shown in Matrix 7.3.1.

In the game in Matrix 7.3.1 there are two Nash equilibria in pure strategies:
{pub, pub} and {party, party}. There is also a Nash equilibrium in mixed strate-
gies: {(Jess: pub; , party; ), (Rosy: pub; , party; )}. Matrix 7.3.2 illustrates a
version of this game in which there is incomplete information for both players
about each other’s pay-offs. In the game in Matrix 7.3.2 both players have an
extra incentive to choose their preferred venue but neither knows how great
the other’s incentive is.19 

Matrix 7.3.1 Battle of the sexes with complete information

Rosy

Jess

Matrix 7.3.2 Battle of the sexes with asymmetric information

Rosy

Jess

In Matrix 7.3.2 if Jess goes to the pub with Rosy he gets a bonus of bj. He doesn’t
get this bonus if he goes to the pub alone. bj gives Jess an extra incentive to
choose pub. The asymmetric information arises because only Jess knows bj. If
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7.6 Asymmetric information for both players in the 
battle of the sexes

pub party

pub 3, 2 1, 1

party 0, 0 2, 3

pub party

pub 3 + bj, 2 1, 1

party 0, 0 2, 3 + br
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Rosy goes to the party with Jess she also gets a bonus. Her bonus is br but she
gets it only if Jess also goes to the party. br represents an extra incentive for her
to choose party. Only Rosy knows br. 

However, both players know that bj and br are independent (or unrelated)
random values drawn from a uniform distribution between 0 and 1. This
means that the probability that br (or bj) takes one particular value between 0
and 1 is the same as the probability that it takes any other value between 0 and
1 (the probability that br = 0.1 is the same as the probability that br = 0.2 or
br = 0.25).20 As there are an infinite number of possible values that br and bj
can take between 0 and 1, it follows that the probability that br or bj takes
some particular value between 0 and 1 is infinitesimally small and therefore we
can really only determine cumulative21 probabilities. An example of a cumula-
tive probability is the probability that br is less than or equal to 0.2 (Probbr ≤
0.2) from which the probability that br is greater than 0.2 (Probbr > 0.2) can be
determined as 1 – Probbr ≤ 0.2. 

In the Bayesian equilibrium of this simultaneous-move game the strategies
of the player will depend on bj and br as follows:

Jess’s strategy

pub if bj > j*.

party if bj ≤j*.

Where j* is the critical value of bj such that if bj > j* Jess’s expected pay-off
from going to the pub (EPOJpub) is greater than his pay-off from going to the
party (EPOJpty). 

Rosy’s strategy

party if br > r*.

pub if br ≤ r*.

Where r* is the critical value of br such that if br > r* Rosy’s expected pay-off
from going to the party (EPORpty) is greater than her expected pay-off from
going to the pub (EPORpub).

In order to define the Bayesian equilibrium of this game the beliefs of the
players and the critical values of j* and r* need to be determined. 

Given Jess’ strategy as outlined above Rosy predicts that the probability that
Jess goes to the pub is equal to the probability that bj > j* and the probability
that he goes to the party is equal to the probability that bj ≤ j*. Because bj is a
draw from a uniform distribution between 0 and 1 the probability that bj ≤ j* is
equal to j* and the probability that bj > j* is 1 – j*. Therefore, Rosy predicts that
the probability that Jess goes to the pub is given by 1 – j* and the probability
that he goes to the party is j*.22

Mystery players
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Jess’s predictions about Rosy are defined in an equivalent way. He will pre-
dict that the probability that she goes to the pub is r* and the probability that
she goes to the party is 1 – r*. 

With these probabilities it is possible to determine the expected pay-offs of
the players as follows. Jess’s expected pay-off from going to the pub is: 

● EPOJpub = r*(3 + bj) + (1 – r*)1 = r*(2 + bj) + 1 

where r*(3 + bj) is the probability that Rosie goes to the pub, r*, multiplied by
Jess’s pay-off if he also goes to the pub. (1 – r*)1 is the probability that Rosy
goes to the party, (1 – r*), multiplied by Jess’s pay-off if he goes to the pub and
she goes to the party. Jess’s expected pay-off from going to the party is:

● EPOJpty = r*(0) + (1 – r*)2 = 2 – 2r*

These pay-offs imply that going to the pub is an optimal strategy for Jess if r*

(2 + bj) + 1 > 2 – 2r* or:

bj > 1/r* – 4 = j* (7.17)

j* = 1/r* – 4 since j* is the critical value of bj such that if bj > j* Jess’s expected
pay-off from going to the pub is greater than his expected pay-off from going
to the party. 

Rosy’s expected pay-off if she goes to the pub is:

● EPORpub = (1 – j*)2 + j*(0 ) = 2 – 2j*

If she goes to the party her expected pay-off is:

● EPORpty = (1 – j*)1 + j*(3 + br) = j*(2 + br) + 1 

Going to the party is optimal for her if j*(2 + br) + 1 > 2 – 2j* or:

br > 1/j* – 4 = r* (7.18)

where r* is the critical value of br such that if br > r* she prefers to go to the
party. Equations (7.17) and (7.18) imply that j* = 1/r* – 4 and r* = 1/ j* – 4 which
is only possible if j* = r*. Substituting for r* = j* in (7.18) and multiplying
through by j* leads to: 

(j*)2 + 4j* – 1 = 0 (7.19)

(7.19) solves for:23

Asymmetric information for both players in the battle of the sexes
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– 4 + 16 + 4     – 4 + 20
j* = r* = –––––––––––––––– = ––––––––––––– (7.20)

2 2

This is approximately equal to 0.2361 (or ≈ 0.2361). To fully define the
Bayesian equilibrium all we need to do now is substitute for j* and r* into the
strategies and beliefs of the players: 

Jess’s strategy

Choose pub if bj > j* ≈ 0.2361.

Choose party if bj ≤ j* ≈ 0.2361.

Rosy’s strategy

Choose party if br > r* ≈ 0.2361.

Choose pub if br ≤ r* ≈ 0.2361.

These strategies are optimal given the following beliefs for Jess and Rosy: 

– 4 + 20
Probability that Jess goes to the pub = 1 – j* = 1– ––––––––––––– ≈ 0.7639.

2

– 4 + 20
Probability that Rosy goes to the pub = r* = ––––––––––––– ≈ 0.2361.

2

An interesting implication of this analysis is that as the upper limit of the uni-
form distribution from which bj and br are drawn approaches zero the
informational incompleteness disappears and j* and r* approach 0.25, i.e. .24

As noted at the beginning of this section the mixed strategy Nash equilibrium
of the game with no informational asymmetry is that Jess goes to the party and
Rosy goes to the pub with probability . Thus as the information becomes more
symmetric the Bayesian equilibrium of this game approaches the mixed strat-
egy Nash equilibrium of the original game with complete information. This is a
general result originally attributed to Harsanyi (1973). It suggests that the
mixed strategy Nash equilibrium of a simultaneous-move game with complete
information can be interpreted as the Bayesian Nash equilibrium of a related
game with a little amount of incomplete information. As Gibbons (1997: 140)
puts it ‘the crucial feature of a mixed strategy Nash equilibrium is not that
player j chooses a strategy randomly, but rather that player i is uncertain about
player j’s choice; this uncertainty can arise either because of randomisation or
(more plausibly) because of a little incomplete information’. Thus the Bayesian
Nash equilibrium concept provides some rationale for the idea of a mixed strat-
egy equilibrium in simultaneous-move games. 
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In this chapter four games with asymmetric information about one or both
players’ pay-offs were analysed. In each case a Bayesian equilibrium was
derived. In each of these equilibria the actions of the players were optimal or
best responses given their expectations about the other player. Their expecta-
tions were shown to depend on their beliefs and their beliefs were constructed
from their knowledge about the other player’s type. 

In the two dynamic games analysed there was also scope for signalling as
beliefs can be updated using Bayes’ rule if moves are observed. Signals are
actions players take to convey information about their type. They represent an
attempt by one player to communicate with another. Allowing for the possibil-
ity of signals adds an extra element of realism to games with asymmetric
information. In Section 7.3 the possibility of the monopolist signalling his type
in the entry deterrence game was considered and in Section 7.4 the circum-
stances in which this might be an optimal strategy for a weak monopolist were
analysed using a numerical example. Signals are explicit in the beer and quiche
game examined in Section 7.5 where the possibility of a player choosing a
costly signal in order to deter some action by the other player was examined.25

For signals to be effective in this way they need to be more affordable for one
type of player (so that they convey information) but not prohibitively expen-
sive for the other type. 

In Section 7.6 a static battle of the sexes game with asymmetric information
about both players was analysed. You saw that as the information became more
symmetric in this game, the Bayesian equilibrium approached the mixed strat-
egy Nash equilibrium of the original game with complete information. This
suggests that a mixed strategy Nash equilibrium can be interpreted as an equi-
librium of a game in which the players are uncertain about the actual choices
of their rivals. This uncertainty gives rise to beliefs that correspond to the play-
ers’ equilibrium mixed strategies. 

All of the games analysed in this chapter were two-player games. However,
many strategic situations characterised by incomplete information involve
more than two players. For example, auctions can be analysed as games of
incomplete information in which a single seller is incompletely informed about
the valuations of more than one interested buyer.26 Other trading and contract-
ing transactions are similarly characterised by incomplete information of one
kind or another, but not all such transactions are easily characterised as games. 

Summary

Summary
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7.1
In the friends and enemies game represented in Matrices 7.2.1 and 7.2.2 (repro-
duced below) party is a dominant strategy for the party-loving Mr Column and
hotel is a dominant strategy for the Mr Column who is not a party-lover. Ms
Row doesn’t know whether Mr Column is a party lover or not. She should
choose hotel if her expected pay-off from choosing hotel, EPOhotel, is greater
than her expected pay-off from choosing party EPOparty, and she should ran-
domise or choose party otherwise. Whether EPOhotel > EPOparty depends on p. 

Let p* be the critical value of p such that if p > p* EPOhotel > EPOparty. A strategy
for Ms Row that is consistent with her beliefs is choose hotel if p > p* and
choose party if p < p*. To determine p*, set Ms Row’s expected pay-offs from
hotel and party to be equal. In this game her expected pay-offs are EPOhotel =
p(4) + (1 – p)2 = 2 + 2p and EPOparty = p(0) + (1 – p)3 = 3 – 3p. EPOhotel =
EPOparty if 5p = 1 or p = . Thus p*, the critical value of p, equals . If p > Ms
Row’s expected pay-off is higher if she chooses hotel and if p < her expected
pay-off is higher if she chooses party. Thus p* = defines Ms Row’s strategy.

Matrix 7.2.1 Mr Column is a party-lover

Mr Column

Ms Row

Matrix 7.2.2 Mr Column is not a party-lover

Mr Column

Ms Row

The Bayesian equilibrium of this asymmetric information version of friends or
enemies is given by: 
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party hotel

party 0, 3 3, 0

hotel 4, 2 2, 1

party hotel

party 0, 1 3, 2

hotel 4, 0 2, 3
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Strategy of Mr Column

Party lover always chooses party.

Non-party lover always chooses hotel.

Strategy of Ms Row

If p > chooses hotel.

If p < chooses party.

If p = randomises between hotel and party.

In the first example of this game represented in Matrices 7.1.1 and 7.1.2, Ms
Row’s worst possible outcome was that both players went to the hotel and her
perferred outcome was that she went to the party and Mr Column went to the
hotel. In the version of the game in this exercise, Ms Row’s worst possible out-
come is that both players go to the party and her preferred outcome is that she
goes to the hotel and he goes to the party. Ms Row therefore has more incen-
tive to go to the hotel and in this Bayesian equilibrium she is more likely to
choose the hotel. She will only choose the party when the probability that Mr
Column chooses party, p, is relatively small (less than ) and the probability
that he chooses hotel is correspondingly high. 

7.2
Substituting for Ps = and ws = into equation (7.10) gives: updated Ps = Ps/[Ps
+ (1 – Ps) ws] = /[ + . ] = or 0.8. 

If ws = then the updated value of Ps is /[ + . ] = or 0.666. Note that the
higher ws the less Ps is raised. The higher ws the less the entrant learns from
seeing the signal and the less extra credence she attaches to the possibility that
the monopolist is strong. If ws = 1 nothing is learned and Ps is not raised by the
signal. But not sending the signal is risky for the entrant as if no signal is sent
the entrant will know the monopolist is weak and enter for sure. On the other
hand sending the signal is costly as well. These considerations should all enter
into the weak monopolist’s decision-making process. 

1 In the game described in Figure 7.5 what is the critical value of Ps, the
probability that the monopolist is strong, such that the entrant is indifferent
between entry and staying out?

Note that in the entry deterrence game illustrated in Figure 7.5 the pay-
offs of the entrant and the monopolist are generalised pay-offs. Using pay-offs
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like these means that the results of the analysis can be generalised to other
games in which the relative pay-offs of the players satisfy the conditions that
0 < e < 1, and m > 1. The actual values of the pay-offs can vary. For example,
m = 4, m = 5 or m = 5000 all satisfy the condition that m > 1 and e = and   e
= both satisfy the condition that 0 < e < 1. This is a useful feature and you
will be seeing this version of the entry deterrence game again in Chapter 8.27

2 In the game represented in pay-off Matrix 7.4 a and b are randomly drawn
from a distribution over the interval (0, 1). Only Apex knows the value of a
and only Bortex knows the value of b. Can you characterise the Bayesian
equilibrium of this simultaneous-move game in terms of the critical values
of a and b? If a = b = 0 so that there is no asymmetric information what is
the mixed strategy Nash equilibrium of this game?

Matrix 7.4 Asymmetric information for Apex and Bortex

Bortex

Apex 

1–
2

5–
6

Mystery players

Figure 7.5 Extensive form of entry deterrence with incomplete information and generalised
pay-offs: 0 < e < 1, m > 1
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1 How does incomplete information about players’ pay-offs change the
theoretical prediction of the outcome of games like entry deterrence?

2 What is the role of signalling in games with incomplete information? 

3 Under what kinds of circumstances is signalling likely to be effective from
the perspective of the signaller? Under what kinds of circumstance might
signalling be ineffective or even lead to undesired results?

1 Other than the generalisation of the pay-offs, the essential features of the
game in Figure 7.5 are the same as those of the entry deterrence game
represented in Figure 7.1. As e is greater than 0 but less than 1 the pay-off to
the entrant from staying out, 0, is less than the pay-off from entry followed
by concession, e, and higher than the pay-off from entry followed by fight,
(e – 1), which is less than 0. Accordingly, the entrant’s preferred outcome is
entry followed by concession and her least preferred outcome is entry
followed by a fight.28

For the monopolist as m is greater than 1, no entry is still preferred to
entry and, if there is entry, concession is still a best response for the weak
monopolist but fighting is a best response for the strong monopolist.29 Thus
in the one-shot version of this game with complete information if there was
entry the weak monopolist would concede (0 > –1) and the strong
chain-store would fight. Since (e – 1) < 0 the entrant will only enter if the
monopolist is weak.

If there is asymmetric information about the monopolist’s pay-offs the
entrant will be indifferent between entering and staying out if the expected
pay-offs of the entrant from entering, EPOE, and staying out, EPOSO, are
equal. As EPOSO = 0, Ps

* is defined by the condition that: 

EPOE = (1 – Ps)e + Ps (e – 1) = EPOSO = 0 (i)

Multiplying through leads to e – ePs + ePs = Ps. This solves for Ps
* = e. 

Note that as before Ps
* is equal to the entrant’s pay-off from entry

followed by concession, e, divided by e less the pay-off from entry followed
by a fight, e – 1, that is e/(e – (e – 1)) = e.

Answers to problems

Questions for discussion

Answers to problems
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2 Let a* be the critical value of a such that if a > a* the expected pay-off for
Apex of raise, EPOAr, is greater than that of lower, EPOAl. Then Bortex will
expect Apex to choose lower with probability a* and raise with probability
1–a*.

Let b* be the critical value of b such that if B > b* the expected pay-off
for Bortex of raise, EPOBr, is greater than that of lower, EPOBl. Then Apex
will expect Bortex to choose lower with probability b* and raise with
probability 1 – b*.

With these expectations Apex’s expected pay-offs are EPOAr = a and
EPOAl = (1 – b*)(1) + b*(–1) = 1 – 2b*. Therefore Apex will choose raise when:

a > 1 – 2b* = a* (i)

For Bortex, EPOBr = b and EPOBl = (1 – a*)(– 1) + a*3 = 4a*–1. Therefore
Bortex chooses raise if:

b > 4a* –1 = b* (ii)

Solving (i) and (ii) simultaneously for a* and b* leads to a* = and b* = . The
Bayesian equilibrium follows. 

If a = b = 0 there is no asymmetric information for the players. There is
no Nash equilibrium in pure strategies but there is a mixed strategy Nash
equilibrium: {(Apex: raise; , lower; )(Bortex: raise; , lower; )}.

This game is a simplified version of a game analysed in Myerson (1991:
130). In the original game the asymmetric information is modelled by
multiplying the pay-offs a and b by the same small number. As this number
tends to zero the Bayesian equilibrium converges to the mixed strategy Nash
equilibrium of the game with complete information for the players. This is a
further illustration of the connection between the idea of a Bayesian
equilibrium and a mixed strategy Nash equilibrium (see the last part of
Section 7.6). 

1 The literature on signalling is large and originates with Spence (1973, 1974). See Rasmusen (2001:
Chapter 11) or  a microeconomics text such as Katz and Rosen (1998: Chapter 17)  for a more
detailed discussion of signalling and asymmetric information. 

2 Some of the analysis in this chapter is quite technical. If you feel at all daunted by any of this
material, you might be pleased to know that the first half of the next chapter on repeated games is
technically less demanding and you will be able to understand most of it without reading any of
this chapter. However, if you want to understand Sections 8.3 and 8.4 of Chapter 8 which looks at
repeated games with asymmetric  information it will help to work though at least Sections 7.1 and
7.2 of this chapter. 
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3 Gibbons (1997: 141) defines a strategy for player i in a Bayesian game as an action rule that
specifies a feasible action for each of player i’s types. Gibbons says that given this definition of a
strategy in a static Bayesian game, the appropriate definition of an equilibrium, i.e. a Bayesian
Nash equilibrium, is just the familiar Nash concept. 

4 See Fudenberg and Tirole (1991: 209–11).

5 You could imagine that in the business world in which the monopolist and the potential entrant
are operating a known proportion of monopolists, corresponding to Ps, are strong.

6 The costs of the commitment, c, and the net benefit, d, satisfy the conditions derived in Section
4.4.1 that 5 > c > 6 – d as c = 2 and d = 5 and 5 > 2 > 6 – 5 = 1.

7 In a perfect Bayesian equilibrium the players not only hold ‘reasonable’ beliefs but also choose
credible (subgame perfect) strategies (see Gibbons 1997: 142). For a more precise definition of a
perfect Bayesian Nash equilibrium see Gibbons (1997: 144) or Montet and Serra (2003: 150).

8 Note that because EPOSO = 0,  expression (7.7) implies that Ps
* is determined by the entrant’s pay-

off from entry followed by concession, 5,  divided by the entrant’s pay-offs from entry followed by
concession, 5,  minus the pay-off from entry followed by a fight, –1. That is, = .  

9 Or, using  less mathematical shorthand and consequently more words, Bayes’ rule says that the
updated value of Ps, Prob(Ms|SIG) is given by the probability that the monopolist is strong and
sends the signal divided by the probability that the signal is sent.  The probability that the
monopolist is strong and sends the signal can be written as Prob (strong monop sends signal).Prob

(monop is strong). The probability that the signal is sent is  the probability that the monopolist is
strong and sends the signal plus the probability that the monopolist is weak and sends the signal.
This can be written as Prob(strong monop sends signal).Prob(monop is strong) + Prob(weak monop
sends signal).Prob(monop is weak). Using this terminology the updated value of Ps is given by:

Prob(strong monop sends signal).Prob(monop is strong)
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Prob(strong monop sends signal). Prob(monop is strong) + Prob(weak monop sends signal).Prob(monop is weak)

If the strong monopolist always sends the signal so that Prob(strong monopolist sends signal) = 1
then Prob(strong monopolist sends signal).Prob(strong) = Prob(strong) = Ps and the expression
simplifies to the one in (7.10).

10 If Bayes’ rule still looks complicated to you then you may not be surprised to learn that in
experiments designed to study Bayesian judgment subjects appear to make systematic departures
from Bayes’ rule (see Camerer, 1995: 596–8).

11 (7.12) implies = / [ + ws] or ws = implying ws = .

12 Commonly called a behavioural strategy in a Bayesian game.

13 If the game analysed here had been played just once before, it would not have been in the weak
monopolist’s interest to fight entry the first time round. Fighting would have given the weak
monopolist a pay-off of –1. If followed by no entry this would give the monopolist a total pay-off
of 9.  Two rounds of concession on the other hand give the weak incumbent a pay-off of 10. Thus
fighting with certainty in the first round of a twice repeated entry deterrence game in which the
weak monopolist’s pay-offs are the same as those in Figure 7.1 cannot be an equilibrium strategy
for the weak monopolist: it would be too costly. However, if the game is repeated more than twice
this could change. This possibility is examined in Chapter 8. 

14 For a generalised version which allows for more interesting cases see Gibbons (1997: 144–7) or
Montet and Serra (2003: 183–4).

15 If both the tough man and the wimp choose beer then the bully’s expected pay-off from deferring
at beer is (1) + (0) = and his expected pay-off from fighting is (0) + (1) = which is clearly
greater than that from deferring. 

16 The bully will be indifferent at quiche only if the probability that the tough man eats quiche is
twice as high as the probability that the wimp eats quiche but this is impossible if  the wimp
definitely eats quiche, Q = 1.
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17 In this equilibrium all the decision-nodes in the game are reached. There is therefore no need to
think about beliefs off the equilibrium path (out off equilibrium beliefs). In other versions of the
game in which the probability the man is a wimp is lower this may not be the case. If some
decision-nodes are not reached incredible plans off the equilibrium path need to be ruled out in
order to define an equilibrium. Cho and Kreps (1987) do this by evoking their ‘intuitive criterion’
(see Montet and Serra, 2003: 179). The intuitive criterion rules out actions off the equilibrium path
that do not benefit informed players.

18 Because there is asymmetric information for both players in this game the analysis that follows is a
little more complicated than that of the previous sections and you may want to work though this
section only if you are reasonably confident about  probability theory and solving simultaneous
equations. Otherwise you might prefer to skip it. If you do skip it you will also want to skip Problem 2
at the end of the chapter. Nothing else in this book follows from the analysis in this section.

19 This way of modelling the uncertainty for the players follows Gibbons (1997: 138–40).

20 For a more formal definition of a uniform distribution see Rasmusen (2001: 400–1). See Greene
(1993: Chapter 3) for a detailed discussion of probability and distribution theory. 

21 Or probabilities within intervals between 0 and 1. 

22 For example, if j* = 0.5 then the probability that bj ≤ 0.5 is 0.5; in a uniform distribution between 0
and 1 every value has an equal probability and therefore exactly half the possible values of bj must
be less than or equal to 0.5 and the other half must be greater than 0.5. Similarly if j* = 0.25 then
exactly a quarter of the values  of bj will be less or equal to j* and three-quarters will be greater
than j*. More generally if bj and br are draws from a uniform distribution between 0 and x (where
x > 0 but could be greater than, equal to or less than 1) then the probability that bj < j* equals j*/x
and the corresponding probability that bj > j* equals 1 – j*/x.

– b ± b2 – 4ac23 Using the standard formula that j* =  ––––––––––––––––– where a = 1, b = 4 and c = –1 and noting that
2a

– 4 – 16+ 4–––––––––––––––– is negative. 
2 

24 This can be seen by substituting x for the value 1 as the upper limit of the distribution (see Note 22).
– 4 +    16 + 4x

The quadratic in (7.19) then becomes  (j*)2 + 4j* – x = 0 and j* = r* = –––––––––––––––– . The
2 

– 4 +    16 + 4x
probability that Jess goes to the party (Rosy goes to the pub) is  j*/x and this equals ––––––––––––––––.

2x
Substituting for smaller and smaller values of x in this expression generates values that tend closer
and closer to 0.25. 

25 However, a signal won’t always have the desired result or even the expected result if  a player for
whom it is not meant receives it (see Carmichael, 2002 for a version of the beer and quiche game
that incorporates this possibility).

26 See, for example, Gibbons (1992: 155–68), Binmore (1992: 526–36) or  Montet and Serra (2003:
151–5).

27 The game in Figure 7.1 can also be analysed using these generalised pay-offs. See Notes 28 and 29 below.

28 The entrant’s pay-offs in Figure 7.1 can be represented in terms of the generalised pay-offs in Figure 7.5
by dividing through each of the entrant’s pay-offs by 6 (the pay-off from entry followed by concession
plus one). This leaves the entrant’s pay-off from staying out as 0 but her pay-off from entry followed by
concession is 5/6 and her pay-off from entry followed by fight as –1/6, i.e. e = 5/6 and e – 1 = –1/6.

29 The strong monopolist’s pay-offs in Figure 7.1 can be represented in terms of the generalised pay-offs
in Figure 7.5 by subtracting 4 from each of his pay-offs. This generates a value of 4 for m. The weak
monopolist’s pay-offs can be generalised by letting his pay-off from no entry be the same as that for
the strong monopolist (8) and obtaining the pay-offs from fighting and conceding by swapping
round the strong monopolist’s pay-offs.

Mystery players
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PLAYING AGAIN AND AGAIN . . .

Concepts and techniques

● Finite, infinite and indefinite repetition

● Discounting

● Meta-strategies

● Trigger strategies

● Reputation.

After working through this chapter you will be able to:

● Analyse repeated games

● Find the subgame perfect Nash equilibrium of finitely repeated games

● Explain the paradox of backward induction in the context of a repeated
prisoners’ dilemma 

● Explain the meaning of the chain store paradox

● Show how the paradox of backward induction can be resolved if there is
uncertainty about when a repeated game ends

● Explain how uncertainty about players’ pay-offs or their rationality can
resolve the paradox of backward induction in the finitely repeated
prisoners’ dilemma and entry deterrence games.



Repeated games are games in which a one-shot or single-stage game is played a
number of times. In repeated games the same players interact more than once.
This means that there is likely to be scope for players not only to learn but also,
potentially, to mislead. These kinds of considerations make the analysis of
repeated games interesting and bring game theory closer to the complexities of
real life where people quite often interact repeatedly. A closer approximation to
reality necessarily adds a level of complication to the analysis, but most of the
analytical tools used in this chapter, such as backward induction, expected pay-
offs and Bayes’ rule, you have seen before. In addition the games examined in
this chapter are all repeated versions of one-shot games that we have analysed
in detail elsewhere. The idea of repetition was briefly mentioned in Chapter 6
when we were looking at mixed strategies and again at the end of Section 7.4
in Chapter 7. Here we examine repeated games explicitly and in some of the
games we are going to look at, one or more of the players either randomises or
sends a signal or both.

In repeated games, players’ plans for the game need to specify their moves
in every repetition or stage of the game. Strategies that prescribe a set of moves
in this way are called intertemporal or meta-strategies. As in a one-shot game a
player’s choice of strategy needs to take into account all the possible moves of
the other players in the game and for a meta-strategy to be an equilibrium
strategy it needs to be a best response to the equilibrium meta-strategies of the
other players in the game. Meta-strategies need to specify responses to all the
possible moves of the other players and can be used to enforce particular kinds
of behaviour by incorporating punishments or rewards. 

Repeated games may be played a finite number of times or played over an
infinite or indefinite time horizon. If a game is repeated a finite number of
times then this means that the number of times the players play the game is
fixed and there is an end game. If there is an end game then we can use back-
ward induction to make a prediction about the likely outcome of the game. If a
game is repeated an infinite number of times then the players believe that
there will never be an end game. If a game is repeated indefinitely then the
players know that the game is finite but do not know exactly when it will end
and therefore always believe that there is some probability that there will be
another repetition or round of the game. If future pay-offs are discounted1 in
infinitely repeated games then infinite and indefinite repetition are analytically
equivalent. But the analysis of finitely repeated games is very different from
that of infinitely or indefinitely repeated games because, starting from the last
play of the game, we can use backward induction to unravel the subgame per-
fect Nash equilibrium of the game. In infinitely or indefinitely repeated games
this is not an option as there is no clearly identifiable end game. 

198 Playing again and again . . .
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In this chapter we are going to look at only two games: the repeated prison-
ers’ dilemma and a repeated entry deterrence game. These two games are
interesting to compare as the single-stage prisoners’ dilemma is a simultaneous-
move game and the single-stage entry deterrence game is a game with
sequential moves. Initially we will consider finitely repeated versions of both
these games. This analysis leads to a paradox of backward induction which is
called the chain store paradox in entry deterrence games. This paradox can be
resolved theoretically if there is some uncertainty in the game. The uncertainty
may be with respect to the number of repetitions of the game or in relation to
at least one of the players’ pay-offs or, equivalently, their state of mind. In
Sections 8.2 to 8.4 you will see how the finitely repeated prisoners’ dilemma
and the entry deterrence game can be developed in order to allow for both
these kinds of uncertainty. Repeated games and repeated prisoners’ dilemmas
in particular have been the subject of a considerable amount of experimental
work. The main results of this work are outlined in Section 8.5.

For a player’s strategy to be an equilibrium strategy in a repeated game it needs
to be a best response to the other player’s move in every repetition of the game.
As each repetition is effectively a subgame of the whole game the appropriate
equilibrium concept is that of a subgame perfect Nash equilibrium. In finitely
repeated games there is a unique endgame and therefore we can use backward
induction to find the subgame perfect Nash equilibrium of these kinds of
games. In this section you will see how to use backward induction to find the
subgame perfect Nash equilibrium of a finitely repeated prisoners’ dilemma
and a finitely repeated version of the entry deterrence game first seen in
Chapter 4. As you saw in Chapter 3, the one-shot prisoners’ dilemma has a
unique Nash equilibrium, {defect, defect}. In Chapter 4 you saw that that the
entry deterrence game analysed in Section 4.4 has a unique subgame perfect
Nash equilibrium, {enter, (concede, do nothing)}. In the finitely repeated ver-
sions of these games backward induction leads us to the prediction that {defect,
defect} will be the outcome in every repetition of the prisoners’ dilemma and
in every repetition of the entry deterrence game the entrant will enter and the
monopolist will concede. This is a general result. It implies that if there is a
unique (subgame perfect) Nash equilibrium in a one-shot game this equilib-
rium will be played out in every stage of the repeated game. Since this result
can contradict intuitive predictions about the likely outcome of the game, it is
referred to as a paradox of backward induction or, more specifically in relation
to the entry deterrence game, the chain store paradox (Selten, 1978).

Finite repetition

8.1 Finite repetition
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8.1.1 The finitely repeated prisoners’ dilemma

Consider the prisoners’ dilemma in Matrix 8.1. In the one-
shot version of this game cooperation is not a Nash
equilibrium strategy since it is not a best response to either of
the other player’s strategies. Instead defect is a dominant
strategy and the theoretical prediction is {defect, defect}. To
solve the finitely repeated version of this prisoners’ dilemma

we can use backward induction to predict what the players will do in the last stage,
the last repetition of the game, and then work backwards through each stage of the
game in the same way until we reach the first repetition of the game.

Matrix 8.1 Prisoners’ dilemma

Joe Column

John Row

Let’s assume that the game is repeated 30 times. Using backward induction
means that we start by analysing the moves of the players in the 30th repetition,
the last round of the game. If the players reach the last stage they know that
they are not going to play the game ever again and therefore the game looks
like a one-shot game. Rational players will treat it as such and will defect as
{defect, defect} is the unique Nash equilibrium of the single-stage version of the
game. In the penultimate stage (the 29th repetition) both players know that
they will defect in the last stage so there is no incentive to cooperate at this
stage and therefore to defect is a dominant strategy. Thus in the penultimate
stage both players will defect. In the pre-penultimate round (the 28th repeti-
tion) both players know they will defect in the penultimate and last stages of
the game so once again there there is no incentive to cooperate and both will
defect. The same logic implies that both players will defect in the 27th, the
26th and the 25th repetition of the game and therefore they will defect in the
24th, the 23rd and so on right back to the 1st repetition of the game. Here,
rational players will be able to reason that they will defect in all the other repe-
titions of the game and therefore both players’ dominant strategy will be to
defect. Consequently, both players will defect in the first stage and all the sub-
sequent repetitions of the game. This reasoning implies that the subgame
perfect Nash equilibrium of the repeated prisoners’ dilemma is for both players
to defect in all repetitions of the game. In other words, the strategy combina-
tion {defect, defect} is the equilibrium outcome in every stage of the game.

Does this result appear somewhat paradoxical to you? If so, you are not
alone. For many people this result is contrary to their intuition which suggests

Playing again and again . . .
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defect 2, –1 0, 0



201

that there should be scope for cooperation in the repeated prisoners’ dilemma.
As both players gain by cooperation it seems quite reasonable to expect them
to be able to find a way of cooperating at least for some repetitions of the
game. For instance, one or both players could cooperate at various points in
the game in order to induce the other player to cooperate. After all, if this
wasn’t successful they could just revert back to defection. Although this kind of
behaviour is not consistent with the theoretical prediction, it is consistent with
much of the related experimental evidence. A common finding in experiments
is that, at least for some of the time, both players cooperate. By cooperating
they end up with higher pay-offs than they would in the subgame perfect Nash
equilibrium of the game where neither ever cooperates (see Roth, 1995a: 26–8).
This evidence is discussed in more detail in the last section of this chapter.

8.1.2 Repeated entry deterrence: the chain store game

In the repeated entry deterrence game the incumbent monopolist is assumed to
be a chain store that has a store in a number of towns or localised markets. In
each of these towns the chain store is a monopolist. A competitor is consider-
ing entering each of the local markets in which the chain store has a monopoly
by opening one of its own stores. In each town where there is entry the incum-
bent monopolist decides whether to fight entry or concede by sharing the
market. If there is no entry the monopolist does not have to do anything. This
is a repeated game. In each stage the potential entrant decides whether to enter
or not and if there is entry the incumbent decides whether to fight or not. 

The extensive form of a single stage of the repeated game is shown in Figure
8.1. The pay-offs in Figure 8.1 are the same as those in the entry deterrence
game we analysed in Section 4.4 of Chapter 4. In this version of the game, con-
cession is the chain store’s best response to entry. The chain store is therefore a
weak monopolist, as defined in Chapter 7, and in the subgame perfect Nash
equilibrium of the one-shot game the entrant enters and the monopolist con-
cedes (there is no asymmetric information in this version of the game). 

Finite repetition

Figure 8.1 A stage of the repeated entry deterrence game
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To simplify things let’s assume (like Selten, 1978) that the potential entrant
decides whether to enter the market in each of the towns in a specific
sequence2 and that the chain store is a monopolist in only 20 towns. The 1st
town represents the first local market in which entry may or may not take
place and the 20th town is the last. To find the subgame perfect Nash equilib-
rium we can analyse what will happen in the 20th town and then use
backward induction to work back from the 20th town to the 1st. 

If the entrant enters in the 20th town the best response for the chain store is
to concede. There is no incentive for the monopolist to do anything else as
there are no more repetitions of the game. The entrant knows this and will
therefore enter. Thus entry followed by concession is the subgame perfect strat-
egy combination in the last repetition of the game. The 19th town is the
penultimate local market where there is a threat of entry. Does the chain store
have any incentive to fight entry here? To answer this question ask yourself if
fighting in the 19th town would deter entry in the 20th? If not, there is no
incentive for the chain store to fight entry. But both players know that entry
would be followed by concession in the 20th town and therefore the entrant
will enter the 20th town whatever the chain store does in the 19th. This means
that there is no incentive for the chain store to fight entry in the 19th town
and if the entrant enters the monopolist will concede. The entrant knows this
and will therefore enter the 19th town and the monopolist will duly concede.
In the 18th town, the pre-penultimate local market in which the entrant con-
siders entry, the monopolist again has no incentive to fight if there is entry and
therefore the entrant will enter and the monopolist will concede. Similarly in
the 17th and the 16th towns the entrant will enter and the monopolist will
concede so that there is no incentive to fight entry in the 15th repetition of the
game either and therefore no incentive to fight in the 14th town. Using back-
ward induction logic, the game unravels back to the first stage of the game
which takes place in the first town in which the competitor considers entry. If
the entrant enters in this town the monopolist will still have no incentive to
fight as entry will be followed by concession in the next town and the town
after that whether he fights or not. Therefore the entrant will enter in the first
town and a rational monopolist will concede. 

The logic of backward induction leads us to the unique subgame perfect
Nash equilibrium of the game in which there is entry followed by acquiescence
in every town. Do you think that this is a reasonable prediction of what might
happen? Perhaps it seems more reasonable to you that the chain store will fight
entry in one or more towns in the early stages of the game in order to build a
reputation for ‘toughness’ which deters entry in later stages. This is an intuitive
prediction that to many people including Selten (1978) appears more reason-
able than the outcome predicted by game theory. This is another example of
the paradox of backward induction which in relation to the repeated entry
deterrence game is known, thanks to Selton (1978), as the chain store paradox. 

This result, that the subgame perfect equilibrium of a repeated game in
which there is a unique (subgame perfect) Nash equilibrium in the single-stage

Playing again and again . . .
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version is one in which the equilibrium of the one-shot game is played out in
every repetition, is a general one. To see this consider any repeated game which
has a unique (subgame perfect) Nash equilibrium in the single-stage version. To
solve such a game we would use backward induction to unravel the game from
its last repetition. In the last stage of the game the players are effectively play-
ing a single-stage game as there is no repetition. They will therefore choose
their best response or Nash strategies so that the predicted outcome in the last
stage of the game will be the Nash equilibrium of the one-shot game. In the
penultimate repetition the players know that they will choose their Nash
strategies in the next repetition and therefore there is no incentive to do any-
thing different here. In the pre-penultimate repetition the players will apply
the same logic and therefore they will choose their Nash strategies again. It fol-
lows that at no stage of the game will either player have an incentive to choose
any strategy other than their Nash strategy and consequently the Nash equilib-
rium strategy combination will result in every repetition of the game. 

The paradox of backward induction in finitely repeated games can be resolved
by allowing for some uncertainty about the future in terms of when the game
ends. The paradox can also be resolved if there is some asymmetry of informa-
tion about one or more of the players’ pay-offs or their rationality. In this
section, the first possibility is examined by assuming that the players in a
repeated prisoners’ dilemma game are either not sure when the last play of the
game will be played or they believe the game will go on for ever. This kind of
uncertainty can make cooperation an equilibrium strategy for both players.
However, another theoretical problem arises in that there is no unique equilib-
rium; instead there are multiple possibilities, a result commonly known as the
Folk theorem (since it is not attributed to a single source3). 

If a game is repeated either infinitely or indefinitely there is no well-defined
end game and therefore backward induction cannot be applied. This means
that a different type of calculation is needed to determine the equilibrium of
the game. Instead of using backward induction the players have to look for-
ward and evaluate each alternative strategy, its current and its future returns
given the likelihood of repetition. In these circumstances credible threats and
promises to secure a particular strategy, such as cooperation in the prisoners’
dilemma, can be made.

Have another look at the prisoners’ dilemma in Matrix 8.1. If this game is
repeated indefinitely the players know that there is a last game but they do not
know when it will be played. This is modelled by assuming that there is a fixed
probability, P, that the game will continue into the next round. In this game
the players can choose from an almost infinite number of possible intertemporal

Infinite and indefinite repetition
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or meta-strategies. For instance, they could commit to a strategy that involves
always cooperating or always defecting or they could decide to cooperate in the
first three repetitions and defect thereafter. They could also choose more com-
plicated strategies that depended on the actions of the other player. They
could, for example, start by cooperating and thereafter cooperate in a given
repetition of the game if the other player cooperated in the previous repetition
but defect otherwise. This strategy is the tit-for-tat strategy in which a player
chooses moves by mirroring the moves of the other player in the previous
round. Tit-for-tat is a type of trigger strategy as a change in a player’s choice of
move is triggered by a particular choice of move by the other player. Another
trigger strategy is the grim strategy. In a prisoners’ dilemma a player playing a
grim strategy would cooperate unless the other player defected in which case
the player playing the grim strategy would defect for the rest of the game.
Trigger strategies are sometimes called punishment strategies because in games
like the prisoners’ dilemma they can be used to punish non-cooperative behav-
iour. While the tit-for-tat strategy is a forgiving punishment strategy as a return
to cooperation is reciprocated, the grim strategy is an unforgiving strategy. 

Let’s assume that Joe and John are unforgiving types4 and announce5 that
they will choose grim strategies to play their repeated prisoners’ dilemma. Do
you think that these strategies could make it rational for both players to coop-
erate? If this were to happen, the grim strategies could be said to be
self-enforcing in that they would have induced a cooperative outcome with-
out any third-party interference or other changes in the rules of the game. To
see whether this is a realistic possibility we need to look more closely at the
players’ pay-offs. 

We can start by considering the game from Joe’s perspective. If he believes
that John is committed to the grim strategy then what should be his response?
If Joe cooperates he will expect to get an initial pay-off of 1 and then 1 in each
repetition of the game that is actually played out. The probability that the game
will be played one more time is P. The probability that the game will be played
two more times is P2 (the probability that the game is played once more and then
once more again). Similarly the probability that the game is played three more
times is P3 and, generalising, the probability that the game is played n more
times is Pn. Joe’s expected pay-off from cooperation, EPOcoopJoe is therefore:

EPOcoopJoe = 1 + P + P2 + P3 + P4 + …Pn + … = ∑
n = ∞

n = 0

Pn (8.1)

This is an initial 1 followed by an infinite stream of 1s weighted by the probabil-
ity of the game being repeated 1 more time, 2 more times, 3 more times and so
on. The sum of an infinite stream6 of 1s weighted in this way is . Therefore
Joe’s expected pay-off from cooperation if John is playing a grim strategy is:

EPOcoopJoe = (8.2)1–––––
1 – P

1–––––
1 – P
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But if Joe defects his pay-off will be 2 then 0 for the rest of the game however
long that is. Consequently, he should cooperate if > 2 which requires P > 
and if this condition is satisfied Joe will have no incentive to defect. As the
game is symmetric the condition for John to cooperate if Joe plays a grim strat-
egy is the same. 

In other words, if P > the gains from cooperation outweigh the gains from
defection and both players should cooperate in every repetition of the game.
P = is the critical value of P such that if P > the grim strategies of the players
are best responses to each other and therefore neither player has an incentive
to deviate. In these circumstances the grim strategies define a subgame perfect
Nash equilibrium of the whole game in which there is cooperation at every
stage. 

This result can be generalised in terms of the prisoners’ dilemma game in
Matrix 8.2 that you first saw in Matrix 3.3 in Chapter 3.

Matrix 8.2 Generalised prisoners’ dilemma

Player column

Player row

c > a > d > b 

To keep things simple we shall assume that the probability that the game con-
tinues for at least one more round is P as before and both players again commit
to grim strategies. With these assumptions if a player cooperates they can
expect a pay-off of a until the game ends. This means that the expected pay-off
from cooperation,7 EPOcoop, is:

EPOcoop = a + aP + aP2 + aP3 + … aPn + … =  ∑
n = ∞

n = 0

aPn = (8.3)

If either player cheats they receive a one-off gain of c then d until the game
ends. This means that the expected pay-off from defection, EPOdefect, is: 

EPOdefect = c + dP + dP2 + dP3 + …dPn + … = c + ∑
n = ∞

n = 1

dPn = c + (8.4)

A reasonable decision rule for the players would be to cooperate if EPOcoop >
EPOdefect or:

dp–––––
(1 – P)

a–––––
(1 – P)

1–
2

1–
2

1–
2

1–
2

1–––––
1 – P

Infinite and indefinite repetition
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defect c, b d, d
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> c + (8.5)

Rearranging (8.5) leads to: 

a > c(1 – P) + dP = c – cP + dP (8.5.1)
a – c > P(d – c) (8.5.2)

as a – c < 0 and d – c < 0 (8.5.2) simplifies to:

< P (8.6)

Condition (8.6) determines the critical value of P, P*, such that if P > = P*

there is no incentive for either player to defect. If this condition is satisfied it is
rational for both players to cooperate in all the repetitions of the game. Thus
the grim strategies can self-enforce cooperation if P is large enough. In these
circumstances there is a subgame perfect Nash equilibrium of the repeated pris-
oners’ dilemma in which there is cooperation in every repetition.

The condition in (8.6) is a general condition that applies to all prisoners’
dilemma games. To see this think about the pay-offs in the Prisoners’ dilemma
game in Matrix 8.1 where a = 1, b = –1, c = 2 and d = 0. Substituting these values
into (8.6) defines the critical value of P as (1 – 2)/(0 – 2) = as we saw before. 

If the generalised prisoners’ dilemma in Matrix 8.2 is repeated infinitely
rather than indefinitely then the players believe that there will always be
another repetition of the game. But if the game goes on forever then in order to
plan ahead the players need to work out the discounted present values of their
pay-offs in the future as the game progresses. The value today,8 the present
value, of a sum of money €X received n years in the future is X/(1 + r)n where r
is the rate of return (the interest rate) on money invested today (in the present)
and 1/(1 + r) is the discount factor, F. This formulation9 implies that the value
to an individual of a sum of money like €X is less if they receive it in the future
than if they receive it today; money today is worth more than money tomor-
row. However, as long as future pay-offs are worth something (the value of the
future is not discounted away) the benefits of infinite cooperation are likely to
outweigh any short-term gains from defection. As in the case of indefinite repe-
tition this intuitive prediction can be formalised by deriving the players’
equilibrium strategies. 

To see this assume once again that the players both commit to grim strate-
gies. In the infinitely repeated version of the generalised prisoners’ dilemma in
Matrix 8.2 the expected pay-off from cooperation, EPOcoop, will be:

EPOcoop = a + a + a + a + …a + … (8.7)

Substituting F for the discount factor leads to:
1

–––––
1 + r

1––––––
(1 + r)n

1––––––
(1 + r)3

1––––––
(1 + r)2

1–––––
1 + r

1–
2

a – c–––––d – c

a – c–––––
d – c

dp–––––
(1 – P)

a–––––
(1 – P)
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a + aF + aF2 + aF3 + … aFn + … =  ∑
n = ∞

n = 0

aFn = (8.7.1)

Take a look back at equation (8.3) and compare it with (8.7.1). Do they look
similar? (8.7.1) is the same as (8.3) except that P has been replaced by F. Thus
the infinite sum in (8.7.1) sums to instead of . If either player defects
they receive a one-off gain of c then the appropriately discounted value of d
until the game ends. Thus the expected pay-off from defection in the infinitely
repeated prisoners’ dilemma in Matrix 8.2, EPOdefect, is: 

EPOdefect = c + d + d + d + … d + … (8.8)

Or, after substituting F for : 

EPOdefect = c + dF + dF2 + dF3 + … dFn + … = c +  ∑
n = ∞

n = 1

aFn = c + (8.8.1)

As you can see (8.8.1) is the same as (8.4) except that P has been replaced by F.
Thus in the infinitely repeated prisoners’ dilemma if both players choose grim
strategies they should cooperate as long as:

> c + (8.9)

which simplifies to:

< F (8.10)

(8.10) confirms the intuitive prediction that if F is high enough, so that the
future is not discounted away too quickly, there is an incentive for the players
to cooperate. If both players choose grim strategies it will be rational for them
to cooperate as long as F > . In these circumstances, there is a subgame per-
fect Nash equilibrium of the infinitely repeated prisoners’ dilemma in which
both players cooperate in every repetition. Moreover, if pay-offs are discounted
in the infinitely repeated prisoner’s dilemma then the infinitely and indef-
initely repeated games are formally equivalent.

You may need a little more convincing that the grim strategies in the examples
we have looked at are subgame perfect strategies. In particular, you might be
wondering whether the grim threat to defect forever in response to a defection
by the other player is a credible threat. After all, if it is not a credible threat the
grim strategies can’t be part of a subgame perfect Nash equilibrium. If you have
doubts in this regard, assume that the probability of continuation or the dis-
count factor, whichever you prefer, is greater than its critical value as
determined above. For the grim strategies to be subgame perfect the following
must be true for both players in the infinite or indefinite game: 

a – c–––––
d – c 

a – c–––––
d – c 

dF–––––
1 – F

a–––––
1 – F

dF–––––
1 – F

1–––––
1 + r

1––––––
(1 + r)n

1––––––
(1 + r)3

1––––––
(1 + r)2

1–––––
1 + r

a–––––
1 – P

a–––––
1 – F

a
–––––
1 – F
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(a) Cooperation is a best response to cooperation.

(b) Defect is best response to defect.

Consider the game from John Row’s perspective in the prisoners’ dilemma in
Matrix 8.1. We have already shown that (a) is true in the infinite/indefinite game
given the assumption that the probability of continuation or the discount factor
is greater than its critical value. But (b) is also true. It is true in any single-stage
game as defect is a best, that is a Nash, response to defect. It is also true in the
infinite/indefinite game because if Joe Column, who is meant to be playing a
grim strategy defects without provocation then Joe can’t be using a grim strategy
unless he has defected by mistake. If Joe isn’t playing grim then as John has no
contrary information he will expect Joe to defect again. Therefore John might as
well defect straight away in effect triggering the grim punishment by defecting
forever. Regarding the second possibility that Joe Column has made a mistake,
then even if Joe reverts to grim in the next repetition by cooperating, John’s best
response is still to defect. This is so because if John doesn’t punish the mistake
Joe will assume that John isn’t playing grim and that John will defect again, in
which case Joe, as he has no contrary information, should defect straightaway.
John can reason this out and therefore he should also defect. 

Thus the grim strategies are best responses to each other in the equilibrium of
the game in which both players cooperate. They also incorporate credible threats.
It follows that as long as the probability of continuation in the indefinite game
or the discount factor in the infinite game is large enough it is possible to sustain
cooperative behaviour in every repetition of a prisoners’ dilemma. 

But the grim strategies are not the only meta-strategy combination that can
generate cooperation in the indefinitely or infinitely repeated prisoners’
dilemma. The Folk theorem says that an infinite number of strategies can
enforce any given outcome in an indefinitely or infinitely repeated game like
the repeated prisoners’ dilemma. For example, a more forgiving strategy like tit-
for-tat that incorporates both an incentive to cooperate as well as a
punishment for defection can also achieve a cooperative outcome.10 Such
strategies are sometimes referred to as ‘stick and carrot’ strategies. An infinite
number of these can be constructed, for example strategies that punish defec-
tion for longer than tit-for-tat.11

The Folk theorem implies that indefinitely and infinitely repeated games
have multiple equilibria and therefore it is almost impossible to make a clear
prediction of what will actually happen in such games. The problem of mul-
tiple Nash equilibria that we first came across in Chapter 2 seems to have
grown to nightmare proportions. Nevertheless, the analysis in this section has
shown that in infinitely and indefinitely repeated prisoners’ dilemma games we
should expect cooperation at least some of the time. The introduction of some
uncertainty for both players about the timing of the last repetition has com-
pletely changed the theoretical prediction about the outcome of the game. The
players have more incentive to cooperate since defection in every repetition is
no longer the unique subgame perfect equilibrium of the game. 

Playing again and again . . .
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Another solution to the paradox of backward induction was
proposed by Kreps, Milgrom, Roberts and Wilson (1982).
They analysed a finitely repeated prisoners’ dilemma with a
definite end game but uncertainty for one of the players
about the rationality or equivalently the pay-offs of
the other. 

Specifically one of the players, for example Column, is unsure about the
other player’s (Row’s) approach to the game. While column is entirely rational
and knows that in a finitely repeated prisoners’ dilemma the subgame perfect
equilibrium is for both players to defect in every repetition, Column is unsure
whether Row is aware of this. Column believes that there is some chance that
Row is not entirely rational (or has different pay-offs to Column) and will
cooperate as long as row also cooperates, but defect otherwise. In other words,
Column believes that there is some probability that Row is committed to a tit-
for-tat strategy. If Row is indeed committed to tit-for-tat then cooperation may
be a best response for Column, at least some of the time. However, Column

Asymmetric information in the finitely repeated prisoners’ dilemma

Exercise 8.1

Consider the prisoners’ dilemma in Matrix 8.3 where in terms of the
generalised prisoners’ dilemma in Matrix 8.2, a = 3, b = 1, d = 2 and c = 5.
Assume that this game is repeated indefinitely with probability Q of rep-
etition at each stage and that the firms commit to grim strategies
where they collude if there has been collusion in all previous repetitions
and cheat otherwise. In these circumstances what is the critical value of
Q, Q*, such that if Q > Q* there is a perfect Nash equilibrium of the game
in which both firms collude in every repetition?

Matrix 8.3 Oligopoly collusion

Jessup Inc

Rosden Ltd

collude cheat

collude 3, 3 1, 5

cheat 5, 1 2, 2

8.3 Asymmetric information in the finitely repeated 
prisoners’ dilemma
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isn’t sure about Row. Row may after all be entirely rational and quite able to
work out the subgame perfect equilibrium of the game. In this case Row is likely
to defect in every repetition. Given this uncertainty, Column’s optimal strategy
will depend on Column’s beliefs about Row and those beliefs need to be incorpo-
rated in the equilibrium of the game. A further complication is that a rational
Row, who knows that Column is unsure of Row’s true nature, may find it advan-
tageous to act as if he were irrational (or had different pay-offs) in order to give
Column an incentive to cooperate. 

Thus a little uncertainty about the nature (or pay-offs) of one of the players
makes it more difficult to work out what the best responses of the players
should be. Is it rational for them to cooperate or not? Intuitively it seems at
least possible that there is an equilibrium of the game which depends on
Column’s beliefs and in which both Column and a rational Row cooperate at
least some of the time. Kreps et al. (1982) confirm this intuition and show that
under certain conditions both Row and rational Column will both cooperate in
all but the last two repetitions of the game. Where this happens, the paradox of
backward induction in the prisoners’ dilemma is resolved. To understand
exactly how the this happens it is useful to work through an example. This is
done in Section 8.3.1.12

8.3.1 Irrational play? 

Consider the prisoners’ dilemma in Matrix 8.4. The restrictions on the gener-
alised pay-offs in Matrix 8.2 are that a = 1, b < 0, c > 1, d = 0 and c + b < 2 as in
the original Kreps et al. (1982) article.

Matrix 8.4 Row and Column play prisoners’ dilemma

Column

Row

c > 1, b < 0 and c + b < 2

In this example of the finitely repeated prisoners’ dilemma there is a probability,
P, that one player (Row) cooperates in response to cooperation but defects in
response to defect, i.e. plays tit-for-tat. Such a strategy is not rational according to
the game theoretic reasoning so we can call this player irrational or TFT Row.13

The pay-offs in Matrix 8.4 imply that Column’s best response to TFT Row is
to cooperate until the last game. To see this consider what happens if Column
defects against TFT Row at any point in the game. Defection gives Column a
pay-off of c but in the next stage Column’s pay-off will be at most 0 as TFT Row
will defect. If Column had waited until the next stage to defect his pay-off from

Playing again and again . . .

cooperate defect

cooperate 1, 1 b, c

defect c, b 0, 0
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these two stages would have been 1 + c which is greater than c + 0. This will be
true at any point in the game implying that as long as there is one more repeti-
tion of the game Column should cooperate if he believes that Row is irrational. 

However, Column doesn’t know whether Row is irrational or not but if Row
ever deviates from tit-for-tat then Column will know that Row is rational. If
Column knows Row is rational then Column should defect. Since both rational
and irrational Row benefit from cooperation by Column, rational Row has an
incentive to mimic TFT Row. If rational Row can acquire or build a reputation
for being irrational Column may cooperate. This intuition can be confirmed in
four steps. At the first step we are going to consider a two-stage game. A three-
stage game is analysed at the second step and a ten-stage game at the third
step. The last step generalises the analysis of the ten-stage game to an n-stage
game. This is possible because the last three stages of any n-stage game are the
same as the last three stages of the ten-stage game. 

Step 1 The two-stage (twice repeated) game

The two-stage prisoners’ dilemma is analysed as in Section 8.1 using
backward induction. In order that this analysis can be extended to consider
a three-stage and eventually an n-stage game it is convenient to label the
progress of the game in terms of the time remaining or more accurately the
number of repetitions of the game that remain to be played. Using this
formulation the first stage or first repetition of the game is labelled t = 2
since at the start of the game the players know that there are two
repetitions of the game to be played. The second stage is the last stage of
the two-stage game. It is labelled t = 1 as after the first stage has been
played out there is only one repetition remaining to be played. The time
line of the two-stage game is illustrated in Figure 8.2 and Table 8.1 sets out
the moves of the players as the game progresses. 

In the first stage of the game (at t = 2) TFT Row will definitely
cooperate and rational Row will definitely defect; rational Row has no
incentive to do anything else as backward induction shows that Column
will definitely defect in the last stage of the game at t = 1. But in the first
stage at t = 2 Column’s move is unknown.14 We can call this unknown
move Mc2. Whatever Column’s move is at t = 2 we know that TFT Row will
mimic it at t = 1 and therefore TFT Row’s move at t = 1, which we can call
Mtft1, must equal Mc2. 

Asymmetric information in the finitely repeated prisoners’ dilemma

Figure 8.2 Time line of two-stage game

1st stage
t = 2

Last stage
t = 1
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Table 8.1 Moves in the two-stage game

t = 2 t = 1

irrational/TFT Row cooperate Mtft1

rational Row defect defect

Column Mc2 defect

To make a prediction about what will happen in this two-stage game we
need to determine Mc2 and Mtft1. Column has two alternatives at t = 2: Mc2
= cooperate and Mc2 = defect. We shall consider each of these in turn:

(i) Column cooperates at t = 2

If Mc2 = cooperate then, in the next repetition, TFT’s move, Mtft1, will be to
cooperate. In this case Column’s pay-off at t = 2 is P + (1 – P)b and Column’s
pay-off at t = 1 is Pc + (1 – P)0. Thus Column’s pay-off for the whole game if
Column cooperates in the first play of the game, COL(EPOcoop2), is: 

COL(EPOcoop2) = P + (1 – P)b + Pc (8.11)

(ii) Column defects at t = 2

If Mc2 = defect, Column defects at t = 2. In this case TFT will defect at t = 1
and Mtft1 = defect. In this case Column’s pay-off at t = 2 will be Pc and his
pay-off at t = 1 will be 0. Thus his pay-off for the whole game if he defects,
COL(EPOdef2), will be: 

COL(EPOdef2) = Pc + 0 = Pc (8.12)

Conditions (8.11) and (8.12) imply that in the two-stage game Column has an
incentive to cooperate in the first repetition at t = 2 if P + (1 – P)b + Pc ≥ Pc or:

P + (1 – P)b ≥ 0 (8.13)

Step 2 The three-stage (three times repeated) game in which condition (8.13)
is satisfied

The time line of the three-stage game is shown in Figure 8.3. Since the last
two repetitions of the three-stage game are the same as in the two-stage
game we can work out what will happen at t = 2 if condition (8.13) is
satisfied and rational Row cooperates in the first repetition of the three-
stage game at t = 3: Column will cooperate. But we need to work out
whether or in what circumstances rational Row has an incentive to
cooperate at t = 3. If both rational Row and Column cooperate at t = 3 this
will resolve the paradox of backward induction in the three-stage game.

Playing again and again . . .
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First let’s consider the possibilities from the perspective of rational Row.
Rational Row will only cooperate at t = 3 if he believes that Column will
also cooperate. But if Column does cooperate rational Row may still defect.
There are therefore two possibilities from rational Row’s perspective if
Column cooperates at t = 3: he can cooperate or defect. We shall consider
each of these possibilities in turn.

(i) Rational Row defects at t = 3 (and Column cooperates)

If rational Row defects (and Column cooperates) at t = 3 Column will know
that Row is rational, Row will know that Column knows this and therefore
both will defect at t = 2 and t = 1. This implies that Row’s expected pay-off
from defection at t = 3, the first repetition of the three-stage game (if
Column cooperates), is just c, the one-off gain from defection. 

(ii) Rational Row cooperates at t = 3 (and Column also cooperates)

If rational Row cooperates at t = 3, the first play of the game, given that
condition (8.13) is satisfied Column will cooperate in the next repetition at t
= 2. From our analysis of the two-stage game we know that rational Row will
defect at t = 2 and both rational Row and Column will defect at t = 1 (the last
repetition). In these circumstances rational Row’s pay-offs will be 1 at t = 3, c
at t = 2 and 0 in the last repetition. Thus rational Row’s pay-off for the whole
game will be 1 + c. This is clearly greater than c (rational Row’s pay-off if he
defects at t = 3) which means that rational Row should cooperate in the first
repetition of the three-stage game as long as Column also cooperates. 

This line of reasoning implies that if Column cooperates at t = 3 so
will rational Row. But why should Column cooperate at t = 3? To answer
this question let’s consider the game from the perspective of Column.
There are two possibilities: whether Column cooperates or he defects.
Again we shall consider each of these in turn.

(i) Column cooperates at t = 3

If Column cooperates at t = 3 then rational Row cooperates at t = 3 (but not
at t = 2 or t = 1). As long as condition (8.13) holds, Column also cooperates
at t = 2 but not at t = 1. In these circumstances Column’s expected pay-off,
COL(EPOcoop3), is:

Asymmetric information in the finitely repeated prisoners’ dilemma
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1st stage
t = 3

2nd stage
t = 2

Last stage
t = 1
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COL(EPOcoop3) = 1 + P + (1 – P)b + Pc (8.14)

(ii) Column defects at t = 3

If Column defects at t = 3 then TFT, rational Row and Column all defect at t
= 2 and t = 1. In these circumstances Column’s expected pay-off,
COL(EPOdef3), is at most c (it is c if rational Row cooperates at t = 3). That is:

COL(EPOdef3) ≤ c (8.15)

Combining (8.14) and (8.15) implies that Column has incentive to cooperate
at t = 3 if: 

1 + P + (1 – P)b + Pc ≥ c (8.16)

If condition (8.13) is satisfied as we have assumed, then P + (1 – P)b ≥ 0 and
a sufficient condition for Column to cooperate at t = 3 is that:

1 + Pc ≥ c (8.17)

Conditions (8.13) and (8.17) together define the critical value of P, P*, such
that if P ≥ P* both Column and rational Row will cooperate in the first
repetition of the three-stage game. If conditions (8.13) and (8.17) are both
satisfied then Column cooperates at t = 3 and t = 2, rational Row
cooperates at t = 3 only and irrational, TFT Row always cooperates. What
this means is that as long as conditions (8.13) and (8.17) are satisfied both
Row and Column will cooperate at t = 3 (the first repetition of the three-
stage game) even if Row is in fact rational. 

Step 3 The ten-stage game

The last three repetitions of the ten-stage game are equivalent to the three-
stage game already considered (see Figure 8.4). This means that if
conditions (8.13) and (8.17) are satisfied rational Row and Column will
both cooperate a t = 3 in the ten-stage game. If they cooperate at t = 3 it
will be rational for them to cooperate at t = 4. If they cooperate at t = 4 it
will also be rational for them to cooperate at t = 5 and at t = 6, t = 7, t = 8,
t = 9 and t = 10, the first repetition of the game. Consequently, if
conditions (8.13) and (8.17) are satisfied there will be cooperation in all but
the last two repetitions of the game.
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t = 10 t = 9
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2nd stage 5th stage
Last (10th)
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Step 4 An n-stage game where n > 10

The last ten repetitions of any n-stage game are equivalent to the ten-stage
game considered in Step 3. Therefore, if conditions (8.13) and (8.17) are
satisfied rational Row and Column will both cooperate at t = 10 in the n-
stage game (the first repetition of the 10-stage game). If they cooperate at
t = 10 it will be rational for them to cooperate at t = 11 and if they
cooperate at t = 11 it will also be rational for them to cooperate at t = 12
and at t = 13 and then in every repetition of the game prior to t = 13
including the first repetition at t = n.

The conclusion in Step 4 implies that in any n repeated prisoners’
dilemma in which there is doubt about the rationality of one of the
players, cooperation can be an equilibrium strategy by both players at
every stage of the game except the last two. Cooperation will be a best
response for both players in all but the last two stages as long as conditions
equivalent to (8.13) and (8.17) are satisfied even if the player about whom
there is doubt is in fact rational. To summarise: 

● In any n repeated prisoner’s dilemma where the pay-offs c and b and
the probability P satisfy conditions equivalent to (8.13) and (8.17)
there is an equilibrium of the game in which rational Row and Column
cooperate until the penultimate repetition of the game at t = 2.

Whether cooperation is an equilibrium strategy or not will, therefore,
depend on the players beliefs as characterised by P. 

8.3.2 Implications of the analysis

The analysis in Section 8.3.1 shows that if there is asymmetric information
about the objectives of one of the players in a finitely repeated prisoner’s
dilemma then, under certain conditions, there is a Bayesian equilibrium of the
game in which both players cooperate until the penultimate repetition of the
game.15 This will be true even when both players are actually rational.
Essentially what happens is that asymmetric information about Row’s attitude
to the game gives a rational Row an incentive to cooperate in order to keep
doubt in Column’s mind.16 More precisely and using the terminology of
Chapter 7, when Row cooperates, Bayesian updating by Column leads to an
upward valuation of the probability that Row is irrational. If the updated value
of P is high enough then Column’s expected pay-off from cooperation will be
large enough to induce cooperation. Although the precise details of the equilib-
rium in a game where there are more than three repetitions were not
presented,17 the analysis in Section 8.3.1 shows that that under certain condi-
tions there is a limit (or upper bound) to the number of stages in which both
players defect in the n-stage game. In fact P doesn’t have to be very high to
achieve this result and yet, if it is high enough, the theoretical prediction in

Asymmetric information in the finitely repeated prisoners’ dilemma
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relation to the outcome of the game completely changes. Something similar
happens in the entry deterrence game examined in Section 8.4.

A solution to the backward induction paradox in the entry deterrence game
was proposed by Kreps and Wilson (1982). The version of the entry deterrence
examined here is very similar to the one outlined in Section 8.1.2. The chain
store has a store in N towns or localised markets and in each of the towns in
which it has a store it is a monopolist. A competitor is considering entering the
market in each of the towns in which the chain store has a monopoly by open-
ing one of its own stores. The potential entrant decides whether to enter the
market in each of the N towns in a specific sequence. In each town where there
is entry the chain-store monopolist decides whether to fight entry or concede
by sharing the market. If there is no entry the monopolist doesn’t have to do
anything. The game is therefore an N repeated game where in each stage the
potential entrant decides whether to enter or not and if there is entry the
incumbent decides whether to fight or not. 

In this version of the game there is incomplete information about the
chain store’s pay-offs. As in Chapter 7, Section 7.2, the entrant is unsure about
the pay-offs of the incumbent monopolist. The entrant believes that there is a
possibility that the monopolist has invested in a sunk cost that makes it opti-
mal to fight entry. If the monopolist has made this investment then fighting
is a best response to entry, otherwise it is not. The chain store is therefore

Playing again and again . . .

Exercise 8.2 

For what values of P, the probability that Ben is a tit-for-tat player, will
Rosie and rational Ben both cooperate in all but the last two repetitions
of a 20-stage prisoners’ dilemma game in which the pay-offs in each
stage are those in Matrix 8.5? 

Matrix 8.5 Rosie and Ben play a repeated prisoners’ dilemma

Ben

Rosie

cooperate cheat

cooperate 1, 1 –1, 2

cheat 2, –1 0, 0

8.4 Resolving the chain store paradox 
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either a strong monopolist for whom fighting is an optimal strategy or a weak
monopolist for whom conceding to entry is a best response. The entrant
knows that a strong monopolist will always fight and that in a one-shot ver-
sion of the game a weak monopolist will always concede but doesn’t know
which of the two the monopolist is. The entrant only knows Ps, the probabil-
ity that the monopolist is strong. We are going to follow Kreps and Wilson
(1982) by analysing this game with the generalised pay-offs in Table 8.2.

Table 8.2 Pay-offs in the repeated entry deterrence game with incomplete information

about the chain store’s pay-offs

Pay-offs for each repetition of the game

entrant weak chain store strong chain store

entry followed by fight e – 1 –1 0

entry followed by concession e 0 –1

entrant stays out 0 m m

m > 1, 0 < e < 1

The pay-offs in Table 8.2 are the same as those in Problem 1 in Chapter 7.
Using generalised pay-offs like these means that the results of the analysis can
be used to explain and predict outcomes in different strategic situations. This is
useful here because we want to show that the chain store paradox can be
resolved generally, not just for one specific case. As already noted in relation to
Problem 1 in Chapter 7, nothing else has changed in relation to the game
analysed in Chapter 7, Section 7.2 other than that here it is repeated. As e is
greater than 0 but less than 1 the pay-off to the entrant from staying out is less
than her pay-off from entry followed by concession and higher than her pay-
off from entry followed by fight.18 Therefore the entrant’s preferred outcome is
entry followed by concession and her least preferred outcome is entry followed
by fight. From the perspective of the chain store, since m is greater than 1 no
entry is still preferred to entry. If there is entry, concession is still a best
response for the weak chain store and fighting is a best response for the strong
chain store. In the one-shot version of this game with complete information if
there was entry the weak monopolist would concede and the strong chain store
would fight. As (e – 1) < 0 the entrant would only enter if the chain store were
weak. The extensive form of a single stage of this game is shown in Figure 8.5.
The broken line between E1 and E2 shows that the entrant does not know
whether the chain store is strong or weak.

The analysis in Section 7.2 of Chapter 7 suggested that with incomplete
information about the monopolist’s pay-offs the entrant might be deterred from
entry in the one-shot game. This could happen if Ps is high enough, that is
greater than or equal to some critical level Ps

*. As the last repetition of the
repeated game is effectively a one-shot game it follows that in the last repetition

Resolving the chain store paradox
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of the repeated game entry will be deterred if the value the entrant attributes to
Ps is greater than Ps

*, where, as before Ps
*, is determined by setting equal the

entrant’s expected pay-offs from entering and staying out. In the repeated game,
as in the one-shot game, the weak chain store has no incentive to fight entry in
the last repetition of the game and therefore the entrant’s expected pay-offs
from entering and staying out can be determined in exactly the same way as in
Chapter 7. 

With the pay-offs in Table 8.2 the entrant’s expected pay-off from entering
in the last local market will be Pl(e – 1) + (1 – Pl)e where Pl is the value the
entrant attributes to the probability that the monopolist is strong in the last
repetition of the game. As the entrant’s expected pay-off from staying out is 0
we need to set Pl(e – 1) + (1 – Pl)e equal to zero to solve for the critical value of
Ps in the last repetition of the game. Doing this solves for P1

* = e.19 This means
that if the value the entrant attributes to Ps in the last repetition of the game is
greater than e the entrant will not enter in the last local market. 

Furthermore, as we saw in Chapter 7, Section 7.3, if Ps< Ps
* in the one-shot

game, which is equivalent to the last repetition of the repeated game, the weak
monopolist may find it worthwhile to send a signal that he is in fact strong. To
deter entry the signal needs to raise Ps to Ps

*. In the repeated game, the weak
monopolist can send a signal that he is strong by fighting entry in a previous
repetition. This will be worthwhile for the weak monopolist if fighting in an
early repetition of the game deters entry in a sufficient number of the later

Playing again and again . . .

Figure 8.5 Extensive form of a stage of the repeated entry deterrence game with asym-
metric information
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stages of the game. In these circumstances, the threat to fight by the weak
monopolist will be credible and entry will be deterred without the weak
monopolist actually having to fight. 

The analysis in Kreps and Wilson (1982) formalises this intuition and shows
that, depending on Ps and the entrant’s pay-offs, there are equilibria of the
game in which the entrant will only enter, if she enters at all, in the later stages
of the game. This result implies that the chain store paradox can be resolved by
allowing for some doubt in the entrant’s mind about the chain store’s pay-offs.
To understand exactly how the paradox is resolved it is useful to work through
some analysis in order to derive the equilibrium of the game described by the
pay-offs in Table 8.2. This is done in Section 8.4.1.20

8.4.1 Repeated entry deterrence with an uncertain entrant 

It is convenient to delineate the progress of the n-stage game from the perspective
of the entrant as she considers whether to enter the nth market or not. From her
perspective n is the number of potential markets remaining. Using this formula-
tion the first stage or first repetition of the game is the Nth, since at the start of the
game the entrant can enter at most N markets. The second stage is the N – 1th and
at the last stage n = 1 since at this stage she can enter at most one market. The time
line of the game, using this terminology, is illustrated in Figure 8.6. 

In this game Ps is the probability that the entrant attributes to the monopolist
being strong at the start of the game. Ps is common knowledge. However, as
you saw in Chapter 7, in sequential-move games like this the entrant is likely
to update this probability if she learns anything about the monopolist as the
game progresses. She will learn something if she enters and the chain store
responds by fighting. As fighting is costly for the weak monopolist the entrant
is likely to raise the probability that she attributes to the monopolist being
strong (see Section 7.3 in Chapter 7). In order to incorporate this possibility we
need to distinguish between the value of Ps at the start of the game, in the Nth
repetition, which we can call PN and the updated values of Ps as the game pro-
gresses. We can do this by letting Pn be the updated value of Ps in the nth
repetition. Using this terminology Pn+1 is the updated value of Ps in the round
before n, Pn–1 is the updated value of Ps in the round after n, P1 is the updated
value of Ps in the last repetition and P2 is the updated value of Ps in the penulti-
mate repetition. The time line in Figure 8.6 illustrates how Ps is updated as the
game progresses.

Resolving the chain store paradox

Figure 8.6 Time line for the N-stage entry deterrence game 
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Kreps and Wilson (1982) show that the equilibrium of the repeated entry
deterrence game, with the pay-offs in Table 8.2, depends only on the updated
value of Ps. The probability that the entrant attributes to the chain store being
strong will be updated according to Bayes’ rule. If entry is followed by a fight in
the nth repetition Bayes’ rule implies that Pn–1 should be updated as follows:21

Pn–1 = (8.18)

In (8.18) Xn is the probability that the weak monopolist fights in the nth repeti-
tion. Note that if Xn equals 0 then Pn–1 equals 1; the monopolist must be strong
if entry was fought but Xn = 0. If Xn equals 1 both the weak and strong monopo-
lists fight with the same probability and the entrant learns nothing from a fight.
As a result Pn–1 equals Pn. This implies that to raise Pn the weak monopolist
needs to randomise between fighting and conceding so that 0 < Xn < 1. If there
is no entry the entrant learns nothing and Pn–1 = Pn but if entry is followed by
concession the entrant knows the monopolist is weak, as the strong monopolist
would never concede and the value of Pn–1 will be updated to 0. In this case the
entrant enters at n – 1 implying that if entry is followed by concession in the
nth local market the entrant will enter in the next and every subsequent local
market. The first concession is therefore very costly for the weak monopolist.

When the weak chain store fights in the repeated entry deterrence game he is
attempting to deter entry in the next repetition by sending a signal to the entrant
that he is in fact strong. This is only possible because the entrant is unsure of the
chain store’s pay-offs. If the entrant believes that the probability that the monop-
olist is strong is high enough entry will be deterred. Signalling changes the
equilibrium strategies of the players in much the same way as it did in Section 7.3
of Chapter 7 where signalling in the entry deterrence game was first discussed. If
there is a positive probability Xn that the weak monopolist fights then there is a
perfect Bayesian equilibrium characterised by the following strategies:

Strategies of chain store

Strong chain store: always fights.

Weak chain store: fights entry with probability Xn in the nth round and
concedes with probability 1 – Xn.

Strategy of entrant

If Pn > Pn
* stay out.

if Pn < Pn
* enter.

If Pn = Pn
* randomise between entering and staying out, staying out in the

nth round with probability Yn.

Pn
* is the critical value of Pn such that if Pn = Pn

* the entrant’s expected pay-off
from entering, EPOenter, in the nth local market is equal to her expected pay-off
from staying out, EPOstayout. 

Pn–––––––––––––––
Pn + Xn(1 – Pn)

Playing again and again . . .
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To fully specify the equilibrium strategies Pn
*, Xn and Yn need to be

determined.

Solving for Xn

If the weak chain store randomises in order to raise Pn so that Pn = Pn
* the

entrant will also randomise since EPOentry will equal EPO stay out.
22 The entrant’s

expected pay-off from staying out in any repetition of the game is zero. Setting
the entrant’s expected pay-off from entry in the nth local market equal to zero
leads to:

EPOentry = Pn(e – 1) + (1 – Pn)(1 – Xn)e + (1 – Pn)(Xn)(e – 1) = 0 (8.19)

Pn(e – 1) is the probability that the chain store is strong multiplied by the
entrant’s pay-off if she enters and the chain store fights (which the strong
monopolist does with certainty). (1 – Pn) is the probability that the chain store
is weak and e is the pay-off to the entrant when the weak monopolist concedes
which he does with probability 1 – Xn. The weak monopolist fights with proba-
bility Xn and the entrant’s pay-off in this event is (e – 1). (8.19) can be
rearranged to obtain:

(1 – Xn) = (1 – e)/(1 – Pn) (8.20)

or:
Xn = (e – Pn)/(1 – Pn) (8.21)

Determining Pn*

We shall determine Pn
* in three steps. In the first step we will solve for P1

*. In the
second step we will derive an expression for P2

*. In the third step we will gener-
alise the results of the first and second steps to derive an expression for Pn

*.

Step 1 Solve for P1
* (the critical value of Ps in the last repetition of the game)

Do you remember how to solve for P1
*? You saw how to do this in the preced-

ing section and in Problem 1 of Chapter 7. We need to set the expected
pay-offs of the entrant from entering and staying out equal in the last repeti-
tion of the game. The expression for EPOentry in the last repetition of the game
is simpler than that in (8.19) because X1 = 0.23 Since the weak chain store will
concede for sure in the last stage of the game, the expected pay-off of the
entrant from entering at n = 1 is just P1(e – 1) + (1 – P1)e. EPO stay out is zero as
before. We can set these two expected pay-offs equal to obtain:

P1(e – 1) + (1 – P1)e = 0 (8.22)

(8.22) solves for P1 = e = P1*.

Resolving the chain store paradox
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Step 2 Solve for P2* using Bayes’ rule

Having defined P1* and an expression for Xn we can use Bayes’ rule to solve for
P2*. Bayesian updating implies that:

P1
* = (8.23)

Substituting in (8.23) for P1
* = e (from Step 1) and for X2 = (e – P2

*)/(1 – P2
*)

from (8.21) solves for P2
* = e2. 

Step 3 Generalise from Steps 1 to 2 to obtain an expression for Pn
*

Step 1 solved for P1
* = e = e1 and Step 2 solved for P2

* = e2. The same procedure
that we used in Step 2 could be used to obtain P3

* = e3, P4
* = e4 and eventually PN

*

= eN. Accordingly the critical value of Pn is given by en where N ≥ n ≥ 1. Thus:

Pn
*= en (8.24)

where Pn
* is the critical value of Pn such that if Pn = Pn

* the entrant randomises
between entering and staying out in the nth local market.

Defining Yn

It still remains to define Yn, the probability that the entrant stays out in the
nth round. If 0 < Yn < 1 the entrant must be randomising between entering and
staying out but the entrant will only be indifferent between her two pure
strategies if Pn = Pn

*. This condition will be satisfied if the weak chain store is
also randomising. But the weak chain store will only randomise if he is indiffer-
ent between fighting and conceding. In this case his expected pay-off from
concession, EPOconcede, must equal his expected pay-off from fighting, EPOfight. 

In the penultimate repetition of the game at n = 2 EPOfight = –1 + Y1m +
(1 – Y1)0 and EPOconcede = 0.24 If these two are equal then –1 + Y1m + (1 – Y1)0 =
0. This solves for Y1 = . Repeating this procedure solves for Yn = .

The equilibrium values of Pn
*, Xn and Yn define the perfect Bayesian Nash

equilibrium of this finitely repeated entry deterrence game in terms of the play-
ers’ strategies:

Strategies of chain store

The strong chain store: always fights entry.

The weak chain store: fight entry if Pn ≥ en–1. 

Randomise between fighting and conceding if Pn < en–1, fighting with probability
Xn where Xn = (e – Pn)/(1 – Pn).

1––
m

1––
m

P2
*

–––––––––––––––
P2

* + (1 – P2
*)X2
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Concedes if conceded before.

Concede in the last round.25

The entrant

Stay out if Pn > en.

Enter if Pn < en.

Randomise between entering and staying out if Pn = en, staying out with
probability .

These strategies describe an equilibrium of the repeated game in which entry
can be deterred as long as Pn ≥ Pn

* = en. Pn
* is the critical value of Pn such that if

Pn = Pn
* the entrant is indifferent between entering and staying out. e is the

critical value of Pn in the last repetition of the game. 
In the first local market, that is the first, the Nth, repetition of the game, PN

*

= eN and therefore entry will be deterred from the start of the game if Ps, the
initial or prior probability that the monopolist is strong, is greater than eN. This
is important because e, the critical value of Ps in the last repetition, is less than
one26 and therefore if N is large eN will be very small. Even if Ps is also quite
small, if N is large eN is likely to be smaller and in this case entry will be
deterred from the start of the game. More generally, as Pn

* = en and e < 1, Pn
* is

smaller at the start of the game and therefore entry is more likely to be deterred
in earlier rounds. But as the game goes on en will get larger as n gets smaller
and therefore entry will become more likely. 

To see this let e = 0.5, Ps = 0.125 and N > 3. As e3 = 0.125 and e4 < 0.125, entry
will be deterred in the first local market (the Nth) and in all subsequent local
markets until the game reaches the pre-penultimate repetition (at n = 3) where P3

* =
0.125. At this point as Ps = P3

* the entrant will randomise between entry and staying
out. If Ps were as small as 0.015625 then entry would still be deterred until n = 6 as
e6 = 0.015625. At this point the entrant will randomise between entering and
staying out and if the entrant enters the weak chain store will randomise between
fighting and conceding. If the weak chain store concedes the entrant will enter in
every subsequent repetition of the game. A possible time line for this version of the
entry deterrence game in which Ps = 0.015625 and N = 10 is illustrated in Figure 8.7.

1––
m
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Figure 8.7 Possible time line for the repeated entry deterrence game: e = 0.5, N = 10, Pn
* = (0.5)n and Ps

= 0.015625
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8.4.2 Implications of the analysis

The analysis in the previous section shows that in the repeated chain store
game, and games like it, when there is imperfect information the entrant only
enters for sure in the nth repetition of the game if the probability that the
chain store is strong is less than the critical value Pn

*. The critical value Pn
*

depends on the entrant’s relative pay-offs and also the stage at which the game
is at. If the initial probability that the chain store is strong is greater than PN

*,
the critical value of Pn at the start of the game when n = N (N is the number of
times the game is repeated) there will not be entry in the first local market. But
the critical value Pn

* gets larger as the game progresses which means that entry
will become much more likely. If the entrant enters (because Pn ≤ Pn

*) the weak
chain store will randomise between fighting and conceding in order to raise
the updated value of Pn–1. But if the weak monopolist concedes, and as he is
randomising there is a chance that he will, the entrant will enter in all the sub-
sequent repetitions of the game. 

The analysis predicts that the likely path of the game is one where initially
the chain store is not challenged by entry as the probability that he will fight is
too high. However, entry becomes more likely as the game progresses. If the
entrant enters, the weak monopolist will randomise between fighting and con-
cession. As long as the weak chain store fights, entry can be deterred in the
next repetition but if he concedes just once the entrant will enter in all the
subsequent repetitions of the game. This theoretical prediction is consistent
with our earlier intuitive expectations that entry is likely to be deterred in early
rounds by fighting or the threat of a fight – Kreps and Wilson (1982) call this the
‘reputation effect’. But in later rounds the reputation effect is worth less to the
chain store and concession is more likely. As noted by Kreps (1990: 542) only a
little uncertainty about the entrant’s pay-offs is needed to change the theoretical
prediction completely and in so doing resolve the chain store paradox. 

Playing again and again . . .

Exercise 8.3

In an entry deterrence game described by the pay-offs in Table 8.3 the
chain store is a monopolist in 20 local markets. The entrant is unsure
about the chain store’s pay-offs: the chain store is either strong or
weak. The beliefs of the entrant are characterised by pn, the probability
that the chain store is strong in the nth repetition of the game. pn is
updated using Bayes’ rule. The initial probability that the entrant is
strong, p20, is and this is common knowledge. The entrant moves first
and decides between entering or not in each of the local markets
monopolised by the chain store. If the entrant enters the strong chain
store fights for sure. The optimal strategy of the weak chain store
depends on the number of repetitions left in the game and the updated
beliefs of the entrant.

1––
2
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There have been hundreds of documented experiments where subjects have
played prisoners’ dilemmas. Researchers have investigated whether demo-
graphic variables influence the likelihood of cooperation, for example whether
women are more likely to cooperate than men (Mason, Phillips and Redington,
1991) or whether risk-averse subjects are more or less likely to cooperate
(Sabater, Grande and Georgantiziz, 2002). Most of the experiments conducted
have involved repeated plays of the game in one form or another. However, in
any experiment the repeated game must terminate at some point and therefore
the conditions corresponding to infinite repetition cannot be replicated. Roth
and Murnighan (1978) argue that even if subjects are unsure about how many
repetitions of the game will be played, subjects will make subjective assess-
ments about the likelihood that any given game is the last. Thus in repeated
games where the subjects are unsure about the number of repetitions that they
will play the conditions approximate those of indefinite repetition. Roth and
Murnighan (1978) conducted a repeated prisoners’ dilemma experiment where
the pay-off matrix was such that mutual cooperation could be part of an equi-
librium along the lines outlined in Section 8.2 as long as the probability of
continuing, P, was greater than . Subjects played three games with varying
probabilities of continuing. They found that cooperation was more likely when

1–
3

Experimental evidence

In the last repetition of the game what is the critical value of p1, p1
*,

such that when p1= p1* the entrant is indifferent between entering and
staying out? Can you derive an expression for the critical value of pn, pn

*

such that when pn = pn
* the entrant is indifferent between entering or

staying out in the nth repetition the game? Will entry ever be deterred?

Table 8.3 Pay-offs in a single stage of an entry deterrence game repeated

20 times 

Pay-offs for each repetition of the game

entrant weak chain store strong chain 

store

entry followed by fight – –1 0

entry followed by concession 0 –1

entrant stays out 0 4 4

5––
6

1––
6

8.5 Experimental evidence
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the probability of continuing was greater than but the difference was not that
great. Roth (1995a) claims that such results are fairly typical and extend to
finitely repeated games. He cites experimental work by Selten and Stoecker
(1986) as illustrative of the later. In the repeated games constructed by Selten
and Stoecker (1986) subjects played a series of 10 prisoners’ dilemmas 25 times.
The 25-times repeated game is called a supergame. Supergames like these give
subjects scope for learning and in this case the opportunity to gain experience
with the 10-times repeated game (see Camerer, 2003: Chapter 6). Selten and
Stoecker found that in the 10-times repeated game, initial periods of mutual
cooperation tended to be followed by an initial defection and mutual defection
thereafter. However, in later rounds of the supergame (the 25-times repeated
game) subjects tended to defect earlier suggesting that they learned the dangers
of not defecting first. Results like those of Selten and Stoecker are consistent
with the analysis of Kreps, Milgrom, Roberts and Wilson (1982) outlined in
Section 8.3 if subjects initially cooperate because they are unsure about the
motivation of their opponents (for example whether they have an inclination
to cooperate perhaps by playing tit-for-tat or whether or not they understand
the backward induction logic). 

There have also been a number of exercises involving computer simulations
of repeated prisoners’ dilemmas. In these simulations the number of repetitions
tends to be large. The well documented simulations initiated by Axelrod
(1980a, 1980b and 1984) are an example. Axelrod ran a series of computer
tournaments between strategies advocated by academics who had written on
the prisoners’ dilemma. The most successful strategy, in terms of the pay-offs
that were accumulated, was tit-for-tat and the other highest scoring strategies
similarly started with unilateral cooperation. Based on these results Axelrod
suggests that a successful strategy needs to be nice, provokable and forgiving. A
nice strategy is one that never defects first. A provokable strategy responds by
defecting in response to defect and a forgiving strategy readily returns to coop-
eration if an opponent cooperates. Tit-for-tat satisfies all three criteria. 

Maynard Smith (1982: 169–70) interprets Axelrod’s results in an evolution-
ary context and derives conditions for the evolution of cooperative behaviour
within or between species. First, there must be repeated interactions between
individuals, second each individual must be able to retaliate against defection
and lastly either individual recognition must be possible or the number of
potential pairings must be small. He cites the example of reciprocal altruism
between male olive baboons that have no known genetic relationship to show
that in higher organisms cooperation can depend on individual recognition.
He argues that this example can readily be modelled as a game that has tit-for-
tat as an evolutionary stable equilibrium, but notes that ‘the conclusion that
cooperative behaviour is a stable outcome rests on the assumption that individ-
uals who are in some sense successful pass their characteristics on to more
“descendants” than those who are not’.

However, while Axelrod’s results suggest that cooperative behaviour should
emerge as a long-run strategy in repeated prisoners dilemma games the

1–
3
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evidence from experiments is that the opposite is more likely. Roth (1995: 29)
suggests that this difference is explained by the ability of subjects in experi-
ments to learn and adapt as they gain experience with the game and the
opponents they are playing.27

The kind of reputation effects analysed in Section 8.4 have been explored in a
number of experiments. Jung, Kagel and Levin (1994) constructed a repeated
entry deterrence game where the monopolist faces different entrants but subjects
also play a supergame variant of an eight-times repeated game. In these experi-
ments the monopolist is either strong or weak. The strong monopolist always
chooses a predatory ‘fight’ response to entry but the weak monopolist prefers
accommodation in a single stage of the game. Entry is only worthwhile for an
entrant if the monopolist concedes (or accommodates). As the game progresses
the entrant has to infer the monopolist’s type on the basis of observed responses
to previous entrants. The pay-offs in the Jung et al. experiments are such that
when the initial probability that the monopolist is strong is one-third there is a
Bayesian equilibrium in which the weak monopolist fights in early repetitions of
the game and the entrant stays out. When experienced subjects (who had played
more than 30 rounds of the supergame) played this game entrants rarely entered
and if they did the predatory fight response by the weak monopolist was com-
monly observed in the first four repetitions of the eight-times repeated game.
Entry followed by accommodation was observed more often in the sixth, seventh
and eighth repetition. Similar results were observed by Cooper, Garvin and Kagel
(1997) in a series of entry deterrence experiments where monopolists with high
costs chose to raise output to deter entry under certain conditions. These results
are generally supportive of Kreps and Wilson (1982). 

Reputation effects in repeated games are not confined to games played
between monopolists and potential entrants. Camerer and Weigelt (1988) con-
structed experiments to test the Kreps and Wilson (1982) model in relation to a
‘trust’ game. They describe the game as one played between a lender and a bor-
rower where the latter is either honest or not. If she is dishonest then in a
single stage of the game she prefers to default on the lender’s loan and if she is
honest she prefers to repay the loan. The monetary pay-offs are such that
lenders would only want to loan to honest borrowers. Each experiment had
75–100 repetitions of an eight-stage game ‘to give the subjects lots of experi-
ence’ (Camerer and Weigelt, 1988: 4). There is a theoretical equilibrium of the
eight-stage game along the lines outlined in Section 8.4.1 in which the lender
will lend and the dishonest borrower repay in the nth repetition of the game if
the probability that the borrower is honest is greater than 0.786n. Given an ini-
tial or prior probability of the borrower being honest equal to the lender
should lend and the borrower repay in the first three repetitions of the game.
In the fourth repetition, lenders and dishonest borrowers randomise and the
probability of default rises as the last repetition approaches. This leads to the
prediction that lending should drop off in the fifth repetition which in
Camerer and Weigelt’s experiments it did but not as sharply as predicted by the
theory. Camerer and Weigelt (1988: 26) concluded that Krep’s and Wilson’s

1–
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(1982) model ‘predicts reasonably well, given its complexity’. However, the the-
oretical prediction did not stand up for some periods of the game. Similar
conclusions are arrived at by authors who have either replicated or extended
Camerer and Weigelt’s experimental work (see Camerer, 2003: 450–3). 

In this chapter you have seen how the subgame perfect equilibrium of a finitely
repeated game with a unique equilibrium in the single-stage game is one in
which the unique equilibrium of the one-shot game is played out in every stage
of the repeated game. This result follows from backward induction logic but
appears to be paradoxical in games like the repeated prisoners’ dilemma and
entry deterrence where a different result seems intuitively more plausible. This
paradox can be resolved if there is uncertainty about the timing of the last rep-
etition of the game or one (or both) of the player’s pay-offs or their rationality.
Resolving the paradox means that cooperation in the prisoners’ dilemma and
fighting entry or its equivalent in games like the chain store game can be equi-
librium strategies. 

The analysis in Section 8.2 showed that when the timing of the last repeti-
tion of the game is uncertain players can devise meta-strategies so that mutual
cooperation is an equilibrium outcome in the prisoners’ dilemma. The analysis
in Sections 8.3 and 8.4 showed that even when the timing of the last repetition
is clear, in repeated prisoners’ dilemma games and games like the chain store
game, players might choose actions that would be irrational in a single-stage
version of the game. It will be rational for them to do this if by doing so they
can either elicit (or deter) an action by the other player that is desirable (or
undesirable) from the first player’s perspective. This is a form of signalling. It
can be effective if there is uncertainty about the type of player and one type
has an incentive to mimic another in order to acquire a reputation for a partic-
ular kind of behaviour. Reputation effects of this kind can arise only in
situations where interactions between players are repeated. An example is the
lending scenario analysed by Camerer and Weigelt (1988) as a trust game. In a
repeated version of the trespass game analysed in Chapter 4 it could also be
rational for Bert to prosecute early trespassers like Angela in order to deter the
rest of the rambling club from crossing his land. This would only work for Bert
if there was uncertainty about the likely outcome of a court case. Similarly, in a
repeated version of the political ambition game analysed in Chapter 2, it could
make sense for a weak incumbent to stand in order to deter future challengers
(see Exercise 2.3). Again this would only work for the incumbent if potential
challengers were unsure about the incumbent’s political vulnerability (see Gates
and Humes, 1997: Chapter 6). Reputation effects might also be relevant in the
interactions between government macroeconomic policy makers and the
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private sector, where the stated intentions of the former need to be credible to
work,28 or the annual negotiations over terms and conditions that take place
between firms and their workers.29

8.1

Matrix 8.3 Oligopoly collusion

Jessup Inc

Rosden Ltd

In the indefinitely repeated version of this prisoners’ dilemma both players are
committed to grim strategies and the probability of another repetition at each
stage is Q. You can substitute Q for P and for a = 3, b = 1, d = 2 and c = 5 into
expression (8.4) to obtain;

EPOcheat = 5 + 2Q/(1 – Q)

The expected pay-off from collusion is found by substituting into expression
(8.3) to obtain:

EPOcollusion = 3/(1 – Q)

Thus the firms should always collude if:

3/(1 – Q) > 5 + 2Q/(1 – Q) 

or:

(3 – 5)/(2 – 5) < Q

This solves for Q > . Thus Q = is the critical value of Q such that if Q > and
the players commit to grim strategies it is rational for them to collude in every
repetition of the game.

2–
3

2–
3

2–
3

Answers to exercises

Answers to exercises

collusion cheat

collusion 3, 3 1, 5

cheat 5, 1 2, 2
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8.2 
The relative pay-offs in Matrix 8.5 satisfy the restrictions imposed in Matrix
8.4. You can therefore substitute for c = 2 and b = –1 into conditions (8.13) and
(8.17) to solve for the critical value of P. 

Matrix 8.5 Rosie and Ben play a repeated prisoners’ dilemma

Ben 

Rosie

Condition (8.13) becomes:

P + (1 – P)(–1) ≥ 0 (i)

or:

2P – 1 ≥ 0 (ii)

(ii) solves for P ≥ . Condition (8.17) becomes:

1 + 2P ≥ 2 (iii)

or:

2P ≥ 1 (iv)

which again solves for P ≥ implying that P = is the critical value of P. If P is
greater than or equal to cooperation is an equilibrium strategy for both players
in all but the last two repetitions of the game. 

8.3
Table 8.3 Pay-offs in a single stage of an entry deterrence game repeated 20 times 

Pay-offs for each repetition of the game

entrant weak chain store strong chain store

entry followed by fight – –1 0

entry followed by concession 0 –1

entrant stays out 0 4 4

5––
6

1––
6

1–
2

1–
2

1–
2

1–
2
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cooperate cheat

cooperate 1, 1 –1, 2

cheat 2, –1 0, 0
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In the last stage of the entry deterrence game described by the pay-offs in Table 8.4,
the 20th repetition, the weak chain store will definitely concede. Therefore the
entrant’s expected pay-off from entering, EPOentry, is p1(– ) + (1 – p1) . If the entrant is
indifferent between entering and staying out then EPOentry must equal her expected
pay-off from staying out which is zero. Thus p1 is defined by setting EPOentry = 0:

EPOentry = p1(– ) + (1 – p1) = 0 (i)

(i) solves for p1* = . 

Substituting for p1 = and X2 = ( – p2)/(1 – p2) (from expression (8.21)) into
expression (8.23) solves for p2 = ( )2. Generalising leads to pn

* = ( )n where pn
* is

the critical value of pn such that if pn > pn
* the entrant will not enter but if pn =

pn
* the entrant will randomise between entry and staying out and if pn < pn

*

the entrant will definitely enter. 
, ( )2 and ( )3 are all greater than but30 ( )4 < . Hence, ( )n < for all

values of n > 4 including n = 20. The analysis in Section 8.4.1 implies that in
these circumstances there is a perfect Bayesian equilibrium of the game in
which the entrant stays out in the first and all the subsequent local markets
until n = 3. At this point in the game there will be entry as pn = < pn

* = ( )3.
The weak chain store will randomise at this point between fighting and con-
ceding and if the chain store concedes there will be entry for sure followed by
concession at n = 2 and n = 1. But if the weak chain store fights31 so that p2 = p2

*

the entrant will randomise between entry and staying out at n = 2. If there is
entry the weak chain store should randomise between fighting and conceding. If
the chain store concedes there will be entry followed by concession at n = 1. If
the chain store fights p1 will be updated and the entrant will randomise between
entry and concession at n = 1. If there is entry the weak chain store concedes.

1 What is the Nash equilibrium of the one-shot version of the game in Matrix
8.6? If the game is infinitely repeated what is the critical value of the
discount factor, F, such that {work, work} in each repetition can be a perfect
Nash equilibrium if both players commit to a grim strategy?

Matrix 8.6 The temptation to free ride

Luke

Darth

5–
6

1–
2

1–
2

5–
6

1–
2

5–
6

1–
2

5–
6

5–
6

5–
6

5–
6

5–
6

5–
6

5–
6

5–
6

5–
6

1–
6

5–
6

1–
6

Problem

Problem

work free ride

work 4, 4 0, 5

free ride 5, 0 1, 1
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1 What is paradoxical about the subgame perfect Nash equilibrium of the
finitely repeated prisoners’ dilemma? How can uncertainty about the timing
of the last repetition of the game resolve this dilemma?

2 If the paradox of backward induction in the finitely repeated prisoners’
dilemma can be resolved by allowing for some uncertainty about the
rationality of one of the players, does this mean that the paradox can only
be resolved if one of the players is irrational? 

3 Why do you think that subjects in experiments sometimes cooperate in
finitely repeated prisoners’ dilemma games?

4 What is the chain store paradox and how can it be resolved?

1 The critical value of F is . Luke and Darth have an incentive to work in
every repetition of the game if F > and both players play a grim strategy of
the kind: work if Darth and Luke have always worked in the past, otherwise
choose free ride. 

1 Discounting allows for the possibility that money today is worth more to the individual than the
same amount of money in the future. Over any reasonable period of time, this will be true for
most people because money today can be invested and earn interest so that a sum of money
received today is worth more than the same amount of money received in the future. To allow for
this, the value of future money has to be discounted by the interest rate to arrive at its present
value (its value today). Although, the economic literature on time discounting is not without
controversy, in experiments even animals appear to discount future benefits, ‘sometimes at
alarmingly high discount rates’ (Kagel, 1987: 177). 

2 In Selten’s original formulation (Selten, 1978) there are 20 towns, 20 potential entrants and
unique entry dates are assigned to each town. For a discussion of Selten’s formulation see
Rosenthal (1981).

3 Although the most commonly quoted version is attributed to Friedman (1971).

4 Alternatively we could assume they played a strategy like tit-for-tat and derive a similar result but
the analysis is more complicated (see, for example, Hargreaves Heap and Varoufakis, 1997: Chapter
6, Section 3).

1–
4

1–
4
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5 Communication is not necessary but it does make the equilibrium outcome more plausible.

6 The sum of an infinite series like this can be found by multiplying through (8.1) by P to obtain:

P. EPOcoopJoe = P + P2 + P3 + P4 +…Pn+1 + …= ∑
n = ∞

n = 1

Pn (8.1.1)

Subtracting (8.1.1) from (8.1) gives (1 – P) EPOcoopJoe = 1 and therefore EPOcoopJoe =  . 

7 The sums of the infinite series in (8.3) and (8.4) are found in the same way as the sum of the
infinite series in (8.1) (see previous note).

8 See note 1 for the intuition here. As an example consider €100 invested today at a rate of interest,
r, of 10 per cent (r = 0.1). In a year’s time this amount will be worth €110 (€100 multiplied by
(1+ 0.1)). So €100 in a year’s time must be worth less than €100 today. To see this consider the
value of   €110 received next year. If the interest rate is 10 per cent the present value (the value
today) of  €110 in a year’s time is only  €110/(1 – 0.1) = €100 as €100  invested today at a an
interest rate of 10 per cent will be worth €110 in a year’s time. More generally the present value of
a sum of money, X, received in a year’s time is  X/(1 + r) where r is the rate of interest and the
present value of X received in n year’s time is X/(1 + r)n.

9 As (1 + r) > 1, 1/(1 + r) < 1 and therefore X/(1 + r) must be less than X.  And for any positive value
of n X/(1 + r)n+1 <  X/(1 + r)n.

10 In experiments tit-for-tat has been shown to be particularly successful in generating the
cooperative outcome in repeated prisoners’ dilemmas possibly because of its relative simplicity (see
Rapaport, 1974). However, from a theoretical perspective tit-for-tat can only sustain cooperation in
a perfect Nash equilibrium if b + c ≤ 2a otherwise  the players might prefer to alternate between
{cooperate, defect} and {defect, cooperate} as the game progresses. 

11 The stick is the punishment and the carrot is the reward which follows punishment if a deviant
player reverts to cooperation (see Abreu, 1986 or for a summary Lyons and Varoufakis, 1989). If P
or F is not high enough for grim strategies to enforce cooperation  in the indefinitely or infinitely
repeated prisoners’ dilemma then an alternative ‘stick and carrot’ strategy  that punishes defection
(the stick) for a shorter duration (the carrot) may be able to generate the cooperative outcome. 

12 If you are satisfied with the knowledge that Kreps et al. (1982) confirm the intuition that
uncertainty for one of the players about the other’s strategy for the game resolves the paradox of
backward induction, you may wish to skip the analysis in Section 8.3.1 at least on your first
reading of this chapter.

13 For simplicity zero discounting is assumed.

14 If Row is rational and Column knows then Mc2 = defect.

15 The equilibrium will be Bayesian since it will need to incorporate the players’ beliefs modelled by
P. Since the players’ equilibrium strategies for the whole game will need to specify moves in
response to actions by the other player that might never happen the equilibrium will also need to
be  perfect (see Chapter 7, Section 7.2).

16 It seems a little odd but by cooperating a rational Row is trying to signal that he is in fact
irrational.

17 Even Kreps et al. (1982: 247) admit this would be difficult. 

18 As in Chapter 7, Section 7.2, I am going to delineate the entrant as female and the monopolist
as male. 

19 See Note 8 in Chapter 7 and the answer to Problem 1 in that chapter: e is the entrant’s pay-off
from entry followed by concession divided by her pay-off from entry followed by concession
minus her pay-off from entry followed by a fight:  e/(e – (e – 1)) = e.

1–––––
1 – P

Notes
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20 If you are satisfied with the knowledge that Kreps et al. (1982) confirm the intuition that
uncertainty about the pay-offs of the chain store resolves the chain store paradox then you may
wish to skip Section 8.4.1.

21 See expression (7.10) in Chapter 7 and the discussion that precedes it. In expression (7.10) ws is
the probability that the weak monopolist sends the signal, Prob(SIG Mw). Here the signal is
fighting in the previous round and the weak monopolist or chain store is assumed to fight with
probability Xn.

22 The weak monopolist will randomise between fighting and conceding to raise Pn if Pn < Pn
*. As

concession is potentially very expensive the weak monopolist will randomise with just enough
probability of concession so that Pn = Pn

* and no more. 

23 Remember that if there is entry in the last localised market when n = 1, the weak chain store will
concede as there is no incentive to fight to deter entry in any subsequent repetitions, as there are
none. This implies that X1 = 0 or  (1 – X1) = 1.

24 (1 – Y1) is the probability of entry in the last round and Y1m + (1 – Y1)0  is the weak chain store’s
expected pay-off in the last repetition of the game if he fights in the penultimate repetition
(remember that in the last repetition of the game, the weak chain store always concedes, he has no
incentive to do anything else).

25 The weak chain store fights entry if Pn ≥ en–1 = Pn–1
* because the chain store does not need to raise

Pn–1 by randomising in the nth repetition. Remember that randomising is risky because there is a
positive probability of concession and if the chain store concedes just once there will be entry in
all the subsequent local markets; the weak chain store only randomises to raise Pn–1 which he
doesn’t need to do if Pn is already greater than or equal to Pn–1

*.

26 Remember that P1
* equals the entrant’s pay-off e divided by (e – (e – 1)) from expression (8.22) and

this equals e. 

27 The role of learning in strategic games more generally has been investigated  extensively in
experiments  with repeated games (see Camerer, 2003: Chapter 6 for a summary and Garcia-
Gallego, 1998 for an example in relation to oligopoly markets). 

28 See, for example, Bachus and Driffill (1985) for an application.

29 See, for example, Carmichael (1992).

30 ( )2 ≈ 0.694 > 0.5,  ( )3 ≈ 0.579 > 0.5 but  ( )4 ≈ 0.482 < 0.5.

31 Staying out with probability Yn= because from above Yn =  and m = 4 in Table 8.3.1
––m

1–
4

5–
6

5–
6

5–
6

Playing again and again . . .



9

BARGAINING AND
NEGOTIATION

Concepts and techniques

● The Nash bargaining solution 

● The Nash product

● Binding contracts

● Threat outcomes

● Bilateral monopoly

● Ultimatum games

● Alternating offers.

After working through this chapter you will be able to:

● Analyse cooperative and non-cooperative bargaining games

● Explain the difference between a cooperative game and a
non-cooperative game

● Define the Nash bargaining solution 

● Characterise the Nash bargaining solution in cooperative bargaining
games

● Model a bargaining game as a non-cooperative sequential-move game

● Determine the subgame perfect Nash equilibrium of a non-cooperative
bargaining game.



In this chapter you are going to see how game theory can be used to analyse
interactions that involve negotiation or bargaining. The essential feature of a
bargaining situation is that two or more people are competing for shares in a
divisible resource. However, there is a conflict of interest as each contestant
wants a larger share for himself and a larger share than the other contestants
would wish to grant him. Nevertheless, all the contestants would prefer to
share the resource than allow the negotiations to breakdown. This implies that
there is scope for a mutually beneficial outcome in the event of agreement.
That is, there are possible gains from trade.

In this chapter we are going to look at two different models of bargaining. In
Sections 9.1 to 9.3 cooperative bargaining games are analysed. Non-cooperative
games are analysed in Sections 9.4 and 9.5. Bargaining games have been the
subject of a considerable amount of experimental work. The main results of
this work are outlined in Section 9.6. 

In Chapter 1 cooperative games were defined as games in which agreements are
binding or enforceable, for example by law. When agreements are binding
players can negotiate outcomes that are mutually beneficial. In non-coopera-
tive games agreements are not binding and players may have an incentive to
deviate from a collusive agreement if they perceive deviation to be to their
advantage. Therefore the outcome of a game in which binding agreements are
possible is likely to be different from the outcome of the same game when they
are not. The distinction between cooperative and non-cooperative games is
clear in prisoners’ dilemma games like the one in Matrix 9.1.

Matrix 9.1 Prisoners’ dilemma

Prisoner 2

Prisoner 1

236 Bargaining and negotiation

Introduction

9.1 Cooperative and non-cooperative bargaining theory

deny confess

deny –1, –1 –3, 0

confess 0, -3 –2, –2
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If the prisoner’s dilemma in Matrix 9.1 is a non-cooperative, single-stage game
then as you saw in Chapter 3 the dominant strategy of both players is to con-
fess. This is not a Pareto efficient outcome since both players could improve
their pay-off if they agreed to deny. But in a non-cooperative game neither
player can rely on the other to keep to an agreement to deny as it is in their
individual interests to confess. On the other hand, if the players could make
the agreement to deny binding they would both benefit.1 This shows how
binding agreements can change the predicted outcome of a game. If a game is
cooperative these kinds of agreements are possible. 

More generally if players can make binding agreements they have an incen-
tive to agree on outcomes that they won’t regret. They will regret signing up to
a particular agreement if they believe that they could have negotiated a pay-off
improving alternative. If no pay-off improving alternative is negotiable then
the outcome is optimal from the player’s perspective. If the negotiated outcome
is optimal for all the players then it is a Pareto efficient outcome.2 In the pris-
oners’ dilemma in Matrix 9.1 {deny, deny} is a Pareto efficient outcome since
neither player could improve their pay-off without making the other worse off.
In cooperative bargaining theory the players are assumed to be able to agree on
Pareto efficient outcomes. When bargaining is not cooperative, agreements are
not binding and the determination of the bargaining outcome through a hag-
gling process of offer, counter-offer and concession is critical. In
non-cooperative bargaining games this process is modelled explicitly as part of
a sequential-move game in which the players take turns making offers. 

Bargaining is likely to be a feature of any transaction where the object of the
trade is unique in some sense but its desirability is limited. Uniqueness gives
players a degree of monopoly or bargaining power and this is what makes a
breakdown in negotiations so costly. If a contestant had no monopoly power
then, in the event of breakdown, the other contestants would simply go else-
where. Monopoly power allows players to influence the terms of trade, it
elevates them to the status of price makers rather than price takers. If both
sides of a trading relationship have monopoly power then they need to negoti-
ate the terms of the trade. In a simple sales transaction between a buyer and a
seller, the buyer prefers a lower price and the seller a higher price; if neither is a
price taker they will haggle over price. The lower the negotiated price the
greater the buyer’s share of the gains from the trade and the lower the seller’s.
People also bargain over ‘who gets what’ when they are splitting a divisible
resource such as a sum of money, a territory, a cake or a pie and any positive
fraction is preferred by both but each wants the greater share. Bargaining over
‘who does what’ is also common, for example when family members negotiate

Bargaining problem

9.2 Bargaining problem
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over the allocation of household chores to determine who does the washing up
or walks the dog. And it is not only people that bargain. Maynard Smith (1982:
151–61) describes the process of egg-trading by the black hamlet, a coral reef
fish, and the shell trading of hermit crabs, to illustrate this point.

An example of bargaining in the human world is the annual round of wage
negotiations conducted between employers and their workers in labour mar-
kets characterised by bilateral monopoly. In a bilateral monopoly, both the
employer and the workers have monopoly power and neither is a price or in
this case a wage taker. The workers will have monopoly power if they are repre-
sented by a single union. In this case the union is a monopoly seller of their
labour. An employer has monopoly power when it is the only employer or the
main employer in a labour market. An employer in this situation is called a
monopsonist. Some large firms in isolated towns are effectively monopsonists
because they employ a high percentage of the town’s population. Alternatively,
if a number of firms that are the only employers of a particular kind of skilled
worker collude, by forming an employers’ organisation, then this would put
them in a monopsony position. The clubs in some national sports leagues oper-
ate in this way. For instance, if the clubs in the English Football League agree to
introduce a salary cap or some other restriction on wages, then the footballers
concerned, unless they are good enough to play elsewhere, have no choice but
to accept the wage control.3

In their negotiations over the wage the employer and the union in a bilat-
eral monopoly are effectively bargaining over a share in the firm’s profits. The
firm prefers a lower wage and the union a higher wage. The higher the wage,
the higher the union’s share of the firm’s profits. The agreed wage will be the
outcome of negotiations between them and any agreement will depend on
their relative bargaining power. However, all we can really be sure of at the
outset of bargaining is the upper and lower limits of the bargaining zone or
zone of indeterminacy. Bargaining theory attempts to predict the likely out-
come within this zone. 

To illustrate the bargaining problem we can look in more detail at the partic-
ular example of a single firm bargaining with a single union representing all
the firm’s employees. We will examine the situation first from the firm’s per-
spective and then the union’s (for a more detailed discussion see, for example,
Sapsford and Tzannatos, 1993: Chapter 11). The situation from the firms’ per-
spective is illustrated in Figure 9.1. 

The labour demand curve reflects the incremental or marginal contribution
of labour to the firm’s income, its revenue. The labour demand curve is down-
ward sloping in line with the theory of diminishing marginal returns to
variable factors. This implies that the marginal contribution to output of labour
falls as more labour is hired. As the firm is a monopsonist it faces an upward
sloping labour supply curve; to attract more labour it has to pay a higher wage
to all its workers. The labour supply curve determines the average cost of
labour. Because average cost is rising the incremental or marginal cost of labour
must be higher than average cost4 and therefore the marginal cost curve lies

Bargaining and negotiation
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above the labour supply curve. The firm maximises profits by hiring labour up
to the point where the marginal cost of hiring labour is equal to the marginal
revenue it earns.5 This condition is satisfied when the firm employs Lf labour.
To employ Lf labour it will need to pay at least wf. 

The situation from the union’s perspective is illustrated in Figure 9.2. The
union wants to maximise its gains from the negotiations as well. The union’s
gains are measured in terms of its economic rent. This is the difference between
its members’ total wage income and their total willingness to supply labour.
The latter is determined by their individual preferences over work and leisure
and is reflected by the area under the labour supply curve.6 The labour demand
curve determines the union’s average return or revenue and since this is down-
ward sloping the union’s marginal revenue curve lies below the labour demand
curve. The union’s economic rent is maximised when the union’s marginal
costs of supplying labour are equal to its marginal revenue. This condition is
satisfied when Lu of labour is hired and paid a wage of wu.

Bargaining problem

Figure 9.1 The monopsonist firm’s profit-maximising choice

Wage rate

wf

Lf

Firm’s marginal cost
of hiring labour

Labour supply curve:
average cost of labour

for the firm

Labour demand curve:
marginal revenue product

of labour for the firm

Labour employed

Figure 9.2 The union’s perspective

Wage rate

wu

Lu

Labour supply
curve: marginal

cost of supplying
labour for union

Labour demand
curve: average

revenue for union

Union’s marginal
revenue

Labour employed



240

Since both the firm and union have monopoly power neither of their preferred
outcomes are guaranteed and there is a zone of indeterminacy between wu and
wf as illustrated in Figure 9.3. 

The upper limit of the bargaining zone is determined by wu and the lower
limit is determined by wf. wu (the wage that maximises the union’s monopoly
rent) is a possible starting wage demand for the union and wf (the wage that
maximises monopsony profit) is a possible initial wage offer for the firm. 

However, the bargaining zone may be narrower than the zone of indetermi-
nacy indicated in Figure 9.3. The union will be unlikely to agree to any wage
less than that its members could earn if they left the firm and secured employ-
ment elsewhere, if necessary by moving home or changing career. This wage,
wo, reflects the union’s best alternative wage option, the wage that would be
earned by the union’s members if no agreement was made between the firm
and the union. The firm will also be unlikely to agree to any wage higher than
the wage, w∏min, that leaves the firm with the minimal level of profits that it
could make by closing down or sacking all the workers and hiring new ones. wo

and w∏min are the threat outcomes of the union and the firm, their best alter-
native outcomes or their fallback positions, in the event of no agreement. The
pay-off of a player at their threat outcome determines the credibility of their
threat not to accept the other’s offer and to hold out for more. The better a
player’s fallback position the more credible their threat of resorting to it and
the less they will be willing to concede to avoid it. It seems unlikely that a
player would agree to something that leaves them worse off than their out-
come in the event of no agreement. We can therefore be fairly confident that
any agreed wage outcome will lie between wu and wf and that it will also be
higher than or equal to wo but less than or equal to w∏min. Where the precise
outcome will lie between these extremes and how much labour will be
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employed will depend on a process of negotiation between the union and the
firm. Bargaining theory attempts to predict the likely outcome of that process
in this particular situation and others like it.

In cooperative game theory agreements are binding by definition. Wage bar-
gaining between an employer and a labour union is an example of cooperative
bargaining since the outcome of the game is a legally binding contract if they
can agree. It is a threat outcome if they do not, where as noted above a player’s
threat outcome or threat utility is their best alternative outcome in the event of
no agreement. In cooperative games players have an incentive to make agree-
ments that are worth making and that they won’t regret. As stated by Friedman
(1986: 6) it is therefore ‘natural to focus attention on what players ought, in
some sense, to agree on’. Two restrictions on the bargaining outcome follow
from such common-sense observations:

1 Individual rationality: players won’t agree to anything less than they could
get by not reaching an agreement.

2 Group rationality: players should agree on something they cannot jointly
improve on.

Individual rationality indicates that the players won’t agree to any outcome
that gives them a lower pay-off than their pay-off if there is no agreement.
Group rationality implies that the negotiated outcome should be Pareto effi-
cient. In geometric terms these restrictions mean that the outcome of
bargaining must lie on the contract curve or pay-off possibility frontier (some-
times known as the utility increments frontier). 

Figure 9.4 illustrates some of these features in relation to the wage bargain-
ing problem outlined in Section 9.2. The firm’s utility, Uf(w), for alternative
wage outcomes, w, is measured along the horizontal axis and the union’s util-
ity, Uu(w), is measured along the vertical axis. The higher the wage outcome
the greater the union’s share of the firm’s profits and the higher the union’s
utility but the lower the firm’s utility. The curve labelled CC’ is the pay-off pos-
sibility frontier. Along the pay-off possibility frontier, CC’, all the firm’s profits
are shared between the firm and the union. As the union’s share of profits is a

Cooperative bargaining theory

● Threat outcome: the fallback position of a player in a bargaining
game. A player’s pay-off at their threat outcome is their best
alternative pay-off in the event of no agreement.
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negative function of the firm’s share the pay-off possibility frontier maps the
maximum possible value of Uu(w) as a function of Uf(w). That is, movements
down and along CC’ (e.g. from tf to tu) imply a lower wage outcome as the
firm’s utility is rising and the union’s falling. At C all the firm’s profits accrue to
the union and at C’ they accrue to the firm. Outcomes that lie below CC’ leave
some profits unclaimed. Such outcomes do not satisfy group rationality since at
least one player could do better without making the other player worse off7 by
securing a wage outcome along CC’. Wage outcomes above CC’ are not avail-
able – the firm’s profits are not high enough. 

Tf and Tu represent the threat outcomes of the firm and the union – their
respective utilities in the event of no agreement. The point T is generally
referred to as the threat point. You saw in the previous section that Tu is deter-
mined by the union’s best alternative wage offer which I called wo. If the firm
makes some minimal level of profits, ∏min, in the event of no agreement, then
the firm’s utility at Tf will be the same as its utility if it agrees to a wage that
leaves it with ∏min (w∏min in the discussion above). Individual rationality addi-
tionally implies that the union will not accept any share of profits than gives
the union less utility than Tu. Similarly, the firm won’t accept any share of prof-
its lower than that implied by Tf. Together, group rationality and individual
rationality imply that the wage outcome should lie between tf and tu along CC’. 

To narrow the range of possible outcomes further Nash (1950) proposed
three additional axioms in addition to that of Pareto efficiency that he thought
represented reasonable restrictions on possible agreements. These additional
axioms were:8
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1 Anonymity or symmetry: the solution should not depend on the labelling of
the players – who is labelled f and who is labelled u in Figure 9.4. This axiom
implies that when the players’ utility functions and their threat utilities are
the same they receive equal shares. That is, any asymmetries in the final
pay-off should only be attributable to differences in their utility functions or
their threat outcomes. The outcome should be independent of interpersonal
comparisons of utilities.

2 Transformation invariance or invariance to equivalent utility
representations: the solution shouldn’t change if either player’s utility
function is altered in a linear way. This means that the solution is
independent of the units in which utility is measured. For example, if the
bargain is over money and one player’s utility for money doubles this
shouldn’t change the monetary outcome but whatever the player gets he
will simply value it twice as much.

3 Independence of irrelevant alternatives: if the number or range of possible
outcomes is restricted but this doesn’t effect the threat point and the
previous solution is still available, the outcome shouldn’t change.

With these restrictions imposed Nash showed that there is a unique solution to
the bargaining problem known as the Nash bargaining solution.9 The Nash bar-
gaining solution is the outcome which maximises the product of the players’
gains from any agreement. This product is known as the Nash product. 

In Figure 9.5 the point N represents a wage that gives the firm’s employees wN.
The union’s utility from wN is Uu(wN) and the firm’s utility is Uf(wN). The
union’s gain from a wage agreement wN is the utility increment measured by
the vertical distance Uu(wN) – Tu (XT in the diagram). The firm’s gain from the
agreement at N is the utility increment represented by the horizontal distance
Uf(wN) – Tf (TY in the diagram). Multiplying these two utility increments
together gives (Uu(wN) – Tu)(Uf(wN) – Tf). This is the Nash product indicated by
the point N and corresponding to the wage agreement wN, that is: 

Nash product at N: (Uu(wN) – Tu)(Uf(wN) – Tf) (9.1)

Can you see that the Nash product (Uu(wN) – Tu)(Uf(wN) – Tf) is also represented
geometrically by the area of the shaded rectangle XTYN? For any feasible wage

Cooperative bargaining theory
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● The Nash product: the product of the players’ gains from agreement.

● The Nash bargaining solution: the outcome of bargaining that
maximises the product of the players’ gains from agreement.
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agreement, w’, represented by a point along the pay-off possibility curve, a sim-
ilar rectangle can be drawn that has height (Uu(w’) – Tu) and length (Uf(w’) –
Tf). For any given wage agreement, the larger the corresponding rectangle, the
larger will be the Nash product. In other words, the wage that maximises the
Nash product is the wage agreement that produces the largest rectangle in the
area tfTtu (below CC’). Since I have drawn Figure 9.5 so that rectangle XTYN is
(approximately) the largest rectangle that can be drawn in tfTtu, wN is the wage
that maximises the Nash product. That is, wN is the Nash bargaining solution,
where wN is defined by the condition that:10

(Uu(wN) – Tu)(Uf(wN) – Tf) > (Uu(w’) – Tu)(Uf(w’) – Tf) (9.2)

where w’ is any other feasible wage outcome. 
To generalise this result, assume that there are two players, A and B, who are

bargaining over a prize, X. A’s share of X is denoted by sA and B’s by sB. The Nash
bargaining solution is given by the shares sA

* and sB
* that maximise the utility

increments or Nash product (UA(sA) – TA) multiplied by (UB(sB) – TB), that is:

The Nash bargaining solution maximises: (UA(sA) – TA)(UB(sB) – TB)          (9.3)

where UA(sA) is the utility of player A from the share sA and UB(sB) is the utility
of player B from the share sB. TA and TB are the utilities of the players at the
threat point. The shares sA

* and sB
* also need to satisfy the condition that sA

* +
sB

* = X so that UA(sA
*) and UB(sB

*) lie on the players’ pay-off possibility frontier.
Dropping the axiom of symmetry generates the asymmetric or generalised

Nash bargaining solution. In the wage bargaining illustration the generalised
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Nash bargaining solution would be the wage outcome, w**, that maximised the
weighted utility increments product (Uu(w) – Tu)α(Uf(w) – Tf)

β. α and β are mea-
sures of the relative bargaining power of the union and the firm and it is
usually assumed that α + β = 1. α and β will reflect the relative impatience of
the players to come to an agreement and this will depend on the costs they
incur while the negotiations are ongoing. For example, if the workers threaten
to take industrial action while the wage is being negotiated then the union’s
disagreement costs would be reflected by the reduced earnings of its members
and the firm’s by its lost revenue.11 In a more general context α and β could be
measured by the rate at which the players’ discount future pay-offs since more
impatient players will discount future pay-offs away more quickly. 

In the next section we are going to look at three examples of cooperative
bargaining. The first is an example of decision making in households. The
second example is a simple bargaining problem that captures the essence of
many bargaining scenarios. The third example is a formal extension of the
wage bargaining problem examined in Section 9.2. 

9.3.1 Bargaining in households

In multi-person households there are gains to be made from cooperation but
there is also likely to be disagreement on how those gains are distributed. For
example, all household members clearly benefit if their home is clean but they
are likely to disagree on who does the bulk of the cleaning. More generally
household members need to decide on how to allocate their time between paid
work and unpaid work in the home. There is a large literature on how these
kinds of decisions are made originating with Becker (1965). While Becker’s origi-
nal arguments hinged on the idea of comparative advantage and specialisation,
more recent work has modelled decision making in the household as the out-
come of a bargaining process (see Himmelweit, 2001 for a summary). 

In two-person bargaining models of household decision making the house-
hold members are usually assumed to be a man and a women and bargaining is
over the division of resources within a marriage. Two possibilities have been
considered with respect to the threat outcomes of the players. In the divorce
threat model the threat point is determined by the pay-offs of the man and
woman in the event of a complete breakdown of the marriage. In the separate
spheres model the threat point is determined by the utilities of the man and
woman when they decide on their allocations of time independently in their
own self-interest (the non-cooperative outcome). 

Figure 9.6 illustrates the household decision-making problem for a ‘typical’
married couple. HH’ is the pay-off possibility frontier and represents the set of
all possible utility combinations for the man and woman. The woman’s utility
is maximised at H and the man’s at H’. H could for instance represent a situa-
tion in which the woman does no paid work and the couple pay for home help
out of the earned income of the man who works a ten-hour day every day.

Cooperative bargaining theory
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H’ on the other hand could represent the situation where the woman is a vir-
tual house slave and has no free time for leisure activities. The threat point is
initially defined by Tw1 and Tm1 at T1. The threat outcomes could represent
their utilities either outside the marriage (after divorce) or within the marriage
(the non-cooperative outcome). When the threat outcomes are Tm1 and Tw1 the
Nash bargaining solution lies between tm1 and tw1 approximately at M. More
precisely, it is determined by the allocations of time, between paid and unpaid
work, that maximise the Nash product (Uw – Tw1)(Um – Tm1).

Figure 9.6 shows how the Nash bargaining solution can change if the threat
outcomes of the players change. In the divorce threat model the threat out-
comes could change if there was a change in the law that gave the woman a
stronger claim on her husband’s income in the event of divorce. In the separate
spheres model the woman might improve her threat utility by acquiring more
human capital since this would increase her income in the non-cooperative
outcome. The man’s utility at his threat outcome would worsen if he became
more financially dependent on his wife. This might happen if he was demoted
at work or made redundant. 

If the woman’s threat utility rose to Tw2 and the man’s fell to Tm2 the new
threat point would be T2. The Nash solution now lies between tm2 and tw2,
approximately at W. More precisely the solution is determined by the alloca-
tions of time that maximise (Uw – Tw2)(Um – Tm2). This is a better outcome for
the woman but the man is worse off. Notice that any outcome between tm2 and
tw2, not just W, is preferred by the woman to any outcome between tm1 and tw1.
The opposite is true for the man. Only the threat utilities have changed so the
improvement in the woman’s position at W relative to M can only be attribut-
able to the improvement in her threat outcome and the worsening of the
man’s. That is, the Nash bargaining solution is more advantageous for the
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women if her fallback position improves and that of the man worsens. This is a
general result. It leads to the theoretical prediction that players can only be
advantaged by a relative improvement in their threat outcome. However, an
improvement in a player’s threat outcome won’t necessarily improve her pay-
off from the Nash bargaining solution. This will depend on the amount by
which her threat utility improves and what if anything happens to the other
player’s threat outcome. 

9.3.2 Splitting a pie

In splitting a pie there are two players, Jessie and Rosie, who
are trying to divide a pie between them. Each would like a
bigger share. Jessie’s share is sj and Rosie’s share is sr. They
derive the same utility from the pie which means that their
utility functions are identical. Jessie’s utility function is U(sj) =
Ksj and Rosie’s is U(sr) = Ksr where K is a constant. If they

cannot agree on how to divide the pie their mother will take it away from them
and give it to their pet dog. Therefore their utility in the event of no agreement
is zero which implies that at the threat point Tj and Tr are both zero.

The Nash bargaining solution of splitting a pie is that sj
* = sr

* = . In this case
the solution follows straightforwardly from the Pareto efficiency and symmetry
axioms. Pareto efficiency implies that sj + sr = 1. The symmetry axiom implies
that each player should receive an identical share if their valuations are equal
which Jessie’s and Rosie’s are since their utility functions are identical.12

If the assumption of identical utility functions is dropped then as Jessie
becomes more risk averse13 relative to Rosie, Jessie’s pay-off, sj

*, falls relative to
sr

* (see Osborne and Rubinstein, 1990: 18 or Binmore, 1991: 193–5). The gener-
alised Nash bargaining solution of splitting a pie maximises (U(sj))

α(U(sr))
β

subject to sj + sr = 1. With identical utility functions this solves for sj
* = and

sr
* = . Since both sj

* and sr
* depend on α and β the solution depends on

Jessie and Rosie’s relative bargaining power. Jessie’s share will be higher, and
Rosie’s lower, the higher Jessie’s bargaining power represented by α relative to
Rosie’s bargaining power represented by β. If α = β their bargaining power is the
same and sj

* = sr
* = as you have already seen when α = β = 1. 

These are general results that can be extended to the case where the threat
utilities take a positive value. In splitting a pie if Tj and Tr are both positive
then the generalised Nash bargaining solution with identical utility functions is
that sj

* = Tj + (1– Tj – Tr) and sr
* = Tr + (1 – Tj – Tr). Now sj

* and sr
*

depend on the value of Jessie’s and Rosie’s threat outcomes as well as α and β
(see Montet and Serra, 2003: Section 5.2 or Booth, 1996: 150–1).

Taking these results together, Nash bargaining theory predicts that the out-
come of cooperative bargaining games will depend on the relative bargaining
power of the players, their attitudes to risk and their threat outcomes. These
predictions seem relatively uncontroversial and they can be tested. For

β–––––
α + β

α–––––
α + β

1–
2

β–––––
α + β

α–––––
α + β

1–
2
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instance, Carmichael and Thomas (1993) have examined the extent to which
the transfer fees of footballers in the English football leagues are determined by
the relative bargaining power of buying and selling clubs. Their evidence is
largely supportive of Nash bargaining theory as is more recent work on trans-
fers in association football by Gerrard and Dobson (2000). The related
experimental evidence is discussed in Section 9.4. 

9.3.3 Nash wage bargaining

The literature on wage bargaining between employers and labour unions is
extensive. The example in this section is illustrative of the axiomatic or Nash
approach to wage bargaining (for a more detailed discussion see Booth, 1996:
Chapter 5). In this model bargaining is over the wage only but the union’s util-
ity is assumed to depend on the number of union members employed by the
firm as well as their wages. The union’s utility function is given by:

The union’s utility function: Uu(w) = Lw + (M – L)wo

where M is the number of union members, L is the number of union members
employed by the firm, w is the negotiated wage and wo is the wage that union
members are paid if they are not employed by the firm (their outside wage
option). Note that this utility function implies that the union is risk neutral
and Tu, the union’s threat utility, is given by Mwo. With this utility function
Uu(w) – Tu is given by:

Uu(w) – Tu = Lw + (M – L)wo – Mwo = Lw – Lwo = L(w – wo) (9.4)

The firm’s utility function is given by:

The firm’s utility function: Uf(w) = TPL – Lw

where TPL is the total product of labour,14 the total contribution of labour to
output, and Lw is the wage bill. With this utility function the firm, like the
union, is risk neutral and the firm’s utility is equal to its profits if labour is the
firm’s only input and product price equals 1. In this case if the wage is equal to
the average product of labour, , the firm profits are zero. The firm can make
zero profits in the event of no agreement so a wage equal to the average prod-
uct of labour is the absolute maximum that it will agree to. Since the firm’s
threat utility, Tf, is zero the firm’s gain from any agreement is: 

Uf(w) – Tf = TPL – Lw (9.5)

The Nash product is L(w – wo)(TPL – Lw) and the Nash bargaining solution, the
wage that maximises the Nash product, is found by differentiating the Nash
product with respect to w. This procedure15 solves for w* where:

TPL–––
L 
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wo + 
Nash bargaining solution = w* = –––––––––                                                              (9.6)

2

is the average product of labour and therefore w* is equal to the average of
the outside wage option and the average product of labour. As wo is the mini-
mum acceptable offer for the union and is the maximum payable by the
firm, with risk-neutral utility functions the predicted wage, the wage that solves
the Nash bargaining problem, shares the potential gains from trade equally. 

In strategic bargaining theory the bargaining process is modelled as a dynamic
game in which the players take turns making proposals and counter-proposals.
The process of offer and counter-offer comes to an end when one party makes
an offer that is accepted by the other. Since the players move sequentially the
appropriate solution concept is that of a subgame perfect Nash equilibrium. As
you saw in Chapter 4 a defining characteristic of subgame perfect equilibrium
strategies was that any implied threats are credible. In bargaining models the
players’ strategies are the shares that they propose. A counter-proposal repre-
sents a threat to hold out for a better offer from the other player. In a subgame
perfect Nash equilibrium, any counter-offer of this kind needs to be credible.

If there is a limit to the number of offers and counter-offers that can be
made the game is finite. Finite bargaining games can be resolved using back-
ward induction to work back from the last offer made. An extreme example of
a finite bargaining game is an ultimatum game. In ultimatum games one player
makes an initial offer, the other either accepts or refuses. If the second player
refuses the first player’s offer both players receive a pay-off of zero.

In bargaining games there will usually be some bargaining or negotiating
costs for the players. These give the players an extra incentive to come to an
agreement. Bargaining costs may be direct or indirect. If bargaining costs are
direct a cost per bargaining period has to be paid that is independent of a
player’s actual pay-off from the bargaining game. For example, players may face
a fixed penalty every time one of them rejects an offer from the other.
Bargaining with fixed costs is analysed in Section 9.4.3. If bargaining costs are
indirect the value of the object of bargaining, the prize, shrinks or decays. The
rate at which the prize decays can be proportionate to the value of the prize. If
decay is proportionate the value of the prize shrinks but never to nothing so
the game has no predetermined end. Costs are incurred this way if time has a
value and players have varying degrees of impatience. This will then be
reflected by the rate at which they discount their future pay-offs. With dis-
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counting, the value of the prize shrinks towards nothing but always retains a
positive value, albeit one that might become very small. Bargaining games where
costs are proportional to the value of the prize are analysed in Section 9.4.2.

If the rate of decay is not proportionate then the value of the object of bar-
gaining shrinks or decays by some fixed amount rather than some fraction
with each new offer. This type of bargaining cost makes bargaining a finite
game as there will always be a point where the maximum pay-off from the bar-
gain, the value of what’s left of the prize, is zero. If the prize is worth nothing
there is no point in continuing so the game will end. You can think about an
ultimatum game in these terms. In an ultimatum game the players’ bargaining
costs are so high that after one round of offer and counter-offer the object of
bargaining is worth nothing. Games in which costs are not proportional to the
value of the prize are analysed in the next section. 

9.4.1 Bargaining games with non-proportional decay

The ultimatum game illustrated in Figure 9.7 is a strategic version of the pie split-
ting game you saw in Section 9.3.2. Jessie and Rosie are still trying to divide the

pie between them but now Jessie has the first move. The diagram
shows the extensive form of this ultimatum game. At the start of
the game, at t = 0, Jessie makes an initial offer of a piece of the
pie, pr, to Rosie, keeping the rest of the pie, pj, for herself. After
Jessie has made her offer, Rosie decides whether to accept or reject
Jessie’s offer at the end of the first bargaining period at t = 1. If

Rosie rejects Jessie’s offer both players receive a pay-off of zero as their mother will
give the pie to the dog. To keep things simple let’s assume that the value of the
whole pie to either player is 1 and therefore pj + pr = 1.

We can use backward induction to find the equilibrium of this game. At
Rosie’s decision node at R1 she can either accept or reject Jessie’s offer. If she
rejects the offer her pay-off is zero and if she accepts it her pay-off is pr. As long
as pr is greater than zero Rosie’s best response to Jessie’s offer is to accept it.
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Knowing this Jessie should offer Rosie the smallest piece of the pie that she can
cut. Rosie will accept Jessie’s minimal offer as she can do no better and only do
worse by rejecting it. The subgame perfect equilibrium of the game is therefore
for Jessie to offer (pj, pr), where pr is the smallest fraction of the pie that can be
cut, and for Rosie to accept.

The ultimatum game is a very unusual bargaining game as there is no
chance for the player who moves second, Rosie in this case, to make a counter-
offer. Nevertheless, the methodology used to analyse the ultimatum game can
be extended to analyse more complex bargaining games like the game illus-
trated in Figure 9.8. Figure 9.8 looks a bit like a centipede game (see Chapter 4)
and these games do have some features in common. For instance, the players
in both games move in turn and at each decision-node a player decides
whether the game should continue or end. In a bargaining game the game ends
if one player accepts the other’s offer. This is shown by the arrow pointing down
from a player’s decision-node. The bargaining game continues if a player rejects
the other’s offer and makes her own counter-offer. This is indicated by the arrows
pointing across from the players’ decision-nodes. However, in bargaining games
the determination of the players’ pay-offs is part of the game and their joint pay-
off shrinks as negotiations continue. In contrast, the pay-offs in centipede games
are predetermined and they go up and down as the game continues.

In the bargaining game in Figure 9.8 the two players are Az and Baz who are
labelled A and B in the diagram. Az and Baz are hunters playing a stag hunt
game like the one analysed in Chapter 5. Az and Baz have chosen to cooperate
and have caught and killed a stag together. The stag has an initial worth of 10
units of their common currency. However, Az and Baz are from different vil-
lages and need to agree on a way to divide the stag so that each can take a
share home. They negotiate in a very formal way, as is their custom, with Az
making the first offer (he comes from the more powerful community) and Baz
responding. An additional problem for Az and Baz is that while they are negoti-
ating, vultures and other scavengers are feasting on the dead animal at an
irregular rate. If Az and Baz do not come to an agreement within five rounds of
offer and counter-offer then by t = 6 the scavengers will have eaten everything.
Not a pleasant picture I admit, especially if you are a vegetarian, but it does
capture the idea of a decaying prize. 

In the game in Figure 9.8 Az makes an initial offer to Baz of a share in the
stag worth sb1 keeping a share worth sa1 for himself, where sa1 + sb1 = 10. If Baz
accepts the game ends. Baz receives sb1 and Az receives sa1. This is shown by the
pay-offs written at the end of the arrow pointing down from Baz’s first decision-
node at t = 1. If Baz rejects Az’s offer he makes a counter-offer to Az of a share
worth sa2 keeping sb2 for himself but because the vultures are eating the stag sa2
+ sb2 is only worth 9. Az either accepts or rejects Baz’s offer at the end of the
second bargaining period at t = 2. If Az rejects the offer he makes a counter-
offer which Baz can either accept or reject at t = 3. This process of offer and
counter-offer can continue indefinitely but if at t = 5 Baz doesn’t accept Az’s
offer then the most he can expect by continuing is zero, since by t = 6 the vul-
tures will have eaten the lot. This is shown by the zero pay-offs at the end of
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the arrow pointing across from Baz’s decision-node at t = 5. 
Az knows that the most Baz can expect by rejecting Az’s offer at t = 4 is zero
and so at t = 4 Az can offer Baz zero (or some minuscule amount marginally
greater than zero) keeping what’s left of the stag, which is worth 2, for himself.
Baz should accept this offer by Az – there is no point in holding out for more,
but equally there is no reason for him to accept anything less. Therefore Az
knows that at t = 4 the most he can get by rejecting Baz’s offer made at t = 3 is
2. Baz also knows this so at t = 3 Baz can offer Az 2 keeping 4 for himself and
Az might as well accept. At t = 3 both players know that the most Baz can get
by rejecting Az’s offer is 4 so Az will offer Baz 4 at t = 2 keeping 3 for himself.
But at t = 2 the most Az can get by rejecting Baz’s offer is 3 so Baz will offer Az 3
at   t = 1 keeping 6 for himself. At t = 1 the most Baz can get by rejecting Az’s
offer is 6 so Az will offer Baz 6 in the first negotiating period at t = 0 keeping 4
for himself. This sequence of credible offers and counter-offers is shown in the
last row of Figure 9.8. 

The backward induction logic outlined in the previous paragraph implies that
if Az offers Baz 6 at t = 0 Baz can do no better if he rejects Az’s offer and makes a
credible counter-offer. He should therefore accept Az’s offer. This means that if the
players are rational they will agree to a split of 4 to Az and 6 to Baz right at the
start of the game. This is the subgame perfect Nash equilibrium of the game.

Take a closer look at the players’ predicted pay-offs from this game. Az’s share
is just the sum of the joint costs of continuing at t = 1, t = 3 and t = 5 where Baz
has the decision to accept or reject. Baz’s share is the sum of the joint costs of
continuing at t = 2 and t = 4 where it is Az’s turn to accept or reject Baz’s offer. 

This result is a general one in bargaining games where the prize decays non-
proportionally. To see this take a look at the more abstract bargaining game in
Figure 9.9 where the players are Ali and Bill who are again labelled A and B in
the diagram. Ali and Bill are bargaining over a prize worth M. M decays by an
amount mi after the ith rejection (m1 after the first rejection, m2 after the
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Figure 9.8 Az and Baz’s bargaining game

Bargaining period:
Player with offer:

Value of stag = (Sa+Sb):
Joint costs of continuing
(amount prize decays)
Credible offers and
counter-offers (pay-offs)

t = 0
A

t = 1
B

t = 2
A

t = 3
B

t = 4
A

t = 5
B

t = 6
(0, 0)

(Sa1,Sb1) (Sa2,Sb2) (Sa5,Sb5)
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1

(4, 6)

9

2

(3, 6)

7

1

(3, 4)

6

4

(2, 4)

2

2

(2, 0)
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second rejection and so on). This implies, for example, that after the second
rejection the prize is only worth M – m1 – m2 and after the third rejection it is
only worth M – m1 – m2 – m3 as shown in Figure 9.9. You can imagine the vul-
tures in the Az and Baz game eating Ali and Bill’s prize if this helps but here they
eat mi in each bargaining round i and by t = 10 they have eaten everything.

Ali makes the first offer at t = 0. She offers Bill a share in M of sb1 keeping sa1
for herself where sb1 + sa1 = M. At t = 1 Bill either accepts or rejects Ali’s offer. If
Bill accepts the game ends. If Bill rejects Ali’s initial offer the game continues
with a counter-offer by Bill. It is then Ali’s turn to either accept or reject Bill’s
counter-offer. If the game reaches the ninth bargaining round at t = 9 then if
Bill rejects Ali’s offer what’s left of the prize decays by a further m9 and is worth
nothing. This implies that at t = 9 what’s left of the prize, M – m1 – m2 – m3 –
m4 – m5 – m6 – m7 – m8 must only be worth m9. Similarly at t = 8 what’s left of
the prize is worth m8 + m9, at t = 7 the prize is worth m7 + m8 + m9 and so on.
At t = 1 what’s left of the prize is worth m1 + m2 + m3 + m4 + m5 + m6 + m7 +
m8 + m9 = M.

At t = 9 Bill has a choice whether to accept or reject the offer made by Ali at t
= 8 but he has nothing to gain by rejecting. t = 9 is therefore equivalent to t = 5
in Az and Baz’s game. The same backward induction logic implies that at t = 8 Ali
can offer Bill virtually nothing keeping m9 (or marginally less than m9) for her-
self and if Bill is rational he will accept. At t = 7 Bill can offer Ali m9 keeping m8
for himself and Ali, who can do no better by rejecting, should accept. Working
back to the start of game Ali will offer Bill m2 + m4 + m6 + m8, keeping M – (m2 +
m4 + m6 + m8) = m1 + m3 + m5 + m7 + m9 for herself and Bill will accept. This line
of reasoning shows that the subgame perfect equilibrium of the game is for Ali to
offer Bill sb1 = m2 + m4 + m6 + m8 at the start of the game and for Bill to accept. In
this equilibrium Ali’s pay-off is sa1 = m1 + m3 + m5 + m7 + m9.

Non-cooperative, strategic bargaining with alternating offers

Figure 9.9 Ali and Bill’s generalised bargaining game with non-proportional decay

Bargaining period:
Player with offer:

Value of stag = (sai + sbi):

t = 0
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t = 1
B

t = 2
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(sa1,sb1) (sa2,sb2) (sa9,sb9)

M
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M – m1

m2
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m3

(sa3,sb3)

Joint costs of continuing
(amount prize decays)

M – m1 – m2 – m3 – m4
– m5 – m6 – m7 – m8 = m9

m9
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9.4.2 Bargaining games with proportional decay

In some bargaining games players may value a prize more if they receive it
sooner rather than later. In these games the value of future pay-offs from bar-
gaining needs to be discounted.16 Discounting in bargaining games means that
after two bargaining periods, at t = 2, a prize of M is only worth dM where d is
the player’s discount factor. After three bargaining periods the prize will only
be worth d2M and after four bargaining periods at t = 4 it will only be worth
d3M. Generalising, after t bargaining periods the prize will only be worth dt–1M.
The discount factor equals where r is the player’s discount rate, their rate of
return on any investments. Since r > 0 d is a fraction and the value of the prize
to the player decays proportionately as the game progresses. 

In the game illustrated in Figure 9.11 the players are Alf and Bert, labelled A
and B as before. Alf and Bert are two thieves who have recently stolen €M mil-
lion from a bank. They are currently bargaining over their shares in M. Alf is the
gang leader and he makes the first offer, a share sb1, to Bert hoping to keep a
share sa1 for himself. While they are negotiating the money is left buried in a
safe place. Alf and Bert both prefer to have the money sooner rather than later;

1–––––
1 + r

Bargaining and negotiation

Exercise 9.1

In the bargaining game illustrated in Figure 9.10 the players are two
firms, Alpha and Beta (labelled A and B), who are bargaining over shares
in a market that is initially worth 10 units (where 1 unit is equivalent to a
billions euros). Alpha makes the first offer and offers Beta a share of the
market worth sb1. If Beta rejects Alpha’s offer the negotiations continue
with Beta making an offer to Alpha of a share worth sa2. Unfortunately
for Alpha and Beta their market is vulnerable to competition and while
they are negotiating the value of their joint share shrinks at a constant
rate of c units per bargaining period where c = 1. At this constant rate of
decay the market is only worth 10 – (t – 1)c = 10 – (t – 1) to Alpha and
Beta at time t . At t = 10 the market will be worth nothing if Alpha
rejects Beta’s offer. What is the subgame perfect equilibrium of this
non-cooperative bargaining game?

Figure 9.10 Bargaining between Alpha and Beta with a constant rate of decay

t:
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t = 0
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t = 3
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A
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while it is buried they cannot make good their escapes and the money isn’t
earning any interest in their secret Swiss bank accounts. Alf and Bert’s preference
for money now implies that the value of M decays as the negotiations continue.
For Alf, M in bargaining period t is only worth da

t–1 M where da is Alf’s discount
factor. For example, at t = 3 M is only worth da

2 M to Alf (as shown in Figure
9.11). For Bert, M at time t is only worth db

t–1 M where db is Bert’s discount
factor. If da > db then Bert is more impatient, or more desperate, for the money
than Alf and the opposite will be true if the inequality were reversed. Intuitively,
we should expect Bert’s pay-off from bargaining to be higher the less impatient
he is relative to Alf and this intuition is formalised below.

We cannot find the equilibrium of this game by working back from the bar-
gaining round in which M is worth nothing because although the value of M
falls continuously it remains positive. However, Rubinstein (1982) has shown that
when the value of Alf and Bert’s money decays in this way there is a unique perfect
equilibrium in which the money is divided so that Alf’s share of M is and
Bert’s share of M is . If da = db = d this implies shares of and 
respectively. 

The simplest way to show this17 is to initially assume that da = db = d and
that M = 1. Discounting implies that if in bargaining period t the most Alf can
possibly obtain by rejecting Bert’s offer18 is X, then at time t Alf should accept
any offer by Bert that gives him at least dX. This is so because the value of X to
Alf in bargaining round t + 1 is dtX and the value of dX at time t is dt–1dX =
dtX. Thus dX is a credible offer by Bert in bargaining round t and a threat by
Alf to hold out for more is not credible. To see this more clearly consider the
following example. Suppose that the most Alf can possibly obtain if the game
continues beyond t = 4 is 0.5 (half of M) then an offer by Bert at t = 3 of 0.4
will be accepted by Alf at t = 4 if d30.4 ≥ d40.5 or 0.4 ≥ d0.5. At this point in the
game, any threat by Alf to hold out for more than d0.5 would not be credible
(and therefore could not be part of a subgame perfect Nash equilibrium). 

With this in mind if X is the maximum that Alf can obtain in any equilib-
rium of the subgame starting at t = 2, where Alf makes the offer, then Alf should
offer Bert 1 – X, keeping X for himself. The discounted value of X to Alf at t = 2
is dX so Alf cannot credibly hold out for more than this when Bert makes his
offer at t = 1. This means Bert can credibly offer Alf dX keeping 1 – dX for

d–––––1 + d
1–––––1 + d

db – dadb––––––––1 – dadb

1 – db–––––––1 – dadb

Non-cooperative, strategic bargaining with alternating offers

Figure 9.11 Proportional decay of Alf and Bert’s money
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himself. At t = 0 Alf has to offer Bert at least d(1 – dX but can keep 1 – (d – d2X)
for himself.19

But the game at t = 0 is the same as the game at t = 2. In each case the two
players look down the same infinite path of offers and counter-offers. Hence
the maximum amounts Alf can get in each subgame (the one starting at t = 2
and the one starting at t = 0) must be the same. This implies that:

X = 1 – (d – d2X) (9.7)

(9.7) solves for:

X = = = (9.8)

is also the minimum that Alf can get. To see this change the argument in
the preceding paragraph around so that X is the minimum that Alf can get.
Working through the argument again leads to the same result. Therefore X =

defines the unique outcome of the game implying that Alf receives and
Bert receives 1– = .

If da and db are not the same then following the same logic the value of X at
t = 3 discounted to t = 2 is daX. At t =1 Bert can credibly offer Alf daX keeping
1 – daX for himself. At t = 0 Alf has to offer Bert at least db(1 – daX) but can
keep the remainder for herself. This leads to X = 1 – db(1 – daX) or X = . 

The equilibrium outcome is that Alf receives and Bert receives 1– 

= . 

Notice that the higher db, Bert’s discount factor, the higher Bert’s pay-off
from bargaining and the lower Alf’s. A player with a higher discount factor, d,
values future pay-offs more and is therefore less impatient than a player with a
lower discount factor. A more patient player therefore has more bargaining
power. As a consequence their pay-off from non-cooperative bargaining will
be higher. 

Interestingly, when the interval between offer and counter-offer is suffi-
ciently small, this solution to the non-cooperative bargaining game
approximates the generalised Nash bargaining solution with bargaining
powers20 α = and β = (see, for example, Binmore, 1992: 203–12 or Binmore,
Rubinstein and Wolinsky, 1986). In this case ra corresponds to Alf’s discount
rate and rb to Bert’s discount rate. Remember that the discount factor of a player,
d, is where r is their discount rate. It follows that Alf’s discount factor, da, is

and therefore the lower ra the higher da. Since α = , the higher da the
higher α. Similarly Bert’s discount factor is and the lower rb, the higher db
and β. You saw in Section 9.3.2 that a player’s pay-off from asymmetric Nash
bargaining will be higher the higher their bargaining power modelled by either
α or β. Consequently, when α = and β = a player’s pay-off will be higher
from Nash bargaining the higher their discount factor, as in Rubinstein’s model. 

However, the two models only converge when the time delay between bar-
gaining periods is very small. But as noted by Binmore (1992: 206–7) ‘This

1––rb

1––ra

1–––––1 + rb

1––ra

1–––––
1 + ra

1–––––
1 + r

1––rb

1––ra

db – dadb––––––––1 – dadb

1 – d
–––––––1 – dadb

1 – db–––––––1 – dadb

1 – db–––––––1 – dadb

d–––––
1 + d

1–––––
1 + d

1–––––
1 + d

1–––––
1 + d

1–––––
1 + d

1–––––
1 + d

1 – d––––––––––––
(1 – d)(1 + d)

1 – d––––––
1 – d2
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limiting case is the case of greatest interest because, in the real world, nothing
constrains a negotiator to keep to a strict timetable, and given that a player has
just refused an offer, the optimal thing to do next is to make a counter offer as
soon as possible.’ The coincidence arises since as the time delay shrinks, the
first-mover advantage in the non-cooperative model disappears. With no first-
mover advantage the outcome in either model depends only on the players’
relative bargaining power which is reflected by their discount factors. This is an
important result. It suggests, as noted by Binmore ( 1992: 208) ‘that the intu-
itions embodied in the Nash axioms … are sound’. 

9.4.3 Bargaining games with direct negotiating costs 

If costs are incurred directly then the bargainers incur some fixed but not nec-
essarily the same cost in every negotiating period. When costs are fixed in this
way the actual value of the prize does not decay as such but the value, net of
costs, of a given share of the prize does decay, as a player’s costs mount up. For
example, if the whole prize is worth €100 to a player but his bargaining costs
are €10 per bargaining period then after five bargaining rounds a half share in
the prize would be worth nothing although a three-quarters share giving him
€75 would still be worth having. Whether such a split would be acceptable to
the other player would depend on her bargaining costs. If her bargaining costs
were only €1 per bargaining period then €25 would still represent a positive
pay-off to her, as would €50. 

This example shows that when bargaining costs are fixed, whether a player’s
pay-off from a given division of the prize has a positive value depends not only
on the number of bargaining rounds that have gone before but also on the par-
ticular division that is being proposed. There is therefore no unique end game
where the players’ pay-offs simultaneously take a zero value. Instead a zero
valued pay-off could result much earlier for one player depending on the pro-
posed division and the player’s bargaining costs. Rubinstein (1982) shows that
in these circumstances the equilibrium pay-offs depend on the order of moves
and whose costs are higher. Specifically, players are at an advantage if their bar-
gaining costs are lower that those of the other player and it also helps to be the
player who moves first. We are going to examine the bargaining game illus-
trated in Figure 9.12 to see why this is the case.

Non-cooperative, strategic bargaining with alternating offers

Exercise 9.2

In Alf and Bert’s bargaining game what is the outcome predicted by
non-cooperative bargaining theory if M = 1 and da = db = 0.9?
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In the bargaining game in Figure 9.12 the players, Presidents Ajax and Barca,
are the leaders of two neighbouring states who are negotiating over a disputed
territory. The territory in question has been colonised by Ajax’s compatriots but
is geographically under Barca’s jurisdiction. For simplicity I shall call the dis-
puted territory T. Ajax and Barca take it in turns to make offers but Ajax, as the
more powerful leader of the two, makes the initial offer. While the negotiations
proceed, their electorates perceive them to be weak and they lose votes at a
constant rate. The more vulnerable their electoral positions the more votes
they lose.

Every time Barca rejects an offer by Ajax or Ajax rejects an offer from Barca,
Barca loses votes that represent a cost to him of cb. Therefore, if Barca refuses
Ajax’s initial offer the net value of the whole territory to Barca is at most T – cb.
If Ajax then rejects Barca’s offer the whole territory is worth at most T – 2cb (as
shown in Figure 9.12). With every round of rejection and counter-offer the ter-
ritory they are disputing has less net value for Barca. As the negotiations
proceed, the net value of the territory will fall more quickly the higher cb
which depends on Barca’s electoral position. The less secure he is the more
votes he will lose and the higher cb. 

Similarly, every time Ajax rejects an offer made by Barca and makes a
counter-offer, or Barca rejects Ajax’s offer, Ajax incurs a fixed cost ca. The out-
come of the negotiations for Ajax is a share, α, of the territory. Barca’s negotiated
share is β and α + β = 1. Barca’s direct costs imply that if Barca accepted an offer
of βT at t = 4 it would only be worth βT – 4cb to him and in general βT at t is only
worth βT – tb. Similarly for Ajax, αT offered at t is only worth αT – tca. 

Rubinstein (1982) shows that α and β will depend on who moves first, Ajax
in this case, and whether ca > cb, ca = cb or ca < cb. Before looking at some spe-
cific cases, it is helpful to clarify what constitutes a non-credible threat in this
game and what constitutes a credible offer. A threat to hold out for more won’t
be credible if a player can do no better by rejecting the other’s offer.
Equivalently, a credible offer is one that the other player can’t reject. Only cred-
ible threats and offers can be part of a subgame perfect Nash equilibrium. To
formalise this a little let’s assume that Barca offers Ajax a share of the territory,
T, equal to sat at t. Then Ajax should accept Barca’s offer if the most she can

Bargaining and negotiation

Figure 9.12 Bargaining has direct costs for Ajax and Barca
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hope to get by continuing is worth less than sat. Holding out for more in these
circumstances would not be a credible threat and sat would constitute a credible
offer by B. 

An example should make this clearer. Consider a situation where T = 1, sat =
0.45, ca = 0.1 and the most Ajax can hope to receive by rejecting sat is 0.5. If
Ajax rejects Barca’s offer and receives 0.5 in the next round this would be worth
0.5 – (t + 1)0.1 = 0.4 – 0.1t to her. If, on the other hand Ajax accepts Barca’s
offer of 0.45 at t this is worth 0.45 – 0.1t > 0.4 – 0.1t implying that 0.45 at t is
worth more to Ajax than 0.5 is worth at t + 1. Therefore, holding out for more
is not a credible threat for her while 0.45 is a credible offer by Barca. 

In fact any offer, sat, at t by Barca worth more than 0.5 – (t + 1)0.1 will be
accepted by Ajax. Since sat at t is worth sat – 0.1t Ajax will accept sat as long as
sat > 0.5 – (t + 1)0.1 + 0.1t = 0.5 – 0.1 = 0.4. More generally if the maximum
Ajax can hope to get by rejecting Barca’s offer at t is Z which will be worth at
most    Z – (t + 1)ca then she should accept any offer, sat, by Barca where sat – tca
> Z – (t + 1)ca or sat > Z – ca.

With the idea of a non credible threat and a corresponding credible offer in
mind we are going to consider three possible scenarios for Ajax and Barca: (i)
ca > cb, (ii) ca < cb and (iii) ca = cb. 

(i) Ajax’s bargaining costs are higher: ca > cb

The subgame perfect equilibrium is that Ajax offers Barca T – cb at t = 0, keep-
ing cb for herself and Barca accepts.

To show that this is an equilibrium keep in mind that Ajax’s fixed costs are
higher than Barca’s and therefore Barca has a cost advantage but Ajax moves
first. Now, consider what happens if Barca offers 0 to Ajax at t = 1 then T is the
most Barca can possibly get by rejecting Ajax’s offer at t = 0. Knowing this Ajax
can offer T – cb to Barca at t = 0 (keeping cb for herself) and Barca will accept as
T at t = 2 is only worth T – cb to Barca. Because Ajax moves first she can ensure
cb for herself even though she has higher bargaining costs. Thus (cb,T – cb) is an
equilibrium outcome if Ajax believes that because she is at a disadvantage she
will do worse by making a lower offer to Barca at t = 0.

You may not be entirely convinced by this argument. However, it can be
extended to show in a more precise way that (cb,T – cb) is an equilibrium out-
come. Because ca > cb there will be some bargaining round where even if Barca
offers the whole prize to Ajax it is worth less than ca to her but more than ca to
him. To be more precise, think about a specific negotiating round at time t
where if Barca were to offer the whole territory to Ajax it would only be worth
x to her21 where x < ca. In these circumstances, the most Ajax can get by reject-
ing Barca’s offer (whatever it is) is less than x and this is less than nothing as
x – ca is less than zero. Ajax should therefore accept any offer by Barca greater
than or equal to x. Barca can work this out and so will only offer Ajax x keep-
ing T – x for himself.

Since T – x is now the most Barca can expect by rejecting Ajax’s offer at t – 1,
Ajax can offer Barca T – x – cb. To Barca this is worth T – x – cb – (t – 1)cb = T – x – tcb

Non-cooperative, strategic bargaining with alternating offers
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which is the value of his pay-off if he rejects Ajax’s offer.22 Barca can do no better by
rejecting so he should accept and Ajax will keep x + cb. x + cb is worth x + cb –    (t –
1)ca to her and this is more than she would get by continuing.23 In round t – 2
Barca should offer Ajax x + cb – ca. Ajax will accept as x + cb – ca is worth x + cb – ca –
(t – 2)ca = x + cb – (t – 1)ca so she can do no better by rejecting. As a result Barca will
keep T – x – cb + ca and this is worth T – x – cb + ca –(t – 2)cb = T – x  + ca – (t – 1)cb to
him which is more than he would get by continuing. 

This mental exercise can be continued back to t = 0. In each round either
Ajax or Barca can make an offer which the other cannot credibly reject and
which gives them the other’s gain from not continuing into the next round. So,
for example, in round t – 3 Ajax will offer Barca T – x + ca – 2cb keeping x – ca +
2 cb for herself. In round t – 4 Barca will offer Ajax x – 2ca + 2cb keeping T – x +
2ca – 2cb for himself. Table 9.1 shows the full sequence of offers up to t – 6
where Barca offers Ajax x + 3(cb – ca) keeping T – x + 3(cb – ca) for himself. 

Table 9.1 The sequence of offers working back from time t to time t–6

time t — 6 t — 5 t — 4 t — 3 t — 2 t — 1 t

Player Barca Ajax Barca Ajax Barca Ajax Barca
with
offer:

If offer accepted

Ajax gets x–3ca+3cb x–2ca+3cb x–2ca+2cb x–ca+2cb x–ca+cb x+cb x

Barca gets T–x+3ca–3cb T–x+2ca–3cb T–x+2ca–2cb T–x+ca–2cb T–x+ca–cb T–x–cb T–x

Net value x+3cb –(t–3)ca x+3cb –(t–3)ca x+2cb –(t–2)ca x+2cb –(t–2)ca x+cb– (t–1)ca x+cb–(t–1)ca x–tca

of offer 
to Ajax

Net T–x+3ca–(t–3)cb T–x+2ca–(t–2)cb T–x+2ca–(t–2)cb T–x+ca–(t–1)cb T–x+ca–(t–1)cb T–x–tcb T–x–tcb

value of 
offer to 
Barca

Look carefully at the sequence of credible offers in Table 9.1. Can you see how
these offers can be generalised? At any time t – n, where Barca makes the offer
and therefore n is an even number, Barca will offer Ajax x + (n/2)(cb – ca) keep-
ing T – x + (n/2)(ca – cb). Since ca > cb, (n/2)(ca – cb) represents an advantage for
Barca which only increases as the game gets closer and closer to the first round.
For sufficiently large T (relative to ca and cb) Barca’s advantage will rise so that
at some point Barca secures the whole prize. For example at t – n* if x is less
than (n*/2)(ca – cb) then Barca’s share of T – x + (n*/2)(ca – cb) is greater than T
and Ajax gets nothing. 

Looking forward from the start of the game Ajax and Barca will be able to
see that if the game gets as far as t – n* Ajax will get nothing. Barca will take
advantage of this and whatever Ajax offers Barca at t = 0, Barca will offer Ajax 0
at t = 1, keeping T for himself and Ajax might as well concede. So the only fea-
sible strategy for Ajax at t = 0 is to offer Barca T – cb because if Barca rejects this
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offer and keeps T for himself at t = 1 it will only be worth T – cb so he might as
well accept T – cb at t = 0. T – cb is therefore a credible offer by Ajax and (cb,T –
cb) is an equilibrium outcome. 

It may help you to understand the logic underlying the derivation of this
equilibrium outcome if we look at a numerical example of Ajax and Barca’s bar-
gaining game with ca > cb. Let’s assume that T, ca and cb are all quantifiable in
terms of millions of votes and that the territory is initially worth 10 to both
Ajax and Barca. While the negotiations continue Ajax incurs a cost of 2.75 per
bargaining period, that is ca = 2.75 while cb is only 0.25. Ajax is clearly in a
weaker position than Barca in this version of the game which is illustrated in
Figure 9.13. 

At t = 3 even if Barca offers Ajax the whole territory it is only worth 1.75 to
her. If she rejects Barca’s offer at t = 3 the most she can get will be worth less
than nothing as 1.75 < 2.75. Barca should offer her at most 1.75 keeping 8.25
for himself. At t = 2 Ajax should offer Barca 8.25 – 0.25 = 8 keeping 2 for her-
self. At t = 1 Barca will offer Ajax 2 – 2.75 = –0.75 and Ajax can do no better by
rejecting. She should therefore offer Barca 9.75 at t = 0 and Barca will accept as
10 at t = 2 is only worth 9.75. You could also use the expression we derived earl-
ier that at t = 1 Barca should offer x + (n/2)(cb – ca) where in this case x = 1.75,
t = 3 and n = 2 (the backward induction started at t = 3). Substituting for cb and
ca implies that at t = 1 Barca should offer 1.75 + 0.25 – 2.75 = –0.75 as before. In
this version of the game, although Ajax moves first, her advantage is all but
wiped out since her bargaining costs are higher than Barca’s. Her weaker elec-
toral position means she cannot afford to prolong the negotiations and her
pay-off reflects this.

(ii) Ajax’s bargaining costs are lower: ca < cb

The subgame perfect equilibrium is that Ajax offers Barca nothing at t = 0,
keeping the whole territory for herself and Barca accepts.

Now Ajax has the cost advantage and moves first so she takes everything.
Intuitively Barca has more to lose than Ajax by delaying and delay doesn’t
change the situation except by diminishing both players’ pay-offs. Therefore
Ajax secures the whole territory without incurring any bargaining costs. If you

Non-cooperative, strategic bargaining with alternating offers

Figure 9.13 Ajax’s costs are greater than Barca’s
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want to check this you can work though the logical process we used before.
You will find that (n/2)(cb – ca) which is greater than zero as cb > ca, now repre-
sents Ajax’s advantage. Ajax’s advantage becomes larger with n and at some
point Barca’s pay-off of T– x +(n/2)(ca – cb) will be negative, implying that Barca
offers Ajax the whole territory. As Ajax moves first she might as well secure the
whole territory at t = 0 without incurring any bargaining costs. Since, in this
version of the game, Ajax has lower bargaining costs and a first-mover advan-
tage she controls the situation. Barca has nothing to gain by prolonging the
negotiations and should give up his claims on the territory without weakening
his electoral position still further. 

(iii) Ajax’s bargaining costs are the same as Barca’s: ca = cb = c 

There is no unique subgame perfect Nash equilibrium but Ajax can ensure at
least c.

When ca = cb the players’ fixed costs mount up at the same rate for both
players. Neither has a cost advantage but Ajax moves first so she can ensure at
least c. However, there is no unique subgame perfect Nash equilibrium.
Working through the logical process we used before shows that if Barca offers x
to Ajax at t then Ajax can ask for x + c at t – 1 as before. But at t – 2 Barca’s
credible offer is x once again and as x is arbitrary there is no unique solution.
Rubinstein (1982: 107) also shows that when the players costs are the same
they won’t necessarily come to an agreement instantly at t = 1. Agreement may
be delayed until t = 2 when Ajax accepts Barca’s first counter-offer.

We can look at a numerical example to show that Ajax can ensure at least c.
Let’s assume that T = 10 as in the previous example but now ca = cb = 1. This
version of Ajax and Barca’s game is illustrated in Figure 9.14. 

Consider what happens if the negotiations reach t = 10 where if Ajax rejects
Barca’s offer she gets nothing. There is therefore little point in Ajax rejecting
Barca’s offer so Barca can make a derisory offer to Ajax at t = 9. That offer is the
most Ajax can expect by rejecting Barca’s offer at t = 8. Let’s denote Barca’s offer at
t = 9 as y then at t = 8 Ajax will offer 10 – y – cb = 10 – y –1 (keeping y + 1 for her-
self) and as Barca can do no better by continuing he will accept. Working back to
t = 1 Barca will offer Ajax y + ( )(cb – ca) = y + ( )(1 – 1) = y. So we are none the
wiser as y can take almost any value depending on which negotiating period we

1–
2

1–
2

Bargaining and negotiation

Figure 9.14 Ajax’s costs are the same as Barca’s

t:
Player :

t = 0
A

t = 1
B

t = 2
A

t = 3
B

t = 4
A

t = 5
B

t = 6
A

Value
of T:

10 10 10 10 10 10

t = 7
B

t = 8
A

10 10

Σca 0 1 2 3 4 5 6 7

Σcb 0 1 2 3 4 5 6 7

t = 9
B

10

8

8

t = 10
A

10

9

9

t = 11
B

10

10

10



263

start the backward induction from hence there is no unique equilibrium.
Nevertheless, we can be sure that Ajax secures at least c because if she offers
Barca T – cb at t = 0 Barca will accept as he can secure at most T – cb by rejecting
Ajax’s offer. Consequently, when Ajax and Barca have equal bargaining costs,
the indeterminacy we saw in Section 9.2 is not resolved and almost any out-
come is theoretically possible. 

There have been many experiments on bargaining and these are surveyed in
detail in Roth (1995a and b) and Camerer (2003: Chapter 4). Experimental tests
of cooperative bargaining theory have tended to focus on the prediction that
the outcome of bargaining will depend only on the preferences of the bargain-
ers and their attitudes to risk. The earliest experiments were not generally
supportive of the theory but these experiments did not control for the expected
utility functions of the bargainers (e.g. Rapoport, Frenkel and Perner, 1977).
They assumed risk neutrality and therefore the results of this work are difficult
to judge. Roth and Malouf (1979) controlled for the bargainers’ utility by using
binary lottery games (like the ones you saw in Chapter 5). In their experiments
each subject, i, could win either a large prize, Zi, or a smaller prize, xi. Players
bargained over the distribution of lottery tickets to determine who would have
the highest probability of winning the larger prize. Players were allocated a cer-
tain time to come to agreement. If no agreement was reached each received xi.
Nash’s theory predicts that the outcome of bargaining should be independent
of the size of the prizes or whether the bargainers know the monetary value of
one another’s prizes.24 Roth and Malouf tested these predictions by changing
the values of the prizes and the amount of information available to the players.
They found that when the prizes were equal and the players knew or the prizes
were unequal but the players didn’t know, observed agreements clustered very
tightly around the outcome associated with an equal probability of winning
the large prize. This outcome is consistent with the Nash model. 

However, when the prizes were unequal and the players knew, disagree-
ments were more likely and the agreements that were made fell between two
focal points:25 the equal probability of winning agreement and the outcome
that gave both bargainers the same expected value. The mean agreement fell
about halfway between these two focal points implying that the bargainer with
the lower prize tended to receive a higher share of tickets. These results were
largely confirmed by Roth, Malouf and Murnigham (1981) and Roth and
Murnigham (1982). They suggest that the outcome of bargaining depends criti-
cally on what each player knows about the prizes of the other. This is not
implied by Nash bargaining theory and Roth (1995a: 44) argues that these
results support an alternative hypothesis, ‘that there is a “social” aspect to the

Experimental evidence

9.5 Experimental evidence
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focal point phenomenon that depends on something like the players’ shared
perceptions of the credibility of any bargaining position’.

In further experiments Murnigham, Roth and Schoumaker (1988) tested
whether risk averse players were disadvantaged in bargaining as is predicted by
the theory. They found a weak effect of risk aversion but this was sometimes
overpowered by the focal point affect of the equal probability agreement. These
experiments (like many others) can be criticised on the grounds that any risk
aversion effects were drowned out because not enough money was at stake.
Nevertheless the experiments provide some support for some of the theoretical
predictions about the effects of risk aversion. Significantly, the experimental
results also suggest that changes in information may be far more important in
bargaining games than is predicted by the theoretical models. The incidence of
disagreement was also found to be non-negligible. Deadline effects, whereby a
high proportion of agreements were reached in the final seconds before the
deadline, were also found.

The experimental evidence related to strategic models of bargaining is more
recent. As you have seen these theories predict that players who are more
patient, because they have lower bargaining costs or a higher discount factor,
will be able to negotiate more favourable outcomes. In addition there is a pre-
dicted first-mover advantage. Initial experiments focused on one-period
ultimatum games. In the experiments conducted by Guth, Schmittberger and
Schwarz (1982) player 1 was asked to propose a division, between himself and
player 2, of a fixed sum of k deutsche marks. Player 2 could then either accept
or reject Player 1’s offer. If the offer was rejected both players received nothing.
The equilibrium offer by Player 1, as you saw in Rosie and Jessie’s ultimatum
game, is virtually nothing to Player 2 and Player 2 should accept. However, the
mean observed offer by Player 1 to Player 2 was a little over 30 per cent of k.
About a fifth of offers were also rejected. Guth et al. concluded that social
aspects incorporating ideas of fairness influenced the subjects’ behaviour. 

The first structured experiment with multi-period alternating offers was con-
ducted by Binmore, Shaked and Sutton (1985). In their experiment an initial
prize of 100 British pence shrank to 25 pence after the first rejection and then
to nothing if the second player’s counter-offer was also rejected. The subgame
perfect equilibrium offer in the first period is a 75 to 25 pence split in favour of
Player 1, the player with the offer. If Player 1’s offer is rejected then the game
effectively becomes an ultimatum game with Player 2 holding the offer. In
these circumstances the theoretical prediction is that Player 2 should offer
Player 1 virtually nothing. 

Binmore et al. found that the most commonly observed opening offer was a
50:50 split. If this was not accepted the counter-offer by the second player
shifted towards the predicted 25 pence demand. Binmore et al. argue that the
shift towards the theoretical prediction by the second player is indicative of
learning behaviour. However, their results have not been replicated in similar
experiments (e.g. Ochs and Roth, 1989, and Bolton, 1991). More generally in
experiments of this kind opening offers have been found to lie between an

Bargaining and negotiation
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equal split and the equilibrium prediction. Some rejections are also followed by
disadvantageous counter-offers. The evidence in support of the strategic theory
is therefore somewhat mixed. In a response to this evidence, Binmore,
McCarthy, Ponti, Samuelson and Shaked (2002) explore why and how subjects
fail to play the subgame perfect equilibrium in alternating offers bargaining
games. They find evidence of social preferences as in previous experiments and
they also find systematic violations of subgame consistency. 

In this chapter you have seen how Nash bargaining theory can be used to
resolve cooperative bargaining games where agreements are binding. You have
also seen how non-cooperative bargaining games can be modelled as strategic
games. In strategic bargaining games the process of offer and counter-offer is
modelled as a sequence of moves and the theoretical solution is found using
backward induction.

The Nash bargaining solution can be criticised because its approach is
axiomatic: it starts with a list of properties that the solution is required to satisfy.
This approach ignores the whole process of offer and counter-offer that charac-
terises bargaining and, perhaps more seriously, the possibility of breakdown. The
model may therefore be more relevant to bargaining with arbitration. For
example, in some labour–management negotiations in the UK the Advisory,
Conciliation and Arbitration Service, ACAS,26 is called in to settle a dispute and
in negotiations over compensation that reach a court of law a judge adjudicates.
However, many bargaining problems are not resolved through third-party arbi-
tration and in these cases strategic or non-cooperative bargaining theory is
potentially a more useful way of modelling the bargaining process. 

The axioms underlying the Nash bargaining solution, especially those of
symmetry and independence, have also been criticised. Removing these axioms
completely changes the bargaining solution. For instance, if the axiom of sym-
metry is dropped, the predicted outcome is the generalised Nash bargaining
solution. Removing the independence axiom leads to the Kalai-Smorodinsky
solution (Kalai and Smorodinsky, 1975).27 Symmetric Nash bargaining theory
additionally predicts that the bargaining outcome is dependent only on the
players’ utility functions and their threat outcomes. This prediction is not con-
sistent with the related experimental evidence. However, the generalised Nash
model overcomes this criticism to some extent by incorporating the effect of
relative bargaining power.

In spite of the criticisms levelled at Nash bargaining theory, the model also has
a number of advantages. First, as it does not specify a particular bargaining process
the approach can be used to analyse a diverse range of examples. The model is also
relatively simple and transparent. Lastly, the solution it defines is unique.

Summary

Summary
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In non-cooperative bargaining the sequence of offers and counter-offers is
modelled as a sequential-move game. The players are assumed to incur costs
which give them an incentive to come to an agreement sooner rather than
later. The costs may be direct or indirect and, if the latter, proportional or not.
The predicted outcome is a subgame perfect Nash equilibrium and, as you have
seen, although the sequence of offers and counter-offers is explicitly modelled,
the theoretical prediction is that in most cases the game ends after the first
offer is accepted. This result appears to assume away the bargaining process in
much the same way as the cooperative theory. Consequently, breakdowns in
the negotiation process are not considered. Yet, as noted by Roth (1995: 253),
there is considerable evidence from experiments ‘that a non-negligible fre-
quency of disagreement is a characteristic of bargaining in virtually all kinds of
environments’. This points to a descriptive weakness of the theory that is
resolved to some extent by allowing for asymmetric information. Rubinstein
(1985) shows that when the players are unsure about each other’s bargaining
costs, agreement can be delayed. This can be rational behaviour if by delaying
agreement players are able to acquire or convey information. 

Whether there is asymmetric information or not, the solution to the alter-
nating offers model assumes that both players are able to apply backward
induction logic. This assumption has been criticised since backward induction
can sometimes require quite complex computations in relation to events that
never actually take place.28 However, there is some experimental evidence to
suggest that, with guidance, subjects can learn how to use backward induction
even if they don’t do it instinctively.29 Lastly, as noted in Section 9.4.2, under
certain assumptions the outcome predicted by non-cooperative theory con-
verges to the asymmetric Nash bargaining solution. This result suggests, as
Nash himself claimed, that the axiomatic and strategic approaches are comple-
mentary in that ‘each helps to justify and clarify the other’ (Nash, 1953: 129). 

9.1
At t = 10 the market is worth nothing if Alpha rejects Beta’s offer. So Alpha will
accept any offer by Beta made at t = 9 even it is only marginally greater than
zero. Thus Beta will offer (0, 1), that is 0 to Alpha and 1 for himself (or (0 + e,
1 – e) where e is minuscule) since 1 = 10 – 9c = c is all that is left of the market.
At t = 8 Alpha will offer (1, 1) = (0 + c, c)) and as Beta can do no better by con-
tinuing Beta will accept. The process of offering the other only as much as he
or she could get by continuing while keeping the gain from agreeing now for
his or herself will continue back to t = 0. At t = 0 Alpha will offer (5, 5) = (5c,
5c) and Beta will accept. Figure 9.10.1 shows the equilibrium sequence of offer
and counter offer.

Bargaining and negotiation
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9.2
In Alf and Bert’s bargaining game what is the outcome predicted by non-coop-
erative bargaining theory if M = 1 and da = db = 0.9?

The theoretical prediction is that Alf’s share will be = 1/1.9 ≈ 0.53. Bert’s
share is d/(1 + d) = 0.9/1.9 ≈ 0.47.

1 In Alf and Bert’s bargaining game represented in Figure 9.11 what is the
outcome predicted by non-cooperative bargaining theory if M = 1 and da= db
= 0.5? 

2 In Alf and Bert’s bargaining game, what is the outcome predicted by non-
cooperative bargaining theory if M = 1 and da = 0.5 and db = 0.2? Compare
your answer to the answer you obtained in Exercise 9.2 and your answer to
Problem 1. 

1 What predictions follow from Nash’s bargaining theory? Do you think these
predictions are reasonable?

2 How well do you think non-cooperative bargaining theory captures the
salient features of real-life bargaining problems?

3 In the bargaining game played between presidents Ajax and Barca analysed
in Section 9.4, Ajax and Barca were both assumed to be politically vulnerable
to some extent. This was modelled by assuming that each incurred constant
costs per bargaining period, representing votes lost. The outcome of the
negotiations between them was shown to depend on who moved first and
whose costs were higher. How do think the game should be modelled and

1–––––
1 + d

Questions for discussion

Figure 9.10.1 Bargaining with a constant rate of decay
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what to you think would be the outcome if Ajax was politically vulnerable
but Barca was the authoritarian leader of an undemocratic state?

1 The theoretical prediction is that Alf’s share will be 1/1.5 ≈ 0.67. Bert’s share
is 0.5/1.5 ≈ 0.33. Alf’s share is larger than in Exercise 9.2 because the
discount factor is lower implying that both players are more impatient. Alf,
the player with the first move, benefits. 

2 Now da > db indicating that Bert is more impatient than Alf. Alf’s predicted
pay-off is (1 – 0.2)/(1 – 0.2(0.5)) ≈ 0.8/0.9 ≈ 0.89. Bert’s predicted pay-off is
(0.2 – 0.1)/0.9 ≈ 0.1. Now Alf’s pay-off is much larger. He benefits because
Bert is relatively more impatient and Alf still has the first move.

1 The players could make the agreement binding by paying a third party to punish confession (as
discussed at the end of Section 3.1 in Chapter 3, and see Problem 2 of that chapter), or they might
be tied into a tight social network where confession was unacceptable.

2 Sometimes Pareto efficient outcomes are said to be Pareto optimal. However, a Pareto efficient (or
optimal) outcome needn’t be optimal in the sense that it is necessarily preferred by both players.
After all, {confess, deny} is preferred by Prisoner 1 to {deny, deny} and {deny, confess} is preferred
by Prisoner 2. {confess, deny} and {deny, confess} are also Pareto efficient. This is so because in
either case one of the players can only improve his position by worsening the position of the
other. In the {confess, deny} outcome, for instance, Prisoner 2 can only improve his pay-off by
confessing which makes Prisoner 1 worse off. If Prisoner 1 denies this improves Prisoner 2’s pay-off
but Prisoner 1 is again worse off. Considerations of this kind weaken the attraction of Pareto
efficiency as a measure of the desirability of an outcome. To see this, think about a distribution in
a population where one person owns all the wealth and everyone else has nothing. Such an
allocation would be Pareto efficient as the rest of the population could only be made better off by
worsening the position of the only wealthy person. 

3 Before free agency was established in association football the individual football clubs in the UK
(and much of the rest of Europe) were in effect monopsonist employers, as players were tied by the
retain and transfer system to their clubs (see, for example, Dobson and Goddard, 2001, or Thomas,
2004). In professional team sports in the USA players were tied to their clubs in the same way by
reserve rules.

4 When it employs more labour the firm has to pay higher wages to all its workers not just those
additionally employed.

Bargaining and negotiation
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5 If marginal revenue is greater than marginal cost then the firm can raise profits by hiring more
labour as revenue is increasing relative to costs. If marginal cost is greater than marginal revenue
then the firm can increase profits by hiring less labour.

6 The union can only secure more employment at the expense of a lower wage for all its members,
those previously as well as additionally employed.

7 For example, at the wage agreement represented by point T the union could raise its utility by
moving to the wage agreement represented by tf and the firm would be no worse off. 

8 See Osborne and Rubinstein (1990), Binmore (1992) or Elster (1989) for a more detailed discussion
of Nash’s axioms.

9 See, for example, Osborne and Rubinstein (1990) or Binmore (1992) for precise derivations of the
Nash bargaining solution.

10 The Nash bargaining solution is found by setting the players’ utilities equal to zero at the threat
point T (making T the origin) and drawing a straight line frontier that is a tangent to the non-
linear, concave frontier tftu and is bisected at the point of contact. The mid-point of the linear
frontier will be the point at which the utility increments product corresponding to both the linear
and non-linear frontiers is maximised. This point on tftu determines the Nash bargaining solution
or more specifically the symmetric Nash bargaining solution.

11 The generalised Nash bargaining solution was originally proposed by Harsanyi and Selten (1972)
to take into account some of the uncertainties for the players in bargaining scenarios characterised
by asymmetric information. See Binmore (1992: Chapter 5) for a more detailed discussion of the
generalised Nash bargaining solution. 

12 Mathematically the solution is derived by maximising the Nash product Uj(sj)Ur(sr) = KsjKsr with
respect to sj and sr subject to the constraint that sj + sr = 1. Substituting from the constraint the
Nash product (the objective function) becomes KsjK(1 – sj) or K2(sj – (sj)

2) . Differentiating with
respect to sj leads to the first order condition that K2(1 – 2sj) = 0 which solves for sj = . 

13 To see this you could assume that Jessie’s utility function was U(sj) = s and U(sr) = sr. If you do this
and follow the procedure in the previous note you will obtain sj

* = < and sr
* = .

14 TPL will depend on how much labour is employed. As a simplification it is assumed that L
maximises TPL – (M – L)W°. This is consistent with the Pareto efficiency assumption.

15 The first order condition is that –2L2w + L2wo+ TPLL = 0, dividing through by 2L2 solves for w*.

16 As you saw in Chapter 8 (Section 8.2).

17 See Elster (1989: 67–74) for a very readable account of this procedure. Alternatively, Montet and
Serra (2003: 214–16) give a more formal proof.

18 It might help to imagine that there are a number of possible equilibrium outcomes but X is the
highest pay-off to Alf in any of them.

19 Alternatively the value to Alf of X at t = 3 (discounted to t = 0) is d2X so Alf cannot credibly hold
out for more than this at t = 1 where Bert makes the offer. The total value of the prize at t = 1 is d
so Bert can credibly offer Alf d2X keeping d – d2X for himself. At t = 0 A has to offer Bert at least
d – d2X but can keep 1 – (d – d2X) for himself.

20 Or, equivalently: α = rb/(ra + rb) and β = ra/(ra + rb). See Montet and Serra (2003: 241).

21 That is, T – tca = x

22 T – x offered at time t is worth T – x – tcb to Barca.

23 She gets x by continuing but this is only worth x – tca which is less than x + cb – (t – 1)ca.
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24 These predictions follow from the axioms of invariance and anonymity. 

25 Psychologically prominent divisions that are recognised by both players.

26 See www.acas.org.uk.

27 For a discussion see, for example, Elster (1989: Chapter 2).

28 See, for example, Kreps (1993: Chapter 5) or Elster (1991: 3–7) for a discussion of the possible
limitations of the backward induction method.

29 See Johnson, Camerer, Sen and Rymon (2002).
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