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PREFACE 

Modal logic is a branch of mathematical logic studying mathematical models of 
correct reasoning which involves various kinds of necessity-like and possibility
like operators. 

The first modal systems were created in the 1910s and later by Lewis (cf. 
Lewis and Langford, 1932) who used the operators "it is necessary" and "it is 
possible" for analyzing other logical connectives, in particular implication. Orlov 
(1928) and Godel (1933a) constructed modal systems with the operator "it is 
provable" and exploited them to interpret Heyting's intuitionistic logic. More 
recently numerous modal systems have originated from different sources. They 
include: 

• Philosophy, which studies the categories of necessity, contingency, causal
ity, etc., and gives rise to logics with alethic ("it is necessary" and "it is 
possible"), deontic ("it is obligatory" and "it is permitted"), epistemic ("it 
is known" and "it does not contradict to what is known"), tense ("at all 
future times" and "eventually"), and some other modal operators; 

• Foundations of mathematics, in which intuitionistic logic and provability 
logic (with the modal operators "it is provable in a given formal theory, 
say Peano arithmetic" and "it is consistent with the theory") were created; 

• Computer science, which developed dynamic logic (with operators like "af
ter every execution of the program" and "after some execution of the 
program") and temporal logic (with "henceforth", "sometimes" and other 
temporal operators) for describing the behavior of computer programs; 

• Cognitive science, in which nonmonotonic modal logics, default and au
toepistemic logics (with the operators "it is believed" and "it is consistent 
with the current knowledge base") were designed; 

• Linguistics studying modalities in natural languages. 

(This list is by no means complete; modal logics may have rather unexpected 
sources, for instance, quantum mechanics.) Although created in different fields 
and for different purposes, all these systems (their fragments with the corre
sponding necessity-like and possibility-like operators, to be more exact) have so 
much in common that can be definitely attributed to the same family of logics. 
This family turns out to be very extensive, and not only because there are many 
kinds of modal operators. Each particular operator may be explicated in different 
ways, which gives rise to subfamilies of deontic logics, epistemic logics, etc. For 
example, one application may require a temporal logic of discrete linear time, 
while another a temporal logic of branching continuous time. 

Modal logic is not just a collection of systems of that sort: in fact they 
are subjects of more special disciplines. Modern modal logic-at least as it is 
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understood in this book-abstracts from those particular systems and considers 
a general notion (or notions) of modal logic as a set of formulas in a certain 
language containing certain axioms and closed under certain inference rules. In 
other words, it deals with a class of extensions of a certain minimal modal system 
and its main concern is to develop general methods for investigating properties 
of logics in the class. It is this step of abstraction, made in the 1950s and 1960s, 
that distinguished modal logic as a separate discipline within mathematical logic 
and clearly formulated its object of studies. 

There are several degrees of freedom in the choice of the minimal modal 
system. We can choose between a propositional language and a predicate one, 
between a language with a single basic modal operator and a polymodal one. We 
should decide which non-modal basis-classical, intuitionistic, or some other-is 
preferable. And of course there is a wide choice of modal axioms and inference 
rules. (For a detailed classification of modal logics consult Segerberg (1982).) 

In this book our minimal system is the well known propositional unimodal 
classical logic K, and we consider the class of its quasi-normal (i.e., closed un
der modus ponens and substitution) extensions. This choice is motivated by two 
reasons. First, almost all important modal systems belong to this class or are 
reducible in one sense or another to its logics, or can be handled by a similar 
technique. It is this class that has mostly attracted modal logicians' attention, 
and for which sufficiently general methods have been developed. And second, 
modal operators behave, in a sense, like quantifiers and so even the proposi
tional modal language turns out to be very rich and expressive. The class under 
consideration contains logics with any conceivable combination of properties and 
clearly demonstrates principal difficulties and problems in modal logic. 

Another important family of propositional logics considered in this book is 
the class of superintuitionistic (or intermediate) logics which are extensions of 
Heyting's intuitionistic logic Int. From the technical and even philosophical point 
of view superintuitionistic logics are closely related to modal ones, and we use 
this opportunity to present a theory of such logics, at least in the background. 

The purpose of the book is to give a systematic treatment of the most im
portant methods and results concerning these two kinds of logics. 

There exist three general ways of manipulating logics: syntactical, semantic 
and algebraic. The syntactical way, which uses various kinds of proof systems, 
like Gentzen-style calculi, natural deduction, semantic tableaux, etc., is hardly 
suitable for our aims. Although such systems have been constructed for a few par
ticular modal and superintuitionistic logics, they are too special to be extended 
to big classes. The most widely used semantic way, exploiting "geometrical" fea
tures of Kripke frames, comes across the effect of Kripke incompleteness. We 
will go along this way as far as possible and then combine it with the universal 
algebraic way (which lacks geometrical insight) by adding to Kripke frames the 
algebraic component and considering general frames. Since the end of the 1970s, 
when duality theory started by Jonsson and Tarski (1951) was finally developed, 
this approach to modal (and other non-classical) logics has become dominat
ing, having reconciled thereby "Kripkeans" and "algebraists" and laid a solid 
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mathematical base urider the edifice of modal logic. 
The existing textbooks on modal logic reflect the state of the discipline as it 

was in the mid-1970s. From the technical point of view, they practically do not 
go further than applying the methods of canonical models and filtration to a few 
particular systems. The modern algebraic semantics (varieties of modal algebras 
and matrices), duality theory, general completeness results, investigations into 
metalogical properties of logics, algorithmic and complexity problems remain still 
scattered over numerous journals and proceedings of conferences. (Partially this 
situation is mitigated by books in boundary fields, for instance, correspondence 
theory, logic of time, provability logic, and the handbook series.) 

We believe this book will make understandable these important methods, 
tools and results of modal logic to students specialized in mathematics or com
puter science as well as in philosophy or linguistics. It should be useful for both 
novices without any previous knowledge of modal logic and specialists in the 
subject. We start with the very basic definitions and gradually advance to the 
front line of the current researches. Each chapter ends with a brief commentary 
and exercises, often supplemented with open problems. 

Modal logic is too extensive a field to be covered comprehensively only by one 
book. Besides, it can be looked at from different points of view. For instance, from 
the algebraic standpoint modal logics can be considered as equational theories 
of Boolean algebras with operators. Also, one can look at modal formulas as a 
language for describing classes of relational structures and compare it with other 
languages, say, the classical first order language. In this book our main object 
of studies are modal logics per se; algebras and relational structures provide 
us with the relevant technical tools. Facing the problem of selecting material, 
we gave priority to ideas and methods rather than facts concerning individual 
systems. A number of interesting results are presented as exercises. On the other 
hand, sometimes it was very difficult to resist the temptation to include in the 
text quite new theorems, especially if we felt that otherwise the picture would 
be incomplete. We understand the danger of mixing genres and yet hope that 
we have managed to find a reasonable compromise between a textbook and a 
monograph. 

Now a few words about the content of the book. Part I introduces in full 
detail the syntax as well as the semantics of basic superintuitionistic and modal 
systems and studies their properties. In fact it illustrates in miniature what kinds 
of problems are to be considered later for big classes of logics. Technically one of 
the central points here is the construction of Kripke countermodels for a given 
formula, which is the first step in understanding the "geometry" of arbitrary 
(refutation) frames for the formula, and also the truth-preserving operations on 
frames. 

In Part II we first consider the method of canonical models for proving Kripke 
completeness and various forms of filtration for establishing the finite model 
property, which is called in this book the finite approximability. And then we 
present a series of "negative" results giving examples of logics lacking the finite 
approximability, canonicity, compactness, elementarity and Kripke completeness. 
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Part III introduces adequate semantics for modal and superintuitionistic log
ics. We translate the language of logic into the language of algebra and arrive 
at varieties of modal and pseudo-Boolean algebras. Using the Stone-J6nsson
Tarski representation, we convert these algebras into general frames and study 
the relationship between the· algebraic and generalized Kripke semantics. Then 
we develop a frame-theoretic language in terms of which one can characterize 
the constitution of transitive refutation frames for a given modal or intuitionistic 
formula. 

Part IV studies various properties of modal and superintuitionistic logics. 
Here we deal with different forms of completeness (raising problems like "what 
is the structure of frames for a given logic?", "what is the simplest class of 
frames characterizing it?"), and touch upon correspondence theory. We consider 
also lattice-theoretic and metalogical properties (e.g. Post completeness, inter
polation, the disjunction property). 

Finally, Part V is devoted to algorithmic and complexity problems. Our con
cern here is not only the traditional problem of the decidability of logics. We 
are also interested in the decidability of logics' properties and the decidability 
of the admissibility and derivability problems for inference rules. In complexity 
theory we focus our attention mainly on estimating the size of minimal refutation 
frames for finitely approximable logics. 
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Part I 

Introduction 

The word "logic" is used in this book in two senses. In the broader sense logic 
or better mathematical logic is the discipline studying mathematical models of 
correct human reasoning. While constructing such models, it is usually assumed 
that reasoning consists of propositions, that is sentences whose content may be 
evaluated as true or not true. For example, Goldbach's conjecture 

Every even number that is greater than 2 can be represented as the sum of two prime 
numbers, 

Godel's second theorem 

If the formula 0 = 1 is not provable in formal Peano arithmetic PA, then the statement 
"0 = 1 is not provable in PA" is not provable in PA, 

and Winnie-the-Pooh's song1 

If Rabbit 
Was bigger 
And fatter 
And stronger, 
Or bigger 
Than Tigger, 
If Tigger was smaller, 

Then Tigger's bad habit 
Of bouncing at Rabbit 
Would matter 
No longer, 
If Rabbit 
WaB taller 

are propositions. Godel's second theorem and Winnie-the-Pooh's song provide us 
with examples of compound propositions: they can be constructed from simpler 
propositions such as 0 = 1, Rabbit is bigger than Tigger, etc., with the help of 
logical connectives which are expressed by the words like "and", "or", "if ... then 
... ", "not", "provable in PA", "no longer". In this sense Goldbach's conjecture 
is an elementary or atomic proposition. 

If the intrinsic structure of atomic propositions is of no concern to us then we 
are in the realm of propositional logic which studies schemes of correct reasoning 
on the base of how propositions are constructed from atoms regardless of their 
content. "If cp then cp or 7/J" is a simple example of a propositional scheme which 
is valid for all concrete propositions cp and 'ljJ. 

Propositional logic deals with formal languages containing propositional va
riables whose values may be arbitrary propositions, propositional constants like 
"truth" and "falsehood" and formulas constructed from variables and constants 
using logical connectives. In this book we will consider only languages with the 
constant "falsehood" (_l), the connectives "and", "or", "if ... then ... ", which 
are denoted by /\, V, ___, and called conjunction, disjunction and implication, 
respectively, and the modal connective D called the necessity operator which, 
depending on the context, is read as "it is necessary" or as "it is obligatory" or 
as "it is provable" or "it is true now and always will be true", etc. 

1 A.A. Milne. The house at Pooh corner. 



2 INTRODUCTION 

In the narrower sense, by a logic in a given propositional language we will 
mean simply the set of all formulas in the language representing propositional 
schemes which are valid from a certain point of view. Different logics appear not 
only because of the possibility of varying the language, i.e., on account of the 
desire to study various logical connectives, but also for the reason that the same 
connectives may be interpreted in different ways. 

In this part we briefly consider a few most important propositional logics 
which give rise to those big families of logics we shall deal with in the sequel. 
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CLASSICAL LOGIC 

Classical propositional logic was created by Boole about 150 years ago (see Boole, 
1947). It holds the central position among propositional logics not only due to 
its venerable age. In fact, it represents the simplest model of reasoning based 
upon the assumption that every proposition is either true or false. Many other 
logics are either contained in the classical one or built on its basis by enriching 
the language with new connectives. 

1.1 Syntax and semantics 

Fix the propositional language £ whose primitive symbols (alphabet) are: 

• the propositional variables po,pi, .. . ; 
• the propositional constant .l (falsehood); 
• the propositional connectives: /\ (conjunction), V (disjunction), ---> ( impli

cation); 
• the punctuation marks: ( and ) , 

and the formulas of£ (or £-formulas, or simply formulas if£ is understood) are 
defined inductively: 

• all the variables in £ and the constant .l are atomic £-formulas (or simply 
atoms); 

• if <.p and 1/; are £-formulas then ( <.p /\ 1/;), ( <.p V 1/;) and ( <.p ---; 1/;) are also 
£-formulas; 

• a sequence of primitive symbols in £ is a formula iff2 this follows from the 
two preceding items. 

Example 1.1 The following sequence of symbols is a formula: 

We will denote propositional variables by the small Roman letters p, q, r, 
possibly with subscripts or superscripts; the small Greek letters <.p, 1/;, x and 
maybe some others are reserved for formulas, and capital Greek letters like r, 
6., E are used for denoting sets of formulas. 

The set of all variables in£ is denoted by Var£. Unless otherwise indicated, 
we will assume Var£ to be countable. This restriction is of not so great impor
tance, and almost all the results to be obtained below can be generalized (in one 
way or another) to languages with finitely or uncountably many variables. 

2 Iff is the standard abbreviation for "if and only if'. 
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The set of all .C-formulas is denoted by For.C. The formulas used in the 
construction of a formula r.p according to the definition above as well as r.p itself are 
called sub formulas of r.p. Subr.p is the set of all r.p's subformulas and Varr.p is the set 
of all variables in Subr.p. If Varr.p = 0 then r.p is called a variable free formula. We 
use the notation r.p(q1, ... , qn) to reflect the fact that Varr.p ~ {qi, ... , qn}· We 
rely upon the reader's common sense and give no exact definition of occurrence 
of a subformula in a formula. 

The propositional connectives--, (negation),~ (equivalence) and the constant 
T (truth) can be defined as abbreviations: 

(•r.p) = (r.p--> _1_), 

(r.p ~ ?j;) = (r.p--> ?j;) /\ (1/J--> r.p), 

T = (_l_ __. _l_). 

If a formula r.p is of the form (•7/J) or (7/J 8 x), for 8 E {A, V, -->, ~ }, then --, or, 
respectively, 8 is called the main connective of r.p. The formula 1/J is said to be 
the premise of the implication ( 1/J --> x) and x its conclusion. 

We shall use the following standard conventions on representation of formulas: 
we assume --, to connect formulas stronger than /\ and V, which in turn are 
stronger than --> and ~, and omit those brackets that can be recovered according 
to this priority of the connectives. We shall also write r.p1 V r.p2 V r.p3 V ... V 'Pn or 
v~=l 'Pi instead of ( ... ( ('Pl v 'P2) v r.p3) v ... v 'Pn) and 'Pl /\ 'P2 /\ r.p3 /\ ... /\ 'Pn 
or "~=l 'Pi instead of( ... ((r.p1 /\ 'P2) /\ r.p3) /\ ... /\ 'Pn); viE0 'Pi and AE0 'Pi mean 
l_ and T, respectively. Each 'Pi in a formula of the form V~=l 'Pi or /\~=l 'Pi is 
called a disjunct or a conjunct of the formula, respectively. 

With the help of these abbreviations and conventions, the formula in Exam-
ple 1.1 can be now written much more briefly: · 

•Po V Pl --> P1 /\ P2 /\ p3. 

We have introduced the syntax of classical logic and now turn to its semantics, 
i.e., define the classical interpretation of the language .C. 

The fundamental semantic assumption characterizing classical logic is as fol
lows: 

• each atomic proposition is either true or false (but not simultaneously}, 
with J_ being always false; 

• the truth-values of compound propositions are uniquely defined by the fol
lowing truth-table, where T and F stand for "true" and "false", respectively: 

F F 
F T 
T F 
T T 

F 
F 
F 
T 

F 
T 
T 
T 

T 
T 
F 
T 

T 
T 
F 
F 

T 
F 
F 
T 
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Thus, according to this truth-table, "false" means just "not true". 
Starting from the assumption above, we can give now an exact definition of 

classical model of the language £. 
A classical model of£ is any subset wt of Var£. Less formally this means 

that wt contains those and only those atomic propositions that are regarded to 
be true. By induction on the construction of a formula <.p we define a relation 
wt I= <.p which is read either as "r.p .is true in the model VJ?" or as "VJ? is a model 
for r.p": 

not wt I= -1; 

wt I= p iff p E wt, for every p E Var£; 

wt I= 'l/J A x iff wt F= 'l/J and wt F= x; 
wt f= 'ljJ V x iff wt f= 'ljJ or wt I= x; 
VJ? f= 'ljJ-> X iff VJ? f= x whenever VJ? f= 'l/J. 

If wt f= <.p does not hold then we write VJ? ~ <.p and say that either <.p is false in 
wt or wt is a countermodel for <.p or wt refutes <.p. 

Observe at once that truth or falsity of a formula <.p in a model wt depends 
only on the truth-values of r.p's variables in wt. In other words, the following 
proposition holds. 

Proposition 1.2 Suppose that models wt and !J1 are such that 

for all variables p in some set Var ~ Var£. Then, for every formula <.p with 
Varr.p ~Var, 

Proof An easy induction on the construction of <.p. 0 

A model wt is called a model for a set r of formulas (notation: wt f= f) if all 
formulas in r are true in wt. 

A formula <.p is said to be (classically) valid if it is true in all models of£; in 
this case we write f= <.p. 

Example 1.3 To show the validity of the formula 

pV(p->-1), 

known as the law of the excluded middle, it suffices to construct the truth-table 
for p V (p-> -1), which looks like this 

pV p->-1 
F T F T F 
T T T F F 

and make sure of that the column under the main connective of our formula 
contains only T. 
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Example 1.4 The truth-table for (p /\ q - l.) - (p - l.) 

p /\ q - l. - p - l. 
F F F T F T F T F 
F F T T F T F T F 
T F F T F F T F F 
T T T F F T T F F 

contains F in the column under the main connective, which means that this 
formula is not valid. 

Finally, we define classical logic in the language ,C as the set Cl.c of all valid 
£-formulas or in symbols 

Cl.c = {<p E For.C: f= <p}. 

Since ,C is always understood, we drop the subscript and write simply Cl. 

1.2 Semantic tableaux 

Having defined classical or some other logic, we naturally face the problem of 
recognizing, given an arbitrary formula, whether it belongs to the logic or not. 
If there is an algorithm deciding this problem for a logic then the logic is called 
decidable. 

The decidability of classical logic becomes evident as soon as we observe 
that the truth-value of a formula <p(pi, ... ,pn) depends only on the truth-values 
assigned to pi, ... ,Pn· A trivial decision algorithm is as follows: we just write 
down all 2n possible assignments of F and T to Pi, ... ,pn and calculate the 
truth-value of <p for each of them; <p is in Cliff all calculated values are T. 

Yet there are a dozen subtler ways of determining validity. Here we consider 
one of them, a variant of the semantic (or Beth) tableau method. Roughly the 
underlying idea is that instead of climbing bottom-up from the truth-values 
of <p's variables to the truth-values of <p, we can move top-down, purposefully 
constructing a countermodel for <p. The sel!lantic tableau method not only gives 
a more convenient tool for handling classical formulas (though in the worst case 
it works as ineffectively as the truth-table method). It is more important for us 
that the method can be extended to some other logics with different semantics 
which does not admit truth-tables. 

Let us start with examples. 

Example 1.5 Suppose we want to determine whether the formula 

<p = ((p - q) - p) - p, 

known as Pierce's law, is valid or not. To solve this problem let us try to construct 
a countermodel for <p. 

We begin the construction with forming a tableau consisting of two parts: in 
the left one we put those subformulas of <p which we want to be true, while the 
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right part contains suoformulas which are to be made false. Since we want VJ to 
be false, it should be put in the right part. The truth-table for ~ tells us that 
VJ is false iff (p ~ q) ~ p is true and pis false; so we put the former formula in 
the left and the latter in the right part of the tableau: 

l((p~q)~p)~p 
(p ~ q) ~ p p 

Now, to make (p ~ q) ~ p true we have two possibilities, namely, either to make 
p true or to make p ~ q false. So the tableau above can be extended in two ways: 

((p~q)~p)~p 
(p ~ q) ~ p p 

p 

((p ~ q) ~ p) ~ p 
(p ~ q) ~ p p 

p~q 

p q 

But then we arrive at a contradiction: both tableaux require p to be simulta
neously true and false. This means that there is no countermodel for VJ, and 
hence 

((p ~ q) ~ p) ~ p E Cl. 

Example 1.6 Now let us use the same technique to construct a countermodel 
for 

VJ = r /\ ( •P V •q) ~ r /\ (p V •q). 

The first four lines in the tableau are clear: 

r /\ ( •p V •q) ~ r /\ (p V •q) 
r /\ ( •p V •q) r /\ (p V •q) 

r 

•P V •q 

But now there are two ways to maker/\ (p V •q) false: to put r in the right part 
or to put p V •q there. Thus we obtain two extensions of the tableau: 

(a) 
r /\ ( •p V •q) ~ r /\ (p V •q) 

r /\ ( •p V •q) r /\ (p V •q) 
r 

•P V •q 
r 
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(b) 
r /\ (-ip V -iq)-+ r /\ (p V -iq) 

r /\ (-ip V-iq) r /\ (p V-iq) 
r 

'P V -,q 
pV-iq 
p 

q -iq 

The requirements of the tableau (a) are inconsistent. And (b) again has two 
extensions: to make 'P V -iq true, we can put in the left part either 'P or -iq. 
The latter alternative leads immediately to a contradiction, while the former one 
gives us the tableau 

r /\ ( 'P V -iq) -+ r /\ (p V -iq) 
r /\ (-ip V-iq) r /\ (p V-iq) 

r 
'P V -iq 

pV -,q 
p 

q -iq 

'P 
whose requirements can be satisfied by assigning F top and T to q and r. Hence 
<p is false in every model 9Jt such that 9Jt f= q, 9Jt f= r and 9Jt If= p. 

Now we present this procedure of juggling with formulas as a formal system 
and show that applying it to an arbitrary given formula, in a finite number of 
steps we shall either construct a countermodel for it or establish its validity. 

We will represent a tableau as a pair of sets of formulas: one of them contains 
all the formulas in the left part of the tableau and the other those in the right 
part. Thus, a semantic tableau in the language £, is just a pair t = (r, A) with 
r, As;;: For£. 

A tableau (r, A) is called (downward) saturated in Cl if, for all formulas 
'If;, x E For£, 

(Sl) 1f; /\XE r implies 1f; Er and XE r, 
(82) 1f; /\ x E A implies 1f; E A or x E b., 
(83) 'If; V XE r implies 1f; E r or XE r, 
(84) 1f; V x E A implies 1f; E A and x E b., 
(85) 'If; -+ X E r implies 1f; E b. or X E r, 
(86) 1f; -+ X E b. implies 1f; E r and X E A. 

(r, A) is disjoint if r n A= 0 and .l (j. r. Say that a tableau t' = (r', b.') is an 
extension of a tableau t = (r, b.) (or t is a subtableau oft') and write t s;;: t' if 
r s;;: r' and b. s;;: b.'. 

A tableau t = (r, b.) is called realizable if there is a model v.n such that 

v.n F 1f; for all 1f; E r and v.n If= x for all x E b.; 
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iri this case 9J1 is said to realize t. 

Proposition 1. 7 A tableau t = (r, A) is realizable iff it can be extended to a 
disjoint satumted tableau t' = (r', A'). 

Proof ( =?) Suppose 9J1 is a model realizing t. Put r' = { <p E For.C : 9J1 I= <p} 
and A' = {cp E For.C: 9J1 ltf: cp}._It is clear that f' n A' = 0, .l rf_ f', r ~ r' 
and A ~ A'. Comparing conditions (Sl)-(S6) with the definition of the truth
relation I= in Section 1.1, it is easy to see that t' satisfies those conditions and 
so is saturated. 

( <=) It suffices to show that every disjoint saturated tableau (r', A') is re
alizable. Define a model 9J1 by taking 9J1 = r' n Var.C. By induction on the 
construction of <p one can readily establish that <p E r' implies 9J1 I= <p and 
<p E A' implies 9J1 ltf: <p. 0 

Proposition l. 7 provides us in fact with an algorithm for verifying realizability 
of finite tableaux. Indeed, conditions (Sl)-(S6) can be read as the satumtion 
rules: 

(SRl) 

(SR2) 

etc. 

And then we obtain 

if 'l/J /\ X E r then add 'l/J and X to r, 
if 'l/J /\ x E A then add 'l/J or x to A, 

Proposition 1.8 A finite tableau ti is realizable iff there is a sequence ti, ... , tn 
such that tn is a disjoint satumted tableau and each ti+l is obtained from ti by 
applying to it one of the satumtion rules. 

Proof Exercise. 0 

As another exercise we invite the reader to prove that all formulas in Table 1.1 
are in Cl. In what follows we will use those formulas without any comments. 

1.3 Classical calculus 

Classical logic can be represented as a formal axiomatic system, i.e., as a calculus, 
in several ways. Since in this book we are not going to deal with proof theory, 
we consider here only a Hilbert-type calculus which is rather convenient for 
theoretical constructions but not for practical use. 

Classical propositional calculus Cl in the language .C contains the following 
axioms and inference rules: 

Axioms: 

(Al) Po -> (Pi ->Po), 
(A2) (Po-> (P1-> P2))-> ((Po-> P1)-> (po-> P2)), 
(A3) Po/\ P1 ->Po, 
(A4) Po /\pi-> Pi, 
(A5) Po-> (Pi-> Po Api), 
(A6) Po-> Po V Pi, 
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Table 1.1 A list of classically valid formulas 

Formula 
p /\ p ...... p, p v p ...... p 

p /\ q ...... q /\ p, p v q ...... q v p 

p /\ J_ ._. J_, p /\ T <--+ p 

p V J_ <--+ p, p V T <--+ T 

J_ --4 p, p --4 T 

p /\ 'P --4 q 

pl\ (q/\r) <--+ (p/\q) /\r} 
pV(qVr)<-+(pVq)Vr 
(p /\ q) v q ...... q, p /\ (p v q) ...... p 

p /\ (q V r) <--+ (p /\ q) V (p /\ r)} 
p V ( q /\ r) <--+ (p V q) /\ (p V r) 
p--4 (q--4p) 

(p --4 q) --4 ((q --4 r) --4 (p --4 r)) 

(p --4 (q --4 r)) --4 ((p --4 q) --4 (p --4 r)) 

p /\ q --4 p, p --4 p v q 

(p v q) /\ (p v --iq) ...... p 

p--4(Q--4p/\q) 

(p --4 (q --4 r)) <--+ (p /\ q --4 r) 

(p --4 q) --4 ( (p --4 r) --4 (p --4 q /\ r)) 

(p --4 q /\ r) <--+ (p --4 q) /\ (p --4 r) 

(p --4 q) /\ (p' --4 q') --4 (p v p' --4 q v q') 

(p --4 q) /\ (p' --4 q') --4 (p /\ p' --4 q /\ q') 

(p --4 r) --4 ((q --4 r) --4 (p V q --4 r)) 
•(P V q) <--+ •P /\ •q} 
•(p /\ q) <--+ •P V •q 
(p --4 q) <--+ 'P V q 

(p --4 q) ...... •(p /\ •q) 

((p --4 q) --4 p) --4 p 

p v --ip 

(p --4 q) ...... ( ·q --4 --ip) 

p ._. ''P 

(p /\ q) v (p /\ •q) ...... p 

Name 
The laws of idempotency 

The laws of commutativity 

Duns Scotus' law 

The laws of associativity 

The laws of absorption 

The laws of distributivity 

The law of simplification 

The law of syllologism 

Frege's law 

The law of adjunction 

The law of importation and 
exportation 

De Morgan's laws 

Pierce's law 

The law of the excluded middle 

The law of contraposition 

The law of double negation 
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(A7) P1 ---+Po V pi, 
(A8) (Po---+ P2)---+ ((p1---+ P2)---+ (po V P1---+ pz)), 
(A9) 1----+ po, 
(AlO) Po V (Po ---+ 1-); 

Inference rules: 

Modus ponens (MP): given formulas cp and cp---+ 1/J, we obtain 1/J, 

Substitution (Subst): given a formula cp, we obtain cps, 

where s, a substitution, is a map from Var£ to For£ and cps is defined by 
induction on the construction of cp: ps = s(p) for every p E Var£, 1-s = 1- and 
(1/J 0x)s=1/Js 0 xs, for 0 E {A, V,-+}. 

A substitution s such that s(p) = 1/J, ... , s(q) = x and s(r) = r, for all 
variables r different from p, ... ,q, will be denoted by {1/J/p, ... ,x/q}. Given 
substitutions s' and s", we denote bys' s" their composition, i.e., the substitution 
s such that ps = (ps')s" for every variable p. 

A formula cp is said to be derivable in Cl if there is a derivation of cp in Cl, i.e., 
a sequence <pi, ... , <{Jn of formulas such that <{Jn = cp and for every i, 1 ::::; i ::::; n, 
'Pi is either an axiom or obtained from some of the preceding formulas in the 
sequence by one of the inference rules; the number n is called the length of this 
derivation. If cp is derivable in Cl then we write f-c1 cp or simply f- cp when this 
does not involve ambiguity. 

Example 1.9 The following sequence is a derivation of cp---+ cp, for any formula 
cp: 

(1) (Po ---+ (P1 ---+ pz)) ---+ ((Po ---+ P1) ---+ (po ---+ P2)) (A2) 
(2) (cp---+ ((cp---+ cp)---+ cp))---+ (by Subst 

((cp---+ (cp---+ cp))---+ (cp---+ cp)) from (1)) 
(3) Po ---+ (P1 ---+Po) (Al) 
(4) cp---+ ((cp---+ cp)---+ cp) (by Subst 

from (3)) 
(5) (cp---+ (cp---+ cp))---+ (cp---+ cp) (by MP 

from (2), (4)) 
(6) cp---+ (cp---+ cp) (by Subst 

from (3)) 
(7) cp---+ cp (by MP 

from (5), (6)). 

Example 1.10 Below is a derivation of cp V 'ljJ---+ 'ljJ V cp, for any formulas cp and 
1/J: 
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(1) P1 -t Po V P1 (A7) 
(2) Po -t Po Vp1 (A6) 
(3) cp-t'lj;Vcp (by Subst 

from (1)) 
(4) 1/J-t'lj;Vcp (by Subst 

from (2)) 
(5) (po -t P2) -t ((P1 -t P2) ___.(po V P1 -t P2)) (A8) 
(6) (cp -t 'ljJ v cp) -t ((1/J -t 'ljJ v cp) -t (cp v 'ljJ -t 'ljJ v cp)) (by Subst 

from (5)) 
(7) (1/J -t 'ljJ v cp) -t (cp v 'ljJ -t 'ljJ v cp) (by MP 

from (3), (6)) 
(8) cpV'l/J-t'lj;Vcp (by MP 

from (4), (7)). 

As an exercise we invite the reader to construct a derivation of an arbitrary 
formula of the form (cp v 1/J) v x ~ cp v (1/J v x). 

Observe that in the derivations above the rule Subst was applied only to 
axioms. We call such kind of derivations substitutionless. 

Proposition 1.11 Each formula cp derivable in Cl has a substitutionless deriva
tion in Cl. 

Proof The proof proceeds by induction on the length of a derivation of cp. The 
basis of induction is trivial, since in this case cp is an axiom. 

Suppose now that the claim of the proposition holds for all formulas having 
derivations of length < n, for some n > 1, and let cpi, ... , <pn be a derivation of 
cp = <pn. If cpn is the result of applying MP to cpi and cpj, for 1 $ i, j < n, then 
we can readily construct a substitutionless derivation of cp from substitutionless 
derivations of 'Pi and cpj, which exist by the induction hypothesis. 

Suppose that cpn = cpis. Let 'lj;1, ... , 1/Jm be a substitutionless derivation 
of cpi = 1/Jm and Xi, ... , XI all the axioms occurring in it. Then the sequence 
Xi, ... ' x1, 1/J1s, ... '1/JmS is a substitutionless derivation of <pn, which follows from 
the fact that (1/J -t x)s = 'lj;s -t xs and (i/;s')s = 1/J(s's), for all formulas 1/J, x 
and every substitutions'. 0 

Proposition 1.11 shows that classical calculus can be defined without using 
Subst. We can, for instance, replace p0 , p1 , p2 in axioms (Al)-(AlO) with the 
symbols <po, cpi, cp2 in our metalanguage and regard the resulting expressions as 
axiom schemes representing in fact the infinite set of substitution instances of 
(Al)-(AlO). 

Let r be a set of formulas. A sequence cp1, ... , cpn is called a derivation of cp 
from the set of assumptions r if 'Pn = cp and for every i, 1 $ i $ n, cpi is either 
an axiom or an assumption in r or obtained from some of the preceding formulas 
by one of the inference rules, with Subst being applied only to axioms. If there 
is a derivation of cp from r, we say that cp is derivable from rand writer l-c1 cp 
or simply r I- cp if understood. By Proposition 1.11, I- cp iff 01- cp. For brevity we 
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will write r, 1/;i, ... , 1/Jn f- cp instead of r u { 1/;i, ... , 1/Jn} f- cp and r, Li f- cp instead 
of r u Li f- cp. It follows immediately from the definition that 

r f- cp and r ~ Li imply Li f- cp, 

r f- cp --4 'lj; and Li f- cp imply r, Li f- 'lj;. 

Now we prove a theorem which turns out to be very useful for establishing 
derivability. 

Theorem 1.12. (Deduction) Ifr,1/; f- cp then r f- 1/;--> cp. 

Proof Let cp1, ... , 'Pn be a derivation of cp = 'Pn from r U { 'lj; }. By induction on 
i we show that r f- 'lj;--> 'Pi for every i E {1, ... , n }. 

If 'Pi is an axiom or a formula in r then the sequence 

(1) 'Pi 
(2) Po --> (P1 -->Po) 
(3) 'Pi --4 ( 'lj; --4 'Pi) 
(4) 1/;-->cpi 

is a derivation of 'lj; --4 'Pi from r. 

(Al) 
(by Subst from (2)) 

(by MP from (1) and (3)) 

If 'Pi = 'lj; then, as was shown in Example 1.9, f- 1/;--> 'Pi, and so r f- 1/;--> 'Pi· 
If 'Pi is obtained from 'PJ and 'Pk = 'PJ --> 'Pi by MP then, by the induction 

hypothesis, r f- 'lj;--> (cpJ -->'Pi), r f- 'lj;--> 'PJ, and using (A2), Subst and twice 
MP we obtain r f- 'lj; --> 'Pi· 

Finally, if 'Pi = 'PJS then 'PJ is an axiom and the derivation of 'lj; --> 'Pi from 
r we need is the sequence cpj, (1), ... , (4). 0 

The following examples show how the deduction theorem can be used for 
proving derivability. 

Example 1.13 For every formulas cp, 'lj;, x, we have 

r- (cp __. 1/J) __. ((1/J __. x) __. (cp __. x)). 

Indeed, by the deduction theorem it suffices to show that 

cp --4 1/;, 'lj; --4 x, cp f- x 

which can be done simply by applying MP twice. 

Example 1.14 Let us prove that 

r f- 'lj; v cp and r, cp f- 'lj; imply r f- 'lj;. 

By the deduction theorem, r f- cp--> 'lj;. Besides, as we know, f- 'lj; __. 'lj;. By Subst 
and (A8), we have 

f- ('¢ --4 '¢) --4 ((cp --4 '¢) --4 ('¢ v cp --4 '¢)) 

from which, using MP thrice, we obtain r f- '¢. 
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Example 1.15 Now we show that, for every 'I/; and x, 

f-1/; v ('I/;~ x). 

We have: 
f- 'I/; ~ 'I/; v ('I/; ~ x) 

'I/; ~ -1 f- 'I/; v ('I/; ~ x) 
f- ('I/;~ -1) ~'I/; v ('I/;~ x) 

f- ('I/;~ 'I/; v ('I/;~ x)) ~ ((('!/; ~ -1) ~ 
'I/; v ('I/;~ x)) ~('I/; v ('I/;~ -1) ~'I/; v ('I/;~ x))) 

(by Subst 
from (A6)) 

(by MP) 
(by Subst 

from (A9)) 
(by MP and 

deduction theorem) 
(by (A7) and MP) 

(by deduction 
theorem) 
(by Subst 

from (A8)) 

whence using (AlO), Subst and MP thrice we obtain f-1/; V ('I/;~ x). 

Calculus Cl is said to be sound if f- cp implies I= cp, for all cp E For.C, and 
complete ifthe converse implication holds. Thus, the soundness and completeness 
of Cl means that the set of derivable formulas coincides with the set of valid 
formulas. 

Theorem 1.16. (Soundness and completeness of Cl) For each formula cp, 
f- cp iff I= cp. 

Proof ( =>) To prove the soundness it suffices to verify that all axioms of Cl are 
valid and the inference rules preserve the validity. We leave this to the reader. 

( <=) Suppose If cp and show that the tableau to = (0, { cp}) is realizable, which 
means that ~ cp. 

Say that a tableau (r, A) is consistent in Cl if r f-c1 1/;1 v ... v 1/;m holds for 
no 1/;1, ... , 1/;m E A, m ;::: 0. We remind the reader that the disjunction of the 
empty set of formulas is -1, and so the consistency of (r, A) means in particular 
that r If -1. Since If cp and If -1, the tableau to is consistent. 

Let cp1, ... , 'Pn be a list of all formulas in Subcp. Define a sequence of tableaux 
to= (fo, Ao), ... , tn = (r n, An) by taking 

t . _ { (ri, Aiu {'PHI}) if (ri, Aiu { 'Pi+1}) is consistent 
•+1 - ( { } ) . r i u 'Pi+ 1 , Ai otherwise. 

Notice that r n U An = Subcp. Let us show that ti+ 1 is consistent whenever ti 
is consistent. Indeed, otherwise using Example 1.10 and axioms (A6)-(A8) we 
could find formulas 1/;1, ... , 1/;m E Ai such that 
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ri, 'Pi+l f- 7/J1 v ... v 7/Jm· 

But then, by Example 1.14, ri f- 7/J1 v ... v 7/Jm, contrary to the consistency of 
k Thus tn is consistent. 

Now we show that the tableau tn is disjoint and saturated. By Proposition 1.7, 
it will follow that t0 is realizable. Since tn is consistent, f- '1/J --> '1/J and f- ..L --> '1/J 

for every formula 7/J, tn is disjoint. · 
To verify condition (Sl), suppose that '1/J /\ X E r n and '1/J E An. However 

by (A3), '1/J /\ x f- 7/J, which is a contradiction, since tn is consistent. Conditions 
(S2)-(S5) are checked analogously with the help of axioms (A5)-(A 7) and Ex
ample 1.9. 

As for (S6), suppose that '1/J --> x E An, but either '1/J </. r n or x </.An. Then 
either x E r n or '1/J E An. Both these cases contradict the consistency of tn, 
since, by (Al), X f- '1/J--> x and, as was shown in Example 1.15, f- '1/J V (7/J--> x). 

Observe by the way that axiom (AlO) was used only in the proof of (S6). 
0 

Corollary 1.17 Cl= {cp E For£: f-c1 cp}. 

Thus, validity is a semantic counterpart of derivability in Cl. The following 
generalization of Theorem 1.16 provides a semantic counterpart for the 11otion 
of derivability from assumptions. 

Theorem 1.18. (Strong completeness of Cl) Every tableau (r, A) consis
tent in Cl is realizable. In particular, for every r and every cp, r f- cp iff 9'J1 I= r 
implies 9'J1 I= cp, for every model !JJ1. 

Proof The proof proceeds by the same scheme as the proof of ( <==) in Theo
rem 1.16. The only difference is that now the process of saturating (r, A) may 
be infinite (cf. the proof of Lindenbaum's lemma in Section 5.1). 0 

The same technique yields 

Theorem 1.19. (Compactness) A tableau (f, A) is realizable iff every tableau 
(f', A') with finite r' ~ r and A' ~ A is realizable. In particular, a set of 
formulas has a model iff its every finite subset has a model. 

Proof ( =>) is trivial and to prove ( <==) it is enough to observe that every deriva
tion involves only finitely many formulas and use Theorem 1.18. Details are left 
to the reader. 0 

1.4 Basic properties of Cl 

In this section we formulate a number of important syntactical properties of 
logics in the language L'. and prove or disprove them for classical logic Cl. 

By a logic in the language L'. we mean here an arbitrary set L ~ For£ which 
is closed under the inference rules modus ponens and substitution. Derivations 
in L are defined in the same way as in Cl with the exception that axioms now 
are not those of Cl but all formulas in L. If £ 1 , L 2 are logics and £ 1 ~ L 2 then 
L 2 is called an extension of L1 and £ 1 a sublogic of £ 2 . 
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CONSISTENCY. A logic L is called consistent if L =/:- For.C. If L contains 
formula (A9) then it is consistent iff ..l </. L. And if L accepts the law of Duns 
Scotus (see Table 1.1) then L is consistent iff <p E L and ''P E L for no formula 
<p. Since [;£: ..l, we have 

Theorem 1.20 Cl is consistent. 

DECIDABILITY. As was already observed in Section 1.2, we have 

Theorem 1.21 Cl is decidable. 

POST COMPLETENESS. A logic is said to be Post complete if it is consistent 
and has no proper consistent extension. 

Theorem 1.22 Cl is Post complete. 

Proof Suppose Lis a logic such that Cl C Land <p E L-Cl for some <p E For.C. 
Let 9'Jt be a model refuting <p. Define a substitution s by taking 

{ 
T if 9'Jt I= Pi 

PiS = ..l otherwise. 

Then <ps is obviously false in every model. Therefore, <ps --+ ..l E Cl and, since 
<ps E L, we obtain by MP that ..l E L. But this means that L is inconsistent. 

0 

We say a logic L is 0-reducible if, for every formula <p </. L, there is a variable 
free substitution instance <ps </. L. As a consequence of the proof of Theorem 1.22 
we immediately obtain 

Theorem 1.23 Cl is 0-reducible. 

INDEPENDENT AXIOMATIZABILITY. A logic Lin the language .c is indepen
dently axiomatizable by a set (of independent axioms) r ~ For .C if the closure of 
r under MP and Subst is L but no proper subset of r possesses this property. 

Theorem 1.24 Cl is independently axiomatizable. 

Proof Follows from Theorem 1.16 according to which Cl is the closure under 
MP and Subst of a finite set of formulas. In fact one can show that (Al)-(AlO) 
is a set of independent axioms for Cl. 0 

STRUCTURAL COMPLETENESS. Let <p1, ... , </)n, <p be some formulas. We will 
understand the figure 

<p1, · · ·, 'Pn 
<p 

(1.1) 

as the inference rule which, for every substitutions, derives <ps from the formulas 
<p1s, ... , 'PnS· Rule (1.1) is called admissible in a logic L if, for every substitution 
s, <ps E L whenever <p1s, ... , 'PnS E L. By definition, the rule p,p --+ q/q (i.e., 
modus ponens) is admissible in any logic. We say also that rule (1.1) is derivable 
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in L if there is a derivation of r.p in L from the set of assumptions { <p1, ... , 'Pn}· 

It should be clear that every derivable rule in L is also admissible in L. 
By the deduction theorem and the law of importation and exportation, (1.1) 

is derivable in Cl iff r.p1 /\ ... /\ 'Pn ....... r.p E Cl. A logic L is called structurally 
complete if every admissible rule in L is derivable in L. 

Theorem 1.25 Cl is structurally complete. 

Proof Suppose rule (1.1) is admissible in Cl but not derivable, i.e., 

'P1 /\ ... /\ 'Pn ....... r.p </. Cl. 

By Theorem 1.23, there is a variable free formula r.p 1s /\ ... /\ 'fJnS ....... r.ps which is 
false in every model. This means that the formulas r.p1s, ... , <fJnS are valid, while 
r.ps is not. Therefore, r.p 1s, ... , 'PnS E Cl but r.ps </.Cl, which is a contradiction. 

0 

It follows from Theorem 1.25 and the decidability of Cl that there is an 
algorithm which can recognize whether an arbitrary given rule is admissible in 
Cl. In other words we obtain 

Corollary 1.26 The admissibility problem for inference rules in Cl is decidable. 

As examples of admissible inference rules in Cl we present here the following 
congruence rules: 

p.....,. q 

(p-tr)<-'>(q-tr) (r ....... p).....,. (r ....... q) 

Taken together these rules yield the following theorem which is useful for the 
equivalent transformation of formulas. 

Theorem 1.27. (Equivalent replacement) Let r.p('lf;) be a formula contain
ing an occurrence of a formula 'If; and r.p(x) obtained from r.p('lf;) by replacing this 
occurrence with an occurrence of a formula X· Then, for every logic L in which 
the congruence rules are admissible, 'If;.....,. x EL implies r.p('lf;) .....,. r.p(x) E L. 

Proof An easy induction on the construction of r.p using the admissibility of 
the congruence rules above is left to the reader as an exercise. 0 

CRAIG INTERPOLATION PROPERTY. Say that a logic L has the Craig inter
polation property if, for every formula r.p ....... 'If; E L, there is a formula x, whose 
variables, if any, occur both in r.p and 'If;, such that r.p ....... x EL and x ....... 'If; E L; 
the formula x is called then an interpolant for r.p and 1/; in L. 
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Theorem 1.28. (Craig interpolation} Cl has the Craig interpolation prop
erty. 

Proof Suppose formulas cp and 'ljJ have no interpolant. Our aim is to show 
that in this case the tableau t0 = ( { cp }, {'ljJ}) is realizable, and so cp -t 'ljJ ¢ 
Cl. The proof below resembles the saturation technique used in the proof of 
Theorem 1.16, though it is based on somewhat different principles. 

Say that a tableau (r, ~) is separable (relative to cp and 'ljJ) if there is a formula 
x such that Varx <;;; Varcp n Var'ljJ and both tableaux (r, {x}) and ( {x}, ~) are 
not realizable ( = inconsistent). According to our assumption, t 0 is not separable. 

Call (r, ~)complete (relative to cp and 'ljJ) if, for every cp' E Subcp, 'ljJ' E Sub'ljJ, 
one of the formulas cp' or -icp1 is in r and one of the formulas 'ljJ' or -i'l/J' is in 
~. Starting from to we will construct a complete inseparable extension of t 0 and 
then show that it is realizable. 

Let 'PI, ... , 'Pk and 'I/JI, ... , 'l/Jm be lists of all cp's and 'I/J's proper subformulas, 
respectively. Define a sequence to = (fo, ~o), ... , tn = (r n, ~n), where n = 
k + m, by taking, for i < k and j < m, 

t . _ { (fi u {cpi+i},~o) if (ri u {'PHI},~o) is inseparable 
t+I - { } ) (fi U -,'Pi+I , ~o otherwise, 

t _ { (rk, ~k+i u { 'l/Ji+i}) if (rk, ~k+i u NHI}) is inseparable 
k+i+I - (rk,~k+i U {-i'l/Ji+I}) otherwise. 

Clearly, tn is complete. We show that, for i < k, ti+l is inseparable whenever 
ti is inseparable. Indeed, otherwise we would have two formulas XI and x 2, 
whose variables are in Varcp n Var'ljJ, such that the tableaux (ri U { 'Pi+I}, {XI}), 
({XI}, ~o), (ri U {-i'Pi+i}, {x2}) and ( {x2}, ~0) are not realizable. But then the 
tableaux (r i, {XI V x2}) and ({XI V x2}, ~o) are not realizable either, contrary 
to ti being inseparable. In a similar way one can show that, for j < m, tk+j+l is 
inseparable if tk+i is so. 

Thus, tn is complete and inseparable. Define a model 9J1 by taking, for every 
p E Var.C, 

p E 9J1 iff p E f n or -ip E ~n· 

We show that 9J1 realizes tn and so t 0 as well. Namely, by induction on the 
construction of x we prove that 

x E r n iff 9J1 F x, for x E Subcp, 

XE ~n iff 9J1 ~ X, for XE Sub'ljJ. 

The basis of induction is obvious. Suppose x = XI -t x2, x E Subcp, x E r n 

and 9J1 ~ X· Then 9J1 F Xi, 9J1 ~ x2 and so, by the induction hypothesis, 
XI E f n and -ix2 E f n, contrary to the inseparability of tn, since in that case 
both (fn,{..L}) and ({..L},~n) are not realizable. Thus x E fn implies 9J1 F X· 
To prove the converse suppose 9J1 F x and x ¢ r n· Then -i(XI -t x2) E r n> from 
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which Xi E r n and --ix2 E r n, for otherwise (r n, { 1-}) would be not realizable, 
contrary to the inseparability of tn. So, by the induction hypothesis, 9J1 f= X1 
and 9J1 ~ x2, whence 9J1 ~ x, which is a contradiction. 

The other cases are considered analogously. We leave them to the reader. 
0 

LOCAL TABULARITY. Formulas ·cp and 1/J are said to be equivalent in a logic 
L if cp · +-+ 1/J E L. A logic L is called locally tabular (or locally finite) if, for 
every natural n ~ 0, L contains only a finite number of pairwise nonequivalent 
formulas built from variables qi, ... , qn. 

Theorem 1.29 Cl is locally tabular. 

Proof With every formula cp( qi, ... , qn) we associate the n-ary Boolean func
tion Fcp which maps n-tuples of T and F to the set {T, F} in accordance with 
the truth-table for cp( qi, ... , qn). It is clear that the formulas cp( qi, ... , qn) and 
1/J(qi, ... , qn) are equivalent in Cl iff Fcp = F..p. And since there are exactly 22

n 

distinct n-ary Boolean functions, the number of pairwise nonequivalent formulas 
of the variables qi, ... , qn is also 22

n. 0 

HALLDEN COMPLETENESS. A logic L is said to be Hallden complete if, for 
every formulas cp and 1/J containing no common variables, cp V 1/J E L iff cp E L or 
1/J EL. 

Theorem 1.30 Cl is Hallden complete. 

Proof Suppose cp and 1/J have no variables in common, cp f_ Cl and 1/J f_ Cl. 
Then there are models 91li and 9J12 refuting cp and 1/J, respectively. Define a 
model 9J1 by taking, for each variable p, p E 9J1 iff either p E Subcp and p E 91li 
or p E Sub'lf; and p E 9J12 . By Proposition 1.2, we then have 9J1 ~ cp, 9J1 ~ 1/J, 
whence 9J1 ~ cp V 1/J and cp V 1/J f_ Cl. 

The converse implication is trivial. 0 

DISJUNCTION PROPERTY. A logic Lis said to have the disjunction property 
if, for every formulas cp and 1/J, cp V 1/J E Liff cp E Lor 1/J E L. Since classical logic 
accepts the law of the excluded middle p V -.p, we obviously have 

Theorem 1.31 Cl does not have the disjunction property. 

1.5 Exercises 

Exercise 1.1 A formula cp is said to be in disjunctive (conjunctive) normal 
form if cp = 1/Ji V ... V 1/Jn (respectively, cp = 1/Ji /\ ... /\ 1/Jn) where n ~ 1 and 
each 1/Ji is a conjunction (disjunction) of atoms or negations of atoms. Show that 
every formula can be effectively transformed to an equivalent (in Cl) formula 
which is in disjunctive (conjunctive) normal form. (Hint: use the equivalence 
(p --+ q) +-+ -.p V q, de Morgan's laws, the law of double negation, the laws of 
distributivity and the equivalent replacement theorem.) 
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Exercise 1.2 A formula ip(q1, ... ,qn) is in full disjunctive (conjunctive) nor
mal form if it is either 1- (T) or a disjunctive (conjunctive) normal form whose 
every disjunct (conjunct) contains exactly one occurrence of each of the vari
ables q1 , ... , qn. Show that every formula can be effectively transformed to an 
equivalent (in Cl) formula which is in full disjunctive (conjunctive) normal form. 
(Hint: with each line in the truth-table for r.p(q1, ... , qn), in which it has value 
T, associate the conjunction Xi /\ ... /\ Xn, where Xi =qi if qi is true in the line 
and Xi= •q; otherwise, and take the disjunction of all these conjunctions.) 

Exercise 1.3 Show that each of the following sets{/\,•}, {V,•}, {->,1-} is 
truth-functionally complete in the sense that every Boolean function (i.e., a func
tion from {F, T}n to {F, T}) can be represented as F'P, for some formula ip con
taining only connectives and constants in the set; in particular, every £-formula 
is equivalent in Cl to such a formula. 

Exercise 1.4 (Principle of duality) Let r.p be a formula whose connectives 
are only /\, V and •. The dual of <.p is the formula ip* which is obtained by 
replacing simultaneously every /\, V, 1-, T in <p with V, /\, T, 1-, respectively. 
Show that for all formulas <p and 1/J, ip(p1, ... ,pn) ~ -.r.p*(-.p1, ... ,•pn) E Cl 
and that ip ~ 'ljJ E Cl iff ip* ~ 1/J* E Cl. In particular, <p E Cl iff •<p* E Cl. 

Exercise 1.5 Let a = ( a 1 , ... , an) and Ii = (b1 , ... , bn) be n-tuples of F and T 
and let ai :::; bi iff a; =For b; = T. Put a:::; b iff ai :::; b; for every i E {1, ... , n }. 
A formula ip(p1 , ... , Pn) is called ~onotone if F'Pa :::; F'Pb whenever a :::; Ii. Show 
that every formula containing only the connectives /\, V and the constants 1-, T 
is monotone. 

Exercise 1.6 Show that every monotone formula is equivalent in Cl to a for
mula in the language with the connectives /\, V and the constants J_ and T. 

Exercise 1.7 Say that a formula ip(p1 , ... ,pn) is monotone relative to Pi if 

(q-> r)-> (ip( ... ,p;-1,q,pi+i, .. . ) -> ip( ... ,Pi-i,r,pi+i, .. . )) E Cl 

and antimonotone relative to p; if 

(q-> r)-> (r.p( ... ,p;-i,r,p;+1, .. . ) -> ip( ... ,p;-i,q,pi+i, .. . )) E Cl. 

Prove that (i) a formula is monotone iff it is monotone relative to its every 
variable; (ii) p -> q is monotone relative to q and antimonotone relative to 
p; (iii) every formula <p is monotone or antimonotone relative to each variable 
occurring at most once in ip. 

Exercise 1.8 A matrix for .C is a structure 21 = (A,/\, V, ->, 1-, D), where A is a 
non-empty set, D its non-empty subset, /\, V, -> are binary operations on A and 
1- E A. A valuation in 21 is a map m from Var.C to A. Considering the connectives 
as the corresponding operations on A, we can extend inductively m to a map 
from For.C to A. The pair 9Jl = (21, QJ) is an n-universal model for a logic L if 
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ip EL iff \!J(ip) ED, fo~ every formula ip(p1 , ... ,Pn)· For each n < w, construct a 
finite n-universal model for Cl. (Hint: take sit= (A,!\, v,~, 11..lll,{llTll}), where 
A consists of the sets 

ll'P(P1, · · · ,Pn)ll = {1/J(p1, · · · ,pn) : 'P ~ 1/1 E Cl}, 

lli,oll 0111/Jll = lli,o G 1/111, for 0 E {A, V, ~ }, 

SU( ) = { llPill if 1 ::; i::; n 
p, 11..lll otherwise.) 

Exercise 1.9 Prove that, for every n 2 1, one can axiomatize Cl in the language 
with the connectives ~ and -, using n independent axioms and the rules Subst 
and MP. (Hint: for n = 1, take the axiom 

and for n > 1, use the axioms 

o:i = -,2
i (p ~ p), 1 ::; i ::; n - 1, 

O:n = -,-,(p ~ p) ~ ( ... ~ (-,2(n-l)(p ~ p) ~ /3) ... ), 

where -,n is the string of n negations.) Is it possible to extend this result to the 
language used in this book? 

1.6 Notes 

This chapter contains only those basic facts concerning classical logic that will be 
used in the sequel. We did not touch upon, for instance, Gentzen-style systems or 
Post's theory of Boolean functions. A more comprehensive exposition of classical 
propositional logic can be found in other textbooks on mathematical logic, say 
in Church (1956), Kleene (1967), Mendelson (1984) or Takeuti (1975). 

There are several ways of proving the completeness theorem for Cl. We took 
that one which can be easily extended to other logics to be considered in the 
book. In fact, it goes back to Beth (1959), though the notion of semantic tableau 
we use here is somewhat different from the standard one, say that in Fitting 
(1983). Usually a semantic tableau is defined as a sort of derivation from a given 
pair t = (r, 6.) using inference rules like (SR1)-(SR6). This yields an alternative 
proof system for Cl. We apply essentially the same method but for constructing 
countermodels. All we need is just one disjoint saturated pair obtained from t 
with the help of those rules. Since we do not require tableaux to be finite, our 
completeness proof can be easily extended to the standard Henkin construction 
used for establishing completeness; cf. e.g. Chang and Keisler (1990). 

Cl is the simplest logic among those to be considered in this book. Some of 
its properties (e.g. Hallden completeness) are trivial and were presented only for 
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comparison with properties of non-classical logics. Although everything seemed 
to be known about Cl in the 1940s, from time to time new results continue to 
appear. Hodges (1983) claims that Craig's (1957) interpolation theorem was the 
last important achievement. That Cl is structurally complete was also observed 
not so long ago; see Belnap et al. (1963). Anisov (1982) showed that for any 
n > 1, Cl can be axiomatized by n independent axioms, with Subst and MP 
being the inference rules (see Exercise 1.9 the formula /3 in which was found by 
Meredith (1953)). Note also that if we do not use the rule of substitution (even 
in axioms) then there is a little hope to get an independent axiomatization, see 
Dale (1983). In this connection one more result deserves mentioning. Diamond 
and McKinsey (1947) constructed an algebra which is not Boolean itself but its 
all subalgebras generated by two elements are. It follows in particular that one 
cannot axiomatize Cl by axioms containing < 3 variables. 
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INTUITIONISTIC LOGIC 

From the set-theoretic point of view intuitionistic propositional logic is a subset 
of the classical one: it can be defined by the calculus which is obtained from Cl 
by discarding the law of the excluded middle (AlO). It is Brouwer's (1907, 1908) 
criticism of this law that intuitionistic logic stems from. However, the philo
sophical and mathematical justifications of these two logics are fundamentally 
different. 

2.1 Motivation 

The law of the excluded middle allows proof of disjunctions r.p V 'ljJ such that 
neither r.p nor 'ljJ is provable. It is equivalent in Cl to the formula ••P --+ p 
justifying proofs by reductio ad absurdum, which make it possible to prove the 
existence of an object (having some given properties) without showing a way 
of constructing it. Proofs of that sort are known as non-constructive. The aim 
of intuitionistic logic is to single out and describe the laws of "constructive" 
reasoning. 

The main principle of intuitionism asserts that the truth of a mathematical 
statement can be established only by producing a constructive proof of the state
ment. So the intended meaning of the intuitionistic logical connectives is defined 
in terms of proofs and constructions. The notions "proof' and "construction" 
themselves are regarded as primary, and it is assumed that we understand what 
a proof of an atomic proposition is. 

• A proof of a proposition r.p /\ 'ljJ consists of a proof of r.p and a proof of 'ljJ. 

• A proof of r.p V 'ljJ is given by presenting either a proof of r.p or a proof of 'ljJ. 

• A proof of r.p --+ 'ljJ is a construction which, given a proof of r.p, returns a 
proof of 'ljJ. 

• ..l has no proof and a proof of -.r.p is a construction which, given a proof of 
r.p, would return a proof of ..l. 

This interpretation, given by Brouwer, Kolmogorov3 (1932) and Heyting (1956), 
can hardly be reckoned as a precise semantic definition and used for constructing 
intuitionistic logic, as it was done for Cl. Nevertheless, it is not difficult to see 
that the first nine axioms of classical calculus Cl are entirely acceptable from 
the intuitionistic point of view, while the law of the excluded middle must be 

3 Kolmogorov treated formulas as schemes of solving (or posing) problems; for example, 
'P --+ 'ljJ means the problem: given any solution to the problem <p, find a solution to the problem 
'ljJ. 
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rejected (indeed, we cannot present now a proof of Goldbach's conjecture or that 
P =NP, etc., nor are we able to show that these statements do not hold). 

Intuitionistic logic was first constructed in the form of calculus by Heyting 
(1930). This calculus (an equivalent one, to be more exact) is obtained from Cl 
by discarding axiom (AlO). 

As to the interpretation above, it can be made more precise in various ways. 
Two of them-Kleene's realizability interpretation and Medvedev's finite prob
lem interpretation-will be briefly discussed in Section 2.9. Another way, con
nected with the explicit introduction of a new provability operator, will be con
sidered in Section 3.9 of Chapter 3 dealing with modal logic. 

More suitable for the practical use strict and philosophically significant defi
nitions of semantics for intuitionistic logic were given by Beth (1956) and Kripke 
(1965a) (see also Grzegorczyk, 1964). Their semantics does not exploit the no
tions of proof and construction; instead, it explicitly expresses an epistemic fea
ture of intuitionistic logic. We will give now some informal motivation of the 
Kripke semantics; the corresponding formal definitions will be introduced in the 
next section. 

By accepting the fundamental semantic assumption of classical logic----€ach 
proposition is either true or false-we completely abstract from the fact that 
actually it may be a priori unknown whether this or that proposition is true 
or false. We do not know now, for instance, if Goldbach's conjecture is true, if 
the equality P = NP holds, whether there are rational beings in the Archer 
constellation, and so forth. But it is quite possible that we can know about this 
in the future, acquiring new information on mathematics and the world around 
us. 

It is this epistemic aspect of the notion of truth that intuitionistic logic, as 
opposed to the classical one, takes into account. 

Let us imagine that our knowledge is developing discretely, nondeterministi
cally passing from one state to another. When at some state of knowledge (or 
information) x, we can say which facts are known at x and which are not es
tablished yet. Besides, we know what states of information y are possible in the 
future. Of course, this does not mean that we shall necessarily reach all these 
possible states (for instance, we can imagine now not only a course of events un
der which Goldbach's conjecture will be proved, but also such a situation when 
it will remain unproved or will be refuted). It is reasonable also to assume that 
while passing to a new state y all the facts known at x will be preserved, and 
some new facts will possibly be established. 

It is natural to regard an atomic proposition, established at a state x, to be 
true at x; it will remain true at all further possible states. A proposition which 
is not true at x cannot be in general regarded as false, for it may become true 
at one of the subsequent states. 

The truth of compound propositions can be defined now as follows. 

• cp /\'I/; is true at a state x if both cp and 'I/; are true at x. 

• cp V 'I/; is true at x if either cp or 'I/; is true at x. 
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• 'P ----> 'ljJ is true ·at a state x if, for every subsequent possible state y, in 
particular x itself, 'P is true at y only if 'l/J is true at y. 

• 1- is true nowhere. 

It follows from this definition that the negation ''P = 'P ----> 1- is true at x if 'P 
is true at no subsequent possible state. A proposition 'P may be regarded to be 
false at x if ''P is true at x. 

All axioms (Al)-(A9) (under every substitution of concrete propositions in
stead of variables) turn out to be true at all conceivable states, which cannot be 
said about (AlO), i.e., Po V (Po----> 1-). Indeed, if a proposition 'Pis not true at a 
state x, but becomes true at a subsequent state y, then ''P is not true at x and 
so neither is 'P V ''P· 

2.2 Kripke frames and models 

As in Section 1.1, let us fix the propositional language .C with the connectives /\, 
V, ----> and the constant 1-. Starting from the informal interpretation above, we 
give now a precise definition of an intuitionistic model for .C. 

An intuitionistic K ripke frame is a pair J = (W, R) consisting of a non
empty set W and a partial order Ron W, i.e., J is just a partially ordered set. 
We remind the reader that a binary relation R on W is called a partial order if 
the following three conditions4 are satisfied for all x, y, z E W: 

xRx 

xRy /\ yRz----> xRz 

xRy /\ yRx ____, x = y 

(reflexivity), 

(transitivity), 

(antisymmetry). 

The elements of W are called the points of the frame J and xRy is read as "y is 
accessible from x" or "x sees y". 

A valuation of .C in an intuitionistic frame J = (W, R) is a map QJ associating 
with each variable p E Var.C some (possibly empty) subset QJ(p) s-;; W such that, 
for every x E QJ(p) and y E W, xRy implies y E QJ(p). Subsets of W satisfying 
this condition are called upward closed. The set of all upward closed subsets of 
W will be denoted by UpW. Thus, a valuation in J is a map QJ from Var.C into 
UpW. 

An intuitionistic Kripke model of the language .C is a pair 9J1 = (J, QJ) where 
J is an intuitionistic frame and QJ a valuation in J. 

In the terminology of the preceding section points in a frame J = (W, R) of 
a model 9J1 = (J, QJ) represent states of information; if we are now at a state x 
then in the sequel we may reach a state y such that xRy. An atomic proposition 
Pis regarded to be true at x if x E QJ(p). Since QJ(p) is upward closed, all atomic 
propositions that are true at x remain true at all subsequent possible states. 

4 Here and below, to represent various properties of frames we use the language of classical 
predicate logic with the predicates Rand =. 
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Let wt= (J, QJ) be an intuitionistic Kripke model and x a point in the frame 
J = (W, R). By induction on the construction of a formula r.p we define a relation 
(wt, x) f= r.p, which is read as "r.p is true at x in wt": 

(wt, x) F= P 

(wt, x) F= 1/J Ax 
(wt, x) F= 1/J v x 
(wt, x) F= 1/J _, x 

(wt, x) ~ J_, 

iff x E QJ(p); 

iff (wt, x) f= 1/J and (wt, x) F= x; 
iff (wt, x) f= 1/J or (wt, x) F= x; 
iff for all y E W such that xRy, 

(wt, y) F= 1/J implies (wt, y) F= x; 

It follows from this definition that 

(wt, x) f= •1/J iff for all y E W such that xRy, (wt, y) ~ 1/J. 

If D'Jt is understood we write x f= r.p instead of (!m, x) f= r.p. The truth-set of r.p in 
wt= (J, QJ), i.e., the set {x: x f= r.p}, will be denoted by QJ(r.p). 

Notice that an intuitionistic model wt = (J, QJ) on the frame J containing 
only a single point, say x, is in essence the same as the classical model 

!Jl = {p E Var£ : x E QJ(p)}, 

because (D'Jt, x) f= r.p iff !Jl f= r.p, for every formula r.p. 

Proposition 2.1 For every intuitionistic K ripke model on a frame J = (W, R), 
every formula r.p and all points x, 'y E W, if x f= r.p and xRy then y f= r.p. 

Proof An easy induction on the construction of r.p is left to the reader as an 
exercise. 0 

In other words, Proposition 2.1 states that the set of points where r.p is true 
is upward closed. On the contrary, the set of points at which r.p is not true may 
be called downward closed, since x ~ r.p and yRx imply y ~ r.p. 

We say a formula r.p is satisfied in a model wt = (J, QJ) if x f= r.p for some point 
x in J. r.p is true in m if x F= r.p for every x in J; in this case we write m F= r.p. If 
r.p is not true in m then we say that r.p is refuted in m or wt is a countermodel 
for r.p, and write wt ~ r.p. 

A formula r.p is satisfied in a frame J if r.p is satisfied in some model based on 
J. r.p is true at a point x in J (notation: (J, x) f= r.p) if r.p is true at x in every 
model based on J. r.p is called valid in a frame J, J f= r.p in symbols, if r.p is true in 
all models based on J. Otherwise we say that r.p is refuted in J and write J ~ r.p. 

If every formula in a set r is true at a point x in a model wt, we write 
(wt, x) F= r or simply x F= r. m F= rand J F= r mean that all formulas in rare 
true in wt and are valid in J, respectively. 

Frames J = (W, R) and ~ = (V, S) are said to be isomorphic if there is a 1-1 
map f from W onto V such that xRy iff f(x)Sf(y), for all x,y E W. The map f 
is called then an isomorphism of J onto ~- Models wt= (J, QJ) and !Jl = (~,.U) 
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are isomorphic if there is an isomorphism f of J' onto l!5 such that, for every 
p E Var£, ll(p) = f('lJ(p)), i.e., for every x E W, 

(9Jl, x) f= p iff (!Jt, f(x)) f= p. 

In this case we say that f is an isomorphism of 9Jl onto !Jt. 
The following two propositions are direct consequences of the given defini

tions. 

Proposition 2.2 If f is an isomorphism of a model 9Jl onto a model !Jt then, 
for every point x in 9Jl and every formula <p, 

(9Jl,x) p<p ifJ(!Jt,f(x)) p<p. 

This gives us the ground not to distinguish between isomorphic models as 
well as isomorphic frames. 

Proposition 2.3 Suppose 9Jl = (J', 'lJ) and !Jt = (J',11) are models on a fmme J' 
such that the valuations 'lJ and 11 coincide on the variables in some set Var ~ 
Var£. Then for every point x in J' and every formula <p with Var<p ~Var, 

(9Jl, x) F= <p iff (!Jt, x) F= 1.p. 

Thus, if we want to construct a countermodel for a formula <p on a frame 
J', it suffices to define a valuation 'lJ, refuting <p, only on the variables in <p; the 
values of 'lJ on other variables have no effect on the truth of <p at points in J'. 

We shall often represent intuitionistic frames in the form of diagrams by de
picting points as circles o and drawing an arrow from x to y if xRy. To avoid 
awkwardness, we will not draw those arrows that can be uniquely reconstructed 
by the properties of reflexivity and transitivity. For technical reasons it is some
times impossible to connect x and y with an arrow; we then connect them with 
a (broken) line, and the fact that xRy is reflected by placing y higher than x. 
When representing models, we shall sometimes write some formulas near points: 
on the left side of a point x we write those formulas that are true at x and those 
that are not true are written on the right. 

Example 2.4 Suppose J' = (W, R) is the frame in which W = {a, b }, R = 
{(a,a),(a,b),(b,b)} and let 'lJ(p) = {b} and 'lJ(q) = {a,b} for all q E Var£ 
different from p. Then the formula p V (p-+ ..l) is true at b and not true at a in 
the model 9Jl = (J', 'lJ). This situation is represented graphically in Fig. 2.1. Thus, 
pV (p-+ ..l) is satisfied as well as refuted in J'. The formula ((p-+ ..l)-+ ..l)-+ p 
is also refuted in 9Jl, since a f= (p-+ ..l) -+ ..l and a [,t= p. 

Example 2.5 The formula p -+ ((p -+ ..l) -+ ..l) is valid in all intuitionistic 
frames. Indeed, suppose otherwise. Then there is a model on a frame J' = (W, R) 
such that x f= p and x [,t= (p-+ ..l) -+ ..l for some x E W, and so there is y E W 
for which xRy and y f= p -+ ..l. By the definition of valuation, we must have 
Y f= p, whence y [,t= p-+ ..l, which is a contradiction. 
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We define intuitionistic propositional logic Int.c in the language £ as the set 
of all £-formulas that are valid in all intuitionistic frames, i.e., 

lnt.c = {cp E For£: J f= cp for all frames~'}. 

Usually we will drop the subscript £ and write simply Int. 
Since the classical validity is nothing else but the validity in the single-point 

intuitionistic frame, we obtain the inclusion 

Int~ Cl. 

And since p V -.p is in Cl but does not belong to Int, this inclusion is proper. 

2.3 Truth-preserving operations 

In comparison with classical models intuitionistic ones are much more complex 
structures. So before proceeding fo the study of Int let us develop some notions 
and technical means for handling them. In this section we introduce three very 
important operations on intuitionistic models and frames which preserve truth 
and validity. 

A frame l5 = (V, S) is called a subframe of a frame J = (W, R) (notation: 
l5 ~ J) if V ~ W and S is the restriction of R to V ( S = R f V, in symbols), i.e., 
S = Rn V 2 . The subframe l5 is a generated subframe of J (notation: l5 ~ J) if 
Vis an upward closed subset of W. 

Example 2.6 Let J be the frame depicted in Fig. 2.2 (a). Then the frames 
shown in Fig. 2.2 (a)-(g) are (isomorphic to) subframes of J, with (a), (d), (e) 
and (f) being the only pairwise non-isomorphic generated subframes. 

If l5 = (V, S) is a generated subframe of J = (W, R) and V is the upward 
closure of some set X ~ W, i.e., Vis the minimal upward closed subset of W to 
contain X, then we say that V and l5 are generated by the set X. Notice that 
since R is reflexive and transitive, 

V = {x E W: 3y EX yRx}. 

If J is generated by a singleton { x} then J is called rooted and x is called the root 
(or the least point) of~. All frames in Fig. 2.2, except ( d) and (g), are rooted. 
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We introduce special notations for the operations of upward and downward 
closure. Namely, if J = (W, R) is a frame and X ~ W then we let 

XiR = {x E W: 3y EX yRx}, 

X !R = { x E W : 3y E X xRy}. 

If J is understood then we drop R and write simply Xi and X 1; we also write xi 
and x! instead of { x} i and { x} ! , respectively. All the points in xi ( x!) are called 
successors (predecessors) of x; a successor (predecessor) y of xis proper if x =f. y. 
A proper successor (predecessor) y of x is an immediate successor (respectively, 
immediate predecessor) of x if xRzRy (yRzRx) implies z = x or z = y, for every 
z E W. A point x is a final (or maxima0 point in J if xi = { x}; x is the last (or 
greatest) point in J if x! = W. More generally, a point x E X ~ W is called final 
(or maxima0 in X if no proper successor of x is in X. 

Thus, l5 = (V, S) is a subframe of J = (W, R) generated by a set X if 
V = XiR and S =Rn V2 ; xis the root of l5 if V = xiS. Using arrows, instead 
of xRy we can write now either y E xi or x E y!. 

A model !)1 = (®,il) is a submode[ of a model 9J1 = (J, !U) (notation: !)1 ~ 9J1) 
if l5 = (V, S) is a subframe of J = (W, R) and, for every p E Var.C, 

il(p) = W(p) n v. 

In the case when l5 ~ J the model !)1 is called a generated submode[ of 9J1 (no
tation: !)1 ~ 9J1). 

The formation of generated submodels is the first truth-preserving operation 
of the three mentioned above. 

Theorem 2. 7. (Generation) Suppose !)1 = (®,il) is a generated submode[ of 
9J1 = (J, !U). Then for every formula cp and every point x in®, 

(!Jl, x) f= cp iff (9J1, x) f= cp. 

Proof The proof proceeds by induction on the construction of cp. The basis of 
induction is obvious. Let cp ='I/;----> x, J = (W, R) and l5 = (V, S). Then we have: 

(!Jl,x) F= cp iff\ly E xjS ((!Jl,y) F= 'I/;-> (!Jl,y) F= x) 

iffVy E xjR ((9R,y) F= 'I/;----> (9J1,y) F= x) 
iff (9R, x) F= cp. 
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Here the second equivalence is justified by the induction hypothesis and the fact 
that xi S = xj R, for every point x E V. 

The cases <p = 'l/J /\ x and cp = 'ljJ V x are trivial. 0 

The generation theorem means that the truth-values of formulas at a point 
x are completely determined by the truth-values of their variables at the points 
in xj and do not depend on other points in the model. 

Corollary 2.8 If C!5 ~ J then, for every formula <p, 
(i) (®, x) f= cp iff (J, x) f= cp, for all points x in®; 
(ii) J f= cp implies C!5 f= cp. 

Proof (i) Suppose (<!5,x) ~ <p. Then (SJ1,x) ~ cp for some model SJ1 = (<!5,11). 
Define a valuation QJ on J by taking 

QJ(p) = ll(p) for all p E Var.C. 

Then SJ1 ~ 9J1 = (J, !l'.1) and so, by the generation theorem, (9J1, x) ~ cp. There
fore, (J, x) f= <p implies ( ®, x) f= <p. The converse implication is a direct conse
quence of the generation theorem. 

(ii) follows from (i). 0 

We draw two more simple consequences of the generation theorem. 

Corollary 2.9 For every frame J and every formula cp, the following conditions 
are equivalent: 

(i) J F= <p; 

(ii) C!5 f= cp, for every C!5 ~ J; 
(iii) C!5 f= cp, for every rooted C!5 ~ ·J. 

Corollary 2.10 lntc = {cp E For.C: J f= cp for all rooted frames J}. 

Our second truth-preserving operation is defined in a slightly more compli
cated way. 

Suppose we have two frames J = (W, R) and C!5 = (V, S). A map f from W 
onto V is called a reduction of J to C!5 if the following conditions hold for every 
x,y E W: 

(Rl) xRy implies f(x)Sf(y); 

(R2) f(x)Sf(y) implies :Jz E W (xRz /\ f(z) = f(y)). 

In this case we say also that f reduces J to C!5 or C!5 is an !-reduct (or simply a 
reduct) of J or J is !-reducible (or simply reducible) to®· Such a map f is often 
called a pseudo-epimorphism or just a p-morphism as well. 

Proposition 2.11 A one-to-one reduction of J to C!5 is an isomorphism between 
J and®· 

Proof Exercise. 0 
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Example 2.12 The frame in Fig. 2.3 (a) is reducible to all frames (a)-(f), but 
not to (g). 

Proposition 2.13 Let f be a reduction ofJ = (W,R) to®= (V,S), XE UpW 
and YE UpV. Then f(X) E UpV and f- 1(Y) E UpW. 

Proof Suppose that f(x)Sy for some x EX and y E V. Then, by (R2), there 
is z E xl such that f(z) = y. Since Xis upward closed, z EX and soy E f(X). 
Hence f(X) E UpV. 

Now let xRy, for some x E f- 1(Y) and y E W. Then, by (Rl), f(x)Sf(y), 
whence f(y) E Y and y E f- 1(Y). So f- 1(Y) E UpW. 0 

Proposition 2.14 If f is a reduction of J to ® and g a reduction of ® to SJ 
then the composition g f is a reduction of J to SJ. 

Proof Exercise. 0 

A reduction f of J to ® is called a reduction of a model 9Jt = (J, QJ) to a 
model !J1 = (®,ll) if, for every p E Var.C, 

QJ(p) = r 1 (11(p)), 

i.e., if for every point x in J, 

(9Jt,x) f=piff(!J1,f(x)) f=p. 

Theorem 2.15. (Reduction) If f is a reduction of a model 9Jt = (J, QJ) to a 
model !J1 = (®,ll) then, for every point x in J and every formula <p, 

(9Jt,x) F= <p iff (!J1,f(x)) f= <p. 

Proof We conduct the proof by induction on the construction of <p. The basis 
of induction is trivial. Let <p ='I/; -+ X· 

If (9Jt, x) lf <p then there is a point y E x l such that (9Jt, y) f= 'I/; and 
(9Jt, y) lf X· By the induction hypothesis, (!J1, f(y)) f= 'I/; and (!J1, f (y)) lf x, and 
by (Rl), f(x)Sf(y). Therefore, (!J1, f(x)) lf <p. 

Conversely, suppose (!J1, f(x)) lf <p, i.e., there is a point u E f(x)l such that 
(!J1,u) f= 'I/; and (!J1,u) If X· Since f is a map "onto", there is y E f- 1 (u). Then 
f(x)Sf(y). By (R2), there is z E xi such that f(z) = f(y) = u. By the induction 
hypothesis, (9Jt,z) f= 'I/; and (9Jt,z) lf x, whence (9Jt,x) If <p. 
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The cases <p = 'I/; /\ x and <p = 'I/; V x present no difficulties. 0 

Corollary 2.16 Let f be a reduction of :J to ®· Then, for every formula <p and 
every point x in :J, 

(:J,x) I= <p implies (®,f(x)) I= <p. 

Proof Assuming otherwise, we have a model lJt = (®,11) in which f(x) [i:: cp. 
Construct a model 9J1 = (:J, !l'.1) by taking, for all p E Var.C, 

By the reduction theorem, we must then have (9.Jt, x) [;b <p, which is a contradic

tion. 0 

Corollary 2.17 If :J is reducible to ® then, for every formula <p, 

:J I= <p implies ® I= cp. 

As an example of the use of the reduction theorem we will show that every 
formula <p </. Int is refuted in a frame having the tree form. 

Say that a frame :J = (W, R) is a tree if 

• :J is rooted and 
• for every point x E W, the set x! is finite and linearly ordered by R. 

We remind the reader that a set X of points in a frame :J = (W, R) is linearly 
ordered by R if xRy or yRx, for every distinct x, y EX. In such a case Xis also. 
called a chain in :J. In particular, a sequence xi, x2, ... of (distinct) points in :J 
is a (strictly) ascending chain if x 1Rx2R . .. and a (strictly) descending chain if 
.. . Rx2Rx1. 

Example 2.18 The frames shown in Fig. 2.4 (a), (b) are trees (the latter one 
is an infinite ascending chain), while those in Fig. 2.4 (c), (d) are not trees (the 
latter one is an infinite descending chain). 

Theorem 2.19 Every rooted frame ® = (V, S) is a reduct of some tree :J = 
(W, R), which is finite if ® is finite. 
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Proof Suppose v0 is the root of ®. Define W as the set of all finite strictly 
ascending chains of the form ( vo, V1, ... , Vn-1, Vn) in C!5 and put 

(vo, ... , vn) R (uo, ... , um) iff n :S m and Vi = ui for i = 0, ... , n. 

Clearly Risa partial order on W. (See Fig. 2.5.) 
We show first that J = (W, R) is a tree. Indeed, (vo) is the root of J and the 

set (vo, v1, ... , Vn-1, vnH is the finite chain 

(vo) R (vo, v1) R ... R (vo, V1, ... , Vn-1) R (vo, V1, ... , Vn-1, Vn). 

Now we define a map f from W onto V by taking f ( (vo, ... , vn)) = Vn. 
Let x, y E W and xRy. Then, by the definition of R, x = (vo, ... , vn), y = 
(vo, ... , Vn, Vn+1, ... , Vm) and so VnSVn+1S ... Svm-1Svm, whence, by the tran
sitivity of S, vnSvm, i.e., f(x)Sf(y). Therefore, f satisfies (Rl). 

Let f(x) = Vn (i.e., X = (vo, ... , Vn) ), f(y) = Vm and VnSVm· If Vn = Vm then 
obviously xRx and f(x) = f(y). Otherwise, for z = (vo, ... , Vn, Vm), we have 
xRz and f (z) = Vm· Thus f satisfies (R2) and so is a reduction of the tree J to 
®. 0 

Corollary 2.20 Int= {cp E For.C: J ~ cp for every tree J}. 

A tree J is said to be n-ary, for n ;::: 1, if every non-final point in J has exactly 
n immediate successors. If, for some m < w, every strictly ascending chain in 
a finite n-ary tree J can be extended to a strictly ascending chain of length m 
then we say J is the full n-ary tree of depth m. And if an n-ary tree has no final 
points at all then it is called the full n-ary tree. It is clear that, for each n ;::: 1, 
there is only one full n-ary tree (modulo isomorphism, of course); we denote it 
by 'In. Every rooted generated subtree of 'In is isomorphic to 'In, i.e., is again 
the full n-ary tree. 

Theorem 2.21 Every finite tree J = (W, R) is a reduct of 'In, for each n ::'.'.'. 2. 
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FIG. 2.6. 

Proof We proceed by induction on the number of points in J. If J is a singleton 
then the map of 'In to J is clearly a reduction. 

Suppose now that J contains k + 1 points, vis the root of J and Vo, ... , Vm 
are all its distinct immediate successors. Denote by Ji = (ivi, Ri) the subtree of 
J generated by vi, for i = 0, ... , m. 

Let us represent 'In as is shown in Fig. 2.6. Here 'I~, i = 1, 2, ... , are disjoint 
isomorphic copies of 'In· By the induction hypothesis, for each i 2: 1, there is a 
reduction Ji of 'I~ to Jmod,,.+i(i)· Define a map f from 'In onto J by taking, for 
every point x in 'In, 

{ 

V if X = Xi, for i 2: 0 
f(x) = fi(x) if xis a point in 'I~. 

It should be clear that f is a reduction of 'In to J. 0 

Corollary 2.22 Every finite rooted frame is a reduct of 'In, for each n 2: 2. 

Proof Follows from Proposition 2.14 and Theorems 2.19 and 2.21. 0 

Our third truth-preserving operation. is the disjoint union of frames. 
Let {Ji= (Wi, Ri) : i EI} be a family of frames such that Win W1 = 0, for 

all i-:/- j. The disjoint union of the family,{Ji : i E J} is the frame EiEJ Ji= 
(LJiEJ Wi, LJiEI Ri)· If the set I is finite, say I = {1, ... , n }, then along with 
EiEJ Ji we write also Ji+ ... +Jn. We obtain a diagram of EiEJ Ji by drawing 
side by side the diagrams of all frames Ji, for i E J, and regarding them as one 
big diagram. It is clear that every Ji is a generated subframe of EiEJ Ji. 

The disjoint union of the family of models {mi = (Ji, QJ'i) : i E J} with 
pairwise disjoint frames is the model EiE/ mi = (EiE/ Ji, EiE/ QJ'i) where 
(I:;iEJ QJ'i)(p) = LJiEJ QJ'i(P), for every p E Var£. Obviously, each model mi 
is a generated submode! of EiE/ mi. 
Theorem 2.23. (Disjoint union) Let EiE/ mi be the disjl!jnt union of a fam
ily {mi : i E I}. Then for every i E I, every point x in mi and every formula 
c,p, 

(L mi, x) F c,p iff (mi, x) F c,p. 
iE/ 



HINTIKKA SYSTEMS 

Proof Follows from the generation theorem. 

Corollary 2.24 Let LiEI 3'i be the disjoint union of a family {3'i 
Then, for every formula cp, LiEI 3'i f= cp iff 3'i f= cp for all i E J. 

The following proposition is left to the reader as an exercise. 
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0 

E J}. 

Proposition 2.25 Every frame is a reduct of the disjoint union of some family 
of rooted frames. 

We use the reduction and disjoint union theorems to show that, as in Cl, 
there are only two non-equivalent variable free formulas in Int. 

Proposition 2.26 For every variable free formula cp, either cp <--> T E Int or 
cp <--> _l_ E Int. 

Proof If cp E Int then clearly cp <--> T E Int. We show that if cp tf_ Int then 
cp <--> _l_ E Int. Since _l_ ----+ cp E Int, it suffices to prove that ''P is in Int. Suppose 
otherwise. Then we have two models !JJ11 and !JJ12 refuting cp and --icp, respectively. 
Since cp is variable free, by Proposition 2.3 we may assume that no variable is 
true at any point in !JJ11 or !JJ12. The single-point model !Jt refuting all variables 
is then a reduct of !JJ11 + !JJ12, and therefore !Jt ~ cp and !Jt ~ ''P, which is a 
contradiction. 0 

Corollary 2.27 For every variable free formula cp, cp E Int iff cp E Cl. 

Proof ( =}) is trivial. Suppose cp E Cl. By Proposition 2.26, either cp <--> T E Int 
or cp <--> _l_ E Int. In the former case cp E Int. And the latter means that ''P E Int 
and so ''P E Cl, contrary to the consistency of Cl. 0 

Corollary 2.28 Int is not 0-reducible. 

Proof Take any formula cp E Cl - Int. Then every variable free substitution 
instance of cp is in Cl and so in Int. 0 

2.4 Hintikka systems 

We have defined both classical and intuitionistic logics as sets of formulas which 
are valid in some frames. The fundamental difference between these two defini
tions is, however, that Cl is the set of formulas which are valid in a single finite 
frame, while Int contains formulas that are valid in all frames, including infinite 
ones. In other words, to answer the question "cp E Cl?", it suffices to fulfill a 
finite number of computations, whereas for a positive solution to the problem 
"cp E Int?" we must produce a proof of the validity of cp in all frames. 

In this section we will develop an apparatus of semantic tableaux for intu
itionistic logic and show that for every formula cp tf_ Int one can construct a 
countermodel containing at most 2iSubipl points. (Here and below JXJ denotes 
the cardinality of the set X.) Thus, the validity of cp in all frames is completely 
determined by its validity in the frames of cardinality ~ 2!Subipl. 

Let us again begin with examples. ,. 
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Example 2.29 Suppose that we want to determine whether the formula 

da = (p --t q) V (q --t p), 

known as the Dummett formula (or axiom), is in Int. To this end let us try to 
construct a countermodel for it using the same idea as was exploited in Section 1.2 
for finding countermodels in Cl. 

First we form a tableau t0 by putting da in its right part, indicating thereby 
that we wish this formula to be not true at the point t0 in the model to be 
constructed. Since a disjunction is not true at a point x iff both of its disjuncts 
are not true at x, we must put in the right part of to two more formulas: p --t q 
and q --t p. An implication is not true at x iff there is a point y accessible 
from x, where the premise of the implication is true and the conclusion is not 
(in particular y may coincide with x). So we form two new tableaux t 1 and t 2 

accessible from to: t 1 contains pin the left part, q in the right and t2, conversely, 
pin the right part and q in the left. (See Fig. 2.7 (a).) 

Now we construct a frame ~ = (W, R) and a model !JJ1 = (~, l!J) on it in 
accordance with our system of tableaux, i.e., by taking 

W ={to, ti, t2}, 

R = {(to, ti), (to, t2), (ti, ti) : i = 0, 1, 2}, 

l!J(p) ={ti}, l!J(q) = {t2}. 

(The diagram of~ is depicted in Fig. 2.7 (b).) Then we shall have: ti F= p, t 1 [it:: q 
and so to [it:: p --t q; t2 F= q, t2 [it:: p and so to [it:: q --t p. Hence (!JJ1, to) [it:: da. 

Example 2.30 Let us consider now the formula 
4 

As before, we form a tableau t0 by putting this formula in its right column. Then 
both P2 and P2 --t Pl V •P1 must also be put in the same column. To make the 
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latter formula not true at t0 , we form a new tableau ti accessible from t0 , which 
contains P2 in the left part and P1 V•P1, and hence Pl and •P1 in the right. Now 
to ensure that •P1 is not true at t1, we again form a new tableau t2 accessible 
from t1 where Pl is true, i.e., stands in the left column. We should not forget 
either that all the formulas which are true at ti must be true at t2 as well; so we 
put p2 in the left part of t2. (See Fig. 2.8 (a).) 

Now we construct a frame~= (W, R) and a valuation \Din it by taking 

W ={to, ti, t2}, 

R = {(ti,tj): i,j = 0, 1,2 and i ~ j}, 

\D(p1) = {t2}, \D(p2) = {t1,t2}. 

(The diagram of~ is shown in Fig. 2.8 (b).) The reader can readily check that 
all formulas in the left part of the tableau ti are true at the point ti in the model 
mt = (~, \D), while those in the right part are not true. Therefore, (mt, to) ~ 
P2 V (P2 --+Pl V -ip1). 

Our next aim is to show that the refutation procedure described above always 
succeeds: after a finite number of steps we shall either construct a countermodel 
for a given formula cp or establish its irrefutability, i.e., that cp E Int. 

As before, a tableau is a pair t = (r, ~) with r, ~ <;;; For£. A tableau t is 
called saturated in Int if it satisfies the conditions (Sl )-(S5) in Section 1.2. Thus, 
every tableau which is saturated in Cl is saturated in Int as well; the converse 
does not hold, as follows from the examples above. A saturated tableau (r, ~) 
is disjoint if r n ~ = 0 and .l r/. r. 

A Hintikka system in Int is a pair ,f) = (T, S) consisting of a non-empty set 
T of disjoint saturated tableaux and a partial order S on T and satisfying the 
following conditions: 

(HS1l) ift = (f,~), t' = (f',~') are in T and tSt' then r <;;; f'; 

(HS12) if t = (r, ~) is in T and 1/;--+ x E ~then there is t' = (r', ~') in 
T such that tSt', 1/; E f' and X E ~'. 

We say ,f) = (T, S) is a Hintikka system for a tableau t if t <:;; t' for some t' E T. A 
tableau t = (f, ~) is called realizable in Int if there are an intuitionistic model 
mt and a point x in mt such that /1 
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(!m,x) I= 'If; for every 'If; Er and (!m,x) F X for every XE~. 

Proposition 2.31 A tableau t is realizable in Int iff there is a Hintikka system 

SJ fort. 

Proof ( ==>) Suppose that t is realizable in a model !D1 based on a frame ~ = 
(W, R). With each x E W we associate the tableau tx = (r x, ~x), where 

r x = { 'P E For .c : x I= 'P}' ~x = { 'P E For .c : x F 'P}' 

and define a partial order S on the set T = { tx : x E W} by taking 

It follows immediately from the definition of intuitionistic model and Proposi
tion 2.1 that SJ= (T, S) is a Hintikka system. Besides, t ~ tx for some x E W. 

( {=) Let SJ = (T, S) be a Hintikka system for t. We will regard SJ as an 
intuitionistic frame. Define a model !D1 = (SJ, W) on it by taking, for every variable 
p, 

W(p) = {u = (f, ~): u ET and p E f}. 

(HS 11) ensures that W(p) E U pT. By induction on the construction of cp we show 
that for any tableau u = (r, ~) in T 

cp E f implies (!m, u) F cp, 

cp E ~ implies (!m, u) F cp. 

The basis of induction is obvious and the formulas cp = 'If; /\ x and cp = 'If; V x 
are considered in the same way as in Cl. So let cp = 'If; ---> x. 

Suppose 'P E r but u F 'P· Then there is a point v = (II, E) in T such that 
uSv, v I= 'If; and v F X· By (HS1l), cp E II and by (S5), either x E II or 'If; EE. 

Then, by the induction hypothesis, we must have either v I= x or v F 'If;, which 
is a contradiction. Hence u I= cp. 

Now suppose that cp E ~. Then, by (HS12), there is a tableau v = (II, E) 
such that uSv, 'If; E II and x E E. Using the induction hypothesis, we obtain 
v I= 'If; and v F x, whence u F 'If;---> X· 0 

As follows from Proposition 2.31, cp <I, Int iff there exists an (infinite, in 
general) Hintikka system for the tableau t = (0, { cp} ). However, in fact we can 
obtain a much stronger result if observe that when constructing in the proof of 
Proposition 2.31 a Hintikka system for t, we may deal only with subformulas of 
cp. The number of distinct tableaux, corresponding to points in ~' will then be 
finite, will not exceed 2JSubipJ to be more exact, and an accessibility relation on 
the tableaux can always be defined in such a way that the conditions (HS 11) and 
(HS12) are satisfied. 

More generally, we have the following 
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Theorem 2.32 A tableau t is realizable in Int iff there is a Hintikka system 
fl = (T, S) fort such that ITI ~ 2!EI, where E is the set of all subformulas of the 
formulas int. 

Proof ( =?) We will modify the "only if' part of the proof of Proposition 2.31 
according to the idea above. This time we associate with every point x E W the 
tableau tx = (f x, L1x) in which 

f x = { <p E E : x f= <p}, L1x = { <p E E : x ~ <p}. 

Putting T = {tx : x E W}, we clearly have jTj ~ 2IEI. Define a relation Son T 
by taking, for tableaux tx = (r x, L1x) and ty = (r y, L1y), 

To show that fl = (T, S) is a Hintikka system for t, it suffices to verify only 
(HS12). Let tx = (fx,L1x) be a tableau in T and 'l/;--> x E L1x. Then x ~ 'l/;--> x 
and so there is a pointy such that xRy, 'ljJ Er y and XE L1y. By Proposition 2.1, 
r x ~ r y, and hence txSty. 

The proof of ( {:::::) remains the same as in Proposition 2.31. 0 

Corollary 2.33 (i) For every formula <p t/. Int there is a rooted frame refuting 
<p and containing at most 2iSubip! points. 

(ii) For every <p t/. Int there is a finite tree refuting <p. 

(iii) For every n ~ 2, Int = { <p E For.C : 'In f= <p }. 

Proof Follows from Theorems 2.32, 2.19 and Corollaries 2.9, 2.17, 2.22. 0 

Example 2.34 We show that 

Suppose otherwise. Then, in view of •P----> '''PE Int (see Example 2.5), there 
is a finite model 9Jt = (J, QJ) and a point x in J such that x f= •••p and x ~ •p. 
Take a point y E xj where y f= '''P and y f= p. Since J is finite, there is a final 
point z E yj. Clearly, z f= •••P and z f= p. But then z ~ ••P and, since z is 
final, z f= •P, whence z ~ p, which is a contradiction. 

Theorem 2. 32 means in particular that starting with the tableau ( 0, { <p}) and 
using saturation rules (SR1)-(SR5) in Section 1.2 and 

(SR16) if t = (r, .!1) and 'ljJ ----> x E L1 then either add 'ljJ to r' and x to .!1' 
in some t' = (f', .!1') accessible from t or construct a new tableau 
t' = (r', .!1') accessible from t by taking r' = r u { 'l/J }, .!1' = {x}, 

in a finite number of steps we shall either construct a Hintikka system for (0, { <p}), 
and so a countermodel for <p, or show that there is no Hintikka system for (0, { <p}) 
with ~ 2!Subip! tableaux, and so no Hintikka system for the tableau at all, i.e., 
<p E Int. 
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We will not formulate here a procedure of constructing countermodels for 
intuitionistic formulas in full details. It will be more useful for the reader who is 
not experienced in intuitionistic logic to have a good informative example. 

Example 2.35 Let us try to find a countermodel for the formula 

which is known as the Scott formula (or axiom). 
The attempt of constructing a Hintikka system for (0, { sa}) shown in Fig. 2.9 

(a) failed. However, applying (SR5) to (••p ~ p) ~ p V -.pin the left column 
of t0 , we may not only put p V -.p on the left, but also -.-.p ~ p on the right. 
And this alternative way succeeds, as is shown in Fig. 2.9 (b). 

Taking now the frame J = (W, R) depicted in Fig. 2.9 (c) and defining a 
valuation !U in it by !U(p) = t2, we, according to Proposition 2.31, obtain the 
countermodel 9Jl = (J, !U) for the Scott formula. 

As an easy exercise we invite the reader to show that all the formulas in the 
upper part of Table 1.1 including the first de Morgan's law are in Int, while all 
those below this law do not belong to Int. 

2.5 Intuitionistic frames and formulas 

In the preceding section we used the method of semantic tableaux for construct
ing a countermodel for a given formula <p or proving that such a countermodel 
does not exist, i.e., <p E Int. Now we touch on a more general problem: given a 
formula <p, to characterize in some non-trivial way the class of all frames validat
ing ip. This problem turns out to be rather complicated. It will play an important 
role in the sequel. But here we consider it only for a few concrete formulas just 
to gain more experience in handling Kripke models. 

For the beginning let us take again the Dummett formula da. It follows 
from Example 2.29 that in every Hintikka system for (0, { da}) there must be 
(extensions of) three tableaux to, ti and t2 shown in Fig. 2.7. It is clear that in 
this situation ti is not accessible from t 2 , for otherwise q must belong to the left 
part of ti. Likewise, ti does not see t2. 

This observation gives us a necessary criterion for da to be refuted in a 
frame J = (W, R), which can be represented as the following classical first-order 
condition on R: 

3x, y, z (xRy /I. xRz /I. -.yRz /I. -.zRy). 

So, by the law of contraposition, the Dummett formula is valid in J if the fol
lowing condition holds: 

Vx, y, z (xRy /I. xRz ~ yRz V zRy). 

A frame J satisfying this condition is called strongly connected. Notice that every 
rooted strongly connected frame is a chain. 
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Proposition 2.36 A frame J validates da iff J is strongly connected. 

Proof ( =>) Suppose J = (W, R) validates (p --+ q) V ( q --+ p) but is not strongly 
connected. Then there are points x, y, z E W such that xRy, xRz, --.yRz and 
--.zRy. Define a valuation \U on J by taking 

\U(p) = yi and \U(q) = zi. 

Then y ~ p--+ q, z ~ q--+ p and so x ~ da, which is a contradiction. 
( {=) has been already established above. 0 

Now let us consider the formula 

wem = --.p V --.--.p, 

which is known as the weak law of the excluded middle, and 'lgain try to find 
first a necessary condition for its refutability, and thereby a sufficient condition 
of its validity. 

Suppose --.p V --.--.p is not true at a point x in a frame J = (W, R) under 
some valuation. Then x ~ --.p and x ~ --.--.p. Hence there are points y, z E- xi 
such that y f= p and z f= --.p. It should be clear that y and z do not see each 
other. The necessary refutability condition thus obtained does not differ from 
that for the Dummett formula. However, now it is too weak to be a sufficient 
one. For the frame in Fig. 2.2 (a) satisfies the condition and validates --.p V --.--.p. 
The problem is that the points y and z not only do not see each other but have 
no common successors at all. Indeed, if yRu and zRu then, by Proposition 2.1, 
u f= p, u f= --.p and so u ~ p, which is impossible. 

Thus, as a sufficient condition for the validity of --.p V -.--.p in a frame J = 
(W, R) we can take the following one: 

\:Ix, y, z (xRy /\ xRz--+ :Ju (yRu /\ zRu)). 

A frame J satisfying it is called strongly directed or convergent. A rooted frame 
is strongly directed iff every two points in it have a common successor. 

Proposition 2.37 A frame J validates wem iff J is strongly directed. 

Proof Again only the ( =>) part needs a proof. If J = (W, R) is not strongly 
convergent then there are points x, y, z E W such that xRy, xRz and there is 
no point u accessible from both y and z. Define a valuation QJ in J by taking 
\U(p) = yi. Then z f= --.p, for otherwise there is u E zi such that u f= p, whence 
u E Yi, which is a contradiction. Therefore, z ~ -.--.p. Besides, y ~ --.p and so 
x ~ --.pv--.--.p. o 

We define now inductively a sequence of formulas bdn: 
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bdn+l = Pn+l V (Pn+l ---+ bdn)· 

The formulas bd1 and bd2 were already considered in Examples 2.4 and 2.30, 
from which it follows that to refute bd1 a frame must contain a chain of two 
points and to refute bd2 a three-point chain is required. In general, by induction 
on n one can readily show that J ~ bdn only if there is a chain of n + 1 points 
in J. 

We say a frame J is of depth n < w, d(J) = n in symbols, if there is a chain of 
n points in J and no chain of more than n points. If for every n < w, J contains 
an n-point chain then J is said to be of infinite depth oo. 

Proposition 2.38 A frame J = (W, R) validates bdn iff d(J) S n, i.e., iff J 
satisfies the following condition 

n-1 

\fxo, ... , Xn ( /\ xiRxi+l ---+ V Xi = Xj ). 
i=O i~j 

Proof Exercise. 0 

After depth let us introduce a notion of width of frames. A set of points 
X ~ W is called an antichain in a frame J = (W, R) if, for every x, y E X, xRy 
implies x = y. In other words X is an antichain if distinct points in X do not 
see each other. We say a frame J is of width n if it contains an antichain of n 
points and there is no antichain of greater cardinality. 

Are there any intuitionistic formulas which bound the width of a frame as 
bdns bound the depth? The frame ( {O, 1, 2, ... }, =) shows that such formulas do 
not exist, since it is the disjoint union of w single-point frames and so validates 
all formulas in Cl. However, we can bound the width of rooted frames by taking, 
for instance, the following formulas 

n 

bwn = V(Pi---+ V Pj), n :::'.: l. 
i=O #i 

Notice that bw1 is the Dummett formula (modulo renaming the variables). We 
invite the reader to investigate the structure of refutation frames for bwn and 
prove 

Proposition 2.39 A frame J = (W, R) validates bwn iff every rooted subframe 
of J is of width Sn, i.e., iff 

n 

\fx,xo, ... ,xn (j\xRxi--+ VxiRxi)· 
i=O i#j 

The following formulas bound the cardinality of rooted frames: 

bcn =Po V (Po---+ Pi) V · · · V (Po/\.· .. /\. Pn-1 ---+ Pn), n :::'.: 1. 
•' 
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Proposition 2.40 A frame J = (W, R) validates bcn iff each rooted subframe 
of J contains :::; n points, i.e., 

n 

V'xo,x1, ... ,xn (/\xoRxi~ Vxi=x1)· 
i=l i#-j 

Proof ( =>) Suppose J contains n + 1 distinct points xo, x1, ... , Xn such that 
{x1, ... ,xn} ~ xoi· Without loss of generality we may assume that these points 
are indexed in such a way that xiRxJ implies i :::; j. Define a valuation m in J 
by taking, for i = 0, ... , n, 

W(pi) = {x E W: •xRxi} = W - xd. 

Then we shall have xo ~ Po and, for i > 0, Xi f= Po /\ ... /\ Pi-1 and Xi [;t= Pi· 

Indeed, otherwise either Xi f= Pi, contrary to xiRxi, or Xi ~ PJ for some j < i, 
whence xiRx1, contrary to our indexing of points. Therefore, since xo sees all 
points x1, ... , Xn, we obtain xo ~ bcn. 

( <==) Suppose ben is false at a point xo in J under some valuation. Then 
x 0 ~ p0 and, for every i, 0 < i :::; n, there is a point xi E xo i such that 
Xi f= Po /\ ... /\ Pi-1, Xi ~ Pi· Clearly, the points xo, .. . , Xn are distinct and so 
the subframe of J generated by x0 contains ;?: n + 1 points. 0 

To conclude this section we consider one more interesting family of formulas, 
namely, 

n n 

It turns out that their arbitrary validating frames cannot be characterized by 
first order conditions on the accessibility relation (see Chapter 6). However, their 
finite frames are quite manageable. 

Say that a finite frame J is of branching :::; n if every point in J has at most 
n distinct immediate successors. 

Proposition 2.41 A finite frame J = (W, R) validates bbn iff J is of branching 
:::; n. 

Proof ( =>) Suppose otherwise. Then there is a point x in J having at least 
n + 1 distinct immediate successors, say, x0 , ... , Xn· Define a valuation m in J 
by taking 

W(pi) = W - u Xjl 
iof-j 

and show that bbn is not true at x under m. Indeed, we have xi ~ PJ for all 
j =/:- i, and so x ~ V~=oPi· Suppose now that the premise of bbn is not true at 
x. Then there are y E xi and i E {O, ... , n} such that y f= Pi ~ V i#-J PJ and 
y [;t= Vi#-J PJ, from which we obtain y [;t= Pi· By the definition of W, this means 
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that y sees at least two distinct points among xo, ... , Xn, which is possible only 
if y = x. But then we have Xi F Pi, Xi ~ vi=Fj Pi and so y ~ Pi -> vi=Fj Pi, 
which is a contradiction. Thus, x ~ bbn. 

( {=) Suppose J is a finite frame of branching ::::; n, but J ~ bbn under 
some valuation. Let x be a maximal point in J where bbn is not true. Then 
we have x F A~o((Pi -> v#iPi) -> vi=FjPi) and x ~ v~=oPi· Therefore, 
x ~Pi-> vi=Fj Pi, for all i = 0, ... 'n, and so there are Xi E xj such that Xi F Pi 
and Xi ~ vi=Fj Pi· It follows that Xi and xi do not see each other if i =I- j. Since J 
is of branching ::::; n, x has a proper successor y seeing at least two distinct points 
Xi and xi. But then y ~ V~oPi and, since y F A~=o((Pi-> vi=Fj Pi)-> vi=Fj Pi), 

we have y ~ bbn, contrary to x being a maximal point in J refuting bbn. 0 

Remark By Corollary 2.22, Proposition 2.41 cannot be generalized to infinite 
frames. 

The reader can find more examples among the exercises at the end of this 
chapter. The general problem of characterizing frames validating (or refuting) 
an arbitrary given formula will be considered in Chapter 9. 

2.6 Intuitionistic calculus 

The Hilbert-type intuitionistic propositional calculus Int in the language .C is 
defined by axioms (Al )-(A9) and the inference rules MP and Subst of Section 1.3. 
The notions of derivation and derivation from assumptions are defined in exactly 
the same way as for classical calculus Cl. The fact of derivability of a formula cp 
in Int is denoted by f- Int cp, and r f- Int cp means that cp is derivable in Int from 
a set of assumptions r. If there is no danger of confusion, we write simply f- cp 
and r f- cp. 

In this section we show that Int is sound and complete with respect to the 
Kripke semantics introduced above. First we observe that when proving the 
deduction theorem for Cl, we used only axioms (Al) and (A2), and so this 
theorem holds for Int as well. 

Theorem 2.42. {Deduction} If r, 'I/; f-1nt cp then r hnt 'I/;-> cp. 

The soundness and completeness of Int is proved by the same scheme as 
Theorem 1.16. 

Theorem 2.43. {Soundness and completeness of Int) For any formula cp, 
f- Int cp iff J F= cp for every frame J. 

Proof ( =>) It suffices to verify that (i) axioms (Al )-(A9) are valid in all intu
itionistic frames and (ii) the inference rules MP and Subst preserve the validity. 
Using the apparatus of semantic tableaux, the reader will easily establish (i). 
The fact that MP preserves the validity follows immediately from the definition 
of the truth-relation f=. 

Let us consider Subst. Suppose that J f= .cp but J ~ cps for some substitution 
s. Then there is a countermodel 9Jt = (J, 1!1) for <ps. Define a new valuation ll in 
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~ by taking ll(p) = \D (ps), for all p E Var£, and put 1)1 = ( ~' 11). Then clearly we 
have (IJl, x) I= cp iff (!m, x) I= cps, for all x in ~- Therefore, IJl is a counter model 
for cp, contrary to our assumption. 

(-¢=) Suppose If Int cp. We show then that there is a Hintikka system SJ = (T, S) 
for the tableau (0, {cp}), and so SJ~ cp. 

Call a tableau (r, ~) consistent in Int if r f- Int 1/11 V ... V 1/Jn holds for no 
formulas 1/;1 , ... , 1/Jn E ~- Thus, the tableau (0, { cp}) is consistent. 

Let t 0 = (f0 , ~0 ) be a consistent tableau such that fo, ~o ~ Subcp. In exactly 
the same way as in the proof of Theorem 1.16 we show that t0 can be extended 
to some disjoint saturated (in Int) and consistent (in Int) tableau tn = (f n' ~n) 
such that r n U ~n = Subcp. But this time tn does not in general satisfy condition 
(S6). 

Denote by T the set of all disjoint saturated consistent tableaux (f, ~) such 
that r U ~ = Subcp. Tis clearly non-empty. Define a partial order S on T by 
taking, for any t = (r, ~)and t' = (r', ~'), 

tSt' iff r ~ r' iff ~ 2 ~'. 

We show now that SJ = (T, S) is a Hintikka system. It is clear that only (HS12) 
requires verification. Suppose t = (f, ~) E T and 1/J __, x E ~- Consider the 
tableau t 0 = (f U { 1/J}, {x}). It is consistent, for otherwise we would have r, 1/J f- x 
and so, by the deduction theorem, r f- 1/J --; x, contrary to the consistency of 
t. Therefore, t 0 can be extended to a disjoint saturated consistent tableau t' = 
(f', ~') which belongs to T. Since r ~ r', we have tSt'. And by the definition, 
1/J E f' and X E ~'. 

Thus, SJ = (T, S) is a Hintikka system for (0, { cp}). By Proposition 2.31, this 
means that SJ ~ cp. Notice by the way that ITI ::; 2ISubipj. O 

Corollary 2.44 Int = { cp E For£ : f- Int cp}. 

The following two theorems are proved by the same argument as Theo
rem 2.43, although applied to infinite tableaux (for details see Section 5.1). 

Theorem 2.45. {Strong completeness) Each tableau consistent in Int is re
alizable. In particular, r hnt cp iff (!m, x) I= cp for every model !D1 and every 
point x in !D1 such that (!m, x) I= r. 
Theorem 2.46. (Compactness) A tableau is realizable in Int iff its every fi
nite subtableau is realizable in Int. 

2. 7 Embeddings of Cl into Int 

In this section we will consider some connections between classical and intuition
istic propositional logics. As we know, Int c Cl. On the other hand, we can try 
to embed Cl into Int in the following sense. 

Let L1 and L2 be some logics, possibly in distinct languages £ 1 and £ 2 , 

respectively. An effective function Tr from For£1 into For£2 is called an em
bedding (or a translation) of L 1 into L2 if, for all cp E For£ 1 , 
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(In general, this definition is too extensive, for it admits, for instance, such a 
trivial "embedding" of Cl into Int as 

{ 
T if <p E Cl 

Tr(<p) = 1- if <p ¢Cl. 

However, we are not going to develop here a theory of embeddings and confine 
ourselves to considering only a number of concrete ones. For more elaborate 
definitions of translations preserving the structure of formulas see, e.g. Epstein, 
1990.) 

Embedding operations may be useful at least in two respects. First, sometimes 
they make it possible to interpret logical connectives in .C1 in terms of those in .C 2 . 

And second, embeddings may preserve various properties of logics; for example, 
if L 1 is embeddable into a decidable logic L 2 then L1 is also decidable. 

A simple embedding of Cl into Int is provided by the following: 

Theorem 2.47. (Glivenko's theorem) For every <p, <p E Cl iff ••<p E Int. 

Proof ( =>) Suppose otherwise, i.e., <p E Cl and ••<p ¢ Int. Then there are a 
finite model 9J1 and a point x in 9J1 such that x li: ••<p. Hence there is y E xj 
for which y f= •<p. Let z be some final point in the set yj. By Proposition 2.1, 
z f= •<p and so z li: ••<p. Let 9J11 be the submode! of 9J1 generated by z, 
i.e., (9J11, z) f= p iff (9.Jt, z) f= p, for every variable p. According to the generation 
theorem, 9J11 refutes ••<p. But since this model contains only one point, it follows 
that ••<p ¢ Cl, which, by the law of double negation, is a contradiction. 

( ¢=) ••<p E Int implies ••<p E Cl, whence, using that law again, we obtain 

<p E Cl. D 

Corollary 2.48 The map Tr1 defined by Tr1 (<p) = ••<p, for every formula <p, 
is an embedding of Cl into Int. 

Corollary 2.49 For every formula <p, •<p E Cl iff •<p E Int. 

Proof According to Example 2.34, •<p <--> -,-,-,<p E Int. The rest follows from 
Glivenko's theorem. D 

Corollary 2.50 For every formula <p = 'ljJ ---+ •x, <p E Cl if! <p E Int. 

Proof 'ljJ ---+ •x is the abbreviation for the formula 'ljJ ---+ (x ---+ 1-), which is 
equivalent in Int to 'ljJ/\x ---+ 1-, i.e., •( 'ljJ/\x). And by Corollary 2.49, •( 'ljJ/\x) E Cl 
iff •( 'ljJ /\ X) E Int. D 

Corollary 2.51 For every formula <p containing no connectives different from 
/\ and-., <p E Cl if! <p E Int. 

Proof If <p contains neither ---+ nor V then, it can be represented in the form 
<p = <p1 /\ ... /\ IPn where each 'Pi is either an atom or has the form •1/Ji for some 
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'1/Ji· By axioms (A3) and (A4), cp E Cl implies 'Pi E Cl for all i = 1, ... , n. Since 
atoms are outside of Cl, cp E Cl only if 'Pi = ---.'lj;i E Cl for all i = 1, ... , n, and 
so, by Corollary 2.49, 'Pi E Int. Now, applying (A5), we obtain cp E Int. 0 

Corollary 2.51 gives rise to another embedding of Cl into Int. Indeed, let Tr2 
be a map from .C to .C defined as follows: 

Tr2(cp) = cp, for all atomic cp, 
Tr2('1/J /\ x) = Tr2('1/J) /\ Tr2(x), 
Tr2('1/J V x) = ---.(---.Tr2('1/J) /\ ---.Tr2(x)), 
Tr2('1/J---+ x) = ---.(Tr2('1/J) /\ ---.Tr2(x)). 

Corollary 2.52 Tr2 is an embedding of Cl into Int. 

Proof By induction on the construction of cp it is not hard to show that cp ~ 
Tr2 ( cp) E Cl. It remains to observe that Tr2 ( cp) contains neither V nor ---+ and 

use Corollary 2.51. 0 

Theorem 2.53 If a formula cp contains no V and every occurrence of a variable 
in cp is in the scope of some ---. then cp ~ ---.---.cp E Int. 

Proof As follows from Example 2.5, cp ---+ ---.---.cp E Int for every cp. So we prove 
only that ---.---.cp ---+ cp E Int. We will do this by induction on the construction of 
cp, regarding cp as constructed from formulas of the form ---.'lj; and ..l with the help 
of---+ and /\. The basis of induction follows from Example 2.34. 

Suppose that cp = 'ljJ ---+ X and ---.---.( 'ljJ ---+ x) ---+ ( 'ljJ ---+ x) rj. Int. Then there 
is a finite model 91? such that x f= ---.---.( 'ljJ ---+ x), x f= 'ljJ and x [ff: x for some 
point x in 91?. By the induction hypothesis, x ~ ''X E Int and so x [ff: ''X· 
Hence y [ff: x, for some final point y E xi. We also have y F ---.---. ( 'ljJ ---+ x), whence 
y [ff: ---. ( 'ljJ ---+ x) and so, since y is final, y f= 'ljJ ---+ x. And since y f= 'ljJ, we get 
y F X, which is a contradiction. 

The case of cp = 'ljJ /\ x is considered analogously. 0 

We recommend the reader to analyze cp = ---.p V ---.q to make sure that Theo
rem 2.53 cannot be extended to formulas containing v. 

Using Theorem 2.53, we can construct one more embedding of Cl into Int. 

Theorem 2.54 The map Tr3 defined by the equalities 

Tr3(..l) = .1, 
Tr3(p) = ---.---.p, for all p E Var.C, 
Tr3('1/J /\ X) = Tr3('1/J) /\ Tr3(x), 
Tr3('1/J v x) = ---.(---.Tr3('1/J) /\ ---.Tr3(X)), 
Tr3('1/J---+ X) = Tr3('1/J)---+ Tr3(X) 

is an embedding of Cl into Int. 

Proof It is not hard to see that cp ~ Tr3(cp) E Cl for every formula cp. Besides, 
by Theorem 2.53, we have Tr3(cp) ~ ---.---.Tr3 (cp) E Int. Therefore, by Glivenko's 
theorem, cp E Cliff Tr3(cp) E Int. O 
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2.8 Basic properties of Int 

Now we shall see which of the properties considered in Section 1.4 hold for Int 
and introduce some more. 

CONSISTENCY. Int is consistent, since Int c Cl c For.C. 

DECIDABILITY. 

Theorem 2.55 Int is decidable. 

Proof According to Theorem 2.32, <p rf. Int iff there is a Hintikka system 
fl = (T, S) for (0, { <p}) with \T\ ~ 2ISubcpl. So a decision algorithm for Int 
may be as follows. We form all partially ordered sets containing at most 2ISubcpl 
tableaux (r, A) such that r, A ~ Sub<p. If at least one of them is a Hintikka 
system for (0, { <p}) then <p rf. Int; otherwise <p E Int. 0 

The difference between the decision algorithms for Cl and Int is that in 
the former case we check if a given formula <p is valid in a single finite frame, 
while in the latter one we have to check its validity in all frames with ~ 2ISubcpl 
points, and so the longer <p is, the more complicated frames must be considered. 
Is that unavoidable? Couldn't one find a finite intuitionistic frame J such that 
Int = { <p E For .C : J f= <p}? 

TABULARITY. A logic Lis called tabular if there is a finite frame J such that 

L = { <p E For .C : J f= <p}. 

By the definition, classical propositional logic is tabular. 

Theorem 2.56 Int is not tabular. 

Proof Suppose otherwise. Then there is a finite frame J, containing, say, n 
points, which refutes all formulas that do not belong to Int, in particular, bdn+l, 
bwn+l and bcn+l defined in Section 2.5, contrary to Propositions 2.38, 2.39 and 
2.40. 0 

Thus, no finite frame is able to characterize Int. However, the set of all finite 
frames or the set of all finite trees can do this. 

FINITE APPROXIMABILITY. A logic Lis said to be finitely approximable (or 
to have the finite frame property) if there is a class C of finite frames such that 

Theorem 2.57 Int is finitely approximable. 

Proof Follows from Theorem 2.32. 0 

The property of finite approximability plays a very important role in non
classical logic, since, as we shall see in Section 16.2, by proving the finite approx
imability of a finitely axiomatizable logic, we thereby establish its decidability 
as well. 
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Notice by the way that in fact Theorem 2.32 not only yields the finite ap
proximability of Int but also indicates an upper bound for the number of points 
in a minimal refutation frame for cp rf. Int. This upper bound determines the 
complexity of the decision algorithm presented in the proof of Theorem 2.55, 
and so we are naturally interested in its reduction. A detailed discussion of this 
and other questions concerning complexity theory can be found in Chapter 18. 

POST COMPLETENESS. Int is not Post complete, since it has at least one 
proper consistent extension, namely Cl. It is of interest, however, that the fol
lowing result holds. 

Theorem 2.58 Cl is the only Post complete extension of Int. 

Proof Suppose L is a Post complete extension of Int different from Cl. Then 
there is a formula cp E L - Cl. By Theorem 1.23, we can find a variable free 
substitution instance 'I/; of cp which is not in Cl. But then •'!/; E Cl and, by 
Corollary 2.49, •'!/; E Int, whence •'!/; E L, contrary to 'I/; E L and L being 
consistent. D 

INDEPENDENT AXIOMATIZABILITY. 

Theorem 2.59 Int is independently axiomatizable. 

Proof Follows from the fact that Int is finitely axiomatizable. A subtler argu
ment shows that axioms (Al)-(A9) are independent. D 

STRUCTURAL COMPLETENESS. It is not difficult to verify that the congru
ence rules in Section 1.4 are both admissible and derivable in Int, and so the 
equivalent replacement theorem holds for Int as well. However, unlike Cl, Int 
is not structurally complete: 

Proposition 2.60 The Scott rule 

( ••p ---> P) ---+ p V •P 

•P v ••P 

is admissible but not derivable in Int. 

Proof The fact that this rule is not derivable follows from the deduction the
orem and Example 2.35, where a countermodel for the Scott formula was con
structed. Let us show now that the Scott rule is admissible in Int. 

Suppose that •cp V ••cp rf. Int for some formula cp. Then, according to (A6) 
and (A7), •cp rj. Int and ••cp rj. Int. By Corollary 2.49, •cp rf. Cl and '''P rf. CI. 
So there are single-point models !m1 = (J1,1.t11) and !m2 = (J2,l.t12) refuting 
•t.p and ••cp, respectively. Let x 1 be the point in J1 and x 2 the point in J2 . 

Construct a new frame J whose diagram is shown in Fig. 2.10 and define a 
valuation m in it by taking, for every variable p, 

!m1 and !m2 are obviously generated submodels of !m = (J, 1.tJ), and so (!m, x 1) ~ 
•t.p, (!m, x2) ~ ••t.p, whence (!m, x1) f= cp, (!m, x2) f= •cp and (!m, x2) ~ cp. 
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V' 
Xo 

FIG. 2.10. 

Then xo ti== cp, xo ti== -icp, and hence xo ti== cp V ''P· On the other hand, we have 
x 0 I= -,-,cp --+ cp. Indeed, otherwise xi f= '''P and xi ti== cp for some i E {O, 1, 2}. 
Clearly, i f=. 1, 2. And if i = 0 then, by Proposition 2.1, x2 f= -,-,cp, which is a 
contradiction. 

Thus, 9J1 refutes the formula (-i-icp --+ cp) --+ cp V -icp, and so it does not belong 

~I~. 0 

Theorem 2.61 If an inference rule is admissible in Int then it is derivable in 
Cl. 

Proof Suppose on the contrary that a rule cpi, ... , 'Pn/'P is admissible in Int 
but cp 1 /\ ... /\ 'Pn --+ '{J </. Cl. By Theorem 1.23, a variable free formula of the 
form cp 1s /\ ... /\ 'PnS--+ cps is not in Cl, from which cp 1s /\ ... /\ 'PnS E Cl and 
cps </.Cl. By Corollary 2.27, we then have cp 1s /\ ... /\ cpns E Int and cps </.Int, 
which is a contradiction. 0 

The structural completeness and decidability of Cl provide us with an algo
rithm for recognizing whether a given rule is admissible in Cl or not. However, 
for Int the admissibility problem turns out to be much more complicated. We 
shall consider it in Section 16. 7. 

INTERPOLATION PROPERTY. Int like Cl has the interpolation property. The 
proof of this fact can be obtained by generalizing the construction we used for 
proving Theorem 1.28. We postpone it till Section 14.l. 

LOCAL TABULARITY. It will be shown in Section 7.7 that there exist infinitely 
many formulas of only one variable which are pairwise non-equivalent in Int. 
Thus, we have 

Theorem 2.62 Int is not locally tabular. 

Proof Follows from Example 7.66. 0 

HALLDEN COMPLETENESS. Clearly, Hallden completeness follows from the 
disjunction property. So the following theorem is an immediate consequence of 
Theorem 2.64, which is proved below. 

Theorem 2.63 Int is Hallden complete. 

DISJUNCTION PROPERTY. 

Theorem 2.64 Int has the disjunction property, i.e., for any formulas cp and 
'l/J, cp V 'lj; E Int iff cp E Int or 'lj; E Int. 
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Xo 

FIG. 2.11. 

Proof Suppose that cp and '1jJ do not belong to Int and show that in this case 
cp v '1jJ \i Int. 

Let !m1 = (~1 , m1) and !m2 = (~2, m2) be countermodels for cp and '1jJ based 
on disjoint frames ~1 = (Wi, Ri) and ~2 = (W2, R2) with roots x1 and x2, 
respectively. Construct a new frame ~ = (W, R) by adding root xo to ~1 + ~2 
(see Fig. 2.11). In other words, W = {xo} U W1 U W2 and xRy iff x = Xo or 
xR1y or xR2y, for all x, y E W. Put m(p) = mi(P) U m2(P), for every p E Var.C, 
and consider the model !JR = (~, m). It is clear that !m1 and !m2 are generated 
submodels of !JR. Then (!JR, xo) [;h cp, (!JR, xo) [;h 'ljJ and so (!m, xo) [;h cp V 7/J. 

The converse implication follows from (A6) and (A7). 0 

2.9 Realizability logic and Medvedev's logic 

We conclude the discussion of intuitionistic logic by outlining two ways of refining 
the proof interpretation. 

Kleene (1945) formalized it by treating the intuitionistic connectives algo
rithmically: for example, 

• a proof of cpV'ljJ is given by presenting a program establishing cp or a program 
establishing '1jJ together with an effective test indicating which disjunct is 
established; 

• a proof of cp --> '1jJ is given by presenting a program which transforms any 
program establishing cp into a program establishing 7/J. 

Since programs in a fixed algorithmic language (say, the language of Minsky 
machines to be introduced in Section 16.1) can be effectively coded by the Godel 
numbers (see e.g. Mendelson, 1984), the above definition can be represented in 
the (first order) language of formal arithmetic. Namely, with every arithmetic 
sentence cp we associate a formula xrcp, which is read as "the number x realizes 
cp" , in the following way: 

xr'ljJ = 'ljJ, '1jJ atomic, 

xr('l/J /\ x) = 3y, z (x = 2Y · 3z /\ yr'ljJ /\ zrx), 
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xr('l/J V X) = 3y,z ((x = 2° · 3Y Ayr'l/J) V (x = 21 ·3z Azrx)), 

xr('l/J ~ x) =Vy (yr'l/J ~ fx(y)rx), 

xrVy'ljJ(y) =Vy Ux(y)r'l/J(y)), 

xr3y'ljJ(y) = 3u, z (x = 2u · 3z A ur'ljJ(z)), 
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where fx is the program with the Go{l.el number x (for a precise definition consult 
Mendelson, 1984). And now we call an £-formula <p realizable if the first order 
formula 3x(xr(<ps)) is true for every substitution s of arithmetical sentences 
instead of the propositional variables in r.p. 

It is not hard to see that the set of realizable £-formulas is closed under MP 
and Subst; it is called realizability logic. Nelson (1947) proved that it contains 
Int. It turned out, however, that realizability logic is a proper extension of Int: 
Rose (1953) showed that it contains the formula sa{-.q V -.r /p} which does not 
belong to Int. Unfortunately, very little is known about realizability logic. One of 
a few established facts is that it has the disjunction property; see Varpakhovskij 
(1965). A class of realizable propositional formulas containing all known formulas 
of that sort was described by Varpakhovskij (1973). 

Another formalization of the proof interpretation (of Kolmogorov's interpre
tation, to be more precise) was proposed by Medvedev (1962), who treated intu
itionistic formulas as finite problems. Formally, a finite problem is a pair (X, Y) 
of finite sets such that Y ~ X and X =I- 0; elements in X are called possible 
solutions and elements in Y solutions to the problem. The operations on finite 
problems, corresponding to the logical connectives, are defined as follows: 

(X1, Y1) V (X2, Y2) = (X1 U X2, Y1 u Y2), 

(Xi, Y1) ~ (X2, Y2) = ( Xf1
, {! E Xf' : /(Y1) ~ Y2}), 

_l_ = (X,0). 

Here XU Y = (X x {1}) U (Y x {2}) (i.e., XU Y is the ordered union of X and 
Y) and Xy is the set of all functions from X into Y. Note that in the definition 
of J_ the set X is fixed, but arbitrary; for definiteness one can take X = {0}. 

Now we can interpret formulas by finite problems. Namely, given a formula <p, 
we replace its variables by arbitrary finite problems and perform the operations 
corresponding to the connectives in r.p. If the result is a problem with a non-empty 
set of solutions no matter what finite problems are substituted for the variables 
in r.p, then r.p is called finitely valid. One can show that the set of all finitely valid 
formulas is closed under MP and Subst and contains Int; it is called Medvedev's 
logic and denoted by ML. 

In fact ML can be defined semantically, similarly to how Int was introduced. 
Let Wn be the family of non-empty subsets of a set with n > 0 elements and 
xRny mean y ~ x, for every x, y E Wn. The pair 1Bn = (Wn, Rn) is clearly a 
Kripke frame; we call it a Medvedev frame. Medvedev frames have an elegant 
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0 

FIG. 2.12. 

geometrical form: they look like n-ary Boolean cubes with the top point deleted 
(for n = 1,2,3,4 they are depicted in Fig. 2.12). Medvedev (1966) showed that 
ML coincides with the set of £-formulas that are valid in all Medvedev frames. 
We offer the reader to check that ML contains the formulas sa and kp (see 
Exercise 2.10) which do not belong to Int. 

2.10 Exercises 

Exercise 2 .1 Show that, for any family {Xi : i E I} of subsets of W in a frame 
J = (W,R), 

iE/ iE/ iE/ iEl 

iEI iEl iEl iEl 

Is it possible to replace ~ here with =? 

Exercise 2.2 Can the generation theorem be extended to not necessarily gen
erated submodels? Does the operation of forming subframes preserve validity? 

Exercise 2.3 Show that an infinite frame contains either an infinite ascending 
chain or an infinite descending chain or an infinite antichain. (Hint: use Konig's 
lemma, according to which every infinite tree of finite branching contains an 
infinite ascending chain.) 

Exercise 2.4 Let OOt1 = (J1, !!11) and OOt2 = (J2, !!12) be two models based on 
frames J1 = (W1, Ri) and J2 = (W2, R2), respectively. A non-empty binary 
relation S ~ W1 x W2 is said to be a bisimulation between 00t1 and OOt2 if the 
following conditions are satisfied: 

• if x1Sx2 then X1 F p iff x2 F p, for every variable p; 

• if x1Sx2 and x1R1Y1 then there is Y2 E W2 such that Y1BY2 and x2R2y2; 

• if x1Sx2 and x2R2y2 then there is y 1 E W1 such that Y1SY2 and x1R1Y1· 

Prove that if Sis a bisimulation between OOt1 and OOt2 and x1Sx2, then x 1 F cp 
iff x 2 F cp, for every formula cp. Derive from this the generation, reduction and 
disjoint union theorems. 
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Exercise 2.5 Show that each finite frame of branching ::'.'.: n is a reduct of some 
finite n-ary tree. 

Exercise 2.6 Show that two finite rooted frames are isomorphic iff they validate 
the same formulas. 

Exercise 2. 7 Give a purely syntactic proof of Proposition 2.26 (by induction 
on the construction of <p). 

Exercise 2.8 Prove that every formula <p ~ Int is refuted by a tree of depth 
and branching ::'.'.: ISubcpl. 

Exercise 2.9 Prove that every disjunction free formula <p ~ Int is refuted by a 
finite binary tree. 

Exercise 2.10 Show that a frame J = (W, R) validates the Kreisel-Putnam 
formula 

kp = ( 'P ---> q V r) ---> ( 'P ---> q) V ( 'P ---> r) 

iff J satisfies the following condition 

Vx, y, z (xRy /\ xRz /\ -iyRz /\ -,zRy---> ::Ju (xRu /\ uRy /\ uRz /\ 

Vv (uRv---> :3w (vRw /\ (yRw V zRw))))). 

Exercise 2.11 Show that a frame J = (W, R) validates the formula 

n 

o::;i<j:=;n i=O 

iff J satisfies the condition 

n 

Vx, Xo, ... , Xn( /\ xRxi _,·::iy V (xiRy /\ x1Ry)). 
i=l 

If J is rooted and finite, then this condition means that J has ::'.'.: n final points, 
i.e., btwn bounds the top-width of J. 

Exercise 2.12 Prove that J validates sa iff no generated subframe of J is re
ducible to the frame shown in Fig. 2.9 (c). 

Exercise 2.13 Show that a frame J = (W, R) refutes bbn iff there is a subframe 
6 = (V, S) of J such that xRyRz implies y E V whenever x, z E V and l5 is 
reducible to the n + 1-ary tree of depth 2. 

Exercise 2.14 Prove that J [it= A~=O ('Pi ...... v i#j PJ) ---> v~=O Pi iff there is a 
generated subframe of J reducible to the n + 1-ary tree of depth 2. 

Exercise 2.15 Show that a rooted frame validates the formula 

sm = ( ...,q ---> p) ---> ( ( (p ---> q) ---> p) ---> p) 

iff it contains ::'.'.: 2 points. 
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Exercise 2.16 Show that the Skvortsov formula 

(--i(p /\ q) -t --i(--ip /\ q) v --i(p /\ --iq)) -t --i(--ip /\ q) v --i(p /\ --iq) 

belongs to ML - Int. 

Exercise 2.17 Define by induction a sequence of finite trees Jn, known as 
Jaskowski's frames: Ji is the single-point frame and Jn+i is the result of adding 
a root to the disjoint union of n copies of Jn· Prove that 

Int= {<p E For.C: Jn f= r.p for every n > O}. 

Exercise 2.18 Say that a connective 0 is independent in a logic L if there is no 
formula r.p without occurrences of 0 such that p 0 q - r.p E L (if 0 = .l then, of 
course, .l - r.p EL). Prove that/\, V,-> and .l are independent in Int. (Hint: to 
prove that /\ and V are independent use the disjoint union of one- and two-point 
rooted frames and the three-point rooted frame, respectively.) 

Exercise 2.19 Prove that for every set of formulas rand every formula <p, 

where Tri(r) = {Tri(Vi) : Vi E r} and i = 1, 3. Does this equivalence hold for 
i = 2? 

Exercise 2.20 Define by induction the set H of Harrop formulas: (i) all vari
ables are in H; (ii) if r.p and Vi are in H then r.p /\Vi and x-> Vi are also in H, for 
every formula X· Prove that for any set r of Harrop formulas and all formulas r.p 
and Vi, 

r f- Jnt r.p v Vi implies r f- Jnt r.p or r f- Int Vi. 
Is this true for an arbitrary set of formulas r? 

2.11 Notes 

Intuitionistic logic as a formal explication of Brouwer's (1907, 1908) ideas was 
constructed in the form of Hilbert-style calculus by Kolmogorov (1925), Orlov 
(1928) and Glivenko (1929), who considered the propositional language, and 
then, for the predicate case, by Heyting (1930). For more detailed historical 
information about intuitionistic logic and its relation to intuitionism and con
structivism the reader can consult Troelstra (1969), Dummett (1977), Beeson 
(1985), van Dalen (1986). 

The intended meaning of the intuitionistic connectives was explained first in 
terms of the proof interpretation due to Brouwer, Kolmogorov and Heyting. It 
was not clear, however, how to construct a reasonable formal semantics consis
tent with this informal interpretation, or even just any semantics with respect 
to which Int would be complete (Godel had just proved his completeness theo
rem for classical predicate logic). The semantical studies of Int were started by 
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Godel (1932), who showed that it is not tabular. Ja8kowski (1936) constructed a 
sequence of finite matrices characterizing Int (see Exercise 2.17 giving the frame 
variant of Ja8kowski's construction). In fact he was the first to prove that Int 
is finitely approximable. Stone (1937) and Tarski (1938) discovered a connection 
between the derivability in Int and topological spaces, which was developed by 
McKinsey (1941), McKinsey and Tarski (1944, 1946) into the algebraic semantics 
for Int to be considered in full detail in Chapter 7. For a category-theoretical 
generalization of the topological semantics see Goldblatt (1979). 

Note that in the 1940s and 1950s Novikov in his course on intuitionistic 
logic at Moscow University proposed an informal arithmetic interpretation of Int 
which also led to the topological completeness (much later these lectures were 
published as book Novikov, 1977). Loosely, the idea of Novikov's interpretation 
is as follows. Atomic propositions are regarded as statements about comparing 
weights: ti < t 2, ti > t 2, ti = t2. To check whether they are true or not, we have 
at our disposal an unlimited collection of arbitrarily precise (but not absolutely 
precise!) scales. So by a finite number of weighing we can prove or disprove 
propositions of the form ti < t2, ti > t2 but we can never establish that a 
proposition of the form ti = h is true, though we may be able to refute it. 

Kolmogorov (1932) proposed to consider Int as a logic of problems but did 
not formalize his idea, which was partly fulfilled later by Kleene (1945), Godel 
(1958), Medvedev (1962), Artemov (1987b). Godel (1933a) gave an interpre
tation of the intuitionistic connectives via the corresponding classical ones by 
embedding Int into Lewis' modal system 84 (based on classical logic) and treat
ing its necessity operator as "it is provable" (for details see Section 3.9). Before 
Godel actually the same results were obtained by Orlov (1928). However, his 
paper remained unnoticed for a rather long time. This "classical" view on intu
itionistic logic was developed further by Novikov (1977). Embeddings of Cl into 
Int were constructed by Glivenko (1929), Godel (1933b), Gentzen (1934-35) and 
Lukasiewicz (1952). 

The relational semantics we considered in this chapter was introduced by 
Kripke (1965a). In fact it can be traced back to Jonnson and Tarski (1951) who 
represented algebras for the modal logic 84, and hence implicitly for Int, in the 
form of frames, and to Dummett and Lemmon (1959) who did this explicitly 
for finite algebras. A somewhat different relational semantics was constructed by 
Beth (1956); a close interpretation of intuitionistic connectives was proposed by 
Grzegorczyk (1964). Semantics combining in themselves both Kripke and Beth 
frames are considered in Dragalin (1979). In general, the semantical apparatus 
for Int was developed after the corresponding apparatus for modal logics to be 
considered in the next chapter. Sometimes, however, new semantical concepts 
were first introduced for Int, witness a sort of p-morphism considered by de 
Jongh and Troelstra (1966). 

Our proof of completeness is similar to that of Fitting (1969), although again, 
as in the case of Cl, we define Hintikka systems as a tool for constructing coun
termodels rather than for obtaining a proof sys.tern for Int. There exist other 
proofs of completeness. For instance, one can extract from Dragalin (1979) a 
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direct proof that Int is complete with respect to the full binary tree. This result 
was first obtained by Smorynski (1973); see also Kirk (1979) who showed that, 
for each n ?: 2, Int is characterized by the class of all n-ary trees. 

Gentzen (1934-35) represented Int as a system of natural deduction and as 
a calculus of sequents. In a purely syntactic way he proved that Int is decidable 
and has the disjunction property. A syntactic proof of the interpolation property 
can be found in Schutte (1962). 

An interesting syntactical property of Int was discovered by Wajsberg (1938) 
(see also Horn, 1962) who constructed a variant ofintuitionistic calculus to derive 
a formula 1.fJ in which it is sufficient to use (Al), (A2) and only those axioms that 
contain connectives really occurring in 1.fJ. Logics which can be represented by cal
culi with this property are called separable. Many extensions of Int were proved 
to be separable, in particular, Cl (see Hosoi, 1966c). It is unknown whether one 
can effectively recognize the separation property, given a finite set of axioms 
extending Int. Although it follows from Khomich (1979) that this can be done 
in the case of extra axioms in one variable, in general we conjecture that this 
algorithmic problem has a negative solution. The problem is not trivial even for 
tabular superintuitionistic logics. 

According to Exercise 1.3, the connectives in Cl are interconnected and they 
are enough to express all possible logical connectives which can be represented 
by truth-tables. This property is known as truth-functional completeness. The 
situation with the connectives in Int is much more complicated. First, as was 
noted by McKinsey (1939), they are independent (see Exercise 2.18). This result 
was developed then in two directions: expressing intuitionistic formulas in each 
other and adding new connectives to the language of Int. 

Since Int is not truth-functional, the notion of expressibility in Int is defined 
in the following way. Say that a finite sequence of formulas 1.fJI, ... , 1.fJn is an 
expression in Int via a list of formulas r if one of the following four conditions 
holds for each l.{Ji: 

• i.fJi is a variable; 

• !.{Ji Er; 
• there are j, k < i and a variable p such that 1.fJi = l.fJdl.fJ1/P}; 
• there is l < i such that l.{Ji ~ 1.fJl E Int. 

A formula 1.fJ is said to be expressible in Int via r if 1.fJ is a member of some 
expression via r. Expressibility in Int turned out to be much more complicated 
than expressibility in Cl and many-valued logics (see Jablonskij, 1979). In any 
case, no algorithm is known to determine whether a formula is expressible in Int 
via a list of formulas. A significant result in this direction was obtained by Ratsa 
(1982), who gave a positive solution to the algorithmic problem of recognizing 
whether a given list of formulas is functionally complete in Int (and even in any 
superintuitionistic calculus!) in the sense that every formula is expressible via 
the list. Here are two examples of functionally complete sets in Int found by 
Kuznetsov (1965): 

{p---> (q /\ -.r) /\ (q' V r')}, 
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{ ( (p V q) /\ -ir) V ( -ip /\ ( q - r))}. 

The following sequence is an expression via the latter formula containing all 
intuitionistic connectives (as formulas, of course): 

((pVq)/\-ir)V(-ip/\(q - r)), p, q, r, ((pVq)/\-iq)V(-ip/\(q - q)), 
(p/\-iq) V-ip, (p/\-ip) V-ip, -ip, (p/\-i-ip) V-ip, pV-ip, -i(pV-ip), 
1-, -,l_, ((p v q) /\ -,l_) v (:.p /\ (q - 1-)), (p v q) v (-ip /\ -iq), 
((p V q) /\ -,-,1_) V (-ip /\ (q - -,1_)), -ip /\ q, -iq, -ip /\ -iq, -ip /\ r, 
-, ( -ip /\ -iq) /\ r, -, ( -ip /\ -iq) /\ ( (p V q) V ( -ip /\ -iq)), p V q, ( ( 1- V 
q) /\-ir) V (-il_ /\ (q - r)), (q /\ -ir) V (q - r), (q /\ -ip) V (q - p), 
-, ( -ip /\ q) /\ r, -, ( -ip /\ q) /\ ( ( q /\ -ip) V ( q - p)), p - q, (p V q) - q, 
p---+ q, p - (p---+ q), p /\ q. 

Functional incompleteness of the usual systems of connectives in Int made it 
possible to introduce various "new" connectives generalizing the standard ones 
(infinitary disjunctions, conjunctions, etc.; see for instance, Nadel (1978), Goad 
(1978), de Jongh (1980), Kalicki (1980), Wojtylak (1983)). On the other hand the 
language of Int was enriched by modal operators; we shall give some references 
in Section 3.12. An interesting connective LJ, called the weak disjunction, was 
introduced by Medvedev (1966) for ML and then considered by Skvortsov (1983) 
for Int and its extensions. Semantically LJ may be defined like this: 

(9Jl, x) I= cp LJ 1jJ iff Vy (xRy---+ ((9J1, y) I= cp) V ((9J1, y) I= 1/J) V 

3u, v (yRu /\ yRv /\ ((9J1, u) I= cp) /\ ((9J1, v) I= 1/J) /\ 

\fw (yRw---+ wCu V wCv))), 

where aCb means 3z(aRz /\ bRz). Skvortsov (1983) justifies the given definition 
by the following considerations. Let us understand points in frames as "reasons" 
or "arguments" in a controversy. Chains are regarded as possible ways of its 
development (or possible ways of researches, if we argue with nature). A point 
x in a model is a reason for cp if (9Jl, x) I= cp. Say that cp is intuitionistically 
established at a point y by reason x if ( (9Jl, x) I= cp) /\ xRy; cp is classically 
established at y by reason x if ((9Jl, x) I= cp) /\ xCy. 

The intuitionistic disjunction cp V 1jJ is true at x if either cp or 1jJ is intu
itionistically established at x. The classical disjunction (we use for it another 
symbol) cpV1/J = -i-i(cp V 1/J) is true at x if, for every initial development of 
the controversy, either cp or 1jJ remains classically established (by some reasons) 
at any point. The relation (9J1, x) I= cp LJ 1jJ can be represented in the form 
Vy(xRy---+ (9J11 y) I=' cp LJ 1/J), where the restricted quantifier \fy(xRy---+ corre
sponds to an arbitrary initial development of the controversy and (9Jl, y) I=' cpU1/J 
means that either the intuitionistic disjunction cpV1/J has been already established 
at y or (above x) there are two reasons for cp and 1/J, respectively, which alone 
establish the classical disjunction at x. Roughly speaking, the weak disjunction 
cp LJ 1/J reduces to the problem of classical establishing cp or 'ljJ by some unique, 
concrete reasons for them and not on the ground of the general distribution of 
truth-values of cp and 1/J. 
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Note also that Medvedev (1979) and Skvortsov (1979) introduced some inter
esting variants of negation added to Int. Vorob'ev (1952a, 1952b, 1972) added to 
Int the so called strong negation; the resulting logic was investigated by Gurevich 
(1977), Vakarelov (1977), Sendlevski (1984), Goranko (1985). 

New intuitionistic connectives can be introduced semantically. Yashin (1985) 
used some ideas of McCullough ( 1971) to define an intuitionistic connective as 
a formula in the language of the elementary theory of Kripke models with one 
parameter satisfying the following conditions: the monotonicity with respect to 
accessibility; all quantifiers are of the form \Ix 2: y or 3x 2: y; a proposition with 
such a connective should not distinguish between two models one of which is 
obtained from the other using the operations of reduction and the formation of 
elementary equivalent models. It turns out that intuitionistic connectives in this 
sense are only the standard intuitionistic propositional formulas. A similar result 
for the modal case was obtained by Yashin (1986). Yashin (1989) described the 
connectives that result from relaxing the conditions above. 

Novikov (see Smetanich, 1960) and Gabbay (1977) g;we syntactical definitions 
of new intuitionistic connectives. Let>. be an extra unary connective and Int(>.) 
a calculus obtained by adding to Int some new axioms describing>.. According 
to Novikov, Int(>.) defines a new connective if 

• Int(>.) is conservative over Int, i.e., if Int(>.) f- r.p and r.p does not contain 
>., then Int f- r.p; 

• Int(>.) t- (p ~ q) ~ (>.(p) ~ >.(q)); 
• for every >.-free formula r.p, Int(>.)+ >.(p) ~ r.p is not conservative over Int. 

According to Gabbay, Int(>.) defines a new connective if 

• Int(>.) is conservative over Int; 
• no explicit definition of >. is derivable in Int(>.); 
• Int(>.) has the disjunction property; 
• some explicit definition of>. is derivable in Int(>.) + -.-.p ~ p; 

• the axioms of Int(>.) define the meaning of>. uniquely in the sense that 
Int(>.)+ Int(>.') t- >. ~ >.'; 

• >. is definable in the second order intuitionistic calculus. 

Smetanich (1960) showed that we get a new Novikov connective by adding to 
Int the axioms 

Bessonov (1977) constructed a continuum of similar axiomatic systems defining 
new connectives and Yashin (1994) showed that the axioms 

define a new connective as well. 
The result of Exercise 2.9 is due to Segerberg (1974). 
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MODAL LOGICS 

When discussing in Section 2.1 the meaning of intuitionistic connectives, we 
used in our language-a metalanguage with respect to .C-the undefined notion 
"proof'. Making the proof interpretation somewhat rougher, we can treat, for 
example, the intuitionistic formula p ___, q V r as the proposition 

"it is provable (it is provable p ___,it is provable q V it is provable r)" 

with the classical connectives ___, and V. "Modalized" propositions of that sort, 
containing such operators as "it is provable", "it is necessary", "it is obligatory", 
etc., are the subject of modal logic, another branch of mathematical logic. 

3.1 Possible world semantics 

The expressive capacities of the language .C of classical (or intuitionistic) logic 
do not allow us to decompose such propositions as 

(A) It is possible that water boils at 70°C 

or 

(B) It is necessary that water boils at 70°C 

into a combination of simpler propositions. Like the proposition 

(C) Water boils at 70°C, 

they can be regarded only as atomic. So we are able to express correctly in 
.C neither the implications "if (B) then (C)" and "if (C) then (A)", which are 
naturally considered to be true, nor the implications "if (C) then (B)" and "if 
(A) then (C)", which are probably recognized to be false. 

The propositional modal language M.C is obtained by enriching the language 
.C with the new unary connective D and the corresponding formula formation 
rule 

• if r.p is an M.C-formula then (Dcp) is also an M.C-formula, 

which is added to the rules in Section 1.1 (with .C being replaced with M.C, 
of course). The set of all M.C-formulas is denoted by ForM.C and the set of 
all variables in M.C by VarM.C. In addition to the conventions on formula 
representation, which were accepted in Section 1.1, we will assume D to bind 
formulas stronger than/\, V, ___, and<-->. Thus, Op___, Dq V Dr is an abbreviation 
for ((Op)___, ((Dq) V (Dr))). 
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We define the connective 0 as dual to o, i.e., by taking 

Or.p = -.0-.r.p, for every r.p E ForM.C, 

and consider it as strong as O or -.. 
The connectives O and 0 are usually read as "it is necessary" and "it is 

possible" and called the necessity and possibility operators, respectively. So (A) 
and (B) above can be represented now as O(C) and O(C). However, the intended 
meaning of these connectives may vary. Here are only a few possible interpreta
tions of O and 0. 

(i) O is understood as logical necessity, i.e., as "it is necessary from the point 
of view of logical laws", and 0 as logical possibility, i.e., "it does not contradict 
the logical laws". 

(ii) O may be regarded as epistemic necessity, i.e., as "it is known" (or "it is 
believed"). This interpretation seems to require some refinement, since at least 
two questions arise: "whom is this known to?" and "are the logical consequences 
of known propositions also known; say, is 'I/; known provided that r.p and r.p --+ 'I/; are 
known?" . We will assume that there is some ideal perceiving person, and the set 
of propositions which are known to him is closed under the logical consequence. 
In this case 0 may be read as "it does not contradict to anything that is known". 

(iii) Another interpretation, closely related to (ii), is to understand O as 
"it is (informally) provable (by an ideal mathematician) in some mathematical 
theory"; 0 means then "it does not contradict to the postulates of the theory". 

(iv) O may be also regarded as provability in some formal system, for instance, 
in formal Peano arithmetic PA. 

(v) One can understand O as deontic necessity, that is as "it is obligatory"; 
0 is then read as "it is permitted". 

(vi) Sometimes O is interpreted as tense necessity, that is as "it is true now 
and always will be true" and 0 as "it is true now or will be true afterwards" . 

Some modal formulas, which are acceptable under one interpretation of 0, 

may turn out to be unacceptable under another one. For example, an arbitrary 
proposition of the form O(Or.p--+ r.p) may be regarded as true in the cases (i), (ii), 
(iii) and (vi), but neither in (iv) nor in (v). Indeed, by accepting this principle 
for the formal provability in PA, we would then have that the formula 0(0 = 
1) --+ 0 = 1, and so its contraposition -.0 = 1--+ -.0(0 = 1), are provable in PA5 . 

And since the premise of the latter formula is provable in PA, the conclusion 
-.0(0 = 1) must also be provable, contrary to Godel's second theorem, according 
to which the consistency of PA cannot be proved only by its own means. In 
the deontic case, Or.p --+ r.p does not hold, since obligations may be not fulfilled. 
Another example: without stretching a point the principle Or.p --+ OOr.p can be 
accepted only for the logical necessity. 

On the other hand, all the interpretations of the operator O listed above have 
many common traits. For instance, for all of them the principles 

5 How D is formalized in PA is explained in Section 3.8. 
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D(cp---+ 1/J)---+ (Dcp---+ 01/J) 

and 

0( cp /\ 1ji) '"4 Ocp /\ 01/J 

are acceptable. This makes it possible to consider them, at least to a certain 
extent, from a common standpoin:t by treating 0 as some abstract necessity. 
Moreover, we shall see in the sequel that the differences in the interpretations 
we have just observed can be provided with a strict mathematical meaning. 

The interpretation of the modal language MC we are going to introduce now, 
first at the intuitive level and then, in the next section, in the form of precise 
definitions, is often called the relational or possible world semantics. Philosophers 
trace it back to Leibniz who understood necessity as truth in all possible worlds 
and possibility as truth in at least one possible world. 

As in classical logic, we assume that every proposition is either true or false. 
For example, it is natural to evaluate proposition (C) as false. However, it would 
be more exact to say that (C) is false under ordinary circumstances, in the 
ordinary world where we live. For we can imagine some other circumstances, 
another world in which water really boils at 70°C (in principle, we can even find 
ourselves in this world having climbed the summit of the Everest). That world 
where (C) becomes true may be called an alternative to our world or a possible 
world relative to it. Using Leibniz's definition, we can say that proposition (A) 
should be recognized as true in our world, and (B), on the contrary, as false. 

In general, by abstracting from concrete details, we can imagine a system of 
worlds in which each world has some (possibly empty) set of alternatives. The 
alternativeness relation will be denoted by R, so that xRy means that y is an 
alternative (or possible) world for x. Every world x "lives" under the classical 
laws: an atomic proposition is either true or false in it and the truth-values of 
compound non-modal propositions are determined by the usual truth-tables. A 
modal proposition Ocp is regarded to be true in a world x if cp is true in all the 
worlds alternative to x; Ocp is true in x if cp is true at least in one world y such 
that xRy. 

Concrete properties of the alternativeness relation depend on the type of 
the modality under consideration. If we deal with the logical necessity then it is 
natural to regard any two worlds to be alternatives to each other; in other words, 
the alternativeness relation in this case is universal. However, if we consider 
the tense necessity then possible worlds are states of our world (or some other 
developing process, e.g. a computer program) at different moments of time. The 
choice of a suitable alternativeness relation R depends then on our aims and 
views on the nature of time. For example, we may consider the course of time 
to be linear, and then R will be a linear ordering of the set of worlds, or we may 
think that time has a branching nature and take R to be a tree-like ordering of 
possible worlds. 

Alternativeness relations for other interpreta.tions of D (say, epistemic, prov
ability or deontic) may be not so clear. To characterize them, we should first 
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describe more precisely the corresponding modalities, by defining them axiomat
ically, for instance. And after that, given a set of worlds, we can regard a world 
y as an epistemic (provability, deontic, etc.) alternative to x iff all that is known 
(respectively, provable, obligatory, etc.) at xis necessarily true at y. 

Epistemic, deontic, provability and a number of other modal logics will be 
introduced in Section 3.8. However, mostly in this chapter we will be considering 
the logic K of some abstract necessity describing those common properties that 
are characteristic for all interpretations of the operator D above. 

3.2 Modal frames and models 

In an intuitionistic frame J = (W, R), which was used for representing possible 
states of information, the accessibility relation R between states was a partial 
order on W. We will represent systems of possible worlds with alternativeness 
relations between them in the form of frames as well, but for the present no 
conditions will be imposed on R. 

A modal Kripke frame J = (W, R) consists of a non-empty set (of worlds) W 
and an arbitrary binary (alternativeness) relation Ron W. Thus, intuitionistic 
frames are a special case of modal ones. Elements of W are called worlds or, as 
before, more neutrally, points. If xRy, we say that y is an alternative to x, or 
that y is accessible from x, or x sees y. Other synonyms and notations are: y is 
a successor of x, x is a predecessor of y, y E xi, x E yl. The notions of proper 
and immediate successor or predecessor are defined as in the intuitionistic case. 

Let us fix some propositional modal language M£. A valuation of M£ in a 
frame J = (W, R) is a map !lJ associating with each variable pin VarM£ a set 
!lJ(p) of points in W, i.e., !lJ is a map from VarM£ to 2w. !lJ(p) is understood 
as the set of worlds at which p is true. 

A Kripke model of M£ is a pair 9J1 = (J, !lJ) where J = (W, R) is a frame 
and ma valuation in J. Let x be a point in J. By induction on the construction 
of r.p we define a truth-relation (9J1, x) f= r.p, "r.p is true at the world x in the model 
9)1", by taking 

and so 

(9J1, x) F= P 

(9J1, x) F= 1/J A x 
(9R,x) F= 1/J v x 

iff x E !lJ(p), for every p E VarM£; 

iff (9J1, x) f= 1/J and (9J1, x) F= x; 
iff (9J1, x) F= 1/J or (9J1, x) F= x; 

(9J1, x) f= 1/J ___, X iff (9J1, x) f= 1/J implies (9J1, x) f= Xi 

(9J1, x) ~ ..L; 

(9J1, x) f= 07/J iff (9J1, y) f= 1/J for ally E W such that xRy, 

(9J1, x) F= -.7/J iff (W1, x) ~ 1/J 

(9J1, x) f= 07/J iff (9J1, y) f= 'ljJ for some y E W such that xRy. 
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If (9J1, x) ~ r.p then we say r.p is false at the world x in 9J1. Instead of (9J1, x) f= r.p 
and (9J1, x) ~ r.p we will write simply x f= r.p and x ~ r.p, if understood. The 
truth-set of r.p in 9J1 is denoted by 1?7( r.p). 

The definitions of satisfiability, truth, refutability and validity in modal frames 
and also those of isomorphism between frames and models remain the same as 
in Section 2.2. Propositions 2.2 and 2.3 can be transferred without any changes 
to the modal case as well. · 

Proposition 2.3, stating that the truth-value of a formula depends only on the 
truth-values of its variables, can be somewhat strengthened by observing that if 
a formula r.p contains at most n nested modalities then the truth-value of r.p at a 
point x depends only on the truth-values of its variables at the points accessible 
from x by at most n steps. To formulate this more precisely, we require a few 
definitions. 

The modal degree md( r.p) of a formula r.p is defined inductively: 

md(r.p) = 0, for every atomic r.p; 

md('ljJ 0 x) = max{md('ljJ),md(x)}, for 0 E {A, V,-;}; 

md(D'l/J) = md(O'ljJ) = md('ljJ) + l. 

We denote by onr.p and onr.p the formulas D ... D r.p and 0 ... 0 r.p, respectively; 
..___._.... '--v--' 

n n 

by the definition, both o0r.p and o0 r.p are just r.p. Thus, if r.p contains no modal 
operators at all then md(Dnr.p) = md(Onr.p) = n. 

Let J = (W, R) be a frame and x, y E W. Say that y is accessible from x by 
n > 0 steps and write xRny or y E xr or x E Yln if there exist (not necessarily 
distinct) points z1 , ... , Zn-l in W such that xRz1Rz2 ... Rzn_ 1Ry. We shall also 
understand xR0 y, y E xi0 and x E Ylo as x = y. If R is transitive then clearly 
xRny implies xRy, for every n > 0, and if R is also reflexive then the converse 
holds as well. A point x is called reflexive if xRx; for such an x, xRnx holds 
for every n 2: 0. A frame is ( ir) reflexive if all points in it are (ir )reflexive. A 
frame J = (W, R) is said to be intransitive if \Ix, y, z (xRy /\ yRz _, -.xRz). An 
intransitive frame is clearly irreflexive. 

It is not difficult to see that the definition of the truth-relation for the modal 
operators can be generalized as follows: 

Proposition 3.1 For every n 2: 0, 

(9J1, x) F on'ljJ iff (9J1, y) F 'ljJ for all y E xr' 

(9J1, x) F on'ljJ iff (9J1, y) F 'ljJ for some y E xin. 

It follows that if xRny does not hold for any point y in a frame J, i.e., 
xr= 0, then (J, x) F= onr.p and (J, x) ~ onr.p, for every formula r.p. In particular, 
"everything is necessary" and "nothing is possible" at a point without successors. 
Such a point is called a dead end. 

The notions of subframe and submode[ are defi,ned as in the intuitionistic case. 
Each non-empty set X of points in a frame J determines in the unique way the 
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subframe of J and the submodel of 9"J1 = (J, W) with the set of worlds X; they 
are called the subframe and the submode[ induced by X. 

Proposition 3.2 Let 9"J1 be a model, x a point in 9"J1, n ~ 0 and 1)1 the sumbodel 
of 9"J1 induced by the set xi 0 U ... U xin. Then, for every formula r.p with md( r.p) $ 
n, 

(9"Jl, x) f= r.p iff (IJ1, x) f= r.p. 

Proof By induction on the construction of r.p with md( r.p) $ n. The basis of 
induction and the cases of r.p = 7/J 0 x, for 0 E { /\, V, --->}, are trivial. 

Suppose that r.p = 07/J. Then (9"Jl, x) ~ 07/J iff there is y in 9"J1 such that y E xi 
and (9"Jl,y) ~ 7/J. On the other hand, (IJ1,x) ~ 07/J iff there is yin 1)1 such that 
y E xi and (IJ1, y) ~ 7/J. Construct the submode} 1)1' of 9"J1 (or IJ1) induced by 
the set y i 0 u ... u yin-I. Since md( 7/J) $ n - 1, by the induction hypothesis 
we have (9"J1,y) ~ 7/J iff (IJ1',y) ~ 7/J iff (IJ1,y) ~ 7/J. Therefore, (9"J1,x) ~ 07/J iff 
(IJ1, x) ~ 07/J. 0 

Drawing a frame J = (W, R) in the form pf diagram, we will represent irreflex
ive points in J by bullets • and reflexive ones by circles o (in the intuitionistic 
frames all points were reflexive). We draw an arrow from x to y if x i y and 
xRy. Unless otherwise stated, the frames represented by diagrams are assumed 
to be transitive. In such cases we do not draw an arrow from x to z if there are 
arrows from x to y and from y to z. In the diagrams of nontransitive frames all 
arrows are shown explicitly. 

When depicting models, alongside their points we shall sometimes write for
mulas: those that are true at a point are written to the left of it and those that 
are false to the right. 

Example 3.3 Let J = (W, R) be the frame consisting of a single irreflexive point 
a, i.e., W ={a}, R = 0, and let W(p) = 0. Then both Op--> p and Op---> Op are 
false at a under \U, since a f= Op, a ~ p and a ~ Op. This situation is shown 
graphically in Fig. 3.1. 
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Example 3.4 Suppose now that J = (W, R) consists of a single reflexive point 
a, i.e., W = {a}, R = {(a, a)}, and let again W(p) = 0. Then the formulas 
Op-> p and Op-> Op are true at a under m, while the formula 

la= O(Op -t p) -t Op, 

known as the Lob formula (or axiom), is false (see Fig. 3.2 (a)). la is false also 
at every point in the (transitive) model shown in Fig. 3.2 (b) and consisting of 
a strictly ascending chain of irreflexive points. (The definition of ascending and 
descending chains remains the same as in the intuitionistic case.) 

Example 3.5 Now consider the intransitive frame J = (W, R) in Fig. 3.3, i.e., 
W = {a,b,c}, R = {(a,b), (b,c)} (a does not see c!), and put, as shown in 
Fig. 3.3, W(p) = {a, b}. Then it is easy to see that the formula Op -> O Op is 
false at a. Notice that by replacing • in Fig. 3.3 with o, i.e., by taking R = 
{(a, b), (b, c), (a, a), (b, b), (c, c)} we again obtain a countermodel for that formula. 
However, this will not be the case if we take the transitive closure of the depicted 
accessibilities. For then we shall have aRc from which a [it= Op. 

An important property of models built upon transitive frames is the following: 

Proposition 3.6 Suppose 9Jt is a model on a transitive frame. Then for every 
point x in 9Jt and every formula cp, 

(i) (9Jt,x) F= Ocp implies (9Jt,y) F= Ocp, for every y E xi; 
(ii) (9Jt, x) F= Ocp implies (9Jt, y) F= Ocp, for every y E x!. 

Proof (i) If we assume that (9Jt, y) ~ Ocp for some y E xi then there is z E yi 
such that (9Jt, z) ~ <p. Since J is transitive, we must then have z E xi, contrary 
to x F Ocp. 

(ii) is proved analogously. O 

It follows that in a transitive model exactly the same formulas of the form 
Dcp or Ocp are true at the points which see each other. We introduce for such 
points a special terminology. 

Let J = (W, R) be a transitive frame. Define on W an equivalence relation 
"'by taking, for every x, y E W, 

x ,..., y iff either x = y or xRy and yRx. 
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The equivalence classes with respect to "' are called clusters. The cluster con
taining a point x will be denoted by C(x). In other words, C(x) contains x and 
all those points in J that are seen from x and see x themselves. 

Proposition 3. 7 Suppose x is a point in a model 9Jt built on a transitive frame 
and ip an arbitrary formula. Then for every y E C(x), 

(9'.Jt, x) F Dip iff (9'.Jt, y) F Dip, 

(9'.Jt, x) I= Oip iff (9'.Jt, y) I= Oip. 

Proof Follows from Proposition 3.6. 0 

The quotient frame of a transitive frame J with respect to "', that is the 
frame (W/~,R/~), where 

W/~={C(x): xEW} 

and 
C(x)R/ ~C(y) iff xRy, 

is called the skeleton of J and denoted by pJ = (pW, pR). It should be clear 
that the skeleton pJ of every frame J is antisymmetric, and if R is reflexive then 
pJ is partially ordered by pR. A reflexive and transitive binary relation is called 
a quasi-order (or preorder). 

We distinguish three types of clusters: 

• a degenerate cluster consisting of a single irreflexive point, 
• a simple cluster consisting of a single reflexive point, and 
• a proper cluster containing at least two (reflexive) points. 

We will represent a proper n-point cluster, for 2 ::; n ::; w, as@ or as shown in 
Fig. 3.4 (a). Fig. 3.4 (b) and (c) show a frame with all these types of clusters 
and its skeleton, respectively. 

Example 3.8 Let J = (W, R) bethe frame shown in Fig. 3.5, i.e., W = {a1, a2}, 
R = {(ai,ai): i,j = 1,2}, and let m(p) = {ai}. Then the formula 

ma = DOp -> ODp, 

known as the McKinsey formula (or axiom), is false under ID at both a 1 and a2 . 
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And finally, we define the modal logic KM.c ·in the language M.C as the set 
of all ML-formulas that are valid in all modal Kripke frames, i.e., 

KM.c = {cp E ForM.C: JI= <p, for all frames J}. 

As before, we drop the subscript M.C and write, when understood, simply K. It 
follows from the given definition that 

Cl.c C KM.C· 

Once again we emphasize that the operator D in K should not be understood as 
some meaningful necessity. From the set-theoretic point of view K is the minimal 
logic among all those modal logics that are considered in this book. In Section 3.8 
we shall construct modal logics for various meaningful interpretations of D by 
adding new formulas to K which convey specific traits of these interpretations. 

3.3 Truth-preserving operations 

The definitions of the truth-preserving operations-generating subframes, reduc
tion and disjoint union-which were introduced in Section 2.3 may be used with
out any changes in the modal case as well. To refresh them in mind, we just give 
some examples displaying specific features of moclal frames. 
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Example 3.9 Let us consider once again the intransitive frame in Fig. 3.3. We 
have: ai = { b}, although the upward closure of {a }-the minimal set to contain 
a and all successors of its points-is {a, b, c}; al= 0. 

This example shows that i and 1 are not upward and downward closure 
operations in nontransitive or irreflexive frames. So we generalize them as follows. 
For a frame J = (W, R) and X ~ W, we put 

x1e=xuxre, XTe=XUXle, forl:=:;~:=:;w. 

Using this notation, we can now represent the upward closed set generated by 
X in J as xr. A point x is a root of J if the subframe of J generated by x 
is J itself. Notice also that the cluster C(x) generated by a point x is xi n xJ. 
If J is transitive, we say x is a final point and C(x) a final cluster in X if 
xl n X = C(x) n X; x is a last point and C(x) the last cluster in X if X ~ xT. 

A set X ~ W is called a cover for a set Y ~ W if Y ~ XJ. 

Example 3.10 Let J = (W, R) be the (nontransitive) frame depicted in Fig. 3.6 
(a). J is generated by a as well as by b; so J is rooted, with both a and b being 
its roots. All rooted subframes of J (modulo isomorphism) are of the form shown 
in Fig. 3.6 (a)-(f), for n;:::: 0. The disjoint union of (e) and (f) gives an example 
of J's subframe without a root. The frames (a) and (b) are the only generated 
subframes of J. 

Theorem 3.11. (Generation) If 1)1 is a generated submodel of 9J1 then, for 
every point x in 1)1 and every modal formula r.p, 

(IJl, x) f= r.p iff (9J1, x) f= r.p. 

Proof We leave the proof, which is similar to that of Theorem 2. 7 or Propo
sition 3.2, to the reader as an exercise. O 

Corollary 3.12 If <5 ~ J then, for every x in Q; and every formula i.p, 

(i) (<5, x) f= r.p iff (J, x) f= r.p; 
(ii) J f= r.p implies <5 f= r.p. 

Corollary 3.13 K = {r.p E ForM.C: J f= r.p for all rooted frames J}. 

Example 3.14 The transitive irreflexive frame shown in Fig. 3.7 (a) is reduced 
to the frame (b) by the map f(n) = mod2 (n) and to the frame (c) by the map 
g(n) = 0, for all n. However, if we do not presuppose taking the transitive closure, 
then (a) is not reducible to (b), but is reducible to (c). It is worth noting also 
that, by (Rl), no reflexive point can be mapped by a reduction to an irreflexive 
one. 
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Theorem 3.15. (Reduction) If f is a reduction of a model 9'J1 to a model S)1 

then, for every point x in 9'J1 and every formula i.p, 

(9'.n,x) f= tp iff (1)1, f(x)) f= tp. 

Proof Similar to the proof of Theorem 2.15. 0 

Corollary 3.16 If f is a reduction of J to ~ then, for every point x in J and 
every modal formula tp, 

(i) (J,x) f= tp implies (~,J(x)) f= tp; 

(ii) J f= i.p implies ~ f= tp. 

Propositions 2.11, 2.13 and 2.14 remain true for the modal case as well. 

Proposition 3.17 If a modal formula tp is valid in some frame then it is also 
valid either in o or in •. 

Proof Suppose J f= tp. If J contains a dead end, say x, then ( { x}, 0), i.e. •, is a 
generated subframe of J which, by Corollary 3.12, validates tp. Otherwise every 
point in J has a successor and so the map f defined by 

f(x) = o, for all points x in J, 

is a reduction of J to the frame o. By Corollary 3.16, this means that o validates 
tp. 0 

A modal frame J = (W, R) is called a tree if the reflexive and transitive 
closure R* of R (i.e., for every x, y E W, xR*y iffy E xiw) is a tree partial 
order on W. For instance, the frames in Fig. 3.6 (b), (c), (e) and (f) are trees, 
while those in (a) and (d) are not, since both of them contain a proper cluster. A 
transitive frame J is a tree of clusters (or quasi-tree) if its skeleton pJ is a tree. 

Slightly modifying the proof of Theorem 2.19 we obtain 

Theorem 3.18 Every rooted modal frame ~ = (V, S) is a reduct of some in
transitive tree. 

Proof Suppose vo is a root of ~. Define a set W and a relation R on W by 
taking 
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(v0 , ... , Vn) R (uo, ... , Um) iff m = n + 1 and Vi = Ui, for i = 0, ... , n. 

Clearly J = (W, R) is an intransitive frame with root (v0 ). Moreover, J is a 
tree, since ( v0 , v1, ... , Vn) Tw is finite and linearly ordered by the transitive and 
reflexive closure of R as follows: 

(vo) R (vo, v1) R ... R (vo, v1, ... , Vn-ll R (vo, v1, ... , Vn-1, vn). 

We leave to the reader to verify that the map f from W onto V defined by 
f( (v0 , v1 , ... , vn)) = Vn is a reduction of J to ®· 0 

Corollary 3.19 K = { cp E For M.C : J I= cp for all intransitive trees J}. 

Unlike the intuitionistic case, the tree J constructed in the proof above may 
be infinite even if® is finite. For example, suppose ® consists of only one reflexive 
point; then J will have the form shown in Fig. 3.7 (a). However, for finite ®, 
every point in the corresponding tree J has finitely many successors. 

The tree J constructed in the proofs of Theorems 3.18 and 2.19 is said to 
be obtained by unravelling ®· To "unravel" a transitive frame ® without loss 
of transitivity, we should take the transitive closure of R in J. There is also 
another technique of "flattening out" clusters in a transitive ®, which is known 
as bulldozing®: roughly, each non-degenerate cluster in® is "bulldozed" into an 
infinite ascending chain of irreflexive points., Recall that an irreflexive transitive 
binary relation is called a strict partial order. More exactly bulldozing is defined 
in the proof of the following: 

Theorem 3.20. (Bulldozer) (i) Every transitive frame is a reduct of some 
strictly partially ordered frame. 

(ii) Every quasi-ordered frame is a reduct of some partially ordered frame. 

Proof (i) Suppose ® = (V, S) is a transitive frame. With each point x E V we 
associate a set x+ which is { (x, i) : i = 0, 1, ... } if C(x) is non-degenerate and 
the singleton { (x, 0)} if C(x) is degenerate. Let W be the union of all x+. Fix 
some well-ordering x 0 , x 1 , ... , x1;, ... of every cluster C in ® and define a relation 
R on W by taking 

(x1;,i) R(xc;,j) iff either i < j or~< (and i = j 
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It is easy to see that R is transitive and irreflexive, i.e., it is a strict partial order. 
We show that ~ is a reduct of J = (W, R). 

Define a map f from W onto V by taking f( (x, i)) = x, for every (x, i) E W. 
By the definition, f is a map "onto" satisfying (Rl). Suppose now that xSy. 
If C(x) = C(y) then (x, i) R (y, i + 1), for every i 2': 0. And if x and y are in 
distinct clusters then (x, i) R (y, j) for all possible i and j. Thus f satisfies (R2) 
and so is a reduction of J to ~-

(ii) The only difference from (i) is that in the definition of R we take ::; 
instead of <. 0 

Observe, however, that the result of bulldozing is not in general a tree. For 
instance, by bulldozing the frame in Fig. 3.8 (a), we obtain the frame in Fig. 3.8 
(b), which is not a tree, since an infinite ascending chain precedes its last point. 

The disjoint union of modal frames behaves exactly like the disjoint union of 
intuitionistic ones. 

3.4 Hintikka systems 

In this section we extend the semantic tableau method to the modal case. As 
before, this method will not only provide us with a convenient tool for con
structing countermodels but also help us proving the completeness theorem for 
the calculus K in Section 3.6. Again we begin with a few examples. 

Example 3.21 Suppose that we want to construct a countermodel for the for
mula 

SC= O(Op-> q) V O(Oq-> p). 
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Then we form the tableau t0 = (0, { sc}). Its purpose is, as before, to describe the 
desirable distribution of the truth-values over (some) subformulas of sc in one 
world of the model to be constructed. By the saturation rule (SR4), we should 
add O(Op----> q) and O(Oq----> p) to the right part oft0. Recall now that a formula 
07/J is false at a point x iff there is a point y accessible from x at which 'ljJ is false. 
So we form two new tableaux ti and t 2 and put to their right parts Op ----> q and 
Oq ----> p, respectively; we regard these tableaux as accessible from t0 . The only 
thing that is left to do is to apply to ti and tz rule (SR6), which again is correct, 
since ----> is classical. All steps of this construction are shown in Fig. 3.9 (a). 

It is not hard to check that sc is refuted at the point t 0 in the model shown 
in Fig. 3.9 (b). Nothing prevents us from joining t1 and t 2 into one tableau, say 
t, and then we obtain another countermodel for sc which is depicted in Fig. 3.9 
(c). Observe that if we need a reflexive countermodel for sc then we must add 
p and q to the left parts of ti and t2 , respectively. However, this does' not go 
through for the countermodel in Fig. 3. 9 ( c). 

Example 3.22 Now let us use this method of constructing countermodels for 
the formula 

grz = O(O(p - Op) - p) - p 

which is known as the Grzegorczyk formula (or axiom). Only one application 
of rule (SR6) (see Fig. 3.10 (a)) yields the simplest countermodel for grz built 
upon the single-point irreflexive frame shown in Fig. 3.10 (b). 

Example 3.23 Suppose, however, that we are interested only in reflexive coun
termodels for grz. In this case to in Fig. 3.10 must be self-accessible, and so 
we should put O(p ----> Op) ----> p to its left part, which completely changes the 
matter. Indeed, after that we, in accordance with (SR5), put O(p----> Op) to the 
right part of to and then, to make this formula false at t0 , form a new tableau 
t1 which is accessible from to and contains p ----> Op in its right part. So p should 
be added to the left part of ti and Op to the right one. But that is not enough: 
to ensure that O(O(p----> Op) ----> p) is true at t0 , we must put D(p----> Op) ----> p to 
the left part of t 1 . 

Our next step is to form a tableau t 2 accessible from ti and put p in its right 
part, which guarantees the falsity of Op at t 1 . Notice that t0 does not see t 2 . All 
these steps are shown in Fig. 3.11 (a). The reflexive nontransitive countermodel 
for grz corresponding to this tableau system is depicted in Fig. 3.11 (b). 
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Example 3.24 Now suppose that we need a reflexive and transitive (i.e., quasi
ordered) countermodel for grz. Then we should take the transitive closure of 
the accessibility relation between t 0 , t1 and t2 in Fig. 3.11 and so, according to 
Proposition 3.6, copy the left part of t0 to the left parts of t 1 and t 2 . But then, 
by (SR5), O(p _, Op) should be written in the right part of h, which actually 
returns us to the same situation as was in t 0 . Thus we obtain an infinite sequence 
of tableaux to _, ti _, t 2 _, .. ., in which t 2i is a copy of t 0 and t 2i+l a copy of 
ti, for i = 1, 2, .... The reflexive and transitive countermodel corresponding to 
this tableau system is depicted in Fig. 3.12 (a). 

We can avoid the infinite chain of alternating tableaux if instead of construct
ing t2 we just draw an arrow from t 1 to t0 , thus getting a system of two tableaux 
seeing each other. The corresponding countermodel is shown in Fig. 3.12 (b). 
Observe that the map f(ti) = tmod

2
(i) is a reduction of the model (a) to the 

model (b). 

Now we present these considerations in a more formal way. A tableau in the 
language MC is any pair t = (r, ~) of subsets of For MC. It is saturated if 
conditions (Sl)-(86) in Section 1.2 are satisfied; t is disjoint if r n ~ = 0 and 
.i It r. 

A Hintikka system in K is a pair SJ = (T, S), where Tis a non-empty set of 
disjoint saturated tableaux and S a binary relation on T satisfying the following 
two conditions: 

(HSMl) ift = (f,~), t' = (f',~') and tSt' then <p Er' for every D<p Er; 
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(HSM2) if t = (r, ~) and D<p E ~ then there is t' = (r', ~') in T such 
that tSt' and <p E ~'. 

Say that fJ is a Hintikka system for a tableau t if t ~ t' for some t' in f). 
A tableau (r, ~) is realized in (a point x of) a model 9Jl if (9.Jl, x) I= <p, for 

every <p E r, and (9.Jl, x) ~ 'lj;, for every 'lj; E ~. A tableau tis called realizable in 
K if it is realized in some model. 

In the same way as was done in the proof of Proposition 2.31, given a Hintikka 
system fJ, one can construct a model based on the frame fJ in which every point 
t realizes the tableau t and conversely, given a model 9Jl realizing t, one can 
construct a Hintikka system fort. Thereby we obtain 

Proposition 3.25 A tableau t is realizable in K iff there is a Hintikka system 
fort. 

Corollary 3.26 If fJ is a Hintikka system for (0, { <p}) then fJ ~ <p. 

To construct a Hintikka system for a tableau t, we can deal only with sub
formulas of formulas contained in t. This observation gives an upper bound for 
the number of tableaux in a minimal Hintikka system fort. 

Theorem 3.27 A tableau t is realizable in K iff there is a Hintikka system for 
t containing at most 2IEI tableaux, where E is the set of all subformulas of the 
formulas int. 

Proof (::::}) Suppose t is realized in 9Jl = (J, W). For every point x in the frame 
J = (W, R), we form a tableau tx = (r x, ~x) by taking 

r x = { <p E E : x I= <p}, ~x = { <p E E : x ~ <p}. 

Let fJ = (T,S), where T = {tx: x E W} and, for every tx = (rx,~x) and 
ty = (ry,~y) in T, 

txSty iff D<p E r x implies <p E r y for all Dcp E E. 

This definition guarantees that (HS M 1) is satisfied. We show that (HS M 2) also 
holds. 
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Let tx = (rx,D.x) and O<p E D-x. Then (9Jt,x) ~ D<p and so there is a point 
y E W such that xRy and (9Jt, y) ~ <p. By the definition of I=, y I= 'lj; whenever 
x I= D'lj;. So txSty and <p belongs to the right part of ty. 

Thus, Sj is a Hintikka system fort. It is also clear that the number of tableaux 
in T does not exceed the number of subsets in~. 

( ¢=) follows from Proposition 3.~5. 0 

Corollary 3.28 (i) For every formula <p r/. K there is a rooted frame refuting <p 

and containing at most 2ISubcpl points. 
(ii) Every <p rf. K is refuted in some finite intransitive tree. 

Proof (i) follows from Theorem 3.27, since (0, { <p}) is realizable in K. 
(ii) Take a finite frame Sj refuting <p and apply to it the unravelling procedure 

described in the proof of Theorem 3.18, thus obtaining an intransitive tree J = 
(W, R) which is reducible to Sj and so, by the reduction theorem, refutes <p. 

Although J may be infinite, every point in it has finitely many successors. 
Suppose md( <p) = n and 9J1 = (J, SU) is a model such that (9Jt, x) ~ <p, for 

some point x. By Proposition 3.2, the submode! IJ1 of 9Jt, induced by the set 
xj0 u ... u xr, also refutes <p. It remains to notice that 1)1 is based upon a finite 
~ranili~trre. 0 

Corollary 3.29 

K = { <p E ForM.C: JI= <p for all finite intransitive trees J}. 

So, by applying saturation rules (SRl )-(SR6) to each individual tableau and 
also rules 

(SRM7) if t = (r, D.) and D<p E r then add <p to the left part of every t' 
such that tSt'; 

(SRM8) if t = (r, D.) and O<p E D. then either add <p to the right part of 
some tableau accessible from t or form a new tableau t' = (r', D.') 
by taking r' = {'lj; : O'lj; E r}, D.' = { <p} and put tSt' 

we can always construct a finite Hintikka system for each finite realizable tableau. 
As an easy exercise we invite the reader to show that all the formulas in 

Table 3.1 are in K. 

3.5 Modal frames and formulas 

Having got some experience in constructing countermodels, let us try now to find 
characterizations of frames validating a number of important modal formulas we 
shall deal with in the sequel. 

First we observe that Example 3.3 suggests the following: 

Proposition 3.30 A frame J validates Op --> p iff J is reflexive. 

Proof If J = (W, R) is not reflexive then •xRx, for some x E W. So we can 
put SU(p) = W - {x}, which gives us x f= Op and x ~ p, whence x ~Op--> p. 
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Table 3.1 A list of modal formulas in K 

om(P1 /\ · · · /\ Pn) ~ omp1 /\ ... /\ ompn, 

om(P1 V ... V Pn) ~ omp1 V ... V ompn, 

omp1 V ... V omPn ____, om(p1 V ... V Pn), 

om(P1 /\ · · · /\pn) ____, omp1 /\ ... /\ ompn, 

om(p ____, q) ____, (Omp ____, omq), 

om(p ____, q) ____, (Omp ____, omq), 

omp /\ omq---; om(p /\ q), 
on ..l ---; om .1, 

omT ____, onT, 

T ~ omT, 

..l ~om .1, 

(OOp ____,<)Op)~ O(Op ____,Op) 

for n 2 0, 

for n 2 0, 

for n 2 0, 

for n 2 0, 

form 2 0 

form 2 0 

form 2 0 

form 2 n 
form 2 n 
form 2 0 

form 2 0 

m20 
m20 
m20 
m20 

Conversely, if J is reflexive then J I== Op____, p, for otherwise there is a model 9Jl 
on J such that (!m, x) I== Op and (!m, x) ~ p, for some x E W; but since xRx, 
we must also have (!m, x) I== p, which is a contradiction. 0 

Likewise, Example 3.5 suggests 

Proposition 3.31 J validates Op____, DOp iff J is transitive. 

Proof Exercise. 0 

We will denote the formulas Op ____, p and Op ____, O Op by re and tra, respec
tively. 

Let us consider now the formula p ____, OOp and suppose that 9Jl = (J, ll'J) is 
a countermodel for it based on a frame J = (W, R). Then x I== p and x ~ OOp, 
for some x E W, and so there is a successor y of x such that y ~ Op. Observe 
also that x I== p and y ~ Op imply -iyRx. 

Thus, a necessary condition for J ~ p ____, OOp is 3x, y(xRy /\ -iyRx) and so 
a sufficient condition for the validity of p ____, OOp in J is 

Vx, y (xRy ____, yRx). 

A frame J satisfying this condition is called symmetric. 

Proposition 3.32 J validates sym = p ____, OOp iff J is symmetric. 

Proof Only (:::;..) requires a proof. If J = (W, R) is not symmetric then there 
are x, y E W such that xRy and -iyRx. Define a valuation ll'J in J by taking 
ll'J(p) = {x}. Then we have x I== p, y ~Op, whence x ~ O<)p and x ~ p ____, OOp. 

0 
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Our next example is the formula Dp ---+ Op. Let 911 = (J, m) be its counter
model on a frame J = (W, R). Then x f= Dp and x ~Op for some x E W. The 
only conclusion we can derive from this piece of information is that x is a dead 
end in J, for if xRy for some y E W then y f= p and y ~ p, which is a contra
diction. Therefore, a necessary condition for J ~ Dp ---+ Op is 3xVy•xRy. And a 
sufficient condition for J f= Dp---+ Op is then the seriality condition Vx3y xRy. 

Proposition 3.33 J validates ser = Dp ---+ Op iff J is serial. 

Proof Exercise. 0 

Let us consider now the family of formulas of the form 

where k, l, m, n are arbitrary natural numbers, possibly equal to 0. All formulas 
we have already dealt with in this section are in this family. 

Suppose 911 = (J, m) is a countermodel for okolp---+ omonp, i.e., x F oko1p 
and x ~ omonp for some x in J = (W, R). By Proposition 3.1, there are y, z E W 
such that xRky, y F D1p and xRm z, z ~ onp. Notice also that y F D1p and 
z ~ onp tell us that there is no point u in J which is accessible from y by l steps 
and from z by n steps. These observations lead to the following 

Proposition 3.34 J = (W, R) validates gaklmn iff 

Proof Again, only ( =}) requires a proof. Suppose otherwise. Then there are 
x, y, z E W such that xRky, xRmz and for every u E W, either •yR1u or 
•zRnu. Define a valuation min J by taking m(p) = {v E W: yR1v} and show 
that x F okolp and x ~ omonp. Indeed, by Proposition 3.1, y F D1p and, 
since there is no point u E w for which u F p and zRnu, we have z ~ onp, 
whence x F= oko1p and x ~ omonp. o 

Even more extensive families of formulas can be found in Exercise 3.22 and 
Section 10.3. Propositions 3.30-3.33 are just special cases of Proposition 3.34. 
Here are a few more useful consequences. 

Call a frame J = (W, R) n-transitive if 

which is read: if it is possible to reach y from x by n+ 1 steps then one can do this 
by ::; n steps as well. 1-transitivity is nothing else but the standard transitivity. 

Corollary 3.35 J validates tran = f\~=o Dip---+ on+lp iff J is n-transitive. 

A frame J = (W, R) is said to be dense ifVx, y '(xRy---+ xR2 y). More generally, 
J is n-dense if Vx, y (xRny---+ xRn+ly). 
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Corollary 3.36 J validates denn = on+ 1p---+ onp iff J is n-dense. 

A frame J is called Euclidean if Vx, y, z (xRy /\ xRz-+ yRz). 

Corollary 3.37 'J validates euc = <>op -+ Op iff 'J is Euclidean. 

Corollary 3.38 'J f= <>op-+ OOp iff 'J is strongly directed. 

Thus, the formula 
ga = OOp-+ OOp, 

known as the Geach formula (or axiom), is similar to the weak law of the ex
cluded middle in Int. However, this analogy is not completely perfect. For reflex
ive frames the condition of strong directedness is equivalent to the directedness 
condition 

Vx, y, z (xRy /\ xRz /\ y =/= z-+ 3u(yRu /\ zRu)), 

which in general is weaker. For example, the two-point irreflexive frame is di
rected but not strongly directed. 

A simple modification dir = <>(Op/\q)-+ O(OpVq) of ga is valid in directed 
frames and only in them. 

Proposition 3.39 'J f= dir iff 'J is directed. 

Proof Exercise. 0 

A similar situation is with the condition of strong connectedness, which in 
the intuitionistic case corresponds to da. 

Proposition 3.40 'J validates sc = O(Op-+ q) V O(Oq-+ p) iff 'J is strongly 
connected. 

Proof Exercise. 0 

For reflexive frames the condition of strong connectedness is equivalent to 
that of connectedness 

Vx, y, z (xRy /\ xRz /\yo# z-+ yRz V zRy), 

which is weaker in general. 

Proposition 3.41 'J validates con= O(p /\Op-+ q) V O(q /\ Oq-+ p) iff 'J is 
connected. 

Proof Exercise. 0 

The connectedness of a frame means that no point in it has two distinct 
successors which do not see each other. Let, for n :'.:'. 1, 

n 

bwn =/\<>pi-+ V <>(Pi/\ (PJ V Opj)). 
i=O 0$i#j$n 
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Proposition 3.42 J validates bwn iff each point in J has at most n successors 
which do not see each other. 

Proof Exercise. 0 

Using the notion of width, defined in Section 2.5, for transitive frames this 
result can be formulated similar to Proposition 2.39. 

Corollary 3.43 A transitive frame J validates bwn iff every rooted subframe of 
J is of width :=:; n. 

The notion of depth loses its initial meaning when arbitrary modal frames 
are considered, since they may contain circles of the form 

However, if we restrict ourselves only to transitive frames then the depth of a 
frame J can be defined as the depth of its skeleton pJ in the sense of Section 2.5. 

So we say that a transitive frame J = (W, R) is of depth n, d(J) = n, if there 
is a chain x 1Rx2R ... Rxn of points from distinct clusters in J (which means 
that •Xi+IRxi) and there is no chain of greater length satisfying this cor.dition. 
J is of depth oo if, for every n < w, it contains a chain of n points belonging to 
distinct clusters. 

As modal analogues of the formulas bdn "restricting" the depth of intuition
istic frames we can take the modal formulas bdn which are defined as follows: 

Proposition 3.44 A transitive frame J validates bdn iff d(J) S n. 

Proof ( =}) is proved by induction on n. The basis of induction follows from 
Proposition 3.34. Suppose J = (W, R) is of depth n + l. Then there is a chain 
x0Rx1R ... Rxn of points from distinct clusters in J. Consider the subframe 
QS = (V, S) of J generated by x 1 . Then Q; is of depth n and by the induction 
hypothesis, there is a model 1)1 = (QS,.U) such that x 1 li: bdn-l· Without loss of 
generality we may assume that .U(pn) = V. Define a valuation !U on J by taking 
!U(pn) = W - {xo} and !U(pi) = .U(pi), for 1 Si< n. Let 9Jt = (J, !U). Then 1)1 is 
a generated submode! of 9Jt and, by the generation theorem, (9Jt,x1) li: bdn-i, 
(9Jt, X1) f= Dpn, whence (9Jt, x1) f= Dpn /\ •bdn-1 and so (9Jt, xo) f= <>(Dpn /\ 
•bdn_i). It remains to recall that xo li: Pn, which gives us x 0 li: bdn. 

( {=) An easy induction is left to the reader. O 

The following formulas are similar to the intuitionistic formulas bcn bounding 
the cardinality of rooted frames (see Section 2.5): 
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altn = Op1 V O(p1 ---+ P2) V ... V O(p1 /\ ... /\ Pn---+ Pn+1), n ~ 0. 

However in the modal case frames may be nontransitive, and so altn bounds 
only the number of alternatives of every point in a frame validating it. 

Proposition 3.45 A frame J = (W, R) validates altn iff each point in J has at 
most n distinct alternatives, i.e., 

n+l 

V'x,x1, ... ,Xn+l ( /\ xRxi---+ V Xi= Xj)· 
i=l ioFJ 

Proof Exercise. 0 

It is much more difficult to characterize frames for the conversion of the 
Geach formula, i.e., for the McKinsey formula ma= OOp---+ <>Op. We shall get 
a characterization of only transitive frames validating ma. 

Let 9Jt = (.~, \!J) be a countermodel for ma on a transitive frame J = (W, R), 
i.e., x 0 I= OOp and xo ~ <>Op for some x 0 E W. Then either x 0 is a dead 
end or there is a point x1 E W accessible from xo and so X1 I= Op, X1 ~ Op. 

Hence there are successors x 2 and X3 of x1 such that X2 I= p, X3 ~ p. Clearly, 
x2 '# x3 . Since x 2 and x3 are accessible from xo, we can apply to them the same 
argument as to x 1 . As a result we arrive at the following necessary condition for 
the refutability of ma: 

3x\ly (xRy---+ 3u, v (yRu /\ yRv /\ u-# v)). 

(The case when x0 is a dead end is evidently covered by this condition.) Since 
R is transitive, the condition can be somewhat simplified: 

3x\ly (xRy---+ 3z (yRz /\ y '# z)). 

Thus, a sufficient condition for the validity of ma in a transitive J is the following 
McKinsey condition: 

V'x3y (xRy /\ V'z (yRz---+ y = z)), 

which can be read as: each point in J sees a final simple cluster. 

Proposition 3.46 A transitive frame J validates ma iff J satisfies the Mc
Kinsey condition. 

Proof Only (:::;.) requires a proof. Suppose the McKinsey condition does not 
hold in J = (W, R). Then there is a point x E W such that either it is a dead end 
or every successor of x has its own proper successor. In the former case x ~ ma 
under any valuation in ~- So let us consider the latter one. Using transfinite 
induction, we can choose a subset Y of X = xj such that 

'efu E X3v E Y3w EX - Y(uRv /\ uRw). 
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Define a valuation !t1 ·in J by taking !tJ(p) = Y. By the choice of Y, we must 
have u f= Op and u ~ Op, for all u E X, whence x f= OOp and x ~ OOp, i.e., 
x ~ OOp -t OOp. 0 

Now let us consider once again the Lob formula 

la= D(Op -t p) -t Op. 

Suppose 9J1 = (J, !tJ) is a countermodel for la based on a frame J = (W, R), i.e., 
there is x E W such that x f= 0 (Op -t p) and x ~ Op. Then there exists a 
successor y of x for which y ~ p, y f= Op -t p, and hence y ~ Op. So we must 
have a successor z of y such that z ~ p. (We emphasize that the points x, y, z 
are not necessarily distinct.) If x does not see z, then all we can say about J is 
that it is not transitive. But if J is transitive then z f= Op - p, whence z ~ Op, 
and we can apply to z the same argument as toy. 

Thus, a necessary condition for J ~ la is the nontransitivity of J or the 
existence of an infinite ascending chain x0 Rx 1R .. . of not necessarily distinct 
points in J. Taking the negation of this proposition, we obtain a sufficient con
dition for the validity of la in J: J must be transitive, irreflexive and contain 
no infinite ascending chains. A frame without infinite strictly ascending chains 
is called Noetherian. 

Proposition 3.47 A frame validates la iff it is a Noetherian strict partial order. 

Proof Exercise. 0 

It is worth noting that unlike the other properties we met in this section, the 
absence of infinite ascending chains cannot be expressed by a first order condition 
on the accessibility relation. For details see Section 6.2. 

We recommend the reader to analyze (using Examples 3.22-3.24) the consti
tution of countermodels for the Grzegorczyk formula and prove the following: 

Proposition 3.48 A frame validates grz iff it is a Noetherian partial order, 
i.e., iff it is reflexive, transitive, antisymmetric and contains no infinite ascending 
chains of distinct points. 

Proof Exercise. 0 

3.6 Calculus K 

The modal propositional calculus K in the language M£, which, as will be shown 
in this section, is sound and complete with respect to the possible world seman
tics, has the following axioms and inference rules. 

Axioms: (Al)-(AlO) of Cl (see Section 1.3) and one more proper modal 
axiom 

(All) 

Inference Rules: modus ponens (MP), substitution (Subst) of modal for
mulas instead of variables and the rule of 
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Necessitation (RN): given a formula r.p, we infer Or.p. 

The definition of derivation in K is analogous to that in Cl and Int; the only 
difference is that now we have more axioms and inference rules. The fact of 
derivability of a formula r.p in K is denoted by f- K r.p. 

Example 3.49 Let us show that, for every formulas r.p and 'lj;, 

f-K r.p---> 'lj; implies f-K Or.p---> O'lj;. 

We have: 
f-Kr.p->'lj; 

f-K O(r.p---> 'lj;) 
f-K O(r.p---> 'lj;)---> (Or.p---> O'lj;) 
f-K Or.p ---> O'lj; 

(given) 
(by RN) 

(from (All)) 
(by MP). 

Example 3.50 Now we show that, for any cp and 'lj;, 

Indeed, we have: 

(1) f-Kr.p/\'lj;->r.p 

(2) f-K O(r.p/\ 'lj;)---> Or.p 
(3) f-K r.p /\ '1/J---> '1/J 

(4) f-K O(r.p /\ 'lj;)---> O'lj; 
(5) f-K O(r.p /\ 'lj;)---> Or.p /\ O'lj; 
(6) f-K r.p---> ('lj;---> r.p /\ '1/J) 

(7) f-KOr.p->O('lj;->r.p/\'lj;) 
(8) f-K O('lj;---> r.p /\ 'lj;)---> (O'lj;---> O(r.p /\ 'lj;)) 
(9) f-K Or.p-> (O'lj;-> O(r.p/\'lj;)) 
(10) f- K Or.p /\ O'lj; ---> 0( r.p /\ 'lj;) 
(ll) f-K O(r.p /\ 'lj;) '4 Or.p /\ O'lj; 

(from (A3)) 
(by Example 3.49) 

(from (A4)) 
(by Example 3.49) 

(from (2), (4)) 
(from (A5)) 

(by Example 3.49) 
(from (All)) 

(from (7), (8)) 
(from (9)) 

(from (5), (10)). 

More generally, by induction on n the reader can readily prove that 

Since Proposition 1.ll on substitutionless derivations is obviously extended 
to K, we can define the notion of derivation from assumptions in K in the same 
manner as in Cl and Int: r f- K r.p if there is a sequence r.p 1 , ..• , r.pn such that 
f{Jn = r.p and each r.pi is either a substitution instance of an axiom of K or an 
assumption in r or obtained by MP or RN from some of the preceding formulas. 

However, the deduction theorem, as it was formulated for Cl and Int, should 
not hold for K if we want K to be sound with respect to the Kripke semantics. 
For by RN, we have p f-K Op. But on the other hand, p ---> Op is false at the 
point b in the model shown in Fig. 3.3. 

To formulate a modal version of the deduction theorem, we require the fol
lowing definition. Let r.p 1 , ... , f{Jn be a derivation from assumptions. Say that a 
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formula 'Pk depends on a formula 'Pi in this derivation if either k = i or 'Pk is 
obtained by MP or RN from formulas, at least one of which depends on 'Pi· 

Theorem 3.51. (Deduction theorem for K) Suppose r, 'ljJ I-K cp and there 
exists a derivation of cp from the assumptions r U { 'ljJ} in which RN is applied to 
formulas depending on 'ljJ m 2'. 0 times. Then 

Proof The proof is conducted by the same scheme as for Cl: we consider a 
derivation cp1, ... , 'Pn of cp from r u { 'ljJ}, in which RN is applied to formulas 
depending on 'ljJ m times, and show by induction on i that 

(3.1) 

where l is the number of applications of RN to formulas depending on 'ljJ in the 
derivation cpi, ... , 'Pi· The cases when 'Pi is a substitution instance of an axiom or 
belongs to r u { 'ljJ} are justified in the same way as in the proof of Theorem 1.12: 
we get f 1-K 'ljJ--> 'Pi and so (3.1). 

Suppose 'Pi is obtained from 'Pk = 'Pj --> 'Pi and 'Pj by MP, and RN is 
applied to formulas depending on 'ljJ in cpi, ... , 'Pk and 'Pl, ... , 'Pj li and lz times, 
respectively. Then, by the induction hypothesis, 

and we obtain (3.1), since Zi,l2:::; l. 
Thus, it remains to consider only one case: 'Pi is obtained from 'Pj by RN. If 

'Pj does not depend on 'ljJ then there is a derivation of Dcpj from f which clearly 
yields f 1-K 'ljJ--> 'Pi and SO (3.1). 

Suppose now that 'Pj depends on 'ljJ and RN is applied li < l times to formulas 
depending on 'ljJ in cp1, ... , 'Pj. By the induction hypothesis, we then have 

and so, by Examples 3.49 and 3.50, 

which implies (3.1). 0 

Corollary 3.52 Supposer, 'ljJ 1-K cp and there exists a derivation of cp from the 
assumptions r U {'1/J} in which RN is not applied to formulas depending on 'ljJ. 
Then f 1-K 'ljJ--> cp. 

In the sequel we will be distinguishing between derivations in which the rule 
RN is applied exceptionally to formulas that depend only on axioms and deriva
tions without this restriction. For the former we shall use the usual "turnstile" 
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f-; the deduction theorem for it is simplified and formulated like that for Cl and 
Int: r, '1/J f- K t.p implies r f- K '1/J -> t.p. The latter kind of derivability will be 
denoted by f-*. 

Theorem 3.53. (Soundness and completeness of K) f- K t.p iff J f= t.p for 
all frames J. 

Proof ( =>) All the axioms of K are valid in every frame and the inference rules 
preserve the validity. 

( ¢::) Suppose 'r/ K t.p. Our aim is to construct a Hintikka system SJ for the 
tableau (0, { t.p} ). Having succeeded in this, we, by virtue of Corollary 3.26, shall 
establish thereby that SJ ~ t.p. 

Say that a tableau t = (r, .6.) is consistent in K if r f- K i.p1 V ... V l.Pn for no 
i.p1 , ... , l.Pn E .6., n ;::: 0. Since 'r/ K t.p, (0, { t.p}) is consistent. The tableau t is called 
maximal (relative to t.p) if r u .6. = Subi.p. 

By the same argument as in the proof of Theorem 1.16 we can show that 
every consistent tableau consisting of some subformulas of t.p can be extended to 
a maximal consistent tableau satisfying (Sl)-(S6). 

Now take the set T of all maximal (relative to i.p) consistent tableaux and 
define a binary relation Son it by putting, for every t = (r, .6.) and t' = (r', .6.') 
in T, 

tSt' iff '1/J Er' whenever D'!/J Er. 

The condition (HS M 1) is satisfied by the definition. So it remains to verify that 
(HSM2) also holds. 

Let t = (r, .6.) E T and D'!/J E .6.. Consider the tableau t' = (r', { '1/J}) 
where r' = {X : ox E r}. We show that it is consistent in K. Indeed, as
suming otherwise, we would have r' f- K '1/J and so, by the deduction theorem, 
f-K XI/\ ... /\Xn _, '1/J, where XI,···,Xn are all distinct formulas in r'. Then, 
using Examples 3.49 and 3.50, we obtain f- K Dx1 /\ ... /\ Dxn -> D'!/J and 
Dx1, ... , Dxn f-K D'!/J, contrary to the consistency of t. Thus, t' is consistent 
and so it is contained in some maximal consistent tableau t" = (r", .6.") E T. 
By the definition of t', we must then have tSt" and '1/J E .6.". 

Therefore, SJ = (T, S) is a Hintikka system for (0, { t.p} ), from which SJ ~ t.p. 

Notice by the way that ITI ~ 2ISubcpl. O 

Corollary 3.54 K = {i.p E ForM.C: f-K i.p}. 

By applying the same kind of argument as in the proof of Theorem 3.53 to 
infinite consistent tableaux, one can prove the following theorems (for details see 
Section 5.1). 

Theorem 3.55. (Strong completeness) Every tableau consistent in K is re
alizable. In particular, r f- K t.p iff, for every model wt and every point x in wt, 
(wt, x) F= r implies (wt, x) F= i.p. 

Theorem 3.56. (Compactness) A tableau is realizable in K iff its every finite 
subtableau is realizable in K. 
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Now we use the completeness theorem for K to obtain an upper bound for 
the parameter m in the deduction theorem. 

Theorem 3.57 Suppose that 1/J 1-k <p. Then I-K 0°1/J /\ ... /\ om'ljJ --; <p, where 
m = 2iSub,PuSub<pl. 

Proof Suppose otherwise. By The.orem 3.53 and Corollary 3.29, we then have 
a model 9Jt = (J, W) based on a finite intransitive tree J = (W, R) and refuting 
f\";_ 0 oi'ljJ --; <p at its root v. With every point x in 9Jt we associate the tableau 
tx = (rx,.6..x) where 

r x = {x E Sub1/J u Sub<p : x F x}, 

.6..x = {x E Sub'ljJ U Sub<p : x ~ x}. 

Now construct a new model 1)1 = (<B,ll) on a frame <B = (V, S) in the following 
way. V is the set of all points x in J such that for no distinct y, z in the chain 
xiw do we have ty = tz. Let S' be the restriction of R to V. The frame (V, S') 
is clearly an intransitive tree in which every point is accessible from v by ::; m 
steps and so (9Jt, x) f= 1/J for all x E V. If x E V has a successor y E W - V then 
there must be a point z E xTw such that ty = tz. In this case we draw an arrow 
from x to z, i.e., add (x, z) to S'. The resulting relation is denoted by S. Finally, 
we define ll as the restriction of m to v. 

By induction on the construction of x E Sub1/J U Sub<p we show now that, 
for every x E V, (9Jt, x) f= x iff (IJ1, x) f= x. The basis of induction and the 
cases of non-modal connectives are trivial. Let x = ox'. If (9Jt, x) ~ Ox' then 
(9Jt, y) ~ x' for some y E W such that xRy. By the construction, there is a point 
z E V for which tz = ty in 9Jt and xSz. By the induction hypothesis, we then 
have (!J1,z) ~ x', from which (!J1,x) ~ox'. Conversely, assume (IJ1,x) ~ox', 
i.e., (IJ1, y) ~ x' for some successor y of x in IJ1. By the construction of <B, we can 
find then a point z in 9Jt such that xRz and ty = tz. Consequently, (9Jt, z) ~ x' 
and (9Jt,x) ~ox'. 

Thus, (IJ1, v) ~ <p and, for every x EV, (IJ1, x) f= 1/J. So we must have 

for every n < w, contrary to the deduction theorem and the soundness of K. 
0 

3. 7 Basic properties of K 

In this section we mean by a logic any set L of M.C-formulas containing K and 
closed under MP, Subst and RN. Derivations in L may use any formulas in Las 
axioms. The tabularity, finite approximability and other properties are defined 
for such logics in the same way as for logics in the language .C. 

CONSISTENCY. K is consistent, since the constant J_ is false at every point 
in every model. 



88 MODAL LOGICS 

DECIDABILITY. The decidability of K is proved analogously to the decidabil
ity of Int using Theorem 3.27. 

Theorem 3.58 K is decidable. 

TABULARITY. Since the formulas bwn and altn, defined in Section 3.5, are 
not in K and each frame refuting one of them contains > n points, we have 

Theorem 3.59 K is not tabular. 

FINITE APPROXIMABILITY. The fact that K is finitely approximable is an 
immediate consequence of Theorem 3.27. 

Theorem 3.60 K is finitely approximable. 

PosT COMPLETENESS. As we shall see later, K has a continuum of proper 
consistent extensions. Here we construct only one of them. 

Theorem 3.61 K is Post incomplete. 

Proof Let L be the smallest set of formulas containing K, the formula OJ_ and 
closed under MP, Subst and RN. By the definition, OJ_ is valid in the frame J 
consisting of a single irreflexive point. And since all formulas in K are also valid 
in J and the inference rules preserve validity, we obtain J I= L, which means 
that L is consistent. Thus, L is a proper consistent extension of K. 0 

Theorem 3.62 K is not 0-reducible. 

Proof The formula 
0(0..1_---> p) V 0(0..1_---> •p). 

does not belong to K because it is refuted by the frame in Fig. 3.9 (b). On the 
other hand, 0(0..1_---> rp) V 0(0..1_---> •rp) EK for every variable free formula rp. 
For to refute this substitution instance a frame must contain two dead ends such 
that at one of them rp is true and at another false, which is impossible. 0 

INDEPENDENT AXIOMATIZABILITY. Since K is finitely axiomatizable, we have 

Theorem 3.63 K is independently axiomatizable. 

STRUCTURAL COMPLETENESS. The definitions of admissible and derivable 
rules as well as that of structural completeness remain the same as in Section 1.4. 
It is to be noted, however, that in the modal case we can use RN and so a rule 
rp 1 , ... , 'Pn/ rp is derivable in a logic L if rp1 , ... , 'Pn I-[, rp. Since K is decidable 
and in view of Theorem 3.57, we can always recognize whether a given rule is 
derivable in K. However, it is unknown whether the admissibility problem for 
inference rules in K is decidable. 

Theorem 3.64 K is not structurally complete. 

Proof Consider the rule 0..1_/ L Since OJ_ ¢ K, it is admissible in K. On the 
other hand, for any m ~ 1, the formula OJ_/\ ... /\ om ..L ---> ..L is not in K because 
it is refuted in the frame consisting of a single irreflexive point. 0 
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All the congruence rules in Section 1.4 are clearly admissible and even deriv
able in K. Example 3.49 establishes in fact the derivability in K of the regularity 
rule 

and so of the congruence rule 

which gives us the following: 

p ........ q 

Op---> Oq, 

p~q 

Op~Oq 

Theorem 3.65. (Equivalent replacement) Suppose cp( 1jJ) is a modal formula 
containing an occurrence of a sub formula 1jJ and cp(x) is obtained from cp( 1jJ) by 
replacing this occurrence of 1jJ with an occurrence of a formula x. Then, for every 
logic L in the language MC in which the congruence rules for/\, V, --->, 0 are 
admissible, 1jJ ~ x E L implies cp( 1jJ) ~ cp(x) E L. 

Proof An easy induction on the construction of cp( 1jJ) is left to the reader as 
an exercise. 0 

INTERPOLATION PROPERTY. The following theorem will be proved in Sec
tion 14.l. 

Theorem 3.66 K has the interpolation property. 

REDUCTIONS OF MODALITIES. A modality is a (possibly empty) string of o, 
0, -.. Since the formulas of the form -.Ocp ~ 0-.cp, -.Ocp ~ 0-.cp and -.-.cp ~ cp 
are in K, we may assume that every modality M contains at most one symbol 
-.., which is the last one in M. A modality M is called affirmative (negative) if 
-.., does not occur (occurs) in M. By a modal reduction principle we mean any 
formula of the form Mp ---> Np with distinct affirmative modalities M and N. 

Theorem 3.67 No modal reduction principle is in K. 

Proof Let cp = M IP ---> M 2P be a modal reduction principle. Consider two 
possible cases. 

Case 1: md(MIP) = md(M2p). Since MI ¥- M2, cp can be represented 
either as MON IP ---> M 0 N 2P or as M 0 NIP ---> MON 2p. The former formula 
is refuted (under every valuation) at the root of the frame shown in Fig. 3.13 (a), 
where m ~ 0 is the length of the string M. And the latter one is refuted at the 
root of the frame shown in Fig. 3.13 (b) under the valuation m(p) ={a}, since 
m f= ONIP and m ~ ON2p. 

Case 2: md(M IP) -:/- md(M 2p). Let m = max{ md(M IP), md(M 2P)} and 
k = md(M IP). Then cp is refuted at the root of the frame in Fig. 3.13 (a) under 
the valuation m(p) = {k}. 0 

This result can be easily extended to 

Theorem 3.68 If M and N are distinct modalities then Mp---> Np(/_ K. 



90 

Proof Exercise. 

MODAL LOGICS 

f m I nontransitive I \am I 
•m-1 Ym 
• 1 • 1 

lo lo 
(a) (b) 

FIG. 3.13. 

D 

Modalities M and N are equivalent in a logic L if Mp <-+ Np E L. M 
is said to be irreducible in L if it is not equivalent to any modality N with 
md(Np) < md(Mp). 

Corollary 3.69 No distinct modalities are equivalent in K. All modalities are 
irreducible in K. 

LOCAL TABULARITY. 

Theorem 3. 70 K is not locally tabular. 

Proof Follows from Corollary 3.69. 0 

HALLDEN COMPLETENESS. 

Theorem 3. 71 K is Hallden incomplete. 

Proof Let us consider the formula <> T V 01-. Since • ~ <> T and o ~ 01-, 

neither of its disjuncts is in K. However, OT V OJ_ is in K, since it is equivalent 
to the formula -.OJ_ V01- which is a substitution instance of (AlO) and so belongs 

~K. D 

DISJUNCTION PROPERTY. K, as well as all other modal logics to be considered 
in this book, contains all the axioms of Cl including Po V •Po and so does not 
have the disjunction property. The disjunction property, as it was formulated 
in Section 1.4, served as some measure of constructivity of the connectives in 
the language £. In the modal case, especially when 0 is interpreted as "it is 
provable", a somewhat different formulation is of interest. 

We say that a modal logic L has the modal disjunction property if, for all 
formulas <pi, ... , <pn, O<p1 V ... V O<pn EL iff <pi EL for some i E {l, ... , n}. 

Theorem 3. 72 K has the modal disjunction property. 

Proof ({=:)is clear. To prove(~) suppose that <p1 , ... ,<pn (j_ K. Then there 
are models mi = (Ji, mi)) for i = 1, .. ., n, based on disjoint rooted frames 
J; = (W;, R;) such that <p; is false at the root Xi of J;. Now we form a new frame 
J = (W, R) by adding the root x0 to l:~=l J;, i.e., put 

W = {xo} U W1 U ... U Wn, 
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R=.{(xo,xi): i=l, ... ,n}UR1U ... URn· 

Define a valuation min J by taking W(p) = QJ1 (p)U .. . UWn(P), for every variable 
p, and let 9Jt = (J, Q'.J). It is clear that every 9Jti is a generated submodel of 9Jt. 
By the generation theorem, we have (9Jt, xi) [;t: 'Pi, for any i = 1, ... , n, and so 
xo [;t: Dcp1 V ... V Dcpn. Therefore, Dcp1 V ... V Dcpn rf_ K. 0 

3.8 A few more modal logics 

In this section we define a few more modal logics. They are of different origin. 
Some of them, like S4, S5, GL, were created to characterize various interpreta
tions of the operator D, while others, such as K, T, K4, originated for purely 
technical reasons. We must warn the reader that he should not look for a deep 
sense or a system in the names of modal logics. Some were given to logics in 
honor of the logicians whose work led to their creation (for instance, Godel
Lob, Kripke, Solovay), D stands for deontic; however, in many cases the names 
are rather arbitrary. 

Most of the logics to be presented here will be defined, like Cl, Int and K, 
semantically, i.e., as the sets of formulas valid in certain frames. But sometimes, 
as was observed at the end of Section 3.1, preferable is a syntactical definition 
of a logic in the form of calculus. The following notions are intended to bridge 
these two methods. 

A calculus (axiomatic system) C is said to be sound with respect to a class 
C of frames if, for every formula cp, f-c cp implies J f= cp for all J E C. C is called 
complete with respect to C (or C-complete) if cp is derivable in C whenever it is 
valid in every frame in C. 

The same logic can be defined by different classes of frames. For instance, K 
was defined as the set of formulas which are valid in all frames. On the other 
hand, as follows from Corollary 3.29, it is determined by the class of all finite 
trees. Say that a logic L is characterized (or determined) by a class of frames C 
if 

L = {cp E ForMC: VJ EC J f= cp}. 

A frame J validating all formulas in L is called a frame for L. 
Being equipped with these notions, we can proceed now to defining our modal 

logics. 

LOGIC T. Semantically the logic Tin the language MC is determined by the 
class of all reflexive frames: 

T = {cp E ForMC: J f= cp, for every reflexive frame J}. 

Syntactically T can be defined by the calculus T which is obtained by adding to 
K one more modal axiom re = Op __, p. 

Proposition 3. 73 T is sound with respect to the class of reflexive frames. 

Proof Follows from Proposition 3.30. 0 
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The completeness of T with respect to the class of reflexive frames will be 
established in Section 5.2 (but we recommend the reader to try to modify the 
proof of Theorem 3.53 for T and other calculi to be considered in this section). 
Thus, T can be obtained by adding re to K and taking the closure under MP, 
Subst and RN. In symbols this fact will be written as 

T = K EB Op ~ p. 

From the set-theoretic point of view T is an extension of K, i.e., K ~ T. Since 
re is refuted in any frame containing an irreflexive point, this inclusion is proper. 

LOGIC K4 is characterized by the class of all transitive frames: 

K4 = {cp E ForM.C: J f= <p, for every transitive frame J}. 

The corresponding calculus K 4 is obtained by adding to K the transitivity axiom 
tra =Op~ OOp. 

Proposition 3. 7 4 K 4 is sound with respect to the class of transitive frames. 

Proof Follows from Proposition 3.31. 0 

The completeness of K 4 relative to the same class is proved in Section 5.2. 
Thus, we have 

K4 = KEB Op~ OOp. 

It is clear that K C K4 (see Example 3.5). However, T and K4 turn out to be 
incomparable by inclusion, since re (j. K4 and tra (j. T (why?). 

The modal logics above are of rather technical than philosophical interest: 
they simply correspond to some natural mathematical structures. Our next logic 
S4 is also characterized by a class of very natural structures, viz., quasi-ordered 
sets; however, it can be regarded also as a variant of epistemic logic or a logic of 
informal provability. 6 

LOGIC S4 is determined by the class of all quasi-ordered frames, i.e., 

S4 = { <p E ForM.C: J f= <p, for every quasi-ordered frame J}. 

The calculus 84 is K plus two additional axioms re and tra. The following 
proposition is an immediate consequence of the preceding ones. 

Proposition 3. 75 84 is sound with respect to the class of quasi-ordered frames. 

In Section 5.2 we shall prove the completeness of 84 relative to this class. 
Therefore, 

S4 = K EB re EB tra = T EB tra = K4 EB re. 

It should be clear that T C S4 and K4 C S4. 

6 Recently Artemov (1995) has shown that 84 coincides with the logic of proofs, for some 
natural understanding of the concept of proof. 
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If we impose on a quasi-order R on W the symmetry condition, then R 
will be an equivalence relation on W. When all elements in W are in the same 
equivalence class, i.e., if'v'x, y xRy, the relation R is called universal. Every frame 
J = (W, R) with an equivalence relation R is the disjoint union of some frames 
Ji = (Wi, Ri) with universal Ri. 

LOGIC S5, determined by the class of frames with universal alternativeness 
relations, can be regarded as the logic of "logical necessity". The corresponding 
calculus S5 is obtained by adding to S4 the symmetry axiom sym = p _... OOp. 

Proposition 3. 76 S5 is sound with respect to the class of frames with universal 
alternativeness relations. 

Proof Follows from Proposition 3.32. 0 

We recommend the reader to show that S4 C S5. In Section 5.2 we shall 
prove that 

S5 = S4 EB p _... OOp. 

LOGIC Grz, the Grzegorczyk logic, can be connected as S4 with the proof 
interpretation of 0. Semantically Grz is determined by the class of Noetherian 
partial orders, i.e., quasi-ordered frames without proper clusters and infinite as
cending chains. Syntactically it may be defined by the calculus Grz which is 
obtained by adding to K (or K4 or S4) the Grzegorczyk axiom grz. Proposi
tion 3.48 immediately provides us with 

Proposition 3. 77 Grz is sound with respect to the class of Noetherian partial 
orders. 

The completeness of Grz with respect to that class will be established in 
Section 5.5, so we have 

Grz = K EB grz = K4 EB grz = S4 EB grz. 

Grz is clearly a proper extension of S4 incomparable with S5. 

LOGIC D. The deontic logic D (the minimal deontic logic, to be more exact) 
is usually defined by the calculus D obtained by adding to K the seriality axiom 
ser = Op_... <>p, which can be read as "what is obligatory is also permitted". 

The logic 
D = K EB Op _... Op 

(i.e., the set of all formulas derivable in D) is characterized, as we shall see in 
Section 5.2, by the class of serial frames. One part of this result is an immediate 
consequence of Proposition 3.33. 

Proposition 3. 78 D is sound with respect to the class of serial frames. 

D is located between K and T: K c D G T. 
Further refinements of the modality "it is obligatory", e.g. obligation in the 

moral sense or obligation expressed by sentences in the imperative mood, can 
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lead to stronger deontic logics such as D4 = DEBtra and D5 = DEBsym, which 
are called deontic 84 and deontic 85, respectively. 

LOGIC 84.3. If we understand D as "it is true now and always will be true" 
and time is considered to be linear, then the logic 

84.3 = {cp E ForM.C: J f= cp, for every linearly ordered frame J} 

can be regarded as the logic of the tense necessity. The corresponding calculus 
S4.3 is obtained by adding to S4 the strong connectedness axiom sc (which is 
equivalent in 84 to the connectedness axiom con). 

Proposition 3. 79 S4.3 is sound with respect to the class of linearly ordered 
frames. 

Proof Follows from Theorem 3.40. 0 

The completeness of S4.3 with respect to linearly ordered frames is proved 
in Section 5.2. Thus, we have 

84.3 = 84 EB D(Dp ~ q) V D(Dq ~ p). 

It is easy to see that 84 C 84.3 C 85. 

LOGIC GL. Now let us consider the necessity operator D as provability in 
formal Peano arithmetic PA. Unlike the previous interpretations of D, which had 
after all a more or less vague character, the provability interpretation of modal 
formulas can be defined in a quite precise manner. To this end we need some 
facts concerning Godel's numbering of arithmetic formulas (the reader can find 
the details in every serious textbook on mathematical logic). 

All syntactical constructions of the arithmetic language (terms, formulas, 
derivations, etc.) can be effectively coded by natural numbers; the code rq;• of 
an arithmetic formula ¢ is called the Godel number of ¢. Godel constructed a 
formula Pr(x) with a single free variable x such that, for every natural n, 

l-pA Pr(n) iff n = rq;1 and l-pA ¢for some arithmetic formula¢. 

Here n is the term representing the number n. In other words, Pr(r¢•) asserts 
that the formula </> is provable in PA. 

By an arithmetic interpretation of the language M.C of modal logic we mean 
any map* from ForM.C to the set of arithmetic sentences such that 

• .l * is o =I; 
• (cp8'1/;)*=cp*8'1/;*,for8E{/\,V,~}; 

• (Dcp)* = Pr(rcp*•). 

The main properties of the provability predicate Pr(x) are as follows: 

(i) l-pA </>implies l-pA Pr(r<f>•); 
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(ii) f-pA Pr('¢_, '¢11) _,(Pr('¢')_, Pr(•¢'')); 

(iii) f-pA Pr('¢')_, Pr(' Pr('¢')'); 

(iv) f-pA Pr(' Pr('¢')_,¢')_, Pr(•¢•). 
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(The last one is a formalization of Lob's theorem: f-pA Pr('¢') _, ¢ implies 
f- PA ¢.) In any case, these properties are enough to prove Godel's incompleteness 
theorems for PA. 

The apparent similarity of (i) with the rule RN, (ii) with axiom (All), (iii) 
with tra and (iv) with the Lob axiom la gives rise to the calculus CL which 
is obtained by adding la to K 4. And it turns out that the modal propositional 
calculus CL adequately describes the properties of the predicate Pr(x) which are 
provable in PA. Namely, as was established by Solovay (1976), for every modal 
formula cp, f-c L cp iff f- p A cp* for all arithmetic interpretations *. 

As a consequence of Proposition 3.47, we have 

Proposition 3.80 CL is sound with respect to the class of Noetherian strict 
partial orders. 

In Section 5.5 we shall show that CL is complete with respect to that class. 
Thus the provability logic 

GL = K4 EB la = K EB la 

is characterized by the class of Noetherian strict partial orders. 
It should be clear that K4 C GL and that GL is incomparable by inclusion 

with T, 84, 85, Grz, D, 84.3. 
The last (but not the least) logic to be considered in this section is 

LOGIC 8. The necessity operator D is understood in it as in GL, but the 
purpose of 8 is to describe those properties of the provability predicate that 
are true in the standard model of PA (according to Godel's first incompleteness 
theorem, there are sentences which are true in the standard arithmetic model, 
but not derivable in PA). 

Syntactically 8 can be obtained by adding to GL the reflexivity axiom re 
and then taking the closure under MP and Subst only (so that RN is not applied 
to re). In symbols this will be written as 

8 = GL +re= (K4 EB la)+ re, 

i.e. +, unlike EB, presupposes taking the closure only under MP and Subst. 
By Solovay's (1976) second theorem, for every modal formula cp, cp E 8 iff, 

for all arithmetic interpretations *, cp* is true in the standard model of PA. 
The semantics of 8 is a bit mysterious. Indeed, re claims that frames for 8 are 

reflexive, while la, on the contrary, requires the frames to be irreflexive. It follows 
that there is no Kripke frame validating all f<:>rmulas in 8. We will not develop 
a semantics for 8 here, leaving this question for a more serious consideration in 
Sections 5.6 and 11.4. 
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3.9 Embeddings of Int into S4, Grz and GL 

As was noticed in the preceding section, the operator O in the logic S4, charac
terized by the class of quasi-ordered frames, may be understood as "it is prov
able" . So we can try to formalize the proof interpretation of the intuitionistic 
connectives in Section 2.1 simply by replacing the words "proof' and "construc
tion" in it with 0. Thus we come to the following translation T of intuitionistic 
£-formulas into modal MC-formulas: for all p E Var.C and all cp, 1jJ E For.C, 

• T(p) =Op; 
• T(.l) = O.l; 
• T(cp /\ 1/J) = T(cp) /\ T('l/J); 
• T(cp V 1/J) = T(cp) v T('l/J); 
• T( cp _, 1jJ) = O(T( cp) _, T( 1/J) ). 

The intuitionistic connectives are transformed by T into the corresponding clas
sical ones, but they are understood now in the context of "provability". 

We are going to show now that the map T: For.C _, ForM.C, known as the 
Godel translation, is an embedding of Int into both S4 and Grz. 

Let 9Jt = (J, W) be a modal model on a quasi-ordered frame J. Define in the 
skeleton pJ of J (which is partially ordered) an intuitionistic valuation pW by 
taking, for every p E Var.C, 

pW(p) = {C(x): (9.Jt,x) f= Op}. 

By Proposition 3.6, this definition does not depend on the choice of x and the set 
pW(p) is upward closed in pJ. We call the model p91t = (pJ, p!!J) the skeleton 
of the model 9.Jt. 

Conversely, if 91 = (µJ,ll) is an intuitionistic model based on the skeleton of 
a quasi-ordered frame J = (W,R), then by taking for every p E VarM.C 

W(p) = {x E W: (91, C(x)) f= p} 

we get a modal model 9Jt = (J, W) whose skeleton is (isomorphic to) 91. In 
particular, if all clusters in J are simple and so J is isomorphic to pJ, the model 
9Jt is also isomorphic to its skeleton 91. 

Lemma 3.81. (Skeleton) For every model 9Jt of M.C based on a quasi-ordered 
frame, every point x in 9Jt and every £-formula cp, 

(p91t, C(x)) F cp iff (9.Jt, x) F T(cp). 

Proof By induction on the construction of cp. The basis of induction follows 
from the definitions of p91t and T(cp). Suppose cp = 1/J _, X· Then 

(p91t, C(x)) ~ cp iff 3y E xi ((p91t, C(y)) f= 1jJ and (p9Jt, C(y)) ~ x) 
iff 3y E xi ((9.Jt, y) f= T('l/J) and (9.Jt, y) ~ T(x)) 
iff (9.Jt,x) ~ o(T('l/J) _, T(x)), i.e., (9.Jt,x) ~ T(cp). 
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For r.p = 'ljJ V x we have · 

(pWt,C(x)) f= r.p iff (pWt,C(x)) f= 'ljJ or (p!JJt,C(x)) f= X 
iff (!JJt,x) f= T('l/J) or (Wt,x) f= T(x) 
iff (Wt,x) f= T(r.p). 

The case r.p = 'ljJ /\ x is considered in ·the same way. 

Corollary 3.82 For every quasi-ordered frame J and every £-formula r.p, 

pJ F r.p iff J F T(r.p). 

97 

0 

Theorem 3.83 The Godel translation T is an embedding of Int into both 84 
and Grz. 

Proof We must show that, for every £-formula r.p, 

r.p E Int iff T(r.p) E 84 and r.p E Int iff T(r.p) E Grz. 

Suppose T(r.p) (j. 84 (or T(r.p) (j. Grz). Then there is a quasi-ordered frame J 
such that J ~ T(r.p). According to Corollary 3.82, pJ ~ r.p and so r.p (j. Int. 

Conversely, suppose r.p (j. Int. Then, by Theorem 2.57, there is a finite in
tuitionistic frame J refuting r.p. As was observed above, it can be treated as a 
modal frame isomorphic to its skeleton. Therefore, by Corollary 3.82, J ~ T(r.p), 
from which T(r.p) (j. 84 and T(r.p) (j. Grz (since J contains neither proper clusters 
nor infinite ascending chains). 0 

Remark The proof of the skeleton lemma will not change if we replace T by 
the translation prefixing D to every subformula of a given intuitionistic formula 
(see also Exercise 3.25). So this translation embeds Int into 84 and Grz too. 

The results above not only give a classical interpretation of the intuitionistic 
connectives but also have purely technical applications. 

Corollary 3.84 Neither 84 nor Grz is tabular. 

Proof Suppose that 84 or Grz is characterized by a finite frame J. Then Int 
is characterized by pJ. Indeed, if r.p (j. Int then, by Theorem 3.83, T(r.p) (j. 84 (or 
T(r.p) (j. Grz) and so J ~ T(r.p), from which, by Corollary 3.82, pJ ~ r.p. Thus, 
Int is tabular, contrary to Theorem 2.56. O 

Corollary 3.85 Neither 84 nor Grz is locally tabular. 

Proof Exercise. 0 

For other uses of the Godel translation T see Section 9.6. 
A frame-theoretic counterpart of T is the operator p which squeezes proper 

clusters into reflexive points. Noetherian strictly ordered frames ~ = (W, R), 
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which characterize GL, can also be easily transformed into partially ordered 
ones-we should only take the reflexive closure Rr of R: 

xRry iff x = y or xRy. 

Given a modal frame J = (W, R) and a model rot= (J, QJ) on it, the frame 
~ = (W, W) and the model ~ = (Jr, QJ) are called the reflexivizations of J 
and rot, respectively. 

A syntactic analog of the reflexivization operator r is the following translation 
+ of modal formulas into modal formulas. Let o+ <p be an abbreviation for the 
formula <p /\ D<p. Then, for every <p E For M£, we denote by <p+ the result of 
simultaneous replacing all occurrences of D in <p with o+. 

Lemma 3.86. (Reflexivization} For every model rot of M£, every point x in 
rot and every M£-formula <p, 

(rot,x) I= <p+ iff (rotr,x) I= <p. 

Proof By induction on the construction of <p. The basis of induction follows 
from the fact that rot and rotr share the same valuation. Suppose <p = D'lj;. Then 

(rot, x) I= <p+ iff (rot, x) I= '1/J+ /\ o'lj;+ 
iff (rot, x) I= 'lj;+ and Vy E xj (rot, y) I= 'lj;+ 
iffVy E xj (~,y) I= 'ljJ 
iff (rotr,x) I= 0'1/J. 

The cases <p = 'ljJ --> x, <p = 'ljJ /\ x and <p = 'ljJ V x are trivial. 

Corollary 3.87 For every frame J and every M£-formula <p, 

0 

Provided that GL, as was claimed in Section 3.8, is characterized by the class 
of Noetherian strict partial orders, we obtain now 

Theorem 3.88 The translation + is an embedding of Grz into GL. 

Proof Our aim is to show that, for every modal formula <p, 

<p E Grz iff <p+ E GL. 

Suppose <p+ ~ GL. Then there is a Noetherian strict partial order J refuting 
<p+. The reflexivization Jr of J is clearly a Noetherian partial order which, by 
Corollary 3.87, refutes <p. So <p ~ Grz. 

Conversely, if <p ~ Grz then J [;t'.: <p, for some Noetherian partial order J = 
(W, R). Take its "irreflexivization" Jir = (W, Rir), i.e., put 

xRiry iff x =I y and xRy. 
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Clearly, Jir is a Noetherian strict order and (Jirr is isomorphic to J. Therefore, 
by Corollary 3.87, Jir ~ cp+, from which cp+ (j. GL. 0 

Putting together Theorems 3.83 and 3.88, we immediately obtain that Int is 
embeddable into GL. 

Theorem 3.89 The translation T~ defined by T+(cp) = (T(cp))+, for every£
formula cp, is an embedding of Int into GL. 

Corollary 3.90 GL is neither tabular nor locally tabular. 

Proof Exercise. 0 

3.10 Other types of modal logics 

The modal logics presented in the previous sections by no means exhaust the 
existing formalizations of various modal operators. Not trying to list all of them 
here, we just point out some other kinds of modal logics which are in a sense 
(mainly in the style of their semantic definitions) close to those we considered 
above. 

First of all, it should be emphasized that our choice of K as the basic system 
is explained by its "purity" -in essence it is a usual mathematical practice to 
abstract from some details in order to clarify the nature of the object under 
consideration. In principle, there is a wide spectrum of other modal systems that 
could be chosen as basic ones. From the semantical point of view this would 
mean to extend our class of frames and models. 

For example, sometimes it is useful to consider frames as quadruples J = 
(W, N, R, D), where (W, R) is a usual Kripke frame, N ~Wis a set of so called 
normal worlds and D ~ W a set of distinguished worlds. A valuation in such a 
frame is, as before, a function QJ from Var M£ into 2w, and the pair SJJ1 = (J, QJ) 
is a model. However, the truth-relation for D is defined now as follows: 

(SJJ1, x) F 01/J iff x EN and (SJJ1, y) F 1/J for ally E W such that xRy, 

and a formula is regarded to be true in SJJ1 if it is true at all points in D. We get 
usual Kripke frames if D = N = W. By imposi'flg various conditions on R, N 
and D we can define many modal logics known in the literature. For instance, 

• the set of formulas that are valid in all reflexive frames with D ~ N is 
known as the logic S2; 

• the set of formulas that are valid in all quasi-ordered frames such that 
D ~ N is the logic S3; 

• the set of formulas that are valid in all reflexive frames such that D ~ N 
and \Ix E D-::Jy E W - N xRy is S6. 

The logic Sl can be defined analogously but using a somewhat more complicated 
definition of the truth-relation for D. The reader can find it in Cresswell (1972). 

There are other generalizations of the notion of frame. For example, applica
tions in computer science and linguistics often require more than one operator 
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of the type "it is necessary". We consider then polymodal logics with several 
operators Di, for i = 1, ... , n, each of which is interpreted by its own acces
sibility relation Ri in frames. The set of formulas that are valid in all frames 
(W, Ri, ... , Rn) (with arbitrary binary relations Ri) is denoted by Kn and called 
the minimal normal n-modal logic. Of course, these frames can also be enriched 
by non-normal and distinguished worlds. 

Modal operators Di and o1 can interact, which is reflected by some connec
tion between Ri and R1, and by axioms containing both Di and D j. For instance, 
if we want R 2 to be the conversion of R 1 (meaning that a moment x is earlier 
than a moment y iff y is later than x) then we should accept the formulas 

where 0 1 and 0 2 are the dual operators for D1 and D2, respectively. More 
precisely, we have 

iff Vx, y E W (xRIY ~ yR2x). We can denote then D2 as D1 1 (using this 
notation for the dual operators as well), R 2 as R1 1 and drop the subscripts if 
n = 2. In view of the clear tense character of such an interaction between the 
modal operators and the corresponding accessibility relations the set of bimodal 
formulas that are valid in all frames of the form J = (W, R, R- 1 ) is called the 
minimal normal tense logic, and the symbols D, 0- 1 , 0, 0- 1 are replaced by 
G, H, F(uture), P(ast), respectively. 

Other operations on binary relations provide us with other examples of in
teraction between modal operators. Here are two of them. Consider a frame 
J = (W, R1, R2, R3). Then 

JI= D3p ~ D1D2p iff R3 = R1 o R2, 

where R 1 o R2 is the composition of R 1 and R 2, i.e., xR1 o R2y iff xR1zR2y for 
some z E W. 

Models with several accessibility relations appear also in the study of modal 
logics on the intuitionistic base. In this case models may contain three relations: a 
partial order for the intuitionistic connectives and two relations for the operators,, 
D and 0, which are not supposed to be dual from the intuitionistic point of view.\ 

Another source of generalizations and even completely different semantical 
constructions is the problem of formalizing the epistemic necessity. If we deal 
with modal operators like "it is known that", "an agent A knows that" then some 
postulates of modal logic, acceptable in other situations, may turn out to be nc\t 
justified. For example, the axiom D(p ----+ q) ----+ (Dp ----+ Dq) and the inferenc~ 
rule cp/Dcp claim that we (or agent A) know(s) all logical consequences of our 
(his) knowledge-the so called omniscience paradox. There are various ways to 
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avoid such kind of danger. We show here only one of them: the neighborhood 
semantics. 

A neighborhood frame is a pair i = (W, N) where W, as before, is a non
empty set (of worlds or points) and Na function associating with every x E W 
a family N(x) of subsets of W, called neighborhoods of x. A valuation and the 
truth-relation in such a frame are d~fined as usual with only one exception: 

(9Jt, x) f= 01/i iff {y E W : y f= 1/1} E N(x). 

It is easy to construct a neighborhood model refuting (All). In fact, one can show 
that it is valid in a neighborhood frame i = (W, N) iff the following conditions 
are satisfied: 

• the intersection of two neighborhoods of a point is again its neighborhood; 
• if W 2 X' 2 XE N(x) then X' E N(x). 

These conditions mean that the set N(x), for every x E W, is a filter in the 
Boolean algebra of all subsets of W (for the definition of filter consult Chapter 
7). We call such frames normal. 

We shall not continue describing possible generalizations further. To conclude 
our discussion we would like just to attract the reader's attention to two points: 

• modal logic contains much more various systems than one is able to con
sider in one book; 

• the ideas and methods studied in this book can be extended in a natural 
way to other systems, though possibly with some modifications. 

As to the latter, from time to time we shall illustrate it in exercises and com
mentaries. 

3 .11 Exercises 

Exercise 3.1 Let K' be the calculus whose axioms are those of Cl, two modal 
axioms DT, Dp /\ Dq ---+ D(p /\ q) and the inference rules are MP, Subst and 
the regularity rule <.p-+ ¢/D<.p-+ D1fa. Prove that"for every formula <.p, 1-K <.p iff 
f- K' <.p. 

Exercise 3.2 Show that D = K EB 0 T. 

Exercise 3.3 Prove syntactically that the different-axiomatizations of Grz and 
GL presented in Section 3.8 really define the same logics. 

Exercise 3.4 Prove that every formula <.p ~ K is refuted by an intransitive tree 
of branching and depth ::; ISub<.pl. 

Exercise 3.5 (Deduction theorem for K4 and 84) Show that 

r, <.p 1-34 'l/J implies r 1-34 D<.p __. 1/1. 
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Exercise 3.6 Show that the inference rules in K are independent (i.e., none of 
them can be deleted without changing the set of derivable formulas). 

Exercise 3.7 Show that the rules p-+ q/Op-+ Oq and p ~ q/Op ~ Oq are 
derivable in K. 

Exercise 3.8 Show that the rules Op-+ Dq/p-+ q and Op-+ p/p are admissible 
in K. Are they derivable in K? 

Exercise 3.9 Do Exercise 2.4 for the modal case. 

Exercise 3.10 (i) Show that for no set r of modal formulas, J F r jff J is 
irreflexive. 

(ii) Show that for no set r of modal formulas, J Fr jff J is intransitive. 
(iii) Show that for no set r of modal formulas, J Fr jff J is antisymmetric. 
(iv) Show that for no set r of modal formulas, J F r iff J is a tree. 
(v) Prove that the Gabbay rule (Dp-+ p) V <p/<p, for p if. Var<p, holds in a 

frame J (in the sense that for every formula <p and every variable p not occurring 
in <p, <p is valid in J whenever (Dp-+ p) V <pis valid in J) iff J is irreflexive. Show 
also that K is closed under this rule. 

Exercise 3.11 (i) Prove that K4 is characterized by the class of strict partial 
orders and 84 by the class of partial orders. 

(ii) Prove that K4 and 84 are not characterized by the classes of finite strict 
partial orders and finite partial orders, respectively. 

Exercise 3.12 Show that every rooted strict partial order J is a reduct of some 
strictly ordered tree, which is finite if J is finite. 

Exercise 3.13 Show that every formula M<p, Ma modality, is equivalent in 85 
to one of <p, •<p, D<p, O<p, D•<p, O•<p. (Hint: the formulas D2p ~ Op, 0 2p ~ Op, 
DOp ~Op, ODp ~Op are in 85.) 

Exercise 3.14 Show that every non-empty modality is equivalent in 84 to one 
of D, 0, OD, DO, DOD, ODO,-,, D-,, o.·, OD-,, DO-,, DOD-,, ODO-,, which 
are not equivalent to each other. 

Exercise 3.15 Show that the equivalences D02p ~ DOp, OD2p ~ ODp, 
DODOp ~ DOp, ODODp ~ ODp are in K4. 

Exercise 3.16 Show that every formula is equivalent in K to the conjunction 
of formulas of the form 

<p V 01/J v DXl v ... V Dxn, (3.2) 

where <p contains neither D nor 0. 

Exercise 3.17 Show that if a formula of the form (3.2) (where <p contains no D 
and 0) is in K then either <p EK or 1/; V Xi EK for some i E {1, ... , n}. 
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Exercise 3.18 (Principle of duality) Let <p be a modal formula whose con
nectives are only 1-, T, /\, V, D, 0 and -.. The dual of <p is the formula r.p* which 
is obtained by replacing simultaneously every/\, V, D, 0, 1-, Tin <p with V, /\, 

0, D, T, 1-, respectively. Show that for all formulas <p and 1/J, <p ~ 'ljJ E K iff 
r.p* ~ 1/J* E K. In particular, <p E K iff -.r.p* E K. 

Exercise 3.19 Show that every variable free formula is equivalent in D either 
to 1- or to T. 

Exercise 3.20 Let r.p( ... ,pi, ... ) be a modal formula containing only (some of) 
the connectives 1-, T, /\, V, D, 0. Show that for every frame J and all valuations 
m and U in J such that itJ(pj) = il(pj) if i ':I j and itJ(pi) <;;; il(pi), we have 
itJ(r.p) <;;; il(r.p). 

Exercise 3.21 Modal formulas containing only 1-, T, /\, V, D, 0 are called 
positive. If a formula r.p(p1, ... , Pn) is positive then <p(-.p1, ... , -.pn) is negative. 
Show that if r.p(-.p1, ... , -.pn) is negative then -i<p(-.p1, ... , -.pn) is equivalent in 
K to a positive formula, namely, to <p*(p1, ... ,pn)· 

Exercise 3.22 For an affirmative modality M = oi1 0i1 •.• oik0ik and n;::: 0, 
denote by xRM,ny the first order formula 

Vz1 (yRi 1 z--+ 3u1 (z1Riiu1 /\ 

Vz2 (u1Ri2 z2--+ ... 3uk (zkRikuk /\ xRnuk) .. . ))). 

Prove that a frame J = (W, R) validates the Hintikka formula 

hin = 0m1 on1 P1 /\ ... /\ omk onk Pk --+ 

D81 0t1 (M~p1 /\ ... /\.MkPk) V ... 

. . . V oszot1 (MiP1 /\ ... /\ MiPk) 

with affirmative modalities M~, i = 1, ... , l, j = 1, ... , k, iff it satisfies the 
condition 

\Ix, Y1, ... , Yk (xRm 1 Y1 /\ ... /\ xRmkYk --+ 

Vz1 (xR81 Z1--+ 3u1 (z1Rt1 u1 /\ Y1RMf,n 1 u1 /\ ... /\ YkRM~,nku1)) V ... 

. . . V Vz1 (xR81 Zt --+ 3u1 (z1Rt1u1 /\ Y1RMLn 1 u1 /\ ... /\ YkRMLnkui))). 

Exercise 3.23 A finite transitive frame is called a balloon if it is a chain of 
clusters of which only the last one is non-degenerate. Show that a finite transitive 
frame J validates the formula 

z = D(Dp--+ p) /\ ODp--+ Op 

iff J is either irreflexive or a balloon. 
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Exercise 3.24 A finite quasi-order is a reflexive balloon if it is a chain of (non
degenerate) clusters of which only the last one is proper. Show that a finite 
quasi-order i validates the formula 

dum = O(O(p _.., Op) _.., p) /\<>op_.., p 

iff i is either a partial order or a reflexive balloon. 

Exercise 3.25 Let T 1 and T 2 be the translations of .C into M.C prefixing 0 to 
every subformula and every proper non-atomic subformula of a given formula, 
respectively. Prove that both T 1 and T 2 are embeddings of Int into 84 and 
Grz. (Hint: one way of proving is to show that, for every intuitionistic formula 
cp, T(cp) ~ T1 (cp) E 84 and T(cp) ~ OT2(cp) E 84.) 

Exercise 3.26 Let cp be a modal formula. Define by induction the notions of 
positive and negative occurrences of subformulas in cp. The occurrence of cp in cp 
is positive. If O'lf; or '¢ 0 x, for 0 E {/\, v}, occurs in cp positively (negatively) 
then the occurrences of'¢ and x in them are also positive (negative) in cp. And 
if '¢ _.., x occurs in cp positively (negatively) then the occurrence of '¢ in it is 
negative (positive) in cp and that of x is positive (negative). 

Provided that GL is characterized by the class of Noetherian strict partial 
orders, show that the translation t of M.C into M.C replacing each positive occur
rence of Ocp in a given formula with O(Ocp _.., cpt) and leaving other subformulas 
intact is an embedding of GL into K4. 

Exercise 3.27 Show that a formula all occurrences of variables in which are 
positive (negative) is equivalent in K to a positive (respectively, negative) for
mula. Is this true for Int? 

Exercise 3.28 Show that the truth-values of modal formulas at points in a 
model with non-normal worlds will remain the same if we arbitrarily change the 
set of points that are accessible from non-normal worlds, in particular, we can 
always assume that those worlds are dead ends. 

Exercise 3.29 Prove that 
(i) if cp E 82 then 82 + OOcp = T; 
(ii) if cp E 83 then 82 + OO<p = 84. 

Exercise 3.30 Prove that 83 can be represented as the calculus with axioms 
(Al)-(AlO), O(p _.., q) _.., O(Op _.., Oq) and the inference rules MP, Subst and 
the rule of necessitation applicable only to the axioms of 83. 

Exercise 3.31 Prove that the Godel translation T is an embedding of Int into 
83. Show that S3 + {T1 (cp): cp E Int}= 84. 

Exercise 3.32 Prove that K EB {T(cp): cp E Int}= K EB D(Op ~ DOp). 

Exercise 3.33 Prove that 
(i) NExt(KEBO(Dp ~ ODp)) contains a continuum of maximal (with respect 

to ~) logics into which Int is embeddable by T; 
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(ii) Ext(K EB D(Dp +-4 DDp)) contains a continuum of logics Li, for i E I, 
such that Li + L1 = For MC if i i= j, and each Li has a continuum of maximal 
extensions into which Int is embeddable by T. 

Exercise 3.34 Show that for every tense frame J = (W, R, R- 1 ), (i) J val
idates Op ---> o-1op iff R is transitive, (ii) J I= Op ---> D(0-1p V p V Op) 
iff J I= o- 1op ---> (0- 1p V p V 0- 1p) iff J satisfies the condition of right 
linearity Vx, y, z (xRy /\ xRz ---> y = z V yRz V zRy), (iii) J validates the 
formula (p /\ o-1p) ---> oo-1p iff J satisfies the conditions of right succes
sion and right discreteness Vx3y (xRy /\ Vz (zRy ---> z = x V zRx) ), and (iv) 
the Hamblin axiom p /\Gp ---> PGp (i.e., o+p ---> o- 1op) is valid in J iff 
Vx~y (yRx /\ Vz (yRz---> x = z V xRz)). 

Exercise 3.35 Prove that there is a tense formula <p such that J I= <p iff J is a 
disjoint union of finite partially ordered trees. 

3.12 Notes 

The main object of studies in this book-modal logics resulting from adding to 
classical logic one modal operator together with axioms and inference rules de
scribing its properties-was originally created for solving problems that were not 
directly connected to modal logic. We mean here primarily the Lewis systems 
81-85 of Lewis and Langford (1932). The first system in the series, namely 83, 
was formulated by Lewis (1918) as a logic without the so called paradoxes of 
material implication, i.e., formulas like (Al), which asserts that a true proposi
tion follows from any other proposition even if they speak of entirely different 
things. His idea was to consider the strict implication D(rp ---> 1/J) instead of 
the usual material implication <p ---> 1/J. However, this solution was not com
pletely satisfactory because all Lewis systems contain other types of paradoxical 
formulas-paradoxes of strict implication-like D(Dp---> D(q---> p)). (It is worth 
noting also that there is a converse approach, when one first formulates a non
modal system axiomatizing some implication => without "paradoxes" and then 
introduces a necessity operator, for instance by taking Drp = ( <p => <p) => <p. 

We shall not consider systems of that sort and refer the reader to Anderson and 
Belnap (1975).) The history of the development of (philosophical) modal logic 
before Lewis is discussed in Lemmon and Scott (1977). 

We will not present here axioms of the Lewis systems; the reader can find 
them as well as formulations in the form of Gentzen-style calculi, say in Feys 
(1965) and Zeman (1973). Note only that the modern way of axiomatizing modal 
logics is quite different from that in Lewis and Langford (1932). After Godel 
(1933a), the majority of existing modal calculi were constructed by adding to a 
non-modal basic calculus (say Cl or Int) a number of modal axioms and rules 
which do not change the non-modal basis. 

The semantical approach to defining logics as the sets of formulas that are 
valid in frames from certain classes is now also generally accepted. And even if 
some authors prefer axiomatic systems, they try to formulate modal axioms and 
inference rules in such a way that the desirable properties of the corresponding 
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frames were quite clear, and the first results that are established for such sys
tems are completeness theorems. Sometimes, however, new logics are formulated 
purely syntactically without any connection to their relational semantics. Such 
were, for instance, the provability logics GL and 8 (Solovay 1976), the provabil
ity semantics of which (see Smoryilski, 1985) is of much more import than the 
relational one, or Grzegorczyk's (1967) logic Grz. 

The relational semantics for modal logics, presented in this chapter, was cre
ated by a number of philosophers and mathematicians. Carnap (1942, 1947) 
constructed a semantics for 85 which was actually the same as Kripke models 
with the universal accessibility relation (although Carnap did not mention any 
relation). Jonsson and Tarski (1951) explicitly introduced (generalized) frames 
as relational representations of modal algebras (see Chapter 8). However, at 
that time this very important paper was not noticed. For instance, Dummett 
and Lemmon (1959) constructed analogous representations of finite algebras for 
84 apparently not knowing about the work of Jonsson and Tarski. Prior (1957) 
considered frames of the form (w, :S) for interpreting tense operators. And then 
Kanger (1957a, 1957b), Hintikka (1957, 1961, 1963) and Kripke (1959, 1963a, 
1963b, l 965b) developed finally the concept of relational model and proved com
pleteness theorems for a few particular systems. The neighborhood semantics 
(briefly discussed in Section 3.10) was constructed by Montague (1968) and Scott 
(1970). 

The truth-preserving operations on frames were introduced by Segerberg 
(1968, 1970, 1971). The technique of unravelling was developed by Dummett and 
Lemmon (1959) and Sahlqvist (1975); the bulldozer theorem is due to Segerberg 
(1970). The connection between modal formulas and first (and higher) order 
properties of their frames is the subject of van Benthem (1983, 1984). Although 
the deduction theorem was known long ago, Theorem 3.57 seems to be quite 
new; we were informed about it by M. Kracht. 

In Section 3. 7 we considered examples of properties that are usually in
vestigated for various kinds of logics. One of them-the problem of reducing 
modalities-is specifically modal; it is connected with the problem of using and 
understanding iterated modalities in natural languages. In fact, one of the first 
achievements of mathematical studies in modal logic was the famous result of 
Parry (1939) according to which 83 contains precisely 42 irreducible modalities. 
It follows in particular that all extensions of 83 have finitely many irreducible 
modalities. It is to be noted that to find a complete solution to the problem of 
reducing modalities in a given modal logic, i.e., to find a set of pairwise non
equivalent irreducible modalities such that any other modality is reducible to 
one of them, may be rather difficult. For example, although the fact that T 
has infinitely many non-equivalent irreducible modalities had been known for a 
rather long time-the proof of the similar result for 82 given by McKinsey (1940) 
goes through for T as well-only Mints (1974) proved that distinct modalities 
are not equivalent in T (see Exercise 5.26). It may be of interest to note in this 
connection that, as was observed by Bellissima (1989), the set of logics in which 
no distinct modalities are equivalent contains at least two maximal (with respect 
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to <;;;) logics; see Exercise 5.26. One can show in fact that this set, as well as the 
set of logics with infinitely many irreducible modalities, contains a continuum of 
maximal logics, and that no algorithm can recognize, given a formula <p, whether 
KEB<p belongs to one these classes. To conclude the discussion of this topic (we will 
not return to it later), we mention two more results. Bellissima (1985b) presents 
a test which gives a complete soluti_on to the problem of reducing modalities in 
a finitely approximable normal extension of S4. Of course, this test cannot be 
effective, since there is a continuum of such extensions. However, it is not hard to 
construct an algorithm which solves this problem for finitely axiomatizable (not 
necessarily finitely approximable) normal modal logics containing S4. Bellissima 
and Mirolli (1989) introduce the functions µ(P(L)) = l{L' : P(L') = P(L)}I, 
.A(n) = l{L: IP(L)I = n}I, ?r(n) = l{P(L): IP(L)I = n}I, where P(L) is the set 
of classes of £-equivalent modalities, study their possible behavior for normal 
extensions L of K and leave as an open problem to investigate it in the class of 
normal extensions of D. 

We do not discuss here other properties of modal logics; they will be consid
ered in further chapters. In the Handbook of Philosophical Logic (Gabbay and 
Guenthner 1984) the reader can find brief introductions to deontic, epistemic, 
tense and provability logic with further references to textbooks and mono;;raphs. 

In the 1970s different people using different methods (details are in Smorynski, 
1985) proved the fixed point theorem of the provability logic GL: for any modal 
formula <p(p, qi, ... , qn), where p occurs only within the scope of D, there is a 
formula '¢(q1 , ... ,qn) such that 

A rather simple semantic proof of this theorem was given by Reinhaar-Olson 
(1990). Its various arithmetic applications (in·particular in the proofs of Godel's 
theorems) can be found in Smorynski (1985). 

Note by the way that the idea of interpreting the necessity operator as prov
ability in Peano arithmetic was proposed also by Kripke (1963b). Buss (1990) 
realized this idea; the resulting set of modal formulas contains in particular the 
logic S4.l. Kuznetsov and Muravitskij (1980), Kuznetsov (1985) and Murav
itskij (1985) developed an approach to describing provability in PA from the 
standpoint of intuitionistic propositional logic enriched by a modal provability 
operator, and established a connection of the resulting logic and its extensions 
with extensions of GL. 

Artemov (1980, 1985) considered the problem of describing the modal log
ics having the arithmetic provability interpretation; a complete solution to this 
problem was found by Beklemishev (1990). 

Although the following notion resembles the fixed point theorem above, its 
true origin is in the concept of the so called ~-programming (see Goncharov 
and Sviridenko, 1985). Mardaev (1992, 1993a, 1993b) calls a positive (modal or 
intuitionistic) propositional scheme any set 
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where all <t?i(P1, ... ,pm,Q1, ... ,qn) are (modal or intuitionistic) formulas with 
only positive occurrences of the variables p1 , ... , Pm. Identifying a formula in a 
model 9Jt with its truth-set, we say that a tuple P1,. .. , Pm is a fixed point of 
this scheme under given values Qi of qi if the following holds in wt: 

In the cited papers Mardaev solves the problem of finding such fixed points in 
models for S4, Grz, GL and Int. For intuitionistic formulas in one variable 
similar problems were considered by Ruitenburg (1984). 

That Int can be embedded in S4 and so can be considered from a "classical" 
point of view was noticed by Orlov (1928) and Godel (1933a). (In fact, Orlov 
(1928) introduced a provability operator, described the axioms of provability, 
which were the same as Godel's axioms for S4, and treated the intuitionistic 
validity of a proposition in the context of its provability. Besides, he introduced 
the first system of relevant logic.) It is of interest that the first Lewis system 
S3 turned out to be a "modal companion" of Int too, as was shown by Hacking 
(1963) and strengthened by Chagrov (1981). Kuznetsov and Muravitskij (1977, 
1980), Goldblatt (1978) and Boolos (1980) observed independently that Grz is 
embedded by + into GL and T+ embeds Int into GL. The embedding t of 
GL into K4 in Exercise 3.26 is due to Balbiani and Herzig (1994). For more 
information and references see Chagrov and Zakharyaschev (1992). 

The Godel embedding of Int into S4 can be extended to an embedding of 
modal logics on the intuitionistic base into classical polymodal logics; see Fischer
Servi (1977), Shehtman (1979) and Wolter and Zakharyaschev (1996, 1997). For 
further references concerning intuitionistic modal logics the reader can consult 
Sotirov (1984) or Bozic and Dosen (1984). 
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FROM LOGICS TO CLASSES OF LOGICS 

We have already met with sufficiently many concrete logics to make some gener
alizations. Instead of proving the same sort of theorems for each logic separately, 
we can consider big classes of logics and try to develop general methods for inves
tigating their properties en masse. In this chapter we introduce rather abstract 
concepts of superintuitionistic and modal logics and discuss the general settings 
of problems associated with them to be examined in the rest of the book. 

4.1 Superintuitionistic logics 

All the logics considered in the first two chapters have the same type of language 
and from the set-theoretic point of view are extensions of Int. Besides, all of 
them are closed under MP and Subst. This observation motivates the following 
definition. 

A superintuitionistic logic ( si-logic, for short) in the language C is any set L 
of £-formulas satisfying the conditions: 

• Int c;;;; L; 
• L is closed under modus ponens, i.e., cp € L and cp -> 'ljJ E L imply 'ljJ E L, 

for every cp, 'ljJ E ForC; 

• L is closed under uniform substitution, i.e., cp E L implies cps E L, for 
every cp E ForC and every substitution s. 

According to the given definition, the set ForC of all £-formulas is a si-logic; we 
call it the inconsistent si-logic. Clearly, ForC is the greatest si-logic with respect 
to inclusion and Int is the smallest one. Moreover, it follows from the proof of 
Theorem 2.58 that we have 

Theorem 4.1 For every consistent si-logic L, Int c;;;; L c;;;; Cl. 

For this reason consistent si-logics are often called intermediate logics. (In 
the propositional case these two notions are practically identical. However, for 
first order logics and theories on superintuitionistic bases Theorem 2.58 as well as 
many other results connecting intuitionistic and classical variants (say, Glivenko's 
theorem) fail and the term "intermediate logic" becomes almost meaningless.) 

Theorem 4.2 For every family {Li : i EI} of Si-logics, the intersection niEJ Li 
is also a si-logic. 

Proof Follows immediately from the definition of si-logics. 0 
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We introduced Cl, Int and ML semantically, as sets of formulas that are 
valid in certain frames. Many other si-logics can be constructed in a similar way. 
For we have 

Theorem 4.3 Let C be an arbitrary class of intuitionistic frames. Then the set 
of £-formulas that are valid in all frames in C is a si-logic. 

Proof Exercise. 0 

The si-logic defined in Theorem 4.3 will be called the logic of the class C 
and denoted by LogC. If C consists of a single frame 3' then instead of LogC we 
write LogJ and call this logic the logic of J. For example, by Corollary 2.33, 
Int = Log'In, for each n ~ 2. It is to be noted that Theorem 4.3 does not hold if 
instead of frames we take models (the set of formulas that are true in a model is 
not necessarily closed under Subst; see Exercise 4.1). Besides, nothing guarantees 
that every si-logic is the logic of some class of frames (see Section 6.5). 

Another way of constructing si-logics follows directly from the definition: 
we can take any set of formulas r, add it to Int and then close the result 
under MP and Subst. The si-logic L thus obtained is denoted by Int+ f; the 
formulas in r are called additional or extra axioms of L over Int and L itself the 
extension of Int with r. If r = { rp1 , ... , 'Pn} then along with Int + r we write 
also Int+ rp1 + ... + 'Pn· For example, Cl= Int+ p V -ip, For.C =Int+ p. 

If a si-logic L can be represented as L = Int + r with a finite set r then L is 
said to be finitely axiomatizable. Notice that, by the soundness and completeness 
theorem, the first condition in the definition of si-logics can be replaced by the 
following one: 

• L contains the formulas (Al)-(A9). 

By the axioms (A3)-(A5) we clearly have 

Int+ 'Pl + ... + 'Pn =Int+ 'Pl /\ ... /\ 'Pn, 

i.e., a si-logic is finitely axiomatizable iff it is axiomatizable by a single extra 
axiom. 

Given logics L1 =Int+ f1 and L2 =Int +r2, the logic L =Int+ f 1 u f 2 is 
called the sum of L1 and L2. If in the definition of Int+ r we replace Int with 
a Si-logic L then the resulting Si-logic L' = L + r is the extension of L with r; 
in this case we say that the formulas in r are additional or extra axioms of L' 
over L. L' is finitely axiomatizable over L if L' = L + r for some finite set r. The 
sum of Li and L2 can be represented now as L1 + L2 or L2 + L 1. The sum of a 
family of si-logics {Li: i EI}, i.e., the closure of LJiEI Li under MP and Subst, 
is denoted by L::iEI Li. 

Derivations in a si-logic L = Int + r are defined similarly to derivations in 
Int: the only difference is that now together with the axioms of Int we can use 
the extra axioms in r. If rp is derivable in L then we write I-L rp. Clearly, rp E L iff 
I-L rp. In the same way as in Section 1.3 we can define a derivation of rp in L from 
a set of assumptions f (notation: f I-L rp) and prove the following generalization 
of the deduction theorem for Int: 
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Theorem 4.4 r,'lj; f--L.'P ifjr f--L 'ljJ--+ 'P· 

It should be clear that <p E L iff L f--1nt r.p. Since the congruence rules (for 
/\, V, --+) are derivable in Int, they are derivable in every si-logic too. So the 
equivalent replacement theorem of Section 1.4 holds for all si-logics as well. 

To axiomatize the sum of si-logics, we can simply join their axioms. It is 
somewhat more difficult to axiomatize th~ intersection. Call the formula 

the repeatless disjunction of the formulas r.p(pi, ... ,pn) and 'lj;(pi, ... ,pm) and 
denote it by r.pY._'lj;. 

Theorem 4.5 Let Li =Int+ {'Pi : i EI} and L2 =Int+ { 'lj;j : j E J}. Then 
Lin L2 =Int+ {r.piY._1/Jj : i E I,j E J}. 

Proof Suppose X E Lin L2. By the deduction theorem and the properties of 
/\, we have /\iEI' <p~ --+ X E Int and /\jEJ' 1/Jj --+ x E Int for some finite I' and 
J' such that every r.p~ and 1/Jj, for i E I', j E J', are substitution instances of 
some 'Pk and 1/J1, for k E I, l E J, respectively. Using the axiom (A8) and the law 
of distributivity, we obtain then 

/\ (r.p~ V 1/J;)--+ XE Int, 
iEI',jEJ' 

from which x E Int + { 'PiY'l/Jj : i E I, j E J} because <p~ V 1/Jj is a substitution 
instance of 'PiY'l/Jj. ' 

Conversely, assume that x E Int+ { 'PiY'l/J j : i E I, j E J}. Then x is derivable 
in Int from some finite set of substitution instances r.p~ V 1/Jj of axioms of this 
logic. Using (A6) and (A7), we can also derive x from the set of r.p~ as well as 
from the set of 'lj;~. Consequently, x E Li n L2. 0 

Clearly, Int in the formulation of Theorem 4.5 can be replaced with any other 
si-logic. 

Although the sum of logics differs in general from the union of them (see 
Exercise 4.3), they have a few important common properties. 

Theorem 4.6 The sum of si-logics is idempotent, commutative, associative and 
distributes over the intersection; the intersection of si-logics distributes over the 
(infinite) sum. 

Proof We show only that 

LnLLi=L(LnLi) 
iEI iEI 

and leave the rest to the reader. Suppose L = Int+ r and Li = Int+ .6.i, for 
i E I. Then we have 
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Table 4.1 A list of standard superintuitionistic logics 

For 

Cl 

SmL 

KC 
LC 

SL 

KP 

WKP 

NDk 

BDn 

BWn 

BTWn 

Int +p 

Int+ pV -.p 

Int + ( -.q ~ p) ~ ( ( (p ~ q) ~ p) ~ p) 

Int + -.p V -.-.p 

Int + (p ~ q) v ( q ~ p) 

Int+ ((-.-.p ~ p) ~ -.p v p) ~ -.p v -.-.p 

Int + ( -.p ~ q V r) ~ ( -.p ~ q) V ( -.p ~ r) 

Int+ (-.p ~ -.q V -.r) ~ (-.p-; -.q) V (-.p ~ -.r) 

Int+ (-.p ~ -.q1 V ... V -.qk) ~ 
(-.p ~-.qi) v ... v (•p ~ -.qk), k;::: 2 

Int+ bdn 

Int+ V~=o(Pi ~ VJ#iPj) 

Int+ f\0$.i<j$.n -.(-.pi /\-.pj) ~ V~=O(-.pi ~ Vj#i -.pj) 

Int+ /\~=o((Pi ~ Vi#J PJ) ~ Vi#J PJ) ~ V~=oPi 
Int + f\~=0 (-.pi ,..... V i#J PJ) -; V~=O Pi 

Int+ nf n' where 
nfo = .1, nf1 = p, nf2 = -.p, nf w = T 
nf2m+3=nf2m+l v nf 2m+21 
nf 2mt4 = nf 2m+3 ~ nf 2m+l 

L n I:iEI Li = (Int + r) n (Int + UE1 ~i) 

=Int+ {r.pY..'l/J: r.p E r,'ljJ E Uo~i} 

=Int+ LJiEJ{r.py_'ljJ: r.p E r,'ljJ E ~i} 

= I:iEJ(lnt + {r.p';L'l/J: r.p E r,'ljJ E ~i}) 

= I:iE1((Int + r) n (Int+ ~i)). 

0 

Note, however, that in general the sum does not distribute over the infinite 
intersection, i.e., L + niEJ Li may differ from niEJ(L +Li) (see Exercise 6.16). 

The family of si-logics together with the operations n and + is called the 
lattice of si-logics7 and denoted by Extlnt. More generally, if L, L' E Extint 
and L ~ L' then we call L' an extension of L, L a sublogic of L' and denote the 
family of L's extensions by ExtL. 

A list of standard superintuitionistic logics is presented in Table 4.1. 

7 For a definition of lattice see Section 7.3. 
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4.2 Modal logics 

All the modal logics we met with in Chapter 3 (except those in Section 3.10) 
contain the logic K and are closed under MP and Subst. All of them except S 
are also closed u~der the rule of necessitation RN. 

A quasi-normal modal logic in the language MC is any set L of MC-formulas 
such that 

• K~L; 
• Lis closed under MP and Subst. 

The smallest (with respect to inclusion) quasi-normal modal logic is K and the 
greatest one is the inconsistent modal logic ForMC. 

A quasi-normal modal logic L is called normal if 

• Lis closed under RN, i.e., cp EL implies Dcp EL, for every formula cp. 

Every quasi-normal logic L can be represented in the form 

L=K+r, ( 4.1) 

where r ~ ForMC and + means, as before, the closure (of Kur) under MP 
and Subst. Every normal logic L is represented as 

(4.2) 

where EB means the closure under MP, Subst and RN. 
The formulas in r in the representation ( 4.1) are called the additional or 

extra axioms of L over K; a quasi-normal logic L is finitely axiomatizable if it 
can be represented in the form ( 4.1) with a finite r. The corresponding notions 
are defined for normal logics by replacing (4.1) with (4.2) and dropping the 
prefix "quasi". It is to be noted that a finitely axiomatizable normal logic is 
not necessarily finitely axiomatizable if we consider it as a quasi-normal one 
(see Exercise 4.6). Replacing K in (4.1) and (4.2) by an arbitrary (normal or 
quasi-normal) modal logic L, we get the notions of axiomatizability over L. 

As in the case of si-logics, the intersection of (quasi-) normal modal logics is 
again a (quasi-) normal modal logic. The sum can be defined now in two ways: 

• LiEl Li is the closure of uiEl Li under MP and Subst, and 
• ffiiEI Li is the closure of LJiEI Li under MP, Subst and RN. 

The reader can easily check that K + cp1 + ... + 'Pn = K + 'Pl /\ ... /\ 'Pn, 
K EB 'Pl EB ... EB 'Pn = K EB 'Pl /\ ... /\ 'Pn· 

The family of normal (quasi-normal) modal logics, containing a logic L, to
gether with the operations n and EB ( +) is called the lattice of normal (quasi
norma0 extensions of Land denoted by NExtL (respectively, Ext£). 

The two kinds of modal logics-the two ways of forming the closure under 
inference rules, to be more exact-give us two variants of derivations from as
sumptions: with RN and without it. In the same way as in Section 3.6 one can 
prove the following generalization of the deduction theorem for K (in which I-* 
means the derivability with RN and I- without it). 
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Theorem 4. 7 For every L E ExtK, 
( i) r, '!/'J r-L cp iff r r-L '!/'J ___, cp; 
(ii) f, '!/'J f-£ cp ifj there is m ::'.'. 0 such that f f-£ Do'!/'; A ... A om'!/'; ---+ cp. 

If L E NExt(K EB tran) then we can clearly take m = n. Moreover, Exer
cise 4.13 gives a sort of conversion of this observation. 

The semantical way of constructing modal logics analogous to that in Theo
rem 4.3 provides us with only (some) logics in NExtK. 

Theorem 4.8 Let C be a class of modal frames. Then the set LogC of MC.
formulas that are valid in all frames in C is a normal modal logic. 

Proof Exercise. 0 

LogC is called the logic of the class C. If C consists of a single frame J then 
the logic of C is denoted also by LogJ. 

A Kripke semantics for quasi-normal modal logics will be introduced in Sec
tion 5.6. Here we only note that for every frame J and every point x in it, the 
set 

Log(J,{x}) = {cp E ForM.C: (J,x) f= cp} 

is a quasi-normal but not necessarily normal modal logic. 

Example 4.9 Let Ji, J2 and J 3 be the transitive frames shown in Fig. 4.1. 
Then the quasi-normal logics L; =Log (J;, {a;}), for i = 1, 2, 3, are not normal. 
Indeed, consider the formulas 

3 3 

cp1 =OT, cp2 = /\ O'!/';;---+ V <>(/\ <>'!/'J1 A -iO'!/'J;), cp3 = <>grz, 
i=l i=l i#-j 

where '!/';1 = D(p A q), '!/'J2 = D(•p A q), '!/'J3 = D(p A •q). The reader can check 
that cp; EL; but Dcp; rj_ L;, for i = 1, 2, 3. 

Since the congruence rules for A, V, ---+ and D are derivable in K, the equiva
lent replacement theorem holds for all logics in NExtK. However, this is not the 
case for logics in ExtK. For we have 

Theorem 4.10 A quasi-normal logic Lis normal iff p +---> q/Dp +---> Dq is an ad
missible rule in L (or, which is equivalent, iff the equivalent replacement theorem 
holds for L). 



"THE ROADS WE TAKE" 115 

Proof The implicatioh (:::}) is clear. To show ( {=), suppose that cp E L. Then 
cp ~ T E L and so Ocp ~ OT E L, from which Ocp E L, since OT ~ T E K. 

0 

Analogously to Theorem 4.5 one can prove the following: 

Theorem 4.11 (i) Let £ 1 = K + {'Pi: i E J} and L2 = K + {1/Jj : j E J}. Then 
L1 nL2 = K + {cpd1/Ji: i E J,j E i}. 

(ii) Let L1 = K EB {cp; : i EI} and L2 = K EB {1/Ji : j E J}. Then L1 n L2 = 
K EB {Okcp;Y.011/Jj: i E J,j E J, k, l ~ O}. 

Proof Exercise. 0 

The reader can easily check also that Theorem 4.6 holds for both types of 
sum of modal logics. 

A few standard normal modal logics are listed in Table 4.2. 

4.3 "The roads we take" 

The act of abstraction we made in the two previous sections is aimed mainly to 
work out a general theory which would provide us with tools for dealing with 
arbitrary modal and si-logics and methods allowing to solve problems not for 
each logic individually, but for big classes of them at once. In this section we 
discuss the most important directions in which this theory will be developed. 

Let us begin with methods of constructing logics. We have met with two 
of them: the syntactical or axiomatic method which defines a logic by means of 
indicating its axioms and inference rules, and the semantical one which describes 
a logic as the set of formulas that are "valid" (in one sense or another) in some 
"model structures" like truth-tables, Kripke frames or models. 

Constructing a logic axiomatically, its creator is trying to select a possibly 
minimal list of axioms and inference rules which reflect his ideas of what prin
ciples of reasoning should be included in the logic. Int, 84, 85, GL and many 
other logics were constructed in this way. To aim at minimality or laconicity of 
axiomatic systems means the desire to present them in the simplest and clearest 
manner (besides, it is often an interesting mathematical problem). 

We can distinguish, for instance, between finitely and infinitely axiomatizable 
logics. A finitely axiomatizable logic, its finite set of axioms and inference rules, 
to be more precise, will be called, as before, a calculus. Dealing with a calculus, 
we have at hand only its axioms and inference rules; the logic represented by 
the calculus is what is deducible in it. The very same logic can be represented 
by different calculi. This leads to the (algorithmic) problem of deciding whether 
two given calculi are equivalent, i.e., axiomatize the same logic. A closely related 
problem is to recognize if two given formulas cp and 1/J are deductively equal in 
ExtL (NExtL) in the sense that L + cp = L + 1/J (respectively, L EB cp = L EB 1/J). 

As we shall see later, far from all modal and si-logics can be represented 
by calculi. The following criterion is useful for proving that a given logic is not 
finitely axiomatizable. 
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Table 4.2 A list of standard normal modal logics 

D K EB Op ---+ Op 

T K EB Op ---+ p 

KB K EB p ---+ OOp 

K4 K EB Op---+ OOp 

K5 K EB OOp ---+ Op 

Altn K EB Opi V O(pi ---+ P2) V ... V O(pi /\ ... /\ Pn ---+ Pn+i) 

D4 K4 EB OT 

84 K4 EB Op ---+ p 

GL K4 EB O(Op---+ p) ---+ Op 

For K4 EB p 

Grz K EB O(O(p---+ Op)---+ p)---+ p 

K4.1 K4 EB OOp ---+ <)Op 

K4.2 K4 EB O(p /\ Oq) ---+ O(p V Oq) 

K4.3 K4 EB O(O+p---+ q) V O(O+q---+ p) 

84.1 84 EB OOp ---+ <)Op 

84.2 84 EB <)Op ---+ OOp 

84.3 84 EB O(Op---+ q) V O(Oq---+ p) 

Triv K4EB0p ~ p 

Verum K4 EB Op 

85 84 EB p ---+ O<)p 

K4B K4 EB p ---+ OOp 

A* GL EB OOp---+ O(O+p---+ q) V O(o+q---+ p) 

K4Z K4 EB O(Op---+ p)---+ (OOp---+ Op) 

Dum 84 EB O(O(p---+ Op)---+ p)---+ (OOp---+ p) 

D4Gi D4 EB O(O+p v o+-.p) ---+ Op v 0--,p 

K4H K4 EB p---+ 0( Op---+ p) 

K4Altn K4 EB Opi V O(pi ---+ P2) V ... V O(pi /\ ... /\ Pn ---+ Pn+i) 

K4BWn K4 EB /\~=O Opi---+ Vo$iof,j$n O(pi /\ (Pj V Opj)) 
K4BDn K4 EB bdn 

K4n,m K4 EB onp ---+ omp, for 1 :::; m < n 

Theorem 4.12. {Tarski's criterion) Let Lo be a superintuitionistic or quasi
normal modal logic in a countable language. A logic L E ExtL0 is not finitely 
axiomatizable over Lo iff there exists an infinite sequence of logics Li C L2 C 

L3 ... in ExtLo such that L = l:i>O Li. A modal logic L E NExtL0 is not finitely 
axiomatizable over Lo iff there is an infinite sequence of logics Li C L 2 C L3 ... 
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FIG. 4.2. 

in NExtLo such that L = ffii>O Li. 

Proof ( =}) Let 'lj;1 , 'lj;2 , . . . be an enumeration of all formulas in the language 
of Lo. Define a sequence cpi, cp2, ... as follows: cp1 is the first formula in this 
enumeration that belongs to L - Lo, and for i ;?:: 1, 'Pi+ 1 is the first formula in 
the list '!/J1, '!/J2, ... that belongs to L but not to Li = Lo+ cp1 + ... +'Pi· As a 
result we have Li C Li+l and L = 2:i>O Li. In the case of normal modal logics 
it suffices to replace + in the proof above by EB. 

( {=) If we assume that L is finitely axiomatizable then there must be i such 
that Li contains all axioms of L and so Li = L, which is a contradiction. 0 

We demonstrate the use of this criterion by the following: 

Example 4.13 According to Theorems 4.5 and 4.11, the intersection of two 
finitely axiomatizable quasi-normal or si-logics is finitely axiomatizable too. How
ever, this is not the case for logics in NExtK. Consider, for instance, the logics 
Li = K EB OT and Lz = K EB Op V 0--ip and show that L1 n L2 is not finitely 
axiomatizable as a normal logic. 

By Theorem 4.11, L1 n L2 = K EB {okoT v D1(Dp v 0--ip) : k, l ;?:: O} and so 
Li n Lz = Ui;o:O Li' where 

Thus, according to Theorem 4.12, it is enough to show that the formula oi+10TV 
Di+1(DpVD--,p) is not in Li. To this end one can use the frame J shown in Fig. 4.2. 
Indeed, it is easy to see that J I= Li and J [ff: oi+10T v oi+1(Dp v 0--ip). It 
should be clear, however, that the intersection of finitely axiomatizable logics in 
NExtK4 is finitely axiomatizable as well (see Exercise 4.12). 

The next level of complexity in axiomatic representations of logics is the so 
called recursive axiomatization, which means that there is an algorithm recog
nizing axioms, and the recursively enumerable axiomatization, when there is an 
algorithm generating a sequence of all axioms. In Section 16.2 we shall see that 
in fact these two notions are equivalent. Besides an effective description of ax
ioms of a logic L a recursive axiomatization provides an algorithm enumerating 
(generating) precisely all the formulas in L. 
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However, there are more logics than algorithms: later on we shall meet with 
various continual families of modal and si-logics, while there are "only" count
ably many algorithms. Another important characteristic of a "simple" infinite 
axiomatization is its independence. 

To understand the structure of the class (N)ExtLo it may be useful to find 
a set r of formulas which is complete in the sense that its formulas are able to 
axiomatize all logics in the class and independent in the sense that it contains 
no complete proper subsets. Such a set (if it exists) may be called an axiomatic 
basis of (N)ExtL0 . Its role is comparable with the role of a basis in a vector 
space. The existence of an axiomatic basis depends on whether every logic in the 
class can be represented as the sum of "indecomposable" or prime logics. A logic 
L E (N)ExtL0 is said to be prime in (N)ExtLo if for any family {Li : i E I} of 
logics in (N)ExtLo, L = L::iEI Li (respectively, L = EBiEI Li) implies L = Li for 
some i EI. A formula tp is prime in (N)ExtLo if Lo+ tp (Lo EB tp) is prime. 

Proposition 4.14 Suppose a set of formulas I' is complete for (N)ExtLo and 
contains no distinct deductively equal in (N)ExtL0 formulas. Then r is an ax
iomatic basis for (N)ExtLo iff every formula in r is prime. 

Proof We consider only the class ExtLo. 
( =?) If tp E r is not prime then Lo + tp = Lo + .6.1 + .6.2 for some sets 

.6.1, .6.2 ~ r such that Lo+ .6.i c Lo+ tp, i = 1, 2. Consequently, VJ ff. .6.1 u .6.2 
and so r - { tp} is complete for ExtL0 , which is a contradiction. 

(-¢=) Suppose otherwise. Then for some formula tp E I', the set I' - { tp} is 
complete for ExtL0 and so there is a finite set .6. C r such that tp ff. .6. and 
Lo + tp = Lo + .6.. But then Lo + tp = Lo + 1/J, for some 1f; E .6., which is a 
contradiction. D 

Let us turn now to the semantical way of constructing logics. Until now we 
have operated with two semantical structures: Kripke frames and models. In the 
sequel we shall consider also logical matrices, algebras and general frames. As 
before we say that a logic L is characterized (or determined) by a class C of such 
kind of structures if L coincides with the set of formulas (in the language of L) 
that are valid in all members of C. We can also divide the notion of characteriza
tion into the two parts: soundness and completeness. The soundness means that 
all structures in C validate L and the completeness that any formula that is not 
in L is separated from L by a structure in C. 

Dealing with the Kripke semantics, we can try to characterize logics by classes 
of models or by classes of frames. Neither of these ways is perfect. As we shall see 
in the next part, all logics under consideration are determined by suitable classes 
of models. However, Kripke frames fail to do this. On the other hand, not every 
class C of models determines a logic: the set of formulas that are true in C is 
not necessarily closed under Subst. Such sets of formulas are called theories, and 
models are their semantical counterparts. Frames, as we saw, determine logics. 
Moreover, being properly generalized, they can determine all of them and so can 
be regarded as semantical counterparts of logics in Extlnt and ExtK. 
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The same logic can· be characterized by different classes of structures. For 
example, Int is determined by the class of all Kripke frames or the class of finite 
frames or that of finite trees. Of course, we are interested in finding the simplest 
(in one sense or another) classes of structures characterizing a given logic. One 
possible measure of complexity is the cardinality. For Kripke frames we can define 
then the following hierarchy of mod?-1 and si-logics. 

The simplest in this sense are tabular logics each of which is characterized by 
some finite frame. These logics are very nice to deal with: the key problem of 
recognizing whether a formula cp belongs to a tabular logic L is decided by the 
routine inspection of all possible valuations of cp's variables in the finite frame 
characterizing L. Other important properties of tabular logics will be considered 
in Chapter 12. A good example of a non-trivial class of tabular logics is ExtS5: 
each logic in it except 85 itself is characterized by a finite cluster. However, the 
majority of interesting logics are not tabular. 

The next in our hierarchy is the class of finitely approximable logics which 
are characterized by (infinite in general) classes of finite Kripke frames. The rea
son for this name is that every such logic L is the intersection of tabular logics 
(those determined by the frames in the class characterizing L), i.e., can be "ap
proximated" by a descending sequence of tabular logics. The finite approximable 
logics are known also as the logics with the finite frame property. In Section 8.4 
we shall see that the finitely approximable logics are exactly the logics having 
the finite model property, i.e., those that are complete with respect to classes of 
finite Kripke models. 

The class of finitely approximable logics is of great importance. First, it 
contains almost all standard modal and si-logics. And second, all finitely axiom
atizable logics in this class turn out to be decidable, as follows from Harrop's 
theorem to be proved in Section 16.2 (the reader can easily find a decision al
gorithm himself). Note, however, that proving the decidability of Int and K we 
used not the finite approximability in general but the fact that to separate a 
formula cp from Int or K it suffices to consider frames with :::; 2ISub<pl points. 
The number of subformulas in cp may be called the length of cp; we denote it by 
l ( cp). And a logic L such that every cp tf_ L is separated from L by a frame of 
cardinality :::; 21('P) is called exponentially approximable. In this connection the 
questions arise whether it is possible to reduce the exponential approximability 
to the polynomial or even linear one, and what kind of lower bounds for the com
plexity of refutation frames we can expect in general for finitely approximable 
logics. Complexity problems of that kind will be discussed in Chapter 18. Mean
while, we just show an example of a linearly approximable (but not tabular) 
logic. 

Example 4.15 Let L be the si-logic determined by the class of finite linearly 
ordered frames. (In the next chapter we shall see that L coincides with LC = 
Int + (p ---+ q) V (q ---+ p), known as the Dummett logic or the chain logic.) If 
'P t/. L then cp is refuted in a model 9J1 = (J, SU) based on a finite linear frame J. 
Construct a submode! SJ1 = (1!5,ll) of 9J1 by putting into it only the final point 
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in J, the final points in the sets {x : x ~ p} for p E Varcp and taking the 
restriction .U of ID to 15. One can readily prove by induction on the construction 
of 'I/; E Subcp that for every point x in 15, (91, x) I= 'I/; iff (9J1, x) I= 'I/; and that if 
(9J1,x) ~'I/; for some x in J then there is y E xl in 15 such that (91,x) ~ 'lj;. It 
follows that 15 ~ cp and j15j ::; l(cp), i.e., Lis linearly approximable. 

As we shall see in Chapter 6, not all logics are finitely approximable. So 
the next level in our hierarchy is the family of logics characterized by countable 
frames. More generally, for an infinite cardinal x, we may say a logic is x
approximable if it is determined by frames of cardinality ::; x. That this division 
makes sense is also shown in Chapter 6. 

Finally, we call a logic just Kripke complete if it is characterized by some class 
of Kripke frames. We already know an example of a Kripke incomplete logic: it 
is Solovay's S which has no Kripke frames at all. In Chapter 6 we shall construct 
incomplete logics in NExtK4, NExtS4, and Extlnt. 

In view of these incompleteness results we are facing the problem of finding 
more powerful semantical instruments than Kripke frames. One way of construct
ing an adequate semantics for modal and si-logics is to look at them from the 
algebraic standpoint. As a result of the algebraization, carried out in Chapter 
7, with each logic under consideration we associate a variety of nice algebraic 
structures-Boolean algebras with an additional operator (which is similar to 
the topological interior operator), and pseudo-Boolean algebras (closely related 
to the algebras of open sets in'topological spaces). Another way of recovering 
completeness is to impose a restriction on possible valuations in Kripke frames, 
which leads us to the so called general frames. A remarkable result, discovered by 
Jonsson and Tarski (1951) (a few years before the creation of Kripke semantics) is 
that general frames are relational representations of the corresponding algebras, 
naturally generalizing Stone's representation of Boolean algebras as set fields. 
We shall consider general frames and duality theory, studying the relationship 
between algebras and general frames, in Chapter 8. 

So far we have considered semantical characterizations of logics, i.e., of the 
formulas derivable in them. But there is one more fundamental syntactical notion 
for which we should also find a semantical counterpart, namely, that of deriv
ability from assumptions. Dealing with the Kripke semantics and the relation f-
(allowing only MP), we say a normal modal or si-logic Lis strongly characterized 
(or determined) by a class C of Kripke frames if for any set of formulas r and 
any formula cp (in the language of L), r f-- L cp iff for every model 9J1 based on 
a frame in C and every point x in 9J1, (9J1, x) I= r implies (9J1, x) I= cp. A logic 
that is strongly characterized by some class of Kripke frames is called strongly 
Kripke complete. An equivalent definition of strong completeness is provided by 
the following: 

Proposition 4.16 A logic,L E NExtK or LE Extlnt is strongly Kripke com
plete iff every L-consistent tableau is realizable in a model based on a Kripke 
frame for L. 
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Proof The implicatfon ( ~) is clear: if f If L 'P then there is a model 9J1 based 
on a frame for L realizing (f, { 'P}), i.e., there is a point x in 9J1 such that 
(9.Jt, x) I= r and (9.Jt, x) ~ cp. To prove the converse, suppose a tableau (f, ~) 
is £-consistent and let p be a variable not occurring in it. We claim that the 
tableau (f U { 'P -> p : 'P E ~}, {p}) is L consistent too. For suppose otherwise. 
Then 

n m 

/\ 'I/Ji /\ /\ ('Pi -> p) -> p E L 
i=l i=l 

for some 'I/Ji E r and 'Pi E ~. It follows by Subst that 

n m m m 

/\'I/Ji/\ /\('Pi-> v 'Pi)-> v 'Pi EL 
i=l i=l i=l i=l 

and so /\~=l 'I/Ji -> VT=l 'Pi E L, contrary to (f, ~) being £-consistent. (Note 
that in the modal case instead of pone can use j_.) Since Lis strongly complete, 
we have a model 9J1 based on a frame for L and a point x in it such that 
x j= f U { 'P -> p : 'P E ~} and x ~ p, from which x ~ 'P for all 'P E ~. 0 

Strongly Kripke complete logics are known also as compact ones; however, we 
shall use the term "compactness" in another sense. 

For the consequence relation f-* (allowing both MP and RN) we seem to 
need a somewhat different semantical counterpart. Say that a logic L in NExtK 
is globally Kripke complete if for any finite r and cp, r f-£ 'P iff for every model 
9J1 based on a Kripke frame for L, 9J1 I= r implies 9J1 I= cp. L is strongly globally 
complete if this holds for arbitrary (not necessarily finite) sets of formulas r. 
However, we shall prove in Section 10.1 that actually for logics in infinite lan
guages the notions of strong completeness and strong global completeness are 
equivalent. Of course, global Kripke completeness can be relativized to finite 
frames, in which case we talk about global finite approximability. 

It is worth mentioning here that to formalize the notion "cp logically entails 
'l/J" is one of the central problems in logic. Syntactically one can explicate it as 
'P -> 'lj; E L, or D(cp -> 'lf;) E L, or 'P f-£ 'lj; for some suitable logic L. At the 
semantical level it is of interest to consider the relation 'P l=c 'lj; which means 
that 'lj; is valid in all those frames in the class C that validate cp, or the local, i.e., 
point-wise variant of this relation. 

Neither the syntactical nor the semantical way of constructing logics is sat
isfactory if taken alone. 

Given a class C of frames (or other semantical structures), we may wish to 
find a simple axiomatization of the logic determined by C. A challenge in this 
direction is to find a recursive axiomatization of the Medvedev logic, determined 
by the rather transparent class of "topless" Boolean cubes. Or we may need first 
to elucidate whether C is modally (or intuitionistically) definable in the sense 
that it coincides with the class of all frames for LogC. (Notice that because of 
incompleteness there may exist different, non-equivalent axiomatizations of C, 
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and only one of them generates LogC.) For example, the class of reflexive frames 
is defined by Op __, p, while that of all irreflexive frames is not modally definable 
(see Exercise 3.10). 

On the other hand, given a formula (an axiom of a logic), we are facing 
the problem of characterizing the class of frames (or other model structures) 
validating it. Of course, much depends here on the language in which we want 
to formulate such a characterization. For example, one can easily describe the 
class of Kripke models for a formula cp(p1, ... ,pn) using the first order language 
with the monadic predicate symbols P 1, ... , Pn and the binary predicate symbol 
R. Indeed, define a first order formula ST( 'P) with one free individual variable x 
by induction on the construction of cp: 

ST(pi) = Pi(x), ST(..l) = ..l; 
ST('lj; 8 x) = ST('lj;) 8 ST(x), for 8 E {/\, v, __, }; 
ST(D'lj;) =Vy (xRy __, ST('lj;){y/x}), 

where y is an individual variable not occurring in ST( 'lj;). In the intuitionistic 
case the definition of ST('lj; __, x) should be replaced with 

ST('lj; __, x) =Vy (xRy __, (ST('lj;) __, ST(x)){y/x}). 

The first order formula ST(cp) is called the standard translation of 'P· 

Example 4.17 

ST(Dp __, DDp) =Vy (xRy __, P(y)) __,Vy (xRy __, Vz (yRz __, P(z))). 

Every Kripke model 001 = (J, QJ) based on a frame J = (W, R) can be re
garded then as a classical model of this first order language: W is the domain 
for individual variables, P1, ... , Pn are interpreted as QJ(p1), ... , Q"J(pn) and Ras 
the accessibility relation on J. 
Proposition 4.18 For every formula cp, every model 001 and every point a in 
001, 

(001,a) I= 'P iff001 F= ST(cp)[a], 

001 I= 'P iff 001 I= VxST( 'P). 

Proof An easy induction on the construction of 'P· 0 

ST ( 'P) is a first order equivalent of 'P as far as models are concerned. If we 
deal with frames then Pi are interpreted as arbitrary monadic predicates on the 
(upward closed, in the intuitionistic case) sets of worlds, and so 'P corresponds to 
the second order formula VP1 ... VPnST(cp). More exactly, we have the following: 

Proposition 4.19 For every formula cp(p1, ... ,pn), every Kripke frame J and 
every point a in J, 

(J, a) I= 'P iff JI= VP1 ... VPnST(cp)[a], 

~I= 'P iff ~I= VxVP1 ... VPnST(cp). 



EXERCISES AND OPEN PROBLEMS 123 

This trivial solution to the characterization problem is hardly satisfactory. 
However, as we saw in Sections 2.5 and 3.5, for many standard modal and in
tuitionistic formulas the second order equivalents can be improved to nice first 
order conditions in the language with R and =. These observations lead nat
urally to the general problem of correspondence between modal (intuitionistic) 
formulas and modally (intuitionistically) definable classes of frames, on the one 
hand, and formulas of first or higher order predicate logic and classes of frames 
definable by them, on the other. In this book we shall touch upon only a small 
fragment of correspondence theory; for a more complete presentation the reader 
is referred to van Benthem (1983, 1984). 

In Chapter 6 we shall see, however, that not all modal and intuitionistic 
formulas correspond to first order conditions on the accessibility relation. For 
example, the Lob axiom la has none. (This means that in a sense propositional 
modal and intuitionistic formulas can be more expressive then classical first order 
ones.) Yet, there are other ways to characterize frames for la. It is not hard to 
see that a transitive frame ~refutes la iff there is a (not necessarily generated) 
subframe of~ reducible to the single reflexive point. In Chapter 9 we develop 
a universal frame-theoretic language giving a solution to the characterization 
problem on transitive (general) frames. 

A characterization of model structures for a formula cp serves often as the first 
step in investigating various properties of the logic axiomatized by cp. Dealing 
with classes of logics, we are interested naturally in finding sufficiently general 
methods of establishing the decidability, completeness, finite approximability, 
etc., and describing (in a syntactical and/or semantical way) families of logics 
with this or that property. Classical examples here are the method of canonical 
models for proving Kripke completeness and Bull's theorem claiming that all 
logics in NExtS4.3 are finitely approximable. For syntactical properties of log
ics, such as the disjunction or interpolation property, first we should find their 
semantical equivalents. Many results of that kind can be found in Parts II and 
IV. 

The problem of recognizing whether a calculus enjoys a given property can 
be also looked at from the algorithmic point of view. Decidable and undecidable 
properties of calculi in various classes of logics are considered in Chapter 17. 

One more interesting problem, to which we shall turn from time to time in 
this book, is to clarify the structure of the lattices of extensions of various logics 
and to connect it with properties of logics. 

4.4 Exercises and open problems 

Exercise 4.1 Show that Theorems 4.3 and 4.8 do not hold if instead of frames 
we take models. 

Exercise 4.2 Give an example of a model in which the set of true formulas is 
a si-logic (e.g. Cl). Show that every model of that sort is infinite if the language 
£ is infinite. Give an example of a finite model determining a si-logic in a finite 
language. 
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Exercise 4.3 Show that the union of two si-logics (or modal logics) is also a 
si-logic (respectively, modal logic) iff one of them is contained in another, and 
only in this case the union and the sum of logics coincide. 

Exercise 4.4 Check that ~ is a partial order on (N)ExtL and that n and L: 
(or ffi) are, respectively, the supremum and infimum in the resulting partially 
ordered set. 

Exercise 4.5 Show that $ does not in general distribute over infinite intersec
tions of modal logics. (Hint: consider D and K EB on ..l, for 1 ::; n < w.) 

Exercise 4.6 Prove that it is impossible to represent K by a calculus with MP 
and Subst as the only inference rules. 

Exercise 4. 7 Show that each derivation in a normal logic may be reconstructed 
in such a way that the rule of necessitation is applied only to axioms. 

Exercise 4.8 Show that K EB OJ_ = K + O..l. 

Exercise 4.9 Show that Dis not finitely axiomatizable as a quasi-normal logic. 
Which of the standard normal modal logics are finitely axiomatizable without 
the postulated RN? Show that if such a logic contains tr an, for some n :'.': 0, 
then it is finitely axiomatizable as a quasi-normal logic. 

Exercise 4.10 Show that L:iEJ Li (ffiiEI Li) is the smallest quasi-normal (nor
mal) modal logic containing uiEJ Li. 

Exercise 4.11 Prove that every intuitionistic formula without negative occur
rences of V (or ..l) is deductively equal to some disjunction (respectively, ..l-) 
free formula. Show also that every finitely axiomatizable si-logic can be axiom
atized over Int by a single conjunction free formula. (Hint: use the formulas 
(p - q /\ r) +-+ (p - q) /\ (p - r), (p /\ q - r) +-+ (p - (q - r)) that are in Int, 
and cp1 /\ ... /\ 'l'n, (cp1 /\ ... /\ 'l'n - p) - p (in which p does not occur in 'Pi) 
that are deductively equal in Int.) 

Exercise 4.12 Let Li = K4 EB {'Pi : i E I} and L2 = K4 $ { 1/!j : j E J}. Show 
that Li n L2 = K4 EB {o+cpiyo+l/JJ : i E I, j E J}. Extend this result to logics 
containing tr an. 

Exercise 4.13 Prove that for a modal logic L there exists a formula x(p, q) such 
that, for all cp, 1/1 and r' 

r, 1/1 f-[. cp iff r f-[. x(l/!, cp) 

iff tran E L for some n < w. (Hint: apply the deduction theorem to x(p, q), pf-£ q 
and take q = om+lp.) 

Exercise 4.14 Show that if a logic L is finitely axiomatizable then any set of 
formulas axiomatizing L contains a finite subset generating L as well. 

Exercise 4.15 Give an example of two modal (si-) logics which are not finitely 
axiomatizable themselves, but whose sum is. 
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Exercise 4.16 Prove Tarski's criterion without stipulating that the language is 
countable. 

Exercise 4.17 Prove that for no modal or intuitionistic formula cp the first order 
formula Vy xRy is equivalent to ST( cp). (Hint: consider the disjoint union of two 
reflexive points.) 

Exercise 4.18 Show that the notions of global and "local" completeness (finite 
approximability) coincide for modal logics containing tran, for some n < w. 

Exercise 4.19 Show that if Li is characterized by a class Ci of frames, for i E I, 
then niEl Li is characterized by uiEl Ci. In particular, Kripke completeness and 
finite approximability are preserved under intersections of logics. 

Exercise 4.20 Show that cp E L, L a si- or modal logic, iff there is a derivation 
of cp in L all variables in which occur in cp. 

Exercise 4.21 Prove that Cl is the only 0-reducible consistent si-logic. 

Exercise 4.22 Show that every logic in NExtK with infinitely many pairwise 
non-equivalent modalities is contained in a maximal normal modal logic with 
infinitely many non-equivalent modalities. 

Exercise 4.23 (i) Prove that for every modal formula cp there is a formula 'I/; 
such that md('I/;) ::::; 1 and cp ~'I/; E S5. 

(ii) Prove that the sets of formulas of modal degree ::::; 1 in logics from the 
interval [T; S5] coincide and that this is not so for any proper extension of the 
interval. 

Exercise 4.24 Prove that for every logic L E NExtK4 and every formula cp 
there is a formula 'I/; with md( 'I/;) ::::; 2 such that L EB cp = L EB 'lj;. Show that this 
does not hold for K, T, T EB p -4 DOp. 

Exercise 4.25 Prove that if Li and L2 are consistent normal modal logics with 
the necessity operators 0 1 and 0 2 , respectively, then the smallest normal bimodal 
logic L containing Li U L2 is a conservative extension of both Li and L2 (i.e., 
for every formula cp in the language with Di, i = 1, 2, cp EL only if cp E Li)· 

Problem 4.1 Is it possible to axiomatize every logic in ExtK by an independent 
set of axioms {with the rules MP and Subst)? 

4.5 Notes 

Godel (1932) noticed that there are infinitely many logics between Int and Cl. 
Developing this observation, Umezawa (1955, 1959) started considering the whole 
class of superintuitionistic logics, which he called "intermediate logics". The no
tion of normal modal logic, as it is understood in this book, was introduced by 
Lemmon and Scott (1977). The term "normal" is due to McKinsey and Tarski 
(1948), who showed in particular that there are non-normal extensions of S4 
closed under MP and Subst. Segerberg (1971) called such logics quasi-normal. 
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There are two main reasons for considering big families of modal logics and 
developing a general theory for them. First, there exist so many concrete modal 
systems in the literature that generalizations and various kinds of classifications 
become inevitable. The second reason (of course connected with the first one) 
is typical in mathematics and science in general: having analyzed a number of 
particular objects of the same nature, we turn to studying the "nature" itself, 
acquiring at this higher level new knowledge of the phenomena we are inter
ested in. Recall, for instance, that the notions of straight line, plane and three 
dimensional space led to the general concept of vector space, and group theory 
originated from the study of permutations of n-tuples of natural numbers. 

The following example should be closer to the reader of this book. Suppose 
that we want to prove a theorem according to which all pretabular logics in 
NExtS4 are finitely approximable. There are two ways to do this: (i) to an
alyze each of the five pretabular logics in NExtS4 individually or (ii) to use 
Corollary 12.12 which concerns all pretabular logics in NExtK4. In case (i) the 
theorem turns out to be our brilliant observation, while (ii) explains why this 
observation holds. 

That modal logic is not just a collection of individual systems, that a general 
mathematical theory of modal logics is required was clearly recognized in the 
late 1960s. Even before that modal logicians from time to time dealt with classes 
of extensions of some logics. For instance, Scroggs (1951) described the lattice 
NExtS5, Umezawa (1955, 1959) started investigating si-logics, Dummett and 
Lemmon (1959) considered logics between S4 and S5 and embedded si-logics 
into them, Hosoi (1967) classified si-logics by means of dividing them into slices. 
However, the mainstream of studies in modal logic was to examine individual 
systems and construct new ones with given properties. Moreover, during a rather 
long time there was a hope to find a complete description of the lattices of modal 
and si-logics. If this hope were realized and the class of, say si-logics, turned out to 
be countable and describable in a visual way, then the "individualistic" approach 
would certainly be enough. The turning point was probably the discovery of 
Jankov (1968b) that there exists a continuum of si-logics and the subsequent 
constructions of modal and si-logics with various "negative" properties. 

It would be difficult now to give a complete list of logicians whose work led to 
the creation of the general theory of modal and si-logics, but undoubtedly E.J. 
Lemmon and A.V. Kuznetsov were among the pioneers. 

To illustrate how this theory can help to solve "individual" problems, we 
present here two interesting examples. For many years the problem of indepen
dent axiomatizability of modal and si-logics resisted all attempts to solve it. A 
way to construct a logic without an independent axiomatization was opened by 
the following observation of Kleyman (1984) which is reformulated here in terms 
of modal logics (Kleyman's paper deals with varieties of groups). 

Proposition 4.20 Suppose a normal modal logic L 1 has an independent axiom
atization. Then, for every finitely axiomatizable normal modal logic L 2 C L 1 , the 
interval of logics [L2, L1] ={LE NExtK: L2 ~ L ~Li} contains an immediate 
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predecessor of L1. 

Proof If L1 is finitely axiomatizable then the existence of an immediate pre
decessor of L1 in [L2, L1] follows from Zorn's lemma (see Section 7.4). 

Suppose now that L 1 has an infinite independent set of axioms {'Pi : i < w}. 
Since L2 is a finitely axiomatizable sublogic of L1, there is n < w such that L2 is 
contained in the logic with the axioms 'Po, ... , 'Pn· Let L3 be the logic with the 
axioms cpo, ... , 'Pn, 'Pn+2, 'Pn+3, .... Since the set of L1 's axioms is independent, 
L2 C L3 C L1 and 'Pn+l r/. L3. And now again Zorn's lemma provides us with 
an immediate predecessor of L1 in the interval [L3, L1]. 0 

With the help of this proposition Chagrov and Zakharyaschev (1995a) con
structed concrete modal and si-logics without independent axiomatizations. The 
reader can fulfill the construction by himself following the hints in Exercises 8.20-
8.22. Note, by the way, that the problem of independent axiomatizability of 
quasi-normal logics still remains open. 

Another example of that kind is connected with attempts to describe big fam
ilies of logics. A hypothetical way to do this may be illustrated by the following 
observation. As we shall see later, the class Ext(lnt + bd3 ) contains a continuum 
of logics. But, according to Segerberg's theorem (to be proved in Section 8.6), 
all of them are finitely approximable and so there is a countable sequence of 
frames (of depth::; 3) such that every logic in the class is characterized by one of 
its subsequences. What if logics in bigger classes can be determined in a similar 
way? However, the following proposition holds. 

Proposition 4.21 Suppose a logic L in some class of logics has a continuum 
of immediate predecessors in the class. Then there is no countable sequence C 
of semantical structures such that its subsequences characterize all logics in this 
class. 

Proof Suppose otherwise and let Li, for i E /,be all distinct immediate prede
cessors of L in our class. Then, as is easy to see, for every i E I there is 6i E C 
such that 6i I= Li and 6i lt= Lj for j EI - {i}, contrary to C being countable. 

0 

This proposition, which also follows from Kleyman (1984), was applied to 
modal and si-logics by Chagrov and Tsytkin (1987) and Chagrov (1994a). 

Maksimova et al. (1979) proved that ML is not finitely axiomatizable; She
htman (1990b) extended this result to all normal modal companions of ML in 
NExtS4. 

Exercise 4.25 is due to Thomason (1980). 



Part II 

Kripke semantics 

Proceeding to the systematic study.of superintuitionistic and modal logics, first 
of all we are interested in finding good semantic instruments. To begin with, 
let us try to manage with what we already have, namely, Kripke frames and 
models. So the main questions we address in this part are whether logics in 
Extlnt and NExtK are characterized by suitable classes of Kripke frames and 
whether they are finitely approximable. First we generalize the completeness 
proofs of Sections 2.6 and 3.6 and show that this approach works for a good 
many other logics. 



5 

CANONICAL MODELS AND FILTRATION 

In this chapter we consider two best known methods of obtaining completeness 
results. One of them-the method of canonical models-given a consistent logic 
L in Extint or NExtK, constructs a canonical Kripke model !JJLL = {'JL, l.!h) 
characterizing L. Sometimes the frame 'JL turns out to be a frame for L, and 
then we can say at once that L is Kripke complete. Another method, known 
as filtration, is intended for establishing the finite approximability by means of 
extracting from the canonical models finite refutation frames. 

5.1 The Henkin construction 

Suppose L is a superintuitionistic or normal modal logic, and we want to find a 
class of Kripke models characterizing L. The proofs of the completeness theorems 
for Int and K above provide us with a method of constructing models refuting 
formulas outside of L. However formulas in L need not be true in them. So 
let us try to modify this method in such a way that it would ensure not only 
completeness but also soundness. 

Recall that the worlds in those models are tableaux t = (r, ~) consistent in 
Int and K, with the truth-relation in them being chosen so that t I= rp, for all 
rp E r, and t ~ 'ljJ, for all 'ljJ E ~. The condition guaranteeing in this situation 
that all formulas in L are true in all worlds is, of course, the inclusion L <:;;; r. 

Now we restore this construction in full detail. It is often called the Henkin 
construction in view of its conceptual closeness to the construction used by 
Henkin for proving the completeness of first order classical calculus. 

So, let L be a consistent si-logic in the language £ or a normal modal logic 
in the language MC. A tableau t = (r, ~) in the language of L is said to be 
£-consistent if for no <p1, ... , 'Pn in ~ do we have r f-- L <p1 V ... V 'Pn. t is called 
maximal if r U ~ is the set of all formulas in the language of L. It should be clear 
that every maximal £-consistent tableau is saturated in Int or K (for details see 
the proof of Theorem 1.16). 

The following two lemmas guarantee that if we succeed in constructing ( ac
cording to our plan) a model whose points are all maximal £-consistent tableaux 
then all formulas in L will be true in this model, while all those outside of L will 
be refuted by it. 

Lemma 5.1. (Lindenbaum's lemma) Every L-consistent tableau t = (r, fl) 
can be extended to a maximal L-consistent tableau. 
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Proof Let tp1, tp2, ... be some enumeration of all formulas in the language of L. 
Define a sequence of tableaux to = (fo, ~o), t1 = (f1, ~1), ... by taking to = t 
and, for i 2: 0, 

In exactly the same way as in the proof of Theorem 1.16 one can show that 
£-consistency of ti entails the £-consistency of ti+l · Thus all the constructed 
tableaux to, t1, ... prove to be £-consistent and for every formula cp there is i 
such that either cp E f i or cp E ~i. 

Let us consider now the tableau t* = (f*, ~ *) where 

i<w i<w 

It is clear that f* U ~ * contains all the formulas in the language of L and so t* 
is maximal. To prove that it is £-consistent, suppose otherwise. Then for some 
'Pl, ... , 'Pn E ~ *, there is a derivation of cp1 V ... V 'Pn from the set f* in L. Since 
this derivation uses only a finite number of assumptions in f*, there exists i such 
that tp1, ... , 'Pn E ~i and fi f--L 'Pl V ... V 'f?n, contrary to ti being £-consistent. 

0 

Lemma 5.2 Suppose A is a set of formulas and cp a formula in the language of 
L. Then A f--L cp iff, for every maximal £-consistent tableau t = (f, ~), cp E f 
whenever A ~ r. In particular, cp E L iff cp E r for every maximal £-consistent 
tableau t = (r, ~). 
Proof ( =>) If A ~ r and cp t/. r, for some maximal £-consistent tableau t = 
(f, ~), then, by the maximality oft, cp E ~. Since A f--L cp, it follows that t is 
not £-consistent, which is a contradiction. 

( ~) Suppose A It' L cp. Then the tableau t = (A, { cp}) is £-consistent. By 
Lindenbaum's lemma, t is contained in a n;i.aximal £-consistent tableau, which 
is a contradiction. 0 

Remarks (1) When proving Lemmas 5.1 and 5.2, we did not use the rule of 
necessitation. So these lemmas hold for quasi-normal modal logics as well. 

(2) It should be clear that with the help of transfinite induction the lemmas 
above can easily be extended to logics in uncountable languages. And certainly 
they hold for logics in finite languages. 

Now we can construct the mode) we are looking for. First we form a frame 
J L = (W L, RL) by taking W L to be the set of all maximal £-consistent tableaux 
and, for any ti= (f1,~1) and t2 = (f2,~2) in WL, 

and 
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The frame JL is called the canonical frame for L. 

Lemma 5.3 JL is a Hintikka system in Int, if L E Extlnt, and in K, if L E 
NExtK. 

Proof Follows from the proofs of Theorems 2.43 and 3.53 and Lindenbaum's 
lemma. 0 

Define a valuation m L in J L by taking, for every variable p, 

QJL(p) = {(r, ~) E WL: p Er}. 

The resulting model 9.JtL = (JL,mL) is called the canonical model for L. 

Theorem 5.4. (Canonical model) Let L be a consistent superintuitionistic 
OT' noTmal modal logic and 9.JtL = (JL, QJL) its canonical model on the frame 
JL = (WL, RL)· Then fo'T' eve'f'Y foTmula cp and eve'f'Y tableau t = (r, ~) in WL, 

(i) cp Er implies (9.JtL, t) F cp, 
(ii) cp E ~ implies (9.JtL, t) lf= cp 

and so 
(iii) (9.JtL,t) F cp iffcp Er. 

Proof By Lemma 5.3, JL is a Hintikka system. It remains to observe that the 
valuation QJ L was defined in exactly the same way as in the proofs of Proposi
tions 2.31 and 3.25, where the implications (i) and (ii) were established. 0 

Theorem 5.5 Suppose L is a consistent logic in Extlnt OT' NExtK. Then eve'f'Y 
L-consistent tableau is Tealized in mL. In pa'T'ticula'f', A 1-- L 'P iff, fo'T' eve'f'Y point 
x in mL, x I= A implies x I= cp, and 'PEL iff 9.JtL I= 'P· 

Proof Follows from Lemmas 5.1, 5.2 and Theorem 5.4. 0 

Of course, it seems unlikely that a completeness result of such generality can 
be used as a technical tool for deciding whether a given formula is in L. Indeed, 
the model 9.JtL was defined via the derivability in Land so it is nothing more than 
a model-theoretic reformulation of L. The role of canonical models is different: 
they give us that starting point from which we can develop a model-theoretic 
approach to investigating the logics under consideration. In the next sections of 
this chapter we shall use canonical models to prove the Kripke completeness and 
finite approximability of many superintuitionistic and modal logics. But before 
that we observe some important properties of canonical models which will be 
required in the sequel. 

A model 001 = (J, QJ) for Int or K is said to be difjeTentiated if, for any two 
points x, y in J, x = y whenever exactly the same formulas are true at x and y. 
As a direct consequence of the canonical model theorem we obtain 

Proposition 5.6 Eve'f'Y canonical model is difjeTentiated. 
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A model 9J1 = (~, QJ) for Int on a frame ~ = (W, R) is called tight if, for any 
x, y E W, xRy whenever x I= 'P implies y I= 'P for every 'P E For.C. A model 
9J1 for K is tight if, for any x, y E W, xRy whenever x I= Dcp implies y I= 'P for 
every 'P E ForM£. It follows immediately from the definition of 9J1L that the 
following proposition holds: 

Proposition 5. 7 Every canonical model is tight. 

A model is called refined if it is both differentiated and tight. Notice that in 
the intuitionistic case differentiatedness follows from tightness. 

Corollary 5.8 Every canonical model is refined. 

In the modal case Propositions 5.6 and 5.7 can be generalized as follows: 

Proposition 5.9 Suppose 9J1L = (~L, !tJL) is the canonical model for a normal 
modal logic L. Then for any x, y E WL and any n ~ 0, xR''l,y iff x I= oncp 
implies y I= 'P for every modal formula cp. 

Proof ( =>) Follows from Proposition 3.1. 
( {=) is proved by induction on n. The case n = 0 means nothing else but that 

9J1L is differentiated. 
Suppose now that our proposition holds for n and let x I= on+l'P imply 

y I= 'P for every 'PE ForM£. We must prove is that there is z such that xRLz 
and zRJ,y. Consider the tableau t = (r, 6.) where 

and show that it is £-consistent. Suppose otherwise. Then 

for some 'Pl, ... , 'Pk E r and Dn7/J1, ... , on1/Jm E 6., whence, by Examples 3.49 
and 3.50, 

1--L Dtp1 /\ ... /\ Dtpk ~ D(Dn7/J1 V ... V Dn7/Jm)· 

Therefore, x != D(Dn7/J1 V ... V on7/Jm) and so x != on+1(7jJ1 V ... V 7/Jm)· But 
then y I= 7/!1 V ... V 7/Jm, whence y I= 1/Ji for some i, contrary to on7/Ji E 6.. 

By Lindenbaum's lemma, tis contained in some maximal £-consistent tableau 
t* = (r*, 6. *). By the definition of r, we must have xRLt*. Furthermore, by the 
definition of 6., t* I= oncp implies y I= cp, for every cp, and so, by the induction 
hypothesis, t* RJ,y. 0 

Corollary 5.10 For all points x and y in the canonical model for a normal 
modal logic L and every n ~ 0, xRJ,y iffy I= 'P implies x I= oncp, for all 
'PE ForM£. 

A model 9J1 is called compact if a tableau t is realizable in 9J1 whenever every 
finite subtableau of t is realizable in 9J1. For modal models 9J1 this definition is 
clearly equivalent to the more familiar one: 9J1 is compact if a set of formulas I: 
is satisfied in 9J1 whenever every finite subset of I: is satisfied in 9J1. 
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Proposition 5.11 Every canonical model is compact. 

Proof Exercise. 0 

5.2 Completeness theorems 

According to Theorem 5.5, all formulas that do not belong to a superintuitionistic 
or normal modal logic L are refuted in the canonical frame J L. So if we prove 
that JL is a frame for L, then the Kripke completeness of L will be established. 
Moreover, in this case L will be even strongly complete. 

A logic L with J L f= L is called canonical. For example, Int and K are 
obviously canonical. Using this notion, the observation above can be formulated 
as follows: 

Theorem 5.12 Every canonical superintuitionistic or normal modal logic is 
strongly Kripke complete. 

In fact, sometimes we can derive a much more useful result than simply strong 
Kripke completeness. Suppose that we have already proved the soundness of L 
with respect to the class of frames satisfying some property P. If now we succeed 
in proving that JL satisfies P, then we shall establish not only that Lis canonical 
but also that it is characterized by the class of frames satisfying P. 

For instance, Proposition 3.73 asserts that the calculus T or, equivalently, 
the logic L = K EB Dp----> p, is sound with respect to the class of reflexive frames. 
To prove the completeness of this logic, it suffices to establish the reflexivity of 
its canonical frame J L = (W L, RL). Suppose otherwise. Then there is a tableau 
t = (r,~) E WL such that not tRLt. By the definition of RL, this is possible 
only if Dcp E r and cp E ~' for some formula cp. But then, by Lemmas 5.2 and 
5.3, Dcp ----> cp rj_ L, which is a contradiction. 

Note by the way that in this argument we have used only that re belongs to 
L. So actually we have proved the following: 

Theorem 5.13 Suppose a logic LE NExtK is consistent and contains re. Then 
the canonical frame J L for L is reflexive. 

Corollary 5.14 The calculus T is complete with respect to the class of reflexive 
frames. 

If we recall that the logic T was defined as the logic characterized by the class 
of reflexive frames, then as a consequence of Proposition 3. 73 and Corollary 5.14 
we immediately derive 

Corollary 5.15 (i) T = K EB re. 
(ii) T is canonical. 

By the same scheme we can prove the canonicity of the logics in Extlnt 
and NExtK axiomatizable by the formulas which were supplied by first order 
equivalents in Chapters 2 and 3. 
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Theorem 5.16 Suppose L is a consistent superintuitionistic or normal modal 
logic and cp E L, for some formula cp in the list da, wem, bdn, bwn, ben, 
btwn, kp or, respectively, tran, sym, ser, gaklmn' euc, denn, sc, con, ga, 
dir, bwn, bdn, altn. Then the canonical frame 'JL for L satisfies the condition 
corresponding to cp. 

Proof We will consider only three formulas, leaving the others to the reader as 
an exercise. 

(i) Let oko1p -+ omonp E L, for some k, l, m, n 2: 0, and show that the 
canonical frame 'JL = (WL, RL) satisfies the condition 

\:Ix, y, z (xRlY /\ xR£z-+ 3u (yRi,u /\ zR£u)). 

Let ti = (ri, 6.i), for i = 0, 1, 2, be some tableaux in WL such that t0Rit1 
and t0R£t2. In order to show that there exists a tableau t = (r, 6.) for which 
t 1Rit and t2R£t, we should prove, by Lindenbaum's lemma, Proposition 5.9 and 
Corollary 5.10, that the tableau 

is £-consistent. Suppose otherwise. Then X-+ 1/J E L for some formulas D1x E f1 
and on'lj; E 6.2. Applying the regularity rule l times, we obtain D1x-+ D1'1j; E L, 
whence D1'1j; E f1 and so OkD11f; E fo. Since okol'lj; -+ omon'lj; E fo, we have 
also omon'lj; E fo. But then on'lj; E f2, contrary to t2 being £-consistent. 

(The reader can find a more general result in Exercise 5.25, while the strongest 
generalization, known as Sahlqvist's theorem, will be proved in Section 10.3.) 

(ii) Suppose now that D(D+p-+ q) V D(D+q-+ p) EL and show that 'JL is 
connected, i.e., satisfies the condition 

Suppose otherwise. Then we have three tableaux ti = (fi, 6.i) in WL, for i = 
0, 1,2, such that (a) toRLti, (b) toRLt2, (c) ti =f. t2, (d) not tiRLt2 and (e) not 
t 2RLt1. By (d), there is cp1 E 6.2 such that Dcp1 E r 1, while by (c), we have some 
Xi E f1 n 6.2. Let 'P ='Pl V Xi· Then o+cp E f1 and 'PE 6.2. By using (e) and 
(c) in exactly the same way, we can find 'lj; E 6.1 such that o+'lj; E r 2. Therefore, 
D(D+cp-+ 'If;) V D(D+'lj;-+ cp) E 6.0, which is a contradiction. 

(iii) Finally, we consider a si-logic L containing the Kreisel-Putnam formula 

and prove that 'J L satisfies the condition 

\:Ix, y, z (xRLY /\ xRLZ /\ •YRLz /\ •ZRLY-+ 3u (xRLu /\ uRLY /\ uRLz /\ 

\:Iv (uRLv-+ 3w (vRLW /\ (yRLw V ZRLw))))). 
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Suppose ti = (r1, D.i}, t2 = (r2, D-2), t3 = (r3, D.3) are points in WL such that 
tiRLt2, tiRLt3 and •t2RLt3, •t3RLh Form a tableau t = (r,D.) by taking 

6: = D-2 u D.3 

and show that t is £-consistent. Indeed, if this is not the case then (using the 
first de Morgan law which belongs to Int) we would have 

for some •<p E r2 n r3, 'l/J E D-2, X E D.3, and so, by kp, 

Therefore, either •<p -+ 'ljJ E ri or •<p -+ X E ri. In the former case we would 
then have 'ljJ E r2 and in the latter X E r3, contrary to the £-consistency of t2 
and t3. 

Thus, t is £-consistent and, by Lindenbaum's lemma, it can be extended to 
a maximal £-consistent tableau, say, t4 = (r4,D.4). By the definition, tiRLt4, 
t4RLt2 and t4RLt3. It remains to show that every successor of t4 has a common 
successor with t2 or t3. Suppose otherwise, i.e., some successor t' = (r', D.') of t4 
has no common successors with t2 and t3. Then there are formulas •<p2 E r2 and 
•<p3 E r 3 such that <p2, <p3 E r'. Indeed, the tableau (r 2 Ur', 0) is £-inconsistent 
(for otherwise t2 and t' would have a common successor) and so <p, <p2 f- L J_, for 
some <p E r 2, <p2 E r', from which <p f- L •<p2 and hence •<p2 E r 2. 

Therefore, •<p2 V •<p3 and so •(<p2 A <p3) are in r2 n r3. But then, since 
t4RLt', we have •(<p2 A <p3) E r'. On the other hand <p2 A <p3 E r', contrary to 
the £-consistency of t'. 0 

As a consequence of Theorem 5.16 we immediately obtain 

Theorem 5.17 Every logic L in Extlnt and NExtK axiomatizable by some of 
the formulas mentioned in Theorem 5.16 is canonical, with the canonical frame 
JL satisfying the first order conditions corresponding to the axioms of L. 

In particular we have the following completeness results: 

Corollary 5.18 (i) The calculus K 4 is characterized by the class of transitive 
frames. 

(ii) 84 is characterized by the class of quasi-ordered frames. 
(iii) 85 is characterized by the class of frames with universal alternativeness 

relations. 
(iv) D is characterized by the class of serial frames. 
(v) 84.3 is characterized by the class of connected quasi-orders and by the 

class of linear partial orders. 
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Proof (i), (ii), (iv) and the first part of (v) are immediate consequences of 
Theorem 5.17 and the soundness results in Section 3.8, (iii) follows from these 
and the generation theorem. As to the completeness of S4.3 with respect to linear 
partial orders, suppose If s4.3 cp. Then cp is refuted in a connected quasi-order 
and so, by the generation theorem, in a frame which is a chain of clusters. By 
bulldozing this chain (see the proof of Theorem 3.20), we can construct a linear 
order which is reducible to it and so, by the reduction theorem, also refutes <p. 

0 

For 85 Theorem 5.17 yields an even better result. 

Corollary 5.19 85 is locally tabular and characterized by the class of finite 
frames with universal alternativeness relations. 

Proof For n > 0 let MCn be a modal language with n variables. By Theo
rem 5.17, the logic S5(n) = S5nForM£n is canonical and Jss(n) is the disjoint 
union of clusters. Since 9Jts5(n) is differentiated and by Proposition 3. 7, each of 
these clusters may contain at most 2n points and the total number of clusters 
does not exceed 22

n. So JS5(n) is finite. Therefore, there are only finitely many 
pairwise non-equivalent formulas with n variables in 85 and each of them that 
is not in 85 is refuted in Jss(n)· 0 

Unfortunately the method of establishing completeness using canonical mod
els is far from being universal: there are normal modal and superintuitionistic 
logics which are Kripke complete but not canonical, witnesses GL, Grz, SL (see 
Section 6.2) and the McKinsey logic 

KM = K EB OOp ---; OOp. 

It also turns out that the axioms of these logics do not correspond to any first 
order condition on their Kripke frames. 

As to the McKinsey axiom ma, we saw in Section 3.5 that in the class of 
transitive frames it corresponds to the McKinsey condition. Moreover, we will 
show now that the canonical frame for every normal extension of 

K4.1 = K4 EB OOp---; OOp 

satisfies it. To this end we require the following: 

Lemma 5.20 0 /\~= 1 (0cpi---; Ocpi) ~ K4.1, for any formulas cp1, ... ,<fJn· 

Proof Observe first that since (OOp---; OOp) +-+ O(Op---; Op) EK (see Table 
3.1), O(Oip---; Ocp) E K4.l for any cp. Let 1/Ji = Ocpi---; Ocpi, i = 1, ... , n. Then 
01/;1, ... , 01/Jn E K4.l. By RN, 001/J1, 001/J2 E K4.1 and so 001/;2 E K4.l. By 
using twice Op/\ Oq ---; O(p /\ q) in Table 3.1, we get 00( 1/;1 /\ 1/;2) E K4.l and 
so 0(1/;1 /\1/;2) E K4.l, since OOp---; Op is in K4. Now by applying the same 
argument to 0( 1/;1 /\ 1/;2) and 01/;3 , we obtain 0( 1/;1 /\ 1/;2 /\ 1/J3) E K4.l and so 
forth. Eventually we shall have 0(1/;1/\ ... /\1/Jn) E K4.l. 0 
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Theorem 5.21 Suppose L E NExtK4 is consistent and contains ma. Then 
'JL = (WL, RL) satisfies the McKinsey condition 

'Vx3y (xRLY /\ 'Vz (yRLz-+ y = z)). 

Proof Let to = (fo, ~o) be a tab!eau in WL. Consider the tableau t' = (f', 0) 
with 

f' = {'P: Dip E fo} U {Oip-+ Dip: 'PE ForM.C} 

and show that it is L-consistent. Suppose otherwise. Then 

for some Dip E fo and 'f?i, ... , 'Pn E ForM.C. By the deduction theorem and the 
regularity rule, it follows that 

n 

f- L Dip-+ D-, /\ ( Oipi -+ Dipi), 
i=l 

and so 
n 

•<> /\ (<>'Pi -+ Dipi) E f o, 
i=l 

contrary to Lemma 5.20. 
Now take a maximal L-consistent extension ti = (r 1, ~1 ) of t'. Clearly 

toRLt1 . We are going to show that either ti itself or any t 2 E ti j has no proper 
successors. Indeed, otherwise we have three tableaux ti = (ri, ~i) in WL, for 
i = 1, 2, 3, such that t2 =/=-band tiRLt2 RLt3. But then there is a formula 'P such 
that 'f? E f2 n ~3 and so, by the transitivity of RL, <>ip E f1 and Dip E ~1, 
whence <>ip-+ Dip E ~i, contrary to t1 being L-consistent. 0 

As a consequence of this theorem and results in Section 3.5 we derive 

Corollary 5.22 (i) K4.l = K4 EB D<>p-+ <>Dp is canonical, with JK4.l being 
transitive and satisfying the McKinsey condition. 

(ii) 84.1 = 84 EB DOp -+ ODp is canonical, with Js4.1 being a quasi-order 
satisfying the McKinsey condition. 

5.3 The filtration method 

The canonical model for a consistent logic L refutes all the formulas which do 
not belong to L. It is very big (contains continuum many points, to be more 
exact) and complicated. On the other hand, the examples of Int and K show 
that each formula 'P ¢ L may be separated from L by a finite frame. Provided 
that Lis finitely axiomatizable, this immediately yields the decidability of L (for 
details consult Section 16.2). 
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The filtration method is intended to establish such completeness results and 
sometimes it may succeed even if the method of canonical models fails to prove 
canonicity. 

To establish the finite approximability of a logic L, we need to prove that for 
every formula <p there is a frame J satisfying the following three conditions: (1) 
J ~ <p, (2) J is finite, (3) J FL. By Theorem 5.5, to ensure (1) it suffices to take 
the canonical frame JL for L. It is somewhat more difficult to satisfy (2), but, as 
we saw in Sections 2.4 and 3.4, also possible. Since we are interested only in truth
values of <p, all the formulas which are not subformulas of <p may be discarded 
from the tableaux in WL. Or better we shall regard tableaux ti = (r1, ~1 ) and 
t2 = (f2, ~2) in WL as Subcp-equivalent if f 1 n Subcp = f2 n Subcp. And then 
we see that modulo the Subcp-equivalence tableaux in WL mostly duplicate each 
other. More exactly, there are at most 2ISubipl pairwise non-Subcp-equivalent 
tableaux in WL. Is it possible to construct from them some Hintikka system 
.fj = (T, S}? To do this it suffices to define an accessibility relation S so that 
the conditions (HS1l) and (HS12), if L E Extlnt, and (HSMl) and (HSM2), 
if L E NExtK, are satisfied. The former of these two conditions can always be 
satisfied, for instance, by taking it as a necessary condition for S. To meet the 
latter, we can use the fact that JL satisfies it and simply put t 1St2 if t'iRLt~, 
for some t'i, t~ E WL that are Subcp-equivalent to ti and t2, respectively. The 
restrictions thus obtained give in general a spectrum of suitable S. And this is 
very much to the point, since we still need to take care of the condition (3). 
Whether (3) can be met by a proper choice of S depends on the particular logic 
L. So let us first consider in more detail the construction sketched above and 
then apply it to establish the finite approximability of a few superintuitionistic 
and modal logics. 

Suppose we have a model 9Jt = (J, QJ} of the language C or MC on a frame 
~ = (W, R} and let E be a set of (C- or MC-) formulas closed under subformulas, 
i.e., Sub<p ~ E whenever <p E E. We say points x, y E Ware E-equivalent in 9Jt 
and write x "'E y if 

(9Jt,x) F <p iff (9Jt,y) F <p, ,for every <p EE. 

Clearly "'E is an equivalence relation on W. Denote by [x]E the equivalence class 
generated by x, i.e., put [x]E = {y E W: x "'E y}. As a rule we will drop the 
subscript E and write simply [x] and x"' y if this does not involve ambiguity. ' 

A filtration of 9Jt through E is any model lJt = (~, il} based on a frame 
~ = (V, S} such that 

(i) V = {[x] : x E W}; 

(ii) il(p) = {[x] : x E QJ(p)}, for every variable p E E; 

(iii) xRy implies [x]S[y], for all x, y E W; 

(iv) if [x]S[y] then y F <p whenever x F D<p, for x, y E W and D<p E E, 

in the modal case and 
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(iv') if [x]S[y] then y I= <p whenever x I= <p, for all x, y E W and <p E E, 

in the intuitionistic one. 
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Theorem 5.23. (Filtration) Let IJ1 be a filtration of a model 9R through a set 
of formulas E. Then for every point x in 9R and every formula <p E E, 

(9R, x) I= ~ iff (!Jt, [x]) I= <p. 

Proof The proof proceeds by induction on the construction of <p. The basis of 
induction follows from (ii). Now let <p = 07/J E E and x I= <p. To prove [x] I= <p, 

we need to show that [y] I= 'ljJ for every successor [y] of [x]. So suppose [x]S[y]. 
Then, by (iv), y I= 'ljJ and, by the induction hypothesis, [y] I= 7/J. Conversely, let 
[x] I= 07/J. Take any y E xi. Then, by (iii), [x]S[y] and so [y] I= 7/J, whence, by 
the induction hypothesis, y I= 7/J. The induction step for <p = 'ljJ /\ x, <p = 'ljJ V x 
and <p = 'ljJ -+ x in the modal case follows immediately from the truth-definition 
and the induction hypothesis. 

The intuitionistic case is considered analogously by using (iv') instead of (iv). 
0 

In general, the conditions (iii) and (iv) (or (iv')) do not determine S uniquely. 
Actually, they allow us to choose any relation S in the interval fl.. ~ S ~ S, where 

fl..= { ([x], [y]) : 3x', y' E W (x' "'x /\ y' "'y /\ x' Ry')}, 

S = { ([x], [y]) : V'Ot.p E E (x I= Ot.p -+ y I= <p)} 

or, in the intuitionistic case, 

S = { ([x], [y]) : V<p EE (x I= <p-+ y I= t.p)}. 

Indeed, if [x]S[y] holds then, by (iv) and (iv'), [x]S[y]. And if [x]fi..[y] then x' Ry', 
for some x' E [x], y' E [y], and so, by (iii), [x]S[y]. The fact that fl.. satisfies (iv) 
or (iv') and S satisfies (iii) follows directly from the truth-definition in modal 
and intuitionistic models. 

For this reason the filtration on the frame ~ = (V, fl..) is called the finest or 
the least filtration of 9R through E, while the filtration on the frame ~ = (V, S) 
is called the coarsest or the greatest. 

It is to be noted that a relation S between fl.. and S may be nontransitive 
even if the original R is transitive, in particular, not all S in this interval give 
rise to filtrations of intuitionistic models. To construct a transitive relation we 
can take the transitive closure ~ of fl_, i.e., put 

§.. = {([x], [y]): 3n > 0 [x]fi..n[y]}. 

Clearly§.. satisfies (iii). To prove (iv), suppose [x]§..[y] and x I= D<p, for some 
x, y in 9R and D<p in E. Then there is a finite sequence of points [u], ... , [v] 
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such that [x]Q[U]Q ... Q[V]Q[y]. By the definition of Q, x' Ru' for some x' and 
u' that are E-equivalent to x and u, respectively. Since R is transitive and by 
Proposition 3.6, we then have u' I= o+cp and so u I= o+cp. Using the same 
argument for the sequence u, ... , v, y, we shall eventually obtain y I= o+cp. The 
intuitionistic models are considered analogously. Observe that in this case~ as 
well as S are partial orders. 

Alternatively we can define a transitive filtration !Jt = (IB,U) of a transitive 
modal model wt through E by taking, for any x and y in wt, 

[x]S[y] iffy I= o+cp whenever x I= Dcp, for all Dcp E E. 

It should be clear that the frame IB = (V, S) is transitive and that !Jt is a filtration 
of wt. It is called the Lemmon filtration of wt through E. 

A very important property of filtrations is that they are finite whenever the 
"filter" E is finite. Moreover, a filtration may be finite even if the filter E is 
infinite. Say that a set E is finitely based over a model wt if there is a finite set 
of formulas Li, a finite base of E over wt, such that 

For example, since Cl is locally tabular (see Theorem 1.29), the Boolean closure, 
i.e., the closure under A, V, ~, .l of every finite set of modal formulas is finitely 
based over any model. (However, this is not so in the intuitionistic case.) 

Proposition 5.24 Suppose !Jt is a filtration of a model wt through a set E which 
is finitely based over wt and Li is a finite base of E. Then !Jt contains at most 
21~1 points. 

Proof Clearly, two points are E-equivalent in wt iff they are Li-equivalent. So 
the number of pairwise non-E-equivalent points in wt is not greater than the 
number of subsets in Li. 0 

As a consequence of Theorem 5.23 and Proposition 5.24 we obtain 

Corollary 5.25 Suppose wt is a countermodel for <p and E a finitely based over 
wt set of formulas closed under subformulas. Then every filtration of wt through 
E is a finite countermodel for <p. 

Thus, to prove the finite approximability (the finite model property, to be 
more precise) of a logic L, it suffices to show that for every formula <p </. L there 
is a filtration !Jt of some countermodel wt for <p through some finitely based (over 
wt) filter E containing <p such that !Jt I= L. If this is really the case then we say 
that L admits filtration. 

Corollary 5.26 If a logic L admits filtration then L is finitely approximable. 

The following two remarks are relevant here. First, if a logic L is sound with 
respect to the class of frames satisfying a property P, then to prove that L 
admits filtration it is sufficient to show that for every <p </. L there is a filtration 
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lJ1 = (®,il) of 9RL (or some other countermodel for <p) through some finitely 
based E containing <p such that ® satisfies P. Second, it turns out that when 
filtrating the canonical model 9RL, we have no real choice for S. For the following 
proposition holds: 

Proposition 5.27 Suppose lJ1 = ( ®, il) is a filtration of the canonical model 
9RL = (~L, WL) through E such that lJl i= L. Then lJ1 is the finest filtration of 
9RL through E. 

Proof Let ® = (V, S). We need to show that S s; §_, i.e., for any [x], [y] E V 
such that [x]S[y], there are x', y' E WL for which x' rv x, y' rv y and x' RLy'. 
Consider the tableaux t1 = (f1, D.1) and t2 = (f2, D.2), where 

r1 = {<p: (lJl, [x]) I= <p}, D.1 = {<p: (lJl, [x]) lf: <p}, 

r2 = {<I' : (m, [y]) I= <I'}, D.2 = {<I' : (m, [y]) lf: <I'}. 

Since lJ1 I= L, both t 1 and t2 are £-consistent and so belong to WL. And since 
[x]S[y], we must have t1RLt2. 0 

We are in a position now to prove the finite approximability of a few modal 
and superintuitionistic logics using the filtration method. 

First of all, since our basic logics Int and K are characterized by the class of 
all frames, they trivially admit filtration. 

Next, let us observe that, by (iii), every filtration of a reflexive or serial model 
is reflexive or serial too. More generally, if the underlying frame of a model 9J1 
satisfies some condition expressed by first order formulas (with R and = as their 
only predicates), containing no occurrences of---+ and j_-such formulas are called 
positive-then (iii) guarantees that the underlying frame of every filtration of 9J1 
also satisfies this condition, which can readily be proved by induction on the 
construction of the first order positive formulas. In fact, this is a consequence 
of the result in classical model theory according to which positive formulas are 
stable under homomorphisms (see Chang and Keisler, 1990, Theorem 3.2.4). 
Thus we have 

Theorem 5.28 If a normal modal or superintuitionistic logic L is characterized 
by the class of frames satisfying some first order positive formulas in R and = 
then L admits filtration and so is finitely approximable. 

Proof The detailed proof is left to the reader as an exercise. 0 

Corollary 5.29 The logics D, T and 85 are finitely approximable and decid
able. 

Proposition 5.30 The finest filtration of every symmetrical model is also sym
metrical. 

Proof Suppose lJ1 = (®,il) is the finest filtration of a model 9J1 based on a 
symmetrical frame~= (W, R) and [x]S[y], for some points [x], [y] in ®. Then 
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by the definition of S, there are x' E [x] and y' E [y] such that x' Ry', from which 
y' Rx' and so, by (iii), [y]S[x]. 0 

As a consequence of Proposition 5.30 and Theorem 5.17, according to which 
KB is characterized by symmetrical frames, we obtain 

Corollary 5.31 KB admits filtration and so is finitely approximable and decid
able. 

Using the transitive closure of the finest filtration or the Lemmon filtration 
and the fact that K4, D4 and S4 are characterized by the classes of transitive 
frames, serial transitive frames and quasi-orders, respectively, we immediately 
obtain 

Corollary 5.32 The logics K4, D4, S4 admit filtration and so are finitely ap
proximable and decidable. 

Also we have 

Theorem 5.33 The logics K4.2, K4.3, S4.2, S4.3, KC, LC admit filtration 
and so are finitely approximable and decidable. 

Proof We show how to establish this result only for K4.2. The other logics are 
considered analogously. 

By Theorem 5.17 and the generation theorem, K4.2 is characterized by the 
class of rooted transitive directed frames. So it suffices to show that, for every 
model mt based on such a frame J = (W, R) and a finite filter 1:, there is a 
filtration of mt through 1: which is also based on a transitive directed frame. 

Take the transitive closure 1)1 of the finest filtration of mt through 1:. Let S 
be the accessibility relation in 1)1 and let [x]S[y] and [x]S[z], for some points [x], 
[y], [z] in 1)1 such that [y] #- [z]. Then uRy', vRz', for some y',..., y, z',..., z, u and 
v. Clearly, y' #- z'. Since J is rooted and transitive, both y' and z' are seen from 
the root of J and so, by the directedness condition, there is w such that y' Rw 
and z' Rw, from which [y]S[w] and [z]S[w]. 0 

Remark It is worth noting that although S4.3 is characterized by the class of 
linear partial orders, it is not characterized by the class of finite linear partial 
orders. For example, the Grzegorczyk formula is refuted by a proper cluster or 
an infinite ascending chain and so does not belong to S4.3. On the other hand, 
it is valid in every finite partial order. It follows in particular that by filtrating 
linear orders we may obtain chB;ins with proper clusters. 

Our next two results are a bit more complicated. They demonstrate situations 
when we have to filtrate models through sets which are bigger than the set of 
subformulas of the refuted formula. 

Theorem 5.34 The logics K4.1 and S4.1 admit filtration and so are finitely 
approximable and decidable. 

Proof We consider only K4.1, leaving S4.1 to the reader as an exercise. Ac
cording to Corollary 5.22, K4.1 is characterized by the class of transitive frames 
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satisfying the McKinsey condition. So, given a countermodel 9Jl for <.p on such a 
frame ~' we must construct a transitive filtration !J1 of 9Jl through some finite 
set E 2 Sub<.p such that every final cluster in !J1 is simple. Observe at once 
that, by (iii) and the McKinsey condition, no filtration of 9Jl contains dead ends. 
Thus, our only problem is to avoid final proper clusters in !Jt. We recommend the 
reader first to try filtrating 9Jl thro~gh Sub<.p to understand that under such a 
filtration two final simple clusters in 9Jl may be put into one proper cluster in !Jt. 
To prevent this, we should take a smaller accessibility relation in our filtration 
which can be done by choosing a bigger filter E. 

Define E as the closure under subformulas of the set 

{OO'lj!, OO'lj! : 7f! E Sub<.p} 

and let !J1 be the transitive closure of the finest filtration of 9Jl through E. Suppose 
[x] and [y] belong to a final cluster in !J1 and show that [x] = [y]. According to 
the filtration theorem, it suffices to establish that [x] ,...., [y]. 

Take a formula 7f! E E. If 7f! = ox or 7f! = <>x then, by Proposition 3.6, [x] I= 7f! 
iff [y] I= 'lj!. So the only remaining case is 7f! E Sub<.p. Suppose [x] I= 'lj!. Then 
<>7f} is true in !J1 at every point in the cluster containing [x]; so [x] I= 007fl and 
x I= 007fl. Since 9Jl is a model for K4.1, we must then have x I= OO'lj! and hence 
[x] I= OO'lj!. Therefore, there is a point [z] in the cluster under consideration such 
that [z] I= O'lj! and so [y] I= 'lj!. 0 

Theorem 5.35 The logic K5 admits filtration and so is finitely approximable 
and decidable. 

Proof By Theorem 5.17, K5 = KEB<>Op ~Op is characterized by the class of 
Euclidean frames. Let 9Jl be a countermodel for a formula <.p based on a Euclidean 
frame. Again, a filtration of 9Jl through Sub<.p need not be Euclidean. So let us 
try a bigger filter, say, 

E = Sub<.p U {<>O'lj!: O'lj! E Sub1.p}. 

Let !J1 be the coarsest filtration of 9Jl through E. We show that its underlying 
frame l!3 = (V, S) is Euclidean. 

Suppose [x]S[y] and [x]S[z], for some [x], [y], [z] EV, and prove that [y]S[z]. 
By the definition of S, we need to show that [y] I= O'lj! implies [z] I= 'lj!, for every 
07fl E E. So let 07fl E E and [y] I= O'lj!. Then [x] I= OO'lj! and, by the filtration 
theorem, x I= OO'lj!, from which x I= O'lj!, since 9Jl is a model for K5. Therefore, 
[x] I= O'lj! and [z] I= 'lj!. 0 

Remark Since K5 has finitely many distinct modalities (see Exercise 5.10), 
the modal closure, i.e., the closure under prefixing 0 and <>, of every finite set 
of formulas is finitely based over any model for K5. So instead of E in the proof 
above we might use the modal closure of Sub<.p. 

Theorem 5.36 For every variable free formula 'lj!, the logic K EB 7f! admits fil
tration and so is finitely approximable and decidable. 
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Proof Since 'I/; contains no variables, every flirtation of a model for K EB 'I/; 
refuting cp through Subcp U Sub'lj; is also a model for K EB 'I/; in which cp is refuted. 

0 

It should be clear that instead of K in Theorem 5.36 we can take any other 
logic considered in this section. 

5.4 Diego's theorem 

The bigger the filter, the more properties of the initial model will be inherited 
by its filtration and the more chances that the filtration will be a model for the 
logic under consideration. In this section we show that the closure of every finite 
set of intuitionistic formulas under /\, --> and J_ (or --, ) is finitely based over 
any intuitionistic model and so can be exploited as a filter for establishing the 
finite approximability of superintuitionistic logics. This very useful result is an 
immediate consequence of the following: 

Theorem 5.37. (Diego's theorem} For every n 2: 0, the set Sn of formulas, 
constructed from the variables p1, ... ,Pn using/\,--> and J_, contains only finitely 
many pairwise non-equivalent in Int formulas. 

Proof The proof proceeds via a number of lemmas and requires some auxiliary 
definitions. 

To begin with, we form the coarsest filtration 9J1 = (J, m) of the canonical 
model for Int through Sn. We will regard points t in J = (W, R) as tableaux 
t = (r, D.) such that 

r = {cp E Sn: (9J1,t) F cp}, D. = {cp E Sn: (9J1,t) ~ cp}. 

For an atomic p E Sn, call such a tableau t = (r, D.) p-prime (relative to Sn) if 
p E Do and, for every cp E Sn, either cp E r or cp--> p E r. 
Lemma 5.38 For any atomic p E Sn, any t = (r, D.) E W and any cp E Sn, if 
cp --> p E D. then there is a p-prime successor t* = (r*, D. *) oft in J such that 
cp Er*. 

Proof Since cp --> p E D., there must be a point ti = (r 1, D.1) accessible from 
t in J for which cp E ri, p E D.1. Let X be a maximal chain of points in J 
refuting p and such that t1 E x. Put r* = U(r' ,A')EX r'' D. * = Sn - r* and 
t* = (r*, D. *). The tableau t* is. Int-consistent, for otherwise we would have 
'Pl /\ ... /\ 'Pk --> 1/;1 V ... V 1/;1 E Int, for some 'Pl, ... , 'Pk E r*, 1/;1, ... , 1/;1 E Do*. 
But then, since X is linearly ordered and by (HS 11), there exists t' = (r', D.') E X 
such that <p1, ... , 'Pk E r', 1/;1, ... , 1/;1 E Do', contrary to the Int-consistency oft'. 
Therefore t* is a point in J. In fact, it is the final point in X. Besides, we clearly 
have cp E r* and tRt*. It remains to observe that t* is p-prime. Indeed, by the 
definition, p E D. * and if 'I/; and 'I/; --> p are in D. * then there is a successor t' of 
t* such that t' f= 'I/;, t' ~ p, from which t' = t*, for otherwise we can extend the 
chain X by adding t' to it, contrary to its maximality. 0 
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Let V be the set of all p-prime tableaux in W, for all atomic p E 3n, S the 
restriction of R to V and 15 = (V, S). 

Lemma 5.39 For any t = (r, b.) E W and any <p E b., there is a tableau 
t* = (f*, b. *) in V such that tRt* and <p E b. *. 

Proof Observe first that, by the i~tuitionistic equivalences 

p <--+ ((j_-> j_)-> p), (p-> (q-> r)) <--+ (p /\ q-> r) 

and 
(p-> q /\ r) <--+ (p-> q) /\ (p-> r), 

<p is equivalent in Int to a formula of the form /\i ('I/Ji -> Pi), for some atomic 
Pi E 3n and 'I/Ji E 3n. Therefore, 'I/Ji ->Pi E b., for some i, and so, by Lemma 5.38, 
there is a Pi-prime tableau t* = (f*, b. *) accessible from t and such that 'I/Ji E f*. 
It follows immediately that <p E b. *. 0 

As a consequence we readily derive that 15 = (V, S) is a Hintikka system 
characterizing 3n in the sense that, for every <p E 3n, <p is in Int iff <p E f, for 
all (r, b.) in V. 

Our goal now is to show that 15 is finite. 

Lemma 5.40 If t = (r, b.) is a p-prime tableau and t' = (f', b.') a proper 
successor oft in 15 then p E r'. 
Proof Since t # t' and tSt', there must be some <p E f' - r. And since t is 
p-prime, <p -t p E f. Therefore, <p -t p E f' and sop E f'. 0 

Suppose t = (f, b.) is a p-prime tableau in 15, for some p # Pn, and Pn E r. 
Form a tableau t' = (f', b.') by taking 

f' = {<p E f: Pn ~ Sub<p}, b.' = {<p Eb.: Pn ~ Sub<p}. 

Clearly t' is a p-prime tableau relative to 2n-1 · It turns out that t is uniquely 
determined by t' and Pn in the following sense. 

Lemma 5.41 r = {<p E 3n: f',Pn l-1nt <p}. 

Proof It suffices to show that f', Pn 1-int <p, for every <p E r. So let <p be an 
arbitrary formula in r and <p' = <p{T /Pn}· By the strong completeness theorem 
for Int, we have Pn l-1nt <p' <--+ <p. It follows that <p1 E r. Hence <p1 E f' and so 

f'' Pn 1-int 'P· 0 

We are in a position now to prove the crucial 

Lemma 5.42 15 is finite. 

Proof The proof proceeds by induction on n. If n = 0 then, according to 
Corollary 2.27, 15 contains only one point. 

Suppose now that n > 0. By the induction hypothesis and Lemma 5.41, there 
are finitely many tableaux (r, b.) in 15 such that p Er, for some atomic p E 3n. 
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(The variables may be renamed to use Lemma 5.41.) So it is sufficient to show 
that there is a finite number of tableaux t = (r, ~) in QS containing all Pl, ... , Pn 
in~- By Lemma 5.40, every such point t has no predecessors in QS. And by the 
generation theorem and the fact that all Pi are in~' tis uniquely determined by 
the set of its proper successors in QS. Since, as we have already established, only a 
finite number of such sets exists, there are only finitely many distinct t = (r, ~) 
with Pi, ... ,Pn E ~- 0 

It is not difficult now to complete the proof of Diego's theorem. Since QS 
characterizes Bn, for any cp, 'I/; E Bn we have cp +--> 'I/; E Int iff for every (f, ~) 
in QS, cp and 'I/; simultaneously belong either to r or to ~- Ergo the number of 
pairwise non-equivalent in Int disjunction free formulas built from ..L, Pl, ... , Pn 
is not greater than the number of subsets in V, that is 21VI. 0 

As a direct consequence of Diego's theorem we obtain 

Corollary 5.43 Suppose E is a finite set of intuitionistic formulas. Then the 
closure of E under /\, ---> and ..L contains finitely many pairwise non-equivalent 
in Int formulas and so is finitely based over any intuitionistic model. 

We take advantage of this result to establish the finite approximability of 
the Kreisel-Putnam logic KP. In Section 7.3 we shall use it to prove the finite 
approximability of an infinite family of si-logics. 

Theorem 5.44 The Kreisel-Putnam logic 

KP = Int + ( •P ---> q V r) ---> ( •p ---> q) V ( •P ---> r) 

admits filtration and so is finitely approximable and decidable. 

Proof Suppose cp ~ KP and 9'J1 is a model for. KP refuting cp. Let E be the 
closure of Subcp under --->, I\ and ..L, and ~ a finite base of E over 9'J1. Con
struct the coarsest filtration lJl = (QS,U) of 9'J1 through E. By Proposition 5.24, 
Corollary 5.43 and the filtration theorem, lJl is a finite countermodel for cp. 

To prove that QS = (V, S) is a frame for KP, we show that it satisfies the 
first order condition for kp given in Exercise 2.10. Suppose otherwise. Since QS 
is finite, we then have points [x], [y], [z] E V such that [x]S[y], [x]S[z], [y] and [z] 
do not see each other and every successor [u] of [x], seeing both [y] and [z] (in 
particular [x] itself), sees a final point [w] in QS, which is not accessible from [y] 
and [z]. Let [w1J, ... , [wn] be all the final points in QS that are seen from [x] and 
are not seen from [y] and [z]. According to our assumption, n > 0. 

For a point [v] E V, denote by "fv the conjunction of all the formulas in ~ 
that are true at [v] and by Ov the disjunction of those formulas in~ that are false 
at [v] in lJl. Put 'Y = V~=l 'Yw; and consider the following substitution instance 
of kp: 

K, = (•"f ___. Oy v Oz)___.(•"(___. Oy) v (•"(___.Oz)· 

Since 9'J1 I= KP, we have (9'J1, x) I= "'· Also we must have x ~ -.'Y ---> Oy and 
x ~ •"( ---> oz. Indeed, if for instance x I= •"( ---> Vi Wi, where Wi are the formulas 
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in ~ that are false at [y], then by using kp a sufficient number of times we 
obtain that x I= Vi(-.'Y ~'I/Ji) and so x I= -.'Y ~'I/Ji, for some i. And since -.'Y is 
equivalent in Int to /\~=l -.'Yw, E E, we conclude by the filtration theorem that 
[x] I= -.'Y ~ 'I/Ji· On the other hand, we have [y] I= -.."(, for otherwise there is a 
point [v] accessible from [y] and such that [v] I= 'Yw,, for some i, and so [wi]S[v], 
which is possible only when [wi] =:= [v], since [wi] is final in <B. It follows that 
[y] I= '!/Ji, which is a contradiction. 

Therefore, x ff= -.'Y ~ 8y V Dz and so there is u E xj such that u I= -.'Y and 
u ff= 8y V Oz. Then [x]S[u], [u] I= -.'Y and [u] ff= 8y V Dz, from which [u]S[y] and 
[u]S[z], since SJl is the coarsest filtration of !.m. Take a point [wi] E [u]i. Clearly 

[wi] I= "fw, and so [u] ff= -.'Yw,, contrary to [u] I= /\~=l -.'Yw;. 0 

Remark In Section 18.2 we shall show that there are formulas cp </. KP whose 

smallest refutation frames validating KP contain at least 22ISub"'I points. This 
means that by filtrating !.m through Subcp we could not establish the finite 
approximability of KP. 

5.5 Selective filtration 

If we want to use the filtration method for establishing the finite approximability 
of a logic L without knowing any non-trivial completeness results for it, we have 
no other choice but to filtrate the canonical model !.mL through some set of 
formulas E. However, this may yield no result no matter what Ewe choose, even 
if L is really finitely approximable. For example, as we shall see below, GL is 
characterized by the class of finite strict orders, but the canonical frame J'GL 
contains a reflexive point, and so by (iii) in Section 5.3, every filtration of !.mGL 
has a reflexive point as well. 

When filtrating a model or better a Hintikka system SJ through E, we divide 
the tableaux in SJ into E-equivalence classes, identify the tableaux in each class 
and try to project the accessibility relation in SJ to the resulting finite set of 
tableaux so that we again could obtain a Hintikka system. Yet there is another 
way of constructing finite Hintikka systems starting from SJ: instead of factorizing 
SJ we may try to extract a finite subsystem of SJ by selecting some suitable 
points in the E-equivalence classes in accordance with the rules for constructing 
Hintikka systems. This method is known as selective filtration. We use it here to 
establish the finite approximability of GL, Grz and Tn. (By the way, none of 
these logics, except T 1, is canonical.) 

A general scheme of selective filtration, which will be enough for our purposes, 
may be described as follows. Suppose L is a modal or superintuitionistic logic 
and cp </. L. Then there is a model !.m = (J, m) separating cp from L, i.e., !.m ff= cp 
and !.m I= L. Suppose also that a set of formulas E is finitely based over !.m, 
closed under subformulas and contains cp. We may think of J as the Hintikka 
system J = (W, R), with points t E W being the tableaux t = (r, ~), where 

r = {'1/J EE: (!.m,t) I= 1/1}, ~ = {w EE: (!.m,t) ff= 1/1}. 
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We start our selective filtration of rot through E by selecting a tableau t = 
(f, ~) in W such that r.p E ~. The tableau twill be the root of the finite Hintikka 
system we are going to extract from rot. It may turn out that the pair n = (T, S), 
where T = { t} and S is the restriction of R to T, is already a Hintikka system. In 
this situation we are done. Otherwise there are formulas D'f/J E fl ( 'fjJ ---+ x E fl, 
in the intuitionistic case) such that either 'fjJ ~ fl or not tSt (respectively, 'fjJ ~ r). 
Denote by et the set of all formulas of that sort. Now, at the second step for 
each D'f/J E et (respectively, 'fjJ---+ X E et), we select a tableau t' = (f', fl') in W 
such that tRt' and 'fjJ E fl' (respectively, 'fjJ E f' and XE fl'). Denote by Tt the 
set of all selected successors oft. Then we add Tt to T, thus obtaining a set T', 
take the restriction S' of R to T' and check whether n' = (T', S') is a Hintikka 
system. If this is not the case then, for each t' E Tt, we consider formulas in 
et', select a set Tt' of suitable successors of t', add it to T', and so on till we 
reach tableaux t* with et• = 0. If we succeed then the resulting Hintikka system 
n* = (T*, S*) will certainly refute r.p. 

Two points are essential in this construction. First, we must ensure somehow 
that the process will eventually terminate. For example, we may try to select 
successors t' of each tableau t in such a way that 8t' contains less formulas than 
8t. And second, to separate r.p from L, n* must be a frame for L. In that respect 
the definition of the accessibility relation in .fj* as the restriction of R to T* may 
be too severe. For in fact, to obtain a Hintikka system, it is sufficient to define on 
T* any relation S in the interval S. ~ S ~ S*, where tS.t' iff either t = t' and 
tRt' or t' E Tt (of course, in ·the intuitionistic case S must be a partial order). 

We now apply this scheme to prove the finite approximability of 

GL = K4 EB D(Dp---+ p) ---+ Dp. 

Using the selective filtration, we will extract from the canonical model rotaL a 
finite submodel that refutes r.p ~ GL and contains only irreflexive points, which, 
by Proposition 3.47, is enough to ensure that the model validates the Lob axiom 
la. 

The following observation is the key to. the filtration. 

Lemma 5.45 Suppose x ~ D'f/J for some point x in a model rot for GL. Then 
there is an {irreflexive) pointy E xl such that y ~ 'fjJ and y I= D'f/J. 

Proof Since every substitution instance of the Lob axiom is true in rot, we have 
x I= D(D'f/J---+ 'f/J)---+ D'f/J. Therefore, x ~ D(D'f/J---+ 'f/J) and so there is y E xl such 
that y I= D'f/J and y ~ 'f/J. Clearly, y is irreflexive. 0 

Theorem 5.46 GL is characterized by the class of finite strict partial orders. 

Proof It suffices to show that every formula r.p ~ GL is refuted by some finite 
strict partial order Q3 = (V, S). We construct it according to the scheme above 
by filtrating rotaL through E = Subr.p. 

Observe first that there is an irreflexive point x0 in rotaL such that x0 ~ r.p. 
For there must be x in rotGL refuting r.p, and if x is reflexive then x ~ Dr.p and 
we can use Lemma 5.45. 
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We define® by induction. Put Vo= {x0 } and 8x0 = {O~ EE: x0 ~ 0~}. 
Suppose now that Vn = {x1, ... ,xm} has been already constructed. If 8x, = 0 
for all i = 1, ... , m, then let V = LJn=O VJ and S be the restriction of RGL to V. 
Otherwise, for each Xi with 8x; -:/= 0 and each O~ E 8x,, we select according to 
Lemma 5.45 an irreflexive pointy E Xil such that y ~~and y f= O~. Let Vn+l 
be the set of the selected points y. 

Since l8yl < l8x, I (because JcL is transitive) and E is finite, we must 
eventually reach a set Vk whose points validate all the boxed formulas in E, i.e., 
8x = 0 for every x E Vk. By the construction, the resulting frame ® is a strict 
partial order and ® ~ cp. 0 

Corollary 5.47 (i) GL is characterized by the class of Noetherian strict orders. 
(ii) GL is characterized by the class of finite strictly ordered trees. 

Proof Follows from Theorem 5.46, Proposition 3.47, Exercise 3.12 and the 
reduction theorem. 0 

It is somewhat more difficult to prove the finite approximability of the Grze
gorczyk logic 

Grz = K EB O(O(p-> Op) -> p) -> p. 

First we observe that the canonical frame for Grz satisfies two good properties: 

Proposition 5.48 JGrz is reflexive and transitive. 

Proof Suppose there is x in JGrz such that x rf_ x l- By the definition of 
canonical model, this means that x f= Ocp and x ~ cp, for some formula cp. But 
then x ~ O(O(cp-> Ocp)-> cp)-> cp, contrary to W1Grz f= Grz. Thus, W1Grz is 
reflexive. 

Now let us prove that Op -> OOp E Grz. By Theorem 5.16, it will follow 
that JGrz is transitive. Suppose otherwise. Then x ~ Op-> OOp and so x ~ cp, 
where cp = (p /\-,Op) V OOp, for some point x in W1Grz· We will show that in 
this case x f= O(O(cp-> Ocp)-> cp). 

Suppose otherwise. Then there exists y E x l such that y f= 0 ( cp -> Ocp), 
y f= Op and y ~ OOp (for if y ~ p then x ~ Op, which is a contradiction). 
Besides, there is z E yl for which z f= cp -> Ocp, z f= p and z ~ Op. Therefore, 
z f= cp and z f= Dcp. Now we have u E zl such that u f= (p /\ 0 0p) V OOp 
and u ~ p. By the reflexivity, u ~ OOp and hence u f= p /\ •Op, which is a 
contradiction. 

Thus x ~ O(O(cp -> Dcp) -> cp) -> cp, contrary to W1Grz being a model for 
~- 0 

Corollary 5.49 Grz = K4 EB grz = 84 EB grz. 

According to Proposition 3.48, to establish the finite approximability of Grz, 
given a formula cp rf_ Grz, we need to extract from W1Grz a finite partially 
ordered countermodel for r.p. The following lemma shows in particular that when 
filtrating W1Grz through E = Subcp we may choose successors of a point x in 
clusters different from C(x). And if two or more successors appear in the same 
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non-degenerate cluster, we simply shall not take into account the accessibility 
relation between them. 

Lemma 5.50 Suppose 01/J EE, x F '1/J and x [;ii= 01/J, for some point x in 9J1Grz· 
Then there is a point y E xl such that y [;ii= '1/J and z ""'E x for no z E yl. 

Proof Suppose otherwise. Then for every y E xl such that y [;ii= '1/J, there is a 
point z E yl which is E-equivalent to x and so z F '1/J and z [;ii= 01/J. It follows 
that x F= o(o('!/J ___. O'!/J) ___. '1/J). 

Since x [;ii= 01/J, there is y E xl such that y [;ii= '1/J, and since JGrz is transitive, 
y p 0(0('1/J ---t 01/J) ---t '1/J), contrary to 9J1Grz p Grz. 0 

We are in a position now to prove 

Theorem 5.51 Grz is determined by the class of finite partial orders. 

Proof Given a formula cp (j_ Grz, take E = Sub<p and use the selective filtration 
through E to extract from D.nGrz a finite partially ordered frame <8 = (V, S) 
refuting <p. We construct <8 by induction. 

To begin with, we take some point x in 9J1Grz such that x [;ii= <p and put 
<80 = (Vo,So), where Vo = {x}, So = {(x,x)}, and ex = {0'1/J E E : x [;ii= 
01/J and x F '1/J }. Suppose now that we have already constructed a partially or
dered frame <8n = (Vn, Sn) with Vn ~ WGrz> Sn ~ ~rz· Let Xn be the set 
of final points x in <8n such that ex -::j; 0. If Xn = 0 then put \!3 = 1!3n. Oth
erwise for each x E Xn and each 01/J E ex, fix a point y(x, 01/J) E x l such 
that y(x, 01/J) [;ii= '1/J and -,:Jz E y(x, 01/J)l z ""'E x (that such a point exists is 
guaranteed by Lemma 5.50). Put 

Vn+l = Vn U {y(x, 01/J): XE Xn and 01/J E 8x}, 

define Sn+l to be the reflexive and transitive closure of the relation 

Sn U { (x, y(x, 01/J)) : x E Xn and 01/J E en} 

and let 1!3n+l = (Vn+I, Sn+I)· It should be clear that Sn+l ~ RGrz (but Sn+l is 
not in general the restriction of RGrz to Vn+I)· 

Notice that 1!3n+l is a partial order. Indeed, otherwise we would have a cluster 
in 1!3n+l containing both x and y(x, 01/J), for some x E Xn and 01/J E 8x. But 
then y(x, O'ljJ)RGrzX, contrary to our choice of y(x, 01/J). 

Since no chain in 1!3n+l contains distinct E-equivalent points and since E 
is finite, at some step m we shall have Xm = 0, and so our selection process 
will terminate. If we regard points x in \!3 as the tableaux tx = (r x, ~x) with 
rx = {'1/J EE: (9J1Grz,X) F '1/J} and ~x = {'1/J EE: (9J1Grz,X) [;ii= '1/J}, then \!j 

will clearly be a Hintikka system. Therefore, \!3 [;ii= <p. 0 

Corollary 5.52 (i) Grz is characterized by the class of Noetherian partial or
ders. 

(ii) Grz is characterized by the class of finite partially ordered trees. 
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Proof Follows from.Theorems 5.51, 2.19 and Proposition 3.48. 0 

Let us consider now the si-logics 

n n 

Tn =Int+ f\ ((Pi-> V PJ)-> V PJ)-> V Pi, for n?:: 1, 
i=O i=O 

and prove that all of them are finitely approximable. By Proposition 2.41, T n 

is sound with respect to the class of finite frames of branching ~ n. We shall 
use the selective filtration to show that T n is also complete with respect to this 
class. 

Theorem 5.53 T n is characterized by the class of finite frames of branching 
~n. 

Proof Suppose cp 1- Tn and 9Jt = (.cr, ll'.J) is a model for Tn refuting cp. By 
Theorem 2.19 and the reduction theorem, without loss of generality we may 
assume that .cr = (W, R) is a tree. Let E = Subcp and r x = { 'ljJ E E : x f= 'ljJ}, 
for every point x in .cr. 

Given x in .cr, put rg(x) = {[y] : y E xi} and say that xis of minimal range 
if rg( x) = rg(y) for every y E [x] n xj. Since there are only finitely many distinct 
E-equivalence classes in 9Jt, every y E [x] sees a point z E [x] of minimal range. 

We are in a position now to extract from 9Jt a finite refutation frame ~ = 
(V, S) for cp of branching ~ n. To begin with, we select some point x of minimal 
range at which cp is refuted and put V0 = { x}. 

Suppose now that Vk has already been defined. If jrg(x)j = 1 for every x E Vk, 

then we put ~ = (V, S) where V = LJ~=o Vk and Sis the restriction of R to V. 
Otherwise, for each x E Vk with jrg(x)j > 1 and each [y] E rg(x) different 
from [x] and such that r z c r y for no [z] E rg(x) - {[x]}, we select a point 
u E [y] n xj of minimal range. Let Ux be the set of all the selected points for 
x and vk+l = Ux Ux. It should be clear that rx c ru (and rg(x)::) rg(u)), for 
every u E Ux, and so the inductive process must terminate. Using the standard 
tableau argument one can readily show also that ~ ~ cp. 

It remains to establish that l!5 f= Tn, i.e., l!5 is of branching ~ n. Suppose 
otherwise. Then there is a point x in ~ with ?:: n + 1 immediate successors 
Xo, ... ,xm, which are evidently in Ux because .cr is a tree. We are going to con
struct a substitution instance of T n's axiom bbn which is refuted at x in 9Jt. 

Denote by 8i the conjunction of the formulas in r Xi. Since all of them are 
true at Xi in oot, we have Xi F 8i; and since ri ~ rj for no distinct i and j, we 
have Xj ~ 8i if i-/:- j. Put Xi= 8i, for 0 ~ i < n, Xn = 8n V ... V 8m and consider 
the truth-value of the formula 'ljJ = bbn {xo/Po, ... , Xn/Pn} at x in 9Jt. 

Since xRxi for every i = 0, ... , m, we have x ~ V:o Xi· Suppose, however, 
that x ~ /\~=o((Xi -> viof.j X1) -> viof.j X1)· Then y F Xi -> vih XJ and 
Y ~ Vi#J XJ, for some y E xj and some i E {0, ... , n}, and hence y ~Xi· Since 
xi F Xi and Xi ~ viof.j XJ> y sees no points in [xi] and soy fr. x (for otherwise 
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x would not be of minimal range). Therefore, r Xj <:;; r y for some j E { 0, ... ' m}' 
and then y f= Xj if j < n and y f= Xn if j ~ n, which is a contradiction. 

It follows that x F /\~o((Xi --+ vii'j Xj) --+ vii'j X1), from which x ~ 'lj;, 

contrary to wt being a model for bbn. 0 

As a consequence of Theorem 5.53 we obtain the following completeness result 
justifying, by the way, the name T n of the logics under consideration. 

Corollary 5.54 Tn is characterized by the class of finite n-ary trees. 

Proof Exercise (use the reduction theorem and Exercise 2.5). 0 

5.6 Kripke semantics for quasi-normal logics 

The Kripke semantics for modal logics we have dealt with so far is suitable 
only for normal extensions of K. Now we use the concept of canonical model 
to introduce in a rather natural way a Kripke semantics for all logics in ExtK, 
including quasi-normal ones. 

Suppose L is a consistent quasi-normal logic. Then the set of formulas 

is clearly a normal logic, the gr~atest one among all normal logics contained in 
L, to be more exact. We call M the kernel of Land denote it by ker L. 

Let wt M = (JM, m M) 'be the canonical model for M. Each maximal £
consistent tableau t is also a maximal M-consistent tableau, and sot is a point 
in JM. Denote by DL the set of all maximal £-consistent tableaux. Then by 
Lemma 5.2 which, as we observed, holds for quasi-normal logics as well, we have 

A f-L 'P iff for every (f, ~) E DL, A<:;; r implies 'PE r. 

Therefore, by Theorem 5.4, for any A and cp, 

A f- L i.p iff for every t E D L, (wtM ,.t) f= A implies (wtM, t) f= cp. 

Of course, instead of M we can take any other normal logic contained in L. 
This result can be interpreted as follows. We distinguish in wtM a set of 

points, namely DL, and regard them as the only "actual worlds" in wtM. A 
formula cp is then assumed to be true in wtM if it is true at all the actual worlds. 

Thus we arrive at the following Kripke semantics for quasi-normal logics. 
A Kripke frame with distinguished points is a pair (J, D) where J = (W, R) is 

a Kripke frame and D <:;; W. The points in D are called the distinguished points 
or the actual worlds in J. A model with distinguished points (based on (J, D)) 
is a pair (wt, D) where wt = (J, !l'.J) is an ordinary Kripke model based on J. A 
formula cp is said to be true in (wt, D) (notation: (wt, D) f= cp) if (wt, x) f= cp for 
all x E D. cp is valid in (J, D) (notation: (J, D) f= cp) if i.p is true in all models 
based on (J, D). 
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Clearly, ~ != cp iff (~, W) != cp, so a frame~ may be identified with (~, W). 
As to the other extreme case, it follows from the definition that all formulas, 
even .l, are valid in (~, 0). 

The model (9J1kerL,DL) and the frame (~kerL,DL), constructed at the be
ginning of this section, are called the canonical model and the canonical frame 
(with distinguished points) for L, respectively. 

What we have established so far can be summarized as the following: 

Theorem 5.55 Each consistent quasi-normal logic L is strongly characterized 
by its canonical model (9J1kerL,DL), i.e., for every A and cp, 

A f-L cp iff"lx E DL (x !=A_, x != cp), 

in particular, 

It is worth noting that a formula cp is true in (9J1, D) iff cp is true in every 
model in the class { (9J1, {d}): d ED}. So we obtain 

Theorem 5.56 Every consistent quasi-normal logic is strongly characterized by 
a class of models having a single distinguished point. 

Given a class C of frames with distinguished points, denote by LogC the set 
of modal formulas that are valid in all frames in C; if C = { (~, D)} then we write 
simply Log(~, D). As an easy exercise we invite the reader to prove the following: 

Proposition 5.57 For every class C of frames with distinguished points, Lo[f:, 
is a quasi-normal logic. 

To illustrate the introduced semantics for quasi-normal logics we give some 
examples. 

Example 5.58 The first known quasi-normal, but not normal extension of S4 
was 

84.11 = S4 + OOp _, OOp. 

To understand why S4.11 is not normal, let us consider the frame ~ shown in 
Fig. 5.1 (a) with actual world 0. Since~ does not satisfy the McKinsey condition, 
it refutes ma and so(~, 0) [#:Oma. However, (~, {O}) !=ma, for otherwise we 
would have (under some valuation) 1 [#: ma, which is impossible. Therefore, 
S4.l' ~ Log(~, {O}). On the other hand, Oma </. Log(~, {O}), which means 
that S4. l' is not closed under necessitation. 

Theorem 5.59. (Scroggs' theorem) All logics in ExtS5 are normal. 

Proof It is enough to show that every quasi-normal extension L of S5( n) in the 
language with n < w variables is normal. According to Theorem 5.55, L is charac
terized by (9J1s5(n)> DL), which in view of Corollary 5.19 is finite. Using the dif
ferentiatedness and finiteness of Js5(n) it is readily shown (see Exercise 5.3) that 
L is characterized by the frame (JS5(n)' DL)· Let J be the subframe of Js5(n) 
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generated by DL· Then L =Log (;y, DL) and so, as is easy to see, L = Log;y. 
0 

Example 5.60 As we observed in Section 3.8, there is no Kripke frame validat
ing all formulas in Solovay's logic S = GL + Op --t p. It follows in particular 
that S has no consistent normal extensions. For the same reason no Kripke 
frame with distinguished points can validate S. Logics with this property may 
be called Kripke inconsistent. All consistent extensions of S, if any, are clearly 
Kripke inconsistent. 

Moreover, there is no (normal) Kripke model for S. For by Lemma 5.45, every 
model 9Jt for GL contains a final irreflexive point x. (Indeed, if y is not a dead 
end in 9Jt then y ~ DJ_ and so x f: DJ_ for some x E yj .) But then x ~ DJ_ --t .l_. 

We construct now a model with a distinguished point for S, which shows by 
the way that S is consistent. Let Q; = (V, S) be the (transitive) frame depicted 
in Fig. 5.1 (b), or formally 

Q:5=({i: i$w},{(w,w),(j,i): 0$i<j$w}). 

Define a valuation il in Q; by taking il(p) = V, for every variable p. Observe first 
that all substitution instances of the Lob axiom are true in the (normal) model 
9Jt = (Q:5,il). Indeed, all of them are clearly true at all irreflexive points in 9.Jt. As 
tow, one can readily prove by induction on the construction of cp that if w f: cp 
(or w ~ cp) then there is some n < w such that m f: cp (respectively, m ~ cp), 
for all m E { n, n + 1, ... , w}. So if a substitution instance of the Lob axiom is 
false at w then it is also false at some irreflexive point n which, as we know, is 
impossible. 

Thus, 9Jt f: GL. Now, let us observe that (9.Jt,w) f: Dcp --t cp, for every 
formula cp, simply because w is reflexive. So if we distinguish w as the only 
actual world in 9Jt then we obtain that (9.Jt, { w}) f: S. 

We use this observation to prove the following: 

Theorem 5.61 For every modal formula cp, 

cp ES iff f\ (01/J --t 1/J) --t cp E GL. 
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Proof The implication ( ¢=) is evident. To prove ( =} ), suppose 

f\ (01/J ....., 1f;) ....., cp ~ GL. 
D,PESub<p 

Since GL is finitely approximable, this formula is refuted at the root x of some 
finite frame~= (W, R) for GL under some valuation. Construct a new frame 
l5 by adding to~ the infinite chain depicted in Fig. 5.1 (b) so that it could see 
all points in ~ and define a valuation in l5 in such a way that the truth-value 
of each variable remains the same at all points in ~ and at points in the added 
chain it coincides with that at x. By induction on the construction of x E Subcp 
and using the fact that x I= /\o,µESub<p(01f; ....., 1/;) one can show that y I= x 
iff x I= x, for every y E x l- Since the root of l5 is reflexive, it follows that 
/\o,µESub<p (01/J ....., 1/J) ....., cp is false at it. And that every substitution instance of 

la is true there is checked in the same way as in Example 5.60. 0 

5. 7 Exercises 

Exercise 5.1 Show that K EB ma= DEB ma. 

Exercise 5.2 Construct modal and intuitionistic models that are not differen
tiated (tight, compact). 

Exercise 5.3 Show that if Wt= (~, !l'.l) is a differentiated finite model for a logic 
L then~ is a frame for L. Use this to prove that a logic is finitely approximable 
iff it has the finite model property. 

Exercise 5.4 Show that GL.3 = GL EB con is characterized by the class of 
finite strict linear orders and by the frame (w, >). 

Exercise 5.5 Show that K4Z = K4EBz is characterized by the class consisting 
of finite irreflexive frames and balloons. 

Exercise 5.6 Show that D4Z.3 = D4 EB z EB con is characterized by the frame 
(w, <). 

Exercise 5. 7 Show that Dum = S4 EB dum is characterized by the class con
sisting of finite partial orders and reflexive balloons. 

Exercise 5.8 Show that Grz.3 = GrzEBsc is characterized by the frame (w, ~). 

Exercise 5.9 Show that Dum.3 = Dum EB sc is characterized by the frame 
(w, ::;). 

Exercise 5.10 (i) Show that frames for K5 are 3-transitive. 
(ii) Prove that there are finitely many pairwise non-equivalent modalities in 

K5. 
(iii) Prove that all logics in NExtK5 are locally tabular and finitely axioma

tizable. 

Exercise 5.11 Show that D4G 1 is finitely approximable. 
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Exercise 5.12 (i) Prove that extensions of S4 may have only 14, 10, 8, 6, 2 or 
1 pairwise non-equivalent modalities. 

(ii) Show that both S4.1 and S4.2 have exactly 10 pairwise non-equivalent 
modalities, and S4.l EB S4.2 has only 8 of them. 

Exercise 5.13 Show that Int= ni2::l Tn and that 

Int c ... c Tn c ... c T2 c Ti. 

Exercise 5.14 Prove that each Tn, for n ~ 2, has the disjunction property. 

Exercise 5.15 Prove that all logics Altn, for n < w, are finitely approximable. 

Exercise 5.16 Prove that all logics in NExtAlt1 are finitely approximable. 

Exercise 5.17 Say that a logic L strongly admits filtration if for every generated 
submode! 9Jt of 9JtL and every finite set of formulas E closed under subformulas, 
there is a filtration of 9Jt through E based on a frame for L. Prove that if L 
strongly admits filtration then L is globally finitely approximable. Use this to 
show that the logics K, D, T, KB are globally finitely approximable. 

Exercise 5.18 Show that Log(~, D) = nxED Log(~, {x}). 

Exercise 5.19 Show that K4 = nn2::l K4BDn = nn2::l K4BW n· 

Exercise 5.20 Prove that Alt3 EB re EB sym has infinitely many non-equivalent 
modalities. (Segerberg (1971) conjectures that no proper normal extension of 
Alt3 EB re EB sym has this property.) 

Exercise 5 .21 Show that K4H = K4 EB p --> 0 (Op --> p) is canonical, with its 
canonical frame satisfying the condition 

xRy /\ yRz --> x = y Vy = z. 

Prove that every L E NExtK4H is finitely approximable. 

Exercise 5.22 Show that S4 EB DOp --> (p'--> Dp) is characterized by the class 
of quasi-orders satisfying the condition 

x -:/=- z /\ xRz /\ xRy --> yRz. 

Exercise 5.23 Show that S4 EB D(Dp--> q) V ( ODq--> p) is characterized by the 
class,,f quasi-orders satisfying the condition 

xRz /\ -,zRx /\ xRy --> yRz. 

Exercise 5.24 Show that D(p--> q) --> (Op--> Oq) E D. 

Exercise 5.25 Prove that if a normal modal logic L contains the formula hin 
of Exercise 3.22 then ~L satisfies the first order condition given in that exercise. 
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Exercise 5.26 Sho_.; that no distinct modalities are equivalent in the logics T 
and K EB Op ---> Dp. Derive from this that there are at least two maximal logics 
in NExtK in which no distinct modalities are equivalent. 

Exercise 5.27 Show that the logic S4 + Ogrz is not normal. 

Exercise 5.28 Prove that S4+ {c;J<pi : i E I} = S4EB{D<pi : i E I}. Is it possible 
to replace S4 in this equality by K4? 

Exercise 5.29 Prove that (i) NExtS4.3 = ExtS4.3, 
(ii) NExt(S4.2 EB bda) = Ext(S4.2 EB bd3) and 
(iii) NExt(S4 EB bd2 ) -=/- Ext(S4 EB bd2 ). 

Exercise 5.30 Show that the reflexive point in the frame considered in Exam
ple 5.60 can be replaced by an irreflexive one. 

Exercise 5.31 Show that ker L in Theorem 5.55 can be replaced with any nor
mal logic L' ~ L (for instance, K). 

Exercise 5.32 Show that KP~ ML. 

Exercise 5.33 (M. Abashidze) Let <pn be the result of replacing every D in <p 

by on. Prove that for every n > 0 and every <p, 

<p E GL iff <pn E GL. 

5.8 Notes 

The construction of the canonical models is conceptually close to that used in the 
Henkin-style completeness proofs for classical first and second order calculi (see 
(Church 1956) and (Chang and Keisler 1990)) and to the Tarski-Lindenbaum 
algebras (see Chapter 7). The method of canonical models was introduced by 
Lemmon and Scott (1977)8 and Makinson (1966); cf. also Cresswell (1967) and 
Schutte (1968). The canonical model of Lemmon and Scott (1977) seems to have 
its roots in the relational representation of Boolean algebras with modal oper
ators (in particular, the Tarski-Lindenbaum algebras for modal logics), studied 
by Lemmon (1966a, 1966b). The canonical model of Makinson (1966) is an "im
provement" of the tableau construction ofKripke (1963a). Perhaps these different 
sources explain why Lemmon and Scott (1977) introduce the filtration method, 
while the construction of the canonical model in Makinson (1966) is combined 
with selecting (using a sort of selective filtration) from it a countable submodel, 
which gives an analog of the Lowenheim-Skolem's theorem (see Theorem 6.29). 
Approximately at the same time the canonical model for intuitionistic (predicate) 
logic was constructed by Aczel (1968), Fitting (1969) and Thomason (1969). 

The method of canonical models turned out to be a powerful tool in non
classical logic. It was applied systematically to prove completeness theorems for 
a good many normal modal logics by Lemmon and Scott (1977), who obtained 

8 This book was written in 1966. 



160 CANONICAL MODELS AND FILTRATION 

in particular Corollary 5.22 and the result of Exercise 5.25, and by Segerberg 
(1971). Routley (1970) extended the ideas of Makinson (1966) to wide classes 
of weak modal systems. Rennie (1970) noticed that the method of canonical 
models works for polymodal logics too. Smorynski (1973) used it for si-logics. 
Later the method was applied to a great many other types of logics; see for 
instance Goldblatt (1982) and Segerberg (1994). 

The filtration method was introduced simultaneously with the canonical mod
els by Lemmon and Scott (1977); the filtration theorem is due to Segerberg 
(1968). However, the algebraic variant of filtration goes back to McKinsey (1941) 
and Lemmon (1966a, 1966b). In modal logic various forms of filtration were used 
by Bull (1967), Segerberg (1968, 1971), Gabbay (1970b, 1972b, 1976) who devel
oped selective filtrations, Nagle and Thomason (1985), Shehtman (1990a) and 
many others. Smorynski (1973), Gabbay (1970a), Ono (1972), Gabbay and de 
Jongh (1974), Ferrari and Miglioli (1993) and others applied it to si-logics. The 
results and proofs concerning the finite approximability, presented in this chap
ter, were taken from the cited papers and books. The observation of Exercise 5.17 
is due to Goranko and Passy (1992). Diego's theorem was first proved by Diego 
(1966); the proof above is due to Urquhart (1974). Sobolev (1977b) somewhat 
generalized Diego's theorem and used it to establish the finite approximability 
of a wide class of si-logics. Unfortunately, even the formulation of this result is 
too complicated to be presented here. A consequence of Sobolev's theorem-that 
all si-logics with extra axioms in one variable are finitely approximable--will be 
proved by another method· in Section 11.6. An interesting result was obtained by 
Drugush (1984): using a variant of selective filtration of Gabbay and de Jongh 
(1974) he proved that every si-logic characterized by a class of trees is finitely 
approximable. Note also that according to Drugush (1982) the union of si-logics 
characterized by finite trees is determined by finite trees too, i.e., the family of 
such logics is a sublattice of Extlnt. The completeness results of the preceding 
section concerning logics with linear frames are due to Segerberg (1970). 

The semantics for quasi-normal modal logics was developed by Segerberg 
(1971). Example •58 and Exercise 5.28 are due to McKinsey and Tarski (1948). 
Scroggs's Theorem appeared in Scroggs (1951) and Theorem 5.61 was first proved 
by Solovay (1976). 

Quite recently Shehtman has proved that every Kripke complete si-logic 
and every logic in NExtS4 characterized by partially ordered Kripke frames 
is strongly complete with respect to the neighborhood semantics. 
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INCOMPLETENESS 

In the preceding chapter we saw that many standard superintuitionistic and 
normal modal logics are Kripke complete, even finitely approximable and so 
decidable. Many of them turned out to be canonical and hence strongly Kripke 
complete, with their canonical frames satisfying good first order properties. Now 
we are facing the natural question: isn't it possible to extend these completeness 
results to all logics in Extlnt and NExtK? To present examples of incomplete 
(in one sense or another) logics in these classes and elucidate to some extent the 
origin of the incompleteness is the main aim of this chapter. 

6.1 Logics that are not finitely approximable 

As follows from the hierarchy in Section 4.3, the incompleteness with respect 
to the classes of finite frames accompanies some other incompleteness results, 
say Kripke incompleteness. So in a sense this section is redundant. However, the 
stronger the incompleteness result, the more complex logic is involved. Here we 
construct rather simple normal modal and si-logics that are not finitely approx
imable (in particular, Kripke complete), so that the origin of this phenomenon 
will be quite clear. 

We begin with modal logics. Let us consider once again the frame <5 shown 
in Fig. 5.1 (b). The root w is clearly the only point in <5 capable of refuting the 
Lob axiom la= D(Dp ~ p) ~Op. Another characteristic property of w is that 
it sees infinitely many points. More precisely, w is the only point in <5 such that 
if i is accessible from it, for some i < w, then i + 1 is also accessible. This may 
be expressed by modal formulas in the following way. Since i is obviously the 
only point in <5 at which the formula ai = oi+l J_ /\ <>iT is true, w is the unique 
world where <>ao and all the formulas <>ai ~ <>ai+l, for i < w, are true. 

Thus, <5 f= •la/\Oai ~ 0 la/\Oai+l, for all i < w, and <5 ff= laV•<>ao. And 
if we notice also that all <>ai may be simultaneously satisfied only in an infinite 
frame then we can immediately conclude that Log<5 is not finitely approximable. 
Moreover, this observation can be developed into a much stronger result. 

Put 

Li = K4 + {•la/\ <>ai ~ •la/\ <>ai+l : i < w }, L2 = Log<5. 

Since <5 f= L1, we have L1 ~ L2. 
Theorem 6.1 (i) No logic in the interval 
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is finitely approximable. 
(ii) There is a continuum of normal logics in [L1,L2]. 
(iii) There are infinitely many finitely axiomatizable normal logics in [L1 , L2]. 

Proof (i) It is sufficient to show that la V -,Oao is not in L2 and cannot be 
separated from L1 by a finite model. The former is clear, since (!j l;t= la V -,<)a0 . 

Suppose 9J1 is a model with actual world w such that (9.Jt, { w}) f= L 1 and 
(9.Jt, {w}) l;t= la V -i0a0 . By the definition of L1, we then have w f= <>ai, for 
every i < w, and so there are points xi in 9J1 such that Xi f= ai. We show that 
Xi i= Xj whenever i i= j. 

Suppose otherwise, that is Xi= Xj for some i > j. Then we have Xj f= oH1 J. 
and since oH1 J. ---+ oil. E L1 (because K4 ~ L1), Xj I= oil., contrary to 
Xi = Xj and Xi f= <>iT or, equivalently, Xi li= oil.. 

(ii) Let us consider the logics 

L1 = L1 EB {'Pi : i E I} 

where I ~ w and 'Pi = D(ai ---+ p) V D(ai ---+ -ip). Since ai is true in (!j only at 
one point, l!5 f= 'Pi (to refute 'Pi we need two points at which ai is true: at one 
p is true while at the other p is false). So L1 is a normal logic in the interval 
[L1, L2], for every I ~ w. 

If j rt I then the frame .SJ in Fig. 6.1 validates 'Pi, for every i E I, and all the 
axioms of £ 1 as well, because .SJ f= la. On the other hand, .SJ clearly refutes 'Pj 
under every valuation such that j' I= p and j" l;t= p. Therefore, 'Pj rt L1 and so 
L1 i= LJ if Ii= J. It follows that the cardinality of the set {L1 : I~ w} is that 
of continuum. 

(iii) Let us consider the logic L3 = K4 EB 'I/;, where 

'lj; =-,la/\ 0(-iq /\ Dq)---+ -ila /\ 0(-iOq /\ DDq), 

and show that it belongs to the interval [ L 1 , L 2]. 

If (under some valuation) -ila /\ 0(-,q /\ Dq) is true at a poin~ x in (!j then 
clearly x = w. Besides, w f= <>(-iq /\ Dq) means that there is y E wj such that 
y f= -,q /\ Dq. Therefore, y is irreflexive and soy= i for some i < w. Since i li= q 
and j f= q for every j < i, we have i + 1 l;t= Dq and i + 1 I= DDq, from which 
w I= -,la/\ 0(-,Dq /\ DDq). Thus, (!j I= 'ljJ and L3 <:;; L2. 

To prove the inclusion £ 1 <:;; £ 3 it is sufficient to observe that 
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Infinitely many other examples of finitely axiomatizable logics in the interval 
[L1 , L2] can be constructed from La by adding to it formulas 'Pi from the proof 

~(~. 0 

It is worth noting that the frame <B in Fig. 5.1 (b) is of width 1, and so 
L1 ~La EB bw1 ~ L2. Thus, as a consequence of Theorem 6.1 we obtain 

Theorem 6.2 There is a finitely axiomatizable normal modal logic of width 1 
(i.e., an extension of K4.3) that is not finitely approximable. 

Intuitionistic frames are homogeneous in the sense that all their points are 
reflexive. So we cannot directly use the construction above to define si-logics 
that are not finitely approximable. (As we shall see in Section 11.6, all si-logics 
of width 1 are finitely approximable.) Yet the general idea may be realized in 
the intuitionistic case as well. 

Instead of 18 we use the intuitionistic frame~ shown in Fig. 6.2. It consists of 
two parts: the first one, containing the points ai and bi, for i < w, simulates the 
irreflexive part of <Band the remaining points c, d, e1, e2, ea, seeing all points in 
the first part, simulate w. Formally, ~ = (W, R) is defined as follows: 

W = {ai,bi,c,d,ej: i < w, j = 1,2,3}, 

R = {(x,x), (c,x), (d,ak), (d,bk), (ez,ak), 

(ez, bk), (ez, em), (ak+i• ak), (bk+i, bk), (ak+i+2, bk), 

(bk+i+2,ak): x E W, k,i < w, 1 ~ l ~ m ~ 3}. 

Instead of the Lob axiom and a::i above we take the intuitionistic formulas 

a::= (p----+ q) V (q----+ P1 V (p1----+ P2 V (P2----+ p))) 

and 

where, for i < w, 

0::1 = r ----+ r' V •r', f31 = ,,,. ----+ r' V ,,,.', 
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Put 

L1 =Int+ {a V Cl:i+l V /3i+i-+ a V Cl:i V /3i: i 2:: 2}, L2 = LogJ. 

Theorem 6.3 (i) No si-logic in the interval 

is finitely approximable. 
(ii) There are a continuum of si-logics in [L1, L2]. 
(iii) There are infinitely many finitely axiomatizable logics in [L1, L2]. 

Proof We give here only a sketch of the proof and invite the reader to fill the 
gaps. 

(i) The formula a V n:2 V /32 is not in L2 and cannot be separated from L 1 by 
a finite model. 

(ii) For i 2:: 2, we put 

It is not hard to verify that J I= 'Pi, for every i 2:: 2. Using the subframe of J 
depicted in Fig. 6.3, one can show also that 'Pi <f. L1 + {'Pi : j 2:: 2, i # j}. 

(iii) As an example of a finitely axiomatizable logic in [L1 , L2] one can take 
the logic 

L3 = Int + a V /2 -+ a V /1, 

where 

/'1 = ((p2-+ PI V q2)-+ PI V (p1 -+ P2 V qi)) V ((p1 -+ P2 V qi)-+ 

P2 V (p2-+ PI V q2)), 

/2 = (((P1 -+ P2 V qi)-+ P2 V (p2-+ PI V q2)) --> ((p2-+ PI V q2)--> 

PI V (p1 --> P2 V q1)) V (p2--> PI V q2))V 
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(((p2 --+PI V q2)--+ PI V (p1 --+ P2 V qi))--+ ((p1 --+ P2 V qi)--+ 

P2 V (P2--+ PI V q2)) V (P1 --+ P2 V q2)). 

The inclusion Li ~ L3 follows from the equalities 

1i{/3i-3/q1,ai_3/q2,/3i-2/P1,ai-2/P2} = ai V /Ji, 

'Y2{/3i-3/q1,ai_3/q2,/3i-2/P1,ai-2/P2} = ai+l V /3i+2· 

And to prove L3 ~ L2 it suffices to verify that J I= a V "(2 --+ a V 'YI. 
Infinitely many other finitely axiomatizable logics in [L1, L2] can be con-

structed by adding formulas 'Pi to L3 . 0 

Since J is of width 2, we have bw2 E LogJ. So, as a consequence of Theo
rem 6.3 we obtain 

Theorem 6.4 There is a finitely axiomatizable superintuitionistic logic of width 
2 that is not finitely approximable. 

6.2 Logics that are not canonical and elementary 

Most of the logics considered in Chapter 5 proved to be Kripke complete simply 
because they are characterized by their canonical frames. However, canonicity 
is only a sufficient condition for Kripke completeness. Although the canonical 
frame JL for a logic L refutes all the formulas that are not in L, it may also 
refute some of L's axioms. In other words, L is not necessarily sound with respect 
to JL, witness the following simple example. 

Theorem 6.5 GL is not canonical. 

Proof Recall that a frame validates the Lob axiom iff it is a Noetherian strict 
order, in particular it contains no reflexive points. We are going to show that 
there are reflexive worlds in JGL· 

As was established in Example 5.60, Solovay's logic S = GL + Op --+ p is 
consistent. Therefore, by Lindenbaum's lemma, the tableau 

(GL U {Dcp--+ <p: <p E For ML'.}, 0) 

can be extended to a maximal GL-consistent tableau (r, ~),which is the reflex

ive point in JGL we need, since D<p Er implies <p Er. 0 

In fact we have even a stronger result. 

Theorem 6.6 GL is not strongly Kripke complete. 

Proof Let ai = D(pi --+ Opi+l /\ ·Opi) and r = { Op1, ai : 1 $ i < w }. We 
show that the tableau (r, 0) is GL-consistent but not realizable in any model 
based upon a frame for GL. To prove the former it is enough to observe that 
the formula Op1 A a1 A ... A an is true at the root 0 in the model (J, 1!1), where 
~ = ({O, ... , n + 1}, <) and W(pi) = {i}, which is clearly a model for GL. And 
the latter claim follows from the fact that to make r true at a point we need an 
infinite ascending chain starting from it. 0 
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Say that a class C of Kripke frames is elementary if there is a set <I> of first 
order sentences in Rand = such that, for every Kripke frame J, J EC iff J is a 
(classical) model for <I>. A logic L is elementary if the class of all Kripke frames 
for L is elementary. 

To prove that GL is not elementary we use the compactness theorem from 
classical model theory (see Chang and Keisler, 1990, Theorem 1.3.22). 

Theorem 6. 7 GL is not characterized by an elementary class of frames. In 
particular, GL is not elementary. 

Proof Suppose GL is characterized by a class C of Kripke frames (by Propo
sition 3.47, all of them are Noetherian strict partial orders) and show that C is 
not elementary. 

Assume otherwise. Then C consists of all classical models for some set <I> of 
first order formulas with R and = as their only predicates. By Theorem 5.46, 
GL is characterized by the class of finite strict orders. Since the formulas bdn 
are refuted by transitive frames of depth > n (see Proposition 3.44), none of 
them is in GL. Therefore, for every n < w, C contains a frame of depth > n. 

Let us consider now the first order formulas 

</>n = /\ (aiRaj A •ajRai) 
l'.5oi<j'.5on 

(here ai are individual constants of the first order language). Clearly, a strict 
partial order J satisfies </>n iff J is of depth ;::: n. So every finite subset of the set 
<I>U { </>n : 1 $ n <:: w} has a model, for instance, a frame in C of depth> m where 
m is the maximal subscript of </>ns in the subset. By the compactness theorem, 
the whole set <I>U{ </>n : 1 $ n < w} has a model as well, say, a strict order J, which 
is in C because it satisfies <I>. But to satisfy all </>n, J must contain an infinite 
ascending chain a1Ra2Ra3 R ... of distinct points, which is a contradiction, since 
J f= GL and so J is Noetherian. 0 

In exactly the same way one can prove 

Theorem 6.8 Grz is not strongly complete and it is not characterized by an 
elementary class of frames. In particular, Grz is neither canonical nor elemen
tary. 

In fact the notions of canonicity and elementarity turn out to be closely 
related: in Section 10.2 we shall prove that every logic in NExtK and Extint is 
canonical whenever it is characterized by an elementary class of frames. So by 
proving that a Kripke complete logic is not strongly complete we establish also 
that it is not elementary. 

Theorem 6.9 T2 = Int+ bb2 is not strongly complete. Moreover, no si-logic 
in the interval [Int, T 2], save Int, is strongly complete. 

Proof Let 'I2 be the full binary tree. Say that a point a in 'I2 is of codepth n 
( cd( a) = n, in symbols) if the chain al contains n + 1 points. With every point 
a in 'I2 and every i > 0 we associate the variables Pa and qi, respectively. 
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By the type of the root ao in 'I2 we mean the tableau tao = (0, {pa
0

} ). And if 
the type of a point a in 'I2 is (8, {Pa}), and b, care the immediate successors of 
a with cd(b) = cd(c) = n then the types of band care tb = (8 U {pa, Qn}, {Pb}) 
and tc = (8 U {Pa, 'Qn}, {pc}), respectively. 

Now let us consider the tableau t = (r, {Pao}) in which r consists of all 
formulas of the form 

o: = (/\ 8 -->Pb) --> Pa 

such that b is a proper successor of a and tb = (8, {Pb}), 

such that aj n bj = 0, c! = a!n b! and tc = (8, {pc}), and 

'Y = (/\ ~ -->Pb) --> r.p V (/\ 8--> Pa) 

such that cd(a) > 0, ta = (8, {Pa}), r.p is the conjunction of all formulas of the 
form Qi and 'Qi in 8 and b is the immediate predecessor of a with the type 
tb = (~,{Pb}). 

It is a matter of routine to check that every finite subtableau oft is realizable 
in a model based on a sufficiently deep finite binary tree, which is a frame for 
T 2 (it suffices to put a I= Pb iff b r/. aj and a I= Qi iff Qi belongs to the left part 
of ta)· Thus, t is £-consistent, for any L E [Int, T2]· 

We are going to show now that if t is realized in a model 9J1 = (J, W) then 
a generated subframe of J = (W, R) is reducible to any finite tree and so, by 
Corollary 2.33 and the reduction theorem, refutes all the formulas that are not 
in Int, i.e., J ~ L for any proper extension L of Int. 

Without loss of generality we may assume that J is rooted and t is realized 
at its root. For every a in 'I2, put 

Ya= {x E W: x realizes ta}· 

Notice that if a point x sees some Ya but does not belong to any Ya itself, then 
the set Z ={a: x E Ya!} has a root (with respect to the partial order in 'I2). 
Indeed, otherwise there are two distinct minimal points a, b E Z. Let c! = a! nb! 
and tc = (8, {pc}). Since x I= (/\ 8 -->Pc) -->Pa V Pb and x E Ya! nYb!, we have 
x [ii: Pa Vpb and so x ~A 8--> Pc· It follows that Ye is accessible from x, which is 
a contradiction. Denote the root of Z by ax and put Xa = YaU{x E W: a= ax}· 
Thus, u Xa!= u Xa =W'. 

aE'r2 aE'r2 

Observe also that if aj n bi= 0 in 'I2 then Xa i n Xb i = 0 in J. To show this 
suppose r.p and 'I/; are the conjunctions of all the Qi and 'Qi in the left parts of ta 
and tb, respectively. By the definition, r.p is true at all points in Ya. And if r.p is 
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not true at a point x E Xa - Ya then, since all formulas of the form "( are true 
at x, x must see the set Ye corresponding to the immediate predecessor c of a, 
which is a contradiction. Therefore, r.p is true everywhere in Xa. By the same 
reason 'lj; is true everywhere in Xb. It remains to notice that r.p and 'lj; cannot be 
true at a point simultaneously. 

Using this observation and the formulas of the form a it is not hard to check 
that the map g defined by g(x) = a iff x E Xa is a reduction of the subframe 
J' = (W', R I W') of J to '!'2 (we leave this to the reader; some details can be 
found in the proof of Theorem 9.39). 

Let l?S be an arbitrary finite tree. By Theorem 2.21, there is a reduction h of 
'!'2 to l?S. The composition f' = hg is then a reduction of J' to l?S. So our aim 
now is to extend it to a reduction f of J to ~. For every x E W - W', the set 
f' ( xl) is a chain in ~ (for otherwise Xa j nXb j # 0 for some a and b in '!'2 without 
common successors). Let u be a final point in~ accessible from the last point in 
this chain. Then we put f(y) = u for ally E W - W' such that /'(xl) = f'(y!). 
And for x E W' let f(x) = f'(x). It should be clear from the construction that 

f reduces J to~' which proves our theorem. 0 

6.3 Logics that are not compact and complete 

The compactness theorem from classical model theory, used in Section 6.2, may 
be formulated as follows: if every finite subset of a set of formulas L: has a model 
refuting a formula r.p then the whole set L: also has a model refuting r.p. 

We say a modal or si-logic L is compact (relative to Kripke frames) if each 
formula r.p ¢ L is. separated from L by a Kripke frame whenever r.p is separated 
by a Kripke frame from every finitely axiomatizable sublogic L' ~ L. Clearly, 
Kripke completeness implies compactness. 

Let us consider the logic 

where 
"to= Of3o /\ Oai, "ti+i = Of3i+i /\ Oai+2 /\-,(>+"ti, 

(Ji= OOai /\ -,(>ai+i, ao = D_l, ai+l = Oai /\ -,(>(>ai (i < w), 

8 = •(P /\ •q /\ o+(p /\ •q-+ O(p /\ q)) /\ o+ (p /\ q-+ O( •p /\ q))/\ 

/\D+(-,p /\ q-+ O(p /\ •q))). 

(We remind the reader that o+r.p = r.p /\ Dr.p, o+r.p = r.p V Or.p.) 

Theorem 6.10 Li is not compact. 

Proof Let us first clarify the semantic meaning of Li's axioms. To understand 
the (variable free) axioms 'Yi -+ o'Yi+i it is useful to take a look at the frame 
depicted in Fig. 6.4. The only point in this frame, at which a 0 is true, is clearly ao. 
Then by induction on i one can readily show that ai is the only point at which ai 
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ao ai a2 as ak-l ak 1-+----,•-+------'• . . 

r r . . . . 
~ ~ ~ ~ ~-1 ~ 

FIG. 6.4. 

is true. It follows immediately that {x: x f= /'.3;} = {b;} and {x: x f= 1;} = {c;}, 
for i < w. 

Thus, /; ____, O/i+l may be understood as "in the frame under consideration 
c; sees C;+1". 

The meaning of 8 can be expressed more precisely. 

Lemma 6.11 A transitive frame J validates 8 iff J contains neither an infinite 
ascending chain of distinct points nor a cluster with 2: 3 points. 

Proof Exercise. 0 

We are in a position now to prove Theorem 6.10. Namely, we are going to 
show that, for every finitely axiomatizable logic L ~ L1, (a) there exists a frame 
J such that J f= L and J V= •/o, but (b) •/o cannot be separated from L1 by 
any Kripke frame. 

Suppose Lis a finitely axiomatizable sublogic of L1. Since derivations of L's 
axioms involve only a finite number of L1 's axioms, there is k < w such that 

L ~ K4 EB { /; ____, O/i+l : 0 ::; i ::; k - 1} EB 8. 

So, to prove (a) it suffices to show that, for every k < w, there is a frame Jk such 
that 

Jk f=K4EB{i;____,0/;+1: O::;i::;k-l}EB8, 

Jk V= '/O· 

Define Jk = (Wk, Rk) by taking 

Rk = {(a;,aj), (b1,b1), (b1,a1), (b;,aj), (c1,b1), 

(cj,b;),(cj,Ci),(c1,aj),(c1,ak): O::;j<i::;k, O::;l::;k}. 

(6.1) 

(6.2) 

In other words, Jk is the subframe of the frame in Fig. 6.4 containing the first 
k rectangles. (6.1) and (6.2) are now direct consequences of the properties of"(; 
discussed above and Lemma 6.11. 
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To establish (b), suppose J is a frame for L1 refuting •')'o. Then Yo f= ')'o for 
some Yo in J. Since J f= 'Yo --+ <>11, there exists Yi E Yo T such that Yi f= ')'1. By 
the definition of 'Yi+li it follows in particular that Y1 f= •<>')'o, and so Yo¢ yiT. 
With the help of the axiom 'Yl --+ <>12 in exactly the same way we show that 
there is Y2 E Y1 T such that y1 ¢ y2T, etc. As a result we construct an infinite 
ascending chain of distinct points in J, contrary to Lemma 6.11 and J f= 6. 

0 

It is worth noting that the proof above shows incidentally that the logic 
K4 EB {'Yi --+ <>'Yi+ 1 : i < w} is not finitely approximable. Thus we have got 

Theorem 6.12 There is a normal extension ofK4 with variable free additional 
axioms that is not finitely approximable. 

This result does not hold for ExtS4 and Extlnt because in both S4 and 
Int every variable free formula is equivalent to T or .l (see Proposition 2.26 
and Exercise 3.19). As we shall see in Section 8.7, each variable free formula 
is deductively equal in NExtGL to one of the formulas T, oi .l ( i < w). Since 
oi .l --+ OJ .l E K4 s_;; GL, for i < j, all normal extensions of GL with variable 
free formulas are finitely axiomatizable and so finitely approximable, as follows 
from 

Theorem 6.13 Suppose r.p is a variable free modal formula and L E NExtK 
is globally Kripke complete (globally finitely approximable). Then L EB r.p is glob
ally complete (globally finitely approximable) as well. If L E NExtK4 and L is 
decidable then L EB_r.p is also decidable. 

Proof Let M = L EB r.p and r 1/M 1/; for some finite r. Then r, r.p If£ 1/; and so 
there is a Kripke (finite) frame J for L such that under some valuation r U { r.p} 
is true in J and 1/; is refuted. Since r.p is variable free, J f= M. 0 

Theorem 6.14 GL + { <>iT : i < w} is not finitely approximable. 

Proof This logic is consistent because it is. contained in S, but does not have 
finite models at all. 0 

On the other hand we clearly have 

Theorem 6.15 Every (normal) extension of a canonical logic with variable free 
additional axioms is also canonical. 

6.4 A calculus that is not Kripke complete 

The incomplete logic £ 1 , constructed in the preceding section, is not finitely 
axiomatizable (why?), and all the axioms 'Yi --+ <>'Yi+l were used essentially in 
the incompleteness proof. Here we show that a single additional axiom is enough 
to get a Kripke incomplete logic. The idea of replacing the infinite set of axioms 
with a single formula is similar to that in the proof of Theorem 6.1 (iii). 
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We continue using the notations introduced in Section 6.3. Define a logic L 2 

as follows: 
L2 = K4 EB f EB 8, 

where 

Vo =p/\--.Op, Vi= vo{Oip/p}. 

Theorem 6.16 The calculus L 2 is not Kripke complete. 

Proof We are going to show that -.lo (j_ L2, but --.10 is valid in every frame for 
L2 . The proof is similar to the proof that --.10 cannot be separated from L 1 by a 
Kripke frame. In that proof we used the triple of formulas ai, f3i, Ii characterizing 
in the frame depicted in Fig. 6.4 the triple of points ai, bi, ci (with the same 
subscripts). The triple Vi, µi, Ai is also intended for determining in this frame a 
triple of points a1, b1, c1, possibly with i =f. j; and if this is the case then it turns 
out that the triple vi+ki µi+k, Ai+k determines the triple ai+k, bi+ki CJ+ki for 
k < w. That is in essence the single formula f will play the role of the infinite 
set {Ii ---> Ori+l : i < w }. 

Lemma 6.17 For every frame~' if~ f= L2 then~ f= -.lo· 

Proof Observe first that 

ai = vi{T /p}, f3i = µi{T /p}, 

10 = Ao{T /p}, li+l = (Ai+i /\ --.o+ Ai){T /p}, 

Ai ---> O(Ai+t /\ --.o+ Ai)= f{ Oip/p}, 

+ I . Ii---> Ori+l =(Ai---> O(Ai+l /\ --.0 Ai)){T p} = E{O'T /p}. 

It follows that Ii ---> Ori+l E L2, for all i < w, and so L1 i;;; L2. It remains to use 
the proof of Theorem 6.10. 0 

Thus, to complete the proof of our theorem it suffices to establish 

Lemma 6.18 --.10 (j_ L2 . 

Proof We need the transitive frame ~ = (W, R) shown in Fig. 6.4; here is its 
formal definition: 

W = { ai, bi, Ci : i < W}, 

R = {(ai,aj), (b1,b1), (bi,aj), (b1,a1), (cj,bi), 

(c1,b1), (c1,ak), (cj,ci): 0 ~ j < i, k < w}. 

Define a model 9Jt = (~, \U) by taking \U(p) = 0, for every variable p. Since ~ 
contains an infinite ascending chain, by Lemma 6.11 we have~ [ii= 8. However, 
9Jt does not "feel" the chain. More exactly, the following holds. 
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Lemma 6.19 mt f= 8* for every substitution instance 8* of 8. 

Proof Observe first that we have 

Lemma 6.20 For every formula <p, the set \!J(c.p) is either finite or cofinite. 

Proof The proof proceeds by induction on the construction of <p. The basis of 
induction and the cases when c.p's main connective is not modal are trivial. So 
let us consider <p = D'l/J. 

Suppose \!J('lf;) is finite. Then there is ai such that ai lt= 'l/J. This means that 

i.e., W - \!J(D'l/J) is cofinite and so \!J(c.p) is finite. 
Suppose now that \!J( 'l/J) is cofinite. Two cases are possible: (a) there is ai 

such that ai [#: 'l/J and (b) ai f= 'l/J for every i < w. In Case (a), as before, \!J(D'l/J) 
is finite. So let us consider Case (b). 

Since the set W - \!J( 'l/J) is finite, there is k 2: 0 such that 

Then 
{ai,bj,Cj: i < W, j 2: k} ~ \!J(D'lf;), 

and hence \!J(D'l/J) is cofinite. 0 

We are in a position now to prove Lemma 6.19 by re.ductio ad absurdum. 
Suppose 8* = 8{c.p/p,'l/J/q} and Yo lt= 8*, for some point y0 in mt. Then we have 

Yo f= <p A •'l/J, 

Yo F= o+(c.p A •'l/J--+ O(c.p A 'lf;)), 

Yo F= o+(c.p A 'l/J--+ O(•c.p A 'lf;)), 

Yo F= o+(-.c.p A 'l/J--+ O(c.p A •'l/J)). 

Using the same argument as in the proof of Lemma 6.11, we can construct an 
infinite ascending chain y0Ry1Ry2R ... in J such that, for every k < w, 

Y3k F <p A •'l/J, Y3k+l F <p A 'l/J, Y3k+2 F •<p A 'l/J. 

Since J contains no proper clusters, it follows that Yi -::f. Yi if i -::f. j. Therefore, 
the sets 

{Y3k,Y3k+l: k<w}~\!J(c.p) 

and 
{Y3k+2: k < w} ~ W - \!J(c.p) 

are infinite, contrary to Lemma 6.20. 0 
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Lemma 6.21 ~ f= L In particular, 9Jt f= t:* for every substitution instance t:* 

Of L 

Proof Suppose otherwise. Then under some valuation in ~, t: is false at some 
point y, i.e., 

Y f= Ao, 

y ~ O(A1 /\ .o+ Ao). 

(6.3) 

(6.4) 

It follows from (6.3) that there is z E Yi at which both 00v0 and --,Ov1 

are true. This means that we can reach from z by two steps a point u at which 
v0 = p /\ ·Op is true. Therefore, u is irreflexive and so u E { ai, ci : i < w}. On 
the other hand, z does not see an irreflexive point v E ul, which is possible only 
if z =bi, for some i ~ 0. But then u = ai. 

It follows also from (6.3) that there is a point x E Yi at which v1 is true. 
Since ai f= vo, the only point where v1 may be true is ai+l, whence yRai+l· 
Then, according to the construction of ~, y = c1 for some j :::; i. 

Thus, we have y = c1 and yRci+l· Besides, as we have already established, 
ai f= v0 . It is not difficult to see now (by induction on k) that, for every k < w, 

and so 

It follows that ci+l f= A1 /\ .o+ Ao, contrary to yRci+l and (6.4). 0 

By Lemmas 6.19 and 6.21, 9Jt is a model for L 2 . It remains to observe that 
co f= /o and so •/o ¢ L2. This completes the proof of Lemma 6.18. 0 

Theorem 6.16 follows immediately. 0 

In fact the proofs of Theorems 6.10 and 6.16 provide us with a big family of 
incomplete logics. Indeed, denote by L3 the set of modal formulas that are true 
in all models (~, U) such that, for every variable p, U(p) = !U( cp) for some formula 
cp. It is not hard to see that L3 E NExtK4. We then have: L1 ~ L2 ~ L3, •/o is 
not in L3 and cannot be separated from £ 1 by a Kripke frame. Therefore, all the 
logics between £ 1 and £ 3 are Kripke incomplete. Using the formulas 'Pi from the 
proof of Theorem 6.1, we can show that the cardinality of the interval [ £ 1 , L3] 
is that of continuum. And by adding 'Pi to L 2 we can construct infinitely many 
finitely axiomatizable logics in this interval. 

Let us fix these observations as 

Theorem 6.22 (i) No logic in the interval [L1 ,L3] is Kripke complete. 
(ii) There is a continuum of normal logics in [L1 , L3]. 
(iii) There are infinitely many finitely axiomatizable normal logics in [L1 , L3]. 

Using the fact that every finite irreflexive chain validates £ 3 , we can obtain 
one more interesting result: 
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FIG. 6.5. 

Theorem 6.23 No normal logic between K4EB8 and L3 is strongly Kripke com
plete. 

Proof Similar to the proof of Theorem 6.6. 0 

6.5 More Kripke incomplete calculi 

Now we realize ·the idea of constructing incomplete calculi, developed in the 
previous section, to find Kripke incomplete extensions of Grz, GL and Int. 
Since we use the same method, the most part of technical details in the proofs 
is left to the reader as exercises, sometimes far from being trivial. 

For two cases-Grz and Int-we use the (transitive) frame shown in Fig. 6.5; 
for G L all the reflexive circles in it should be replaced with irreflexive "bullets". 
Its similarity with the frame in Fig. 6.4 is emphasized by the worlds' names. 

We require the following intuitionistic. formulas: 

f3n = o:;+l /\ O:~+l ~a; Vo:~, (n < w) 

.A= f3o ~ /31 V /32, µ = f3o V /31, r: =.A~µ, i = /31 ~ f3o Vo:~. 

Theorem 6.24 (i) Grz EB T(r:) is Kripke incomplete. 
(ii) GLEBT+(r:) is Kripke incomplete9 . 

Proof We will establish only (i); (ii) is proved in the same way. The proof 
consists of two lemmas. 

9 Here T and T+ are the embeddings of Int into Grz and GL defined in Section 3.9. 
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Lemma 6.25 If 'J zs a frame such that 'J I= Grz EB T ( E) then 'J I= T (µ). 

Proof (Sketch) Proving the lemma by reductio ad absurdum, we suppose that 
'JI= Grz EB T(E) and 'J ~ T(µ) and show, as in the proof of Lemma 6.17, that 
in this case 'J contains an infinite ascending chain of distinct points, contrary to 
'JI= Grz. 

For n ::'.:'. 1, let 

and suppose that, under some valuation in 'J, T(µ) is not true at some point y0 , 

i.e., y0 ~ T(r0 ). Since 'J validates T(E), we can use the substitution instances 
E{a;,_2 V a~_ifp,a;,_ 1 V a~_2/q} of E to find first a point Yt E Yoi such that 
Yt I= T(ro) and Yt ~ T(11), then Y2 E Yti such that Y2 I= T(r1) and Y2 ~ T(r2), 
and so on. 0 

Lemma 6.26 T(µ) (j. Grz EB T(E). 

Proof (Sketch) Let 9Jt be a model based on the frame in Fig. 6.5 and such that 
x I= p iff x = a6 and x I= q iff x = a~. In the same manner as in the proofs of 
Lemmas 6.19 and 6.21, one can show that 9Jt I= D(D(<p---+ D<p)---+ <p) ---+ <p and 
9Jt I= T(E){<p/p,1/J/q}, for every formulas <p and 1/J. On the other hand, we have 

c0 ~ T(µ). 0 

This completes the proof of Theorem 6.24. 

Given a si-logic L, we put 

T(L) = {T(<p): <p EL}, T+(L) = {T+(<p): <p EL}. 

Theorem 6.27 There is a superintuitionistic logic L such that 
(i) L is Kripke complete; 
(ii) Grz EB T(L) is not Kripke complete; 
(iii) GL EB T+(L) is not Kripke complete. 

0 

Proof Define L as the si-logic of the frame in Fig. 6.5, so that (i) holds by 
the definition. Let 9Jt be the model on this frame introduced in the proof of 
Lemma 6.26. Then 9Jt ~µ.On the other hand, Eis valid in our frame, i.e., EEL. 
By Lemma 3.81, we then have T(µ) (j. Grz EB T(L) and T(E) E Grz EB T(L). The 
incompleteness of Grz EB T(L) follows now immediately from Lemma 6.25. 

(iii) is proved in the same way. 0 

The proof above may be interpreted as that there are no intuitionistic ana
logues of the Grzegorczyk and Lob formulas, or {Jin Section 6.3, which "feel" the 
presence of infinite ascending chains. Yet, the proof of Theorem 6.9 shows that 
for the same purpose one can use the formula bb2 . 

Theorem 6.28 The si-logic Int+ E + L + bb2 is Kripke incomplete. 
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Proof (Sketch) One can show similar to Lemma 6.25 that if a frame validates 
E and l and refutes µ then it also refutes bb2, i.e., µ is valid in every frame for 
the logic L =Int+ E + l + bb2 . On the other hand, all substitution instances of 
t:, land bb2 are true in the model SJJ1 defined in the proof of Theorem 6.27, from 
which SJJ1 f= L, SJJ1 ~ µ and so µ <¢. L. 0 

6.6 Complete logics without countable characteristic frames 

The Lowenheim~Skolem theorem of classical model theory (see Chang and Keis
ler, 1990, Corollary 2.1.6) ;tates that if a first order theory (in a countable 
language) has an infinite model then it has also a countable model. Canonical 
models for modal and superintuitionistic logics contain, by the definition, a con
tinuum of points. However, most of these points may be safely removed, as is 
shown by the following 

Theorem 6.29 Every consistent logic in ExtK and Extlnt has a countable 
characteristic K ripke model. 

Proof We construct a countable characteristic model for a consistent logic L 
in NExtK. Quasi-normal modal logics and si-logics are considered analogously. 

Let SJJ1 = (3', W) be an arbitrary characteristic model for L (for instance, the 
canonical model) and 3' = (W, R). A countable characteristic model we need can 
be extracted from SJJ1 in a manner similar to the selective filtration method. Let 
~ = ForM£-L. 

Step 0. For every r.p E ~' fix a point in SJJ1 at which r.p is false. Let W 0 be the 
set of all the fixed points. Clearly, W0 is countable. 

Step n + 1. Suppose we have already constructed a countable set Wn ~ W. 
Now, for every x E Wn and every r.p E ~ we fix a point y E xj in SJJ1, if any, 
at which r.p is false. Let Wn+l be the union of Wn and the set of all new fixed 
points. Again Wn+l is countable. 

Finally, define a model 1)1 = (~,U) on a countable frame~= (V, S) by taking 

v = LJ W;, s = Rn v 2
, 

i<w 

U(p) = W(p) n V, for every p E VarM£. 

By induction on the construction of a formula r.p one can readily show that, for 
every x EV, 

(SJJ1, x) f= r.p iff (IJ1, x) f= r.p. 

It follows that 1)1 characterizes L. 0 

Needless to say that this result does not hold for Kripke frames (for there 
are logics without characteristic Kripke frames at all). Moreover, even if a logic 
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is Kripke complete it rriay have no countable characteristic frame as is demon
strated by the following theorem, in which cardinal numbers .Je are defined by 
transfinite induction on ordinals ~: 

{

No if~= 0 
.Je = 2::::i, if ~ = ( + 1 

LJ(<E .J(. if~ is a limit ordinal. 

Theorem 6.30 There is a logic LE NExtK4 which is characterized by a Kripke 
frame of cardinality .Jw, but is not approximable by frames of smaller cardinality. 

Proof Define Las the logic of the transitive frame ;y- = (W, R) shown in Fig. 6.6. 
A formal definition of ;y- may look like this: 

W ={a, b,c,d, a_1, L1, e', e} U {ai, bi, a~, b~: i < w} U 

{ho hO,l h0,2 · } U {hi hi,1 hi,2 l < · X pi } i, i , i : i < W x, x, x : _ i < w, E W 

(where PY is the power set of Y, poy = Y and pi+l = P(PiY)) and R is the 
transitive closure of the following binary relation Son W: for every x, y E W, 

xSy iff 

(x = e /\ y =/=- e) V (x = b /\ y = b) V 

(x = c /\ y =a) V (x = d /\ (y =a Vy= b)) V 

(x = a_1 /\ y = c) V (x = L1 /\ y = d) V (x = e' /\ (y = c Vy= d)) V 

(x =a~/\ (y = a_1 Vy= d)) V (x = b~ /\ (y = L1 Vy= c)) V 

:::Ji :::JX, Y ((x = ai /\ y = ai-1) V (x =bi/\ y = bi-d V 

(x = a~+l /\ y = a~) V (x = b~+l /\ y = b~) V 

(x = h? /\ (y = h?'1 v y = h?•
2
)) v 

(x = h?'1 /\ (y = ai Vy= a~)) V 

(x = h?'2 /\ (y =bi Vy= b~)) V 

(x = hx /\ (y = hij v y = hix2)) v 

(x = h~1 
/\ (y =a~ V (y = h?·1 /\ i EX) V (y = h?'

2 
/\ i et X))) V 

(x = h~2 
/\ (y = b~ V (y = h?'1 /\ i et X) V (y = h?'

2 
/\ i EX))) V 

(x = hij1'1 /\ (y = a~+l V (y = h~1 /\YE X) V (y = h~2 /\Yet X))) V 

(x = hij1'2 /\ (y = b~+l v (y = hv /\yet X) v (y = h~2 /\ y EX)))). 

By the given definition, l;y-1 = .Jw· So we must show that L = Log;y- is not 
approximable by frames of cardinality < .Jw. 

Although the frame ;y- looks rather cumbersome (which is justified by our 
purpose, of course), its constitution can be made quite clear. Our next aim is to 
describe points in ;y- by means of modal formulas. 
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z \tu 

Let us begin with ~'s points that are characterized by variable free formulas. 
The reader can easily verify that the formulas 

o: = D.L, f3 =OT/\ DOT, 'Y = DDJ_ /\OT, 
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CL1 = 01 A •001 A •0/3, /3-1 = 08 A •008 A --,01, 

a~ = 00:_1 A 08 A --,000:_1 A --,008, /3b = O/J-1 A 01 A ·00/3-1 A --,001, 

O:i = Oo:i-1 A .ooai-1 A --,08, /Ji= O/Ji-1 A --,00/Ji-l A ·01, 

a;+l = oa; A --,OO'o:i A •0/3-1, /3~+1 = 0/3~ A --,00/]~ A •00:_1, 

x?'1 = oai A .ooai A oa~, x?'
2 

= O/Ji A ·OO/Ji A O/Jb, 

XO = OxO,l A Ox0,2 A .ooxO,l A --,OOx0,2 
i i i 1.. i ' 

for i 2 0, are such that a is true in ~only at a, /3 at b, 1 at c, 8 at d, €
1 at e', E at 

e and the formulas denoted by a, /3, X with subscripts and superscripts are true 
only at the points in ~ denoted by a, b, h, respectively, with the corresponding 
indices. 

Before we continue characterizing ~'s points by modal formulas, let us observe 
that the following holds. 

Lemma 6.31 (i) •E rj_ L; more exactly, {x: x f= <:} = {e}. 
(ii) E ---+ Ox? E L, for every i < w. 
( ... ) o 0 · o 1 0 o 2 L ; . . . _j_ . 
m Xi-+' X/ A• X/ E ,Jori,J<w,irJ· 

Now define three more sequences of formulas, for i 2 1: 

xi,l = oa; A .ooa; A (Oo:o v O/Jo), 

Xi,2 =Of]~ A ·00/]~ A (Oo:o V 0/Jo), 

xi = Oxi,l A Oxi,2 A --,OOxi,l A --,OOxi,2. 

These variable free formulas characterize in ~ not single points but sets of points, 
namely, 

{x: xf=xi' 1 }={h~1 : XEPiw}, 

{x: x F xi,2} = {hj.2: x E piw}, 

{x: xf=xi}={h~: XEPiw}. 

To characterize the relation between the points in ~ involved in representing 
sets in pi+ 1w, for i 2 1, we require a few more formulas: 

'lri(P) =xi---+ (O(xi,l Ap) v O(xi,2 Ap)) A ·(O(xi,l Ap) A O(xi,2 Ap)), 

ai(P) =EA D7ri(P)---+ Oa;(p), 

a~(p) = xi+1 A O(xi+1,1 A D(xi,1 v xi,2---+ p)) A 

O(xi+1,2 A o(xi,1 v xi,2---+ ·P)), 

Pi(p,q,r) = Pi(p,q,r)---+ Pi(p,q,r), 

Pi (p, q, r) = f A D7ri(P) A O(q A p A (xi,l v Xi' 2)) A 
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O(r /\ -.p /\ (xi,1 v xi,2)) /\ 

D((xi,1 v xi,2) f\-.p __. -.q) /\ D((xi,1 v xi,2) /\p __. -.r), 

Pi(p,q,r) = D(cr~(p)--+ 
D(xi+1,1 __. O(q /\ (xi,1 v xi,2)) /\ -.O(r /\ (xi,1 v xi,2))) /\ 

o(xi+1,2 __. O(r /\ (xi,1 v xi,2)) /\ -.o( q /\ (xi,1 v xi,2)))). 

Lemma 6.32 (i) cri(P) EL for every i < w. 
(ii) Pi(P, q, r) EL for every i < w. 

Proof (i) We need to show that if, under some valuation in the frame J, we 
have x f= f /\ D7ri(P) then x f= Ocr~(p). So suppose x f= f /\ D7ri(p). Then by 
Lemma 6.31, x = e and so e f= D7ri(p). This means that, for every X E Piw, 
either 

hi,l L- hi,2 LL hi,l LL hi,2 L-
X I p, x v- p or x v- p, x I p. 

·1 ·2 
Let Y = {X : hie f= p}. Then clearly we have Y = {X : hie ~ p}. By the 
construction of J, there are points htJ"1, h~ 1 ' 1 , h~ 1 ' 2 such that 

Then we have 

h~ 1 • 1 Rhij iff (XE Y /\j = 1) v (X </. Y /\j = 2), 

h~ 1 • 2Rhij iff (XE Y /\j = 2) V (X </. Y /\j = 1). 

h~1,1 F= xi+1,1 /\ D(xi,1 v xi,2 __. p), 

h~1,2 F= xi+1,2 /\ o(xi,1 v xi,2 __. -.p), 

which together with hi+l Rhi+I,l hi+1 Rhi+1'2 hi+1 L- xi+1 yields e L- Ocr'(p) Y Y >Y Y >YI Ii· 
(ii) Suppose now that, under some valuation in J, x f= p-;(p,q,r) and show 

that x f= Pi(p,q,r). Since x f= f /\ D7ri(p), we may assume that we are in the 
same situation as in the proof of (i), in particular, x = e and h~ 1 f= cr~(p), with 
htt1 being that only point at which, under the given valuation, crHp) is true. It 
follows also from the first assumption that 

e F= O(r /\ -.p /\ (xi,I v xi,2))' 

e F D((Xi,1 V Xi,2) /\ -.p __. -.q), 

e F= D((xi,1 v xi,2) /\p __. -.r). 

Suppose e ~ Pi(p,q,r). Then one of the following holds: 

(6.5) 

(6.6) 

(6. 7) 

(6.8) 

(6.9) 
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(a) (b) 

FIG. 6.7. 

h~1,1 F= <>(r /\ (xi,1 v xi,2)), 

h~1,2 ~ <>(r /\ (xi,1 v xi,2)), 

h~1,2 F= <>(q /\ (xi,1 v xi,2)). 

(c) 

(6.10) 

(6.11) 

(6.12) 

If (6.9) holds then q is false at all points hij accessible from h;J 1
•
1

. But according 
to the definition of Y (see the proof of (i)), h;;-1

'
1 sees only those hij at which 

p is true. By (6.5), this set must contain a point where q is true, which is a 
contradiction. Therefore, (6.9) does not hold. 

Assume now that (6.10) holds. This means that among the points accessible 
from h~ 1 • 1 there is a point hij at which r is true. Then by (6.8), hij ~ p. On 
the other hand, h~ 1 • 1 sees only those points hij where pis true, which is again 
a contradiction. 

In the same way (6.11) and (6.12) combined with (6.7) and (6.8) lead to a 
contradiction. 0 

Lemma 6.33 Every frame Q5 = (V, S) for L refuting -if contains at least :::lw 
points. 

Proof Suppose E is true at some point e in Q5 validating L. By Lemma 6.31 
(ii), for every i < w, there are points hi, h}, h; in Q5 forming the diagram shown 
in Fig. 6. 7 (a) and such that hi f= x?, h} f= x~· 1 , hr f= x~·2 . Using Lemma 6.31 
(iii), one can readily prove that the points hi, ht, hr are not accessible from hj, 
h}, h], for i =/= j. 

Given X E Pw, define a valuation in Q5 in the following way. Suppose hi, h}, 
ht is a triple found above. Put 

ht F= p, hr ~ p if i Ex, 

h} ~ p, hr F= P if i <f- x. 
Under this valuation e f= D7r0 (p) and, by Lemma 6.31 (i), e f= <>a0(p). Therefore, 
there are points hx, hi:, hi in Q5 forming the diagram as in Fig. 6.7 (b) and 
such that 



182 INCOMPLETENESS 

hx F= x
1 

} 
hi F= x1,1 /\ o(xo,1 v xo,2---> P) 
h'i F= x1,2 /\ o(xo,1 v xo,2---> -.p) 

(6.13) 

We show that points in distinct triples of the form hx, hJc, h'i do not see each 
other. Indeed, suppose X1, X2 E Pw and X1 -/=- X2. This means that there is 
i < w such that either i E X 1, i ¢ X 2 or i ¢ X 1, i E X2. Assume for definiteness 
that i E X1 and i ¢ X2. 

Take the triple hi, hi, h; determined above and define a valuation in (!) by 
putting 

x F= q iff x = h}, 

x F= r iff x = h;. 
It is not difficult to verify that, under this valuation, Pi (P1, q, r) is true at e and 
so, by Lemma 6.32 (ii), e f= Pt(p1 , q, r), where p1 is the variable used for finding 
the triple hx,, hi,, h'i,. Using (6.13) with Pl instead of p, we obtain: 

hx, F= o(x1,1---> O(q /\ (xo,1 v xo,2)) /\ -.O(r /\ (xo,1 v xo,2))), 

hx, F= D(x1,2---> O(r /\ (xo,1 v xo,2)) /\ -.O(q /\ (xo,1 v xo,2))), 

hi, F= O(q /\ (xo,1 v xo,2)) /\ -.O(r /\ (xo,1 v xo,2)), 

h'i, F= O(r /\ (xo,1 v xo,2)) /\ -.O(q /\ (xo,1 v xo,2)). 

(6.14) 

(6.15) 

(6.16) 

(6.17) 

In exactly the same way, using Pi (P2, q, r) instead of Pi (P1, q, r), where P2 is 
the variable involved in finding the triple hx2, h L, ht, we obtain: 

hx2 F= D(x1,1---> O(r /\ (xo,1 v xo,2)) /\ -.O(q /\ (xo,1 v xo,2))), 

hx2 F= D(x1,2---> O(q /\ (xo,1 v xo,2)) /\-.O(r /\ (xo,1 v xo,2))), 

hL F= O(r /\ (xo,1 v xo,2)) /\ -.O(q /\ (xo,1 v xo,2)), 

h'i2 F= O(q /\ (xo,1 v xo,2)) /\ -.O(r /\ (xo,1 v xo,2)). 

(6.18) 

(6.19) 

(6.20) 

(6.21) 

Suppose that a point in the triple hx,, hi,, h'i, sees a point in the triple 
hx2, hL, h'i

2
• Then by the transitivity, hx,ShL or hx1 Sht. In the former 

case we arrive at a contradiction between (6.20) and (6.14), and in the latter one 
between (6.21) and (6.15). Other possibilities are considered analogously. 

It follows that there are :J1 distinct points of the form hx, hJc, hi, for 
XE Pw. 

Suppose now that we have already proved that, for every X E Piw, there 
exist points hx, hJc, h'i forming the diagram as in Fig. 6.7 (b) and such that 
hx F xi' hi F xi,l, h'i F xi·2. Suppose also that points in distinct triples of 
that form do not see each other. Using Lemma 6.32, in the same way as before 
we obtain that, for every YE pi+lw, there are points hy, h~, h~ forming the 
diagram as in Fig. 6.7 (c) and such that hy f= xi+ 1 , h~ f= xi+l,1, h~ f= xi+ 1

•
2

. 
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Besides, points in distinct triples of the form hy, hi, h~ do not see each other. 
Therefore, there are ::li+l points of this sort. Thus, for each i < w, the cardinality 
of <B is greater than :Ji and so I <BI 2: ::lw. 0 

This completes the proof of Theorem 6.30. O 

Slightly modifying the argument.above, we can prove 

Theorem 6.34 There is a Kripke complete quasi-normal extension L of K4 
such that every frame for L contains at least ::lw points. 

Proof It suffices to take L = Log (J, { e}), where J is the frame in Fig. 6.6. 

0 

Of course this result does not hold for ExtS4 and Extlnt (why?). However 
we still have 

Theorem 6.35 There are logics in NExtS4 and Extlnt that are characterized 
by Kripke frames of cardinality ::lw but are not approximable by frames of smaller 
cardinality. 

The idea of the proof is similar to that of Theorem 6.30 but technically it is 
somewhat more complicated. 

6. 7 Exercises and open problems 

Exercise 6.1 Show that the canonical model for GL contains a continuum of 
reflexive points. (Hint: prove that the sets 

GL U {Dcp---> cp: cp E ForM£}U 

{Pi E VarMC: i EI} U {•Pi: Pi E VarMC, i ¢I} 

are GL-consistent for every I~ w.) 

Exercise 6.2 Show that the canonical frames for the logics GL and Grz are 
not Noetherian. 

Exercise 6.3 Prove that the canonical frame for Grz contains a proper cluster. 
(Hint: show that the tableaux (f, 0) and (~, 0), where 

f = {p} U {•Dcp: cp ¢ Grz}, ~ = {•p} U {•Dcp: <p ¢ Grz}, 

are Grz-consistent and all extensions of them in the canonical model see each 
other.) 

Exercise 6.4 Show that K4EB8 is not strongly complete, where 8 is the formula 
defined in Section 6.3. 

Exercise 6.5 Show that GL in the language with one variable is not strongly 
complete. 
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Exercise 6.6 Show that GL.3 is neither strongly complete nor characterized 
by an elementary class of frames. 

Exercise 6. 7 Show that the set of formulas which are true in the model !m 
defined in Section 6.4 is not closed under Subst. 

Exercise 6.8 Show that Dum and SL are not strongly complete. 

Exercise 6.9 Prove that the logic T EB 0(02p---+ 0 3p) ---+ (Op---+ 0 2p) is not 
finitely approximable. (Hint: show that every intransitive frame for this logic is 
infinite and that tra does not belong to it; to prove the latter use the frame 
9l = (w, R), where nRm iff m 2: n - 1, which is known as the recession frame.) 

Exercise 6.10 Show that there is no finitely approximable logic in the interval 
[K EB 0(02p---+ 0 3p)---+ (Op---+ 0 2p), Log9l]. 

Exercise 6.11 Show that TEBOp/\q---+ <>(02p/\Oq) is not finitely approximable. 

Exercise 6.12 Prove that K EB ODp V D(O(Oq---+ q) ---+ q) is incomplete. (Hint: 
show that the formula <>Op V Op does not belong to this logic and cannot 
be separated from it by a Kripke frame; to prove the former use the frame 
(wU {w,w+ 1},R) where xRy iff either x,y E wU {w} and x > y or x = w + 1 
and y = w.) 

Exercise 6.13 Show that the formula <>Op V O(O(Oq ---+ q) ---+ q) is valid in a 
frame J = (W, R) iff J satisfies the condition 

\Ix (--dy xRy V 3z (xRz /\-du zRu)). 

Exercise 6.14 Show that the logic KEB<>OpVOp is canonical, with its canonical 
frame satisfying the condition in the previous exercise. 

Exercise 6.15 Prove that KEBO(Op <--t p)---+ Op is incomplete. (Hint: tra does 
not belong to this logic.) 

Exercise 6.16 Does the equality L + niEI Li= niEI(L +Li) hold in Extlnt? 
(Hint: assuming that it holds, prove that all si-logics are finitely approximable.) 

Exercise 6.17 Show that T EB O(O(p ---+ Op) ---+ 0 3p) ---+ p is neither complete 
nor elementary. 

Exercise 6.18 Construct a logic in NExtKB which is not finitely approximable. 

Exercise 6.19 Construct a normal modal logic with arbitrarily large finite 
rooted frames but without infinite ones. 

Exercise 6.20 Construct a complete (finitely approximable) logic LE NExtK 
and a variable free formula cp such that L EB cp is not complete (finitely approx
imable). 

Exercise 6.21 Construct a logic in NExtAlt 2 that is not finitely approximable. 
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FIG. 6.8. 

Exercise 6.22 Prove that the class NExtAlt1 is countable and NExtAlt2 is 
continual. 

Exercise 6.23 Prove that the set of tense formulas that are true in the model 
(J, !U}, where J = (w, >} and !U is a bijection from the set of variables onto the 
family of all finite and cofinite subsets of w, is a consistent tense logic10 but has 
no Kripke frames. 

Problem 6.1 Call a logic L locally compact if every fragment of L with n < w 
variables is compact. Are there locally compact logics that are not compact? 

6.8 Notes 

The results of investigating modal and si-logics in the first half of the 1960s gave 
no reason to doubt that all modal and (especially) si-logics can be characterized 
by Kripke frames. Actually, there were no doubts that these logics are a sort of 
fragments of classical first order logic. However, in the late 1960s and early 1970s 
a series of "negative" results appeared, started by Jankov's (1968b) example of a 
si-logic which is not finitely approximable and modal and si-calculi of that kind 
constructed by Makinson (1969), Kuznetsov and Gerchiu (1970) and Fine (1972). 
(The result of Exercise 6.21 is due to Bellissima (1988) and that of Exercise 6.18 
to Wolter (1993).) 

In fact the "negative" results presented in this chapter show that the lan
guages of modal and si-logics with the frame interpretation have a rather strong 
expressive power, in some respects stronger than the classical first order lan
guage. Moreover, Thomason (1975b) showed that in a sense classical second 
order logic can be effectively embedded into a propositional modal logic with the 
frame interpretation. Note, however, that no analogous result has been proved 
for si-logics, though Thomason's (1975b) idea seems to be enough to justify it. 

The first modal formula without a first order equivalent on frames-the McK
insey formula ma-was found by van Benthem (1975) and Goldblatt (1975), 

10Recall that tense logics are closed under the rules <p/G<p, <p/H<p. 
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though their proofs were different: the former used countable elementary sub
models (i.e., the L6wenheim-Skolem theorem), and the latter ultraproducts. No
tice that it is not hard also to prove this result with the help of the compactness 
theorem in the same manner as in Section 6.2. Later Doets (1987) showed that 
ma does not have a first order equivalent even on the class of finite frames; 
see also van Benthem (1989). Indeed, it is easy to see that ma is valid in the 
frames ~n shown in Fig. 6.8, where n is the number of final points, iff n is odd. 
Now, if ma is first order definable then, according to van Benthem (1976a), it 
has a single (!) first order formula as its equivalent, and using the technique of 
Ehrenfeucht (1961) games (see also Exercise 1.3.15 in Chang and Keisler (1990) 
which does not use the game terminology) one can show that for every first order 
formula ¢ there is m such that ¢ is valid in all ~n for n > m or is refuted in 
all such frames no matter whether n is even or odd. Goldblatt (1991) proved 
that K EB ma is not canonical and Wang (1992) showed that it is not strongly 
Kripke complete. Observe, by the way, that both la and grz are clearly first 
order definable on finite frames. According to Boolos and Sambin (1991), Fine 
and Rautenberg were the first to notice that GL is not strongly complete, and 
Goldfarb proved this using formulas in one variable. Exercise 6.3 is due to Hughes 
and Cresswell (1982). 

One more interesting example of Doets (1987): the Fine formula 

OD(p V q) --+ O(Dp V Dq) 

is equivalent on countable frames to the following first order condition: 

Vx, y (xRy--+ 3z (xRz /\Vu (zRu--+ yRu) /\Vu, v (zRu /\ zRv --+ u = v) )) 

but on the class of all frames it does not have a first order equivalent. The latter 
is proved with the help of the intransitive frame ~ which consists of a root seeing 
all points represented by infinite subsets of natural numbers, which in turn see 
exactly the natural numbers contained in them. It is not hard to check that ~ 
validates the Fine formula but does not satisfy the first order condition above, 
which, by the Lowenheim-Skolem theorem, means that the formula is not first 
order definable. Intuitionistic formulas with similar properties were constructed 
by Chagrova (1989b). However, the following problem of Doets (1987) is still 
open: which is the least cardinal x such that a formula is first order definable 
whenever it is definable on frames of cardinality ::; x? 

First examples of intuitionistic formulas-Sa and bbn-without first order 
equivalents were given by van Benthem (1984) and Rodenburg (1986). In Sec
tion 6.2 we established this result for bbn using Shimura's (1995) theorem (The
orem 6.9) that no logic in the interval [Int, T 2] save Int is strongly Kripke 
complete and the fact (to be proved in Section 10.2) that Kripke completeness 
and elementarity imply canonicity. The Scott axiom may also be treated in the 
same way using another result of Shimura (1995): no si-logic in the interval 
[SL, SL+ bd3 ] is strongly complete. (Note by the way that SL in any language 
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with finitely many variables is canonical, as has been recently observed by Ghi
lardi, Meloni and Miglioli.) Here we outline a direct proof due to van Benthem 
(1984) and Rodenburg (1986), which is based on the compactness theorem. 

For the Scott axiom sa we consider frames of the form shown in Fig. 6. 9 
and describe them by means of first order formulas in the same manner as in 
the proof of Theorem 6. 7. Now, by the compactness theorem, if sa is first order 
definable then it must be valid in a frame J of the form depicted in Fig. 6.10, 
where points in the "box" W' are incomparable with ais and bis. On the other 
hand, a valuation in J such that p is true only at ai, for all i < w, refutes sa, 
which is a contradiction. 

To prove that bbns are not first order definable one can use in the same 
way the frames in Fig. 6.11. In view of the result of Doets (1987) according to 
which only a finite number of Nishimura formulas are first order definable (and 
the remaining are not first order definable even on the class of finite frames), 
it seems that Shimura's (1995) theorem can be extended to almost all si-logics 
with extra axioms in one variable. 

An interesting example was found by Hughes (1990). He showed that the 
logic KMT = K EB { <>((Dp1 ---> P1) /\ ... /\ (Dpn ---> Pn)) : n :2 1} is characterized 
by the class of frames satisfying the condition 'Vx3y (xRy /\ yRy), it is finitely 
approximable and decidable but not finitely axiomatizable and elementary. 
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In general, for modal and intuitionistic formulas with the frame semantics 
one can refute practically all properties typical for first order formulas. However, 
there are partial exceptions. For instance, according to Corollary 2.1.5 of Chang 
and Keisler (1990), if a theory has arbitrarily large finite models, then it has an 
infinite model. Of course, in our case we should speak about rooted frames. Here 
is an example of a tense logic with arbitrarily large finite frames but without 
infinite ones: it suffices to extend the minimal tense logic by the axioms of GL.3 
for both D and 0-1 . It is easy to see that rooted frames for this logic are of 
the form ( {1, ... , n }, <). It turns out, however, that for logics in NExtK4 and 
Extlnt an analog of Corollary 2.1.5 in Chang and Keisler (1990) holds; see 
Chagrov (1995). 

The effect ofKripke incompleteness was first discovered by Thomason (1972b) 
for tense logics (see Exercise 6.23), and then Thomason (1972a) constructed 
a non-compact modal logic in NExtT. Rybakov (1977, 1978a) and Shehtman 
(1980) extended the latter result to NExtGrz and Extlnt. It is worth noting that 
the non-compact logic of Rybakov (1978a) is decidable and that of Shehtman 
(1980) is axiomatizable by formulas in two variables. Kripke incomplete normal 
modal calculi were first constructed by Fine (1974b) and Thomason (1974a), 
and an incomplete si-calculus by Shehtman (1977). Other examples of that sort 
can be found in Blok (1978) (see Section 10.5), van Benthem (1978, 1979a), 
Boolos (1980). Usually incomplete logics in NExtK are constructed with the 
help of various modifications of the so called "recession frame" first used by 
Makinson (1969); it is defined in Exercise 6.9. Note by the way that the logic of 
the recession frame was (finitely) axiomatized by Blok (1979). In NExtK4 and 
Extlnt all known constructions of incomplete logics are based upon modifications 
of the frame of Fine (1974b); for another application of this frame see Chagrov 
and Zakharyaschev ( 1995a). 

Every Kripke complete logic is complete with respect to the neighborhood 
semantics. However, the converse does not hold, as was discovered by Gerson 
(1975a). Nevertheless it does not guarantee completeness either: Gerson (1975b) 
constructed the first example of a modal logic that is not complete with respect 
to the neighborhood semantics and Shehtman (1980) extended this result to the 
class NExtGrz. In Section 6.5, written on the material of Shehtman (1977, 1980), 
we saw that this does not provide us with si-logics that are not complete with 
respect to the neighborhood semantics. The question on the existence of such 
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logics, raised by Kuznetsov (1975), is still open. Problem 6.1 is due to Shehtman 
(1980). 

Another variant of the completeness problem is connected with transferring 
the Lowenheim-Skolem theorem to modal and si-logics. Are countable frames 
enough to characterize all Kripke complete modal and si-logics? This question 
was raised by Hosoi and Ono (1973).. A negative solution to it for tense logics was 
obtained by Thomason (1975a) and for modal and si-logics by Shehtman (1983). 
Theorem 6.30 is due to Chagrov (1986). It is not known, however, what is the 
minimal cardinality of frames that are enough to characterize all Kripke complete 
logics. This problem was formulated by Kuznetsov; see Shehtman (1983). Note 
that all logics of finite width are characterized by countable frames, as will be 
shown in Section 10.4. In the case of quasi-normal and polymodal logics examples 
of Kripke complete logics all frames of which contain at least a continuum of 
points were constructed by Thomason (1975a) and Chagrov (1985b). 

Two more open questions concerning the cardinality of frames also deserve 
mentioning. All the examples above were constructed semantically, and so noth
ing is known about the cardinality problem for calculi. Besides, we do not know 
any results of that sort for the neighborhood semantics. Note that these prob
lems are closely related to similar problems for second order logic, which are also 
far from a complete solution. 



Part III 

Adequate semantics 

As we saw in the previous chapter, not all modal and superintuitionistic logics 
may be characterized by Kripke frames. There is nothing extraordinary in this 
unpleasant fact. After all the Kripke semantics was constructed initially just for 
several particular systems and only after that were we trying it on arbitrary 
modal and si-logics. 

In this part we introduce an adequate semantics for the logics under consider
ation. First, in Chapter 7 we translate the language of logic into the language of 
algebra and arrive at the algebraic semantics-modal and pseudo-Boolean alge
bras. Although this semantics gives no sensible interpretation for logical connec
tives, it enables us to take advantage of the developed apparatus of universal alge
bra. Then in Chapter 8, basing on Stone's representation of distributive lattices, 
we obtain a relational representation of modal and pseudo-Boolean algebras
the so called general frames-which combine in themselves the merits of both 
algebras and Kripke frames. 



7 

ALGEBRAIC SEMANTICS 

Algebraic semantics abstracts from the intended meaning of logical connectives 
and interprets them just as operations on an arbitrary set A of objects, some 
of which are regarded as distinguished. Each formula <p(p1, .. . , Pn) gives rise 
to a function fcp(x 1, ... ,xn) on A, and we may consider <p(p1, ... ,pn) to be 
valid in this "interpretation" if f cp(ai, ... , an) is a distinguished object, for every 
ai, ... , an E A. It is not hard to see that all our logics are complete with respect to 
this highly abstract semantics. But to use it profitably, we should know something 
about the constitution of algebras corresponding to modal and superintuitionistic 
logics. 

7.1 Algebraic preliminaries 

The aim of this section is to introduce the basic algebraic notions and notations 
to be used in what follows. 

Let A be a non-empty set. For n 2: 1, by an n-ary operation on A we mean 
any map o from An into A; a 0-ary operation on A is an element in A. For 
example, the truth-table in Section 1.1 defines/\, V, -> and +---> as 2-ary or binary 
operations on the set {F,T}, • as a 1-ary or unary operation, and l. may be 
regarded as a 0-ary operation on {F,T}, namely F. 

A universal algebra or simply an algebra is a set A, called the universe of the 
algebra, together with some operations o1 , ... , On on it. We denote the algebra by 
2l = (A, o1 , ... , on)· For instance, the truth-table for Cl determines an algebra 
of the form 2l = ({T,F}, /\, V,->, +--->, •, J.). 

Two algebras 2l = (A,01,. . .,on) and !B = (B,o~, . . .,o~) are said to be 
similar if n = m and, for every i E { 1, ... , n}, the operations oi and o~ are of the 
same arity. As a rule, corresponding operations in similar algebras are denoted 
by the same symbols, though sometimes different ones may be preferable. 

Mostly we shall consider algebras with operations denoted by /\, V, -> (bi
nary), l. (0-ary) and 0 (unary). It will always be clear from the context whether 
we deal with algebraic operations or logical connectives. Although on the other 
hand the set For MC of modal formulas with the formula formation rules may 
be regarded as an algebra (For MC,/\, V, ->, l., D). 

Algebras of the types 2l = (A,/\, V, ->, J.) and 2l = (A,/\, V, ->, l., D) are 
called C- and MC-algebras, respectively. Each formula <p(p1, ... ,pn) in the lan
guage C (or MC) gives rise to an n-ary operation in an C- (MC-) algebra 2l 
if we interpret cp's connectives as the corresponding operations in 2l and the 
propositional variables p1 , ... , Pn as variables over A. A formula cp considered 
as the definition of such an operation in £- (M£-) algebras is called a term 
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or an £- (MC-) term, to be more exact. For ai, ... , an E A, we denote by 
cp(a1 , ... , an) the result of applying the operation associated with cp in Qt to the 
arguments a 1, ... , an. Given a map W from Var£ in A, called a valuation in Qt, 

W(cp) = cp(W(p1), ... , W(pn)) is the value of cp in Qt under W. 
An expression of the form cp = 7/J, cp and 'ljJ terms, is called an identity. It is 

true in an algebra Qt if the operations in Qt determined by cp and 'ljJ are the same, 
i.e., !!J( cp) = W( 'ljJ) for any valuation W in Qt. An expression of the form 

'Pl = 7/J1 A· .. A 'Pn = 7/Jn --> 'Po = 7/Jo, 

in which all 'Pi and 7/Ji are terms, is called a quasi-identity. It is true in Qt if 
for every valuation W in Qt, W(cpo) = !!1(7/Jo) whenever !!J(cpi) = !!1(7/Ji) for all 
i = 1, ... ,n. 

For an algebra Qt = (A, o1 , ... , on) and a non-empty subset V' of A, the pair 
(Qt, V') is called a matrix and V' its set of distinguished elements. If Qt is an £
(MC-) algebra then (Qt, V') is an £- (MC-) matrix. An £- (MC-) formula cp is 
said to be valid in an £- (MC-) matrix (Qt, V') if the value of cp is in V' under 
every valuation in Qt. We write (Qt, Y') f= cp to mean that cp is valid in (Qt, V'). As 
in the case of the Kripke semantics, we say a logic L is characterized by a class 
C of matrices (or C is characteristic for L) if L coincides with the set of formulas 
that are valid in all matrices in C. 

We shall often deal with £- and MC-matrices (Qt, Y') in which V' contains 
only one element T = J.. --> J... In this case instead of (Qt, V') f= cp we write Qt f= cp 
and say that cp is valid in Qt. Clearly, Qt f= cp iff the identity cp = T is true in Qt. 

An algebra is finite if its universe is finite. An algebra whose universe contains 
only one element is called degenerate. A matrix is degenerate if its set of distin
guished elements coincides with its universe. It should be clear that all identities 
and quasi-identities are true in every degenerate algebra and all formulas are 
valid in every degenerate matrix. 

Suppose Qt= (A, o1 , ... , on) and IJ3 = (B, 01, ... , on) are similar algebras. A 
map f from A into B is called a homomorphism of Qt in IJ3 if f preserves the 
operations in the following sense: for every operation oi in Qt of arity m and every 
ai, . .. ,am EA, 

A homomorphism f of Qt in IJ3 is an isomorphism or embedding of Qt in IJ3 if f is 
an injection, i.e., a# b implies f(a) f= f(b). And if an isomorphism f of Qt in 
IJ3 is also a surjection, that is a map "onto", then f is called an isomorphism of 
Qt onto IJ3. In this case Qt and IJ3 are said to be isomorphic. 

Matrices (Qt, V') and (IJ3, V'') are isomorphic if there is an isomorphism f of 
Qt onto IJ3 such that f(V') = V''. 

We will not distinguish between isomorphic algebras or isomorphic matrices. 
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7.2 The Tarski-Lindenbaum construction 

It is very easy to find a characteristic matrix for every modal or si-logic. Indeed, 
suppose L E ExtK (si-logics are treated in exactly the same way simply by 
omitting D) and consider the matrix (silMc, L) where 

QlMC = (ForM.C, /\, V, --+, _l, D) 

is the algebra of formulas in which, for 8 E {/\, V,--+}, 8(cp,1/J) = cp 81/J and 
D(cp) = Dcp. 
Theorem 7.1 (silMc, L) is a characteristic matrix for L. 

Proof Suppose that cp(p1, ... ,Pn) E L and W is a valuation in QlMC. Then 
W(cp) = cp{W(p1)/p1, ... , W(Pn)/Pn} E L, since L is closed under Subst. Thus, 
(silMc, L) ~ cp. 

Suppose cp tf_ L. Define a valuation W in silMc by taking W(p) = p for every 
variable p. The value of cp under W is clearly cp itself and so (silMc, L) ~ cp. 

0 

Of course this theorem conveys nothing else but the fact that L is closed 
under substitution. Let us now recall another useful fact, namely that equivalent 
formulas in normal modal and si-logics are interchangeable. 

Theorem 7.2 Every normal modal and si-logic has a characteristic matrix with 
a single distinguished element. 

Proof We consider only L E NExtK. Define an algebra 

by taking 

QlL = (llForM.CllL, /\, V, --+, _l, D) 

llForM.CllL = {ll'PllL: cp E ForM.C}, 

ll'PllL = {1/J E ForM.C: cp +--> 1/J EL}, 

ll'PllL /\ 111/JllL = ll'P /\ 1/JllL, ll'PllL V 111/JllL = ll'P V 1/JllL, 
ll'PllL--+ 111/JllL = ll'P--+ 1/JllL, J_ = llJ_llL, Dll'PllL = llDcpllL· 

The correctness of this definition is ensured by the equivalent replacement the
orem for L according to which the definition of the operations above does not 
depend on the choice of formulas in the equivalence classes ll'PllL and 111/Jllc for 
example, 

ll'PllL = ll'P'llL and 111/JllL = 111/J'llL imply ll'P /\ 1/JllL = llcp' /\ 1/J'llL· 

As a distinguished element in QlL we take llTllL = llJ_--+ J_llL· Let us prove 
that the matrix (QlL, {llTllL}) characterizes L. First, by induction on the con
struction of cp(p1, . .. , Pn) one can readily show that, for any formulas 'Pl, ... , 'Pn, 
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Now, suppose cp(p1, ... ,pn) EL. Then clearly <p +-+TEL. So for all formulas 
<p1, ... , 'Pn, we have cp(<pi, ... , 'Pn) +-+TEL, i.e., 

Let fil be a valuation in QlL under which fil(pi) = ll'PillL for 1 ~ i ~ n. Then 

from which (QlL, {llTllL}) F <p. 
Suppose that cp(p1, ... ,pn) fl- L. This is equivalent to <p +-+ T fl- L, i.e., 

ll'PllL =I- llTllL· Define a valuation filL in QlL, called the standard valuation in QlL, 
by taking IDL(p) = llPllL for every variable p. Then we have 

from which (QlL, {llTllL}) ~ 'P· 0 

Since this proof uses no specific features of normal modal and si-logics except 
the equivalent replacement theorem, the result above can clearly be extended to 
other logics for which this theorem holds. However, this cannot be done in the 
case of quasi-normal modal logics. 

Theorem 7.3 If a logic L E ExtK is characterized by a matrix with a single 
distinguished element then L is normal. 

Proof Let (Ql, {T}) be a characteristic matrix for L. We show that L is closed 
under necessitation. 

Suppose <p E L. Then the identity <p = T is true in Ql and so Ocp = OT is 
also true. Since OT EK~ L, OT= Tin Ql, from which Ocp is identically equal 
to T, i.e., (Ql, {T}) p Ocp and Ocp E L, because (Ql, {T}) characterizes L. 0 

Theorem 7.2 can be generalized to quasi-normal logics in the following way. 

Theorem 7.4 Suppose LE NExtK, L' E ExtL and QlL is the algebra defined in 
the proof of Theorem 7.2. Then L' is characterized by the matrix (Ql£, \7) where 
\7 = {jjcpjjL: 1P EL'}. 

Proof Suppose that cp(p1, ... ,pn) E L' and fil is a valuation in QlL such that 
fil(p1) = ll'PiliL, ... , fil(Pn) = ll'Pn 11£· Since cp( 'Pl, ... , 'Pn) E L', we then have 
fil(cp) = llcp(<p1, ... , 'Pn)llL E \7. Therefore, (QlL, \7) F <p. 

Conversely, suppose cp(p1, ... , Pn) fl- L'. Then 

from which (QlL, \7) ~ <p. 0 
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Corollary 7.5 Under the conditions of Theorem 7.4 for every formula r.p, r.p E L' 
iff m L( t.p) E V'. 

The matrices (Q!L, llTllL) and (Q!L, V') defined in the proofs of Theorems 7.2 
and 7.4 are called the Tarski-Lindenbaum matrices for L and L', respectively. If 
the Tarski-Lindenbaum matrix for L has only one distinguished element then it is 
called the Tarski-Lindenbaum algebra for L. The Tarski-Lindenbaum matrix for 
a quasi-normal modal logic L' constructed in the proof of Theorem 7.4 depends 
of course on the choice of L. To define the matrix uniquely we may take as L 
the maximal normal logic contained in L', that is ker L'. 

By the definition, the Tarski-Lindenbaum matrices have countably many 
elements. So we have 

Corollary 7.6 (i) Every normal modal and si-logic is characterized by a count
able algebra. 

(ii) Every quasi-normal modal logic is characterized by a countable matrix. 

Tarski-Lindenbaum matrices and algebras characterize not only logics them
selves but also the inference rules admissible in them. 

Theorem 7. 7 (i) A rule r.p1, ... , 'Pm/ r.p is admissible in a logic L E NExtK or 
L E Extlnt iff the quasi-identity t.p1 = T /\ ... /\ 'Pn = T --; r.p = T is true in the 
Tarski-Lindenbaum algebra Q!L. 

(ii) Let L' E ExtK and (Q!L, V') be the Tarski-Lindenbaum matrix defined in 
Theorem 7.4. A rule r.p1, ... , 'Pm/'P is admissible in L' iff for every valuation m 
in Q!L, m(r.p) EV' whenever m(r.p1) EV', ... , m(r.pm) EV'. 

Proof Since (i) is a special case of (ii) (take L' = L), we prove only the latter. 
Let Pl, ... , Pn be all the variables in t.p1, ... , 'Pm, r.p. 

(=>) Suppose mis a valuation in Q!L, m(pi) = llxillL, for 1 :::; i :::; n, and 
'Pj(llxillL, ... , llxnllL) E V', for 1 S j Sm. Then ll'Pj(X1, ... , Xn)llL E V', from 
which 'Pj (x1, ... , Xn) E L'. Since the rule r.p1, ... , 'Pm/ r.p is admissible in L', 
'P(X1, ... , Xn) EL' and so m(r.p) = ii'P(X1, ... , Xn)llL EV'. 

( <==) Suppose r.p1, ... , 'Pm/ r.p is not admissible in L'. This means that there 
are formulas X1, ... , Xn such that t.p1 (X1, ... , Xn) E L', . .. , 'Pm (X1, ... , Xn) E L', 
but 'P(X1, ... , Xn) rf_ L'. Then m(r.pi) = 'Pi(iiX1iiL, · · ·, ilXniiL) E V', 1 Si Sm, 
and m(r.p) = r.p(ilx1llL, ... , llxnllL) r/. V', which is a contradiction. D 

7.3 Pseudo-Boolean algebras 

The Tarski-Lindenbaum algebras, being a direct translation of logics into the 
algebraic language, are too complicated to be a good semantic instrument. Even 
for Cl, which was initially defined as the set of formulas valid in a two-element 
algebra, the Tarski-Lindenbaum algebra is infinite (if, of course, the language 
is infinite). However, just as canonical models are only representatives, though 
very important, of the class of Kripke models, Tarski-Lindenbaum algebras are 
members of a wider class of algebras validating formulas in Int and K. In this 
section we consider the algebras suitable for superintuitionistic logics. 



198 ALGEBRAIC SEMANTICS 

In fact, all we need is .C-algebras Qt = (A, A, V, ---+, .l) in which the identity 
'P = 'ljJ is true whenever tp +-+ 'ljJ E Int. Such algebras are called pseudo-Boolean 
algebras or Heyting algebras. A pseudo-Boolean algebra Qt is said to be an algebra 
for a si-logic L if Qt f= L. By Theorem 7.2, the Tarski-Lindenbaum algebra QlL 

for every si-logic L is a pseudo-Boolean algebra for L. 

Theorem 7.8 For each si-logic L and each formula tp, tp E L iff <p is valid in 
every pseudo-Boolean algebra for L. 

Proof (:::::}) is trivial and ( <==) is a consequence of the fact that QlL is a pseudo
Boolean algebra characterizing L. 0 

Example 7.9 The algebra ( {T,F}, A, V, ---+, .l) whose operations are defined by 
the truth-table in Section 1.1 is a pseudo-Boolean algebra because Int C Cl. 

The definition above is not convenient for determining if a given .C-algebra is 
a pseudo-Boolean one. The next theorem provides a simpler characterization of 
pseudo-Boolean algebras. 

Given an algebra Qt = (A, A, V, ---+, .l), define a binary relation :S on A by 
taking, for every x, y E A, 

x :S y iff x A y = x. 

As will be shown in Theorem 7.13 below, for a pseudo-Boolean Qt the relation :S 
turns out to be a partial order on A. So we can use the terminology introduced 
in Section 2.3 for partial orders, for instance, the greatest element in Ql, the least 
element, etc. 

Theorem 7.10 An algebra Qt= (A,A, V,---+,.l) is a pseudo-Boolean algebra iff 
the following conditions hold in Qt for every x, y E A: 

(1) x A y = y Ax, x Vy= y V x (commutativity of A and V ); 
(2) x A (y A z) = (x A y) A z, x V (y V z) = (x Vy) V z (associativity of A and 

v ); 
(3) (x A y) Vy= y, x A (x Vy)= x (absorption); 
( 4) z A x :S y iff z :S x ---+ y (x ---+ y is the greatest element in the set 

{zEA: z/\x:Sy}); · 
(5) .l :S x (.l is the least element in Qt). 

Proof (:::::}) Only ( 4) needs a proof because the other conditions correspond 
to suitable intuitionistically valid formulas in Table 1.1 (.l :S x corresponds to 
p A .l +-+ .l). So suppose z Ax :Sy, i.e., z Ax A y = z Ax. Since 

p +-+ p A (q---+ q A p) E Int, 

p A ( q ---+ q A p A r) +-+ p A ( q ---+ r) E Int, 

we then have 

z = z A (x ---+ x A z) = z A (x---+ x A z A y) = z A (x ---+ y), 

from which z :S x ---+ y. 
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Suppose now that i::::; x---> y, i.e., z /\ (x---> y) = z. Since 

p /\ q /\ r <---+ p /\ q /\ (p---> r) E Int, 

we then have 

x /\ z /\ y = x (I z /\ (x---> y) = x /\ z. 

( ¢=) The proof in this direction is much harder. First we require 

Lemma 7.11 If (1)-(5) hold in an algebra 2t =(A,/\, V,->, ..L) then the follow
ing conditions are also satisfied in 2t for all x, y E A: 

(6) x /\ x = x, x V x = x (idempotency of/\ and V }; 
(7) x---> x = y---> y = .l-> .l (= T); 
(8) x /\ (y---> y) = x (= x /\ T); 
(9)x/\(y->x)=x; 
(10) x /\ (x---> y) = x /\ y; 
(11) x=y iffx:=:;y andys:;x; 
(12) x ::::; y iff x---> y = T; 
(13) x /\ y = T iff x = y = T; 
(14) x = y iff x <---+ y = T; 
(15) if x = T and x---> y = T then y = T; 
(16) x::::; y iff xv y = y; 
( 1 7) x ::::; z and y ::::; z iff x V y ::::; z; 
(18) x /\ (y V z) = (x /\ y) V (x /\ z) (distributivity). 

Proof (6) We use the laws of absorption: 

x /\ x = x /\ (x V (x /\ x)) = x, x V x = x V (x /\ (x V x)) = x. 

(7) By (6) we have (x ---> x) /\ y /\ y = (x ---> x) /\ y, i.e., (x ---> x) /\ y ::::; y, 
from which by (4), x---> x ::::; y---> y, i.e., (x---> x) /\ (y---> y) = x---> x. By the 
same argument we obtain (x---> x) /\ (y ---> y) = y ---> y. Hence x---> x = y ---> y 
for every y E A, in particular, y = .l. 

(8) By (6) we have x /\ y::::; y and by (4) x::::; y---> y, i.e., x /\ (y---> y) = x. 
(9) By (6) and (4), x /\ y::::; x and x::::; y---> x, whence x /\ (y---> x) = x. 
(10) Again, by (6) and (4) we have x---> y::::; x---> y, (x---> y) /\ x::::; y and so, 

using (9), (x---> y) /\ x = (x---> y) /\ x /\ y = x /\ y. 
(11) If x = y then, by (6), x ::::; y and y::::; x. Conversely, if x ::::; y and y ::::; x 

then, by the definition of::::;, we have x = x /\ y = y. 
(12) Suppose that x---> y = T. Then using (10) and (8), we obtain x /\ y = 

x /\ (x ---> y) = x /\ T = x, i.e., x ::::; y. Suppose x ::::; y. Then, in view of (8), 
x /\ T ::::; y, from which by (4), T::::; x---> y, i.e., (x---> y) /\ T = T. On the other 
hand, by (8), (x---> y) /\ T = x---> y, and hence x---> y = T. 

(13) If x = y = T then, by (6), x /\ y = T. Suppose x /\ y = T. Since by (6) 
x /\ y ::::; x, we then have T ::::; x, i.e., T /\ x = T which together with T /\ x = x 
(by (8)) gives x = T. The equality y =Tis proved analogously. 
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(I4) x = y iff x Sy and y S x (by (11)) 
iff x --+ y = y --+ x = T (by (12)) 
iff x ~ y = T (by (13)). 

(15) If x = x --+ y = T then using (6), (8) and (10) we obtain y = y /\x A (x --+ 

y) = x A (x--+ y) =TAT= T. 
(16) Suppose x S y, i.e., x = x A y. Using the laws of absorption, we then 

obtain x Vy = y V (x A y) = y. If x Vy = y then, by the same laws, x A y = 
x A (x Vy) = x, i.e., x Sy. 

(17) If x S z and y S z then, by (16), xV z = z = yV z, whence xVyV z = z, 
i.e., x Vy S z. Suppose x Vy S z, i.e., by (16), x Vy V z = z. Using (6), we then 
obtain x V z = x Vy V z = z, i.e., x S z. In the same way we get y S z. 

(18) According to (11), we need to prove two inequalities: 

(x A y) V (x A z) S x A (y V z) 

and 
x A (y V z) '5: (x A y) V ( x A z). 

By (6) and (16), we have y S y V z and so x A y S x A (y V z). By the same 
argument we obtain x A z S x A (y V z). In view of (17), this establishes the 
former inequality. 

Let us prove the latter. By (16) and (6), we have x A y S (x A y) V (x A z) 
and x A z S (x A y) V (x A z), from which by (4), y S x--+ (x A y) V (x A z) and 
z S x--+ (x A y) V (x A z). Therefore, by (17), y V z S x--+ (x A y) V (x A z) and 
so, using (4) once again, we obtain x A (y V z) S (x A y) V (x A z). D 

We can now continue proving Theorem 7.10. We need to show that if an equiv
alence '!jJ ~xis in Int and an algebra 2l satisfies (1)-(5) and so, by Lemma 7.11, 
(6)-(18) as well, then the identity '!jJ = x is true in 2l. In view of (14), it is 
sufficient to establish that cp E Int implies 2l ~ cp. 

We prove this by induction on the length of a derivation of r.p in Int. The 
step of induction is already justified: indeed, it is obvious for Subst and (15) 
establishes it for MP. So it remains only to check that the axioms of Int are 
valid in 2l. 

(Al) By (9) we have x A (y --+ x) = x, i.e., x S y --+ x and so, by (12), 
x--+ (y--+ x) = T. 

(A2) By applying (10) and (6) several times, we obtain 

x A (x--+ y) A (x--+ (y--+ z)) A z = x A y A (y--+ z) A z = 

x A y A (y--+ z) = x A (x--+ y) A (x--+ (y--+ z)), 

i.e., x A (x--+ y) A (x--+ (y--+ z)) S z, which in view of (4) implies x--+ (y--+ 
z) '5: (x--+ y)--+ (x--+ z) and, by (12), 

(x--+ (y--+ z))--+ ((x--+ y)--+ (x--+ z)) = T. 
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(A3) By the laws of absorption, we have x /\ (x Vy) = x, i.e., x :::; x Vy and 
by (12), x ...... xv y = T. 

(A4) follows from x---> x Vy= T by the commutativity of V. 
(A5) By (6), x /\ y :::; x /\ y which, by ( 4), gives x :::; y ---> x /\ y and so, by (12), 

x->(y->x/\y)=T. 
(A6) By (6) we have x /\ y $ x !ind by (12) x /\ y---> x = T. 
(A 7) is proved in the same way. 
(AS) Using (18) and (10), we have 

(x Vy)/\ (x ---> z) /\ (y ---> z) /\ z = 
(x /\ (x---> z) /\ (y---> z) /\ z) V (y /\ (x---> z) /\ (y---> z) /\ z) = 

(x /\ (x---> z) /\ (y---> z)) V (y /\ (x---> z) /\ (y---> z)) = 

(x Vy)/\ (x---> z) /\ (y---> z), 

from which (x Vy)/\ (x---> z) /\ (y---> z) :::; z. Now we apply (4), then (12) and 
obtain x---> z $ (y---> z) ---> (x Vy ---> z), and hence 

(x---> z) ---> ((y---> z)---> (x Vy---> z)) = T. 

(A9) follows from (5) and (12). 0 

As a consequence of Theorem 7.10 we derive an interesting 

Corollary 7.12 Suppose that (A,/\, V, -> 1 , j_) and (A,/\, V, ->2, j_) are pseudo
Boolean algebras with the same universe and the same operations /\, V and J__ 

Then x -> 1 y = x ->2 y, for every x,y EA. 

Proof According to (4) in Theorem 7.10, the implication in a pseudo-Boolean 
algebra is completely determined by /\. 0 

An algebra of the form Ql = (A,/\, V) satisfying the conditions (1)-(3) of 
Theorem 7.10 is called a lattice (we already used this notion in Sections 4.1 and 
4.2 when discussing intersections and sums of logics). Pseudo-Boolean algebras 
may be considered as lattices with two additional operations ---> and J__ 

Theorem 7.13 In every lattice (A,/\, V) the relation :::; defined by 

x $ y iff x /\ y = x, for x, y E A, 

is a partial order on A; besides, for every x, y E A, 

x :::; y iff xv y = y. 

Proof Notice first that the conditions (6), (11) and (16) in Lemma 7.11 do not 
depend on (4) and (5) and so hold in every lattice. 

The reflexivity of $ follows from (6). As to the transitivity, if x :::; y and 
y $ z, i.e., x = x /\ y and y = y /\ z, then x = x I\ y = x I\ y /\ z = x /\ z, from 
which x:::; z. The antisymmetry follows immediately from (11). 
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The fact that ::; can be defined via V is a consequence of (16). 0 

Given a partial order (A,::;) and a subset X ~ A, an element a E A is called 
the supremum or least upper bound of X if X ~al (i.e., x ::; a for every x E X) 
and a ::; b whenever X ~ bl; a is the infimum or greatest lower bound of X if 
X ~al (i.e., x ~a for every x EX) and a~ b whenever X ~bl. The supremum 
and infimum of X, if they exist, are denoted by V X and /\ X, respectively. In 
pseudo-Boolean algebras we clearly have V 0 = J.. and /\ 0 = T. 

Example 7.14 It is not difficult to see that for every lattice (A, A, v) and every 
a1, ... ,an EA (n > 0), 

V { a1, ... , an} = a1 V ... V an, /\ { a1, ... , an} = a I /\ ... /\ an. 

It follows that in a finite lattice the supremum and infimum do exist for every 
set of elements. However, in general this is not so, witness the following: 

Example 7.15 Let Qt= (A,/\, V) be the algebra in which 

A={l/n,-1/n: n=l,2,3, ... } 

and /\ and V are defined by 

x /\ y = min{x, y}, x Vy= max{x, y}, for every x, y EA. 

The reader can readily verify that Qt is a lattice but V {-1/n : n = 1, 2, ... } and 
/\{l/n: n = 1, 2, ... } do not exist in Qt. 

A lattice, in particular a pseudo-Boolean algebra, is complete if/\ X and V X 
exist in it for every set X. 

It is useful to observe that the partial· order relation ~ defined in Theo
rem 7.13 completely determines the lattice operations/\ and V. 

Theorem 7.16 Suppose (A,::;) is a partial order such that /\{x, y} and V{x, y} 
exist for every x, y EA. Then the algebra (A,/\, v), with/\ and V defined by 

x/\y= (\{x,y} andxVy= V{x,y}, 

is a lattice and 
x ::; y iff x /\ y = x iff xv y = y. 

Proof Exercise. 0 

We use the developed algebraic technique to prove the following remarkable 
result, which is based upon Diego's theorem from Section 5.4. 

Theorem 7.17. (McKay's theorem) Every si-logic L axiomatizable by dis
junction free formulas is finitely approximable and so decidable if the number of 
its extra axioms is finite. 
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Proof Suppose cp rf_ L. Take any pseudo-Boolean algebra 2l for L in which 
SJJ( cp) f= T for some valuation SU and let B be the closure of the set {SJJ( '!/!) : 
'!/! E Subcp} under the operations --+, /\, 1- in 2l. By Diego's theorem, there 
are finitely many pairwise non-equivalent in Int disjunction free formulas with 
:::; ISubcpl variables. Consequently, B is finite. 

Define an operation V* on B by taking, for x, y EB, 

xv* y = /\{z EB: x,y::; z}, 

where ::; is the lattice order in 2l. (Since B is finite, /\. in the right-hand part 
always exists.) Clearly, x V* y is the supremum of x and y in B with respect to 
::;, x /\y is the infimum and so, by Theorems 7.16 and 7.10, ~ = (B, /\, V*, --+, 1-) 
is a pseudo-Boolean algebra. In general, x Vy ::; x V* y (~ is not necessarily a 
subalgebra of 2l), but if xVy EB then we obviously have xVy = xV* y. It follows 
that the value of cp in ~ under sn coincides with that in 2l and so is different 
from T. On the other hand, since /\ and --+ in ~ are the restrictions of /\ and 
--+ in 2l, and 2l validates all extra axioms of L (which are disjunction free), ~ 
must also validate them. Thus, ~ is a finite pseudo-Boolean algebra separating 
r.p from L. Using Theorem 7.30, one can construct a finite frame refuting r.p and 
validating L. 0 

In Sections 4.1 and 4.2 we saw that the set of (normal) extensions of a logic 
L is a complete lattice with respect to the intersection and sum of logics. The 
partial order relation ::; in this lattice is the set-theoretic inclusion s;:;, its least 
element is L and greatest one is the inconsistent logic L + 1-. Now we introduce 
two more operations on ExtL and NExtL. For every £ 1, £ 2 E ExtL, put 

L1 --+1 L2 = L + {r.p: "11/J ('!/! E L1--+ r.p)L'!/J E L2)}, 

L1 --+2 L2 = L EB {r.p: V'!j! ('!/! E L1--+ Vi,j (Dir.py_Oi'!/J E L2))}, 

where Y.. is the repeatless disjunction defined in Section 4.1. 

Theorem 7.18 (i) For every modal or si-logic L, (ExtL, n, +, --+1, L) is a com
plete pseudo-Boolean algebra. 
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(ii) For every normal modal logic L, (NExtL, n, EB, ->2 , L) is a complete 
pseudo-Boolean algebra. 

Proof (i) It is sufficient to establish (4) in Theorem 7.10. 
Suppose L3 n Li <:;;; Lz and <p E L3. Since L3 n Li is axiomatizable by the 

formulas of the form <p"Y_'lj;, for <p E L3, 1/J E Li, we then have <p E Li ->i L2 and 
so L3 <:;;; Li ->i Lz. 

Now suppose that L3 <:;;;Li ->i Lz and <p E L3nLi. It follows that <p"Y_'lj; E Lz 
for every 1/J E Li. In particular, we have <p"Y_<p E L2 and so <p E L2 . Therefore, 
L3 n Li <:;;; Lz. 

(ii) is proved in exactly the same way. 0 

A lattice Ql = (A,/\, V) is called distributive if the identities 

p /\ ( q V r) = (p /\ q) V (p /\ r) and p V ( q /\ r) = (p V q) /\ (p V r) 

are true in Ql. Since these identities correspond to the laws of distributivity 
which are in Int, every pseudo-Boolean algebra is a distributive lattice. As a 
consequence of Theorem 7.18 we obtain 

Corollary 7.19 The lattice of {normal) extensions of every modal or si-logic is 
distributive. 

Since the lattice operations /\ and V as well as the implication --> and the least 
element l_ in pseudo-Boolean algebras are uniquely determined by the partial 
order ~' we will represent lattices and pseudo-Boolean algebras in pictures as 
intuitionistic frames (A,~). For example, the lattices shown in Fig. 7.1 (a), 
(b), (c) are pseudo-Boolean algebras, whereas those in Fig. 7.1 (d), (e)-the so 
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called pentagon and diamond-are not, because these lattices are not distributive. 
By the way, one can prove (see, for instance Griitzer (1978), Theorem 1 in §1, 
Chapter 2) that a lattice is distributive iff it contains neither the pentagon nor 
the diamond as its sublattice. 

Another example of a lattice, this time infinite, is shown in Fig. 7.2 (a). We 
recommend the reader to check that this lattice is a pseudo-Boolean algebra. 

Now we present an important method of constructing pseudo-Boolean alge
bras by associating them with intuitionistic frames. 

Given an intuitionistic frame J = (W, R), define an algebra 

J+ = (UpW, n, U, :J, 0), 

where UpW, as before, is the set of upward closed subsets in W, n and U are 
the set-theoretic intersection and union and, for every X, YE UpW, 

X :J Y = {x E W: \:/y (xRy /\ y EX--+ y E Y)} 

(compare this operations with the definition of the truth-relation in intuitionistic 
models in Section 2.2). Notice that a valuation in J is at the same time a valuation 
in the algebra J+. 

Theorem 7.20 (i) For every intuitionistic frame J, J+ is a pseudo-Boolean 
algebra. 

(ii) If IJJ is a valuation in J (and so in J+) and VJ1 = (J, IJJ) then, for every 
formula <p, the value of <p in J+ under IJJ is {x : (mt, x) I= <p}. In particular, 
J I= <p iff J+ I= <p. 

Proof Exercise. 0 

The algebra J+ defined above is called the dual of J. Fig. 7.3 and Fig. 7.4 
show several examples of intuitionistic frames (on the left) and their duals (on 
the right). As an exercise, we invite the reader to check also that the algebra in 
Fig. 7.2 (a) is the dual of the frame in Fig. 7.2 (b). 
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The completeness results of Chapter 2 together with Theorem 7.20 and the 
obvious fact that I~+ I ~ 21;v1 yield us 

Theorem 7.21 The following conditions are equivalent for any formula <p: 
(i) <p E Int; 
(ii) <p is valid in every pseudo-Boolean algebra; 
(iii) <p is valid in every finite pseudo-Boolean algebra; 

(iv) <pis valid in every pseudo-Boolean algebra containing~ 221
sub"'

1 
elements. 

A pseudo-Boolean algebra is called a Boolean algebra if it validates the for-
mula p V (p ---> J_) or, equivalently, if the identity p V (p ---> J_) = T is true in it. In 
other words, Boolean algebras are those pseudo-Boolean algebras that validate 
all formulas in classical logic Cl. 

Theorem 7.22 The following conditions are equivalent for any formula <p: 
(i) <p E Cl; 
(ii) <p is valid in every Boolean algebra; 
(iii) <p is valid in some non-degenerate Boolean algebra. 

Proof Exercise. (Hint: show that the two-element Boolean algebra, determined 
by the truth-table for Cl, can be embedded in every non-degenerate Boolean (and 
even pseudo-Boolean) algebra.) 0 

As follows from Proposition 2.38, all Kripke frames for Cl are of depth 1, 
that is are disjoint unions of single-point frames. Theorem 7.20 provides us then 
with the following examples of Boolean algebras: (2w, n, U, :J, 0, ), where :J may 
be defined by X :J Y = ( X :J 0) UY = (W - X) UY. For finite W, these algebras 
can be represented as n-ary Boolean cubes shown (for n ~ 4) in Fig. 7.5. Recall 
that in Section 2.9 we used these cubes without the top elements as the Kripke 
frames characterizing Medvedev's logic ML. 

7.4 Filters in pseudo-Boolean algebras 

In this section we consider an algebraic analog of a set of formulas that is closed 
under modus ponens. It will be one of the main links connecting the algebraic 
and relational semantics. 
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Let 2.l =.(A,/\, V, --->, ..l) be a pseudo-Boolean algebra. A set \7 <,:;;;A is called 
a filter in 2.l if 

• TE \7 and 

• for every x, y EA, if x E \7 and x---> y E \7 then y E \7. 

Trivial examples of filters in 2.l are {T} and A. A filter different from A is called 
proper. 

Equivalent definitions of filter, which do not involve ---> and T and so are 
suitable for arbitrary lattices, are formulated in 

Theorem 7.23 Suppose 2.l = (A,/\, V, --->, ..l) is a pseudo-Boolean algebra and 
\7 <,:;;; A. Then the following conditions are equivalent: 

( 1) \7 is a filter in 2.l; 

(2a) \7 -/= 0 and 
(
2

) (2b) x E \7 and y E \7 iff x /\ y E \7, for every x, y EA; 

(3a) \7 -/= 0, 
(3) (3b) if x E \7, y E \7 then x /\ y E \7, 

( 3c) if x E \7, y E A then x V y E \7, for every x, y E A; 

(4a) \7 i= 0, 
(4) (4b) ifxE'V,yE'Vthenx/\yE'V, 

(4c) if x E \7, x::::; y then y E \7, for every x,y EA. 

Proof We establish the implications (1) =} (2) =} (3) =} (4) =} (1). 
(1) =} (2). Suppose that x, y E \7. Since x ---> (y ---> x /\ y) = T E \7, 

by the definition of filter we then have x /\ y E \7. The converse follows from 
x /\ y---> x = T E \7 and x /\ y---> y =TE \7. 

(2) =} (3). Suppose x E \7 and y EA. By the law of absorption, we then have 
x = x /\ (x Vy) E \7 and so, by (2b), x Vy E \7. 

(3) =} (4). If x E \7 and x::::; y then y = x Vy and so, by (3c), y E \7. 
(4) =} (1). Let x be an element in \7. Since x ::::; T, (4c) yields us T E \7. 

Suppose now that x E \7 and x---> y E \7. By (4b), x /\ (x---> y) E \7 and since 
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x /\ (x--> y) = x /\ y, we have x /\ y EV', from which y EV' because x /\ y $ y. 
0 

A set V' of elements in a lattice 2l = (A,/\, V) is a filter if it satisfies one of 
the conditions (2), (3), (4) in Theorem 7.23. The reader can readily show that 
these conditions are equivalent in every lattice. 

The condition ( 4) shows a way of constructing the smallest filter to contain 
a given non-empty set X of elements in a lattice 2l = (A,/\, V). That such a 
filter exists-call it the filter generated by X -follows from the evident fact that 
the intersection of an arbitrary family of filters containing X is again a filter 
containing X. Put 

[X) = {y E A: X1 /\ ... /\ Xn $ y, for some xi, ... , Xn E X}. 

Theorem 7.24 For every X # 0, [X) is the filter generated by X in 2l. 

Proof First we show that [X) satisfies (4). Indeed, clearly [X) # 0. Suppose 
x, y E [X). Then there are X1, ... , Xn, Yi, ... , Ym EX such that X1 /\ ... /\Xn $ x 
and Yl /\ ... /\ Ym $ y. It follows that 

X1 /\ · · · /\ Xn /\ Yl /\ · · · /\ Ym $ X /\ Y 

and so x /\ y E [X), which proves ( 4b). Finally, ( 4c) holds because $ is transitive. 
Now, by Theorem 7.23, every filter V' containing X contains also [X). There-

fore, [X) is the smallest filter containing X. 0 

If a lattice 2l has the greatest element T, often called the unit of 2l, then 
we may put [0) = {T}. If Xis a singleton {x} then instead of [{x}) we write 
simply [x) and say that this filter is generated by x. A filter generated by a single 
element is called principal. Every filter in a finite lattice is principal, because it 
is generated by the conjunction of its elements. 

In view of the duality between the lattic.e operations /\ and V we can define 
a notion dual to the notion of filter. Say that a set b. of elements in a lattice 
2l = (A,/\, V) is an ideal if one of the following conditions (2'), (3'), (4') holds, 
for every x, y E A: 

(2') 
(2'a) b. # 0, 
(2'b) x E b. and y E b. iff x Vy E b.; 

(3'a) b. # 0, 
(3') (3'b) if x, y E b. then x Vy E 6., 

(3'c) if x E b. and y E A then x /\ y E b.; 

(4'a) b. # 0, 
( 4') (4'b) if x, y E b. then xv y E 6., 

(4'c) if y E b. and x $ y then x E 6.. 
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We leave to the reader proving the fact that these conditions are equivalent. The 
reader can readily show also that the smallest ideal to contain a non-empty set 
X -the ideal generated by X -is the set 

(X] = {y EA: y s; X1 V ... V Xn, for some X1, ... , Xn EX}. 

If 2l has the least element _l, often called the zero of 2l, then we put (0] = _l_. 

Proposition 7.25 Suppose 2l is a pseudo-Boolean algebra and V' a filter in 2l. 
Then the set of filters in 2l containing V' forms a complete distributive lattice 
with the infimum and supremum defined by 

iEI iEI 

Proof Exercise. 0 

The lattice of filters in 2l containing V' = {T} is called the lattice of filters in 
2l. 

Theorem 7.26 (i) Suppose L is a normal modal (or si-) logic. Then the lat
tice (NExtL,n,EB,L) (respectively, (ExtL,n,+,L)) is embedded in the lattice of 
filters in the Tarski-Lindenbaum algebra 2lL by the map f defined by 

f(L') = {ll'PllL: 'PEL'}. 

The isomorphism f preserves infimums and supremums in the sense that the 
equalities 

!(/\ X) = /\ J(X), J(V X) = V J(X) 

hold for every X s;;; NExtL (X s;;; ExtL ). 
(ii) Suppose that L is a quasi-normal modal logic and (2lLo, V') its Tarski

Lindenbaum matrix for some normal Los;;; L. Then (ExtL, n, +, L) is embedded 
in the lattice of filters in 2lL0 containing V' by the map f defined by 

f(L') = {ll'PllLo : <p E L'} 

and preserving infimums and supremums. 

Proof There is no essential difference between the proofs of (i) and (ii). We 
confine ourselves to proving (ii). 

That f is an injection follows from Theorem 7.4. So it suffices to establish 
that f preserves/\ and V- Let X ={Li: i EI} s:_;; ExtL. 

If ll<iJllLo E f(f\X) then <p E niEI Li· It follows that ll<iJllLo E f(Li), for every 
i E /, and so ll<iJllLa E f\ f(X) = niEI f(Li)· Conversely, if ll<iJllLo E f\ f(X) then 
ll<iJllLo E f(Li), for every i E /.So we have <p E Li, from which <p E niEI Li and 
ll'PllLo E J(niEI Li) = f (/\ X). Thus, !(/\ X) = /\ f(X). 
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To establish f(V X) = V f(X), suppose first that ll<t?llLa E f(V X), i.e., 
<p E ~iEI Li· Since every derivation contains only finitely many formulas and 
by the deduction theorem, there are J = {i1,. .. ,in}~ I and formulas <pj E 

Li;, for j = 1, ... , n, such that <p1 /\ ... /\ <f?n ---+ <p E L. But then we have 
ll<t?1 II La/\···/\ !l<t?nllLo ---+ ll<t?llLa EV', ll<t?1 Ii Lo E f(Lii), · · ·, ll<t?nllLo E f(Ld and 
so il<t?1llL0 /\ · · · /\ ll<t?nllLa EV f(X), from which ll<t?llLa EV f(X). 

Now let ll<t?llLa E V f(X). Then there are J = {ii, ... , in} ~ I and ll<t?j II La E 

f(Li;), for j = l,. .. ,n, such that ll<t?1llLa/\ ... /\ll<t?nllLa :'.S ll<t?llLa· It follows that 
<p 1 /\ ... /\ <f?n ---+ <p E Lo. Since <pj E Li;, for every j = 1, ... , n, we then have 

<p E ~jEJ Li; and so ll<t?llLa E f(~iEI Li) = f(V X). 0 

Our next aim is to prove the conversion of Theorem 7.20 for finite algebras. 
In other words, we are going to show that every finite pseudo-Boolean algebra 
is (isomorphic to) the dual of some intuitionistic frame. 

The main role in this representation of pseudo-Boolean algebras is played by 
prime filters. A filter V' in a lattice is said to be prime if it is proper and x Vy E V' 
implies x E V' or y E V'. An ideal~ is called prime if it is proper and with every 
element of the form x /\ y it contains also either x or y. 

Proposition 7.27 Suppose V' and~ are disjoint sets in a lattice (A,/\, V) such 
that V' U ~ = A. Then V' is a prime filter iff ~ is a prime ideal. 

Proof Exercise. 0 

Since all filters in a finite lattice are principal, we associate with every filter 
in such a lattice the element generating it. Say that an element a in a lattice is 
prime if a =/; 1- and a = b V c implies either a = b or a = c. 

Lemma 7.28 A principal filter in a distributive lattice is prime iff it is generated 
by a prime element. 

Proof ( =?) follows directly from the definitions. 
( {=) Suppose V' is generated by a prime element a and let b V c E V'. Then 

a= a/\ (bvc) = (a/\b) V (a/\c), from which either a= a/\b EV' or a= a/\c E V' 

and so, by (2b), either b EV' or c EV'. 0 

As an exercise, we recommend the reader to find all prime filters in the 
pseudo-Boolean algebras shown in Fig. 7.2 and 7.3. 

Lemma 7.29 If a is a prime element in a distributive lattice and a :'.S b V c then 
a::; b or a::; c. 

Proof We have a = a/\ (b V c) = (a/\ b) V (a/\ c) from which a = a/\ b or 
a = a /\ c, i.e., either a ::; b or a :::; c. 0 

Theorem 7.30 Every finite pseudo-Boolean algebra is isomorphic to the dual 
of some finite intuitionistic frame. 
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Proof Suppose l.2l = (A,/\, V, ---+, ..l) is a finite pseudo-Boolean algebra and W 
the set of its prime elements. Define a partial order R on W by taking, for every 
x,yE W, 

xRy iffy S x, 

where S is the lattice partial order in 1.2!, and let J = (W, R). We are going to 
show that l.2l is isomorphic to J+. · 

Notice first that every a E A is represented as V { b E W : b S a}, in 
particular, ..l V 0. Define a map f from A into UpW by taking, for every 
a EA, 

f(a) = {b E W: b $a} E UpW 

and show that f is an isomorphism of l.2l onto J+. 
Since every element a in l.2l is completely determined by the prime elements 

that are S a, f is an injection. To show that f is a surjection, take any element 
X E UpW and let a = V{b : b E X}. It follows from the definition off that 
X ~ f(a). The converse inclusion is a consequence of Lemma 7.29. 

Let us check now that f preserves the operations. By Corollary 7.12 and 
Theorem 7.20, it suffices to show that f preserves /\, V and ..l. 

If c E f(a /\ b) then c Sa/\ band soc S a and c S b, from which c E f(a), 
c E f(b) and c E f(a) n f(b). Conversely, if c E f(a) n f(b) then c Sa, c Sb and 
hence c Sa/\ b, i.e., c E f(a /\ b). Therefore, f(a /\ b) = f(a) n f(b). 

Suppose now that c E f(a Vb). Then c Sa Vb which, by Lemma 7.29, means 
that either c = c /\a or c = c /\ b, in other words, either c S a or c S b. It follows 
that c E f(a) or c E f(b) and soc E f(a) U f(b). Conversely, if c E f(a) U f(b) 
then c E f(a) or c E f(b). Suppose for definiteness that c E f(a). Then c E W, 
c Sa, hence c Sa Vb and finally c E f(a Vb). 

That f(..l) = 0 follows immediately from the definition off. 0 

The frame J constructed in the proof of Theorem 7.30 is called the dual of 
1.2!; it will be denoted by 1.2!+. 

The following notions will be used mostly for Boolean algebras. A proper 
filter V' in a lattice l.2l is called maximal if it is not contained in a proper filter 
in l.2l different from V'. A proper filter V' in a pseudo-Boolean algebra l.2l is an 
ultra.filter if, for every element a in 1.2!, either a E V' or •a = a ---+ ..l E V'. 

Theorem 7.31 For every filter V' in a pseudo-Boolean algebra the following 
conditions are equivalent: 

(i) V' is a maximal filter; 
(ii) V' is an ultra.filter. 

Proof If V' is an ultrafilter then it cannot be extended to another proper filter 
because for every a <f. V', we have -.a E V' and so ..l E [V' U {a}). The implication 
(i) =} (ii) is a consequence of the following lemma. 0 

Lemma 7.32 For every proper filter V' and every element a in a pseudo-Boolean 
algebra, at least one of the filters [V' U {a}) or [V' U {•a}) is proper. 
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Proof If [V' U {a}) is not proper then _L E [V' U {a}) and so c A a ::; _L, for some 
c E V'. It follows that c ::; •a, i.e., [V' U {•a}) = V' is a proper filter. O 

For Boolean algebras Theorem 7.31 can be generalized to 

Theorem 7.33 For every filter V' in a Boolean algebra 2l the following condi
tions are equivalent: 

(i) V' is a maximal filter; 
(ii) V' is an ultra.filter; 
(iii) V' is a prime filter. 

Proof By Theorem 7.31, it is sufficient to show that (i)::::;. (iii) and (iii)::::;. (ii). 
To prove the former implication, suppose V' is a maximal filter. If V' is not 

prime then there are elements a and b in 2l such that a V b E V', a <f_ V' and 
b <f_ V'. By Theorem 7.31, we then have •a E V', --,b E V' and hence, since 
•P ___. (•q ___. •(P V q)) E Int, •(a Vb) EV', contrary to V' being a proper filter. 
The latter implication follows from the fact that in Boolean algebras a V •a = T, 
for every element a, and so every prime filter must contain either a or •a. 0 

As a consequence of Theorems 7.30 and 7.33 we derive 

Corollary 7.34 Every finite Boolean algebra 2l is isomorphic to an algebra of 
the form (2w, n, U, :J, 0) where X :J Y = (W - X) UY, for every X, Y ~ W. 

Proof Suppose 2l+ = (W, R), i.e., 2l is isomorphic to (UpW, n, u, :J, 0) where 
X :J Y = {x E W: Vy(xRy A y EX___. y E Y}. We show that the frame 2l+ is 
of depth 1. Indeed, if xRy, for some x, y E W, then, by the construction of 2l+, 
[x) ~ [y). And since the filters [x) and [y) are prime, they are maximal and so 
[x) = [y), i.e., x = y. Therefore, UpW = 2W and X :J Y = {x E W: x EX___. 
x E Y} = (W - X) UY. 0 

It is not difficult to characterize principal ultrafilters in pseudo-Boolean al
gebras. Say that an element a =f:. _L in such an algebra 2l is an atom if, for every 
x in 2l, x ::; a implies x = _L or x = a; in other words, a is a minimal element 
among those different from the zero. 

Theorem 7.35 (i) An element in a Boolean algebra is prime iff it is an atom. 
(ii) A principal filter in a pseudo-Boolean algebra is an ultra.filter iff it is 

generated by an atom. 

Proof Exercise. 0 

However, infinite Boolean algebras contain non-principal ultrafilters. 

Example 7.36 Let ~ = (W, =) be an infinite frame (of depth 1). Then the 
set V' ~ 2W containing all cofinite subsets of W is clearly a proper filter in 
the Boolean algebra ~+. It is non-principal, because the intersection of sets in 
V' is empty, and moreover, according to Theorem 7.35, it cannot be extended 
to a principal ultrafilter (for otherwise the principal ultrafilter containing V' is 
generated by a point x E W, whereas W - { x} E V'). On the other hand, as will 
be shown below, every proper filter is contained in an ultrafilter. 
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To this end we require the well known 

Lemma 7.37. (Zorn's lemma) If the points of every chain in a partial order 
J have a common successor then every point in J sees a final point. 

We can apply Zorn's lemma to the partially ordered (by <;;;) set of filters or 
ideals in an arbitrary lattice. For we clearly have 

Lemma 7.38 The union of any chain of proper filters (or ideals) in a lattice 
with zero (respectively, unit) element is again a proper filter (ideal). 

Putting these two lemmas together, we obtain 

Theorem 7.39 Every proper filter (ideal) in a lattice with zero (unit) element 
can be extended to a maximal filter (ideal). In particular, every proper filter in a 
pseudo-Boolean algebra is contained in an ultrafilter. 

Corollary 7.40 Every proper filter in a Boolean algebra is the intersection of 
all ultrafilters containing it. 

Proof Let '\7 be a proper filter in a Boolean algebra 2l and a ¢ '\7. Then the filter 
['VU { -ia}) is also proper, for otherwise there is b E '\7 such that b /\ -ia $ J_ and so 
b $-,-,a, which is a contradiction because -,-,a= a and a¢ '\7. By Theorem 7.39, 
['VU{-ia}) can be extended to an ultrafilter '\7 a· Therefore, '\7 = nali!V '\7 a· 0 

In pseudo-Boolean algebras every maximal filter is prime, but not the con
verse (see Fig. 7.3). The following useful result on the existence of prime filters 
plays in the algebraic semantics the same role as Lindenbaum's lemma plays in 
the Kripke semantics. 

Theorem 7.41 Suppose '\7 (6.) is a filter (ideal) in a distributive lattice 2l and 
a ¢ '\7 (a ¢ 6.). Then there is a prime filter '\71 (prime ideal 6.') in 2l such that 
'\7 <;;; 'V' and a ¢ '\71 (respectively, 6. <;;; 6.' and a ¢ 6.' ). 

Proof By Zorn's lemma and Lemma 7.38, there exists a maximal filter '\71 in 
2l which contains '\7 and does not contain a. We shall show that 'V' is prime. 

Suppose otherwise. Then there are elements c and din 2l such that cVd E '\71
, 

c ¢ 'V' and d ¢ '\71
• Let 'Ve= ['V' U {c}), 'Vd = ['V' U {d}). Since 'Ve and 'Vd are 

different from 'V', we then have a E '\7 en '\7 d and so there are elements bi, b2 E 'V' 
such that bi /\ c $ a and b2 /\ d $ a. It follows that bi /\ b2 /\ c $ a, bi /\ b2 /\ d $ a 
and so, by Lemma 7.11 (17), (bi/\ b2 /\ c) V (bi/\ b2 /\ d) $ a. Using distributivity 
we then obtain (bi /\ b2) /\ ( c V d) $ a. And since b1 /\ b2 E '\71

, c V d E 'V', we have 
(bi /\ b2) /\ (c V d) E 'V', whence a E 'V', which is a contradiction. 

By duality we obtain the proof for ideals. 0 

Corollary 7.42 Suppose that a and b are elements in a distributive lattice such 
that b 1:. a. Then there exists a prime filter 'V' (prime ideal !:;,.') such that a ¢ 'V' 
and b E 'V' (respectively, a E 6.' and b ¢ !:;,.' ). 

Proof It is sufficient to take '\7 = [b) and use Theorem 7.41. 0 
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7.5 Modal algebras and matrices 

In this section we consider algebras and matrices corresponding to normal and 
quasi-normal modal logics. 

An algebra m = (A,/\, V, -+, ..l, D) is called a modal algebra if the identity 
cp = 'lj; is true in m for every modal formulas cp and 'lj; such that cp +-4 'lj; E K. If 
we replace in this definition K with a normal modal logic L then m is called an 
algebra for L or an L-algebra; in particular, all modal algebra8 are K-algebras. 
Some modal algebras have their specific names: for instance, K4-algebras are 
sometimes called transitive algebras, 84-algebras topological Boolean algebras, 
Grz-algebras Grzegorczyk algebras, GL-algebras diagonalizable or Magarian al
gebras. 

By Theorem 7.2, the Tarski-Lindenbaum algebra for every normal modal 
logic L is an £-algebra characterizing L, and so we have 

Theorem 7.43 For each normal modal logic L and each formula cp, cp E L iff 
cp is valid in every modal algebra for L. 

Theorem 7.44 An algebra m = (A,/\, V, -+, ..l, D) is modal iff it satisfies the 
following conditions: 

(i) (A,/\, V, -+, ..l) is a Boolean algebra; 
(ii) for every x, y EA, D(x /\ y) = Ox/\ Dy; 
(iii) OT= T. 

Proof The implication (:::}) follows from Cl C K, D(p /\ q) +-4 Op/\ Dq E K 
and OT +-4 T E K. 

(-¢=) As in the proof of Theorem 7.10, it suffices to show that m I= cp for every 
cp E K, which can be done by induction on the length of a derivation of cp in 
K. The induction step is clear-Subst and MP were considered in the proof of 
Theorem 7.10 and the implication m I= r.p :::} m I= Dcp follows from (iii). 

So it remains to justify the basis of induction. The axioms of Cl are valid in m 
because it is a Boolean algebra. As to the modal axiom of K, for every x, y EA we 
have (x-+ y)/\x/\y = (x-+ y)/\x (since mis a Boolean algebra), whence D((x-+ 
y)/\x/\y) = D((x-+ y)/\x) and, by (ii), D(::i;-+ y)/\Dx/\Dy = D(x-+ y)/\Dx. 
Therefore, D(x -+ y) /\Ox ::::; Dy, from which we obtain D(x -+ y) ::::; Dx -+ Dy 

and finally D(x-+ y) -+ (Dx-+ Dy) = T. 0 

Corollary 7.45 Suppose L = K EB {cpi : i EI}. Then an MC-algebra mis an 
L-algebra iff it satisfies (i)-(iii} in Theorem 7.44 and 

(iv) m I= 'Pi, for every i E /. 

The following construction, connecting modal algebras and frames, provides 
us with multiple examples of concrete modal algebras. 

Given a modal frame J = (W, R), we define an algebra 

J+ = (2w,n,u,::i,0,o), 

called the dual of J, by taking, for every X, Y ~ W, 
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X :::::> Y = (W - X) UY, 

DX= {x E W: 'Vy (xRy ~ y EX)} 

(compare these operations with the definition of the truth-relation in modal 
models in Section 3.2). 

Theorem 7.46 (i) For every modal frame J, its dual J+ is a modal algebra; 
(ii) If fJJ is a valuation in J (and so in J+) and !JJt = (J, fJJ) then, for every 

formula r.p, the value of r.p in J+ under fJJ is {x: (!m,x) I= r.p}. In particular, 
JI= r.p iff J+ I= r.p. 

Proof Exercise. 0 

This result is a modal counterpart of Theorem 7.20, while Theorem 7.30 is 
analogous to 

Theorem 7.47 Every finite modal algebra is isomorphic to the dual of some 
finite modal frame. 

Proof Let Ql = (A,/\, V, ~, l_, D) be a finite modal algebra. Since the algebra 
(A,/\, V, ~, j_) is Boolean, by Corollary 7.34 it is isomorphic to the algebra 
( 2 w, n, U, :::::>, 0), where W is the set of atoms in Ql, an isomorphism bt.ing the 
map f defined by f(a) = {b E W: b::; a}. 

Define a binary relation R on W by taking, for every x, y E W, 

xRy iff 'Vz E A (x ::; Dz ~ y ::; z) 

and let J = (W, R). We prove that f is an isomorphism of Ql onto J+. It should be 
clear from the considerations above that it suffices to show only that f preserves 
D. 

Suppose x E f(Da). Then x E W and x ::; Da. By the definition of D in 
J+, we need to show that 'Vy (xRy ~ y E f(a)). So suppose xRy. Then by the 
definition of R, y::; a and soy E f(a). 

Conversely, assume x E Df(a) and show that x ::; Da. The element Dv = 
/\ {Du : x ::; Du} = D /\ { u : x ::; Du} is clearly the least "boxed" element in 
the set {Du: x ::; Du} and so we have x::; Du iff Dv::; Du. By the definitions 
of R and f, the condition x E D f (a) means that 

'Vy E W ('Vz EA (x::; Dz~ y::; z) ~ y::; a), 

which, according to our choice of v, is equivalent to 

'Vy E W (y ::; v ~ y ::; a). (7.1) 

It follows that v ::; a. Indeed, if v i:_ a then, by Corollary 7.42, v /\•a belongs to 
an ultrafilter generated by some y0 E W such that y0 ::; v and y0 i:_ a, which in 
view of (7.1) is a contradiction. From v::; a we obtain Dv:::; Da and so x::; Da, 
i.e., x E f(Da). 0 
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The frame ~ defined in the proof above is called the dual of the algebra sit 
and denoted by sit+. 

Let us now turn to modal logics that are not necessarily closed under the rule 
of necessitation. If sit is a modal algebra and V' a filter in sit then the pair (sit, V') 
is called a modal matrix. We say that (sit, V') is a matrix for a quasi-normal logic 
Lor simply an L-matrix if (sit, V') I= L. Since the Tarski-Lindenbaum matrix for 
L, as defined in Theorem 7.4, characterizes L, we have the following: 

Theorem 7 .48 Suppose L is a quasi-normal modal logic and r.p a modal formula. 
Then r.p E L iff r.p is valid in every modal matrix for L. 

Given a modal frame~= (W, R) with a set D of distinguished points, define 
the dual (~, D) + of (~, D) as the matrix (~+, D+) in which 

D+ = {X <:::; W: D <:::; X}. 

Theorem 7.49 (i) If (~, D) is a modal frame with distinguished points then 
(~, D) + is a modal matrix. 

(ii) For every formula r.p, (~, D) I= r.p iff (~, D) + I= r.p. 

Proof Exercise. 0 

Theorem 7.50 Every finite modal matrix is isomorphic to the dual of some 
finite modal frame with distinguished points. 

Proof Let (sit, V') be a modal matrix, f the isomorphism of sit onto the dual of 
sit+ = (W, R) defined in the proof of Theorem 7.47. Suppose also that the filter 
V' is generated by an element a in sit. As a set of distinguished points in sit+ we 
take 

D = f(a) = {x E W: x ~a} 

and show that x E V' iff f(x) E D+, for every element x in sit. 
If x E V', i.e., a ~ x then f(a) <:::; f(x) and so D <:::; f(x) or, equivalently, 

f(x) E D+. Conversely, if f(x) E D+ then D = f(a) <:::; f(x), from which 

a= V f(a) ~ V f(x) = x and so x E [a)='\/. 0 

7.6 Varieties of algebras and matrices 

We defined pseudo-Boolean, Boolean and modal algebras as algebras validating 
some (infinite) collections of identities. In general, the class of all algebras (of 
the same similarity type), in which all identities in a given set r are valid, is 
called a variety of algebras (of this type) and denoted by Varf. If r is a set of 
C- or MC-formulas then by Varf we mean the variety of C- or, respectively, 
MC-algebras generated by the identities r.p = T such that r.p E f. 

Conversely, given a class C of (pseudo-Boolean or modal) algebras, it is nat
ural to consider the set LogC of formulas that are validated by every algebra in 
C. The abbreviation Log here is not accidental. For it is quite easy to see that 
the following is true: 
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Theorem 7.51 If C is a non-empty class of pseudo-Boolean or modal algebras, 
then LogC is a superintuitionistic or, respectively, normal modal logic. 

As a consequence of Theorems 7.8 and 7.43 we obtain 

Theorem 7.52 Suppose V is a variety of pseudo-Boolean or modal algebras and 
L a superintuitionistic or, respectively, normal modal logic. Then 

VarLogV = V, LogVarL = L. 

The variety VarL is called the characteristic variety for the logic L. Theo
rem 7.52 states in essence that the relation "logic ~ its characteristic variety" 
is a 1-1 correspondence between the classes of superintuitionistic and normal 
modal logics and the classes of varieties of pseudo-Boolean and modal algebras, 
respectively. In fact this correspondence catches much subtler properties of the 
classes under consideration. 

In the classes of varieties of pseudo-Boolean and modal algebras we define 
lattice operations /\ and V by taking, for any varieties V1 and V2 , 

Theorem 7.53 Suppose L is a normal modal or si-logic. Then the class of all 
varieties of £-algebras is a complete lattice with respect to the operations /\ and 
V defined above. 

Proof Exercise (for details see the proof of Theorem 7.56 below). 0 

Suppose Qt = (A, A, v) and IB = (B, A, V) are lattices. A bijection (i.e., 
simultaneously injective and surjective map) f from A onto B is said to be a 
dual isomorphism of Qt onto IB if it dually preserves the lattice operations in the 
following sense: for every x, y E A, 

f(x /\ y) = f(x) V f(y), f(x Vy)= f(x) /\ f(y) 

(or equivalently, if f dually preserves the lattice partial order, i.e., x :::; y iff 
f(x) ;::: f(y)). Lattices Qt and IB are dually isomorphic if there is a dual iso
morphism of Qt onto IB. It should be clear that dually isomorphic lattices are 
complete or incomplete simultaneously and that a dual isomorphism f of a com
plete lattice Qt onto a lattice IB dually preserves infimums and supremums, i.e., 
for every X <;;; A, 

f(/\ X) = V f(X), f(V X) = /\ f(X). 

Theorem 7.54 Suppose L is a normal modal or si-logic. Then the map "logic 
_, its characteristic variety" is a dual isomorphism of the lattice NExtL or, 
respectively, ExtL onto the lattice of all varieties of £-algebras. 

Proof Exercise (for details see the proof of Theorem 7.56 below). 0 
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Using this theorem, problems concerning normal modal and si-logics may 
be reformulated in terms of varieties of corresponding algebras, which is some
times very helpful because we can take advantage of the developed apparatus of 
universal algebra. 

Now we extend the notion of variety from algebras to modal matrices. Since 
it is always clear from the context whether we deal with algebras or matrices, we 
will use for varieties of matrices the same notations as for varieties of algebras. 

A variety of modal matrices is the class of all modal matrices validating the 
formulas in a given set f; as before it is denoted by Varf. The set of formulas 
validated by all matrices in a class C is also denoted by LogC. Instead of Var LogC 
we will write VarC and say that the variety VarC is generated by the class of 
matrices C. The same concerns varieties of algebras as well. 

The following theorems are matrix counterparts of Theorems 7.51-7.54. 

Theorem 7.55 (i) !JC is a class of modal matrices then LogC is a quasi-normal 
modal logic. 

(ii) If V is a variety of modal matrices and L a quasi-normal logic then 

VarLogV = V, LogVarL = L. 

The variety VarL of matrices is called the characteristic variety of matrices 
for the quasi-normal logic L. The lattice operations /\ and V on varieties of 
matrices are defined in exactly the same way as on varieties of algebras. 

Theorem 7.56 Suppose L is a quasi-normal modal logic. Then 
(i) the class of varieties of modal matrices for L is a complete lattice with 

respect to /\ and V; 
(ii) the map "quasi-normal logic -4 its characteristic variety" is a dual iso

morphism of the lattice ExtL onto the lattice of varieties of L-matrices. 

Proof Since (ExtL, n, +) is a complete lattice, it is sufficient to show that the 
map f defined by f(L') = VarL', for L' E ExtL, is a dual isomorphism. 

That f is a bijection follows from Theorem 7.55. Let us prove that it preserves 
the lattice operations, i.e., for Li, L2 E ExtL, 

Var( Li + L2) =Var Li/\ VarL2 =Var Li n VarL2. 

Suppose first that (2l, \7) E Var(Li n L2), i.e., (2l, \7) I= Lin L2, but (2l, \7) ¢ 
Var Li VVarL2. The latter assumption means that there is a formula r.p E Lin L2 
such that (2l, \7) ~ r.p, from which (2l, \7) ~ Li n L2, contrary to the former 
assumption. Therefore, Var(Li nL2) ~ VarLi VVarL2. To establish the converse 
inclusion, suppose (2l, \7) E VarLi V VarL2. This means that (2l, \7) I= r.p, for 
every r.p E Lin L2, and so (2l, \7) E Var(Li n L2)· 

Suppose now that (2l, \7) E Var( Li+ L2) but (2l, \7) ¢Var Lin VarL2. Then 
there is a formula '-Pi E Li, for some i E {1, 2}, such that (2l, \7) ~ '-Pi· However, 
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Li ~ Li + L2 and so we must have (QI, V') F '-Pi' which is a contradiction. Thus, 
Var(L1 + L2) ~ VarL1 /\ VarL2. 

Finally, let (QI, V') E VarL1 /\ VarL2. To establish (QI, V') E Var(L1 + L 2) we 
must show that (QI, V') f= r.p for every formula r.p E £ 1 +L2. So assume r.p E £ 1 +£2. 
Then there are formulas r.p1, ... , '-Pn E L1 U L2 such that r.p1 /\ ... /\ '-Pn _, r.p E L. 
Since (QI, V') validates all formulas i_n £ 1 and £ 2, we have (QI, V') f= r.p 1 /\ ... /\r.pn. 
And since (QI, V') is an £-matrix, we obtain (QI, V') I= r.p 1 /\ ... /\ '-Pn _, r.p and 
hence (QI, V') f= r.p. O 

7.7 Operations on algebras and matrices 

In this section we consider three fundamental algebra and matrix constructing 
operations, namely, forming subalgebras and submatrices, direct products of al
gebras and matrices and their homomorphic images. Ifwe regard pseudo-Boolean 
and modal algebras (at least some of them) as duals of Kripke frames then it 
turns out that these operations are algebraic analogues of the frame-theoretic 
operations of forming reducts, disjoint unions and generated subframes. In full 
detail this correspondence will be studied in the next chapter as a part of general 
duality theory. Here it is our main source of examples. 

Suppose QI = (A, o1, ... , on) is an algebra and B a subset of A closed under 
the operations in QI (i.e., the result of applying any oi to elements in Bis again an 
element in B; in particular, ifQI is a pseudo-Boolean algebra then J_ EB). In this 
case the algebra 'B = (B, o1, ... , On), whose operations are the restrictions of QI's 
operations to B, is said to be a subalgebra of QI. For X ~ A, the subalgebra of QI 
with the smallest universe containing X is called the subalgebra generated by X. 
(That such a subalgebra exists follows from the obvious fact that the intersection 
of subalgebras is again a subalgebra.) In particular, if this subalgebra is QI itself 
then we say that QI is generated by X. In the case when the algebra QI is generated 
by 0 it is called 0-generated (if it is a pseudo-Boolean algebra then A is the closure 
of { J_} under /\, V and _,). More generally, the subalgebra of QI (in particular, 
QI itself) generated by a set of cardinality x is said to be x-generated. 

Example 7.57 Let~+ = (2w, n, U, :::>, 0, DJ be the dual of a modal frame~ 
and QJ a valuation in J. Then the set P <;;; 2 defined by 

P = {!!J(r.p): r.p E ForM.C} 

is closed under the operations in J+ because, for all formulas r.p and 'l/J, 0 = QJ(j_), 
!!J(r.p) n!!J('lfJ) = !!J(r.p/\'ljJ), !!J(r.p) U!!J('lfJ) = !!J(r.pV'l/J), QJ(r.p) :::> QJ('ljJ) = !!J(r.p _, 'l/J), 
DQJ(r.p) = !!J(Dr.p). The same, of course, concerns intuitionistic frames. Thus, 
every valuation in a frame determines a subalgebra of its dual. 

Example 7.58 Suppose f is a reduction of a modal frame J = (W, R) to a 
frame ~ = (V, S). Then it is not hard to check (for details see Section 8.5) that 
the set A= {J-1(X): X <;;; V} is closed under the operations in J+. Let QI be 
the subalgebra of J+ with the universe A. The map g from 2V into 2W defined 
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by g(X) = f- 1(X) is an embedding of Q;+ in J+ and an isomorphism of Q;+ 

onto Qt. 

As to submatrices, we say that a modal matrix (2l2, \72) is a submatrix of a 
modal matrix (2l1, \71) if 2l2 is a subalgebra of 2l1 and \72 is the intersection of 
\71 with 2l2's universe (see Exercise 7.11). 

Let C be a class of algebras (or matrices). Denote by SC the class of all 
subalgebras (respectively, submatrices) of algebras (matrices) in C. The following 
proposition is a direct consequence of the definitions above: 

Proposition 7.59 (i) If a formula tp is valid in an algebra Qt (matrix (Qt, \7)) 
then tp is valid in every subalgebra (submatrix) of Qt (respectively, (Qt, \7) ). 

(ii) SC ~ VarC for every class C of algebras or matrices. 

Suppose Qt = (A, oi, .. . , on) and 113 = (B, oi, .. . , on) are similar algebras. 
The direct product of Qt and 113 is the algebra 

Qt x 113 =(AX B,01, ... ,on) 

in which the operations 01, ... , On are defined component-wise, i.e., if Ok is an 
m-ary operation, ai, ... , am E A and b1, ... , bm E B then 

In particular, if Qt and 113 are pseudo-Boolean algebras then the zero element 
in Qt x 113 is _L = (_L, _L). It should be clear from the definition that, for every 
pseudo-Boolean or modal algebras Qt and 113 and every formula tp, Qt x 113 I= tp iff 
Qt I= tp and 113 I= tp. 

In the same way one can define the direct product Ql1 x ... x 2tn of similar 
algebras 2l1 , ... , 2tn. More generally, by observing that any n-tuple (x1, ... , Xn) E 

X 1 x ... x X n may be interpreted as the function f : { 1, ... , n} ___. LJ7= 1 Xi such 
that f(i) =Xi E Xi, for every i = 1, ... , n, we can extend the definition of direct 
product to arbitrary families of algebras. 

Given a family {Qli = (Ai, 01, ... , on) : i E I} of algebras, the direct product 
of {Qli : i E I} is the algebra 

II Qli = (rr Ai, 01, ... , on) 
iEJ iEJ 

in which niEJ Ai is the set of all functions f from I into uiEI Ai such that 
f(i) E Ai and ok(f1,. .. , fm) is a function g E TiiEI Ai defined by 

g(i) = Ok(f1(i),. . ., fm(i)) E Ai, 

for every Ji, ... , fm E niEJ Ai and every i E I. 
Example 7.60 Let {Ji : i EI} be a family of modal (or intuitionistic) frames. 
We invite the reader to show that c~=iEJ Ji)+ is isomorphic to niEJ Jt (for 
details see Section 8.5). 



OPERATIONS ON ALGEBRAS AND MATRICES 221 

The direct product of a family of modal matrices { (Qli, Vi) i E I} is the 
matrix niEJ (Qli, Vi) = (sit, V) in which Ql = niEJ Qli and v = niEJ vi (the 
reader should check that V is a filter in sit; see also Exercise 7.12). 

For a class C of algebras (or matrices), denote by PC the class of all possible 
direct products of C's subclasses. Then we clearly have 

Proposition 7.61 (i) If a formula <p is valid in every algebra (or matrix) in 
some family C then <p is valid in the direct product of C. 

(ii) PC ~ VarC for every class C of algebras or matrices. 

The third operation we need-the formation of homomorphic images-was 
introduced in Section 7.1. If f is a homomorphism of Ql = (A, o1 , ... , on) in 
SJ3 = (B, o1 , ... , on) then the set f(A) is clearly closed under the operations in 
SJ3 and so (!(A), o1 , ... , on) is a subalgebra of SJ3. We call it the homomorphic 
image of Ql (under the homomorphism !) and denote it by f(Ql); Ql is called an 
inverse homomorphic image off (sit). If C is a class of algebras then HC is the 
class of all homomorphic images of algebras in C. Since every homomorphism 
preserves the unit element of pseudo-Boolean algebras, we have 

Proposition 7.62 (i) If a formula <p is valid in a pseudo-Boolean or modal 
algebra Ql then <p is valid in every homomorphic image of Qt. 

(ii) HC ~ VarC for every class C of algebras. 

Example 7.63 Suppose Q) = (V, S) is a generated subframe of a modal frame 
J = (W, R). We invite the reader to prove that the map f from 2W onto 2V 
defined by f(X) = X n V, for X ~ W, is a homomorphism of J+ onto Q)+ (for 
details consult Section 8.5). 

The following observation provides us with another important example of 
homomorphism. Let L be a superintuitionistic or normal modal logic and QlL its 
Tarski-Lindenbaum algebra. Suppose also that Ql is an algebra for L generated 
by a set X such that IXI s; !Var.Cl. Then any map f from {llPllL : p E Var.c} 
onto X can be extended inductively to a homomorphism of QlL onto Ql by taking, 
for all formulas <p and 'lj;, 

f(llcpllL 8 ll'!/JllL) = f(llcpllL) 8 f(ll'!/JllL), for 8 E {A, V,---+ }, 

Remark The reader may (and should) wonder now, where it was used that QlL 
and Ql belong to the same variety (i.e., validate the same formulas). Why could 
not we define such a map, say, from silc1 onto sil1nt? 

The problem here is that in this case f is not well-defined because it depends 
now on the choice of <p and 'l/J in the equivalence classes llcpllL and 11'!/JllL· Indeed, 
we have llP ---+ Pllc1 = llP V •Pllc1> but on the other hand f(llP ---+ Pllc1) = 
llP ---+ Pll1nt differs from f(llP V •Pllc1) = llP V •Pll1nt· The assumption that 
sit f= L makes f well-defined. For if llcpllL = 111/lllL then <p +--> 1f E L and hence 
sit f= <p +--> 1/1; so if P1, ... ,Pn are all the variables in <p and 1/1 and f(llPillL) = ai 
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(i = 1, ... ,n) then cp(ai, ... ,an) = 1/i(ai, ... ,an) in sit, from which we obtain 
f(ll'PllL) = f(ll1/JllL). 

An algebra sit in a variety V is said to be a free algebra in V of rank x if sit is 
generated by a set X of cardinality x and every map of X into an algebra ~ E V 
can be extended to a homomorphism of sit in~. The Tarski-Lindenbaum algebra 
sitL for L = LogV is a free algebra in V of rank IVar.Cj. Now we generalize the 
Tarski-Lindenbaum construction to produce a free algebra in V of an arbitrary 
given rank. 

Let X be an arbitrary set. Define a set For X -the set of "formulas" or 
words over the set of "variables" or letters X -as the smallest set to contain 
X, ..L and such that with every words x and y it contains also the words x /\ y, 
x Vy, x ~ y and Ox. (Of course in the intuitionistic case D should be omitted.) 
The fact that every letter occurring in a word cp E For X is contained in a set 
{x1,. .. ,xn} ~Xis denoted by cp(x1, ... ,xn)· Two words cp(x1, ... ,xn) and 
1f!(x1 , ... , Xn) are called equivalent in a superintuitionistic or normal modal logic 
L if cp(pi, ... ,pn) <--> 1/i(pi, ... ,pn) EL, where cp(pi, ... ,pn) and 1fi(p1, ... ,pn) 
are obtained from cp(xi, ... , Xn) and 1/l(x1, ... , Xn) by replacing Xi with (real) 
variables Pi· The class of all words that are equivalent to a word cp in L is 
denoted by ll'PllL· Now we can define operations/\, V, ~,..Land Don llForXllL = 
{ll'PllL : <p E ForX} in exactly the same way as in the proof of Theorem 7.2. 
The resulting algebra will be denoted by sitL(X) or even sitL(x), where x = IXI, 
since we consider algebras up to isomorphism. 

The apparent similarity between sitL(X) and the Tarski-Lindenbaum algebra 
for L provides us with the following theorems whose proofs are left to the reader 
as an easy exercise. 

Theorem 7.64 (i) For every normal modal or si-logic L and every formula cp 
with ~ x variables, 

<p EL iff sitL(x) I= cp. 

(ii) sitL(x) is a free algebra in VarL of rank x. 

Theorem 7.65 Suppose LE NExtK, L' E ExtL and cp is a formula with~ x 
variables. Then 

cp E L iff (sitL(x), V') I= cp 

where V' is the filter in sitL(x) containing all the elements in sitL(x) generated 
by words that are equivalent to T in L'. 

We shall study the constitution of free algebras of finite rank in varieties of 
pseudo-Boolean and modal algebras-their relational counterparts, to be more 
exact-in Section 8.7. Here we consider only one: 

Example 7.66 Let us construct the algebra sit1nt(l). To this end we require the 
following sequence of formulas nf i• i ~ w, in one variable: 

nf w = T, nf o = ..L, nf1 = p, nf 2 = -.p, 
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nf 2n+3 = nf 2n+I V nf 2n+2> nf 2n+4=nf2n+3~nf2n+I · 

These formulas, called the Nishimura formulas, are ascribed to the elements 
of the pseudo-Boolean algebra in Fig. 7.2 (a), known as the Rieger-Nishimura 
lattice. And this is no accident. If we define a valuation min the algebra so that 
m(p) be the element marked by nf 1 = p, then clearly m(nf;) is the element 
marked by nf i> for every i :S w. Moreover, the reader can readily check that for 
any 8 E { ~, /\, V} and any i,j, k :S w, 

For instance, we have 

and 

and 

(nf2n+3 /\ nf2n+4) <-> nf2n+I E Int. 

A conclusion from this observation may be formulated as 

Theorem 7.67 (i) Every formula in one variable is equivalent in Int to one of 
the Nishimura formulas. 

(ii) If i =/:- j then nf i <-> nf j rf_ Int. 
(iii) 2t1nt(l) is isomorphic to the pseudo-Boolean algebra in Fig. 7.2 (a). 
(iv) There are countably many si-logics axiomatizable by formulas in one 

variable. 

Before we extend the notion of homomorphism to modal matrices, let us 
consider a connection between homomorphisms of pseudo-Boolean and modal 
algebras and their filters. 

Theorem 7.68 (i) Let f be a homomorphism of a pseudo-Boolean algebra Ql in 
23 and 'Va filter in 23. Then the set r 1('V) = {x: f(x) E 'V} is a filter in Ql. 
If in addition 'V is prime then f- 1 ('V) is also prime. 

(ii) Suppose f is a homomorphism of a pseudo-Boolean or modal algebra Ql 
onto 23. Then for every formula r.p, 

Proof Exercise. 0 

Say that a filter 'V in a modal algebra Ql is normal if x E 'V implies Dx E 'V, 
for every element x in Ql. 
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Proposition 7.69 If I is a homomorphism of a modal algebra 2l in ~ then 
r 1 (T) is a normal filter in 2l. 

Proof Suppose x E 1-1(T), i.e., l(x) = T. Then l(Dx) = Dl(x) = OT = T 
and so Dx E 1-1(T). 0 

Let V' be a filter (normal filter) in a pseudo-Boolean (respectively, modal) 
algebra 2l. Define a relation =v in 2l by taking 

x =:v y iff x ..___, y E \i'. 

It is not hard to see that =v is an equivalence relation in 2l. Besides, the relation 
=v possesses one more important property. 

An equivalence relation ,...., in an algebra 2l = (A, o1 , ... , om) is said to be a 
congruence if, for every n-ary operation oi and every x1, ... , Xn, Yl, ... , Yn in A, 

Theorem 7.70 Suppose that V' is a filter (normal filter) in a pseudo-Boolean 
(modal) algebra 2l. Then the relation =v is a congruence in 2l. 

Proof Let 8 E {/\, V,---> }, x1 =v Y1 and x2 =v Y2· Since the identities 

(x ..___, y)---> (z 8 x ..___, z 8 y) = T, (x ..___, y)---> (x 8 z ..___, y 8 z) = T 

hold in every pseudo-Boolean algebra, by the definition of filter we then obtain 
x18x2 =v YI 8x2 =v Y18Y2 and so, by the transitivity of =v, XI 8x2 =v YI 8y2. 

If 2l is modal then the identity D(x ..___, y) ---> (Ox ..___, Dy) = T is true in it. 
And since V' is normal, we then have Dx =v Dy whenever x =v y. 0 

Theorem 7.70 is an algebraic counterpart of the equivalent replacement the
orem, which was used essentially in the proof of Theorem 7.2. We give now an 
algebraic analog of that proof. 

Let 2l be a pseudo-Boolean (modal) algebra with a universe A and V' a 
(normal) filter in 2l. Denote by llxllv the equivalence class (with respect to =v) 
generated by an element x in 2l, i.e., llxllv = {y E A: x =v y}, and define on 
the set llAllv = {llxllv : x EA} of these classes operations/\, V, --->, J_, D by 
taking, for every x, y E A, 

llxllv 8 llYllv = llx8yllv, for 8 E {/\, V,->}, 

Since =v is a congruence, this definition does not depend on the choice of 
representatives x and y in the classes llxllv and llYllv· The resulting algebra 
(llAllv, /\, V, --->, ..l) (respectively, (llAllv, /\, V, --->, J_, D)) is called the quotient al
gebra of 2l with respect to the filter V' and denoted by 2l/V'. 
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Theorem 7.71 (i) Suppose f is a homomorphism of a pseudo-Boolean or modal 
algebra 2l onto 123 and V' = f- 1(T). Then the map g defined by 

g(f(x)) = llxllv 

is an isomorphism of 123 onto 2l/V'. 
(ii) Suppose V' is a (normal) fiiter in a pseudo-Boolean (modal) algebra 2l. 

Then the map f defined by 
f(x) = llxllv 

is a homomorphism of 2l onto 2l/V' with r 1(T) = V'. 

Proof Exercise. 0 

Corollary 7. 72 There are countably many 1-generated algebras in the variety 
of pseudo-Boolean algebras. 

Proof Follows from Theorems 7.71, 7.67 and the fact that all the filters in 
2l1nt (1) are principal. 0 

We use the developed technique to characterize algebraically the consequence 
relations in modal and si-logics. 

Theorem 7.73 (i) Let L E NExtK. Then r 1-L cp iff for any 2l E VarL, any 
ultrafilter V' and any valuation QJ in 2l, QJ( cp) E V' whenever QJ( 1/;) E V' for all 
1/; E f. 

(ii) Let L E ExtK. Then r I-L cp iff for any (2l, V' o) E VarL, any ultrafilter 
V' 2 V' 0 and any valuation QJ in 2l, QJ( cp) E V' whenever QJ( 1/;) E V' for all 'I/; E r. 

(iii) Let L E NExtK. Then r I-£ cp (both MP and RN are allowed) iff for 
any 2l E VarL and any valuation QJ in 2l, QJ(cp) = T whenever QJ('I/;) = T for all 
1/; E f. 

(iv) Let LE Extlnt. Then r 1-L cp iff for any 2l E VarL and any valuation 
QJ in 2l, QJ( cp) = T whenever QJ( 1/;) = T for all 'I/; E f. 

Proof (i) The implication (=?)follows from the definition of filter. To prove the 
converse, supposer If L cp and consider the Tarski-Lindenbaum algebra 2lL with 
the standard valuation QJL. Let V'' be the filter generated by {QJL('I/;) : 1/; E f}. 
Clearly, QJ L ( cp) rf_ V''. By Theorem 7.41, there is a prime filter ( = ultrafilter) V' 
in 2lL such that V'' <;;; V' and QJ L( cp) rf_ V', which is a contradiction. 

(ii) is proved analogously to (i). 
(iii) Again ( =?) is clear. To prove ( <=), assumer If[, cp and consider once more 

2l L with QJ L. Let V' be the smallest normal filter containing { QJ L ( 1/;) : 1/; E r}. 
Then QJL(cp) rf_ V', for otherwise we would haver I-£ cp. Now take the algebra 
2l = 2lL/V'. By Theorem 7.71 and Proposition 7.62, we then have a valuation 
QJ in 2l E VarL such that QJ('I/;) = T for all 1/; E r and QJ(cp) =I- T, which is a 
contradiction. 

(iv) is proved in the same way as (iii). 0 

A map f is called a homomorphism of a modal matrix (2l1, V' 1) in a matrix 
(2l2 , V'2) if f is a homomorphism of 2!1 in 2l2 and V'1 = 1-1(V'2). If f is a 
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surjection, (sit2, 'V 2) is said to be a homomorphic image of (sit 1, 'V 1). For a class C 
of matrices, denote by HC and H-1c the classes of all homomorphic images and 
inverse homomorphic images of matrices in C, respectively. As an easy exercise 
we invite the reader to prove the following: 

Proposition 7. 74 (i) If (sit2 , 'V 2 ) is a homomorphic image of (sit1, 'V 1) then, for 
every formula cp, 

and so 

Log (sili, 'V 1) = Log (sil2, 'V 2) . 

(ii) HC ~ VarC, H-1c ~ VarC for every class C of matrices. 

As follows from this theorem, the main difference between homomorphisms 
of matrices and algebras is that forming a homomorphic image of a matrix does 
not change the set of formulas valid in it, whereas for algebras this is not so. 

If f is a homomorphism of a matrix (sit, \7) then 'V' = f- 1(T) is a normal 
filter contained in 'V, and the homomorphic image of (sit, \7) under f can be 
represented as 

(sit, \7) /'V' = (sit/\7', 'V /'V') 

where 'V /'V' = {llxllv, : x E \7}. A matrix of this form is called the quotient 
matrix of (sit, \7) with respect to the normal filter 'V'. A matrix (sit, \7) is said to 
be reduced if {T} is the only normal filter contained in \7. 

Theorem 7. 75 Every matrix is an inverse homomorphic image of some reduced 
matrix. 

Proof We require two lemmas. 

Lemma 7. 76 The set of normal filters in a modal algebra Qt is a complete sub
lattice of the lattice of filters in sit. 

Proof The intersection of any family {\7 i : i E I} of normal filters is clearly a 
normal filter. We show that ViEl{'Vi : i EI} is also a normal filter. 

Let a E ViEl{\7; : i E J}. Then there are al E 'V;t> ... , an E 'Vin, for some 
{ii, ... , in} ~ I, such that al I\ ... I\ an ~ a and so Da1 I\ ... I\ Dan ~ Da. 
Since all filters 'Vi are normal, we have Da1 E 'Vii, ... , Dan E 'Vin, from which 

Da E ViE!{\7;: i E J}. 0 

Lemma 7. 77 An (inverse) homomorphic image of a normal filter is also a nor
mal filter. 

Proof Let f be a homomorphism of Qt onto 113, 'V a normal filter in 113 and 
show that f- 1(\7) is a normal filter in Qt. If a E f- 1(\7) then f(a) E 'V and so 
Df(a) = f(Da) E \7, from which Da E f- 1(\7). 

Suppose now that 'Vis a normal filter in Qt and b E f(\7), i.e., b = f(a) for 
some a E \7. Since Da E \7, we then have f(Da) = Df(a) =Db E f(\7). 0 
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We are in a position now to prove Theorem 7. 75. Let {2l, V') be a modal matrix 
and V'' a maximal (with respect to s;;;) normal filter contained in V', which exists 
by Zorn's Lemma and Lemma 7.76. By Theorem 7.71 (ii), {2l/V'', V' /V'') is a 
homomorphic image of {2l, V') and by Lemma 7. 77, the latter is reduced. O 

Thus, homomorphisms of matrices as compared with homomorphisms of alge
bras are in a sense deficient. For example, every homomorphism between reduced 
matrices is an embedding. To compensate this deficiency, we introduce one more 
matrix operation. 

Say that a matrix {2l, V'') is an extension of a matrix {2l, V') if V' s;;; V''. 
Denote by EC the class of all extensions of matrices in a class C. Immediately 
from this definition we obtain 

Proposition 7. 78 EC s;;; VarC for every class C of matrices. 

7 .8 Internal characterization of var~eties 

By an internal characterization of a variety V of algebras or matrices we mean 
such a representation of V which does not involve identities, characterizing va
rieties externally, but uses only purely algebraic tools such as various kinds of 
operations on algebras and matrices. 

The following two results are well known in universal algebra under the names 
"Birkhoff's theorem" and "Tarski's theorem"; their proofs can be found in any 
good textbook on universal algebra, say (Gratzer 1979). Although we will not 
prove them here, the reader can easily reconstruct the proofs by himself, con
sulting the proofs of similar theorems for varieties of matrices. 

Theorem 7.79. (Birkhoff's theorem) A non-empty class C of algebras is a 
variety iff SC s;;; C, PCs;;; C, HC s;;; C. 

Theorem 7.80. (Tarski's theorem) For every non-empty class C of algebras, 
VarC = HSPC. 

The next result may also me called Birkhoff's Theorem for varieties of ma
trices. 

Theorem 7 .81 A non-empty class C of modal matrices is a variety iff SC s;;; C, 
PCs;;; C, HC s;;; C, H- 1c s;;; C, EC s;;; C. 

Proof (:::?) follows from Propositions 7.59 (ii), 7.61 (ii), 7. 74 (ii) and 7. 78, 
because in this case VarC = C. 

( <=) We need to show that if {2l, V') E VarC then {2l, V') E C. So suppose a 
matrix {2l, V') is in VarC. 

Take any set I such that Ill = max{l2ll, N0 }. Let X be the class of all matrices 
in C of cardinality :=::; IJI. Since C is non-empty and closed under the formation 
of submatrices, it contains a 0-generated matrix, which clearly is countable. 
Therefore, X =/= 0. 

Let ( 2i, V) be a matrix in X and f a map from I into 2i. Denote by {2l f, V' f) 

the submatrix of (2i, v) generated by f(I). Since Xis closed under the formation 
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of submatrices, (Ql/, 'VI) E X and f(I) is a set of Ql/s generators. Suppose now 

that F is the set of all maps as defined above for all (ii, V) E X and consider 

the direct product 

\m, v) = II (m,, v ,) E Psx s;;; Psc. (7.2) 
/E:F 

For every i E I, ai = {f(i) : f E F} is an element in fil and the set of all 
these elements characterizes LogC in the sense that if cp(pi, ... , Pn) is a formula 
and cp(aiw··,ain) EV, for some set {ii, ... ,in} s;;; I, then cp E LogC. Indeed, 
suppose otherwise, i.e., there is a matrix (Qt', 'V') E C such that cp(bi, ... , bn) ¢ 
'V', for some elements bi, ... , bn in Qt'. Take the submatrix (Qt", \711

) of (Qt', 'V') 
generated by bi, ... , bn. Since this submatrix is finitely generated, it is countable 
and so belongs to X; besides, we have (Qt", \711

) ~ cp. Let g be a map in F 
such that g(ii) = bi, ... ,g(in) = bn. Then (Ql", \711

) = (Ql9 , \79 ) is a factor 

in the product ( fil, V). By the definition of direct product, cp( % , ... , ain) = 

{cp(f(ii), ... ,f(in)): f E F} andsincecp(g(ii), ... ,g(in)) = cp(bi, ... ,bn) 'f_ \79 , 

we have cp( ai1 , .•• , ain) ¢ V, which is a contradiction. 
Let us consider the algebra QlK(I). By Theorem 7.64 (ii), Ql is a homomorphic 

image of QlK(I) under some homomorphism h and so the matrix (Ql, \7) is a 
homomorphic image of ( QlK (I), h- i (\7)), i.e., 

(7.3) 

We show now that (QlK(I),h-i('V)) E EH-is{\fil, v)}. 
Put g(i) = ai, for i E I, and extend g to a homomorphism of QlK(I) onto a 

subalgebra Qt' of Qt generated by the set { ai : i E I}, i.e., for every x and y in 
QlK(I), we put 

g(x0y) = g(x) 0g(y), for 0 E {/\, V,-;}, 

g(..l) = ..l, g(Dx) = Dg(x). 

Denote by 'V' the intersection of V with the universe of Qt' and show that 
g-i('V') s;;; h-i('V). 

Let a E g-i('V'). Then there are ii, ... ,in EI and a formula cp(pi, ... ,Pn) 
such that a = cp( ii, ... , in) and 

As was proved above, this means that cp E LogC. Since (Ql, \7) E VarC, we have 
(Ql, \7) f= cp and so h(a) = cp(h(ii), ... , h(in)) E \7, i.e., a E h-i(\7). 
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Thus, we have shown that the matrix (2lK(I),h- 1('V)) is an extension of 
(2lK(I),g- 1('V')). It follows that 

(2lK(I),h- 1('V)) E E{(2lK(I),g-1('V'))} ~ 

~ EH-1{(2l',_'V')} ~ EH- 1S{\2i, v)}. 

Now, putting together (7.2), (7.3) and (7.4), we finally obtain 

(2l, 'V) E HEH- 1SPSC ~ C. 

(7.4) 

0 

Thus, given a non-empty class C of matrices, we can construct the variety 
VarC by taking the closure of C under the operators S, P, H, H- 1

, E. Moreover, 
as a consequence of the proof above we obtain 

Corollary 7.82 For every non-empty class C of modal matrices, 

VarC = HEH- 1SPSC. 

We can even improve the latter equality by observing that PSC ~ SPC, for 
every class C of matrices (prove the inclusion by yourself). The following result 
may be called Tarski's Theorem for varieties of matrices. 

Theorem 7.83 For every non-empty class C of matrices, 

VarC = HEH- 1SPC. 

Proof By Corollary 7.82, it suffices to establish the equality HEH- 1SPC 
HEH- 1SPSC. The inclusion ~ is trivial because C ~ SC. And the inclusion 
PSC ~ SPC gives us HEH- 1SPSC ~ HEH- 1SSPC = HEH- 1SPC. o 

7. 9 Exercises 

Exercise 7.1 Prove that all non-degenerate matrices for S have infinite sets of 
distinguished elements. (Hint: show that in such matrices T, OT, ... , onT, ... 
belong to the set of distinguished elements.) 

Exercise 7 .2 Show that the quasi-identity 

'P 1 = 1/J1 /\ · · · /\ 'Pm = 1/Jm -+ cp = 1/J 

is true in the Tarski-Lindenbaum algebra 2lL iff the rule 

is admissible in L. 
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Exercise 7.3 Show that a lattice is distributive iff one of the laws of distribu
tivity is true in it. 

Exercise 7.4 A filter 'V is called critical in a pseudo-Boolean algebra 21 if there 
is an element a in 21 such that a tf. 'V, but a E 'V' for every filter 'V' :::> 'V. Show 
that a principal filter is prime iff it is critical. 

Exercise 7.5 Prove that every finite pseudo-Boolean algebra 21 is isomorphic 
to its bidual (21+ )+. 

Exercise 7.6 Prove that every finite intuitionistic frame J is isomorphic to its 
bidual (J+)+· 

Exercise 7.7 Show that the prime elements in J+ are exactly the rooted gen
erated subframes of J. 

Exercise 7.8 Show that an intuitionistic Kripke frame J is rooted iff J+ con
tains a second greatest element, i.e., an element a f- T such that b $a, for every 
b in J+ different from T. 

Exercise 7.9 Show that a modal Kripke frame J is rooted iff there is an element 
a f- T in J+ (called an opremum) such that, for every bin J+ different from T, 
there exists n < w for which onb $a. 

Exercise 7.10 For a class C of algebras (or matrices), prove that VarC is the 
smallest variety to contain C and that it is the intersection of all varieties con
taining C. 

Exercise 7.11 Let (21, 'V) be a modal matrix and~ a subalgebra of 21. Prove 
that the intersection of 'V with the universe of~ is a filter in ~-

Exercise 7.12 Show that if \7 1 and \72 are prime filters in pseudo-Boolean 
algebras 211 and 212, respectively, then 'V 1 x 'V 2 is a prime filter in 211 x 212. 

Exercise 7.13 Prove the converse of Proposition 7.61 (i). 

Exercise 7.14 Prove that the variety VarL. of every normal logic L such that 
S4 s.:; L s.:; Grz EB bw3 has a continuum of I-generated algebras. 

Exercise 7.15 Show that if a modal logic L does not contain tran, for any 
n < w, then 21£(1) is infinite. 

Exercise 7.16 Show that a modal algebra 21 is an S4-algebra iff for every ele
ment x in 21, Ox $ x and OOx = Ox. 

Exercise 7.17 Show that a filter 'V in a Boolean algebra 21 is an ultrafilter iff 
21/'V is the two-element Boolean algebra. 

Exercise 7.18 Suppose that 21 = (A, A, V) is a distributive lattice and B, Care 
non-empty subsets of A such that b1 A ... A bn i c, for any b1, ... , bn E B, c E C, 
and for all c1, c2 E C there is c E C for which c1 V c2 $ c. Prove that there exists 
a prime filter 'V in 21 such that B ~ 'V and C n 'V = 0. 
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Exercise 7.19 Give an example of a distributive lattice that is not a pseudo-
Boolean algebra. 

Exercise 7.20 Show that a filter (ideal) in a pseudo-Boolean algebra is gener
ated by a finite set iff it is principal. 

Exercise 7.21 Show that condition (4) in the formulation of Theorem 7.10 can 
be replaced by a finite list of identit.ies. 

Exercise 7.22 Say that an identity is derivable from a set of identities if it 
can be obtained starting from those identities and p = p (as axioms) using the 
following inference rules: substitution of a term instead of a variable and 

<p = 1/J, 1/J = x <p = 1/J 
<p=x 

'---,, x=x 

where x' is the result of replacing (some occurrences of) <p in x by 1/J. Let r be 
any set of identities. Show that <p = 1f; is derivable from r iff <p = 1f; is true in 
every algebra in which all identities in r are true. 

Exercise 7.23 Call a modal or pseudo-Boolean algebra m subdirectly irreducible 
if it contains an element a f= T such that h(a) = T( = h(T)), for every non-trivial 
(i.e., different from an isomorphism) homomorphism h from m. Prove that 

(i) m is subdirectly irreducible iff among its non-trivial (i.e., different from 
{T}) (normal in the modal case) filters there exists a smallest one; 

(ii) a finite algebra J+ is subdirectly irreducible iff the frame J is rooted but 
(iii) for infinite algebras this does not hold; generalize (ii) to infinite algebras 

(see Exercise 7.9). 

Exercise 7.24 (Birkhoff's theorem on subdirect irreducibles) Say that 
an algebra 123 is a subdirect product of algebras mi, i E I, if there is a homo
morphic embedding f of 123 into rriEI mi such that if 7rj, j E I, are the natural 
projections of rriEI mi onto mj then 7rj 0 f is a surjection. Prove that 

(i) every algebra can be represented as a subdirect product of some subdirect 
irreducible algebras; 

(ii) every variety of modal algebras is generated by its subdirectly irreducibles. 

Exercise 7.25 (Los' theorem for algebras) Let mi, i E I, be a family of 
modal algebras and V' an ultrafilter in the Boolean algebra (21, n, U, :J, 0,) (an 
ultrafilter over I for short). Form an algebra 123 = (B, A, V, --+, ..L, D) by taking 
B = {llxll : x E rriEI Ai}, where llxll = {y E rriEI Ai : {i : x(i) = y(i)} E V'}, 
and 

llxll 8 llYll = llx 8 Yll for 8 E {A, V,--+ }, ..L = 11..Lll, Dllxll = llDxll· 

123 is called the ultraproduct of the family {mi : i E I} over the ultrafilter V' 
and denoted by rriEI mi/V'. Prove that for every first order sentence ¢ in the 
language with the functional symbols A, V, --+, ..L, D and the predicate =, 
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II ~i/V' I= 4> iff {i: ~i I=¢} EV'. 
iEJ 

Exercise 7.26 (Los' theorem for frames) Let Ji = (Wi, Ri), i E I, be a 
family of frames and V' an ultrafilter over I. Form a frame J = (W, R) by taking 
W = {llxll : XE f1iEJ Wi}, where llxll = {y E f1iEJ Wi: {i: x(i) = y(i)} EV'}, 
and 

llxllRllYll iff { i : x( i)Riy( i)} E V'. 

J is called the ultraproduct of the family {Ji : i E I} over V' and denoted by 
rriEJ Ji/V'. Prove that for every first order sentence 4> in the language with the 
predicates R and =, 

II JdV' I= 4> iff {i: Ji I=¢} EV'. 
iEJ 

Exercise 7.27 (Jonsson's (1967} lemma) Prove that if~ is a subdirectly 
irreducible modal algebra in VarC then~ E HSPuC, where PuC is the class of 
ultraproducts of algebras in C. 

Exercise 7.28 {Blok's {1980a) lemma) Let{~ : i E I} be a family of modal 
algebras and, for i E I, Ji = (Wi, Ri) a frame such that ~ E S(Ji). Prove that 
for any~ E Pu({~i: i EI}) there is J = (W,R) E Pu({Ji: i EI}) and 
~' E S(J+) such that~ is isomorphic to~'. Furthermore, if for every i E I and 
w E Wi, {w} E ~i then for every w E W, {w} E ~'. 

7.10 Notes 

Chronologically, the first semantics for non-classical logics was the algebraic one. 
Attempts to generalize the truth-functional semantics for Cl led naturally to 
many-valued tables in which both "truth" and "non-truth" are not necessarily 
unique. Although these tables (whose exterior form resembled of a usual matrix 
of numbers, which probably was the reason to call them logical matrices) were 
first constructed in a rather ad hoc manner mainly to distinguish between, say 
modal systems as in Lewis and Langford (1932) or to define modal logics as in 
Lukasiewicz (1920), shortly they became one of the most important tools for 
studying logics. 

The algebraic semantics for si-logics and extensions of 84 was constructed 
and systematically used by McKinsey (1941), McKinsey and Tarski (1944, 1946, 
1948), Dummett and Lemmon (1959). Lemmon (1966a, 1966b) introduced modal 
algebras for many other modal systems. 

In this chapter we presented only that minimum of results on the algebraic 
semantics which will be required in the sequel. The field of studies in (pseudo-) 
Boolean algebras and Boolean algebras with operators itself is so extensive that 
it is practically impossible to indicate a reasonably short list of references cover
ing it comprehensively. The book where the reader can find a good many results 
on pseudo-Boolean and topological Boolean algebras together with references 
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to their sources is Rasiowa and Sikorski (1963). The methods of this book were 
extended by Rasiowa (1974) to other types of algebras and the corresponding log
ics. Methodologically, these books reflect the algebraic approach to non-classical 
logics of the mid-1960s: the central problem (from the point of view of study
ing logics rather than an intrinsic algebraic problem) was to establish the finite 
approximability together with an ~pper bound for the number of elements in 
the minimal refutation algebra or matrix. This approach culminated in Lemmon 
(1966a, 1966b). Its essential component were representation theorems for finite 
algebras (like Theorems 7.30 and 7.47 above) which made it possible to prove 
first the finite approximability of a logic in algebraic terms and them transfer 
it to frames. In particular, we obtain that the properties of approximability by 
finite algebras, finite frames and finite models are equivalent. (That is why we 
prefer the term "finite approximability" rather than the connected with models 
and frames well known notions of the finite model and finite frame property.) 

Our definitions of pseudo-Boolean and modal algebras _are somewhat different 
from the standard ones: usually pseudo-Boolean algebras are defined by a small 
set of conditions, for instance those in Theorem 7.10. Our approach here is sim
ilar to that in Part I where we began with a set of acceptable (for some reasons) 
formulas and then showed that one can select in it a short list of formulas (ax
ioms) from which the rest are derived by certain inference rules. A little defect 
(in this sense) of the conditions in Theorem 7.10 is that condition (4) is not an 
identity. However, one can easily replace it with a finite number of identities; see 
Exercise 7.21. This similarity is not only an external one. In fact, starting from 
the finite list of identities mentioned above and p = p all other identities that are 
true in all pseudo-Boolean algebras are derivable using the inference rules given 
in Exercise 7.22; cf. Birkhoff (1935). Note that pseudo-Boolean algebras and Int 
were taken here only as an example. The same holds for £-algebras, where L is 
any si- or normal modal logic. Thus, those logics and the corresponding algebras 
can be considered as part of the so called equational logic and/or its model
theoretic counterpart-the theory of varieties of algebras-along with groups, 
rings, lattices and other conventional algebraic objects (see the survey Taylor, 
1979). Many problems concerning our logics (say axiomatizability, approxima
bility, decidability, etc.) turn out to be of interest for other algebraic equational 
theories, and as a result a considerable algebraic apparatus for solving them has 
been developed. 

Theorem 7.17 on the finite approximability of si-logics with disjunction free 
extra axioms was proved by McKay (1968). Theorem 7.67 describing the con
struction of !2l1nt(l) is due to Rieger (1949) and Nishimura (1960). 

The theory of varieties is connected primarily with universal algebras; vari
eties of matrices are not standard objects in it. The problem here is that when 
considering matrices we deal with not the condition of identical equality to a 
distinguished element but the predicate of belonging to a set of distinguished 
elements. Although the notion of variety is easily extended to algebraic systems 
in which we regard as identities not only expressions of the form cp = 'l/J but 
also P( cp1 , ... , 'Pm), where P is a predicate of the language under consideration 



234 ALGEBRAIC SEMANTICS 

(cf. Mal'cev, 1973), this yields no immediate effect because the set of distin
guished elements in a matrix (as it was defined in this book) is a filter, i.e., we 
are interested in algebraic systems of the form (A, A, V, ~, ..l, D, \l) in which not 
only standard identities (saying that (A,/\, V, ~, ..l, D) is an £-algebra, for some 
modal logic L) and conditions of belonging to \l hold, but also quasi-identities 
of the form 

cp E \l I\ (cp ~ 'lf;) E \l => 'lf; E \l 

(guaranteeing that \l is a filter) must be true. Of course, one could deal with 
quasi-varieties instead of varieties but this does not agree with the fact that we 
do not change the postulated inference rules, and so the lattices of logics under 
consideration are not in general dually isomorphic to lattices of quasi-varieties 
of matrices. 

That it is not hard to modify the algebraic semantics by introducing a rather 
natural concept of variety of matrices was observed independently in several 
papers; cf. for instance Blok and Kohler (1983), Chagrov (1985b), Shum (1985). 

One of the most powerful algebraic tools for investigating nonclassical logics 
is J6nsson's (1967) lemma (see also Griitzer, 1979), which makes it possible to 
establish in a rather easy way some facts about lattices of logics and the consti
tution of logics and the corresponding varieties of algebras as well. As examples 
we mention here two results which can be obtained as immediate consequences 
of J6nsson's lemma: 

• every tabular logic has a finite number of extensions, and they are also 
tabular; 

• if two finite subdirectly irreducible algebras determine the same logic then 
they are isomorphic. 

Numerous examples of applications of J6nsson's lemma to modal logics can be 
found in Blok (1980b). Analogues of J6nsson's lemma for varieties of matrices 
and algebraic systems were proved by Blok and Kohler (1983) and Shum (1985). 
It is to be noted that in this book we give purely semantical proofs for a number 
of results that were originally proved with the help of J6nsson's lemma (see for 
instance the proof of Blok's theorem in Secti6n 10.5). 
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RELATIONAL SEMANTICS 

Having solved the completeness problem, the algebraic semantics, introduced in 
the previous chapter, deprives us, however, of that transparent interpretation of 
logical connectives which made it possible to construct models for formulas by 
analyzing step by step their subformulas and adding new points, if necessary. In 
other words, we have lost that thread which connected the structure of formulas 
with the "geometry" of their models. Fortunately, this is not that case when 
"gaining in force we lose in distance". In this chapter we define a more general 
concept of frame, combining in itself the merits of both algebras and Kripke 
frames. 

8.1 General frames 

There are two ways leading to the general frames. One of them originates from 
Theorem 5.5 according to which every superintuitionistic and normal modal logic 
L is characterized by some (for instance, canonical) model 9Jt = (J, m). If L is 
Kripke incomplete then J ~ L, i.e., there is another model 1)1 = (J, il) refuting 
some rp E L. So, if we do not want to give up the idea of the Kripke semantics 
entirely and yet have completeness, we should impose some restriction on possible 
valuations in J which would allow us to construct Q'.1 and oot, but forbid il and 
IJ1. Let us denote by P the family of all formula truth-sets in J under m, i.e., put 

P = {Q'.7(1/;): 1/; E For£ (or 1/; E ForM.C)}, 

and call P a set of possible values in J. Then il(pi) t/. P for some variable 
Pi E Subrp. For otherwise with every Pi E Subrp, i = 1, ... , n, we can associate 
a formula 'l/Ji such that il(Pi) = Q'.7(1/;i), and then il(rp) = Q'.J(rps) where s = 
{ 1/;i/p1, ... , 'l/Jn/Pn}, whence 9Jt ~ rps, contrary to rps E L. Thus, if we require 
that the valuation il in J should satisfy the condition 

il(p) E P, for every variable p, 

then 1)1 = (J, il) will necessarily be a model for L. 
In fact sets P of possible values in J can be defined without any connection 

with models on J. Indeed, let 9Jt = (J, Q'.J) be a model of MC. Then, as was 
shown in Example 7.57, the algebra (P, n, U, :J, 0, D), where n and U are the 
set-theoretic intersection and union, and :J and D are defined as in Section 7.5, 
is a modal algebra, a subalgebra of~+ = (2w, n, U, :J, 0, o) to be more exact. If 
9Jt is an intuitionistic model then (P, n, U, :J, 0), with :J defined as in Section 7.3, 
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is a pseudo-Boolean algebra which is a subalgebra of~+ = (UpW, n, U, :), 0). So 
we can define a set of possible values in J simply by taking as P the universe of 
some (modal or pseudo-Boolean) subalgebra of J+, in particular the universe of 
J+ itself. Thus, we arrive at the following definitions. 

A modal general frame is a triple J = (W, R, P) in which (W, R) is an ordinary 
Kripke frame and P, a set of possible values in J, is a subset of 2w containing 0 
and closed under n, U and the operations:) and D which are defined as follows: 
for every X, Y ~ W, 

X :) Y = (W - X) UY, 

DX= {x E W: Vy E W (xRy-+ y EX)}. 

It follows from the duality of D and <> that the closure under D can be replaced 
with the closure under the operation <>: 

<>X=X!={yEW: 3xEXyRx}. 

And since X :) 0 = W - X, the set P is also closed under complementation in 
the space W. 

We denote by J+ the algebra (P, n, U, :), 0, D) and call it the dual of J. 

Proposition 8.1 The dual of every modal general frame is a modal algebra. 

Proof Exercise. 0 

An intuitionistic general frame is a triple J = (W, R, P) where (W, R) is an 
intuitionistic Kripke frame and P, a set of possible values in J, is a subset of 
UpW containing 0 and closed under n, U and the following operation :): for 
every X, Y ~ W, 

X :) Y = { x E W : Vy E W (xRy A y E X -+ y E Y)} 

= D((W - X) UY). 

J+, the dual of J, is the algebra (P, n, U, :), 0). 

Proposition 8.2 The dual of each intuitionistic general frame is a pseudo
Boolean algebra. 

Proof Exercise. 0 

General frames J = (W, R, P) and ~ = (V, S, Q) are isomorphic (J ~ ~ in 
symbols) if there is an isomorphism f of (W, R) onto (V, S) such that X E P 
iff f(X) E Q, for every X ~ W. As before, we do not distinguish between 
isomorphic frames. 

Let J = (W, R, P) be an intuitionistic (or modal) general frame. A model 
of the language £, (respectively, ML) on J is a pair 9J1 = (J, S:O) where S:O, a 
valuation in J, is a map from Var£ in P, i.e., S:O(p) E P for every variable p. 
The truth-relation I= in 9J1 is defined in exactly the same way as in Sections 2.2 
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and 3.2 for ordinary Kripke models; as before !U( cp) = { x E W : x I= cp }. Note 
that !1.J(j_) = 0 and !U(T) = W. 

The definitions of truth, validity, countermodel, etc., and the corresponding 
notations, given in Sections 2.2 and 3.2, can be extended to general frames with
out changes. In particular, we say a logic Lis characterized (or determined) by 
a class C of general frames if L coi!J.cides with the set of formulas that are valid 
in all frames in C. 

It should be clear that semantically there is no big difference between J and 
J+: every valuation m in J is also a valuation in J+ and vice versa; the truth-set 
of a formula cp in J under m coincides with the value of cp in J+ under m, in 
particular, J I= cp iff J+ I= cp. 

Given a modal or intuitionistic model 9J1 = (J, !U) based on a Kripke frame 
J = (W, R), the general frame Q5 = (W, R, P) with 

P = {!U(cp) : cp E ForM£ (or cp E For£)} 

is called the general frame associated with 9J1. 
The general frame, associated with the canonical model 9J1L = (JL, !UL) for 

a logic L, is denoted by /JL = (WL, RL, PL)· We will call /JL the universal 
(genera0 frame for L. The canonical (Kripke) frame JL for L is obtained from 
the universal one by omitting PL. 

Theorem 8.3 For every superintuitionistic or normal modal logic L, the Tarski
Lindenbaum algebra QlL for L is isomorphic to the dual 1J! of the universal 
frame /JL for L, an isomorphism being the map f defined by f(ll'PllL) = !l.JL(cp), 
for every formula cp. 

Proof Clearly f is a surjection. Suppose that ll'PllL =I- 111/JllL, i.e., cp f-4 1/! ~ L. 
Then !t1 L( cp) =/- !t1L(1/J), for otherwise 9J1L j= cp f-4 1/J, from which cp f-4 1/J E L. 
Therefore, f is an injection. 

Now we must show that f preserves the operations in Qt£. The following 
equalities as well as the similar ones for V and --; are straightforward conse
quences of the definitions of QlL and 9J1L and need no comments: 

f (ll'Pll L A 111/Jll L) = f (ll'P A 1/JllL) = !tJ L( 'PA 1/J) = 

= !t1L(cp) n !l.1£(1/J) = f(ll'PllL) n f(ll1/JllL), 

f(Dll'PllL) = f(llDcpllL) = mL(Dcp) = omL('P) = Df(ll'PllL). 

0 

Remark The only property of /JL used in the proof above is that 9J1L char
acterizes L. So QlL is isomorphic to the dual of the general frame associated with 
any model characterizing L. 
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Since QlL is a characteristic algebra for L, we immediately obtain the fol
lowing completeness theorem which, of course, is also a direct consequence of 
Theorem 5.5. 

Theorem 8.4 Every consistent normal modal or si-logic L is characterized by 
some class of geneml frames, for instance, by the single universal general frame 
iJL for L or by the class of all geneml frames for L. 

The set of formulas which are valid in all general frames in some class C is 
obviously a logic. We will denote it, as before, by LogC or LogJ if C = {J}. The 
set of all general frames for L is denoted by FrL. 

Corollary 8.5 (i) For every superintuitionistic or normal modal logic L, 

L = Log1JL and L = LogFrL. 

(ii) For every intuitiOnistic or modal general frame J, 

LogJ = LogJ+. 

Thus, each general frame is an interlacing of the two structures: an ordinary 
Kripke frame and a modal or pseudo-Boolean algebra of subsets of this frame. A 
reasonable compromise is achieved: we retain the Kripke interpretation of logical 
connectives and, due to the introduction of the algebraic component, acquire the 
completeness. 

The following examples will help the reader to develop some intuition in 
dealing with general frames. 

Example 8.6 The simplest modal general frames are the frames of the form 
J = (W, R, 2W) in which the set of possible values contains all subsets of W, 
i.e., there are no restrictions on valuations in J. From the semantic point of view, 
such a general frame J does not differ from the Kripke frame KJ = (W, R) in the 
sense that the same valuations can be defined in them and the same formulas are 
true in them at each point x E W. All this of course concerns intuitionistic general 
frames J = (W, R, UpW) and their underlying Kripke frames KJ = (W, R). 

From now on we shall deal with only general frames which henceforth will 
be called simply frames. The frames of the form J = (W, R, 2W) and J = 
(W, R, UpW) will be called Kripke frames and denoted as before by J = (W, R). 

If J = (W, R, P) is a frame then we denote by KJ its underlying Kripke 
frame, i.e., KJ = (W, R). It should be clear that J+ is a subalgebra of KJ+. 

Example 8. 7 Another boundary case of intuitionistic frames are frames of the 
form J = (W, R, P) where the set P contains only the two sets: 0 and W. Since 
under every valuation in J each variable is either true at all points in J or true 
nowhere, this frame is semantically equivalent to the single-point frame o, i.e., 
LogJ = Cl. Observe that J and o have isomorphic duals, viz., the two-element 
Boolean algebra. 
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The same (except the last equality, of course) is true for reflexive modal 
frames. However if (W, R) contains a final irreflexive point, e.g., is of the form 
depicted in Fig. 8.1 (a), then the triple (W,R,{0,W}) is not a modal frame, 
because the set {0, W} is not closed under 0: 00 = {a}. We invite the reader to 
prove that there is only one set of possible values in this frame, namely 2W. 

Example 8.8 Let us consider the frame J = (W, R, P) whose underlying (tran
sitive) Kripke frame KJ is depicted in Fig. 8.1 (b) and P consists of 0, W, all 
finite sets of natural numbers and complements to them in the space W. Or, in 
other words, P is the union of two sets X and Y: the elements of X are all the 
finite sets of natural numbers, while each element in Y is the union of a set in X 
and the infinite set { n, n + 1, ... , w}, for some n < w. The fact that P is closed 
under the Boolean operations is evident and OX EX, for every XE P different 
from W, since if n rf_ X then m rf_ oX, for all m such that n < m::; w. 

Note by the way that (J, w) f= Op ---7 pin spite of the fact that w is irreflexive. 
Indeed, if w f= Op and w ~ p under some valuation QJ in J then from the former 
relation we obtain QJ(p) = W, contrary to the latter one. Recall however that 
(KJ,w) ~Op ---7 p, since we may put QJ(p) = W - {w} rf_ P. (We recommend 
the reader to compare this example with Example 5.60.) 

Example 8.9 Let J = (W, R, P) be the modal frame such that KJ has the 
form as in Fig. 8.1 ( c) and P consists of all finite and cofinite (i.e., having finite 
complements) subsets of W. Pis clearly closed under n, U and :). As to 0, it is 
not hard to see that OX is either empty or cofinite, for every X <:;;; W. 

Now we show that although J contains an infinite ascending chain, the Grze
gorczyk formula grz is valid in J. Suppose otherwise. Then, by Example 3.24, 
there is an infinite chain xoRyoRx 1Ry1 ... in J such that, for some valuation QJ, 

{yo, Y1, ... } <:;;; QJ(p) and {xo, x1, ... } <:;;; W-QJ(p). But this is impossible, because 
W(p) is infinite, has an infinite complement in Wand so does not belong to P. 
Let us recall however that, by Proposition 3.48, KJ ~ grz. 

Having constructed the adequate relational semantics for normal modal log
ics, we can extend it to quasi-normal ones simply by adding to general frames 
sets of actual worlds. Indeed, as we know from Section 5.6, every logic LE ExtK 
is characterized by its canonical model (9Jlker L, D L) with distinguished points in 
the sense that for any <p E For ML:, 
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Then, by the definition of the universal general frame "YJker L for ker L, we have 
i.p E L iff D L ~ m ( i.p) for every valuation m in "YJker L. So if we regard the points 
in D L as the only actual worlds in ')'Jker L and consider i.p to be true in ')'Jker L 

if it is true at all actual worlds then the pair bJker L, D L) will characterize L. 
This observation motivates the following definitions. 

A frame with distinguished points is a pair (J, D) such that J = (W, R, P) is 
a (general) frame and D a subset of W whose elements are called distinguished 
points or actual worlds in J. A model with distinguished points based on (J, D) 
is a pair (!.m, D), where !.m is a model based on J. (!.m, D) f= i.p means, as 
in Section 5.6, that (!.m,x) f= i.p for all x E D, and (J,D) f= i.p means that 
(!.m, D) f= i.p for all (!.m, D) based on (J, D). 

The frame ("YJker L, DL) is called the universal frame (with distinguished 
points) for L. 

Every frame (J, D) with distinguished points gives rise to the modal matrix 
(J+, D+) where J+ is the dual of J = (W, R, P) and 

D+ ={XE P: D ~ X} 

is a filter in J+. We call (J+, D+) the dual of (J, D). It is clear that (J, D) is 
semantically equivalent to (J+, D+). 

Theorem 8.10 The Tarski-Lindenbaum matrix (Qlker L, V' L) for a quasi-normal 
logic L is isomorphic to ( ')'Jter L, Di), an isomorphism being the map f defined 
by f(lli.pJlkerL) = mkerL(i.p) for every formula i.p. 

Proof By Theorem 8.3, f is an isomorphism of Qlker L onto ')'Jter L. So we 
must show that f ('V' L) = Di- Suppose lli.pllker L E V' L· Then i.p E L, from 
which DL ~ mkerL(i.p) and so mkerL(i.p) E Dt. Conversely, if X E Di then 
X = mkerL(i.p) for some formula i.p, DL ~ !!JkerL(i.p) and so i.p E £, ili.pilkerL E V'L 
and f(lli.pllkerL) = X. 0 

As a consequence of Theorems 7.4 and 8.10 we obtain the following: 

Theorem 8.11 Every consistent logic LE ExtK is characterized by some class 
of frames with distinguished points, for instance, by the single universal frame 
hJkerL,DL) forL. 

Since (J, D) f= i.p iff (J, { d}) f= i.p for every d E D, we derive one more 
completeness result. 

Theorem 8.12 Every consistent logic LE ExtK is characterized by some class 
of frames having a single distinguished point. 

Example 8.13 Let J be the frame constructed in Example 8.8. We show that 
by choosing w as the single actual world in J, we obtain a frame for S = GL + 
Op-> p. Since J is transitive, irreflexive and Noetherian, KJ f= GL, and hence 
J f= GL, in particular, (J,w) f= GL. It remains to recall that, as was shown in 
Example 8.8, (J,w) f= Op-> p. So (J,w) f= Op-> p and (J,w) f= S. 
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8.2 The Stone and Jonsson-Tarski theorems 

Another way, using which we also come to the general frames, has its starting 
point in the realm of algebra. We have already taken one step along this way, 
having represented (in Sections 7.4 and 7.5) every finite pseudo-Boolean and 
modal algebra as the dual J+ of some finite Kripke frame J. It is impossible 
to extend this result to infinite algebras, witness the following cardinality argu
ment: the dual ~+ of an infinite modal frame J contains at least a continuum 
of elements, although, as we saw in Section 7.2, the Tarski-Lindenbaum algebra 
for a logic in a denumerable language has only countably many elements. 

This section shows however that every pseudo-Boolean and modal algebra Ql 

is isomorphic to the dual J+ of some general frame J, i.e., to a subalgebra of "'J's 
dual. 

As was shown in the previous section, the Tarski-Lindenbaum algebra QlL for 
a (superintuitionistic or normal modal) logic Lis isomorphic to the dual "YJL of 
the universal frame "YJL for L. So to understand how, given an arbitrary algebra 
Ql, to construct its relational representation it may be useful to see in m.ore 
detail what the relation between QlL and "YJL is. Recall first that the elements 
in QlL are the classes ll<t?llL = {'ii; : <p +-+ 1/; E L}, while the points in "(JL are 
the maximal £-consistent tableaux (r, ~). The set r in such a tableau has the 
following properties: 

•TE f; 
• r is closed under modus ponens, in particular, together with every <p it 

contains the whole class ll<t?llL; 
• <p V 1/; E f only if <p E f or 1/; E f. 

This means that the set {ll<t?llL : <p E r} is a prime filter in Ql£. (Note by 
the way that {ll<t?llL : <p E ~} is a prime ideal in QlL.) And conversely, each 
prime filter V' in QlL induces a maximal £-consistent tableau, namely (r, ~) 
with r = { <p E For : ll<t?llL E V'}, ~ = For - r. (Here For is the set of all 
formulas in the language of L.) Thus we can consider points in "(J L as prime 
filters in Ql£. 

Recall also that for a superintuitionistic L we defined RL in "YJL by taking 
t1RLt2 iff r1 <;:; r2, for any ti= (r1, ~1) and t2 = (r2, ~2) in WL. If Y'1, Y'2 are 
the prime filters in QlL corresponding to ti and t2, respectively, then 

For modal L we defined RL by taking tiRLt2 iff {cp : Dcp E f 1 } <;:; r 2, which 
means that 

And finally, PL = {!lh( cp) : <p E For}. By Theorem 5.4, \lh( cp) is the set 
{(f,~) E WL: <p Er} or, algebraically, \rh(cp) is the set of all prime filters V' 
in QlL containing 114'11 L· 
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Thus we have a method which, given the Tarski-Lindenbaum algebra iilL for 
L, constructs the universal frame 'Y'JL for L whose dual 'Y'J! is isomorphic to 
mL. What. if we apply it to an arbitrary pseudo-Boolean or modal algebra? 

In fact this method is a generalization, discovered by Jonsson and Tarski 
(1951), of Stone's (1937) set-theoretic representation of distributive lattices and 
Boolean algebras which is well-known in lattice theory. We present first Stone's 
construction for distributive lattices and then extend it to pseudo-Boolean and 
modal algebras. 

Suppose m = (A,/\, v) is a distributive lattice. We shall use the following 
notation and terminology. W21, the Stone space for ii!, is the set of all prime 
filters in m; /21, the Stone isomorphism, is the map from A in 2W21 defined by 

f2l(a) = {V' E W21 : a E V'}; 

and P21, the Stone lattice form, is the range of fa, i.e., 

P21 = {f2l(a): a EA}. 

Theorem 8.14. {Stone's representation) Every distributive lattice m is iso
morphic to (P21, n, U), a set ring of the Stone space W21, with f2l being an iso
morphism. 

Proof By the definition, f 21 is a surjection. Let us show that it is also an 
injection, i.e., /21( a) = f2l(b) only if a = b. Suppose a # b. Then either a -f:. b 
or b 1:. a. In the former case, by Corollary 7.42, there is a prime filter V' in m 
such that a E V' and b (j. V', whence f21(a) # f2l(b). The latter one is considered 
analogously. Thus, !21 is a bijection from A onto P21, and it remains to show that 
f 21 preserves the lattice operations. 

Suppose that V' E f21(a Vb), i.e., a Vb EV'. Since V' is prime, we then have 
either a EV' orb EV' and so V' E f21(a) U f2l(b). Conversely, if V' E f2l(a) U f2l(b) 
then either a EV' orb EV' and so, by Theorem 7.23, a Vb EV', i.e., V' E f 21 (aVb). 
Hence h(a Vb)= h(a) U /2l(b). 

Now suppose that V' E f21(a /\ b), i.e., a/\ b E V'. Then a E V', b E V' and so 
V' E f2l(a) n f21(b). On the other hand, if V' E h(a) n f2l(b) then a EV', b EV' 
and a/\b EV', i.e., V' E f2l(a/\b). Thus, f2l(a/\b) = f21(a)nf2l(b). 0 

It should be clear that the lattice order ~ in (P21, n, U) is the ordinary set
theoretic inclusion <;;;. 

A pseudo-Boolean algebra m =(A, A, v, ---+, ..l} is a distributive lattice and as 
such it is isomorphic to the Stone lattice (P21, n, u). Since ..l does not belong to 
any prime filter in ii!, f 21(..l) = 0 and so 0 is the zero element in the Stone lattice 
form. By Corollary 7.12, the operation ---+ is uniquely determined by the lattice 
order <;;;. Now recall that our goal is to represent m as a subalgebra of 'J+ for 
some intuitionistic Kripke frame 'J. So what we need is to define a partial order 
R21 on W21 such that (i) all sets in P21 would be upward closed with respect to 
R21 and (ii) P'2!. would be closed under the standard operation :::i on (W21, R21). 
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Then ~21 = (W21, R21, F21) would be an intuitionistic general frame whose dual 
~~ = (P21, n, U, :i, 0) is isomorphic to Qt 

Let us define R21 as is prescribed by our method: 

Lemma 8.15 Every set XE P21 is· upward closed in (W21, R21). 

Proof Suppose X = f2!(a), for some a EA, 'VEX and 'VR21'V'. Then a E 'V, 
'V ~ 'V' and so 'V' E f2!(a). 0 

Let :i be the standard implication in the dual of (W21, R21), i.e., for every 
X,Y ~ W21 

X :i Y ={'VE W21: V'V' E W21 ('VR21'V' /\ 'V' EX--+ 'V' E Y)}. 

Lemma 8.16 P21 is closed under :i. 

Proof Let X, YE P21, X = f21(a) and Y = f21(b), for some a, b E A. We show 
that X :i Y = f2!(a--+ b) E P21. 

Suppose 'V E f21(a--+ b), i.e., a --+ b E 'V, 'V R21'V' and 'V' E X, i.e., a E 'V'. 
Then 'V ~ \71

, a--+ b E 'V' and so, by the definition of filter, b E 'V', which means 
that 'V' E f21(b). Therefore, 'VEX :i Y. 

Conversely, let 'VEX :i Y and show that a--+ b E \7. If b E 'V then clearly 
a --+ b E \7. So suppose that b f_ \7. Let 'Va be the filter in Qt generated by the 
set {a} U 'V. It follows from Theorem 7 .24 that 

'Va = { x E A : :lz E 'V z /\ a :::; x}. 

We are going to show now that b E 'Va· Then we shall have z /\a :::; b, for some 
z E 'V, whence, by Theorem 7.10, z:::; a--+ band so a--+ b E \7. 

Suppose b f_ 'Va· Then, by Theorem 7.41, there is a prime filter 'V' such that 
'Va ~ 'V' and b f_ 'V'. But this leads to a contradiction, since 'V R21 'V', 'V' E X 
and so 'V' E Y, i.e. b E 'V'. 0 

Thus the triple (W21 , R21 , P21) is an intuitionistic general frame. We call it the 
dual of Qt and denote it by !2l+. 

Our observations at the beginning of this section yield 

Theorem 8.17 The dual (QlL)+ of the Tarski-Lindenbaum algebra for a si-logic 
L is isomorphic to the universal frame 'Y~L for L. 

As a consequence of Theorem 8.14, Corollary 7.12 and Lemmas 8.15, 8.16 we 
obtain 

Theorem 8.18. (Stone's representation) Every pseudo-Boolean algebra Qt 
is isomorphic to its bidual (!2l+) +, with f2l being an isomorphism. 

Corollary 8.19 Every pseudo-Boolean algebra Qt is (isomorphic to) a subalgebra 
of (W21,R21)+ = (K.!2l+)+. 
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According to Theorem 8.18, every Boolean algebra m = (A,/\, V, ___.., .l) is 
isomorphic to the dual of the frame iil+ = (W21, R21, P21). Since prime filters in 
Boolean algebras are ultrafilters, R 21 is just the identity relation and so ::) in iil+ 
is defined by 

X ::) Y = {V' E W21 : V' E X --> V' E Y} = (W21 - X) UY. 

Thus we obtain the following: 

Theorem 8.20 Every Boolean algebra Ql is isomorphic to (P21, n, U, ::), 0), a set 
field of the Stone space W 21 , with f2l being an isomorphism. 

Corollary 8.21 Every Boolean algebra m is isomorphic to a subalgebra of the 
field (2w21 ,n,U,:),0) of all subsets of the Stone space W21. 

Now let us turn to modal algebras. Given such an algebra 

Ql = (A,/\, V, -->, .l, 0), 

define a relation R21 on W 21 as was described at the beginning of the section, i.e., 
for Y'1, Y'2 E W21, we put 

Lemma 8.22 For every a E A, f2l(Oa) = Of2l(a) where 0 in the right-hand 
part is the standard necessity operation in the frame (W 21, R21). 

Proof Let V' E f2l(Oa), i.e., Oa EV', and let V'R21V''. Then by the definition of 
R21, a EV'', i.e., V'' E f2l(a). Therefore, V' E Of2l(a). Conversely, let V' E Of2l(a), 
i.e., for every V'' E W21, V'R21V'' implies V'' E f2l(a). Suppose that V' </. f2l(Oa) 
and consider the set 

X = {x EA: Ox EV'}. 

Since OT = T E V', X is non-empty. Let [X) be the filter generated by X. 
Then a </. [X). For otherwise, by Theorem 7.35, x 1 /\ ... /\ Xn ~ a for some 
x1 , ... , Xn E X, whence Ox1 /\ ... /\ Oxn ~ Oa and so Oa E V', contrary to our 
assumption. By Theorem 7.41, there is an ultrafilter V'' such that [X) ~ V'' and 
a </. V''. But then V' R 21 V'' and so V'' E f2l (a), i.e., a E V'', which is a contradiction. 

0 

It follows immediately from this lemma that P21 = {f2l(a): a EA} is closed 
under 0 in the frame (W21 , R21). So (W21 , R21 , P21) is a modal general frame. We 
call it the dual of m and denote it by iil+· Clearly, we have 

Theorem 8.23 The dual (iilL)+ of the Tarski-Lindenbaum algebra for a normal 
modal logic L is isomorphic to the universal frame /'JL for L. 

Combining together Theorem 8.20 and Lemma 8.22 we obtain 
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Theorem 8.24. (The Jonsson-Tarski representation) Every modal alge
bra 2l is isomorphic to its bi dual (2!+) +, with h being an isomorphism. 

Corollary 8.25 Every modal algebra 2l is (isomorphic to) a subalgebra of the 
algebra (W2l,R2l)+ = (KQl+)+. 

And one more algebraic structurE;J needs a relational representation: we mean 
modal matrices. Suppose that (2!, V') is such a matrix. By Corollary 7.40, every 
proper filter in Ql is the intersection of all ultrafilters in 2l containing it. Define 
a set V' + ~ W 2l by taking 

V' + = {V'' E W2l : V' ~ V''}. 

The general frame (2!+, V' +) with distinguished points will be called the dual of 
(2!, V'). 

Theorem 8.26 Every modal matrix (2!, V') is isomorphic to ((2!+)+, (Y'+)+), 
with h being an isomorphism. 

Proof In view of Theorem 8.24, it suffices to show that h(V') = (V' +)+.This 
is clear if V' = A. So suppose that V' is a proper filter in 2!. If a E V' then 

and so h(a) E (V'+)+. Conversely, if XE (Y'+)+ then there is a EA such that 
X = h(a) and V' + ~ h(a), i.e., 

{V'' E W2l: a EV''} ;2 {V'' E W2l: V' ~ Y''}. 

So a EV', since V' = n{V'' E W21: V' ~ V''}, and f2!(a) = X. 0 

Our last result in this section provides a relational characterization of the 
consequence relations in modal and si-logics. It follows immediately from Theo
rem 7. 73 and the representation theorems proved above. 

Theorem 8.27 (i) For L E NExtK, r f-L cp iff for any model 9J? based on a 
frame for L and any point x in 9.n, x Fr implies x F cp. 

(ii) For L E ExtK, r f- L cp iff for any model (rot, D) based on a frame (J, D) 
for L and any point x ED, x Fr implies x F cp. 

(iii) For L E NExtK, r f-£ cp iff for any model rot based on a frame for L, 
MF= r implies rot F= cp. 

(iv) For L E Extlnt, r f-L cp iff for any model rot based on a frame for L, 
001: F= r implies MF= cp. 

8.3 From modal to intuitionistic frames and back 

So far we have considered modal and intuitionistic frames separately. However, 
as was shown in Section 3.9, every modal Kripke model rot= (J, U'.J) based on a 
quasi-ordered frame J induces in a natural way an intuitionistic model, namely 
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the skeleton pwt = (pJ, pllJ) of wt, such that for any intuitionistic formula 'P 
and any point x in J, 

(pwt, C(x)) I= 'P iff (wt, x) I= T('fJ), 

where T, the Godel translation, prefixes D to every subformula of 'P· 
The operator p can be easily extended to general frames. Given a modal 

quasi-ordered frame J = (W, R, P), we define an intuitionistic frame p:J = 
(pW, pR, pP), called the skeleton of J, by taking 

pP = {pX: XE P /\ X =DX}= {pX: XE P /\ X = Xl}, 

where pX = {C(x): x EX}. To verify that pJ is really an intuitionistic frame, 
it suffices to observe that, for any upward closed X, Y E P, 

p(X) n p(Y) = p(X n Y), 

p(X) u p(Y) = p(X u Y), 

p(X):::) p(Y) = p(D(X:::) Y)). 

(Here :::) in the left-hand side is intuitionistic and that in the right-hand one is 
Boolean.) 

If wt = (J, m) is a model on J then pwt = (pJ, pllJ), the skeleton of wt, is 
the intuitionistic model with pllJ defined, as before, by 

pllJ(p) = p(llJ(Dp)), for every variable p. 

Using the equations above, one can readily prove the following obvious gen
eralization of Lemma 3.81. 

Lemma 8.28. (Skeleton) For every model wt based on a quasi-ordered frame 
J, every intuitionistic formula 'P and every point x in J, 

(pwt,C(x)) I= 'P iff (wt,x) I= T('P) 

and so 

p:J I= 'P iff JI= T('fJ). 

Let us now clarify the algebraic meaning of the operator p. Observe first that 
the operation D in a quasi-ordered modal frame J = (W, R, P) has the following 
properties: for every X, Y ~ W, 

(11) D(X n Y) =ox n DY; 

(12) DX~ X; 
(13) DDX = DX; 

(14) ow= w. 
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A set W with an operation D on 2W satisfying these four properties is usually 
called a topological space and D an interior operation in this space. The dual 
operation <>, defined by <>X = -D - X (where -X = W - X), is called the 
closure operation in the topological space. That is why the modal algebras sit= 
(A,/\, V, ____,, ..l, D) whose box D satisfies (11)-(14) (in which X, Y, s;; and W 
should be replaced by a, b, :'S and _T, respectively) are known as topological 
Boolean (or interior, or closure) algebras. According to Exercise 7.16, a modal 
algebra sit is a topological Boolean algebra iff sit I= S4. Borrowing the topology 
terminology, we say that an element a in such an algebra is open if a= Da. 

Proposition 8.29 For every topological Boolean algebra and all open elements 
a and b in it, 

aVb=D(aVb). 

Proof Since a :'Sa Vb, we have a= Da :'S D(a Vb). Likewise b:::; D(a Vb) and 
so a Vb :'S D(a Vb). The desired equality follows then from (12). 0 

By the definition, the dual J+ of a quasi-ordered frame J is a topological 
Boolean algebra. And conversely we have 

Proposition 8.30 The dual sit+ of a topological Boolean algebra sit is a quasi
ordered frame. 

Proof We must show that the accessibility relation R'li in sit+ is reflexive and 
transitive. Let \7 E W'li and Da E \7. By (12), Da :'Sa and so a E \7. Therefore, 
'VR'li\7. Suppose now that \71R'l1\72R'l1\73 and Da E \7 1 . By (13), DDa E \7 1 , 

whence Da E \72 and a E \73, which means that \7 1R21\73. 0 

Given a topological Boolean algebra sit = (A,/\, V, ____,, ..l, D), we define an 
algebra psit = (pA, /\, V, ----; 0 , .l) by taking pA = {a E A : a = Da} and 
a ----; 0 b = D(a ____, b), for any a, b E pA. (By (11) and Proposition 8.29, pA is 
closed under /\ and V.) psit is called the algebra of open elements of sit. 

Proposition 8.31 For every quasi-ordered modal frame J = (W, R, P), (pJ)+ 
is isomorphic to p(J+). So the algebra psit of open elements of any topological 
Boolean algebra sit is a pseudo-Boolean one; more exactly, psit ~ (p(sit+) )+. 

Proof It easy to verify that the function mapping pX to X, for every upward 
closed X E P, is an isomorphism of (pJ)+ onto p(J+). The dual sit+ of a topo
logical Boolean algebra sit is a quasi-ordered frame whose dual, by Theorem 8.24, 
is isomorphic to sit. So psit ~ p((sit+)+) ~ (p(sit+))+. 0 

What is more important, the converse statement, i.e., that each pseudo
Boolean algebra (or intuitionistic frame) is an algebra of open elements (re
spectively, a skeleton) of some topological Boolean algebra (quasi-ordered modal 
frame), also holds. We will prove it first for general frames and then transfer, by 
duality, to algebras. 

Given an intuitionistic frame J = (W, R, P), the simplest way of constructing 
a modal frame from it is to take the closure u P of P under the Boolean operations 
n, u and____,_ 
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Lemma 8.32 For every X ~ W, X is in u P iff 

for some X1, Y1, ... ,Xn, Yn E P and n;::: 1. 

Proof ( =}) By Exercise 1.1, we can represent each X E u P as 

n n ( -Ui U ... U -Uk, U V1i U ... U Vi!) 
i=l 

for some Uj, iji E P. Then, taking 

xi = { u; n ... n ut if ki > o 
w if ki = 0 

and 
Yi = { Vl U ... U v;, ~f ki > 0 

0 1fki=O 

we obtain the representation we need. 
( <==) is trivial. 0 

Now we observe that u P is closed under 0 in (W, R) and that P coincides 
with the set of open ( = upward closed) sets in u P. More exactly, the following 
lemma holds. 

Lemma 8.33 Suppose X E u P is represented as in Lemma 8.32. Then 

OX= (X1 :::> Y1) n ... n (Xn :::> Yn) E P ~ uP, 

where the operations in the right-hand part of = are intuitionistic. 

Proof By (Il), it suffices to verify that for every X, YEP, 

0(-X u Y) = X :::> Y. 

We leave this to the reader as an exercise. 0 

Thus, (W, R, u P) is a partially ordered modal frame; we shall denote it by 
uJ. 

Theorem 8.34 Every intuitionistic frame J = (W, R, P) is the skeleton of some 
quasi-ordered modal frame. For instance, J ~ puJ. 

Proof We must show that pu P = P. Suppose X E pu P. By Lemma 8.33, 
we then have X = OX E P. Thus pu P ~ P. The converse inclusion follows 
immediately from the definitions of p and u. 0 
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Notice that if wt=· (J, W) is an intuitionistic model then uwt = (uJ, W) is a 
modal model having wt as its skeleton. So by the skeleton lemma, we have 

(wt, x) I= cp iff (uwt, x) I= T(cp), 

for every intuitionistic formula cp and every point x in J. 
Given a pseudo-Boolean algebra Qt, we denote by uQl the topological Boolean 

algebra (u(Ql+))+. 

Corollary 8.35 Every pseudo-Boolean algebra Qt is isomorphic to the algebra 
of open elements of some topological Boolean algebra. For instance, Q{ ~ puQl. 

Proof By Theorem 8.34, Q{+ ~ pu(Ql+) and so, by Theorem 8.18 and Propo
sition 8.31, Qt~ (Qt+)+~ (pu(Ql+))+ ~ p((u(Ql+))+). 0 

It is worth noting that if J = (W, R, UpW) is a finite intuitionistic Kripke 
frame then uJ is also a Kripke frame, i.e., uJ = (W, R, 2w). Indeed, by the 
finiteness of J, it suffices to show that {x} E uUpW for every x E W. But this 
is evident, since { x} = xi n x l, and x l is the complementation of an upward 
closed set. The latter equality holds of course for infinite frames as well. 

Let us say a point x in a modal frame J = (W, R, P) is an atom if { x} E P. 
If J is intuitionistic then we call x E W an atom if 

W-xlEP and {x}U(W-xl)EP. 

A (modal or intuitionistic) frame J is atomic if every point in J is an atom. It 
should be clear that any finite atomic frame is a Kripke frame. 

The observation above means that if J is an intuitionistic Kripke frame then 
uJ is atomic. However, for an infinite J, uJ is not in general a Kripke frame. 
To see this, consider the intuitionistic frame Q; shown in Fig. 8.1 (c). It is not 
hard to check that u\!S is exactly the frame defined in Example 8.9, where we 
observed that u\!S I= Grz, while K-O"l!S ~ Grz. On the other hand, it follows 
from Lemma 8.33 that xis an atom in uJ only if xis an atom in J. 

The operator u is not the only one which, given an intuitionistic frame J, 
returns a modal frame whose skeleton is isomorphic to J. As an example, we 
define now an infinite class of such operators. 

For Kripke frames J = (W, R) and Q; = (V, S), we denote by J x Q; the direct 
product of J and l!S, i.e., the frame (W x V, Rx S) in which the relation Rx S 
is defined component-wise: 

Let 0 < k ::;; w. We will regard k as the set {O, ... , k - 1} if k < w and as 
{O, 1, ... } if k = w. Denote by Tk an operator which, given an intuitionistic frame 
J = (W, R, P), returns a quasi-ordered modal frame TkJ = (kW, kR, kP) such 
that 
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FIG. 8.2. 

(i) (kW, kR) is the direct product of the k-point cluster (k, k2 ) and (W, R) 
(in other words, (kW, kR) is obtained from (W, R) by replacing its every point 
with a k-point cluster; see Fig. 8.2); 

(ii) PTk'J ~ 'J; 
(iii) Ix XE kP, for every Is;; k and XE uP. 

For instance, we can take as kP the Boolean closure of the set 

{Ix X: Is;; k, XE uP}. 

To show that kP is closed under Din (kW, kR), it suffices, by Lemma 8.32 and 
the fact that k x W - Ix X = (k -I) x XU k x (W - X), to prove the inclusion 
DLJiEJ(Ii x Xi) E kP for every finite J and every Ii s;; k, Xi E uP. And this 
follows from the equality 

iEJ iEJ' iEJ' 

from which, using Lemma 8.33, we can also derive (ii). 
For a Kripke frame 'J = (W, R, UpW) we can, of course, take kP = 2kW and 

then Tk'J= (kW,kR,2kw). 

8.4 Descriptive frames 

The relationship between general frames and algebras, which was established in 
Sections 8.1 and 8.2, lacks some symmetry. Indeed, the representation theorems 
assert that every pseudo-Boolean and modal algebra sit is isomorphic to its bidual 
(sit+)+, or in symbols 

(8.1) 

But on the other hand, Example 8. 7 shows that there are non-isomorphic frames 
having isomorphic duals. So the relation 

(8.2) 

does not generally hold. 
Those frames 'J that satisfy (8.2) are called descriptive. Taking into account 

(8.1), we obtain an equivalent definition: a (modal or intuitionistic) frame is 
descriptive iff it is isomorphic to the dual of some (modal or, respectively, pseudo
Boolean) algebra. 
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In this section we give a subtler characterization of descriptive frames. This 
result is important not only from the aesthetic point of view. For, dealing with 
logics in Extlnt and ExtK, we are interested in finding possibly smaller classes 
of frames which are enough to determine all these logics. 

Theorem 8.36 Every logic in Extlnt and NExtK is characterized by a class 
of descriptive frames. 

Proof Follows from Theorems 8.17, 8.23 and 8.4. O 

To characterize the constitution of descriptive frames, let us consider once 
again the universal frames, which are descriptive according to Theorems 8.17 
and 8.23. In Section 5.1 we observed that every canonical model is differentiated, 
tight and compact. Adapting these notions to general frames, we arrive at the 
following definitions. 

A frame J = (W, R, P) is differentiated if for any x, y E W, 

x = y iff l:/X E P (x EX.._. y EX). 

An intuitionistic J is tight if for any x, y E W, 

xRy iff l:/X E P (x EX---> y EX). 

Since in an intuitionistic frame J the relation R is antisymmetric, J is tight only 
if J is differentiated. 

A modal frame J is tight if for any x, y E W, 

xRy iff l:/X E P (x E DX---> y EX) 

or, dually, if 
xRy iff l:/X E P (y EX---> x E Xl). 

Those frames that are both differentiated and tight are called refined. Finally, 
a frame J is said to be compact if, for any families X s;; P and Y s;; P = {W - X : 
XE P}, 

n(X UY)= {x: l:/X E Xl:/Y E Y (x EX/\ x E Y)} =/:- 0 

whenever n(X' u Y') =/:- 0 for all finite subfamilies X' s;; X, Y' s;; Y. For modal 
frames, in which together with any X the set P contains its complement -X = 
W - X, this definition is equivalent to the more familiar one: J is compact iff 
every subset X of P with the finite intersection property (i.e., with n X' =/:- 0 for 
any finite subset X' of X) has non-empty intersection. 

Denote by V:F, T, CM, n, V the classes of all differentiated, tight, com
pact, refined and descriptive frames, respectively. We are going to show that the 
combination of the first three properties is characteristic for descriptive frames, 
i.e., 

V = V:FnTnCM. 

But before that let us take a closer look at those properties. 
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For a frame J = (W, R, P) and a point x E W, put 

Px ={XE P: x EX}, Px ={XE P: x EX}. 

If J is modal then clearly we have Px = Px. 

Proposition 8.37 For every frame J = (W, R, P) and every x E W, Px is a 
prime filter in J+. 

Proof Exercise. 0 

Proposition 8.38 A frame J = (W, R, P) is differentiated iff, for every x E W, 

n(Px U Px) = {x}. 

Proof Exercise. 0 

Proposition 8.39 If J is a differentiated intuitionistic frame then uJ is also 
differentiated. However, the operator p does not in general preserve differentiat
edness. 

Proof The former claim follows from the definition. To prove the latter one, 
let us consider the modal frame J = (W, R, P) whose underlying Kripke frame 
is shown in Fig. 8.3 (a) and P = X1 U Xe U Xw U Xw+l where 

• X1 contains all finite sets of natural numbers; 
• Xe contains all the complements (in the space W) of the sets in X1; 
• Xw consists of all sets of the form {w }U{2n: n? m}UX, where w > m? 0 

and XE Xi; 
• Xw+i={{w+l}U{2n+l: n?m}UX: w>m?O, XEX1}· 

It is not hard to verify that J is a differentiated modal frame and that every 
upward closed ( = open) set in P is either W or consists of all natural numbers 
in some interval [O, n]. Therefore, the points wand w + 1 cannot be separated by 
any set in pP = { X E P : X = Xi} and so pJ is not differentiated. 0 

Every Kripke frame is clearly differentiated. Moreover, for finite frames the 
converse is also true. 
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Proposition 8.40 Every finite differentiated frame J = (W, R, P) is a Kripke 
frame. 

Proof In the modal case it suffices to show that { x} E P for any x E W. 
But this follows from Proposition 8.38 and the finiteness of J. If J is a finite 
differentiated intuitionistic frame then uJ is a finite differentiated modal frame. 
Ergo both uJ and puJ = J are Kripke frames. O 

Proposition 8.41 A frame J = (W, R, P) is tight iff for every x E W, 

xj = n{X E P: xj <:;;: X}. 

Proof (=?) Suppose J is intuitionistic and y E n{x E P: xj <:;;: X}. Then, 
since all X E P are upward closed, y E X for every X E P containing x, and so, 
by the definition of tightness, y E xj. If J is modal then xj <:;;: X is equivalent to 
x E DX and soy E n{X E P: xj ~ X} means that y EX for every X E P 
such that x E DX, whence y E xj. 

( <=) Straightforward. 0 

Corollary 8.42 Both operators p and u preserve tightness and refinedness. 

Example 8.43 The frame J, constructed in the proof of Proposition 8.39, is 
not tight, since 

n{XEP: wj~X}={w+l}j. 

Also not tight is the differentiated intuitionistic frame (.!; = (V, S, Q) whose 
underlying Kripke frame is depicted in Fig. 8.3 (c) (w and w + 1 see all natural 
numbers) and Q = {V,0} U {xj: 0::; x::; w}. 

All Kripke frames are certainly tight. Moreover, by Proposition 8.40, every 
finite tight intuitionistic frame is a Kripke frame. 

Example 8.44 Finite tight modal frames are not in general Kripke frames, as is 
demonstrated by the frame consisting of the cluster with points 1, 2 and the set 
of possible values {0, {1, 2} }. This frame is clearly tight, but not differentiated. 

Thus, every Kripke frame is refined and every finite refined frame is a Kripke 
frame. 

Given an arbitrary frame J = (W, R, P), we can construct a refined frame 
rJ = (rW, rR, rP), having the same (modulo isomorphism) dual as J, by iden
tifying some points in Wand adding new arrows between them. First, define an 
equivalence relation rv on w by taking 

x "' y iff \f X E P ( x E X <-4 y E X). 

Then we let [x] = {y E W: x rv y}, for x E W, rX = {[x]: x EX}, for X <:;;: W 
and rP = {rX: XE P}. Notice that x EX implies [x] <:;;: X, for any XE P. 
Finally, we define a relation rR on rW by taking, for every [x], [y] E rW, 
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[x]rR[y] iff VX E P (x EX -t y EX) 

in the intuitionistic case and 

[x]rR[y] iff VX E P (x E DX_, y EX) 

in the modal one. Clearly this definition does not depend on the choice of x in 
[x]. 

We denote (r W, r R, r P) by rJ and call it the refinement of J. 

Proposition 8.45 The refinement rJ of any frame J is a refined frame and 
J+ ~ rJ+. 

Proof The map r defined by r(X) = rX, for XE P, is clearly a bijection from 
Ponto rP. We show that r preserves n, U, ::::>, D. The first three operations in 
the modal case present no difficulties. For instance, 

[x] E rX n rY iff [x] E rX and [x] E rY 
iff x E X and x E Y 
iffxEXnY 
iff [x] E r(X n Y). 

Suppose now that J is intuitionistic, X, YEP and [x] E rX ::::> rY. Then 

V[y] E rW ([x]rR[y] /\ [y] E rX -t [y] E rY). 

Since xRy implies [x]r R[y], it follows that 

Vy E W ( xRy /\ y E X -t y E Y), 

i.e., x EX::::> Y and so [x] E r(X ::::> Y). 

(8.3) 

Conversely, let [x] E r(X ::::> Y) and show (8.3). Suppose otherwise, i.e., there 
is y E W such that [x]rR[y], y EX but y (j. Y. Then y (j. X ::::> Y and so, by the 
definition of r R, x (j. X ::::> Y which is a contradiction. 

The modal operation 0 is considered analogously. 
Thus, rJ is really a general frame and r is an isomorphism of J+ onto rJ+. 

The fact that rJ is refined follows immediately from the definition. 0 

Example 8.46 The refinement rJ of the frame J, considered in the proof of 
Proposition 8.39, has the underlying Kripke frame as in Fig. 8.3 (b) and rP = P. 
The refinement r\!5 of the frame 15 from Example 8.43 has the underlying Kripke 
frame as in Fig. 8.3 (a) and again rQ = Q. Finally, the refinement of the frame, 
considered in Example 8.44, is o. 

Using the refinement we can show that the notions of finite approximability 
and finite model property are equivalent. 

Theorem 8.47 A modal or si-logic L is finitely approximable iff it has the finite 
model property. 
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Proof The implication ( =}) is trivial. To show the converse, suppose that cp ~ L. 
Then there is a finite model 9J1 such that 9J1 f= L and 9J1 ~ cp. Let J be the 
general frame associated with 9J1. Clearly, J validates L and refutes cp. But then 
rJ separates cp from L as well. It remains to recall that a finite differentiated 
frame is a Kripke frame. O 

Now let us consider compact frames. 

Proposition 8.48 A frame J = (W, R, P) is compact iff every prime filter V' 
in J+ is of the form Px for some x E W. 

Proof ( =}) Let A = P - \i'. Since V' is a prime filter, by Proposition 7.27, A 
is a prime ideal. Therefore, V' has the finite intersection property and A has the 
finite union property, i.e., LJ Z =I- W for any finite subset Z of A. 

Now we take X = V' and Y = {W -X: XE A}. Suppose Xi, ... ,Xn EX, 
Y1, ... , Y m E Y and consider the set 

Z =Xi n ... n Xn n Yin ... n Ym. 

Let X = Xi n ... n Xn and Y = Yin ... n Ym· Clearly X E X and, since 
W - Y = (W - Yi) U ... U (W - Ym) EA, we have also YE Y. Suppose Z = 0. 
Then X <;;:; W - Y E A and so, since X is a filter, W - Y E X, which is a 
contradiction. 

Thus, X U Y has the finite intersection property and, by the compactness of 
J, there is an x E n(x u Y). 

We show now that V' = Px. Clearly V' <;;:; Px. So suppose XE P and x EX. 
By the definition, X is either in V' or in A. If X E V' then we are done. But in 
fact this is the only possibility, for if XE A then W - XE Y and so x ~ nY, 
which is a contradiction. 

( <=) Suppose X <;;:; P, Y <;;:; P and X U Y has the finite intersection property. 
We must show that the intersection of all sets in X U Y is not empty. 

Let V' be the filter in J+ generated by X and A the ideal generated by 
{W - Y : Y E Y}. Then V' n A = 0. For otherwise there are X = n X' and 
Y = n Y', for some finite X' <;;:; X and Y' <;;:; Y, such that X <;;:; W - Y, whence 
X n Y = 0, contrary to XU Y having the finite intersection property. Hence, by 
Exercise 7.18, there is a prime filter V'' for which V' <;;:; V'' and V'' n A= 0. 

Let V'' = Px for some x E W. Then x E Z for any Z E V' and x ~ Z for any 
z E A, whence x Ex and x E y for all x Ex, y E Y, and so n(x u Y) =I- 0. 

0 

Proposition 8.49 The operators p and <T preserve compactness. 

Proof That p preserves compactness follows immediately from the definition. 
Indeed, if J = (W, R, P) is a compact quasi-ordered modal frame, X <;;:; pP, 
Y <;;:; pP and X U Y has the finite intersection property then 

X' UY'= {Z E P: (Z = ZT A pZ EX) V (Z = Zl A pZ E Y)} 

also possesses this property in J. Hence n(x' u Y') =I- 0 and so n(x u Y) =I- 0. 
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To prove that u preserves compactness, we use Proposition 8.48. Suppose 
J = (W, R, P) is a compact intuitionistic frame, V' is a prime filter in (uJ)+ and 
show that V' Eu Px, for some x E W. Observe first that 

V'' ={XE V': X =Xi} 

is a prime filter in J+. By Proposition 8.48, there is x E W such that V'' = Px. 
We show that V' = uPx, i.e., V' ={XE uP: x EX}. 

Suppose XE V', but x (j_ X. As we know, X can be represented in the form 

for some Xi, Yi E P. But then there is i E {1, ... , n} such that x (j_ -Xi U Yi, i.e., 
x E Xi and x (j. Jli. On the other hand, -Xi U Yi EV' and so either -Xi E V' or 
Yi EV', since V' is prime. In the former case Xi (j_ V' and consequently Xi (j_ V'', 
which is a contradiction, because x E xi. And in the latter Yi E V'', which is 
again a contradiction, since x then must be in }'i. Thus, V' <:;:; { X E u P : x E X}. 

To prove the converse inclusion, assume that x EXE uP, but X (j_ V'. Since 
V' is an ultrafilter, we then have -X E V' and so, as we have just established, 
x E -X, which is a contradiction. 0 

Proposition 8.50 No infinite Kripke frame is compact. 

Proof Suppose first that J = (W, R, 2W) is an infinite modal Kripke frame. 
Then the set X = { X <:;:; W : W - X is finite} has the finite intersection property, 
but no point xis inn X, since W - {x} EX. 

Now let J = (W, R, UpW) be an infinite intuitionistic Kripke frame. Then, 
according to Exercise 2.3, one of the following three cases holds. 

Case 1. J contains an infinite descending chain ... Ryn ... Ry2 Ry1 of distinct 
points. Then we take 

Y ={Yi!: i = 1,2, ... } <:;:; UpW, X = {W -nY} <:;:; UpW. 

It is clear that Y has the finite intersection property and 

Yi E Yi! n (W - n Y). 

However, by the definition, n(x u Y) = 0. 
Case 2. J contains an infinite ascending chain x 1 Rx2 R . .. of distinct points. 

In this case we take 

x ={xii: i = 1,2, ... } <:;:; upw, y = {w-nx} <:;:; upw. 

Again Xu Y has the finite intersection property, but n(x u Y) = 0. 
Case 3. J contains an infinite antichain Z. Consider the sets 

X ={Xi: X <:;:;Zand Z - Xis finite}<:;:; UpW, 
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Y = {Yl: Y ~Zand Z - Y is finite}~ UpW. 

Clearly, Xu Y has the finite intersection property. However, n(x u Y) is empty. 

0 

We are now in a position to prove the main result of this section. 

Theorem 8.51 A frame J = (W, R, P) is descriptive iff it is differentiated, tight 
and compact. 

Proof ( =>) It suffices to show that the dual m+ = (W21, R21 , P21 ) of every 
pseudo-Boolean and modal algebra mis differentiated, tight and compact. 

If \7 1 and \7 2 are distinct prime filters in m then there is an element a con
tained in only one of them, say in \71. Then \71 E h(a) E P21 and \72 ¢ h(a). 
So m+ is differentiated. 

The fact that m+ is tight follows directly from the definition of R21. 
To prove that m+ is compact, recall that f 21 is an isomorphism of m onto 

(m+) +. So every prime filter in (m+) + is of the form 

h(\7) = {f21(a): \7 E h(a)} = P21\7, 

for some prime filter \7 in m, and we can use Proposition 8.48. 
( ¢::) We must show now that J S:! (J+ )+. By Proposition 8.37, Px is a 

prime filter in J+ and so we can define a map h from W into W J+ by taking 
h(x) = Px, for any x E W. By Proposition 8.48, 

WJ+ = {Px: x E W}. 

So h is a surjection. Moreover, h is an injection, since J is differentiated. 
If J is intuitionistic and x, y E W then, since J is tight, 

xRy iff Px ~ Py iff PxRJ+ Py. 

If J is modal then again, by the tightness of J, we obtain 

xRy iff VX E P (DX E Px---> XE Py) iff PxRJ+Py. 

Thus, it remains to show that, for any X ~ W, XE P iff h(X) E PJ+· 
Recall that PJ+ = {/J+ (X): XE P} and /J+ (X) = {Px: x EX}. So if XE P 
then h(X) = {Px: x EX}= /J+(X) E PJ+· Conversely, if h(X) E PJ+ then 
h(X) ={Py: y E Y} = h(Y), for some YEP, whence X = Y, since his a 
bijection. 0 

Example 8.52 Let J = (W, R, P) be the frame whose underlying Kripke frame 
is shown in Fig. 8.4 (w + 1 sees only w and the subframe generated by w is 
transitive) and P = {X1 U X2 U Xa : Xi EX;, i = 1, 2, 3}, where 

• X1 contains all finite sets of natural numbers including 0, 
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• X2 contains 0 and all intervals {x: n::::; x::::; w }, for n = 0, 1, ... , 
• X3={0,{w+1}}. 

It is easy to see that P is closed under n, - and l (in fact J is generated by 
0). Clearly, J is refined. Suppose X is a subset of P with the finite intersection 
property. If X contains a finite set (from X1 or X3) then obviously n X "/- 0. 
And if X consists of only infinite intervals from X2 then w E n X. Thus, J is 
descriptive. 

We invite the reader to check that the frames J and Q; considered in Exam
ple 8.43 are compact (differentiated but not tight); so their refinements rJ and 
rlB are descriptive. 

As a consequence of Theorem 8.51, Proposition 8.49 and Corollary 8.42 we 
obtain 

Theorem 8.53 The maps p and T preserve descriptiveness. 

It is not hard to extend the results established above a bit further, namely, to 
modal matrices and frames with distinguished points. A frame with distinguished 
points (J, D) is called descriptive if J = (W, R, P) is descriptive and 

D = n{X E P: D <;;, X}. (8.4) 

Theorem 8.54 Every descriptive frame (J, D) with distinguished points is iso
morphic to its bidual ((J+)+, (D+)+)· 

Proof By the proof of Theorem 8.51, the map !J, defined by !J(x) = Px, 
is an isomorphism of J onto (J+)+· We show that h(D) = (D+)+· Indeed, 
n+ ={XE P: D <;;, X}, (D+)+ = {Px: n+ <;;, Px} = {Px: x E n{x E P: 

D <;;, X}} and so, by (8.4), (D+)+ = {Px: x ED}= h(D). 0 

Theorem 8.55 The dual (Qi+, V' +) of every modal matrix (Qi, V') is descriptive. 

Proof Exercise. 0 

As a consequence we obtain the following 

Theorem 8.56 Every logic in ExtK is characterized by a class of descriptive 
frames with distinguished points. 

8.5 Truth-preserving operations on general frames 

To complete the fragment of duality theory suitable for the aims of this book, 
we will find out what operations on general frames correspond to the three 
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fundamental algebraic operations of forming homomorphic images, subalgebras 
and direct products. In fact all we need is to extend the notions of generated 
subframe, reduction and disjoint union from Kripke frames to general ones. 

A frame ® = (V, S, Q) is a generated subframe of J = (W, R, P) (notation: 
® ~ J) if K® ~ KJ and Q = {X n v: x E P}. 

Theorem 8.57 If h is an isomorphism of ® = (V, S, Q) onto a generated sub
frame of J = (W, R, P) then the map h+ defined by 

h+(X) = h- 1(X) = {x EV: h(x) EX}, for every XE P, 

is a homomorphism of J+ onto(!;+. 

Proof Without loss of generality we may assume h to be the identity map. 
Then ®is a generated subframe of J and h+(X) = X n V. 

Clearly, h+ is a surjection. We show that it preserves U, - and l, assuming 
(!; and J to be modal frames, and leave the intuitionistic case to the reader. Let 
X, YEP. Then we have 

h+(x u Y) =(Xu Y) n v = (X n V) u (Y n V) = h+(x) u h+(Y); 

h+(w - X) = (W - X) n v = v - (X n V) = v - h+(X); 

h+(XlR) = XlR n v = (X n V)lS = h+(X)lS. 

The only non-trivial passage here is the middle = in the last line where we use 
the fact that V is upward closed in J. 0 

Observe that proving this theorem we used only that Vis upward closed in J 
and Q = {XnV: XE P}; the fact that Q is closed under modal or intuitionistic 
operations was redundant. This means that, given a frame J = (W, R, P) and 
a set Y ~ W, we can take V = Yjw R, S = R n V 2

, Q = { X n V : X E P} 
and then the triple ® = (V, S, Q) will be a general frame which is a generated 
subframe of J. We call it the subframe of J generated by Y. 

A model S)1 = (®,i.1) on a frame (!; = (V, S, Q) is a generated submode[ of a 

model 001 = (J, m) (notation: S)1 ~ 001) if(!;~ J and il(p) = m(p) n v for every 
variable p. As a consequence of Theorem 8.57 we immediately obtain that the 
generation theorems in Sections 2.3 and 3.3 and their corollaries (Theorems 2.7, 
3.11 and Corollaries 2.8, 2.9, 3.12) hold for general frames as well. Of course 
the same results can easily be derived directly from those theorems. Besides, we 
clearly have 

Theorem 8.58 Every superintuitionistic and normal modal logic is character
ized by the class of its rooted general frames. 

Now we prove a theorem which is dual to Theore~ 8.57. 

Theorem 8.59 Suppose h is a homomorphism of a mo<{al or pseudo-Boolean 
algebra Qt onto a modal or, respectively, pseudo-Boolean algebra 113. Then the map 
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h+ defined by h+(''V) = h-1 (\7), for every prime filter \7 in~, is an isomorphism 
of~+ onto a generated subframe of 121+. 

Proof By Theorem 7.68, h+ is a injection from W<:B into W2!. Consider the set 

Clearly W is upward closed in W2! (in the modal case this follows from the fact 
that OT = T). We show that h+ is an isomorphism of~+ onto the subframe 
J = (W, R, P) of 121+ generated by W. Notice that X E P iff, for some element 
a in 121, X = {\7' E W : a E V''}. 

First we prove that h+ is a bijection from W '13 onto W. Since every filter 
contains T, h+(\7) E W for all \7 E W<:B. Suppose \71 E W and show that 
\7' = h- 1h(\7'). Indeed, clearly we have V'' <:;:; h- 1h(\7'). On the other hand, if 
a E h-1h(V'') then h(a) = h(b), for some b E \71

• And since his a homomorphism, 
h(b---+ a)= h(b)---+ h(a) = T, from which b---+ a EV'' and so a E \71

• Thus, for 
every element a in 121 and every \71 E W, 

a E \7' iff h(a) E h(\7 1
). (8.5) 

It follows that h(V'') is a prime filter in ~. h is a bijection from w onto w'B 
and h+ is a bijection from W<:B onto W. It follows also that, for any X <:;:; W<:B, 
X E P<:B iff h+(X) E P. 

It remains to show that 'Y'1R<:BV'2 iff h+('Y'1)R2!h+('Y'2). This is fairly easy 
for pseudo-Boolean algebras, since \7 1R'13\72 means \71 <:;:; \72. So let us consider 
the modal case. Suppose that 'Y'1R<:B\72, i.e., Db E \71 implies b E \72 , for all bin 
~. and that Da E h+(\71) for some a in 121. Then h(Da) = Dh(a) E \71, whence 
h(a) E \72 and a E h+(\72). Therefore, h+('Y'1)R2lh+('Y'2). Conversely, suppose 
h+('Y' 1)R2lh+('Y'2). Then for all a in 121, Da E h+(\71) implies a E h+(\72). By 
(8.5), if h(a) =band Db E \71 then Da E h+(\71), hence a E h+(\72) and so 
b E \72. Therefore, 'Y'1R<:BV'2. D 

For a cardinal x, a frame J is said to' be x-generated if its dual J+ is an 
x-generated algebra. J is finitely generated if it is n-generated, for some n < w. 
Generators of J+ will be regarded as generators of J as well. 11 The dual of the 
free algebra of rank x in the variety Var£ of a logic L is called the universal 
frame of rank x for L; it will be denoted by JL(x). Clearly, for every cardinal 
x, there is only one (up to isomorphism) universal frame JL(x). So JL(N0 ) is 
the universal frame 'YJL for L defined in Section 8.1. 

Theorem 8.60 Every descriptive x' -generated frame for a logic L is (isomor
phic to) a generated subframe of JL(x), for any x;::: x'. 

Proof Follows from Theorems 7.64 and 8.59. D 

11 Thus, we have two ways of "generating" frames: relational (i.e., forming generated sub
frames) and algebraical. It will always be clear from the context which of them is used. 
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According to Theorem 8.12, every quasi-normal modal logic Lis characterized 
by the class of all frames for L with a single distinguished point. Using the 
generation theorem, we can somewhat refine this result. 

Theorem 8.61 Every consistent quasi-normal modal logic L is characterized by 
the class of all frames (J, { d}) for L with root d. 

As to generated subframes of modal frames with distinguished points, let 
us recall first that h is a homomorphism of a matrix (~, \!') onto a matrix 
(in,\!") if h is a homomorphism of ~ onto in and h- 1 (\!") = \!'. This means 
in particular that h- 1 (T) ~\!'and so the set\!~ of distinguished points in~+ 
(which consists of all ultrafilters in ~ containing \!') is a subset of W defined 
in the proof of Theorem 8.59. Moreover, h+(\li) = \!~, i.e., roughly speaking 
the distinguished points in in+ are exactly the same as in~+· This observation 
motivates the following definition. 

A modal frame (18, E) with distinguished points Eis a generated subframe of 
a modal frame (J, D) with distinguished points D (notation: (18, E) ~ (J, D)) 

if 18 ~ J and E = D. 
The next two theorems are left to the reader as an exercise. 

Theorem 8.62 Suppose 18 = (V, S, Q) and J = (W, R, P) are modal frames, 

E and D are their distinguished points and (18, E) ~ (J, D). Then the map h+ 
defined by h+(X) = X n V, for every XE P, is a homomorphism of (J+, D+) 
onto (18+, E+). 

Theorem 8.63 Suppose that h is a homomorphism of a modal matrix (~, \!') 
onto (in,\!"). Then the map h+ defined by h+(\l) = h- 1 (\1), for every ultrafilter 
\!in in, is an isomorphism of (in+, vi) onto a generated subframe of(~+,\!~). 

It is clear that every frame with distinguished points is semantically equiv
alent to its every generated subframe. The following result which shows the 
relational meaning of extensions of matrices is also left to the reader. 

Theorem 8.64 (i) If E ~ D then (J+, E+) is an extension of (J+, D+). 
(ii) If (~, \!') is an extension of (~, \!) then \!~ ~ \! +. 

The relational counterpart of the notion of subalgebra is that of reduct. Given 
frames J = (W, R, P) and 18 = (V, S, Q), we say a map f from W onto V is a 
reduction of J to 18 if the following three conditions are satisfied, for all x, y E W 
and XE Q: 

(Rl) xRy implies f(x)Sf(y); 

(R2) f(x)Sf(y) implies 3z E xT J(z) = f(y); 

(R3) f- 1(X) E P. 

For Kripke frames this definition is equivalent to the old one given in Section 2.3. 

Theorem 8.65 If f is a reduction of J = (W, R, P) to 18 = (V, S, Q) then the 
map j+ defined by j+(X) = f- 1 (X), for every X E Q, is an isomorphism of 
18+ in J+. 
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Proof Clearly l+ is an injection. So it suffices to show that l+ preserves all the 
operations in (!5+. We consider only the modal case and leave the intuitionistic 
one to the reader. Let X, YE Q. Then we have 

Only the last equality needs a justification. Suppose y E f+ (X lS). Then there 
is x E X such that f(y)Sx. By (R2), there is z E yl for which f(z) = x. So 
y E j+(X)lR. Conversely, if y E j+(X)lR then yRx for some x E f- 1(X), 
whence by (Rl), f(y)Sf(x) which means that y E f+(XlS). 0 

A reduction f of J to \!5 is called a reduction of a model W1 = (J, s.tJ) to a model 
1)1 = (1!5,il) if s.tJ(p) = f- 1(il(p)), for every variable p. It follows immediately 
from Theorem 8.65 that the reduction theorems in Sections 2.3 and 3.3 and 
their corollaries (Theorems 2.15, 3.15 and Corollaries 2.16, 2.17, 3.16) hold for 
general frames as well. 

Proposition 8.66 If Ji is a reduction of a frame 3'1 (or a model W11) to 3'2 
(W12) and h a reduction of 3'2 (W12) to J3 (W13) then the composition hfi is a 
reduction of 3'1 {m11) to J3 (m13). 

Proof Exercise. 0 

As a simple example of the use of the reduction and generation theorems we 
prove the following: 

Theorem 8.67. (Makinson's theorem) Every consistent normal modal logic 
L is contained either in Verum =Log• or in Triv =Logo. 

Proof We must show that either • f= L or o f= L. Since L is consistent, 
there exists a frame J for L, which either contains • as a generated subframe 
or is reducible to o (see the proof of Proposition 3.17). Therefore, either • or o 
validates L. 0 

The reductions of frames and models can be defined in somewhat differ
ent terms, namely as the quotient frames and models under some congruence 
relations. Suppose J = (W, R, P) is a frame and "' an equivalence relation 
on W. We denote by [x] the equivalence class under "' generated by x, i.e., 
[x] = {y E W: x "'y}, and let [X] = {[x]: x EX} for any X <:;;; W. We say"' 
is a congruence on J if xRy implies [x] <:;;; [y]l and [x] <:;;; X for every X E P and 
XE X. 
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Given a congruence· relation"' on J, define a frame [J] = ([W], [R], [P]), the 
quotient frame of J under "', by taking 

[R] = { ([x], [y]) : [x] ~ [y] l}, [P] = {[X] : X E P}. 

The fact that [P] is closed under the modal or intuitionistic operations follows 
from the equalities: [X 8 Y] = [X] 8 [Y], for 8 E {A, V, ~},and [DX]= D[X], 
which hold for every X, YEP (the reader can readily verify them by himself). If 
9J1 = (J, QJ) is a model on J then by putting [QJ](p) = [QJ(p)], for every variable 
p, we obtain a model [9J1] = ([J], [QJ]) which is called the quotient model of 9J1 
under"'· 

Theorem 8.68 (i) If"' is a congruence on J then the map f from W onto [W], 
defined by f(x) = [x], is a reduction of J to [J] and of9J1 to [9J1]. 

(ii) Suppose that f is a reduction of J = (W, R, P) to Q; = (V, S, Q) and 
P' = {f- 1 (X): XE Q}. Then the relation"' on W defined by 

x "'y iff f(x) = f(y) 

is a congruence on J' = (W, R, P') and [J'] is isomorphic to Q;, with the map 
h([x]) = f(x) being an isomorphism. 

Proof Exercise. 0 

With the help of Theorem 8.68 we can prove the following: 

Theorem 8.69 If J = (W, R, P) is a finite (modal or intuitionistic) frame then 
the refinement map r is a reduction of J to rJ. In particular, every finite model 
is reducible to a refined model. 

Proof Let us consider first the modal case. The relation "' defined by 

x "'y iff\IX E P (x EX <--t y EX) 

is a congruence on J. Indeed, that [x] ~ X for all X E P and x E X follows 
immediately from the definition. So suppose that xRy. Since J is finite, [y] = 

n{x E P: y EX} E P and so all the points in [x] must belong to [y]l. Thus, by 
Theorem 8.68, the map x f--4 [x] is a reduction of J to [J]. It remains to observe 
that [x]r R[y] iff [x][R][y]. 

Now let J be intuitionistic. By Propositions 8.45 and 8.40, we then have 
rJ ~ (J+)+. The map f(x) = [x] ([x] is clearly the same in both J and aJ) is a 
reduction of aJ to ((aJ)+)+ = a((J+)+) and so of J to (J+)+ too. 0 

Example 8.46 shows, however, that Theorem 8.69 does not hold for infinite 
frames and models. 

The notion of congruence enables us to define the limit of an infinite chain 
of reductions. Suppose that, for every i < w, we have a reduction fi of Ji = 
(Wi, Ri, Pi) to Ji+l = (WH1, RH1, Pi+l), or symbolically 
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(8.6) 

By Proposition 8.66, the composition 9i = fi-ifi-2 ... Jo is a reduction of Jo to 
J;. Let Qi = foi 1(X) : XE Pi} and Q = ni<w Qi· Since, by Theorem 8.65, all 
Qi are closed under the operations in Jri, Q is also closed under them. Let ""i be 
the congruence on (Wo, R.o, Qi) corresponding to 9i· Clearly, ""is;;""i+l for every 
i < w. It is not hard to verify that ....., = ui<w ""i is a congruence relation on 
15 = (Wo, R.o, Q). And now we can define the limit of the chain (8.6) of reductions 
as the reduction f(x) = [x] of 15, and so of Jo, to the quotient frame [15] of 15 
under "'· If we have a sequence 

of reductions of models then f is also a reduction of 9.Jt0 to the quotient model 
[(15, QJo)]. 

To prove a theorem which is dual to Theorem 8.65, we require the following: 

Lemma 8. 70 Suppose that !B = (B, /\, V) is a sublattice of a distributive lattice 
Ql = (A,/\, V). Then every prime filter V' in !B can be extended to a prime filter 
V'' in Ql such that V' = V'' n B. 

Proof Let ~ be the prime ideal in !B dual to V', i.e., ~ = B - V'. Then by 
Exercise 7.18, there is a prime filter V'' in Ql such that V's;; V'' and V'' n ~ = 0, 
whence V' = V'' n B. 0 

Theorem 8. 71 If f is an isomorphism of a modal or pseudo-Boolean algebra 
!B in Ql then the map f+ defined by f +(V') = r 1(V'), for every V' E Wiit, is a 
reduction of Ql+ to !B+. 

Proof To simplify notation, we assume !B to be a subalgebra of Ql and so f is 
the identity map and f +(V') = V' n B, for every V' E Wiit. (Here and below A 
and B denote the universes of Ql and !B, respectively.) It should be clear that if 
V' is a prime filter in Ql then f +(Y') is a prime filter in !B. So, by Lemma 8.70, 
f + is a map from Wiit onto W'.B. 

Suppose V'1RiitV'2, for some V'1, V'2 E Wiit. In the intuitionistic case this 
means V'1 s;; Y'2, whence f+(Y'1) s;; f+(Y'2) and f+(V' 1)R<.Bf+(Y'2). In the modal 
case we have: Da E V' 1 implies a E V' 2, for every a in Ql. Since !B is a su balge bra 
of Ql, it follows that 

Db E V'1 n B implies b E V'2 n B, for every b EB, (8.7) 

i.e., again f+(V'1)R<.Bf+(V'2). Thus,!+ satisfies (Rl). 
Now suppose that f+(V' 1 )R<.Bf +(V'2) which in the modal case is equivalent 

to ( 8. 7). Let us consider the filter V' 0 in Ql generated by the set 

{a E A : Da E V' i} u (V' 2 n B) 
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and the ideal Lio in Qi generated by B - \72. Observe that V'o n Lio = 0. For 
otherwise there are elements a E A, for which Da E \71, b E \7 2nB and c E B- \7 2 
such that a I\ b :Sc. Then a :Sb____, c, Da :S D(b ____, c) and hence D(b ____, c) E \71 . 

On the other hand, D(b ____, c) E B and so, by (8.7), b ____, c E \72 n B, whence 
c E \7 2 n B, which is a contradiction. 

By Exercise 7.18, there is a prime filter V'' in Ql such that \70 ~ V'' and 
Lion \7' = 0. By the definition, V';RQtV'' and V'' n B = \72 n B, i.e., f+(V'') = 
f +(\72). Thus, in the modal case f + satisfies (R2). The intuitionistic one is 
considered analogously. 

It remains to show that f + satisfies (R3). Let X E P'13, i.e., there is b in !B 
such that X = {\7 E W'13 : b E \7}. But then f; 1(X) = {V'' E WQt : b E V''} 

and so f; 1(X) E PQt. 0 

As to general frames with distinguished points, a reduction f of J to ~ is 
called a reduction of (J, D) to (~, E) if f- 1(E) = D. 

We invite the reader to prove the following two theorems as an exercise. 

Theorem 8. 72 If f is a reduction of (J, D) to (~, E) then f+ is an isomor
phism of(~+, E+) in (J+, D+). 

Theorem 8. 73 If a modal matrix (!B, V'') is a submatrix of (Ql, V'") then the 
map f + defined by f +(\7) = \i'nB, for every \7 E WQt, is a reduction of (!2l+, V'i) 
to (!B+, \7~). 

It remains to define the relational counterpart of the direct product of modal 
and pseudo-Boolean algebras. 

The disjoint union of a family {Ji = (Wi, Ri, ?;) : i E I} of pairwise disjoint 
frames is the frame EiEJ Ji = (W, R, P) where w = uiEJ wi, R = uiEJ Ri and 
p = {LJiEJ xi : xi E Pi, for all i E J}. The fact that EiEJ Ji is really a general 
frame follows from the equations below which hold for every Xi, Yi E Pi, i E I 
(to establish them, only the disjointness of Ji is required): 

LJ Xi 0 LJ Yi= LJ(Xi 0 Yi), for 0 E {n, u, :::> }; 
iEJ iEJ iEJ 

oLJxi = LJoxi. 
iEJ iEJ 

By the definition, every Ji is a generated subframe of EiEJ Ji· 
The disjoint union EiEI 9Jti of a family of models {9Jti : i E I} is defined 

in exactly the same way as in Section 2.3. Again 9Jti is a generated submode! 
of EiEJ 9Jti and so, using the generation theorem, we can easily extend Theo
rem 2.23 and Corollary 2.24 from Kripke frames to general ones. 

Theorem 8.74 Suppose {Ji= (Wi,Ri,Pi): i EI} is a family of descriptive 
frames. Then EiEI ii = (W, R, P) is descriptive iff I is finite. 
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Proof ( {=:) It suffices to prove that Ji + J2 is compact if both Ji and J2 are 
compact. Let V' be a prime filter in (Ji +J2)+. Then V'i = {XnWi: XE V'} is 
a filter in Ji, for i = 1, 2. Moreover, V' i is prime if it is proper. 0 bserve now that 
only one of the filters V' i and V' 2 is proper. Indeed, let Xi U X 2 E V' for some 
Xi E Pi and X2 E P2. Since V' is prime, either Xi E V' or X2 E V'. Suppose 
for definiteness that Xi E V'. Then, by the definition of filter, Xi U X E V' for 
every X E P2 and so Y'2 = W2 and V' = {XU Y : X E 'Vi, Y E P2}. By 
Proposition 8.48, Y'i =Pix for some x E Wi, whence V' = Px. So, by the same 
proposition, Ji + J2 is compact. 

(==>) Suppose now that I is infinite and let Y = {W - Wi : i E I} ~ P. 

Clearly, Y has the finite intersection property, but n Y = 0. o 
Theorem 8. 75 Let {Ji = (Wi, Ri, Pi) : i E I} be a family of frames and 
LiEI Ji = (W, R, P) their disjoint union. Then the map f defined by f(X)(i) = 
X n Wi, for every X E P and i E I, is an isomorphism of (LiEI Ji)+ onto 

rriEJ Jt · 

Proof By the definition, f (X) is an element of f1iEI Jt, i.e., a function from 
I into LJiEI Pi with f(X)(i) E P;, for all i E /. It should be clear that f is a 
bijection. Using the fact that the operations in rriEJ Jt are defined component

wise, one can show that f preserves all the operations in (LiEJ Ji)+. 0 

According to Theorem 8.74, the dual to Theorem 8.75 does not hold for 
infinite families of algebras. We have only the following 

Theorem 8. 76 Suppose Q(i and Ql2 are modal or pseudo-Boolean algebras. Then 
the map f defined by 

and 

f(Y'2) = { (ai, a2) E Ai x A2: ai E Ai, a2 E Y'2}, for every Y'2 E W2l2, 

is an isomorphism of Q(l+ + Q(2+ onto (Qli x 2l2)+. 

Proof It is easy to see that f is an injection. To show that it is a surjection, 
suppose V' is a prime filter in Q(i x Ql2 and V'i = {ai: (ai,a2) EV'}, for i = 1,2. 
Then V'i either is a prime filter or coincides with the universe of Q(i· And since 
(ai, a2) = (ai, j_) V (j_, a2), only one of V' i, Y'2 may be proper, say V' i. But then 
V' = f(Y'i). 

Suppose that V'', V'" E W2l1 U W2l2 and V'' RY'", where R is the accessibility 
relation in Q(l+ + Ql2+. Since Q(i and Ql2 are generated subframes of Q(l+ + Q(2+, 
V'', V'" E W21; for some i E {1, 2}. So if Q(i and Q(2 are modal and D (ai, a2) = 
(Dai, Da2) E f(V'') then Dai EV'', whence ai EV'" and (ai, a2) E J(V'"). Thus, 
f(\i'')R'll.1 x'll.2f(V'"). 

Conversely, suppose that f(V'')R'111 x2l2f(V'") for some V'' E W2l, and V'" E 
W'll.1 U W'll.2 • Assume also that Dai E V'' for some ai E Ai. Then D (ai, j_) = 
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(Dai,D..l) E f(v"), whence (ai,..l) E f('V") and so ai E 'V" E W211 . Thus, 
'V' R21i+ 'V" and hence 'V' R'\111

• 

The case of pseudo-Boolean Qti and Qt2 is left to the reader. 
Suppose now that X E P, where P is the set of possible values in Qtl+ + Qt2+. 

Then X = f2!1 (at) U f212 (a2), for some ai E Ai, a2 E A2, i.e., 

and so, by the definition of f and the property of prime filters in Qti x Qt2 
established above, 

(8.9) 

Conversely, if f(X) E P211 x2!2 then, for some (ai, a2) E Ai x A2, f(X) is of 
the form (8.9). Since f is a bijection, X has the form (8.8) and so X E P. 0 

The disjoint union of the family {(Ji, Di) : i E I} of frames with distin
guished points is the frame (LiEI Ji, uiEI Di)· The following two theorems are 
left to the reader as an exercise. 

Theorem 8. 77 Let {(Ji, Di) : i E I} be a family of general frames with dis
tinguished points and (LiEI Ji, uiEI Di) their disjoint union. Then the map f 
defined by f(X)(i) = X n Wi, for every XE P and i E J, is an isomorphism of 
( o:::iEI Ji)+, (LJiEl Di)+) onto ITiEI (Jt, Dt). 

Theorem 8.78 Suppose (Qti, 'V') and (Qt2, 'V") are modal matrices. Then the 
map f defined as in Theorem 8. 76 is an isomorphism of (Qtt+, 'V~) + (Qt2+, 'V~) 
onto ((Qti, 'V') x (Qt2, 'V"))+· 

8.6 Points of finite depth in refined finitely generated frames 

Every modal and si-logic L is characterized by the class of its finitely generated 
descriptive frames. Indeed, by Theorem 8.36, for any formula cp(pi, ... , Pn) tj. L 
there are a descriptive frame J for L and a valuation SU under which cp is refuted in 
J. The subalgebra Qt of J+ generated by the elements SU(pi), ... , QJ(pn) is then 
an algebra for L refuting cp and so cp is separated from L by the n-generat~d 
descriptive frame Qt+. 

In this section we study the constitution of an upper part of finitely generated 
refined transitive frames, namely, the part containing points of finite depth. And 
in the next section we shall use the results to be obtained here to penetrate into 
the structure of the universal frames of finite rank for some modal and si-logics. 

Say that a point x and the cluster C(x) in a transitive frame J are of depth d, 
for d < w or d = oo, if the subframe of K,J generated by x is of depth d. This fact 
will be denoted by d(x) = d(C(x)) = d. We reckon oo as being greater than any 
d < w. w=d and W~d are the sets of all points in J = (W, R, P) of depth d and 
s d, respectively; w<d, w>d and W2'.d are defined analogously. The subframe 
of J generated by w~d is denoted by J~d. 
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I w== 

J L---------' 

FIG. 8.5. 

In general, a transitive frame may contain no points of finite depth at all 
(see, for instance, Fig. 8.1 (c)). But this is not the case if the frame is finitely 
generated and refined. In fact, we shall see that every such frame J = (W, R, P) 
can be represented as depicted in Fig. 8.5. More exactly, for each natural d such 
that 0 < d ~ d(J), the set w=d is non-empty and contains a finite number of 
finite clusters ct' ... 'ct; all points in w=d turn out to be atoms in J, and w=d 
is a cover for the set w::'.'.d, i.e., 

w = w=11 
= w=1 uw=2I 

= w=1 u ... u w=m u w=m+lJ 

Frames with such properties are called top-heavy. To prove this result, we require 
some auxiliary notions. 

Suppose J = (W, R, P) is a refined modal or intuitionistic transitive frame 
generated (as modal or, respectively, pseudo-Boolean algebra) by some sets 
G1, ... , Gn E P, 0 ~ n < w. Define in J a valuation QJ of the language MCn 
or Ln with the set of variables E = {p1 , ... ,Pn} by taking QJ(pi) = Gi, for each 
i = 1, ... , n. Thus, 

P = {QJ(<p) : <p E ForMCn (or <p E ForCn)} 

and we can work with formulas as well as with sets in P. As in Section 5.3, we 
regard two points x, y E W as E- equivalent in J and write x ""E y if th€ same 
formulas in E are true at them under m; [x]E is the E-equivalence class generated 
by x. Sets X, Y <;;;; W are called E-equivalent in J, X ""E Y for short, if every 
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point in X is 1:-equivaient to some point in Y and vice versa. 
A non-empty set X ~ W is said to be cyclic in J (relative to QJ) if either 

\:/x, y EX :3z EX (xRz /\ z ""E y) (8.10) 

(which is equivalent to \;/x EX xi(} X ""EX) or 

\:/x, y EX (x ""E y /\ •xRy). (8.11) 

These two conditions are mutually exclusive. If the former one is satisfied, X 
is called a non-degenerate cyclic set, while if the latter condition holds we say 
X is a degenerate cyclic set. It should be clear that all cyclic sets in a reflexive 
(in particular, intuitionistic) frame are non-degenerate and that all clusters are 
cyclic. 

Given d such that 0 s d < d(J) and a point x E w>d, we define the d-span 
of x in J as the set spd(x) = {y E W:::;d: xRy}. By the definition, sp0 (x) = 0 
for every x in J. A cyclic set X is called d-cyclic if 

x = x1nw>d (8.12) 

and 
(8.13) 

Every non-empty upward closed in w>d subset of a d-cyclic set is also d-cyclic. 

Lemma 8. 79 Suppose x and y are 1:-equivalent points in ad-cyclic set X. Then 
x I= cp if! y I= cp, for every formula cp in ForMCn or For.Cn. 

Proof We consider only the modal case, leaving the intuitionistic one to the 
reader. The proof proceeds by induction on the construction of cp. 

The basis of induction is ensured by x "'E y, and the cases of cp = 'I/; /\ X, 
'I/; V x and 'ljJ --4 x are trivial. So suppose x ~ D'lj;. Then z ~ 'I/; for some z E xi. 
If z E W:::;d then z E yi, since spd(x) = spd(y), from which y ~ D'lj;. If z E W>d 
then, by (8.12), z E X and so X is non-degenerate. By (8.10), there is u E Yi 
such that u ""E z, whence by the induction hypothesis, u ~ 'ljJ and so y ~ D'lj;. 

The symmetrical argument shows that y ~ D'lj; implies x ~ D'lj;. 0 

Using the fact that J is refined, we obtain a stronger result. 

Lemma 8.80 Suppose J is a refined n-generated frame, 0 s d < d(J) and X is 
a d-cyclic set in J. Then 

(i) x = y, for every 1:-equivalent points x,y EX; 
(ii) X is a non-degenerate cluster of cardinality s 2n, if X is non-degenerate, 

and 
(iii) X is an irreflexive singleton, if X is degenerate. 

Proof (i) follows immediately from Lemma 8.79 and the differentiatedness of J; 
(iii) is a direct consequence of (i). So let us establish (ii). Observe first that there 
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are at most 2n pairwise non-E-equivalent points in J, whence by (i), IXI :::; 2n. 
Now suppose x, y E X and prove that xRy. By the tightness of J, it suffices 
to show that (in the modal case-the intuitionistic one is left to the reader) for 
every cp E ForM£n, x f= Dcp implies y f= cp. Assuming otherwise, we must have 
some cp for which x f= Dcp and y ~ cp. By (8.10), there is z E X such that xRz 
and z ""'!; y and so, by Lemma 8.79, z ~ cp, which is a contradiction. 

Thus, xRy for all x, y EX. It remains to observe that all points in a cluster 
are of the same depth and that Xis upward closed in w>d, i.e., X cannot be a 
proper subset of a cluster. 0 

As a consequence of Lemma 8.80 we obtain the following characterization of 
clusters of depth d + 1 in J. 

Lemma 8.81 Suppose that J is a refined finitely generated transitive frame and 
d < d(J). Then C is a cluster of depth d + 1 in Jiff C is ad-cyclic set in J. 

Proof ( =}) It is clear that C is cyclic. It is d-cyclic, since all points in C 
are of the same d-span and besides C has no proper successors in w>d, i.e., 
c = c1nw>d. 

( ¢=) follows from Lemma 8.80. 0 

It follows, in particular, that a d-cyclic set in a refined finitely generated 
frame has no proper d-cyclic subsets and so clusters C(x) and C(y) of depth 
d + 1 coincide if x and y are of the same d-span and C(x) ""'!; C(y). Using this 
observation, we can estimate the number of clusters of depth d + 1 in J, if any. 

Theorem 8.82 Suppose J is a refined n-generated transitive frame and d < 
d(J). Then the number of distinct clusters of depth d + 1 in J is not greater than 
cn(d + 1) which is defined recursively as follows: 

c,.,,(d + 1) = Cn(1)2cn(l)+. . .+cn(d). 

If J is irreflexive or partially ordered then one can take Cn (1) = 2n. Every proper 
cluster in J contains at most 2n points. 

Proof There are at most 2n pairwise non-E-equivalent points and 22n -1 pair
wise non-E-equivalent non-empty sets of points in J. So there are at most 2n 
degenerate and 22

n - 1 non-degenerate clusters of depth 1 in J. If J is irreflexive 
or partially ordered then all clusters in J are singletons and hence the number 
of clusters of depth 1 in such a frame is not greater than 2n. 

Distinct clusters of depth d + 1 may be E-equivalent, but then they have 
distinct d-spans, the total number of which does not exceed the number of all 
sets of clusters of depth :::; d. The size of clusters was estimated in Lemma 8.80. 

0 

Theorem 8.83 Suppose J is a refined finitely generated transitive frame. Then 
every point of finite depth in J is an atom. 
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Proof Observe first that the intuitionistic case reduces to the modal one. 
Indeed, if ~ = (W, R, P) is an intuitionistic n-generated refined frame then 
u~ = (W, R, u P) is a modal n-generated refined frame. So if x is an atom 
in u~, i.e., {x} E uP, then W - xl E uP and {x} U (W - xl) E uP and hence 
the sets W - xl and {x} U (W - xl) are in P, since both of them are upward 
closed and P = pu P. . 

Now we prove our theorem for a modal ~ by induction on depth. Suppose 
that u is a point in ~ = (W, R, P) of depth d + 1 and that all points of smaller 
depth, if any, are atoms in ~- It follows from this assumption and the finiteness 
of W~d that w>d E P. 

For x E w>d, we denote by G~ the set 

(We remind the reader that G1 , ... , Gn generate~-) It is clear that, for every 
y, z E w>d, y ""'E z iff G~ = G~. So it suffices to show that C(u) E P, since by 
Lemma 8.80, {u} = C(u) nG~. 

Let us consider the following two cases. 
Case 1: The cluster C(u) is non-degenerate. Then we form the set 

x = w>dn 

( n G~l - u G~T) n 
xEC(u) G~nC(u)=0 

n yl- u yl), (8.14) 

which is in P, since there is only a finite number of pairwise distinct sets G~, for 
x E w>d. By the definition, X consists of all points x of depth> d such that (a) 
xj n w>d ""'E C(u) and (b) spd(x) = spd(u). Therefore, C(u) ~ X. Now, taking 
the upward closed in w>d part of X, i.e., D(X U W~d) n X E P, we obtain 
ad-cyclic set which contains C(u) and so, by Lemma 8.81, must coincide with 
C(u). 

Case 2: The cluster C(u) is degenerate, i.e., u is irreflexive and C(u) = {u}. 
By Lemma 8.80, we then have 

C(u) = G~ n (w>d - w>dl) n 

( n yl - u 
and so again C(u) E P. 

(8.15) 

Yl) 

0 

Although we have already learned much about clusters of finite depth in 
refined finitely generated transitive frames, we do not know still whether they 
really exist. 
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Theorem 8.84 Suppose J is a refined finitely generated transitive frame and 
0 ~ d < d(J). Then for every point x E W>d there is a cluster C of depth d + 1 
such that x E CJ. In other words, w=d+l is a (finite) cover for w>d. 

Proof If the set X = xi n w>d is d-cyclic then, by Lemma 8.81, x is a point 
of depth d + l. Otherwise-either (8.10) or (8.13) does not hold for X. So there is 
a point y E xi n w>d such that either the number of pairwise non-E-equivalent 
points in yin w>d is smaller than that in X or spd(y) c spd(x). In exactly 
the same· manner we consider now the point y, etc. Since there is only a finite 
number of pairwise non-E-equivalent points in J and wsd is also finite, we shall 
eventually find a point z E xi n w>d for which zl n w>d is d-cyclic. Ergo C(z) 

is a cluster of depth d + 1 and x E C(z)l. 0 

The results obtained above will find many applications later on in the book. 
Here we show only one immediate consequence. 

Say that a logic L in ExtK4 or Extlnt is of depth n < w if it contains the 
formula bdn and does not contail' bdm for any m < n; L is of finite depth if it is 
of depth n for some n < w. This terminology is explained by the following: 

Theorem 8.85. (Segerberg's theorem) Every logic of depth n < w is char
acterized by the class of its finite Kripke frames of depth ::; n. 

Proof It suffices to show that every formula <p(p1, ... ,pm) </. L is separated 
from L by a finite Kripke frame of depth ~ n. Let J be an m-generated refined 
frame for L refuting <p. By Theorems 8.82 and 8.83, JSn is a finite Kripke frame. 
And since bdn E L (and in view of Propositions 2.38 and 3.44), J contains no 
points of depth n + 1 and so, by Theorem 8.84, J = JSn. O 

8. 7 Universal frames of finite rank 

The most complete information about logics is contained in their universal 
frames. In this section we give an effective description of the upper part-the 
points of finite depth-in the universal frames of finite rank for a few standard 
modal and si-logics and get some general impression of how those frames for 
other logics may look. 

We begin with K4. Let MLn be the modal language with n < w variables, 
say P1, ... ,pn and E = VarM£n. As before, we assume that G1, ... , Gn are 
generators of the universal frame JK4(n) and define a valuation WK4(n) of MLn 
in JK4(n) by taking WK4(n)(Pi) = Gi, for i = 1, ... , n (recall that WK4(n) may 
be regarded also as a valuation in silK4(n) such that WK4(n)(pi) = llPillK4)· 
W1K4(n) = (JK4(n), WK4(n)) is called then-universal model for K4. 

Since JK4 (n) is a refined n-generated transitive frame, its generated subframe 
JR~ ( n) of depth 1 consists of clusters with at most 2n points, with distinct points 
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FIG. 8.7. 

in each cluster, distinct degenerate clusters as well as distinct non-degenerate 
ones being pairwise non-E-equivalent. The maximal number of such clusters is, 
as we know, 2n + 22

n - l. On the other hand, since JK4(n) is the universal 
frame of rank n and in view of Theorem 8.60, it must contain as a generated 
subframe any descriptive n-generated frame of depth 1, in particular the frame 
!BR~ ( n) associated with the model IJtR~ ( n) of depth 1 containing all possible 2n 

pairwise non-E-equivalent degenerate clusters and all possible 22
n - 1 pairwise 

non-E-equivalent non-degenerate clusters of::; 2n non-E-equivalent points. The 
model IJtR~(l) is shown in Fig. 8.6, where PI near a point x means that x I= PI; 

otherwise x ~ PI. Since IJtR~ ( n) is finite, to verify that !BR~ ( n) is descriptive, it 
suffices to establish its atomicity. We shall do this a bit later, when considering 
points of arbitrary depth d < w. Meanwhile, under the assumption that this is 
the case, we can conclude that JR~(n) is isomorphic to Q;R~(n). 

Suppose now that 0 < d < w and we have already constructed a model 
IJtR~(n) of depth d whose associated frame IBR~(n) is isomorphic to JR~(n). 
Define IJtR~+l(n) by adding to IJtR~(n) a number of clusters of depth d + l. 
Namely, for every antichain X of points in IJtR~ ( n) containing at least one point 
of depth d and different from reflexive singletons (i.e., X f. { x}, for any reflexive 
x), we add to IJtR~ ( n) copies of all the 2n + 22

n - 1 clusters of depth 1 with 
the same valuation so that they would be inaccessible from each other and could 
see only the points in X and their successors. And for every reflexive singleton 
X = { x} of depth d, we add to IJtR~ ( n) copies of those clusters of depth 1 
which are not E-equivalent to any subset of C(x) so that again they would be 
mutually inaccessible and could see only x and its successors in IJtR~ ( n). (It is to 
be emphasized that we do not distinguish between two antichains whose points 
generate the same clusters.) The resulting model is denoted by IJtR~+l(n). A 

fragment of IJtR~(l) is shown in Fig. 8.7. 

The frame IBR~+l ( n) associated with IJtR~+ I ( n) is n-generated and descrip
tive. Indeed, as was observed above, the descriptiveness of a finite frame follows 
from its atomicity. We prove that Q;R~+l(n) is atomic by induction on depth. Let 
18R~+l ( n) = (V, S, Q) and suppose that all points in v:sm are atoms in QJR~+l ( n) 
and u is a point of depth m + 1. Since QJR~+I(n) is finite, it follows in particular 
that v:sm and v>m are in Q. As in the proof of Theorem 8.83, for x E v>m 
we denote by G'; the set of points in v>m which are E-equivalent to x. Clearly 
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we have Gr;' E Q and to show that { u} E Q it is sufficient to establish that 
C(u) E Q because {u} = C(u) n G;_;'. 

If C( u) is a non-degenerate cluster then it is a subset of the set X E Q defined 
by (8.14) with d replaced by m. Since for every point v E v=m+l belonging to a 
cluster different from C(u), either C(v) is not 1:-equivalent to C(u) or spm(v) "I 
spm(u), we have X n v=m+l = C(u). And since there is no point v in v=m+2 

such that C(v) is 1:-equivalent to a subset of C(u), C(v)i n v=m+l = C(u) and 
spm(v) = spm(u), we have D(X U V:'.Om) n X = C(u) and so C(u) E Q. 

In the case when C(u) is a degenerate cluster it may be represented in the 
form (8.15) with d replaced by m. Therefore, again C(u) E Q. 

It follows that <BR~+l(n) is a generated subframe of JK4(n). On the other 
hand, the results of the preceding section show that JK4(n) contains no clusters 
of depth d + 1 different from those in <BR~+l ( n) and so JR~+l ( n) is isomorphic 

to <BR~+l(n). 
Let IJ1~4 ( n) be the union of all models IJtR~ ( n) for d < w, i.e., its set 

of worlds, accessibility relation and truth-relation are the unions of those in 
IJtR~ ( n). We arrive then at the following: 

Theorem 8.86 The fmme <B~4(n) associated with IJ1~4(n) is isomorphic to 
J~4(n). 

Since K4 is finitely approximable, every formula in For M£n that is not 
in K4 is refuted by some n-generated descriptive finite frame which must be 
a generated subframe of J~4(n). Therefore, both the model 1J1~4(n) and the 
frame 18~4(n) characterize K4 n ForM£. 
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The universal frame JL(n) for an arbitrary consistent logic L in NExtK4 
is a generated subframe of JK4(n). It can be constructed by removing from 
JK4(n) those points at which some formulas in Lare refuted (under WK4(n)). 
For example, J~4'(n) is obtained by removing from J~4(n) all the irreflexive 
points and their predecessors. In other words, J~4(n) can be constructed in 

the same way as J~4(n) but using only non-degenerate clusters. J§i(l) (the 
corresponding model, to be more exact) is shown in Fig. 8.8, where '::? denotes 
the cluster with two points at one of which p1 is true. To construct J(;%(n) 
and J(;'L(n), we take only simple clusters and degenerate clusters, respectively. 

Jgz(l) and Jf;i(l) are depicted in Fig. 8.9 (a), (b). Fig. 8.10 (a), (b) and 
Fig. 8.11 show the upper parts of the universal frames of rank 1 for the logics 
S4.3, Grz.3 and GL.3, respectively. The universal frames of rank n for logics 
of finite depth L = L' EB bdd (L' E NExtK4, d < w) are obtained by removing 
from Jf,00 (n) all the points of depth > d, i.e., JL(n) is isomorphic to the finite 
frame Jr~(n). 

J(;'L (0) is just an infinite descending chain of irreflexive points. Its points are 
characterized by the formulas of the form I.Pi = oH1 J_ /\ OiT, for i ~ 0. Since 
GL is finitely approximable, every variable free formula cp <f_ GL is refuted in 
this frame. Let n be the minimal number such that Jf;'i,(O) ~ cp. Then clearly 
GL EB cp = GL EB on-l L Thus we have 

Theorem 8.87 (i) For every variable free formula cp, there are i 1 , ... , in such 
that 
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r.p ..... .l V 'Pii V ... V 'Pin E GL or r.p ..... •(.l V 'Pi1 V ... V 'PiJ E GL. 

(ii) Every variable free formula is deductively equal in NExtGL either to T 
or to on .l, for some n;::: 0. 

Proof Exercise. (Hint: (i) is proved by induction on the construction of r.p.) 
0 

It is worth noting that if a logic L in NExtK4 or Extlnt is finitely approx
imable then its universal frame ~h(x) of rank x is completely determined by 
Ji''"(x). For the model (Jf00 (x), !Uf00 (x)), where !Uf00 (x) is the restriction of 
QJL(x) to Jf00 (x), characterizes the logic L (in the language with x variables) 
and besides we have the following: 

Proposition 8.88 Suppose L is a normal modal or si-logic in a language with 
x variables, J an x-generated (but not x' -generated, for any x' < x) frame, QJ 
a bijection from the set of variables onto the set of J's generators and the model 
(J, !U) characterizes L. Then J+ is isomorphic to QlL(x). 

Proof Let f be the bijection from the set of generators in QlL(x) onto the set 
of generators in J+ such that f(llPllL) = QJ(p), for every variable p. Since !ilL(x) 
is a free algebra in VarL, f can be extended to a homomorphism h of !ilL(x) 
onto J+ such that h(lir.pji£) = !U( r.p). In fact, the map h turns out to be the 
isomorphism we need. To see this, it suffices to establish that h is an injection. 
So suppose ll'PllL and 117fil!L are distinct elements in QlL(x). Then r.p ..... 1ji ¢ L 

and hence r.p ..... 7j1 is refuted in (J, !U), from which h(lir.pji£) -:/: h(ll7f!llL). 0 

Corollary 8.89 The universal frame ~h(x) of rank x for a finitely approx
imable logic Lin NExtK4 or Extlnt is isomorphic to the bidual of Jf00 (x). 

The upper part J(n~(n) of the universal frame J1nt(n) for Int can be con
structed in the same spirit as J~'4(n) but taking into account specific features 
of intuitionistic frames, namely that they are partially ordered and their sets of 
possible values consist of upward closed sets of points. First we form a model 
IJlf~t ( n) of depth 1 by taking 2n distinct non-~-equivalent reflexive points which 
do not see each other. (As before,~= {p1, ... ,Pn}.) Suppose now that we have 
already constructed a model infu't ( n) of depth d < w. For every antichain X in 

in[:t ( n) with ;::: 2 points at least one of which is of depth d, we add to in[ :t ( n) 
copies of all points y of depth 1 (with the same valuation) such that, for any 
x E X and p E ~' y I= p implies x I= p. Those copies are arranged so that 
they would not be accessible from each other and could see only the points in 
the corresponding antichain and their successors. For a singleton X = { x} the 
added copies of y must satisfy one more condition : x fr; y. IJl(n~ ( n) is defined as 

the union of in[:t(n) for all d <wand Q.;(n~(n) is then-generated intuitionistic 
frame associated with IJl(n~ ( n). 

Theorem 8.90 J(n~(n) ~ Q.;(n~(n). 

Proof Exercise. 0 
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The model 1Jtf~t(2) is shown in Fig. 8.12 and intn~(l) in Fig. 8.13. Notice by 
the way that the following proposition holds. 

Proposition 8.91 For every point k in intn~(l) and every Nishimura formulas 
nf 2n and nf 2n_ 1 , n?. 1, 

k ~ n f 2n iff k E nl iff k = n or k ?. n + 2; 

k~nf2n-l iffkE{n+l,n+2}l iffk?.n+l. 

Proof This claim can be easily proved either directly by induction or using the 
observations of Example 7.66 and the fact that the dual of IBtn~(l) is isomorphic 

to the free 1-generated algebra 2.l1nt(l) depicted in Fig. 7.2 (a). 0 

Using this proposition, we can obtain a characterization of descriptive frames 
refuting the Nishimura formulas. Denote by f>n the subframe of the frame in 
Fig. 8.13 generated by n. 

Theorem 8.92 For every descriptive frame~' 
(i) ~ ~ nf 2n if! there is a generated subframe of~ reducible to f>n; 
(ii) ~ ~ nf 2n-l iff there is a generated subframe of~ reducible either to 

f>n+l or to f>n+2. 

Proof We establish only (i), because (ii) is proved in the same way. 
(==>) Suppose~ refutes nf2n under a valuation QJ. Then nf2n is refuted 

in the subalgebra of~+ generated by W(p) and so in its dual !B, to which, by 
Theorem 8.71, ~is reducible by some map f, under the corresponding valuation 
il. Since !B is a 1-generated descriptive frame, it is (isomorphic to) a generated 
subframe of ~Int(l), il(p) = {1} and so, by Proposition 8.91, !B contains f>n as a 
generated subframe. Therefore, J- 1(f>n) is a generated subframe of~ reducible 
to f>n· 

( ~) follows from Proposition 8.91, and the generation and reduction theo-
re~. O 
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Figures 8.14 and 8.15 illustrate the frames JR~(2) and JLc(3), respectively. 
(For typographical reasons instead of p1 , p2 , p3 in the latter figure we write their 
subscripts.) Observe that JR~(3) is isomorphic to Jf:~(3). 

Unfortunately, this method of constructing universal frames of finite rank 
does not go through for logics with nontransitive frames. However, for some 
particular systems it can be appropriately modified. We show such a modification 
for K. 

Again we construct a model 1)1R00 (n) as a "limit" of a sequence of models 

1)1Rd(n), for d < w. Every point x in this model is characterized by a formula 

x(x). 1)1R1(n) is just the antichain of 2n non-L:-equivalent irreflexive points. For 
these points x we put 

x(x) = OJ_/\ /\ Pi/\ /\ ..,Pi· 
x~p; xl=p; 

Suppose now that the model 1)1Rd(n) and the corresponding formulas x(x) have 

been already constructed. This model is extended to 1)1Rd+l(n) in the following 

way. For every set X of points in 1)1Rd ( n) containing at least one point that does 

not belong to 1)1Rd- 1(n) we add an antichain of 2n non-L:-equivalent irreflexive 
points so that they could see only the points in X and nothing else. The formulas 
x(x) for the new points x look like this: 

x(x) = od 1- A /\ Ox(y) A /\ ..,ox(y), 
yEX yEY 

where Y is the complementation of X in 1)1Rd(n). Finally, let 1)1~00 (n) be the 

union of all models 1)1Rd(n) ford< w. 
Using two facts-that every point x in 1)1~00 (n) is characterized by the corre

sponding formula x(x) and that K is determined by the class of finite intransitive 
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trees (see Corollary 3.29)-one can prove that 1)1~00 (n) characterizes K and so, 
by Proposition 8.88, 2lK(n) is isomorphic to the dual of the frame associated 
with 1)1~00 (n). 

8.8 Exercises and open problems 

Exercise 8.1 Show that a modal frame J is tight iff for every k > 1 and all 
n1,. .. ,nk~l, 

Exercise 8.2 Show that for any family X of sets in a modal frame 

Is it possible to replace here n by LJ and LJ by n? 

Exercise 8.3 Show that a modal frame J = (W, R, P) is compact iff, for any 
X \;;: P, LJ X = W only if there is a finite subset X' of X such that LJ X' = W. 
Is this true for intuitionistic frames? 

Exercise 8.4 Show that the classes D:F and T are closed under the formation 
of generated subframes, i.e., every generated subframe of a differentiated or tight 
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frame is differentiated or tight itself. What about CM? (Hint: consider the frame 
in Example 8.8.) 

Exercise 8.5 Show that the class CM is closed under reductions, while V:F and 
Tare not. 

Exercise 8.6 Show that the classes V:F and Tare closed under disjoint unions. 

Exercise 8. 7 Show that if Q3 and j are quasi-ordered modal (intuitionistic) 

frames and Q3 ~ j then pQ3 ~ pj (uQ3 ~ uj). Prove the analogous results for 
reductions and disjoint unions. 

Exercise 8.8 Prove that the class of finite intransitive trees is closed under 
finite disjoint unions, reductions and generated subframes but is not modally 
definable. (Hint: show that o validates all formulas validated by all frames in the 
class.) 

Exercise 8.9 Prove that the model 1)1~00 (n) constructed at the end of the pre
vious section is n-universal for K. 

Exercise 8.10 Show that there is a continuum of I-generated Grz-algebras and 
a continuum of I-generated GL-algebras. 

Exercise 8.11 Show that if h is an isomorphism of a descriptive frame Q3 onto 
a generated subframe of a descriptive frame j then (h+)+f ~ = hh, and if 
h is a homomorphism of a modal or pseudo-Boolean algebra Qt onto !13 then 
(h+)+ h. = f.:ah. 

Exercise 8.12 Show that if f is a reduction of a descriptive frame j to a de
scriptive frame l?5 then (J+)+h = f~f, and if f is an isomorphism of !13 in Qt 

then (f +) + f.:s = h.f. 
Exercise 8.13 Will Theorem 8.87 hold if ".Ve replace in it deductive equality by 
equivalence? 

Exercise 8.14 Show that if f reduces j to Q3 then d(x) ~ d(f(x)) for every 
point x in j. 

Exercise 8.15 For every point x in j~~(n) construct a formula <pin n variables 
such that a descriptive frame j refutes <p iff there is a generated subframe of j 
reducible to the subframe of j~~(n) generated by x. Do the same for j~~(n). 

Exercise 8.16 Show that every consistent si-logic either coincides with Cl or 
is contained in SmL. 

Exercise 8.17 Prove that the dual of the limit of the chain (8.6) is isomorphic 
to the intersection of all jt. 
Exercise 8.18 Show that for every j = (W, R, P) the refinement rj is isomor
phic to the frame (V,S,Q) in which V = {Px: x E W}, PxSPy iff Px ~Py 
in the intuitionistic case and VX E P (DX E Px----+ XE Py) in the modal one, 
and Q = {{Px: x EX}: XE P}. . 
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Exercise 8.19 Show that D(o+p----+ q) V D(D+q----+ p) is not deductively equal 
in NExtK4 to any formula in one variable. 

Exercise 8.20 Let L2 =K4EB{axl,ax2,ax3,ax4,ax5.1,b:1,b E {n:,/J,1}}, where 

ax4 =Of'' /I. On:"----+ 01, ax5.1,b = o+(q----+ •1/i) v o+(•q----+ •1/i), 
a= p /I. •Op, a'= a(Op/p), a"= a'(Op/p) = n:(02p/p), 

ai = n:(OiT /p), n:i+l = n:'(OiT /p), n:i+2 = n:"(OiT /p), 

p =On: /I. .o+a', P' = f'(Op/p), 

/Ji= /](OiT /p) = On:i /I. .o+ai+l> 

l'i+l = /J'(OiT /p) = On:i+l /I. .o+ai+2> 

1 =op' A on:" A .op, 1 ' = 1 (0p/p), 

/'i+l = 1(0iT /p) = Of'i+l /I. On:i+2 /I. •0/Ji, 

/'i+2 = 1'(0iT /p) = O/Ji+2 /I. On:i+3 /I. ·Of3i+i (i ~ 0). 

Show that if ~ = (W, R, P) is a rooted differentiated frame for L2 then (W, R) 
is isomorphic to a rooted generated subframe of the frame shown in Fig. 8.16, 
with all {ai}, {bj} and {ck} being in P. (Hint: use the following substitution 
instances of L2 's axioms: 

ax2.i = {i----+ O[i = ax2(0iT /p), 

ax3.i = {i----+ O[i+l = ax3(0iT /p), 

ax4.i = O/Ji /I. On:i+1 ----+ O[i = ax4(0iT /p) (i ~ 1), 

ax5.ai = o+ (q ----+ •n:i) V o+ ( •q ----+ •n:i) = ax5.a( OiT /p ), 

ax5.f3i = o+(q----+ •f3i) V o+(-,q----+ •Pi)= ax5.{3(0iT /p), 

ax5.[i+l = o+(q----+ '/'i+l) V o+(.q----+ 'IH1) = ax5.1(0iT /p), (i ~ 0).) 
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FIG. 8.17. 

I - - - - -I 

I 

v 
L _____ I 

Exercise 8.21 Let C1 be the class of all differentiated frames for £ 2 whose 
underlying Kripke frames have the form shown in Fig. 8.17 and £ 1 = LogC1 . 

Prove that £ 1 has no immediate predecessor in the interval [£2 , £ 1]. (Hint: use 
the result of the preceding exercise.) 

Exercise 8.22 Prove that the logic £ 1 in the preceding exercise does not have 
an independent axiomatization. (Hint: see Section 4.5.) 

Exercise 8.23 Show that for every normal logic LE [S3, Grz] and every intu
itionistic formula cp, T(f) 1-£ T(cp) iff r I-Int cp. 

Problem 8.1 Are all si-logics complete with respect to topological spaces'? 

8.9 Notes 

The approach to constructing the adequate semantics for non-classical logics 
presented in Section 8.1 (it should be clear that it works for, say various kinds of 
polymodal logics) is similar to Henkin's approach to establishing completeness 
of higher order classical predicate calculi. The reader can find details of Henkin's 
method and references in Church (1956). Here we note only that by imposing 
restrictions on possible valuations in models we in fact introduce interpretations 
for the unary predicates representing the truth-sets of propositional variables
for that reason general frames are sometimes called first order frames. This makes 
impossible various "negative" effects of Chapter 6 because we are not able any 
more to change arbitrarily valuations. Moreover, it is not hard to prove the 
following analog of the Lowenheim-Skolem theorem: for every general frame J 
and a point x in it, one can select a countable general subframe <B of J containing 
x such that <B validates the same formulas as J and a formula is refutable at x 
in <B whenever it is refutable at x in J. 

The approach outlined in Section 8.2 was developed first by Jonsson and 
Tarski (1951, 1952). In fact, their results were much more general; for exam
ple, they added to Boolean algebras collections of arbitrary n-ary operations 
satisfying some natural properties like conditions (ii) and (iii) in Theorem 7.44. 
However, chronologically (even in spite of Kripke's (1963a) claim that he had 
independently obtained the main result of Jonsson and Tarski (1951)) the se
mantics of general frames for modal logics was explicitly formulated only by 
Makinson (1970). Thomason (1972b) proved completeness theorems for tense 
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(and so modal) logics with respect to this semantics (which he called first or
der) and introduced the notion of refined frame and the operation of refinement. 
Goldblatt (1976a, 1976b) contains an extensive and systematical study of the 
semantics of general frames: first order frames, subframes, homomorphisms, dis
joint unions, ultraproducts, compactness and semantical consequence, descriptive 
frames, the categories of descriptiye frames and modal algebras, inverse limits 
of descriptive frames, modal axiomatic classes, d-persistent formulae, first order 
definability-these are a few titles of sections in Goldblatt (1976a, 1976b) show
ing the directions of investigations. Many results in Sections 8.4 and 8.5 were 
taken from this paper. It is hard to say who was the first to introduce explicitly 
general intuitionistic frames-in any case it was not too difficult having at hand 
duality theory for modal logics and the connection between pseudo-Boolean and 
topological Boolean algebras discovered by McKinsey and Tarski (1946) (we dis
cussed it in Section 8.3). The earliest references we know are Esakia (1974) and 
Rautenberg (1979). 

A topological approach to the Stone-Jonsson-Tarski representation and dual
ity theory was developed by Esakia (1974, 1979b, 1985) and Sambin and Vaccaro 
(1988). Note also that general frames can be introduced in the case of neighbor
hood semantics; see Dosen (1988). 

In view of the duality between algebras and descriptive frames (and the 
truth-preserving operations on them), Birkhoff's theorem opens a way for solv
ing the problem of characterizing modally and intuitionistically definable classes 
of (Kripke, general, refined, etc.) frames. Goldblatt and Thomason (1974), van 
Benthem (1975, 1989), Goldblatt (1976a, 1976b) found various conditions (of 
closure under certain operations) for a class of frames to be modally definable. 
For example, as was shown by Goldblatt and Thomason (1974), if a class C of 
Kripke frames is closed under elementary equivalence then C is modally definable 
iff C is closed under the formation of generated subframes, disjoint unions and 
reductions, while its complement is closed under ultrafilter extensions (for the 
definition see Section 10.2). The case of finite frames is of special interest here. 
Birkhoff's theorem (for a "finitized" variant of it see Banaschevski, 1983) sug
gests that as a condition for the modal definability of a class of finite frames one 
should take the closure of the class under finite disjoint unions, reductions and 
generated subframes. However, Example 8.8 shows that this is not enough. It is 
not hard to see that essential in this example is the fact that the frames under 
consideration are not transitive. Indeed, as was shown by Rodenburg (1986) (for 
intuitionistic frames) and van Benthem (1989), in the case of transitive frames 
the conditions above are enough (see Exercise 9.34). In the general case we need 
also the condition of closure under so called local p-morphic images; see van Ben
them (1989). Much less is known about modal definability of classes of frames 
with actual worlds, although the available variants of Birkhoff's theorem for this 
case (in particular, Theorem 7.81) give some hope for a progress in this direc
tion too. For definability of frame classes by formulas in richer languages see, for 
instance, Goranko (1990). 

The description of finitely generated universal frames for K4, presented in 
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Sections 8.6 and 8.7, was obtained in essence by Segerberg (1971) and after 
that was rediscovered in various forms. An important step in understanding 
the constitution of such frames was made by Shehtman (1978a) who gave a 
general method of constructing the universal frames of finite rank for finitely 
approximable logics with transitive frames and illustrated it for S4, Grz and 
Int. Similar results were obtained by Bellissima (1985a). 

Needless to say that if we know the detailed structure of the universal frames 
for a logic, we have a powerful instrument for studying both the logic itself and 
the lattice of its extensions. We shall take advantage of it in further chapters. In 
particular, the solution to the admissibility problem for inference rules, obtained 
in Section 16.7, would not be possible without this instrument. And the results 
on m-reducibility in Section 13.1 are based in essence upon considering the form 
of the upper part of the m-universal frames for the corresponding logics. 

However, there are still a lot of open problems concerning universal frames. 
Actually, the picture is more or less clarified only for extensions of K4 and Int. 
And even here the behavior of the universal frames for logics that are not finitely 
approximable may turn out to be rather unexpected; see, for instance, Chagrov 
(1994b). In the "nontransitive" case, only for very few logics, in particular K, 
universal models have been described. A perspective (though not easy) direction 
is to consider the constitution of the universal frames for some extensions of 
K EB tran, while for extensions of KTB = K EB re EB sym this problem seems 
to be very hard. It is no accident that so little is known of ExtKTB. One of 
the strongest facts here is that there are infinitely many pretabular logics in 
NExtKTB. It is known, for instance, that the universal frame of rank 2 for 
KTB EB D 2p ~ D3p is infinite (Byrd 1978), and we have no information about 
its universal frame of rank 1. 

The problem of describing universal frames of finite rank for polymodal and 
tense logics is much more complicated. Even in the transitive case the situation 
here resembles that in NExtK. 

Another interesting problem is to describe atoms (the corresponding formu
las, to be more precise) of n-generated free algebras in varieties of modal (tense, 
etc.) algebras. In accordance with atomicity, atomless of such algebras we call 
the corresponding logics n-atomic, n-atomless, etc. Here are some examples: 

• K is n-atomic, for every n; 

• Dis n-atomless, for every n > 0 (there are no 0-atomless modal logics); 

• there are normal modal logics which, for any n > 0, are neither n-atomic 
nor n-atomless. 

These results were obtained by Bellissima (1984). For finitely approximable logics 
in NExtK4, he proved also that all of them are n-atomic for every n. However, 
it is not clear whether the finite approximability is essential here. Bellissima 
(1991) considers similar problems for tense logics. Recently Wolter (1997) has 
connected atomicity of finitely generated free algebras for polymodal logics with 
splittings of the corresponding lattices of logics (see Section 10.5). In particular, 
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he proved that if all finitely generated free algebras for L are atomic then L is 
characterized by the class of frames that split NExtL. 

Theorems 8.67, 8.85 and 8.92 were proved by Makinson (1971), Segerberg 
(1971) and Anderson (1972), respectively. 
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CANONICAL FORMULAS 

In Sections 2.5 and 3.5 we characterized the geometry of Kripke frames validating 
some intuitionistic and modal formulas by imposing first order conditions on 
their accessibility relations. However, as was shown in Section 6.2, there exist 
formulas which have no first order equivalents. In this chapter we try another, 
purely frame-theoretic approach to the characterization problem which uses such 
notions as subframe, reduction, etc. Unfortunately, this approach is not universal 
either. But its limitation is of a different kind: it characterizes only transitive 
general frames, but for every modal and intuitionistic formula. So all frames in 
this chapter are assumed to be transitive. 

The characterization to be obtained below can be roughly described as fol
lows. Given a modal or intuitionistic formula <p, one can effectively construct 
finite rooted frames J 1 , ... , Jn such that a general frame ~ refutes <p iff there 
is a (not necessarily generated) subframe of ~ which is reducible to one of Ji 
and satisfies some other natural conditions. Conversely, with every finite rooted 
frame J we can associate a formula-call it canonical-explicitly saying: "I am 
refuted in a frame iff it contains a subframe reducible to J and satisfying those 
conditions". As a result, we obtain a powerful language of canonical formulas: 
they axiomatize all logics in ExtK4 and Extlnt and bear explicit information 
about the constitution of their refutation frames. 

9.1 Subreduction 

In this section and the next one we give a few examples revealing certain fun
damental principles of the constitution of transitive refutation frames for modal 
and intuitionistic formulas. 

Example 9.1 Let us consider once more the Grzegorczyk formula grz (which, 
as was shown in Section 6.2, is not first order definable). In Examples 3.22 and 
3.24 we constructed its two simplest transitive countermodels on the frames • 
and §. On the other hand, Proposition 3.48 asserts that a Kripke frame J 
refutes grz iff it contains either an irreflexive point or a proper cluster or an 
infinite ascending chain of distinct points. Since every infinite ascending chain is 
reducible to the two point cluster (see Example 3.14), we can reformulate this 
observation as follows: J ~ grz iff there is a subframe of J that is reducible 
either to • or to §. 

In order to extend this characterization to general frames, we require the 
following definition. 



SUBREDUCTION 287 

Given modal fra.mes J = (W, R, P) and Q3 (V, S, Q), a partial (i.e., not 
completely defined, in general) map f from W onto V is called a subreduction 
(or a partial p-morphism) of J to Q3 if it satisfies the conditions (Rl)-(R3) in 
Section 8.4 for all x and y in the domain of f and all X E Q. In this case we 
say also that f subreduces J to Q3, J is sub reducible to Q3 (by f) and Q3 is an 
(!-) subreduct of J. The domain ~f f will be denoted by domf. If J and Q3 are 
Kripke frames then the subreducibility of J to Q3 means that there is a subframe 
of J which is reducible to Q3. Note also that if Q3 is a finite Kripke frame then 
(R3) is equivalent to 

(R4) 'Vz EV f- 1 (z) E P. 

A frame Q3 = (V, S, Q) is called a subframe of J = (W, R, P) if V s-;; W and the 
identity map on V is a subreduction of J to (!3, i.e., if S is the restriction of R 
to V and Q s-;; P. Note that a generated subframe Q3 of J is not in general a 
subframe of J, since V need not be in P; however, if VE P then Q3 is a subframe 
of J. More generally, suppose V is a non-empty subset of W in J = (W, R, P) 
such that V E P and S is the restriction of R to V. Define a set of possible 
values Q in the space V by taking 

Q = {X s-;; V: XE P}. 

Q is obviously closed under the Boolean operations and for every XE Q, 

X lS = V n X lR E Q, 

so that Q3 = (V, S, Q) is really a modal frame. Since by the definition, Q s-;; P, 
the frame Q3 is a subframe of J. We call it the subframe of J induced by V. Thus, 
an f-subreduct of J is a reduct of the J's subframe induced by domf. 

Example 9.2 Let J = (W, R) and Q3 be the Kripke frames shown in Fig. 9.1. 
Then the map f defined by 

{ 

a if i is even 
f ( i) = b if i is odd 

undefined if i = w 

is a subreduction of J to Q3. Observe that J is not reducible to Q3. If we define 
in J the set P of possible values consisting of finite sets of natural numbers 
and complements to them in the space W, then the frame J = (W, R, P) is not 
subreducible to Q3. For otherwise, when, say, f is a subreduction of J to (!3, we 
would have f- 1 (a) E P and f- 1(b) E P, which is impossible because f- 1 (a) and 
f- 1(b) are disjoint and infinite. 

Proposition 9.3 A general frame J refutes grz iff J is subreducible either to 
•or to§. 
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ow 

FIG. 9.1. 

Proof ( =>) Suppose grz is refuted in J = (W, R, P) under some valuation. 
Then the set X = {x E W: x ~ grz} E Pis non-empty. Let us consider the 
set X - X 1 E P which consists of all final irreflexive points in X, if any. 

If X - X 1 :/:- 0 then the map I defined by 

{
• ifxEX-Xl 

I (x) = undefined otherwise 

for every x E W, is a subreduction of J to •. If X - X 1 = 0 then for every 
x E X, there is x' E xj n X. Hence x' I= O(p----+ Op) ----+ p, x' ~ p and so 
x' ~ O(p----+ Op). But then the set 

Y = {y E W: y I= O(O(p----+ Op)----+ p), y I= p, y ~Op} E P 

is non-empty, Y i;:;; X 1 and X i;:;; Y 1 · Therefore, the map I defined by 

{

a ifxEX 
l(x) = b if x E Y 

undefined otherwise 

for every x E W, is a subreduction of J to the cluster with two points a and b. 
( {::::) Suppose I subreduces J to •. Then doml E P is an antichain of irreflex

ive points. Define a valuation !!Jin J by taking !!J(p) = W - domf. The reader 
can easily check that grz is false under !!J at every point x E domf. 

Suppose now that I is a subreduction of J to the cluster with two points a 
and b. Then we define a valuation !!Jin J by taking, for instance, 

!!J(p) = w - r 1(a). 

We show that ;; ~ O(O(p ----+ Op) ----+ p) ----+ p, for every x E 1-1(a). By the 
definition, we have x ~ p. Suppose that x ~ O(O(p ----+ Op) ----+ p). Then there 
is y E xj such that y I= O(p----+ Op), y ~ p and soy E 1-1 (a). By (R2), there 
is z E yj such that z E 1-1(b). But then z I= p----+ Op, z I= p and so z I= Op, 
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y+I 
0 

FIG. 9.2. 

which is impossible, since by (R2), there is x' E zj nf- 1 (a) and we must have 

simultaneously both x' I= p and x' lf p. D 

In the same manner one can establish the characterizations presented in Ta-

ble 9.1, where each* is to be replaced by• and o (for instance I represents four 

T T t 0 

frames: • , o , • , 6 ) . To be more exact, we have 

Proposition 9.4 A transitive modal frame J refutes a formula in the left-hand 
side of Table 9.1 iff J is subreducible to one of the frames in the same line of the 
right-hand side. 

Proof Exercise. D 

In the intuitionistic case the definition of subreduction becomes somewhat 
more complicated. Given intuitionistic frames J = (W, R, P) and Q5 = (V, S, Q), 
a partial map f from W onto V is called a subreduction of J to Q5 if it satisfies 
(Rl) and (R2), for all x, y E domf, and also the following condition: 

(R3') VX E Q f- 1(X)l E P 

where Q = {V - X : X E Q} and P = {W - X : X E P}. For a completely 
defined f satisfying (Rl) and (R2) the condition (R3') is clearly equivalent to 
(R3) and so every reduction is also a subreduction. If Q5 is a finite Kripke frame 
then (R3') is equivalent to 

(R4') Vz E V f- 1 (z)l E P. 

Q5 is a subframe of J if ,,.,Q3 is a subframe of KJ and the identity map on V is a 
subreduction of J to tei. 

Proposition 9.5 An intuitionistic frame J refutes a formula in the left-hand 
side of Table 9.2 iff J is subreducible to one of the frames in the same line of the 
right-hand side. 

Proof We consider only bwn = V~:/ (Pi --+ V #i Pi) and leave the other for
mulas to the reader. 

( =>) Suppose J = (W, R, P) refutes bwn under some valuation. Define a 
partial map f from W onto the set of points in the frame Q5 in Fig. 9.2 by taking 

{ 

0 if x lf bwn 
f(x)= i ifO<i:Sn+l,xf=piandxlf:Vj#iPi 

undefined otherwise. 
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Table 9.1 Characterizing refutation frames: subreduction. 

Formula cp 

Op--+ p 

O(Op--+ p) --+ Op 

p--+ OOp 

O(O(p--+ Op) --+ p) --+ p 

O(O+p--+ q) V O(O+q--+ p) 

O(Op--+ q) V O(Oq--+ p) 

OOp--+ Op 

Op<--; p 

Op 

O(Op--+ p) /\ OOp--+ Op 

O(O(p--+ Op) --+ p) /\ OOp--+ p 

p --+ 0 (Op --+ p) 

J IF cp iff J is subreducible 
to one of the following frames 

• 
0 

I (4 frames) 

.§ 

\I (6 frames) * 

\I t 
* * (8 frames) 

I 0 \I ! (4 frames) 0 

0 

. ! § 

t 
0 • 

(4 frames) 

I ~ ~ (6 frames) 

l § (9 framee: 

n+l v (2n + 4 frames) 

r 
0
1 

I (2n+l frames) 

rooted frames with n + 1 distinct 
points accessible from their roots 
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Table 9.2 ·characterizing refutation frames: subreduction. 

Formula r.p 

pV-.p 

(•q -t p) -t (((p -t q) -t p) -t p) 

(p->q)V(q->p) 

J ~ r.p iff J is subreducible 
to one of the following frames 

0 

t 

v 
v 
61 
to 

0 

t 
t 

rooted frames with n + 1 points 
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Since for all i E {1, ... , n + 1 }, if x ~ bwn then x ~Pi and there exists Yi E xj 
such that Yi f= Pi and Yi ~ Pj for j =Fi, f is a surjection satisfying (Rl) and (R2). 
Besides, we have f- 1(0)1 = {x: x ~ bwn} E P and for every i E {1, ... , n + 1 }, 
f- 1 (i)1 = {x: x ~Pi-> V#iPJ} E P. So f satisfies (R4') as well. 

( ~) Suppose f is a subreduction of J to ~. Define a valuation ll:J in J by 
taking, for every i E {1, ... , n + 1 }, 

ll:J(pi) = W - U r 1 (j)1 E P. 
#i 

Since by (Rl), 1- 1(i) n 1-1(j) ! = 0 for every i =F j, we have x f= Pi and 
x ~ V#iPJ for each x E f- 1(i), whence x ~Pi-> V#iPJ· And since by (R2), 

f- 1 (0) ~ n~:1
1 f- 1(i)!, we have x ~ bwn for all x E f- 1 (0). 0 

In the intuitionistic case there is a nice algebraic counterpart of the notion 
of subreduction. Given two pseudo-Boolean algebras Qt = (A, A, V, ->, _i) and 
~ = (B, A, V,->, _i) and a non-empty set 0 ~{A, V, __.., _i}, an injection f from 
B into A is called an 0-isomorphism of~ in Qt if f preserves all the operations 
in 0. If B ~A and the identity map on Bis an 0-isomorphism of~ in Qt then 
we call~ an 0-subalgebra of Q(. In this case the operations from 0 in ~ are just 
the restrictions of the corresponding operations in 2l to ~. 

The same notions of 0-isomorphism and 0-subalgebra may be defined of 
course for modal algebras, but this time 0 ~ {A, v, ->, _i, D}. Denoting the 
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operations/\, V, -4, ..l, D by the letters C, D, I, N, B, respectively (N stands for 
"negation", B for "box"), we shall write "IC-isomorphism" instead of "{-4,/\}
isomorphism", etc. 

Example 9.6 Let 21 be the pseudo-Boolean algebra shown in Fig. 9.3. Then 
the algebra ~ in Fig. 9.3 is an IC-subalgebra of 21, but neither an ICN- nor 
an ICD-subalgebra, since 21 and ~ have distinct zero elements and distinct V. 

Fig. 9.3 shows also that the dual 21+ of 21 is subreducible (but not reducible) to 
the dual ~+ of~-

Theorem 9. 7 Suppose ~ = (W, R, P) and ~ = (V, S, Q) are intuitionistic 
frames and f a subreduction of~ to ~- Then the map f+ defined by 

for every XE Q, is an IC-isomorphism of~+ in~+. 

Proof Observe first that by (R3'), f+(X) E P for every X E Q. Notice also 
that for every x E Wand XE Q, 

x E f+(x) iff \:/y E domf (xRy -4 f(y) EX). (9.1) 

It follows from (9.1) and (Rl) that for every X E Q and y ¢ X, we have 
f- 1 (X) ~ J+(X) and f- 1(y) n f+(X) = 0. Therefore, f+ is an injection from 
Qin P. 

Let us show now that f+ preserves n and J, i.e. suppose X, YE Q and prove 
that 

f+(x n Y) = f+(x) n f+(Y) 

and 
f+(x J Y) = f+(x) J t+(Y). 

The former equality follows from the definition of f+. (Note by the way that 
f+ does not preserve U; in general we have only f+(X UY) 2 f+(X) U f+(Y). 
Besides, f+ (0) may be non-empty.) 

Let x E f+(x J Y). By (9.1), this is equivalent to 

\:/y E xj n domf \:/u E f(y)j (u EX -4 u E Y). (9.2) 

Suppose that xRz, z E f+(X) and show that z E f+(Y). Indeed, otherwise we 
must have some y E zj such that f(y) is defined, but is not in Y, which by 
(9.1) and (9.2), is impossible. Therefore, z E f+(Y) and so x E /+(X) J f+(Y). 
Conversely, suppose x E f + ( X) J f+ (Y), i.e., 

\:/z E xj (z E t+(X) -4 z E t+(Y)), (9.3) 

and prove (9.2). Let y E xj n domf, u E f(y)i and u EX, but u ¢ Y. Then by 
(R2), there is z E yj such that f(z) = u, i.e., f(z) E X and f (z) ¢ Y. As we 
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v 
FIG. 9.3. 

have already observed, this means that z E f+(X) and z (j. f+(Y), contrary to 
(9.3). 0 

As a consequence we obtain the following truth-preservation result for intu
itionistic IC-formulas, i.e., formulas containing no occurrences of V and J_; such 
formulas are called also disjunction and negation free formulas. If a formula has 
no occurrences of V (of J_) then it is called a disjunction (respectively, negation) 
free formula. It should be emphasized that 0 was defined via J_; so negation 
free modal formulas contain no diamonds. 

Corollary 9.8 Suppose J and® are intuitionistic frames and J is subreducible 
to®· Then J f= cp implies® f= cp for every disjunction and negation free formula 
cp. 

Using the method developed for the proof of Theorem 8.71, one can prove a 
theorem that is dual to Theorem 9.7 (see Exercise 9.2). The algebraic meaning 
of the notion of subframe in the modal case is explained in Exercise 9.5. 

Given intuitionistic or modal frames J = (W, R, P) and ® = (V, S, Q), a 
subreduction f of J to ® is called dense if domfi n domf T = domf, i.e., if 
Vx E W Vy, z E domf (yRxRz-> x E domf). -

Theorem 9.9 Suppose J = (W, R, P) and ® = (V, S, Q) are intuitionistic or 
modal frames, f is a dense subreduction of J to ® and W = domfi. Then there 
is an !CD- or, in the modal case, ICDB-isomorphism f+ of®+ in J+. 

Proof Let us consider first the modal case. Define a map f + from Q into P by 
taking, for every XE Q, j+(X) = W - r 1(V - X). It follows from (R3) that 
f+ (X) E P. Since for every x E Wand every XE Q, 

x E f+(X) iff x (j. domf or f(x) EX, (9.4) 

f+ is an injection. Using (9.4), one can readily check that f+ preserves n, U and 
::). Suppose X E Q and show that f+(oX) = of+(X). If x E f+(DX) then, by 
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(9.4), either x tf_ domf or x E domf and z E X for every z E f(x)i. Take an 
arbitrary y E xl and show that y E f+(X). If x tf_ domf then y tf_ domf, since 
J is generated by domf and f is dense, and so y E f+(X). If x E domf and 
y E domf then, by (Rl), we have f(x)Sf(y), whence f(y) EX and y E f+(X). 

Conversely, suppose x E of+(X), i.e., for every y E xl, either y tf_ domf or 
f(y) EX. It follows by (R2), that either x tf_ domf or x E domf and z EX for 
every z E f(x)l. Therefore, x E f+(oX). 

As to the intuitionistic case, we define f+ as in Theorem 9.7. So it suffices 
to verify that for all X, Y E Q, J+(X UY) = f+(X) U J+(Y). The inclusion 
J+(XUY);;;? f+(X)uJ+(Y) follows directly from (9.1). Suppose x E f+(xuY). 
If x tf_ domf then, by the density off, we have y tf_ domf for every y E xl, and 
so xis in f+(X) as well as in /+(Y). And if x E domf then, by (9.1), f(x) EX 
or f(x) E Y, whence x E f+(X) U /+(Y). 0 

As a consequence we obtain one more truth-preservation result. 

Corollary 9.10 If J is densely subreducible to (.!) then for every negation free 
formula cp, J f= cp implies l!J f= cp. 

9.2 Cofinal subreduction and closed domain condition 

Transitive refutation frames for the formulas in Tables 9.1 and 9.2 have a rather 
simple structure. Roughly, to construct all refutation frames for such a formula, 
we can first take the frames reducible to one of its refutation patterns in the 
table and then insert into them new points at any places we want, provided, of 
course, that the accessibility relation between the old points remains the same. 
However, there are modal and intuitionistic formulas whose refutation frames 
are constructed in a more complex way. 

Example 9.11 Let us analyze the constitution of transitive refutation frames 
for the McKinsey formula ma = DOp--> ODp. It follows from Proposition 3.46 
that the simplest Kripke frames refuting it are again the degenerate cluster • and 
the two point cluster§). And again its every refutation frame is subreducible 
either to • or to§). Indeed, suppose that ma is false in J = (W, R, P) under 
some valuation and let 

X={xEW: x[;t=ma}EP. 

If X - X l =/= 0 then the map f defined by 

{ 
• if x EX - Xl 

f (x) = undefined otherwise 

is obviously a subreduction of J to •. And if X - X l = 0 then we define a map 
f from J onto the frame (.!) in Fig. 9.1 by taking 

{ 

a if x [;t= ma and x [;t= p 
f (x) = b if x [;t= ma and x f= p 

undefined otherwise. 
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It is clear that f satisfies (Rl) and (R3), and the fact that it satisfies also (R2) 
follows from the considerations in Section 3.5. 

However, the subreducibility of J to • or§) is only a necessary condition 
0 

for J ~ ma, but not a sufficient one. For the frame ~ is subreducible to §) 
but, according to Proposition 3.46, validates ma. 

Let us take a closer look at the subreductions f defined above. In the former 
case domf contains some final points in J, dead ends, to be more exact (for if 
x E X - X ! is not a dead end then xRy, for some y E W, whence y I= OOp, 
y ~ <>op and so y E X, which is a contradiction). In the latter one points in 
domf are not necessarily final in J, but the whole set domf behaves itself like 
a final point in the sense that there is no point in W which is seen from domf 
and does not see domf itself. 

This observation motivates the following definitions. Given a modal or intu
itionistic frame J = (W, R, P), a set X ~Wis said to be cofinal in J if Xi~ XJ. 
A subframe ® of J is cofinal in J if its set of worlds is cofinal in J. A subreduc
tion f of J to ® is called cofinal if, for every point x in J, x E domfi implies 
x E domfT, i.e., if domf is cofinal in J. If there is a cofinal subreduction of J to 
® then we say J is cofinally subreducible to ® or ® is a cofinal subreduct of J. 

0 

Example 9.12 §)is a subframe of~, but not cofinal. The frame Jin Fig. 9.1 
is subreducible to§), but not cofinally, since w €/. domfT for any subreduction 
f ofJto§. 

Proposition 9.13 A frame J = (W, R, P) refutes the McKinsey formula if! it 

is cofinally subreducible either to • or to§. 

Proof ( =}) was actually established in Example 9.11. 
( {:=) Suppose f is a cofinal subreduction of J to •. Then domf is a non-empty 

set of dead ends in J and so ma is false at any point in domf under any valuation 
in J. 

Suppose now that f is a cofinal subreduction of J to the cluster with two 
points a and b. Define a valuation QJ in J by taking 

QJ(p) = w - r 1(a). 

Then for each x E f- 1(a), we have x I= OOp, x ~ OOp and so x ~ ma. For 
otherwise either x ~ OOp or x I= <>Op. In the former case y ~ Op for some 
Y E xi, from which z ~ p for all z E yi, i.e., Yi~ f- 1(a). It follows that 
Yin f- 1 (b) = 0 and hence, by (R2), Yi n domf = 0, contrary to f being co final. 
In the latter case y I= Op for some y E xi and so z I= p for all z E y i, i.e., 
Yin f- 1(a) = 0, which is again a contradiction. 0 

In the same manner one can prove the following proposition; we leave it to 
the reader. 
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Table 9.3 Characterizing refutation frames: cofinal subreduc
tion. 

Formula cp 

Dp~Op 

oop~ oop 

O(Dp/\q) ~ D(OpVq) 

ODp~ DOp 

J li= cp iff J is cofinally subreducible 
to one of the following frames 

• 
• § 

• 1 • 
1 ! Y (8 frames) 

IV 
\! 

0 

(8 frames) 

Proposition 9.14 A transitive modal {or intuitionistic) frame J refutes a for
mula in the left-hand side of Table 9.3 iff J is cofinally subreducible to one of 
the frames in the same line of the right-hand side. 

In the intuitionistic case the notion of cofinal subreduction has a clear alge
braic meaning. 

Theorem 9.15 Suppose that J = (W, R, P) and Qj = (V, S, Q) are intuition
istic frames and f is a cofinal subreduction of J to Q5. Then there is an ICN
isomorphism j+ of Qj+ in a homomorphic image of J+. 

Proof Let Ji= (Wi,Ri,Pi) be the subfr~me of J generated by domf. It is 
clear that f is a cofinal subreduction of J 1 to Q5. By Theorem 9.7, the map j+ 
defined by j+(X) = Wi - f-i(V - X)!, for every XE Q, is an IC-isomorphism 
of Qj+ in Jf. Moreover, f+ preserves 0 because the set <lorn/= f- 1(V) is cofinal 
in Ji. So J+ is an ICN-isomorphism. It remains to recall that, by Theorem 8.57, 
Ji is a homomorphic image of J+. 0 

Corollary 9.16 Suppose J and Q5 are intuitionistic frames and J is cofinally 
subreducible to Q5. Then for every disjunction free formula cp, J f= cp implies 
Qj F= cp. 

The constitution of refutation frames for the formulas in Table 9.3 can be 
roughly described as follows. First we construct the frames J that are reducible 
to one of the refutation patterns for the given formula shown in the table and 
then insert into J new points at any places we want, but not above J. 
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1 
'P o -.q 

q 

2 
-.p o -.r 

r 

FIG. 9.4. 

3 
p o-.p 

Our next example shows that some places inside frames may also be "closed" 
for inserting new points. 

Example 9.17 Let us try to characterize the class of intuitionistic refutation 
frames for the weak Kreisel-Putnam formula: 

w kp = ( -.p ~ -.q V -.r) ~ ( -.p ~ -.q) V ( -.p ~ -.r). 

Using, for instance, the semantic tableau technique, we first construct its simplest 
countermodel as depicted in Fig. 9.4. Then we observe that every frame J refuting 
wkp is cofinally subreducible to the frame cB underlying this countermodel by 
the map f which is defined as follows: 

! 
0 if x f= -.p ~ -.q v-.r, x ~ (-.p ~ -.q) v (-.p ~ -.r) 
1 if x f= -.p ~ -.q V -.r, x f= -.p and x f= q 

f(x) = 2 if x f= -.p ~ -.q V -.r, x f= -.p and x f= r 
3 if x f= p or x f= -.p I\ -.q I\ -.r 
undefined otherwise. 

(The cofinality off follows from the fact that f- 1(i), for i = 1, 2, 3, is upward 
closed and 1-1(o)ii;;;; u;=l 1-1(i)l.) 

However, the cofinal subreducibility to cB turns out to be only a necessary 
condition for J ~ wkp. For the frame shown in Fig. 9.5 is cofinally subreducible 
to ®, but does not refute wkp. Indeed, suppose otherwise. Then there is a 
valuation in this frame such that ao f= -.p ~ -.q V -.r, a1 f= -.p, a1 ~ -.q, 
a2 f= -.p and a2 ~ -.r, whence a f= -.p ~ -.q V -.r, a ~ -.q V -.r and so a ~ -.p, 
i.e., there must be a point x E aj such that x f= p, but such a point does not 
exist. 

This argument shows in fact that the cofinal subreduction f of J to cB defined 
above satisfies the condition -.3x E domfi f(xi) = {1, 2}, which turns out to 
be the sufficient condition we need. For if f is a cofinal subreduction of J = 
(W, R, P) to ® in Fig. 9.4 satisfying it then we define W in J by taking W(p) = 
W - 1-1

( {1, 2} )!, W(q) = W - 1-1( {2, 3} )!, W(r) = W - 1-1( {1, 3} )!. It is easy 
to see that under this valuation x ~ -.p ~ -.q, y ~ -.p ~ -.rand z f= p, for every 
x E 1-1(1), y E J- 1(2) and z E f- 1(3). Therefore, u ~ (-.p ~ -.q) V (-.p ~ -.r) 
for every u E 1-1 (0). We must also have u f= -.p ~ -.q V -.r, because otherwise 
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ao 

FIG. 9.5. 

there is v E u i such that v f= •P and v ~ •q V •r, which is a contradiction, 
since the former means v ti. f- 1(3)1 and the latter implies, by the cofinality of 
f, that v E f- 1(1)! n f- 1(2)!, from which f(vi) = {1, 2}. 

Thus, we can construct all refutation frames for wkp by taking first the 
frames SJ that are reducible to l!5 by some f and then inserting into them new 
points anywhere but (i) not above SJ and (ii) not at such places where both 
f- 1 (1) and f- 1 (2) are seen, while f- 1 (3) is not seen. Figuratively speaking, the 
place or domain just below 1 and 2 in l!5 is closed for inserting new points, while 
all other domains (e.g. below 1 or below 2 and 3) are open. 

Example 9.18 J refutes the density axiom DDp-> Op iff there is a subreduc-
• O 

tion f of J to the frame 1 such that ·3x E domfi f (xi) = {O}. (An equivalent 

characterization: J ~ den1 iff there is a dense subreduction of J to I). This 
time the domain just below 0 is closed for inserting. 

These examples motivate the following definition. Let l!5 be a finite frame and 
'.D a (possibly empty) set of antichains in ®· We say a subreduction f of J to l!5 
satisfies the closed domain condition for '.D if 

(CDC) •3x E domfi - domf 3() E '.D f (xi) = "1 
or, which is equivalent, if 

(CDC) x E domfi and f (xi) = "1 for some() E '.D imply x E domf. 

Note that, by the definition, every subreduction satisfies (CDC) for '.D = 0. We 
denote by i)H the set of all antichains in ®. It follows also from the definition 
that a subreduction f of J to l!5 satisfies (CDC) for i)H iff f is dense. As an 
exercise we invite the reader to prove the following two propositions. 

Proposition 9.19 A modal transitive frame J refutes a formula in the left side 
of Table 9.4 iff there is a cofinal subreduction (simply a subreduction for the first 
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Table 9.4 Characterizing refutation frames: closed domain condition. 

Formula r.p 

DDp---; D(D+p---; q) V D(D+q---; p) 

DOT/\ o V7=o o+(p1 /\ /\if:J 'Pi)---; 

V7=o 0 ·(PJ /\ /\i=l=i 'Pi) 

J ~ r.p iff J is (cofinally) subreduci
ble to one of the following frames, 
with (CDC) for '.D being satisfied 

le *2 v '.D={{l},{1,2}} 

v '.D =:DU 

0 n 
0 ... 0 v '.D =:DU 

two formulas) of J to one of the frames in the corresponding row of the right 
side, which satisfies (CDC) for '.D shown near the frame. 

Proposition 9.20 An intuitionistic frame J refutes a formula in the left side 
of Table 9. 5 iff there is a cofinal subreduction (a plain subreduction for the first 
formula) of J to one of the frames in the corresponding row of the right side, 
which satisfies (CDC) for '.D shown near the frame. 

In the next section we will show that in the same manner one can characterize 
transitive refutation frames for every modal or intuitionistic formula. But before 
that we obtain some simple general results on subreductions. 

Theorem 9.21 Suppose Ji= (Wi,Ri,Pi), for i = 1,2,3, are modal or intu
itionistic frames, Ji is a (cofinal) subreduction of J 1 to J2 and h a (cofinal) 
subreduction of J2 to J3. Then the composition h = hfi is a (cofinal) subre
duction of J1 to J3. 

Proof Since Ji and h are surjections, their composition is also a surjection. If 
x, y E domf2f1 and xR1y then, by (Rl), fi(x)R2f(y) and hfi(x)R3f2fi(y). If 
hfi(x)R3z for some x E W1 and z E W3 then, by (R2), there are v E W2 and 
Y E W1 such that fi(x)R2v, h(v) = z and xR1y, fi(y) = v, i.e., hfi(y) = z. 
Thus hfi satisfies (Rl) and (R2). 

If our frames are modal and X E P3 then, by (R3), f2 1(X) E P2 and 
f1 1(!21(X)) = (hfi)- 1(X) E P1. In the intuitionistic case, for X E P3 we 
have f2 1(X)lE P2 and f1 1Uf1(X)l)l E P 1. And using (R2), one can readily 
show that f1 1(!21(X))l =fl' (!2 1(X)l)l. Thus hfi satisfies also (R3) and so 
is a subreduction. 
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Table 9.5 Characterizing refutation frames: closed domain condition. 

Formula <p J [it= <p iff J is ( cofinally) subreduci
ble to one of the following frames, 
with (CDC) for '.D being satisfied 

( ( ••P ......, P) ---> P V •P) ......, •p V ''P 

n+l ----ovo '.D = 1)U 

v '.D ~ '°' 

'.D = {{1, 2}} '.D = {{1, ... , k}} 

n+l ----0 ... 0 v 
Now suppose Ji, h are cofinal, x E W1 and yR1x for some y E domf2fi. 

Since Ji is cofinal, we have either x E domfi or xR1z for some z E domfi. In the 
former case fi(y)R2fi(x) and so, by the cofinality of h, either fi(x) E domf2, 
i.e., x E domf2f1, or fi(x)R2v for some v E domh, and then, by (R2), there is 
u E W1 such that xR1u and fi(u) = v, whence u E domf2f1. The latter case is 
considered analogously. 0 

Theorem 9.22 Suppose J = (W, R, P) and <!5 = (V, S, Q) are quasi-ordered 
modal frames and f is a (cofinal) subreduction of J to <!5 satisfying (CDC) for a 
set '.D of antichains in <!5. Then there is a (co final) subreduction pf of pJ to p® 
satisfying (CDC) for p'.D, where p'.D = {pD: DE '.D} and pD = {C(x): x ED}. 

Proof We define pf by taking, for any cluster C in J, 

f( C) _ { C(f(x)) if x EC and x E domf 
p - undefined if C n domf = 0. 

(This definition does not depend on the choice of x EC, since, by (Rl), C(f(x)) = 
C(f(y)) for every x,y E C n domf.). Clearly, pf is a partial map from pW 
onto pV satisfying (Rl) and (R2) and the cofinality condition as well, pro
vided f is cofinal. Suppose X E pQ. Then there is Y = Yi E Q such that 
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X = pY. By (R3), f- 1 (V - Y) E P, whence W - f- 1(V - Y)! E P and so 
pW - (pf)- 1(pV - pY)! = p(W - f- 1(V - Y)!) E pP. Thus, pf satisfies (R3') 
and it remains to verify that it satisfies (CDC) for p'JJ. Suppose C E dompfi 
and pf(Cj) = pDl for some pi> E p'JJ. Take any x E C. Then x E domfi and 

f(xi) = Dl, whence by CDC), x E domf and so CE dompf. O 

Theorem 9.23 Suppose that J = (W, R, P) is a quasi-ordered modal frame, 
® = (V, S) a finite intuitionistic frame and f a (cofinal) subreduction of pJ to 
® satisfying (CDC} for a set ']) of antichains in ®. Then there is a (cofinal) 
subreduction h of a generated subframe of J to u® satisfying (CDC) for 'JJ. 

Proof Let J' = (W', R', P') be the subframe of J generated by the set of points 
{x E W: C(x) E domf}. With each v EV we associate the set 

Xv= {y E W': f(C(y)) = v}l - LJ {y E W': f(C(y)) = x}l. 
xEV-vT 

Since by (R4'), pW' - f- 1 (x)! E pP' for every x EV, we have 

W' - {y E W': f(C(y)) = x}l E P' 

and so, by the finiteness of V, Xv E P'. 
Now we define a partial map h from W' onto V by taking, for every x E W', 

h(x) = { V if XE Xv 
undefined otherwise. 

It should be clear that his a subreduction of J' to u®; moreover, it is cofinal if 
f is cofinal. Suppose D E 'JJ and h(xi) = DT- Then C(x) E domfT and, by the 
definition of h, f(C(x))i= D} Therefore, by (CDC), we have C(x) E domf and 

so x E Xf(c(x}} ~ domh. 0 

Theorem 9.24 Suppose J = (W, R, P) is an intuitionistic frame, ® = (V, S) a 
finite quasi-ordered modal frame, 'JJ a set of antichains in ® and f a (cofinal) 
subreduction of J to p® satisfying (CDC} for p'JJ. Then there is a (cofinal) 
subreduction h of a generated subframe of rkJ to ® satisfying (CDC) for']), 
where k = max{\C(x)I: x EV}. 

Proof According to the preceding theorem, there are a generated subframe 
J' = (W',R',P') of uJ and a (cofinal) subreduction g of J' to up® satisfying 
(CDC) for p'JJ. Let rkJ' = (kW',kR',kP') be the subframe of TkJ generated 
by k x W'. Define a partial map h from kW' onto V as follows. If x E domg, 
g(x) =CE pV and C = {a1 , ... ,an}~ V then we take, for every i Ek, 

h( (x, i)) = amodn(i}" 
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(We remind the reader that n :S k.) And if x rf. domg then we regard h( (x, i)) 
as undefined for every i Ek. It is not difficult to verify now that his a (cofinal) 
subreduction of TkJ'' to® satisfying (CDC) for '.D. 0 

9.3 Characterizing transitive refutation frames 

This section shows how, given a modal or intuitionistic formula r.p, to construct 
a finite number of finite rooted frames J 1 , ... , Jn and to select sets '.D 1 , ... , '.Dn 
of antichains in them so that an arbitrary transitive frame J refutes cp iff there 
is a cofinal subreduction of J to Ji, for some i E {l, ... , n }, satisfying the closed 
domain condition for '.D;. 

Let us begin with selecting closed domains. Suppose cp is a modal or intu
itionistic formula and !J1 = (®,.U) a model. We say a non-empty antichain a in 
® is an open domain in !J1 relative to cp if there is a disjoint saturated tableau 
ta = (r a, Lla) with r au Lla = Subcp and such that in the modal case, for every 
01/J E Subrp, 

(ODMl) 01/J Era implies 1/J Era; 

(0DM2) 01/J Era iff a\= o+'lj; for all a Ea; 

and in the intuitionistic case, for every 'ljJ E Subrp, 

( 0 DI) 'ljJ E r a iff a \= 'ljJ for all a E a. 

Otherwise a is called a closed domain in !J1 relative to cp. 
The motivation behind this definition is as follows. Imagine that we have 

inserted a new (reflexive or irreflexive) point x just below an antichain a in ®, 
i.e., x sees only the points in aj and is accessible from some of those points in ® 
that see a. Is it possible to ext~nd the valuation .U to x so that the truth-values 
of r.p's subformulas remain the same at the old points in ® under the extended 
valuation? The openness of a is just a natural sufficient condition for the existence 
of such an extension no matter what points in® see x (cf. Theorem 9.30 below). 
It is of importance that, given r.p and a finite antichain a, we can always effectively 
decide whether a is open or closed in finite !J1 relative to cp. 

Example 9.25 The antichain {1, 2} is the only closed domain in the counter
model for wkp, depicted in Fig. 9.4. 

Example 9.26 Let us show that in any intuitionistic model every antichain is 
open relative to every disjunction free formula. Suppose that !J1 = ( ®, .U) is an 
intuitionistic model, <p a disjunction free formula and a a non-empty antichain 
in®. Let (ra,Lla) be the disjoint tableau defined by (OD1 ). We show that it is 
saturated. For A we have 

1/J AX E r a iff \la E a a \= 1/J AX 
iff \fa Ea (a I= 'ljJ A a I= x) 
iff 1/J E r a and X E r a· 

Suppose now that 1/J -+ x E r a, but 'ljJ E r a and x E Lla. Then a F 'ljJ for every 
a E a and b [;i= x for some b E a, whence b [;i= 1/J-+ x, which is a contradiction. 
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Proposition 9.27 Suppose IJt = (15,il) is a model and n, b are antichains in 15 
such that nl = bl. Then for every formula cp, n is open in 1)1 relative to cp iff b 
is open in !.51 relative to cp. 

Proof One can take ta= tb· 0 

In view of this proposition we will not distinguish between antichains n and 
b such that nl = bi (i.e., the points inn generate the same clusters as those in 
b). - -

Proposition 9.28 Every reflexive singleton n = { x} is an open domain in every 
model IJt relative to every formula cp. 

Proof The tableau ta = ( { 'ljJ E Subcp : x I= 'ljJ }, { 'ljJ E Subcp : x ~ 'ljJ}) is clearly 
disjoint, saturated and satisfies (ODMl) and (ODM2) in the modal case and 
( 0 DI) in the intuitionistic one. 0 

Proposition 9.29 Suppose IJt = (15,il) is a modal model based on a quasi
ordered frame 15 and n is an antichain in 15. Then for every intuitionistic formula 
cp, n is open in 1)1 relative to T( cp) ijJ pa is open in plJt = (p15, pil) relative to cp. 

Proof ( <¢=) Observe first that every subformula of T( cp) is either an atom or 
has the form T( 'ljJ) for some 'ljJ E Subcp or the form T( 'ljJ) --; T(x) for some 
'ljJ --; x E Subcp. Now, given an intuitionistic tableau tpa = (r pa, b:.pa) satisfying 
(OD1) for cp, we define a modal tableau ta= (ra,b:.a) as follows. First we put 
all cp's variables in r a, then put T( 'ljJ) in r a if 'ljJ E r pa and in b:.a if 'ljJ E b:.pa, 
and finally we put T( 'ljJ) --; T(x) in b:.a if T( 'ljJ) E r a, T(x) E b:.a and put it in r a 
otherwise. Clearly, ta is a disjoint saturated tableau and r a U b:.a = SubT(cp). 

Suppose D'l/J' E r a· Then either 'l/J' is a variable or 'l/J' = T( 'ljJ) --; T(x). By 
the definition, in the former case 'l/J' E r Cl• As to the latter one, assume 'l/J' E b:.a, 
which means that 'ljJ E r pa and x E b:.pa. Therefore, a ~ 'ljJ --; x for some 
a E pn, and so 'ljJ --; X E b:.pa, whence T('ljJ --; X) = D'l/J' E b:.a, which is a 
contradiction. Thus, 'l/J' E r a and ta satisfies (ODM 1). To establish (ODM2), 
suppose D'l/J' = T( 'ljJ) for some 'ljJ E Subcp. Then we have 

D'l/J' E r a iff 'ljJ E r pa by the definition 
iff\iaEpnal='l/J by(ODr) 
iff \fa E n a!= T('l/J) by Lemma 8.28 
iff \fa E n a != o+'ljJ1 since 15 is reflexive. 

(=>)Now, given a modal tableau ta= (ra,b:.a), we define an intuitionistic 
tableau tpa = (r pa, b:.pa) by taking, for every 'ljJ E Subcp, 'ljJ E r pa iff T( 'l/J) E r a 
and b:.pa = Subcp - r pa· One can readily verify that tpa is saturated. To prove 
that tpa satisfies (ODr), it suffices, by Lemma 8.28, to show that T('l/J) Era iff 
\i a E n a I= T ( 'ljJ), which can easily be done by induction on the construction of 
'ljJ. 0 

Now we prove a theorem which shows that the notion of closed domain is 
consistent with the closed domain condition. 
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Theorem 9.30 Suppose SJt = (®, il) is a finite (modal or intuitionistic} model, 
r.p a (modal or intuitionistic} formula and '.D the set of all closed domains in SJt 
relative to r.p. Then for any (modal or intuitionistic) frame J = ( W, R, P), which 
is cofinally subreducible to ® = (V, S) by some map f satisfying (CDC) for '.D, 
there is a model 9J1 = (~, ll:J) such that, for any x E domf and any 'ljJ E Subr.p, 
(9.J1, x) I= 'ljJ iff (SJt, f(x)) I= 1/J. 

Proof First we reduce the intuitionistic case to the modal one. Given an in
tuitionistic model SJt = (®, il), we construct the modal model uSJt = (u®, il). 
By Proposition 9.29, the set of closed domains in uSJt relative to T(r.p) coin
cides with '.D. By Theorem 9.23, there is a cofinal subreduction h of a generated 
subframe of uJ to u® satisfying (CDC) for '.D and such that f(x) = h(x), for 
every x E domf. So if we prove our theorem for the modal case, we shall have 
a model 9J1 based on uJ such that, for every x E domf and every 'ljJ E Subr.p, 
(9.J1, x) I= T('ljJ) iff (uSJt, f(x)) I= T('ljJ), and so, by Lemma 8.28, (p9.J1, x) I= 'ljJ iff 
(SJt, f(x)) I= 1/J. 

Now, considering the modal case, without loss of generality we may assume 
that domfi = W. Define a valuation llJ in J as follows. If x E domf then we 
take x I= p iff f(x) I= p, for every p E Var1.p. If x rf_ domf then f(xi) -f. 0, 
since f is cofinal. Let a be an antichain in ® such that ni = f(x i). By the 
closed domain condition, a is an open domain in SJt and so there is a tableau 
ta= (ra,~a) satisfying (ODMl) and (ODM2). Then we take y I= p iff p Era, 
for every y rf_ domf such that f(yi) = f(xi). 

Let us first prove that llJ is well-defined, i.e., ll:J(p) = {x E W: x I= p} is in P 
for every variable p. ll:J(p) can be represented as the union of the following two 
sets X and Y: 

X = { x E domf : x I= p}, Y = { x rf_ domf : x I= p}. 

According to (R4), we have X E P. By the definition of ll:J, if x, y rf_ domf 
and f (xi) = f(yi) then x I= p iffy I= p. So, since ® is finite, there is only a 
finite number of points Y1, ... , Yn rf_ domf such that Y = Z1 U ... U Zn, where 
Zi = {z rf_ domf: f(zi) = f(yij)}. Let Ai= f(y;j) and Bi= V - Ai· Then we 
have 

aEA; bEB; 

Therefore, YEP and ll:J(p) =XU YEP. 
Now by induction on the construction of 'ljJ E Subr.p we show that 

• for x E domf, x I= 'ljJ iff f(x) I= 1/J; 
• for x rf_ domf, x I= 'ljJ iff 'ljJ E r a, where a is the open domain in IJt associated 

with x. 

The only non-trivial case is 'ljJ = Ox. Let x E domf. If x ~ ox then y ~ x for 
some y E xj. Suppose y E domf. Then, by the induction hypothesis, f(y) ~ x 
and so f(x) ~ Ox, since f(x)Sf(y). Suppose y rf_ domf and b is the open 
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domain in !J1 associated with y. By the induction hypothesis, x E ~b and so, 
by (ODMl), ox E ~b and, by (ODM2), b ff: o+x for some b E b. Therefore, 
f(x) ff: Ox because f(x)Sb. Conversely, if f(x) ff: ox then there is z E V such 
that f(x)Sz and z ff: X· By (R2), there is y E xi for which f(y) = z; hence 
y ff: x and so x ff: Ox. 

Suppose now that x rf_ domf and a is the open domain in !J1 associated with 
x. If x F ox then y F x for all y E xi. Therefore, by the induction hypothesis, 
z F x for all z E ai, and so a F o+x for every a E a, i.e., ox E r a· To 
prove the converse, suppose Ox E fa but x ff: Ox. Then there is y E xi such 
that y ff: X· If y E domf then f(y) ff: x and so a ff: o+x for some a E a, 
which is a contradiction. If y rf_ domf then, as we have seen, z ff: o+x for some 
z E f(yi) ~ f(xi), and so again a ff: o+x for some a Ea, contrary to ox E fa· 

0 

When <p is negation free there is no need to require f to be cofinal. 

Theorem 9.31 Suppose !J1 = (<!5, .U) is a finite model, <p a negation free formula 
and '.D the set of all closed domains in !J1 relative to <p. Then for any frame 
J = (W, R, P), which is subreducible to C!5 = (V, S) by some f satisfying (CDC) 
for '.D, there is a model 9Jt = (J, QJ) such that, for any x E domf and any 
1/; E Sub<p, (!JJ?, x) f= 1/; iff (!Jt, f(x)) f= 1/J. 

Proof The only difference from the proof of Theorem 9.30 concerns the defini
tion of m, since this time x r/. domf does not imply f(xi) -::/:- 0. If f(xi) = 0 then 
we put x f= p for all variables p. The definition remains correct: 

{x rf_ domf: f(xi) = 0} = W - domfJ E P. 

Moreover, since <p is negation free, it should be clear that if f (xi) = 0 then 

x f= 1/; for every 1/; E Sub<p. 0 

Thus, if !J1 = (<!5, .U) is a finite countermodel for a formula <p and '.D the set 
of all closed domains in !J1 relative to <p then J ff: <p for every frame J which is 
cofinally subreducible to C!5 by some partial map satisfying (CDC) for '.D. Now we 
shall go in the reverse direction and show that, given an arbitrary countermodel 
9Jt = (J, QJ) for <p, one can construct a finite countermodel !J1 = (<!5,.U) for <p 
such that there is a cofinal subreduction of J to C!5 satisfying (CDC) for the set 
'.D of all closed domains in !Jt. To this end we require two definitions and two 
propositions. 

Let E be a non-empty set of formulas closed under subformulas. Given mod
els 9Jt = ( J, QJ) and !J1 = ( C!5, .U), we say a su breduction f of J to C!5 is a E
subreduction of m to !J1 if 

(i) for each x E domf, (!JJ?, x) '"""~ (!Jt, f(x)) and 

(ii) for each point x in J there is y E xi n domf which is E-equivalent to x 
in!JJ?. -

It is worth noting that, by (ii), every E-subreduction is cofinal. 
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Proposition 9.32 Suppose that Ji is a 'E-subreduction of 9J11 = (J1, 1!11) to 
9J12 = (J2, 1!12) and h a 'E-subreduction of 9J12 to 9J13 = (J3, 1!13). Then the 
composition hfi is a 'E-subreduction of 9.J11 to 9J13. 

Proof By Theorem 9.21, hfi is a subreduction of J1 to J3 . Clearly, it satisfies 
(i). To show (ii), suppose xis a point in J1. Then, by (ii), there is y E xTndomfi 
for which x '"'"'E y. Using (ii) again, we can find a point z E Ji (y)T n domh such 
that fi(y) '"'"'E z. By (R2), there is u E xI such that fi(u) = z-: It remains to 

observe that u E domhfi and that, by (i), u '"'"'Ex. 0 

Our second definition is connected with the condition (ii) of the preceding 
one. Given a model 9J1 = (J, si:J) based on a frame J = (W, R, P) and a subset 
V ~ W, we say a point x E W is 'E-remaindered in V if x '"'"'E y for some 
y E xT n V. Thus, a subreduction f of J to '13 is a :E-subreduction of 9J1 to !J1 iff 
it satiSfies (i) and every point in J is :E-remaindered in domf. 

The meaning of this notion is clarified by the following observations. Suppose 
again that we have a model 9J1 = (J, si:J) on a frame J = (W, R, P) and V ~ W. 
Taking the restrictions S and ll of, respectively, R and m to V, we obtain the 
model !J1 = ( '13, ll) on the Kripke frame '13 = (V, S), which is called the K ripke 
submode[ of 9J1 induced by V. If Q is the set of possible values in !J1 and the 
frame (!3' = (V, S, Q) turns out to be a subframe of J then !)1' = ('13',ll) is called 
a submode[ of 9J1 induced by V. 

Proposition 9.33 Suppose !J1 = ('13,ll) is the Kripke submode[ of9J1 = (J,si:J) 
induced by V ~ W and every point in J is 'E-remaindered in V. Then, for each 
x E V, (9.J!, x) '"'"'E (!J1, x). So if, in addition, !J1 is a sub model of 9J1 then the 
identity map on v is a 'E-subreduction of 9J1 to m. 

Proof The latter claim is an immediate consequence of the former one, which 
is proved by induction on the construction of formulas r.p E :E. We will consider 
only the modal case, leaving the intuitionistic one to the reader. 

The basis of induction and the cases of r.p = 1/J /\ x, 1/J V x and 1/J ~ x are 
trivial. So suppose that r.p = 01/J. If (9.J!, x) ~ 01/J then there is y E x T such 
that (9.J!, y) ~ 1/J. Since y is :E-remaindered in V, there must be a z E YT n V 
for which (9.J!, z) ~ 1/J. By the induction hypothesis, we then have (!J1, z f~ 1/J 
and so (!J1, x) ~ 01/J. Conversely, if (!J1, x) ~ 01/J then (!J1, y) ~ 1/J for some 
point y E x T n V, whence, by the induction hypothesis, (9.J!, y) ~ 1/J and so 
(9.J!, x) ~ 01/J. 0 

We are in a position now to prove the main result of this section. 

Theorem 9.34 Suppose :E is a finite set of formulas closed under subformulas. 
Then there is a constant CE such that every model 9J1 = (J, si:J) is 'E-subreducible 
to some finite model containing at most CE points. 

Proof Note at once that the intuitionistic case reduces to the modal one. For, 
given a finite set :E of intuitionistic formulas and an intuitionistic model 9J1 = 
(J, si:J), we can first take the closure TI of {T(r.p) : r.p E :E} under subformulas 
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and the model u9Jf = (u'J, \!J). Then we construct a II-subreduction f of u9J1 
to some model !J1 = (15,il) containing at most err points and, finally, take the 
skeleton p!Jl = (plB, pil). By Theorem 9.22, pf is then a subreduction of 'J to 
plB satisfying, by Lemma 8.28, the conditions (i) and (ii) for E. 

Thus, we may consider only the modal case. Suppose 8 = {p1, ... ,pn} is 
the set of variables in E. Clearly, without loss of generality we may assume 'J = 
(W, R, P) to be generated by \!J(p1), ... , \!J(pn)· The process of E-subreducing 9J1 
to a finite model can be described by the slogan "refine and remove". First we 
take 9J1o = ('Jo, \!Jo) = 9J1 and refine only that upper part of 'Jo which gives us 
the points of depth 1 in the refinement of 'Jo. Then we remove from the resulting 
frame all those points of depth > I that have E-equivalent successors of depth 
1. Thus we obtain a model 9J11 = ('J1, \!71) which turns out to be a E-subreduct 
of 9J10 . After that we refine the part of 'J1 which gives the points of depth 2 and 
remove all the points of depth > 2 having E-equivalent successors of depth 2, 
thereby obtaining a E-subreduct 9J12 of 9J11, and so on. Since there are at most 
2IEI pairwise non-E-equivalent points, this process of refining and removing must 
eventually terminate, i.e., we shall construct a E-subreduct 9J1m = ('Jm, \!:Tm) of 
9J1 whose frame is of depth m. According to Theorem 8.82, the number of points 

2IEI 
in 'Jm does not exceed 2n L:i=l Cn(i) and so we can take CE to be equal to this 
constant. 

Now we describe this construction in full details. Let 9J10 = 9J1 and suppose 
that we have already constructed a E-subreduct 9J1; = (J;, \!J;) of9J1 (based upon 
J; = (W;,R;,P;)) such that: 

• J; is generated by \!J;(pi), ... , \!J;(Pn); 
• for every d:::; i (d f:. 0), Wtd is a cover for W(d; 
• every point in wp;i is an atom in 'Ji and 

• IWtdl :::; 2ncn(d), for every d:::; i (d f:. 0). 

If W(; = 0 then 9J1; = (J;, \!J;) is the desirable E-subreduct of 9J1. Otherwise 
take all distinct maximal i-cyclic sets X 1, ... , Xk in J; = (W;, R;, P;). Unlike 
Section 8.6, this time J; is not necessarily refined, and so i-cyclic sets are not 
in general clusters of depth i + 1. What we are going to show is that they can 
be reduced to clusters of depth i + 1. It follows from the definition of i-cyclic set 
that every Xj, for j = 1, ... , k, is uniquely determined by any x E Xj; more 
precisely, 

Xj = {y E W(i : Yl n W(i is non-degenerate i-cyclic, 

Yl n W(; "'e xl n W(; and spi(x) = spi(y)} 

if xj is non-degenerate and 

if xj is degenerate. So all Xj are pairwise disjoint and k::::; Cn(i + 1). Using the 
same kind of arguments as in the proofs of Theorems 8.84 and 8.83, we can show 
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that X1 U ... U Xk is a cover for Wj>i and Xi E P; for all j = 1, ... , k. So, for 
each x E Xj, {y E Xi : x ""e y} E P;. Recall also that, by Lemma 8.79, the 
very same formulas (of variables in 8) are true in !JJ1; at 8-equivalent points in 
Xi. 

Now we define an equivalence relation "" on W; by putting 

x ""y iff either x = y or x, y E Xj, for some j E {1, ... , k}, and x ""e y. 

Let [x] be the equivalence class under"" generated by x and [X] = {[x] : x EX} 
for X E P;. By the definition of i-cyclic set, xR;y iff [x] ~ [y]l for all x, y E W;. 
Moreover, since, as we have already observed, the same formulas are true in !JJ1; 
at all points in [x], every X E P; is closed under "" and so "" is a congruence in 
J;. Therefore, by Theorem 8.68, the quotient model [!JJ1;] = ([J;], [ID;]) under "" 
is a reduct (in particular, a 'E-subreduct) of !JJ1;. Notice also that the reduction 
x 1-t [x] of J; to [J;] only "folds" the i-cyclic sets Xi into clusters of depth i + 1 
and leaves other points in J; untouched. Every point of depth i + 1 is clearly an 
atom in [J;]. 

For x E [W;], let 'Px be the conjunction of all formulas 'I/; E 'E which are true 
at x and all formulas 'X such that x E 'E and x ~ X· Denote by X the set of 
points of depth > i + 1 in [J;] which are 'E-remaindered in [W;]=i+l, i.e., 

X = LJ (xl n [ID;](cpx)) - [W;]~i+l. 
xE[W;]~i+ 1 

LetJ;+1 = (W;+l,Ri+l,~+1) bethesubframeof[J;] induced by [Wi]-X E [P;] 
and !JJ1;+1 = (J;+i, ID;+i) the submodel of [!JJ1;] based on Ji+l· Every point 
in [W;] is 'E-remaindered in Wi+1 and so, by Proposition 9.33, !JJ1;+1 is a 'E
subreduct of [!JJ1;]. Finally, using Proposition 9.32, we can conclude that !JJ1;+1 

is a 'E-subreduct of !JJ1; and hence of !JJ10 = !JJ1 as well. 0 

As a consequence of this result we obtain 

Theorem 9.35 For every formula rp, there is a constant ccp such that a frame J 
refutes rp only if there are a rooted counterntodel !J1 = ( ®, il) for rp with at most 
Ccp points and a cofinal subreduction f of J to ® satisfying (CDC) for the set '.D 
of all closed domains in !J1 relative to <p. 

Proof Let 'E be the set of rp's subformulas, !JJ1 = (J, ID) a countermodel for <p 
based on J and g a 'E-subreduction of !JJ1 to some model !J't' = (®',il') whose 
frame ®' has at most Ccp =CE points. By the definition of 'E-subreduction, !J't' is 
a countermodel for rp. If it is not rooted, we take a submodel !J1 = (®,il) of !J't' 
generated by some point in !J't' at which rp is not true. Then the partial map f 
from J onto ® = (V, S) defined by 

{ 
g(x) if g(x) EV 

f (x) = undefined otherwise 

is clearly a cofinal subreduction of J to ®· 
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It remains to verify that f satisfies (CDC) for the set :D of all closed domains 
in IJl. Suppose x E domfl and x rf_ domf. By (Rl), x rf_ domg. Since x is E
remaindered in domg, it is also E-remaindered in domf, i.e., there is a point 
y E x j n domf such that x ""E y. Now, let il be an antichain in (!; such that 
f (xi) = il j. We show that il is open in IJl. Indeed, let r., = {1P E E : x != 7fl}, 
~., = { 7fl EE : x ~ 7fl} and let t., = {f.,, ~.,). Then in the modal case, t., satisfies 
(OD Ml), since xRy and x ""E y, and the "only if' part of (ODM2). To prove the 
"if' part, suppose that a I= o+'ljl for all a E D. Then f (y) I= o+'ljl as well, since 
f(y) E Dl, and so x f= 07/J. The intuitionistic case is considered analogously. 

0 

Now, combining Theorems 9.30, 9.31 and 9.35, we obtain the frame-theoretic 
characterization of transitive refutation frames for modal and intuitionistic for
mulas, mentioned at the beginning of the section. 

Theorem 9.36 (i) There is an algorithm which, given a formula <p, returns a 
finite number of finite rooted frames Ji, ... , Jn and sets :Di, ... , '.Dn of antichains 
in them such that, for any frame J, J ~ <p iff there is a cofinal subreduction of 
J to J;, for some 1 :::; i :::; n, satisfying (CDC) for '.D;. If <p is an intuitionistic 
disjunction free formula then '.D; = 0 for all i = 1, ... , n. 

(ii) There is an algorithm which, given a negation free formula <p, returns a 
finite number of finite rooted frames Ji, ... , Jn and sets :Di, ... , '.Dn of antichains 
in them such that, for any frame J, J ~ <p iff there is a subreduction of J to J;, 
for some 1:::; i:::; n, satisfying (CDC) for'.D;. If, in addition, <pis an intuitionistic 
disjunction free formula then '.D; = 0 for all i = 1, ... , n. 

Proof (i) Let c'P be the constant mentioned in Theorem 9.35. Construct all 
possible rooted countermodels VJ!i = (Ji, l.!Ji) ' ... 'VJ!n = (Jni mn) for <p with 
:::; c'P points. Let :D; be the set of all closed domains in VJ!; relative to <p. Note 
that, by Example 9.26, :D; = 0 if <p is an intuitionistic disjunction free formula. 
The rest of the proof follows immediately from Theorems 9.30 and 9.35. 

(ii) is proved in exactly the same way, but using Theorem 9.31 instead of 
9.30. 0 

One more interesting result follows from the proof of Theorem 9.34. 

Theorem 9.37 Suppose VJ! = (J, QJ) is a model of a modal or intuitionistic 
language with a finite set of variables. Then VJ! is reducible to a model IJl = ( (!;, il) 
based upon a top-heavy frame (!;. Moreover, if J is of finite depth then (!; is finite. 

Proof Construct a sequence of models VJ10 = VJ!, VJ!i, ... in almost the same 
way as in the proof of Theorem 9.34. The only difference is that now we do not 
remove any points from frames, just refining J level by level. More exactly, using 
the terminology of that proof, we define VJ!;+l as just [VJ!;]. Of course, in general 
the new construction will not necessarily terminate, unless J is of finite depth. 

But then we have an infinite chain of reductions VJ10 ~ VJ!i 4 ... and can take 
the limit IJl = (1!5,il) of this chain. As we know, IJl is a reduct of VJ! and clearly, 
~~~~~D~ 0 
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9.4 Canonical formulas for K4 and Int 

The characterization of refutation frames, found in the preceding section, pro
vides us with a powerful frame-theoretic tool for handling modal and superintu
itionistic logics. 

Example 9.38 As a simple illustration of its capacity, we show how it can be 
applied for proving, say, the finite approximability of the Grzegorczyk logic Grz. 
According to Proposition 9.3, a frame refutes grz iff it is subreducible either to 
• or to§. Let <p be an arbitrary modal formula. By Theorem 9.36, we can 
construct finite frames J 1,. . ., Jn and choose sets '.D 1,. . ., '.Dn of antichains in 
them so that a frame J refutes <p iff there is a cofinal subreduction of J to Ji, for 
some i E {1, ... , n }, satisfying (CDC) for '.Di. Now, if each Ji is subreducible to 
• or§ (i.e., contains one of them as a subframe, since Ji is finite) then every 
frame refuting cp refutes, by Theorem 9.21, grz as well, and so cp E Grz. And 
if at least one Ji is subreducible neither to • nor to§ then it is a frame for 
Grz refuting cp. (Note, by the way, that the same argument establishes the finite 
approximability of all logics in Extlnt and NExtK4 axiomatizable by formulas 
in Tables 9.1-9.3.) 

An important feature of Theorem 9.36 is its invertibility in the sense that with 
each finite rooted frame J and each set '.D of antichains in J one can associate 
a formula which is refuted in a frame <B iff there is a cofinal subreduction of <B 
to J satisfying (CDC) for '.D. Indeed, let J = (W, R) be a finite transitive rooted 
frame, ao, ... , an its points, with ao being the root. Suppose also that '.D is some 
(possibly empty) set of antichains in J different from reflexive singletons. The 
normal modal canonical formula a(J,'.D,1-) associated with J and '.D looks as 
follows: 

n 

a(J, '.D, 1-) = /\ 'Pij /\ /\'Pi/\ /\ 'PD/\ 'Pl. __.Po, 
i=O 

where 

n 

'Pi= o+(( /\ Dpk /\ /\ Pj __.Pi)__. Pi, 
~a; Rak j=O,j,ti 

n 

'Pl! = o+( /\ Dpj /\/\Pi__. v Dpj), 
i=O a;EIJ 

n 

'Pl.= o+(f\ o+pi __. 1-). 
i=O 

Denote by a(J, '.D) the result of deleting the conjunct <pl. from a(J, '.D, 1-); it is 
called the normal modal negation free canonical formula for J and '.D. 

With intuitionistic J and '.D we associate the intuitionistic canonical formula 
(3(J, '.D, 1-) and the intuitionistic negation free canonical formula f3(J, '.D), namely 
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fJ(J;'JJ, _l_) = /\ 1/Jii A /\ 1/Jil A 1/J.i _,Po, 
a;Ra; iJE'.D 

where 

1/Jii = ( /\ Pk_-> Pi) ->pi, 
-,a1Rak 

n 

1/J.L = /\ ( /\ Pk_, Pi)_, _l_, 

and {J(J, '1J) is obtained from {J(J, 'J), J_) by deleting the conjunct 1/J .l. 
The following two results will be referred to as the refutability criteria for 

canonical formulas. 

Theorem 9.39 For any modal transitive frame ® = (V, S, Q), 
(i) ® ~ a(J, 'JJ, _l_) iff there is a cofinal subreduction of ® to J satisfying 

(CDC) for 'JJ; 
(ii) ® ~ a(J, 'JJ) iff there is a subreduction of® to J satisfying (CDC) for 

'J). 

Proof Let us first prove (i). 
(=?)Suppose a(J,'JJ,J_) is refuted in a model iJt = (®,U). Denote by cp the 

premise of a(J, 'JJ, j_) and define a partial map f from V onto W by taking 

{ 
ai if x ~ cp -> Pi 

f(x) = undefined otherwise. 

We show that f is a cofinal subreduction of® to J satisfying the closed domain 
condition for '1J. Clearly, f is a function, since x I= 'Pi and x ~ Pi imply x I= Pj, 
for all j f. i. 

Let xSy, f(x) = ai and f(y) = aj. Then aiRaj, for otherwise x I= Dpi (since 
•aiRaj, x I= 'Pi and x ~Pi) and soy I= pj, contrary to f(y) = aj. 

Let f(x) = ai and aiRai. Then x I= 'Pij, x ~Pi, whence x ~ Dpi and so 
there is y E xl such that y ~ Pj· Since x I= cp and xSy, we have y I= cp. Therefore, 
f(y) = aj. It follows, in particular, that f is a surjection, since f- 1(ao) f 0 and 
aoRaj for all j f. 0. 

By the definition, f- 1(ai) = {x E V: x ~ cp-> Pi} E Q. Thus, f satisfies 
(Rl )-(R3) and so is a subreduction of ® to J. 

Suppose x E domfl. Then x I= cp, x I= 'P.l and hence x ~Pi or x ~ Dpi for 
some i. In the former case x E domf and in the latter one there is z E xi such 
that z I= cp, z ~Pi and so z E domf. Thus, f is cofinal. 

Let x E domfi and f (xi) = ill for some () E '.D. Then x I= cp, x I= 'Pil and 
x ~ Dpi for all ai E il. Therefore, either x ~ Dpi for some ai E W - () i, or x ~ Pi 
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for some i. In the former case ai E /(xi), which is a contradiction, whereas the 
latter means J(x) = ai; that is, x E domf. Thus, f satisfies (CDC) for '.D. 

( ¢=) Suppose that f is a co final subreduction of ® to J satisfying (CDC) for 
'.D. Define a valuationilin ®by takingil(Pi) = V-1-1 (ai), for every i = 0, ... , n, 
and show that in the resultant model l)1 = (®, 11) we have x ~ a(J, '.D, _1_) for 
each x E 1-1 (ao). 

Let f(x) = ao. Then x ~ p0 , and we must prove that the premise of 
a(J,'.D, _1_) is true at x. Suppose x ~ <f'iJ> for aiRaj. Then y I= Dpj and y ~Pi 
for some y E xT, whence f(y) = ai. By (R2), there is z E yj such that f(z) = aj, 
and so z ~ PJ,-contrary toy I= Dpj and ySz. 

If x ~ <f'i then there is y E xj such that f (y) = ai and either y ~ Dpk with 
-.aiRak, or y ~ Pi for some j .,,,- i. It is clear that neither case can hold, since 
the former implies z ~Pk for some z E yj, and so aiRak, while the latter means 
f(y) = a1; that is, j = i. 

In the same way we can show that the assumption x ~ <p1J, for some() E '.D, 
contradicts (CDC) and x ~ <pl. is inconsistent with the cofinality condition. 

A proof of (ii) can be extracted in the obvious way from that of (i). 0 

In the same manner one can prove 

Theorem 9.40 For any intuitionistic frame®, 
(i) ® ~ {J(J, '.D, _1_) iff there is a cofinal subreduction of® to J satisfying 

(CDC) for '.D; 
(ii) ® ~ {J(J, '.D) iff there is a subreduction of® to J satisfying (CDC) for 

'.D. 

In general, with a frame J we can associate several canonical formulas by 
choosing various sets of closed domains: from a(J, 0, _1_) to a(J, '.D", _1_) and from 
a(J, 0) to a(J, '.D"), where '.D" is the set of all antichains in J different from 
reflexive singletons. These boundary formulas will play a particular role in the 
sequel, and we give them proper names. 

The formulas of the form a(J,'.D",_l_) and {J(J,'.D",_l_) are called the (modal 
and intuitionistic, respectively) frame formulas for J; we denote them by a" (J, l_) 
and fJ"(J, _l_). The formulas a(J, '.D") and {J(J, '.D") are called the negation free 
frame formulas for J and denoted by a"(J) and fJ"(J). 

Proposition 9.41 (i) ® ~ a"(J, _1_) (® ~ f3"(J, 1_)) iff a generated subframe of 
® is reducible to J. 

(ii) ® ~ a"(J) (® ~ fJ"(J)) iff ® is densely subreducible to J. 

Proof We consider only the formula fJ"(J) and leave the other cases to the 
reader. Suppose that ® ~ fJ"(J). Then there is a subreduction g of ® to J 
satisfying (CDC) for '.D". If g is not dense then there is a point x in the set 
domgj n domgJ - domg. By (CDC), g(xi) = ax j for some point ax in J. The 
dense -subreduction f we need can be defined by extending g as follows: 
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{ 

g(x) if x E domg 
f(x) = ax if x E domgl n domgT - domg 

undefined otherwise. 

The converse implication follows from the refutability criterion. D 

The formulas a(J, 0) and f3(J, 0) are called the subframe formulas for J and 
denoted by a(J) and f3(J). Finally, the formulas a(J, 0, 1-) and f3(J, 0, 1-) are 
called the co/foal subframe formulas for J and denoted by a(J, 1-) and f3(J, 1-). 
Clearly, we have Q5 ~ a(J, 1-) (Q5 ~ f3(J, 1-)) iff Q5 is cofinally subreducible to J 
and Q5 ~ a(J) (Q5 ~ f3(J)) iff Q5 is subreducible to J. 

Proposition 9.42 For any sets '.D and ~ of antichains in J such that '.D ~ ~' 

K4EBaU(J,1-) ~ K4EBa(J,~,1-) ~ K4EBa(J,'.D,1-) ~ K4EBa(J,1-) 
1n 1n 1n 1n 

K4 EB aU(J) ~ K4 EB a(J, ~) ~ K4 EB a(J, '.D) ~ K4 EB a(J), 

Int+ f3U(J, 1-) ~Int+ {3(J, ~, 1-) ~Int+ {3(J, '.D, 1-) ~ Int+ {3(J, 1-) 
1n 1n 1n 1n 

Int+ f3U(J) ~ Int+ f3(J, ~) ~ Int+ f3(J, '.D) ~ Int+ f3(J). 

Proof Exercise. D 

Another important feature of the canonical formulas is that they can axiom
atize all logics in NExtK4 and Extint. For combining Theorems 9.36, 9.39 and 
Proposition 9.28, we obtain the following completeness theorem for NExtK4. 

Theorem 9.43 (i) There is an algorithm which, given a modal formula <p, re
turns canonical formulas a(Ji, '.Di, 1-), ... , a(Jn, '.Dn, 1-) such that 

So the set of normal modal canonical formulas is complete for the class NExtK4. 
(ii) There is an algorithm which, given a negation free <p, returns negation 

free canonical formulas a(Ji, '.D 1), ... , a(Jn, '.Dn) such that 

The combination of Theorems 9.36 and 9.40 yields the completeness theorem 
for Extlnt. 

Theorem 9.44 (i) There is an algorithm which, given an intuitionistic t.p, re
turns canonical formulas f3(Ji, '.D 1 , 1-), ... , f3(Jn, '.Dn, 1-) such that 

So the set of intuitionistic canonical formulas is complete for Extint. 
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(ii) There is an algorithm which, for a negation free r.p, returns negation free 
canonical formulas /3(J1, '.D1 ), ... , f3(Jn, '.Dn) such that 

(iii) There is an algorithm which, given a disjunction free r.p, returns co/foal 
subframe formulas /3(J1, ..l), ... , {3(Jn, ..l) such that 

Int+ r.p =Int+ /3(J1, ..l) + · · · + {3(Jn, ..l). 

(iv) There is an algorithm which, given a negation and disjunction free r.p, 
returns subframe formulas /3(J1 ), ... , /3(Jn) such that 

Int+ r.p =Int+ /3(J1) + ... + /3(Jn)· 

As an illustration of these completeness theorems, Tables 9.6 and 9.7 show 
canonical representations of some standard normal modal and si-logics. In fact, 
these representations can be derived from Propositions 9.4, 9.5, 9.14, 9.19 and 
9.20. 

Theorem 9.45 Every si-logic L with extra axioms in one variable can be rep
resented either as 

or as 
L =Int+ nf2n-l =Int+ f3U(fln+l• ..l) + /3U(fln+2, ..l), 

where fln, fln+1, fln+2 are the subframes of the frame in Fig. 8.13 generated by 
the points n, n + 1 and n + 2, respectively. 

Proof By Theorem 7.67, L is axiomatizable by the Nishimura formulas. By 
Theorem 8.92, 

Int+ nf 2n =Int+ f3U(fln, ..l), 

Int+ nf2n-1 =Int+ /3U(fln+1, ..l) + f3U(fln+2, ..l). 

That only two additional axioms of that sort is enough follows from the obvious 
inclusion {3~(5'.Jm, ..l) E Int+ f3U(f1n, ..l) which holds for every m 2": n + 2. 0 

It follows from the completeness theorem that as far as such properties of 
logics as the decidability, completeness or finite approximability are concerned 
we can deal only with the canonical formulas. Indeed, suppose a logic L and a 
formula r.p are given. By Theorem 9.43, L is axiomatizable by a set of canonical 
formulas, which is finite if L is finitely axiomatizable. Besides, we can effectively 
construct canonical formulas a 1 , ... , an such that 

Therefore, we have r.p E L iff a; E L for every i E {1, ... , n}, and so L is decidable 
iff there is an algorithm which is capable of deciding, given an arbitrary canonical 
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Table 9:6 Canonical axioms of standard modal logics 

D4 K4 EB o:(•, ..l) 84 = K4 EB o:( •) 
GL K4 EB o:(o) For= K4 EB o:(*) (2 axioms) 
Grz K4 EB o:( •)EB o:(§) 84.1 = 84 EB o:(§, ..l) 
K4.l K4 EB o:( •, ..l) EB o:(§, ..l) 

0 

Triv K4 EB o:( •) EB o:(§) EB o:( b) 

Verum K4 EB o:(o) EB o:( I) 
0 

K4B = K4 EB o:( I) (4 axioms) 85 = 84 EB o:( b) 

84.2 \! 84EBo:( o ,..l) 84.3 = 84 EB o:( v) 
le •2 

A* = GLEBo:( v ,{{1},{1,2}}) 
• 

K4.2 
1 • v 

K4EBo:(1, ..l) EB o:( b, ..l) EB o:( , ..l) (8 axioms) 

K4.3 K4 EB o:( v) (6 axioms) 

K4Z t 0 \! v K4 EB o:( o ) EB o:( ! ) EB o:( • ) EB o:( ) 

Dum 84 EB o:(V) EB o:(ck) 

D4G1 D4 EB o:U ( v, ..l) 
K4H K4 (j) o( L <ll o(@) (9 axiom') 
K4Altn = K4 EB { o:(J) : n + 1 points are seen from the root of J} 

n+l 
~ * ... * 

K4BWn K4 EB o:( V) (2n + 4 axioms) 
tn 

K4BDn K4EBo:( I~) (2n+l axioms) 

tm 

K4n,m K4 EB o:tt ( i ~) 
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formula a:, whether or not a: E L. It follows also from this equality that for every 
frame J, J ~ cp iff J ~ o:i for some i E {l, ... ,n}. Thus, Lis complete with 
respect to a class C of frames iff for every canonical formula a: (j_ L there is a 
frame J E C validating L and refuting a:. (The same, of course, concerns logics 
in Extlnt.) 

Having proved that the set of canonical formulas is axiomatically complete, 
it is natural to ask whether it is an axiomatic basis (i.e., contains no proper 
complete subsets) and if it is not, to find such a basis. It turns out, however, 
that neither of the classes NExtK4 and Extlnt has an axiomatic basis. By 
Proposition 4.14, to show this it suffices to find prime modal and intuitionistic 
formulas and to check whether the set of them is axiomatically complete. 

Theorem 9.46 (i) cp is prime in NExtK4 iff it is deductively equal in NExtK4 
to a frame formula o:U(J, _L), i.e., K4 EB cp = K4 EB o:U(J, _L). 

(ii) cp is prime in Extlnt ifflnt+cp = lnt+.6"(J, _L), for some frame formula 
.6"(J, ..L). 

Proof We consider only the modal case, since the intuitionistic one is proved 
in exactly the same way. The proof proceeds via two lemmas. 

Lemma 9.47 (i) o:U(J,_L) E K4EB{o:(®i,'.Di,_L): i EI} iff, for some i E J, 
J ~a:(®;, '.D;, _L). 

(ii) .6"(J, _L) E Int EB {.6(®;, '.Di, ..L) : i E I} iff J ~ .6(®i, '.Di, _L) for some 
i E J. 

Proof The implication ( =?) is clear because J ~ o:U ( J, J_). 
(<==)Suppose J ~ o:(®i,'.D;,_L) for some i E J. Then there is a cofinal 

subreduction f of J to ®; satisfying (CDC) for '.D;. Now, if SJ is an arbi
trary frame refuting o:U(J, _L) then a generated subframe SJ' of SJ is reducible 
to J by some g. The composition h = f g is a cofinal subreduction of SJ' to 
®; which clearly satisfies (CDC) for '.Di· Therefore, SJ ~ o:(®i, '.Di, _L) and so 
o:U(J,..L) E K4EBo:(®i,'.Di,_L). 0 

Corollary 9.48 (i) o:U(J, ..L) E K4 EB {o:(®i, '.Di, _L): i EI} iff, for some i E J, 
o:U(J,..L) E K4EBo:(®i,'.Di,_L). 

(ii) .6"(J, _L) E Int + {.6(®;, '.Di, _L) : i E I} ifj, for some index i E J, 
f3U(J, ..L) E Int+ {3(®i, '.Di, ..L) 

It follows from this corollary that each frame formula o:U(J, ..L) is prime. 
Indeed, if L = K4EBo:"(J,..L) = K4EB{o:(®i,'.Di,_L): i E J} then there is i EI 
such that L = K4 EB o:(®i, '.Di, _L) and so L cannot be decomposed into a sum of 
logics different from L. 

Now, by the completeness theorem, to prove that each prime formula cp is 
deductively equal to some frame formula, it suffices to consider only the case 
of canonical cp. So suppose cp = o:(J, '.D, _L) and construct the countermodels 
9R1 = (J1,W1) , ... ,9Rn = (Jn,Wn) for cp such that JJI < JJil::; c'P, where c'P is 
the constant mentioned in Theorem 9.36. Let '.D 1, ... , '.Dn be the sets of closed 
domains in 9R 1, ... , 9Rn relative to cp. 
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Table 9. 7 Can.onical axioms of standard superintuitionistic logics 

For Int+ {3(0) 
0 

Cl = Int+ {3( 6) 
0 

SmL Int + {3( v) + {3( i ) 
KC Int+ {3( V, ..L) 

LC lnt+{3( v) 
SL Int+ iJ'( V. 1-) 

0 

ol o2 o li\2 o 

KP = Int+ {3( ~' { {1, 2} }, ..L) + {3( ~' { {1, 2} }, ..L) 
ol o2 o 

WKP Int+ {3( ~, {{1, 2}}, ..L) 
1 k 

ol o2 o o· · · o o 

NDk = Int+ {3( ~, {{1, 2}}, ..L) + ... + {3( V, {{1, ... , k}}, ..L) 
~n 

61 
BDn = Int+ {3( 6 0) 

n+l ----.. 0 ... 0 

BWn = Int+f3( v) 
n+l ----.. 

BTWn = 

0 ... 0 

Int+ {3( V, ..L) 
n+l ----.. 

Tn 

0 ... 0 

Int+f3U( v) 
n+l ----.. 0 ... 0 

Bn Int+ f3U( V, ..L) 
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Lemma 9.49 (i) For every modal canonical formula a(J, '.D, ..l), 

(ii) For every intuitionistic canonical formula (3(J, '.D, ..l), 

Proof By Theorem 9.30 and Lemma 9.47, the logic in the right-hand part is 
contained in that in the left-hand part. To show the converse inclusion, suppose 
91 = (®,ll) is a countermodel for a(J,'.D,..l). Let f be the cofinal subreduction 
f of® to J defined in the proof of Theorem 9.39. Two cases are possible. 

Case 1: domf = domfi. Then f is a reduction of the subframe of® generated 
by domf to J and so ® ~ att(J, ..l). 

Case 2: domf C domfi. Then the number of pairwise non-Su hip-equivalent 
points in 91 is greater thanlJI and so, by Theorem 9.34, 91 is Sub<p-subreducible 
to 9.Jti for some i E {1, ... , n }, which, as we know, implies ® [i:: a(Ji, '.Di, ..l). 

Thus, in both cases ®is not a frame for the logic in the right-hand part and 
hence a(J, '.D, ..l) belongs to it. 0 

We can now complete the proof of Theorem 9.46. Suppose a(J, '.D, ..l) is prime. 
By Lemma 9.49, 

with IJd > IJI. It follows from these inequalities and the refutability criterion 
that a(J, '.D, ..l) (j_ K4 EB a(Ji, '.Di, ..l) EB ... EB a(Jn, '.Dn, ..l). But then we have 
K4 EB a(J, '.D, ..l) = K4 EB att(J, ..l), since a(J, '.D, ..l) is prime. D 

Thus, we have characterized the sets of prime formulas in NExtK4 and 
Extlnt. However, they are not complete for these classes. For we have 

Proposition 9.50 Let J be the frame depicted in Fig. 9.6 (a). Then neither 
K4 EB a(J, ..l) nor Int+ (3(J, ..l) can be axiomatized only by frame formulas. 

Proof Suppose otherwise. Then K4 EB a(J, .l) = K4 EB {att(Ji, ..l) : i EI} for 
some frames Ji. Let ® be the Kripke frame shown in Fig. 9.6 (b). Since ® is 
cofinally subreducible to J, it refutes a(J, ..l). Then® refutes att(Ji, ..l) for some 
i E J, and so it is reducible to Ji by some reduction f. Clearly, Ji is partially 
ordered and of width ;::: 4. Let a = { a1, a2, a3, a4} be an antichain in Ji such 
that, for any antichain b of four points in Ji, a <;;; bi implies a = b. Such an 
antichain certainly exists, since Ji is finite. Without loss of generality we may 
assume that, for some k < w, f(c~) = a1, f(c~) = a2, J(c~) = a3 and f(c4) = a4. 
Suppose f(cJ+ 1) = bj for j = 1, 2, 3. By the definition of reduction, b1, b2 and b3 
do not see each other in Ji, are different from a1, a2, a3 and a<;;; {b1, b2, b3, a4}i, 
whence { ai, a2, a3} = {b1, b2, b3}, which is a contradiction. 0 

As a consequence of Theorem 9.46 and Propositions 4.14 and 9.50 we derive 

Theorem 9.51 NExtK4 and Extlnt have no axiomatic bases. 
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0 

(a) (b) 

FIG. 9.6. 

9.5 Quasi-normal canonical formulas 
Theorem 9.35, characterizing the constitution of refutation frames for a given 
formula by subreducing them to some fixed finite pattern frames, does not take 
into account at what point in a frame the formula is refuted. As a result, the 
set of normal modal canonical formulas turns out to be too small to axiomatize 
all quasi-normal extensions of K4, which are not supposed to be closed under 
necessitation. To see the reason for this, let us recall that logics in ExtK4 are 
characterized by frames with distinguished points, with a formula cp being refuted 
in (®, w) iff cp is false at w under some valuation in ®· According to the proof of 
Theorem 9.39, (®, w) refutes a(J, '.D, 1-) iff there is a cofinal subreduction f of 
® to J satisfying (CDC) for '.D and the following actual world condition as well: 

(AWC) f(w) is the root of J. 
Now, consider the frame Q5 = (V, S, Q), whose underlying Kripke frame is shown 
in Fig. 8.1 (b) and where Q consists of all finite sets of natural numbers and 
their complements in the space V. Let w be the actual world in ®. Since each 
set X E Q containing w is infinite and has a dead end, it is impossible to reduce 
X too or•, and so (®,w) validates all normal canonical formulas. On the other 
hand, we clearly have (®, w) ~ bdn for every n 2'. l. It follows in particular that 
the logics K4BDn cannot be axiomatized by normal canonical formulas without 
the postulated necessitation. 

To get over this obstacle and retain the idea of the canonical formulas we are 
forced to modify the definition of subreduction so that such sets as X above may 
be "reduced" at least to irreflexive roots of frames. Given a frame Q5 = (V, S, Q) 
with an irreflexive root u and a frame J = (W, R, P), we say a partial map f from 
W onto V is a quasi-sub reduction of J to Q5 if it satisfies (Rl) for all x, y E domf 
such that f(x) f- u or f (y) f- u, (R2) and (R3). 

Thus, we may map all points in the frame Q5 in Fig. 8.1 (b) to •, and this 
map will be a quasi-subreduction of Q5 to • satisfying (AWC). Moreover, every 
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frame is quasi-subreducible to •. 
Now, given a finite frame J with an irreflexive root a0 and a set '.D of antichains 

in J, we define the quasi-normal canonical formula a:•(J, '.D, ..l) as the result of 
deleting Op0 from 'Po in o:(J, '.D, ..L) (which says, in particular, that ao is not self
accessible); the quasi-normal negation free canonical formula o:•(J, '.D) is defined 
in exactly the same way, starting from a:(J, '.D). 

Theorem 9.52 Suppose w is the actual world in a frame®· Then 
(i) (®, w) ~ o:(J, '.D, ..l) iff there is a cofinal subreduction of® to J satisfying 

(CDC) for'.D and (AWC); 
(ii) (®, w) ~ o:(J, '.D) iff there is a subreduction of® to J satisfying (CDC) 

for '.D and (AWC); 
(iii) (®,w) ~ a:•(J,'.D,..l) iff there is a cofinal quasi-subreduction of® to J 

satisfying (CDC) for '.D and (AWC); 
(iv) (®, w) ~ o:•(J, '.D) iff there is a quasi-subreduction of® to J satisfying 

(CDC) for'.D and (AWC). 

Proof Follows from the proof of Theorem 9.39. 0 

Theorem 9.53 (i) There is an algorithm which, given a modal formula cp, con
structs a finite set ~ of normal and quasi-normal canonical formulas such that 
K4 + cp = K4 + ~. 

(ii) There is an algorithm which, given a negation free cp, constructs a finite 
set ~ of normal and quasi-normal negation-free canonical formulas such that 
K4 + cp = K4 + ~. 
Proof (i) We put c = c'P + 1 and construct all possible rooted models rot1 = 
(Ji, m1), ... , rotk = (Jk, mk) refuting !.p at their roots W1, ... , Wk, respectively, 
and containing ::; c points. Let '.Di be the set of all closed domains in roti. If 
Wi is irreflexive and, for every 0'1/J E Subcp, wi f= 0'1/J only if wi f= '1/J, then we 
associate with roti the quasi-normal canonical formula o:•(Ji, '.Di, ..l). Otherwise 
we construct the normal canonical formula o:(Ji, '.Di, ..l). Denote by~ the set of 
all resultant canonical formulas and show that K4 + cp = K4 + ~-

Suppose that (J, w) ~ cp, i.e., there is a µiodel rot = (J, m) on the frame 
J = (W, R, P) with root w such that w ~ cp. Let SJ1 = (®,il) be the Subcp
subred uct of rot constructed in the proof of Theorem 9. 34 and f the corresponding 
cofinal subreduction. Two cases are possible. 

Case 1: w E domf. Then ® is rooted and contains < c points. So SJ1 = roti 
for some i E {l, ... , k }, and f is a cofinal subreduction (in particular, a quasi
subreduction) of J to Ji satisfying (CDC) for '.Di and (AWC). Therefore, (J, w) 
refutes the canonical formula associated with roti. 

Case 2: w (j_ domf. Consider the set 

X = ( n r 1 (y)!n {x E W: x "'Sub<p w}) - domf 
yEV 

consisting of all those points in W - domf that are Su hep-equivalent tow and see 
/-inverse images of all points in®· Since® is finite, X E P. Clearly, w E X and, 
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for any D'l/J E Subcp, w ·1= D'l/J implies w I= 'l/J because w is Subcp-remaindered in 
domf (although w may be irreflexive). 

Construct a frame <5' = (V', S') by adding to C5 the new root u, which is 
reflexive iff X ~ Xl, and extend il to u so that u "'Sub.., w. Since IV'I :<==:: c, the 
constructed countermodel for cp coincides with 9.ni, for some i E { 1, ... , k}. Let 
J' be a partial map from W onto V~ defined by 

{ 

f(x) if x E domf 
J' ( x) = u if x E X 

undefined otherwise. 

If X ~ X l or X = { w} then f' is clearly a cofinal subreduction of J to Ji 
(in particular, this is the case if J is reflexive). But if X contains a dead end 
different from w, J' is only a cofinal quasi-subreduction of J to Ji. In both cases 
f' satisfies (CDC) for '.Di and (AWC), and so (J, w) refutes the canonical formula 
associated with 9.ni. 

Thus, K4 + cp ~ K4 + .6.. The converse inclusion and (ii) are established in 
the same manner as in the proof of Theorem 9.36, taking into account the fact 
that in the models 9.ni, whose associated canonical formulas are quasi-normal, 
wi I= D'l/J implies wi I= 'l/J, for every 'l/J E Subcp (this is essential for proving an 
analog of Theorem 9.30). D 

As an easy exercise, we invite the reader to prove that 

S = (K4 EB la)+ re= K4 + a(o) +a(•). 

Theorem 9.53 and its proof provide us also with the following results: 

Theorem 9.54 (i) There is an algorithm which, given a modal formula cp, con
structs a finite set .6. of normal canonical formulas built on reflexive frames such 
that S4 + cp = S4 + .6.. 

(ii) There is an algorithm which, given a negation free cp, constructs a finite 
set .6. of normal negation free canonical formulas built on reflexive frames such 
that S4 + cp = S4 + .6.. 

Proof Each quasi-normal logic L containing S4 is characterized by the class 
{(15,w) : 15 is reflexive and (15,w) I= L}. Therefore, all frames in the proof 
of Theorem 9.53 may be regarded as reflexive and so quasi-normal canonical 
formulas are redundant. 0 

As a consequence of Theorem 9.54 we obtain 

Theorem 9.55 ExtS4.3 = NExtS4.3. 

Proof We must show that every logic LE ExtS4.3 is normal, i.e., cp E L only if 
Dcp E L, for every formula cp. Suppose otherwise. Then there is cp such that cp E L 
and Dcp fj_ L. By Theorem 9.54, cp is deductively equal in ExtS4 to a conjunction 
of some (normal) canonical formulas, and so there exists a(J, '.D, 1-) E L such 
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that Da(,J, '.D, ..l) ~ L. Let (®, w) be a frame with root w validating L and 
refuting Da(,J, '.D, ..l). Since ® f= S4.3, ® is a chain of non-degenerate clusters. 
And since it refutes a(,J,'.D,..l) there is a cofinal subreduction f of® to J. It 
follows, in particular, that .J is also a chain of non-degenerate clusters and so 
'.D = 0. Let a be the root of ,J. Define a map g by taking 

{ 

f(x) if x E domf 
g(x) = a if x E r 1 (a)l- domf 

undefined otherwise. 

It should be clear that g cofinally subreduces ®to .J and g(w) =a. Consequently, 
(®, w) ~ a(,J', ..l), which is a contradiction. 0 

9.6 Modal companions of superintuitionistic logics 

As we saw in Section 3.9, the Godel translation T embeds Int into S4 in the sense 
that, for any intuitionistic formula cp, cp E Int iff T(cp) E S4. Using only this 
fact and the relationship between intuitionistic and modal frames, established in 
Section 8.3, one can reduce various problems concerning Int (e.g. proving the 
completeness, finite approximability, disjunction property, etc.) to those for S4 
and vice versa. But in fact, it turns out that each logic in Extint is embedded 
via T into some logics in NExtS4, and for each logic in NExtS4 there is one in 
Extlnt embeddable in it. 

We say a modal logic ME NExtS4 is a modal companion of a si-logic L if L 
is embedded in M by T, i.e., if for every intuitionistic formula cp 

cp EL iff T(cp) EM. 

If M is a modal companion of L then L is called the superintuitionistic fragment 
of M and denoted by pM. The reason for denoting the operator "modal logic 
1-t its superintuitionistic fragment" by the same symbol we used for the skeleton 
operator is explained by the following: 

Theorem 9.56 For every M E NExtS4, pM = {cp E ForC : T(cp) E M}. 
Moreover, if M is characterized by a class C of modal frames then pM is char
acterized by the class pC = {p.J : .J E C} of intuitionistic frames. 

Proof It suffices to show that {cp E ForC : T(cp) E M} = LogpC. Suppose 
T(cp) E M. Then .J f= T(cp) and so, by the skeleton lemma, p,J f= cp for every 
.J E C, i.e., cp E LogpC. Conversely, if p,J f= cp for all .J E C then, by the same 
lemma, T(cp) is valid in all frames in C and so T(cp) EM. , 0 

Thus, pis a map from NExtS4 into Extlnt. The following simple observation 
shows that actually p is a surjection. Given a logic L E Extlnt, we put 

TL= S4 EB {T(cp): 'PEL}. 
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Theorem 9.57 For every si-logic L, TL is a modal companion of L, i.e., L = 
pTL. 

Proof Clearly, L ~ pr L. To prove the converse inclusion, suppose <p (j. L, i.e., 
there is an intuitionistic frame J for L refuting <p. Then, using the skeleton lemma 
and Theorem 8.34, we obtain uJ f= TL and uJ ~ T(<p). Therefore, T(<p) (j. TL 
and so <p (j. pTL. 0 

Corollary 9.58 For every superintuitionistic logic L, TL is the least modal com
panion of L, i.e., the least (with respect to~) logic in p-1 (L). 

With the help of the canonical formulas we will obtain now a general charac
terization of the set p-1(L) of all modal companions of a given si-logic L. First 
let us prove a lemma. 

Lemma 9.59 Suppose J is a finite rooted intuitionistic frame, '.D a set of anti
chains in J and ® a modal quasi-ordered frame. Then 

® F= a(J, '.D, .l) iff p® F= f3(J, '.D, .l) 

and 

~ F= a(J,'.D) iff p® F= f3(J,'.D). 

Proof Follows from the refutability criteria for the canonical formulas and The
orems 9.22 and 9.23. 0 

This lemma means that the formulas a(J, '.D, .l) and a(J, '.D) behave like the 
Godel translations of f3(J, '.D, .l) and f3(J, '.D), respectively. More exactly, we have 

Corollary 9.60 For every canonical formulas (3(J, '.D, .l) and (3(J, '.D), 

84 EB T((3(J, '.D, .l)) = 84 EB a(J, '.D, .l) 

and 

84EBT((3(J,'.D)) = 84EBa(J,'.D). 

Proof Follows from Lemmas 9.59 and 8.28. 0 

Theorem 9.61. (Modal companion) A logic ME NExt84 is a modal com
panion of a si-logic 

L =Int+ {f3(Ji, '.Di, .l) : i E I} 

iff M can be represented in the farm 

where every frame Jj, for j E J, contains a proper cluster. 
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Proof ({:::) We must show that for every intuitionistic formula r.p, r.p E Liff 
T(r.p) E M. Suppose T(r.p) fl. M. Then for some quasi-ordered frame J, .J f= M 
and .J ~ T(r.p). By Lemmas 9.59 and 8.28, we then have p.J f= L, p.J ~ r.p and 
so r.p fl. L. The converse implication is more complicated. Suppose that r.p fl. L 
and .J = (W, R, P) is an intuitionistic frame separating r.p from L. We will show 
that u.J = (W,R, o-P) separates T(r.p) from M. First, by the skeleton lemma and 
Theorem 8.34, u.J ~ T(r.p). Second, by Lemma 9.59, we have u.J f= a(Ji, '.Di, j_) 
for any i E J. So it remains to show that u.J f= a(Jj, '.Dj, j_) for every j E J. 

Suppose otherwise. Then, for some j E J, we have a subreduction f of u.J 
to .Ji· Let a 1 and a2 be distinct points belonging to the same proper cluster 
in .Jj- By the definition of subreduction, f- 1(a1) <:;; f- 1(a2) l and f- 1(a2) <:;; 
f- 1 (a1)l, and so there is an infinite chain x1Ry1&2Ry2R ... in u.J such that 
{xi,x2,. . . } <:;; f- 1(a1) and {yi,y2,. . . } <:;; f- 1(a2). And since Risa partial 
order, all the points Xi and Yi are distinct. 

The set f- 1 (a1) is in o-P. By Lemma 8.32, we can represent it in the form 
f- 1(a1) = (-X1 U Y1) n ... n (-Xn U Yn), where Xi, Yi E P for any i = 1, .. "• n, 
which means in particular that Xi= Xil and Yi= Yil- Since r 1(a1)nf-1(a2) = 
0, for every point Yi there is some number ni such that Yi E Xn, and Yi fl. Yn,. 
But then, for some distinct l and m, the numbers n1 and nm must coincide, and 
so if, say, y1RYm then Xm fl. Ynm and Xm E Xn, (for y1RxmRYm)· Therefore, 
Xm fl. f- 1 (a1), which is a contradiction. 

( '*) Suppose that 

where all frames .Jb fork EK, are partially ordered and all frames .Jj, for j E J, 
contain proper clusters. By ( {:::), we have 

L = pM =Int+ {,B(.Jk, '.Dk, j_) : k EK}= Int+ {,B(Ji, '.Di, j_) : i E J} 

and so S4E9{a(Ji,'.Di,j_): i EI}= S4E9{a(Jk,'.Dk,j_): k EK}, as it follows 
from Lemma 9.59. 0 

It is worth noting that Theorem 9.61 can be presented in a somewhat more 
general form. Namely, the very same proof gives us 

Theorem 9.62 M E NExtS4 is a modal companion of 

L =Int+ {,B(Ji,'.Di,j_): i EI}+ {,B(Jj,'.Dj): j E J} 

iff M can be represented in the form 

M = S4 ffi {a(.Ji, '.Di, j_) : i E J} ffi {a(Ji, '.Di) : j E J} ffi 

{a(.Jk, '.Dk, j_): k EK} ffi {a(.Jn, '.Dn): n EN} 

where all frames .Jk and .Jn, fork E K and n E N, contain proper clusters. 
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Example 9.63 According to Theorem 9.62 and Tables 9.6, 9.7, we have the 
following equalities: 

pS4 = pS4.l = pDum = pGrz =Int, 

pS4.2 = p(S4.2 EB grz) =KC, 

pS4.3 = p(S4.3 EB grz) =LC, 

pS5 = p(S5 EB grz) =Cl. 

Corollary 9.64 For every superintuitionistic logic 

the set p- 1(L) of its modal companions forms the interval in NExtS4 of the 
form 

p- 1(L) =[TL, TL EB a(§)]= {ME NExtS4: TL~ M ~TL EB Grz} 

where TL= S4EB{a(Ji,'.Di,..L): i E J}EB{a(Jj,'.Dj): j E J}. If Lis consistent 
then this interval contains an infinite descending chain of logics. 

Proof Notice first that a(J, '.D, ..L) and a(J, '.D) are in Grz iff J contains a 
proper cluster. So p- 1 (L) ~ [TL, TL EB a(§)]. On the other hand, the si
fragments of all logics in this interval are the same, namely L. It follows that 
p- 1 (L) =[TL, TL EB a(§)]. 

Now, if Lis consistent then (3(0) ¢Land so we have 

where ([i is the non-degenerate cluster with i points. 0 

Thus, all modal companions of every si-logic Lare contained between the least 
companion TL and the greatest one, viz., TL EB a(§), which will be denoted 
by uL. 

Corollary 9.65 There is an algorithm which, given a modal formula <p, returns 
an intuitionistic formula 'l/J such that p(S4 EB <p) =Int+ 'l/J. 

Proof Follows from Theorems 9.43 and 9.61. 0 

The following theorem describes lattice-theoretic properties of the maps p, T 

and u. 

Theorem 9.66 (i) The map p is a homomorphism of the lattice NExtS4 onto 
the lattice Extint. 

(ii) The map T is an isomorphism of Extlnt into NExtS4. 
(iii) {The Blok-Esakia theorem) The map u is an isomorphism of the 

lattice Extint onto NExtGrz. 
All these maps preserve infinite unions and intersections of logics. 
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Proof Exercise. 0 

Now we give frame-theoretic characterizations of the operators T and <T. First 
let us note some evident relations between frames for si-logics and their modal 
companions. 

Lemma 9.67 (i) For every intuitionistic frame J and logic ME NExtS4, 

J f= pM iff uJ f= M. 

(ii) For every intuitionistic frame J and logic L E Extlnt, 

Jf=L iffuJf=uL. 

(iii) For every quasi-ordered frame J and superintuitionistic logic L, 

pJ FL iff J F TL. 

(iv) For every intuitionistic frame J, si-logic L and every k, 0 < k ::; w, 

Proof (i) Suppose J f= pM but uJ ~ M. In view of our previous results, it 
should be clear that uJ f= T pM and so uJ refutes some canonical axiom of 
M built on a frame with a proper cluster, which, as was shown in the proof of 
Theorem 9.61, is impossible. The converse implication follows from Theorem 8.34 
and the skeleton lemma. 

(ii) It suffices to put M = uL in (i) and use the fact that puL = L. 

(iii) and (iv) are left to the reader as an exercise. 0 

Theorem 9.68 A si-logic L is characterized by a class C of intuitionistic frames 
iff u L is characterized by the class uC = { uJ : J E C}. 

Proof (=>)According to Lemma 9.67 (ii), we must show that any modal for
mula cp fl. uL is refuted by some frame in uC. And by Theorem 9.43, we may 
assume cp to be a canonical formula, say, a(J, '.D, _1_). Besides, we know from the 
proof of Corollary 9.64 that J is partially ordered. Therefore, (J(J, '.D, _1_) fl. L, 
i.e., there is J EC refuting {J(J, '.D, _1_) and so, by Lemma 9.59, uJ ~ a(J, '.D, _1_). 

( <==) is straightforward. 0 

To characterize T we require one more lemma. 

Lemma 9.69 For every canonical formula a(J, '.D, _1_) built on a quasi-ordered 
frame J, a(J,'.D,_1_) E S4EBa(pJ,p'.D,_1_). 

Proof Let ® be a quasi-ordered frame refuting a(J, '.D, _1_). Then there is a 
cofinal subreduction f of ® to J satisfying (CDC) for '.D. The map h from J onto 
pJ defined by h(x) = C(x), for every x in J, is clearly a reduction of J to pJ. So 
the composition hf is a cofinal subreduction of® to pJ, and it is easy to verify 
that it satisfies (CDC) for p'.D. 0 
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Theorem 9. 70 A si-logic L is characterized by a class C of frames iff r L is 
characterized by the class Uo<k<w rkC, where rkC = {rkJ: J EC}. 

Proof ( =?) By Lemma 9.67 (iv), if J is a frame for L then r kJ is a frame for r L. 
So suppose that a formula a(J, '.D, ..L), built on a quasi-ordered frame J = (W, R), 
does not belong to rL and show that it is refuted by some frame in Uo<k<w TkC. 
By Lemma 9.69, a(pJ, p'.D, ..L) tJ. rL and so (J(pJ, p'.D, ..L) ti. L. Hence there is a 
frame Q5 = (V, S, Q) in C which refutes (J(pJ, p'.D, ..L). But then, by Lemmas 9.67 
(ii) and 9.59, uQ5 f= rL and ul!5 ~ a(pJ,p'.D,..L). Let f be a subreduction 
of ul!5 to pJ satisfying (CDC) for p'.D and let k = max{IC(x)I : x E W}. 
Define a partial map h from rkQ5 = (kV, kS, kQ) onto J as follows: if x E V, 
Yo E W, f(x) = C(yo) and C(yo) = {yo, ... , Yn} then we put h( (i, x)) = y;, for 
i = 0, ... , n. By the definition of Tk (see Section 8.3), for any i E {O, ... , n} we 
have 

h- 1(y;) = {(i,x): x E r 1(C(yo))} = {i} x r 1(C(yo)) E kQ. 

Now, one can readily prove that his a cofinal subreduction of Tkl!5 to J satisfying 
(CDC) for '.D. Therefore, rkQ5 ~ a(J, '.D, ..L). 

( {=) is obvious. 0 

It is worth noting that this proof will not change if we put in it k = w. So we 
have 

Corollary 9. 71 A logic L E Extlnt is characterized by a class C of frames iff 
TL is characterized by the class T wC. 

The following theorem gives a deductive characterization of the maps r and 
O". 

Theorem 9. 72 For every si-logic L and every canonical formula a(J, '.D, ..L) 
built on a quasi-ordered frame J, 

(i) a(J, '.D, ..L) Er L iff (J(pJ, p'.D, ..L) EL; 
(ii) a(J, '.D, ..L) E uL iff either J is partially ordered and (J(J, '.D, ..L) EL or J 

contains a proper cluster. 

Proof (i) The implication ( =?) was actually established in the proof of Theo
rem 9. 70, and the converse one follows from Lemmas 9.69 and 9.59. 

(ii) Suppose a(J,'.D,..L) E uL. Then either J is partially ordered, and so 
(J(J, '.D, ..L) EL, or J contains a proper cluster. The converse implication follows 
from (i) and the fact that a(J, '.D, ..L) E Grz for every frame J with a proper 
cluster. o 

The results obtained in this section not only establish some structural corre
spondences between logics in Extlnt and NExtS4 and their frames, but may be 
also used for transferring various properties of modal logics to their si-fragments 
and back. A few results of that sort are collected in Table 9.8; we shall cite 
them as the preservation theorem. The preservation of decidability follows from 
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Table 9.8 Preservation theorem 

Property of logics Preserved under 
p T lT 

Decidability Yes Yes Yes 
Kripke completeness Yes Yes No 
Strong completeness Yes Yes No 
Finite approximability Yes Yes Yes 
Tabularity Yes No Yes 
Pretabularity Yes No Yes 
V-persistence Yes Yes No 
Local tabularity Yes No No 
Disjunction property Yes Yes Yes 
Hallden completeness Yes No No 
Interpolation property Yes No No 
Elementarity Yes Yes No 
Independent axiomatizability No Yes Yes 

the definition of p, Theorem 9.72 and the completeness theorem for the canoni
cal formulas. That p preserves Kripke completeness, finite approximability and 
tabularity is a consequence of Theorem 9.56. The map r preserves Kripke com
pleteness and finite approximability, since we can define Tk in Theorem 9.70 so 
that Tk (W, R) = (kW, kR); however, r does not in general preserve tabularity, 
because rCl =SS is not tabular. The preservation of finite approximability and 
tabularity under tT follows from Theorem 9.68; Theorem 6.27 shows on the other 
hand that u does not preserve Kripke completeness. The rest of the preservation 
results in Table 9.8 will be proved later on, when we shall be considering the 
corresponding properties, or left to the reader as an exercise. 

9. 7 Exercises and open problems 

Exercise 9.1 Show that the classes VF, T and CM (and so R and V) of 
(not necessarily transitive) modal or intuitionistic frames are closed under the 
formation of subframes. ' 

Exercise 9.2 Suppose a pseudo-Boolean algebra S.B is an IC-subalgebra of a 
pseudo-Boolean algebra 2l. Prove that the map f + defined by 

'1 = { \l n B if \l n B E w'B 
f + ( ) undefined otherwise 

for every \l E W21, is a subreduction of 2l+ to S.B+· 

Exercise 9.3 Prove that if a pseudo-Boolean algebra S.B is an ICN-subalgebra 
of a pseudo-Boolean algebra 2l then 2l+ is cofinally subreducible to S.B+. 

Exercise 9.4 (S. Aanderaa) Let o 0T 'ljJ = OT ---> D'l/J, D"P'!fJ = p /\ 0'1/J and 
cp0T (cp"P) be the result of replacing every D in cp by o 0T (respectively, D"P), 
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where p fl. Varcp. Denote for convenience s2°T = T, S3°T = S4. Prove that for 
i E {2,3}, 

'P E Si iff p ---> cp"'P E Si0 T, 'P E Si0 T iff cp0 T E Si. 

Exercise 9.5 Let 2l = (A,/\, V, --->, ..l, 0) be a modal algebra and a E A. Define 
21a = (Aa, /\a, va, ->a, ..l, oa), the relativization of 2l with respect to a, by taking 

Aa = {x n a: x EA}, 

(xna) Ga (yna) = (x0y) na, for 0 E {A, V,-->}, 

oa(x n a)= O(a---> x) n a. 

Show that 21a is a modal algebra and that 2l+, is isomorphic to the subframe of 
2l+ induced by f'l!(a). Prove also that for every subframe 18 of a modal frame J 
induced by V, 18+ ~ (J+) v. 

Exercise 9.6 For a formula cp and a variable p not occurring in cp, define cpP 
inductively by taking 

qP = q /\p, q an atom, 

(1/J 0x)P=1jJP 0 xP, for 0 E {A, v,---> }, 

( 01/J )P = 0 (p ---> 1jJP) /\ p. 

Show that for every subframe 18 of a modal frame J induced by V and valuations 
min J and ll in 18 such that s.t:r(p) = V and ll(q) = s.t:r(q) n V, for all q different 
from p, s.tJ(cpP) = ll(cp). 

Exercise 9. 7 Let cp8 f = p ---> cpP, where p is a variable having no occurrences in 
cp. Show that a frame J validates cp8 f iff all subframes of J validate cp. 

Exercise 9.8 Show that the si-logic characterized by the frame in Fig. 9.6 (b) 
is not finitely approximable. 

Exercise 9.9 Let 18 be the frame depicted in Fig. 9.6 (a). Show that the logic 
K4 EB {a"(J, ..l): J is not subreducible to 18} is not finitely approximable. 

Exercise 9.10 Let a logic LE NExtK4 or LE Extlnt be finitely approximable. 
Show that NExtL or, respectively, ExtL has an axiomatic basis iff all logics in 
the class are finitely approximable. 

Exercise 9.11 Let 2l = (A,/\, V, --->, ..l) be a finite .pseudo-Boolean algebra with 
the second greatest element T'. Show that the formula 1(2l), called the charac
teristic formula for 2l and defined by 

'Y(2l) = (P.L +-+ ..l) /\/\{pa 0 Pb+-+ Pa0b: a, b EA, 0 E {/\, V,--->}}---> PT', 

is deductively equal to .B"(2l+,..l) in Extlnt. 
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Exercise 9.12 Suppose J = (W, R) is a finite rooted transitive frame, ao, ... , an 
are all its points and a0 is a root. Show that the conjunction of the formulas po, 
D(pi ---> -.pi) for i # j, D(pi ---> Opj) for aiRaj, D(pi ---> -.Opj) for -.a;Rai is 
deductively equal in NExtK4 to a(J) and that by adding to it the conjunct 
D(p0 V ... V Pn) we obtain a formula that is deductively equal to aU(J, ..L). 

Exercise 9.13 Prove that GL cannot be axiomatized by frame formulas over 
K4. 

Exercise 9.14 Show that K4 and Int have no immediate successors in NExtK4 
and Extint, respectively. 

Exercise 9.15 Show that every interval of the form [K4, L], where L is a proper 
normal extension of K4, contains a continuum of logics. Show the same for 
extensions of Int. 

Exercise 9.16 Show that there is a continuum of logics in NExtK4.3. (Hint: 
consider the formulas aU(Jn, .l), where Jn is the chain of n points of which only 
the root is reflexive, and prove that aU(Jn, .l) E K4.3 E9 att(Jm, ..L) iff n = m.) 

Exercise 9.17 Prove that KC is the greatest si-logic containing the same nega
tion free formulas as Int. (Hint: prove that (a) (3(J,'1J) f/_ KC for any J and (b) 
(3(J, 'lJ, .l) f/_ KC iff J contains a last point iff (3(J, '1J, ..L) is deductively equal to 
(3(J, 'lJ).) 

Exercise 9.18 Prove that KC is the smallest si-logic in which every formula is 
deductively equal to a negation free formula. 

Exercise 9.19 Let <p E Cl. Prove that Int+ cp = Cliff cp is refuted by the two 
0 

point chain iff cp is deductively equal to (3( b ). 

Exercise 9.20 Prove that Int+ cp = KC iff cp is refuted by the frame Y and 

I\ 
validated by Y. 
Exercise 9.21 Let ([[n be the n-point cluster. Show that 

Exercise 9.22 Construct a finitely axiomatizable modal companion of Int that 
is not finitely approximable. (Hint: use the frames in Fig. 9.6 in which c4 and 
one of the final points in (a) are replaced by two-point clusters.) 

Exercise 9.23 Construct a non-compact modal companion of Int. 

Exercise 9.24 Show that the lattice ExtL can be embedded into the lattice 
p- 1 L, for every si-logic L. 
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Exercise 9.25 Prove .that if a si-logic L is tabular then all logics in p-1 L are 
finitely approximable and finitely axiomatizable. 

Exercise 9.26 Show that A* is the greatest logic in NExtGL into which Grz 
is embeddable by +. 

Exercise 9.27 Show that Grz EB Drp is not embeddable into A* EB (Drp )+ by +, 

whern <p ~a( V). (Hint• oon,ide' the formula D(Dp ~ Dq) V D(Dq ~Op).) 
Exerdse 9.28 Show that Grz +a•( V. 1-) is a modal oompanion of Int. 

Exercise 9.29 Let M* be the quasi-normal modal logic characterized by the 
Kripke frame ~L = (Ww, Rw) with actual world o which is defined inductively 
as follows. Let (W0 , Ro) be the disjoint union of all finite rooted intuitionistic 
frames, and '.Di, for i ~ 1, the set of all antichains in (Wi-1, Ri-1). We then 
let wi = wi-1 u {Ca : a E '.Di}' Ri be the reflexive and transitive closure of 
Ri-I U {(ca,a): a Ea} and, finally, 

Ww = LJ Wi U {o}, Rw = LJ Ri U {(o,a): a E Ww}· 
i<w i<w 

Show that M* is the greatest modal companion of Int in ExtS4. 

Exercise 9.30 Prove that LE ExtS4 is a modal companion of Int iff it can be 
represented in the form 

where, for each i E J, there is an antichain a E '.Di such that xi= {x} U aj for no 
x in J and, for each j E J, Jj contains a proper cluster. 

Exercise 9.31 Show that not all logics in ExtD4.3 are normal. (Hint: consider 
the logic characterized by the chain of three points 0, 1, 2 of which only 1 is 
irreflexive and 0 is the actual world.) 

Exercise 9.32 Which of the standard modal and si-logics can be axiomatized 
by frame formulas? 

Exercise 9.33 Show that S4.l' = S4 +a(§, ..L). 

Exercise 9.34 Prove that the class of finite transitive Kripke frames is modally 
definable iff it is closed under finite disjoint unions, reductions and generated 
subframes. (Hint: use the frame formulas.) 
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Problem 9.1 What is the structure of modal formulas cp such that~ I= cp im
plies® I= cp, for every~ and every (cofinal} subframe® of~? 

Problem 9.2 Is it true that, for a si-logic L, ExtL contains an undecidable logic 
(an incomplete logic, a logic that is not finitely approximable} iff p- 1 L contains 
a logic with the same "negative" property? 

Problem 9._3 Is it true that, for a si-logic L, ExtL is continual iff p-1 L is 
continual? 

Problem 9.4 Is M* finitely axiomatizable? 

Problem 9.5 Characterize the class of all (not necessarily transitive) refutation 
frames for a given modal formula and define "canonical" formulas for ExtK. 

9.8 Notes 

The first frame-based (algebra-based, to be more precise) formulas were intro
duced by Jankov (1963b). With every finite pseudo-Boolean algebra Qt having 
a rooted dual he associated a formula, called the characteristic formula for sit, 
which is deductively equal to the frame formula pU(sit+, l.) (see Exercise 9 11). 
Jankov (1968b) used the characteristic formulas to construct the first (infinitely 
axiomatizable) si-logic that is not finitely approximable. He showed also that 
there is a continuum of logics in Extlnt. Jankov (1969) characterized the prime 
formulas in Int (Theorem 9.46 (ii)). 

In the modal case formulas deductively equal to a:U(~, l.) were introduced 
by Fine (1974a), who called them the frame formulas and used for the same 
purposes as Jankov (1968b) (see Exercise 9.12). The frame formulas are known 
also as Jankov or Jankov-Fine or splitting formulas (see also de Jongh, 1968). 

Blok (1978) noticed in fact that the logics in NExtK4 and Extlnt axiomati
zable by a single frame formula are splittings (see Section 10.5) of these lattices 
and can be used for studying their structure. An example of such a use is Ex
ercise 9.14. Other applications can be found in Chapter 12. For more references 
concerning splittings see Section 10. 7. 

Fine (1985) introduced the subframe formulas (see Exercise 9.12) and studied 
the logics in NExtK4 axiomatizable by them. For details see Section 11.3. 

The apparatus of the canonical formulas was developed in a series of papers 
(Zakharyaschev 1983, 1984a, 1988, 1989, 1992) first for Extlnt, then for NExtS4 
and finally for ExtK4. (Theorem 9.44 (iii) and (iv) was proved in Zakharyaschev 
(1981).) It is not known whether it can be extended to ExtK. A positive solu
tion to Problem 9.5 would provide us not only with a much deeper understanding 
of logics in ExtK but also of polymodal logics, as has been recently shown by 
Kracht and Wolter (1997). (There are, however, many obstacles to such a solu
tion: frames for K have no clear upper and bottom parts, not all finite rooted 
frames give rise to splittings, the notion of subframe reflects the accessibility only 
"in one step", and so forth; compare also Exercises 8.8 and 9.34.) Theorem 9.55 
is due to Segerberg (1975). 
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The Godel embedding of logics in Extint into those in NExtS4 was first 
considered by Dummett and Lemmon (1959) who defined the map T and showed 
that TL is a modal companion of L. A few years before the Kripke semantics 
was constructed they conjectured that if a si-logic Lis characterized by a Kripke 
frame~= (W, R) then TL is characterized by w~ = (wW, wR). 

A systematic study of the rela:tionship between Extlnt and NExtS4 was 
started by Maksimova and Rybakov (1974), Blok and Dwinger (1975), Blok 
(1976) and Esakia (1979a, 1979b). Maksimova and Rybakov introduced the maps 
p and u (the latter only in an algebraic form), proved Theorems 9.56, 9.66 (i), 
(ii) and 9.68 and showed that p-iL = [rL,uL]. That pS5 =Cl was first noted 
by Hallden (1949). 

Blok (1976) and Esakia (1979a, 1979b) established that uL = rL EB Grz 
and proved Theorem 9.66 (iii). The semantic characterization of T, giving in 
particular a positive solution to the conjecture of Dummett and Lemmon, was 
obtained by Zakharyaschev (1989, 1991); the modal companion theorem and 
Theorem 9. 72 were also proved there. 

The embeddings of logics in NExtGrz into those in NExtGL via the transla
tion +, and thereby the embeddings of si-logics into normal extensions of GL via 
T+, were considered by Kuznetsov and Muravitskij (1986). They defined a map 
µ from NExtGL into NExtGrz by taking µL = { cp : cp+ E L} and proved that 
µis a surjective semilattice n-homomorphism (but not a lattice homomorphism, 
since in general we do not have µ(Li EBL1) =µLi EBµL2). Muravitskij (1988) ob
served that GLEBf is the smallest logic in µ-i(GrzEBr). As to the greatest one, 
Artemov (1987b) discovered that Grz is embedded by + into a proper normal 
extension of GL. Shavrukov (1991) proved that A* and S +A* are the greatest 
logics in NExtGL and ExtS, respectively, into which Grz is embedded by +. 
(That + embeds Grz into S was proved by Boolos (1980).) Both these logics 
turn out to be decidable, though are not finitely approximable. However, as was 
observed in Chagrov and Zakharyaschev (1992), the analog of the Blok-Esakia 
theorem does not hold in this case; for details see Exercise 9.27. 

By Shavrukov's result, A* is the greatest companion of Int in NExtGL with 
respect to T+. This contrasts to Chagrov's (1990b) result, according to which 
there is a continuum of maximal T+ -companions of Int in ExtS. 

Chagrov (1985b) observed that there is a modal companion of Int in ExtS4 
which contains Grz properly (see Exercise 9.28.) Zakharyaschev (1996c) gave a 
characterization (in terms of canonical formulas) of the set of quasi-normal com
panions of Int and constructed both syntactically and semantically the greatest 
logic M* in this set. Like A*, M* is decidable but not finitely approximable 
(see Exercises 9.29 and 9.30). For a survey of results concerning embeddings of 
si-logics into modal logics consult Chagrov and Zakharyaschev (1992). 

Exercises 9.5-9.7 were taken from Kracht (1990) and Wolter (1993). The 
result of Exercise 9.10 was also proved by Wolter (1993). Exercises 9.17-9.20 are 
due to Jankov (1968a) and Exercises 9.23, 9.24 to Rybakov (1976, 1977). The 
results of Exercise 9.25 were obtained by Maksimova and Rybakov (1974) and 
Rybakov (1976). 



Part IV 

Properties of logics 

Having laid in Part III a solid semantic foundation for investigating modal and 
superintuitionistic logics, we are in a position now to attack more concrete prob
lems. The main question of this part is the following one: given a modal or 
superintuitionistic logic, how can we recognize whether it has such and such 
desirable properties? We have already seen how such properties as decidability, 
Kripke completeness, finite approximability, disjunction property, etc., can be 
proved for a few particular systems. Now we try to find general methods for 
proving these properties which cover wide families of logics. 
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KRIPKE COMPLETENESS 

Perhaps the most desirable property of a logic is its decidability. However, the 
main tool for proving it (at least in the realm of modal and superintuitionistic 
logics) is Harrop's theorem, according to which the decidability of a finitely 
axiomatizable logic follows from its finite approximability. Likewise, to prove 
many other properties of a logic, it is desirable first to establish its completeness 
with respect to some good class of frames, the simpler the better. 

That is why we begin our study oflogics' properties with general completeness 
results. We are going to descend the stairs of the hierarchy in Section 4.3, starting 
from Kripke completeness. 

10.1 The method of canonical models revised 

The essence of the method of canonical models is to show that the canonical 
(Kripke) frame JL of a given logic L validates L; if this is the case then L is 
Kripke complete. Now, being equipped with general frames, we can generalize 
the method in the following way. 

Given a class C of (general) frames, we say L is C-persistent if, for every J E C, 
J f= L implies ""J f= L (recall that the operator "" gives the underlying Kripke 
frame of J). We denote by ,,.,c the class {""J: J EC} and put C* =CU ,,.,c. 
Proposition 10.1 If a logic L is both C-complete and C-persistent then L is 
""C-complete and in particular Kripke complete. 

Proof Since Lis C-complete, it is characterized by some subclass C' of C. Since 
Lis C-persistent, it is sound with respect to ""C'. And since every formula refuted 
by a frame J is also refuted by ,,.,J, L is characterized by ""C'. Hence L is ,,.,c_ 
complete. O 

Since, as we know from Section 8.4, every modal and superintuitionistic logic 
is VF-, T-, R-, CM- and V-complete, we immediately obtain the following: 

Corollary 10.2 If a logic L is VF-persistent (respectively, T-, R-, CM- or 
V-persistent) then L is Kripke complete. 

As an illustration let us prove 

Theorem 10.3 Each LE NExtAltn is VF-persistent, for any n < w. 

Proof The key observation in the proof is that for every finite set of points 
X = {x1, ... , Xrn} in a differentiated modal frame J = (W, R, P) there are 
disjoint sets X1, ... , Xrn E P such that Xi n X ={xi}, for i = 1, ... , m. 
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Suppose J is a differentiated frame for L but KJ li= L. Notice first that 
each point x0 in J has :::; n distinct alternatives. For if there are distinct points 
x 1 , ... , Xn+i accessible from xo then we can put X = {xi, . .. , Xn+i} and define 
a valuation QJ in J by taking QJ(pi) = W - Xi, where Xi E P are disjoint and 
Xi n X ={xi}· It is readily checked that altn is false at Xo under QJ, which is a 
contradiction. 

Now, let a formula cp EL be refuted at x in KJ under some valuation m. Put 
X = .xi0 U ... U xid, where d = md(cp). Since no point in J has more than n 
successors, X is finite, say, X = {xi, ... , Xm}· Take disjoint sets Xi E P such 
that Xi n X = {xi} and define a valuation 11 in J so that for every y E Xi and 
every variable p, y E ll(p) iff Xi E QJ(p), i = 1, ... , m. Thus, the valuations m 
and 11 coincide on the points in X and so, by Proposition 3.2, cp is false at x 
under 11, contrary to J I= L. 0 

Clearly, DF-, T-, R-, CM- and D-persistence are preserved under sums of 
logics. Moreover, the operators p and T preserve all these properties save DF
persistence. Indeed, suppose a logic M E NExtS4 is D-persistent and J is a 
descriptive frame for pM. By Theorem 8.53, uJ is a descriptive modal frame 
which, by Lemma 9.67, validates M. Since KUJ ~ KJ, we then have KJ I= Mand 
so KJ c~ pKJ) is a frame for pM. Suppose now that LE Extint is D-persistent 
and let J be a descriptive frame for r L. Then pJ is a descriptive frame for L and 
so pKJ c~ KpJ) validates L. Therefore, by Lemma 9.67, KJ I= TL. The same 
argument shows that p and r preserve T-, R- and CM-persistence. However, 
the operator u does not preserve them, witness the couple Int and uint = Grz, 
in which only Int is D-persistent. 

The following observation may be also of interest. 

Proposition 10.4 A modal or superintuitionistic logic L is D-persistent iff it 
is UL-persistent, where UL is the class of universal frames for L. 

Proof The implication (=>) follows from UL ~ D. To show ( <=) suppose J is 
a descriptive x-generated frame for L. Then by Theorem 8.60, J is a generated 
subframe of JL(x). And since KJL(x) I= L, we must also have KJ I= L. 0 

Each D-persistent logic is clearly canonical and so strongly Kripke complete. 
We give now a semantic characterization of strongly complete logics in NExtK 
and Extint. Say that a normal modal or si-logic L is x-complex, x a cardinal, 
if every modal (respectively, pseudo-Boolean) algebra for L with :::; x generators 
is a subalgebra of J+ for some Kripke frame J validating L. 

Theorem 10.5 For every logic L E NExtK in an infinite language with x vari
ables the fallowing conditions are equivalent: 

(i) L is strongly Kripke complete; 
(ii) L is x-complex; 
(iii) L is strongly globally Kripke complete. 

Proof (i) => (ii) Let 2l be a modal algebra for L with :::; x generators and m a 
valuation in 2l such that the set of all QJ(p), pa variable in the language of L, 
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generates Q(. (One can consider mas a homomorphism of silL(x) onto Qt.) Let V' 
be a prime filter in Qt and 6. its complement prime ideal. The pair t = (V'', 6.'), 
where 

V'' = {cp: m(cp) EV'}, 6.' = {cp: m(cp) E 6.}, 

is then a maximal £-consistent tableau (for otherwise we would have a E V' 
and b E 6. such that a --> b = T, which is impossible). Since L is strongly 
complete, there is a rooted model 9.Jtv = (Jv, mv) based upon a Kripke frame 
Jv for L and such that t is realized at its root xv. Consider the disjoint union 
9Jt = (J,ll) of all such 9.Jtv. By the disjoint union theorem, the Kripke frame J 
validates L. Let ~ = (W, R, P) be the general frame associated with 9.Jt. Clearly 
~+ is a subalgebra of J+. We show now that the map m(cp) i--; ll(cp) is an 
isomorphism from Qt onto ~+. It follows immediately from the definition that 
this map is a surjective homomorphism. So, by Theorem 7.71, it remains to show 
that m ( cp) = T iff ll( cp) = W, for every formula cp. In the modal case we have 

m(cp) = T iffVn < w m(oncp) = T 

iffVn < wVV' E W21 m(oncp) EV' 

iff Vn < wVV' E W21 oncp E V'' 

iff Vn < wVV' E W21 xv F oncp 

iff ll( cp) = w. 

(ii) ==> (iii) Suppose r If£ cp. Then by Theorem 7.73, there is an algebra Qt 
for Land a valuation min it such that m('ljJ) = T, for all 1/J Er, and m(cp) =IT. 
Without loss of generality we may clearly assume Qt to have s; x generators. 
Since L is x-complex, there is a Kripke frame J = (W, R) for L such that Qt is 
(isomorphic to) a subalgebra of J+ and we can consider mas a valuation in J. 
Put 9Jt = (J, m). But then 9Jt Fr and 9Jt ~ cp. 

(iii) ==> (i) Suppose r is an £-consistent set of formulas and p a variable not 
occurring in r (here we use the fact that x is infinite). Put 

/:!,. = {p} U {on (p --> cp) : cp E r, n < w} 

and show that 6. is L-consistent too. Indeed, let 6.' be a finite subset of 6.. 
Without loss of generality we may assume that 6.' consists of p and the formulas 
of the form on (p --> cp), where n < m and cp E r', for some m < w and finite 
f' ~ r. Since r is £-consistent, there is a model 9Jt = (J, m) based on a frame 
for L and such that x F r for some x in J. Define a new valuation ll in J by 
taking ll(p) = m(j\r') and ll(q) = m(q) for q =Ip. Under ll we clearly have 
x F 6.'. Consequently, 6. is L-consistent. 

By the deduction theorem, it follows that {p --> cp : cp E r} lf'L -.p. Since L 
is strongly globally complete, there is a model lJl based on a Kripke frame for 
L and such that lJl F p--> cp, for all cp E r, and (!Jt, x) F p, for some x in !Jl. 

Therefore, x Fr, which completes the proof. 0 
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In the intuitionistic case this theorem reduces to 

Corollary 10.6 A si-logic in a language with x variables is strongly K ripke 
complete iff it is x-complex. 

As another consequence we show that the operator T preserves strong com
pleteness. Suppose L is a strongly complete si-logic in the infinite language with 
x variables and J a descriptive frame for TL with ::::; x generators. Then pJ is 
a descriptive frame for L with ::::; x generators. Since L is x-complex, there is a 
Kripke frame ® for L such that pJ+ is a subalgebra of ®+. Let x' be a cardinal 
which is bigger than IJI. Then the Kripke frame x® (obtained from ® by re
placing its points with x'-point clusters) validates TL and it is not hard to check 
that J+ is a subalgebra of (x'®)+. Thus, TL is x-complex and so strongly com
plete. That p preserves strong completeness can be proved using a syntactical 
argument; we leave this to the reader. 

To establish that the canonical frame JL validates L, we showed in Section 5.2 
that JL satisfies some first order sentence ¢; which characterizes the class of 
Kripke frames for L. Of course, nothing prevents us from trying to characterize 
classes of general frames by such kind of sentences. Given a class C of general 
frames, we say a logic Lis C-elementary if there is a set <I> of first order sentences 
(in the language with Rand= as its only predicates) such that, for every J EC, 
J is a frame for L iff J is a (classical) model for <I>. A first order sentence ¢; in 
R and = says nothing about sets of possible values, and so a general frame J 
satisfies ¢; iff KJ satisfies ¢;. Therefore, we have 

Proposition 10. 7 If a logic L is C* -elementary then it is C -persistent. 

And now, combining Propositions 10.1 and 10.7, we arrive at 

Theorem 10.8 If a logic L is C-complete and C* -elementary then L is KC
complete and in particular, Kripke complete. 

Thus, to prove the Kripke completeness of a logic L, it suffices to find a first
order characterization of frames for L in some class C* which is big enough to 
ensure C-completeness of L. For instance, one can take as C any of the classes 
mentioned in Corollary 10.2. 

Example 10.9 Suppose Lo E NExtK is T- (or R- or D-) persistent (and so 
Kripke complete). With the help of Theorem 10.8 we can prove that the logic 
L = L 0 EB Op---> DDp is also Kripke complete. 

Take the class C of all tight (or, respectively, refined or descriptive) frames for 
Lo and establish that Lis C*-elementary. In fact, we show that, for every J EC*, 
J I= L iff J is transitive. Indeed, suppose J = (W, R, P) validates Dp ---> GlDp 
but there are points x, y, z in J such that xRyRz and •xRz. By the tightness 
of J, we then have a set XE P for which x E DX and z rj_ X. Define a valuation 
m on J by taking \t:r(p) = x. Then, under this valuation, x F Op but x [it'.: DDp, 
since z [it'.: p, which is a contradiction. The converse implication follows directly 
from Proposition 3.31. 
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FIG. 10.1. 

But how to find a first order equivalent of a given formula, if any, modulo 
some appropriate class of frames? In Sections 2.5 and 3.5 we used ad hoc tech
niques for obtaining first order equivalents of several particular formulas in the 
class of Kripke frames. However, it turns out that for an extensive family of 
modal formulas there is a purely mechanical procedure effectively constructing 
first order equivalents (in R and =) in the class D*, which immediately gives 
us 'D-persistence, canonicity and strong Kripke completeness plus a first order 
characterization of Kripke frames. This result, known as Sahlqvist's theorem, will 
be proved in Section 10.3. But before that we establish a deep connection be
tween the notions of elementarity, completeness and 'D-persistence, which shows 
that the method of canonical models is applicable to all logics characterized by 
elementary classes of Kripke frames. 

10.2 'D-persistence and elementarity 

We consider first the modal case and then use the preservation theorem to trans
fer the main result to superintuitionistic logics. 

The difference between ordinary Kripke frames and the underlying Kripke 
frames of descriptive frames is that the latter may be regarded as the sets of 
ultrafilters over the world spaces of the former. Given a Kripke frame J = (W, R), 
the Kripke frame ~(J+)+ is called the ultrafilter extension of J and denoted by 

J = (w, ii} We remind the reader that Wis the set of ultrafilters in J+ (i.e., 

in the Boolean algebra with the universe 2w) and, for all ui,u2 E W, u1Ru2 iff 
VX ~ W (DX E u1--> XE u2). 

Example 10.10 Let J = (W, R) be the frame depicted in Fig. 10. l (a). Then 
J is of the form shown in Fig. 10.l (b), i.e., J can be obtained from J by 
adding to it a continual root cluster. Indeed, the set W consists of two types 
of ultrafilters: principal and non-principal. Principal ultrafilters are sets of the 
form a= {X ~ W: a EX}, where a E W. Every non-principal ultrafilter must 
contain all cofinite subsets in W; such ultrafilters will be denoted by the letters 
u and v. 

Observe first that, for every u, v and a, we have uRa and uRv. For suppose 
DX E u. Since 0 <f. u, the set DX is not empty. Hence, DX must be infinite 
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(because every non-principal ultrafilter contains only infinite sets) and so there 
is only one possibility: DX = W, from which X = W, X E a and X E v. It is 
easily seen that aRb iff aRb. That the root cluster in J contains a continuum of 
points is proved in the next theorem. 

Clearly, every finite frame is isomorphic to its ultrafilter extension. However, 
the ultrafilter extensions of infinite frames are essentially different. 

Theorem 10.11 If a frame J is denumerable then J is continual. 

Proof It is sufficient to show that over a denumerable set W there is at least 
a continuum of ultrafilters. Let W = {a0 ,a1 ,a2 , .. . }. Construct the sets Xo = 
{ao,a2,a4, ... }, X1 = {a1,a3,a5, ... }. Notice that they cannot belong to the 
same ultrafilter, since Xo = W - X1. 

Suppose now that we have already constructed infinite sets 

Consider the sets 

Since they are disjoint, they cannot belong to the same ultrafilter. 
Let i 1i2i3 ... and ji}2j3 ... be distinct infinite words in the alphabet {O, 1}. 

By the construction, the sets 

cannot belong simultaneously to the same ultrafilter. It remains to notice that 
there are a continuum of sets of that sort, each of them has the finite intersection 
property and so belong to an ultrafilter over W. 0 

On the other hand, we obviously have 

Proposition 10.12 A frame J is isomorphic to a subframe of J, with the map 
x 1-t x being an isomorphism. 

Of course, in general J is not a generated subframe of J. Take, for instance, 
the frame J = (w, <). Then every point in w sees a point in W. In the ultrafil
ter extensions of (Q, <) and (JR,<) "old" and "new" points are heavily mi:ired. 
However, in some cases we can determine the position of J in J perfectly well. 

Theorem 10.13 Suppose J = (W, R) is a transitive frame all points in which 
are of finite depth and, for every d < w, w=d is finite. Then J is (isomorphic 
to) a generated subframe of~, with w = w<oo = w<00

• 
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Proof Let u be a non-principal ultrafilter over W and a a principal one, for 
a E W. Clearly, a E O(ai) Ea. Since aj is finite, aj(i u and so a does not see u 

in J. Therefore, in view of Proposition 10.12, J is a g:_enerated subframe of J. 
We show that every non-principal ultrafilter u in J sees points from J of any 

finite depth. Let us begin with points of depth 1. Suppose a 1, ... , an are all such 
points and u sees none of them. This means that there are sets X 1, ... , Xn ~ W 
such that OXi Eu (and so O(X1 n ... n Xn) Eu), but Xi \i ai, i.e. ai \i Xi, for 
1 ::; i ::'.: n. Let X = X1 n ... n Xn. By the definition, OX is infinite and ai \i X. 
Therefore, there are infinitely many points in J which see only points in X. It 
follows that X -/=- 0, for otherwise J would contain infinitely many dead ends. 
But if a point x in OX sees any point in X then (by transitivity) xRai, for some 
i ::; n, and so ai E X, which is a contradiction. 

Let us prove now that u sees points a of an arbitrary finite depth. Suppose 
otherwise, i.e., u does not see points of depth > m, and let a 1, ... , an be all the 
points in J of depth m + 1. Suppose also that X 1, ... , Xn are such that OX Eu 
and ai ¢ X, for 1 ::'.: i ::'.: n, where again X = X 1 n ... n Xn. The set X consists 
of points of depth ::'.: m, for otherwise a point in OX would see one of ai, which 
means that ai E X. By the definition, there are finitely many points seeing only 
points of depth ::'.: m. So the set OX is finite, contrary to u being a non-principal 
ultrafilter. 0 

The requirement of finiteness of w=d in Theorem 10.13 is essential. Without 
it the result does not hold: the ultrafilter extension of (w, 0) is just a continual 
set of mutually inaccessible points. However, we clearly have 

Corollary 10.14 If a Kripke frame J is transitive and each of its points has a 
finite number of successors then J ~ J. 
Theorem 10.15 If J is a transitive rooted frame then J is also rooted. 

Proof Suppose J = (W, R) and aj = W. We show that aRx for every x E W. 
If x = b, for some b E W, then aRb follows from Proposition 10.12. Let u be 
a non-principal ultrafilter over W. Take any set OX in a. Then a E OX, from 
which X = W or X = W - {a}. In both cases Xis in u (as well as in any other 
non-principal ultrafilter). Therefore, aRu. 0 

The following example demonstrates that the requirement of transitivity was 
essential in Theorem 10.15. 

Example 10.16 Let J = (w, R), where R = { (n, n + 1) : n E w }. We show 
that J is not rooted. Observe first that there is no point x in J such that xRO. 
Indeed, since O(w - {O}) = w, we have O(w - {O}) Ex for every x in J; however, 
w - {O} ¢ 0. Thus, if J is rooted then 0 is its root. 

Now we show that, for every n < w, nRx implies x = n+l. Since O{n+l} = 

{n}, we have O{n + 1} En and then nRx means {n + 1} Ex, i.e., x = n+l (if 
an ultrafilter contains a singleton then it is generated by the singleton). Hence 
fSR.nx means x = n. Ergo 0 cannot be a root of J, because the cardinality of J 
is that of the continuum. 
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After clarifying to some extent the relation between frames and their ultra
filter extensions, let us return to modal logics. 

Proposition 10.17 For every Kripke frame J and every logic L, J f= L implies 
J f=L. 

Proof According to Corollary 8.25, J+ is a subalgebra of (J)+. 0 

It follows immediately from the definition of ultrafilter extension that for a 
'D-persistent logic the converse is also true. 

Proposition 10.18 For every Kripke frame J and every 'D-persistent logic L, 
J f= L implies J f= L. 

We are in a position now to prove the main result of this section. 

Theorem 10.19. (The Fine-van Benthem theorem) If a logic LE NExtK 
is characterized by an elementary class C of Kripke frames then Lis 'D-persistent. 

Proof We consider here only the case of elementary L, i.e., C is assumed to be 
the class of all Kripke frames for L. The general case is left to the reader (for a 
hint see Exercise 10.11). 

Let <I> be a set of first order sentences in the language £ 1 with R and = as 
its only predicate symbols such that, for every Kripke frame J, J E C iff J f= <I>. 
Take any J = (W, R) in C and enrich the language £ 1 with the unary predicate 
Px, for every X ~ W, and the individual constant Ca, for every a E W. We 
will interpret Px(x) in J as x E X, Ca as a and instead of Ca write simply a if 
understood. Let <I>' be the set of sentences in the enriched language £~ that are 
true in J. Clearly, we have <I> ~ <I>' and for every sentence </> in £~, either </> E <I>' 
or --..<f> E <I>' (in particular, if</> is a sentence in £ 1 and </></.<I> then --..<f> E <I>'). 

After that we again extend our first order language in the following way. Let 
II be a set of formulas in £~ with one free variable x such that, for each finite 
subset II' of II, there is a point a in J at which all the formulas <f>(x) E II' 
are satisfied, i.e., J f= </>(a). We associate with each such II a new individual 
constant c, add it to£~, thus obtaining a language £7, and add <f>(c) to <I>' for 
every <f>(x) E II, thus obtaining a new set <I>". 

Note that for each ultrafilter u over W, we have introduced a new constant
denote it by c11-such that Px(c11 ) E <I>" for all X E u. Indeed, since u has 
the finite intersection property, for every finite subset {Px1 (x), ... , Pxn (x)} of 
{Px(x) : X Eu}, there must be a point a E W such that a E X1 n ... n Xn, 
i.e., J f= Px1 n ... nXn (a) or, in other words, J f= Px 1 (a), ... , J f= Pxn (a). 

Since every finite subset of <I>" has a model (e.g. J}, by the compactness 
theorem of classical model theory, <I>" also has a model, say J' (W', R'). 
Clearly, J' E C and J C J'. 

Define a map f fro~ W' into W by taking, for each a E W', 

f(a) = {X ~ W: J' f= Px(x)[a]} 

and show that f is a reduction of J' to J, from which it will follow that J f= L. 



V-PERSISTENCE AND ELEMENTARITY 345 

Let us check first that f (a) is an ultrafilter over W, i.e., it satisfies the con
ditions (4a)-(4c) in Theorem 7.23 and, for every X s;:; W, either X or W - X 
is in f(a). (4a) follows from J' I= Pw(a) (since Vx Pw(x) E <I>'); (4b) is en
sured by J' I= Px(a) /\ Py(a) +---> Pxny(a). J' I= Px(a) -> Py(a), for any 
X s;:; Y, implies (4c). Finally, suppose X (/. f(a), i.e., J' I= •Px(a). Then, using 
J' I= •Px(a) +---> Pw-x(a), we obtain J' I= Pw-x(a) and so W - XE f(a). 

Now we show that f is a surjection. Let u E W. If u is a principal ultrafilter, 
i.e., u =a for some a E W, then clearly f(a) =a. And if u is not principal then 
we have J' I= Px(Cu) iff XE u, and sou= f(cu)· 

It remains to verify the reduction conditions (Rl) and (R2). Suppose aR'b 
and DX E f(a), i.e., J' I= Pox(a). Since the formula 

VxVy (Pox(x) /\ xRy-> Px(y)) 

is true in J, it must be also true in J'. Therefore, J' I= Px(b), i.e., XE f(b), and 
so f(a)Rf(b). Thus, (Rl) holds. To verify (R2), suppose f(a)Rf(b) and show 
that there is a point c in J' such that aR'c and f(c) = f (b). Consider the set 
of conditions Px(z), for X E f(b), and aRz. Every finite subset of this set, say 
{Px, (z), ... , Pxn(z), aRz}, or equivalently {Px(z), aRz}, for X = X1 n ... nXn, 
is satisfied in J at some point z. Indeed, suppose that J ~ Px(z) /\ aRz for any 
z E W, i.e., JI= Vz (aRz-> •Px(z)). Then JI= Vz (aRz-> Pw-x(z)), whence 
D(W - X) E f(a) and so, since f(a)Rf(b), we have W - XE f(b), contrary to 
XE f(b). By the definition of J', there is c E W' such that aR'c and J' I= Px(c), 
for all X E f(b). It remains to establish f(c) = f(b). The inclusion f(b) s;:; f(c) 
is evident. Suppose X E f(c), i.e., J' I= Px(c). If X (/. f(b) then W - X E f(b) 
and so J' I= Pw-x(c), contrary to J' I= Px(c) and f(c) being a proper filter. 
Therefore, f(c) s;:; f(b). 

Thus, we have showed that J E C whenever J E C. To complete the proof 
of the Fine-van Benthem theorem, suppose 15 is a descriptive frame for L and 
show that Kl5 I= L. 

Algebraically ~ I= L means that ~+ E VarL and so, by Tarski's theorem 
(Theorem 7.80), 15+ E HSPC+, where c+ = {J+ : J E C}. Clearly, C is closed 
under disjoint unions and so, by Theorem 8.75, c+ is closed under direct prod
ucts, i.e., Pc+ = c+. Hence, 15+ E HSC+. This means that 15+ is a homomorphic 
image of an algebra 2l which, in turn, is a subalgebra of some ~ E c+. By Theo
rem 8.59, 15 is a generated subframe of 2l+ and, by Theorem 8. 71, 2l+ is a reduct 
of~+· Since J E C implies J E C, we may assume that ~+ is isomorphic to a 
descriptive frame ,fJ such that K,f) I= L. Then K2l+ is a reduct of K,f), from which 
K2l+ I= L by the reduction theorem, and K~ is a generated subframe of K2l+, 
from which Kl5 I= L by the generation theorem. 0 

To transfer the Fine-van Benthem theorem to si-logics we require one more 
preservation theorem. 
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Theorem 10.20 If a logic L E Extlnt is characterized by an elementary class 
of Kripke frames then TL is also characterized by an elementary class of Kripke 
frames. 

Proof Suppose L is characterized by a class C of intuitionistic Kripke frames 
and <I> is a set of first order formulas (in = and R) such that, for any Kripke 
frame J, J E C iff J I= <I>. Of course, we may assume <I> to contain the axioms 
of partial order. By Theorem 9.70 (in which we take Tk(W,R) = (kW,kR)) 
and the skeleton lemma, TL is characterized by the class C' of all quasi-ordered 
Kripke frames \!3 such that p\!5 E C. We show that C' is elementary, namely C' 
is the class of models for the set <I>' = { ef/ : </> E <I>} of first order formulas, 
where ¢' is obtained from ¢ by replacing every subformula of the form x = y 
with xRy /\ yRx. Indeed, under this transformation the axioms of partial order 
become the axioms of quasi-order. Besides, by induction on the construction of 
¢(xi, ... , Xn) it is easy to prove that, for every quasi-order \!3 and all points 
ai, ... ,an in 1!3, \!3 I= </>'(a1, ... ,an) iff p\!3 I= ef>(C(a1), ... ,C(an)). It follows 
immediately that \!3 E C' iff p\!3 E C iff p\!3 I= <I> iff \!3 I= <I>'. 0 

Corollary 10.21 If a si-logic is elementary then its smallest modal companion 
is also elementary. 

With the help of this result and the fact that the operators p and T pre
serve V-persistence we can easily prove the intuitionistic variant of the Fine-van 
Benthem theorem. 

Theorem 10.22 If a si-logic L is characterized by an elementary class of K ripke 
frames then L is V-persistent. 

Proof According to Theorem 10.20, TL is characterized by an elementary class 
of Kripke frames and so, by the Fine-van Benthem theorem, it is V-persistent. 
By the preservation theorem, pT L = L is V-persistent too. 0 

The question as to whether the converse of the Fine-van Benthem theo
rem holds (in both modal and intuitionistic cases) remains open. Of course, 
V-persistence implies Kripke completeness; but we need the completeness with 
respect to an elementary class. There is an example of a logic (see Exercise 10.10) 
which is V-persistent but not elementary; yet, it is characterized by an elemen
tary subclass of the whole class of its Kripke frames. On the other hand the 
following remarkable result holds: 

Theorem 10.23 If a (normal modal or superintuitionistic) logic is R-persistent 
then it is elementary. 

We leave it here without a proof because too much classical model theory is 
involved in it. As is shown by Exercise 10.4, the converse of Theorem 10.23 does 
not hold. 
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10.3 Sahlqvist's theorem 

In this section we consider a method which, given a modal formula <p in a rather 
big family, constructs effectively a first order formula in R and = characterizing 
descriptive and Kripke frames validating <p. 

First we remind the reader that, given a formula <p(p1, ... ,pn) (whose vari
ables are listed among P1, ... , Pn), a frame .J = (W, R, P) and sets Xi, ... , X n in 
P, we denote by <p(Xi, ... , Xn) the set of points in J at which <pis true under the 
valuation W defined by W(pi) =Xi, for i = 1, ... , n, i.e., cp(X1, ... , Xn) = W(cp). 
Using this notation, we can say that 

J f= <p(pi, ... ,pn) iff 'Vx E W't/Xi, ... , Xn E P x E cp(X1, ... , Xn)· 

Example 10.24 Let us imagine that we do not yet know anything about first 
order equivalents of the formula Op -+ p in the class of, say, tight frames and 
let us try to extract such an equivalent directly from the equivalences above and 
properties of those frames. Then for any tight frame .J = (W, R, P) we shall have: 

(J,x) f= Op-+ p iff'VX E P x E (DX-+ X) 
iff't/X E P (x E DX-+ x EX) 
iff \:/ X E P ( xj <;;;; X -+ x E X), 

since, as we know, for every n ~ 0, x Eon X iff xjnc;;;; X. 
We are now at a crucial point. To eliminate the variable X ranging over P, 

we can use two simple observations. The first one is purely set-theoretic: 

'VX E P (Y <;;;; X-+ x EX) iff x E n{X E P: Y <;;;; X}. (10.1) 

And the second one is the characteristic property of tight frames formulated in 
Proposition 8.41: 

n{X E P: xj <;;;; X} = xj. (10.2) 

With the help of (10.1) and (10.2) we can continue the chain of equivalences 
above with two more lines: 

(J, x) F Op-+ p iff ... 
iff x E n{X E P: xj <;;;; X} 
iff x E xj. 

Therefore, .J f= Op -+ p iff 'Vx x E xj. It remains to notice that the last formula 
means nothing else but the reflexivity and can be rewritten in the more familiar 
way as 'Vx xRx. 

It would be strange if such a nice technique could not be extended to some 
other formulas. In fact, it can be considerably generalized. 
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Recall first that, by Exercise 8.1, we can replace xl in (10.2) with any term 
of the form X1 r 1 U ... U Xk rk, thus obtaining the equality 

(10.3) 

which holds for every tight frame i = (W, R, P), every x1, ... , Xk E Wand every 
n1, ... , nk 2'. 0. 

A frame-theoretic term X1 rni u ... u Xk rk with (not necessarily distinct) 
world variables x 1, ... , Xk will be for brevity called an R-term. In this section 
we reserve the letter T for denoting R-terms. Observe that the relation x E T 
on i = (W, R, P) is first order expressible in the predicates R and =. Indeed, if 
T = X1 r 1 u ... u Xk rk' k > 0 and ni, ... ' nk > 0 then 

x ET iff 3yL ... , y~ 1 _ 1 (x1Ryf /\ yf Ry~/\ ... /\ Y~ 1 -1Rx) 
v ... v 
3y~, ... , y~k_ 1 (xkRY~ /\ y~Ry~ /\ ... /\ y~k_ 1 Rx); 

if some ni is 0 then the corresponding disjunct has the form x = xi and when 
k = 0 we have x E T iff x E 0 iff x f- x. This observation gives us the following 

Lemma 10.25 Suppose <p(p1, ... , Pn) is a modal formula and T1, ... , Tn are R
terms. Then the relation x E <p(T1, ... , Tn) is expressible by a first order formula 
(in R and =) having x as its only free variable. 

Proof By induction on the construction of <p. The basis of induction follows 
from the observation above, and first order equivalents of compound formulas 
are constructed in the same way as in the definition of the standard translation 
ST in Section 4.3. 0 

Syntactically, R-terms with a single world variable correspond to modal for
mulas of the form omi p1 /\ ... /\ omk Pk with not necessarily distinct propositional 
variables P1, ... ,Pk· Such formulas are called strongly positive formulas. 

Lemma 10.26 Suppose <p(p1, ... ,pn) is a strongly positive formula containing 
all the variables P1, ... , Pn and i = (W, R, P) is a frame. Then one can effectively 
construct R-terms T1, ... , Tn (of one variable x) such that for any x E W and 
any X1, ... ,Xn E P, 

x E <p(X1, ... 'Xn) iff T1 ~ X1 /\ ... /\ Tn ~ Xn. 

Proof The proof proceeds by induction on the number of conjuncts in <p. If 
<p(p1) = omp1 then we have 

x E <p(X1) iff x E om X1 

iff xlm~ X1. 
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Suppose now that cp(p1, ... ,Pn) = 1/J(p1, ... ,Pn) /\ ompi where 1f;(p1, ... ,pn) is 
a strongly positive formula with '.::: k conjuncts and 1 '.::: i :::; n. Then we have 
R-terms T1, ... , Tn of one variable x such that 

x E cp(X1, ... , Xn) iff T1 <;;; X1 /\ ... /\ Tn <;;; Xn /\ xlm<;;; Xi 

iff T1 <;;; X1 /\ ... /\Ti U xim<;;; Xi/\ ... /\ Tn <;;; Xn. 

0 

Now, trying to extend the method of Example 10.24 to a wider class of 
formulas, we see that it still works if we replace the antecedent Op in Op--+ p with 
an arbitrary strongly positive formula 1/J. As to generalizations of the consequent, 
let us take first an arbitrary formula x instead of p and see what properties it 
should satisfy to be handled by our method. 

Thus, for a modal formula (1/J--+ X)(p1, ... ,Pn) with strongly positive 1/J and 
a tight frame ~ = (W, R, P), we have: 

(~,x) I= 1/J--+ X iff'v'X1,. .. ,Xn E P (x E 1f;(X1,. .. ,Xn)--+ 

x E x(X1, ... ,Xn)) 

(by Lemma 10.26) iff 'v'X1, ... , Xn E P (T1 <;;; X1 /\ ... /\ Tn <;;; Xn --+ 

x E x(X1, ... ,Xn)) 

iff 'v'X1, ... , Xn-1 E P (T1 <;;; X1 /\ ... /\ Tn-1 <;;; Xn-1 --+ 

'VXn E P (Tn <;;; Xn--+ x E x(X1, ... , Xn))). 

(10.1) does not help us here, but we can readily generalize it to 

So 

\IX E P (Y <;;; X--+ x Ex( .. ., X,. .. )) iff 

x E n{x( .. .,X,. .. ) : Y <;;;XE P}. (10.4) 

(~,x) I= 1/J--+ X iff'v'X1,. .. ,Xn-1 E P (T1 <;;; X1 /\ ... /\ Tn-1 <;;; Xn-1--+ 

x E n{x(X1,. . ., Xn) : Tn <;;; Xn E P} ). 

(Note that if Pn does not occur in 1/J, and so the conjunct Tn <;;; Xn is missing, 
we can always insert the new conjunct Xn <;;; Xn.) But now (10.2) and (10.3) are 
useless. In fact, what we need is the equality 

n{x( .. ., X,. . . ) : T <;;;XE P} = x( .. ., n{X E P: T <;;; X}, ... ) (10.5) 

which, with the help of (10.3), would give us 

n{x( .. ., X,. .. ) : T <;;;XE P} = x( .. ., T,. .. ). (10.6) 
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Of course, (10.5) is too good to hold for an arbitrary x, but suppose for a moment 
that our x satisfies it. Then we can eliminate step by step all the variables 
Xi, ... , Xn like this: 

(J,x) I= 1/J ~ X iff'v'Xi, ... ,Xn-1 E P (T1 ~ X1 A ... ATn-1 ~ Xn-1 ~ 

x E x(X1, ... , Xn-1, Tn)) 

iff . . . (by the same argument) 

iff x E x(Ti, ... , Tn)· 

And the last relation can be effectively rewritten in the form of a first order 
formula cf>(x) in R and = having x as its only free variable. So finally we shall 
have J" I= 'ljJ ~ x iff \Ix cf>(x). 

Now, to satisfy (10.5) x should have the property that all its operators could 
be distributed over intersections. Clearly, ~ and -, are not suitable for this goal. 
But all the other operators, as it will be shown below, turn out to be good enough 
at least in descriptive and Kripke frames. So we can take as x any positive modal 
formula which may contain only ..l, T, A, V, D and<>. The main property of an 
arbitrary positive formula <p( . .. , p, ... ) is its monotonicity in every variable p, 
which means that, for all subsets X, Y of worlds in a frame J, X ~ Y implies 
<p( ... , X, .. . ) ~ <p( ... , Y, .. . ) (see Exercise 3.20). 

To prove that all positive formulas satisfy (10.5) in the class V* of descriptive 
and Kripke frames, we require a lemma. A family X of non-empty subsets of 
some space W is called downward directed if for every X, Y E X there is Z E X 
such that Z ~ X n Y. Note that every downward directed family has the finite 
intersection property. 

Lemma 10.27. (Esakia's lemma) Suppose J" = (W, R, P) is a descriptive 
frame. Then for every downward directed family X ~ P, 

( n x)l = n (X!). 
XEX XEX, 

Proof The inclusion (nxEX X)! ~ nxEX x ! is quite clear. So suppose that 
X E nxEX X !, i.e., x E X ! and so xj n X =/= r/J for every X E X. It follows 
that the family {xi} U X has the finite intersection property. Since J" is tight, 
xj = n{x E P : xj ~ X} and so the family {X E P : xj ~ X} U X has 
the finite intersection property as well. By the compactness of J, we then have 
xj n nxEX x =I= 0, from which x E (nxEX X)!. 0 

This lemma means that <> in every tight and compact frame J" = (W, R, P) 
distributes over the intersection of any downward directed subset of P. And as 
we already know (see Exercise 8.2), the necessity operator 0 distributes in every 
frame over the intersection of an arbitrary family {Xi : i E J} of subsets of W, 
that is 0 niEJ Xi = niEJ DXi· 
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Lemma 10.28. (Int.ersection) Suppose cp(p, ... , q, ... , r) is a positive formula 
and J = (W, R, P) E 'D*. Then for every Y <;;; W and all U, . .. , V E P, 

n{ cp(U, ... , X, . .. , V) : Y <;;; X E P} = 

cp(U, . ... , n{X E P: Y <;;; X}, ... , V). (10.7) 

Proof If J is a Kripke frame then the variable X ranges over all subsets of W 
containing Y and so, by the monotonicity of cp, both sides of (10.7) are simply 
cp( ... 'Y, .. . ). 

So suppose J is descriptive and prove our claim by induction on the construc
tion of cp. The basis of induction is trivial. Let cp = 'ljJ V x and suppose that a 
point x does not belong to the right side of (10. 7), i.e., 

x\t'l/J( ... ,n{XEP: Y<;;;X}, ... )ux( ... ,n{XEP: Y<;;;X}, ... ). 

By the induction hypothesis, we have x \t nN(. .. , X, .. . ) : Y <;;; X E P} and 
x \t n{x( ... , X, .. . ) : Y <;;; X E P}. So there are sets X', X" E P such that 
Y <;;; X' n X", x It 'I/;( ... , X', .. . ) and x It x( ... , X", .. . ). By the monotonicity 
of 'ljJ and x, we then have x \t 'I/;( ... , X' n X", .. . ) and x \t x( ... , X' n X", .. . ), 
whence x \t n{('l/J V x)( ... ,X, .. . ) : Y <;;;XE P}. Thus, the set in the left-hand 
side of (10. 7) is a subset of that in the right-hand side. To prove the converse 
inclusion, we observe first that 

n{('l/JVx)( ... ,X, ... ): Y<;;;XEP};:;;> 

n{'l/J( ... ,X, .. . ) : Y <;;;XE P}un{x( ... ,X, .. . ) : Y <;;;XE P}, 

as follows from the set-theoretic inclusion 

iEJ iEJ iEJ 

and then we use the induction hypothesis. 
The case cp = 'ljJ /\ x is considered analogously. Let cp = D 'ljJ. As was mentioned 

above, D distributes over intersections. So we obtain 

n{D'l/J( ... ,X, .. . ) : Y <;;;XE P} = on{'l/J( ... ,X, .. . ) : Y <;;;XE P} 

and then use the induction hypothesis. 
The case cp = O'l/J is treated similarly, but this time we use Esakia's lemma 

and the fact that { 'ljJ ( ... , X, ... ) : Y <;;; X E P} either contains 0, and so both 
sides of (10.7) become 0, or is downward directed. (Indeed, if X', X" E P, Y <;;; 
X' and Y <;;; X" then X' n X" E P, Y <;;; X' n X" and, by monotonicity, 
'I/;( ... ' X' n X", .. . ) <;;; 'l/J( ... 'X', .. . ) n 'l/J( ... 'X", .. . ).) 0 
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It follows from this lemma and considerations above that, given a modal 
formula r.p = 'I/; ~ x with strongly positive 'I/; and positive x, we can construct 
a first order formula ¢(x) (in Rand=) with one free individual variable x such 
that, for every descriptive or Kripke frame J and every point a in J, (J, a) I= r.p 
iff ¢(x) is satisfied in J at a, or in symbols, JI= ¢(x)[a]. We will not, however, 
present this result as a theorem because by purely syntactic manipulations with 
modal and first order formulas we can get a stronger one. 

Notice that using the monotonicity of positive formulas, the equivalence 
(10.4) can be generalized to the following one: for every J = (W, R, P), every 
positive Xi(· .. ,p, .. . ), i = 1, ... , n, and every xi, ... , Xn E W, 

'<:IX E P (Y ~ X ~ v xi E Xi( ... ,X, ... )) iff 
i::;n 

v Xi E n{Xi(· .. , X, .. . ) : Y ~XE P}. 
i:S;n 

(10.8) 

Say that a modal formula 'I/; is untied if it can be constructed from negative 
formulas and strongly positive ones using only /\ and <>. (We remind the reader 
that negative formulas are built from the negations of variables with the help of 
_l_, T, /\, V, D and <>. If v(pi, . .. , Pn) is negative then •v(pi, . .. , Pn) is equivalent 
in K to a positive formula, namely to v*(•Pi. ... , •Pn); see Exercise 3.21.) 

Lemma 10.29 Let 'l/;(p1, ... ,Pn) be an untied formula and J = (W, R, P) a 
frame. Then for every x E W and all X 1, ... , Xn E P, 

where the formula in the right-hand side, effectively constructed from 'I/;, has only 
one free individual variable x, 1J is a conjunction of formulas of the form uRv, 
T;, are suitable R-terms and v1(P1, ... ,pn) are negative formulas. 

Proof An easy induction on the construction of 'I/; from negative and strongly 
positive formulas is left to the reader. O 

We are now in a position to formulate and prove the main result of this 
section. 

Theorem 10.30. (Sahlqvist's theorem) Suppose that r.p is a formula which 
is equivalent in K to a conjunction of formulas of the form ok('l/; ~ x), where 
k 2: 0, X is positive and 'I/; is constructed from propositional variables and their 
negations, J_ and T with the help of/\, V, D and<> in such a way that no 'I/; 's 
subformula of the form 'l/;1 V 'l/;2 or 01/;1, containing an occurrence of a variable 
without•, is in the scope of some D. Then one can effectively construct a first 
order formula ¢(x) in R and= having x as its only free variable and such that, 
for every descriptive or Kripke frame J and every point a in J, • 

(J,a) I= r.p iffJ I= ¢(x)[a]. 
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Proof Since for rp =·rp1 /\ ... /\rpm we have (J,a) f= <p iff (J,a) I= 'Pi for every 
i E { 1, ... , m}, we may begin with finding first order equivalents for 'Pi and then 
take the conjunction of them. 

To construct a first order equivalent for a formula ok ( 'ljJ -> x) defined in the 
formulation of our theorem, we observe first that one can equivalently reduce 
'ljJ to a disjunction 1/J1 V ... V 1/Jm <?f untied formulas, and hence ok ( 'ljJ -> x) is 
equivalent in K to ok(1/;1 __, x) /\ ... /\ ok(1/Jm __, x). So all we need is to find 
a first order equivalent for an arbitrary formula ok(1/J -> x) with untied 'ljJ and 
positive x. Let p1, ... Pn be all the variables in 'ljJ and x and J = (W, R, P) a 
descriptive or Kripke frame. Then, for any x E W, we have: 

(J, x) F ok('f/J -4 x) iff 'v'X1, ... , Xn E p x E ok('f/J -4 x)(X1, ... 'Xn) 

iff'v'X1, ... ,Xn E P'v'y (xRky _, 

(y E 1/J(X1 ... Xn)-> y E x(X1, ... , Xn))) 

(by Lemma 10.29) iff 'v'Xi, ... , Xn E P 'v'y (xRky-> (3yi, ... , Yl ( iJ /\ 

where 'l'J' = xRky /\ iJ. 

/\Tis;;: xi/\ /\ Zj E v1(X1, ... 'Xn)) -4 

j$m 

y E x(X1, ... ,Xn))) 

iff 'v' X 1, ... , Xn E P 'v'y, Y1, ... , Yl ( il' /\ f\ Ti s;;: Xi /\ 
i$n 

f\ ZJ E v1(X1, ... , Xn) -> y E x(Xi, ... , Xn)) 
j$m 

Let 1fj(Pi, ... ,pn) = vj(•p1, ... , 'Pn) (recall that vj is the dual of Vj and 
7rj is a positive formula). Then, by the laws of classical predicate logic, we can 
continue this chain of equivalences as follows: 

iff 'v'y, Y1, ... , Yl ( il' -> 'v' X 1, ... , Xn E P ( f\ Ti s;;: Xi -> 
i$n 

V Zj E 7rj(X1, ... , Xn))) 
j$m+l 

(where 7rm+i(Pi, ... ,pn) = x(pi, ... ,pn) and Zm+l = y) 

iff'v'y, yi, ... , Yl (iJ'-> v Zj E 7r1(T1, ... , Tn)), 
j$m+l 

as follows from (10.8), the intersection lemma and (10.3). The rest is an imme
diate consequence of Lemma 10.25. a 

The formulas <p described in the formulation of Theorem 10.30 are called 
Sahlqvist formulas. As a consequence of this theorem we obtain our first general 
completeness result for modal logics. 
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Theorem 10.31 Suppose that L is a V-persistent normal modal logic and r 
any set of Sahlqvist formulas. Then the logic L 63 r is also V-persistent. Besides, 
if L is elementary then L 63 r is elementary as well. 

This result can easily be extended to quasi-normal logics. Let us call a logic 
L E ExtK V-persistent if for every descriptive frame J with actual world w, 
(J, w) f= L implies ("'J, w) f= L. L is elementary if there is a set <f> of first order 
formulas (in R and =) with only one free variable x such that, for every Kripke 
frame J with actual world w, (J, w) f= Liff J f= ¢(x)[w] for all¢ E <f>. It should 
be clear that Theorem 10.31 will hold if we replace in it 63 by + and regard L 
as a quasi-normal modal logic. 

10.4 Logics of finite width 

Our second completeness result holds for both normal modal and superintuition
istic logics. However, in the modal case it concerns only logics with transitive 
frames, i.e., extensions of K4, and so all frames in this section are assumed to be 
transitive. We will prove it first for modal logics and then use the preservation 
theorem to transfer it to superintuitionistic ones. 

This result can be formulated both syntactically and semantically. Its syn
tactical form states simply that, for every n 2:: 1, all normal extensions of the 
logic K4BW n are Kripke complete. In order to reformulate this semantically, 
we observe that Corollary 3.43 can be generalized to refined frames. Namely, we 
have 

Proposition 10.32 A rooted refined frame J = (W, R, P) validates bwn iff J 
is of width :::; n. 

Proof ( ==?) Suppose otherwise. Then J contains an antichain x 0 , ... , Xn· Since 
J is differentiated, there exist disjoint sets X0 , ... , Xn E P such that, for every 
i, j E {O, ... , n }, xi E Xi iff i = j. Using the tightness of J, one can show that 
there are sets Yo, ... , Yn E P such that Xi E Yi and Yin Yjl= 0 for every j f. i. 

Now we put Zi =Xi n Yi E P and define a valuation SU on J by taking, for 
every i = 0, ... , n, SU(pi) = Zi. Using the fact that Zo, ... , Zn are disjoint and 
do not see each other, the reader can readily show that bwn is false under SU at 
the root of J, which is a contradiction. 

(-¢=) follows from Corollary 3.43. 0 

Thus, a semantic counterpart of the completeness result formulated above 
may look like this: a modal logic is Kripke complete whenever it is characterized 
by a class of transitive general frames of width :::; n, for some n 2:: l. If a logic L 
satisfies this condition and is not characterized by any class of frames of width 
< n then L is said to be of width n. K4BW n is the smallest logic of width n-. 

We are going to prove this result in three moves. First we show that every 
finite width logic is characterized by a class of Noetherian frames of finite width. 
Frames of this sort have the finite cover property in the sense that every set of 
points in them has a finite cover. Then, removing some points from these frames, 
we establish that every finite width logic is AFC-complete, where AFC is the 
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class of all atomic transitive frames with the finite cover property. And finally 
we observe that every normal modal logic above K4 is AFC-persistent, which 
together with the preceding statement gives the Kripke completeness of all logics 
of finite width. 

To justify the first move, we require the following generalization of Konig's 
lemma. Say that a sequence Xo, x 1 , ... of points in J = (W, R) is nondescending 
if xiRxj for no i and j such that i > j. 

Lemma 10.33 Suppose a frame J = (W, R) has no infinite antichains. Then 
every infinite nondescending sequence of distinct points in J contains an infinite 
ascending subsequence. 

Proof Let Xo, xi, ... be an arbitrary infinite nondescending sequence of distinct 
points in J. Observe first that there must exist some i such that the subsequence 
Xi = {xj : j > i and xiRxj} is infinite. For otherwise, if there is no such 
i, we can inductively define an infinite antichain Xia, Xi1 , •.. in J by putting 
io = 0, ... , ik+I = 1 + max{{ik} U {i: Xi E Xik}}, etc. 

Now we construct by induction an infinite ascending subsequence Xia, Xi1 , .•. 

of Xo, x 1 , .... Let xia be the first point in the original sequence with infinite Xia, 
and if Xin has been already defined in such a way that Xin is infinite, then we let 
Xin+l be the first point in the (infinite nondescending) sequence Xin with infinite 

xin+1· 0 

Theorem 10.34 Every finitely generated differentiated frame without infinite 
antichains is Noetherian. 

Proof Let J = (W, R, P) be a finitely generated differentiated frame without 
infinite antichains. Call a point x 0 E W deep if there is an infinite ascending 
chain x0 ,x1 , ... of distinct points in J. So our goal is to prove that J contains 
no deep points. Suppose otherwise. 

For each x E W, let Ux be the set of points accessible from x which are not 
deep. Call a point x static if Ux = Uy for every deep y E xj. It follows from 
Lemma 10.33 that every infinite ascending chain contains a static point. Indeed, 
otherwise there is a chain xoRx1R ... for which Uxa :) Ux 1 :) .•• , and so we can 
construct a sequence y0 , yi, ... such that Yi E Uxi - Uxi+i. It should be clear that 
the sequence is nondescending and so contains an infinite ascending subsequence, 
contrary to all Yi being not deep. 

Let Q = { G1, ... , Gn} be a set of P's generators. We write x "'Q y if, for every 
i = 1, ... ,n, x E Gi iffy E Gi, and denote by [x]g the set {y E W: x "'Q y}. 
For x E W, let Vx = {[y]g : xRy and y is deep}. Say that a deep point xis 
stationary if Vx = Vy for every deep y E xj. Since Vx 2 Vy whenever xRy and 
each Vx is finite (IVxl :::; 2n, to be more exact), every infinite ascending chain in 
J contains a stationary point. 

It follows that J contains a point x which is both static and stationary, 
i.e., Ux = Uy and Vx = Vy for every deep y E xj. Now, by induction on the 
construction of a set X E P from G1 , ... , Gn using, say, n, - and ! it is not 
hard to show that y EX iff z EX for every deep y, z E xj such that y "'Q z. (The 
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only nontrivial case is X = Y !. Suppose y E w! for some w E Y. If w is not deep 
then z E w!~ Y!, since Uy = Uz. And if w is deep then, since Vy= Vz, there is 
a deep v E zl such that w "'g v, from which, by the induction hypothesis, v E Y 
and so again z E Y ! . ) But this leads to a contradiction. Indeed, x sees infinitely 
many deep points. Hence at least two of them, say y and z, are Q-equivalent and 
so 'VX E P(y EX - z EX), contrary to J being differentiated. 0 

As a consequence of Theorem 10.34 we obtain 

Theorem 10.35 Every differentiated finitely generated frame without infinite 
antichains has the finite cover property and contains no infinite clusters. 

Proof Suppose J is a differentiated finitely generated frame and X a non-empty 
set of its points. By Theorem 10.34, J contains no infinite ascending chains, and 
so every cluster in J is finite and every point in X sees a final point in X or 
is final in X itself. Therefore, any subset of X containing one representative of 
each cluster generated by a final point in X is a cover for X. It is finite because 
it is an antichain. 0 

Each logic LE NExtK4, as we know, is characterized by its finitely generated 
refined frames whose clusters are finite. If L is of finite width then these frames 
turn out to possess one more nice trait: they have the finite cover property. Our 
second move is to prove that atomic frames with the finite cover property and 
without infinite clusters are enough. To this end we will show first that certain 
points in general frames are practically useless and may be safely thrown out. 

Let J = (W, R, P) be an arbitrary frame. A point x E W is said to be 
eliminable in J if it has a proper successor in every set X E P containing x. 
If J has the finite cover property then each eliminable point in J, if any, has a 
noneliminable successor in every set in P it belongs to. But actually, this fact 
holds for every descriptive frame J: 

Theorem 10.36 Suppose that J = (W, R, P) is a descriptive frame and XE P. 
Then the set of final points in X is non-empty and forms a cover for X. In 
particular, every eliminable point in X has a noneliminable successor in X. 

Proof Suppose otherwise. This means that' some x in X sees no final point in 
X. Let Ube a maximal chain in X starting from x (i.e., for every chain V ~ X 
beginning with x, U ~ V implies U = V); its existence can be readily proved 
with the help of Zorn's lemma. Of course, U has no maximal point. 

Now consider the family X of all sets Y E P such that Y contains all the 
points in U above some y EU; more exactly, we let 

X = {Y E P: :ly E U yl n U ~ Y}. 

Clearly, X is not empty, since X E X, and has the finite intersection property. 
Hence, there is au En X. But then u is a maximal point in U. Indeed, u EX 
and so what we need is to establish that yRu for every y E U. By the tightness 
of~' it suffices to show that W E P (y E DY -) u E Y), which is quite clear, 
since y E DY implies YE X. 
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Thus we arrive at a contradiction which proves our theorem. 0 

Now, given a frame J = (W, R, P) in which each eliminable point x has a 
noneliminable successor in every set X E P containing x, we construct a new 
frame 18 = (V, S, Q) by taking 

V = { x E W : x -is noneliminable in J}, 

S=RnV2
, Q={XnV: XEP}. 

The fact that Q is closed under the Boolean operations and ! follows from the 
equalities (10.9)-(10.11) below which hold for every X, Y E P: 

(X n Y) n v = (X n V) n (Y n V), 

(W - X) n v = v - (X n V), 

X!Rn v = (X n V)!S. 

(10.9) 

(10.10) 

(10.11) 

The first two of them are trivial and (10.11) is proved like this. Suppose that 
x E X !Rn V, i.e., x is a noneliminable point in J having a successor y in X. Let 
z be a noneliminable successor of yin X. Then z EX n V, x E y! ~ z! and so 
x E (X n V)!S. The converse inclusion is obvious. 

It follows from (10.9)-(10.11) that the map X r-+ X n V, for X E P, is a 
homomorphism of J+ onto 18+. Moreover, if X ~ Y then X n V ~ Y n V for 
every X, Y E P. (For if x E X - Y E P then there is a noneliminable point in 
X - Y.) Thus, J+ ~ 18 +. It is easy to see also that 18 is refined, though not 
necessarily compact. Clearly 18 contains no eliminable points. Frames with this 
property are called reduced. As a consequence of Theorem 10.36 we then obtain 

Proposition 10.37 Every logic L E NExtK4 is characterized by the class of its 
finitely generated reduced refined frames. 

Proposition 10.38 Suppose J = (W, R, P) is a refined reduced frame with the 
finite cover property and without infinite clusters. Then J is atomic. 

Proof Let x be an arbitrary point in J. Since J is reduced, x is a final point 
in some X E P. Using the fact that J is differentiated and C(x) is finite, one 
can construct a set Xo E P which contains x and does not contain points from 
C(x) - {x}. 

Let Y1, ... , Ym be all the final points in the set X - C(x). By the same 
argument there is a set Yo E P such that x E Yo and yi, ... , Ym </. Y0 . Moreover, 
since x sees none of y1 , ... , Ym, using the tightness of J we can find a set Y E P 
containing y 1 , ... , Ym and such that x </. Y!. 

Now consider the set Z = (X n X0 n Yo) - Y !, which clearly belongs to P and 
contains x. Suppose z is a point in Z different from x. Since z is final neither in 
X nor in X - C(x), it must see at least one of Yi· But then z E Y!, which is a 
contradiction. Therefore, Z = { x}. 0 
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As a consequence of Theorem 10.35 and Propositions 10.32, 10.37 and 10.38 
we obtain 

Theorem 10.39 Every finite width logic is characterized by a class of finitely 
generated refined atomic frames with the finite cover property. 

Remark Taking finitely generated universal frames, we see that in the preced
ing theorem a countable class of at most countable frames is enough. 

Our final move is to show that every logic in NExtK4 is persistent with 
respect to the class of atomic frames having the finite cover property. This result 
is a direct consequence of the following lemma and Theorem 9.43. 

Theorem 10.40 Suppose that (!; = (V, S, Q) is an atomic frame with the finite 
cover property validating a canonical formula a(J, '.D, 1-). Then K(!; validates 
a(J, '.D, 1-) as well. 

Proof Suppose otherwise. Then there exists a cofinal subreduction of t;;\8 to 
J = (W, R) satisfying (CDC) for '.D. For every point x E W we fix a finite cover 
Vx for f- 1 (x) in (!;. Since(!; is atomic, Vx E Q for all x E W. 

Now we define a new partial map g from V onto W by putting 

{

X ifyEVx 
g(y) = undefined otherwise. 

In other words, g is obtained from f by restricting domf to the set UxEW Vx. It 
is easy to check that g is a cofinal subreduction of 15 to J satisfying (CDC) for 

'.D. Therefore,(!; [it= a(J,'.D,1-), which is a contradiction. 0 

Since every normal extension of K4 is axiomatized by canonical formulas, we 
immediately derive 

Theorem 10.41 Every logic in NExtK4 is persistent with respect to the class 
of atomic frames having the finite cover property. 

Putting together Theorems 10.39 and 10.41, we finally obtain the desirable 
completeness result. 

Theorem 10.42. (Fine's theorem) Every finite width logic is Kripke com
plete. More precisely, every modal logic of width n is characterized by a class of 
Noetherian Kripke frames of width ~ n. 

In fact, using the remark above, we can derive even a somewhat stronger 
theorem. 

Theorem 10.43 If a logic L E NExtK4 is characterized by a class of frames 
without infinite antichains then it is also characterized by an at most countable 
class of at most countable Kripke frames. 

It is worth noting that unlike Theorem 10.31, Fine's theorem speaks only 
about Kripke completeness. Finite width logics are not necessarily canonical and 
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characterized by elementary classes of frames, witness the logic GL.3 (whether 
in finite or infinite language), for which the proofs of Theorems 6.5 and 6.7 
go through. If the language is infinite then the proof of Theorem 6.6 shows that 
GL.3 is not strongly complete either. It is of interest, however, that the following 
theorem holds. 

Theorem 10 .44 Every finite width logic L in a finite language is strongly K ripke 
complete. 

Proof Suppose that the language of L has m < w variables and t is an 
£-consistent tableau. Then t is realized at a point a in the canonical model 
9JLL(m) = (JL(m), mL(m)). Let 

V ={a} U {x E WL(m): aRL(m)x and xis noneliminable in JL(m)}, 

S = RL(m) n V2 , and il(p) = mL(m)(p) n V. We claim that Q5 = (V,S) is a 
(Kripke) frame for L and t is realized at a in SJt = ( \!5, il). 

First, by induction on the construction of cp we show that (9Jt, x) f= cp iff 
(SJt, x) f= cp, for every x E V. The basis of induction and the cases of cp = 1/; 8 x 
for 8 E {->, /\, V} are trivial. So suppose cp = 01/;. If (9Jt, x) ~ 01/; then there 
is a noneliminable point y E xj such that (9Jt, y) ~ 1/;, whence y E V and, by 
the induction hypothesis, (SJt, y) ~ 1/;, from which (SJt, x) ~ 01/;. The converse 
implication is evident. It follows in particular that t is realized at a in SJt. 

So if a is noneliminable then we are done. Let a be eliminable. Then the 
cluster C(a) is simple in \!) (see Exercise 10.18). Suppose that \!) ~ cp for some 
cp E L. By Theorem 9.43, there is o:(J, '.D, ..L) such that Q5 ~ o:(J, '.D, ..L) and 
5) ~ cp whenever 5) ~ o:(J, '.D, ..L), for every frame 5). By Theorem 9.39, there is 
a cofinal subreduction I of\!) to J satisfying (CDC) for '.D. Since \!5 has the finite 
cover property, we may assume 1- 1(x) to be a finite antichain, for every x in 
J = (W, R). Let b be the root of J. Since C(a) is a simple cluster, C(b) is simple 
as well. For otherwise o:(J, '.D, ..L) and so cp are refuted in the generated subframe 
1!5' of \!) consisting of only noneliminable points, which is a contradiction. So we 
may assume that 1-1(b) ={a}. Let a~ 1-1 (W) be a finite antichain such that 
1-1 (W - { b}) ~ a j. Since all points in a are noneliminable and a ~ a j, there 
must be a noneliminable point c E aj such that a ~ cj. But then we can extend 
I by putting l(c) =band get again a cofinal subreduction of Q5 to J satisfying 
(CDC) for '.D. This means that o:(J, '.D, ..L) and so cp are refuted at c in 1!5', which 
is a contradiction. Thus, Q5 f= L. 0 

In the intuitionistic case the definition of logic of width n remains the same 
as in the modal one. It is not hard to see that a superintuitionistic logic L is 
of width n iff bwn E L and bwn+l r/. L; so BW n = Int + bwn is the minimal 
si-logic of width n. 

If Lis a si-logic of width n then, as follows from Theorems 9.68 and 9. 70, both 
rL and <TL are also of width n. Moreover, by Theorem 9.56, if ME NExtS4 is 
of width n then its si-fragment pM is of the same width. Thus we obtain the 
following intuitionistic variant of Fine's theorem: 
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Theorem 10.45 Every superintuitionistic logic of width n is characterized by a 
class of Noetherian Kripke frames of width ::; n. 

Of course, the intuitionistic counterparts of Theorems 10.44 and 10.43 also 
hold. 

10.5 The degree of Kripke incompleteness of logics in NExtK 

So far, when dealing with Kripke completeness, we were interested only in 
whether a given logic is complete or not. Yet, there is another natural question 
concerning this property. If a logic L (in NExtK or Extlnt) is Kripke incomplete 
then at least two distinct logics have the same Kripke frames, namely L and the 
logic characterized by the class of Kripke frames for L. The problem is to de
termine how many distinct logics may share the same class of Kripke frames. In 
this section we obtain a complete solution to this problem for logics in NExtK. 
It is based on the lattice-theoretic notion of splitting. 

Say that a logic L1 in a complete lattice ..C of logics (e.g. NExtK) splits ..C if 
there is L2 in ..C such that, for every L in ..C, either L ~ L1 or L 2 L2 (but not 
both, i.e., L2 rj, L1). Clearly, the logic L2, if it exists, is determined uniquely by 
L1; we call it the splitting of ..C by L1 and denote it by ..C/ L1. Of course, L1 is 
also uniquely determined by L2; ( L1, L2) is called a splitting pair in ..C. 

In fact splittings were already introduced in Sections 4.3 and 9.4 under the 
name of prime logics. Indeed, we have the following: 

Proposition 10.46 A logic L2 is a splitting of ..C iff L2 is prime in ..C. 

Proof For definiteness we assume ..C to be a complete lattice of normal modal 
logics. 

( =?) Suppose L2 = EBiEJ Li and L2 = ..C/ L1. For each i E I, we have either 
Li ~ L1 or Li 2 L2. If Li 2 L2 for some i, then we are done, because in this case 
Li = L2. Otherwise, Li ~ L1 for all i, whence L2 ~ Li, which is a contradiction. 

( <=) Put L1 = ffi{ L' E ..C : L' 1 L2} and show that (L1, L2) is a splitting 
pair. Take any L in ..C. If L 1 L2 then, by the definition, L ~ L1. So suppose 
L1 2 L 2 L2· Then L2 = L2 n ffi{L' E ..C: L'.1_ L2}· By Theorem 4.6, we have 
L2 = ffi{L2nL': L' 1 L2}, from which L2 = L2nL' for some L' 1 L2, because 
L2 is prime. But then L2 ~ L', which is again a contradiction. 0 

Example 10.47 (1) D = K EB OT= NExtK/Log•. Indeed, if• is a frame for 
L E NExtK then L ~ Log•. Otherwise (by the generation and disjoint union 
theorems, see the proof of Makinson's theorem) OT EL and so D ~ L. 

(2) By Proposition 10.46 and Theorem 9.46, a logic is a splitting of NExtK4 
or Extlnt iff it can be represented in the form K4EBa"(J,1.) or Int+ ,B"(J, 1.), 
respectively. 

If each logic in a family {Li : i E I} ~ ..C splits the lattice ..C then the logic 
L = EBiEJ ..C/ Li (L = LiEI ..C/ Li in the intuitionistic case) is called a unio'ii
splitting of ..C and denoted by L = ..C/{Li: i EI}. In this case for every L' in ..C 
we clearly have L' 2 L iff L' rj, Li for all i E I. 
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Example 10.48 It is ·easy to check that 84 = K4 EB a(•) = K4 EB a~ ( •, ..L) EB 

a~( l ,..L) = NExtK4/{Log•,Log l }. By Example 10.47, the frame logics and 
only they are union-splittings of NExtK4 and Extlnt. 

The connection of splittings with finite rooted frames revealed by the exam
ples above is not mere chance. 

Theorem 10.49 Suppose a logic Lo E NExtK is finitely approximable and L 
splits NExtL0 . Then there is a finite rooted frame J such that L = LogJ. 

Proof Let C be the class of all finite rooted frames for Lo. Since Lo is finitely 
approximable, we have L 0 = n{LogJ : J E C} <;;; L. And since NExtL0 / L CJ. L, 
there is J EC such that LogJ <;;; L. As will be shown in Section 12.1, all extensions 
of a tabular logic are also tabular. Therefore, L can be represented as n~1 LogJi, 
for some finite rooted Ji, and so, by the same argument, there is i such that 
L = LogJi. D 

To simplify our notation and terminology, we will write L0 /J instead of 
NExtLo/LogJ and say that J splits NExtLo and Lo/J is the splitting of NExtLo 
by J. The union-splitting NExtL0 / {LogJ: J E F} will be denoted by Lo/ F. 

The semantic meaning of (union-) splittings is quite clear: 

Proposition 10.50 L 0 / Fis the smallest normal extension of Lo without frames 
in F. 

This observation and the next theorem show why splittings may be of great 
importance for solving our problem. Say that a Kripke complete (finitely approx
imable) logic L is strictly Kripke complete (respectively, strictly finitely approx
imable) in a lattice of logics£ if no other logic in ,Chas the same Kripke (finite) 
frames as L. 

Theorem 10.51 Every Kripke complete (finitely approximable) union-splitting 
L =Lo/Fis strictly Kripke complete (or, respectively, strictly finitely approx
imable) in NExtLo. 

Proof Let L' be a logic in NExt£0 with the same Kripke (finite) frames as L. 
Then obviously L' <;;; L. On the other hand, the frames in F do not validate L' 
and so, by Proposition 10.50, L <;;; L'. O 

The following property of splittings will be useful in Section 12.2. 

Theorem 10.52 Suppose that L = L0 /F for some class F of finite rooted 
frames. Then all immediate predecessors of L in NExtL0 are contained in the 
set {L n LogJ : J E F}. Moreover, if J E F does not validate Log(!; for any 
15 E F - {J}, then L n LogJ is an immediate predecessor of L in NExtL0 . 

Proof If L' is an immediate predecessor of L in NExt£0 then, by Proposi
tion 10.50, J f= L' for some J E .F. Therefore, L' ~ L n LogJ c L and so 
L' = Ln LogJ. 
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Suppose now that J f!= Log® for any® E :F - {J}, and L n LogJ s;;; L' CL. 
Then, since L = Lo/ :F, we have L' s;;; LogJ' for some J' E :F. Hence J' = J and 
L' = L n LogJ. 0 

As we saw above, any finite rooted frame splits NExtK4. Now let us find out 
which frames may split NExtK. To this end we need some more frame-based 
formulas. Suppose J = (W, R) is a finite frame with root r. Let 

8(J) = /\ {px --> Opy : xRy} /\ /\ {Px --> •<>Py : •xRy} /\ 

/\{px--> 'Py: X -I y} /\ V{px: XE W} 

and, for every m < w, om(J) = /\':::o oio(J). The meaning of the formulas om(J) 
is that a frame ® satisfies the set {om (J), Pr : m < w} at a point x iff there is a 
generated subframe ®' of ® reducible to J. Indeed, the implication ( {:=) is clear 
and to prove ( ===>) it suffices to notice that the map f from ®' to J defined by 
f(v) = y iff v f= Py is a reduction. 

Say that a frame J is cycle free if x E xjw for no x in J, i.e., the diagram of 
J contains no cycles, including reflexive points. Clearly, a finite frame J is cycle 
free iff J F= on .l for some n < w. 

Theorem 10.53 A finite rooted frame J splits NExtK iff J is cycle free. 

Proof ( ===>) Suppose that J splits the lattice NExtK. By Corollary 3.29, we 
have K = n{Log®: ® is a finite rooted cycle free frame}. Then there is a finite 
rooted cycle free® such that Log® s;;; LogJ and so J f= on _L for some n < w. 

({:=)Let J F on-1. We show that (LogJ,K EB on J_ /\ 15n-1 (J)--> 'Pr) is a 
splitting pair. Denote it for brevity by (Li, L2). Take any logic L E NExtK and 
a frame ® characterizing it. Clearly J contains no chains of length > n. Then 
we have L2 Cl: Liff on .l /\ 15n- 1 (J) /\pr is satisfied in® at some point x iff the 
subframe ®' of ® generated by x is reducible to J. Thus we have either L2 s;;; L 
or J f= L and so L s;;; Li. 0 

Theorem 10.54 Every union-splitting of NExtK is finitely approximable. 

Proof We prove the finite approximability of L = K/ :F, :F a class of finite 
rooted cycle free frames, using a variant of filtration. 

Suppose rp(pi, ... ,pn) ¢ L. We are going to filtrate the canonical model 
9Jt = (J, QJ) for L in the language with the variables p 1 , ... , Pn. To select a 
suitable "filter", let us first consider points in 9Jt at which om .l is true and 
om-l .l is false for some m < w. We call them points of type m (having in mind 
that the maximal ascending chain starting from such a point is of length m). 
The key observation in the proof is 

Lemma 10.55 For every m 2:: 1, there are finitely many points of type m in 9.Jt. 

Proof The proof proceeds by induction on m. Clearly, 9Jt contains ::; 2n points 
of type 1 ( = dead ends); for otherwise 9Jt would not be differentiated. And if 
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there are k points of type :'.'.'.: l then, by the same reason, we may have at most 
2n+k points of type l + 1. 0 

Let .6. ~ Subcp. We consider two cases. (a) All the points in 9Jt, at which of 
all formulas in Subcp only those in .6. are true, are of type :'.'.'.: m, for some m < w. 
In this case we put mt,, = m. (b) Case (a) does not hold, i.e., for every m there is 
a point x in 9Jt such that, for every 1/; E Subcp, x f= 1/; iff 1/; E .6. and x f= omT; 
then we put mt,, = 0. Finally, put 

k =max{ mt..: .6. ~ Subcp} and~= Sub(cp /\ ok _i). 

We are ready now to filtrate 9Jt, a part of it to be more exact. Namely, we divide 
~ = (W, R) into two parts: W1 containing all the points in~ of type :'.'.'.: k and 
W2 = W - W1 . By Lemma 10.55, W1 is finite. For every x, y E W, put x,..,, y 
if either x, y E W1 and x = y or x, y E W2 and x "'I: y. Having defined the 
equivalence classes [x] = {y E W : x ,..,, y} for x E W, we can construct the 
corresponding finest filtration lJ1 = (<5,il) of 9Jt as was done in Section 5.3 (in 
fact we filtrate only points in W2 and leave those in W1 untouched) and prove 
that, for every 1/; E ~' (9Jt, x) f= 1/; iff (lJ't, [x]) f= 'lj;. Thus we have a finite model 
lJ1 refuting <p. 

It follows also that a point [x] in lJ1 is of type m :'.'.'.: k iff x has type m in 9Jt. 
Moreover, it turns out that lJ1 contains no [x] of type l > k. Indeed, otherwise 
x ~ ok J_ and so Case (a) does not hold for .6. = {1/; E Subcp : x f= 1/;}. 
This means that for every m < w there is y E [x] such that y f= omT and so 
arbitrary long chains (of not necessarily distinct points) start from [x], contrary 
to [x] being of type l. 

Thus l!5 contains two parts: the upper part consisting of points of type :'.'.'.: k, 
which is clearly the generated subframe (W1 ,R I W1 ) of~, and the lower one 
consisting of points without types, i.e., involved in some cycles. It follows that 
® f= L. For otherwise, according to the proof of Theorem 10.53, we have (!; ~ 
on l_ /\ 15n-l(~1 )-> 'Pr for some~' E :F (r being the root of~') and n = d(~'), 
which means that the subframe ®' of <5 generated by some x is reducible to 
~'. But then either ®' is a generated subframe of ~' contrary to ~ f= L, or <5' 
contains a cycle, contrary to ~' being cycle free. O 

It is to be noted that Theorem 10.54 does not hold for NExtK4. 
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FIG. 10.3. 

Example 10.56 Let us consider the logic L = K4 EB o:tt(J, .l) and the formula 
a(J, .l), where J is the frame depicted in Fig. 10.2 (a). The frame ~ shown 
in Fig. 10.2 (b) separates a(J, .l) from L. Indeed, J is a cofinal subframe of 
~which, by Theorem 9.39, gives Q3 [;'= o:(J,..L). To show that~/= o:tt(J,.l), 
suppose f is a cofinal subreduction of~ to J. Then, by (Rl), J- 1(1) contains 
only one point, say x; by (R2), 1-1(0) also contains only one point, namely, the 
root of~- So the whole infinite set of points between x and the root is outside 
of domf, which means that f does not satisfy (CDC) for { { 1}}. 

On the other hand, suppose Sj is a finite rooted frame refuting o:(J, .l) at 
its root. Then all final points in Sj are reflexive. Besides, Sj must contain a non
degenerate cluster C having an irreflexive immediate successor x. So by mapping 
C to 0, x to 1 and all the other points above C to 2 we obtain a reduction of the 
subframe of Sj generated by C to J, from which Sj [;'= L. 

It follows that L is not finitely approximable. Moreover, the very same argu
ment shows that K4.3 EB o:tt(J, .l) is not finitely approximable either. 

We are in a position now to prove the main result of this section. Say that 
a logic L E ,C has degree of Kripke incompleteness x in ,C if exactly x distinct 
logics in ,C have the same Kripke frames as L. Strictly complete logics are those 
having degree of incompleteness 1. By Theorems 10.54 and 10.51, every union
splitting is strictly Kripke complete. All the other logics in NExtK turn out to 
have degree of incompleteness 2~0 • Before proving this in general it is useful to 
consider two special cases, namely the logics Log• and Logo (why are they not 
union-splittings?). 

Example 10.57 We are going to construct a continual family of logics L1, for 
I ~ w - {O}, the only rooted Kripke frame for which is •. Define L1 to be the 
logic of the frame J 1 = (W1, R1, P1) with the underlying Kripke frame shown in 
Fig. 10.3, where the subframes in dashed boxes are transitive, ao sees all points ei 
and ej, for i < w, j E I, e~ E W1 iff i E I, and P1 consists of the sets of the form 
X UY such that X is a finite or cofinite subset of { a_ 1 , c, ei, ej : i < w, j E i} 
and Y is either a finite subset of {ai: i < w} or is of the form {b} UY', where 
Y' is a co finite subset of { ai : i < w} (check that P1 is closed under - , n and 1). 
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Observe that all points in 'J1 save bare characterized by variable free formulas, 
for instance: 

a_ 1 = 01-, a 0 = 001-, 

ai+1 = Oai /\ ·02ai, 'Y = 0 2ao /\ -iOao, 

t:o = 01, fH1 = Ot:i /\ -i02 t:i, €~+ 1 = Ot:i /\ _,o+fi+1 

(ai is true only at ai, 'Y at c, fi at ei, t:j at ej). It follows in particular that 'Ji 
is 0-generated. Let i E I - J. Then -if~ E LJ - L1 and so there is a continuum 
of distinct L1. 

Since• is a generated subframe of 'J1 for every I, we have• I= L1. We show 
now that if 'J is a rooted Kripke frame for L1 then 'J is •. Suppose otherwise. 
Then root u of 'J sees at least one point. Since 

we have u I= a0 V Oao V 0 2a 0 V 0 3 ao and so there is a point in 'J at which a0 is 
true. Using the fact that a0 ---+ 0 21 E L 1, we can find a point x in 'J such that 
x I= 'Y· Now observe that 

'Y---+ O(Oo(Oop---+ p)---+ p) E L1, 

where 0 0 cp = O ( Oa0 ---+ cp). (Here we use the fact that each X E P1 contains 
some ai, for i > 0, whenever b E X.) So x I= O(Oo(Oop ---+ p) ---+ p) for any 
valuation in 'J. By the definition of/, there is y E xi such that y I= Oao and 
also y I= 0 0 (00p ---+ p) ---+ p. Define a valuation S:U in 'J by taking S:U(p) = yj. 
Then clearly y I= 0 0 (00p---+ p), from which y I= p and so y E yj. Now define 
another valuation S:U' so that S:U'(p) = yi-{y}. Since y is reflexive, we again have 
y I= 0 0 (00p---+ p), whence y I= p, which is a contradiction. 

Thus• is the only rooted Kripke frame for L1 and Log• has degree of Kripke 
incompleteness 2~0 in NExtK. 

Example 10.58 To prove that Logo also has degree of Kripke incompleteness 
2~0 , we take the logics L/ of the frames 'J/ = (W1 , R/, P1 ) in which R/ = 
R1 U { (a-1, a_1)}, i.e., the dead end in Fig. 10.3 is replaced by a reflexive point. 
This replacement makes it impossible to use variable free formulas. We overcome 
this obstacle with the help of the formulas 

6 6 6 6 

ao = (0 /\ oiq /\--, /\ oiq) v (0 /\ oi,q /\--, /\ oi--,q), 
i=O i=O i=O i=O 
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I nontransitive I 
X1 x1 x2 Xn x} x~ x~ x~ x~ x~ ·-· ... ·-·-· ···• ... ·-· .... 

(a) (b) 

FIG. 10.4. 

4 4 

o = , /\ oiq /\, /\ oi,q 
i=O i=O 

and by observing that /\~=O Dip-> D6p E L~. The formulas above characterize 
points in i~ in the sense that if, under some valuation, o is true somewhere in 
J~ then o:i, '"'(, Ei and t:j are true only at the points ai, c, ei, ej, respectively; o: _ 1 

is characterized by -,{J. It follows that 

Since •t:j EL~ - L~, for j EI - J, there is a continuum of L~. 
Let us show that o is the only rooted Kripke frame for L~. Suppose otherwise, 

i.e., there is a rooted Kripke frame J for L~ different from o. Clearly J -:/- •, 
because 0 T E L~. Therefore, J contains a root, say u, and some other point 
besides. Putting Q.J( q) = { u}, we have u I= o and so there is a point x in J 
such that x I= D(D0(D0p-> p) -> p) under any valuation for p. The rest of the 
argument is the same as in Example 10.57. 

Theorem 10.59. (Blok's theorem) Suppose L is a normal modal logic. If 
L = ForM.C or L is a union-splitting in NExtK then L is strictly Kripke com
plete. Otherwise L has degree of Kripke incompleteness 2~0 in NExtK. 

Proof Suppose that L is not a union-splitting and L' is the greatest union
splitting (the sum of all union-splittings) contained in L. By Theorem 10.54, 
L' is finitely approximable and, since L' -:/- L, there is a finite rooted frame 
J = (W, R) validating L' and refuting some VJ E L. Clearly, J can be chosen to 
be minimal in the sense that its every proper generated subframe is a frame for 
L. It should be also clear that J is not cycle free (for otherwise L' would not 
be the greatest union-splitting contained in L). Let x 1Rx2 R ... RxnRx1 be the 
shortest cycle in J and k = md( VJ) + 1. 

We construct a new frame J' by extending the cycle x1, ... , Xn, x1 as is shown 
in Fig. 10.4 ((a) for n = 1 and (b) for n > 1). More precisely, we add to J copies 
x}, ... , x~ of Xi for each i E { 1, ... , n}, organize them into the nontransitive 
cycle shown in Fig. 10.4 and draw an arrow from xl to y E W - { x 1 , ... , xn} 
iff xiRy. Denote the resulting frame by J' = (W', R') and let x' = x~. By the 
construction, J is a reduct of J'. It follows from Proposition 3.2 that for all 
models 9J1 = (J, Q.J) and 9J1' = (J', Q.J') such that 
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FIG. 10.5. 

!U'(p) = !U(p) U {x1: Xi E !U(p), j:::; k}, p E Var<p, 

and for every x E W, 'l/J E Sub<p, (W't,x) f= 'l/J iff (W't',x) f= '1/J. In particular, we 
can hook some other model on x', and points in W will not feel its presence by 
means of <p's subforinulas. 

The frame to be hooked on x' is similar to those in Examples 10.57 and 10.58. 
It depends on whether • f= L or o f= L. We consider only the former alternative 
leaving the latter to the reader as an exercise. 

Fix some m > IW'I· For each I<;; w - {O}, let J1 = (W1,R1,P1) be the 
frame whose diagram is shown in Fig. 10.5 (do sees the root of J', all points ei 
and ej, for i < w, j E I, and is seen from x'; the subframes in dashed boxes are 
transitive, e~ E W1 iff i E I) and P1 consists of sets of the form X U Y such that 
X is a finite or cofinite subset of W1 - {b, ai : i < w} and Y is either a finite 
subset of { ai : i < w} or is of the form { b} U Y', where Y' is a co finite subset 
of { ai : i < w}. It is not hard to see that the points ai, c, ei and e~ in J 1 are 
characterized by the following variable free formulas: 

ao = 0(8m /\ 0(8m-l /\ ... /\ 080) ... ) /\ ·02 (8m /\ 0(8m-l /\ ... /\ 080) ... ), 

ai+l = Oai /\ ·02ai, 'Y = 0 2ao /\ •Oao, 

fo = 01, fH1 = 0Ei /\ ·02Ei, <+1 = OEi /\ .o+Ei+i, 

where 
80 = OD..L, 81 = 080 /\ ·80, 82 = 081 /\ •81 /\--.0+8o, 

8k+l = 08k /\ •8k /\ •0+8k-1 /\ ... f\-,0+80. 

(Here we use the fact that m > IW'I.) Define L1 as the logic of all frames for L 
and J1. Since --.(f~ /\ om+6-,cp) E L1 - L1 for i EI - J (<pis refuted at the root 
of J'), the cardinality of the family { L1 : I~ w - {O}} is that of the continuum. 

Let us show now that L1 shares the same Kripke frames with L. Clearly, 
L1 ~ L and so we must prove that every Kripke frame for L 1 validates L. 
Suppose otherwise. Then we have a rooted Kripke frame <!i such that <!i I= L 1 

but <!i ~ 1/J, for some 1/J E L. Since 1/J is in L, it is valid in all frames for L, 
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in particular, • I= 'ljJ. And since 'ljJ (/'. Lr, 'ljJ is refuted in 'Jr. Moreover, by the 
construction of 'Jr, it is refuted at a point from which the root of 'J' can be 
reached by a number of steps. Therefore, the following formulas are valid in 'Jr 
and so belong to Lr and are valid in '5: 

l 

-.'ljJ ____, /\ oi(1' ____, D(D0 (D0p ____, p) ____, p)), 
i=O 

(10.12) 

(10.13) 

where the variable p does not occur in 'ljJ and l is a sufficiently big number so that 
any point in 'Jr is accessible by :S l steps from every point in the selected cycle 
and every point at which 'ljJ may be false, and as before D0 x = D(Oo:0 ----> x). 

According to (10.12), '5 contains a point at which"/ is true. By the construc
tion of"(, this point has a successor at which, by (10.13), D0(D0p----> p)----> p and 
Oo:0 are true. Thus, we find ourselves in exactly the same contradictory situation 
as in Example 10.57, which proves that '5 I= L. 0 

This construction can be used to obtain one more important result. 

Theorem 10.60 Every union-splitting K/ :F has x :S N0 immediate predeces
sors in NExtK, where x is the number of frames in :F which are not reducts 
of generated subframes of other frames in :F. Every consistent logic different 
from union-splittings has 2No immediate predecessors in NExtK. (ForM£ has 
2 immediate predecessors in NExtK.) 

Proof The former claim follows from Theorem 10.52. As to the latter, we 
demonstrate the idea of the proof assuming that L ~ Log• and L is finitely 
axiomatizable over Lr constructed in the proof of the preceding theorem (which 
in fact is always the case). The general case is left to the reader. 

By Zorn's lemma, NExtLr contains an immediate predecessor L/ of L. Be
sides, Lr EB L1 = L whenever I -:f- J. Indeed, 

and if i E I - J then, for every x E L and a sufficiently big l, 

l --, v Ok t:; ----> X E Log'J r, -.t:; E Log'J J, 

k=O 

from which x E Log'J r EB Log'J J and so L ~ Log'J r EB Log'J J. It follows that 
L/ -1- Lj whenever I -1- J. 0 

It is worth noting that tabular logics, proper extensions of D and extensions 
of K4 are not union-splittings in NExtK. 
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10.6 Exercises and open problems 

Exercise 10.1 Show that canonicity is preserved under sums of logics. 

Exercise 10.2 Show that canonicity is preserved under p and -r. 
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Exercise 10.3 Show that Kripke completeness is not preserved under sums. 
(Hint: see Section 6.5.) 

Exercise 10.4 Show that 84.1 is not R-persistent. (Hint: consider the general 
frame associated with the model ((w, $), srf), where srf(pi) = {n: i $ n}.) 

Exercise 10.5 Describe the ultrafilter extensions of the frames (w, ~), (w, <), 
(Z, <), (Q, <). 

Exercise 10.6 Show that for a Kripke frame J, § is a reduct of some ultrapower 
of J. 

Exercise 10.7 Show that, for every i E J, §i is a generated subframe of the 
ultrafilter extension of L:iEI Ji. 

Exercise 10.8 Prove that the logics L = KEB{Op--> p, O(Op--> Oq)VO(Oq--> 
Op), Op/\ O(p--> Op)--> p, OOp--> OOp} and Triv = K EB Op._... pare distinct, 
but their classes of Kripke frames are defined by the same first order condition 
\:/x\:/y (xRy ._... x = y), with respect to which Triv is complete. Therefore, L is 
elementary, though neither Kripke complete nor 'D-persistent. 

Exercise 10.9 Show that the interval between the logics of the preceding exer
cise contains infinitely many logics. 

Exercise 10.10 Let cp = OO(p V q) --> O(Op V Oq) and 

</> = \:/x\:/y(xRy--> 3z(xRz /\ \:/u(zRu--> yRu) /\ \:/uVv(zRu /\ zRv--> u = v))). 

Prove that 
(i) J /= </> implies J /= cp; 
(ii) cp and </> are equivalent on the class of at most countable Kripke frames; 
(iii) cp and </>are equivalent on the class of descriptive frames; 
(iv) cp is not first order definable. 

Exercise 10.11 Give a complete proof of the Fine-van Benthem theorem. (Hint: 
Let J be an arbitrary Kripke frame for Landu an ultrafilter over W. Define <I>' 
as the union of <I> (see the proof of Theorem 10.19) and all formulas of the form 

Px(x), for XE u (xis a fixed individual variable), 
Vy (xRny--> (Pw-x(Y) ._... -.Px(y))), 
Vy (xRny--> (Pxny(y) ._... Px(y) /\ Py(y))), 
Vy (xRny--> (Pxt(Y) ._... 3z (yRz /\ Px(z)))). 

Check that <I>' has a model, say, a frame J* E C, define for J* the set <I>" as in the 
proof of Theorem 10.19, take a frame J' in which <I>" is satisfied at a point a and 
then show that the subframe of J' generated by a is reducible to the subframe 
of § generated by u.) 
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Exercise 10.12 Prove the following variant of Sahlqvist's theorem. Let cp be 
a formula constructed from variables, their negations, T and J_ using /\, V, 0, 
and <> in such a way that either (1) no positive occurrence of a variable is in a 
subformula of the form 'lf;/\x or O'lj; within the scope of some<>, or (2) no negative 
occurrence of a variable is in a subformula of the form 'ljJ /\ x or O'lj; within the 
scope of some <>. Then one can effectively construct a first order equivalent for 
cp. If L is D-persistent then L EB cp is also D-persistent, and if L is elementary 
then so is L EB cp. 

Exercise 10.13 Construct a continuum of logics above 84 axiomatizable by 
Sahlqvist formulas. (Hint: consider the formulas 

CL1 = 0(-.ro /\•so), 

o:o = 0(-.t /\ •r1) /\ ro /\ <>0:-1, /30 = 0(-.t /\ •s1 /\so), 

0:1 = O(p /\ •q) /\ t /\ <>o:o /\ r1, /31 = 0(-.p /\ q) /\ t /\ <>/30 /\ s1, 

o:i+2 = <>o:i+l /\ <>/3i /\ 0-.si+l /\ ri+2, 

/3i+2 = 0/Ji+l /\<)Qi /\ 0-.ri+l /\ Si+21 

In = OO(p /\ q) /\ O:n, 8n = 00(-.p /\ -.q) /\ /3n, En = <>in /\ <>8n.) 

Exercise 10.14 Show that the intersection of Sahlqvist logics is also a Sahlqvist 
logic. 

Exercise 10.15 Show that the McKinsey formula ma is not first order definable 
on the class of finite frames. 

Exercise 10.16 Prove that frame formulas are first order definable on the class 
of irreflexive transitive frames. Show, however, that this is not the case on the 
class of all transitive frames. 

Exercise 10.17 Show that the reduced frame of JGrz(n) contains no proper 
clusters and JaL(n) contains no reflexive points. 

Exercise 10.18 Let J be a refined finitely generated frame of finite width. Show 
that for every point x in J, either all points in C(x) are noneliminable or all points 
in C(x) are eliminable and xis reflexive. 

Exercise 10.19 Suppose Lis the decidable union-splitting of NExtL0 by a finite 
set of finite frames. Show that in this case we can effectively decide, given a 
formula cp, whether L =Lo EB cp. 

Exercise 10.20 Prove that if L = Lo/ F is finitely axiomatizable then L ha8 
finitely many immediate predecessors in NExtL0 and that otherwise there are 
precisely No immediate predecessors. 

Exercise 10.21 Show that NExtL has an axiomatic basis iff every logic in 
NExtL is a union-splitting of NExtL. 
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Exercise 10.22 Suppose a logic Lo E NExtK4 is finitely approximable. Prove 
that the following conditions are equivalent: 

(i) all union-splittings of NExtL0 are finitely approximable; 
(ii) all logics in NExtL0 are finitely approximable; 
(iii) all logics in NExtL0 are union-splittings of NExtLo; 
(iv) NExtLo has an axiomatic basis. 

Exercise 10.23 Show that for each logic L E NExtK, a finite rooted frame~ 
for L splits NExtL iff there is m < w such that, for every (general) frame l!5 for 
L, om(~) /\Pr is satisfied in l!5 only if on(~) /\Pr is satisfied in l!5 for all n < w. 
In this case L/~ = L EB om(~)--> •Pr· 

Exercise 10.24 Prove that if tram E L, for some m < w, then all finite rooted 
frames for L split NExtL. 

Exercise 10.25 Prove that every normal modal logic containing on l_ is locally 
tabular. 

Exercise 10.26 Show that Tis not a splitting of NExtK. 

Exercise 10.27 Prove that o is the only finite rooted frame that splits NExtT. 

Exercise 10.28 Show that the logics L1 constructed in Example 10.57 are im
mediate predecessors of Log• in NExtK. 

Exercise 10.29 Prove that every consistent normal extension of T has degree 
of incompleteness 2~0 in NExtT. 

Exercise 10.30 Construct a continuum of Post complete quasi-normal modal 
logics having no Kripke frames at all. 

Problem 10.1 Are canonical logics V-persistent? 

Problem 10.2 Are canonicity and V-persistence preserved under intersections 
of logics? 

Problem 10.3 Does the converse of the Fine-van Benthem theorem hold? 

Problem 10.4 Are finitely axiomatizable Sahlqvist logics in NExtK4 decidable? 

Problem 10.5 What is the degree of Kripke incompleteness of logics in the 
lattices NExtK4, NExtS4, Extlnt? 

10.7 Notes 

In this chapter we considered only results concerning the completeness with 
respect to (infinite, in general) Kripke frames. The completeness with respect to 
finite frames is the subject of the next chapter. 

Theorem 10.3 was proved by Bellissima (1988); later on we shall mention 
some other results from this paper. Theorem 10.5 belongs to Wolter (1993). The 
notion of complex logic was introduced by Goldblatt (1989). 

That every Kripke complete and elementary logic is D-persistent was first 
proved by Fine (1975b). Theorem 10.19 also appeared first in Fine (1975b), 
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but the proof contained a little gap. The presentation in Section 10.2 follows 
van Benthem (1979b, 1980), where the notion of ultrafilter extension was in
troduced and the proof of Theorem 10.19 was completed (see Exercise 10.11). 
Theorem 10.20 is due to Chagrova (1990), Theorem 10.23 and Exercises 10.4, 
10.10 to Fine (1975b). Exercises 10.6-10.8 and 10.15-10.16 were taken from van 
Benthem (1989, 1978). 

Theorems 10.30 and 10.31 were proved by Sahlqvist (1975). The starting 
point of Sahlqvist's research was the conjecture of Lemmon and Scott (1977) 
that formulas of the form 

where <p is positive, axiomatize logics that are complete with respect to first 
order conditions which can be "read off'' from the axioms. Independently a so
lution to this conjecture was obtained by Goldblatt (1976b). Other proofs of 
Sahlqvist's theorem were given by van Benthem (1983) (who formulated it as 
in Exercise 10.12), Sambin and Vaccaro (1989), Kracht (1993a) (who charac
terized also the elementary conditions corresponding to Sahlqvist formulas), and 
Jonsson (1994). Here we followed the proof by Sambin and Vaccaro; Lemma 10.27 
is due to Esakia (1974). The result of Exercise 10.13 was obtained in Chagrov 
and Zakharyaschev (1995b) where a Sahlqvist calculus above S4 which is not 
finitely approximable was also constructed. Above T a calculus of that sort was 
presented by Hughes and Cresswell (1984) (see Exercise 6.11). Exercise 10.14 
is due to Kracht (1995). It is not hard to construct an undecidable polymodal 
Sahlqvist calculus; the transfer theorem of Kracht and Wolter (1997) provides 
us then with an undecidable Sahlqvist calculus in NExtK. 

Venema (1991) extended Sahlqvist's theorem to logics with non-standard 
inference rules like Gabbay's (1981) irreflexivity rule. An intuitionistic analog of 
Sahlqvist's theorem has been proved by Ghilardi and Meloni (1997). We present 
here a somewhat simplified version of their result. Let p, q, r, s denote tuples 
of propositional variables and "iii, x tuples of formulas of the same length as r 
and s, respectively. Suppose <p(p, q, r, s) is an intuitionistic formula in which the 
variables r occur positively and the variables s occur negatively, and which does 
not contain any -->, except for negations and double negations of atoms, in the 
premise of a subformula of the form <p1 --> <p11

• Assume also that °iii(p, q) and 
x(p, q) are formulas such that p occur positively in "iii and negatively in x, while 
q occur negatively in "iii and positively in X· Then the logic 

Int+ 1.p(p, Ii, °iii("P, q), x(p, Ii)) 

is canonical. 
The material of Section 10.4 was taken mainly from Fine (1974c), where the 

method of dropping points from the canonical models was developed in order 
to prove Theorems 10.42 and 10.44. Si-logics of finite width were studied by 
Sobolev (1977a). Some decidability results concerning logics of finite width can 
be found in Chapter 16. As follows from Theorem 10.44, there are strongly 
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complete modal logics that are not V-persistent. But these logics are formulated 
in finite languages. Recently Wolter [1996b] has constructed a logic of that sort 
in the infinite language. 

The question concerning the degree of Kripke incompleteness was raised by 
Fine (1974b) and solved for the lattices NExtK, NExtD and NExtT by Blok 
(1978, 1980b). Similar results concerning the degree of incompleteness with re
spect to neighborhood frames were obtained by Dziobiak [1978] for NExtT and 
NExt(DE!1Dnp ~ on+lp), and quite recently Chagrova has proved that the situ
ation with the degree of neighborhood incompleteness in the whole class NExtK 
is exactly the same as in Blok's theorem. Theorem 10.60 is also due to Blok 
(1978). 

The notion of splitting was introduced in lattice theory by Whitman (1943). 
McKenzie (1972) considered splitting varieties of lattices. In modal logic split
tings were used by Blok (1978), Rautenberg (1977, 1979, 1980), Kracht (1990, 
1993c) and Wolter (1993). The result of Exercise 10.19 was proved by Jankov 
(1968a) and Rautenberg (1979), that of Exercise 10.23 by Kracht (1990). Ex
ercises 10.21 and 10.22 are due to Wolter (1993) and Exercise 10.24 to Raut
enberg (1980). Rafter (1994) gave a partial characterization of canonical union
splittings. Later he showed that a continuum of union-splittings are canl)nical 
and as many are not. 
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FINITE APPROXIMABILITY 

Let us now go one step down the hierarchy of frame classes and consider a 
stronger form of completeness, viz., completeness with respect to the class of fi
nite frames or, in other terms, finite approximability. We have already met with 
one way of proving this property-the filtration method, requiring a special ad 
hoc technique in each particular case. Now we will show a few other methods 
which provide us in fact with general syntactical and semantic sufficient condi
tions of finite approximability. 

11.1 Uniform logics 

We begin with. two results connecting the finite approximability of modal logics 
with the distribution of the operators 0 and 0 over their axioms. The first result 
to be obtained in this section concerns those normal extensions of deontic logic 
D whose additional axioms are uniform in the following sense. 

We say cp is a uniform formula of degree 0 if md(cp) = 0, i.e., cp contains no 
modal operators at all. cp is a uniform formula of degree n + 1 if there are a 
uniform formula 'lj;(pi, ... ,Pm) of degree 0 and uniform formulas Xi, ... , Xm of 
degree n such that cp = '1/J(01x1, ... , OmXm) where each Qi is either 0 or 0. 
In other words, a uniform formula of degree n + 1 is a Boolean combination of 
formulas of the form ox or Ox such that x is a uniform formula of degree n. 
For example, both the McKinsey and Geach formulas are uniform formulas of 
degree 2, while the Lob and Grzegorczyk ones are not uniform. 

The set of all uniform formulas of degree n is denoted by Un and U, the set 
of uniform formulas, is the union of all Un. 

A remarkable property of uniform formulas of degree n is that their truth
values at a point x in a model are completely determined by the truth-values 
of their variables at the points accessible from x by n steps. More exactly, the 
following proposition holds (compare it with Proposition 3.2). 

Proposition 11.1 Suppose cp is a uniform formula of degree n and !.JJt, iJ1 are 
models based upon the same frame and such that, for some point x, (!.JJt, y) f= p iff 
(SJ1, y) F p for any y E xr and any p E Varcp. Then (!.JJt, x) F cp iff (SJ1, x) F cp. 

Proof The proof proceeds by induction on n. The basis of induction is trivjal, 
and the inductive step is justified by another induction on the construction of 
the uniform formula cp of degree n = m + 1. The basis of the second induction is 
the case when cp = D'lj; or cp = O'lj; with '1jJ E Um. Let cp = D'lj;. Then we ha\le: 

(!.JJt, x) f= cp iff \f z E xi (!.JJt, z) F= '1/J 
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iff 'v'z E xj (!J't, z) F '</; 

iff (!J't, x) F= r.p. 

375 

The only nontrivial transition here (from the first line to the second) is ensured 
by the induction hypothesis of the first induction and the fact that zjm~ xjm+l 
for every z E xj. The case r.p = O'</J is considered analogously. The inductive step 
of the second induction presents no difficulty. 0 

A normal modal logic L is called uniform if it can be represented in the form 
L = D EB r where r ~ U. In this section we prove that all uniform logics are 
finitely approximable. 

To construct a finite frame separating a uniform logic L from a formula r.p fl. L, 
we reduce ''P to a form which is analogous to the full disjunctive normal form 
in Cl (see Exercise 1.2) and gives in fact a description of some finite models for 

''P· 
Let Var = {P1, ... , Pr} be a finite set of propositional variables. By induction 

on n we define a set NF n of normal forms (in Var) of degree n: NFo is the set 
of all formulas of the form 

'lPl /\ · · · /\ 'rPr, 

where each 'i, for i = 1, ... , r, is either blank or -,, and NF n+l is the set of all 
formulas of the form 

e /\ '1 Oe1 /\ ... /\ 'soes, 
where e E NF o, el, ... , es are all the distinct normal forms in NF n and each 'i 
is either blank or '· NF, the set of normal forms in Var, is the union of all NF i 
for i < w. 

Theorem 11.2 Every modal formula r.p with Varr.p ~ Var and md(r.p) :::; n is 
equivalent in K either to 1- or to a disjunction of normal forms in Var of degree 
n. 

Proof We proceed by induction on n. The basis of induction is simply the 
theorem on the full disjunctive normal forms in Cl (see Exercise 1.2). 

Now, suppose md(r.p):::; k+l. Replacing each Din r.p with -,0-,, we can reduce 
r.p to an equivalent formula which is a Boolean combination of propositional 
variables and formulas O'</; with md( '</;) :::; k. By the induction hypothesis and 
the K-equivalences 01- <--+ 1- and O(pVq) <--+ OpVOq, each such O'</J is equivalent 
either to J_ or to a disjunction oe1 v ... voem where el, ... , em are normal forms 
of degree k. Therefore, r.p is equivalent to a formula of the form 

where '</; contains no modal operators and e1 , ... , es are all the distinct formulas 
in NFk. Finally, reducing '</J(P1, ... pr,Q1, ... ,q8 ) to the full disjunctive normal 
form and substituting oe1, ... , oe s for Q1, ... , Qs in it, respectively, we obtain 
an equivalent formula which is either 1- or a disjunction of normal forms in Var 
of degree k + 1. O 
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It is worth noting that for any distinct normal forms e' and e" (in Var) of the 
same degree the implication e' --+ -.e" is true in every model and so belongs to 
K. It follows that for every normal form e in Var of degree n and every modal 
formula r.p with Varcp <;;; Var and md(r.p) :::; n we have either e --+ r.p E K or 
e --+ -.r.p E K. Indeed, by Theorem 11.2, r.p is equivalent in K either to l_, in 
which case e --+ -.r.p E K, or to a disjunction 8 of normal forms of degree n. If e 
is a disjunct of 8 then e --+ r.p E K; otherwise e --+ -.r.p E K. 

Of course, normal forms are too lengthy to be used in practice: each e in 
NFn+l contains INFnl + r conjuncts and INFnl is calculated recursively as 

However, they provide us with another theoretical tool for constructing models. 
First we define a binary relation < on NF by putting e' < e" iff oe' is a 

conjunct of e", for every e', e" E NF. We write e' <n e" if there are e1, ... , en-l 
such that e' < e1 < ... < en-l < e"; e' <o e" means e' = e11

• Now, with each 
normal form ewe associate a model !JJ1o = (Jo, !De) on a frame Jo = (We, Re) 
which are defined as follows: 

We= {e' E NF: e' <n e, for some n 2: O}, 

e' Ree" iff e' > e", 

QJ9(p) = {e' E We : pis a conjunct of e'}. 

Theorem 11.3 For each normal form e and each e' E We' (9J1e' e') F e'. 

Proof An easy induction on the degree of e' is left to the reader as an exercise 
(see also the proof of Theorem 11.6.) 0 

Note that Theorem 11.3 yields another proof of the finite approximability of 
K. Indeed, if r.p <:/. K then we reduce -.r.p to a disjunction of normal forms. Since 
-.r.p is not equivalent to l_ (for otherwise r.p would be equivalent to T, contrary 
to r.p <:/. K), this disjunction is not empty. Let e be one of its disjuncts. Then, 
according to Theorem 11.3, we have (!JJ1e, e) F e and so (!JJ1e, e) ~ r.p. However, 
this proof does not go through for logics L ~ K, because Jo is not in general a 
frame for L. For example, no frame Jo validates D, since it is finite and all its 
points are irreflexive. 

For D the argument above will remain correct, if we somewhat modify the 
definitions of normal form and the model !JJ19. Observe first that the following 
proposition holds. 

Proposition 11.4 Suppose that, for some n 2: 0, NF n = {e1, ... , es}· Then 
oe1 v ... voe.ED. 

Proof The formula el V ... Ve. is valid in Cl and so oe1 V ... Voe. E D, since 
Oe1 V ... Voe.+-+ O(e1 V ... Ve.) EK and OT ED. 0 
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It follows that every normal form B /\ ·<>B1 /\ ... /\ •<>Bs is equivalent to 1- in 
D, and so we can define D-suitable normal forms like this. Every normal form of 
degree 0 is D-suitable, and a normal form B of degree n > 0 is D-suitable if every 
B' < B is D-suitable and there is at least one B' < B. Alternatively, this means 
that in the inductive step of the original definition of normal form we require at 
least one 'i to be blank. The next t.heorem is proved similarly to Theorem 11.2, 
using Proposition 11.4. 

Theorem 11.5 Every modal formula cp with Varcp ~ Var and md(cp) :S n is 
equivalent in D either to 1- or to a disjunction of D-suitable normal forms in 
Var of degree n. 

As to the frame Jo, we can make it serial by adding to it a reflexive point 
accessible from the final points in We. More exactly, given a normal form B, 
define a model !Jlo = (180,Uo) on a frame 180 = (Vo, So) by taking 

Vo= WoU{T}, 

B' SoB" iff either B' RoB" or md( B') = 0 and B" = T, 

ilo(p) = QJ9(p). 

It should be clear that if Bis D-suitable, T is the reflexive last point in 180, and 
so 18 o is serial. 

Theorem 11.6 For every normal form B and every B' E Vo, (!Jlo, B') I= B'. 

Proof By induction on the degree of B'. The basis of induction is trivial. 
Suppose B' = Bo/\•1 OB1 /\ ••. /\•s<>Bs is of degree n+ 1. By the definition of ilo, 

(!Jlo,B') I= Bo. If-,i is blank then Bi< B', whence B'SoBi and (!Jlo,B') I= <>Bi, since, 
by the induction hypothesis, (!Jlo, Bi) I= Bi· And if 'i is...., then (!Jlo, B') I= ·<>Bi, 
for other~ise B' SoB" and (!Jlo, B") I= Bi for some B" E Vo. By the definition of 
So, B" is either a normal form of degree nor T. The former case means B" =Bi, 
since, by the induction hypothesis, (!Jlo, B") I= B" and since distinct normal 
forms cannot be simultaneously true at the same point; but this contradicts the 
definition of <. And in the latter case md(B') = 0, which is also impossible. 

0 

Thus, the argument used above for proving the finite approximability of K 
remains valid for D too. Moreover, we will show now that it goes through for all 
uniform logics as well. 

Suppose L is a uniform logic. Call a normal form () £-suitable if 186 is a 
frame for L. It should be clear that this definition agrees with the definition of 
D-suitability. 

Theorem 11. 7 Suppose L is a uniform logic. Then every modal formula cp with 
Varcp ~Var and md(cp) :S n is equivalent in L either to 1- or to a disjunction 
of L-suitable normal forms in Var of degree n. 
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Proof By Theorem 11.5, <p is equivalent in D to l. or a disjunction of D
suitable normal forms of degree n. So it suffices to show that every D-suitable 
normal form 8 such that 8 ____. l. ~ L is £-suitable. (If ·8 E L then 8 is equivalent 
to l. in L.) 

Suppose otherwise. Let 8 be an £-consistent and D-suitable normal form of 
the least possible degree under which it is not £-suitable. Then a uniform formula 
'ljJ E L of some degree m is refuted at the point 8 in {59, i.e., there is a model 
9Jt = ({59, W) such that (9Jt, 8) [tf: 1/J. 

For every p E Van/;, let rP = {8' E 8jm: (9Jt,8') I= p} and let bp be the 
disjunction of all the formulas in r P (if r P = 0 then bp = l.). Observe that for 
every 8' E 8jm we have: 

(SJ19, 81
) I= Dp iff 8' is a disjunct of Dp 

iff 8' Erp 

iff (9Jt, 81
) I= p. 

Therefore, by Proposition 11.1, the formula 1/J' ='I/;{ bp/P: p E Var'I/;} is false at 8 
in SJ19. Now, if md( 'I/;') > n then m > n and so Dp = l. for every p E Var'I/;, i.e., 'I/;' 
is variable free. But according to Exercise 3.19, 'I/;' is then equivalent in D to Tor 
l., contrary to {59 [tf: 'I/;' and the consistency of L. And if md( 'I/;') ~ n then, as we 
have observed, either 8 ____. 'l/; 1 EK, which is impossible, since (SJ19, 8) ltf: 8 ____. 1/J', 
or 8 ____. •'I/;' E K, from which 1/J' ____. ·8 E K and so -,8 E L, contrary to the 
£-consistency of 8. 0 

As a consequence of this theorem we obtain our final result. 

Theorem 11.8 Every uniform logic is finitely approximable. 

In particular, the McKinsey logic K EB DOp ____. ODp = DEB DOp ____. ODp 
turns out to be finitely approximable. 

11.2 Si-logics with essentially negative axioms and modal logics with 
DO-axioms 

A formula is said to be essentially negative if every occurrence of a variable in it 
is in the scope of some •. For example, the Skvortsov formula in Exercise 2.16 
is essentially negative. The following three facts: 

• Glivenko's theorem, 
• the local tabularity of Cl, and 
• a possibility of transforming a derivation of any formula <p in any logic in 

such a way that it should not contain variables having no occurrences iI?- <p 

enable us to reduce the derivability problem in a superintuitionistic logic with 
a finite set of essentially negative additional axioms to the derivability prob
lem in Int. Indeed, suppose 'I/; is an essentially negative formula, i.e., 1fJ = 
'I/;' ( •X1, ... , 'Xn) for some formulas 1/;' ( Q1, ... , qn), X1, ... , Xn, and <p is an arbi
trary formula. How can we decide whether or not <p E Int+ 'ljJ? 
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Let P1, ... ,Pm be all the variables in cp. If cp E Int + 'l/; then there exists 
a substitutionless derivation of cp in Int + 'l/; in which substitution instances 
of the axiom 'l/; contain no variables different from P1, ... , Pm. Each of these 
substitution instances has the form 'l/;' (-.x~, ... , -.x~) where every x~, for i = 
1, ... , n, is some substitution instance of Xi containing only (some of) p1, ... ,Pm· 
By Glivenko's theorem (Corollary 2.49, to be more exact) and in view of the local 
tabularity of Cl, there are ::; 22"' pairwise non-equivalent in Int such substitution 
instances of -.xi, for each i = 1, ... , n. Therefore, there exist only finitely many 
pairwise non-equivalent in Int substitution instances of 'l/; containing p1, ... , Pm, 
say 'l/;1, ... , 'l/;k, and we can effectively construct them. Then, by the deduction 
theorem, 

and so we obtain a decision algorithm for Int+ 'l/;, because Int is decidable. 
Let us observe now that in the argument above we used only two specific 

properties of Int, namely its decidability and Glivenko's theorem, which holds 
for every consistent si-logic. Thus, actually we have proved 

Theorem 11.9 Suppose L is a decidable si-logic and 'l/; an essentially negative 
formula. Then the logic L + 'l/; is also decidable. 

The proof of Theorem 11.9 can be easily supplemented to a proof of the 
following: 

Theorem 11.10 Suppose L is a finitely approximable si-logic and 'l/; an essen
tially negative formula. Then the logic L + 'l/; is also finitely approximable. 

Proof We continue the argument above, taking L instead of Int. Suppose cp </. 
L + 'l/;. Then 'l/;1 /\ ... /\ 'l/;k - cp </. L and so there is a finite model 9Jt = (3', W) with 
root x such that 9Jt f= L, x f= 'l/;1 /\ ... /\ 'l/;k, and x ~ cp. As was shown above, 
every formula in L + 'l/; of the variables P1, ... ,Pm belongs to L + 'l/;1 /\ ... /\ '</Jk· 
Therefore, changing (if necessarily) the valuation QJ in 9Jt so that QJ(q) = QJ(p1 ) 

for every variable q different from p1 , ... ,pm, we obtain that x f= 'l/; and so 9Jt is 
a finite model for L + 'l/; refuting cp. 0 

It follows in particular that the si-logics, obtained by adding to Int Rose's 
non-realizable formula (see Section 2.9) or the Skvortsov formula or both, are 
decidable and finitely approximable. 

Results similar to Theorem 11.9 and 11.10 hold for extensions of K4 as well. 
However, in this case instead of essentially negative formulas we take so called 
DO-formulas in which every occurrence of a variable is in the scope of a modality 
DO. Instead of Cl we take 85, which is locally tabular by Corollary 5.19. Finally, 
instead of Glivenko's theorem we use 

Lemma 11.11 For every modal formulas cp and 'l/;, 

Ocp f--+ O'l/; E 85 iff DOcp f--+ DO'l/; E K4. 
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Proof It suffices to show that Oc.p -+ 01/; E 85 iff DOc.p -+ DO'lj; E K4. ( <=) is 
a consequence of K4 C 85 and Op ~ DOp E 85. 

( =>) Suppose DOcp-+ DO'lj; fl. K4. Then there is a finite model 9Jt, based on 
a transitive frame, and a point x in it such that x f= DOcp and x [it= DO'lj;. It 
follows from the former relation that every final cluster accessible from x, if any, 
is non-degenerate and contains a point where cp is true. The latter relation means 
that x sees a final cluster C at all points of which 1/J is false. Now, taking the 
generated submodel of 9Jt based on C, we clearly obtain a model for 85 refuting 
Oc.p-+ 01/J. 0 

Thus, we have everything that is required to prove the following two theorems. 

Theorem 11.12 Suppose L is a decidable normal (or quasi-normal) extension 
of K4 and 1/J a DO-formula. Then the logic L EB 1/J (respectively, L + 1/J) is also 
decidable. 

Proof Similar to the proof of Theorem 11.9 with the help of Theorem 4.7 and 
Exercise 3.5. O 

Theorem 11.13 Suppose Lis a finitely approximable normal (or quasi-normal) 
extension of K4 and 1/J a DO-formula. Then the logic L EB 1/J (respectively, L + 1/J) 
is finitely approximable too. 

Proof Similar to the proof of Theorem 11.10 (in the normal case cp fl. L EB 1/J 
means that D+ ( 1/;1 /\ ... /\ 1/Jk) -+ cp fl. L). O 

It follows in particular that the quasi-normal logics K4 + DOp -+ ODp = 
K4 + DOp -+ -.DO-.p and 84.1' are decidable and finitely approximable. It is to 
be noted that extending a finitely approximable logic with infinitely many DO
axioms does not in general preserve finite approximability (see Exercise 11.3). 

11.3 Subframe and cofinal subframe logics 

Another way towards general completeness results is to use the information about 
logics' frames which is contained in their canonical axioms. In Section 7.3 we 
saw that si-logics with disjunction free extra axioms are finitely approximable. 
According to Theorem 9.44, all these logics are axiomatizable by canonical for
mulas without closed domains-we called them subframe and cofinal subframe 
formulas. Now we consider modal logics in NExtK4 with canonical axioms of 
that sort. With the help of the modal companion and preservation theorems the 
results obtained below can readily be transferred to the corresponding si-logics. 

A logic L E NExtK4 is called a subframe logic if it can be represented in the 
form 

L = K4EB{a(Ji): i E J}. 
The class of all subframe logics is denoted by SF. A logic L of the form , 

is called a cofinal subframe logic, and the class of all such logics is denoted by 
CSF. 
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Example 11.14 As is shown by Table 9.6, the majority of the standard modal 
logics are in S:F or CS:F. Every extension of S4.3 is axiomatizable by canonical 
formulas which are based on chains of non-degenerate clusters and so have no 
closed domains. Therefore, NExtS4.3 = ExtS4.3 is a (proper) subclass of CS:F. 

Theorem 11.15 (i) Suppose L = K4 EB {a::(Ji,1-) : i E I}. Then for every 
canonical formula a(J, '.D, 1-), 'a::(J, '.D, 1-) E L iff J If: a::(Ji, 1-) for some i E I, 
i.e., iff J is cofinally subreducible to Ji for some i E J. 

(ii) Suppose that L = K4EB {a::(Ji): i EI}. Then for every a::(J,'.D,1-), 
a::(J, '.D, 1-) E L iff a::(J, '.D) E L iff J If: a::( Ji) for some i E I, i.e., iff J is 
subreducible to Ji for some i E J. 

Proof (i) If a::(J,'.D,1-) EL then J If: a::(Ji,1-) for some i EI, since clearly 
J If: a::(J, '.D, 1-). 

Now suppose that J If: a::(Ji, 1-) for some i E I, i.e., there is a cofinal subre
duction f of J to Ji· Suppose also that 6 is a frame refuting a::(J, '.D, 1-). Then 
there is a cofinal subreduction g of 6 to J. By Theorem 9.21, the composition 
f g is a cofinal subreduction of 6 to Ji and so, by the refutability criterion (The
orem 9.39), 6 If: a::( Ji, 1-). Thus, a::(J, '.D, 1-) is valid in every general frame for 
L, and hence a::(J, '.D, 1-) E L. 

(ii) is proved analogously. 0 

As an immediate consequence of Theorem 11.15 and the completeness theo
rem for the canonical formulas (Theorem 9.43) we obtain 

Corollary 11.16 Every finitely axiomatizable subframe or cofinal subframe logic 
is decidable. 

Moreover, this result may be generalized to 

Theorem 11.17 Suppose LE NExtK4 (or LE Extlnt) is recursively axioma
tizable by subframe or cofinal subframe formulas. Then L is decidable. 

Proof Let L be recursively axiomatizable by some cofinal subframe formulas. 
According to Theorem 11.15, 0::(18,'.D, 1-) EL iff there is a cofinal subreduct J of 
18 such that a::(J, 1-) is an axiom of L. So our decision algorithm may be as follows. 
Given a formula 0::(18, '.D, 1-), we construct all rooted cofinal subreducts Ji, ... , Jn 
of 6 and then check whether at least one of the formulas 0::(J1, 1-), ... , a::(Jn, 1-) 
is an axiom of L. If the outcome of this check is positive then 0::(18, '.D, 1-) E L; 
otherwise a ( 18, '.D, 1-) f/. L. 

The case of a subframe Lis considered in the same manner. 0 

However, there are undecidable recursively axiomatizable logics in S:F and 
CS:F. Let Jn = (Wn, Rn), for n = 3, 4, ... , be the sequence of frames shown in 
Fig. 11.1. 

Lemma 11.18 For non =f:. m, Jn is subreducible to Jm. 

Proof Clearly Jn is not subreducible to Jm if n < m. So suppose that n > m 
and f is a subreduction of Jn to Jm. Since both a 1 and b1 have three pairwise 
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FIG. 11.1. 

v 
inaccessible successors in Jm, every point in f- 1(a1 ) and f- 1 (b1 ) must see an 
antichain of three points as well. Therefore, without loss of generality we may 
assume that f- 1 (a1 ) = {ai} and f- 1 (b1 ) = {bi}. It should be clear also that 
f- 1(a) = {a} and f- 1(b) = {b}. Since a1Rma2 and not b1Rma2, we must have 
f- 1(a2) = {a2}; symmetrically, f- 1(b2) = {b2}. And by the same argument, for 
each i such that 1 ~ i ~ m, f- 1(ai) = {ai} and f- 1(bi) = {bi}· But then we 
come to a contradiction. For bm-1 does not see c in Jm, while in Jn bm-1 sees 
all the points which are accessible from am except am itself, and so no point in 
Jn can be mapped by f to c without violating (Rl). 0 

As a consequence of Lemma 11.18 and Theorem 11.15 we obtain the following: 

Theorem 11.19 (i) The cardinality of both SF and CSF is that of the contin
uum. 

(ii) There is a continuum of undecidable logics in SF and CSF, with infinitely 
many of them being recursively axiomatizable (but not by canonical formulas). 

Proof (i) Let I be a set of natural numbers, L1 = K4 EEl {a(Ji) : i E I} and 
n (j_ I. Clearly, Jn ~ a(Jn)· On the other hand, by Lemma 11.18, Jn I= a(Ji) 
for every i E J. Therefore, a(Jn) (j_ L1 and so L1 =J LJ whenever I =J J. 

(ii) Take any recursively enumerable set I of natural numbers which is not 
recursive. The logic L1 is then undecidable, for otherwise, since a(Jn) E L1 iff 
n E I, the set I would recursive. By Craig's theorem (see Section 16.2), L1 is 
recursively axiomatizable. 0 

Since all the frames Jn are partial orders, Theorem 11.19 holds for the classes 
of si-logics with implicative and disjunction free extra axioms. It means in par
ticular that there is a continuum of si-logics axiomatizable by purely implicative 
formulas. 

Another immediate consequence of Theorem 11.15 is the following: 

Theorem 11.20 All subframe and cofinal subframe logics are finitely approx
imable. 

Proof Suppose Lis in SF or CS:F and a(J, :D, j_) (j_ L. Then by Theorem 11.15, 
J is a frame for L and, as we know, J l;if: a(J, :D, l_). 0 
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The terms "subframe logic" and "cofinal subframe logic" are justified by the 
following frame-theoretic characterization of these logics. Say that a class C of 
frames is closed under (cofinal) subframes if every (cofinal) subframe of J is in 
C whenever J EC. 

Theorem 11.21 (i) A logic in NExtK4 is a subframe logic if! it is characterized 
by a class of frames that is closed· under subframes. 

(i) A logic in NExtK4 is a cofinal subframe logic iff it is characterized by a 
class of frames that is closed under cofinal subframes. 

Proof (ii) Suppose L is a cofinal subframe logic. We show that the class of all 
frames for L is closed under cofinal subframes. Let (!; be a frame for L and Sj 

a cofinal subframe of (!;. Then Sj f= L, since otherwise Sj ~ a(J, ..l) for some 
a(J, ..l) E Land so, by Theorem 9.21 and the refutability criterion, (!; ~ a(J, ..l) 
which is a contradiction. 

Now suppose that L is characterized by some class of frames C that is closed 
under cofinal subframes. We show that L = L' where 

L' = K4 EB {a(J, ..l): J ~ £}. 

Indeed, if J is a finite rooted frame and J ~ L then a(J, ..l) E L, for otherwise 
(!; ~ a(J, ..l) for some (!; E C, and hence there is a cofinal subframe Sj of(!; which 
is reducible to J; but Sj E C and so, by the reduction theorem, J is a frame for 
L, which is a contradiction. Thus, L' ~ L. 

To prove the converse inclusion, suppose a(J,'.D, ..l) EL. Then J ~ L, and 
hence a(J,..l) E £'.Therefore, by Theorem 11.15, a(J,'.D,..l) EL'. 

(i) is proved analogously. D 

Corollary 11.22 If a logic L E NExtK4 is characterized by a class of frames 
that is closed under cofinal subframes then L has the finite model property. 

Corollary 11.23 SF C CS:F. 

Proof The fact that SF ~ CSF is an immediate consequence of Theorem 11.21. 
However, there is a continuum of cofinal subframe logics that are not subframe 
ones. Indeed, there is a continuum of logics axiomatizable by canonical formulas 
of the form a(J;, ..l), where J; is the frame defined in Fig. 11.1. And none of 
them is a subframe logic, since the class of frames for such a logic is not closed 
under subframes. For if we add to J; a new point which is seen from all the 
points in J; and denote the result by (!;i then clearly (!;; f= a(J1, ..l) for any j, 

but J;, being a subframe of(!;;, refutes a(Ji, ..l). D 

Corollary 11.24 CSF is a complete sublattice of NExtK4. SF is a complete 
sublattice of CS:F. 

Proof Suppose L; E CSF for i E J. Then for each i E J, there is a set ~i of 
cofinal subframe formulas such that L; = K4E9~;. Therefore, we have ffiiEJ L; = 
K4 ffi LJiEJ ~i E CS:F. 
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FIG. 11.2. 

As to the intersection L = niEJ Li, it is clear that L is characterized by the 
class LJiEJ{J : J I= Li} which is closed under cofinal subframes. Therefore, by 
Theorem 11.21, L E CS:F. 

The class S:F is considered analogously. 0 

Translating Theorem 11.21 into si-logics we obtain a nice frame-theoretic 
criterion of axiomatizability by implicative and disjunction free formulas. 

Theorem 11.25 (i) A si-logic is axiomatizable by implicative formulas iff it is 
characterized by a class of frames closed under subframes. 

(ii) A si-logic is axiomatizable by disjunction free formulas iff it is character
ized by a class of frames closed under cofinal subframes. 

Now we give a frame-theoretic criterion of elementarity, 'D-persistence and 
strong Kripke completeness of logics in S:F and CS:F. 

Let Jc = (We, Re) be a frame containing a cluster C. For an ordinal e, 
0 < e $ w, we denote by ~r = (We, Rt) the frame that is obtained from Jc 
by replacing C with an ascending chain of e irreflexive points. More exactly, we 
put 

We = (W - C) U { i : 0 $ i < fl 

and, for all x,y E We, 

xRty iff xRcy or 
3i,j < e (x = i A y = j A i < j) or 
3i < ~3z E C (x = i A zRcy) or 
3i < ~3z EC (y = i A xRcz). 

Je = (We, Re) is the result of replacing C in Jc with an ascending ch~in 
containing ~ reflexive points, i.e., 

Re= Rt u { (i, i) : 0 $ i <fl. 

Fig. 11.2 illustrates the given dennition. 
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We say that a logic L has the finite embedding property if a Kripke frame J 
validates L whenever each finite subframe of J is a frame for L. L is said to be 
universal if there is a set <I> of universal first order sentences in Rand = (which 
are of the form Vx ... Vy ¢, where¢ contains no quantifiers) such that, for every 
Kripke frame J, J f= L iff J f= <I>. 

Theorem 11.26 The following conditions are equivalent for each subframe logic 
L: 

(1) L is universal; 
(2) L is elementary; 
(3) L is 'D-persistent; 
( 4) L is 'R-persistent; 
(5) L is canonical; 
(6) L is strongly Kripke complete; 
(7) for every finite rooted frame Jc with a non-degenerate cluster C 

ve < w Jt FL implies Jc FL 

and 
ve < w Je F L implies Jc F L; 

(8) L has the finite embedding property. 

Proof The implication (1) :::;. (2) is trivial and (2) :::;. (3) follows from Theo
rems 10.19 and 11.20. 

(3) :::;. (4). Let J be a refined frame for L. According to the proof of Theo
rem 8.51, KJ is (isomorphic to) a subframe of K(J+)+· Since J f= L and L is 
'D-persistent, we then have (J+)+ f= L and K(J+)+ f= L, from which, by the 
proof of Theorem 11.21, KJ f= L. 

The implications (4):::;. (5) and (5):::;. (6) are obvious. 
(6) :::;. (7). Suppose that Jc = (We, Re) is a finite rooted frame with a 

non-degenerate cluster c and ve < w J~r FL. We must prove that Jc FL. 
Let { ai : i E J} be all the points in W w. With each ai we associate a variable 

Pi different from Pi for any j =/. i and construct from them the canonical formulas 
o:(Jn for all e such that 0 < e < w. Now take the tableau 

and show that it is £-consistent. Suppose otherwise. Then we have some e < w 
for which 

o:(Jir) Vo:(~{) V ... V o:(Jt} E L. 

But on the other hand, since Jt is a subframe of Jt, for ( :S: e, and by the proof 
of Theorem 9.39, there is a valuation \tJ in Jt such that all the formulas o:(Jt), 
for ( :s: e, are false at the root of Jt under m, which is a contradiction because 
J~r FL. 
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By (6), there is a model 9J1 on a Kripke frame(!; = (V, S) such that all a(Jn, 
for 0 < e < w, are simultaneously false at some point in 9J1 and (!; I= L. Define 
a map f from V onto W w by taking 

{ 

ai if x ~Pi and, for each e < w, the 
f (x) = premise of a(Jt) is true at x 

undefined otherwise. 

Using the proof of Theorem 9.39, it is not hard to check that f is a subreduction 
of (!; to J:;. On the other hand, we can easily construct a reduction g of J:; to 
Jc. Indeed, if C = {bo, ... , bn} then we may take 

{ 
x if x E We - C 

g(x) = bi if x = m and i = modn+l(m). 

By Theorem 9.21, there is a subreduction of (!; to Jc and so Jc I= L, for 
otherwise (!; ~ L, which is a contradiction. 

The case with Je is considered in exactly the same way. 
(7) => (8). Suppose otherwise, i.e., there is a Kripke frame(!; such that every 

finite subframe of ~ validates L but (!; ~ L. Then there exists a subreduction f 
of (!; to a finite rooted frame J = (W, R) such that J ~ L. Starting with J we 
construct by induction a finite rooted frame which is not a frame for L but is 
embeddable in(!;, contrary to our assumption. At the very beginning we mark by 
some signs all the clusters in J, which means that all of them are to be analyzed 
in the sequel. 

Suppose now that we have already constructed a finite rooted frame Sj = 
(V, S) and a subreduction g of (!; to Sj such that Sj ~ L and g- 1 ( x) is a singleton 
for each x belonging to an unmarked cluster in Sj. (At the first step Sj = J.) 

Let C = { ao, ... , ak} be a marked cluster in Sj all immediate predecessors 
C1, ... , Cm of which are unmarked and let b1 E C1, ... , bm E Cm. By the in- · 
duction hypothesis, g- 1 (bi) ={xi} for some x1 , ... ,xm in(!;. Choose a minimal 
number of disjoint sets A1 , ... , An of points in (!; such that 

• for each i E {1, ... , m} there is j E {1, ... , n} such that Aj ~xii 

and, for each i E {1, ... , n }, either 

or 

•Ai= {yo, ... ,yk}, g(yj) = aj for j = O, ... ,k, and Ai is a subset of a 
cluster in (!; 

• Ai is an infinite ascending chain y0 , y1 , ... all the points of which are either 
simultaneously irreflexive or simultaneously reflexive and g(yj) E C for 
j ;::: 0. , 

The existence of such A1 , ... , An follows from the fact that g is a subreduction 
of (!; to Sj. (See Fig. 11.3.) Our next action depends on the number of these 
A1, ... , An. Notice by the way that 1 :::; n :::; m. 

Case 1. n = 1. 
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FIG. 11.3. 

1.1. If A1 = {yo, ... , yk}, i.e., if A1 is a part of a cluster in (!;, then we put 
SJ' =SJ, mark in SJ' all the clusters that were marked in SJ except C and define 
a partial map g' from (!j onto SJ' by taking 

'(x) = { g(x) if x E (domg - g-1(C)) U A1 
9 undefined otherwise. 

It is clear that SJ' lf L, g' is a subreduction of (!j to SJ' and g'- 1(x) is a singleton 
for each x belonging to an unmarked cluster in SJ'. Notice also that the number 
of marked clusters in SJ' is less than that in SJ. 

1.2. Suppose A1 is an infinite ascending chain y0 , y1 , ... of irreflexive points. 
Then C is non-degenerate and, since SJ = SJc lf L, there is, by (7), some ~ < w 
such that SJr lf L. In this case we put SJ' = SJt, mark in SJ' all the clusters that 
were marked in SJ (the new points 0, ... , ~ - 1 remain unmarked) and define a 
partial map g' from (!j onto SJ' by taking 

{ 

g(x) if x E domg - g- 1(C) 
g'(x)= i ifx=yi,O:::;i<~ 

undefined otherwise. 

Again g' is a subreduction, f)' lf L, g'- 1(x) is a singleton for each x belonging 
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to an unmarked cluster in f)' and the number of marked clusters in f)' is less 
than that in .fJ. 

1.3. The case when A1 is an ascending chain of reflexive points is considered 
in the same way but using the second part of (7), i.e., f)~ instead of .fJt 

Case 2. Suppose now n > 1. Then we first form a new frame f)" = (V", S") 
by taking (see Fig. 11.3) 

V" = (V - C) u C 1 u ... U en, 

where 
Ci= {a~, ... ,a~}, i = 1, ... ,n, 

and, for all x, y E V", 

xS"y iff x, y E V - C /\ xSy or 
:?.i,j (x = aj /\ ajSy) or 
:?.i,j,l (y = aj /\ x E b1J /\ Ai~ x1T) or 
:?ii, j, l (x = aj /\ y = af /\ C is non-degenerate). 

Mark inf)" all the clusters that were marked in .fJ and C1, ... , en as well. After 
that we define a map g" from Q5 onto f)" by taking 

{ 

g(x) if x E domg - g-1 (C) 
g"(x) = aj if x = Yt E Ai and modk+1(l) = j 

undefined otherwise. 

It is not difficult to see that g" is a subreduction of Q5 to f)". Moreover, f)" ~ L, 
since f)" is reducible to f), and g"- 1(x) contains only one point if C(x) is an 
unmarked cluster in f)". But the number of marked clusters in f)" has become 
greater than that inf). However, we need not worry. For we can now analyze the 
new clusters C 1, ... , en, which clearly satisfy the condition of Case 1 and so we 
shall eventually construct a frame f)' having all the desirable properties and less 
marked clusters than f). Fig. 11.3 will help the reader to complete the details. 

The implication (8) => (1), completing the circle, is a consequence of the 
well known theorem of Tarski (1954) from classical model theory. Roughly, it is 
proved in the following way. Let C be the set of all finite rooted frames which do 
not validate L. With each J' E C we can associate a universal first order sentence 
¢J such that a Kripke frame Q5 is a (classical) model for ¢Jiff J' is not a subframe 
of Q5. It is easy to see now that a Kripke frame Q5 validates Liff Q5 is a (classical) 

model for the set { ¢J : J' EC}. D 

Example 11.27 Grz = K4 EB o:(•) EB o:(§) is neither elementary nor 'D
persistent nor strongly complete, since every finite linearly ordered reflexive 
frame validates Grz, while the two point cluster is not a frame for it. Neither 
GL = K4EBo:( o) meets this properties. For each finite linearly ordered irreflexive 
frame validates GL, while any non-degenerate cluster does not. 
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FIG. 11.4. 

Theorem 11.26 can be generalized in two directions. First, we can extend it 
to the class CS:F. Say that a subreduction f of a frame ~ to a finite frame J 
is a quasi-embedding of J in ~ if f- 1 ( x) is a singleton for every point x whose 
cluster C(x) is not final in J. In such a case J is called quasi-embeddable in ~. 
For example, the frame J in Fig. 11.4 is quasi-embeddable in ~ and cofinally 
quasi-embeddable inf). 

A logic L has the finite cofinal quasi-embedding property if a Kripke frame J 
validates L whenever every finite frame which is cofinally quasi-embeddable in 
J validates L. 

Theorem 11.28 The following conditions are equivalent for each cofinal sub
frame logic L: 

(1) L is elementary; 
(2) L is D-persistent; 
(3) L is canonical; 
(4) L is strongly Kripke complete; 
(5) for every finite rooted frame Jc with a non-degenerate non-final cluster 

C, Ve < w Jt f= L implies Jc f= L and ve < w Je f= L implies Jc f= L; 
( 6) L has the finite co final quasi-embedding property. 

Proof The implications (1) => (2) => (3) => (4) => (5) => (6) are proved in the 
same way as the corresponding implications in Theorem 11.26. 

(6) => (1). Given a finite rooted frame J, one can construct a first order 
formula ¢ (in R and =) with the free variables x 1 , ... , Xn such that a Kripke 
frame~ satisfies ¢ iff J is cofinally quasi-embeddable in ~ (for details see Exer
cise 11.12). Then~ ~Liff there is a finite rooted frame J ~ L which is cofinally 
quasi-embeddable in~ iff ~ f= 3x1 ... 3xn¢· 0 

Example 11.29 The logic K4.1 = K4 EB a(•, ..l) EB a(§, ..l) is elementary, 
D-persistent and strongly complete. Indeed, let Jc be a finite frame with a non
final non-degenerate cluster C. Then Jc ~a(•, ..l) iff Jc has a dead end iff both 
J~r ltf: a(•, ..l) and Je ltf: a(•, ..l) hold for any finite e. Similarly, Jc ~ a(§, ..l) 
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iff Jc has a final proper cluster iff both Jr lf a(§, _i) and J€ lf a(§, _i) 
hold for any finite ~. 

Remark Note that elementary logics in CS:F are not necessarily universal, and 
V-persistent logics in CS:F are not necessarily R-persistent, witness S4.1 (see 
Exercise 10.4). 

As an immediate consequence of Theorems 11.26, 11.28 and the preservation 
theorem we obtain 

Theorem 11.30 Every si-logic L with disjunction free extra axioms is elemen
tary (universal, if L is axiomatizable by implicative formulas), V-persistent and 
strongly complete. 

Another way of generalizing Theorem 11.26 is to extend it to the class of 
subframe logics in NExtK, which may be defined just as logics that are char
acterized by classes of (general) frames closed under subframes. (Such are, for 
instance, the logics T, KB, K5, Altn in Table 4.2.) 

Theorem 11.31 The following conditions are equivalent for each subframe logic 
LE NExtK: 

(1) L is universal and Kripke complete; 
(2) L is elementary and Kripke complete; 
(3) L is V-persistent; 
( 4) L is R-persistent; 
(5) L is strongly Kripke complete; 
(6) L has the finite embedding property and is Kripke complete. 

Proof We give only a sketch of the proof; details are left to the reader. All 
the implications except (5) =} (6) are established in the same way as in Theo
rem 11.26. Suppose L is strongly Kripke complete but does not have the finite 
embedding property. Then there is a rooted Kripke frame ® = (V, S) such that 
® lf L and all finite subframes of ® validate L. One can show that without 
loss of generality we may assume ® to be countable. Let ai, i < w, be all the 
points in® and a0 the root. Consider the tableau t = (r, 0), where r consists of 
all formulas of the form po, on(Pi _.., Opj) if aiSaj, on(Pi _.., ·Opj) if •aiSaj, 
on (p; _.., 'Pi) for i =f. j. Since every finite subframe of ® is a frame for L, t is 
£-consistent and so realizable in a Kripke frame SJ for L. It is not hard to check 
that in this case SJ is subreducible to ®, which is a contradiction. 0 

It turns out, however, that subframe logics in NExtK are not in general 
finitely approximable and even Kripke complete. 

Example 11.32 Let L be the logic of the frame J constructed in Example 8.5_2. 
Since every rooted subframe ® of J is isomorphic to a generated subframe of J, 
® I= L and so Lis a subframe logic. We show now that L has the same Kripke 
frames as the logic 

• • 
GL.3 = K4 EB a(o) EB a( v ). 
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Suppose <B is a rooted Kripke frame for GL.3 refuting a formula cp E L. Then 
clearly <B contains a finite subframe f) refuting cp. Since f) is a finite chain of 
irreflexive points, it is isomorphic to a generated subframe of J. Therefore, J ~ cp 
contrary to our assumption. Thus <B f= L. 

Conversely, suppose <B is a Kripke frame for L. Then <B is irreflexive. For 
otherwise <B refutes the formula cp = 0 2 (0p ~ p) I\ O(Op ~ p) ~ Op which 
is valid in J. Let us show now that <B is transitive. Suppose otherwise. Then (!) 

refutes the formula Op~ O(Op V (Oq ~ q)) which is valid in J, because w is a 
• • 

reflexive point. Finally, since <B f= cp, <B is Noetherian and since J f= a( V ), 
we may conclude that <B is a frame for GL.3. 

It follows that the subframe logic L is Kripke incomplete. Indeed, it shares 
the same class of Kripke frames with GL.3 but is different from it, because 
Op~ OOp E GL.3 - L. 

11.4 Quasi-normal subframe and cofinal subframe logics 

Let us now briefly consider quasi-normal logics containing K4 which can be 
axiomatized by normal and quasi-normal canonical formulas without closed do
mains. Those quasi-normal logics that can be represented in the form 

(11.1) 

are called, as in the normal case, ( quasi-norma0 subframe logics and those of the 
form 

(K4 EB {a(Ji, ..l.): i E J}) + {a(Jj, ..l.): j E J} + {a•(Jk, ..l.): k EK} (11.2) 

are called ( quasi-norma0 cofinal subframe logics. The classes of quasi-normal 
subframe and cofinal subframe logics are denoted by QSF and QCSF, respec
tively. The example of Solovay's logic S = K4 + a( o) + a(•) shows that Theo
rem 11.20 cannot be extended to QSF and QCSF. Yet we are going to prove 
that all finitely axiomatizable quasi-normal subframe and cofinal subframe logics 
are decidable. 

We use the following notation. For a frame J = (W, R) with irreflexive root 
u and 0 < e < w, Jr and ~ denote the frames that are obtained from J by 
replacing u with the descending chains 0, ... 'e - 1 of irreflexive and reflexive 

points, respectively; J~'.:,+l)* = ( W(w+i)•, R~'.:,+l)*, P(w+i)•) denotes the frame 
that is obtained from J by replacing u with the infinite descending chain 0, 1, ... 
of irreflexive points and then adding the irreflexive root w, with P(w+l)* contain
ing all subsets of W - { u}, all finite subsets of natural numbers { 0, 1, ... } , all 
(finite) unions of these sets and all complements to them in the space W(w+l)* 

(see Fig. 11.5). Note that if w E X E P(w+l)* then X contains all natural num
bers starting from some n ::::: 0. Observe also that J is a quasi-reduct of every 
frame of the form ~Y, ~ or J(::,+i)·. 
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FIG. 11.5. 
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The following theorem characterizes the canonical formulas belonging to log
ics in QS:F and QCS:F. Its proof, as that of Theorem 11.15, uses Theorem 9.21, 
which can be readily generalized to compositions of ( cofinal) quasi-subreductions. 

Theorem 11.33 Suppose L is a subframe or cofinal subframe quasi-normal 
logic. Then 

(i) for every finite frame J with root u, o:(J, '.D, _i) EL iff (J, u) ~ L and 
(ii) for every finite J with irreflexive root u, o:•(J,'.D,_i) EL iff (J,u) ~ L, 

(JI, 0) ~ L and ( J(~+i)•, w) ~ L. 

Proof (i) is proved similarly to Theorem 11.15. Details are left to the reader. 

(ii) If o:• (J, '.D, _i) E L then none of (J, u), (Ji:, 0) and ( ~~+l)•, w) validates 

L, since all of them are quasi-reducible to (J, u) and so, by the refutability 
criterion, refute o:•(J,'.D, _i). 

To prove the converse suppose that a frame Q5 = (V, S, Q) with actual world 
w (which is the root of Q5) refutes o:•(J, '.D, _i) and show that (Q5, w) ~ L. By 
the refutability criterion, there is a cofinal quasi-subreduction f of Q5 to J such 
that f(w) = u. Consider the set U = f- 1 (u) E Q. Without loss of generality we 
may assume that U =UT. There are three possible cases. 

Case 1. The point w is irreflexive and { w} E Q. Then the restriction of f to 
domf - (U - { w}) is a cofinal subreduction of Q5 to J satisfying (AWC) and so, 
by the refutability criterion and Theorem 9.21, (Q5, w) ~ L. 

Case 2. There is a subset X ~ U such that w EX E Q and, for every x E X, 
there exists y E X n xT. Then the restriction off to domf - (U - X) is clearly 
a cofinal subreduction of Q5 to J1 satisfying (AWC) and so again (Q5, w) ~ L. 

Case 3. If neither of the preceding cases holds then, for every X ~ U such 
that w E X E Q, the set Dx = X - X l of dead ends in X is a cover for X, 
i.e., X ~ Dx T, and w E X - Dx E Q. Indeed, since Case 1 does not hold, 
w ~ Dx, for otherwise {w} = Dx E Q. And if we assume that X - DxT =/. 1/J 
then Y = (X - DxT)l ~ U, w EYE Q and Y = Yl, i.e., Case 2 holds, which 
is a contradiction. Put 

Xo =Du, ... , Xn+l = Du-(X0 u ... UXn)• ,Xw =U- LJ X~. 
~<w 



QUASI-NORMAL SUBFRAME AND COFINAL SUBFRAME LOGICS 393 

Each of these sets, sa~e possibly Xw, is an antichain of irreflexive points and 
belongs to Q. Besides, x( c Xn! = Un<e'.5w Xe for every n < ( :5 w. Therefore, 
the map g defined by 

{ 
f(x) if x EV - U 

g(x) = ~ if x E Xe, O :5 ~ :5 w 

is a cofinal quasi-subreduction of l!5 to J{:+i)• satisfying (AWC). 
Suppose for definiteness that L is represented in the form (11.1). Since 

( ~:+i)•, w J does not validate L, it refutes at least one of its axioms, and again 
we have to consider three possible cases. 

(a) J(:+i)• ~ a(J;) for some i E /,i.e., there is a subreduction h of J{:+l)* 
to J;. Since {w} ¢ P(w+l)., either w ¢ domh or the root h(w) of J; is reflexive. 
Then the composition hg is a subreduction of l!5 to J;, from which l!5 ~ a(J;) 
and so (1.5, w) ~ Da(J;), i.e. (1.5, w) ~ L. 

(b) (J{:+i)•,w) ~ a(J1) for some j E J, i.e., there is a subreduction h of 

J{:+i)• to J1 satisfying (AWC). Then h(w) is reflexive and so hg is a subreduction 
of l!5 to J1 satisfying (AWC). Therefore, (1.5,w) ~ a(J1). 

( c) ( J{:+l)*, w J ~ a•(Jk) for some k E K, i.e., there is a quasi-subreduction 

h of J{:+i)• to Jk satisfying (AWC). But then hg is a quasi-subreduction of l!5 
to Jk satisfying (AWC), whence (1.5, w) ~ a•(Jk) and (1.5, w) ~ L. 

Thus, every frame with actual world refuting a•(J, '.D, _l_) is not a frame for 
L, which means that a•(J, '.D, _l_) E L. 0 

Corollary 11.34 All subframe and cofinal subframe quasi-normal logics above 
S4 are finitely approximable. 

Example 11.35 As an illustration let us use Theorem 11.33 to characterize 
those normal and quasi-normal canonical formulas that belong to Solovay's logic 
S. 

Clearly, either a( o) or a(•) is refuted at the root of every rooted Kripke 
frame. So all normal canonical formulas are in S. Every quasi-normal formula 
a•(J, '.D, _l_) associated with J containing a reflexive point is also in S, since 
Da( o) is refuted at the roots of J, Ji: and J{:+i)•. But no quasi-normal formula 

a•(J,'.D,_l_) built on irreflexive J belongs to S, because J{:+i)• f= a(o) (for 
~t+i)* contains neither an infinite ascending chain nor a reflexive point) and 

(J{:+l)*'w) Fa(•), since {w} ¢ P{w+l) .. 
The obtained characterization together with the completeness theorem for 

the canonical formulas provide us with another decision algorithm for S. Notice 
also that incidentally we have proved the following completeness theorem for S. 

Theorem 11.36 S is characterized by the class 

{ ( J{:+i)., w) : J is a finite rooted irreflexive frame}. 
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Theorem 11.33 reduces the decision problem for a logic Lin QS:F or QCS:F 
to the problem of verifying, given a finite frame J with root u, whether or not the 

frames (J, u), (~, 0) and ( J(:+l)*, w) refute at least one axiom of L. The first 
two frames present no difficulty for a finitely axiomatizable L. And our aim now 

is to show that the condition ( J(:+i)•, w) ~ L can also be verified in finitely 
many steps. 

Lemma 11.37 Suppose L is a quasi-normal (cofinal} subframe logic represented 
in the form (11.1) (respectively, (11.2)) and J = (W, R) is a finite frame with 

irreflexive root u. Then ( J(:+l)•, w) ~ L iff one of the following conditions is 

satisfied: 
(i) ~r is (cofinally} subreducible to J; for some i EI and some e $ IJ;I; 
(ii) for some j E J, Jj has a reflexive root and J is (cofinally} subreducible 

to Jj, with (AWC) being satisfied; 
(iii) Jt is (cofinally) quasi-subreducible to 3'k for some k E K and some 

e $ IJkl, with (AWC) being satisfied. 

Proof Let us suppose for definiteness that Lis represented in the form (11.2); 
the form (11.1) is considered analogously. 

( '*) If J(:+i)* ~ a(J;, l_) for some i E I, then there is a cofinal subreduction 

f of J{:+i)• to J;. The map 

(x) = { f(x) if x belongs to a final cluster in r 1(f(x)) 
g undefined otherwise 

is also a cofinal subreduction of J(:+i)· to J;, with g(e) ¥- g(() for any distinct 

e, ( $ w. Let J' be the result of removing from J(:+i)· all those points e $ w 

that. are not in domg. Clearly, J' is isomorphic to ~r for some e $ IJ;I and g is 
a cofinal subreduction of J' to J;. 

If ( J(:+ 1)*, w) ~ a( Ji, J_) for some j E. J, then there is a cofinal sub

reduction f of J(:+i)• to Ji satisfying (AWC). Since {w} rf_ P(w+l)., the root 
v = J(w) of Ji is reflexive and so 1-1(v) contains a reflexive point which belongs 
to W - {u}. But then the map 

(x) = { f(x) ~f x E W - {u} 
g v if x = u 

is a cofinal subreduction of J to Ji satisfying (AWC). 

Finally, if ( J(:+ 1). , w) ~ a• ( J k, J_) for some k E K, then there is a co final 

quasi-subreduction f of J(:+i)• to 3'k satisfying (AWC). Let v be the root of J~ 
By the definition of J(:+i)•, every X E P(w+l)• containing w also contains some 
e < w. Let (be the minimal number such that f(() = v. Then the map 
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{

v · ifx=( 
g(x) = f(x) if x belongs to a final cluster in J-1 (J(x)) 

undefined otherwise 

is a cofinal quasi-subreduction of Jt+i to J'k satisfying (AWC). It remains, as we 
have already done before, to remove from J(+i all those points ~ < ( that are 
not in do mg, thus obtaining a frame which is isomorphic to some Jt, ~ ~ IJ k I, 
and cofinally quasi-subreducible by g to J'k with g(~ - 1} = v. 

(¢:::)If the first condition holds then (J(:+i)•,w) refutes Da(Ji,..L). The 
cofinal subreduction f of the second condition can be extended to the map 

(x) = { f(x) if x E W - {u} 
g v ifx=~~w 

(vis the reflexive root of J1) which is a cofinal subreduction of J(:+i)• to J1 with 

g(w) = v, and hence (J(:+l).,w) li== a(J1,..L}. And the third condition gives in 

the same way a cofinal quasi-subreduction of J(:+i)• to J'k satisfying (AWC), 

from which (J(:+l)•,w) li== a•(Jk,..L}. 0 

As a consequence of Theorem 11.33, Lemma 11.37 and the completeness 
theorem for the canonical formulas we obtain 

Theorem 11.38 All finitely axiomatizable subframe and cofinal subframe quasi
normal logics are decidable. 

It is not hard also to give a frame-theoretic characterization of the classes 
QSF and QCSF similar to Theorem 11.21. Let us say that a frame J with actual 
world u is a ( cofinaQ subframe of a frame ~with actual world w if J is a ( cofinal) 
subframe of~ and u = w. 

Theorem 11.39 L is a (cofinal) subframe quasi-normal logic iff L is charac
terized by a class of frames with actual worlds that is closed under (cofinal) 
subframes. 

Proof Exercise. 0 

11.5 The method of inserting points 

We conclude this chapter with two more sufficient conditions for finite approx
imability. Unlike the results of the two preceding sections, they concern logics 
whose canonical axioms may contain closed domains. 

The first condition is based upon the observation that no subreduction can 
map a reflexive point to an irreflexive one and also upon the following: 

Lemma 11.40 Suppose a(J, '.D, ..L) and a(®,<!:, ..L} are canonical formulas such 
that 

• there is a cofinal subreduction f of~ to J satisfying (CDC) for '.D and 
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~ = {{a,b},{c,d}} 
FIG. 11.6. 

• an antichain e ~ dom/j is in ~ whenever f ( e 1) = () 1 for some () E '.D. 

Then a(®,~' j_) E K4 EB a(J, '.D, j_). 

Proof Let 5j be a frame refuting a(®,~' j_). Then there exists a cofinal sub
reduction g of 5) to Q3 satisfying (CDC) for ~. We show that the composition 
h = f g, which is a cofinal subreduction of 5j to J, satisfies (CDC) for '.D. 

Suppose() E '.D, x E domh j and h(xi) = ()j. Let e be an antichain in Q3 
such that g(xi) = ej. Then we have e ~ dom{i, f(ei) = ()j and so e E ~. 
Therefore, by (CDC)-;- x E domg. But then g(x) E domfj and f(g(x)i) =Di, 
since g(xi) = g(x)i. So by (CDC), g(x) E <lorn/ and hence x E domh. Thus,-h 
satisfies (CDC) for '.D, which implies 5) ~ a(J,'.D,J_). Since 5) was an arbitrary 
refutation frame for a(IB, ~' j_), it follows that a(IB, ~, j_) E K4 EB a(J, '.D, j_). 

0 

Remark In the proof above we did not use the cofinality condition. Conse
quently, Lemma 11.40 will remain true if we replace a(J, '.D, j_) and a(®,~' j_) 
in it with a(J, '.D) and a(®,~), respectively, and regard fas a plain subreduction. 

Theorem 11.41 A logic 

is finitely approximable provided that either 
(i) for every i E I U J, all points in Ji ate irreflexive 

or 
(ii) for every i E I U J, all points in Ji are reflexive. 

Proof (i) Suppose that all points in Ji, for every i E I U J, are irreflexive 
and a(IB, ~' j_) is an arbitrary canonical formula. We construct from Q3 a new 
finite frame 5) by inserting into it new reflexive points. Namely, suppose e is an 
antichain in IB such that e rf. ~. Suppose also that C1, ... , Cn are all the clusters 
in Q3 such that e ~ Ci j and en Ci = 0, for i = 1, ... , n, but no successor of Ci- in 
IB possesses this property. Then we insert in Q3 new reflexive points x1, ... , Xn so 
that each xi could see only the points in e and their successors and could be seen 
only from the points in Ci and their predecessors. The same we simultaneotisly 
do for all antichains e in Q3 of that sort. The resulting frame is denoted by 5) 
(see Fig. 11.6). Since no new point was inserted just below an antichain in ~' 



THE METHOD OF INSERTING POINTS 397 

the inversion of the natural embedding of IB in SJ is a cofinal subreduction of SJ 
to IB satisfying (CDC) for IE. So SJ ~ o:(IB, IE, _.L). 

Suppose now that o:(IB, IE, _.L) tf. L and show that SJ is a frame for L. If this 
is not the case then either SJ ~ o:(J;, '.D;, _.L), for some i E I, or SJ ~ a(JJ, '.DJ), 
for some j E J. We consider only the former case, since the latter one is treated 
similarly. 

Thus, we have a cofinal subreduction f of SJ to J; satisfying (CDC) for '.D;. 
Since all the points in J; are irreflexive, no point that was added to IB belongs 
to domf. So f may be regarded as a cofinal subreduction of IB to J; satisfying 
(CDC) for '.D;. We clearly may assume also that the subframe of IB generated by 
domf is rooted (for otherwise we can take a suitable restriction of!). 

Let e be an antichain in IB belonging to domfj and such that f(ei) = ()j for 
some() E '.D;. If e tf. IE then there is a reflexive point x in SJ such that x E domfj 
and x sees only ej and, of course, itself. But then f(xi) = f(ei) = ()j and so, by 
(CDC), x E domf, which is impossible. Therefore, c E IE and so~ by Lemma 11.40, 
o:(IB, IE, _.L) EL, contrary to our assumption. 

Thus, if o:(IB, IE, _.L) tf. L then the finite frame SJ validates all the axioms of L 
and refutes o:(IB, IE, _.L), which means that L is finitely approximable. 

(ii) Once again, given a canonical formula o:(IB, IE, _.L), we construct in the 
same way the frame SJ, the only difference being that this time we insert into IB 
not reflexive but irreflexive points. And again we clearly have SJ ~ o:(IB, IE, _.L). 

Suppose now that SJ ~ o:(J;, '.D;, _.L) for some i E I, i.e., there is a cofinal 
subreduction f of SJ to J; satisfying (CDC) for '.Di. The difference between this 
case and (i) is that now new irreflexive points may belong to domf. But if x 
is such a point and f(x) = y then there is z E xj such that f(z) = y, since 
y is reflexive. So there must be a reflexive point z in IB such that z E xj and 
f ( x) = f ( z), for otherwise we could construct an infinite chain of irreflexive 
points in SJ, contrary to its finiteness. Therefore, the restriction of f to IB is a 
cofinal subreduction of IB (as well as of SJ) to Ji satisfying (CDC) for '.Di· The 
situation now is the same as in the previous case and so we are done. 0 

Example 11.42 According to Theorem 11.41 (i) the logic 

l• •2 

L = K4 EB o:( v , {{1 }, {1, 2}}) 

is finitely approximable. However, Artemov's logic A* = L EB GL = L EB o:( o) 
• • 

does not enjoy this property, because the formula o:( V ) is separated from it by 
• • 

the frame shown in Fig. 11.7, but every finite irreflexive frame refuting a( V) 
l• •2 

refutes o:( V , {{1 }, {1, 2}}) as well. So the finite approximability is not in 
general preserved under sums of logics. 
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The scope of the method developed above is not bounded only by canonical 
axioms associated with homogeneous (i.e., irreflexive or reflexive) frames. Now 
we use the technique of inserting new points to prove that every normal extension 
of K4 with modal reduction principles is finitely approximable. 

We remind the reader that a modal reduction principle is a formula of the 
form Mp----> Np, where M and N are strings of O and 0. By Exercise 3.15, 
every modality Mp is equivalent in K4 to a formula having one of the following 
six types: 

onoop, onop, onp, onoop, onop, onp. 

Using this fact, K4's formulas Op ----> 0 2p, 0 2p ----> Op and the equivalences of 
Exercise 3.15, we prove 

Lemma 11.43 For every set r of modal reduction principles there is a finite 
subset .6.. ~ r such that K4 EB r = K4 EB .6... In other words, every normal 
extension of K4 with modal reduction principles is finitely axiomatizable. 

Proof If r is infinite then it contains infinitely many modal reduction principles 
of the same type. Suppose, for instance, that the set I: of all formulas in r of 
the type 

cp(n, m) =on op----) omop, 

for m, n > 0, is infinite. Define a partial order ::; on I: by taking 

cp(n,m)::; rp(k,l) iff n::; k and m::; l. 

Clearly, the set 8 of minimal elements in I: with respect to ::; is finite. We show 
that K4 EB I: = K4 EB 8. Suppose rp(k, l) E I:. Then there is cp(n, m) E 8 such 
that cp(n, m) ::; cp(k, l). Using Op ----> 0 2p and 0 2p ----> Op, it is not hard to 
construct a derivation of 0 10p in K4 from the assumptions cp(n, m) and okop. 
Hence K4 EB I: ~ K4 EB 8. The converse inclusion is trivial. In the same way we 
consider the other modal reduction principles whose premises begin with 0 and 
conclusions with 0. 

Suppose now that we have an infinite set I: of formulas of the type 
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Since <.p(n, m) is refuted in any frame with dead ends, D4 ~ K4 EB <.p(n, m) and 
so 

O(p---> q) ---> (Op---> Oq) E K4 EB <.p(n, m). (11.3) 

Again, let 8 be the set of minimal formulas in ~ with respect to ::; defined 
above. As before, to prove K4 EB~ ~ K4 EB 8 we take <.p(k, l) E ~ and choose 
<.p(n, m) E 8 such that <.p(n, m) ::; <.p(k, l). Using (11.3) we derive from <.p(n, m) 
a formula <.p(k', l') ~ <.p(k, l). Then, assuming okop, we ascend to ok' Op, get 
0

11 Dp and descend to 0 1 Op. The rest types of modal reduction principles of the 
form DM p ---> 0 Np are treated in exactly the same way. 

If r contains an infinite subset ~ of formulas of the type 

then, as in the previous case, we have K4 EB~ = K4 EB 8, where 8 is the (finite) 
set of minimal elements in ~with respect to ::;. To prove this it suffices to show 
that, for every k ~ n > m, 

<.p(k, m) E K4 EB <.p(n, m). (11.4) 

Observe first that <.p(n + (n - m), n) EK EB <.p(n, m), which together with Exer
cise 3.15 yields <.p(n + (n - m), m) E K4 EB <.p(n, m). Therefore, in view of n > m, 
we can find l > k such that <.p(l, m) E K4 EB <.p(n, m) and then, using the axiom 
of K4, easily derive (11.4). 

Finally, if there is an infinite subset ~ ~ r of formulas of the type 

then we define::; on~ by taking <.p(n, m) ::; <.p(k, l) iff n::; k, m::; land m - n::; 
l - k and proceed as before. The remaining cases are considered analogously. 

0 

Now let us elucidate the constitution of refutation frames for those modal 
reduction principles that are not DO-formulas. In the following lemmas we denote 

ol 
by~ the frame 60 , by ([m the chain of m + 1 irreflexive points and by '.D~ the 
set of all antichains in ([m· Cm denotes the (finite) class of all rooted 1-generated 
Kripke frames 18 such that 

• there is at most one reflexive point in 18 and it is of depth l; 
• the longest chain of irreflexive points in 18 is of length m + 1. 

For m ~ n > 0, c;;, is the subclass of Cm whose frames 18 satisfy one more 
condition: 

• every chain of n + 1 irreflexive points has a reflexive successor in 18. 

Given 18 E Cm, we denote by '.D~ the set of all antichains D in cB such that the 
subframe of cB generated by D contains an irreflexive point of depth 1. 
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Lemma 11.44 (i) If n > m :'.". 0 then 

K4 EB onoop--> omp = K4 EB a(!R, ..L) EB { a(QS, '.D 0, ..L) : QS E Cm}· 

(ii) If m :'.". n > 0 then 

K4 EB onoop--> omp = K4 EB a(!R, ..L) EB { a(QS, '.D 0, ..L): QS E c;;-,}. 

(iii) If n > m :'.". 0 then 

(iv) If m :'.". n > 0 then 

( v) If n > m :'.". 0 then 

K4 EB onp--> omp = K4 EB a(e:m, '.D~). 

Proof (i) Suppose onoop --> omp is refuted under a valuation QJ at the root of 
a refined frame J' = (W, R, P), generated by the set !!J(p), and show that J' also 
refutes one of the axioms in the right-hand part of the equality to be established. 
Consider two cases. 

Case 1. There is a cofinal subreduction of J' to !R. Then J' ~ a(!R, ..L). 
Case 2. Assume now that J' is not subreducible cofinally to !R. Then J' contains 

at most one reflexive point of finite depth and it is of depth 1. Indeed, it follows 
from our assumption that every reflexive point x of finite depth > 1 has an 
irreflexive successor y of depth 1. But then, since x f= DODp, we must have also 
y f= ODp, which is impossible. So all reflexive points of finite depth, if any, lie 
at depth 1, and since p is true at all of them and J'.S 1 is a generated subframe 
of J'R~ ( 1), there exists at most one point of that type. 

In this situation, to refute onoop --> D'"'p the frame J' must contain at least 
one chain of m + 1 irreflexive points. Take a minimal generated subframe Q; of 
J' containing such a chain. Then clearly we have Q) E Cm and J' ~ a(QS, '.DI>, ..L). 

Thus we have proved that 

To establish the converse inclusion, suppose first that a frame J' refutes a(!R, ..L). 
This means that there is a cofinal subreduction f of J' to !R. Without loss of 
generality we may assume that f is a reduction of a generated subframe of J' to 
!R. Define a valuation QJ in J' by taking QJ(p) = f- 1(1). Then it is easy to check 
that x ~ onoop--> omp, for every x E f- 1 (0). • 

Suppose now that J' ~ a(QS, '.DI>, ..L), for some QS E Cm. Then without loss 
of generality we may assume that there is a cofinal subreduction f of J' to Q) 
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satisfying (CDC) for '.D& and such that the root y of J is in domf. Let a0 , ... , am 
be a longest chain of irreflexive points in~- Clearly, f (y) = a0 . Define a valuation 
in J so that x ~ p iff x E 1-1 (am) and prove that then we shall have y ~ 
·onoop ~ omp. Notice first that y ~ omp and so it suffices to show that 
y I= onoop. Suppose otherwise. Then there is an ascending chain y, y1 , ... , Yn 
such that Yn ~ ODp. Since n > m a:nd by (CDC), this is possible only if f (Yn i) 
contains the reflexive point in ~ (for otherwise Y1, ... , Yn are irreflexive points 
in domf and so f(yi), ... , f(Yn) is a chain of irreflexive points in~). But then 
Yn I= <>Dp, which is a contradiction. 

The remaining items are proved analogously; we leave them to the reader as 
an exercise. 0 

For points x and yin a frame J = (W, R} such that xRy, let 

l(x,y) = sup{k + 1: :lx1, ... ,xk E W xRx1 ... RxkRy}. 

If there are arbitrarily long chains (of not necessarily distinct points) connecting 
x and y, in particular, if x or y or a point between them is reflexive, then 
l(x,y) = oo. 

It is not hard to see that the following lemma holds. 

Lemma 11.45 For every Kripke frame J, J ~ o:(l!m, '.D~) iff there are points 
x and y in J such that m :'.S l(x, y) < oo. 

The crucial step in establishing the finite approximability of logics whose 
axioms are modal reduction principles is 

Lemma 11.46 Every logic LE NExtK4 axiomatizable by modal reduction prin
ciples of the types onoop ~ omp, onop ~ omp, onp ~ omp is finitely 
approximable. 

Proof We use virtually the same technique of inserting reflexive points as in 
the proof of Theorem 11.41. 

By Lemma 11.44, L can be axiomatized by canonical axioms of the form 
o:(!)t, ..L), a:(§, ..L), a:(~, '.Dt>, ..L) and o:(l!m, '.D~) (where ~ E Cm, for some m). 
Fix such an axiomatization. By Theorem 11.41 and Lemma 11.44, L is finitely 
approximable if all its axioms are of the form onp ~ omp. So let us assume that 
L 2 K4 EB o:(!)t, ..L). Take an arbitrary canonical formula a:(SJ, l?:, ..L). 

For every antichain e in SJ such that e </. l?: and ej contains an irreflexive 
point of depth 1, we insert new reflexive points between e and its immediate 
predecessors in the same way as was done in the proof of Theorem 11.41. We are 
going to show now that either a:(SJ, l?:, ..L) E L or the constructed finite frame
call it S)'-separates a:(SJ, l?:, ..L) from L. Clearly SJ' ~ a:(SJ, l?:, ..L). So if SJ' I= L 
then we are done. Suppose SJ' is not a frame for L. Then three cases are to be 
considered. 

Case 1. SJ' ~ o:(!)t, ..L), i.e., there is a cofinal subreduction f of SJ' to !)t. Then 
SJ is also cofinally subreducible to !)t, because every new reflexive point has an 
irreflexive successor of depth 1 and so cannot belong to domf. By Theorem 11.15, 
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it follows that a(SJ, ~ • ..l) E L. For the same reason, if a(§, ..l) is an axiom of 
L and SJ' ~a(§, .l) then a(SJ, ~' ..l) E L. 

Case 2. Suppose that a(18, '.DP, ..l) is an axiom of L, for some 18 E Cm, and 
SJ' ~ a( 18, '.DP, ..l). This means that there is a cofinal subreduction f of SJ' to 18 
satisfying (CDC) for '.DP and such that the subframe of SJ' generated by domf 
is rooted. Since the only reflexive point in 18, if any, is of depth 1, no new 
reflexive point is in domf and so the map f may be considered as a cofinal 
subreduction of SJ to 18 satisfying (CDC) for '.DP. Let e be an antichain in SJ such 
that e ~ domfi and f (el) = Dl, for some () E '.DP. Since for every closed domain 
() E '.DP, Di contains an irreflexive point of depth 1 in 18, ej must also contain a 
final irreflexive point. So if e rf_ ~ then there is a reflexive point in SJ' just below 
e, contrary to f satisfying (CDC) for '.DP. Hence e E ~ and, by Lemma 11.40, 
a(SJ, ~ • ..l) E L. 

Case 3. If SJ' ~ a(ltm, '.D~) then, by Lemma 11.45, there are points a and 
b in SJ such that l (a, b) = m in both SJ and SJ'. By the construction of SJ', this 
means, in particular, that every antichain e ~ aj, having a point in bJ, is in ~ 
whenever ej contains an irreflexive point of depth 1. Using our assumption that 
a(!n, ..l) E L, we show that in this case a(SJ, ~' ..l) E L as well. 

Suppose otherwise. Since 

L is a Sahlqvist logic. So it is V-persistent and there is a finitely generated refined 
frame such that its underlying Kripke frame J = (W, R) validates L and refutes 
a(SJ, ~' ..l). Leth be a cofinal subreduction of J to SJ satisfying (CDC) for~- Our 
aim now is either to subreduce cofinally J to !nor to find points x, y in J with 
m::::; l(x, y) < oo, which will mean that either J ~ a(!n, ..l) or J ~ a(ltm, '.D~). 

Let us consider first the maximal generated subframe J' of J whose final 
points are reflexive. If there is a reflexive point of depth > 1 or an infinite 
ascending chain of irreflexive points in J' then clearly J is cofinally subreducible 
to !n. So suppose this is not the case. If there is a point in J' of depth > m + 1 
then, by Lemma 11.45, we are done. 

Thus J' is of depth ::::; m + 1. We show that, for every x E h- 1(a), there 
is y E h-1(b) n xi such that m ::::; l(x, y) < oo. Take any x E h-1(a). By the 
definition of subreduction, we clearly must have some y E h- 1 (b) n x j with 
m ::::; l(x, y). Suppose l(x, y) = oo. Then there is a chain xRx1 ... RxnRY such 
that all Xi are not in J' and n exceeds the number of points in SJ. Let ei be 
an antichain in SJ such that h(xd) = eii· Since Xi sees an irreflexive point of 
depth 1, ei also sees or contains such a point and so ei E ~- Therefore all Xi are 
in domh, which is possible only if h(xi), for some i, is reflexive, i.e., we have a 
reflexive point between a and b. But then l(a, b) = oo, which is a contradiction. 

0 

In fact, the modal reduction principles that do not belong to the scope of 
Lemma 11.46 either axiomatize logics of finite depth or are deductively equal to 
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DO-formulas. This foliows from the next two lemmas. 

Lemma 11.47 For every n > 0, K4 EB onoop ----+ omp, K4 EB onop ----+ omp 
and K4 EB onp ----+ omp are logics of finite depth. 

Proof It is enough to show that the axioms of these logics are refuted in an 
arbitrary finite rooted frame J of depth max{ m, n} + 2. Define a valuation in 
such an J so that x f= p iff x is of depth 1. It should be clear that under this 
valuation omp is false at the root z of J. By the definition, there is a point y of 
depth 1 which is accessible from z by n steps. And since y f= DOp /\ Op /\ p, it 
follows that z F= onoop /\ on op/\ onp. o 
Lemma 11.48 (i) For every n, m > 0, 

K4 EB onoop----+ omp =K4 EB onop----+ omp = K4 EB onp----+ omp = 

K4 EB a(•, ..L) = K4 EB OT= D4. 

(ii) For every n, m > 0, 

Proof (i) follows from the obvious fact that the modal reduction principles 
under consideration are refuted by frames with dead ends and validated by finite 
serial frames. 

(ii) We prove only the latter equality. Clearly, it is sufficient to show that 

Since the logic K4 EB omoT is finitely approximable, we take a finite frame J 
for it and prove that J F onp ----+ omop. Suppose otherwise, i.e., under some 
valuation x F onp and x IF omop, for some x in J. Then there is a pointy of 
depth 1 accessible from x by m steps and such that y IF Op. Since y f= onp, y is 
irreflexive. But then we must have x IF omoT, which is a contradiction. 0 

Now we have everything we need to prove 

Theorem 11.49 Every logic L E NExtK4 axiomatizable by modal reduction 
principles is finitely approximable and decidable. 

Proof Observe first that 

K4 EB onoop----+ omop = K4 EB om op----+ onoop, 

etc. So Lis (finitely, by virtue of Lemma 11.43) axiomatizable by modal reduction 
principles mentioned in Lemmas 11.46, 11.47 and DO-formulas (OT, as well as 
any other variable free formula, is also a DO-formula). The claim of our theorem 
follows then from Lemmas 11.46, 11.47 and Theorems 11.13, 8.85. 0 
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11.6 The method of removing points 

Unlike Theorem 11.41 and Lemma 11.46, the sufficient condition of the finite ap
proximability to be obtained in this section is proved by the more conventional 
technique of removing points from, say, universal models. Such a technique was 
used in the selective filtration method and Fine's method of maximal points (Sec
tion 10.4). Another example of that sort is the method of step-wise refinement 
with removing :E-remaindered points, exploited in the proof of Theorem 9.34, 
which actually establishes the finite approximability of cofinal subframe logics. 
Here we are going to tune this method by adopting a subtler strategy of removing 
points to cover a wider class of canonical axioms with a rather complex structure 
of closed domains. 

Suppose we have a logic 

L = K4 EB {a(l!Si,'.Di, .1): i EI} 

and a canonical formula a = a(SJ, ~' .1) which is not in L. Then there exists 
a rooted frame ~ = (W, R, P) for L such that J If= a, i.e., there is a cofinal 
subreduction h of J to SJ satisfying (CDC) for ~- Construct the countermodel 
wt = (J, QJ) for a as it was done in the proof of Theorem 9.39. Without loss of 
generality we may assume that 

• domhl = domhJ = W; 
• if a is a reflexive point in SJ then a point x E W is in h- 1 ( C( a)) whenever 

h(xl) = aj; 
• J is generated by the sets QJ(pi), Pi a variable in a. 

Let :E = Suba. It is easy to check that all points x, y f/. domh such that h(xi) = 
h(yi) are :E-equivalent in wt. Now we construct a sequence 

of models in almost the same way as in the proof of Theorem 9.34. The only 
difference concerns removing points. Suppose we have already constructed wti 
and its reduct [wti] (we use the same notations as in the proof of Theorem 9.34). 
Now we throw away points of two sorts. 

First, for every proper cluster C of depth i + 1 such that some x E C is 
:E-remaindered in [Ji]:Si, we remove from Call the points except x. It should be 
clear from the construction of wt that every removed point is also :E-remaindered 
in [Ji]'.Si and that the set of all such points is in [Pi]· Let [wti] = ([Ji], [mm be 
the resulting submode! of [wti]. 

Second, we call a point x in [W:J>i+l redundant in [wti] if it is :E-remaindered 
in [Ji]:Si+l and, for every j E I and every cofinal subreduction g of [Ji]:Si+l to 
the subframe of l!S1 generated by some D E '.D1 such that Di::;; g(xi) and g satisfies 
(CDC) for '.D1, there is a point y E xj in [Ji]:Si+l such that g(yi) = Dr Let 
X be the maximal set of redundant points in [wti] which is upward closed in 
[WIJ>i+1

. Since [Ji]'.Si+l is finite and every point in it is an atom, it is not hard 
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to see that XE [Pf] (this is left to the reader). We define 9Jli+l = (Ji+1, !Ui+1) 
as the submodel of [9J1~] induced by the set of points in [J~] different from those 
in X. 

It should be clear that 9Jli (and hence 9Jlo) is E-subreducible to 9Jli+l, and 
so 9Jli+1 ~ a. Besides, as follows from the definition of redundant points, if 
Ji+l ~ a(®j, '.Dj, 1-), for some j E J, then Ji ~ a(®j,'.Dj, 1-). Hence Ji+l f= L. 
So the finite approximability of L will be established if we manage to prove 
that our modified process of refining and removing eventually terminates (i.e., 
w;i = 0 for some i > 0). 

It is not hard to see that for some J, L and a the process never stops, even 
though L is finitely approximable. On the other hand, there are many axioms 
a(®, '.D, 1-) such that too deep points in Ji cannot be mapped to points in closed 
domains in '.D by cofinal subreductions to ®, which induces eventual halting of 
the process. Here is a simple example illustrating this phenomenon. 

Example 11.50 Let L be the smallest modal companion of the Scott logic SL, 

i.e., L ~ 84 Ell a(<!I, {{l, 2) }, .L), where '5 is the frame V. Suppooe a1;o that 
a = a(.5), <E, -1) rJ_ L, J separates a from Land that our "algorithm", when being 
applied to J, a and L, works infinitely long. Then the frame Jw = (Ww, Rw), 
where 

is of infinite depth. By Konig's lemma, there is an infinite descending chain 

in Jw such that Xi is of depth i, for every i < w. Since there are only finitely 
many pairwise non-E-equivalent points in 9J1, there must be some n > 0 such 
that, for every k 2: n, each point in C(xk) is E-remaindered in JI?. And since 
JP is finite, there is m 2: n starting from which all Xi see the same points of 
depth l. 

Let us consider now the frame Jm and ask ourselves why points in the m
cyclic set X, folded at step m + 1 into C(xm+i), were not removed at step m. 
X is upward closed in w~m and every point in it is E-remaindered in J~m. So 
the only reason for keeping some x E X in the frame is that J~m is cofinally 
subreducible to (!59, x sees inverse images of both points in (!59 but none of its 
successors in J~m does. By the cofinality condition, these inverse images can be 
taken from JP. But then they are also seen from Xm, which is a contradiction. 

Thus sooner or later our algorithm will construct a finite frame separating L 
from a, which proves that both L and SL are finitely approximable. 
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Theorem 11.52 to be proved below is based essentially upon the same idea as 
Example 11.50, though it uses a more sophisticated construction. To formulate 
it we require some new notions. 

A point x in a frame l!S is called a focus of an antichain a in l!S if x (j a and 
xj = {x} U aj. 

- Suppose i!S is a finite frame and '.D a set of closed domains in l!S. Define by 
induction on n the notions of an n-stable point in l!S (relative to '.D) and an n
stable antichain in '.D. A point x is 1-stable in l!S iff either x is of depth 1 in \!5 or 
the cluster C(x) is proper. A point xis n + 1-stable in l!S (relative to '.D) iff it is 
not m-stable, for any m :::; n, and either there is an n-stable point in l!S (relative 
to '.D) which is not seen from x or x is a focus of an antichain in '.D containing 
an n - 1-stable point and no n-stable point. And we say an antichain () in '.D is 
n-stable iff it contains an n-stable point in the subframe l!S' of l!S generated by () 
(relative to '.D) and no m-stable point in l!S' (relative to '.D), for m > n. A point 
or an antichain is stable if it is n-stable for some n. 

It should be clear from the definition that if a point in an antichain is stable 
then the remaining points in the antichain are also stable. 

Example 11.51 (1) Suppose l!S is a finite rooted generated subframe of one of 
the frames shown in Fig. 11.8 (a)-(c). Then, regardless of '.D, each point in l!S 
different from its root is n-stable where n is the number located near the point. 
Every antichain () in l!S, containing at least two points, is also n-stable, with n 
being the maximal degree of stability of points in(). 

(2) If l!S is a rooted generated subframe of the frame depicted in Fig. 11.8 
(d) and '.D is the set of all two-point antichains in l!S then every point in \!5 is 
n-stable (relative to '.D), where n stays near the point. However, for '.D = 0 no 
point in l!S, save those of depth 1, is stable. 

(3) If l!S is a finite tree of clusters then every antichain in 1!5, different from a 
non-final singleton, is either 1- or 2-stable in \!5 regardless of '.D. More generally, 
if no point in () sees all the points of depth 1 in ()j, in particular, if() has no 
upper bound in 1!5, then() is also either 1- or 2-stable~Every antichain containing 
a point x with proper C(x) is 1- or 2-stable. as well, whatever l!S and '.D are. 

( 4) Every antichain is stable in every irreflexive frame l!S relative to the set 
'.D" of all antichains in \!5. However, this is not so if \!5 contains reflexive points, 
because reflexive singletons are open domains and do not belong to '.D". For 

t /,~\2 ta 
instance, the antichains {a} in o and { 1, 2} in are not stable. 

Now we are in a position to make a crucial step in the justification of our 
method. 

Theorem 11.52 Suppose L = K4 EB {a(l!Si,'.Di,..l): i EI} and there is d-> 0 
such that, for any i E I, every closed domain() E '.Di is n-stable in !!Si (relative 
to '.Di), for some n :S d. Then L is finitely approximable. 
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Proof It is enough to show that the algorithm defined above comes to a stop 
for every a= a(.fj, ~' ..L) rf. Land J separating a from L. Suppose otherwise, i.e., 
given some a rf. L and J, the algorithm works infinitely long. Then the frame 
Jw, defined as in Example 11.50, is of infinite depth. 

For each point x in Jw, we denote by N(x) the number of pairwise non-:E
equivalent points in xj. Since N(x) cannot exceed 2IEI, there exist k:::::; 2IEI and 
ni ?: 1 such that, for every n ?: ni' Jw contains at least one point x of depth n 
with N(x) = k and no pointy of depth n with N(y) < k. Indeed, let ln be the 
minimal number N(x) among all x in Jw of depth n. The sequence li, h, ... is 
clearly non-decreasing and so there must be n 1 such that all li starting from ln1 

are the same. Then we can take k = ln1 • 

Put 
X1 = {x E wzni : N(x) = k}. 

It follows from the given definition that every point in X 1 is :E-remaindered in 
wJn1 and that if x E yl, for some x E X 1 and y of depth> ni, then y E X 1. 

Now we define by induction an infinite descending sequence of non-empty 
sets X1 ::::> X2 ::::> ••• and an infinite ascending sequence of integers ni < nz < .... 
Let.Xr and nr be already defined and, for each x in Jw, let 

Since Janr is finite, there exist k and nr+l > nr such that, for each n > nr+l, 
Jw contains at least one point x E Xr of depth n with Nr(x) = k and no point 
YE Xr of depth n with Nr(Y) < k. Then we put 

Xr+l = {x E wznr+i : x E Xr and Nr(x) = k}. 

By transitivity, we obviously have that if x E y L for some x E Xr+l and 
Y E wznr+i, then y E Xr+l, with x and y seeing exactly the same points of 
depth :::::; nr. 

Our construction is completed now, and we are ready to derive a contradic
tion. Takes= nd+l + 1, where dis the constant supplied by the assumption of 
our theorem, and consider an arbitrary point x E Xd+l of depths+ l. The ques
tion leading to a contradiction is why the set Y, folded at step s + 1 into C(x), 
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was not removed at step s. Y is upward closed in w;s and its every point is 
:E-remaindered in Jfn1 . So the only reason why a point y E Y was not removed 
at step s is that there exists a cofinal subreduction g of Jf s to the subframe of 
some ~i generated by some D E '.Di, i E I, such that D ~ g(yi) and (CDC) for 
'.Di is satisfied, but there is no z E yj of depth $ s with D ~ g(zi). 

Let f be the restriction of g to yj. It should be clear that f is also a cofinal 
subreduction of Jf 8 to Dj satisfying (CDC) for '.Di· 

By induction on r we show now that, for each r-stable point a (relative to 
'.Di) in Dj and each u E 1-1(a), there exists a point v E uj of depth$ nr such 
that f(v) =a. In other words, this means that 1-1(a) has a cover in Jfnr. 

The point a is 1-stable iff it is of depth 1 or the cluster C(a) is proper. In 
the former case 1-1 (a) has a cover in Jf1 because f is cofinal. As for the latter 
case, observe first that since a point u E Xm, for m ;::: 1, is :E-remaindered in 
Jfn1 , the cluster C(u) cannot be proper. So, as follows from the definition of 
reduction, in the case when C(a) is proper 1-1(a) also has a cover in Jjn1 • 

Suppose our claim holds for points whose degree of stability in Di is $ r, a 
is an r + 1-stable point in Dj (relative to '.Di) and f(u) = a but u iS of depth 
> nr+ 1 . Since u E yj, we must have u E Xr+ 1 . So u sees the same points of depth 
$ nr as y, in particular, inverse /-images of all r-stable points in Dj (relative to 
'.Di)· But then a sees all r-stable points in Dj and so the only possibility for a to 
be r + 1-stable is to be a focus of an antich~in c E '.Di whose points are at most 
r - 1-stable. By the induction hypothesis, u sees inverse /-images of all points 
in c located in Jtnr-t, and they are seen also from any successor v of u of depth 
nr+l, which certainly exists. But then, by (CDC), f(v) =a. 

Thus all the points in D have inverse /-images in Jfnd. Take any point z E yj 
of depths. Since z sees the same points of depth $ nd as y, we must then have 
D ~ f (zi), which is a contradiction. 0 

Using the modal companion and preservation theorems we can transfer this 
result to si-logics: 

Theorem 11.53 If, for some d > 0, a logic LE Extlnt can be axiomatized by 
a (finite or infinite) set of intuitionistic canonical formulas (3(J, '.D, -1) in which 
every closed domain D E '.D is n-stable in J (relative to '.D) for some n $ d, then 
L is finitely approximable. 

As an immediate consequence we obtain 

Corollary 11.54 If a logic L E NExtK4 (or L E Extlnt) is finitely axioma
tizable by canonical formulas a(J, '.D, -1) (or, respectively, (3(J, '.D, -1)} in which 
every D E '.D is stable in J (relative to '.D }, then L is finitely approximable and 
decidable. 

Example 11.51 shows a number of applications of these results. For instance, 
we get the following 

Theorem 11.55 Every normal extension of a cofinal subframe logic with 
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• canonical formulas, every closed domain in which contains a point gener
ating a proper cluster and/ or 

• canonical formulas based upon reflexive trees of clusters and/ or 
• a finite number of frame formulas based upon irreflexive frames 

is finitely approximable. 

Now we use Corollary 11.54 to prove that every normal extension of S4 with 
a formula in one variable is finitely approximable. To this end we require two 
lemmas. Until the end of this section we will assume all frames to be quasi-orders. 

A pair (a, b) of antichains in a frame J is called a cut of J if b consists of 
focuses for a and, for every point x in J, either x E aj or x E bl. For example, 
every pair (a, b), where a and b contain the points labeled by n and n + 2, 
respectively, is a cut of the frame in Fig. 11.8 ( d). 

Lemma 11.56 Suppose J is a finite frame generated by an antichain () and '.D 
a set of antichains in J containing(). If() is not stable in J relative to '.D then 
there is a cut (a, b) of J such that a¢ '.D and all clusters C(x), for x E bl, are 
simple. 

Proof Let b be a point in J such that it is not stable itself but has only stable 
immediate successors relative to '.D. It must exist, since points in () are not stable, 
while the final points in J are stable. Take an antichain a for which b is a focus. 
Then, for any x in J, either x E aj or x E al. Indeed, suppose otherwise. Since 
x ¢ al, x must be stable in J, because the points in a are stable. And since 
x ¢ ai, we have also x ¢ bj, and so b must be stable, which is a contradiction. 

Let b be a maximal antichain of focuses for a containing b and let x be a 
point in J such that x ¢ aj. Then, as was shown above, x E al-a. To prove 
that x E bl, suppose otherwise. Since no focus of a is accessible from x, there is 
a point y E xj-aj which does not see all the points in a and so is stable. But 
this leads to a contradiction, since b does not see y and so must be also stable. 

Since b is a focus for a and not stable, a ¢ '.D. And if the cluster C(x), for 
some x E bl, is proper then b must be 1- or 2-stable, contrary to its choice. 

0 

Lemma 11.57 For every formula ip(p), one can effectively construct canonical 
formulas a(Ji, '.Di, _i), i = 1, ... , n, such that 

S4EB<p=S4EB{a(Ji,'.Di,_i): i=l, ... ,n} (11.5) 

and every antichain in '.Di is stable in Ji relative to '.Di. 

Proof According to Theorem 9.34, the logic S4 EB <p can be effectively repre
sented in the form (11.5), with all a(Ji, '.Di, _i) being associated with refined 
1-generated finite models !mi based on quasi-ordered frames Ji. We show that 
an arbitrary antichain () E '.Di is stable in Ji relative to '.Di· 

Suppose otherwise. Then, by Lemma 11.56, there is a cut (a, b) of the sub
frame l!5 of Ji generated by a() E '.Di such that a¢ '.Di and the clusters in bl are 
simple. Consider two cases. 
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Case l: & contains only one point, say, b. Then, since 3'i is 1-generated and 
refined, & may have only one immediate predecessor, which in turn has at most 
one immediate predecessor, etc. In other words, bl is a chain in ~ and so D is a 
reflexive singleton, which is a contradiction. 

Case 2: & contains at least two points. In fact, in this case, since 3'i is 1-
generated and refined and there are no proper clusters in &I, & consists of exactly 
two points, say, bi and b2 . Since a f/. '.Di, the antichain a is an open domain in 
wti, which means that we can insert a new point x between a and & (see Fig. 11.9 
(a), (b)) and extend to it the valuation in mi in such a way that the truth-values 
of all cp's subformulas at all points in 3'i will remain the same as before. Without 
loss of generality we may assume that x f= p, bi f= p and b2 [it= p. It follows that 
in the extended model x and bi are Subcp-equivalent and so we can draw an 
arrow from b2 to bi in the model mi (see Fig. 11.8 (c)) without changing the 
truth-values of cp's subformulas, i.e., for every point yin the resulting model wt~ 
and every 'ljJ E Subcp, we shall have 

Let 1)1 be the submode! of wt~ generated by D and 1)1' the refinement of IJ1. 
Since 1)1 is finite and in view of Theorem 8.69, it is reducible to 1)1' by a reduction 
f. Clearly, the pair (! (a), {f (bi)}) is a cut of 1)1' and so we find ourselves in the 
framework of Case 1, i.e., f(bi)l is a chain in IJ1'. By the reduction theorem and 
the definition of open domains, it follows immediately that D is an open domain 
in mi, which is a contradiction. 0 

As a consequence of Corollary 11.54 and Lemma 11.57 we obtain 

Theorem 11.58 Every normal extension ofS4 axiomatizable by afinite number 
of formulas in one variable is finitely approximable and is decidable. 

Corollary 11.59 Every si-logic axiomatizable by formulas in one variable is 
finitely approximable and decidable. 

Proof Follows from Theorems 7.67, 11.58 and the preservation theorem. 0 

Exercises 11.27 and 11.28 show that Theorem 11.58 is the best possible result 
as far as the number of variables in logics' axioms is concerned. 
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11. 7 Exercises and open problems 

Exercise 11.1 Show that for every formula cp with md(cp) ::; n there is a unique 
disjunction of normal forms of degree n which is equivalent to cp ( .l is assumed 
to be the empty disjunction). 

Exercise 11.2 Show that Ocp E 85 iff DOT--+ DOcp E K4. 

Exercise 11.3 Show that in general Theorem 11.13 does not hold if we add to 
L infinitely many DO-axioms. (Hint: consider the formulas 

ao = DOp /\ DO-.r, {30 = OOq /\ 00-.r, 

a 1 = 00-.q /\ -.00-.r /\ -.DO-.p, {31 = DO-.p /\ -.DO-.r /\ -.00-.q, 

an+2 = Oan+1 /\ Of3n /\ -.Of3n+1, f3n+2 = Of3n+1 /\ Oan /\ -.Oo:n+l• 

'Yn = Oo:n+l /\ Of3n+l /\ •OO:n+2 /\ -.Of3n+2• 

8 = D(a1--+ Oo:o /\ -.Of3o) /\ O(f31--+ Of3o /\ -.Oo:o), 

Ln = -iO/n-1 /\ O/n /\ O/n+l• 'Pn = 8--+ O(in--+ Oin+1), 

(see Fig. 6.5) and show that the logic Grz EB { 'Pn : n < w} is not compact.) 

Exercise 11.4 (i) A logic L = L0 +cp (or L = LoEBcp) has the simple substitution 
property if for every 1/J(p1, ... ,pn), '1jJ E L iff cp1 /\ ... /\'Pm --+ 1/J E L, where 
cp1, ... , 'Pm are all possible substitution instances of cp obtained by replacing its 
variables by some of Pl, ... , Pn. Show that if Lo is finitely approximable then L 
is finitely approximable as well. 

(ii) Prove that if cp is a conservative in NExtL formula (see Section 14.1) and 
L is finitely approximable then L EB cp is finitely approximable too. 

Exercise 11.5 Show that a logic LE NExt(84 EB bdn) has the simple substitu
tion property iff Vi<i'Sm O(pi ~Pi) EL for some m. 

Exercise 11.6 Show that if a logic L E NExt84 is finitely approximable then 
L EB Grz is finitely approximable too. 

Exercise 11. 7 Prove that (i) Lis a cofinal subframe logic iff, for every canonical 
formula a(J, '.D, .l), a(J, .1) E L whenever o:(J, '.D, .1) E L, and that (ii) L is a 
subframe logic iff, for every a(J,'.D,.1), o:(J) EL whenever a(J,'.D,.1) EL. 

Exercise 11.8 Show that (i) a(J,'.D, .1) E K4EB{a(Ji, .1): i EI} iff a(J,'.D, .1) 
is in K4EBo:(Ji, .1) for some i EI, and that (ii) o:(J, '.D, .1) E K4EB{ o:(Ji) : i EI} 
iff o:(J, '.D, .1) E K4 EB a(Ji) for some i E I. 

Exercise 11.9 Using Corollary 11.22 prove that if cp is a Boolean combination 
of modalities then 84 EB cp is finitely approximable. Does this result hold if we 
replace 84 by K4? 

Exercise 11.10 Prove that all logics in Ext84.3 are finitely axiomatizable. 
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Exercise 11.11 Show that K4Z and Dum are not elementary, while K4H is. 

Exercise 11.12 Let J = (W, R) be a finite rooted frame and ao, ... , an all 
the points in J. With each ai in a non-final cluster or in a final one having no 
predecessors associate the individual variable Xi, and if the final cluster C(ai) has 
the immediate predecessors C(aj), ... , C(ak) then associate with ai the variables 
x{, ... , x~. The variables thus associated with points in J will be denoted by xi, 
where s is either blank or 0 ::; s ::; n. Let 

t?k(x) = 3y1 ... 3yk(f\ Yi f:. Yi/\ R(x, Y1) /\ R(y1, Y2) /\ · · · /\ R(Yk-1, Yk)) 
i#j 

(which means "x sees a chain of k distinct points") and 

t?(x) = •3yR(x, y) V 3z(R(x, z) /\ --,3yR(z, y)) 

(which means "xis a final irreflexive point itself or sees such a point"). 
Define ¢J to be the conjunction of the following formulas under all admissible 

values of their parameters: 
(0) R(xi,xj): aiRaj, sis either blank ors= i and the cluster C(ai) is not 

final in J; 
(1) •R(xi,x}): not aiRaj; 
(2) xi f:. x}: if:. j, 0::; i < j::; n; 
(3) t?k(xi): C(ai) is a final non-degenerate cluster in J containing k points; 
( 4) •3x /\a;EX R(xi, x ): X is an antichain in J such that X = 0, where 

x = {y: x ~ y!}; 
(5) Vx(/\a;EX R(xi,x)---+ t?k(x)): Xis an antichain in J such that all final 

clusters in X are non-degenerate and the smallest of them contains k ~ 1 points; 
(6) Vx(/\a;EX R(xf ,x)---+ t?(x)): Xis an antichain in J such that each final 

cluster in X is degenerate; 
(7) Vx(/\a;EX R(xi,x)---+ t?(x) Vt?k(x)):,X is an antichain in J such that X 

contains both degenerate and non-degenerate clusters and k is the number of 
points in the smallest non-degenerate one. 

Prove that a Kripke frame QS satisfies the formula ¢J iff J is cofinally quasi
embeddable in QS. 

Exercise 11.13 Show that every cofinal subframe logic is elementary on the 
class of finite frames. 

Exercise 11.14 Show that all subframe and cofinal subframe logics whose capo
nical axioms are built on irreflexive frames are elementary, and the cardinality 
of this class is that of the continuum. 

Exercise 11.15 Show that there is a continuum of cofinal subframe logics of 
depth 3. 
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Exercise 11.16 Prove that every (cofinal) subframe logic can be axiomatized 
by an independent set of ( cofinal) subframe formulas, and such an axiomatization 
is unique. 

Exercise 11.17 Prove that a logic in CSF n NExtGrz is elementary iff it is of 
finite depth, and that the classes {L E SF: K4 C L ~ GL} and {L E SF: 
S4 c L ~ Grz} contain only non~elementary logics. 

Exercise 11.18 Given an intuitionistic disjunction free formula, construct a 
first order equivalent for it with the prefix of the form 'v'3. 

Exercise 11.19 Prove that a (cofinal) subframe logic L is elementary iff, for 

every Kripke frame J, J f= L implies J f= L. 

Exercise 11.20 Show that T = SNExtK/Log•, where SNExtK is the lattice 
of subframe logics above K. 

Exercise 11.21 Show that every subframe logic in NExtAltn is finitely approx
imable. 

Exercise 11.22 Let L = Alt3 E9 p ~ DOp E9 Dq /\ •q ~ •(Op/\ 0-,p) and 

cp = Dq /\ -iq /\Xi, 'I/; = (x1 ~ Ox2) /\ (x2 ~ Ox3) /\ (X3 ~ Oxi). 

Show that 'I/; lf'i -icp, but for every finite model 9Jl based on a frame for L, 9Jl f= 'I/; 
implies 9Jl f= -icp. (Hint: consider the frame 

(w, {(m,m): m > O} U {(m,n): Im - nl = 1}) .) 

Exercise 11.23 Show that the following logics are not finitely approximable: 

o~J2; 1 ~~I 
S4 E9o:( ~ , {{1,2}}), Int+ bw4 + ;3(~, {{1,2}}). 

Show that the smallest modal companion of the latter logic can be axiomatized 
by a Sahlqvist formula. 

Exercise 11.24 Prove that the modal logic of the frame shown in Fig. 8.1 (b) 
is not finitely approximable and finitely axiomatizable, but all its proper normal 
extensions are. 
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Exercise 11.25 Let Jw be the frame shown in Fig. 11.10 (a). Denote by {Ji : 
i < w} the class of its finite subframes such that each Ji contains w, the cluster C 
and a finite generated subframe of the "Nishimura ladder" including the points 
a, b, c. For example, the smallest subframe of Jw of that sort-call it J 0-is 
depicted in Fig. 11.10 (b). Fix a point in C, say d, and denote by '.Do the set of 
all non-trivial antichains in Jo containing d. And, for every i < w, let '.D~ be the 
set of all non-trivial antichains in Ji. Show that 

(i) for each i < w, there is a formula 'Pi in one variable such that 

(ii) for every distinct i,j < w, Ji f= a:(Jj,'.D~,1-). 
Exercise 11.26 Prove that 

(i) there is an infinite ascending chain of logics in NExtS4, each of which is 
axiomatizable by a formula in one variable; 

(ii) there is a logic in NExtS4 which is not finitely axiomatizable but has an 
infinite set of one variable axioms; 

(iii) the cardinality of the class of logics in NExtS4 with one variable axioms 
is that of the continuum. 

Exercise 11.27 Show that there is a logic in NExtS4 which is axiomatizable 
by formulas in one variable and not finitely approximable. 

Exercise 11.28 Construct a modal formula cp in two variables such that S4EBcp 
is not finitely approximable. 

Problem 11.1 Can one replace finite approximability in Theorems 11.10 and 
11.13 with Kripke (or some other kind of) completeness? 

Problem 11.2 Are the logics oftheformKEBDnp-4 omp andKEBtran finitely 
approximable? 

Problem 11.3 Are the logics in NExtK axiomatizable by modal reduction prin
ciples finitely approximable, decidable? 
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11.8 Notes 

The method of constructing models from the normal forms was developed by Fine 
(1975a); Section 11.1 presents the main results of this paper. Cresswell (1983) 
modified Fine's method to prove the finite approximability of the McKinsey logic 
KM using the canonical models. 

The essentially negative axioms were considered by McKay (1971), who used 
Glivenko's theorem to show that the addition of such an axiom preserves the 
decidability of si-logics. Rybakov (1978b, 1992) proved the modal analog of 
Glivenko's theorem (Lemma 11.11) and applied it to DO-axioms. That infinitely 
many DO-axioms do not preserve finite approximability (Exercise 11.3) was 
shown by Rybakov (1978b). Logics with the simple substitution property (Exer
cise 11.4) were introduced by Sasaki (1989). The characterization of finite depth 
logics in NExtS4 with this property (Exercise 11.5) was obtained in Sasaki et 
al. (1994). The result of Exercise 11.4 (ii) was proved by Maksimova (1987). 

The subframe logics in NExtK4 were introduced and studied by Fine (1985). 
The cofinal subframe logics in NExtK4, ExtK4 and Extlnt were considered in 
Zakharyaschev (1996a). Wolter (1993) investigated subframe logics in NExtK 
(Theorem 11.31, Example 11.32 and Exercises 11.20, 11.21 were taken from his 
dissertation). Recently he has constructed a finitely axiomatizable subframe logic 
which is not decidable using the bimodal logic of this sort found by Spaan (1993). 
Exercises 11. 7-11.17 are due to Zakharyaschev (1996a, 1997). The finite approx
imability of logics in NExtS4.3 was first established by Bull (1966) with the help 
of the algebraic technique; Fine (1971) gave a semantic proof and showed that 
all these logics are finitely axiomatizable and so decidable. That intuitionistic 
disjunction free formulas are 'v':J-definable (Exercise 11.18) was proved by Cha
grova (1986) and Rodenburg (1986); Shimura (1993) gave a direct proof that 
the si-logics with this kind of axioms are canonical. Exercise 11.19 is due to van 
Benthem (1989) and Exercise 11.22 to Wolter (1994). Theorem 11.36 was actu
ally proved by Visser (1984) (in terms of so called tail models); see also Chagrov 
(1985b). Minimal tense extensions of cofinal subframe logics were investigated 
by Wolter (1995, 1996a). 

The methods of proving finite approximability presented in Sections 11.5 and 
11.6 were developed by Zakharyaschev (1993, 1997). However, some of the results 
in these sections were obtained earlier using different techniques. That finite ap
proximability is not in general preserved under sums of si-logics was observed by 
Blok (1976). Modal reduction principles were studied by van Benthem (1976b) 
who showed that all of them are first order definable on transitive frames and 
described those that are first order definable on the class of all frames. Prob
lem 11.2, as far as we know, was raised by Segerberg. That extensions of GL 
by a finite number of frame formulas are finitely approximable was proved in
dependently by Kracht (1993c). Moreover, he showed that the addition of such 
formulas preserves the finite approximability in NExtGL. Exercise 11.24 is due 
to Kracht (1993b). The finite approximability of si-logics with extra axioms in 
one variable was first established by Sobolev (1977b), who gave in fact a rather 
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general syntactical sufficient condition of the finite approximability of si-logics 
and also constructed a si-logic with a two-variable axiom which is not finitely ap
proximable. An extension of Grz with infinitely many one-variable axioms which 
is not finitely approximable and even not compact was constructed by Shehtman 
(1980). Earlier Shehtman (1977) presented incomplete calculi in NExtGrz and 
Extlnt with axioms in two variables. An example of a finitely axiomatizable 
Sahlqvist logic above 84 that is not finitely approximable (see Exercise 11.23) 
was given in Chagrov and Zakharyaschev (1995b). 
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TABULARITY 

Now we consider tabular and locally tabular modal and superintuitionistic logics. 
The main question we try to answer here is how to determine whether a given 
logic is tabular or locally tabular. 

12.1 Finite axiomatizability of tabular logics 

First we establish that every tabular modal (no matter normal or not) and si
logic is finitely axiomatizable. This will be done with the help of a syntactic 
criterion of tabularity which uses the following formulas: 

n-1 

/Jn= /\ -.om(<>cp1 /\ ... /\ <>cpn), 
m=O 

where for 1 :=:;; i :=:;; n, 'Pi =p1/\ .. . /\Pi-1/\-ipi/\Pi+l/\ ... /\Pn· The reader can check 
that a frame J = (W, R) refutes O:n at a point x1 iff a chain of length n starts 
from x 1, i.e., x 1Rx2 R ... Rxn for some distinct x1, ... , Xn· J refutes /Jn at X1 iff 
there is a chain x1Rx2 R . .. Rxm of length m < n such that Xm is of branching 
n, i.e., XmRY1, ... , XmRYn for some distinct Y1, ... , Yn. The conjunction O:n /\/Jn 
will be denoted by tabn. 

Theorem 12.1 (i) A logic LE ExtK is tabular iff, for some n < w, tabn EL. 
(ii) There is a recursive function f(n) such that every rooted frame validating 

tabn contains :=:;; f(n) points. 

Proof (i) Suppose L is tabular, i.e., L = LogJ for some finite frame J of 
cardinality n - 1. Then clearly J f= tabn, from which tabn E L. 

Suppose now that tabn E L. This means that only chains of length :=:;; n - 1 
can start from every point (every distinguished point, if Lis not normal) in the 
canonical model for L, and each point in those chains is of branching :=:;; n - 1. 
Indeed, let x1R ... Rxn be a chain starting from a (distinguished) point x1 . Since 
xi -=f. Xj, for 1 :=:;; i < j :=:;; n, by the definition of the canonical model, there are 
formulas 1/Jij such that Xi f= 1/Jij and Xj l;t= 1/Jij· Then taking Xi =--, A;=1 1/Jij, we 
have, for 1 :=:;; i :=:;; n, 

Xi F X1 /\ · · · /\ Xi-1 /\--,Xi/\ Xi+l /\ · · · /\ Xn, 

and so 
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X1 F cp~ !\ 0( cp~ !\ 0( cp~ !\ ... !\ Ocp~) ... ) ' 

where cp~ = cp;{Xi/P1, ... , Xn/Pn}· Therefore, X1 f= O:n {Xi/P1, ... , Xn/Pn}, which 
is a contradiction. The claim concerning branching is proved analogously. 

It follows immediately that the number of points in every subframe generated 
by a (distinguished) point in the canonical model for L does not exceed the 
number of points in then - 1-ary tree of depth n - 1, that is 

J(n) = 1 + (n - 1) + (n - 1)2 + ... + (n - l)n- 2
. 

So L is complete with respect to a class of finite models of cardinality ::; f ( n), 
which means (see the proof of Theorem 8.47) that L is characterized by a finite 
class of finite frames, i.e., tabular. 

(ii) It suffices to take the function f ( n) defined a hove. 0 

Corollary 12.2 (i) LE NExtK is tabular iff altn !\ tran E L, for some n < w. 
(ii) L E Extlnt is tabular iff L is of finite width and depth, i.e., bwn!\bdn E L 

for some n < w. 

Proof Exercise. 0 

Corollary 12.3 Every tabular modal or si-logic L has finitely many extensions 
and all of them are tabular. 

Proof That all these extensions are tabular follows from Theorem 12.1 (i). And 
by (ii), there exist only finitely many distinct rooted frames for L and so only 

finitely many extensions of L. 0 

We can prove now the main results of this section. 

Theorem 12.4 (i) Every tabular logic L E ExtK is finitely axiomatizable. 
(ii) Every tabular si-logic is finitely axiomatizable. 

Proof (i) According to Theorem 12.1 (i), L is an extension of K + tabn, for 
some n < w. By Corollary 12.3, we have a chain 

of logics such that 

{L' E ExtK: L; CL' C L;+i} = 0, 

for every i = 1, ... , k -1. It remains to notice that if£' is finitely axiomatizable, 
L' C L" and there is no logic located properly between L' and L" then L" is 
also finitely axiomatizable (e.g. L" = L' + cp, for any cp E £" - L'). 

(ii) is proved analogously. 0 

12.2 Immediate predecessors of tabular logics 

Let L be a tabular logic and L' an arbitrary logic. The question we consider in 
this section is how to determine whether L = L'. To be more specific, we always 
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will assume that all our logics are finitely axiomatizable (normal or quasi-normal) 
extensions of some basic logic Lo (in particular, L' =Lo EB cp or L' =Lo+ cp). 

Since L is tabular, it is not difficult to check the inclusion L' ~ L (at least, 
in principle). The converse inclusion is more problematic. To verify it after es
tablishing L' ~ L we may use the following simple observation. 

Suppose L has only finitely many immediate predecessors (in NExtL0 or 
ExtLo), say Li, ... , Ln, and all of them are tabular. Then L = L' iff L' ~Land 
L' i_ Li, ... , L' i_ Ln, which reduces our question to the decidability problem 
for tabular logics. 

For example, by Makinson's theorem, the logic K EB 1- has exactly two imme
diate predecessors in NExtK, namely K EB OJ_ = Log• and K EB p ~ Op = Logo, 
which are tabular. Therefore, we obtain an algorithm for deciding whether a 
modal formula axiomatizes the inconsistent logic. However, in the class NExtK 
this is the only known positive result of that sort. By Theorem 10.60, every con
sistent tabular logic has a continuum of immediate predecessors in NExtK. In 
particular, we have the following: 

Theorem 12.5 The logic K EB OJ_ has infinitely many tabular immediate pre
decessors in NExtK. 

Proof Let L be the logic of the frame J = (W, R, P), where 

W={a,b}U{n: n::;w}, 

R = { (m, a), (m, b), (b, m), (m, n) : n < m::; w} 

(see Fig. 12.1 in which the subframe containing the natural numbers and w is 
transitive) and P is the family of finite subsets of W without w and cofinite 
subsets of W containing w. Notice that J is descriptive and each of its points 
except w is definable by a variable free formula. Namely, for n < w, we have 

{a}= {x: x f= 01-}, {b} = {x: x f= •(01- V 001-)}, 

{O} = {x: x f= <>{a}/\ •<><>{a}}, 

{n + 1} = {x: x f= <>{n} /\ •<>(•{b} /\ <>{n})}. 

It follows that J is the 0-generated universal frame for L. 
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Now take any proper normal extension L' of L and consider its 0-generated 
universal frame 18. Clearly, 18 is (isomorphic to) a generated subframe of J. But 
J has no generated subframe different from itself and •. Therefore, either L = L' 
or L' = Log• = K EB D.L Since the former alternative is impossible, L is an 
immediate predecessor of K EB D . .L 

To construct an infinite sequence of tabular immediate predecessors of KEBD .l 
it suffices to take the logics of the frames ( {a, b, 0, 1, ... , n }, RI {a, b, 0, 1, ... , n} ). 

0 

Similar results can be proved for tabular logics in the class ExtK4 (see Ex
ercises 12.4 and 12.5). We show, however, that in NExtK4 our criterion works 
perfectly well. To this end we require the following: 

Theorem 12.6 (i) Each finitely axiomatizable logic L E NExtK4 of finite depth 
is a finite union-splitting, i.e., can be represented in the form 

with finite I. 
(ii) Each finitely axiomatizable logic L E ExtS4 of finite depth can be repre

sented in the form L = 84 + {o:U(Ji, .l): i EI} with finite I. 

Proof (i) Let L = K4 EB r.p be a logic of depth n and m the number of variables 
in r.p. We show that L coincides with the logic 

n+l 

L' =·K4 EB {o:U(18, .l): 1181SL2mcm(i), 18 ~ r.p} 
i=l 

(the function em(i) was defined in Theorem 8.82). Indeed, the inclusion L;;? L' 
is obvious. Suppose now that r.p (/. L'. Then there is a rooted refined m-generated 
frame J for L' refuting r.p. Clearly, J is of depth S n, since otherwise o:U(l8, .l) 
is an axiom of L' for every rooted generated subframe 18 of J of depth n + 1 ( r.p 
is refuted in such frames because L is of depth n), and so J ~ L', which is a 
contradiction. But then o:U(J, .l) is an axiom.of L', contrary to our assumption. 

(ii) A similar proof is left to the reader as an exercise. 0 

We are in ii. position now to prove 

Theorem 12. 7 (i) Every tabular logic L E NExtK4 has finitely many immedi
ate predecessors and they are also tabular. 

(ii) Every tabular logic L E ExtS4 has finitely many immediate predecessors 
and they are also tabular. 

Proof (i) Suppose Lis the logic of a finite transitive frame J. By Theorem 12.6, 
L is a finite union-splitting. Take any independent axiomatization of L by frame 
formulas, say 

L=K4EB{o:U(Ji,.l): i=l, ... ,n}. 

By Theorem 10.52 the logics Li = Log(J +Ji), for i = 1, ... , n, are all the 
distinct immediate predecessors of L. By the definition, they are tabular. 
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(ii) is proved in the same way. 0 

Moreover, we have the following lattice-theoretic criterion of tabularity in 
NExtK4 and ExtS4: 

Theorem 12.8 (i) A logic in NExtK4 is tabular iff it has finitely many normal 
extensions. 

(ii) A logic in ExtS4 is tabular iff it has finitely many extensions. 

Proof Exercise. ·O 

With the help of the Blok-Esakia theorem and the fact that the map p 
preserves tabularity we immediately obtain 

Theorem 12.9 (i) Every tabular si-logic has finitely many immediate predeces
sors and they are also tabular. 

(ii) A si-logic is tabular iff it has finitely many extensions. 

12.3 Pretabular logics 

The tabularity criteria, obtained so far, are not effective and moreover, as will be 
shown in Section 17.3, no effective tabularity criterion exists in general. However, 
for sufficiently strong logics, e.g. those in NExtS4 and Extlnt, the tabularity 
problem turns out to be decidable. The effective criterion to be proved below 
uses the following notion. 

We say that a logic L E (N)ExtLo is pretabular in the lattice (N)ExtLo, 
if L is not tabular but every proper extension of L in (N)ExtLo is tabular. In 
other words, a pretabular logic in (N)ExtLo is a maximal non-tabular logic in 
(N)ExtLo. 

Theorem 12.10 In the lattices ExtK, NExtK and Extlnt, every non-tabular 
logic is contained in a pretabular one. 

Proof By Theorem 12.1 and Corollary 12.2, a logic is non-tabular iff it does 
not contain the formula tabn (bwn A bdn in the intuitionistic case), for any 
n < w. It follows that the union of an ascending chain of non-tabular logics is a 
non-tabular logic as well. The standard use of Zorn's lemma completes the proof. 

0 

Thus, pretabular logics provide typical, in a sense, examples of non-tabular 
logics in a given lattice. 

If there is a good description of all pretabular logics in a lattice, we have at our 
disposal an effective (modulo the description) tabularity criterion for the lattice. 
Indeed, take for definiteness the lattice NExtK4. How can we determine, given a 
formula cp, whether K4EBcp is tabular? We may launch two parallel processes: one 
of them generates all derivations in K4 EB cp and stops after finding a derivation 
of tabn, for some n < w; another process checks if cp belongs to a pretabular 
logic in NExtK4 and stops if this is the case. The termination of the first process 
means that K4 EB cp is tabular, while that of the second one shows that it is not 
tabular. 
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Unfortunately, it is impossible to describe in an effective way all pretabular 
logics in (N)ExtK and even (N)ExtK4: in Section 13.2 we shall construct a 
continuum of them. However, for smaller lattices like NExtGL or NExtS4 such 
descriptions can be found. We shall use the following: 

Theorem 12.11 Every non-tabular logic LE NExtK4 has a non-tabular finitely 
approximable normal extension. 

Proof Since L is non-tabular and characterized by the class of its rooted finitely 
generated refined frames, we have either a sequence Ji, i = 1, 2, ... , of rooted 
finite frames for L of depth i, or a sequence Ji of rooted finite frames for L of 
width ::'.: i. In both cases the logic Log{ Ji : i < w} 2 L is non-tabular and 
finitely approximable. 0 

As an immediate consequence we obtain 

Corollary 12.12 Every pretabular logic in NExtK4 is finitely approximable. 

Let us begin with pretabular normal extensions of S4. 

Theorem 12.13 There are exactly five pretabular logics in NExtS4, viz., the 
logics of the frames depicted in Fig. 12.2 (where® is an w-point cluster). 

Proof First we show that the logics of the frames in Fig. 12.2 are really pretab
ular. For 0 < n < w, we denote by Jr a chain of n simple clusters, by J2 a cluster 
with n points; J3, J4 and Ft are defined analogously by restricting the infinite 
cluster and antichains in the frames J3, J4 and~ in Fig. 12.2 to n-point cluster 
and antichains, respectively. 

Let L = LogFJ:'. Clearly, L is not tabular. Denote by L' a normal pretab
ular extension of L. By Corollary 12.12, L' is finitely approximable. And since 

a(§) E L and a( v) E L, finite rooted frames for L' are of the form Jf, for 
n < w. It follows immediately that the same canonical formulas belong to Land 
L', from which L = L'. 

Suppose now that L = LogJ3. Since o:((!'.ln) rJ. L, for any cluster (!'.In with 
n < w points, L is not tabular. What are finite rooted frames for L? Every such 
frame is either a single point or a chain of two clusters, the last one being simple. 
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\! t 
This follows from the fact that the formulas a:( o ), a:( b) and a:(§, ..l) are 
valid in J3 and so belong to L. And since L is finitely approximable (as a logic 
of depth 2) and ~+l is reducible to ~, any proper extension of L is tabular. 

The logics of the frames J2, J4 and JS' are considered in the same manner. 
Let us show now that NExtS4 contains no other pretabular logics than those 

mentioned above. Suppose L is a normal pretabular extension of S4. If L is of 
infinite depth then among its frames there are finite chains (of simple clusters) 
of any length n < w, from which L ~ LogJ'l- Since L is pretabular, it follows 
that L = LogJt. 

Suppose that L is a logic of finite depth. If for any n < w there is a frame for L 
containing a final cluster with 2: n points then, by the generation and reduction 
theorems, every finite cluster validates L and so, in view of its pretabularity, 
L = LogJ2. If for any n < w, frames for L contain non-final clusters with ::'.'. n 
points, then we can reduce their subframes generated by such clusters to frames 
of the form ~, n < w. Hence, L = LogJ3. 

It remains to consider the case when all clusters in finite rooted frames for L 
(of finite depth) contain< n points, for some n < w. Then in these frames there 
must be points of branching ::'.'. n, for every n < w. Say that a point x in a finite 
frame J is of outer (inner) branching n if n is the number of pairwise inaccessible 
immediate successors of x belonging to final (respectively, non-final) clusters in 
J. Two cases are possible now. 

Suppose first that finite rooted frames for L contain points of outer branching 
::'.'. n, for every n < w. Clearly, we can reduce their subframes generated by such 
points to frames of the form J4, which means that L = LogJt. And if finite 
rooted frames for L have points of arbitrarily great inner branching then these 
points generate subframes that are reducible to J5, n < w, and so L = LogJ5. 

0 

It is not difficult to axiomatize the logics of the frames in Fig. 12.2. 

Corollary 12.14 The following logics and only they are pretabular in the lattice 
NExtS4: 

0 

LogJ2 = S4 EB a:( b ), 
0 

LogJ3 = 84 EB a:( v) EB a:( i) EB a:(§, ..l), 
0 

b 
LogJ'.t = 84 EB a:( b) EB a:(§), 
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where l!'.1) 4 is a chain of four points. 

Proof Exercise. 

aof 
ai 

a4 
IB2',2 

0 

Using the Blok-Esakia theorem and the fact that the maps p and u preserve 
tabularity (and so pretabularity), we obtain a description of pretabular si-logics. 

Theorem 12.15 There are three pretabular logics in Extlnt, namely 

Log?i =Int+ (3( V), 
I 

Log~= Int+ (3( b ), 

Log~ = Int+ (3( V, j_) + (3(1!'.1) 4 ). 

Let us consider now pretabular logics in the lattice NExtGL. 

Theorem 12.16 The set of pretabular logics in NExtGL is denumerable. It 
consists of the logics LoglBw andLoglB~,n' form~ 0, n ~ 1, where IBw and IB'::i,n 
are the frames depicted in Fig. 12.3. If (m, n) f:- (k, l) then LoglB~,n f:- LoglBk',i· 

Proof That all these logics are not tabular and LoglBw is pretabular can be 
proved in the same way as in the proof of Theorem 12.13. We show only that 
Logl!52' 2 is pretabular; other logics LoglB~ n are considered analogously. Denote 
by 1!5~; the frame obtained from 1!52' 2 (sho~n in Fig. 12.3) by deleting the points 
bi for 'i > n. IBk,l is defined in the s~e way. For n < w, let 

"In= on+l J_ I\ onT. 
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Then for all points ai and bk in ®2,2 , we have: 

ai F 'Yi, ai ~ 'Yj if 0 :::; i :::; 4, j -# i; 

bk F "(2, bk ~'YI if k ?: 1, l -I 2. 

For a variable free formula cp, put 

v(cp) = o+(cp ~ p) v o+(cp ~ -ip). 

425 

The meaning of this formula is that v( cp) is valid in a rooted transitive Kripke 
frame J iff J contains at most one point where cp is true. It should be clear that 
the following formulas are valid in ®2,2 and so belong to Log®2,2 : 

4 

a(o), D5 
J_, o+ V 'Yi, v('Yi) (0:::; i:::; 4, i-# 2), o+('Y3 ~ v('Y2)). 

i=O 

If we call a point at which 'Yi is true a point of type i, then this means that every 
rooted frame for Log®2,2 is irreflexive and of depth :::; 5; each of its points is of 
one of the types 0,1,2,3,4, where a point of type i -# 2, if any, is unique, and a 
point of type 3, if any, sees only one point of type 2. 

It follows that the class C of finite rooted frames for Log®2 2 consists of 
irreflexive chains oflength < 5 and the frames ®2 2, for n = 1, 2, .. '.. Since ®~1 1 

is reducible to ®2 2 and t~ chains of length :::; '4 are generated subframes' of 
®2,2 , every non-tabular finitely approximable normal extension of Log®2.2 must 
have C as the class of its finite rooted frames. And since Log®2,2 is finitely 
approximable itself (as a logic of finite depth), it is pretabular. 

Now take any pretabular logic L E NExtGL. If L is of infinite depth then 
clearly L = Log®w. 

Suppose L is of finite depth. What are finite frames characterizing it? Observe 
first that L is characterized by a class of finite rooted frames of the same depth. 
Indeed, suppose {Ji : i < w} is a sequence of pairwise non-isomorphic finite 
rooted frames such that L = Log{ Ji : i < w} and let d = max{ d(Ji) : i < w} 
(so that od- l J_ </. L). If the sequence contains only finitely many frames of depth 
d, then the rest of the frames in it determine a non-tabular extension L' of L. 
And since od- l J_ E L', we arrive at a contradiction with the pretabularity of L. 
Therefore, the sequence contains infinitely many frames of depth d. Let L" be 
the logic determined by these frames. Clearly, L" is not tabular (otherwise the 
frames of depth< d determine a non-tabular proper extension of L), from which 
L = L". 

Now we use the classification of points in frames by means of the formulas 'Yi 
introduced above. 

Lemma 12.17 Suppose L is a pretabular logic in NExtGL characterized by a 
class { J k : k < w} of finite rooted frames of depth d. Then 

(i) for every i ~ d - 1 except possibly only one j < d - 1, each frame Jk, 
k < w, contains exactly one point of type i and 
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(ii) all the points of type j, except one of them, are accessible only from the 
root of Jk. 

Proof Since d(Jk) = d, for all k < w, every point in Jk is of one of the types 
0, 1, ... , d - 1 and for each i ~ d - 1, there is a point in J k of type i. And since 
these frames are pairwise non-isomorphic, at least for one j ~ d - 1 and every 
n < w, there is J k containing 2: n points of type j. 

Observe that for every i < d- l, there is n < w such that every point of type 
i in every Jk sees at most n points of type j. For otherwise we could take the 
infinite subsequence of the (non-isomorphic) rooted subframes of Jk, generated 
by points of type i, and then the logic determined by this subsequence would be 
a non-tabular proper extension of L. 

Notice also that for every i < d - 1 different from j, each Jk contains only 
one point of type i, and if Jk contains a point of type j that is seen not only 
from the root (which means j < d - 2), then this point is unique. Indeed, if this 
is not the case then v('Yi) (j. L, for some i =I- j. On the other hand, using the ob
servation above, we can construct an infinite sequence of non-isomorphic reducts 
of Jk containing arbitrarily many points of type j and satisfying the desirable 
properties. This sequence determines then a non-tabular proper extension L' of 
L, since v('yi) E L', which is a contradiction. 0 

Now, returning to the proof of our theorem, we see that all finite rooted 
frames for L have the form 15~,n for some fixed m 2: 0 and n 2: 1. Therefore, 

L = LoglB~,n· The last claim of the theorem is obvious. 0 

Using the semantic description of pretabular logics in NExtGL, it is not hard 
to find finite sets of (canonical) formulas axiomatizing them. 

Theorem 12.18 All pretabular logics in NExtGL are finitely axiomatizable and 
JaJ decidable. 

Proof Exercise. 0 

The technique developed in the proofs of Theorems 12.13 and 12.16 can be 
used for finding pretabular logics in NExtD4. We invite the reader to prove the 
following: 

Theorem 12.19 There exist ten pretabular logics in NExtD4, viz., the logics 
of the frames depicted in Fig. 12.2 and 12.4. All these logics are finitely axiom
atizable and so decidable. 

Other applications of this technique for describing pretabular logics in the 
classes (N)ExtK4BDn, ExtGL can be found among the exercises in Section 12.5. 

12.4 Some remarks on local tabularity 

The notion of local tabularity turns out to be much more complex than the close 
notion of tabularity and, besides, it is not so well studied. The title of this section 
corresponds to our moderate knowledge in this area. 

Let us consider first modal logics. Observe at once that we have 
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Proposition 12.20 A logic L = ExtK is locally tabular iff ker L E NExtK is 
locally tabular. 

Proof Follows from Theorem 7.4. 0 

So we confine ourselves to considering here only normal modal logics. Using 
the results of Section 8.6, we can easily obtain the following criterion of local 
tabularity in the lattice NExtK4. 

Theorem 12.21 A logic L E NExtK4 is locally tabular iff L is of finite depth. 

Proof (:::}) Suppose L is a logic of infinite depth, i.e., it has finite frames of 
any depth < w. Consider the sequence of formulas an defined by 

and show that these formulas are pairwise non-equivalent in L. Take any distinct 
n and m, say n > m, and any finite frame J = (W, R) of depth 2n - 1. Let 
Xzn-lR ... Rx1 be a chain of points in J from distinct clusters. Define a valuation 
in J so that x ~ p iff x = Xzk-l for some k :::;: n. Then clearly we have that for 
every i, k:::;: n, Xzk-1 ~ ai iff k 2: i and so Xzm-1 ~ O:m, Xzm-1 f= an. Therefore, 
O:m f-> O:n <'/. L. 

( <=) According to the results of Section 8.6, finitely generated descriptive 
frames for logics of finite depth are finite. Therefore, QlL(n) is finite for every 
n < w, which means that Lis locally tabular. 0 

Since the formulas O:n in the proof above contain only one variable, we have 

Corollary 12.22 A logic L E NExtK4 is locally tabular iff the algebra QlL(l) 
is finite. 

Every logic L E NExtS4, which is not locally tabular, is clearly validated by 
the infinite descending chain of reflexive points. And since this chain characterizes 
Grz.3, we arrive at 

Theorem 12.23 A logic L E NExtS4 is not locally tabular iff L s;;; Grz.3. 

The logic Grz.3 = S4EBo:(§) EB a( v) is decidable, and so we can always 
effectively determine, given a formula <p, whether 84 EB <p is locally tabular. Since 
Grz.3 is not locally tabular itself but all its proper extensions possess this prop
erty, we may call it a pre-locally tabular logic. Of course, pre-local tabularity as 
well as pretabularity depends on the choice of a lattice of logics. 
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Thus, we have the following facts: in the class NExtS4 there is only one 
pre-locally tabular logic and every normal extension of S4 that is not locally 
tabular is contained in the pre-locally tabular logic. The latter fact can probably 
be extended to the class NExtK4 (this is our conjecture). As to the former one, 
we have 

Theorem 12.24 There is a continuum of pre-locally tabular logics in NExtK4. 

Proof All the logics constructed in the proof of Theorem 13.15 are pre-locally 
tabular. 0 

1'he situation with locally tabular and pre-locally tabular logics in Extlnt 
turns out to be quite different from that in NExtS4. First, there is no connection 
between the local tabularity and finite depth, though all finite depth si-logics are 
locally tabular, of course. For instance, the logic pGrz.3 = LC is locally tabular 
(see Section 8. 7). And second, there is a continuum of pre-locally tabular logics 
in Extlnt (see Exercise 12.14). 

12.5 Exercises and open problems 

Exercise 12.1 Show that, for every n < w, K EB tabn = K + tabn. 

Exercise 12.2 Show that tabular logics form filters in the lattices Extlnt, 
NExtK, and ExtK. 

Exercise 12.3 Prove analogues of Theorem 12.1, Corollary 12.3 and Theo
rem 12.4 for m-modal logics, m < w. (Hint: use the formulas O:n and f3n defined 
as follows: O:n is the conjunction of all formulas of the form 
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for ij E {1, ... , m}, i":::; j :::; n, and /3n is the conjunction of all formulas of the 
form 

•Oik · · · Oik (Oik+i 'P1 /\ · · · /\ Oik+n+1 'Pn+1), 

for k :::; m, ij E {1,. .. , m }, 1 :::; j :::; k + n + 1, where 

'Pi = P1 /\ · · · /\ Pf-1 /\ 'Pi /\ Pi+ 1 /\ · · · /\ Pn+l · 

Exercise 12.4 Prove that every tabular consistent normal modal logic has in
finitely many tabular normal immediate predecessors. 

Exercise 12.5 Prove that every tabular logic in ExtK4 (ExtK) has infinitely 
many tabular immediate predecessors in ExtK4 (ExtK). 

Exercise 12.6 Prove that GL.3 + Dp--+ pis the only pretabular logic of infinite 
depth in ExtGL. 

Exercise 12.7 Show that the set of pretabular logics of finite depth in ExtGL 
is denumerable and consists of the logics of the frames shown in Fig. 12.5 (a) 
with distinguished roots, where l, m, n 2: 0 are fixed for each logic. 

Exercise 12.8 Prove that every pretabular logic in ExtGL is finitely axioma
tizable. 

Exercise 12.9 Show that the sets of pretabular logics in NExtGL and ExtGL 
are disjoint. 

Exercise 12.10 Show that the set of pretabular logics in (N)ExtK4BDn is 
finite for every n < w and that all of them are finitely axiomatizable. 

Exercise 12.11 Prove that all extensions of every pretabular logic Lin NExtS4 
are normal and so L is also pretabular in ExtS4. 

Exercise 12.12 Show that besides the logics mentioned in the preceding exer
cise, there is only one pretabular logic of finite depth in ExtS4, namely the logic 
of the frame in Fig. 12.5 (b) with distinguished root. 

Exercise 12.13 Show that there are countably many pre-locally tabular logics 
in NExtK4.3, namely the logics of each of the frames in Fig. 12.5 (c). 

Exercise 12.14 Show that there is a continuum of pre-locally tabular logics in 
Extlnt. 

Exercise 12.15 Show that KC is the intersection of all pre-locally tabular si
logics. 

Exercise 12.16 Prove the analog of Theorem 12.23 for NExtGL. 

Problem 12.1 Is it true that every non-locally tabular logic in NExtK (Extlnt) 
is contained in a pre-locally tabular one'? 

Problem 12.2 Is the problem ''K4 EB r.p is of finite depth" decidable'? 

Problem 12.3 Is the problem ''K4 EB r.p is of finite width" decidable'? 
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12.6 Notes 

The problem of determining whether a given logic is tabular has attracted logi
cian's attention since Godel (1932) proved that Int is not tabular and Dugundji 
(1940), using the same idea, demonstrated the non-tabularity of all Lewis' logics. 
(The term "tabularity", as far as we know, was introduced by Kuznetsov in view 
of the fact that tabular logics can be defined by "truth-tables" similar to that 
for Cl.) Later, analogous facts were discovered by Drabbe (1967) with respect 
to the filters of distinguished elements in matrices characterizing logics: Lewis' 
systems Sl-S3 cannot be determined by matrices with a fixed finite number of 
distinguished elements. 

The finite axiomatizability of tabular superintuitionistic and normal (poly) 
modal logics follows from a rather general algebraic result of Baker (1977). Note, 
however', that for si-logics this was proved (but not published) in the mid 1960s 
by de Jongh. That all tabular quasi-normal modal logics are finitely axiomati
zable was first established by Blok and Kohler (1983).· The idea of the proof of 
Theorem 12.1 can be easily extended to polymodal, in particular tense logics; 
see Chagrov (1996). 

That every tabular logic in Extlnt has a finite number of immediate prede
cessors, with all of them being also tabular, was discovered by Kuznetsov (1971). 
The same fact for NExtK4 is proved analogously; see Blok (1980c). Blok (1978) 
proved that every consistent tabular logic in NExtK has a continuum of imme
diate predecessors. 

The idea of using pretabular logics for constructing effective criteria of tab
ularity of si-logics was proposed by Kuznetsov. Maksimova (1972, 1975b) found 
all pretabular logics in Extlrit and NExtS4; for the latter class the same result 
was obtained by Esakia and Meskhi (1977). Pretabular logics in NExtK4 were 
inve1iigated by Blok (1980c); some discrepancies in this paper were corrected in 
Chagrov (1989, 1996), where pretabular logics in ExtS4 and ExtGL were also 
considered. We used ideas of the latter paper for presenting the material of Sec
tion 12.3. A rather difficult problem is to describe pretabular logics in the class 
of normal extensions of the Brouwerian system T EB p -+ DOp; it is known only 
that there are infinitely many of them; see Meskhi (1983). 

That all (not necessarily normal) modal logics of finite depth are locally tab
ular was proved by Segerberg (1971). Maksimova (1975a) showed the converse. 
Corollary 12.22, asserting that to disprove local tabularity formulas in one vari
able are enough, was noticed by Maksimova (1989c). 

The problem of local tabularity for si-logics turns out to be much more com
plicated: unlike NExtS4, where there is only one pre-locally tabular logic, Extlnt 
contains a continuum of them, as was proved by Mardaev (1984). Mardaev (1987) 
strengthened this result. He showed that, for every tabular si-logic L :2 KC, 
there is a continuum of pre-locally tabular logics {Li : i E J} and a continuum 
of finitely pre-approximable logics {Mi : i E J} such that KC ~ Li ~ Mi ~ L, 
for i E J. That KC is involved here is explained by the fact, discovered by 
Kuznetsov, that every pre-locally tabular si-logic is an extension of KC; see 
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Tsytkin (1987). These results show that the notions of pre-local tabularity and 
finite pre-approximability in Extlnt cannot be used to obtain effective criteria 
of local tabularity and finite approximability. As we shall see in Section 17.3, the 
property of finite approximability turns out to be undecidable, and nothing is 
known about algorithms recognizing local tabularity. 

One more interesting property-an antipode of tabularity-is antitabularity: 
we call a consistent logic antitabular if all models (frames, algebras, matrices) 
for it are infinite. Although there are no such logics in Extlnt and NExtK, in 
general there exists a lot of them. For instance, all logics used in the proof of 
Theorem 13.15 are antitabular. It is easy to construct a continual family of nor
mal antitabular tense logics; Chagrov (1982) showed that there are antitabular 
modal companions of Int containing S3. 
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POST COMPLETENESS 

This chapter considers some properties of modal and superintuitionistic logics 
connected with Post completeness. 

13.1 m-reducibility 

A logic L is said to be m-reducible if, for every formula <p( q1 , ... , qn) tJ. L, there 
exist formulas 7/J1 (P1, ... , Pm), ... , 7/Jn (P1, ... , Pm) such that 

A logic is called reducible if it is m-reducible for some m < w. 

Theorem 13.1 The following conditions are equivalent for every logic L in 
NExtK {Extlnt or ExtK): 

(i) L is m-reducible; 
(ii) Lis characterized by the algebra QlL(m) {by one of its m-generated Tarski

Lindenbaum matrices, if L E ExtK); 
(iii) every proper {normal, if L E NExtK) extension of L contains a formula 

in m variables that is not in L. 

Proof The equivalence of (i) and (ii) is clear. 
We prove the implications (ii) :::::} (iii) and (iii) :::::} (ii) only for L E ExtK. Let 

L =Log (sitv(m), 'ih), where L' is a normal logic contained in L, and let L" be 
a proper extension of L. Suppose that every formula in m variables in L' belongs 
to L. Then the matrix (sitv(m), 'V'v1) is isomorphic to (sitv(m), 'V'L), whence 

L c L" £;;; Log(sitv(m), 'V'v1) = Log(sitv(m), 'V'L) = L, 

which is a contradiction. 
Suppose now that (iii) holds but L f:- Log (QlL'(m), 'V' £),for any normal logic 

L' contained in L. Then Log(Qlv(m),'V'L) is a proper extension of L. On the 
other hand, by the definition, it contains no formula in m variables that is not 
in L, contrary to (iii). 0 

Remark This theorem has an unexpected consequence: if Lis a normal logic 
every proper normal extension of which contains a formula in m variables that 
is not in L, then all (not only normal!) proper extensions contain formulas in m 
variables that are not in L. 
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Theorem 13.2 No logic in the intervals 

[K4, S5], [K4, Grz EB bd2 ], [K, GL EB bd2], [Int, Int + bd2] 

is reducible. 

Proof Let us consider first the interval [K4, S5]. To show that logics in it are 
not m-reducible for any m < w, it is sufficient to find formulas <fJm ¢ S5 all 
substitution instances in m variables of which are in K4. Denote by ~[n the 
n-point cluster and put <pm = a(~[2,,.+1, -1). Clearly <pm ¢ S5. However, <fJm is 
valid in the universal frame of rank m for K4, because all final clusters in it 
contain $ 2m points. 

For the other intervals we use in the same manner the formulas 

n n 
,--"--., ,--"--., 
0 •.. 0 0 ... 0 

"'-/ 2"' +1 "'-/ 
a( o ,-1),•(/\0(D-1/\-.pi/\/\p1))andf3( o ,-1), 

i=l 

respectively, where in the first formula n = 22"' + 2m and in the last one n = 
2m + 1. 0 

This trick with final clusters in the universal frames does not go through for 
KC= Int+ •pV ••p. 

Theorem 13.3 KC is 2-reducible. 

Proof We require some auxiliary facts. 

Lemma 13.4 Every finitely generated pseudo-Boolean algebra 2( is generated by 
a finite chain of elements in 2l. 

Proof The proof is conducted by induction on the number of 2l's generators. 
The basis of induction is trivial. 

Suppose the claim of our lemma holds for m - 1-generated algebras and con-
sider a pseudo-Boolean algebra 2( with generators ai, ... , am. By the induction 
hypothesis, the subalgebra ~ of 2(, generated by ai, ... , am-1, is generated also 
by a chain b1 < b2 < ... < bn =f. T. Put bn+l = T and show that 2l is generated 
by the chain 

Since this chain contains all bi, ... , bn, it generates~- So it suffices to prove that 
it generates the element am as well. 

Observe that, for 1 $is; n, we have 
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FIG. 13.1. 

Taking i = 1, we obtain that the chain generates the element 

Using it in the equality above for i = 2, we then get 

etc. Thus in n steps we shall generate bn+l /\ am = am. 0 

Corollary 13.5 Suppose a finitely generated pseudo-Boolean algebra sit refutes 
a formula cp(p1, ... ,pm)· Then there exist formulas 

and a valuation ID in sit such that cp(x1, ... , Xm) is refuted under ID in sit and 
ID(q1), ... , ID(qn) is a chain of elements generating sit. 

Now we are in a position to prove Theorem 13.3. By Theorem 5.33, KC 
is characterized by the class of finite rooted frames with last elements. Let 
3' = (W, R) be such a frame refuting a formula cp(p1 , ... , Pm) under a valua
tion ID. By Corollary 13.5, we have formulas Xi(q1 , ... , qn), i = 1, ... , m, such 
that cp(x1, ... , Xm) is refuted in the model 9Jt = (3', ID) and the sets Xi= ID( qi), 
for i = 1, ... , n, form a chain with respect to ~. Without loss of generality 
we may assume that X 1 c X 2 c ... c Xn -j. W. Construct from 3' and Xi, 
1 ~ i ~ n, a new frame ~ as is shown in Fig. 13.1. Here a 1 and b1 see all the 
points in X1, and every point in Xi - Xi-l sees ai-1 and bi-1 but not ai and bi, 
for i ~ 2. The points an and bn are seen only from the points in W - Xn. Put 
U={ai,bi: l~i~n}. 

Take the formulas in the two variables p and q "describing" the points in U 
as in Section 6.5: 
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ao = Q, f3o = p, ai = P-> Q, !31 = Q -> p, 

an+l = f3n-> an v f3n-1, f3n+I =an-> f3n v an-1 (n 2: 1) 

and define a valuation 11 in <8 by putting 

Then by induction on i 2: 1 we can show that in the model 1)1 = ( <8, 11) 

{x: x ti= a;}= a;l, {x: x [i= (3;} = b;l . 

435 

Finally, we define the formulas in the variables p and Q which will be substituted 
instead of Qi, ... , Qn: 

'Yi = ai+1 /\ f3i+i -> o:i V (Ji, for 1 ~ i ~ n - 1, 

"In = an v f3n· 

Denote by 8* the result of replacing the variables Qi in a formula 8 with 'Yi· 

Lemma 13.6 For every formula 8 in the variables QI, ... , Qn, 
(i) there is x E W such that (IJ1, x) F 8* iff (IJ1, y) F 8* for all y E U; 
(ii) for every x E W, (9J1,x) F 8 iff (1J1,x) F 8*. 

Proof We prove (i) and (ii) by simultaneous induction on the construction of 
8. The basis of induction and the cases 8 = 81 /\ 82 and 8 = 81 V 82 are obvious. 
Let 8 = 81 -> 82. 

First we establish (i). Suppose x F 8* for some x E W, but there is y E U 
for which y [i= 8*, i.e., there is a point z E yj such that z F 8i and z [i= 82. Then 
either z EU or z E X 1. 

If z E U then 8i is true at the last point in <8 (which belongs to W). Since 
x F 8*, the formula 82 is also true at the last point in <8, which is a contradiction, 
because by the induction hypothesis, we should then have z F 82. If z E X 1 then 
we may assume z to be the last point in <8. (For as is easy to verify by induction, 
every formula in p and Q has the same truth-values at all points in X 1 under ll.) 
But this is impossible, since x F 8* implies z F 8*. 

The converse implication is trivial because the last point in <8 belongs to W. 
Let us now prove (ii). If (9J1, x) [i= 8 then (IJ1, x) [i= 8* follows immediately 

from the induction hypothesis. Suppose (IJ1, x) [i= 8* for some x E W. Then there 
is y E xi such that (IJ1, y) F 8i and (IJ1, y) [i= 82. If y E W then (9J1, x) ti= 8 
is a direct consequence of the induction hypothesis. Let y E U. Then by the 
induction hypothesis for (i), (IJ1, z) F 8i and (IJ1, z) [i= 82, where z is the last 
point in <8. Therefore, by the induction hypothesis for (ii), (9J1, x) [i= 8. 0 

Thus, by Lemma 13.6, we have 
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from which ip(x1('Yi, ... ,/~), ... ,xmbL···,"Y~)) ¢KC, since l!5 f= KC. It re
mains to observe that this formula contains no variable different from p and q. 

0 

Theorem 13.7 KC is not I-reducible. 

Proof Suppose otherwise. Then by Theorem 13.1, KC is the logic of J'Kc(l) 
(see Fig. 8.14 displaying the universal frame for KC of rank 2). Since JKc(l) is 
of depth 2, we must have bd2 E KC, which is impossible. 0 

Theorem 13.8 KC + bd2 is not reducible. 

Proof Assuming otherwise, we would have that KC+ bd2 is tabular, which 
certainly is not the case, because for every n ~ 1, /3(J5) ¢KC+ bd2, where J5 
is shown in Fig. 12.2. 0 

Let us now briefly consider the reducibility of modal companions of si-logics. 
According to Theorem 13.2, for every consistent si-logic L its smallest modal 
companion rL is not reducible, i.e., r does not preserve the reducibility. However, 
<T does. 

Theorem 13.9 If L is an m-reducible si-logic then <TL is also m-reducible. 

Proof Let M be a proper normal extension of <TL. Then pM ::::> L and so, by 
Theorem 13.1, there is <p(p1 , ... ,pn) E pM - L. It follows that T(cp) EM -<TL. 
By Theorem 13.1, this means that <TL ism-reducible. 0 

Corollary 13.10 Grz.2 is 2-reducible. 

13.2 0-reducibility, Post completeness and general Post completeness 

0-reducible logics are "almost the same" as Post complete ones. Recall that a 
logic L is called Post complete in a lattice of logics (containing L) if L is con
sistent and does not have proper consistent extensions in the lattice. Of course, 
Post completeness of L depends essentially on the chosen lattice of logics (it 
corresponds to the coatomicity of L in the lattice). The following generalization 
of the notion of Post completeness is not' connected with the choice of a lattice; 
it is an intrinsic property of logics. 

Say that a logic L is generally .Post complete if it is consistent and does 
not have proper consistent extensions closed under the inference rules that are 
admissible in L. It should be clear that every Post complete logic, say in the 
lattices ExtK, NExtK, Extlnt, is generally Post complete. 

The following two theorems give various characterizations of generally Post 
complete and simply Post complete logics. 

Theorem 13.11 For every consistent modal or si-logic L, the following condi
tions are equivalent: 

(i) L is 0-reducible; 
(ii) L is characterized by one of its 0-generated Tarski-Lindenbaum matrices; 
(iii) L is characterized by some 0-generated matrix; 
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(iv) an inference rule is admissible in L iff all variable free substitution in
stances of it are admissible in L; 

(v) L is generally Post complete. 

Proof Notice first that the equivalence of (i) and (ii) was proved in Theo
rem 13.1. The condition (i) is also a special case of (iv), because any formula 
cp E L may be regarded as the rule ..L -4 1-/cp admissible in L. The equivalence 
(ii) {:} (iii) follows from the almost obvious fact that every 0-generated matrix 
characterizing Lis isomorphic to the 0-generated Tarski-Lindenbaum matrix for 
L. The implication (ii) =? (iv) is also clear (see the proof of Theorem 7.7). 

So it remains to establish that (iii) {:} (v). Suppose L is generally Post com
plete. Take the 0-generated submatrix (2l, V') of the Tarski-Lindenbaum matrix 
for L. Since quasi-identities are clearly preserved under the formation of sub
matrices and the quasi-identities corresponding to the admissible rules in L are 
true in the Tarski-Lindenbaum matrix for L (see Theorem 7.7), we then have 
L = Log (2l, V'). 

Conversely, let L = Log (2l, V') for some non-degenerate 0-generated matrix 
(Qt, V'). As was observed above, we may assume that (2l, V') is the 0-generated 
Tarski-Lindenbaum matrix for L. Suppose L' is a consistent extension of L 
inheriting all the admissible rules in L. Then we have L ~ L' ~ Log (2l, V''), 
where V'' = {llcpllL : cp E L'}. Clearly, V' ~ V''. Suppose V'' =f:. V', i.e., there 
is ll'PllL E V'' - V'. Then the rule cp/ ..L is admissible in L and so in L' as well. 
It follows that cp r/. L', which is a contradiction. Thus, L ~ L' ~ Log (2l, V'') = 
Log (2l, V') = L and so L' = L. 0 

Theorem 13.12 For every modal or si-logic L, the following conditions are 
equivalent: 

(i) L is Post complete in ExtK {or Extlnt); 
(ii) L is consistent and the variety of matrices for L is generated by any of 

its non-degenerate matrices; 
(iii) L is characterized by a 0-generated matrix (2l, V') in which V' is an ul

trafilter. 

Proof (i) =? (ii). Suppose otherwise, i.e., (2l, V') is a non-degenerate matrix for 
L but Var (2l, V') =f:. VarL. Since ..L tJ. V', Log (2l, V') is then a proper consistent 
extension of L, contrary to L being Post complete. 

(ii) =? (iii). Let (2l, V') be a non-degenerate 0-generated matrix in VarL, say 
the 0-generated submatrix of some non-degenerate matrix for L, which must 
exist because L is consistent. We show that V' is an ultrafilter in 2l. Suppose 
otherwise. This means that for some variable free formula cp, we have cp tJ. L and 
--icp ti. L. Then, by the deduction theorem, L + cp is a proper consistent extension 
of L any Tarski-Lindenbaum matrix of which is non-degenerate and does not 
generate VarL, contrary to (ii). 

(iii) =? (i). Suppose Lis characterized by a 0-generated matrix (2l, V') with an 
ultrafilter V' and cp(p1, ... ,Pn) tJ. L, i.e., (2l, V') ~ cp(p1, ... ,pn)· Then there are 
variable free formulas '1{;1, ... , 'I/Jn such that cp( 'l/J1, ... , 'I/Jn) is refuted by (2l, V'), 
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i.e., cp( '¢1, ... , 7/Jn) tJ. 'V. Since 'V is an ultrafilter, we have -.cp( 7/Ji. ... , 7/Jn) E 'V and 
so -.cp( '¢1, ... , 7/Jn) E L. It follows that L + cp( '¢1, ... , 7/Jn) is inconsistent. Thus, 
L has no proper consistent extension. It remains to notice that since J_ tj. 'V, L 
is consistent and so Post complete. 0 

This theorem shows, in particular, the place of Post complete logics among 
generally Post complete ones. Another indication to the place is given by 

Theorem 13.13 For every generally Post complete modal logic L, L is Post 
complete in ExtK iff L is structurally complete. 

Proof Exercise. (Hint: the implication (:::}) is established with the help of the 
proof of Theorem 1.25; to show (<==),use Theorem 13.11 (ii) and Theorem 13.12 
(iii) in order to find a variable free inference rule which is admissible but not 
derivable in L.) 0 

The results about Post completeness above concerned only ExtK. The rea
son is that there are very few Post complete logics in Extlnt and NExtK. As 
we already know, Cl is the only Post complete (and the only generally Post 
complete--check!) extension of Int. As to NExtK, as a consequence of Makin
son's theorem we have 

Theorem 13.14 There are only two Post complete logics in NExtK, viz., Logo 
and Log•. 

Let us consider now the family of (generally) Post complete logics in the 
lattice of extensions of an arbitrary quasi-normal logic L. By Theorem 13.11, the 
logic of the matrix (!ilL' (0), 'V L(O)), where L' = ker L, is the smallest generally 
Post complete extension of L. The generally Post complete extensions of L are 
the logics of the matrices of the form (!ilL'(O), 'V), where 'V is a proper filter 
containing 'V L(O), while the Post complete extensions of Lare the logics of the 
matrices (!ilL'(O), 'V) in which 'Vis an ultrafilter containing 'VL(O). Using this 
observation, we can prove 

Theorem 13.15 (i) There is a continuum of generally Post complete logics in 
NExtK4. 

(ii) There is a continuum of Post complete logics in ExtK4. 

Proof (i) For N i;;;; w, denote by 'J(N) the transitive Kripke frame of the form 
shown in Fig. 13.2 in which the only reflexive points are 2m + 1, 4m + 2, 4n + 4, 
form< w, n EN. (The frame in Fig. 13.2 corresponds to N such that 0, 2 tj. N 
and 1 E N.) The reader can readily check that 'J(N) is a generated subframe 
of K'JK4(0). Denote by !il(N) the 0-generated subalgebra of 'J(N)+. Since each 
point in 'JK4(0) is definable by a variable free formula, Log!il(N1) = Log!il(N2) 
only if N1 = N2. Thus, the cardinality of the class of generally Post complete 
logics in NExtK4 is that of the continuum. 

(ii) Let 'V(N) be a non-principal ultrafilter in !il(N). It is easy to see that 
such an ultrafilter is unique: it is the set of all cofinite subsets in 'J(N) (since 
!il(N) consists of finite and cofinite subsets in 'J(N), this set is an ultrafilter; on 
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the other hand, any non-principal ultrafilter must contain all cofinite subsets in 
:J(N)). Take distinct Ni, N2 ~wand i = 4n+4, for n E N2-N1 (or n E Ni -N2). 
Suppose the reflexive point i in :J(N2) is defined by a variable free formula 
'Pi· Then -iOr.pi E Log (!il(N1), \7(N1)) and Or.pi E Log (!it(N2), \7(N2)), i.e., the 
logics Log (!it(N1), \7(N1)) and Log (!it(N2), \7(N2)) are distinct if N1 =J. N2. It 
follows that there is a continuum of Post complete quasi-normal extensions of 
~. 0 

Which logics have exactly one Post complete extension? The importance of 
such logics is emphasized by 

Theorem 13.16 Every consistent logic L E ExtK is the intersection of some 
logics having only one Post complete extension in ExtK. 

Proof Observe first that the following simple result holds. 

Lemma 13.17 A modal logic L has exactly one Post complete extension ifj, for 
every variable free formula r.p, either r.p E L or -ir.p E L. 

Proof ( =>) Suppose r.p (/!. L and -ir.p (/!. L, for some variable free r.p. Then the 
logics L + -ir.p and L + r.p have distinct Post complete extensions. 

({=:)Follows from Theorem 13.12 (iii). 0 

Call a matrix (!it, \7) maximal if \7 is an ultrafilter in !it. As a consequence 
of Lemma 13.17 we obtain that a logic characterized by a maximal matrix has 
only one Post complete extension. 

The crucial step in the proof of our theorem is 

Lemma 13.18 Every non-degenerate non-maximal matrix (!it, \7) is a submatrix 
of the direct product of maximal extensions of (!it, \7). 
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Proof For each a ¢ V', denote by V' (a) some ultrafilter in Ql such that V' ('.;;; V' (a) 
and a ¢ V'(a), and form the direct product flali''\7 (Ql, V'(a)). The reader can 
readily check that the matrix (Ql, V') is embedded in this product by the map 

b ,__... fb, where fb maps {a : a ¢ V'} to b. 0 

To complete the proof of Theorem 13.16, suppose Lis a consistent logic and 
(Ql, V') its characteristic matrix in which V' is not an ultrafilter. By Lemma 13.18, 
(Ql, \i') is a submatrix of the direct product niEI (Ql, \i'i) of its maximal exten
sions. Therefore, 

L = Log (Ql, V') ;;;> Log II (Ql, V' i) = n Log (Ql, V' i) . 
iEI iEI 

On the other hand, we clearly have Log (Ql, V') ('._;;;Log (Ql, V'i) for every i E J, and 
so 

L ('.;;; n Log (Ql, V'i). 
iEI 

It follows that L = niEI Log (Ql, V' i) and, as was observed above, every Log(Ql, V' i) 
has only one Post complete extension. 0 

Remark According to Lemma 13.18, every non-degenerate variety of matrices 
is generated by its maximal matrices. 

Theorem 13.16 shows that the study of any modal logic reduces, in a sense, 
to the study of logics having in ExtK a single Post complete extension. So it is 
worth considering classes of logics having exactly one Post complete extension 
in ExtK, which is common for all of them. The following theorem shows that 
such a class always contains a smallest logic. 

Theorem 13.19 Suppose L' is a Post complete extension of L in ExtK. Then 
the logic L + { <p E L' : <p is variable free} is the smallest logic among those 
extensions of L that have L' as their only Post complete extension. 

Proof Follows from the fact that two modal logics have the same Post complete 
extensions in ExtK iff they contain the same variable free formulas. 0 

Above K4, Theorem 13.19 can be strengthened in the following way. 

Theorem 13.20 Suppose L' is a tabular Post complete extension in ExtK of 
a logic L ;;;> K4. Then there is a variable free formula <p such that L + <p is the 
smallest logic among the extensions of L having L' as their only Post complete 
extension. 

Proof Suppose L' is characterized by a finite matrix (Ql, V'). By Theorem 13.12, 
we may assume (Ql, V') to be 0-generated. Let <p1, ... , 'Pn be some variable free 
formulas such that (a) <p 1 = ..l, (b) <pi, for i ;:::: 2, are constructed from previous 
formulas in this sequence using one of the connectives /\, V, ---->, D, (c) 'Pi, for 
1 :S i :S n, have different values ai in Ql and (d) lsill = n. In other words, these 
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formulas describe a process of generating 2l from .L Now we define cp as the 
conjunction of the following formulas, for 1 ~ i, j, k ~ n: 

o+(cpi +-+'Pi 0 'Pk) if ai = ai 0 ak, 0 E {/\, V-+ }, 
o+ ('Pi +-+ Dcpi) if ai = Dai, 

'Pi ifai EV'. 

By the definition, [cp) = V' and, in particular, (2l, V') f= cp. 
Given a variable free formula 'I/; with value ai in 2l, put 'I/;* = 'Pi· 

Lemma 13.21 For every variable free 'I/;, o+('I/;* +-+'I/;) EL+ cp. 

Proof The proof proceeds by induction on the construction of 'l/J. The basis of 
induction is trivial. Suppose 'I/;= 'l/;1 0 'l/;2, for 0 E {/\, V,-+ }, o+('l/Ji +-+ 'l/J1) E 
L + cp, o+('l/J:i +-+ 'l/;2) EL+ cp, 'I/;*= cpi, 'I/Ji= 'Pi• 'l/J:i ='Pk and ai = a10ak. In 
particular, we have o+('I/;* +-+ 'l/Ji0'1/J:i) E L+cp. So to prove o+('I/;* +-+'I/;) E L+cp, 
it is sufficient to show that 

which is established using the induction hypothesis and the formulas 

belonging to K. 
Suppose now that 'I/;= D'l/Ji. o+('l/Ji +-+'I/Ji) EL+ cp, 'I/;*= <pi, 'I/Ji= <pj and 

ai =Dai. In particular, o+('I/;* +-+ D'l/Ji) EL+ cp and so to prove o+((D'l/;1)* +-+ 
D'l/;1) E L + cp, it suffices to show that 

o+(D'l/Ji +-+ D'l/;1) E L + cp. 

The latter is established using the induction hypothesis and the formula 

which is in K4. 0 

It follows that for every variable free formula 'I/;, we have (2l, V') f= 'I/; iff 
'I/; E L + cp. Indeed, if (2l, V') f= 'I/; then 'I/;* = 'Pi for some ai E V'. By the 
definition of cp, we then have 'I/;* E L + cp, from which 'I/; E L + cp. Conversely, 
suppose 'I/; E L+cp. Then 'I/;* E L+cp and, by the deduction theorem, cp -+ 'I/;* E L. 
Therefore, (2l, V') f= cp -+ 'I/;* and, since [cp) = V', we obtain (2l, V'} f= 'I/;*, and 
hence (2l, V') f= 'l/J. 

Thus, L + cp contains the same variable free formulas as L', which means that 
L + cp has the unique Post complete extension L'. O 

Call a logic antitabular if it is consistent but does not have finite models. 
It should be clear that a consistent logic is antitabular iff all its Post complete 
extensions are not tabular. Using Theorem 13.20 we obtain 
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Theorem 13.22 If a logic L ;;;> K4 has infinitely many Post complete extensions 
then it also has an antitabular extension. 

Proof Observe first that every Post complete logic is either tabular or antitab
ular. Let Li, for i E I ~ w, be all the distinct tabular Post complete extensions 
of L. If I is finite then we are done. Suppose I is infinite. By Theorem 13.20, 
there are variable free formulas 'Pi such that L +'Pi is the smallest extension of L 
having Li as its only Post complete extension. Note that ''Pi E L +'Pi for i i- j. 

Now define L' = L + {•<pi : i E I}. If L' is consistent then, as any other 
logic, it has a Post complete extension which, by the definition of <{Ji, must be 
different from all Li. Therefore, L' is antitabular. 

Suppose that L' is inconsistent, i.e., there is a derivation of 1- in L'. Then 
we have •<pi, ... , •<pn f- L 1- for some n, whence, by the deduction theorem, 
<pi V ... V 'Pn E L and so <pi V ... V 'Pn E Ln+l· On the other hand, we have 
•<pi E Ln+l, ... , •<(Jn E Ln+l, and hence •(<pi V ... V <{Jn) E Ln+l, contrary to 
Ln+l being consistent. 0 

Unlike 2-reducibility (see Theorem 13.8), 0-reducibility turns out to be in
herited by finitely approximable extensions of a given logic above K4. 

Theorem 13.23 Every finitely approximable extension of a generally Post com
plete logic in ExtK4 is also generally Post complete. 

Proof We consider only normal logics because for quasi-normal ones the proof 
is analogous. The observations at the beginning of this section show that every 
generally Post complete logic L E NExtK4 is characterized by a 0-generated 
algebra and extends the logic LogJK4(0). Since here we are interested in finitely 
approximable logics, let us consider finite frames for LogJK4(0). 

Let ai, i < w, be some enumeration of points in J:K'4(0) and o:i a variable 
free formula defining ai in JK4(0) (i.e., x f= o:i iff x = ai)· Put 

The meaning of v( o:i) is that it is valid precisely in those transitive rooted frames 
that contain at most one point where o:i is true. Then clearly JK4(0) f= v(o:i) 
for every i < w. This observation provides us with the following: 

Lemma 13.24 (i) No finite rooted frame for LogJK4(0) has non-trivial reducts. 
(ii) The class of finite rooted frames for LogJK4(0) coincides with the class 

of rooted generated subframes of J:K'4(0). 
(iii) Every normal finitely approximable extension of Log JK4(0) is char

acterized by a class of rooted generated subframes of J:K'4(0) closed under the 
formation of rooted generated subframes, with this correspondence being 1-1. 

Thus, if L ;;;> LogJK4(0) is finitely approximable then it is characterized 
by a class of finite frames in which every point is definable by a variable free 
formula. It follows that L is 0-reducible and so, by Theorem 13.11, generally 
~00~~- 0 
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Exercise 13.12 shows that the requirement of finite approximability in The
orem 13.23 is essential. 

Lemma 13.24 has one more interesting application. Together with the con
struction of Theorem 13.15 it provides us with a continuum of pretabular logics 
in NExtK4. 

Theorem 13.25 There is a continuum of pretabular logics in NExtK4. 

Proof It suffices to show that the logics L = Logm( N), defined in the proof of 
Theorem 13.15 (i), are pretabular in NExtK4. It should be clear that they are 
not tabular. Suppose L' is a pretabular extension of L in NExtK4. By Corol
lary 12.12, L' is finitely approximable and, since m(N) is 0-generated, all its 
finite rooted frames are, by Lemma 13.24, generated subframes of J(N). Since 
L' is not tabular, it has finite frames of any depth. By the construction of J(N), 
its every. generated subframe of depth n contains all J( N) 's generated subframes 
of depth :::; n - 2. Therefore, the classes of finite rooted frames for L and L' 
coincide and so, since L is finitely approximable by its definition, L = L'. 0 

13.3 Exercises and open problems 

Exercise 13.1 Show that, for every logic L in the intervals mentioned in The
orem 13.2 and every m < w, the logic LogmL(m) is not n-reducible for any 
n<m. 

Exercise 13.2 Prove or disprove that uKC is 1-reducible. 

Exercise 13.3 Show that Grz.3 is 1-reducible. 

Exercise 13.4 Prove that if there are variable free formulas 'Pi, i < w, such 
that 'Pii A ... A 'Pin -; 'PJ <f. L for j <f. { i1, ... , in}, then L has a continuum of 
generally Post complete extensions. 

Exercise 13.5 Prove that if there are variable free formulas 'Pi, i < w, such 
that 'Pii A ... A 'Pin -; 'PJi V ... V 'PJ,,. f_ L for {i1, ... ,in} n {j1, ... ,Jm} = 0, 
then L has a continuum of Post complete extensions. 

Exercise 13.6 Prove that the intersection of generally Post complete logics is 
also generally Post complete. Is this true for sums of logics? 

Exercise 13. 7 Show that every logic L in the interval [K4.3, GL.3] has count
ably many Post complete extensions in ExtL and a continuum of generally Post 
complete extensions. 

Exercise 13.8 What is the number of (generally) Post complete (normal) ex
tensions of K EB on l.. and K4BDn? 

Exercise 13.9 Prove that a modal logic has n < w Post complete extensions in 
ExtK iff it has 2n - 1 generally Post complete extensions. 

Exercise 13.10 Give an example of a logic which is characterized by a maximal 
matrix but is not Post complete. 
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Exercise 13.11 Prove that all logics in ExtGL.3 are generally Post complete. 

Exercise 13.12 Construct a generally Post complete logic having a normal ex
tension which is not generally Post complete. 

Exercise 13.13 Prove that GL has the same Post complete extensions as GL.3, 
namely, the logics of the roots of finite irreflexive transitive chains and also 
Lw = GL.3 +re. 

Problem 13.1 Prove or disprove that Int+ V7=l -i(piA/\#i 'Pi) ism-reducible 
form= [log2 n] + 1. 

Problem 13.2 Does the map u L f-+ L preserve m-reducibility? 

Problem 13.3 Are there logics with countably many generally Post complete 
extensions? 

Problem 13.4 Do Theorems 13.20 and 13.22 hold for logics above K? 

Problem 13.5 Does the equation LogJK4(0) = K4 EB { v(ai) : i < w} hold? 

13.4 Notes 

The notion of reducibility appeared first in McKinsey and Tarski (1948), where 
it was proved that S4, S5 and Int are not reducible. Later similar facts were 
established for a few other logics. Theorem 13.2 is due to Chagrov (1993). That 
KC is 2-reducible was noted by Mardaev (1987) and the key lemma in the proof 
of this result (Lemma 13.4) was proved by Blok (1977). 

Although the lattices NExtK and Extint are similar as far as the number 
of Post complete logics in them is concerned, the algorithmic problem of de
termining, given a formula cp, whether K EB cp is Post complete is undecidable 
(Chagrov 1996), while the problem of Post completeness in Extlnt turns out to 
be decidable. 

In view of Makinson's theorem, when dealing with Post complete modal log
ics we primarily consider logics without the postulated rule RN. The first results 
concerning Post completeness of modal logics were obtained by McKinsey (1944), 
who proved that S4 has only one Post complete extension and above S2 there 
are infinitely many of them. The main problem of many subsequent papers con
cerning Post completeness was to determine the set of Post complete extensions 
of certain logics and estimate its cardinality. Some results of that sort can be 
found among the exercises in Section 13.3; see also Segerberg (1972, 1976) and 
Blok and Kohler (1983). 

A considerable step in understanding the nature of Post complete logics was 
made by Makinson and Segerberg (1974), who established a connection between 
the number of Post complete extensions of a given logic and the number of 
ultrafilters in the modal algebras determining it. A similar observation was made 
in Sambin and Valentini (1980). The most complete exposition of the current 
researches of Post completeness, in particular computing the number of Post 
complete extensions of normal modal logics can be found in Bellissima (1990). 
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Note that in the polymodal case the method of studying Post completeness is 
basically the same, however the description of Post complete logics is of course 
more complicated. 

The notion of generally Post complete logic was introduced and investigated 
in Chagrov (1985b); the theorems characterizing Post complete and generally 
Post complete logics in Section 13.2 were taken from this paper. The remain
ing results in this section were proved in Chagrov (1989, 1994b), where it is 
shown, in particular, that the requirement of finite approximability is essential 
in Theorem 13.23. 
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INTERPOLATION 

Recall that a logic L is said to have the Craig interpolation property if, for every 
implication a: --> /3 in L, there exists a formula"(, called an interpolant for a:--> /3 
in L, such that a:--> 'YE L, 'Y--> /3 EL and Vaq ~ Varo:nVar/3. In this chapter 
we present the most important semantic methods of proving and disproving the 
interpolation property of modal and superintuitionistic logics. 

14.1 Interpolation theorems for certain modal systems 

First we extend the construction used in the proof of Craig's interpolation theo
rem for Cl in order to prove the interpolation property of a few standard modal 
logics. As in that proof, our plan is, given that a: --> 'Y and 'Y --> /3 are not in 
L for any 'Y with Var'Y ~ Vara: n Var/3, to "saturate" the inseparable tableau 
t0 = ( {a:}, {/3}) to complete inseparable tableaux which describe a model for L 
realizing t0 • The difference is that for Cl it was sufficient to construct a sin
gle complete inseparable extension of t0 , while in the modal case to define the 
Kripke model we need, a set of such tableaux with an accessibility relation be
tween them may be required. We should warn the reader that although we use 
the same terminology as in the proof of Theorem 1.28, some notions will be 
defined in a slightly different way. 

Theorem 14.1 S4 has the interpolation property. 

Proof Suppose a: --> 'Y rf. S4 and 'Y --> f3 rf. S4 for any formula 'Y whose variables 
occur in both a: and f3, and show that in this case a: --> f3 rf. S4. 

We shall be considering tableaux of the form t = (r, D.) in which all formulas 
in r contain only variables occurring in a: and formulas in D. contain only vari
ables from /3. Say that tis inseparable (relative to a: and /3) if there is no formula 
'Y such that Var'Y ~ Vara: n Var/3 and /\~=l <pi --> 'Y E S4, 'Y --> V';_1 'I/Ji E S4 for 
some <p1, ... , <{Jn E r, 'l/J1, ... , 'l/Jm E D.. The tableau t is called complete (relative 
to a: and /3) if for every <p and 'l/J with Var<p ~ Vara: and Var'l/J ~ Var/3, one of 
the formulas <p and -i<p is in r and one of 'l/J and -i'l/J is in D.. 

Lemma 14.2 Every inseparable tableau t0 = (fo, D.0 ) can be extended to a com
plete inseparable tableau. 

Proof Let <p1, <p2, ... and 'I/Ji. 'ljJ2, ... be enumerations of all formulas whose 
variables occur in a: and /3, respectively. Define tableaux t~ = (r~, D.'.~) and 
tn+l = (r n+l, D.n+I) inductively by taking, for n = 0, 1, ... , 

t' = { (r n u {<{Jn}' Dan) if this pair is inseparable 
n (r nu {-i'Pn}, Dan) otherwise, 
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t _ { (r~, Li~ U { 'l/Jn}) if this pair is inseparable 
n+l - (r~, Li~ u { --.'l/Jn}) otherwise. 

Finally, we putt*= (f*,Ll*), where f* = Un<wfn, Ll* = Un<wLln. 
We show now that the tableau t* is complete and inseparable relative to 

a and /3. That t* is complete follows directly from the definition. Suppose t* 
is separable. Then for some formulas r.p1, ... , 'Pn E f*, '¢1, ... , 'l/Jm E Li* and 
some formula 1 containing only those variables that occur in both a and /3, we 
have /\~=l 'Pi --> / E S4 and / --> V~1 'l/Ji E S4. Since n, m < w, there exists 
k < w such that r.p1, ... , 'Pn E fk and '¢1, ... , 'l/Jm E Llk, which means that tk is 
separable. 

So it remains to show that if t = (r, Li) is inseparable, Varr.p ~ Vara: and 
Var'¢~ Var/3 then 

• one of the tableaux (f U { r.p}, Li) or (r U { --.r.p}, Li) is inseparable and 
• one of the tableaux (r, Li U { '¢}) or (r, Li U { --.'lj;}) is inseparable. 

We prove only the former claim, leaving the latter to the reader. Suppose, on 
the contrary, that both tableaux are separable, i.e., there are formulas 11, 12 
in variables occurring in both a and /3 such that, for some r.p1, ... , 'Pn E r, 
'¢1, ... , 'l/Jm E Li, we have 

'Pl /\ ... /\ 'Pn /\ r.p --> /1 E S4, /1 --> '¢1 V ... V 'l/Jm E S4, 

r.p1 /\ ... /\ 'Pn /\ --.r.p --> /2 E S4, /2 --> '¢1 V ... V 'l/Jm E S4. 

Then we obtain 

('Pl /\ · · · /\ 'Pn /\ r.p) V ('Pl /\ · · · /\ 'Pn /\ -ir.p) --> /1 V /2 E S4, 

/1 V /2 --> '¢1 V ... V 'l/Jm E S4, 

which in view of 

('Pl /\ · · · /\ 'Pn /\ r.p) V ('Pl /\ · · · /\ 'Pn /\ -ir.p) .._. 'Pl /\ · · · /\ 'Pn E S4 

gives us 

r.p1 /\ ... /\ 'Pn --> 11 V 12 E S4, /1 V 12 --> '¢1 V ... V 'l/Jm E S4. 

Since Vaq1V12 ~Vara: n Var/3, this contradicts t being inseparable. 0 

Now we define a frame i = (W, R) by taking W to be the set of all com
plete and inseparable extensions of the inseparable tableau ( {a}, {/3}) and, for 
tableaux ti= (ri,Li1), t2 = (r2,Ll2) in W, tiRt2 iff Or.p E r 1 implies r.p E f 2. 
Using the axioms Op--> p and Op--> OOp of S4, one can readily check that R 
is a quasi-order on W, i.e., J is a frame for S4. 

Define a valuation Q1 in J by taking for every variable p E Var(a: --> /3), 
QJ(p) = {(r, Li) E W: either p Er or p E Var/3 and p </:..Li}. Put wt= (J, QJ). 
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Lemma 14.3 For every t = (I', D.) in J and all formulas r.p and 'I/; with Varr.p ~ 
Varn:, Var'I/; ~ Var/3, 

(9Jt, t) F= r.p iff r.p Er, (9Jt, t) ~'I/; iff 'I/; ED.. 

Proof By induction on the construction of r.p and 'lj;. The basis of induction 
follows from the definition of !tr and the completeness and inseparability of t. 
The cases of the Boolean connectives present no difficulty. So suppose r.p = Dr.pi. 

If t f= Dr.pi then, for every t' = (I'', D.') E tj, we have t' f= r.p1 and so, by 
the induction hypothesis, r.p1 Er'. Suppose Dr.pi (j. r. Then, since tis complete, 
-iDr.p1 E r. Consider the tableau to = (fo, D.o), where 

We show that to is inseparable. Suppose otherwise. Then there is a formula / 
with Var1 ~ Varn: n Var/3 such that, for some formulas Dx1, ... , Dxn E r, 
-iDxn+li .. ·, ..,oxm E D., 

-ir.p1 /\ X1 /\ ... /\ Xn ~ 'Y E S4, 'Y ~ ..,Xn+l V ... V ..,Xm E S4. 

Using now the formulas 

D(p /\ Q1 /\ ... /\ Qn ~ r) ~(Op/\ Dq1 /\ ... /\ Dqn ~Or), 

D(r ~Pi V ... V Pk)~ (Or~ Op1 V ... V Opk), 

belonging to every modal logic and the fact that S4 is closed under necessitation, 
we obtain 

-iDr.p1 /\ Dx1 /\ ... /\ Dxn ~ o, E S4, 

01 ~ -iDXn+l V ... V -iDxm E S4, 

contrary to t being inseparable. 
Lett'= (I'', D.') be a complete inseparable extension of to. By the definition 

of to, we have tRt' and so r.p1 E r', contrary to -ir.p1 E r o ~ I'' and t' being 
inseparable. 

Suppose now that Dr.p1 E r. Then for every t' = (r', D.') such that tRt', 
we have 'Pl E r and so, by the induction hypothesis, t' F 'Pl. Consequently, 
t F Dr.pi. 

The formula 'I/; is treated in the dual way. 0 

To complete the proof of our theorem, it remains to observe that, in view of 
Lemma 14.3, 9Jt ~ o: ~ /3 and so o: ~ f3 ¢ S4. O 

Notice that specific properties of S4 were used in the proof above only to 
establish that J is a frame for S4. The rest of our considerations is suitable 
for any other normal modal logic (the normality was exploited in the proof 
of Lemma 14.3). Therefore, if we exclude using the axioms Op ~ p and/or 
Op~ DDp then by the same argument we shall obtain 
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Theorem 14.4 The logics K, K4, T have the interpolation property. 

0 bserve also that the construction of the models in the proof of Theorems 14.1 
and 14.4 resembles the construction of the canonical models. For instance, we 
could use them to establish the Kripke completeness of the logics under consid
eration. Indeed, if cp fj. L then T -> cp fj. L and so T -> cp does not have an inter
polant in L; the constructed model will be then a model for L E {84, K, K4, T} 
refuting cp. Moreover, using a somewhat subtler argument we could construct 
finite models and prove thereby the finite approximability of those logics. Such 
a construction will be described in Section 14.5, where we establish the interpo
lation property of GL. 

For a logic L E ExtK (L E Extlnt), we say that a formula n:(p) is conservative 
in ExtL if 

n:(j_) /\ n:(p) /\ n:(q) -> a(p-> q) /\ n:(Dp) E L 

(in the intuitionistic case the conjunct n:(Dp) should be replaced with the formula 
a(p /\ q) /\ a(p V q) ). If L E NExtK4, we call a(p) conservative in NExtL if 

o+(n:(j_) /\ n:(p) /\ n:(q))-; a(p-; q) /\ n:(Dp) EL. 

Theorem 14.5 (i) If L has the interpolation property and formulas ai, Jori EI, 
are conservative in ExtL, then L+{ ai : i E I} also has the interpolation property. 

(ii) If LE NExtK4 has the interpolation property and formulas ai, for i E I, 
are conservative in NExtL, then L EB { n:i : i E I} also has the interpolation 
property. 

Proof We prove only (ii); the proof of (i) can be obtained by omitting all o+ 
and replacing all EB with +. Suppose cp -> 1/; E L EB { n:i : i E I}. Then there is 
a finite J s;;; I, say J = {1, ... , l}, such that cp -> 1/; E L EB { n:i : i E J} and so, 
as easily follows from the definition of conservative formulas (see Exercise 14.1) 
and the deduction theorem for K4, 

l 

o+ /\ (n:J(j_) /\ n:J(P1) /\ ... /\ n:J(Pn))-> (cp-> 1/;) EL, 
j=l 

where P1, · .. ,pm,Pm+l, ... ,pk and Pm+1, ... ,pk,Pk+l, ... ,Pn are all the vari
ables in cp and 1/;, respectively. It follows that 

l 

o+ /\ (n:J(j_) /\ n:J(P1) /\ ... /\ n:J(Pk)) /\ cp-> 
j=l 

l 

(o+ /\ (n:J(Pm+i) /\ ... /\ n:J(Pn))-> 1/;) EL. 
j=l 

Since L has the interpolation property, there is x(Pm+i, ... ,pk) such that 
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l 

o+ f\ (o:i(.l) /\ o:i(P1) /\ ... /\ o:i(Pk)) /\ <p-> XE L 
j=l 

l 

X-> (o+ /\ (o:i(Pm+i) /\ ... /\ o:i(Pn))-> 1/J) EL, 
j=l 

which is equivalent to 

l 

o+ f\ (o:i(Pm+i) /\ ... /\ o:i(Pn)) -> (x-> 1/J) EL. 
j=l 

Then we obtain <p-> x EL EB {o:i: i E J} and x-> 1f; EL EB {o:i: i EI}, i.e., x 
is an interpolant for <p -> 1f; in L EB { O:i : i E J}. 0 

Corollary 14.6 There is a continuum of logics in NExtK4 having the interpo
lation property. 

Proof According to Theorem 13.15, there are a continuum of logics in NExtK4 
axiomatizable by variable free formulas which clearly are conservative. 0 

Lemma 14. 7 The formulas D<>p -> ODp, DOp ..__, ODp and Op ..__, <>p are 
conservative in NExtS4. 

Proof Exercise. 0 

As a consequence of Theorem 14.5 and Lemma 14. 7 we obtain another 

Corollary 14.8 The logics S4.1, S4 EB DOp ..__, ODp and Triv have the inter
polation property. 

The following result shows that the interpolation property is preserved while 
passing from a modal logic in NExtS4 to its superintuitionistic fragment. 

Theorem 14.9 If L E NExtS4 has the interpolation property then pL has this 
property as well. 

Proof Suppose that o: -> J3 E pL. Then T(o:) -> T(/3) E L and so there 
is an interpolant 1' for T(o:) -> T(/3) in L, which means that T(o:) -> 1' E 
L and 1' -> T(/3) E L. Since T(i.p) . ..__, DT(<p) E S4 (see Exercise 3.25) and 
T ( i.p(p1, ... , Pn)) ..__, T ( i.p( Dp1, ... , Dpn)) E S4 for every intuitionistic formula 
i.p(p1, ... ,pn), we have T(o:) -> D1" E L and D1" -> T(/3) E L, where 1" is 
obtained from 1' by prefixing D to each of its variables. By induction on the 
construction of a modal formula 1f;(p1, ... , Pn) one can readily show also that 
there exists an intuitionistic formula i.p(p1, ... , Pn) such that 

Now take an intuitionistic formula/ such that D1" ..__, T(I) E S4 and Vari = 
Vaq". Then we obtain T(o:) -> T(I) E L and T(I) -> T(/3) E L, from which 
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D(T(o:) -+ T('y)) E .Land D(T('y) -+ T(/3)) E L, and finally, a:-+ 'YE pL and 

'Y -+ J3 E pL. 0 

Since pS4 = Int, p(S4$D0p ~ ODp) = KC, pTriv = Cl, as a consequence 
of Theorems 14.1, 14.9 and Corollary 14.8 we obtain 

Corollary 14.10 The logics Int, KC and Cl have the interpolation property. 

14.2 Semantic criteria of the interpolation property 

Say that a class C of algebras is amalgamable if for every algebras 2lo, 2l1, 2l2 in 
C such that 2lo is embedded in 2l1 and 2l2 by isomorphisms Ji and h, respec
tively, there exist 2l E C and isomorphisms 91 and 92 of 2l 1 and 2l2 into 2l with 
91(fi(x)) = g2(h(x)), for any x in Qlo. 

Theorem 14.11 A si-logic L has the interpolation property iff the variety VarL 
is amalgamable. 

Proof ( =>) Suppose L has the interpolation property and Ji, h are isomor
phisms of 2lo into 2l1 and 2l2, respectively, 2lo, 2l1, 2l2 pseudo-Boolean algebras 
for L (with universes A0 , A1 , A2 ). Without loss of generality we will assume 
2lo to be a subalgebra of 2l1 and 2l2, i.e., that Ji and h are the identity maps: 
fi(x) = h(x) = x for all x E A 0 . With each element a E Ai, i = 0, 1, 2. we 
associate a variable p~ in such a way that, for a E A0 , p~ = p~ = p~. Denote 
by Li the (intuitionistic) language with the variables p~, for a E Ai, i = 0, 1, 2, 
and let L =Li U L 2 . We will not distinguish between terms and formulas in the 
languages we have just introduced and denote them by the same symbols. Also 
we will assume that L is the language of our logic L. 

Let us fix the valuation sni of Li in 2li, defined by sni(P~) =a, and put, for 
i = 1,2, 

Ei = {cp E ForLi: sni(cp) = T}. 

It is clear that L n For Li <:;;; Ei and that Ei is closed under modus ponens. Let 
E be the closure of Ei U E2 UL under modus ponens. We show that, for every 
cp E For Li, 1/; E ForLj such that { i, j} = {1, 2}, 

(14.1) 

The "if' part of (14.1) is obvious, since E is closed under MP and so under the 
rule cp-+ x, x-+ 1/;/cp-+ 1/;. 

Suppose now that cp -+ 1/; E E. This means that there is a substitutionless 
derivation of cp -+ 1/; in L from some finite sets of assumptions r i <:;;; Ei and 
r i <:;;; Ei. By the deduction theorem, we then have 

and so 
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Since L has the interpolation property, there is a formula x E For Co such that 

from which, by MP, <p - x E Ei and X - 'I/; E Ei. This establishes the "only if' 
part of (14.1). 

Notice, by the way, that putting <p =Tin (14.1), we obtain that En For Ci = 
Ei, for j = 1,2. 

Now we construct an algebra Ql by taking the set {ll'Pll : <p E E} as its universe 
A, where ll'Pll = {'I/; : <p ~ 'I/; E E} and putting 1- = II J_ II, ll'Pll 0 ll'l/Jll = ll'P 0 'l/Jll, 
for 0 E {A, V, -}. This definition is correct because Int~ L ~ E. It should be 
also clear that Ql E VarL. 

Define maps 9i from Qli into Ql, for i = 1, 2, by taking 9i (a) = llP~ II· By the 
definition, 9i is an injection. Let us show that 9i is a homomorphism. First, we 
have 9i(j_) = llPi II = llJ_ll = _l_, because mi(Pi) = _l_. Second, suppose c =a 0 b 
in Qli, for 0 E {A, V, - }. Then ll:Ji(P~ 0 Pi) = ll:Ji(P~) and so 

Thus, 9i is an embedding of Qli in Ql. And for a E Ao, we have 

g1(!1(a)) = 91(a) = llP~ll = g2(a) = g2(h(a)). 

( ¢::) Assuming Var L to be amalgamable, we show that L has the interpolation 
property. To this end we require the following: 

Lemma 14.12 Suppose !2lo is a subalgebra of pseudo-Boolean algebras Ql1 and 
!2l2, a E Ai, b E A2 and there is no c E Ao such that a :::;1 c :::;2 b (where :::;i is 
the partial order and Ai the universe in Qli)· Then there are prime filters \1 1 in 
!2l1 and '12 in !2l2 such that a E \Ji, b (j. '12 and '11 n Ao= '12 n A0 . 

Proof We remind the reader that a set of elements in Qli is a filter (ideal) iff it 
can be represented in the form [X)i (respectively, (X]i) for some X ~ Ai· Take 
the sets 

X = {x E Ao: a :::;1 x}, Y = {y E Ao: y :::;2 b}. 

By the condition of the lemma, X n Y = 0. We are going to extend Y to some 
ideal A2 in !2l2 in such a way that b E A2 and X n A2 = 0. To this end consider 
the family 

:F2 is not empty, because (b]2 E :F2. The union of any chain (with respect to ~) 
of :F2's elements is again in :F2. So, by Zorn's lemma, :F2 contains a maximal 
element, which we denote by ~2· 
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The ideal A2 turns out to be prime, i.e., x/\y E A2 implies x E A2 or y E A 2. 
Indeed, suppose x /\ y E A2 but x ¢ A2 and y ¢ A2. Since A2 is maximal in ;:2 , 

we then have 

i.e., A2 contains elements u an9. v such that a :S:1 x Vu, a :S:1 y V v, with xv u 
and y V v being in 2lo. It follows that 

a :S:1 (x Vu)/\ (y V v) = (x /\ y) V (x /\ v) V (u /\ y) V (u /\ v) E A2. 

And since (x Vu)/\ (y V v) is in 2lo, it belongs to X, contrary to X n A2 = 0. 
By Proposition 7.27, V' 2 = A2 - A2 is a prime filter in iiti. Put V' o = V' 2 n Ao 

and Ao= A2nAo. By the definition, we have X <;;; V'o, Y <;;;Ao and V'onA0 = 0. 
Now we extend the set {a} U V' o to obtain the filter V' 1 we need. Consider the 
family 

F1 = {V' <;;;Ai: V' = [V')i, {a} UV'o <;;; V', V'nAo = 0}. 

To prove that it is not empty, it suffices to show that [{a} UV' oh E F 1, which in 
turn follows from [{a} U V'oh n Ao= 0. So suppose that x E [{a} U V'oh n Ao. 
Then for some z E V'o, we have a/\ z :S:1 x, i.e., a :S:1 z---. x and x E Ao. By the 
definition of X, z ---. x E X <;;; V' o, which together with z E V' o yields x E V' 0. 
Therefore, x E V'o n Ao, which is a contradiction. 

Thus, F 1 is not empty. The union of any chain of F1 's elements also belongs 
to F1. So by Zorn's lemma, F 1 contains a maximal (with respect to<;;;) element. 
Denote it by V' 1 and show that the filter V' 1 is prime. Suppose x V y E V' 1 but 
x ¢ V'1 and y ¢ V'1. Then 

i.e., V'1 contains Ux and Uy such that, for some Vx,Vy E A0, we have 

It follows that 
(x /\ Ux) V (y /\ uy) :S:1 Vx V Vy E Ao. 

The left part of this inequality can be transformed in the following way: 

(x /\ Ux) V (y /\Uy)= (x Vy)/\ (x V uy) /\ (ux Vy)/\ (ux V uy)· 

Here every conjunct belongs to V' 1 and so the whole conjunction is in V' 1, from 
which Vx V Vy E V' l · Thus, we have obtained that Vx V Vy E V' 1 n Ao, contrary to 
V'1nA0=0. 

Observe now that, by the definition, a E V' 1 and b ¢ V' 2. So it remains to 
check that V'1 n Ao = V'2 n Ao. Suppose x E V'1 n Ao. Then x ¢ Ao, whence 
x ¢ A2 and so x E V'2 n Ao. Conversely, if x E V'2 n Ao then x E V'o and so 
x E V'1, because V'o ~ V'1, from which x E V'1 n Ao. Cl 
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We are in a position now to prove the part ( {=) in Theorem 14.11. Suppose 
cp(p1, ... , Pm, qi, ... , qn) and ¢(qi, ... , qn, r1, ... , rz) are formulas for which there 
is no formula x(q1, ... , qn) such that cp-+ x EL and X-+ 1f; EL or, which is the 
same, Ql f= cp-+ X and Ql f= x-+ 1f; for any Ql E VarL. We show that in this case 
there exists an algebra Ql E VarL refuting cp -+ 1/J. 

Let Ql~, !ili and Ql2 be the free algebras in VarL generated by the sets 
{ c1, ... , Cn}, { ai, ... , am, Ct, ... , Cn} and {Ct, ... , Cn, bi, ... , bi}, respectively. Ac
cording to this definition, Ql~ is a subalgebra of both !ili and !il2. By Lemma 14.12, 
there are prime filters \71 in Qli and \7 2 in Ql2 such that cp( al, ... , am, Ct, ... , Cn) E 
\71 and 1/;(ci, ... , Cn, bi, ... , b1) ¢ \72. Put !il1 = !ili/'V 1, !il2 = !il2/'V2. Then 

Construct an algebra !ilo by taking Ao= {ilallv1 : a EA~}. By the definition, !ilo 
is a subalgebra of !il1, i.e., is embedded in Ql1 by the map fi(x) = x. We show 
that mo is embedded in !il2 by the map h(llxllv,) = llxllv2. 

For every 0 E {/\, V,-+} and every llallv,, llbllv 1 E Ao we have 

h(liallv, 0 llbllv,) = h(lla 0 bllv,) = Ila 0 bl/v2 = 

llallv2 0 llbllv2 = h(l\al\v,) 0 h(\\bl\v,). 

Besides, h(\\1-llv 1 ) = ll1-llv2 = 1- E A2. Thus, h is a homomorphism. Let us 
show that it is injective: 

llallv, = llbllv, iff a~ b E \71 

iff a~ b E \72 (since \71 n A~= \72 n A~) 
iff \lallv2 = llbllv2, i.e., h(llallv,) = h(llbllv,). 

Since Var L is amalgamable, there are an algebra Ql for L and isomorphisms 
91 and 92 of !il1 and !il2 into Ql, respectively, such that 91(fi(x)) = 92(f2(x)), for 
every x E Ao. Define a valuation QJ in Ql by taking 

for i = 1, ... , m, 

\U(qj) = 91 (llcj llv,) = 92(llci llvJ, for j = 1, ... , n, 
\U(rk) = 92(llbkllv2), fork= 1, ... , l. 

Then 

from which Ql ~ cp -+ 1f; and so cp-+ 1f; ¢ L. 0 

It is worth noting that the property of amalgamability can be strengthened 
without violating Theorem 14.11. Say that a class C of algebras is superamal-
9amable if the condition of amalgamability is satisfied in C for every Ql0 , Ql1, Ql2, 
ft, h, and if x E Ai, y E Aj, {i,j} = {1,2}, then 
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g;(x):::; gi(Y) implies :3z E Ao (x ::S:; fi(z) and fj(z) :S:i y). 

Let us supplement the proof of ( =>) in Theorem 14.11 to establish that VarL 
is superamalgamable. Suppose a EA;, b E Aj, {i,j} = {1,2}, and g;(a) ::S: gi(b). 

Then g;(a) ~ gj(b) = T and so !IP~ ~Pill = T, i.e., p~ ~ ~ E ~- By (14.1), 
we have x E For£0 with W(x) = c such that a :S:; c = f;(c) and c = fj(c) ::S:j b. 
Thus, we obtain 

Theorem 14.13 A si-logic L has the interpolation property iff VarL is supera
malgamable. 

Observe also that in the proof of ( {=) in Theorem 14.11 we actually used the 
amalgamability of the class of L's algebras satisfying the condition 

x V y = T implies x = T or y = T. 

Such algebras are called well-connected. (The condition was ensured by the fact 
that the filters 'il 1 and 'il 2 were prime.) Thus, we have another variant of the 
criterion for the interpolation property. 

Theorem 14.14 A si-logic L has the interpolation property iff its class of well
connected pseudo-Boolean algebras is amalgamable. 

Let us now turn to modal logics. The situation here is a bit more complicated. 
First of all, we have 

Theorem 14.15 A normal modal logic L has the interpolation property iffVarL 
is superamalgamable. 

Proof Similar to the proofs of Theorems 14.11 and 14.13. 0 

However, the amalgamability corresponds to a different variant of the inter
polation property. Say that a normal modal logic L has the interpolation property 
for derivability if, for every formulas r.p and 'ljJ such that r.p f--£ 'ljJ, there is a for
mula x containing only common variables in r.p and 'ljJ and such that r.p f--£ x and 
x f--£ 'l/J. 
Theorem 14.16 A normal modal logic L has the interpolation property for 
derivability iff VarL is amalgamable. 

Proof Similar to the proof of Theorem 14.11. 0 

In Section 14.4 we shall see examples of logics which have the interpolation 
property for derivability but do not have the Craig interpolation property. 

14.3 Interpolation in logics above LC and S4.3 

In this section we give a complete description of "linear" modal and si-logics 
with the interpolation property and in the next one extend it to the whole classes 
Extlnt and NExtS4. First we consider si-logics with linear frames. 

Theorem 14.17 The logic LC= Int+ (p ~ q) V (q ~ p) has the interpolation 
property. 



456 INTERPOLATION 

Proof According to Theorem 14.14, it suffices to show that the class of well
connected algebras in VarLC is amalgamable. This class coincides with the class 
of all linearly ordered pseudo-Boolean algebras. Indeed, if (a~ b) V (b ~ a) = T 
in a well-connected algebra then a~ b = T orb~ a= T, i.e., either a:::; b or 
b:::; a. 

Let Ql0 be a subalgebra of linear algebras Qli and Ql2. If one of these algebras is 
degenerate then the rest are also degenerate and the condition of amalgamability 
is trivially satisfied. So suppose these algebras are non-degenerate. 

We construct Ql in the following way. As its universe A we take Ai UA2. Since 
the operations in a pseudo-Boolean algebra are completely determined by the 
partial order :::; in it, it suffices to define :::; in Ql so that (A,:::;) be a linear order 
with greatest and least elements and (Ai, :::;i), (A2, :::;2) could be embedded in 
(A,:::;)· preserving T and .l. For x, y E A, put 

x :::;' y iff (x, y E Ai /\ x :::;i y) V (x, y E A2 /\ x ::;2 y) V 

(x E Ai/\ y E A2 /\ 3z E Ai n A2 (x :::;i z /\ z :::;2 y)) V 

(x E A2 /\ y E Ai/\ 3z E Ai n A2 (x :::;2 z /\ z :::;i y)). 

It is easily checked that (A,:::;') is a partial order with the greatest and least 
elements T and J_ and, for every x, y E Ai, i = 1, 2, we have x :::;' y iff x ::;i y. 
Now we supplement :::;' to a linear order :::;. This can be done, for instance, like 
this: take any well-ordering of Ax A and, starting with :::;', add to it by transfinite 
induction the next pair (x, y) from Ax A if x and y are still incomparable after 
the preceding step and then form the transitive closure of the new relation. The 
resulting linear order will clearly satisfy the properties we need. 0 

Denote by LCn the logic of the n-point linear frame ( = the logic of the 
n + 1-element linear pseudo-Boolean algebra). 

Theorem 14.18 LC2 has the interpolation property. 

Proof There are only two well-connected non-degenerate LC2-algebras, namely 
2- and 3-element chains. A simple direct check of all possible cases (see, for ex
ample, Fig. 14.l in which dash arrows show embeddings) establishes that this 
class of algebras is amalgamable. 0 

Thus, we have four "linear" si-logics -(including the inconsistent one) having 
the interpolation property. And it turns out that that is all. 

Theorem 14.19 Any logic L E ExtLC different from LC, LC2, Cl and For.C 
does not have the interpolation property. 

Proof Suppose L has the interpolation property and differs from LC2, Cl and 
For.C. We show then that L =LC. 

It follows from our assumption that there is a well-connected algebra for L 
containing at least 4 elements and so there is a 4-element algebra (e.g. a suitable 
subalgebra of the former one). We are going to prove by induction on n that 
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FIG. 14.l. 

VarL contains n-element well-connected algebras for every n < w. This is true 
for n = 1,2,3,4. 

Suppose VarL contains an n-element linear algebra (and so m-element ones 
as well, for 1 ::; m < n) and show that an n + 1-element linear algebra belongs 
to VarL too. Let silo, sil1, sil2 be the pseudo-Boolean algebras defined by the 
following linear orderings of their elements: 

• silo is J_ < a < T, 

• sili is J_ < a < b < T, 
• sil2 is J_ < c1 < ... < Cn-3 <a< T. 

By the definition, silo is a subalgebra of both sil1 and sil2. Since L has the in
terpolation property, there must be a well-connected algebra sil for L containing 
sil1 and sil2 as its subalgebras. This means that sil contains an n + 1-element 
subalgebra determined by the order 

J_ < C1 < ... < Cn-3 <a< b < T. 

Thus, the class of all finite linear algebras, characterizing LC, is contained in 
VarL. It follows that L ~ LC and so L =LC. 0 

Let us consider now extensions of S4.3. By Theorem 14.9 and the results of 
this section, of all"logics in NExtS4.3 only modal companions of LC, LC2 , Cl 
and For£ may have the interpolation property. 

Theorem 14.20 No logic in p- 1 LC has the interpolation property. 

Proof We show that there is a formula a ~ {3 which belongs to all logics in 
p- 1 LC = [S4.3, Grz.3] but does not have an interpolant in any of them. Let 

a(p, q, r) = D((p ~ Dr)/\ (D(q ~ Dr) ~ Dr)/\ (Dr~ p V q)), 

{3(p, q, r') = D((q ~ Dr')/\ (D(p ~Dr')~ Dr')/\ (Dr'~ p V q)) ~ p V q. 
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It is not difficult to verify that a --; (3 is valid in every finite frame for S4.3 and 
so belongs to S4.3. It remains to show that there is no formula 1(p, q) such that 
a --; I E Grz.3 and I --; (3 E Grz.3. Let J = (W, R/ be the frame depicted in 
Fig. 8.3 (a) and J' = (W', R'/ its subframe obtained by removing the point w. 
Clearly, both J and J' are frames for Grz.3. Put !ilo = J'+, !il1 = !il2 = J+ and 
define embeddings fi of mo in Qli, for i = 1, 2, as follows. 

Let V\, V'2 be non-principal ultrafilters in mo such that a= {2n: n < w} E 
V' 1 - V' 2. To show that such ultrafilters exist, consider the filter V' of cofinite 
sets in Ql0. The filters [V' U {a}) and [V' U -{a}) are then non-degenerate. (For 
otherwise, if say 0 E [V' U {a}), we would have b n a = 0 for some cofinite set 
bin Ql0, which is impossible.) And we can take as V' 1 and V'2 any ultrafilters 
containing [V'U {a}) and [V'U-{ a}), respectively, which clearly are non-principal 
and satisfy the property we need. 

Define fi by taking, for any x in Ql0 , 

f-(x) = { x U {w} if x E ~i 
' x otherwise 

and show that it is an embedding of mo in Qli· Clearly, Ji is an injection. So it 
suffices to prove that it preserves n, - and D. 

Consider fi(xny), for x,y ~ W'. If xny E V'i then x E V'i and y E V'i, i.e., 
fi(x) = x U {w}, fi(Y) = y U {w} and so 

fi(x ny) = (x n y) U {w} = (x U {w}) n (y U {w}) = fi(x) n f;(y). 

And if x n y ~ V'i then x ~ V'i or y ~ V'i, i.e., either w ~ f;(x) = x or 
w ~ f;(y) = y, and so fi(x n y) = x n y = fi(x) n fi(y). 

Now take fi(W' -x), x ~ W'. If W' -x E V'i then x ~ V'i, i.e., w ~ fi(x) = x. 
Then fi(W' - x) = (W' - x) U {w} = W - x = W - fi(x). And if W' - x ~ V'i 
then x E V'i, i.e., fi(x) = x U {w }, and so 

fi(W' - x) = W' - x = W - (x U {w}) = W - fi(x). 

Finally, consider fi(D 0 x), for x ~ W' (here the subscript near D indicates in 
which algebra this D operates). There are three types of elements of the form 
Dox in 12to: {w + 1, m : m < w }, {m: m < w}, and {O, 1, ... , n} (n < w). The 
former two sets x are cofinite and besides x = D 0x. In this case we have 

If Dox = {O, ... ,n} then n+ 1 ~ x. Therefore, D1x = D1 (xU {w}) = {O, ... ,n} 
and so fi(Dox) = Difi(x) no matter whether xis in V'i· 

Define valuations QJi in the algebras Qli, for i = 0, 1, 2, by taking 

QJo(P) = {2n + 1: n < w}, QJo(q) = {2n: n < w}(= a), 
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!l'.T1(P) = {2n + 1: n < w}, !l12(p) = {2n + 1: n < w} U {w}, 

!l'.T1(q) = {2n: n < w} U {w}, !l'.T2(q) = {2n: n < w}, 

!l'.T1(r) = {n: n < w}, !l'.T2(s) = {n: n < w}. 

Notice that 
fi(!l'.To(P)) = !l'.T1(P), fi(!l'.To(q)) = !l'.T1(q), 

h(!l'.To(P)) = !l'.T2(p), h(!l'.To(q)) = !l'.T2(q) 

and so, for any formula cp(p, q), we have 

fi(!l'.To(cp(p,q))) = !l'.T1(ip(p,q)), h(!l'.To(ip(p,q))) = !l'.T2(cp(p,q)). 

Suppose now that 1(p, q) is an interpolant for a --+ (3 in Grz.3, i.e., a --+ / E 
Grz.3 and / --+ (3 E Grz.3. Then both formulas must be valid in the algebras 
under consideration, in particular, 

!l'.T1 (a) = 

01((!l'.T1(P) ::::J1 01!l'.T1(r)) n (01(!l'.T1(q) ::::J1 01!l'.T1(r)) ::::l 01!l'.T1(r)))n 

(01!l'.T1(r) ::::l1 !l'.T1(P) U !l'.T1(q)) = 
01(W n (01(W - {w}) ::::l1 01!l'.T1(r)) n W) = 

0 1((W - {w,w + 1}) ::::i (W - {w,w + 1})) = W ~ !l11(r), 

i.e., !l'.T1(r) = W, and 

!l'.T2(r) ~ !l'.T2(f3) = 

!l12(0((q--+ Os)/\ (O(p--+ Os)--+ Os)/\ (Os--+ p V q))) ::::J2 !l'.T2(P V q) = 
W ::::l2 !l'.T2(P V q) = !l'.T2(P V q) = W - {w + 1} =/:- W, 

i.e., !l'.T2(r) =/:- W. Since fi is an embedding, we have !l10 (r) = f11(!!.J1(r)) = 
f1 1(W) = W' and so !l'.T2(r) = h(!l'.To(r)) = h(W') = W, contrary to !l12(r) =f. 
W. 0 

Remark Note that the formula a used in the proof above was "boxed". This 
means that in fact we have established a stronger result: no logic in p- 1 LC has 
the interpolation property for derivability. 

Let us consider.now the set p- 1c1 = {Log(t[n: 1 s n s w} and p- 1LC2 = 
{Log(t[~ : 1 Sn, m S w }, where (t[n is then-point cluster and (t[~ is the chain 
of two clusters, the first with m and the last with n points. We remind the reader 
that Log(t[w = S5, Log(tC1 = Triv. 

Theorem 14.21 In p- 1c1 only S5, Log(tC2 and Triv have the interpolation 
property. In p-1 LC2 only Log(t[; and Log(t[~, for n = 1, 2, w, have the interpo
lation property. 
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FIG. 14.3. 

Proof The proof involves neither new ideas nor methods as compared with 
the proofs of Theorems 14.17-14.19. For example, in the same way as in the 
proof of Theorem 14.19 we constructed n-point linear frames with the help of 
the 3-point one and the amalgamation- property (for n = 4 the construction 
is shown in Fig. 14.2 (a), where ct~n is the linear frame with n points and 
dash arrows indicate reductions), starting with the 3-point cluster and using 
the (super)amalgamability we can "grow" arbitrary finite clusters (see Fig. 14.2 
(b)). 0 

14.4 Interpolation in Extlnt and NExtS4 

Now we describe all si-logics and normal extensions of S4 with the interpolation 
property. Since the proofs are of the same sort as those of Theorems 14.17-14.19 
(though technically somewhat more involved), we confine ourselves here only to 
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FIG. 14.4. 

a rough sketch, hoping that the interested reader will be able to complete the 
details. 

Theorem 14.22 A si-logic has the interpolation property iff it is one of 

o'-J/ \! 
Int, KC, Int+ bd2, Int+ bd2 + {3( o ) =Log o , 

LC, LC2, Cl, For.C. 

Proof The fact that all these logics have the interpolation property was partly 
already proved (see Corollary 14.10 and Theorems 14.17, 14.18). The interpola
tion property of Int+ bd2 = LogJ4 and LogJ~ (see Fig. 12.2) is established in 
the same way as Theorems 14.17 and 14.18. (Here and below we use the notations 
introduced in Section 12.3.) 

Suppose now that L is a si-logic with the interpolation property different 
from the eight logics listed above. By Theorem 14.19, L tj_ ExtLC and so at least 
one of the frames J~ or J~ in Fig. 12.2 validates L. 

Suppose J~ I= Land consider two cases: ct!13 ~Land ct!13 I= L. In the former 
case L is of depth 2 and, since L tj_ {Cl, LogJ~, For.c}, Jl must be a frame for 
L. By the standard amalgamation argument we can prove then that J4 I= L for 
every n < w. For n = 4 the construction is shown in Fig. 14.3 (of course, we do 
not obtain J~ immediately; first we get a (general) frame J I= L reducible to 
both copies of Jl in the proper way and then show that J is reducible to J~). 
But then L = LogJ4 = L + bd2, which is a contradiction. 

Thus ct~ 3 I= L holds. Notice that starting with J~ and ([~ 3 and using the 
amalgamation property we can construct Jl and so J4, for every n < w. Indeed, 
first we obtain the frame 1!3 1 as is shown in Fig. 14.4, then 1!3 2 as in Fig. 14.5 and 
finally 1!33 as in Fig. 14.6, which is clearly reducible to J~. And using ([~ 3 and J4, 
n < w, we can construct any finite tree (which can easily be shown by induction 
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FIG. 14.5. 

fi(bo) = ao 
fi({b1,b2,b3}) = a1 
h(c.o) = ao 
h({c1,c2}) = ai 
g1(do) = bo 
g1({d1,d3}) = b2 
g1(d2) = b1 
g1(d4) = b3 
g2(do) =co 
g2(di) = C1 
g2( { d2, d3, d4}) = C2 

on the number of points in trees). But the class of finite trees characterizes Int, 
i.e., L = Int, which is again a contradiction. 

It follows that J~ f= L and so ltl)3 f= L, because ltl)3 is a reduct of J~. 
Therefore, the class of frames for L contains all finite chains ltl)n, n < w. From 
ltl)3 and J~ by the amalgamation property we can construct J~ (see Fig. 14.7). 
Now observe that ltl)4 and J~ are obtained from ltl) 3 and J~ by adding to them 
last points. And if we add last points to the frames in Fig. 14.3-14.6 and connect 
them by reduction arrows then we can construct arbitrary finite trees with an 
added top point. This means that L ~ KC. But since J~ V== L, we must have 
L = KC, contrary to our choice of L. 

We have considered all possible cases and everywhere arrived at a contradic-
tion. Therefore, such a logic L does not exist. 0 

Let us turn now to NExtS4. For a si-logic L and n, m :::; w, we denote by 
M(L, m, n) the modal logic above S4 characterized by the class of frames J such 
that p':J is a finite frame for L, final clusters in J contain at most m points and 
the remaining (non-final) clusters at most n points. Although the following two 
theorems, presented here without proofs, do not give an exhaustive description of 
logics in NExtS4 with the interpolation property (for derivability), they provide 
us with finite lists of logics containing. all of them. 

Theorem 14.23 (i) The following logics have the interpolation property: 

M(Int,n,w), M(KC,n,w), 

M(Int + bd2, n, 1), M(Int + bd2, 1, n), 

M(Log V,n,l), M(Log V,l,n), 

M(LC2, n, 1), M(LC2, 1, n), for n = 1, 2, w, 
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FIG. 14.6. 

S5, Log<t£2, Triv, Grz, Grz.2, ForML.:. 

(ii) Each normal logic above S4 having the interpolation property and different 
from the logics mentioned in (i) is contained in the following list: 

M(Int, 1, 2), M(Int, 2, 1), M(Int,2, 2), M(Int,w, 1), M(Int,w, 2), 

M(KC, 1, 2), M(KC, 2, 1), M(KC, 2, 2), M(KC, w, 1), M(KC, w, 2). 

Theorem 14.24 (i) The following log·ics have the interpolation property for 
derivability, but do not have the (plain) interpolation property: 

M(Int + bd2 , m, n), M(Log V, m, n), M(LC2, m, n), 

where m, n E {2, w }. 
(ii) Each normal extension of S4 having the interpolation property for deriv

ability and different from the logics mentioned in (i) is contained in the list of 
Theorem 14.23 (ii). 

14.5 Interpolation in extensions of GL 

Theorem 14.25 GL has the interpolation property. 

Proof Suppose a -+ f3 has no interpolant in GL. Our goal is to construct a 
finite irreflexive transitive frame refuting a-+ {3. 

Lett= (f, ~) be a finite tableau all formulas in which are constructed from 
variables and their negations using the connectives /\, V, D, 0. Without loss 
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fi(bo) = ao 
fi({b1,b3}) = a2 
fi(b2) = a1 
h(c.o) = ao 
h({c2,c3})=a2 
f2(c1) = a1 

FIG. 14.7. 

91 (do) = bo 
91(d1) = b1 
91({d3,d4}) = b3 
91(d2) = b2 
92(do) =Co 

92(d2) = C1 
92({d1,d4}) = C3 
92(d3) = C2 

of generality we will assume a and (3 to be formulas of that sort. Say that t is 
separable (relative to a and (3) if there is a formula 'Y with Var"( ~ Vara n Var(3 
such that /\ r -+ 'Y E GL and 'Y -+ V .0. E GL. 

It should be clear that if t = (I', .0.) is a finite inseparable tableau then taking 
the closure of it under the saturation rules (SR1)-(SR4) (see Section 1.2) we can 
obtain a finite inseparable tableau satisfying (Sl)-(84). It will be denoted by 
[t] = (rr• , L.0._J). 

Now we construct by induction a finite rooted model for GL refuting a-+ (3. 
As its root we take the tableau (ra•, L{3_J). Ifwe have already put in our model a 
tableau t = (r, .0.) and it has not been considered yet, then for every Ocp E rand 
every 01/i E .0., we add to the model the tableaux t1 = (f1, .0.1) and t2 = (f2, .0.2) 
in which 

where (-icp)' and (-ilji)' are formulas equivalent to -icp and -ilji, respectively, and 
containing--, only prefixed to variables (and no -+, of course). 

Lemma 14.26 If t is inseparable th~n t1 and t2 are also inseparable. 

Proof We consider only t 1 , because t 2 is treated in the dual way. Suppose t 1 is 
separable, i.e., there is a formula 'Y containing only common variables in a and 
(3 and such that /\ I'1 -+ 'Y E GL and 'Y -+ V .0.1 E GL. Then with the help of 
the formulas O(p A q-+ r) -+ (Op A Oq -+ Or) and O(p-+ q) -+ (Op -+ Oq) 
belonging to any modal logic, we obtain 

0 /\ {x, ox : ox E r} A 0(0-icp A cp) -+ 01 E GL, 

. 0-y-+ 0 v{x,Ox: Ox E .0.} EGL. 
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And since 0(0-.cp A cp), O(x A ox) and <>(x V <>x) are equivalent in GL to the 
formulas Ocp, Ox and <>x, respectively, we have 

/\{Ox : Ox E r} A Ocp -> <>"( E GL, <>"( -> v { <>x : <>x E ~} E GL, 

whence/\ r-> O"f EGL and O"f-> V ~EGL, contrary tot being inseparable. 
0 

Put tR't1 and tR't2. The process of adding new tableaux must eventually 
terminate, since each step reduces the number of formulas of the form Ocp and 
0'!/J in the left and right parts of tableaux, respectively: having appeared once 
such a formula vanishes at the next step and in view of 0(-.cp)', 0(-.'!/J)' and 
Lemma 14.26 cannot appear again. Let W be the set of all tableaux constructed 
in this way and R the transitive closure of R'. Clearly, the resulting frame J = 
(W, R) is transitive and irreflexive and so J f= GL. Define a valuation lU in J by 
taking, for each variable p, 

IU(p) = {(r,~) E w: p Er}. 

To show that mt= (J, IU) refutes a -> (3, by induction on the construction of cp 
one can readily prove that, for every t = (r, ~) E W, if cp E r then (mt, t) f= cp 
and if cp E ~ then (mt, t) ~ cp. 0 

Unlike NExtS4, there are much more logics with the interpolation property in 
NExtGL. More precisely, we have the following strengthening of Corollary 14.6: 

Theorem 14.27 NExtGL contains a continuum of logics with the interpolation 
property. 

Proof By Theorems 14.25 and 14.5, it suffices to present a continuum of logics 
in NExtGL axiomatizable by conservative formulas. For i < w, we put 

Lemma 14.28 Each formula ai is conservative in NExtGL. 

Proof We need to show that 

o+ai(-1) A o+ai(P) A o+ai(q)-> ai(P-> q) EGL, 

o+ai(.l) A o+ai(P)-> ai(Op) EGL. 

(14.2) 

(14.3) 

Suppose (14.2) does not hold, which means that this formula is false at a point 
x in some model for GL, i.e., 

x ~ ai(P-> q). 

(14.4) 

(14.5) 
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FIG. 14.8. 

It follows from (14.5) that there is y E x1 such that 

y ~ oH1(p - q) v oH1-.(p - q) 

and so, for some Yi, Y2 E yli+l, we have 

(14.6) 

(14. 7) 

(14.8) 

and Y2 ~ -.(p-> q), i.e., Y2 ~ p or Y2 I= q. If Y2 ~ p then, by (14.6) and (14.8), 
we must have x ~ Qi(p), contrary to (14.4). And if Y2 I= q then, using (14.6) 
and (14.8), we obtain x ~ Qi(q), which is again a contradiction. 

To prove (14.3) it is sufficient to notice that Qi(Dp) E GL. Indeed, we have 
oH2 .l - oH1op E GL and so Oi+1T /\ oi+2 .l - oH1op v oi+1-.Dp E GL. 

0 

For every N ~ w, put 

GL(N) = GL EB {Qi: i EN}. 

Since the model 9'.R = (J', Q'.J), where J° is the frame shown in Fig. 14.8, j rf. 
N and Q'.J(p) = {bj+l}, separates Qj (refuted at a) from GL(N), GL(N1) f 
GL(N2 ) whenever Ni f N 2 . Thus, we have a continuum of normal extensions 
of GL which, by Lemma 14.28, Theorems 14.5 and 14.25, have the interpolation 
property. 0 

On the other hand we have 

Theorem 14.29 NExtGL contains a continuum of logics without the interpo
lation property. 

Proof Let Qi, for i < w, be the formulas introduced in the proof of Theo
rem 14.27. For N ~ w - {O, 1, 2, 3, 4}, we put 

GL(N) = GL EB {Qi : i EN} EB /3 v /, 

where 
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1 = o+(o4 J_ _, o(o3 J_ A 0 2T _, q) v o(o3 J_ /\ 0 2T _, •q)). 

Observe that the frames of the form shown in Fig. 14.8 validate both f3 and / 
and so, for every j </. N, j > 4, we have O'.j </. GL(N). Therefore, GL(N1) # 
GL(N2) whenever N1 -::/:- N2. It remains to prove that GL(N) does not have the 
interpolation property. 

We show that the formula •f3 -> /, which clearly is in GL(N) (because it 
is equivalent to f3 V 1) has no interpolant in GL(N). Suppose otherwise. Then 
there is a variable free formula 8 such that 

0 8 _, f3 E GL(N), 8 _, r E GL(N). 

According to the classification of the variable free formulas in GL given in The
orem 8.87, 8 has one of the forms 

8=_l_Vcpi1 V ... Vcpin or8=•(_l_Vcpi1 V ... Vcpin), 

where 'Pi= Oi+1 _l_ /\ OiT. 
Suppose 8 = J_ Vcpi1 V .. . Vcpin· Then the model 0011 = (~1, W1), where ~1 is the 

frame in Fig 14.9 (a) with m = max{i1, ... , in}+ 32 and W(q) ={a~}, separates 
the formula 8 -> / (refuted at am) from GL(N), which is a contradiction. And 
if 8 = •(j_ V 'Pii V ... V 'Pin) then the model 0012 = (~2, W2), where ~2 is shown in 
Fig 14.9 (b) with m = max{i1, ... , in}+ 33 and W(p) = {aD, separates 0 8-> f3 
from GL(N), which is again a contradiction. 0 

Now let us consider extensions of S. 

Theorem 14.30 S has the interpolation property. 

Proof Although the axiom Op-> p of S is not conservative in ExtGL (check 
this!), the proof is similar to that of Theorem 14.5 (i). 

Suppose cp-> 'l/J E S. Then by Theorem 5.61, we have 

/\ (Ox_, x) _, (cp _, 'l/J) EGL 
DxESub(cp--+,P) 

and so 
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DxESub<,0 

By Theorem 14.25, this formula has an interpolant a in GL, i.e., 

/\ (Ox-+ x)-+ (a-+ 'l/J) EGL, /\ (Ox -+ X) A cp -+ a E GL, 
DxESub<,0 DxESub,P 

from which cp-+ a E S and a -+ 'ljJ E S. 0 

Theorem 14.31 ExtS contains a continuum of logics with the interpolation 
property. 

Proof Exercise. (Hint: use the formulas ai which were defined in the proof of 
Theorem 14.27). 0 

Theorem 14.32 Suppose L is a modal logic with the interpolation property and 
having only one Post complete extension. Then L is Hallden complete. 

Proof Suppose that formulas cp and 'ljJ have no common variables and cpV'l/J EL. 
Then •cp -+ 'ljJ E L and so there is a variable free formula x such that •X -+ cp E L 
and x -+ 'ljJ E L. Since L has only one Post complete extension, we must have 
either x E L or •x E L. Therefore, cp E L or 'ljJ E L. 0 

As a consequence of Theorems 14.31 and 14.32 we obtain 

Corollary 14.33 There is a continuum of Hallden complete logics in ExtS. In 
particular, S itself is Hallden complete. 

Theorem 14.34 ExtS contains a continuum of logics which are not Hallden 
complete and so a continuum of logics without the interpolation property. 

Proof Exercise. (Hint: use the proof of Theorem 14.29 and Theorem 14.32). 

0 

14.6 Exercises and open problems 

Exercise 14.1 Suppose L E ExtK or L E Extlnt and a(p) is a conservative 
formula in ExtL. Show that for every formula cp(p1, ... ,pn) EL+ a, 

(Hint: consider a substitutionless derivation of cp in L + a containing only the 
variables occurring in cp.) 

Exercise 14.2 Say that a formula a(p) is conservative in NExtL ~ NExtK if, 
for some n, 

/\ oi(a(.l) A a(p) A O'.q)-+ o:(p-+ q) EL, /\ oi(a(.l) A a(p)) -+ a(Op) EL. 

Prove Theorem 14.5 (ii) for LE NExtK. 
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Exercise 14.3 Say that a logic L E NExtS4 has the weak interpolation property 
if every formula a ~ {3 E L has an interpolant in L whenever each occurrence 
of a variable in it is prefixed by D. Prove that L has the weak interpolation 
property iff pL has the (plain) interpolation property. 

Exercise 14.4 Show that the class of finite algebras for Grz.3 is superamal
gamable. 

Exercise 14.5 Give canonical axiomatizations of the logics mentioned in The
orems 14.23 and 14.24. 

Exercise 14.6 Say that a logic L has the Lyndon interpolation property if for 
every a ~ {3 E L, there exists 'Y such that a ~ 'Y E L, 'Y ~ a E L and 
the variables occurring in 'Y positively (negatively) have also positive (negative) 
occurrences in both a and {3. Show that K, K4, T and S4 have the Lyndon 
interpolation property. 

Exercise 14. 7 Prove that a pseudo-Boolean algebra iS subdirectly irreducible 
iff it is well-connected. 

Problem 14.1 Do the si-logics LC, BD2, BD2 + (p ~ q) V (q ~ p) V (p <--> •q) 
have the Lyndon interpolation property? 

Problem 14.2 Which of the logics in NExtS4 with the Craig interpolation prop
erty do have the Lyndon interpolation property? 

Problem 14.3 Which logics in Theorems 14.23 and 14.24 (ii) do have the in
terpolation property and the interpolation property for derivability, respectively? 

Problem 14.4 Construct a continuum of Hallden complete extensions of S 
without the interpolation property. 

Problem 14.5 Describe the logics with the interpolation property in the classes 
NExtD, NExtD4, ExtD4, ExtS4. 

14.7 Notes 

The interpolation theorems for K, K4, T, S4 are due to Gabbay (1972a). Gabbay 
(1971b) gave semantic proofs of the interpolation property oflnt and some of its 
extensions. The proofs presented in Section 14.1 are slight modifications of the 
proofs given by Maksimova (1982b) to show that the predicate variants of these 
logics have the (stronger) Lyndon interpolation property; see Exercise 14.6. This 
property was established also for some si-logics. Problem 14.1 lists the si-logics 
for which the situation is still unclear. Maksimova (1982b) gave also examples of 
logics in NExtS4 which have the Craig interpolation property but do not have 
the Lyndon interpolation property. Here is one of them. 

Example 14.35 Let L be the logic of the cluster <!:12 with points a and b. By 
Theorem 14.21, it has the Craig interpolation property. Consider the formula 

Op I\ •PI\ D(•p V q) ~ •q V Dq 
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which is clearly in L. Suppose "'( is a Lyndon interpolant for this formula in 
L. Then "Y contains only one variable q, and it occurs only positively. Define a 
valuation in e:r2 so that all variables are true at a and false at b. It is easy to 
check that this valuation refutes one of the formulas 

Op/\ •P /\ D(•p V q) ~ "'(, "'f ~ -.q V Dq. 

The rest of the material in Section 14.1 was also taken from Maksimova 
(1982b). However, the term "conservative" appeared first in Maksimova (1987). 
The result of Exercise 14.3 was announced in Maksimova (1980) and that of 
Exercise 14.4 was proved by Maksimova (1982b). 

The semantic criteria of the interpolation property of Section 14.2 were taken 
from Maksimova (1977, 1979). Maksimova used those criteria to describe all si
logics with the interpolation property and to estimate the number of such logics 
in NExtS4. Theorem 14.16 was proved by Maksimova (1979) only for normal 
extensions of S4; later it was considerably generalized by Czelakowski (1982). 

Theorem 14.20 was proved by Maksimova (1982a). This proof was generalized 
in Maksimova (1989c) to show that no logic in NExtK4 of finite width and 
infinite depth, for instance GL.3, has the interpolation property. 

That variable free formulas can be used to construct modal logics with the in
terpolation property seems to be noticed first by Rautenberg (1983). Maksimova 
(1987) generalized considerably this observation by introducing the conservative 
formulas. She also noticed that the addition of a finite set of conservative for
mulas preserves finite approximability, and that finiteness here is essential. The 
"positive" part of Section 14.5 is due to Smorynski (1978) (Theorem 14.25) and 
to Maksimova (1989a) (Theorem 14.27), and the "negative" one was obtained 
using some observations of Chagrov (1990b). 

To conclude, we note two open directions of studies concerning the interpola
tion property. First, the big (continual) families of logics with this property were 
constructed with the essential help of variable free formulas. In this connection 
it would be of interest to investigate the interpolation property in the classes 
NExtD and NExtD4. Another direction is to describe quasi-normal extensions 
of S4 or D4 with the interpolation property. 

Pitts (1992) used the cut-elimination technique to prove the so called uni
form Craig interpolation theorem for Int which means that, for every formula 
a(p1, ... , Pk, Q1, ... , Q1) there is a unique (up to the equivalence in Int) for
mula (3(q1, ... ,q1) such that a~ (3 E Int and if a~ 1(q1, .. .,q1) E Int 
and"'(~ 8(q1, ... ,q1,r1, .. .,rm) E Int, then (3 ~ 8 E Int. Using semantical 
methods Shavrukov (1993) proved the uniform Craig interpolation theorem for 
GL. Beklemishev (1989) gave a complete description of provability logics with 
interpolation. 

In Maksimova (1992a, 1992b) the reader can find more results concerning 
interpolation and some other related properties. It is proved in particular that a 
normal modal logic has interpolation iff it has the Beth definability property. 



15 

THE DISJUNCTION PROPERTY AND HALLDEN 
COMPLETENESS 

Recall that a modal logic L has the ( modaQ disjunction property if, for every 
n ~ 1 and all formulas cp1, ... , 'Pn, 

Dcp1 V ... V Dcpn E L implies 'Pi E L, for some i E {1, ... , n }. 

A si-logic L has the disjunction property if, for all cp and 'l/J 

cp V 'l/J E L implies cp E L or 'l/J E L. (15.1) 

And a (modal or superintuitionistic) logic L is said to be Hallden complete if 
(15.1) holds for all cp and 'l/J containing no common variables. 

15.1 Semantic equivalents of the disjunction property 

First we prove a semantic criterion of the modal disjunction property for logics 
in NExtK. 

Theorem 15.1 Suppose a logic L E NExtK is characterized by a class C of 
descriptive rooted frames closed under the formation of rooted generated sub
frames. Then L has the disjunction property iff, for every n ~ 1 and every 
J1, ... , Jn E C with roots x1, ... , Xn, there is a rooted frame J for L with root 
x such that J1 + ... +Jn is (isomorphic to) a generated subframe of J with 
{x1, ... ,xn} ~ xr. 

Proof (=>)Let JL = (WL,RL,PL) be a universal frame for L, big enough to 
contain J 1 + ... +Jn as its generated subframe. Assuming that JL is associated 
with a suitable canonical model for L, we show that there is a point tin JL such 
that tl = WL. 

Consider the tableau 

to= (0, {Dcp: 3(r, ~) E WL cp E ~} ). 

Clearly, it is L-consistent (for otherwise Dcp1 V ... V Dcpn E L for some formulas 
'P1, ... , 'Pn ti. L, contrary to L having the disjunction property). Let t be a 
maximal £-consistent extension of t0 . By the definition of RL, we then have 
tRLt', for every t' E WL. 

( {=) Suppose otherwise. Then there are formulas cp1, ... , 'Pn tf. L such that 
Dcp1 V ... V Dcpn E L. Take frames J1, ... , Jn E C refuting 'P1, ... , 'Pn at their 
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roots, respectively, and let J be a rooted frame for L containing J1 + ... +Jn 
as a generated subframe and such that its root x sees the roots of J1, ... , Jn. 
Then all the formulas Ocp1, ... , Ocpn are refuted at x and so Ocp1 V ... V Ocpn ti. L, 
which is a contradiction. 0 

It should be clear that if we need to use only the sufficient condition of 
Theorem 15.1 then the requirement that frames in Care descriptive is redundant. 

Remark Since Ocp1 V Ocp2 V ... V Ocpn -> Ocp1 V O(Ocp2 V ... V Ocpn) E K4, a 
logic LE NExtK4 has the disjunction property iff, for all cp and 1/J, OcpV 01/J EL 
implies cp E L or 'ljJ E L. So, for such L we may assume that in Theorem 15.1 
n :::; 2. And clearly a logic L E NExtS4 has the disjunction property iff, for all 
cp and 1/J, Ocp V 01/J E L implies Ocp E L or 01/J E L. 

As a direct consequence of the proof above we obtain 

Corollary 15.2 A consistent logic L E NExtK has the disjunction property iff 
the canonical frame JL = (WL, RL) contains a point x such that xi= WL. 

Corollary 15.3 If a logic L E NExtK has the disjunction property then the rule 
Op/p is admissible in L. 

Theorem 15.1 is a good tool for proving and disproving the disjunction prop
erty of logics with transparent semantics. 

Example 15.4 (i) Let J 1, ... , Jn be serial Kripke frames with roots x1, ... , Xn· 

Then the frame obtained from J 1 + ... +Jn by adding to it a point x seeing all 
x 1 , ... , Xn is also serial. Therefore, D has the modal disjunction property. 

(ii) Since no rooted symmetrical frame can contain a proper generated sub
frame, no consistent logic in NExtKB has the disjunction property. 

The reader can find more examples in the next section and among the exer
cises in Section 15.5. 

Similarly to Theorem 15.1 and Corollary ,15.2 one can prove the following 
semantic equivalents of the disjunction property for si-logics. 

Theorem 15.5 (i) Suppose a si-logic L is characterized by a class C of descrip
tive rooted frames. Then L has the disjunction property iff, for every J1 , J2 EC, 
J1 + J2 is a generated subframe of a rooted frame for L. 

(ii) A si-logic has the disjunction property iff its canonical frame is rooted. 

Example 15.6 The disjoint union of two Medvedev frames s:Bn and s:Bm is 
clearly a generated subframe of s:Bn+m· So Medvedev's logic ML has the dis
junction property. 

A more interesting and complex example is provided by 

Theorem 15.7 The Kreisel-Putnam logic KP has the disjunction property. 
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Proof We remind the reader that KP is characterized by the class of finite 
rooted frames J = (W, R) satisfying the condition 

Vx, y, z (xRy /\ xRz /\ -iyRz /\ -,zRy ___... 3u (xRu /\ uRy /\ uRz /\ 

Vv (uRv ___... 3w (vRw /\ (yRw V zRw))))). (15.2) 

If J is such a frame then, as is easy to see, for each non-empty X <::: W9, the 
generated subframe of J based on the set W - (W9 - X)l is rooted; we denote 
its root by r(X). 

Let J1 = (W1, R1) and J2 = (W2, R2) be finite rooted frames satisfying 
(15.2). We construct from them a frame J = (W, R) by taking 

where U = {X1 u X2: X1 <;: W(1, X2 <;: W2~ 1 , X1,X2 f:. 0}, and, for every 
x,yE W, 

xRy iff (x, y E Wi /\ xRiy) V (x, y E U /\ x 2 y)V 

(x = X1 U X2 E U /\ y E Wi /\ r(Xi)Riy). 

It follows from the given definition that J 1 + J2 is a generated subframe of J, 
W1 U W2 is a cover for J and W1

9 U W2
9 is its root. So our theorem will be 

proved if we show that (15.2) holds. 
Suppose x, y, z E W satisfy the premise of (15.2). Since (15.2) holds for J1, J2 

and since Ji~ J, we can assume that x = X1UX2 EU. Let Y1UY2 and Z1UZ2 be 
the sets offinal points in Yi and zi, respectively, with Yi, Zi <;: Wi, i = 1, 2. By the 
definition of R, we have Yi, Zi <;:Xi. Consider the point u = (Y1 UZ1)U (Y2 UZ2). 
Clearly xRu, uRy and uRz. Suppose now that v E ui. Let w be any final point 
in vi. Then v E (Y1 U Z1) U (Y2 U Z2) and so either yRw or zRw. 0 

To transfer the disjunction property from modal logics to their si-fragments 
and back we prove the following: 

Theorem 15.8 The maps p, T and u preserve the disjunction property. 

Proof That p preserves the disjunction property follows from the obvious fact 
that for every modal companion M of a si-logic L, r.p V 'lj; E Liff T(r.p V '!/;) E M 
iff T(r.p) V T('l/;) EM (recall that T(r.p) and T('l/;) may be regarded as boxed). 

Suppose now that a si-logic L has the disjunction property and is character
ized by a class C of rooted descriptive frames. By Theorem 9.68, u L is charac
terized by the class uC. Let J 1 and J 2 be arbitrary frames in C and J a frame 
for L containing J 1 + J2 as a generated subframe. Then, by Lemma 9.67, uJ 
is a frame for u L in which uJ1 + uJ2 is a generated subframe as easily follows 
from the definition of uJ. Hence u L has the disjunction property. 

To prove that the disjunction property is preserved under T, we define an 
operator T w as follows. Given an intuitionistic frame i = (W, R, P), it returns 
the frame TwJ = (wW,wR,wP) in which (wW,wR) is the direct product of 
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(W, R) and thew-point cluster (w, w2 ) and wP is the Boolean closure of the set 
{Ix X: I~ w,X E uP} (see Section 8.3). 

If L is characterized by a class C of descriptive rooted frames then, by Corol
lary 9.71, TL is characterized by TwC· Let TwJi = (wWi,wRi,wPi), for i = 1,2, 
be any frames in T wC and J = (W, R, P) a rooted intuitionistic frame contain
ing J 1 + J2 as a generated subframe. Clearly the underlying Kripke frame of 
T wJ 1 + 'T' wJ2 is a generatecl subframe of the under lying Kripke frame of T wJ. 
So it remains to show that for i = 1, 2, wPi = {X n wWi : X E wP}. But this 
follows from the definition of wP and the equalities wWi -X = (wW -X')nwWi, 
X n Y = (X' n Y') n wWi which hold for every X, Y ~ wWi and X', Y' ~ wW 

such that X = X' n wWi, Y = Y' n wWi. 0 

15.2 The disjunction property and the canonical formulas 

In this section we use the apparatus of the canonical formulas to prove sev
eral sufficient and necessary conditions of the disjunction property for logics in 
NExtS4 and Extlnt. First we obtain a complete description of cofinal subframe 
logics in NExtS4 with the disjunction property. We assume that every logic 
L E CS:F n NExtS4 is represented by its independent canonical axiomatization 

L = S4 EB {a(J;, ...L): i EI}. (15.3) 

All frames in this section are assumed to be quasi-orders. 
Say that a finite rooted frame J with ;::: 2 points is simple if its root cluster 

and at least one of the final clusters are simple. 
Suppose J = (W, R) is a simple frame, ao, a1, ... , am, am+i, ... , an are all 

its points, with a0 being the root, C(a 1), ... , C(am) all the distinct immediate 
cluster-successors of a0 and an a final point with simple C(an)· For every k = 

1, ... , n, we define a formula 'l/Jk by taking 

n 

'l/Jk = f\ l.PiJ /\ f\ I.Pi /\ i.p~ ----> Pk 
a; Raj ,i#O i=l 

where l./)ij, i.p; were defined in Section 9.4 and i.p~ = D(/\~=l Dpi ----> ...L). Now 
we associate with J the formula 'Y(J) = Dpo V D'!fa1 if m = 1, and the formula 
'Y(J) = D'l/;1 V ... V D'l/Jm if m > 1. 

Lemma 15.9 For every simple frame J, 1(J) E S4 EB a(J, ...L). 

Proof By Theorem 11.20, it suffices to show that ® ~ 1(J) implies ® ~ 
a(J, ...L), for any finite frame ®· So suppose 1(J) is refuted in a finite frame ® 
under some valuation. Define a partial map f from ® onto J by taking, for any 
x in®, 

{ 

ao if x ~ 'Y(J) 
f(x) = ai if x ~ '!fai, 1 $ i $ n 

undefined otherwise 

and show that it is a subreduction of~ to J. 
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Suppose f(x) = ai and aiRaJ. If i # 0 then in exactly the same way as in 
the proof of Theorem 9.39 we can find y E xi such that f(y) = aj. And if i = 0, 
j # 0 then there is k E {l, ... , m} such that akRaj. Since x ~ 01/Jk, we have a 
point z E xi such that f(z) = ak and then, as was shown above, there is y E zi 
with f (y) = aj. It follows in particular that f is a surjection. 

Now let f(x) = ai, f(y) = aj and y E xi. If i = 0 then clearly aiRaj. So 
suppose i # 0. If j # 0 then in the same way as in the proof of Theorem 9.39 
we show that aiRaj. But in fact this is the only possible case. Indeed, if j = 0 
then, for m = 1 we have x f= Dp0 (because x f= 'Pi and ao ¢ ak i), contrary to 
y ~ Dp0 , and if m > 1 then there is k E {1, ... , m} such that ak ¢ ai i but, 
since a0Rak, we must have a point z E Yi with f(z) = ak, which leads to a 
contradiction between x p Dp1c and z ~Pk· 

Thus f is a subreduction of Q5 to J. However it is not necessarily cofinal. 
So we extend f by putting f(x) = an, for every x of depth 1 in \!:5 such that 
f(xl) = {a0 }. Clearly the improved map is still a subreduction of \!:5 to J, and 
using the formula r.pj__ it is easy to show that it is cofinal. 

It follows that \!:5 ~ a(J, j_) and so -y(J) E S4 EB a(J, j_). 0 

Lemma 15.10 Suppose i E {1, ... , m} and® is the subframe of J generated by 
ai. Then a(\!:5, j_) E S4EB1/Ji· 

Proof Exercise. 0 

We are in a position now to prove a criterion of the disjunction property for 
the cofinal subframe logics in NExtS4. 

Theorem 15.11 A consistent cofinal subframe logic L E NExtS4 has the dis
junction property iff no frame Ji in its independent axiomatization (15.3) is 
simple, for i E I. 

Proof ( =>) Suppose on the contrary that Ji is simple, for some i E J. Since 
the axiomatization (15.3) is independent, every proper generated subframe of Ji 
validates L (for otherwise there would be an axiom a(J1, j_) of L, for j # i, with 
Ji being subreducible cofinally to Jj, which is a contradiction). By Lemma 15.9, 
-y(Ji) E L and so, by virtue of L having the disjunction property, either p0 E L 
or 1/;j E L. However, both alternatives are impossible: the former means that L 
is inconsistent, while the latter, by Lemma 15.10, implies a(®, j_) EL where ® 
is the subframe of Ji generated by an immediate successor of J/s root. 

(¢=)Given two finite rooted frames ®1 and ®2 for L, we construct the frame J 
as shown in Fig. 15.1. Clearly, ®1 +182 ~ J. So to apply Theorem 15.1, it suffices 
to show that J I= L. Suppose otherwise, i.e., there exists a cofinal subreduction 
f of J to Ji, for some i E J. Let Xi be the root of Ji. Since ®1 and ®2 are 
not subreducible cofinally to Ji and since L is consistent, f- 1 (xi) = {x}. By 
the cofinality condition, it follows in particular that y E domf. But then Ji is 
simple, which is a contradiction. O 

Using the preservation theorem and Theorem 9.44, we immediately obtain 
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x 

FIG. 15.1. 

Corollary 15.12 No consistent proper extension of Int with disjunction free 
axioms has the disjunction property. 

It is worth noting that the proof of Theorem 15.11 provides us with a some
what stronger result. In fact the proof of ( =}) yields 

Proposition 15.13 If L E NExtS4, J is a simple frame, a(J, j_) E L and 

a(l?3, j_) ¢ L for any proper Q3 ~ J then L does not have the disjunction property. 

Transferring this observation to the intuitionistic case, we obtain 

Theorem 15.14 If a consistent si-logic L has the disjunction property then the 
disjunction free fragments of L and Int are the same. 

Now we prove two simple sufficient conditions of the disjunction property for 
si-logics whose canonical axioms may contain closed domains. These conditions 
are far from being optimal and can be extended in various directions. First we 
use the simplest possible construction. 

Theorem 15.15 Suppose a si-logic L can be axiomatized by canonical formulas 
,B(J, '.D, j_) or ,B(J, '.D) such that the set X of immediate successors of J's root 
contains 2:: 3 points and D E '.D, for every antichain D containing a subset of X 
with 2:: !XI /2 points. Then L has the disjunction property. 

Proof Let Ji = (W1, Ri, P1) and J2 = (W2, R2, P2) be rooted frames for L. 
Construct a frame Jo= (Wo, Ro, Po) by adding to J 1 +J2 a root a0 and defining 
Po as the pseudo-Boolean closure of {Y1 U Y2 : Y1 E Pi, Y2 E P2}. By induction 
on the construction of a set Y E P0 one can readily show that Y n W; E P;, for 
i = 1, 2, and so J1 + J2 is a generated subframe of J 0 . 

To show that Jo f= L, suppose otherwise. Then Jo refutes an axiom ,B(J, '.D, j_) 
(or ,B(J, '.D)) of L, i.e., there is a cofinal (or plain) subreduction f of Jo to J 
satisfying (CDC) for '.D. Let a be the root of J. Since J; f= L, for i = 1, 2, 
1-1(a) = {ao}. 

Now take that i for which W; contains inverse /-images of all points in some 
antichain a ~ X with lal 2': IXI /2 and let D be the antichain in J such that 
f(W;) =Di. By the condition of our theorem, DE '.D and so, by (CDC), the root 
a; of J; must be in dom/. But then /(a;) =a, which is a contradiction. 0 
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Corollary 15.16 Every si-logic axiomatizable by formulas ,B"(J, ..L) (or formu
las ,B"(J)) such that the root of J sees~ 3 immediate successors has the disjunc
tion property. 

The second sufficient condition uses a more complicated construction. 

Theorem 15.17 Suppose a si-logic Lis axiomatized by formulas ,B(J, '.D, ..L) with 
J of depth ~ 3 and '.D containing an antichain D ~ J9 having no focus in J. 
Then L has the disjunction property. 

Proof Let J1 = (W1, R1, P1) and J2 = (W2, R2, P2) be rooted finitely gener
ated refined frames for L. With each antichain a in (J1 +J2)~ 1 such that lal ~ 2 
we associate a new point xa; the set of all such points is denoted by V. Construct 
a frame Jo= (Wo, Ro, Po) by taking 

xRoy iff x = ao v 3i E {1, 2} (x, y E Wi /\ xRiy)V 

3xa E V (x = Xa /\ (y = Xa Vy E Xa)) 

and defining Po as the pseudo-Boolean closure of {Y1 U Y2 : Y1 E P1, Y2 E P2}. 
J 1 + J 2 is then a generated subframe of J 0 . Moreover, since the original frar11es 
are finitely generated and refined, (J1 + J2)9 is a cover for Jo. 

Assume now that Jo refutes an axiom ,B(J, '.D, ..L) of L. Let f be a cofinal 
subreduction of Jo to J satisfying (CDC) for '.D. Since J is of depth ~ 3 and 
Ji f= L for i = 1, 2, the root ao is in domf. Take an antichain D E '.D having 
no focus in J and consisting of only points of depth 1. Let a be an antichain in 
Jt 1 such that f(a) = D. Since Xa is a focus for a, we must have, by (CDC), that 
Xa E domf. But then f (xa) is a focus for D, which is a contradiction. 

Thus Jo f= L and so L has the disjunction property. 0 

15.3 Maximal si-logics with the disjunction property 

The disjunction property of a si-logic means that formulas in the logic represent 
only constructive principles of reasoning. Since Cl is not constructive in this 
sense, it is of interest to find maximal (consistent) si-logics with the disjunction 
property. That they exist follows from Zorn's lemma (see Exercise 15.8). Here is 
a concrete example of such a logic. 

Theorem 15.18 The Medvedev logic ML is a maximal si-logic with the dis
junction property. 

Proof Suppose on the contrary that there exists a proper consistent extension 
L of ML having the disjunction property. Then we have a formula cp E L - ML. 
We show first that there is an essentially negative substitution instance cp* of cp 
such that cp* (j. ML. 

Since cp(p1, . .. , Pn) (j. ML, there is a Medvedev frame 1Bm refuting cp under 
some valuation m. With every point x in 1Bm we associate a new variable Qx and 
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extend W to these variables by taking W(qx) to be the set of final points in 1Bm 
that are not accessible from x. By the construction of ~m, we have y I= -iqx iff 
y E xl, from which 

SU( V 'qx) = SU(pi)· 
xE'lJ(p;) 

Let cp* = cp(V xE'lJ(pi) -iqx, ... , V xE'lJ(pn) 'qx)· It follows that SU( cp*) = SU( cp) and 
so cp* </.ML. 

Thus, we may assume that cp is an essentially negative formula. Recall now 
that KP~ ML (see Exercise 5.32) and so ML contains the formulas 

which, as is easy to see, belong to KP. Let us consider the logic 

ND = Int + { ndk : k ~ 1}. 

It should be clear that ND ~ KP ~ ML (in fact both inclusions here are 
proper). Using the fact that the outermost --+ in ndk can be replaced with +-+ 

and that ( 'P --+ -,q) +-+ -, ( 'P /\ q) E Int, one can readily show that every 
essentially negative formula is equivalent in ND to the conjunction of formulas 
of the form 'X1 V ... V 'Xl· 

So L - ML contains a formula of the form 'Xl V ... V •Xt. Since L has 
the disjunction property, 'Xi E L for some i. But then, by Glivenko's theorem, 
'Xi E ML, which is a contradiction. 0 

It turns out, however, that ML is not the unique maximal logic with the 
disjunction property in Extlnt. Moreover, the following result holds. 

Theorem 15.19 There is a continuum of maximal si-logics with the disjunction 
property. 

Proof It is sufficient to show that there is a continuum of si-logics such that (i) 
each of them has a consistent extension with the disjunction property and (ii) no 
pair of them has a common consistent extension with the disjunction property. 

For each n > 8, let 

n . 7 

'Pn = V (q1 V (q1--+ Q2 V (q2--+ Q3 V (q3--+ 'Xi)))), '!/Jn= A '!/Jk,--+ '!/J'S, 
i=l k=l 

where 
n 

xi = Pi A A 'Pj, '!/Jf = ..., A 'Xi, 
i#-j i=l 

1/12 = A ( A 'Xk--+ •xiv •xj), 
l~i<j~n i#-k#-j 
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FIG. 15.2. 

n 4 

1/J3 = ( f\ -,Xk __. V _,Xk) __. 
k=5 k=l 

4 

(-ix! v /\ _,xi) A (-ix3 v (-ix~ A -ix4)) A 
i=2 

.1.n ( /\ n n V n V n) '1'4 = _,Xk __. -ix2 _,X4 _,Xs __. 
kfl{2,4,5} 

(-ix! v -ix3 __. _,x~ v -ix4), 

1/J~ = V _,Xk __. -ix! v -ix~ , 
kfl{l,5} 

n-4 n 

1/J7 = ( /\ _,Xk __. V _,Xk) __. _,X~-2 v -ix~, 
k=l k=n-3 

n 4 

1/J8 = ( /\ _,Xk __. V _,Xk) v -ix~. 
k=5 k=l 

Observe that, as follows from the construction of <pn, no consistent si-logic con
taining <pn has the disjunction property. 

For each set N of natural numbers > 8, let 

L(N) =Int+ { 1/Jn __. <pn : n EN}+ {1/Jn : n rJ. N, n > 8}. 
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FIG. 15.3. 

Lemma 15.20 If N1 f:. N2, then L(Ni) and L(N2) have no common consistent 
extension with the disjunction property. 

Proof Without loss of generality we may assume that there is n E N1 - N2. 
Then 'I/Jn ~ r.pn E L(N1) and '!/Jn E L(Nz). It follows that r.pn E L(N1) + L(N2) 
and so no consistent extension of L(N1) + L(N2) has the disjunction property. 

0 

Lemma 15.21 L(N) has a consistent extension with the disjunction property. 

Proof Let J'm be the frame of the form shown in Fig. 15.2 with m ~ 1 final 
points. For every s E N and every s + 1-tuple (a, a1, ... , as) of points in J'm such 
that a1, ... , as are distinct and final in aj, we add to J'm new points bi, ... , bs-l 
and extend the accessibility relation to them by drawing the arrows shown in 
Fig. 15.3. The resulting frame is denoted by J'm(N). 

Now we put 
L = Log{J'm(N) : m < w }. 

Since Jm(N) + Jk(N) is clearly a generated subframe of Jm+k(N), by Theo
rem 15.5 L has the disjunction property. So it remains to show that L(N) ~ L, 
i.e., that all axioms of L(N) are valid in all frames of the form J'm(N). 

Suppose that 'I/Jn is refuted in Jm(N) under some valuation. Then there is a 
point x such that x I= 'I/Ji, for i = 1, .. :, 7, and x ~ '1/J8. We are going to show 
that in this case n E N and so 'I/Jn cannot be an axiom of L(N). 

Notice first that x does not belong to Jm. For otherwise, since x ~ '1/J8, 
we would have five distinct final points a1, ... , a5 E xi such that ai I= xj, 
for j = 1, ... , 5. Since x I= 'lf;f, each final successor of x validates xi for some 
i E { 1, ... , n}. Therefore, there are two adjacent final points c and d in xi at 
which distinct xi and x'] are true. But then 

e ~ /\ ·x~ ~ •xi v -.xj, 
i#¥-i 
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x 

FIG. 15.4. 

where e' is the immediate predecessor of c and din Jm- Since e E xj and x F 'l/J2, 
we arrive at a contradiction. 

Now let us take a closer look at the condition x ~'I/J'S· It means that there 
are points x1 , ... , x5 , yin Jm(N) which together with x form the diagram shown 
in Fig. 15.4. Comparing it with Fig. 15.3 and recalling that x does not belong 
to Jm, we conclude that x can be identified only with b1 in Fig. 15.3. Using this 
observation we show that n = s, from which n EN, as required. 

Among b2, ... , bs-1 only b2 and bs-1 have four successors and can refute the 
first disjunct in 'I/J'S. Let us first assume that 

n 4 

bs-1 F /\ ..,xJ:, bs-1 ~ V ..,Xk· 
k=5 k=l 

Then each of the formulas xl', ... , x4 is true at exactly one of as-3, ... , a8 and 
so 

bs-2 ~ /\ /\ ..,xf ~ ..,xr v ..,xj v ..,xJ:). 
19<i<k:<=;4 tll{i,j,k} 

Since b1 F 'l/J3, we obtain then 

n 4 

bs-2 ~ /\ ..,Xk ~ V ..,Xk, 
k=5 k=l 

which is impossible, because bs-2 has only three successors. 
Thus we are forced to conclude that 

n 4 

b2 F /\..,xi:, b2 ~ V ..,xr:. 
k=5 k=l 

As before, it follows that exactly one of xl', ... , x4 is true at each ai, 1 ::; i ::; 4. 
Now consider b3. Since it has only three successors, the condition b1 F 'l/J3 
leaves only one possibility: b3 ~ ..,X2 V ..,X4 and b3 F ..,xl' V ..,X3. But then the 
conclusion of 'l/J4 is not true at b3 and so b3 must refute the premise. It follows 
that as F X~-

Observe now that either xf or x3 is true at aJ. Since b1 F 'l/J5 and n > 8, 
we may have only a3 F x3. Then b4 ~ ..,X~ V ..,X5. By virtue of b1 F 'l/J6, we 
also have b4 ~ x6, which is possible only if a6 F x6. In the same way, using the 
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condition b1 I= 1/J6, we can show that ai I= xi, for i = 7, ... , n - 1. And the last 
conjunct of 1/J6 ensures that bn-2 sees a final point x at which x~ is true. Since 
no distinct xi and x''J can be simultaneously true at a point, s 2'.: n. It follows 
also that bn-2 I- bs-1 and so x =an. 

Since bn-1 sees both an and an-2, we have bn-1 ~ -.X~-2 V -.X~· And since 
b1 I= 1/J7' we then have also bn-l ~ v~=n-3 -ix~, which means that bn-1 sees at 
least four distinct final points. So bn-1 = bs-1 and consequently n = s. 

It remains to show that Jm(N) I= 'lj;s ~ cps for every m < w and every 
s E N. Suppose that cps is refuted at some x in Jm(N) under some valuation. 
This means that s chains of length 2'.: 4 start from x and at their final points 
a1, ... , as the formulas xf, ... , x~ are true, respectively. It follows also that x is 
a point in Jm which sees the configuration shown in Fig. 15.3. It is not hard to 
check now that in such a situation bi ~ 'lj;s, from which x ~ 'lj;s. Q 

It follows from Lemmas 15.20 and 15.21 that there is a continuum of logics 
satisfying (i) and (ii) and so a continuum of maximal si-logics with the disjunction 
property. a 

15.4 Hallden completeness 

In this section we show various methods for establishing Hallden completeness 
of logics in ExtK and Extlnt. Let us begin with a lattice-theoretic criterion of 
this property. 

Theorem 15.22 A superintuitionistic or quasi-normal modal logic L is Hallden 
incomplete iff there are logics L1, L2 E ExtL such that L1 CJ, L2, L2 CJ, L1 and 
L = L1 n L2. 

Proof ( =}) If L is Hallden incomplete then there are formulas cp1, cp2 <f_ L with 
Varcp1 nVarcp2 = 0 and cp1 V cp2 E L. Consider the logics Li = L+cpi, for i = 1, 2. 

Clearly, L1 and L2 are incomparable with respect to <;;; and L <;;; L1 n L2. To 
prove the converse inclusion, take any formula 'lj; E L1 n L2. Then there are 
substitution instances cpl and cp~ of cp1 and cp2, respectively, for i = 1, ... , m, 
j = 1, ... , n, such that ' 

/\ 'Pi ~ 1/J E L, f\ ~ ~ 'lj; E L. 
i$m j<S;n 

It follows that 

( f\ cpl) V ( f\ cp~) ~ 'lj; E L 
i$m j$n 

and so 

/\ ('Pi V cp~) ~ 1/J E L. 
i$m,j$n 

Since <p1 and <p2 have no common variables, cpl V cp~ E L. Hence 'lj; E L. 
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(<=)If L 1 </:. L2, L2 </:. L1 and L = £ 1nL2 then there are formulas <p1 E L1 -L2 
and <p2 E L2 - L1 without common variables. Then we clearly have <p1, <p2 ¢ L 
.and <p1 V tp2 E L. 0 

Example 15.23 Since the lattices ExtS5, ExtLC, ExtBD2 are linearly ordered 
by inclusion, all logics in them are Hallden complete. 

It is to be noted, however, that Theorem 15.22 does not hold if we consider 
only normal modal logics and take NExtL instead of ExtL (see Exercise 15.16). 

Now we obtain a semantic criterion. 

Theorem 15.24 Suppose a logic L E ExtK is characterized by a class C of 
descriptive rooted frames with distinguished roots. Then L is Hallden complete 
iff, for every frames (J1, d1) and (J2, d2) in C, there is a frame (J, d) for L 
reducible to both (J1, d1) and (J2, d2)· 

Proof ( =}) Suppose the frames J 1 and J 2 are x'- and x"-generated, respec
tively. Then they are (isomorphic to) generated subframes of the universal x' -
and x"-generated frames l!3 1 and l!3 2 for ker L. Without loss of generality we 
may assume that l!3 1 and l!32 are associated with the canonical models for ker L 
in disjoint languages M.C1 and M.C2, respectively. The frames ®1 and l!32 are 
reducts of the universal (x' + x")-generated frame l!3 for ker L, associated with 
the canonical model for ker L in the language M.C = M.C1 U M.C2. Let gi, for 
i = 1, 2, be the natural reduction of ® to l!3i, i.e., for every t = (f, 6.) in l!3, 
gi(t) = (f n ForM.Ci, 6. n ForM.Ci)· 

Consider the points d1 = (f1, 6.1) and d2 = (f2, 6.2) in l!31 and l!32, respec
tively. Put d' = (f1 Uf2,6.1 U 6.2) and show that this tableau is £-consistent. 
Suppose otherwise. Then there are formulas <p1 E f1, <p2 E f2, 1/;1 E 6.1, 
1/;2 E 6.2 such that <p1 /\ <p2 --> 1/;1 V 1/J2 E £. But this is (classically) equiva
lent to ( <p1 --> 1/;i) V ( <p2 --> 1/J2) E £. Since <p1 --> 1/J1 and <p2 --> 1/J2 have no 
variables in common, we must then have <p1 --> 1/;1 E L or <p2 --> 1/;2 E £, contrary 
to (J1,d1) and (J2,d2) validating L. 

Let d be a maximal £-consistent extension of d' in the language M.C. Then 
clearly gi ( d) = di for i = 1, 2. So the restriction fi of gi to the subframe J of l!3 
generated by dis a reduction of J to Ji with fi(d) =di. It remains to observe 
that (J, d) validates L. 

( ¢=) Suppose that <p1 ¢ L and <p2 ¢ L, for some formulas <p1 and <p2 with 
no variables in common. Let (Ji, di), for i = 1, 2, be a frame in C refuting <pi 

under a valuation mi of <pi's variables. Take a frame (J, d) for L reducible to 
both (J1, d1) and (J2, d2) by reductions Ji and f2. Define a valuation min J by 
taking, for p E Var<pi, m(p) = fi- 1(mi(P)). Then fi is a reduction of the model 
(J, m) (restricted to <pi's variables) to (Ji, mi) and so, by the reduction theorem, 
we have d ~ <p1 V <p2. Therefore, <p1 V <p2 ¢ L. 0 

Notice that the proof of ( <==) does not use the fact that J 1 and J 2 are descrip
tive and rooted. So if we need only the sufficient condition of Theorem 15.24, 
the requirement that frames in C are descriptive and rooted is redundant. 
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Theorem 15.25 A consistent logic L E ExtK is Hallden complete iff it is char
acterized by a frame with a single distinguished point. 

Proof (::::}) Consider the tableau t' = (0, A) where A is a set of formulas 
such that (a) L n A = 0, (b) every formula that is not in L can be obtained 
from a formula in A by renaming its variables and ( c) distinct formulas in A 
have distinct variables. Since L is Hallden complete, t' is £-consistent and has a 
maximal £-consistent extension t. Then the frame (Jker L(w), t) characterizes L. 

( ¢::) follows from Theorem 15.24 0 

For normal modal logics the proof of Theorem 15.24 yields the following: 

Theorem 15.26 Suppose a logic L E NExtK is characterized by a class C of de
scriptive rooted frames closed under the formation of rooted generated subframes. 
Then L is H allden complete iff, for all frames Ji, J2 E C and with roots xi, x2, 
respectively, there is a frame J for L reducible to Ji and J2 by reductions Ji and 
/2, respectively, such that fi(x) =xi and h(x) = x2 for some x in J. 

Example 15.27 84.3 is characterized by the frame (IQ, ::::;) , IQ the set of ratio
nals. Since for every x, y E IQ, there is an isomorphism f of (IQ,:$) onto itself 
with f(x) = y, 84.3 is Hallden complete. 

For si-logics Theorems 15.26 and 15.25 transform into 

Theorem 15.28 (i) Suppose a si-logic L is characterized by a class C of rooted 
descriptive frames. Then Lis Hallden complete iff, for every frames Ji,J2 EC, 
there is a rooted frame J for L containing generated subframes reducible to Ji 
and J2. 

(ii) A si-logic L is Hallden complete iff it is characterized by a rooted frame. 

Proof Exercise. 0 

Hallden completeness is obviously preserved while passing from a modal logic 
in NExt84 to its si-fragment. However, this is not so in the case of the converse 
transition even for the maps T and u. 

Theorem 15.29 There is a Hallden complete si-logic having no Hallden com
plete modal companions. 

Proof Consider the si-logic of the frame J shown in Fig. 15.5. By Theo
rem 15.28, it is Hallden complete (but, as any other tabular logic, does not 
have the disjunction property). Let ME p-i L. Construct the formulas a(Ji, ..l) 
and aU(J2, ..l), for Ji and J2 depicted in Fig. 15.5 so that they would not have 
common variables. Since J f= uL 2 M, J ~ a(Ji, ..l) and J ~ aU(J2, ..l), neither 
of those formulas is in M. 

On the other hand, by Corollary 9. 71, the smallest modal companion TL ~ 
M of L is characterized by the frame (w,w2 ) x J. Since it clearly validates 
a(Ji, ..l) V aU(J2, ..l), this disjunction is in Mand so Mis not Hallden complete. 

0 
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FIG. 15.5. 

We conclude this section with two sufficient conditions of Hallden com
pleteness for logics in NExtGrz formulated in terms of the canonical formu
las. Recall that every logic L E NExtGrz can be represented in the form 
L = Grz EB { a(~i, '.I\, ..l) : i E I} with partially ordered ~i· 

Theorem 15.30 If a Kripke complete logic L E NExtGrz can be axiomatized 
by canonical formulas a(~, '.D, ..l) such that the root of~ has only one immediate 
successor then L is Hallden complete. 

Proof Suppose ~1 = (W1 , R 1) and ~2 = (W2, R2) are partially ordered Kripke 
frames for L with roots al and a2, respectively. Construct a frame ~o = (Wo, Ro) 
by gluing a 1 and a 2 into a single point a, i.e., by taking 

xRoy iff x =a V :li E {1, 2} (x, y E Wi /\ xR;y). 

It should be clear that ~o is reducible to both ~1 and ~2 (here essential is that 
these frames are Noetherian partial orders). So to apply Theorem 15.26 we must 
show that ~o validates L. 

Assume that ~o refutes an axiom a(~, '.D, ..l) of L. Then there is a cofinal 
subreduction of ~o to~ satisfying (CDC) for '.D. Since ~1 and ~2 are frames for 
L, f (a) is the root of~. Suppose ~i contains an inverse f-image of the immediate 
successor of f(a). Then the restriction off to ~i is clearly a cofinal subreduction 
of ~i to~ satisfying (CDC) for '.D, whence we have ~i f'= a(~, '.D, ..l), which is a 
contradiction. 0 

Theorem 15.31 Suppose a normal extension L of Grz can be axiomatized by 
canonical formulas a(~, '.D, ..l) or a(~, '.D) such that the set X of immediate suc
cessors of~'s root contains 2: 3 points and?J E '.D for every antichain ?J containing 
a subset of X with 2: JXJ /2 points. Then L is Hallden complete. 

Proof Similar to the proof of Theorem 15.15. 0 

15.5 Exercises and open problems 

Exercise 15.1 Reformulate Theorem 15.1 for quasi-normal modal logics and 
use it to show that S and S4.1' have the disjunction property. 

Exercise 15.2 Find a formula violating the disjunction property in all consis
tent logics in NExtKB. 
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Exercise 15.3 Which of the standard modal and si-logics have the disjunction 
property? Which of them are Hallden complete? 

Exercise 15.4 Show that the logics of finite depth or of finite width do not 
have the disjunction property and that there is a continuum of such logics. 

Exercise 15.5 Prove that the logics NDk and ND have the disjunction prop
erty. 

Exercise 15.6 Show that the class of si-logics with the disjunction property is 
not closed under intersections and sums. Show that the class of Hallden complete 
si-logics is not closed under intersections and sums. 

Exercise 15. 7 Prove that the interval [Int, L] contains a continuum of logics 
with the disjunction property and as many without it, for every L :J Int. 

Exercise 15.8 Prove that every consistent logic with the disjunction property 
is contained in a maximal consistent logic with the disjunction property. 

Exercise 15.9 Prove that every logic with the disjunction property is the inter
section of an infinite descending chain of logics and has no immediate successors. 

Exercise 15.10 Show that the implication free fragment of every si-logic with 
the disjunction property coincides with that of Int. 

Exercise 15.11 Construct a Kripke incomplete and an undecidable si-calculi 
with the disjunction property. (Hint: use the following observations. Suppose 
that 

L =Int+ {,B(~i,'.Di): i = 1, ... ,n} 

is a Kripke incomplete or undecidable si-logic. Then the logic 

where wi 
relation 

L =Int+ {,B(Ji, '.Di, _1_) : i = 1, .. ., n }, 

wi u {O, 1,2,3}, Riis the reflexive and transitive closure of the 

Ri U { (x, 0) : x E Wi} U { (0, j) : 1 ::::; j ::::; 3} 

and '.Di ='.Di U { {1, 2} }, has the disjunction property and retains the "negative" 
property of L.) 

Exercise 15.12 Show that Int is the only consistent si-logic having the follow
ing generalized disjunction property: for any n 2:: 2 and any formulas 'Pi, 1/Ji, 
1 2:: i 2:: n, if /\.~ 1 ('Pi --+ 1/Ji) --+ V~1 'Pi then /\.~=l ('Pi --+ 1/Ji) --+ 'Pi for some i. 

Exercise 15.13 Show that each consistent si-logic with the disjunction property 
has infinitely many modal companions without the disjunction property. 

Exercise 15.14 Show that a normal modal logic Lis Hallden complete iff, for 
all modal algebras 2l and SB for L, there are an algebra <?: for L and embeddings f 
and g of 2l and SB in <?:, respectively, such that f(a) ::::; g(b) for no a in 2l different 
from l_ and b in SB different from T. 
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Exercise 15.15 Show that every Post complete logic in Extlnt and (N)ExtK 
is Hallden complete. 

Exercise 15.16 Show that the modal logic of the frame ~in Fig. 15.5 is not 
represented as an intersection of two incomparable normal logics. 

Exercise 15.17 Let DP and HC denote the classes of logics that have the dis
junction property and are Hallden complete, respectively. Show that there is a 
continuum of logics in each of the following classes: Extlnt n DP, Extlnt n HC n 
-DP, Extlnt - HC, NExtGrz n HC n DP, NExtGrz n -HC n DP, NExtGrz n 
HC n -DP, NExtGrz n -HC n -DP. 

Exercise 15.18 Show that all normal consistent extensions of GL except Log• 
are Hallden incomplete. 

Exercise 15.19 Show that Sis Hallden complete. 

Exercise 15.20 Say that a si-logic L has the property DP* if, for all formulas 
r.p and 'l/J, r.p V 'l/J E L implies -.-.r.p E L or -.-.'l/J E L. Show that L has DP* iff 
-.p V -.-.p </. L. 

Exercise 15.21 Say that a logic Lis Maksimova complete if, for every formulas 
'Pl ----+ 1/;1 and r.p2 ----+ 'l/J2 with no variables in common, 'Pl /\ r.p2 ----+ 'l/J1 V 'l/J2 E L 
implies r.p1 ----+ 'f/J1 E L or r.p2 ----+ 'l/J2 E L. (It should be clear that a modal 
logic is Hallden complete iff it is Maksimova complete.) Show that a si-logic is 
Maksimova complete iff for any two rooted descriptive frames for L there exists 
a rooted frame for L reducible to both of them. 

Exercise 15.22 Show that if formulas r.p and 'lj; have no variables in common 
then, for every si-logic L, r.p----+ 'l/J E L implies -.r.p E Lor 'l/J E L. 

Problem 15.1 Does there exist a decidable maximal si-logic with the disjunction 
property? 

Problem 15.2 Does there exist a finitely axiomatizable maximal si-logic with 
the disjunction property? 

Problem 15.3 Is it true that a si-logic has an extension with the disjunction 
property iff its disjunction free fragment coincides with that of Int? 

Problem 15.4 Is it true that r L is Hallden complete iff u L is Hallden com
plete? 

Problem 15.5 Suppose L is Kripke complete and C the class of rooted frames 
for L. Is it true that in Theorems 15.1 and 15. 5 we can always take ~ to be a 
K ripke frame? 

Problem 15.6 Are si-logics with extra axioms in one variable Hallden com
plete? 



488 THE DISJUNCTION PROPERTY AND HALLDEN COMPLETENESS 

15.6 Notes 

The study of the disjunction property of si-logics was started by Lukasiewicz 
(1952) who conjectured that this property is a characteristic one for Int in the 
sense that no proper consistent extension of Int is constructive. The conjecture 
was refuted by Kreisel and Putnam (1957) who proved that both KP and SL 
have the disjunction property (the proof of Theorem 15.7 is due to Gabbay 
(1970a)). Medvedev (1963) and Varpakhovskij (1965) showed that ML and the 
realizability logic are constructive too. Gabbay and de Jongh (1974) constructed 
an infinite family of si-logics with the disjunction property, namely the logics 
Tn of finite n-ary trees. Ono (1972) showed that all Bn posses this property as 
well. Anderson (1972) described the constructive si-logics with extra axioms in 
one variable: he proved that among the consistent logics of that sort only those 
of the form Int + nf 2n+2 , for n :2:: 5, n =I- 6, and possibly Int + nf 14 , have 
the disjunction property. Wronski (1974) completed the picture by showing that 
Int + nf 14 is constructive. (Another proof of this result was found by Sasaki 
(1992).) Finally, Wronski (1973) showed that there is a continuum si-logics with 
the disjunction property. 

Theorem 15.l was in essence proved in Hughes and Cresswell (1984); an 
algebraic variant of Theorem 15.5 is due to Maksimova (1986). That p and 
T preserve the disjunction property was noted by Gudovschikiv and Rybakov 
(1982) and Zakharyaschev (1991). The material of Section 15.2 was taken from 
Zakharyaschev (1987) and Chagrov and Zakharyaschev (1993). Theorem 15.14 
was independently proved by Minari (1986); a purely semantic proof can be 
found in Zakharyaschev (1994). Problem 15.3 was formulated by Minari (1986). 

That ML is a maximal si-logic with the disjunction property was proved 
by Levin (1969); the proof of Theorem 15.18 is due to Maksimova (1986). Kirk 
(1982) noted that there is no greatest consistent si-logic with the disjunction 
property. Maksimova (1984) showed that there are infinitely many maximal con
structive si-logics, and Chagrov (1992a) proved that in fact there is a continuum 
of them; see also Ferrari and Miglioli (1993, 1995a, 1995b). Galanter (1990) 
claims that each si-logic characterized by the class of frames of the form 

({W:W~{l, ... ,n}, W=f-0, IWlrf-N},2), 

where n = 1, 2, ... and N is some fixed infinite set of natural numbers, is maximal 
in the class of consistent si-logics with the disjunction property. 

Theorem 15.22 was proved by Lemmon (1966c), Theorems 15.25 and 15.28 
(ii) by Wronski (1976). The sufficient condition of Theorem 15.26 (formulated 
in terms of Kripke frames) was used by van Benthem and Humberstone (1983). 
Theorems 15.29-15.31 are taken from Chagrov and Zakharyaschev (1993). Exer
cise 15.14 is due to Maksimova (1995) who proved also algebraic characterizations 
for some other properties closely related to Hallden completeness. More results 
and references can be found in Chagrov and Zakharyaschev (1991). 



Part V 

Algorithmic problems 

In this part we consider logics and their properties from the algorithmic point 
of view, i.e., we are interested in the existence of algorithms which are able to 
decide mass problems concerning them. Almost all algorithmic problems we have 
dealt with so far were solved positively by means of presenting concrete decision 
procedures. However, the "real algorithmic science" appears only when we need 
to prove that there is no algorithm deciding a particular problem and to estimate 
the efficiency of existing algorithms. 
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THE DECIDABILITY OF LOGICS 

The first and perhaps most important algorithmic question arising immediately 
after creating a logic is the question of its decidability: is there an algorithm 
which is capable of deciding, given an arbitrary formula, whether it belongs to 
the logic or not? 

16.l Algorithmic preliminaries 

So far when we considered algorithmic problems-mainly the decidability prob
lem for various logics-we could do without a precise definition of the concept of 
algorithm, simply presenting some informal decision procedures. In any case the 
reader will most likely agree that those procedures can be realized as computer 
programs. But now we will be also interested in obtaining "negative" algorithmic 
results which assert that there are no algorithms deciding such-and-such prob
lems. Clearly in this case we must formulate exactly what objects we are going 
to prove as not existing. 

Of course, our intuitive idea of algorithm is too vague (and perhaps has 
too many traits of a rather psychological nature) to be transformed directly 
to a formal definition. However, many decades of using various formal versions 
of the notion of algorithm show that most people have more or less the same 
algorithmic intuition, because all of them turned out to be in a sense equivalent. 
So intuitive algorithmic constructions may be regarded as precisely those which 
can be realized in terms of one of such formalizations. This statement, known as 
Church's thesis, is clearly unprovable (though it can be disproved in principle). 

By accepting Church's thesis we gain in two respects: 

• to show that an algorithm exists, it suffices to present its convincing and 
intuitively clear description without being involved in details of any specific 
formalization; 

• to show that an algorithm does not exist, it suffices to prove that no algo
rithm in a specific formal system can perform the desirable actions, i.e., to 
prove the absence of a mathematical object. 

In this book we will use only one algorithmic formalism which is called Minsky 
machines. It has been chosen for purely technical reasons as the most convenient 
(from our standpoint) for being simulated by modal and intuitionistic formulas. 
The reader not familiar with algorithm theory and not willing to take on trust 
the facts formulated below without proofs should consult first a good textbook, 
say Cutland (1980) or Mal'cev (1970). 
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Algorithmically computable arithmetical partial functions are called partial 
recursive functions. The word "partial" here means that the domain of a func
tion may be smaller than the whole set of natural numbers. Completely defined 
partial recursive functions are called total recursive functions or simply recursive 
functions. We will regard the terms "algorithm" and "partial recursive function" 
as synonymous. The fact that we consider only arithmetical functions is not 
essential. For there are various ways of reducing algorithmic operations on con
structive objects (e.g. formulas or derivations) to those on natural numbers-we 
mean effective enumerations. However we prefer to deal with syntactical and se
mantic objects directly. In the former case we will assume that our languages are 
based on the set Var = {po, Pi, . .. } of variables and in the latter that frames, 
relations, valuations, etc. are defined by algorithms (we shall make this more pre
cise if required). Thus we allow using such terms as "a partial recursive function 
from the set of pairs (formula, frame) into {O, 1}" and similar. 

A set X is called recursive (or decidable) if there is an algorithm which, given 
an object x from the class under consideration, recognizes whether x E X or 
not. X is said to be recursively enumerable if one of the following equivalent 
conditions is satisfied: 

• X is the domain of a partial recursive function; 

• X is either the range of a total recursive function or empty. 

The latter condition justifies the term "enumerable" in the sense that a recur
sive function, say f, enumerates the members of non-empty X, possibly with 
repetitions: X = {f(O),f(l),f(2), ... }. 

We have already used the fact that there are recursively enumerable sets (of 
natural numbers) which are not recursive; concrete examples will be shown later 
on. These two kinds of sets are connected as follows: X is recursively enumerable 
iff it can be represented in the form X = {x: 3y (x,y) E Y}, for some recursive 
set Y of pairs. We also have the following simple proposition which may be used 
for proving the decidability of logics. 

Proposition 16.1 Suppose Y is a recursive se.t and X ~ Y. Then X is recursive 
iff both X and Y - X are recursively enumerable. 

Proof ( =>) Change a decision algorithm for X in such a way that instead of 
the answer "no" (for the input elements from Y - X) it would give no answer at 
all entering, for instance, an endless loop. The domain of the resulting algorithm 
will then coincide with X, which means that X is recursively enumerable. By 
inserting in the original algorithm an endless loop instead of the answer "yes" 
we clearly obtain an algorithm whose domain is Y - X. 

( <=) Here is a decision procedure for X. First check whether a given object 
x is in Y. If it is, run two algorithms enumerating X and Y - X, respectively, 
and wait until x appears. 0 

Now we define the algorithmic formalism that will be used in what follows 
for establishing various undecidability results concerning modal and si-logics. 
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A Minsky machine is a finite set (program) of instructions for transforming 
triples (s, m, n) of natural numbers, called configurations. The intended meaning 
of the components in the current configuration (s, m, n) is as follows: s is the 
number (label) of the current machine state or, which is the same, the number of 
the instruction to be executed at the next step, and m, n represent the current 
state of information. Each instruction has one of the four possible forms: 

s-> (t, 1, 0), s-> (t, 0, 1), 

S-> (t,-1,0)((t',O,O)), S-> (t,0,-l)((t',O,O)). 

The last of them, for instance, means: transform (s, m, n) into (t, m, n - 1) if n > 
0 and into (t', m, n) if n = 0. The meaning of the others is defined analogously. 

If P is a Minsky machine then the notation P : (s, m, n) -> (t, k, l) means 
that starting with (s, m, n) and applying the instructions in P, in finitely many 
steps (possibly, in 0 steps) we can reach the configuration (t, k, l). In particular, 
we always have P: (s,m,n)-> (s,m,n). If the relation P: (s,m,n)-> (t,k,l) 
does not hold, we write P: (s,m,n) ~ (t,k,l). 

Of all possible states of a machine two are distinguished: s1 is regarded as 
the only initial state, at which the machine starts working, and s0 as the only 
final state, at which the machine halts. Of course, the program contains no 
instruction with the number s0 . If no instruction can be applied to a current 
non-final configuration then we will think of our machine as working forever (or 
being out of order and returning no result). All Minsky machines are assumed to 
be deterministic, i.e., they may not contain distinct instructions with the same 
numbers. 

Now, which arithmetical partial functions are computable by Minsky ma
chines? The answer is the following statement which, in view of our definition of 
partial recursive functions and the known fact that Minsky machines are equiv
alent to any other universal algorithmic formalism, can be called the Church
Minsky thesis: 

• an arithmetical partial function f (x) is a partial recursive function iff there 
is a Minsky machine P such that, for every natural x, if f (x) is defined then 
p : (s1, 2x, 0) -> (so, 2J(x), o) and if f(x) is undefined then the machine, 
having started at (s 1 , 2x, 0), never comes to the final state. 

Using this statement, by the standard argument we can prove the unde
cidability of various problems concerning Minsky machines. First we have the 
undecidability of the configuration problem: 

Theorem 16.2 There is no algorithm which, given a program P and configu
rations (s, m, n) and (t, k, l), can decide whether P: (s, m, n)-> (t, k, l) holds. 

This theorem may be used for establishing a lot of our further undecidability 
results, but not all of them. It will be much more convenient to use a variant of 
the configuration problem with fixed suitable P and (s, m, n), called the second 
configuration problem: 
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Theorem 16.3 There exist a program P and a configuration (s, m, n) such that 
there is no algorithm which is capable of deciding, given a configuration (t, k, l), 
whether P : (s, m, n) -+ (t, k, l). 

Proof Let X be a recursively enumerable non-recursive set and g(x) a recursive 
function enumerating X, with g(O) =a. Define a partial recursive function f(x) 
as follows. Given x, we compute g(O),g(l), ... until we get x = g(mi) for some 
number m1 and then continue computing g(m1+1), g(m1+2), ... until g(m2) ¢ 
{g(O), ... ,g(m1)} for some m2 . When (and if) this process stops, we put f(x) = 
g(m2 ) (otherwise f(x) is undefined). Clearly f(x) is a partial recursive function 
and X = {a,f(a),f(f(a)), .. . }. 

Let P' be a Minsky program computing f(x). Define another program P by 
renaming so in P' into s' (not occurring in P') and adding two new instructions: 

s'-+ (s",O, 1), s"-+ (si,0,-1) ((s1,0,0)), 

where s" is a new state. Notice that P does not have a final state and, having 
started at the configuration (si, 2a, 0), it works forever. But more important is 
that 

Thus, if the second configuration problem for P and (s1, 2a, 0) were decidable, 
the set X would be recursive. 0 

We shall also require two variants of the halting problem. 

Theorem 16.4 There is a Minsky machine P such that no algorithm can rec
ognize, given an arbitrary configuration (s, m, n), whether P comes to the final 
state having started at (s,m,n). 

Theorem 16.5 There is a configuration (s, m, n) such that no algorithm can 
recognize, given a Minsky machine P, whether P comes to the final state having 
started at (s, m, n). 

To prove Theorem 16.4 it suffices to take a recursive function enumerating a 
non-recursive set and use the Church-Minsky thesis. As to Theorem 16.5, one 
can exploit the following statement. 

Call a property of Minsky machines non-trivial if there are machines both 
with this property and without it. A property is called invariant if equivalent 
machines have (or do not have) the property simultaneously. Here by equivalent 
machines we mean those which, having started at the same initial configuration, 
come to the same final configuration or never stop. Thus an invariant property 
depends not on the intrinsic organization of programs, but on what they com
pute. 

Theorem 16.6. (The Rice-Uspensky theorem) For every non-trivial in
variant property of Minsky machines, there is no algorithm which, given an 
arbitrary program, can decide whether is satisfies the property or not. 
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16.2 Proving decidability 

Observe first that "most logics" are undecidable. For there are "only" countably 
many algorithms (they may be considered as words in a fixed finite alphabet) 
but uncountably many logics. Moreover, for the same reason "most logics" are 
not even recursively enumerable. Fortunately the "most interesting logics" form 
a countable family and so this cardinality argument does not go through for 
them. 

In: this section we analyze from the recursion-theoretic point of view the 
method of proving decidability we have used so many times before. 

To begin with, we enumerate formulas. Every formula in For MC may be 
regarded as a word (a string of symbols) in the alphabet 

p, /\, v, ---+, .l, tJ, 1, (, ) 

where I is a symbol for generating subscripts: Po is represented asp, Pi asp I, P2 
as p 11, etc. Of course, using two or more special signs instead of I we could write 
formulas shorter. But in principle this does not matter: for any finite alphabet we 
can effectively determine whether a given string of symbols is a formula. Writing 
down all possible strings-first of length 1, then of length 2, etc.-and discarding 
those that are not formulas, we can effectively enumerate all formulas in For MC 
or For£. Thus we obtain 

Lemma 16.7 ForMC and For£ are recursively enumerable (without repeti
tions). Moreover, these sets are recursive. 

Now we consider enumerations of formulas in logics. 

Lemma 16.8 Every logic L with a recursively enumerable set of axioms is also 
recursively enumerable. 

Proof Notice first that every derivation in L may be regarded as a word in 
the alphabet A of L's language with the extra symbol "," used for separating 
formulas in derivations. So we have a recursive enumeration of L's axioms, say, 
i.po, i.pi, i.p2 , ... and a recursive enumeration wo, wi, w2, ... of all words in A. Now, 
for every n ~ 0 we select from w0 , ... , Wn all those derivations in L which use only 
axioms in the list i.p0 , ... , 'Pn· (To check whether a formula 'ljJ is a substitution 
instance of an axiom i.p, it suffices to write down all the substitution instances of 
i.p of length not greater than that of 'ljJ and compare them with 'l/J.) Since every 
derivation uses only finitely many axioms, sooner or later it will be found. Thus 
we recursively enumerate all the derivations in L and thereby L itself. 0 

Strange as it may seem at first sight, there is no difference between recursively 
enumerable axiomatizations and recursive ones. 

Lemma 16.9 Every recursively enumerable logic L is recursively axiomatizable 
(i.e., has a recursive set of axioms). 
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Proof Let r.pi, r.p 2 , ... be a recursive enumeration of L. For every n :'.'.: 1, put 

'I/Jn = 'Pn /\ · • • /\ 'Pn • 
~ 

n 

Since the rules p/p /\ p and p /\ p/p are admissible (and derivable) in all modal 
and si-logics, {'I/Jn : 1 S n < w} is a set of axioms for L. This axiomatization 
is recursive because to verify whether a formula '1/J is an axiom it suffices to 
represent '1/J as a conjunction x1 /\ ... /\ Xk in all possible ways (there are finitely 

many of them), generate 'Pk and compare '1/J with '1/Jk· 0 

Putting together Lemmas 16.8 and 16.9 we obtain 

Theorem 16.10. (Craig's theorem) For every logic L the following condi
tions are equivalent: 

(i) L has a recursively enumerable set of axioms; 
(ii) L has a recursive set of axioms; 
(iii) L is recursively enumerable. 

Remark It should be clear that Theorem 16.10 remains true if we take axiom 
schemes rather than axioms. Also we can consider in Theorem 16.10 axiomati
zations of L over some fixed recursively enumerable logic Lo ~ L; without the 
requirement of recursive enumerability only (i) and (ii) are equivalent. 

To apply Proposition 16.l for establishing the decidability of a logic L we 
must be able to enumerate recursively not only L itself but also its complemen
tation, i.e., the set of formulas which do not belong to L. In the majority of the 
decidability proofs above we managed to do without this, using effective charac
terizations of (finite) frames for L, upper bounds for the size of minimal frames 
separating L from formulas out of L and the following: 

Theorem 16.11 Suppose a logic L is characterized by a recursive class C of 
finite frames and there is a recursive function f(x) such that every r.p (/. L is 
refuted in a frame J EC with IJI S f(l(r.p)). Then L is decidable. 

Proof Given r.p, we construct all finite frames with :::; f(l(r.p)) points, discard 
those that are not in C and check whether r.p is refuted in at least one of the 
remaining frames. 0 

However, actually we do not need upper bounds to establish decidability. 
Usually even finite approximability is enough. For we clearly have 

Lemma 16.12 (i) The class of all finite algebras (matrices, frames} is recur
sively enumerable. 

(ii) If L is characterized by a recursively enumerable class of finite algebras 
(matrices, frames) then the set of formulas which do not belong to L is recursively 
enumerable. 

Using this observation we obtain 
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Theorem 16.13. (Harrop's theorem) Every finitely axiomatizable and fini
tely approximable logic L is decidable. 

Proof By Theorem 16.10, L is recursively enumerable. From the recursively 
enumerable sequence of all finite frames we can remove all those that are not 
frames for L simply by checking whether they validate L's axioms. Thus L is 
characterized by a recursively enumerable class of finite frames and so L's com
plementation is recursively enumerable too. 0 

Theorem 11.19 (ii) shows that the requirement of finite axiomatizability in 
Harrop's theorem cannot be replaced with that of recursive axiomatizability: 
there are undecidable recursively axiomatizable subframe logics. The reason for 
this phenomenon is that the class of finite frames characterizing a given recur
sively axiomatizable subframe logic is not necessarily even recursively enumer
able. On the other hand, the single requirement that a logic is characterized by 
a recursive class of finite frames does not mean that the logic is decidable either. 

Theorem 16.14 There is a logic which is characterized by a recursive set of 
finite frames and which is not recursively enumerable. 

Proof We require the following: 

Lemma 16.15 There is a recursive set X of natural numbers such that the set 
{lx-yl: x,y EX, x =/= y} is not recursive. 

Proof Let f (x) be a recursive function whose range is not recursive. Notice 
that the set 

10/(n)+l 
Y = {10 : n < w} 

is recursively enumerable but not recursive. Put 

x = {104n+l, 104n+l + 1010/(n)+l : n < w }. 

It is not hard to see that X is decidable. On the other, hand we have 

Y={lx-yl: x,yEX, x=f=y}n{lOn: n<w}. 

Since the intersection of recursive sets is also recursive, it follows that the set 
{Jx -yJ: x,y E X,x =/= y} cannot be recursive. 0 

Now take the set X constructed in the proof of Lemma 16.15 and, for every 
n < w, define a frame Jn as is shown in Fig. 16.1, where {i, ... ,j} = {x E 

X : x < n}. Clearly the set C = {Jn : n < w} is recursive. We show that 
the logic L = LogC is not recursively enumerable. By Lemma 16.12 (ii) and 
Proposition 16.1, it suffices to prove that L is not decidable. 

For every n < w, we put 
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• ai-1 

ai-1 
i 

an 

Jn a 

FIG. 16.1. 

where 'ljJ = p /\ 0-.p and Xn = on'ljJ /\ -.on+I'l/J. The reader can readily check that 

1PnELiffnE{lx-yl: x,yEX, xf:.y}. 

By Lemma 16.15, it follows that Lis undecidable. 0 

However, we do not know whether the class of all finite frames for the logic 
constructed in the proof above is recursive. In this connection the following result 
is worth noting. 

Theorem 16.16 Suppose L is a recursively axiomatizable finitely approximable 
logic in NExtK4 or Extlnt. Then L is decidable iff the class of all finite frames 
for L is decidable. 

Proof (¢=)follows from Theorem 16.10 and Lemma 16.12 and(:::}) is a con
sequence of the fact that a finite rooted frame J validates L iff ad(J, ..L) ¢ L 
(,Bd(J, ..L) ¢ L). O 

Lemma 16.12 (ii) can be extended to logics characterized by classes of frames 
or algebras effectively determined by algorithms. Say that a (pseudo-Boolean or 
modal) algebra is recursive if its universe is a recursive set and the operations 
are realized by some algorithms (in particular, there are algorithms computing 
T and ..L). Thus a recursive algebra may be thought of as a suitable collection of 
algorithms. A class of recursive algebras is called recursively enumerable if there 
is an algorithm enumerating the collections of algorithms corresponding to those 
algebras. A matrix (2l, V') is recursive if both 2l and V' are recursive. Recursive 
frames can be defined in the same manner. 

Lemma 16.17 If a logic L is characterized by a recursively enumerable class C 
of recursive algebras (matrices, frames) then the set of formulas that are not in 
L is also recursively enumerable. 

Proof Let cp0 , cpi, ... be an effective enumeration of formulas, 2lo, 2li, ... an 
effective enumeration of algebras in C and, for every i < w, let ab, ai, ... be an 
effective enumeration of elements in 2li. An algorithm enumerating all formulas 
that are not in L may be as follows. For every n < w and every i, j $ n we 
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compute the value of <pi in 2li under all possible assignments of the elements 
a~, ... , al to <p/s variables. And if this value is different from T, the algorithm 
returns <pi as its next value. 0 

Using this lemma we obtain the most general criterion of decidability. 

Theorem 16.18 A logic is decidable iff it is recursively axiomatizable and char
acterized by a recursively enumerable class of recursive algebras (matrices). 

Proof ({:::)follows from Theorem 16.10 and Lemma 16.17. And to prove(=}) 
it suffices to observe that the Tarski-Lindenbaum algebra for a decidable logic is 
also decidable (we can fix an effective enumeration of all formulas and construct 
the universe of 2lL from the formulas <p such that <p has the smallest number in 
ll<pll£). 0 

16.3 Logics containing K4.3 

Now we use the observations of the preceding section to show how a good com
pleteness result can be used for establishing decidability even in the absence of 
finite approximability. 

We consider the class NExtK4.3 of normal modal logics of width 1. According 
to Theorem 6.2, not all of them are finitely approximable, and so the standard 
way of proving decidability by using Harrop's theorem does not go through for 
logics in the class. Let us recall, however, that the essential point in the proof 
of Harrop's theorem was not that a logic is complete with respect to the class 
of finite frames but that (i) this class is recursively enumerable and (ii) we can 
always check effectively whether a frame in the class validates a given formula. By 
Fine's theorem of Section 10.4, all logics in NExtK4.3 are complete for the class 
of Kripke frames of width 1 without infinite ascending chains, i.e., Noetherian 
chains of clusters. This class does not meet the conditions (i) and (ii). What we 
are going to prove below is that it contains a subclass which satisfies both (i) 
and (ii) and is still big enough to ensure completeness. 

We will use the apparatus of canonical formulas. Each logic L E NExtK4.3 
can be represented in the form 

(16.1) 

where all ii are chains of clusters. For a finitely axiomatizable L representation 
(16.1) with finite I can be constructed effectively, given a finite set of L's axioms. 

The following simple example explains in terms of canonical formulas why 
logics of width 1 are not necessarily finitely approximable. 

Example 16.19 Let us consider the logic L = K4.3 EB a(J, { {1 }}, ..L) and the 
formula a(J, ..L) where J is the frame depicted in Fig. 16.2 (a). The frame ® 
shown in Fig. 16.2 (b) separates a(J, ..L) from L. Indeed, J is a cofinal subframe 
of® which, by the refutability criterion (Theorem 9.39), gives®[#: a(J, ..L). To 
establish that® I= a(J, { {1} }, ..L), suppose f is a cofinal subreduction of® to J. 
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FIG. 16.2. 

Then f- 1(1) contains only one point, say x; f- 1(0) also contains only one point, 
namely the root of '8. So the whole infinite set of points between x and the root 
is outside of domf, which means that f does not satisfy (CDC) for {{l}}. 

On the other hand, if .fj is a finite refutation frame (of width 1) for o:(J, J_) 
then .fj contains a non-degenerate cluster C having an irreflexive immediate 
successor x, and by mapping C to 0, x to 1 and all the points above x to 2 we 
obtain a cofinal subreduction of .fj to J satisfying (CDC) for { {1} }, from which 
.fj ~ L. 

Returning to our completeness problem, let us observe that the refutability 
criterion for canonical formulas may be somewhat simplified if we deal only with 
Noetherian chains of clusters. Say that a subreduction f of one frame to another 
is injective if f(x) "I- f(y) for every distinct x,y E domf. 

Theorem 16.20 For any Noetherian chain of clusters 15 and any canonical 
formula o:(J, '.D, j_), 15 ~ o:(J, '.D, j_) iff there is an injective cofinal subreduction 
g of '8 to J satisfying (CDC) for '.D. 

Proof ( =>) Suppose 15 ~ o:(J, '.D, j_). Then there is a cofinal subreduction f of 
'8 to J satisfying (CDC) for '.D. We reduce f to a map g so that g- 1 ( x) will be a 
singleton for every point x in J. Observe first that f- 1(x) must be a singleton if 
x is irreflexive (here we use the fact that 15 is a chain of clusters.) Suppose now 
that x is a reflexive point in J. Since 15 contains no infinite ascending chains, 
f- 1 (x) has a finite cover and so there is a reflexive point Ux E f- 1(x) such that 
f- 1(x) ~ ux!· Fix such a Ux for each reflexive x in J and define g by taking, for 
any yin 15, 

{ 

f (y) if either f (y) is irreflexive or 
g(y) = f(y) is reflexive and y = UJ(y) 

undefined otherwise. 

It should be clear from the definition that g is an injective cofinal subreduction 
of 15 to J. 

Suppose y E domgi and g(yi) = xi for some { x} E '.D. Then x is irreflexive 
and we must have y E <lorn/ i, f(y f5 = xi, from which y E <lorn/, since f 
satisfies (CDC) for '.D. It follows that f(y) is irreflexive (for otherwise x E f (y)i 
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and there is z E yj such that f(z) = f(y) which together with f(yi) = xj 
implies f(y) E xj, contrary to x being irreflexive) and so y E domg. Thus g 
satisfies (CDC) for '.D. 

( {=) follows from the refutability criterion. O 

Theorem 16.20 may be interpreted in the following way. Every Noetherian 
chain of clusters refuting o:(J, '.D, .l) can be obtained from J by inserting some 
Noetherian chains of clusters just below clusters C(x) in J such that {x} ¢ '.D 
and by enlarging some non-degenerate clusters in J. 

We show now that if a formula o:(J, '.D, ..L) is not in LE NExtK4.3 then it can 
be separated from L by a frame constructed from J by inserting in open domains 
between its adjacent clusters either finite descending chains of irreflexive points 
possibly ending with a reflexive one or infinite descending chains of irreflexive 
points and without using the operation of enlarging J's non-degenerate clusters. 

Let o:(J, '.D, ..L) be a canonical formula built upon a chain of clusters J and 
C(xo), ... , C(xn) all distinct clusters in J = (W, R) ordered in such a way that 
C(xo) C C(xi)T C ... C C(xnff By a type for o:(J, '.D, ..L) we will mean any 
n-tuple t = (6, ... ,En) such that, for i E {1, ... ,n}, either Ei = m or Ei = m+, 
for some m < w, or Ei = w, with Ei = 0 if {xi} E '.D. 

Given a type t = (6, ... , En) for o:(J, '.D, ..L), we define at-extension of J as 
the frame ® that is obtained from J by inserting between each pair C(xi_i), 
C(xi) of J's adjacent clusters either a descending chain of m irreflexive points, 
if Ei = m < w, or a descending chain of m + 1 points of which only the last 
(lowest) one is reflexive, if Ei = m+, or an infinite descending chain of irreflexive 
points, if Ei = w. More formally the t-extension ® = (V, S) of J may be defined 
as follows. For 1 ::::; i ::::; n, we first put 

{

{aj: O<j:Sm} ifEi=m<w 
Vi= {aj,b': O<j:Sm}ifEi=m+ 

{ aj : o < j < w} if Ei = w, 

And then 
n 

V=WULJVi 
i=l 

and S is the transitive closure of the relation 

n n 

RU u Si U LJ{(xi-1, x), (x, Xi) : x E Vi}. 
i=l i=l 

Example 16.21 The frame® in Fig. 16.2 (b) is the t-extension of Jin Fig. 16.2 
(a), for every t = (w, n), 0 ::::; n < w, which clearly is a type for o:(J, .l). ®1 in 
Fig. 16.2 (d) is the (0, 1+)-extension of J 1 in Fig. 16.2 (c), with (0, 1+) being a 
type for o:(J1, {{1}}, .l). 
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It should be clear that, for every type t for a(J, '.D, .L), the t-extension of J 
refutes a(J, '.D, .L). 

The following trivial observation will be used several times below. 

Lemma 16.22 Suppose a(J, '.D, .L) is a canonical formula and f a cofinal sub
reduction of a frame ~ to J satisfying (CDC) for '.D. Suppose also that .fJ is a 
subframe of~ containing domf. Then f is also a co final subreduction of .fJ to J 
satisfying (CDC) for '.D. 

Proof Exercise. 0 

Theorem 16.23 Suppose L E NExtK4.3 and a(J, '.D, .L) r/. L. Then a(J, '.D, .L) 
is separated from L by the t-extension of J, for some type t for a(J, '.D, .L). 

Proof Since a(J, '.D, .L) ¢ L, we have a Noetherian chain of clusters~ = (V, S) 
separating a(J, '.D, .L) from L. By Theorem 16.20, there is an injective cofinal 
subreduction f of ~ to J satisfying (CDC) for '.D. By the generation theorem, 
without loss of generality we may assume that f maps the root of ~ to the root 
of J. 

Let ~o =(Vo, So) be the (cofinal) subframe of~ obtained by removing from 
~ all those points that are not in domf but belong to clusters containing some 
points in domf, or formally 

Vo = V - LJ (C(x) - domf) 
xEdomf 

and So is the restriction of S to V0 . By Lemma 16.22, the very same map f 
is an injective cofinal subreduction of ~o to J satisfying (CDC) for '.D, and so 
~o ~ a(J, '.D, .L). It should be also clear that ~o is a reduct of~. and hence 
~o I= L. 

Let C(xo), ... , C(xn) be all the distinct clusters in ~o such that 

n 

domf = LJ C(xi) 
i=O 

and C(xo) C C(x1)T C ... C C(xn)J. By induction on i we define now a sequence 
of frames ~o 2 ... 2 ~n such that, for each i ::; n, 

(a) f is an injective cofinal subreduction of QSi to J satisfying (CDC) for '.D; 

(b) between C(xi-1) and C(xi) the frame QSi contains either a finite descend
ing chain of irreflexive points possibly ending with a reflexive one or an infinite 
descending chain of irreflexive points; 

(c) ~i I= L. 
Suppose QSi-l = (Vi-li Si-l) has been already constructed and i ::; n. Take 

the chain ~i = (Wi, Ri) of clusters located between C(xi-1) and C(xi), i.e., 
Wi = C(xi)! - ( C(xi) U C(xi_ i)J) and Ri is the restriction of Si-1 to Wi. Three 
cases are possible. 
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Case l. (ti is a finite chain of irreflexive points. Then nothing should be done 
with l5i-1: we just put 15i = 15i-1· 

Case 2. (ti contains a non-degenerate cluster-C(x) having only finitely many 
distinct successors y1, ... , Ym in (ti, all of them being irreflexive. Then we put 
15i = (Vi,Si), where Vi= (Vi-i -Wi)u {yi,··. ,ym,x} and Si is the restriction 
of Si-l to Vi- The conditions (a) and (b) are clearly satisfied by 15i· To show (c) 
it suffices to observe that 15i is a reduct of 15i-l (just map all the points in 15i to 
themselves and those removed from 15i-l to x) and use the reduction theorem. 

Case 3. Suppose Cases 1 and 2 do not hold. Then, since (ti is a Noetherian 
chain of clusters, it must contain an infinite descending chain Y of irreflexive 
points such that every point in Wi - Y sees all the points in Y. 

Put 15i = (Vi, Si) where Vi= (Vi-i - Wi) UY and Si is the restriction of Si-1 
to \Ii. Again 15i clearly satisfies (a) and (b). To prove (c) suppose ©i ~ o:(fJ, ~' j_) 
for some o:(fJ, ~' j_) E L. Then there is an injective cofinal subreduction g of 15i 
to fJ satisfying (CDC) for ~- Consider gas a cofinal subreduction of 15i-l to fJ 
and show that it also satisfies (CDC) for ~- Indeed, the closed domain condition 
could be violated only by a point in Wi - Y. So suppose z E Wi - Y and 
g(zl) = wl, for some {w} E ~-Since g- 1(w) is a singleton and Y ~ zl, there 
is a pointy E Y such that g(yl) = wj and y ¢ domg, contrary tog satisfying 
(CDC) for ~as a subreduction of 15i to fJ. It follows from the definition that 15n 
is the t-extension of J, for some type t for o:(J, '.D, l_). Hence 15n ~ o:(J, '.D, l_). 
Besides, we have 15n f= L. 0 

Thus, a frame separating a formula o:(J, '.D, j_) ¢ L from L E NExtK4.3 
can be found in the class oft-extensions of J (t being a type for o:(J, '.D, j_) ), 
which is clearly recursively enumerable. We show now that there is an algorithm 
which, given a formula o:(fJ, ~' j_) and a type t for o:(J, '.D, l_), decides whether 
o:(fJ, ~' j_) is valid in the t-extension of J. 

Let k be the number of irreflexive points in fJ, t = (6, ... ,en) a type for 
o:(J, '.D, j_) and ©the t-extension of J formed according to the formal definition 
above. Construct a cofinal subframe 15k of 15 by "cutting off" the infinite de
scending chains inserted in J (if any) just below their k + 1th points and let X 
be the set of all these k +1th points. In other words, 15k is the s-extension of J, 
the type s = ((1, ... , (n) defined by 

, { k + 1 if ei = w 
i = ei otherwise, 

and X = { a~+i : ei = w }. It follows from the definition that 15k is finite. 

Theorem 16.24 15 ~ o:(fJ, ~' j_) iff there is an injective cofinal subreduction f 
of 15k to fJ satisfying (CDC) for~ and such that X n domf = 0. 

Proof (:::}) Let 15 ~ o:(fJ, ~' l_). By Theorem 16.20, there is an injective cofinal 
subreduction f of 15 = (V, S) to .fJ satisfying (CDC) for ~- By Lemma 16.22, 
without loss of generality we may assume that if ei = w then Vi n <lorn/ = 
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{ ai, ... , a:n}, for some m :::; k. Now, by "cutting off'' all the infinite descending 
chains Vi, for ei = w, just below ai+l' we obtain Q5k, with f being an injective 
cofinal subreduction of Q5k to SJ satisfying (CDC) for <!: and X n domf = 0. 

( {=) If f is an injective cofinal subreduction of Q5 k to SJ satisfying (CDC) for <!: 
and X n domf = 0 then clearly f is also an injective cofinal subreduction of Q5 to 
SJ. We show that it satisfies (CDC) for <!:as well. Only the points in the "cut off'' 
tails of infinite descending chains Vi = { ai, a~, ... } should be verified. So suppose 
m > k+ 1 and f(a:ni) = xl, for some {x} E <!:.Since {ai+l, ... , a:n}ndomf = 0, 
we must then have f(ak,+l i) = xl and, by (CDC), ai+l E domf, contrary to 

Xndomf =0. O 

Thus, given a type t for a(J, '.D, 1-) and a canonical formula a(SJ, <!:, 1-), only 
finitely many steps is required to verify whether the t-extension of J refutes 
a(SJ, <!:, 1-), and so we can prove the decidability of finitely axiomatizable logics 
in NExtK4.3 using Harrop's argument. 

Theorem 16.25 All finitely axiomatizable normal extensions of K4.3 are de
cidable. 

Proof Exercise. 0 

16.4 Undecidable calculi and formulas above K4 

We are going to construct an undecidable finitely axiomatizable logic in NExtK4 
by simulating the behaviour of Minsky machines in frames, describing points in 
those frames by modal formulas and using the undecidability of the configuration 
problems. 

With each Minsky program P and configuration (s, m, n) we associate the 
transitive frame J depicted in Fig. 16.3. The meaning of points in J is as fol
lows. Its subframe consisting of the points b0 (the only reflexive point in J), 
b1 , ..• , b4 and r will be used for characterizing all points in J by variable free 
formulas. The points of the form e(t, k, l) represent configurations (t, k, l) such 
that P: (s, m, n)---+ (t, k, l); e(t, k, l) sees the points a~, al, a~ representing the 
components of (t, k, l). Note that J contains the points aJ for any i = 0, 1, 2 and 
j ~ -1, but only those e(t,k,l) for which P: (s,m,n)---+ (t,k,l). 

Here are variable free formulas characterizing points in J in the sense that 
each of these formulas, denoted by Greek letters with subscripts and/or super
scripts, is true in J only at the point denoted by the corresponding Roman letter 
with the same subscripts and/or superscripts: 

/30 =OT/\ DOT, /31 = 01-, (32 =OT/\ 0 21-, 

(33 = 0/30 /\ 0/31 /\ -.02/31, (34 = 0/32 /\ 0(33 /\ -.02/32 /\ -.02(33, 

p = 0 (34' /1 = 0 /32 /\ -.02 /32 /\ -.o (33' /2 = 011 /\ -.02 /1 /\ -.0 (33' 

/3 = 012 /\ -.0212 /\ ·0(33, 81 = 0(33 /\ -.02(33 /\ -.0/32, 
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r 

FIG. 16.3. 

a~= Oa~ 1 /\ /\ ·Oa~ 1 /\ Oia~ 1 /\ ,oi+Ia~ 1 (i E {O, 1, 2}, j 2': 0). 
i# 

The formulas characterizing the points e(t, k, l) are denoted by 1:(t, al, a[) and 
defined as 

t 

1:(t, al, a[) = /\ Oa? /\ •Oa~+l /\ Oal /\ ·02al /\Oaf/\ ·02af, 
i=O 

Lemma 16.26 For every triple (t, k, l) of natural numbers, 

(
') { . i- (t 1 2)} _ { { e(t, k, l)} if P : (s, m, n) ---> (t, k, l) 
I x . x r- E 'ak' al - 0 otherwise. 

(ii) J f= p /\ 01:(s, a;., a~)---> 01:(t, al, af) iff P: (s, m, n) ---> (t, k, l). 

Proof Straightforward. 0 

By Theorem 16.3, it follows immediately that, for appropriate program P 
and configuration (s, m, n), the logic of J is undecidable. This fact, however, is 
not so interesting because such examples are easily obtained by the cardinality 
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argument. What we really need is an undecidable calculus, and the connection 
of J with P and (s, m, n) will help us to construct one. 

As in Sections 6.1and6.3, we should be able to describe by means of formulas 
the movement down the chains aij, aL ... and a5, ar, .. .. To this end we require 
the following formulas representing an arbitrary fixed position in these chains: 

71 = Oa~ 1 /\ ..,oa~ 1 /\ ..,oa:.1 /\p2 /\ ..,op2, 72 = 71(0p2/P2). 

Lemma 16.27 For every valuation in J and every point x, 
(i) if x f= n1 then, for some i ::'.: 0, 

(ii) if x f= 7r2 then, for some i ::'.: 1, 

(iii) if x f= 71 then, for some i ::'.: 0, 

{y: y f= 7i} ={a;}, {y: y f= 72} = {af+i}; 

(iv) if x f= 72 then, for some i ::'.: 1, 

{y: y f= 72} ={a;}, {y: y f= 7i} = {af_i}. 

Proof Follows directly from the definition. 0 

Now, using 7r1, 7r2, 71, 72 we define formulas representing an arbitrary fixed 
configuration: for t ::'.: 0 and i, j E { 1, 2}, 

t 

i:(t, ni, 7j) = /\ Oa2 /\ ..,oa~+i /\ Oni /\ ..,02ni /\ 07j /\ ..,o27j, 
k=O 

t 

i:(t, n1, a5) = /\ Oa2 /\ ..,oa~+l /\ On1 /\ ..,o2n 1 /\ Oa5 /\ ..,02a5, 
k=O 

t 

i:(t, a5, 71) = /\ Oa2 /\ ..,oa~+l /\ Oa5 /\ ..,02ab /\ 071 /\ ..,0
271. 

k=O 

The first formula represents an arbitrary configuration provided that for i = 2 
(or j = 2) its second (respectively, third) component is not 0. The other two 
formulas represent configurations whose second and third components are equal 
to 0, respectively. 

The meaning of these formulas in J' should be clear from the construction 
and Lemma 16.27; their syntactic meaning is clarified by 
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Lemma 16.28 For ail formulas cp and 'ljJ, let cp = 'ljJ mean that <p +-+ 'ljJ EK and 
cp* = cp{Oka6/P1,01a5/P2}. Then 

(i) ,,,.* - ,,,l n* - a 1 · "1 = u.k, 2 = k+11 
( .. ) * - 2 * - 2 . u 71 = az' 72 = az+11 

(iii) (t:(t,ni,7j))* = t:(t,ak+(i-l)'af+(j-1)), for i,j E {1,2}; 

(iv) (t:(t,n1,a5))* = t:(t,al,a5); 

(v) (t:(t, a6, 71))* = t:(t, a6, af). 

Proof Exercise. 0 

We are in a position now to write down formulas Ax! simulating instructions 
I of Minsky machines: 

• If I has the form t ~ (t', 1, 0) then we put 

• If I is t ~ (t',O, 1) then 

• If I is t ~ (t', -1,0) ((t",0,0)) then 

Ax!= (p /\ Ot:(t, n2, 71) ~ Ot:(t', n1, 71)) /\ 

(p/\Ot:(t,a6,71) ~ Ot:(t",a6,71)); 

• Iflist~(t',O,-l)((t",O,O))then 

Ax!= (p /\ Ot:(t, n1, 72) ~ Ot:(t', n1, 71)) /\ 

(pl\ Ot:(t,n1,a5) ~ Ot:(t",n1,a5)). 

The formula simulating P as a whole is 

AxP = f\ Ax!. 
IEP 

Lemma 16.29 Suppose P : (s, m, n) ~ (t, k, l). Then 

p /\ Ot:(s, a;_, a~) ~ Ot:(t, al, af) E K4 EB AxP. 

Proof The proof proceeds by induction on the number of instructions used to 
compute (t, k, l) starting from (s, m, n). The basis of induction is trivial and the 
step of induction follows from Lemma 16.28, according to which 

p/\Ot:(s',a;,,,a~,) ~ Ot:(t',al,,af,) E K4Ef!AxP 

whenever (t', k', l') is obtained from (s', m', n') by applying a single instruction 
inP. O 
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To obtain the converse of Lemma 16.29, it suffices to observe that the follow
ing lemma holds: 

Lemma 16.30 J f= AxP. 

Proof Straightforward using Lemma 16.26. 

As a consequence of Lemmas 16.26, 16.29 and 16.30 we derive 

Lemma 16.31 For every P, (s, m, n) and (t, k, l), 

p /\ <>E(s, a~, a;) --+ <>E(t, ak, af) E K4 EB AxP iff P : (s, m, n) --+ (t, k, l). 

o 

Recall now that we have effectively constructed our formulas for given arbi
trary P and (s, m, n). So Theorem 16.2 provides us with 

Theorem 16.32 (i) There is no algorithm which, given modal formulas cp and 
1/J, could decide whether 1/J E K4 EEHp. 

(ii) There is no algorithm which, given cp and 'lj;, could decide whether 'lj; is 
valid in all transitive Kripke frames validating cp. 

This result can be considerably strengthened by fixing appropriate cp or 1/J. If 
we take P and (s, m, n) for which the second configuration problem is undecid
able then, by Lemma 16.31, we obtain the follqwing: 

Theorem 16.33 There is a program P such that the calculus K4 EB AxP is 
undecidable; besides, there is no algorithm which, given a formula 'lj;, could decide 
whether 1/J is valid in all Kripke frames for K4 EB AxP. 

Say that a formula 1/J is undecidable in (N)ExtL if no algorithm can recognize, 
for an arbitrary cp, whether 1/J E L + cp (respectively, 1/J E L EB cp). To find an 
undecidable formula in NExtK4 we require two more lemmas. 

Lemma 16.34 For every triple (t, k, l) such that P : (s, m, n) f+ (t, k, l), 

Proof Follows immediately from Lemma 16.26. 

Lemma 16.35 P : (s, m, n) --+ (t, k, l) iff 

o 

Proof ( =>) follows from Lemma 16.31 by modus ponens and ( {::::) from Lemmas 
16.30, 16.34 and the fact that r ltf: •p. CJ 

As a direct consequence of Lemma 16.35 and Theorem 16.3 we obtain 

Theorem 16.36 The formula •p is undecidable in NExtK4. 

Remark According to Theorem 16.36, even variable free formulas may be un
decidable in NExtK4. However, there is no undecidable calculus in NExtK4 
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with variable free axioms. The undecidable calculus in Theorem 16.33 was con
structed by adding to K4 an axiom in two variables P1 and P2· In fact even 
one variable is enough: we can identify p1 and P2 and change the substitution in 
Lemma 16.28 to (o+aA---+ okaA) /\ (o+a~---+ 01a~)/P1· 

It is worth noting that in ExtK4 even the formula 1- turns out to be unde
cidable (though it is clearly decidable in NExtK4). Indeed, declare the root r in 
the frame ~ to be its only actual world. Then we have 

Lemma 16.37 For every triple (t, k, l} such that P : (s, m, n) f+ (t, k, l), 

Using this result we obtain 

Lemma 16.38 P : (s, m, n) ---+ (t, k, l) iff 

Using once again the undecidability of the second configuration problem we 
finally arrive at 

Theorem 16.39 The formula 1- is undecidable in ExtK4, i.e., no algorithm 
can recognize, given a formula <p, whether the logic K4 + <p is consistent. 

The only property of 1- we used while proving Theorem 16.39 was that it is 
refuted at r. This means that any formula refutable at r is undecidable in ExtK4. 
In particular, undecidable are all formulas <p such that K4+<p "2 84. By replacing 
r with a reflexive actual world (which is not essential for our construction), we see 
that all formulas <p axiomatizing over K4 extensions of GL are also undecidable 
in ExtK4. 

16.5 Undecidable calculus and formula in Extlnt 

This section should be considered as a system of instructions for transferring 
the results of the preceding one to superintuitionistic logics. We confine our
selves only to describing the construction, formulating lemmas and theorems 
and pointing out their modal prototypes. The reader who has understood the 
construction of the undecidable modal calculus should encounter no fundamentaf 
difficulties in the intuitionistic case. 

Fix an arbitrary Minsky machine P and an arbitrary configuration (s, m, n) 
and let~ be the intuitionistic Kripke frame depicted in Fig. 16.4, with the point 
e(t, k, l) occurring in it iff P : (s, m, n) ---+ (t, k, l). To characterize the points in 
~ we require the following formulas: 
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aO -2 
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aO 
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a~ 

ao 5 
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e(t, k, l) 

r 

FIG. 16.4. 

b2 -3 

b2 

~d 
b2 

0 

bi 

b2 
l 

0::3 = p4---+ p5 v 0:~2, (3':_3 = q4---+ q5 v f3~2, 

0::2 = p3 ---+ p4 v 0::3, f3':_2 = q3 ---+ q4 v (3':_3, 

0::3 = P2 ---+ P3 V a:_2, (3:3 = q2 ---+ q3 V f3':_2, 

0::2 = P1 ---+ P2 V 0::3, f3:2 =qi ---+ q2 V (3:3, 

I= •q5---+ P1 V 0::2, 8 = 'P6---+ qi V f3:2, 

p = / V 8. 

It is not hard to see that a Kripke frame refutes p iff it contains a subframe of the 
form shown in Fig. 16.5 such that the points c and d have no common successors 
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FIG. 16.5. 

in it. Clearly,~ contains only one (up to the evident symmetry) subframe of that 
sort: its points are denoted by the same symbols as the corresponding points of 
the frame in Fig. 16.5. So if p is refuted in ~ under some valuation, the points 
in ~ can be characterized as follows: 

{x: x lltf: aj} = {aj}, {x: x lltf: /1j} = {bj} (i E {O, 1, 2}, j?: -3), 

{x: x lltf: -y} = {g}, {x: x lltf: 8} = {d}, 

{ x : x lltf: f(t al a 2)} = { { e(t, k, l)} if P: (s, m, n) --+ (t, k, l) 
' k> l 0 if P: (s, m, n) f; (t, k, l), 

where x lltf: <p --+ 1/; means x I= <p and x l;b 1/;, and for j ?: -2, t, k, l ?: 0, 

(t 1 2) o ao 1 al 2 a2 
f 'ak, al = nt+l /\ /Jt+l /\ nk+1 /\ /Jk+1 /\ n1+1 /\ f.'1+1 --+ 

o aD 1 al 2 a2 
at V f.'t V ak V /Jk V n1 V /Jl . 

(In fact, the first two conjuncts and the last two disjuncts in aj and /1j, for 
i = 1, 2, are redundant; they are added only to simplify the proof a bit.) 

The intuitionistic counterparts of the formulas ?Ti and Ti from the preceding 
section are: 

7r_2=r, ?r~ 2 =s, ?r_1=p, ?r~ 1 =q, 
2 /\ a2 /\ 1 1 1 al 7ri+l = a_3 f.'-3 ?Ti--+ ?Ti V ?ri-1Va_3V1-'-3> 

?r~+l = a:.3 /\ (3:_3 /\?Ti--+ ?r~ V ?Ti-1 V a~ 3 V (3:._ 3, 
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T_2 = r', T~ 2 = s', T_1 = p', T~ 1 = q', 

Ti+l = / /\ 8 /\ T: __,Ti V Tf-1 V a~3 V {3~3, 

T{+1 = / /\ 8 /\Ti__, T{ V Ti-1 V a~3 V {3~3 (i ~ -1). 

Using them we define, for i,j E {1, 2} and t ~ 0, 

Finally, we define the formulas simulating the instructions I of a Minsky machine 
P: 

• if I is of the form t __, (t', 1, 0) then 

• if I is t __, (t', 0, 1) then 

• if I is t __, (t', -1,0) ((t",0,0)) then 

Ax!= (t:(t',7r1,T1) __, t:(t,7r2,Ti) V p) /\ 

(t:(t",a6,T1) __, t:(t,a6,Ti) V p); 

• if I is t __, (t',O, -1) ((t",0,0)) then 

Ax!= (t:(t',7r1,Ti) __, t:(t,7r1,T2) V p) /\ 

(t:(t",7r1,a6) _, t:(t,7r1,a6) V p), 

and the formula simulating the behavior of P itself: 

AxP = f\ Axl, 
IEP 

Denote by cp* the result of substituting the formulas aL 3 , !3f_ 3 , aL 2 , !3f_ 2 , 
2 {32 2 {32 'tdfth 'bl I I I/• aj_3 , j-3 , aj_ 2 , j-2 ms ea o e vana es r, s, p, q, r, s, p, q ln cp, 

respectively. 



SEMANTICAL CONSEQUENCE ON FINITE FRAMES 

Lemma 16.40 The following equivalences are in Int: 
(i) (E(t, 7rk, rz))* .._. E(t, o:I+k-1> o:]+z-1); 
(ii) (E(t, 7r1, o:5))* .__, E(t, o:}, o:5); 
(iii) (E(t,0:6,ri))* <'-4 E(t,0:6,0:]). 

Lemma 16.41 ~ f= AxP. 

As a consequence of these two lemmas we have 
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Corollary 16.42 E(t, o:~, o:[) ----> E(s, o:;,,, o:~}Y p E Int + AxP if and only if 
P: (s,m,n)----> (t,k,1). 

Now if we take a machine P for which the configuration problem is undecid
able, Corollary 16.42 will mean that the calculus Int+ AxP is also undecidable. 
Thus we obtain 

Theorem 16.43 There is a program P such that the calculus Int + AxP is 
undecidable; besides, there is no algorithm which, given a formula 1/;, could decide 
whether 1/; is valid in all K ripke frames for Int + AxP. 

Observe also that the following statement holds. 

Lemma 16.44 For every triple (t, k, 1) such that P : (s, m, n) ft (t, k, l), 

From this and the preceding lemmas in the same way as Lemma 16.35 we 
derive 

Lemma 16.45 P : (s, m, n) ----> (t, k, 1) iff 

p E Int+ AxP + (E(t, o:L o:r) ___, E(s, o:;,,, o:;,) v p) ___, p. 

Thereby, we prove 

Theorem 16.46 The formula p is undecidable in Extint. 

16.6 The undecidability of the semantical consequence problem on 
finite frames 

When constructing undecidable calculi in Sections 16.4 and 16.5, we were forced 
to use infinite frames simply because every finitely approximable calculus is de
cidable. So for the present nothing can be said about the decidability of the 
semantical consequence on finite frames, i.e., about the decidability of the re
lation t.p f= fin 'I/;, which means that 1/; is valid in all finite frames validating t.p. 

In this section we modify the construction of Section 16.4 to prove the undecid
ability of f= fin. For purely technical reasons it will be more convenient for us 
to deal with only finite transitive irreflexive frames, i.e., to consider the relation 
la /\ t.p f= fin '¢. 

Let ~ be the transitive irreflexive frame shown in Fig. 16.6. Its intended 
meaning will be defined a bit later and meanwhile we introduce some formulas 
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FIG. 16.6. 

characterizing points in i. (We do not actually need Jin this part of the proof, 
but it is helpful to have it at hand.) Put 

p' = 0 2 .1---+ Op V 0--,p, p =Op', 

Clearly x [t!= p and y [t!= p' under some valuation in J iff x = r, y = r' and either 
b5 f= p, bi [t!= p or b6 [t!= p, bi f= p. For the reason of symmetry we will consider 
only the former case. Now we put 

f35 = 0.1 /\ p, (3£ = 0.1 /\ 'P, 

f3{ = oi .1 A oi- 1(3/ f\--,Of3Li (i E {o, l}, 1 < j::::: 6), 

a0 = Of3b+3 
/\ 0(3~+3 

/\ oi+4 .1 (0 :::; i :::; 3), 

aj = Oia.0 /\ ,0H1a.0 /\ f\ --,Oa.~ (0:::; i:::; 3, j > 0), 
k#-i 

t 

t:(t, at, af) = f\ Oa? /\ --iOa.~+ 1 /\Oat/\ --,02at /\Oaf/\ --i02 a.f 
i=O 

where t, k, l ~ 0 and again the Greek letters, denoting formulas, correspond to 
the Roman letters for points in i. The formulas describing an arbitrary position 
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in the chains ab, aL .. . , for i = 1, 2, 3, and an arbitrary configuration are defined 
in the same way as in Section 16.4: 

71'2 = Oa.6 /\ ·Oa.g /\ --,Oa.6 /\ --,Oa.6 /\ Op1 /\ --,0
2p1, 

r1 = o + a.6 A .oa.g A .oa.5 A .oa.5 A P2 A ·Op2, 

r2 = Oa6 /\ .oa.g /\ .oa.5 A ·Oa.6 A Op2 /\ ·02p2, 

a1 = o + a.6 A .oa.g A .oa.5 A .o_a.6 A p3 A ·Op3, 

a2 = Oa.6 /\ ·Oa.8 /\ ·Oa.6 /\ ·Oa.6 /\ Op3 /\ ·02p3, 

t 

E(t, 11'i, Tj) = /\ Oa.g /\ --i0a.~+l /\ 07l'i /\ --i027l'i /\ 0Tj /\ --i02Tj, 
k=O 

t 

E(t,71'1,a.6) = /\ oa.g A ·Oa.~+i A 07r1 A ·0271'1 A oa.6 A ·02a.6, 
k=O 

t 

E(t, a.5, 71) = /\ oa.g /\ --iOa.~+l /\ Oa.6 /\ ·02a.5 /\ Or1 /\ --,02r1, 
k=O 

where t ~ 0, i,j E {1, 2}. The following lemma is proved in the same way as 
Lemma 16.28. 

Lemma 16.47 For all formulas cp and 1/J, let cp =: 1/J mean that o+(cp +-> 1/;) E 

GL and cp* = cp{ Oka.6/P1, 0 1a.6/P2, oma.~/p3}. Then 

( ') ,,,.* - ,.,,1 ,,,.* - ,.,,1 . 1 "l ='-'kl "2 ='-'k+l' 
(1'1') r* - "'2 r* - "'2 · l='-'11 2='-'1+11 
("') * - 3 * - 3 . 111 0'1 =am, 0'2 = a.m+11 

(iv) (E(t,7l'i,Tj))* = E(t,a.l+(i-l)'a.t+(j-1)), for i,j E {1,2}; 

(v) (E(t,71'1,a.6))* =:E(t,a.l,a.6); 

(vi) ( E(t, a.6, r1) )* =: E(t, a.6, a.[). 

The formulas Ax! simulating instructions we are going to use now have an 
essential difference from those in Section 16.4: they not only reflect the transfor
mation of configurations but also calculate the number of steps in computations. 
They are as follows: 

• If I is t --+ (t', 1, 0) then we put 

Ax! = •P /\ O(E(t, 71'1, T1) /\ Oa1 /\ --,02a 1) /\ Oa-2 --+ 

0(E(t1,71'2,r1) /\ Oa2 /\ --i02a-2); 



516 THE DECIDABILITY OF LOGICS 

• If I is t ---+ (t', 0, 1) then 

Ax!= -.p /\ O(E(t, 7r1, T1) /\ Oo-1 /\ -.020-1) /\ Oo-2---+ 

0(€(t', 11"1, T2) /\ Oo-2 /\ -.020-2); 

• If I is t---+ (t', -1, 0) ((t",O, 0)) then 

Ax!= (-.p /\ O(E(t, 7r2, T1) /\ Oo-1 /\-.020-i) /\ Oo-2---+ 

O(f(t', 11"1, T1) /\ Oo-2 /\ -.020-2)) /\ 

(-.pf\ O(E(t,0:6,T1) /\ Oo-1 /\-.020-1) /\ Oo-2---+ 

O(E(t",0:6,T1) /\ Oo-2 /\-.020-2)); 

•If I is t---+ (t',0,-1) ((t",0,0)) then 

Ax! = (-.p /\ 0( E(t, 7r1, T2) /\ Oo-1 /\ 0 0 20-1) /\ Oo-2 ---+ 

0(€(t', 11"1, T2) /\ Oo-2 /\ -.020-2)) /\ 

(-.p /\ O(E(t, 7r1,o:~) /\ Oo-1 /\ -.020-1) /\ Oo-2---+ 

O(E(t",7r1,o:~) /\ Oo-2 /\-.020-2)). 

And again for a Minsky program P we define AxP = /\iEP Ax!. But this time 
we are after another fish. What we really need is the following two formulas: 

and 

where 

rp(P) =la/\ AxP /\.A/\ v, 

1/J(s1, m, n) = •p /\ O(E(s1, o:;,, o:~) /\ Oo:~ /\ ·02o:~)---+ 
•O( E( so, 7r1, Ti) /\ Oo-1 /\ -.02 0-1), 

.A= -.(-.p /\ O(Oo:~ /\ 0 00:8 /\ -.Oa6 /\ -.Oo:~ /\ o+r /\ -.q) /\ 

0( Oo:~ /\ -.oo:g /\ -.00:6 /\ -.Oa~ /\ o+ q /\ -.r)), 

v = -.(-.p /\ 0( q /\ Oo-1 /\ -.020-1 /\ Oa6 /\ Oo:~ /\ Oo:~) /\ 

0(-.q /\ Oo-1 /\ -.02 0-1 /\ Oa6 /\ Oo:~ /\ Oa~)) 

and s1 and s0 are the initial and final states, respectively. The meaning of .A is 
that if a frame validates la/\ .A and at a point x the formula p is false under some 
valuation then the set of points in xi at which Oa5 /\ -.Oa8 /\ -.Oafi /\ -.Oa~ 
is true is strictly linearly ordered by the accessibility relation of the frame. Our 
main technical result is 
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Lemma 16.48 cp(P) Flin 'lj;(s1 , m, n) iff the program P, having started with 
the configuration (s1,m,n), never comes to the final state so. 

Proof Let us begin with ( <=); it is this part of the lemma that uses specific 
features of finite frames. Suppose the machine P starts at (s1, m, n) and works 
forever. To show that cp(P) I= fin '1f;(s1, m, n), assume otherwise. Then there is a 
finite frame Q3 = (V, S) such that 

Q3 I= cp(P) 

but, for some a E V under some valuation in Q3, a IF '1f;(s1, m, n), i.e., 

a IF p, 

a I= O(t:(s1, a;,., a;)/\ Oaf/\ ·02af), 

a I= O(t:(so, 7r1, r1) /\ 01T1 /\ -.021T1). 

(16.4) means that there is b E aj such that 

b I= Oaf, 

b IF o2af, 

while (16.5) implies that for some c E aj, 

(16.2) 

(16.3) 

(16.4) 

(16.5) 

(16.6) 

(16. 7) 

(16.8) 

(16.9) 

(16.10) 

(16.11) 

It follows from (16.7) that there is a point, call it ai, such that bSar and ar I= ar, 
i.e., 

af I= Oa~ /\ -.oag /\ -.oa5 /\ -.Oa~, 

af IF o2a~. 
Similarly, by (16.10) we have a point x E cj such that x I= 1T1 , i.e., 

(16.12) 

(16.13) 

(16.14) 

(16.15) 

By (16.2), (16.3) and the property of), mentioned above, the set of points 
accessible from a at which the conditions of the form (16.12), (16.14) are satisfied 
form a strict chain a~SaL 1 ... Sa~Saf, whose last point is, by (16.13), ar. The 
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points in the chain may be characterized by the formulas n~ in the sense that 
ar F nr and ar ~ On~, for 1 ::; i ::; k. 

By (16.14), x =at for some l E {1, ... , k}, and so, by (16.14), (16.15) and 
(16.11), at f= a1, c f= Ont, c ~ 0 2n?- Thus, we have managed to identify x 
with some at and now, using the conjuncts of <p(P) and the finiteness of <8, we 
will go down step by step from a~ to x = at. 

Suppose P starts working at (s1 , m, n) and produces the infinite computation 
(s1,m,n) = (s1,m1,n1),(s2,m2,n2),(s3,m3,n3),. .. in which Si= so for no 
i > 0. In this computation only the first l steps are of importance for us. Notice 
that for every i E {1, ... , k - 1}, (16.2) yields 

O(t:(si+l,n;,.,+1 ,n;,+J /\ Onr+l /\--i02nr+1). 

Using (16.4) and MP, we obtain then, for 1 ::; i ::; k - 1, 

a F O(t:(si+l, n;,.i+I' n;,+J /\ Onr+1 /\ --i02nr+1) 

and in particular 

The latter condition means that there is a point d E aj such that 

(16.16) 

(16.17) 

(16.18) 

It follows from (16.17) and (16.18) that dSat and --idSat+i ·Since among a~, ... , a~ 
there is only one point where a 1 is true, with the help of (16.14) and (16.15) we 
obtain that d f= Oa1 /\ --i02a 1. 

Now let us put the conditions we need together. From (16.9), (16.10) and 
(16.11) we derive 

(16.19) 

and from (16.16) and (16.17) 

(16.20) 

Since by (16.9) and (16.16), 

SQ SL 

cf=/\ On?/\ --iOn~o+l> d f= /\On?/\ --iOn~1 +1 
i=O i=O 
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and s1 # s0, the points c and d must be distinct. Therefore, we may define a 
valuation in '5 so that c I= q, d ~ q. Together with (16.19), (16.20) and (16.3) 
this gives a~ v, contrary to (16.2). Thus indeed we have cp(P) Ffin 't/;(s1, m, n). 

Now we prove the contraposition of ( ¢= ). Suppose that P starts at (s1, m, n) 
and reaches the final state s0 via the computation 

We are going to separate cp(P) from 't/;(s1, m, n) by the finite frame J shown 
in Fig.16.6, where s = max{s1, ... , sk}, m' = max{m1, ... , mk} and n' = 
max{ n1, ... , nk}. First, it is readily checked that J I= cp( P). On the other 
hand, we can define a valuation S.U in J so that S.U(p) = {b6}, S.U(p1) = {a;,J, 
S.U(p2) = {a;J, S.U(p3) = {aD and then r ~ 1/J(s1, m, n), i.e.,~~ 't/;(s1, m, n). 

D 

Now recall that we associated cp(P) and 1/J(s1, m, n) with a program Panda 
configuration (s1, m, n) in an effective way. So Theorems 16.4 and 16.5 provide 
us with the following results. 

Theorem 16.49 (i) There is a formula cp such that the problem of recognizing, 
for an arbitrary formula 1/J, whether cp I= fin 1/J is algorithmically undecidable. 

(ii) There is a formula 1/J such that the problem of recognizing, for an arbitrary 
formula cp, whether cp I= fin 1/J is algorithmically undecidable. 

Thus the semantical consequence problem on finite frames is undecidable. 
Moreover, since the set { (cp, 1/J) : cp ~fin 1/J} is clearly recursively enumerable, we 
also have 

Corollary 16.50 (i) The set {(cp,1/J): cp Ffin 1/J} is not recursively enumerable. 
(ii) There is a formula cp such that the set { 'lj; : cp I= fin 1/J} is not recursively 

enumerable. 
(iii) There is a formula 1/J such that the set { cp : cp I= fin 1/J} is not recursively 

enumerable. 

16. 7 Admissible and derivable rules 

Admissible and derivable rules are used for simplifying the construction of deriva
tions. Derivable rules may replace some fragments of fixed length in derivations, 
thereby shortening them linearly. Admissible rules, which are not derivable, in 
principle may reduce derivations even more drastically. In this section we con
sider the algorithmic problem of recognizing whether a given inference rule is 
admissible or derivable in certain modal and si-logics. 

To begin with, let us observe that even in tabular logics the admissibility 
problem is not trivial. 

Example 16.51 Let L =Log§. We show that Lis not structurally complete, 
namely that the inference rule Op/\ O•p/ ..L is admissible but not derivable in 
the tabular logic L. 
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Since L is consistent, this rule is admissible iff Oc.p /\ O•c.p rf_ L for any formula 
c.p. Suppose on the contrary that Oc.p/\ O•c.p E L for some c.p. Since L C Triv, both 
formulas Oc.p and O•c.p are in Triv and so c.p, •c.p E Triv because Op___. p E Triv, 
contrary to Triv being consistent. Thus our rule is admissible. 

By the deduction theorem for S4 C L, the rule Op/\ O•p/ 1- is derivable iff 
O(O•p V Op) EL, which is not the case because O(O•p V Op) is clearly refuted 
in the two point cluster. 

Thus the decidability of a logic and the deduction theorem cannot help us in 
general to recognize admissible rules. Yet the admissibility problem for tabular 
logics turns out to be decidable. 

Theorem 16.52 For every tabular logic L, there exists an algorithm deciding 
whether a given inference rule is admissible in L. 

Proof We consider only L E NExtK; other logics are treated analogously. That 
a rule c.p(p1, ... , Pn) / 1/J(P1, ... , Pn) is not admissible in the logic L determined by a 
finite algebra 21 means that there are formulas X 1 ( Q1, ... , Qm), ... , X n ( Q1, ... , Qm) 
such that 

(16.21) 

i.e., 21 I= c.p' and 21~1/J'. Without loss of generality we may assume m::; 1211 (for 
otherwise we could identify some of the variables q1, ... , qm)· Since 21 is finite, 
there are only finitely many pairwise non-equivalent in L formulas in ::; 1211 
variables, and we can effectively construct them. Therefore, trying all possible 
n-tuples x1, ... , Xn of these formulas, we either satisfy (16.21), and then c.p/1/J is 
not admissible, or do not satisfy it, which means that the rule is admitted by L. 

0 

Notice that the criterion of admissibility for tabular logics used in the proof 
above can be clearly extended to arbitrary logics in the following way. 

Theorem 16.53 A rule c.p/1/J is admissible in a logic L in NExtK or Extlnt iff 
the quasi-identity c.p = T ___. 'ljJ = T is true in 2lL(n) for every n < w iff for any 
n < w and any valuation \!Jin 21L(n), \!J(c.p) = T implies \!3(1/J) = T. 

Proof Exercise. 0 

In general this criterion is not effective. However, we can try to "effectivize" 
it using the effective description of the upper part of the universal frames -~h(n) 
obtained in Section 8.7, at least for some well-behaved logics. 

First we show that dealing with normal modal logics, it is sufficient to con
sider inference rules of a rather special form. Let c.p( q1 , ... , q2n+2 ) be a formula 
containing no 0 and 0 and represented in the full disjunctive normal form (see 
Exercise 1.2). Say that an inference rule is reduced if it has the form 
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Theorem 16.54 For every rule cp/1/J one can effectively construct a reduced rule 
cp' / 'ljJ' such that cp N is admissible in a logic L E NExtK iff cp' N' is admissible 
in L. 

Proof Observe first that if cp and 'ljJ do not contain p then cp N is admissible 
in L iff cp /\ (1/J - p)/p is admissible in L. So we can consider only rules of the 
form cp/p0 • Besides, without loss of generality we may assume that cp does not 
contain D (recall that Ocp = ..,o..,cp). 

With every non-atomic subformula x of cp we associate the new variable Px. 
For convenience we also put Px = Pi if x = Pi and Px = J_ if X = l_. We are 
going to show now that the rule 

Pepi\ f\{px - Px1 0 Px2 : X = X1 0 X2 E Subcp, 0 E {/\, V, ~}} /\ 

/\. {px - OpXl : x = Ox1 E Subcp} /Po (16.22) 

is admissible in Liff cp/p0 is admissible in L. For the sake of brevity denote the 
antecedent of (16.22) by cp". 

( =?) Since every substitution instance of cp" /Po is admissible in L, the rule 
rp /\ /\xE Subcp(X - x)/po (obtained from it by replacing each Px with x) and so 
rp/p0 are also admissible in L. 

( <::::) Suppose cp /Po is admissible in L and a substitution instance cp" s of cp" 
is in L. Lets= {ax/Px : x E Subcp}. By induction on the construction of x 
one can readily show that ax - xs E L. Indeed, the basis of induction is trivial 
and the step of induction follows immediately from the equivalent replacement 
theorem. Therefore, acp is equivalent in L to rps. Since cp" s E L, we must have 
in particular peps =a"' E L, from which cps E L and so PoB E L. Thus cp" /Po is 
admissible in L. 

The rule cp" /Po is not reduced, but it is easy to make it so simply by rep
resenting cp" in its full disjunctive normal form cp', treating subformulas Opi as 
variables. 0 

From now on we will deal with only reduced rules different from l_/p0 (which 
is clearly admissible in any logic). Let Vi cpi/Po be a reduced rule, in which each 
disjunct cpi is a conjunction of the form 

(16.23) 

where each ..,i and ..,i is either blank or ..,. It will be convenient for us to identify 
such conjunctions with the sets of their conjuncts. Now, given the non-empty set 
W of conjunctions of the form (16.23) occurring in the premise of the rule under 
consideration, we define a frame i = (W, R) and a model 9Jt = (i, Q:J) on it by 
taking 

cpiRcpj iff 'Vk E {O, ... , m }( -,Opk E cpi ~ ..,opk E !pj /\-,pk E cpj) /\ 

3k E {O, ... ,m}(-,Opk E cpj /\ Opk E cpi), 
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It should be clear that J is finite, transitive and irreflexive. 
We are in a position now to formulate a criterion for admissibility of reduced 

rules in GL. 

Theorem 16.55 A reduced rule Vi 'Pi/Po is not admissible in GL iff there is 
a model wt = (J, W) defined as above on a set W of conjunctions of the form 
(16.23) and such that 

(i) •Po E 'Pi, for some 'Pi E W; 
(ii) 'Pi I= 'Pi, for every 'Pi E W; 
(iii) for every antichain a in J there is 'Pi E W such that, for each k E 

{O, ... , m}, 'Pi I= Opk iff 'Pi I= o+pk for some 'Pi E a. 

Proof ( =?) Suppose '!/Jo, ... , 'l/Jm are formulas in variables q1 , ... , qn such that 
Vi cpj E GL and Po ¢ GL, where x* denotes the formula x{ '!/Jo/po, ... , 'l/Jm/Pm}· 
This is equivalent to wtGL(n) I= Vi cpj and wtGL(n) ~Po (recall that wtGL(n) 
is the n-universal model for GL introduced in Section 8.7). Define W to be the 
set of those disjuncts 'Pi in Vi 'Pi whose substitution instances cpj are satisfied 
in wtGL(n). Clearly W of- 0. Let us check conditions (i)-(iii). 

(i) Take a point x in wtGL(n) at which Po is false. Since Vi cpj is true in 
wtGL(n), we must have x I= cp; for some i. One of the formulas p0 or 'Po is a 
conjunct of cp;. Clearly it is not p0. Therefore, •Po E 'Pi· 

(ii) It suffices to show that, for every 'Pi E W and k E {O, ... , m }, 'Pi I= Opk 
iff Opk E 'Pi (that 'Pi I= Pk iff Pk E 'Pi follows from the definition of W). Suppose 
'Pi I= Opk. Then there is 'Pi E W such that cpiR'Pi and 'Pi I= Pk· By the 
definition of m, this means that Pk E 'Pi and so, by the definition of R, Opk E 'Pi· 
Conversely, suppose that Opk E 'Pi· Then x I= cpi and, in particular, x I= Op'k 
for some x in wtGL(n). Let y be a final point in the set {z E xj: z I= P'k}· Since 
wtGL(n) is irreflexive, we have y I= P'k, y ~ Op'k and y I= cpj for some 'Pi E W. 
It follows that cpiR'Pi and 'Pi I= Pk, from which 'Pi I= Opk. 

(iii) Let a be an antichain in J. For every 'Pi E a, let Xi be a final point in the 
set {y E WGL(n) : y I= cp;}. It should be clear that the points {xi : 'Pi E a} 
form an antichain b in JGL(n) and so, by the construction of JGL(n), there is a 
pointy in JGdn) such that yj= bj. Then the formula 'Pi E W we are looking 
for is any one satisfying the condition y I= cpj, as can be easily checked by a 
straightforward inspection. 

(-¢=:)Let wt be a model meeting (i)-(iii). To prove that Vi'Pi/Po is not ad
missible in GL we require once again the n-universal model wtGL(n), but this 
time we take n to be the length (the number of symbols) of the rule. By induc
tion on the depth of points in wt one can readily show that wt is a generated 
su bmodel of wtG L( n) (recall that we defined wt as a model of the language with 
the variables Po, ... ,pm). 

Our aim is to find formulas '!/Jo, ... ) 'l/Jm such that wtGL(n) F vj cpj and 
wtGL(n) ~Po (here again x* = x{'l/Jo/Po, ... , 'l/Jm/Pm} ). Loosely, we are going 
to extend the properties of wt to the whole model wtGL(n). We take the sets 
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{cpi} in JaL(n) and augment them inductively in such a way that we could 
embrace all points in JaL(n) and retain the property (ii). 

Fix any point 'Pio of depth 1 in the model !JJt and denote by cp?
0 

the set 

(J~i, (n) - J9) U {'Pio}. For the remaining 'Pi in W, we put 'P? = { cpi}. This is 
the basis of our inductive construction. 

Suppose we have already constructed sets cp: for l z 0. Take any set X of 
l + 1 points in W and associate with it a single formula 'PJ satisfying (iii) for 
the antichain consisting of all the first (minimal) points in X with respect to R. 
Define an auxiliary set [X] as follows. Using the abbreviation 

we put [X] = xt if the condition 

Yk E {O, ... , m }( •Opk E 'PJ -> 'Pk E 'PJ) (16.24) 

holds and [X] = xt - xt l otherwise. Now we define cp;+l by adding to cp; all 
sets [X] with which 'PJ was associated (if 'PJ was not associated with any set 
then cp; +1 = cp;). Clearly this process terminates as far as all possi hie subsets of 
points in W are exhausted, i.e., in N = IWI steps. 

It follows directly from the construction that we have 

Lemma 16.56 (i) cp; c;;; cp;+l for any 'PJ E W and l < N; 
(ii) cp; E PaL(n) for any 'PJ E W and l :SN; 
(iii) cp~ n cp; = 0 for any distinct 'Pi, 'PJ E W and l :S N. 

Lemma 16.57 For every x in !JJtaL(n) and every l < N, if x f/. n,.,jEW cp; then 

XE n<p;EX cp~l for some set X of l + 1 points in W. 

Proof The proof proceeds by induction on l. Suppose' [ = 0 and x f/. n,.,jEW cp~. 
By the definition of cp?

0 
and 'P? for i =I- io, all points in J~ i, ( n) are in LJ,.,j E w cp~. 

So x is of depth > 1. But then x sees a point of depth 1, say y E 'P? for some 
'Pi E W, from which x E cp?l. 

Let us assume now that the claim of our lemma holds for l < N - 1 and 
x f/. n,.,jEW'P;+1. By Lemma 16.56 (i), it follows that x f/. n,.,jEW'P; and so, by 

the induction hypothesis, X E nip;EX cp~l for some set X of l + 1 points in W. 
Let 'PJ be the point associated with X and consider the set [X]. 

Suppose (16.24) holds for 'PJ· This means that if x f/. 'PU for all 'Pk f/. X then 
x E [X] and so x E cp;+l, which is a contradiction. Therefore, x E 'PU for some 

'Pk f/. X. Put Y =XU { cpk}. Then we have x E n,.,;EY cp~l and, by Lemma 16.56 

(i), XE n<p;EY cp~+l 1. 
Suppose now that (16.24) does not hold. If x (j_ cp~ 1 for all 'Pk (j_ X then 

either x E [X], which as we know leads to a contradiction, or x E xt l, i.e., there 
is y E xj such that y (j_ U,.,jEW <p;, y E cp~ 1 for all <t?i E X and y (j_ <p~ l for 
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'Pi ¢ X. Of all possible y with these properties we take a final one with respect 
to RaL(n). By the definition of [X], we have y E [X] and soy E cp;+l. Then 

x E cp;+l 1 and, since 'Pj is associated with X and does not satisfy (16.24), there 
is Pk such that Pk E 'Pj but Pk ¢'Pi for all 'Pi EX, i.e., 'Pj ¢ X. Therefore, we 

can put Y =XU { 'Pj }, which provides XE np;EY cp~l ~ np;EY cp~+l 1. 0 

Lemma 16.58 WaL(n) = UP;EW cp.f. 

Proof Take any x E WaL(n). If x E U,.,;EW r.pf-1 then, by Lemma 16.56 (i), 

x E U,.,;EW r.pf and we are done. So suppose that x ¢ U,.,;EW cpf-1. Then by 

Lemma 16.57, x E LJ,.,;EW cpf-11. Let us consider [W] and suppose that for 'Pj 
associated with W condition (16.24) is satisfied. Then clearly x E [WJ and so 
x E r.pf. Suppose now that (16.24) does not hold. As in the proof of Lemma 
16.57, we then have Pk, for some k::; m, such that -.Opk E <.pj, Pk E 'Pj and, by 

(iii), -.pk E 'Pi for all 'Pi E W, which is a contradiction. 0 

According to Lemma 16.56 (ii) and (iii), the sets cpf can be represented as 
maL(n)(ai) for some formulas ai in n variables such that distinct ai and O!j 

cannot be true at any point in !JJ?aL(n) simultaneously. For i::; m we put 

Lemma 16.59 For every point x in cpf, x f= cpj. 

Proof The routine induction on the minimal l such that x E cp; is left to the 

reader as an exercise. 0 

We are ready now to complete the proof of Theorem 16.55. It follows from 
Lemma 16.59 tha;, _for every. x in r.pf' x F vj cpj and ~o, by Lemma 16.58, 
!JRaL(n) f= Vj'Pj, i.e., Vj'Pj EGL. And by ll), there is 'Pj E W such that 

-.po E 'Pj· Therefore, x f= -.p0 for x E cpf and so p0 ¢ GL, which means that 

the rule Vj 'P]/Po is not admissible in GL. 0 

A remarkable feature of the criterion we have just proved is that it can be 
effectively checked. Thus we have 

Theorem 16.60 There is an algorithm which, given an inference rule, can de
cide whether it is admissible in GL or not. 

The effective admissibility criteria similar to Theorem 16.55 can be proved for 
many other logics. We confine ourselves here only to formulating such a criterion 
for Grz. 

Suppose a reduced rule r = Vi 'P]/Po is given. First we delete from its an
tecedent all disjuncts containing -.Opk and Pk for some k. The resulting rule r' 
will be admissible in Grz iff r is admissible in Grz because, for any cp, 1./J, x, 
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Now, if r' = 1- /Po then everything is clear. Otherwise we take a non-empty set W 
of disjuncts in r' and construct the frame~= (W, R) and the model !JJt = (~, m) 
in almost the same way as above: the only difference is that now we take 

'PiR'Pi iff (Vk E {O, ... , m }( -iOpk E 'Pi ---7 -iOpk E 'Pi) I\ 

3k E {0, ... , m }( -iOpk E 'Pi I\ Opk E 'Pi)) V 

'Pi='Pi· 

Theorem 16.61 A reduced ruler= Vi 'Pi/Po, which is different from 1-/Po and 
has no disjuncts containing both -iOpk and Pk for some k, is not admissible in 
Grz iff there is a model !JJt = (~, m) defined as above on a set W of disjuncts in 
r and such that 

(i) -ipo E 'Pi, for some 'Pi E W; 
(ii) 'Pi F= 'Pi, for every 'Pi E W; 
(iii) for every antichain a in~ there is 'Pi E W such that, for each variable 

Pk in r, 'Pi F= Opk iff 'Pi F= o+pk for some 'Pi E a. 

Proof The proof is conducted by the same scheme as the proof of Theo
rem 16.55. 0 

As a consequence we obtain 

Theorem 16.62 The admissibility problem in Grz is decidable. 

We show now that the admissibility problem in Int can be reduced to the 
same problem in Grz and so is also decidable. To this end we require the following 
generalization of Theorem 3.83 in which we assume for simplicity that the Godel 
translation T prefixes D to every subformula of a given intuitionistic formula (see 
Exercise 3.25). 

Theorem 16.63 A rule cp/1/J is admissible in Int iff the rule T(cp)/T(?fa) is ad
missible in Grz. 

Proof ( <==) Let Pl, ... , Pn be all variables in cp and ?fa. Suppose that the rule 
T(cp)/T(?fa) is admissible in Grz and cp(x1,. . ., Xn) E Int. Then by Theorem 
3.83, T(cp(x1, ... , Xn)) E Grz. Since DDp +--+Op E Grz, we have 

T(cp(xi. · · ·, Xn)) +--+ T(cp){T(x1)/P1, ... , T(xn)/Pn} E Grz. 

It follows that T(?fa(xi. ... , Xn)) E Grz and so, again by Theorem 3.83, we obtain 
?fa(x1, ... , Xn) E Int. 

( =>) This part of the proof requires two auxiliary lemmas. 

Lemma 16.64 For every modal formula cp(p1, ... , Pn) there is an intuitionistic 
formula ?fa(p1, ... ,Pn) such that 

Dcp(Dpi, ... , Dpn) +--+ T(?fa) E Grz. 
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Proof The proof proceeds by induction on the construction of <.p. The basis 
of induction is clear because OOp +-+ Op E Grz. The same concerns the step 
of induction for cp = Ocp'. So suppose cp = 1.p'(O<.p1, ... , O<.pm,P1, ... ,pn) and 
cp' contains no occurrence of 0. Then putting 1/Jm+i = Pi and using the fact 
that OOp +-+ Op E Grz, the equivalent replacement theorem and the induction 
hypothesis, we obtain that 

Ocp(Op1, ... , Opn) +-+ Ocp'(T(1/J1), ... , T(1/Jm+n)) E Grz, 

for some intuitionistic formulas 1/J1, ... , 1/Jm+n in the variables p1, ... ,Pn· Now 
we transform cp' into its conjunctive normal form and get either T = -,J_ or 
/\i (V j 'Pi V V k Pk). In the former case we have 

Ocp(Opi, ... , Opn) +-+ T(-,_L) E Grz 

and in the latter 

Ocp(Opi, ... ,Opn) +-+ (\o((\ T('l/Ji)-4 VT(1/Jk)) E Grz 
j k 

0 

Lemma 16.65 Suppose that <.p(p1, ... ,pn) </. Grz. Then there exist formulas 
x1(qi, ... ,qm), ... ,xn(qi, ... ,qm) such that cp(x~, ... ,x~) </. Grz, where x~ = 
Xi(Oqi, ... , Oqm)· 

Proof Follows from the fact that Grz is finitely approximable and that every 
set of points in a finite partially ordered frame can be represented as a Boolean 
combination of upward closed sets. 0 

We are in a position now to complete the proof of Theorem 16.63. Suppose 
a rule cp/1/J is admissible in Int, p1, ... ,Pn are all the variables in it and assume 
also that, for some X1, ... , Xn, 

By Lemma 16.65, there are substitution instances x~ of Xi such that 

In accordance with Lemma 16.64, for each x~ we choose an intuitionistic formula 
x~' such that 

Since every variable in T(1/J) is "boxed" and ODp +-+ Op E Grz, we then have 

T('lf;){T(xn/P1, ... , T(x~)/Pn} </. Grz 
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and so T( 1/i(x1,. .. , x~)) tf. Grz, from which 1/i(x1,. . ., x~) t/. Int and hence 
cp(x1, ... , x~) t/. Int. Now we apply the same chain of arguments but in the 
reverse order to cp(x1, ... , x~) and finally get 

which establishes the admissibility of T(cp)/T(1/i) in Grz. 0 

As a consequence of Theorems 16.62 and 16.63 we obtain 

Theorem 16.66 The admissibility problem for inference rules in Int is decid
able. 

For the logics considered above and many others as well the derivability prob
lem for inference rules is solved trivially using the deduction theorem. We remind 
the reader that according to Theorem 3.51 and Exercise 3.5, if necessitation RN 
is not a postulated inference rule in a logic L then 

and if L E NExtK4 and RN is a postulated rule in L then 

Thus, in these cases the derivability problem for inference rules reduces to the 
decidability problem, i.e., we have 

Theorem 16.67 (i) If the rule RN is not postulated in a logic L then the deriv
ability problem for inference rules in L is decidable iff L is decidable. 

(ii) The derivability problem for inference rules in a logic L E NExtK4 is 
decidable iff L is decidable. 

The same result holds of course for modal logics containing tr an, for some 
n < w. In general, in view of the existential quantifier in the deduction theorem 
for logics in NExtK, the situation is more complicated. However, for some sys
tems the deduction theorem can be "effectivized", as was done in Theorem 3.57. 
Another method of establishing the decidability of the derivability problem in a 
logic L is to show that L is globally finitely approximable. Using one of these 
ways one can prove the following: 

Theorem 16.68 The derivability problem for inference rules is decidable in the 
logics K, D, T, T EB p ~ DOp. 

Proof Exercise. 0 

Algorithms recognizing admissible or derivable inference rules in a logic L can 
be used as decision algorithms for L as well: cp E L iff the rule T / cp is admissible 
in L iff T /cp is derivable in L. However, the converse does not hold. The aim of 
the rest of this section is to present corresponding examples 
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Let X be a recursive set of pairs of natural numbers such that the projection 
X' = { n : :Jm (m, n) E X} is not recursive. Denote by J(m, n) the transitive 
frame shown in Fig. 16.7 and consider the normal modal logic 

/m-1 n-1) Li= Log{J(m,n): \-
2
-,-

2
- ~ X}. 

Theorem 16.69 (i) The derivability problem for inference rules in L1 is decid
able. 

(ii) The admissibility problem for inference rules in Li is undecidable. 

Proof (i) Since L 1 2 K4, it suffices, by Theorem 16.67, to show that L 1 is 
decidable. And this is a consequence of the following: 

Lemma 16.70 For every formula r.p, r.p ~ L 1 iff J(m, n) ~ r.p for some m and n 
such that max{m,n}::; l(r.p) + 1 and J(m,n) f= L1. 

Proof In Section 18.3 we will be proving similar results in full details. So we 
leave this one to the reader as an exercise. A little hint is that all frames of the 
form J(i, 2n) and J(2m, i) validate L1 . 0 

(ii) We require the following variable free formulas: 

a= D.l, {3 =OT/\ DOT, 

1 = Oa /\ -.02 a /\ -.0{3, 8 ~ Oa /\ 0{3 /\ -.02a 

which characterize, respectively, the points a, b, c, din J(m, n). Now put 

where 

'Pn(P) = -.(0(-.08 /\ 01 /\p) /\ -.o(-.08 /\ 0(01 /\p)) /\ 
0( -.o, /\ 0 2n+i 5) /\ -.0( ....,o, /\ 0 2n+ 2 8))' 

'lf;(p) = -.(-.08 /\ o, /\p). 

Since the rule rn is defined effectively by n, (ii) will follow from the fact that X' 
is not recursive and 
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Lemma 16. 71 The rule rn is admissible in Li iff n t/. X'. 

Proof Suppose n EX'. This means that there ism such that (m, n) EX and 
so J(m, n) is not a frame for Li. It is not hard to see then that 'Pn(02m+ll) E Li. 
However, '!jJ(o2m+i1) tf. Li because this formula is refuted in all frames J(2k, i) 
for sufficiently big k (e.g. k = 2m + 4). Thus rn is not admissible in Li. 

Now let n tf. X' and show that rn is admissible in Li. Suppose 1/J(x) t/. Li for 
some formula X· Then for some m and k such that (m;-i, k2i) tf. X and some 
valuation, --.Ob /\ 01 /\ x is true at a point x in J( m, k). It follows that x = ai 
for some i. Let i be the minimal number for which ai I= --.Ob/\ 01 /\ X· 

Since n tf. X', J(i, 2n + 1) is a frame for Li. Define a valuation in this frame 
so that the same variables be true at the points of the set ail in J(i, 2n + 1) and 

J(m, k). Then we shall have J(i, 2n + 1) ~ 'Pn(X) and so 'Pn(X) t/. Li. 0 

This completes the proof of Theorem 16.69. 0 

Let us consider now the frame Q5 = (V, S) depicted in Fig. 16.8. Q5 is not 
transitive; the arrows show all the accessibilities in it. Chains of points ai, bi, Ci 
and di satisfy the following conditions. If (m, n) E X then Q5 contains a chain of 
the form 

bm+iSbmS ... Sb_iSa2n+iS ... SaiSao 

and besides, for every pair (k, 1), Q5 contains a chain of the form 

Put L2 = LogQ5. 

Theorem 16. 72 (i) L 2 is decidable. 
(ii) The derivability problem for inference rules in L 2 is undecidable. 

Proof (i) (Sketch) It is not hard to observe that although Q5 is infinite (and L 2 

is not finitely approximable), in order to refute a formula <p tf. L 2 it is sufficient to 
consider only the part of Q5 with the chains of ai, bi, Ci and di of length :::; l ( r.p) + 1 
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and, since X is recursive, we can effectively check whether (!; contains chains of 
that sort. 

(ii) We introduce formulas characterizing points in l!5 (follow the diagram of 
(!;): 

Now put 

a=D1-, f3=0T/\D 2
_l_, 

I= Oa /\ 0 2a /\ --i0/3, 8 = Oa /\ 0/3 /\ 01, E = 08, 

Ao= 0/3 /\ --i8, >.i+l = O>.i /\ --,Oa, >.~+1 = O>.i /\ Oa (i 2: 0). 

rn = D--,>.;n+2/D--i8 

and show that the rule rn is derivable in L2 iff n EX'. 
Suppose rn is derivable in L2. By the deduction theorem, we then have some 

m < w such that 
m 

/\ oi__,>.;n+2 ---+ D--,8 E L2 
i=l 

or, which is equivalent, 
m 

l!5 F= o8 ___. V oi>.;n+2· 
i=l 

Since e is the only point in (!; at which 08 is true, e F v:.1 Oi >.;n+2 and so 
we have a chain eSb1+1Sb1S ... SL1Sa2n+iS ... Sa1Sao for some l S m. By the 
construction of 1!5, this means that (l, n) EX, from which n EX'. 

It is easy to see that all the steps in this argument are reversible. Conse-
quently, rn is admissible in L2 whenever n EX'. 0 

16.8 Exercises and open problems 

Exercise 16.1 Show that all logics in NExtK4.3 containing denn for some 
n < w are finitely approximable. 

Exercise 16.2 Show that there are undecidable recursively axiomatizable logics 
in NExtK4.3. 

Exercise 16.3 Fork< w, say that a type t = (6, .. .,en) for a(J,'.D,1-) is 
a k-type if, for every ei such that ei = m < w or ei = m+, we have m s 
k. Suppose L is a finitely axiomatizable normal extension of K4.3 and k the 
maximal number of irreflexive points in the frames underlying the formulas in 
some finite canonical axiomatization of L. Prove that, for any canonical formula 
a(J, '.D, 1- ), a(J, '.D, 1-) E Liff for every k+ 1-type t for a(J, '.D, 1-), the t-extension 
of J is not a frame for L. 

Exercise 16.4 Let cp =fin '!/; mean that cp and '!/; are valid in the same finite 
frames. Prove the analogues of Theorem 16.49 and Corollary 16.50 for the relation 
=fin· 
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Exercise 16.5 Show that there is a purely implicative undecidable formula in 
Extlnt. 

Exercise 16.6 Prove an analog of Theorem 16.14 for si-logics. 

Exercise 16.7 Prove that (p ~ q) V (q ~ p) and all formulas in one variable 
are decidable in Extlnt, and all variable free formulas are decidable in NExtGL 
and ExtGL. 

Exercise 16.8 Prove that the normal modal logic of the two point irreflexive 
chain is not structurally complete. 

Exercise 16.9 Prove that every structurally complete normal modal logic either 
contains D = K EB OT or coincides with K EB 01-. 

Exercise 16.10 Give an example of a structurally incomplete tabular si-logic. 

Exercise 16.11 Show that the rule Dp/p is admissible but not derivable in GL. 

Exercise 16.12 Prove the decidability of the derivability problem for inference 
rules in every tabular logic. 

Problem 16.1 Are finitely axiomatizable modal and si-logics of finite width de
cidable'? 

Problem 16.2 Can Theorem 16.16 be extended to logics in NExtK '? 

Problem 16.3 Are the realizability logic and ML decidable'? 

Problem 16.4 Is the admissibility problem in K decidable'? 

16.9 Notes 

The material of Section 16.2 is rather standard and mostly well known (not only 
to modal logicians). Say, Craig's (1953) theorem holds in a very wide class of 
formal systems; counterexamples for it have been found only among equational 
logics having no relation to "real" logics. 

Till the end of the 1960s the decidability of various non-tabular logics was 
established mainly with the help of Theorem 16.11, i.e., by proving the finite ap
proximability with an effective upper bound for the size of the minimal refutation 
frames (algebras, matrices). Harrop's theorem is more general. However, its defi
ciency is that now we cannot a priory estimate the effectiveness of the algorithm 
it provides. The examples of finitely approximable recursively axiomatizable log
ics that are not decidable, presented earlier in the book, and Theorem 16.14, 
proved in Chagrov (1994a), answer the natural questions concerning possible 
generalizations. The last theorem of Section 16.2 is the strongest (and so practi
cally useless) generalization of Harrop's theorem. Some results on the connection 
between the decidability of finitely approximable logics and recursive bounds of 
the size of refutation models can be found in Ulrich (1982, 1983, 1984). 

At the end of the 1960s a method of embeddings into various rich and yet 
decidable theories was developed to prove the decidability of modal and si-logics 
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that are not finitely approximable; consult Gabbay (1971a, 1975, 1976). The 
most popular tools were Rabin's (1969) and Biichi's (1962) theorems. Gabbay 
(1975) used Rabin's theorem to establish the decidability of K EB onop --+ Op, 
K EB Op--+ onp, K EB onop--+ Op and some other logics. One of the strongest 
results obtained by this method is Sobolev's (1977a) theorem, according to which 
all si-calculi of width 2 and all si-calculi of finite width containing the formula 

(((p--+ q)--+ p)--+ p) v (((q--+ p)--+ q) --+ q) 

are decidable. Note, however, that such decidability results can be proved also 
without using rich theories. The proof that all calculi in NExtK4.3 are decidable, 
taken from Zakharyaschev and Alekseev (1995), shows an alternative way to 
establish decidability by proving first a good completeness result. Wolter (1996c) 
extended Theorem 16.25 to tense linear calculi (which in general are not even 
Kripke complete). 

The· question on the approximability of logics by recursive algebras was raised 
by Kuznetsov in the 1960s. The fact that recursive pseudo-Boolean algebras are 
not enough to characterize all si-logics was discovered by Chagrov and Tsytkin 
(1987), and Chagrov (1994a) strengthened this result to si-logics of widths 3 and 
to other types of recursive semantics; for example, he showed that there is a si
logic of width 3 (by Fine's theorem, it is Kripke complete) which is characterized 
neither by recursive algebras, nor by recursive Kripke frames. These results were 
obtained by using the cardinality argument (see Notes to Chapter 4). They give 
no solution to the analogous problems concerning calculi. The following problems 
raised by Kuznetsov are still open: 

• Is it true that every (si-) calculus is characterized by recursive algebras? 

• Is it true that every (si-) calculus characterized by recursive algebras is 
decidable? 

It would be of interest also to clarify the relation between recursive algebras and 
frames. In general, however, this field of studies remains still terra incognita. 

The first undecidable modal and si-calcuti were constructed by Thomason 
(1975c), Isard (1977) and Shehtman (1978b). Shehtman (1982) gave examples of 
undecidable bimodal and tense calculi whose axioms are reductions of modalities. 
He notes also that the decidability problem for normal modal calculi axiomatiz
able by modal reduction principles is open. 

Since undecidable calculi can be used as a base for obtaining "negative" so
lutions to various algorithmic problems, it is of interest to find the simplest 
possible calculi of that sort. For example, Chagrov (1994c) constructed unde
cidable calculi in Extlnt, NExtS4 and NExtGL with axioms in four, three and 
one variable, respectively. For comparison we remind the reader that all calculi 
in NExtS4 with one-variable axioms are finitely approximable and so decidable 
(see Section 11.6). On the other hand, Sobolev (1977b) constructed a si-calculus 
with two-variable axioms that is not finitely approximable, and Shehtman (1977) 
even an incomplete one. It is unknown whether there exist undecidable si-calculi 
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with axioms in two or three variables; the same concerns calculi in NExtS4 with 
two-variable axioms. 

Having used Minsky machines to construct undecidable calculi, we followed 
the idea of Isard (1977), developed further by Chagrova (1989a, 1989b) who gave 
an example of an undecidable elementary si-calculus. 

The notion of undecidable formula was introduced in Chagrov (1994c), where 
numerous examples of such formulas in various classes of logics were given. Here 
is the simplest known undecidable formula in Extlnt: 

•(p /\ q) v •(•p /\ q) v •(p /\ •q) v •(•p /\ •q). 

The algorithmic problem of semantical consequence on finite frames was 
solved negatively by Chagrov (1990a) practically for all natural classes of frames, 
including intuitionistic ones. The presentation of Section 16.6 follows Chagrov 
and Chagrova (1995). 

Note by the way that the decidability problem for such interesting logics as 
the realizability logic and ML is still open in spite of numerous attempts to solve 
it. 

Thomason (1975a) showed that there is a modal formula <p such that the set 
of formulas which are valid in all frames for <p is II}-complete. Note, however, 
that this result as well as similar results of Thomason (1975b) essentially use 
nontransitive frames. It would be of interest to transfer them to the transitive 
and intuitionistic cases. 

One of the reasons to study admissible and derivable in a given logic infer
ence rules are various applications. We have already mentioned the possibility of 
using such rules to shorten derivations. Another application is connected with 
the problem of finite axiomatizability, because it essentially depends on the set 
of postulated inference rules. Without going into details, note, for instance, that 
although Medvedev's logic is not finitely axiomatizable, as was shown by Mak
simova et al. (1979), there is still a hope to find a finite axiomatization for it 
by adding some sort of (non-structural) rules; see (Medvedev, 1979). An active 
study of non-structural rules was initiated by Gabbay (1981b); see (Venema, 
1993). 

The decidability of the admissibility problem for inference rules in GL, Grz 
and Int was proved by Rybakov (1984b, 1985a, 1985b, 1986a, 1986b, 1987a, 
1987b, 1989, 1990a, 1990b, 1990c, 1993). For other logics similar results were 
obtained in Rybakov (1981, 1984c, 1984a). In particular in the latter paper it 
was shown that the admissibility problem is decidable in all extensions of S4.3, 
which is a generalization of Fine's (1971) result according to which all these 
logics are decidable. The same ideas have been recently extended by Rybakov 
(1994) to K4 and some of its extensions. 

The key role in all these papers is played by the universal models, which, as 
we saw in Chapter 8, have a clear structure in the case of finitely approximable 
logics in NExtK4 and Extlnt. We know no other logic for which the admissibility 
problem has been solved positively. Even for K, whose universal models can be 
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described in some way, this problem has not been solved yet. Another open 
problem here is to construct a decidable calculus the admissibility problem for 
which is undecidable. 

A decidable logic whose admissibility problem is undecidable was constructed 
by Chagrov (1992b). We know nothing about examples of that sort in Extlnt. 
Spaan (1993) proved that the logic 

Alt2 EB f\ OOpi ---+ V OO(pi /\ PJ) 
l~i~4 l~i<j~4 

is decidable (actually, it is a subframe logic; see Exercise 11.21) but the deriv
ability problem for inference rules in it is undecidable. Kracht and Wolter (1997) 
showed that the derivability problem for inference rules is undecidable in the 
class of decidable logics. 



17 

THE DECIDABILITY OF LOGICS' PROPERTIES 

In this chapter we return to the main question of Part IV-how to determine 
whether a given logic satisfies a given property-and consider it from the algo
rithmic point of view. 

17.1 A trivial solution 

The ideal solution to the algorithmic problem of recognizing a property P of 
logics in a given family should present an algorithm which, given an effective 
definition of a logic L in the family, could determine whether L satisfies P or 
not. In this case it is appropriate to call the property P decidable in that family. 
As we saw in Section 16.2, there are distinct (though equivalent and effectively 
related with each other) algorithmic ways of defining logics: an algorithm enu
merating a logic's formulas, an algorithm enumerating its axioms, an algorithm 
recognizing them. So without loss of generality we can speak only about recur
sively axiomatizable logics, but freely use any of these ways. 

Unfortunately, this "ideal solution" is inaccessible, as is shown by the follow
ing: 

Theorem 17.1. (Kuznetsov's theorem) No non-trivial property of recursi
vely axiomatizable logics is decidable in any lattice of logics considered above. 

Proof We will use the undecidability of the halting problem for Minsky ma
chines. Also we need an effective procedure enumerating pairs of natural num
bers. Recall that l(n) and r(n) denote the left and the right components of the 
pair with number n, respectively (i.e., n is the number of the pair (l(n), r(n)) ). 

Let P be a non-trivial property of logics in some lattice. Since P is not 
trivial, the lattice contains a logic different from the inconsistent one. Suppose for 
definiteness that the inconsistent logic satisfies P and a logic L with a recursive 
enumeration cp0 , cp1 , ... of its formulas does not have P. 

Now, given an arbitrary program P, we define an effective procedure for 
enumerating axioms 'l/;0 , 'l/;i, ... of some logic L': 

{ 

'Pn if P does not halt after 
'I/Jn = l(n) steps on the input r(n) 

J_ otherwise. 

Then we have the following implications: 
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P does not halt on any input 

.JJ. 
'I/Jn = 'Pn for every n 

.JJ. 
L' =L 

.lJ. 
L' does not have P 

and 
P halts on some input 

.JJ. 
J_ is an axiom of L' 

.JJ. 
L' is inconsistent 

.JJ. 
L' satisfies P. 

Thus, if we could effectively recognize P then we would also be able to decide 
the undecidable halting problem. 0 

Theorem 17 .1 prompts us to change the definition of decidable property. We 
call a property P decidable in the lattice of logics (N)ExtL if there exists an 
algorithm which, given a finite set r of axioms, can determine whether L + r 
(respectively, L EB r) satisfies P or not. 

In the next section we shall see that the decidability problem for properties 
in this sense, i.e., for properties of calculi, is not so trivial and frustrating. 

17.2 Decidable properties of calculi 

In this section we have collected those properties the decidability of which follows 
easily from the results obtained in Part IV. 

We begin with the consistency problem in NExtK. According to Makinson's 
theorem, the logic K EB J_ has exactly two immediate predecessors in NExtK, 
viz., Logo and Log•. Hence, K EB r.p -:/:- K EB 1- iff r.p E Logo or r.p E Log•. So to 
decide whether a logic K EB r.p is consistent it suffices just to check the conditions 
o I= r.p and • I= r.p, which can be done in finitely many steps. If at least one of 
them is satisfied then K EB r.p is consistent, otherwise it is inconsistent. Thus we 
obtain 

Theorem 17.2 The property of consistency is decidable in NExtK. 

Let us generalize this observation. In fact, the algorithm described above 
decides the problem of coincidence with a fixed logic, namely, the inconsistent 
one. And almost the same scheme works for recognizing the coincidence with 
any decidable logic L having in the lattice under consideration finitely many 
decidable immediate predecessors, say, L1, ... Ln. Indeed, a logic L' coincides 
with Liff L' ~ L, L' Cl L1, ... , L' Cl Ln, which can be effectively checked if L' is 
finitely axiomatizable. Using this scheme together with Theorems 12.7, 12.9 we 
obtain 
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Theorem 17 .3 The property of coincidence with a fixed tabular logic in NExtK4 
(Extlnt, ExtS4) is decidable. 

This scheme is not applicable immediately to tabular logics in ExtGL. Yet, 
it can be "pressed out" to produce 

Theorem 17.4 The property of coincidence with a fixed tabular logic in ExtGL 
is decidable. 

Proof Exercise (see the proof of Theorem 17.6). 0 

Sometimes a similar argument can be used for proving the decidability of 
tabularity. Let us consider this property in Extlnt. As we saw in Section 12.3, 
every non-tabular si-logic is contained in one of the three pretabular logics in 
Extlnt, call them Li, L2 and LJ. So a calculus Int+ <p is tabular iff <p </. Li, 
<p </. L2 and <p </. LJ, which can be checked effectively, because Li, L2 and L3 are 
decidable. Analogous tabularity criteria hold for NExtS4 and ExtS4. Thus we 
have 

Theorem 17.5 The property of tabularity is decidable in NExtS4, ExtS4 and 
Extlnt. 

To extend this result to NExtGL and ExtGL a more sophisticated argument 
is required. 

Theorem 17.6 Tabularity is decidable in NExtGL and ExtGL. 

Proof We consider only ExtGL and leave the easier case of NExtGL to the 
reader. 

Observe first that if on .l E GL + <p for non < w then L = GL +<pis not 
tabular. Indeed, otherwise, by Corollary 12.3, the logic L + {OnT : n < w} 
would be tabular, which is a contradiction, because it is consistent and does not 
have finite frames at all. 

Suppose now that we have succeeded in establishing that on .l EL for some 
n < w, i.e., L E Ext(GL +on ..L). According to Exercises 12.6-12.8, there are 
finitely many pretabular logics in Ext( GL +on .l) and all of them are decidable. 
So we may use the scheme above to check whether Lis tabular. Thus, our problem 
reduces to the problem of verifying in an effective way whether on .l E L for some 
n <w. 

In Exercise 13.13 we described the Post complete extensions of GL. Let us 
denote them here by Li: for i < w, Li is the logic of i-point irreflexive chain with 
the distinguished root and Lw = GL.3 +re is the logic of the matrix of finite 
and cofinite sets in the frame (w, >) whose ultrafilter of distinguished elements 
consists of cofinite sets. It is not hard to see that on .l E G L + cp for some n 
iff cp </. Lw. Indeed, if cp E Lw then Lw E ExtL, and so on .l </. L for any n, 
because otherwise on .l E Lw, which is impossible. And if cp </. Lw then either 
L is inconsistent or it is consistent and its Post complete extensions are of the 
form Li for i < w. Now observe that if L had infinitely many Post complete 
extensions then, by Theorem 13.22, Lw would also be an extension of L. So L 
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has only finitely many extensions of the form Li, say, Li1 , • •• , Li...,. But then 
on l. E L, where n > max{i1, ... ,im}, for otherwise L + onT is consistent, 
contrary to onT (j. Liu ... , onT (j. Li...,· To complete the proof, it remains to 
recall that, by Theorem 11.38, Lw is decidable. 0 

The part of the proof above concerning the problem whether on l. E GL + <p 
for some n < w may be treated as determining whether GL+cp is locally tabular. 
The local tabularity of GL +<pis also equivalent to the existence of n < w such 
that on l. E GLEB<P, which in turn is equivalent to <p (j. GL.3 (see Section 12.4). 
And the liJ,tter can be checked effectively because GL.3 is decidable. In the same 
way one can recognize the local tabularity of calculi in NExtS4 and ExtS4. Thus 
we obtain 

Theorem 17.7 Local tabularity is decidable in the classes NExtGL, ExtGL, 
NExtS4, ExtS4. 

The final decidability result in this section is left to the reader as an exercise: 

Theorem 17 .8 · The interpolation property is decidable in the classes Extlnt 
and NExtS4. 

Proof Use results of Section 14.4. 0 

17.3 Undecidable properties of modal calculi 

In fact, in Section 16.4 we already met with undecidable properties. Such was the 
property of coincidence with the undecidable calculus or with the (finitely ap
proximable and so decidable) calculus axiomatizable by the undecidable formula 
p. And the most important undecidable property found there was the consistency 
in ExtK4. The latter result can be extended to 

Theorem 17.9 Let L be a tabular extension of K4. Then the problem of coin
cidence with L is undecidable in ExtK4. 

Proof Consider the logic 

where v axiomatizes L over K4 (by Theorem 12.4, L is finitely axiomatizable) 
and contains no occurrences of P1, P2, and the remaining formulas result from 
those in Section 16.4 by replacing every occurrence of p with --iv. 

Lemma 17.10 (i) P: (s, m, n) -t (t, k, l) implies L' = L. 
(ii) If P : (s, m, n) ~ (t, k, l) then L' is not tabular and so L' =f. L. 

Proof (i) In the same way as in the proof of Lemma 16.29 one can show that 
if P : (s, m, n) -t (t, k, l) then 

It follows by MP that K4 + v ~ L'. The converse inclusion is clear because all 
additional axioms of L' are either of the form -iv/\ <p -t 'l/; or of the form <p -t v. 
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(ii) It suffices to observe that if P : (s, m, n) -f. (t, k, l) then all L's axioms 
are valid at the point r in the frame shown in Fig. 16.3, where all the formulas 
f3n, defined in Section 12.1, are refutable, and so, by Theorem 12.1, L' is not 
tabular. O 

Theorem 17.9 follows immediately. 

Another consequence of Lemma 17.10 is 

Theorem 17.11 The property of tabularity is undecidable in ExtK4. 

0 

Now we consider the tabularity problem in NExtK. Let J be the nontransitive 
frame which is obtained from the (transitive) frame in Fig. 16.3 by making r 
reflexive and putting biRr. 

Theorem 17.12 For every formula 11 refutable at any point in J save b0 and 
such that 0 T ¢ K EB 11, the problem of coincidence with K EB 11 is undecidable in 
NExtK. 

Proof Without loss of generality we may assume that P1 and P2 do not occur 
in 11. In all formulas from Section 16.4 we replace every occurrence of (30 with 
(30 /\ 0 2 0..l, .p with -.11 and every formula of the form Ot(t, 7r, T) with 0 3 t(t, 7r, T ). 

For instance, the axiom Ax( t --> (t', 1, 0)) will look now like 

Using the former notations for the new formulas, we put 

Lemma 17.13 (i) P: (s, m, n) --> (t, k, l) implies L = K EB 11. 
(ii) If P : (s, m, n) -f. (t, k, l) then J f= L. In particular, 11 ¢ L and so 

L#KEB11. 

Proof (i) is proved analogously to (i) in Lemma 17.10. To prove (ii) one can 
observe that after all the changes Lemma 16.30 still holds (here we use the fact 
that the set of points in J, where 11 is refutable, coincides with the set of those 
points that see "in three steps" (via r) every point of the form e(t', k', l') ). Details 
are left to the reader as an exercise. 0 

Theorem 17.12 is a direct consequence of Lemma 17.13. 0 

This rather general theorem has a number of interesting consequences. 

Corollary 1 7 .14 Let L' be a tabular normal modal logic such that 0 T ¢ L'. 
Then the problem of coincidence with L' is undecidable in NExtK. 

Proof Observe that from every point in J save b0 arbitrary long chains are 
accessible. Therefore, by Theorem 12.1, the axiom of L', call it 11, satisfies the 
condition of Theorem 17.12. O 
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Corollary 17.15 The tabularity problem is undecidable in NExtK. 

Proof It suffices to take 11 as in the previous proof, L as in the proof of Theo
rem 17.12 and use Lemma 17.13. 0 

Corollary 17.16 Let L be a finitely axiomatizable consistent normal extension 
of GL (e.g., GL itself, GL.3, Log•). Then the problem of coincidence with L is 
undecidable in NExtK. 

Proof Exercise. 0 

Let us consider now other standard properties of modal logics. In the rest of 
this section we will be dealing only with the lattice NExtGL. From now on the 
notations will have a different meaning; a resemblance with the previous ones 
merely emphasizes an analogy. 

To understand the axioms of the logic to be introduced below it is useful 
to bear in mind the (transitive) frame J = (W, R, P) whose underlying Kripke 
frame is shown in Fig. 17.1 and P is the family of finite and cofinite subsets of W. 
As before, J contains only those points e(t, k, l) for which P: (s, m, n) -> (t, k, l). 
P and (s, m, n) are chosen in accordance with Theorem 16.3, so that the second 
configuration problem is undecidable for them. 

It is easily checked that J f= GL. Notice also that r is the only point in J 
where the formula 

11 = 0(02 l_ -> Op V 0-ip) 

is refuted: this happens iff bo f= p, bi [it= p or bo [it= p, bi f= p. 
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Suppose now that 11 is really refuted in J under some valuation. Since bo 
and b1 are symmetrical in J, without loss of generality we may assume that the 
valuation satisfies the former of the alternatives above. It is easy to see then that 
the points aj in J are characterized by the formulas: 

ab= O(Oi+2(0_l_ /\p) /\ -.oi+3 (0_l_ /\p) f\-.O(O_l_ /\-.p)) /\ 

0( oi+2(0_l_ /\ -.p) /\ -.oi+3(0_l_ /\ p) /\ -.0(0_1_ /\ p)) /\ 

-.02(0i+2(0_l_ /\ p) /\ -.oi+3 (0_l_ /\ p) /\ -.O(O_l_ /\-ip)) /\ 

-.02(0i+2(0_l_ /\ -.p) f\-.Oi+ 3 (0_l_ /\-.p) /\-.0(0_1_ /\p)), 

ai. = oJai /\ -.oJ+lai /\ /\ ak (i E {O 1 2} J. > 1) 
J 0 0 0 ' ' ' - . 

i#k 

Using them, in exactly the same way as in Section 16.4 we define 1:(t,aLaf), 71"1, 
71"2, T1, T2, 1:(t,11"i,Tj), 1:(t,7r1,a6), 1:(t,a6,T1) and then AxP with -.11 instead of p 
and prove the literal analogues of Lemmas 16.26-16.31. 

We require also the formulas 

11' = 0(03 _l_ ~ 0(02 _l_ /\OT~ q) V 0(02 _l_ /\OT~ -.q)), 

A1 = q1 /\ O-.q1 /\ 0 5 (0_1_ /\ p) /\ -.O(O_l_ /\ -.p), 

µ1 = q2 /\ O-.q2 /\ 0 5 (0_1_ f\-.p) /\ -.0(0_1_ /\p), 

A2 = Ai{Oqifqi}, µ2 = µi{Oq2/q2}, 

"'i = 0 Ai /\ Oµi /\ -.02 Ai /\ -.02 µi ( i E {1, 2}). 

Now, given a configuration (t, k, l), we define a logic L by taking 

L = GL EB AxP EB (-.11 /\ 01:(s, a;,,, a~) ~ 01:(t, aL af)) ~ 11 EB 

11V11' EB 11 V (0"'1 ~ 0(0"'2 /\ -.0+"'1)). 

Lemma 17.17 Suppose P: (s, m, n) ~ (t, k, l). Then: 
(i) L=GLEBv; 
(ii) L is axiomatizable in NExtGL by a GL-conservative formula; 
(iii) L is finitely approximable; 
(iv) L is decidable; 
(v) L is Kripke complete; 
(vi) L has the interpolation property; 
(vii) L has the disjunction property. 

Proof (i) proved in the same way as (i) in Lemma 17.10, (ii) follows from (i) by 
the argument in the proof of Lemma 14.28. By Exercise 11.4, (iii) is a consequence 
of (ii); (iv) and (v) follow from (iii) and (vi) from (ii) by Theorems 14.5 and 14.25. 
Finally, one can easily obtain (vii) by describing the class of finite frames for L 
and using (iii); we leave this to the reader as an exercise. 0 
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Lemma 17.18 Suppose P : (s, m, n) f+ (t, k, l). Then: 
(i) L c GL EB v; 
(ii) L is not axiomatizable in NExtGL by a GL-conservative formula; 
(iii) L is not finitely approximable; 
(iv) L is undecidable; 
(v) L is Kripke incomplete; 
(vi) L does not have the interpolation property; 
(vii) L does not have the disjunction property. 

Proof It is sufficient to establish only (iv), (v), (vi) and (vii). To prove (iv), 
observe that J f= L, which together with the analog of Lemma 16.29 yields the 
following analog of Lemma 16.31: for every configuration (t', k', l'), 

P : (s, m, n) ---+ (t', k', l') iff -.v A Oe( s, a::~, a::;,) ---+ Oe(t', a::L a::f,} E L. 

It remains to recall that the second configuration problem is undecidable for P 
and (s, m, n). 

To justify (v) we use the last axiom of L, i.e., v V (0"'1 ---+ 0( 0"'2 A-.o+ "'i)). 
If we try to refute the formula v V 0"'1 in a Kripke frame for L, then this axiom 
will require an infinite ascending chain of distinct points (as in Section 6.3), 
which will contradict la E L. On the other hand, with the help of J one can 
show that v V 0"'1 fj. L. 

(vi) is proved analogously to Theorem 14.27 by considering the axiom v V v' 
(which is equivalent to -.v ---+ v'). In the same manner one proves that v fj. L 
(using J) and v' fj. L (using the frame in Fig. 14.9), which in view of v V v' E L 
gives (vii). 0 

As an immediate consequence of Lemmas 17.17 and 17.18 we obtain 

Theorem 17.19 The following properties are undecidable in NExtGL: decid
ability, finite approximability, Kripke completeness, the interpolation property, 
the disjunction property, the axiomatizability by GL-conservative formulas, the 
property of coincidence with GL EB D(D2 1----+ Op V D-.p). 

Incidentally we have also got 

Theorem 17.20 The formula D(D21----+ DpV D-.p) is undecidable in NExtGL. 

17.4 Undecidable properties of si-calculi 

Here we confine ourselves only to demonstrating that the same scheme of prov
ing the undecidability of calculi's properties is applicable to superintuitionistic 
logics as well. All the notations used below correspond to those introduced in 
Section 16.5. 

Theorem 17.21 The following properties are undecidable in Extlnt: decidabil
ity, finite approximability, axiomatizability by disjunction free formulas. 

Proof Consider the logic 
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L =Int+ AxP + (t(t, ai, a?) ---+ t(s, a;,,, a;) V p) ---+ p 

introduced at the end of Section 16.5. If P : (s, m, n) ---+ (t, k, l) then, as in 
Lemma 17.10 (i), we have L = Int+p, where p contains only positive occurrences 
of V. Therefore, by Exercise 4.11, Lis axiomatizable by a disjunction free formula 
and so, by McKay's theorem, it is finitely approximable and decidable. And if 
P : (s, m, n) ~ (t, k, l) then using the frame in Fig. 16.4 one can show that L 
is undecidable (see the analogous proof of (iv) in Lemma 17.18) and so it is not 
finitely approximable and not axiomatizable by disjunction free formulas. 0 

Corollary 17.22 The properties of decidability and finite approximability are 
undecidable in NExtGrz. 

Proof. Follows from Theorem 17 .21 and the preservation theorem. 0 

17.5 Exercises and open problems 

Exercise 17.1 Extend the proof of Theorem 17.1 to the following classes of 
logics: (a) consistent si-logics; (b) consistent (normal) extensions of S4; (c) con
sistent normal extensions of G L. 

Exercise 17.2 Show that, for every modal formula cp, 

cp E Lw iff /\ (D'l/J---+ 'l/J)---+ cp E GL.3. 

Exercise 17.3 Prove that (a) every non-trivial property of recursively axiomati
zable logics in the family {Logo, Log•} is decidable; (b) every non-trivial property 
of recursively axiomatizable logics in {Logo, Log•, Log( o + •)} is undecidable. 

Exercise 1 7 .4 Prove that the following properties are decidable: 
(i) Hallden completeness in NExtGL. 
(ii) The ''weak disjunction property", i.e., if cp V 'l/J E L then '''P E L or 

-,-,'l/J E L, in Extint. 
(iii) The property "to be a modal companion of Int" in the classes NExtS4 

and ExtS4. 
(iv) The axiomatizability by Int-conservative formulas in Extint and by S4-

conservative formulas in NExtS4. (Hint: see Theorem 17.8.) 
(v) The pretabularity in Extlnt, NExtS4, NExtGL, ExtGL. 
(vi) The antitabularity in ExtGL. 

Exercise 17.5 Prove that Hallden completeness is undecidable in the classes 
Extlnt, NExtS4, ExtS4, ExtGL. 

Exercise 17.6 Prove that the property "to be a modal companion of Int" is 
undecidable in NExtK4. 

Exercise 17. 7 Prove the decidability of coincidence with D in NExtK. Gener
alize this result to all finite union-splittings of NExtK. 
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Exercise 17.8 Prove the decidability of the following formulas: 
(i) the formulas in one variable in Extlnt; 
(ii) the variable free formulas in NExtGL. 

Exercise 17.9 Prove that the property "to be a modal companion of Int+ ip" 

is decidable in NExtS4 iff Int+ t.p is decidable and t.p is decidable in Extlnt. 

Exercise 17.10 Prove that the property of axiomatizability by variable free 
formulas is undecidable in NExtK4. 

Exercise 17.11 Prove that in ExtS the interpolation property and Hallden 
completeness are undecidable. 

Exercise 17.12 Prove that the problem of first order definability of modal for
mulas is undecidable. (Hint: use for instance the formula 

AxPEB ((p /\ Ot:(s, a~, a;)-+ Ot:(t, al:, a[))-+ •p) /\ 

(•pV (O(Op-+ p)-+ Op)) 

where the formulas AxP, p and€ are taken from Section 16.3; in the case when 
P: (s, m, n) -+ (t, k, l) this formula is equivalent to the variable free •p, which is 
certainly first order definable; and if P: (s, m, n) f4 (t, k, l) then this formula is 
valid in the frame shown in Fig. 16.2, from the root of an ultrapower of which an 
infinite ascending chain is accessible and so p V (O(Op-+ p) -+ Op) is refutable 
in it.) 

Exercise 17.13 Prove that Kripke completeness and the axiomatizability by 
purely implicative formulas are undecidable in Extlnt. 

Exercise 17.14 (i) Prove that the set of inconsistent calculi in ExtK4 is not 
recursively enumerable. 

(ii) Prove that the set of non-tabular calculi in NExtK is not recursively 
enumerable. 

Problem 17.1 Does Theorem 17.1 hold for the classes of consistent logics in 
ExtK, ExtK4, ExtGL? 

Problem 17.2 Is there an algorithm which, given an effective procedure enu
merating the complement of a logic L in Extlnt (NExtK, ExtK, etc.), decides 
whether or not L satisfies a given non-trivial property? 

Problem 17.3 Is the property "to be a (un)decidable formula" decidable in 
Extlnt, NExtK, etc.? 

Problem 17.4 Is local tabularity decidable in Extlnt? 

Problem 17.5 Is structural completeness decidable in Extlnt and NExtK4? 

Problem 17.6 Are the sets of modal (in various standard classes) and si-calculi 
with (or without) the properties like Kripke completeness, finite approximability, 
etc. recursively enumerable? 
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17.6 Notes 

The jump from considering individual modal and si-logics to big classes of them 
gave rise to new settings of problems, in particular, algorithmic ones. When deal
ing with a separate logic, we are searching for answers to some standard list of 
questions: whether the logic is decidable, Kripke complete, finitely approximable, 
tabular, etc. For classes of logics these questions become mass algorithmic prob
lems. 

The pioneer paper in which such kinds of algorithmic problems were brought 
in sight and solved "negatively" was Linial and Post (1949), where it was shown 
in essence that the property "to be an axiomatization of Cl" is undecidable. 
Kuznetsov (1963) significantly extended this result: for every si-calculus C, the 
problem of recognizing, given an arbitrary list of formulas, whether it axiomatizes 
C with the rules MP and Subst (and without axioms of Int) is algorithmically 
undecidable. By a proper choice of C we can get various undecidable properties of 
propositional calculi. In particular, undecidable are the properties of consistency, 
completeness with respect to the classical truth-table (i.e., the property "to be 
an axiomatization of Cl") and some other properties which can be formulated 
in the form of the deductive equivalence to a certain fixed si-calculus. Note that 
Kuznetsov's theorem of Section 17.1 was not published by the author. We are 
grateful to L. Maksimova for informing us about it. 

Until the late 1970s the efforts in the algorithmic direction of studies in modal 
logic were oriented mainly to obtaining positive results. To prove that a property 
is decidable one has, as a rule, to investigate deeply enough the property itself. 
One such property was tabularity. Kuznetsov's idea to use pretabular logics (first 
they were called "quasi-tabular") helped Maksimova (1972) to demonstrate that 
the property of tabularity is decidable in the class of si-logics, which became an 
impetus to consider the tabularity problem in other classes of logics. Another re
markable (with respect to its algorithmic behavior) property-the interpolation 
in Extlnt and NExtS4-was examined by Maksimova (1977, 1979, 1980). Note 
that for NExtS4 it was shown only that a decision algorithm exists; its concrete 
form depends on the set of logics with the interpolation property in NExtS4, 
which is not completely characterized yet. 

Only a few properties, besides those mentioned in Section 17.2 and exercises, 
are known to be decidable. One of them is "to have the same negation free 
fragment as Int";' according to Jankov (1968a), it is equivalent to the property 
"to be included in KC", which is decidable in view of the decidability of KC. 
We do not know, however, whether the property "to have the same implicative 
fragment as Int" is decidable. 

It is worth noting that there is an interesting correlation between the de
cidability of a formula cp, say in Extint, and the decidability of the calculus 
axiomatizable by cp: the property of coincidence with L = Int + cp is decidable 
iff both L and cp are decidable. 

The first paper specially devoted to obtaining results on the undecidability of 
properties of calculi in NExtK was Thomason (1982), which, besides establishing 
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that Kripke completeness is undecidable, shows in fact that the finite approxima
bility in NExtK and the consistency of normal bimodal calculi are undecidable 
as well. The next step was made by Chagrova (1989d), who used the results 
of Chagrova (1989.a, 1989c) to prove some theorems on the undecidability of 
properties of intuitionistic formulas related to their first order definability. She 
showed, for instance, the undecidability of the first order definability on count
able frames and of the property "to be first order definable on countable frames 
but not on all frames"; see also Chagrov and Chagrova (1995). The main result 
asserting that the first order definability of intuitionistic formulas (or si-calculi) 
is undecidable was proved in a somewhat different way in Chagrova (1991). 

Further progress in this direction was connected with the discovery of a gen
eral scheme for proving undecidability results of that sort. First it was applied in 
Chagrov (1990b, 1990c) and explicitly formulated in Chagrov and Zakharyaschev 
(1993). We followed this scheme in Sections 17.3 and 17.4. The results concern
ing the undecidability of tabularity are taken from Chagrov (1996), where it is 
proved, in particular, that the problem of coincidence with a fixed consistent 
tabular logic in NExtK is undecidable. Moreover, by combining the technique 
of Chagrov (1996) and the proof of Blok's theorem one can show that if L is 
a finitely axiomatizable consistent normal modal logic different from a union
splitting then the problem "K EB cp = L?" is undecidable. For more applications 
of that scheme in various situations see Chagrov (1994c). 

Another approach was taken by Kracht and Wolter (1997). Here the undecid
ability of properties is first shown for bimodal logics using word problems. Then, 
drawing on the simulation technique developed by Thomason (1974b, 1975c), 
the results are transferred to logics in NExtK similar to Thomason (1982). 

Problem 17.4 was posed by Maksimova. As for Problem 17.5, Tsytkin (1987) 
and Rybakov (1995) proved that the property of hereditary structural complete
ness is decidable in Extlnt and NExtK4. Cresswell (1985) showed that no re
cursively enumerable family of algorithms consists only of decision algorithms 
for all decidable normal modal logics. 
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COMPLEXITY PROBLEMS 

Suppose we have managed to construct a decision algorithm for a given modal 
or si-logic. Then we are facing the following questions. What are the complexity 
parameters (say, the required time and memory) of this algorithm? Does there 
exist a simpler algorithm? Since it is a priori impossible to estimate the efficiency 
of the decision procedure provided by Harrop's theorem, and the use of Biichi's 
and Rabin's theorems reduces the decision problem for a propositional logic to 
that for a second order theory (which is known to be very complicated), we 
consider here only those decision algorithms that are based on estimating the 
size of minimal frames separating formulas from logics. 

18.1 Complexity function. Kuznetsov's construction 

In Section 4.3 we introduced the notions of exponential, polynomial and linear 
approximability. More generally, for a finitely approximable logic L we consider 
the function 

h(n) = max min J~J, 
!(v>):-;n ;Jl=L 

v>i.L ;;~,,, 

where l ( <p) is the length of <p, i.e., the number of subformulas in <p. h ( n) is called 
the complexity function of L. The exponential, polynomial and linear approxima
bility of L mean then that there are positive constants c1, c2, c3, respectively, 
such that the following conditions hold: 

A necessary condition for an algorithm to be regarded as "acceptable" or 
"sufficiently efficient" is, as is well known, its polynomial parameters. Without 
going into details (consult Garey and Johnson, 1979) we accept this claim as a 
working thesis. 

The simplest consistent modal and si-logics are the tabular ones, and among 
them Cl, Triv and Verum as the logics characterized by single-point frames. 
Although nobody knows if there exists a polynomial time decision algorithm for 
at least one of them, other tabular logics seem to be even more complex. To make 
our discussion more concrete, we introduce a notion of polynomial reducibility 
of one logic to another. 

Say that a logic L1 is polynomially reducible to a logic L2 if there is a function 
g from the language of L1 into that of L2 which is computable by a polynomial 
time algorithm (of the length of the input formula) and such that 
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r.p E L1 iff g(r.p) E L2. 

Notice that Cl is polynomially reducible to any consistent modal or si-logic. In 
the former case one can use the identity function g( r.p) = r.p and in the latter, by 
Glivenko's theorem, g(r.p) = -i-ir.p. 

We say also that L1 and L2 are polynomially equivalent (with respect to 
their decision algorithms) if they are polynomially reducible to each other. It is 
easy to see that every two tabular logics are polynomially equivalent (consult 
Exercises 18.1 and 18.2). Polynomially equivalent logics may be regarded as 
similar as far as the complexity of their decision algorithms is concerned. 

Example 18.1 As we showed in Section 4.3, LC is linearly approximable. This 
provides us with a decision algorithm for LC that works exponential time of the 
length of the input formula. 

Thus, both Cl and LC are decidable by algorithms requiring exponential 
time. But are they polynomially equivalent? In Section 18.5 we shall show how 
questions of that sort can be answered in an easy, though indirect way. Here we 
give a direct construction for obtaining such results. 

Let us recall that Cl, in spite of all the criticism against it, works perfectly well 
as far as finite objects are concerned. For instance, if we need to check whether 
a formula is true in a finite model, we can base our arguments on the laws of Cl. 
Let us formalize this observation as was proposed by Kuznetsov (1979). As an 
example we will consider LC and indicate the points where specific properties 
of this logic are essential. 

Let r.p be a formula of length n. According to Example 4.15, r.p ¢ LC means 
that J ~ r.p for some linearly ordered frame J containing at most n + 1 points. 
We describe this by means of classical formulas, understanding their variables 
in the following way. Suppose we have a model 9Jt = (J, ~) and x, y, z, for 
1 :::; x, y, z:::; n + 1, are names (numbers) of points in J. With every pair (x, y) of 
points in J we associate a variable Pxy whose meaning is "x sees y". And with 
every subformula 'I/; of r.p and every point x we associate a variable qt which 
means "'I/; is true at x". Denote by o: the conjunction 

It means that r.p is true in 9.Jt. And let /3 be the conjunction of the following 
formulas under all possible values of their subscripts: 

Pxx, 

Pxy /\ Pyz ~ Pxz, 

Pxy /\qt~ qt, 
q; +-+ .l, 

qt11x +-+ qt /\ q£' 
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qtvx - qt V q~, 

qt->x - /\;~~(Pxy /\qt -> q~). 

(The first two formulas say that R is reflexive and transitive and the rest simulate 
the truth-relation in 9J1.) Finally, we define a formula saying that our frame is 
linear: 

I= /\ (Pxy V Pyx)· 
xfy 

The formula f ( cp) = {3 /\ / -> o: is of length ::; 1997 · l3 ( cp) (perhaps the reader 
can reduce the constant) and can be clearly constructed by an algorithm working 
at most linear time of the length of cp. It is readily seen that the following lemma 
holds: 

Lemma 18.2 cp E LC iff f(cp) E Cl. 

As a consequence we obtain 

Theorem 18.3 LC and Cl are polynomially equivalent. 

Later on in the same way we shall establish more general results. But now 
let us have a closer look at the construction we used. Notice that the properties 
of LC were essential only at the following two points: 

• we estimated the size of the frame refuting cp as not exceeding l(cp) + 1; 

• in the conjunct /· 

So, if we want to apply such a construction, say to Int instead of LC, then 
we need a polynomial upper bound for the complexity function of Int and do 
not need the conjunct / at all (for other logics we may need another formula 
/). Thus we obtain the following conditional "theorem": if Int is polynomially 
approximable then it is polynomially equivalent to Cl. 

18.2 Logics that are not polynomially approximable 

In fact, Kuznetsov's construction was originally created for Int, but it turned 
out that just for Int it cannot be used. We are going to show now that this logic, 
as well as many others, is not polynomially approximable. 

Consider the sequence of formulas 

n-i 

f3n = /\ ((•Pi+i-> qi+i) V (Pi+i-> qi+i)-> qi)-> (•pi-> qi) V (pi-> qi). 
i=i 

It should be clear that l(f3n) = O(n)i2 . We show that every refutation frame 
J = (W, R} for f3n contains at least 2n points. Suppose that under some valuation 
in J the formula f3n is refuted at a point x. Then we have, for 1 ::; i ::; n - 1, 

12We write /{n) = O{g(n)) if there is a constant c > 0 such that /(n) ~ c · g(n), for all 
n 2: O. 
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Xu 

FIG. 18.1. 

(18.l) 

(18.2) 

It follows from (18.1) that there are points x 0 and x 1 for which xRxo, xRx 1 , 

xo [tf: q1, Xi [tf: q1, xo f= •P1, and x1 f= P1. The later two conditions say that 
x0 and x 1 do not have common successors in J. Thus (18.1) gives us the binary 
tree of depth 2; see Fig. 18.l. 

Now let us use condition (18.2) for i = 1. Since x0 [tf: q1 and x 1 [tf: qi, we 
have xo [tf: ( •P2 --+ q2) V (P2 --+ q2), X1 [tf: ( •P2 --+ q2) V (p2 --+ q2) and so there 
are points Xoo, xoi, X10, x11 such that xiRXij, Xij [tf: q2, Xia f= •p2, Xi! f= P2 for 
all i,j E {O, l}. It follows in particular that no pair of these points has common 
successors in J. Thus, J contains the full binary tree of depth 3 depicted in 
Fig. 18.1. Continuing in the same way, inn steps we shall extract from J the full 
binary tree of depth n + 1 having 2n final points. 

It remains to observe that f3n is indeed refuted in such a tree, and so f3n (j. Int 
(we leave this to the reader as an exercise). Thus, we obtain 

Lemma 18.4 There is a constant n > 0 such that fint(n) ~ 2c·n. 

As is well known, an exponential function with base > 1 grows more rapidly 
than any polynomial. Therefore, Int cannot be polynomially approximable. Given 
arithmetic functions f(n) and g(n), we write f(n):::::: g(n) if f(n) = O(g(n)) and 
g(n) = O(f(n)). In view of the exponential upper bound for fint(n) obtained in 
Theorem 2.32, we then have 

Theorem 18.5 log2 fint(n):::::: n. 

Notice that the formulas used in the proof of Lemma 18.4 contain only posi
tive occurrences of V which, by Exercise 4.11 and Corollary 15.12, do not belong 
to any consistent si-logic with the disjunction property. Thus we obtain a rather 
unexpected 

Theorem 18.6 No consistent si-logic with the disjunction property is polyno
mially approximable. 

In some cases we can obtain even stronger results. Notice that the proof of 
Lemma 18.4 establishes in fact that the minimal frame refuting f3n contains ex
ponentially many final points. Let us have a look now at the interval [KP, ML]. 
As follows from Exercise 2.10, finite rooted frames for logics in it have the fol
lowing property: for every partition of the set of final points in such a frame into 
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two non-empty sets, there is a point in the frame which sees all points in one 
set and no point in the other. Together with the fact that f3n does not belong to 
ML this gives 

Theorem 18. 7 There is a constant c > 0 such that for every logic L in the 
interval [KP, ML], 

Since one can extract from the proof of Theorem 5.44 a twice exponential 
upper bound for fKp(n), we have 

Corollary 18.8 log2 log2 fKp(n)::::: n. 

Now let us turn to modal logics. The translations we used to embed Int into 
S4, GL, K4 transform f3n into modal formulas with similar semantic properties 
and the length :S: c · l(f3n), for some c > 0. Thus, we have the exponential lower 
bound for the complexity functions of all finitely approximable modal logics into 
which the si-logics considered above are embeddable. Taking into account the 
exponential upper bounds for these functions provided by the filtration method, 
we obtain, in particular, the following 

Theorem 18.9 If LE {S4, Grz, S4.1, S4.2, GL, K4} then log2 h(n)::::: ri .. 

In this theorem we used the fact that frames for all logics under consideration 
are transitive. For K the same construction does not work. However, if in the 

/\
2n · 

modal translation of f3n we replace subformulas of the form Dcp by i=O D'cp then 
the resulting sequence of formulas will again possess the required property with 
the only exception: now the length of formulas in the sequence is not a linear 
but a square function of n. Using the fact the functions of the form 2vc:n still 
grow faster than polynomials, we obtain then 

Theorem 18.10 K is not polynomially approximable. 

18.3 Polynomially approximable logics 

As follows from the results of the preceding section, a necessary condition for a 
logic to be polynomially approximable is that its frames do not contain arbitrarily 
big full finite binary trees. The simplest kinds of logics satisfying this condition 
are logics of finite depth and finite width. In this and the next sections we study 
the complexity of them. We begin with modal logics and then use the fact that 
their si-fragments cannot be more complex. 

First we establish a fact the easy proof of which contains the main features 
of the other proofs in this section. 

Lemma 18.11 Suppose 9Jt is a transitive model, x a point in 9Jt and cp a for
mula. Then there is a submode[ oot' of oot containing x and satisfying the following 
properties: 

• the skeletons of 9Jt and oot' are isomorphic (more precisely, every cluster 
in 9Jt has a representative in oot' ); 
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• each cluster in 9.n' contains at most l ( cp) + 1 points; 
• for every'¢ E Subcp and every yin 9.n', (9.n, y) I='¢ iff (9.n', y) I= 1/J. 

Proof Let 01/;1 , ... , 01/Jn be all "boxed" subformulas of cp (we remind the reader 
that 0 was defined as an abbreviation). Clearly n :::; l(cp). As the worlds of 9.n' 
we take x and, for every i E {1, ... ,n} and every cluster C in 9.n, a point 
in C refuting 1/Ji, if any. Besides if a cluster in 9J1 contains no points of that 
sort, we put in 9.n' its arbitrary representative. The reader can readily verify 
by induction on the construction of cp that the resulting submodel satisfies the 
required properties. 0 

Thus, we can always assume that the size of clusters in the frames under 
consideration does not exceed the length of the refuting formula ( + 1, if neces
sary). It follows immediately that S5 is linearly approximable. But in fact a more 
general result holds. 

Theorem 18.12 (i) Every logic L E {K4BDn, S4 EB bdn : n < w} is polynomi
ally approximable, with the power of the corresponding polynomial :::; n. 

(ii) Every logic L E {Grz EB bdn, GL EB bdn, BDn : n < w} is polynomially 
approximable, w_ith the power of the corresponding polynomial :::; n - l. 

Proof The proofs are similar for all the types of modal logics mentioned in 
the formulation of the theorem, and the result for BDn follows from that for 
Grz EB bdn. So we consider only the case L = K4BDn. 

Suppose cp ¢ K4BDn and let 01/Ji, for 1 :::; i :::; m, be all "boxed" subformulas 
of cp. Then there is a model 9J1 of depth:::; n refuting cp at its root x. Now, starting 
with C(x), we mark by some labels some clusters in 9.n. Namely, if C is a marked 
cluster then, for every i E {1, ... , m}, we mark exactly one cluster which is 
accessible from C and contains a point refuting 1/Ji, if it exists. It should be clear 
that the total number of marked clusters does not exceed l+m+m2 + ... +mn- 1. 

Let 9.n' be the submode! formed by the marked clusters. One can readily prove 
by induction that 9.n' refutes cp at x and contains at most n · (l(cp) + l)n points. 

0 

Let us consider now extensions of some standard logics with the formulas 
bwn bounding width. 

Theorem 18.13 All logics K4BW n, S4EBbwn, GrzEBbwn, GLEBbwn, BW n, 
for n < w, are linearly approximable. 

Proof Again we consider only the modal case. Let L be one of the modal logics 
mentioned in the formulation of our theorem and cp ¢ L. Then cp is refuted at the 
root x of a model 9J1 based upon a finite frame (for L) of width :::; n. Let O'lj;i, 
for 1 :::; i :::; m, be all "boxed" subformulas of cp. For each i, we fix a maximal 
antichain of points in 9J1 that refute 1/Ji and do not see points from other clusters 
at which 1/Ji is false. Now we form the submode! 9.n' of 9J1 by putting into it 
x and all points from the selected antichains. It is not hard to check that the 
underlying frame of 9)1' validates L, 9.n' refutes cp and the number of points in 
9.n' is not greater than n · l ( cp) + l. O 
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A logic, all (normal) extensions of which are polynomially (exponentially, 
quadratically, linearly) approximable, is called hereditarily polynomially (respec
tively, exponentially, quadratically, linearly) approximable. For example, hered
itarily exponentially approximable are K4BD3 and BD3, which follows from 
the description of the universal frames of finite rank for these logics given in 
Section 8. 7. (In the next section we shall see that they are not hereditarily poly
nomially approximable.) Examples of hereditarily polynomially approximable 
logics are provided by the following: 

Theorem 18.14 (i) 84.3 is hereditarily polynomially approximable. 
(ii) 84 EB bd3 EB T(wem) is hereditarily quadratically approximable. 
(iii) S4 EB bd2 is hereditarily quadratically approximable. 

Proof We prove only (i) leaving (ii) and (iii) to the reader. As was shown in 
Section 11.3, every extension of 84.3 is characterized by a class of finite chains 
of (non-degenerate) clusters. Let LE Ext84.3 and cp ¢ L. Then there is a model 
9J1 based upon a finite chain of clusters for L such that cp is false at its root. 
Using the same strategy as in the proof of Theorem 18.13 we select points in 9J1 
refuting "boxed" subformulas of cp and form the submode! based upon the set 
of selected points augmented by a point from the final cluster in 9.Jt. The reader 
can readily check that the constructed submode! separates cp from L. 0 

18.4 Extremely complex logics of finite width and depth 

As follows from the description of the universal frames for logics of finite depth 
(see Section 8.7), an upper bound for the complexity function of a logic of depth 
k > 2 is 

2 
.. zc·n } 

2· k- 2 

for some constant c > l. Is it possible to reduce it? The answer is provided by 
the following theorem and its corollary: 

Theorem 18.15 For every k > 2, there is a si-logic L of depth k such that 

Proof For a set X, we denote by P2X the collection of subsets of X containing 
at least two elements and by PX the standard power-set of X. Put Pf" X = 
P2(P;"-1 X), with Pi X = P2X; pm X is defined analogously. 

Let us consider the intuitionistic Kripke frames Jn = (Wn, Rn) in which, for 
n > 2, 

Wn ={a, a1, ... , an} U {b~: x E PHl, ... , n}, 1:::; s:::; k - 2}, 

and Rn is the reflexive and transitive closure of the relation R' defined by 

cR' d iff 3x, y, i, s ( c = a V ( c = b~ /\ d = ai /\ i E x) V 
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(c = b~+l /\ d = b~ /\ y Ex/\ 1 :::; s:::; k - 3)). 

The logic characterized by the class of these frames is denoted by L. To show 
that L is as required we shall use the formulas 

where 

v 
xEPk- 2 {1, ... ,m} 

k-2 
Ix , 

I~ = /\'(Pi/\ 'Pi-l /\···/\'Pl /\qi)/\ 
i(lx 

(Pk-2-> Pk-l v 'Pk-1) /\ M~-2-> qk-1 v --,q/.-1)-> 

V '(Pi/\ 'Pi-1 /\···/\'Pl/\ qi) V 'Pk-1 V 'qk-1, 
iEx 

for x E P{l, ... , m}, and for other subscripts, 

i+l /\ i f\ ( I I V ( I I V I ) ) f\ Ix = ly Pk-1-i -> Pk-i Pk-i -> · · · -> Pk-l 'Pk-l · · · 
y(lx 

(qk-l-i-> qk-i v (qk-i-> ... -> qk-l v --,q/.-1) ... ) -> 

VI~ V (Pk-i-> Pk-i+l V (Pk-i+l -> · · · -> Pk-l V 'Pk-1) · · .) V 
yEx 

(qk-i-> qk-i+l v (qk-i+l-> ... -> q/._l v --,q/._1) ... ), 

f32(m) =qi VP~ V q~ V (q1 /\ 'P~ /\ · · · /\ 'Pk-1 /\ 'q~ /\ · · · /\ 'qk-1 -> 

q2 V (q2 -> .. · -> qk-2 V (qk-2 /\(pi -> P2) /\ · · · /\ (Pm-l ->Pm) -> 

'Pl V '(P2 /\'Pi) V ... V '(Pm/\ 'Pm-1)) ... ) V 

(p~ /\ 'ql /\ --,q~ /\ ... /\ 'qk-1 -> 

P~ V (p~-> · · ·-> Pk-1 V 'Pk-1)) · · .) V 

M /\ 'ql /\ 'P~ /\ ... /\ 'Pk-1 -> 

q~ v (q~-> ... -> qk-1 v --,q/._1)) ... ). 

By a straightforward, though somewhat tedious inspection, one can prove 

Lemma 18.16 For every m > 2, n:(m) E L. 

Besides, we have 

Lemma 18.17 For every m > 2, {J2 (m) ¢ L. 
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Proof We must show that, for some n, there is a valuation in Jn under which 
/32(m) is false at the root of Jn- Put n = m + 6 and let ci = b~~ 2 , di = b~- 2 , 

k-2 2 

ei = bx
2 

, where 
Xi E p;-2 {1, ... ,m}, 

x2Ep;-2{m+1,m+2,m+3}, 

x3 E p;-2{m+4,m+5,m+6}. 

The point ci is chosen so that it could see the point b{i, ... , m}. Then there are 

c2, ... , Ck-2 = b{i, ... ,m} such that ciRnc2Rn ... Rnck-2Rnai, for 1 :S i :S m. Be
sides, there are d2, ... ,dk-i and e2, ... ,ek-i, for which diRnd2Rn···Rndk-i, 
eiRne2Rn ... Rnek-i and all points mentioned above are pairwise distinct. No
tice also that the choice of xi, x2, x3 ensures that the sets of successors of ci, 
di, ei are disjoint. 

Define a valuation in Jn in such a way that ci f= Qi, ... , Ck-2 f= Qk-2, ai f= Pi, 
di f= Pi, ... ,dk-i f= P~-i' ei f= qi, ... ,ek-i f= qJ.-i, where 1 :Si :S j :Sm. It 
is not hard to check that under this valuation /32(m) is refuted at the root of 

~- 0 

Lemma 18.18 Let J = (W, R) be a frame for L refuting /32(m). Then 

Proof By Lemma 18.16, J [1f: /3i(m) and so there are points in J at which 
the disjuncts of /3i ( m) are not true. It is easy to see that distinct disjuncts are 
refuted at distinct points. 0 

To complete the proof of Theorem 18.15, it remains to observe that the length 
of (32 (m) is O(m). 0 

Corollary 18.19 (i) For every k > 2, there is a logic L E NExtGrz of depth k 
such that 

h(n)::'.'.222n} k-2. 

(ii) For every k > 2, there is a logic L E NExtGL of depth k such that 

For finitely approximable logics of finite width we have no a priory upper 
bounds for their complexity functions. And this is no accident. We are going to 
show now that there are finitely approximable logics of finite width whose com
plexity functions grow more rapidly than an arbitrarily given increasing arith
metic function. 
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ac·f(n)-1 

ac·f(n) 

Cn-1 

FIG. 18.2. 

bc·f(n)-1 

bc·f(n) 

dn 

dn-1 

Theorem 18.20 For every arithmetic function f(n), there is a finitely approx
imable si-logic L of width 2 such that h(n) ~ f(n). 

Proof Without loss of generality we may assume f ( n) to be a monotone non
decreasing function. Fix a sufficiently big constant c, say 1996, and define L to 
be the si-logic characterized by the class of finite frames Jn shown in Fig. 18.2. 
Clearly, L is of width 2. Consider the formulas 

where 

n 

o;(m) = (p~ A /\ q~-+ p~ v (p~ ~ ... -+ p~ v ·p~) .. . ) v 
i=l 
n 

M /\ /\ P~-+ q~ v (q~-+ ... -+ q~ v ·q~) .. . ), 
i=l 

a1 = r -+ p V •p, f31 = •r -+ p V •p, a2 = {31 -+ a1 V ••p, 

f32 = a1 -+ f31 V •p, ai+1 = f3i-+ ai V f3i-1, f3i+1 = ai-+ f3i V ai-1, 

c·f(m) 

81(m) = V (ai V f3i)· 
i=l 

The following lemma is similar to Lemma 18.16, but its proof is not so cumber
some. 
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Lemma 18.21 For every m > 2, 1(m) EL. 

Proof Let us try to refute 81(m) _, 82(m), form> 2, in a frame Jn· If 82(m) 
is not true at x then x must see two incomparable chains of :::: m points (they 
are required to refute o;(m)). By the definition of Jn, they are subchains of 
c1, ... , Cn and d1, ... , dn (from which m :<::: n). Besides, to refute 0:1 V (31 we must 
have two two-point chains accessible from x and having no common successors; 
these can be only a1 ,a0 and b1 ,b0 . Now we prove by induction that ao, ai, ... , 
ac·f(m) and bo, b1, ... , bc·f(m) are the final points refuting o:o, 0:1, ... , O:c·f(m) and 
(30 , (31, ... , f3c·f(m)> respectively. Using the fact that f(m) is monotone, we see 

that 81(m) is not true at x either. Thus Jn I= 81(m) _, 82(m). 0 

Lemma 18.22 Suppose J = (W, R) is a frame for L refuting f32(m). Then 

IWI :::: 2c · f(n). 

Proof As was shown in Lemma 18.21, 81(m) is refuted in J and so J contains 

at least 2c · f(m) points. 0 

To complete the proof of our theorem, it remains to observe that the length 
of 82(m) is O(m) and 82(m) tf. L for any m.. 0 

Corollary 18.23 (i) For every arithmetic function f(n), there is a finitely ap
proximable logic LE NExtGrz of width 2 such that fL(n) :::: f(n). 

(i) For every arithmetic function f(n), there is a finitely approximable logic 
LE NExtGL of width 2 such that fL(n) :::: f(n). 

18.5 Algorithmic problems and complexity classes 

Now let us turn to the relationship between the complexity of algorithmic prob
lems for modal and si-logics and some standard complexity classes. First we 
consider the class NP of problems that can be solved by polynomial time algo
rithms on nondeterministic machines. Note that here we deal with only algorith
mic problems of recognizing sets (or properties), i.e., those problems that can 
be formulated as the question "x E X?", for some suitable set X. Such are, for 
instance, the problems "cp E L ?" and "cp tf. L ?" for a fixed logic L. 

We remind the reader that unlike deterministic machines (each next step of 
which is uniquely determined by the program and the current state of memory 
or configuration), a nondeterministic machine has in general an opportunity to 
choose its next step. For example, a nondeterministic Minsky machine may have 
two or more instructions with the same left part, and which of them will be 
executed is decided "by guess". It is easy to show that, given such a machine, 
one can construct an equivalent machine whose work consists of two stages: first 
the machine writes by guess some auxiliary word and then it deterministically 
calculates the required result using the word obtained at the first stage, i.e., it 
checks whether the guessed word is suitable for our purpose. The work of the 
machine is regarded as successful if there is a word having guessed which the 
machine produces then a positive (in some sense) result. 
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Let us consider for example the problem of finding a model for Cl satisfying a 
given formula, which is known as the satisfiability problem for propositional for
mulas. To solve it a standard deterministic algorithm (we do not distinguish here 
between algorithms and the machines realizing them) constructs (in one form or 
another) the truth-table for the formula and looks for Tin the column under the 
main connective. Clearly, this is an exponential time algorithm (of the number of 
the formula's variables). Now we describe a nondeterministic algorithm solving 
the same problem. At the first stage it guesses a suitable valuation of the vari
ables and at the second checks whether the formula is true under this valuation. 
Only quadratic time is required for this operation. Thus, the nondeterministic 
algorithm turns out to be much faster. 

Although the concept of nondeterministic algorithm is just an abstraction, it 
is quite useful to understand how complex the problems requiring the exhaustive 
search are. 

Denote by P the class of problems that can be solved by polynomial time 
deterministic algorithms. As we saw above, the satisfiability problem for Boolean 
(classical) formulas is in NP. Does it belong to P? This question is of great 
importance for complexity theory. As is shown by Cook's theorem below, it is 
equivalent to the question "P = NP?", known as the problem of eliminating 
the exhaustive search and regarded often as one of the main problems in this 
theory. 

In spite of its boundlessness, the class NP contains problems that are in a 
sense most representative from the "polynomial point of view". Call a problem 
"x E X?" NP-complete if 

• it belongs to NP and 

• every problem "y E Y?'' in NP is polynomially reducible to the problem 
"x E X?", i.e., there is a polynomial time function (algorithm) f(y) such 
that y E Y iff f(y) EX. 

It is clear that if a problem "x E X?" is in NP and some NP-complete problem 
is polynomially reducible to it (in which case "x E X?" is called NP-hard) then 
"x E X?" is also NP-complete. Besides, to prove that a problem belongs to 
NP, it is sufficient to reduce it polynomially to some problem in NP. 

For a detailed discussion of the given definitions the reader can consult the in
troduction to complexity theory (Garey and Johnson, 1979) where it is proved in 
particular that the satisfiability problem for Boolean formulas is NP-complete. 
This result is known as Cook's theorem. It follows immediately that the non
derivability problem for Cl, i.e., "cp <f_ Cl?" is NP-complete too. 

NP-completeness of the satisfiability problem partly justifies our changing 
from the original problem of searching for a polynomial time decision algorithm 
for a given logic to the problem of establishing its polynomial equivalence to Cl. 
Indeed, if P = NP then Cl as well as any logic polynomially equivalent to Cl 
is decided by a polynomial time algorithm and vice versa. Thus, to justify the 
dubious equality P = NP it would be sufficient to present a polynomial time 
decision algorithm for at least one logic that is polynomially equivalent to Cl. 
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However, in any case we know that Cl and all logics polynomially equivalent to 
it are decided by polynomial time nondeterministic algorithms. 

Using the fact, observed in Section 18.1, we see that to establish N P-comple
teness of the nonderivability problem for a consistent logic L it suffices to prove 
that the problem "rp <t L?'' belongs to NP. Notice that Theorems 18.12 and 
18.13 yield the following: 

Lemma 18.24 Suppose L is one of the logics K4BDn, 84 EB bdn, Grz EB bdn, 
GL EB bdn, BDn, K4BW n, 84 EB bwn, Grz EB bwn, GL EB bwn, BW n· Then 
the problem of nonderivability in L is in NP. 

Proof Exercise. (Hint: use suitable modifications of K uznetsov's construction.) 

0 

As a consequence we obtain 

Theorem 18.25 Let L be one of the logics K4BDn, 84 EB bdn, Grz EB bdn, 
GL EB bdn, BDn, K4BWn, 84 EB bwn, Grz EB bwn, GL EB bwn, BWn. Then 
the problem of nonderivability in L is NP-complete. 

Another complexity class we consider here is the class of problems that can 
be solved by polynomial space (whether deterministic or nondeterministic, see 
Garey and Johnson, 1979) algorithms. It is denoted by PSPACE. Call a prob
lem "x EX?" PSPACE-complete if 

• it belongs to PSPACE and 

• any problem "y E Y?" in PSPACE is polynomially reducible to the 
problem "x EX?", i.e., there is a polynomial time function f(y) such that 
y E Y iff f(y) EX. 

It is known that N P<;;,PSPACE. In particular, both problems "rp E Cl?" 
and "rp <t Cl?" are in PSPACE (check!). This is not so clear for the logics 
considered in Section 18.2. However, the (non)derivability problem for many of 
them not only belongs to PSPACE but is also PSPACE-complete. The first 
step to show this is 

Lemma 18.26 Let L E {GL,Grz,Int}. Then the problem "rp E L'?" is in 
PSPACE. 

Proof Suppose L = GL. The proof of Theorem 14.25 provides us with a de
cision algorithm for GL. Indeed, rp E GL iff the formula ''P --+ .l has an inter
polant in GL, and to check if this is the case, it is sufficient to construct a finite 
tree model according to the rules supplied by that proof. In general, this pro
cedure requires exponential space because it constructs a tree of depth O(l(rp)) 
and branching O(l(rp)). However, we need not construct the whole tree at once: 
it is enough to demonstrate that each of its branches can be constructed. This 
can be done as follows. 
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Let us consider the transition from a tableau (r, L.l.J) to its immediate suc
cessors (fi, L.l.J), for 1 :::; i :::; m, where 

and Oxi, ... , Oxm are all formulas in r of the form Ox. We need not accomplish 
this transition simultaneously to all these tableaux. First we can pass to (f i, L.l.J) 
and try to realize it alone. Having succeeded, we then "clean" the memory and 
pass to (f2, L.l.J), etc. Clearly, we again obtain a decision procedure for GL 
requiring O(l3(cp)) memory: O(l2(cp)) for writing and processing each tableau, 
the total number of which does not exceed l(cp). 

The logics Grz and Int may be treated in a similar way, or one can use the 
embeddings of them into GL defined in Section 3.9. 0 

Thus, to complete the proof that the derivability problem in the logics under 
consideration is PS PACE-complete, it remains to show that some PS PACE
complete problem is reducible to it, i.e., that it is PS PACE-hard. To this end 
we use the PS PACE-complete truth problem for QBF (quantified Boolean for
mulas): given a Boolean formula cp(p1, ... ,pn) and a prefix Qipi ... QnPn, where 
each Qi is either ti or 3, to check whether the formula Qipi ... QnPn'P(Pi, . .. , Pn) 
is true. (The formulas t/p'ljJ(p) and 3p'ljJ(p) are regarded to be true iff 'l/J(T) A'lj;(F) 
and 'l/J(T) V 'lj;(F) are true, respectively.) It should be clear that it is sufficient 
to consider formulas that are in conjunctive normal form (note however that 
the transformation to this or other standard form can substantially change the 
length of the formula). 

Let cp = Qipi ... QnPn'l/J(p1, ... ,pn) be a Boolean formula with quantifiers 
and 

m it j, 

'l/J = /\( V Pst V V 'Pst) 
t=l s=i s=it+i 

(we assume that Pst is always in {pi, ... ,pn}). Now we construct an implicative 
formula cp*. To simulate quantifiers, we require the formulas 

lE(qi, q2, q3, % q) =(qi;\ q2--) q3) ;\(qi;\ q2--) q4) ;\(qi;\ q2--) q) --) q. 

The variables Pi will be simulated by the formulas of the form bi = qi --> ri, 
bi = ri --> qi. Their intended meaning is as follows: if bi is refuted then Pi = T 
and if bi is refuted then Pi = F. To refute A( bi, bi, bj, bj, q), we need a point, say 

x, at which q is false. Then x sees two points, say xi and x2, such that xi IV!= bi 
and a2 IV!= bi (i.e., we check all the truth-values of Pi), which is ensured by the 
third and fourth conjuncts of the premise. The first and second conjuncts ensure 
that the sets of points above x refuting bi and bi are upward closed. The case of 
refuting JE( bi, 6i, b1, 61, q) is described analogously but replacing and by or (i.e., 
only one truth-value of Pi is chosen). 
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With the prefix Q1P1 ... QnPn we associate the formula Qn(61, <51, ... , 6n, bn) 
in the following way: 

if Q1 ='<:/then Q1((5i,81) = A.(61, 81, 62, 82, q); 

if Q1 = 3 then Q1(61,81) = E(61,81,62,82,q); 

if Qn ='<:/then 

Qn(61, 81, · · ·, 6n, 8n) = (A(6n, 8n, 6n+l}n+l, 6n-I)--+ 6n-I) A 

(A(6n,8n,6n+l}n+l,8n-I)--+ 8n-I)--+ 

Qn-1 (61, 81, · ·., 6n-l 1 8n_i); 

if Qn = 3 then 

Qn(61, 81,. · ·, 6n, 8n) = (E(6n, 8n, 6n+I, 8n+l' 6n-l) --+ 6n-l) A 

(E(6n,8n,6n+l,8n+l,8n-i)--+ 8n_i)--+ 

Qn-1 (61, 81, · · ·, 6n-l, 8n-1); 

Now consider 1f;(p1, ... ,pn) and construct a formula 'Pk by induction on 'k: 

ii Ji 

'Pl = ( /\ 6s1 A /\ bsl --+ 6n A 8n) --+ Qn(61, 81, ... , 6n, 8n), 
s=l s=i1 +l 

ik ik 

'Pk = ( /\ 6sk A /\ bsk --+ 6n A 8n) --+ 'Pk-1· 
s=l s=ik+l 

Finally, we put cp* = 'Pm· The properties of the constructed formulas we need 
are described by the following 

Lemma 18.27 l(cp*) = O(l(cp)) and cp is true iff cp* ¢Int. 

Proof Exercise. 0 

Using this lemma we easily obtain 

Lemma 18.28 For every logic L E {GL, Grz, Int}, the problem "cp E L '?" is 
PSPACE-hard. 

As a consequence of Lemmas 18.26 and 18.28 we finally have 

Theorem 18.29 For every logic LE {GL,Gr~,Int}, the problem "cp EL'?" is 
PS PACE-complete. 

Note that along with Lemma 18.28 we obtain the following analog of Theo
rem 18.6. 

Theorem 18.30 The problem of derivability in any consistent si-logic with the 
disjunction property is PS PACE-hard. 
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18.6 Exercises and open problems 

Exercise 18.1 Prove that the polynomial equivalence of logics is an equivalence 
relation, i.e., it satisfies the conditions of reflexivity, transitivity and symmetry. 

Exercise 18.2 Prove that every consistent tabular logic is polynomially equiv
alent to Cl. 

Exercise 18.3 Prove that log2 fKC ( n) ~ n and that no logic in the interval 
[Int, KC] is polynomially approximable. 

Exercise 18.4 Show that one cannot reduce the power of the polynomials in 
Theorem 18.12. (Hint: consider the intuitionistic formulas 

n-1 

c(m) = /\ (c:r, ____, bd8 ) ____, c~, 
s=l 

where, for 1 :S m :S n, 

m-1 
8 /\ ( s-1 s-1) ( s-1 bd ) V cm = Pi ____, P;+1 ____, P1 ____, s-1 

i=l 

and prove that to refute c(m) a frame must contain the full m-ary tree of depth 
n. In the modal case add to the premise of the suitable translation of c(m) the 
conjunct 

m m-1 

D(/\ O(ri /\ •ri-1) /\ Or1 /\ /\ D(ri-1 ____, ri)).) 
i=2 i=2 

Exercise 18.5 Let O:n be the formula introduced in Section 12.l. Show that 
the logic K EB O:n is polynomially approximable and estimate the power of the 
corresponding polynomial. 

Exercise 18.6 Show that all pretabular logics in Extlnt and NExtK4 consid
ered in Chapter 12 are linearly approximable. 

Exercise 18. 7 Show that all modal companions of tabular and pretabular si
logics are polynomially approximable and estimate the power of the correspond
ing polynomials. 

Exercise 18.8 Prove that every normal finitely approximable extension of the 
logic K4.3 EB DOT is linearly approximable. 

Exercise 18.9 Prove that for every arithmetic function f(n) there is a finitely 
approximable normal extension L of K4.3 such that fL(n) :'.'.'. f(n). (Hint: use 
the logic of the frames shown in Fig. 18.3.) 

Exercise 18.10 Show that there is a constant c > 0 such that, for every cofinal 
subframe logic L, fL(n) :S rn. 
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·--···•-o--···• 
FIG. 18.3. 

Exercise 18.11 (i) Prove that there is a logic LE NExtS4 of depth k ;:::: 2 such 
that 

and the si-fragment of L is polynomially approximable. 
(ii) Prove that for every arithmetic function f (n) there is a finitely approx

imable logic L E NExtS4 of width 2 such that h ( n) ;:::: f ( n) and pL is linearly 
approximable. 

Exercise 18.12 The diameter of a finite transitive frame J is max{ n, m, k}, 
where n is the size of the maximal cluster in J, m the length of the longest chain 
of points from distinct clusters in J and k the maximal number of immediate 
successors of points in J. Prove that for every logic L in the list K4, S4, Grz, 
S4.1, S4.2, Int, KC, if cp rf_ L then cp is separated from L by a frame whose 
diameter does not exceed l ( cp). 

Exercise 18.13 Prove that the derivability problem for the logics K, K4, S4 
and KC is PSPACE-complete. 

Problem 18.1 Prove or disprove the "preservation theorem": for every si-logic 
L, L is polynomially approximable iff TL is polynomially approximable iff <TL is 
polynomially approximable. 

Problem 18.2 Are Int and KP polynomially equivalent? Does KP belong to 
PSPACE? 

Problem 18.3 Is there a recursive upper bound for /ML? Is there a recursive 
upper bound for the size of the minimal refutation Medvedev frame? 

Problem 18.4 One can easily show that Int in the language with one variable 
is linearly approximable. Is Int in the language with two variables linearly (or 
polynomially) approximable? Is this logic polynomially decidable? What about 
S4, Grz and other standard modal logics in the language with one variable? 

Problem 18.5 Do there exist finitely axiomatizable and finitely approximable 
logics which are more complex than KP? 

Problem 18.6 Prove that if L is a consistent si-logic different from Cl and 
axiomatizable by formulas in one variable then log f L( n) :::=:: n. What is the com
plexity of logics of the form S4 EB cp(p)? 

Problem 18. 7 How does the addition of an essentially negative axiom or D<>
axiom .to a logic affect its complexity function? 
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Problem 18.8 Do there exist logics (or calculi) with the C-complete {non) 
derivability problem, where C is an arbitrary member of the hierarchy of Meyer
Stockmeyer (for the definition consult Garey and Johnson, 1979)? 

Problem 18.9 Is it true that every polynomially approximable calculus is poly
nomially equivalent to Cl? Or, which is equivalent, is it true that the nonderiv
ability problem for such a calculus is NP-complete? 

18.7 Notes 

The study of complexity problems is a relatively new direction in modal logic. 
Although upper bounds for the size of refutation algebras and frames were found 
for a number of standard logics, usually this was just an intermediate aim in the 
proofs of their decidability. Complexity problems for si-logics were first explicitly 
mentioned by Kuznetsov (1975). Approximately at the same time the studies of 
logical foundations of computer science stimulated some interest in complexity 
aspects of modal logics. 

One of the questions raised by Kuznetsov (1975) was the problem of poly
nomial approximability of Int and its pretabular extensions (Kuznetsov himself 
observed that LC is linearly approximable). Kuznetsov (1979) showed that if this 
problem is solved positively for Int then Int and Cl are polynomially eGuivalent 
(see Section 18.1). 

The result of Statman (1979), who proved that the derivability problem in 
Int is PSPACE-complete and so a positive solution to Kuznetsov's question 
would imply that NP= PSPACE, gave to the complexity direction in modal 
logic another impetus. Ladner (1977) showed that the derivability problem in the 
logics K, T and 84 is PSPACE-complete. He proved also NP-completeness 
of the satisfiability problem in 85 and that 85 is linearly approximable. 

It is to be noted that Statman (1979) and Ladner (1977), defining the length 
of formulas, took into account not only the number of propositional variables 
and connectives in them (i.e., the number of subformulas) but also the length 
of indices: compare for instance the formulas p---+ q V r and PI997 ---+ Pl9971997 V 

Pl99719971997· Sometimes calculating the lepgth of indices is redundant. We mean 
logics formulated in languages with finitely many variables. Unfortunately, very 
little is known about the complexity of such logics. We will mention here only one 
question. The Rieger-Nishimura lattice provides us with a linear time decision 
algorithm for Int in the language with one variable. However, nothing is known 
about Int in the languages with two or more variables. On the one hand, to prove 
the lower bound for fint(n) or that the derivability problem in Int is PSPACE
hard we used formulas involving infinitely many variables, which suggests that 
the fragments of Int with finitely many variables are possibly much simpler. 
On the other hand, even Int in two variables is rather rich: every negation free 
formula nonderivable in Int (observe that proving the lower bounds we could use 
only negation free formulas; we did not use -. to construct various "negative" 
examples either) has a substitution instance in two variables that is not in Int. 
And four variables are enough to construct an undecidable si-calculus. 
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So we think it would be of interest to study the two-variable fragment of 
Int with respect to both its complexity function and its relation to the standard 
complexity classes P, NP, PSP ACE, etc. The same concerns one-variable 
fragments of modal logics, in particular, S4, Grz. When constructing "very 
complex" logics we were forced to use infinitely many variables. For logics of 
finite depth that was stipulated by their local tabularity. But we do not have 
this restriction in the case of finite width logics and so one can conjecture that 
these logics in finite languages are polynomially (linearly) approximable. It would 
be of interest also to estimate the complexity of KP and ML with finitely many 
variables. 

Note also that instead of polynomial reducibility Statman (1979) and Ladner 
(1977) used the (stronger) log-space reducibility. Whether these two types of 
reducibility are different in this context is an open problem. In any case, we 
do not know any examples of PSPACE-complete problems with respect to 
polynomial but not log-space reducibility. 

Kuznetsov (1975) claimed that if a si-calculus is polynomially approximable 
then it is polynomially equivalent to Cl. In February 1984 Kuznetsov (he died 
few months later) confessed to one of the authors that he could not reconstruct 
the proof and· had doubts whether his original proof in 1974 was correct. That is 
why we formulate this claim as an open problem. For all polynomially approx
imable calculi known to us (including tense logics of Ono and Nakamura, 1980) 
Kuznetsov's claim holds. Namely, one can modify in a suitable way the construc
tion in Section 18.1 by replacing in it the question about validity with that of 
satisfiability. This incidentally suggests that if NP= coN P then Kuznetsov's 
problem is solved positively. Is the converse true, i.e., is this problem as hopeless 
as "NP= coNP?"? 

Let us return to the questions raised by Kuznetsov (1975). That Int is not 
polynomially approximable was proved in Zakharyaschev and Popov (1979). 
Chagrov (1983) somewhat strengthened this result and proved also that min
imal logics of finite width and depth as well as all modal companions of tabular 
and pretabular si-logics are polynomially approximable. The material of Sec
tions 18.4 and 18.5 was taken from Chagrov (1985a). Note that the extremely 
complex logics constructed in Section 18.4 are not finitely axiomatizable. More
over, KP is the most complex calculus we know. 

A discussion of complexity problems in modal logics used in artificial in
telligence can be found in Halpern and Moses (1992). Exercise 18.12) is due 
to Darjania (1979). Complexity aspects of polymodal logics are considered by 
Spaan (1993). 
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